
www.allitebooks.com

http:///
http://www.allitebooks.org


PowerShell 3.0 Advanced 

Administration Handbook

A fast-paced PowerShell guide with real-world 

scenarios and detailed solutions

Sherif Talaat

Haijun Fu

BIRMINGHAM - MUMBAI

www.allitebooks.com

http:///
http://www.allitebooks.org


PowerShell 3.0 Advanced Administration Handbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the authors, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Production Reference: 1150413

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-642-6

www.packtpub.com

Cover Image by Siddhart Ravishankar (sidd.ravishankar@gmail.com)

www.allitebooks.com

http:///
http://www.allitebooks.org


Credits

Authors

Sherif Talaat

Haijun Fu

Reviewers

Mark Andrews

Karim CAMMOUN

Tong Young

Acquisition Editor

Rukhsana Khambatta

Lead Technical Editor

Dayan Hyames

Technical Editors

Sharvari Baet

Prasad Dalvi

Nitee Shetty

Copy Editors

Brandt D'Mello

Insiya Morbiwala

Aditya Nair

Alida Paiva

Project Coordinator

Arshad Sopariwala

Proofreaders

Amy Guest

Chris Smith

Indexer

Monica Ajmera Mehta

Graphics

Valentina Dsilva

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

www.allitebooks.com

http:///
http://www.allitebooks.org


About the Authors

Sherif Talaat is a young computer science addict. He is MCSA, MCSE, MCTS, and 
MCITP certiied. He has been working in the ICT industry since 2005. He used to 
work on Microsoft core infrastructure platforms and solutions with main focus on IT 
process automation and scripting techniques.

He is one of the early adopters of Windows PowerShell in the region called  
MEA—Middle East and Africa. He speaks about Windows PowerShell in technical 
events and user groups' gatherings; he is the founder of the "Egypt PowerShell User 
Group" (http://powershellgroup.org/egypt), and is the author behind the irst 
and only Arabic PowerShell blog (http://arabianpowershell.wordpress.com). 
He has been awarded the Microsoft Most Valuable Professional (MVP) award for 
PowerShell ive times in row since 2009. You can also catch him at sheriftalaat.com.

www.allitebooks.com

http:///
http://www.allitebooks.org


Acknowledgement

I would like to take the chance to dedicate this book to the soul of my dad and to 
thank my mom for her love, encouragement, and prayers. To my sisters Shereen 
and Dalia, and my brother Amr, thank you so much for the usual support, feedback, 
guidance, and for being proud of me.

To Israa, the best wife in the world, thanks for your love, support, and patience 
during the long days and nights I have spent writing this book. I could not have 
done this without you.

To my dear son Yahia, you were the hidden source of inspiration to complete this 
book. Keep it up my son, I need this again in future engagements.

To Prof. Ahmed Bahaa, Refaat Issa, and Sherif Tawik, thanks for everything you 
taught me for building the unique, professional, persistent, and challenging person 
inside me. I really can't thank you enough for the support, advice, trust, and belief 
you had in me.

Last but not the least, thank you Packt Publishing for giving me the chance to 
write this book. I'd also thank every team member who contributed to this project. 
Rukhsana, Arshad, Dayan, the external reviewers, and the other guys whom I didn't 
meet—your contributions were invaluable and this book wouldn't be what it is 
without you.

www.allitebooks.com

http:///
http://www.allitebooks.org


Haijun Fu is a computer programmer and an author living in China. He was 
educated at the Lanzhou University. He has been a Windows PowerShell Microsoft 
Most Valuable Professional (MVP) since 2011.

With a strong focus on PowerShell, cloud computing, the next generation of Internet 
security, Internet technology development, software testing, and database design, 
he has been writing many articles in order to share his experience with others on 
his blog. He has over 7 years of experience in software development and system 
architecture design. He is skilled especially at systems analysis, architecture design, 
and software project management.

In his spare time, he likes reading and writing. He is the author of two technical 
books called Windows PowerShell 2.0 Application Programming Best, Practices Publishing 
House of Electronics Industry in Mainland China and 350 PowerShell Utilize Example: 
Windows Automation Technology Manual in Taiwan.

He can be found on the Web at fuhaijun.com and on Twitter as @fuhj02. You can 
also reach him by e-mail at PowerShell@live.cn.

www.allitebooks.com

http:///
http://www.allitebooks.org


Acknowledgement

First and foremost, I'd like to thank my family who have always been a source of 
inspiration and encouragement. Without their support, who knows where I'd be.  
I am very thankful to my love, Ruby Liu, who has always stood by me, helped me  
at all times, and has even smilingly got me cups of tea during my sleepless nights  
of writing!

Writing a book is an interesting journey. Now that it's completed, looking back over 
the last several months I'm amazed at how lucky I've been to come in contact with so 
many terriic people.

I would also like to express my gratitude to my friend and co-author of this book, 
Sherif Talaat, for giving me so many useful suggestions on this book.

I was fortunate to have three great guys as reviewers for my book, Mark  
Andrews, Karim CAMMOUN, and Tong Young. They spent countless hours 
providing feedback and examples, researching speciic content, offering lots of 
encouragement, and engaging with me in great discussions about PowerShell.

Thanks to the editorial and project team at Packt Publishing for giving me the 
opportunity to write this book, and also being patient and understanding through 
the process of writes, re-writes, technical edits. So a really big thanks goes to them, 
especially Rukhsana, Dayan, Arshad, and many more.

The team at Packt Publishing, it was an honor and privilege working with you.

Last but not the least, I would like to thank my friends who helped me directly or 
indirectly by giving me moral support.

www.allitebooks.com

http:///
http://www.allitebooks.org


About the Reviewers

Mark Andrews has had a varied career in technology. Over the last 18 years he has 
worked in several departments ranging from customer service to quality assurance. 
Throughout all of these positions, the responsibility of coniguration management 
and build management has always fallen either to him personally or to one of the 
groups that he managed; because of his "keeping a hand in" management style, he 
has been involved closely with the scripting and automation framework for this area. 
Creating scripted frameworks that intercommunicate across machines, operating 
systems or domain boundaries is a passion for him.

Karim CAMMOUN is an IT consultant based in Ecublens, Switzerland, and has 
been working on Microsoft products for the past 20 years. With a strong expertise 
on Microsoft server products, he is a key player in migration projects, analyzing 
customer needs, and designing and deploying AD, Exchange, Lync, and Windows. 
Besides, he also develops in C++, PowerShell, VBscript, and VBA.

Tong Young has been working in the IT industry since 2000, focusing on Microsoft 
Windows Server, Exchange, SQL, SCCM, and SCOM. He is a PowerShell enthusiast 
who uses PowerShell every day to automate tasks and add value to everyday tasks. 
He is currently working at yellowpages.com.

www.allitebooks.com

http:///
http://www.allitebooks.org


www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to  
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub iles 
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book 
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range 

of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com 

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. 

Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib 

today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notiied! Find out when new books are published by following @PacktEnterprise on 
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http:///
http://www.allitebooks.org


http:///


Table of Contents

Preface 1

Chapter 1: Getting Started with PowerShell 7

Working with pipelines 8

Viewing the object structure 10

Using format cmdlets to change the output view 12

Using cmdlets to redirect data 13

Variables and objects 14

Using variables to store objects 15

Getting CIM objects 17
Listing CIM classes 17

Displaying details of the CIM classes 18

Creating .NET and COM objects 20

Looping and low control 21
Comparison and logical operators 21

Conditional statements 21

Using switches to manage large conditional statements 22

Repeat operations with loops 23
The for statement 23

The foreach statement 24

Nested loops 24

Lists, arrays, and hash tables 25
Operating script block 30

Deining script blocks 30
Passing parameters and returning values 31

Functions 34

Scripts 35
Creating scripts 36

Invoking scripts 37

Passing parameters 37

Return values 38

http:///


Table of Contents

[ ii ]

Developing and maintaining script libraries 38

Discovering what's new in Windows PowerShell 3.0 39

Windows PowerShell Web Access (PSWA) 39

How PSWA works 40

Installing and coniguring Windows PowerShell Web Access 40
Step 1 – installing the Windows PowerShell Web Access Windows feature 40

Step 2 – coniguring Windows PowerShell Web Access Gateway 41
Step 3 – coniguring the PowerShell Web Access authorization rules 43

Auto-loading of modules 45
Online and updatable Help 46

Scheduled jobs 46

The Show-Command cmdlet 47
Integrated Scripting Environment (ISE) 48

IntelliSense 48

Script snippets 49
How to use snippets 49

How to create/add new snippets 49

Add-on tools 50

Autosave and restart manager 50

PowerShell remoting 50
Disconnected session 51

Remoting on a public network 51

The custom session coniguration ile 51
Windows PowerShell Worklow (PSW) 51

Creating a worklow using PowerShell 52
Controlling PowerShell Worklow execution 54

Summary 56
Chapter 2: Developing Snap-ins for PowerShell 57

Creating a PowerShell snap-in 58
Writing a PowerShell snap-in 58

Creating a new class library project 58

Creating a PowerShell installer class 60

Creating a class ile to include several PowerShell cmdlets 61
Declaring cmdlet parameters 64

Declaring parameter sets 65

Validating the parameter inputs 66

Overriding methods 69

Registering and removing a PowerShell snap-in 75
Registering and removing snap-in in PowerShell 1.0 76

Registering and removing a snap-in in PowerShell 3.0 76

http:///


Table of Contents

[ iii ]

Listing and executing cmdlets in a PowerShell snap-in 79
Debugging a PowerShell snap-in 81

Summary 83
Chapter 3: Using PowerShell Remoting 85

An overview of PowerShell remoting 86
Enabling/disabling remoting 87

Operating PowerShell in a no-domain environment 88
Setting the network location to Private 89

Enable PSRemoting 92

Coniguring WSMan trusted hosts 94
Coniguring PowerShell remoting on a domain using Group Policy 95

Allowing remote server management through WinRM 96

Allowing Windows Remote Management through Windows Firewall 97

Turning on Service Windows Remote Management (WS-Management) 101

Doing a Group Policy Update 104

Disabling remoting 105

Executing the remoting commands 106
Running ScriptBlock on a remote computer 106

Creating a persistent session with Invoke-Command 107

Running remote commands as a job 109

Specifying credentials required for remoting 110

Entering an interactive remoting session 110
Exiting an interactive session 111
Using a persistent session with interactive remoting 112

Starting interactive remoting with an existing session 112
Disconnecting and reconnecting sessions 113

Saving a remote session to a disk 115
Exporting a remote session to a module on a disk 116
Importing a module saved on a disk 117

Limitations of Export-PSSession 117
Using session conigurations 117

Creating a new session coniguration 118
Listing available session conigurations 120
Custom permissions and PS session conigurations 121
Invoking a custom session coniguration 123
Disabling a session coniguration 123
Deleting a session coniguration 124

Summary 124

http:///


Table of Contents

[ iv ]

Chapter 4: Extending Windows PowerShell 125
Introduction to Windows PowerShell modules 126
PowerShell module types 126

Script modules 126

Binary modules 126

Manifest modules 127

Dynamic modules 127

The PSModulePath environment variable 127
Viewing the PSModulePath variable 127

Adding locations to the PSModulePath variable 128

Importing PowerShell modules 128
Removing PowerShell modules 130
Reloading PowerShell modules 131
Writing a PowerShell module 131

Creating script modules 132

Binary modules 136

Manifest modules 137

Dynamic modules 138

Storing modules on a disk 140
Working with multiple versions of modules 140
Checking PowerShell module dependencies 142
Signing PowerShell modules 144

Execution policies 144
Changing the execution policy 145
Script signing background 146

Setting up a self-signed certiicate 147
Signing a module 150

Summary 154
Chapter 5: Managing Core Infrastructure with PowerShell 155

Preparing the operating system for irst time use 157
Task 1 – changing the computer name 158

Task 2 – changing the time zone settings 158
Task 3 – setting the Network Interface Card (NIC) coniguration 159
Task 4 – managing Windows Server roles and features 160

Example 1 160
Example 2 161

Deploying the Active Directory Domain Services (ADDS) role 161
Scenario 1 – installing a new Active Directory Forest 162

Scenario 2 – installing a new domain in an existing forest 163
Scenario 3 – installing a new domain controller in an existing domain 164

http:///


Table of Contents

[ v ]

Managing and coniguring the Domain Name System (DNS) role 165
Task 1 – coniguring DNS server resource records 165
Task 2 – creating primary forward and reverse lookup zones 166
Task 3 – adding a DNS server forwarder 166

Task 4 – exporting DNS server zones 166
Deploying and coniguring the Dynamic Host Coniguration  
Protocol (DHCP) role 167

Task 1 – installing the DHCP server role 167

Task 2 – setting up the DHCP server scope 167

Task 3 – coniguring DHCP scope options 167
Task 4 – coniguring DHCP scope exclusion 168
Task 5 – coniguring DHCP scope reservations 168
Task 6 – authorizing the DHCP server in Active Directory 168

Managing Windows Firewall 169

Task 1 – enabling or disabling Windows Firewall proiles 169
Task 2 – creating Windows Firewall rules 169

Example 1 169
Example 2 169

Using the Best Practice Analyzer (BPA) 170
Task 1 – displaying the list of best practice models 170

Task 2 – invoking a best practice model 170

Task 3 – showing the best practice model result 171

Summary 172
Chapter 6: Managing Active Directory with PowerShell 173

Active Directory-related concepts 174

Introduction to Active Directory 174

Namespace 175

Object 175

Container 175

Trees 175

Domain 175

Installing an Active Directory Domain Service (ADDS) 176
New AD server roles in Windows 2012 176

Active Directory Certiicate Services 176
Active Directory Domain Services 176

Active Directory Lightweight Directory Services 176

Active Directory Rights Management Services 177

Managing Active Directory with PowerShell 177

Account management 177
User management 177

Computer management 178

http:///


Table of Contents

[ vi ]

Group management 179
Viewing group permissions 179

Creating a group 180

Adding and removing members of a group 181

Organizational unit management 183
Creating a new organizational unit 183
Listing organizational units 184
Renaming an organizational unit 184
Modifying an organizational unit 185
Moving an organizational unit 185
Deleting an organizational unit 186

Domain controller management 186
Finding a domain controller 186

Finding a domain controller's site 188

Finding the global catalog servers in a forest 188

Summary 188
Chapter 7: Managing the Server with PowerShell 189

Working with Server Manager cmdlets 190
Adding roles or features by using PowerShell 190

Advantages of PowerShell cmdlets for Server Manager 193

Managing networking using PowerShell 193

Managing Group Policy with PowerShell 197

Importing a GroupPolicy module 197

Creating GPOs with PowerShell 199

Managing IIS with PowerShell 199

Creating a new website 200

Modifying IIS binding 201

Creating an FTP site 201

Creating a virtual directory 202

Creating a WebAppPool 202

Backing up and restoring WebConiguration 202
Managing a DNS server using PowerShell 204
Managing Hyper-V with PowerShell 205

Installing Hyper-V on Windows Server 2012 206

Creating a virtual machine 207

Starting and stopping a virtual machine 208

Modifying a virtual machine 208

Operating a virtual machine snapshot 209

Managing AppLocker with PowerShell 210
Importing the AppLocker PowerShell module 210

Retrieving application information 210

Retrieving an AppLocker policy 211

Setting an AppLocker policy 212

http:///


Table of Contents

[ vii ]

Generating rules for a given user or group 213

Testing the AppLocker policy against a ileset 213
Summary 214

Chapter 8: Managing Uniied Communication Environments  
with PowerShell 215

What Exchange Management Shell is 216
How to make Windows PowerShell understand Exchange  
Server cmdlets 218

Option 1 – do it like EMS 218

Option 2 – loading Exchange Server snap-ins 219
Managing Exchange using PowerShell Remoting 220
Getting started with Exchange scripting 221

Scenario 1 – creating multiple mailboxes from CSV ile 221
Scenario 2 – creating a shared mailbox 222
Scenario 3 – creating a resource (room/equipment) mailbox 224
Scenario 4 – creating a distribution group 225

Scenario 5 – deining a MailTip for a distribution group 226
Scenario 6 – creating a dynamic distribution group 226

Scenario 7 – creating multiple mailbox databases from a CSV ile 227
Scenario 8 – exporting mailboxes to PST iles 228
Scenario 9 – importing a mailbox from PST iles 229
Scenario 10 – hiding mailbox users from Global Address List (GAL) 230
Scenario 11 – getting mailbox users who never accessed their mailboxes 230
Scenario 12 – generating an organization mailbox statistics report 231
Scenario 13 – generating a mailbox size report 231

What Lync Server Management Shell is 232
How to make PowerShell understand Lync Server cmdlets 234

Loading a Lync Server module 234

Managing Lync using PowerShell Remoting 235
Getting started with Lync scripting 236

Scenario 1 – enabling Lync to user accounts 236

Scenario 2 – coniguring IM ile transfer iltering coniguration 237
Scenario 3 – coniguring IM URL iltering 238
Scenario 4 – bulk assignments of client PIN 238

Scenario 5 – getting number of users using OCS/Lync 239

Scenario 6 – setting the conference disclaimer 240

Microsoft Ofice 365 240
Ofice 365 and Windows PowerShell 241

Managing Ofice 365 using PowerShell 241
Managing Microsoft Exchange Online using PowerShell 242

Summary 244

http:///


Table of Contents

[ viii ]

Chapter 9: Managing Collaboration and Data Platforms  
with PowerShell 245

What is SharePoint Management Shell 246
How to make Windows PowerShell understand the SharePoint  
server cmdlets 248
Getting started with SharePoint scripting 248

Scenario 1 – creating a new site collection 248

Scenario 2 – creating a new website 249

Scenario 3 – creating a new quota template 250

Scenario 4 – backing up your SharePoint environment 251

Managing SharePoint Online using PowerShell 252
How to load SharePoint Online Management Shell 253

How to connect to SharePoint Online 254

Scenario 1 – exporting a list of SharePoint Online sites to CSV 254
Scenario 2 – restoring a deleted SharePoint Online site 255

Scenario 3 – checking the SharePoint Online site's health status 255

Scenario 4 – setting the SharePoint Online User as Site Collection  

Administrator 256

Windows PowerShell Command Builder for SharePoint and Ofice 365 256
What is SQL Server PowerShell 257

How to load SQL Server PowerShell 258
Method 1 – importing the SQL Server PowerShell module 258

Method 2 – launching SQL Server PowerShell from SSMS 259

Getting started with SQL Server scripting 260
Scenario 1 – executing the T-SQL statement 260
Scenario 2 – backing up the SQL Server database 261

Scenario 3 – restoring the SQL Server database 262

Scenario 4 – getting server instances and databases properties 262

Scenario 5 – generating the SQL script for databases, tables,  

and stored procedures 264

Summary 266
Chapter 10: Managing Microsoft Desktop Virtualization  
with PowerShell 267

What Desktop Virtualization is 267
Understanding Desktop Virtualization components 268
What Remote Desktop Services is 269
Managing RDS using PowerShell 270
Getting started with RDS scripting 270

Scenario 1 – creating new RDS deployments 270
Task 1.1 – creating a new virtual-machine-based deployment 272

Task 1.2 – creating a new session-based deployment 273

http:///


Table of Contents

[ ix ]

Scenario 2 – adding a Remote Desktop Server to an existing deployment 274
Scenario 3 – adding and coniguring an RD Gateway 275
Scenario 4 – adding and coniguring RD Licensing Server 276
Scenario 5 – creating new RDS collections 277

Task 5.1 – creating new session-based collections 277

Task 5.2 – creating new VM-based collections 278

Scenario 6 – setting session-based collection coniguration 281
Scenario 7 – setting VM-based collection coniguration 283
Scenario 8 – updating VM-based collections 284

Scenario 9 – assigning Proile Disks to collections 285
Scenario 10 – publishing Remote Desktop RemoteApp to collections 286

Scenario 11 – coniguring Remote Desktop Connection Broker for  
high availability 287

Summary 289
Chapter 11: Managing Microsoft Cloud Platform with PowerShell 291

What Windows Azure is 292
What Windows Azure PowerShell is 292
Installing Windows Azure PowerShell 292
Making Windows PowerShell understand Windows Azure cmdlets 293
Connecting to your Windows Azure environment 294
Getting started with Windows Azure scripting 295

Scenario 1 – creating a new Azure Afinity Group 295
Scenario 2 – creating a new Azure storage account 296
Scenario 3 – assigning a storage account to an Azure subscription 296
Scenario 4 – creating a new Azure Cloud Service  297
Scenario 5 – creating a new SQL Azure Database Server 297
Scenario 6 – creating a new SQL Azure database 298
Scenario 7 – creating a new SQL Azure Database Server irewall rule 299
Scenario 8 – provisioning the new Azure VM in Windows (quick mode)  299
Scenario 9 – provisioning the new Azure VM in Linux (quick mode)  300
Scenario 10 – provisioning the new Windows Azure VM  
(advanced mode)  301

Scenario 11 – Adding a new endpoint to Windows Azure VM (NoLB) 302
Scenario 12 – coniguring the Windows Azure Virtual Machines  
load balancing (LB) 303

Scenario 13 – creating and assigning a data disk to Windows  

Azure Virtual Machine 305
Scenario 14 – moving the Local VHD to Windows Azure 305
Scenario 15 – provisioning a new Windows Azure VM from a Disk  307
Scenario 16 – creating Windows Azure Image from a VM 308
Scenario 17 – exporting and importing Windows Azure VM 308

www.allitebooks.com

http:///
http://www.allitebooks.org


Table of Contents

[ x ]

Scenario 18 – starting, stopping, and restarting the Windows Azure VM 310
Scenario 19 – uploading the certiicate to Windows Azure 310
Scenario 20 – generating the Azure Virtual Machine RDP ile 311

Summary 312
Chapter 12: Integrating Windows PowerShell and System  
Center Orchestrator 313

Completing your ITPA story with PowerShell and Orchestrator 313
What System Center Orchestrator is 314

Understanding Orchestrator worklows 315
Orchestrator and PowerShell are better together 316

Using PowerShell in Orchestrator worklow 316
Using PowerShell to build Orchestrator Integration Packs 319

Summary 329
Index 331

http:///


Preface
PowerShell 3.0 Advanced Administration Handbook comes with a set of real-world 
scenarios and detailed scripts that will help you get started with PowerShell and 
learn what PowerShell is, how to write the syntax and build your scripts, and how  
to use and integrate PowerShell with different technologies, products, and tools.

This handbook starts with the essential topics of PowerShell, and then introduces 
the new features in PowerShell 3.0. The book then goes through building PowerShell 
scripts, functions, and developing extensions such as snap-ins and modules, and 
continues with detailed examples showing the usage of PowerShell with different 
technologies and products to give you an idea of PowerShell usage in the real world.

What this book covers
Chapter 1, Getting Started with PowerShell, introduces us to PowerShell, which is built 
based on .NET and is an object-based shell and scripting language. This chapter 
shows us how we can make use of PowerShell's integration with COM, WMI, and 
ADSI technologies alongside its tight integration with .NET. Indeed, PowerShell 
is the only technology that enables you to create and work with objects from these 
various technologies in one environment.

Chapter 2, Developing Snap-ins for PowerShell, explains the use of snap-ins that are 
compiled into assemblies, when released as a program for third-party users. In this 
chapter you will see how you can extend Windows PowerShell by writing your own 
snap-ins. These may contain cmdlets and providers too. The author can also encrypt 
based on .NET code obfuscation to protect their source code. Thus the authors of 
programs need not worry about their snap-ins decompiling the source code.

Chapter 3, Using PowerShell Remoting, shows us how PowerShell remoting enables 
management of computers from a remote location. Remoting is built based on 
Windows remote management (WinRM). WinRM is Microsoft's implementation of 
the WS-Management protocol.

http:///


Preface

[ 2 ]

Chapter 4, Extending Windows PowerShell, introduces us to a very import feature in 
Windows PowerShell 3.0—modules. You can load most of the existing snap-ins as a 
module, which means you don't need to have administrator privileges to load a new 
snap-in. You can simply place it in any folder, access it, and tell PowerShell where to 
ind it.

Chapter 5, Managing Core Infrastructure with PowerShell, demonstrates how PowerShell 
can be used to replace the GUI to perform different administration tasks on 
Windows Server, especially the installation of the server core.

Chapter 6, Managing Active Directory with PowerShell, introduces us to the Active 
Directory module for Windows PowerShell, which consolidates a group of cmdlets. 
The Active Directory module for Windows PowerShell provides a centralized 
experience for administering your directory services. In this chapter you will look at 
the Active Directory-related cmdlets, the Active Directory server roles, and how you 
can manage the Active Directory using PowerShell.

Chapter 7, Managing the Server with PowerShell, explains how you can manage 
your server with great lexibility using PowerShell, which is built into Windows 
Server 2012. Many PowerShell cmdlets exist to let you perform several of the key 
administrative tasks you may need to do on a daily basis, including installing 
features for your Windows Server 2012, managing networking, managing Group 
Policy, managing IIS, managing DNS server, managing Hyper-V and AppLocker, 
and many others.

Chapter 8, Managing Uniied Communication Environments with PowerShell, introduces 
us to Windows PowerShell modules for Microsoft Exchange Server, Lync Server, and 
Ofice 365, and explains how it can be utilized for a better and easier administration 
and management.

Chapter 9, Managing Collaboration and Data Platforms with PowerShell, provides recipes 
on how to deal with Microsoft SQL Server, Microsoft SharePoint Server,  
and SharePoint Online.

Chapter 10, Managing Microsoft Desktop Virtualization with PowerShell, provides 
guidance and scripts on how to build end-to-end Desktop Virtualization scenarios 
that are session- and virtual-machine-based, using Windows PowerShell.

Chapter 11, Managing Microsoft Cloud Platform with PowerShell, tackles the Microsoft 
cloud platform with Windows Azure and explains how to use Windows PowerShell 
to automate Windows and SQL Azure tasks. It also provides ways to overcome the 
technical limitations of using Windows Azure Management Portal.

http:///


Preface

[ 3 ]

Chapter 12, Integrating Windows PowerShell and System Center Orchestrator, describes 
how PowerShell can be used in the real world in combination with Microsoft System 
Center Orchestrator to build an IT Process Automation standard framework.

What you need for this book
This book requires that you have Windows PowerShell 3.0, which is available  
out of the box in Windows Server 2012 and Windows 8. It's also available for  
earlier versions of Windows as part of Microsoft's Windows Management 
Framework (WMF) 3.0

This book is mainly about using Windows PowerShell with different technologies 
and tools, so you must have the following software in order to proceed:

• Windows Server 2012

• Exchange Server 2013

• Lync Server 2013

• SQL Server 2012

• SharePoint Server 2013

• An Ofice 365 subscription
• A Windows Azure subscription

• System Center Orchestrator 2012

• Microsoft Visual Studio 2010

Who this book is for
This book is intended for IT administrators who wish to learn Windows PowerShell, 
and want to quickly discover it's capabilities with different tools and technologies.

Conventions
In this book, you will ind a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The Out-Host -Paging command is a useful pipeline element."

http:///


Preface

[ 4 ]

A block of code is set as follows:

Function Reload-Module($ModuleName)

{ 

if((get-module -list | where{$_.name -eq "$ModuleName"} | measure-
object).count -gt 0)

{ 

  if((get-module -all | where{$_.Name -eq "$ModuleName"} |  
  measure-object).count -gt 0)

  {

    Remove-Module $ModuleName

    Write-Host "Module $ModuleName Unloading"

  } 

  Import-Module $ModuleName

  Write-Host "Module $ModuleName Loaded"

}

Else

{

  Write-Host "Module $ModuleName Doesn't Exist"

}

}

Any command-line input or output is written as follows:

PS> Invoke-Command {(new-object BasicTest).Multiply(5, 2)}

New terms and important words are shown in bold. Words that you see on  
the screen, in menus or dialog boxes for example, appear in the text like this:  
"Click on Run to execute the command with the parameters you entered."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

http:///


Preface

[ 5 ]

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are veriied, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

http:///


Preface

[ 6 ]

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http:///


Getting Started with 

PowerShell
PowerShell runs existing commands and scripts seamlessly. You can make use  
of PowerShell's integration with COM, WMI, and ADSI technologies along with  
its tight integration with .NET. Indeed, PowerShell is the only technology that 
enables you to create and work with objects from these various technologies in  
one environment.

In this chapter we will cover:

• Windows PowerShell syntax and grammar

• How to write PowerShell scripts and functions

• What is new in Windows PowerShell 3.0

In order to enable the readers to get familiar with the language environment quickly, 
this chapter will briely introduce the PowerShell grammar. A key concept to grasp 
when starting to work in PowerShell is that everything is an object. An "object", in 
PowerShell, consists of properties (information we can gather) and methods (actions 
we can perform).

An object is something we can gather information from and/or perform an action 
upon. In simple terms, an object is a black box that has attributes or properties that 
describe it. Some of these properties are read-only. You can change or set the others. 
For example, consider a service that has properties such as name, display name, 
status, and services that it depends on.

http:///


Getting Started with PowerShell

[ 8 ]

Often, objects can also be made to do something. These actions are referred to as 
methods. Sometimes, the method is used to modify the object and sometimes to 
make an external change. A service can be stopped and started. You can also modify 
the service object by changing its start mode to either automatic, manual, or disabled. 
First of all, we will introduce the most important object in PowerShell—pipeline.

Working with pipelines
In a traditional command-line environment, you would have to manipulate the 
text to convert output from one format to another and to remove titles and column 
headings. A major advantage of using objects is that it is much easier to pipeline 
commands, that is, to pass the output of one command to another command as  
the input.

Windows PowerShell provides a new architecture that is based on objects rather than 
text. The cmdlet that receives an object can act directly on its properties and methods 
without any conversion or manipulation. Users can refer to properties and methods 
of the object by their names, rather than calculating the position of the data in the 
output. You do not need to manipulate strings or calculate data offsets. Pipelines act 
like a series of connected segments of pipe. Items moving along the pipeline pass 
through each segment. To create a pipeline in Windows PowerShell, you connect 
commands together with the pipe operator "|". The output of each command is used 
as an input to the next command. A related useful characteristic of pipelines is that 
they operate on each item separately; thus you do not have to modify them based on 
each single item. Furthermore, each command in a pipeline usually passes its output 
to the next command in the pipeline item-by-item. This usually reduces the resource 
demand of complex commands and allows you to get the output immediately.

The notation used for pipelines is similar to the one used in other shells, so at irst 
glance, it may not be apparent that Windows PowerShell introduces something new. 
For example, if you use the Out-Host cmdlet to force a page-by-page display of the 
output from another command, the output looks just like the normal text displayed 
on the following screen, broken up into pages:

Downloading the example code

You can download the example code iles for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the iles e-mailed directly to you.

http:///


Chapter 1

[ 9 ]

The Out-Host -Paging command is a useful pipeline element whenever you want 
to display a lengthy output slowly. It is especially useful if the operation is very 
CPU-intensive because processing is transferred to the Out-Host cmdlet when it 
has a complete page ready to display, and the cmdlets that precede it in the pipeline 
halt their operation until the next page of output is available. You can see this if you 
use the Windows Task Manager to monitor the CPU and memory consumed by 
Windows PowerShell. For example, run the following command:

Get-ChildItem C:\Windows -recurse

and command: 

Get-ChildItem C:\Windows -recurse | Out-Host -Paging

compared the CPU and memory utilization rate..

www.allitebooks.com

http:///
http://www.allitebooks.org


Getting Started with PowerShell

[ 10 ]

What you see on the screen is text, but that is because it is necessary to represent 
objects as text in a console window. This is just a representation of what is really 
going on inside Windows PowerShell. For example, consider the Get-Location 
cmdlet. If you type Get-Location while your current location is the root of the C 
drive, you would see the following output:

 

Instead of using text to insert commands into a pipeline communication, Windows 
PowerShell uses objects. From the users' perspective, objects package related 
information into a form that makes it easier to manipulate the information  
as a unit, and extract speciic items that you need.

The Get-Location command will not return the text that contains the current path, 
but returns an object called the PathInfo object, including the current path and some 
other information packet. Then the Out-Host cmdlet will send the PathInfo object 
to the screen, after which Windows PowerShell will decide what information is to be 
displayed and how to show it based on its format rules.

Viewing the object structure
Because objects play such an important role in Windows PowerShell, there are 
several native commands designed to work with arbitrary object types. The most 
important one is the Get-Member command.

The simplest technique for analyzing the objects that a command returns is to pipe 
the output of the command to the Get-Member cmdlet. The Get-Member cmdlet 
shows the formal name of the object type and a complete listing of its members. 
Sometimes the number of returned elements can be overwhelming. For example,  
a service object can have over 100 members.

http:///


Chapter 1

[ 11 ]

To see all the members of a service object and page the output, please type  
the following:

PS > Get-Service | Get-Member | Out-Host -Paging

The output from this command will look something like this:

http:///


Getting Started with PowerShell

[ 12 ]

The Get-Member command lets you list only members that are properties. There 
are several forms of properties. The resulting list is still very long, but a bit more 
methodical, as shown in the following screenshot:

If you need to look at the content outside of Windows PowerShell's default display 
format, you can do so through the use of the format cmdlets, which can format the 
output data.

Using format cmdlets to change the output 
view
Windows PowerShell's set of cmdlets allows users to control which attributes are 
displayed for a speciic object. All cmdlet names begin with a verb form. The format 
cmdlets are Format-Wide, Format-List, Format-Table, and Format-Custom.

Each format cmdlet has default properties. These properties will be used if you 
do not specify a particular attribute to display. Each cmdlet also uses the same 
parameter name and attribute, but you need to specify which attribute has to  
appear. As the Format-Wide cmdlet reveals a single attribute display only, its 
property parameters require only a single value, but the characteristic parameters  
of Format-List and Format-Table will accept an attribute name list.

With the Format-Wide cmdlet, you can format the output as a table listing one 
property only. This makes it useful for displaying simple lists that show only  
one element per line.

http:///


Chapter 1

[ 13 ]

The Format-List cmdlet is used for formatting the output as a list of properties, 
each on a new line. The Format-Table cmdlet is used for tabular output.

Using cmdlets to redirect data
Windows PowerShell provides several cmdlets that let you control the data's output 
directly. These cmdlets share two important characteristics that we will discuss in 
this section.

By default, Windows PowerShell sends data to the host window, which is just what 
the Out-Host cmdlet does. The Out-Host cmdlet is primarily used for paging data. 
For example, the following command uses Out-Host to page the output:

The Out-Null cmdlet is designed to immediately discard any input it receives. This 
is useful for discarding unnecessary data that you get as a side effect of running a 
command. When typing the following command, you will not get anything back 
from the command:

Get-Command | Out-Null

http:///


Getting Started with PowerShell

[ 14 ]

The Out-Null cmdlet does not discard an error output. For example, if you enter 
Get-Command Is-NotACommand | Out-Null, a message is displayed informing you 
that Windows PowerShell does not recognize Is-NotACommand. This is shown in the 
following screenshot:

You can send the output to a ile instead of the console window by using the  
Out-File cmdlet. The following command line sends a list of processes to the  
C:\tmp\processlist.txt ile:

PS > Get-Process | Out-File -FilePath C:\tmp\processlist.txt

Variables and objects
When you manipulate in Windows PowerShell, you are operating the .NET 
Framework objects. Technically, a .NET Framework object is an instance of a .NET 
Framework class that consists of data and the operations associated with that data. 
An object is a data entity that has properties.

For example, when you get a service in PowerShell, you are really getting an object 
that stands for the service. When you view information in it, you are viewing the 
properties of the service object. And, on starting a service, when you change the 
Status property of the service to started, you are using the start() method  
of the service object.

All objects of the same type have the same properties and methods, but each instance 
of an object can have different values for the properties. For example, every service 
object has a Name and Status property. However, each service can have a different 
name and a different status.

http:///


Chapter 1

[ 15 ]

Using variables to store objects
You can store the output of a pipeline or a command in a variable for later use, or to 
work with it in more detail. Variables in PowerShell allow users to store the output 
of something that may be used later. A variable's name starts with a dollar sign ($) 
and can be followed by any alphanumeric character or the underscore in its name. 
You can create a variable and assign it a value in the same step. Windows PowerShell 
only creates the variable if it does not exist, otherwise it assigns the speciied value to 
the existing variable, as shown in the following screenshot:

You can store any pipeline or command result in a variable to use it later. If that 
result is simple data, such as a number or a string, then the variable contains simple 
data. If the command generates rich text data, such as the objects that stand for 
system services from the Get-Service cmdlet, then the variable contains the list of 
rich data. If the command, such as a former executable, generates plain text, then the 
variable contains plain text.

Variables are stored in the memory; if you no longer need the variables that store a 
large amount of data, you should assign the $null value to those variables, and then 
PowerShell can release the memory for you.

http:///


Getting Started with PowerShell

[ 16 ]

PowerShell offers several ways to access environment variables. To list all the 
environment variables you can list the children of the env drive, as shown in the 
following screenshot:

To get an environment variable, preix its name with $env (such as $env: 
variablename). An example is shown in the following screenshot:

PowerShell provides access to the environment variable through its environment 
provider. The provider lets you work with data storage, such as registration, 
environment variables, alias, and certiicate, as you will visit the ilesystem. Get 
environment variables to use their provider path; supply env: or environment::  
by using the Get-ChildItem cmdlet.

http:///


Chapter 1

[ 17 ]

Getting CIM objects
Windows Management Instrumentation (WMI) is a core technology for Windows 
system administration because it exposes a wide range of information in a uniform 
manner. As we all know, WMI is an infrastructure that supports the CIM model and 
Microsoft-speciic extensions of CIM.

The WMI infrastructure ships in Windows 2000, which was dificult to write and 
use. In PowerShell 3.0, Microsoft introduced several new cmdlets, which are used for 
operating CIM. With these cmdlets, not only can we manage servers, but we can also 
manipulate all the heterogeneous devices necessary to make these servers together 
into a comprehensive and coherent computing platform. In today's world, cloud 
computing is a very important technology. Generalized cloud computing requires 
standard-based management. This is the reason why Microsoft paid so much 
attention to standard-based management in Windows Server 2012, which is expected 
to be a Cloud OS. We are going to discuss how to use Get-CimClass to access CIM 
objects and then how to use CIM objects to do speciic things.

Listing CIM classes
The irst problem of using CIM is trying to ind out what can be done with CIM. CIM 
classes describe the resources that can be managed. There are dozens of CIM classes, 
some of which contain several properties.

Get-CimClass resolves this problem by making CIM discoverable. You can get  
a list of the CIM classes available on the local computer using the –ClassName 
parameter with a keyword and a wildcard character. An example is shown in  
the following screenshot:

http:///


Getting Started with PowerShell

[ 18 ]

Get-CimClass uses the root/cimv2 namespace by default. If you want to specify 
another WMI namespace, use the Namespace parameter and specify the namespace's 
path, as shown in the following screenshot:

Displaying details of the CIM classes
If you are familiar with WMI cmdlets from PowerShell 2.0, you will ind learning 
new CIM cmdlets easy. If you already know the ClassName value of a WMI class, 
you can use it to get information. For example, one of the WMI classes commonly 
used for searching for information about a process is Win32_Process. The WMI 
cmdlet needs to work with ClassName and NameSpace, and the CIM cmdlet follows 
the same pattern. Refer to the following screenshot:

http:///


Chapter 1

[ 19 ]

Although we are showing all of the parameters, the command can be expressed in a 
more succinct way. The ComputerName parameter is not necessary when connecting 
to the local system. We display it to demonstrate the most general case and remind 
you about the parameter. The Namespace parameter defaults to root/cimv2, and can 
be ignored as well. Finally, most cmdlets allow you to ignore the name of common 
parameters. With Get-WmiObject, if no name is speciied for the irst parameter, 
Windows PowerShell treats it as the Class parameter.

www.allitebooks.com

http:///
http://www.allitebooks.org


Getting Started with PowerShell

[ 20 ]

You will also notice that in some places, the script using the WMI cmdlet can't be 
simply changed to the CIM cmdlet by changing the cmdlet name. This is shown  
in the following example:

We can see that the parameters of the two cmdlets are completely different, and the 
result displayed is not the same.

Creating .NET and COM objects
There are software components with .NET Framework and COM interfaces that 
enable users to perform many system administration tasks. Windows PowerShell lets 
you use these components, so you are not limited to the tasks that can be performed 
by using cmdlets.

We can create an instance of an object using its default constructor. This can be done 
using the New-Object cmdlet with the classname as its only parameter:

http:///


Chapter 1

[ 21 ]

Many cmdlets (such as Get-Process and Get-ChildItem) generate live  
.NET objects that represent tangible processes, iles, and directories. However, 
PowerShell supports much more of the .NET Framework than just the objects  
that its cmdlets produce.

Looping and low control
The PowerShell loop statement allows the user to execute operations without the 
need to execute the command repeatedly, for example, repeating operations several 
times, processing a set of items, or cycling a condition till it becomes true.

The PowerShell low control and comparative statements let the user script adapt 
to different data. They let you do this based on the value of the data by carrying out 
orders, skipping some operations, and so on.

Comparison and logical operators
PowerShell allows the user to contrast data, and then make decisions with the 
comparison operators. It allows making decisions based on the result of logical 
operators to contrast data blocks.

Examples for comparison operators are -eq, -ne, -ge, -gt, -lt, -le, -like, 
-notlike, -match, -notmatch, -contains, -notcontains, -is, -isnot, -in, 
-notin, and so on.

Examples for logical operators are -and, -or, -xor, -not, -shl, -shr, and so on.

By default, the PowerShell comparison operator is not case sensitive. For all 
operators that are case sensitive, the -i preix makes the comparison case  
insensitive, and the -c preix executes case-sensitive comparisons.

Conditional statements
In PowerShell you can change the low of execution of the script by using the 
conditional statements. The following code snippet shows us an example:

if (condition)

{

statement block

}

elseif (condition)

{

statement block

}

http:///


Getting Started with PowerShell

[ 22 ]

else

{

statement block

}

If the condition calculates to $true, PowerShell implements the block you supply. 
Then, it continues with the rest of the if/else statement list. PowerShell needs 
matching parentheses in the block even if the block contains only one statement.

If the condition calculates to $false, PowerShell implements the statements  
under elseif until a condition matches. If there is a match, PowerShell executes  
the block-related conditions, and then continues to implement the rest of the  
if/else statement list. For example:

$textForMatch = Read-Host "Input some text"
$matchType = Read-Host "Supply Simple or Regex matching?"
$pattern = Read-Host "Match pattern"
if ($matchType -eq "Simple")
{
$textForMatch -like $pattern
}
elseif($matchType -eq "Regex")
{
$textForMatch -match $pattern
}
else
{
Write-Host "Match type must be Simple or Regex"
}

If none of the conditions calculate to $true, PowerShell executes the statement  
block related to the else clauses, and then continues to implement till the end  
of the if/else statement list.

Using switches to manage large conditional 
statements
A switch statement is usually used to control several conditions that have a clear 
value. It requires the value of the conditions to be an integer or a character. The 
conditions used in a switch statement are called cases. Using the value of case, 
the control program will jump to the matching case, and will keep running till the 
statement exits or meets the break statement. Usually, we can use the default 
clause to include other exceptions. If the conditions of the switch statement are all 
false, the control program will jump to execute the default clause. If the default 
clause is omitted, it will execute the next statement directly.

http:///


Chapter 1

[ 23 ]

The following code snippet shows a switch statement:

switch options expression

{

comparison value { statement block }

-or

{ comparison expression } { statement block }

(…)

default { statement block }

}

When PowerShell evaluates a switch statement, it calculates the expression for 
the statement in the switch body. If the expression is a list of values, PowerShell 
calculates each entry against the statement in the switch body.

The {comparison expression} statement for you deals with the current input 
items, which are stored in the $_ variable, in any one of the script blocks. When it is 
dealing with a {comparison expression} statement, PowerShell executes a related 
statement block only when the {comparison expression} value is $true.

When dealing with a switch statement, PowerShell tries matching the current input 
object for each statement in the switch body even if there are already one or more 
matches. PowerShell exits a switch statement after it inds a match or if it encounters 
a break statement, which is the inal statement of the block of statements.

Repeat operations with loops
A PowerShell loop statement lets you execute a group of statements several times.

The for statement
Consider the following code block:

:loop_label for(initialization; condition; increment)

{

statement block

}

A PowerShell for statement irst executes the expressions given during initialization. 
It next assesses the condition; if the condition of the evaluation results to $true, 
PowerShell executes the given statement block. Then, it will execute the expressions 
given in increment. PowerShell continues to execute the statement block and the 
incremental statement as long as the condition calculates to $true.

http:///


Getting Started with PowerShell

[ 24 ]

For example:

for($counter = 0; $counter -lt 10; $counter++)

{

Write-Host "Processing item $counter"

}

The foreach statement
Consider the following code block:

:loop_label foreach(variable in expression)

{

statement block

}

When PowerShell executes a foreach statement, it implements a pipeline of the 
given expression. For each entry produced by the expression, it assigns an entry 
variable, and then executes a given statement block.

For example:

$handleSum = 0;

foreach($process in Get-Process |

Where-Object {$_.Handles -gt 600})

{

$handleSum += $process.Handles

}

$handleSum

Nested loops
Sometimes, loops may be nested within each other. However, if you are working 
with nested loops, how do you break and continue to work? They will always affect 
the inner loop, which is the loop that they were called from. However, you can also 
label loops and then submit the label to continue or break if you want to exit or skip 
the outer loops.

The next example nests two foreach loops. The irst (outer) loop cycles through a 
ield with three WMI classnames. The second (inner) loop runs through all instances 
of the respective WMI classes. This allows you to output all instances of all the three 
WMI classes. The inner loop checks whether the name of the current instance begins 
with "a"; if not, the inner loop will then invoke continue to skip all instances not 
beginning with "a". The result is a list of all services, user accounts, and running 
processes that begin with "a":

http:///


Chapter 1

[ 25 ]

As expected, the continue statement in the inner loop has had an effect on the inner 
loop where the statement was contained. But how would you change the code if 
you'd like to see only the irst element of all services, user accounts, and processes 
that begin with "a"? Actually, you would do almost the exact same thing, except that 
now continue would need to have an effect on the outer loop. Once an element was 
found that begins with "a", the outer loop would continue with the next WMI class:

Lists, arrays, and hash tables
PowerShell makes dealing with arrays and lists similar to working with other data 
types: you can expediently create an array or a list, and then add or remove elements 
from it. You can also expediently execute sort, search, or put it in another array. 
When you want to store the mapping between one block of data and another,  
a hash table supplies a perfect solution.

http:///


Getting Started with PowerShell

[ 26 ]

For example, you can create an array and save a given set of items in it; these items 
should be separated by a comma, as shown in the following screenshot:

You can also create an array with a speciic size using the New-Object cmdlet. 
We can access a speciic element of the array by using PowerShell's array access 
principle, as shown in the following screenshot:

PowerShell's array access principle provides an easy way to visit two speciic 
elements of an array or more combinations of the elements in the array.  
In PowerShell, the irst item of the array is assigned index 0.

To store a command, generate a list of outputs using variable assignment,  
as shown in the following screenshot:

http:///


Chapter 1

[ 27 ]

To access every item in an array, use the Foreach-Object cmdlet, as shown in the 
following screenshot:

To access each item in an array, use the foreach keyword, as shown in the  
following screenshot:

To access items in an array by position, use a for loop, as shown in the  
following screenshot:

PowerShell thus provides three main alternatives to deal with the elements in an 
array. In the Foreach-Object cmdlet and the foreach script's keywords, technology 
visits an element of the array and lets you use the cycle items in the array in a less 
structured approach.

http:///


Getting Started with PowerShell

[ 28 ]

You can use the Sort-Object cmdlet to sort a list of items, as shown in the  
following screenshot:

The Sort-Object cmdlet provides you with a convenient way to sort objects by a 
property that you specify. If you don't specify an attribute, the Sort-Object cmdlet 
follows the ordering rule of the objects, if they deine any. In addition to sorting by a 
property in the ascending or descending order, the Sort-Object cmdlet's -unique 
switch operator also allows you to delete duplicates from the sorted collection.

The -contains operator is a useful method to determine quickly if a list contains 
a speciic element. To search for a list item instead of matching a pattern, use the 
-match or -like operators. The -eq, -like, and -match operators are useful 
methods to ind a matching element set for your speciic condition. The -eq operator 
returns all the elements that are equal to your terms, the -like operator returns 
all the elements matched elements in the wildcard given in your pattern, and the 
-match operator returns all elements that match the regular expression given in your 
pattern. To delete all the elements of the array, match them to a given mode, and 
then you can keep all the elements that do not match the pattern.

http:///


Chapter 1

[ 29 ]

We can use the System.Collections.ArrayList class to set a processing array and 
deine it, as shown in the following screenshot:

As in most languages, an array in PowerShell keeps the same length once you create 
them. PowerShell allows you to add an entry, delete an entry, and search for an entry 
in an array, but these operations may be time consuming when you are working on a 
large amount of data. For example, to combine two arrays, PowerShell creates a new 
array that is big enough to hold the contents of the two arrays, and then copies the 
two arrays to the destination array.

For example, if you have a collection of items, and you need to visit each item by the 
label that you provided, you can deine a map between the label and the entry using 
a hash table. This is shown in the following screenshot:

Hash tables are very similar to arrays that allow you to access items by whatever 
label you want—not just through their index in the array. They form the keystone of 
a large number of scripting techniques. Since they allow you to map names to values, 
they form the effective basis for lookup tables such as the International Telephone 
Country Codes and area codes. Since they allow you to map names to fully-featured 
objects and script blocks, they can often take the place of custom objects. This key 
and value mapping also proves to be helpful in interacting with cmdlets that support 
advanced coniguration parameters, such as the calculated property parameters 
available on the Format-Table and Select-Object cmdlets.

www.allitebooks.com

http:///
http://www.allitebooks.org


Getting Started with PowerShell

[ 30 ]

For example, consider that you have hash table keys and values, and you want 
column value results from the sorted key sequence. To sort a hash table, we can 
make use of the GetEnumerator() method in the hash table to obtain personal 
elements. Then, we can use the Sort-Object cmdlet, and sort by name or value,  
as shown in the following screenshot:

However, the hashtable object supports the GetEnumerator() method and allows 
you to deal with single hash table entries that have name and value attributes. Once 
you have these, we can sort them easily as we can sort any other PowerShell data.

Operating script block
An elegant code block helps the process not only when controlling the collection 
of objects, but also in many other conditions. The most important thing is that the 
script block allows us to package a block of code and delay its execution. A script 
block holds the code snippets, and so you do not need to specify a formal name. We 
can dynamically create any script operation and of course, we can also perform the 
transfer of different parameters many times.

Deining script blocks
Deining a script piece for writing is very simple; it is just surrounding several 
program statements within curly brackets. This statement will not be executed 
immediately; on the contrary, a new script block object will be created and returned. 
In order to facilitate calling the script block after that, we may allocate a script block 
to a variable. The following screenshot shows a sample script block:

http:///


Chapter 1

[ 31 ]

We can call a script block using the invoke operator (&). The following screenshot 
shows how we can use this operator with a variable when this variable contains  
a block:

Block compile objects can be passed in and executed multiple times. They are 
reference objects and we can assign a variable to a block just to make the variable  
point to the block quoted in memory.

Passing parameters and returning values
As we have seen so far, none of the blocks have executed an action or an  
interaction with the outside world in complex ways. Now that I have already 
mentioned the expression, we can see the operation from the point of view of the 
block, which can be used in an expression. The operation parameters evaluate the 
return value. This return value from the script block simply asks you to output  
an object that will neither be a cmdlet nor another expression. The following is  
an example of a return value:

http:///


Getting Started with PowerShell

[ 32 ]

As you can see from the last command in the previous example, the return 
number cannot be used directly in a conditional expression; you must make use of 
parentheses. If you don't, the plus (+) operator will be mistaken as the right-hand 
operand and an error, as shown in the following screenshot, will be raised:

Note that the output of an object does not terminate the execution of the block,  
and the rest of the statement outputs after the object are still implemented. For 
example, you can print a string to the console window to return a value, and  
the retuning value does not contain other output statements, as shown in the 
following screenshot:

The $numberPrint block returns a value and writes a string to the console. Looking 
at the anonymous block invocation, you may think that the block returns or prints 
two variables, but this in fact is not the case. Look at the assignment operation in the 
following screenshot. The $result variable is assigned number 5; this will return the 
real value and the string will be printed to the console.

We can use a return statement to end the execution and exit the script block. It 
terminates the execution and gives the return value. Changing the block before  
using return will prevent the Write-Host command from executing:

http:///


Chapter 1

[ 33 ]

You can use the return statement to simply quit a block and stop execution. It 
doesn't ask you to provide a value. If you omit the value, the script block will only 
exit and not return a value. In this case, the block returns a value to the caller only if 
there is an output before the return statement.

A useful scripting block will need a way to get parameters from the outside world 
so that it can be executed with different data. The parameters can be passed and 
retrieved according to their position. A piece of scripting block will always have a 
predeined $args variable through automatic settings, and it will contain a group 
of provided parameters. We can use it to create and output a custom message to the 
user giving a irst name and a family name as shown in the following screenshot:

Though the indexed access to parameters is a good technology, which can be used in 
many programming languages, unfortunately, it's too easy to make a mistake once 
the parameters grow in quantity. It is best to be used in a very simple scene where 
you cannot go wrong. In an advanced scenario, when you don't know the number 
of parameters while deining your script block, a mistake is likely to occur. We did 
not talk much about simple and advanced scenarios and in most cases we make 
use of named parameters. These are announced in the script block using the param 
keyword. Here is how the previous example switches to named parameters:

http:///


Getting Started with PowerShell

[ 34 ]

Note that usually the irst letter of a parameter name will sufice. In cases where 
multiple parameter names start with the same character sequence, you will have  
to provide the initial characters that uniquely identify the parameter.

We can set default parameter values, which can contain any expression. We can 
exploit this fact to implement mandatory parameters. Mandatory parameters are 
parameters that absolutely have to be provided when calling the script block. To do 
that, we add an expression that throws an exception when evaluated. In that way, 
the exception will be thrown if the caller fails to provide the parameter. Based on this 
consideration in the $greeting block, the $firstName parameter is essential:

Now, you can follow the $(throw "wrong information") model to realize  
forced parameters.

Functions
A function in PowerShell is just a subroutine having another name or a piece of code 
that can accept parameters, operations, and return values. A subroutine is probably 
the most important invention in the ield of computer science programming. 
Subroutines allow writing code snippets that are independent of the main program, 
and can be called when you need them. A function is the main mechanism to 
construct abstraction, and produce reusable code snippets in PowerShell.  
By learning to structure the code and the function, you can make them more 
manipulative and readable.

http:///


Chapter 1

[ 35 ]

A function is very similar to a script block in the sense that it contains executable 
code. The main difference is that it is a script with two anonymous parameters and it 
must be assigned to a variable so that it is assessed. For functions to get their name in 
their creation, their name must be immediately assessed. For deining a function, we 
must use the function keyword as shown in the following code snippet:

function <name>(<parameter list>)

{

<function body>

}

The function name should start with a letter and may contain any alphanumeric 
character sequence and an underscore character. This is how we deine a simple 
function to output some text:

Having a function to accept parameters, we can provide a list of function deinitions. 
The following is a sample function; it accepts two numbers and writes the sum to  
the console:

Scripts
A PowerShell command sequence can be saved as a script ile and can be executed 
later. We need to use a script ile when we want to create small scripting tools, 
which we can run on a regular basis. We also need to use script iles in cases where 
we create a complex modular script to keep their code in a different ile. This will 
facilitate function development and maintenance.

http:///


Getting Started with PowerShell

[ 36 ]

Creating scripts
The typical PowerShell script is a text ile, which can be created using all kinds of 
tools. By default, these documents carry the .ps1 ile extension. You can create them 
using Notepad, but it is best if you use a more powerful tool such as a programmer's 
text editor with syntax highlighting and intelligent word completion, for example 
Notepad++, ISE, and PowerGUI.

Notepad++ is a free source code editor and is a Notepad replacement that supports 
several languages. With a plugin that supports PowerShell, it gives you full syntax 
highlighting for PowerShell.

The Windows PowerShell Integrated Scripting Environment (ISE) is a host 
application for Windows PowerShell. Powershell v3 comes with a pretty good ISE 
built-in. In Windows PowerShell ISE, you can run commands and write, test, and 
debug scripts in a single Windows-based graphic user interface with multiline 
editing, tab completion, syntax coloring, selective execution, context-sensitive  
help, and support for right-to-left languages.

PowerGUI is a graphical user interface and script editor for Microsoft Windows 
PowerShell. You can ind it at www.PowerGUI.org. It is the freeware tool that the 
administrators need for speeding up PowerShell adoption, and harnessing the power 
of PowerShell to eficiently manage their entire Windows environment. PowerGUI 
simpliies management with an intuitive user console.

You can even create scripts from the PowerShell console using the string and the  
Set-Content cmdlet. The following screenshot shows how you can create your  
irst script:

As you can see, the hello-world.ps1 ile is a pure text ile; we can check its contents 
using the Get-Content cmdlet.

http:///


Chapter 1

[ 37 ]

Invoking scripts
PowerShell inds a ile to invoke just by looking at the path environment variable. It 
is interesting to note that the current folder is not in the system path. This means that 
invoking a script in the current folder will require you to preix it with a path. Thus 
the command in our case becomes .\hello-world ps1. This will look familiar if 
you come from a Unix background as shell will not include the current folder  
path variable.

When in action, PowerShell's default security construction principle only allows 
interactive commands and will be implemented in the console input. Shell has 
several executive policies, coniguration levels of security, and user privileges to run 
the script. By default, the shell will run in the restricted policy level; this means that 
is not allowed to run a script. We can check the executive policy by calling the  
Get-ExecutionPolicy cmdlet.

Passing parameters
The PowerShell script iles also allow users to pass parameters for initialization. 
Script iles have the $args variable set up with the parameters passed at the time  
of their invocation. The following is example code for using $args to get parameters:

$firstName = $args[0]

$lastName = $args[1]

Write-Host "Hello, $firstName $lastName"

We can save the code as Get-HelloArgs.ps1, and then execute it as follows:

Of course, we also can use the param keyword for accepting a parameter. The 
following is the example code:

param ($firstName, $lastName)

Write-Host "Hello, $firstName $lastName"

We can save the code as Get-HelloParam.ps1 and execute it as follows:

http:///


Getting Started with PowerShell

[ 38 ]

Return values
A parameter is, most of the time, a one-way communication mechanism, and will 
only transfer data from the environment of the script. We need to be able to return 
values from our script. PowerShell provides a good way to output the return value 
from a script and we should make use of this method.

An object can be bound to a variable or outputted to a pipeline for the next 
command. We can use it to generate a pile of objects from our script and output 
them. The following screenshot gives us a script that gives an output of three 
temporary ilenames:

As you can see, this value can be assigned to a variable or can be passed down  
the line as a foreach command. A return statement will output an object and 
terminate execution.

Developing and maintaining script libraries
Sooner or later, you will be responsible for creating a bigger, more complex solution 
using PowerShell as its implementation language. Earlier when you wrote your 
own code, there were cases where each piece of code was stuck in a separate ile and 
you could not ind a way through the code. This was not a pleasant situation as you 
must be aware that your options are separated from the script code into several iles 
to make things easier to manage. In addition to this, fast navigation to the correct 
location of the correct ile with less code makes it more reusable. This is a very 
common and useful function that lets you move out of the irst client code to another 
ile, and is then included in many documents. In practice, I usually use a folder in my 
system path that contains useful scripts so that I can easily include useful features in 
any of the scripts and start working on the production code in no time. 

http:///


Chapter 1

[ 39 ]

Script libraries are normal iles that contain useful functions. They are ordinary 
PowerShell scripts that do not execute an action—they just deine several functions 
and let the library client code call them to do the real job.

Including or importing a script library in a script ile is similar to executing it. It is a 
good programming practice to ensure that the scripting library should contain any 
executable code function deinition.

Discovering what's new in Windows 

PowerShell 3.0
A few months ago, Windows PowerShell 3.0 was launched as part of the Windows 
Server 2012 and Windows 8 RTM release. PowerShell 3.0 introduced a lot of 
new features, and improved some existing features in order to allow system 
administrators to control and manage their systems more easily and eficiently. In 
this section, the focus will be on the unique features of Windows PowerShell 3.0 to 
make sure that you gain the knowledge and the edge of using it.

Windows PowerShell Web Access 

(PSWA)
Windows PowerShell Web Access (PSWA) is one of the new features in Windows 
PowerShell 3.0 that has been introduced in Windows Server 2012. Yes, it is what 
you are guessing right now. PowerShell Web Access is a web-based version of 
the PowerShell console where you can run and execute PowerShell cmdlets from 
any web browser that is not only available on desktops but also on any mobile or 
tablet devices. PowerShell Web Access allows you to do your administration tasks 
smoothly anywhere and anytime using any device running a web browser regardless 
of it being a Microsoft or a non-Microsoft one.

www.allitebooks.com

http:///
http://www.allitebooks.org


Getting Started with PowerShell

[ 40 ]

How PSWA works
The Windows PowerShell Web Access gateway is the name of the server where 
PowerShell Web Access is installed and conigured. This gateway is the bridge 
between the end user and the managed servers, so once you connect to the web 
interface of the PowerShell Web Access for writing your cmdlets and scripts, the 
gateway will be responsible for executing them on the right server. In the real world, 
the PSWA gateway is placed in the DMZ (demilitarized zone) and the web interface 
is published to the Internet so that you can easily connect to your server anytime  
and anywhere.

Internet Firewall Firewall

End User

Powershell

Web Access

Internal Servers VLAN

Gateway

Proxy

DMZ

Desktop Mobile Slate

Ipad

Installing and coniguring Windows 
PowerShell Web Access
This part will show how to install and conigure Windows PowerShell Web Access 
easily in a few steps.

Step 1 – installing the Windows PowerShell Web 

Access Windows feature
In this step we will add the Windows PowerShell Web Access Windows feature. 
There are two ways to accomplish this task; either we can use the Server Manager 
Wizard or Windows PowerShell. Since PowerShell is our hero in this book, let's do it 
in the PowerShell way, using the following steps:

http:///


Chapter 1

[ 41 ]

1. Run the Windows PowerShell console with administrative privileges.

2. Install the Windows PowerShell Web Access feature using the Install-
WindowsFeature cmdlets. The purpose of this is to install PowerShell Web 
Access and the pre-requisites, if not installed.

PS > Install-WindowsFeature WindowsPowerShellWebAccess –
IncludeAllSubFeature –IncludeManagementTools

The following screenshot shows the execution results that you should get 
after using this command, and also warns you that you still need to do some 
coniguration in order to complete the PSWA installation:

Step 2 – coniguring Windows PowerShell Web 
Access Gateway
The gateway is the server where Windows PowerShell Web Access is installed 
and running. It is called a gateway because it is the gateway/proxy between the 
end user and the managed servers/nodes in your network. Now, after installing 
the PowerShell Web Access feature we will conigure the gateway. In this step, we 
will create an IIS web application that runs PowerShell Web Access and conigures 
the SSL certiicate. There are two ways to accomplish this task; we can either do it 
manually or use PowerShell, and again here we are using PowerShell:

1. Run the Windows PowerShell console with administrative privileges.

2. Use the Install-PswaWebApplication cmdlet to install and conigure 
PswaWebApplication:

Install-PswaWebApplication –WebSiteName "Default Web Site" – 
WebApplicationName "PSWA" –UseTestCertificate

http:///


Getting Started with PowerShell

[ 42 ]

The following screenshot shows the execution results that you should get 
after installing the PSWA application, and it also shows a warning because 
you have to choose a UseTestCertificate switch:

Make use of UseTestCertificate for testing purposes 
in your private lab only. Never use it in a production 
environment; for your production environments use a 
certificate from a trusted Certificate Authority (CA).

3. Open PSWA using https://<server_name>/PSWA to verify your 
installation. We should see a screen similar to the following:

http:///


Chapter 1

[ 43 ]

The PSWA web application files are located under %windir%\Web\
PowerShellWebAccess\wwwroot.

Step 3 – coniguring the PowerShell Web Access 
authorization rules
Now, we have PSWA up and running; however, no one will be able to sign in and 
use it until we create the appropriate authorization rule. The reason behind this is 
that it is a good practice to secure your environment by restricting the access to your 
network until you create the right access for the right person. The authorization rule 
is the access control for your PSWA that adds an additional security layer to your 
PSWA. It is similar to the access list on your irewall and network devices. We can 
conigure the PSWA authorization rule using the following steps:

1. Run the Windows PowerShell console with administrative privileges.

2. Use the Add-PswaAuthorizationRule cmdlet to create the authorization rule 
with the –UserName, –ComputerName, and –ConfigurationName switches.

The following screenshot shows the execution results that you should get 
after coniguring the PSWA authorization rule:

The PSWA authorization rule's files are located under %windir%\Web\
PowerShellWebAccess\data\AuthorizationRules.xml.

http:///


Getting Started with PowerShell

[ 44 ]

Signing in to PowerShell Web Access
Now, let's verify the installation and start using the PSWA by signing into it using 
the following steps:

1. Open the Internet browser.

2. Enter https://<server_name>/PSWA. The following screen will appear:

3. Enter the values for User name, Password, Connection type, and  
Computer name.

4. Click on Sign In to get the following screen:

http:///


Chapter 1

[ 45 ]

Auto-loading of modules
PowerShell 3.0 will now be able to check and load all the cmdlets and modules 
installed on the local computer and load them automatically while starting up so you 
do not have to use the Import-Module cmdlet to import each module that you want 
to use.

http:///


Getting Started with PowerShell

[ 46 ]

Online and updatable Help
In the previous version of PowerShell, we used the Get-Help cmdlet to show the 
Help information that comes embedded by default with the cmdlets. In PowerShell 
3.0, the inline help has been replaced with a Help ile hosted on the Internet. By 
default, the Get-Help cmdlet will not show you any Help information until you 
use the Update-Help cmdlet to download the help iles from the Internet. If you 
are running the Get-Help cmdlet for the irst time without using the Update-Help 
cmdlet, it will automatically prompt you to download the latest Help iles from the 
Internet. The reason behind this is that in the previous versions of PowerShell, the 
Help information was static and sometimes there were mistakes as well as updates 
in the Help information. There was no available way to update the Help information 
even while using a Windows update. Thus Microsoft introduced a new update 
method using the Update-Help cmdlet, which gets the latest Help information from 
the Help iles hosted on the Internet. Also, you can use the SAVE-HELP cmdlet to save 
the Help iles locally or on shared folders so that every computer in your network 
can get them directly. Moreover, if you do not want to download the help iles 
locally, you can use the Get-Help cmdlets with the –Online switch for redirecting 
you to the web pages that contain the Help information for the cmdlets, but you have 
to consider the Internet connectivity each time you use this parameter. The following 
screenshot shows the use of the Get-Help cmdlet:

Scheduled jobs
Scheduled jobs are similar to background jobs introduced in PowerShell 2.0. Both 
jobs run asynchronously in the background without interrupting the user interface, 
but the difference is that the background jobs must be started manually using the 
Start-Job cmdlet, and in some cases, if you want to automate this job you can use a 
scheduled task to create a scheduled job that triggers your script. In PowerShell 3.0, 
scheduled jobs are introduced to reduce the hassle of scheduling the background  
jobs in multiple steps. Simply, scheduled jobs can create background job and 
schedule it for a later execution using a set of cmdlets instead of using the Task 
Scheduler wizard. You can also get the results of running scheduled jobs and  
resume interrupted jobs.

http:///


Chapter 1

[ 47 ]

In the following example, we will create a simple scheduled job that clears the 
event log for application, security, and system log stores every day at 02:00 am. 
The irst thing we need to deine is when the scheduled job will be executed using 
the New-JobTrigger cmdlet, then create and register the job using the Register-
ScheduleJob cmdlet. The code snippet is as follows:

$trigger = New-JobTrigger -Daily -At 2am

Register-ScheduledJob -Name ClearEventLogDaily -Trigger $trigger - 
ScriptBlock {Clear-EventLog -LogName Application,Security,System

All PowerShell scheduled tasks are saved by selecting Task Scheduler 
| Task Scheduler Library | Microsoft | Windows | PowerShell | 
ScheduledJobs.

The Show-Command cmdlet
The Show-Command cmdlet allows you to display the command in a Graphical User 
Interface (GUI) as if you are browsing a web form or a normal Windows program. 
You can use Show-Command to compose a command in a GUI form, select the 
required variables and write the values, then click on Run to execute the command 
with the parameters you entered. You can also click on the Copy button to copy the 
command with the parameters and values to the clipboard so that you can paste it to 
the PowerShell console and save it to a script. Refer to the following screenshot:

http:///


Getting Started with PowerShell

[ 48 ]

Integrated Scripting Environment (ISE)
PowerShell ISE is the GUI editor for PowerShell. It is similar to the Blue PowerShell 
console but with more advanced features. In the previous version of PowerShell, 
ISE was just a graphical editor that allowed you to write and execute the PowerShell 
commands and scripts in a nice user interface that highlights the syntax and with 
the ability to add/remove breakpoints for debugging capabilities. In PowerShell 3.0, 
new features have been added to ISE to give the administrator a different experience 
while using it. In this section we will highlight these features.

IntelliSense
IntelliSense is the name of Microsoft's implementation for the autocomplete 
technique. Autocomplete is one of the most famous features in today's applications, 
and everyone using a computer is using autocomplete. Simply, autocomplete is a 
feature embedded in most of the search engines that gives you a list of suggestions 
once you start typing on your keyboard. IntelliSense in PowerShell not only shows 
you a suggestion for words but also for commands, parameters, variables, and even 
UNC paths on your computer. The following screenshot shows us an example:

http:///


Chapter 1

[ 49 ]

Script snippets
Code snippet is the name used to describe a piece of reusable code, and it is usually 
used to speed up the process of writing code especially when using a repetitive 
code and syntax. PowerShell 3.0 ISE introduced the snippets feature to make the 
script-writing process easier. By using snippets you do not have to know the syntax 
for each command and function. For example, the ForEach code snippet inserts 
the syntax of the ForEach loop and you just have to modify your variables. The 
following screenshot shows us a similar example:

How to use snippets
You can use snippets using Ctrl + J or by selecting Edit | Start Snippets.

How to create/add new snippets
In order to create a new code snippet we use the New-IseSnippet cmdlet. In the 
following example we will create a new snippet to restart all SQL Server Services:

New-IseSnippet -Title RestartSQLServerServices -Description  
"Restart all SQL Server Services" -Text "Restart-Service  
-Name *SQL*"  

In PowerShell, snippets are saved in the form of an XML ile with the snippet.
ps1xml ile's extension under User Proile | Windows PowerShell | Snippets.

www.allitebooks.com

http:///
http://www.allitebooks.org


Getting Started with PowerShell

[ 50 ]

You can get the path of the snippets' folder using the following command:
Join-Path (Split-Path $profile.CurrentUserCurrentHost) 
"Snippets"

To display all user-deined snippets we use the Get-IseSnippet cmdlet. This 
command will show the name of each snippet and where it is located. To remove 
a snippet, open the folder that contains all the user-deined snippets and delete the 
snippet ile. By default, PowerShell loads all the snippets located in the default folder 
automatically during startup; however, if you have saved your snippet's iles in a 
separate folder, use Import-IseSnippet –Path <Snippets_Folder_Path> to  
load it.

Add-on tools
Add-on tools are Windows Presentation Foundation (WPF) controls that can be 
added to PowerShell ISE to add extra features and functionalities to the ISE, such 
as spelling checker and script-printing features. One of the most popular add-ons is 
Microsoft Script Explorer. The Microsoft Script Explorer enables you to ind scripts, 
snippets, and modules in the script repositories such as TechNet Script Center and 
other community repositories such as PoshCode, and also it can search for scripts in 
local and network ilesystems.

Autosave and restart manager
PowerShell ISE 3.0 automatically saves any runspace and script ile that is open , so 
in case a failure happens in your ISE or your operating system restarts suddenly, ISE 
will restore all your runspaces once you open it again. It is similar to "restore session" 
in Internet Explorer.

PowerShell remoting
PowerShell remoting is one of the most impressive features that make PowerShell 
unique and give it a different lavor over other shells. PowerShell remoting allows 
IT administrators to control and execute PowerShell scripts on multiple remote 
computers from a local PowerShell console without moving to any place. We will 
talk more in depth about PowerShell remoting in the coming chapters, but let's take  
a sneak peak at what is new in PowerShell 3.0 from the remoting perspective.

http:///


Chapter 1

[ 51 ]

Disconnected session
PowerShell remoting is now similar to a remote desktop session; you can disconnect 
your session without interrupting any running process, application, or script, and 
you can connect later to this session again from the same or a different computer to 
continue your work.

Remoting on a public network
Remoting in PowerShell 3.0 can be enabled on public networks on the client 
operating systems such as Windows 7 and Windows 8. In simple terms, we use 
the SkipNetworkProfileCheck switch with the Enable-PSRemoting or Set-
WSMANQuickConfig cmdlets.

The custom session coniguration ile
The custom session coniguration ile is a predeined session coniguration that 
includes information about which cmdlets, snippets, modules, and other PowerShell 
components should be loaded in this session and the coniguration that can be used 
by the user, which gives another edge of security for PowerShell in general and 
PowerShell remoting speciically.

Windows PowerShell Worklow (PSW)
The word "worklow" represents a set of objects, tasks, and activities that are 
connected together and running concurrently or sequentially or both. In IT, the word 
worklow always links to another word automatically. For example, in Microsoft 
SharePoint Server we use a worklow to automate an approval process such as 
vacation request approval, or we can use Microsoft System Center Orchestrator to 
automate a process such as provisioning new users and applications.

Worklow capabilities have been introduced in Windows PowerShell 3.0, and it is 
designed speciically to help you perform time and effort-consuming complex tasks 
across multiple and different devices in different locations.

http:///


Getting Started with PowerShell

[ 52 ]

You might wonder what the real value of Windows PowerShell Worklow is, as 
you already use PowerShell to write different scripts and modules that allow you to 
perform long-running tasks, and this is the aim of scripting in general. Well, before I 
tell you the answer let's think about these questions together: can you write a script 
that restarts an operation on a device and waits for this device to boot-up to resume 
the rest of the commands again? Can you write a single script that runs on multiple 
devices concurrently? PowerShell Worklows is designed to be interruptible, 
stoppable, restartable, and also parallelizable, which is why it is more eficient for 
long-running tasks than scripts.

The script consists of a set of commands; however, worklow consists of a set 
of activities. Commands normally represent an action that you want to execute; 
however, the activities represent a task you want to perform. Moreover, commands 
execute sequentially and activities run sequentially and concurrently.

There are two methods to deine a worklow; we can either use the PowerShell 
syntax or, since it is built on top of Windows Worklow Foundation (WF), you can 
use an XAML ile designed by Visual Studio Worklow Designer.

Creating a worklow using PowerShell
Writing a PowerShell Worklow is similar to writing a PowerShell function with a little 
difference. The irst difference is using the word "worklow" instead of "function". Also, 
as in functions, the same deinition of parameters using param() can be used with 
CmdletBinding to add some advanced worklow features. CmdletBinding allows 
you to add advanced capabilities to your function and worklows, such as adding 
the –Verbose, –Debug, –whatif, and –confirm parameters to your worklow without 
implementing them manually. It also deines HelpUri that will be used by the Get-
Help cmdlets to get the online help for the worklow or function. The following code 
snippet shows how we write a PowerShell Worklow:

Workflow Test-Workflow

{

 [CmdletBinding(ConfirmImpact=<String>, 
 DefaultParameterSetName=<String>,

   HelpURI=<URI>,PositionalBinding=<Boolean>)]

  Param([string] <Parameter_Name>)

}

As mentioned earlier, PowerShell Worklows use activities that are similar to 
cmdlets; the PowerShell team has already implemented all PowerShell core cmdlets 
as activities, which makes it easier for PowerShell users to use activities and not get 
confused, except for a set of cmdlets that are excluded from this implementation. 
Does it mean that the excluded cmdlets cannot be used in a worklow? 

http:///


Chapter 1

[ 53 ]

No, PowerShell automatically executes them using a special activity called 
inlineScript. The purpose of this activity is to execute any PowerShell command 
that is valid in PowerShell but not supported by worklows, such as executing a  
.ps1 ile or calling a dynamic parameter inside a worklow.

For the list of excluded cmdlets you can visit  
http://technet.microsoft.com/en-us/library/jj574194.aspx.

PowerShell Worklows can be executed concurrently and sequentially by using 
the reserved keywords such as Parallel and Sequence. The activities inside the 
Parallel block will be running concurrently, and activities inside the Sequence 
block will be running sequentially. ForEach –parallel is a combination of the 
Sequence and Parallel executions. ForEach –parallel will execute the activities 
sequentially on the items in the collection concurrently. In other words, if there is a 
collection of computers where a set of activities such as rename and restart computer 
are being executed, the activities will be executed in sequence on all computers at the 
same time. The following script block shows the syntax of using the Parallel and 
Sequence execution capabilities inside a worklow:
Workflow Test-Workflow
{
  Parallel
{
  <Activity_1>
  <Activity_2>
  <Activity_3>
}

Sequence
{
  <Activity_1>
  <Activity_2>
  <Activity_3>
}

ForEach -parallel ($item in $collection)
{
<Activity_1>
  <Activity_2>
  <Activity_3>
}
}

Parallel execution is useful for running independent activities concurrently, such 
as starting a process and restarting a service at the same time where each activity is 
running independently from the other one.

http:///


Getting Started with PowerShell

[ 54 ]

Sequence execution is useful for deining a set of activities to run sequentially inside 
a Parallel or ForEach –parallel execution.

For more information on the different ways of creating a PowerShell 
Worklow refer to http://msdn.microsoft.com/en-us/library/
windows/desktop/hh852738(v=vs.85).aspx.

Controlling PowerShell Worklow execution
One of the most interesting features in PowerShell Worklow, and what makes it 
unique compared to a normal script is the lexibility of controlling the execution; at 
any point you can interrupt, suspend, or resume the worklow's execution. You can 
even restart the computer while running the worklow and complete the execution 
upon startup.

You can suspend the worklow's execution using the Suspend-Workflow activity 
that will save the execution state, variables, and values in a checkpoint and return 
the job ID for the suspended worklow, so you can use the job ID as a parameter for 
the Resume-Job cmdlet to resume the worklow execution again.

In the following example, we will learn how to suspend and resume the worklow 
execution:

Workflow Test-Workflow

{

  <Activity_1>

  <Activity_2>

Suspend-Workflow

  <Activity_3>

}

You can execute this worklow using the following command:

PS C:\>Test-Workflow

The irst two activities will be executed and the worklow will be suspended, and the 
result of suspend-workflow will be information about the worklow-executed job.

Id  Name  PSJobTypeName  State      HasMoreData  Location  Command  

--  ----  -------------  -----      -----------  --------  -------  

2   Job2  PSWorkflowJob  Suspended  True         localhost  Test- 
                                                            Workflow

http:///


Chapter 1

[ 55 ]

In order to resume the worklow again, we will use the Resume-Job cmdlet:

S C:\>Resume-Job –Name Job2

In order to get the results of the activities executed after resuming, in our case 
Activity 3, we will use the Get-Job and Receive-Job cmdlets:

PS C:\>Get-Job –Name Job2 | Receive-Job

Since PowerShell Worklow is recoverable, you can restart the target computer  
and smoothly resume the worklow again using the Restart-Computer activity. 
Simply use the –wait switch with Restart-Computer so that the worklow will  
wait for the computer to restart and reconnect again before proceeding with the 
worklow execution.

In the following example, the worklow will restart the targeted computer 
after executing Activity 1 and Activity 2, and then wait for the computer 
to boot up again to resume and execute Activity 3. You can also use the 
-PSConnectionRetryCount and -PSConnectionRetryInterval parameters to 
specify the connection retries and the interval between each connection retry.

Workflow Test-Workflow

{

  <Activity_1>

  <Activity_2>

  Restart-Computer –Wait –PSConnectionRetryInterval 4 – 
  PSConnectionRetryCount 8

  <Activity_3>

}

In order to maintain these features of PowerShell Worklow, it is a must to 
implement another feature in worklows, which is "CheckPoint". Checkpoints in 
PowerShell Worklow take a snapshot of the current state and data, and then save 
it in the proile of the user who executes this worklow on the hard disk, so on 
resuming, the worklow will start from the last checkpoint instead of starting from 
the beginning. PowerShell by default adds checkpoints in the beggining and ending 
of the worklow. In addition, you can use the -PSPersist switch with any activity to 
take a checkpoint after completing its execution. Also, you can use the Checkpoint-
Workflow activity at any point in your low to take a checkpoint.

http:///


Getting Started with PowerShell

[ 56 ]

Worklows are used to execute tasks faster, so using checkpoints 
without any need or optimization will slow the execution and 
make the usage futile.

In case of using pipelines and parallel execution, checkpoints will 
not be taken until the completion of the pipeline or the parallel 
activities; however, you can use checkpoints in sequence activities 
to take a checkpoint after completion of every single activity.

Summary
In this chapter, we studied variables and data structures such as objects, lists, arrays, 
and hash tables, which are used frequently in the examples in later chapters. This 
chapter facilitated the explanation for the later examples.

If arithmetic is the soul of the program, then the control low is the skeleton of 
PowerShell. Control lows directly determine the program operation's path. 
Pipelines, script blocks, functions, and script iles are major program-organization 
tools of PowerShell.

PowerShell 3.0 introduced a lot of new features, such as PowerShell Web Access 
and PowerShell Worklow. PowerShell 3.0 improves some existing features such as 
PowerShell ISE. Since the later chapters will be based on this chapter content, readers 
are encouraged to review characteristics of the PowerShell language at this step.

In the next chapter we will introduce a snap-in for protecting your PowerShell code. 
The user can encrypt based on the .NET code obfuscator to protect the source code 
from getting cracked.

http:///


Developing Snap-ins  

for PowerShell
There may be times when PowerShell does not include a built-in cmdlet with the 
speciications you want; in such a scenario you will have to write a PowerShell 
snap-in to register your custom cmdlet. You will see how easy it is to actually build 
a custom-class library that in turn is an extension of the PowerShell console and will 
add a couple of extra commands according to your preference.

In this chapter we will cover:

• Creating a PowerShell snap-in

• Writing a PowerShell snap-in

• Registering and removing a PowerShell snap-in

• Listing and executing cmdlets in a PowerShell snap-in

• Debugging a PowerShell snap-in

A Windows PowerShell snap-in provides a mechanism for registering sets of 
cmdlets and providers with the shell, thus extending the functionality of the shell. A 
PowerShell snap-in can register all the cmdlets and providers in a single assembly, or 
it can register a speciic list of cmdlets and providers.

Sometimes, when you have developed a product for which you want the source 
code to be kept as a secret from your client or you have written some scripts and 
then released them to be used by others, and you want to protect this source code 
against reverse engineering, cracking, and modiication by others, snap-ins are the 
best choice. Normally, commercial PowerShell solutions use the snap-ins method 
to publish their own products, such as VMware vSphere PowerCLI and the Quest 
Active Directory series. The code will be complied into assemblies so that all security 
options for C# and VB.NET code can be used.

http:///


Developing Snap-ins for PowerShell

[ 58 ]

Creating a PowerShell snap-in
All Windows PowerShell snap-in classes are derived from the PSSnapIn or 
CustomPSSnapIn class. The default type is PSSnapIn, which registers all cmdlets 
and providers in a single assembly. The other type is CustomPSSnapIn, which allows 
users to specify the list of cmdlets and providers from either a single assembly or 
multiple ones. The registration mechanism adds the cmdlets, providers, or hosting 
applications to the current session. In this chapter, we will introduce how to create 
snap-ins to expand the cmdlets of PowerShell.

First of all, we need to introduce a programming environment to facilitate the 
description of the follow-up. We will require the following:

• Tools: Visual Studio 2010 and .NET Framework 3.5

• Environment: PowerShell 3.0 and Windows 2008

It is easy to build a custom-class library that is in turn an extension of the PowerShell 
console and will add a couple of extra commands according to your preference. 
We should download the Windows SDK in order to get the System.Management.
Automation.dll ile to make PowerShell easily accessible. We can download this 
from http://www.microsoft.com/en-us/download/details.aspx?id=8279.

Users can write some code for a snap-in and compile the code into a .NET assembly. 
Then you should register the assembly as a snap-in with PowerShell. Before you can 
use the cmdlets or providers in your snap-in, you need to load the snap-in into a 
PowerShell session. After the snap-in is loaded, users can use cmdlets or providers 
in the snap-in just like other built-in cmdlets and providers. To avoid the loading 
operation of your snap-in every time you want to use it, you can load a snap-in by 
saving it into a coniguration ile.

Writing a PowerShell snap-in
In this section, we will explain how to write a snap-in.

Creating a new class library project
First of all, we should create a class library project and name it MySnapIn in Visual 
Studio 2010 as shown in the following screenshot:

http:///


Chapter 2

[ 59 ]

Then, add a reference to the System.Management.Automation.dll (found in C:\
Windows\assembly\GAC_MSIL\System.Management.Automation\1.0.0.0__31bf

3856ad364e35) and System.Configuration.Install.dll (found in C:\Windows\
Microsoft.NET\Framework\v2.0.50727) iles. You should now have the following 
reference added:

http:///


Developing Snap-ins for PowerShell

[ 60 ]

Creating a PowerShell installer class
In order for our PowerShell cmdlet to work, we have to create an Install class. 
This class looks fairly worthless, but nevertheless it is still required because this class 
will be invoked when you install the snap-in and provide the system with some 
information, such as where it comes from and what it is supposed to do.

Create a public class that derives from the PSSnapIn class. In this example, the class 
name is MySnapInInstallclass. First, start by adding the necessary references. 
Next, add the following code to that class:

http:///


Chapter 2

[ 61 ]

The property for name, vendor, and description of the snap-in need to be 
emphasized. Especially the property for the name of the snap-in, as it will be used 
when we call Add-PSSnapin to register it to the PowerShell session. Meanwhile, the 
property for the vendor resources and description resources are optional. The public 
property for the name of the snap-in do not use any of these characters: #, (, ), {, }, 
[, ], $, -, /, \, ;, :, ", ', <, >, |, ?, @, `, and *. Use of any of these characters is illegal.

This essentially provides some information to the system upon installing your  
snap-in. In fact, the information is stored in the computer registry and the 
PowerShell session depends on the information found in the snap-in ile storage 
location and the related information, for execution. We will introduce these  
contents later on.

Creating a class ile to include several 
PowerShell cmdlets
We will now introduce the most important part of a snap-in. Let's create a cmdlet 
class ile that is named MySnapInCmdletsclass.cs, in the project. The users can set 
several classes in a ile and also each class in the respective ile, because a snap-in 
only contains the install and cmdlet classes. Here, in order to make it convenient 
for the users' understanding, all the cmdlet classes are placed in a ile and the 
installer class is placed in the other ile. If the user's snap-in contains a lot of cmdlets, 
it facilitates maintenance when the user creates a class ile for each cmdlet class.

Use the [Cmdlet()] attribute in your class to tell the system that it's going to be a 
cmdlet for PowerShell. Your class name comprises of two parts: verb and noun. The 
verb deines the action that this cmdlet will perform, and the noun deines the object 
on which the verb acts. The keyword VerbsCommon.Get means that it is a cmdlet 
with the built-in verb Get. And the keyword after the comma, with double quotation 
marks, is the noun of the verb-noun structure. The cmdlet, which is composed of 
the verb and noun, will be invoked when a snap-in is registered in a PowerShell 
session. The only method of the class that needs to override into the actions is 
ProcessRecord(). 

http:///


Developing Snap-ins for PowerShell

[ 62 ]

The code will be as follows:

We can see that all of the cmdlet classes are derived from Cmdlet. In fact, the  
snap-in not only already contains the most basic function units, but can also  
compile successfully. The subsequent section introduces you to the registration  
and the call, in a way that we can use now.

http:///


Chapter 2

[ 63 ]

Next, I want to give an example of custom verbs taking parameters and logic 
judgment. The code is shown in the following screenshot:

http:///


Developing Snap-ins for PowerShell

[ 64 ]

It is very similar to the irst example that used the [Cmdlet()] attribute; the 
difference is that the parameter VerbsCommon.Get is replaced by a custom parameter 
"Say", which is contained within double quotes. This is an essential attribute for 
cmdlet classes. In the ProcessRecord() method, there is an if/else logic judgment 
as well as an argus keyword for saving the input parameters.

In the subsequent sections, we will see the rest of the method-declaring parameters. 
Because the method of declaring parameters is exclusive, we can't demonstrate all 
methods in one example.

Declaring cmdlet parameters
Let's consider an example where we deine a public property as shown in the 
preceding code. When we add the Parameter attribute and set the Position 
keyword to the argument position, the irst position is indicated a value of 0. It 
means that you declare a positional parameter, and then the irst parameter in the 
pipeline will be assigned to the designated variables, as the parameters of the index 
starts at 0.

If you want to declare a named parameter, you can add the Parameter attribute and 
omit the Position keyword from the attribute. Just as shown in following code:

[Parameter()]

public string PersonName

{

  get { return personName; }

  set { personName = value; }

}

private string personName;

If you want to declare a mandatory parameter, you should add the Parameter 
attribute and set the Mandatory keyword to true. It means the snap-in we create 
with this keyword will force the user to input the speciied parameters, otherwise 
it will report an error. This is very useful when a snap-in needs an obligatory 
parameter. Refer to the following code:

[Parameter(Position = 0, Mandatory = true)]

public string PersonName

{

  get { return personName; }

  set { personName = value; }

}

private string personName;

http:///


Chapter 2

[ 65 ]

If you want to declare an optional parameter, you just omit the Mandatory keyword 
when you add the Parameter attribute. Just as shown in following code:

[Parameter(Position = 0]

public string PersonName

{

  get { return personName; }

  set { personName = value; }

}

private string personName;

The example that we just saw introduces the method of declaring a parameter, but 
sometimes we need our snap-in to accept several different parameter groups. These 
parameter groups are optional. Once a parameter group is input, the parameters 
in this group must follow their own parameter rules. For example, the unique 
parameter of the Get-Command cmdlet is optional. Now we need to declare a 
parameter set to solve this problem; we will introduce the declared parameter  
set in the next section.

Declaring parameter sets
Now we will show how to deine two parameter sets when you declare the 
parameters for a cmdlet. Each parameter set has both a unique parameter and 
a shared parameter that is used by both parameter sets. We will declare these 
parameter sets using the following steps:

1. We declare a Mandatory parameter, and then add the Parameterset 
keyword to the Parameter attribute for the unique parameter of the irst 
parameter set.

[Parameter(Position = 0, Mandatory = true,

ParameterSetName = "Tests01")]

public string PersonName

{

  get { return personName; }

  set { personName = value; }

}

private string personName;

2. Add the Parameterset keyword to the Parameter attribute for the unique 
parameter of the second parameter set.

[Parameter(Position = 0, Mandatory = true,

ParameterSetName = "Tests02")]

public string CarName

{

http:///


Developing Snap-ins for PowerShell

[ 66 ]

  get { return carName; }

  set { carName = value; }

}

private string carName;

3. For the parameter that belongs to both of the parameter sets, add a 
Parameter attribute for each parameter set and then add the Parameterset 
keyword for the Parameter attribute. In each Parameter attribute, you can 
specify the deined parameter and share if the parameter is Optional or 
Mandatory and in which Parameterset set:

[Parameter(ParameterSetName = "Tests01")]

[Parameter(Mandatory= true,ParameterSetName = "Tests02")]

public string SharedProperty

{

    get { return sharedProperty; }

    set { sharedProperty = value; }

}

private string sharedProperty;

Now we show an example that deines two parameter sets in which both of them 
share a property. In the Tests02 parameter set, the parameters CarName and 
sharedProperty are set to Mandatory, and the parameter sharedProperty in the 
Tests01 parameter set is set to Optional.

After deining the parameters for a snap-in, it is very important that we validate 
whether the parameter is legal or not, such as an argument set, argument range, 
argument pattern, argument length, and argument count. The normal working 
of snap-in is directly related to whether the parameters are legal or not. We will 
introduce how to validate the parameter input in the next section.

Validating the parameter inputs
As we enter into the program execution, the input needs to be checked. In order to 
ensure that the parameters are legal, we program according to our expectations.

Validating the argument set
We can specify a validation rule that the PowerShell runtime can use to check the 
parameter argument before the cmdlet is run. This validation rule provides a set of 
the valid values for the parameter argument.

http:///


Chapter 2

[ 67 ]

Add the ValidateSet attribute before the Parameter attribute as shown in 
the following code. This example speciies a set of three possible values for the 
PersonName parameter, and when the IgnoreCase keyword is speciied the case of 
the parameter is ignored when you check the parameter.

[ValidateSet("Gates", "Jobs", "Ballmer" , IgnoreCase = true)]

[Parameter(Position = 0, Mandatory = true)]

public string PersonName

{

  get { return personName; }

  set { personName = value; }

}

private string personName;

Validating the argument range
We can specify a validation rule that the PowerShell runtime can use to check the 
minimum and maximum values of the parameter argument before the cmdlet is run. 
You set this validation rule by declaring the ValidateRange attribute.

Add the ValidateRange attribute before the Parameter attribute as shown in the 
following code. This example speciies a range of 0 to 10 for the ReceivedData 
parameter.

[ValidateRange(0, 10)]

[Parameter(Position = 0, Mandatory = true)]

public int ReceivedData

{

  get { return receivedData; }

  set { receivedData = value; }

}

private int receivedData;

Validating the argument pattern
We can specify a validation rule that the PowerShell runtime can use to check the 
character pattern of the parameter argument before the cmdlet is run. You set this 
validation rule by declaring the ValidatePattern attribute.

http:///


Developing Snap-ins for PowerShell

[ 68 ]

Add the ValidatePattern attribute as shown in the following code. This example 
speciies a pattern of ive digits, where each digit has a value of 0 through 9 for the 
ReceivedData parameter.

[ValidatePattern("[0-9][0-9] [0-9] [0-9] [0-9]")]
[Parameter(Position = 0, Mandatory = true)]
public int ReceivedData
{
  get { return receivedData; }
  set { receivedData = value; }
}
private int receivedData;

Validating the argument length
We can specify a validation rule that the PowerShell runtime can use to check the 
number of characters of the parameter argument before the cmdlet is run. You set 
this validation rule by declaring the ValidateLength attribute.

Add the ValidateLength attribute as shown in the following code. This example 
speciies that the length of the argument should have a length of 0 to 5 characters for 
the PersonName parameter:

[ValidateLength(0, 5]
[Parameter(Position = 0, Mandatory = true)]
public string PersonName
{
  get { return personName; }
  set { personName = value; }
}
private string personName;

Validating the argument count
We can specify a validation rule that the PowerShell runtime can use to check the 
count of arguments that a parameter accepts before the cmdlet is run. You set this 
validation rule by declaring the ValidateCount attribute.

Add the ValidateCount attribute as shown in the following code. This example 
speciies that the parameter will accept one argument or as many as four arguments.

[ValidateCount(1, 4)]
[Parameter(Position = 0, Mandatory = true)]
public string PersonName
{
  get { return personName; }
  set { personName = value; }
}
private string personName;

http:///


Chapter 2

[ 69 ]

Thus this section showed us examples of how to validate a parameter input by using 
various attributes to implement validation rules.

Overriding methods
In the following example, there are a couple of different methods to be used: 
BeginProcessing(), EndProcessing(), ProcessRecord(), StopProcessing(). 
The code is as shown in the following screenshot:

http:///


Developing Snap-ins for PowerShell

[ 70 ]

We can see that all of these methods have been overridden in this example. With 
these methods, we can accomplish various missions whether the cmdlet executes 
successfully or not. The BeginProcessing() method is used for initializing 
parameters and getting ready for the data. The ProcessRecord() method is used 
for the main implementation operation. The EndProcessing() method is used for 
inalizing the execution. The StopProcessing() method is used for breaking down 
the execution and the rollback operation.

In the following example, we will introduce how to share variables between two 
different executions and how to use a custom-deined object. The code is as follows:

http:///


Chapter 2

[ 71 ]

There is an object that contains a private variable and a public method in the 
example. When the Run() method is invoked in the ProcessRecord() method,  
the value of the variable runCount will be maintained in the PowerShell session.

Now, we put all the cmdlet classes merged into the code of the 
MySnapInCmdletsclass.cs ile and compile out the assembly of our choice, which is 
used for the presentation of the subsequent section.

First of all, we need to use the following statement in the namespace that is used to 
import the class library assembly that the following code depends on:

We need to import some namespaces. Using other namespaces in an ordinary 
console program is very common, but here we need to emphasize the use of 
the System.Management.Automation namespace. The System.Management.
Automation namespace is the root namespace for Windows PowerShell. It contains 
the classes, enumerations, and interfaces required to implement custom cmdlets. 
In particular, the Cmdlet class is the base class from which all cmdlet classes must 
be derived. System.Management.Automation is found under C:\Program Files\
Reference Assemblies\Microsoft\WindowsPowerShell\v1.0.

Then, we will introduce several simple cmdlet examples that contain some language 
characteristics that the cmdlet may mention when we are developing. The irst class 
is GetHelloCommand; it looks as follows:

http:///


Developing Snap-ins for PowerShell

[ 72 ]

The statement [Cmdlet(VerbsCommon.Get, "Hello")] means that we will deine a 
cmdlet such as Get-Hello. The VerbsCommon.Get statement means we use the built-
in verb, Get. Our class GetHelloCommand inherits the Cmdlet class. And in the class, 
we override the ProcessRecord() method, which only contains the WriteObject 
method used to output a string. This simple cmdlet only outputs a string to  
the console.

The second class, which is named SayHelloWorldCommand, is used to demonstrate 
how to create a cmdlet that contains user-deined verbs and takes parameters with 
logical judgment. Its code looks as follows:

The statement [Cmdlet("Say", "HelloWorld")] will create a cmdlet called  
"Say-HelloWorld" without using the built-in verbs or the keyword VerbsCommon. 
The statements [Parameter(Position = 0)] and [ValidateNotNullOrEmpty] 
are used to limit the received command-line parameter to the irst parameter (note 
that the index starts from 0), and do not allow this parameter to be null or empty. 
In the override method of ProcessRecord(), if the parameter argus is not null or 
the length is greater than zero, the cmdlet will output parameters; otherwise, it will 
prompt the need for parameters.

http:///


Chapter 2

[ 73 ]

In the third class, named AddTestCommand, is a complete cmdlet example with the 
BeginProcessing(), ProcessRecord(), EndProcessing(), and StopProcessing() 
keywords. The code for it is as follows:

The BeginProcessing() method is used for initializing the environment and 
readying of data. The ProcessRecord() method is used for implementing the 
operation. The EndProcessing() method is used for clearing the scene when the 
execution completes. And the StopProcessing() method is used for breaking 
down and rolling back the operation when the execution has errors.

http:///


Developing Snap-ins for PowerShell

[ 74 ]

The following example checks the snap-in cmdlet's life cycle; the code is as shown in 
the following screenshot:

We deined a class named TaskManager, in which we declared a variable runCount 
for keeping a track of the running time of the cmdlet, and the static method Run() 
for updating the variable. In the GetLifeCycleCommand class, we invoke the Run()
method of the TaskManager object. When we execute the Get-LifeCycle cmdlet,  
the output number will increase with the increase in the number of executions.

The last example is shown for capturing the hostname. This is the only example that is 
close to the real-world applications. The code is as shown in the following screenshot:

http:///


Chapter 2

[ 75 ]

We can see that the example uses the System.Environment.
GetEnvironmentVariable method to get the ComputerName variable.

Readers can ind the complete program code of this example from the Packt 
Publishing website at http://www.packtpub.com/. Our project should look 
something like the following:

We can see that these selected items include two .dll iles and two class iles.  
Now, we will compile the project to build it into a snap-in. In Visual Studio, go to 
Build | Build Solution. There is a .dll ile in the bin/debug subdirectory of the  
code directory.

In order to use cmdlets in a snap-in, you must register it with PowerShell irst. This 
will be described in the next section.

Registering and removing a PowerShell 
snap-in
In order to use a cmdlet that is contained in a snap-in, the cmdlet needs to be 
registered and loaded into a PowerShell session for execution. Because registering a 
DLL ile needs administrator rights, it is required to start a PowerShell session as an 
administrator and invoke a statement for registering a snap-in.

http:///


Developing Snap-ins for PowerShell

[ 76 ]

Registering and removing snap-in in 
PowerShell 1.0
In PowerShell 1.0, we have to register a snap-in into PowerShell using installutil.
exe, which is contained in the .NET Framework. The default installation position will 
be one of the following:

• %windir%\Microsoft.NET\Framework64\v4.0.30319\ (Used for x64)

• %windir%\Microsoft.NET\Framework\v4.0.30319\ (Used for x86)

Users must set the location of the PowerShell session to the directory that contains 
the assembly DLL ile of the snap-in, and then use installutil.exe to register  
the DLL ile. Next, we can load a snap-in into the PowerShell session using  
Add-PSSnapin MySnapIn. We can use Get-Command -PSSnapIn MySnapIn to 
get cmdlets that are registered by the MySnapIn. All command as shown in the 
following screenshot:

Registering and removing a snap-in in 
PowerShell 3.0
If you're running PowerShell 3, you don't need to install this using PSSnapin. You 
can use Import-Module to load it. Just as shown in the following screenshot:

http:///


Chapter 2

[ 77 ]

When executing the statement, we need to take care that we create a snap-in and 
place it in its own subdirectory in the system module directory $env:PSModulePath 
(such as C:\Windows\System32\WindowsPowerShell\v1.0\Modules) or 
the user's module directory (such as C:\Users\Administrator\Documents\
WindowsPowerShell).

In fact, depending on the information we implement for the snap-in installer, the 
following registry information will be created when we register a snap-in. A registry 
key with a snap-in name, in our example it is named MySnapIn, which was deined 
in the MySnapInInstallclass.cs class ile, will be created with a key under HKLM\
SOFTWARE\Microsoft\PowerShell\1\PowerShellSnapIns\. Just as shown in the 
following screenshot:

We can see that the information we registered in the installer class has been created 
in the registry. The system inds the snap-ins depending on the key registered in  
the registry.

Once you load the snap-in into PowerShell, the snap-in will always load 
automatically in every PowerShell session until it is removed by the  
Remove-Module cmdlet using the following command:

PS C:\> Remove-Module MySnapIn

http:///


Developing Snap-ins for PowerShell

[ 78 ]

In order for PowerShell 3.0 to be compatible with the earlier versions of the 
PowerShell runtime environment, we create a script ile named Install.ps1 and 
use it in different operation environments for snap-in installations. For earlier 
versions of PowerShell, such as PowerShell 1.0 and PowerShell 2.0, we can directly 
place this script ile in the directory of snap-in assemblies and invoke .\Install.
ps1 for installation. For PowerShell 3.0 you only need to add -Force parameters for 
executing the registered snap-in. Just as the code shown in the following screenshot:

http:///


Chapter 2

[ 79 ]

The following screenshot shows the script ile for uninstalling:

In these two script iles, users only need to replace the $FileName and 
$PSSnapinName values with their own snap-in assembly name and snap-in  
name to register their own snap-in.

Listing and executing cmdlets in a 
PowerShell snap-in
We can use Get-Module or Get-PSSnapin -registered to get a list of registered 
snap-ins in the current PowerShell session, as shown in the following screenshot:

http:///


Developing Snap-ins for PowerShell

[ 80 ]

We can use Get-Command with the -module parameter for listing cmdlets in a 
PowerShell snap-in, as shown in the following screenshot:

We can now use the cmdlet register in our snap-in, just like a native cmdlet. All the 
cmdlets in our snap-in can be invoked as shown in the following screenshot:

http:///


Chapter 2

[ 81 ]

Debugging a PowerShell snap-in
Once you have built a cmdlet, set a breakpoint in your code in Visual Studio. Once 
you have done that, open a new PowerShell window, switch to the compilation 
directory of the snap-in, and install your module or snap-in. The operation is the 
same when you load the cmdlet with Add-PSSnapin or Import-Module. In Visual 
Studio, go to Debug | Attach to Process. Scroll through the list and look for 
PowerShell.exe, just as shown in the following screenshot:

http:///


Developing Snap-ins for PowerShell

[ 82 ]

When you ind the right process, select it and click on the Attach button. Now, go to 
your PowerShell window and run the command that can trigger your breakpoint. If 
all goes according to plan, your breakpoint will be hit and you can step through the 
cmdlet's code, as shown in the following screenshot:

We can see in the screenshot that the breakpoints we set are hit and the variable 
being watched can also get a value. We can thus very conveniently debug a cmdlet 
registered in any snap-in.

http:///


Chapter 2

[ 83 ]

Summary
In this chapter, we discussed how to create a snap-in and compile these class iles 
into an assembly. Then we introduced how to register the assembly as a snap-in to a 
PowerShell session and debug a PowerShell snap-in.

At the end of this chapter, we believe that you have been able to attempt creating a 
snap-in independently. As snap-ins are a powerful support mechanism, users can 
easily expand any function of PowerShell according to their own needs.

The snap-in is compiled into assemblies when it is released to a program for  
third-party users. The author can also encrypt based on .NET code obfuscation  
to protect their source code. Program authors do not need to worry about their  
snap-in decompiling out the source code.

In the next chapter, we will discuss how to use PowerShell remoting. PowerShell 
remoting can manage remote computers through the network. We will learn how 
to enable and disable remoting, execute remote commands, enter an interactive 
remoting session, and save remote sessions to a disk.

http:///


http:///


Using PowerShell Remoting
PowerShell v2 introduced a powerful new technology, remoting, which was 
reined and expanded upon for PowerShell v3. Based primarily upon standardized 
protocols and techniques, remoting is possibly one of the most important aspects 
of PowerShell. Future Microsoft products will rely upon it almost entirely for 
administrative communications across the network.

In this chapter we will cover:

• PowerShell remoting system requirements

• Enabling/disabling remoting

• Executing a remote command

• Interactive remoting sessions

• Saving a remote session to a disk

• Understanding session coniguration

The most important and exciting characteristic of PowerShell is its remote 
management ability. PowerShell remoting can control the target remote computer 
through the network. PowerShell remoting uses WinRM (Windows Remote 
Management), which is based on Microsoft's WS-Management protocol. With 
PowerShell remoting, the administrator can execute various management operations 
on dozens of target computers throughout the network. In this chapter we will 
introduce content relevant to PowerShell remoting .

http:///


Using PowerShell Remoting

[ 86 ]

An overview of PowerShell remoting
A few cmdlets in PowerShell support accessing information on a remote computer. 
These cmdlets have a ComputerName parameter, such as Get-WmiObject or 
Invoke-WmiMethod. All of them get objects from remote computers by using .NET 
Framework methods to retrieve the object. The remoting ability of these cmdlets 
is dependent on PowerShell. Whether a cmdlet has this ability depends on author 
implementation of methods such as Remote Procedure Call (RPC), to realize remote 
access. They do not use the Windows PowerShell remoting infrastructure.

WS-Management protocol, a SOAP-based, irewall-friendly protocol, was designed 
for systems to locate and exchange management information. The intent of the  
WS-Management protocol speciication is to provide interoperability and 
consistency for enterprise systems that have computers running on a variety of 
operating systems from different vendors. To use WS-Management-based Windows 
PowerShell remoting, the local and remote computers must be conigured for 
remoting, and the host application must run in elevated mode. WS-Management 
protocol is based on standard web service speciications such as HTTPS, SOAP over 
HTTP (WS-I proile), SOAP 1.2, WS-Addressing, WS-Transfer, WS-Enumeration, and 
WS-Eventing.

Universal Code Execution Model (UCEM) is a characteristic feature of PowerShell 
remoting. UCEM means that the execution can be local and in any position. 
PowerShell remoting can import from local threads using remote commands—this 
feature works as the implicit remote management, which allows the user to save 
and export these incoming commands to a hard disk and could be used in the future 
of the module. PowerShell Remote Management allows various connection modes, 
including interactive (1:1), fan-out (1:n), and fan-in (n:1) by using of IIS hosting 
model. Here we will be explaining how we can conigure a host on any one of these 
work forms.

To enable PowerShell remoting sessions on Windows PowerShell 2.0, the local and 
remote computer participating in remote management must have the following:

• Windows PowerShell 2.0 or higher

• The Microsoft .NET Framework 2.0 or higher

• Windows Remote Management 2.0

To run remote sessions on Windows PowerShell 3.0, the local and remote computers 
must have the following:

• Windows PowerShell 3.0 or higher

• The Microsoft .NET Framework 4.0 or higher

• Windows Remote Management 3.0

http:///


Chapter 3

[ 87 ]

You can create remote sessions between computers running Windows PowerShell 
2.0 and Windows PowerShell 3.0. However, features that run only on Windows 
PowerShell 3.0, such as the ability to disconnect and reconnect to sessions, are 
available only when both computers are running Windows PowerShell 3.0. 
PowerShell 3.0 supports operating systems such as Windows 7 Service Pack 1, 
Windows Server 2008 R2 SP1, and Windows Server 2008 Service Pack 2, or higher 
versions. All of these operation systems should install Windows Management 
Framework (WMF) 3.0 separately, which includes PowerShell 3.0. Windows 8 and 
Windows Server 2012 have PowerShell built in by default. Because of PowerShell 
remoting, PowerShell 3.0 contains more language characteristics. The content of 
these chapter-related scripts and commands will be represented based on the version 
of Windows 8.

To be able to run scripts and commands on remote computers, the user performing 
remote script execution must be:

• A member of the administrators group on the remote machine

• Able to provide administrator credentials at the time of remote execution

• Able to access the PS session coniguration on the remote system

Also, on client OS versions of Windows such as Windows Vista and Windows 7, 
network location must be set to either Home or Work. WS-Management may not 
function properly if the network location for any of the network adapters is set  
to Public.

Enabling/disabling remoting
In a workgroup, two computers need to be awarded the permissions of remote 
access. For security purposes, the default settings don't allow remote access. If you 
try to log in to the host in the workgroup, since there is no strict security requirement 
and infrastructure or domain setting, you will need to modify the coniguration. 
When the host is conigured, you can remotely access one from the other hosts 
using PowerShell remoting. The following section will show you how to conigure 
PowerShell remoting in a domain environment.

http:///


Using PowerShell Remoting

[ 88 ]

Operating PowerShell in a no-domain 
environment
What needs to be stressed on here is that PowerShell remoting can't be enabled 
remotely in a no-domain environment. In the subsequent section, we will talk about 
how to conigure PowerShell remoting in a domain environment. Remoting in 
PowerShell can be enabled by just running the following command in an interactive 
PowerShell prompt:

winrm quickconfig

WinRM is the Microsoft implementation of the WS-Management protocol and 
provides a secure way of communicating with local and remote computers using 
web services.

Before we execute this command, we can check the WinRM coniguration by using 
following command:

winrm get winrm/config -format:pretty

We will get the result in the form of an error that tells us that the service of the 
destination computer isn't running or that it doesn't accept the request, as shown in 
the following screenshot:

http:///


Chapter 3

[ 89 ]

Then, we execute the previous command. You will be asked to respond to a  
couple of questions that are based on OS architecture. You can see this in the 
following screenshot:

As we can see, the output has an error. The reason for the error is that the WinRM 
irewall exception will not work when the network connection types on this machine 
is set to Public.

Setting the network location to Private
The WinRM irewall exception did not work since one of the network connection 
type on this machine was set to Public. Change the network connection type to either 
Domain or Private and try again.

http:///


Using PowerShell Remoting

[ 90 ]

The network location feature was introduced in Windows Vista. It provides an 
easy way to customize your irewall settings based on whether or not you trust the 
computers around you. There are three network location types: Private, Public, and 
Domain. If your computer is a member of a domain, you won't be able to change 
the network location type. If your computer is standalone or part of a workgroup, 
you can choose what type of network location you want, Public or Private. Private 
means that you are a member of a trusted network and you can lower your network 
security a little bit. Public means that you have no trust in the network outside 
and you will not let your guard down. We can ind it in Networking and Sharing 
Center, as shown in the following screenshot:

Setting the correct network location type is very important for Windows PowerShell 
remoting. You cannot enable Windows PowerShell remoting on your machine if 
your connections are set to Public. It means you won't be able to connect to this 
machine using Windows PowerShell remoting. Vista provides a UI dialog for setting 
network location, but unfortunately, there is no command-line utility for that. You 
can, however, do it with Windows PowerShell.

The API for setting network location type in Vista is COM-based, and the code  
in the following screenshot shows how to call this API with the Windows  
PowerShell script:

http:///


Chapter 3

[ 91 ]

After the execution of the script, we will ind in Networking and Sharing  
Center that network location types have been switched to Private, as shown  
in the following screenshot:

Now, we can execute the winrm quickconfig command again, as shown in the 
following screenshot:

http:///


Using PowerShell Remoting

[ 92 ]

The following things happen when you run this command:

• The WinRM service gets enabled and the startup type is set to autostart.

• A WinRM listener gets created to accept remoting requests on any IP 
addresses assigned to a local computer.

• Windows irewall exceptions for WinRM service will be created. This is 
essentially the reason why the network location cannot be set to Public if you 
want to enable PS remoting. Windows irewall exceptions cannot be enabled 
if the network location is set to Public.

• All registered PS session conigurations are enabled.

By default, WinRM only enables HTTP transport to accept remoting requests. You 
can manually enable HTTPS transport using either the winrm command or the New-
WSManIntance cmdlet.

Enable PSRemoting
In fact, we can also use the Enable-PSRemoting cmdlet to enable PowerShell 
remoting, as shown in the following screenshot:

http:///


Chapter 3

[ 93 ]

You should always use the more comprehensive Enable-PSRemoting cmdlet. You 
can use the -force parameter along with this cmdlet to silently enable remoting.

You can use the Enter-PSSession cmdlet to test whether remoting is enabled on the 
local machine or not.

Enter-PSSession -ComputerName localhost

If remoting is enabled and functional, you will see the prompt changing to 
something like this:

Next, we check the remoting coniguration information, so that we can compare the 
results with the previous execution.

winrm get winrm/config -format:pretty

We get a result similar to the following:

By default, PowerShell remoting uses port number 5985 (for HTTP) and 5986 
(for HTTPS). This can be changed by modifying wsman:\localhost\Listener\
listener*\port to a different value using the Set-Item cmdlet. However, beware 
that this will change the port number for every WinRM listener on the system.

http:///


Using PowerShell Remoting

[ 94 ]

Coniguring WSMan trusted hosts
You will not be able to connect a computer that is in a workgroup just by running 
the Enable-PSRemoting cmdlet. This is because the security levels on a workgroup-
joined computer are more stringent than on a domain-joined computer. So, on 
workgroup-joined computers, you need to do more work before you can create 
remoting sessions. If we execute the Invoke-Command cmdlet without coniguring a 
trusted host, we will get an error message:

We can see that a computer that doesn't join the domain must be added to the 
TrustedHosts coniguration setting or the connecting operation will be refused.

On all workgroup-joined computers, you need to add the IP address of all remoting 
clients to the list of trusted hosts. To do this:

Set-item wsman:localhost\client\trustedhosts -value *

Using * as the value will add all computers as trusted hosts. If you want to add only 
a speciic set of computers, use the following command:

Set-item wsman:localhost\client\trustedhosts -value "Computer1,Computer2"

If you want to add all computers in a speciic domain, use the following command:

Set-item wsman:localhost\client\trustedhosts -value "*.domain.com"

If you want to add an IP address of a remote computer to the trusted hosts list, use 
the following command:

Set-item wsman:localhost\client\trustedhosts -value "192.168.10.11"

http:///


Chapter 3

[ 95 ]

Of course, we can also use the WinRM batch script to add a computer to the trusted 
hosts list by using the following command:

winrm set winrm/config/client `@`{TrustedHosts=`"`192.168.10.11`"`}

The screen will look like this:

Once these changes are made, you can use the Enable-PSRemoting cmdlet to enable 
remoting on these workgroup-joined computers.

Coniguring PowerShell remoting on a 
domain using Group Policy
In the workgroup environment, two servers need an interactive session to enable 
PowerShell remoting, and then each operation on the remote computer needs to 
provide corresponding credentials so that the remote computer can recognize 
whether the operation is legal. This is appropriate for managing a small number 
of hosts, but for a large number of hosts the situation gets more complicated; the 
account may be different on different computers, and the password is also different. 
To manage a large number of hosts, Active Directory is a simple and fast method 
because a domain-joined host can realize uniied login authentication throughout the 
domain controller. We will introduce you to coniguring PowerShell remoting in a 
domain environment using the Group Policy in following section.

http:///


Using PowerShell Remoting

[ 96 ]

Allowing remote server management through 
WinRM
When we enable PowerShell remoting in a domain environment, we must create a 
Group Policy Object (GPO) for it, using the following steps:

1. Launch Group Policy Management (GPMC) via Control Panel | All 
Control Panel Items | Administrative Tools | Group Policy Management, 
and create a new GPO titled Windows Remote Management.

2. Right-click on Edit to edit the newly created GPO by using Group 
Policy Management Editor, and then expand it through the Computer 
Coniguration Policy structure using Windows Remote Management 
| Computer Coniguration | Administrative Templates | Windows 
Components | Windows Remote Management (WinRM) | WinRM 
Service and selecting Allow remote server management through WinRM. 
This policy setting allows you to manage whether the WinRM service 
automatically starts and listens on the network for HTTP requests on port 
5985 (and if enabled, for HTTPS requests on port 5986).

3. Enable the GPO and complete the IPv* ilter's textboxes; an example of a 
relaxed coniguration can be see following screenshot:

http:///


Chapter 3

[ 97 ]

The service listens on the addresses speciied by the IPv4 and IPv6 ilters. The IPv4 
ilter speciies one or more ranges of IPv4 addresses, and the IPv6 ilter speciies one 
or more ranges of IPv6 addresses. If speciied, the service enumerates the available 
IP addresses for the computer and uses only the addresses that fall within one of the 
ilter ranges.

You can use the asterisk (*) to indicate that the service listens on all available IP 
addresses on the computer. When * is used, other ranges in the ilter are ignored. If 
the ilter is left blank, the service does not listen on any addresses.

For example, if you want the service to listen only on IPv4 addresses, leave the IPv6 
ilter empty.

Ranges are speciied using the syntax IP1-IP2. Multiple ranges are separated using 
the comma (,) as the delimiter.

An example of IPv4 ilters is 8.8.8.1-8.8.8.20, 8.8.4.1-8.8.4.22.

Allowing Windows Remote Management through 
Windows Firewall

1. Locate Computer Coniguration | Policies | Windows Settings | Security 
Settings | Windows Firewall with Advanced Security | Windows 
Firewall… | Inbound Rules, as shown in the following screenshot:

http:///


Using PowerShell Remoting

[ 98 ]

2. Right-click on Inbound Rules and click on New Rule. Under Rule Type, 
click on Predeined and locate Windows Remote Management. Be careful 
here, there's another rule called Windows Remote Firewall Management, 
but that's not what you want. Click on Next. This is seen in the  
following screenshot:

http:///


Chapter 3

[ 99 ]

3. Your rules should look something like those shown in the following 
screenshot. Click on Next again:

http:///


Using PowerShell Remoting

[ 100 ]

4. Now deine what action you want the irewall to take. Click on Allow the 
connection. Then click on Finish, as shown in the following screenshot:

.

5. When the rules are created, you may choose to make further restrictions, that 
is, to only allow the IP addresses of your management subnet or perhaps 
some speciic user groups:

http:///


Chapter 3

[ 101 ]

Turning on Service Windows Remote Management 
(WS-Management)
Now that the irewall is allowing the remoting trafic to go through, we need 
something to actually listen for it. For that, we need to start Windows' remoting 
service and make sure it starts automatically.

http:///


Using PowerShell Remoting

[ 102 ]

In addition, the WinRM service is, by default, not started on Windows client 
operating systems. To conigure the WinRM service to start automatically, navigate 
to Computer Coniguration | Policies | Windows Settings | Security Settings | 
System Services. On the right-hand pane, locate Windows Remote Management 
and double-click on it:

Check the Deine this policy setting box and set the service startup mode to 
Automatic, as shown in the following screenshot:

http:///


Chapter 3

[ 103 ]

We also want to set a service preference here in case the service fails. Navigate to 
Computer Coniguration | Preferences | Control Panel Settings | Services.  
Right-click on Services, click on New | Service, as shown in the following screenshot:

On the General tab, use the following settings:

• Startup: Automatic 

• Service Name: WinRM

• Service Action: Start Service

http:///


Using PowerShell Remoting

[ 104 ]

On the Recovery tab, set all the failure settings to Restart the Service. Click on OK:

Doing a Group Policy Update
Assuming the GPO is now enabled and linked to an OU containing the computers 
targeted for remoting, log on to one of the client machines in the domain and run 
gpupdate /force or wait for the Group Policy to be deployed to the client machine. 
Refer to the following screenshot:

http:///


Chapter 3

[ 105 ]

To view the currently applied GPO, use the gpresult command and conirm that 
the GPO titled Windows Remote Management is listed in the Applied Group 
Policy Objects section.

Disabling remoting
You can use Disable-PSRemoting to disable remoting on the local computer. 
Disable-PSRemoting will only disable the session coniguration. All the changes 
effected by Enable-PSRemoting will not be removed. This includes leaving the 
WinRM service in the enabled state and leaving all the listeners to enable PS 
remoting. You will have to manually undo these changes if they are not required by 
any other component or service on the local computer.

If no other service or components on the local computer need the WinRM service, 
you can disable it by running the following command:

Set-Service winrm -StartupType Manual

Stop-Service winrm

To remove all WinRM listeners listening on the default PS remoting port (5985), use 
the following command:

Get-ChildItem WSMan:\localhost\Listener -Recurse | Foreach-Object { 
$_.PSPath } | Where-Object { (Get-Item "$_\Port").Value -eq 5985 } | 
Remove-Item

If the authentication scheme is different from Kerberos or if the client computer  
is not joined to a domain, HTTPS transport must be used or the destination machine 
must be added to the TrustedHosts coniguration setting. Use winrm.cmd to 
conigure trusted hosts. Note that computers in the trusted hosts list might not  
be authenticated.

http:///


Using PowerShell Remoting

[ 106 ]

Executing the remoting commands
With remoting, we can execute commands and scripts on a remote computer in a 
couple of ways. This includes the Invoke-Command cmdlet and interactive remoting 
sessions. Once you have enabled remoting on all your machines, you can use the 
Invoke-Command cmdlet to run commands and scripts on the local computer or 
remote computers. Here is an example of executing the remoting commands:

When we appoint an IP address to the -ComputerName parameter and set the 
-ScriptBlock parameter as Get-Process, the result of execution will be  
returned to the local computer.

Running ScriptBlock on a remote computer
You can execute a command on a remote computer by using the following method:

Invoke-Command -ComputerName Win-8 -ScriptBlock {Get-Service}

The ScriptBlock parameter can be used to specify a list of commands that you want 
to run on the remote computer. The ComputerName parameter is not required for the 
running of commands on the local machine. If you want to run the same command 
on multiple remote computers, you can supply the computer name or IP address as a 
comma separated list or read a text ile's content by using the Get-Content cmdlet:

Invoke-Command -ComputerName Win-8,Win-8-Client  -ScriptBlock {Get-
Service}

We can also make use of the following command:

Invoke-Command -ComputerName (Get-Content  c:\servers.txt) - 
ScriptBlock {Get-Service}

http:///


Chapter 3

[ 107 ]

This method is called fan-out or 1:many remoting. You can run the same commands 
on multiple computers just as a single command. All commands and variables in the 
ScriptBlock parameter are evaluated on the remote computer.

If you have a script of commands to run, you can have Invoke-Command read  
it, transmit the content to the remote computers, and have them execute  
those commands:

Invoke-Command -ComputerName Win-8,Win-8-Client –filePath  
c:\Scripts\Tasks.ps1

The ComputerName parameter of the Invoke-Command cmdlet accepts multiple 
computer names, and the Session parameter accepts multiple PS sessions. When 
you run an Invoke-Command command, Windows PowerShell runs the commands 
on all of the speciied computers or in all of the speciied PS sessions. Windows 
PowerShell can manage hundreds of concurrent remote connections. However,  
the number of remote commands that you can send might be limited by the 
resources of your computer and its capacity to establish and maintain multiple 
network connections.

If you use something like -ScriptBlock {Get-Service -Name $serviceName}, 
PowerShell exports the remote computer session to have $serviceName deined. You 
can pass variables on the local computer to a remote session with the -ArgumentList 
parameter when using Invoke-Command. You can do this using the following 
command:

$serviceName="WinRM"

Invoke-Command -ComputerName (Get-Content c:\servers.txt) -ScriptBlock 
{param($Name) Get-Service -Name $Name} -ArgumentList $serviceName

This example shows how to use the -ArgumentList parameter to pass the variables 
to the remote session.

Creating a persistent session with  

Invoke-Command
Run Invoke-Command with the -ComputerName parameter, which speciies the 
name of the remote computer, its NetBIOS name, and its IP address. This parameter 
can establish a temporary session and execute the remote command every time. 
Establishing a session every time is a time-consuming operation. It may be ine for 
a couple of commands but not when you have to execute many more commands 
and scripts. This is a very eficient method for running a single command or several 
unrelated commands, even on many remote computers.

http:///


Using PowerShell Remoting

[ 108 ]

To avoid the unnecessary time overhead, we can use a persistent session of the 
remote computer using the -Session parameter. You can create a persistent 
connection to a remote computer by using the New-PSSession cmdlet as shown in 
the following examples.

When you use the New-PSSession cmdlet to create a PS session, Windows 
PowerShell establishes a persistent connection for the PS session. Then, you can run 
multiple commands in the PS session, including commands that share data.

$session=New-PSSession -ComputerName Win-8

Right now, $session contains the session details for the persistent connection. We 
can use $session to invoke a command on the remote computer; the syntax for that 
looks like this:

Invoke-Command -Session $session -ScriptBlock {Get-Service}

$session contains all variables you create/modify when you execute commands 
on the remote computer. So, subsequent command execution with $session as 
the session will have access to all the variables created/updated on the remote 
computer. For example:

$session=New-PSSession -ComputerName Win-8

Invoke-Command -Session $session -ScriptBlock {$fileCount = (Get-
ChildItem C:\ -Recurse).Count}

invoke-command -session $session -ScriptBlock {$fileCount}

We could access the $fileCount variable only because we used a persistent session 
to run the command:

Through the use of a persistent session, we will execute commands transfer to 
a speciied host. After the execution is completed, the Invoke-Command cmdlet 
retrieves the execution result. The whole process is completed based on the persistent 
session. When you use the New-PSSession cmdlet to create a PS session, Windows 
PowerShell establishes a persistent connection for the PS session. Then, you can run 
multiple commands in the PS session, including commands that share data.

http:///


Chapter 3

[ 109 ]

Typically, you create a PS session to run a series of related commands that share 
data. Otherwise, the temporary connection created by the ComputerName parameter 
is suficient for most commands.

Running remote commands as a job
When we transmit a time-consuming operation to the remote host by PowerShell 
remoting, we have to wait for the commands to complete to return the execution 
results. In the example shown earlier, this gets the total ile count on C drive on 
the remote machine. It depends on the amount of documentation available on 
the C drive when operation execution is completed. If the ile count is a huge 
number, waiting for the remote computer operation to be completed is very time 
consuming. To avoid this, you can use the -asjob parameter to run the command as 
a background job on the remote computer, as shown in the following command:

$session=New-PSSession -ComputerName Win-8

Invoke-Command -Session $session -ScriptBlock { (Get-ChildItem C:\ 
-Recurse).Count} -asjob

Once you execute this, you will see the job details listed as shown in the  
following screenshot:

When you use the -asjob parameter with the Invoke-Command cmdlet, the 
background job gets created locally and runs on the remote computer. Since this job 
is created locally, we can use *-job cmdlets to manage the job object. The job object 
will not be destroyed in the current PowerShell process until the process is closed.

For example, you can use the Get-Job cmdlet to monitor the status of the job, and 
once the job status changes to completed, you can use the Receive-Job cmdlet to see 
the output of the script block speciied.

Get-Job -id 7 |Receive-Job

http:///


Using PowerShell Remoting

[ 110 ]

To get the results of the job, use the Receive-Job cmdlet. Because the job results are 
automatically returned to the computer where the job object resides, you can get the 
results with a local Receive-Job command.

Specifying credentials required for remoting
At the start of the chapter, we have mentioned that we can use PowerShell remoting 
between computers in a workgroup environment. In a domain environment, we can 
log on as a user only if we have administrator credentials to access any computer in 
the domain. However, in a workgroup, we have to pass the credentials along with 
Invoke-Command. For example:

$cred=Get-Credential

Invoke-Command -ComputerName win-8 -ScriptBlock {Get-Service} -Credential 
$cred

In this example, Get-Credential prompts for the credentials to access a remote 
computer and uses the same while calling the Invoke-Command cmdlet. When you 
enter the Get-Credential cmdlet, a dialog box appears requesting a username 
and password. When you enter the requested information, the cmdlet creates a 
PSCredential object representing the credentials of the user and saves it in the 
$cred variable.

Entering an interactive remoting session
Enter-PSSession and Exit-PSSession are the cmdlets used to start/exit  
an interactive remoting session. To enter an interactive session, we use the  
following command:

Enter-PSSession -ComputerName win-8

Once you enter an interactive remoting session, the PowerShell prompt changes to 
relect the remote computer name you just connected to. The commands that you 
type run on the remote computer as though you have typed them directly on the 
remote computer. This indicates that you are in an interactive remoting session:

http:///


Chapter 3

[ 111 ]

In order to verify that we really have connected to the remote computer through the 
interactive remoting session, we can implement the ipconfig command to check 
the current thread host information before and after we enter into the interactive 
remoting session, as shown in the following screenshot:

We can see that the network adapter information of is different before and after 
entering the interactive remoting session. When we enter the interactive remoting 
session, we can execute any command just like Telnet. It is not the same as using 
Telnet, but it provides a similar experience.

Exiting an interactive session
You can use Exit-PSSession to come out of an interactive session. You need to pay 
attention to the speciied -ComputerName parameter as the Enter-PSSession cmdlet 
starts just a temporary PS session and not a persistent session. Any variables that you 
create and the command history will be destroyed if you exit this interactive session.

http:///


Using PowerShell Remoting

[ 112 ]

Using a persistent session with interactive 

remoting
It will be advantageous to use a persistent session so that you can enter and exit the 
interactive session as many times as you like. All the data, variables, and command 
history you created in the remote session will persist until you remove the session. 
You can also do it the same way you used persistent sessions with Invoke-Command.

$session= New-PSSession -ComputerName win-8

Enter-PSSession -Session $session

Starting interactive remoting with an existing 
session
It is quite possible that you have created a persistent session to use with Invoke-
Command. You can use the same persistent session with Enter-PSSession to start  
an interactive remoting session. You can use the Get-PSSession cmdlet to see a 
list of all available/opened PS sessions and then use Enter-PSSession to start 
interactive remoting:

http:///


Chapter 3

[ 113 ]

There are several ways to enter an existing PS session for interactive remoting, as 
shown in the preceding screenshot. You can use any that is convenient to you:

• Using the session ID:

Enter-PSSession -Id 3

• Using the session instance ID:

Enter-PSSession -InstanceId 2c4ae306-78c4-4a40-a52b-0eeb6c6cd94c

• Using the session name:

Enter-PSSession -Name Session3

• Using the -Session parameter:

$session=Get-PSSession -Id 3

Enter-PSSession -Session $session

In these ways, you can enter an interactive session that contains all data and 
command history. All of the session scene will be preserved until the current 
PowerShell process is destroyed.

Disconnecting and reconnecting sessions
In PowerShell v3, you can disconnect and reconnect sessions by using Disconnect-
PSSession and Connect-PSSession. These commands will each accept a session 
object, which you'd usually create with New-PSSession.

A disconnected session leaves a copy of PowerShell up and running on the remote 
computer. This is a good way to get it to run some long-running task, disconnect, 
and then reconnect later to check up on it. You can even disconnect a session on one 
computer, move to another computer, and reconnect to that session.

http:///


Using PowerShell Remoting

[ 114 ]

The following example shows a session being created from a client to a server. The 
session is then given a task to perform as a background job, and then the session is 
disconnected. It's important to note that the commands and the background job are 
on the server, not the client:

Then, we move to a different machine. We're logged on and running PowerShell 
as the same user that we were on the previous client computer. We retrieve the 
session from the remote computer and then reconnect it. We then enter the newly 
reconnected session, display that background job, and receive some results from it. 
Finally, we exit the remote session and shut it down via Remove-PSSession:

http:///


Chapter 3

[ 115 ]

Obviously, disconnected sessions can present management concern because you're 
leaving a copy of PowerShell up and running on a remote machine, and you're doing 
so in a way that makes it dificult for someone else to even see that you've done it! 
That's where session options come into play.

Saving a remote session to a disk
In this section, we look at how we can save a remoting session to a disk so that  
we don't even have to explicitly create a PS session to execute commands on a 
remote computer.

http:///


Using PowerShell Remoting

[ 116 ]

Exporting a remote session to a module on a 
disk
The Export-PSSession cmdlet lets us export commands from a remote session and 
save the same in a PowerShell module on the local disk. This cmdlet can get cmdlets, 
functions, aliases, and other command types into a PowerShell module.

$session = New-PSSession -ComputerName win-8

Invoke-Command -Session $session –ScriptBlock {Import-Module NetTCPIP}

Export-PSSession -Session $session -OutputModule RemoteCommands 
-AllowClobber -Module NetTCPIP -Force

In the preceding example, we create a persistent session and import a module named 
NetTCPIP. Then, we use the Export-PSSession cmdlet to export all commands, 
aliases, functions, and so on available in the PS session $session to a module on the 
local hard disk and name it RemoteCommands.

If the Export-PSSession cmdlet is successful, you will see output similar to what is 
shown in the following screenshot:

In the preceding output, it is clear that Export-PSSession generates .psm1, .psd1, 
and format data iles for the module automatically. Right now, you can load the 
module to get access to the remote commands.

http:///


Chapter 3

[ 117 ]

Importing a module saved on a disk
If you observe the output closely, the path where the module iles are stored is the 
same as that for $Env:PSModulePath. So, you don't need to specify the absolute path 
to the module. The following operation imports all remote commands available in 
the module to the local session:

Import-Module RemoteCommands

Then, when we execute a remote command, it establishes the remote session, 
executes the command in the remote session, and returns the output. All this is done 
without you really using any remoting-related cmdlet. Of course, if establishing a 
remote session requires a password, you will be prompted for one.

Limitations of Export-PSSession
Using Export-PSSession has the same limitations as implicit remoting. You cannot 
use Export-PSSession to export a PowerShell provider. You cannot start a program 
with a user interface as it requires access to the interactive desktop. The exported 
module does not include the session options used to create the session. So, if you 
need any speciic session options to be conigured before running remote commands, 
you need to create a PS session with all the required session options before importing 
the on-disk module.

Using session conigurations
In the earlier section, we saw that, when PowerShell remoting is enabled, the default 
session coniguration gets registered. The Invoke-Command, Enter-PSSession, and 
New-PSSession cmdlets have a -ConfigurationName parameter that can be used to 
specify a different session coniguration rather than the default one.

A session coniguration is used to deine who can create a PowerShell session  
on the local computer. When we enable PowerShell remoting using Enable-
PSSession, we can see a inal step performing Microsoft.PowerShell session 
coniguration registration. These default session conigurations are used when the 
remote users connecting to a local system do not specify a coniguration name.  
By default, only members of the administrators group have access to these two 
session conigurations.

http:///


Using PowerShell Remoting

[ 118 ]

Based on the preceding description, PowerShell session conigurations can be  
used to:

• Customize the remoting experience for users

• Delegate administration by creating session coniguration with varying levels 
of access to the system

The following cmdlets are available for managing session conigurations:

• Register-PSSessionConfiguration

• Unregister-PSSessionConfiguration

• Enable-PSSessionConfiguration

• Disable-PSSessionConfiguration

• Set-PSSessionConfiguration

• Get-PSSessionConfiguration

Creating a new session coniguration
The Register-PSSessionConfiguration cmdlet can be used to create a new 
session coniguration. You can use a C# assembly or a PowerShell script as a startup 
script for this new session coniguration. This startup script can be used to customize 
the remoting experience. For example, create a script that imports the NetTCPIP 
module using the Import-Module cmdlet:

Import-Module NetTCPIP

Save this script as startupscript.ps1 (or with any name of your choice) on the 
local computer. Now, use the Register-PSSessionConfiguration cmdlet to create 
a new session coniguration. This can be done by running the following command:

Register-PSSessionConfiguration -Name "NetTCPIP" -StartupScript C:\
StartupScript.ps1

http:///


Chapter 3

[ 119 ]

The preceding command gives the following output:

You will be prompted to conirm this action at the end to restart the WinRM service 
on the local computer. You must enable the script execution on the local computer to 
be able to use the startup script as a part of session coniguration.

http:///


Using PowerShell Remoting

[ 120 ]

Listing available session conigurations
The Get-PSSessionConfiguration cmdlet lists all the available session 
conigurations on the local computer. This can be seen in the following screenshot:

As you see in the preceding output, Get-PSSessionConfiguration lists all  
available session conigurations on the local computer and who has permission to 
access each coniguration. No permissions have been assigned yet to the new active 
directory coniguration.

http:///


Chapter 3

[ 121 ]

The Get-PSSessionConfiguration cmdlet cannot be used to access a list of PS 
session conigurations from a remote computer. However, we can use the Get-
WSManInstance cmdlet to achieve this as shown in the following command:

Get-WSManInstance winrm/config/plugin -Enumerate -ComputerName win-8 | 
Where ` { $_.FileName -like '*pwrshplugin.dll'} | Select Name

This will list all the session coniguration names as available on the remote computer. 
You can then use any one of the session conigurations to connect to the remote 
computer using PowerShell remoting.

You must have access to the session coniguration on the remote computer to be able 
to use it within PowerShell remoting.

Custom permissions and PS session 
conigurations
You can use Set-PSSessionConfiguration to allow access to invoke the new 
session coniguration. To do this, we can use the following command:

Set-PSSessionConfiguration -Name NetTCPIP -ShowSecurityDescriptorUI

http:///


Using PowerShell Remoting

[ 122 ]

This opens up the dialog to add permissions to invoke this session coniguration. 
As you can see in the following screenshot, the administrators group has no invoke 
permission on this session coniguration:

Check the Allow checkbox for the Execute (Invoke) permission and then click on 
OK. You will be prompted to restart the WinRM service. Now, an administrator or 
a member of the administrators group will be able to use this session coniguration. 
Similarly, you can add a non-administrator user to the list of users/groups and then 
assign appropriate permissions. This way, you can have non-administrator users 
remote into the local computer using PowerShell remoting.

http:///


Chapter 3

[ 123 ]

Invoking a custom session coniguration
You can use the New-PSSession, Enter-PSSession, and Invoke-Command cmdlets 
specifying the -ConfigurationName parameter to load a session coniguration other 
than the default coniguration. The following code snippet shows three different 
ways to invoke a remote session using a custom session coniguration name:

$s = New-PSSession -ComputerName win-8 -ConfigurationName NetTCPIP

Enter-PSSession -ComputerName win-8 -ConfigurationName NetTCPIP

Invoke-Command -ComputerName win-8 -ConfigurationName NetTCPIP 
-ScriptBlock {Get-Process}

We used Invoke-Command to load the active directory module within a persistent 
session and then used that persistent session to import NetTCPIP cmdlets into the 
local session. However, by using a session coniguration that imports the Active 
Directory module as a startup script, we will have all the NetTCPIP cmdlets available 
as soon as we connect to the remote session.

Disabling a session coniguration
You can use the Disable-PSSessionConfiguration cmdlet to disable an existing 
session coniguration and prevent users from connecting to the local computer by 
using this session coniguration. You can use the -Name parameter to specify what 
session coniguration you want to disable. If you do not specify a coniguration 
name, the default Microsoft.PowerShell session coniguration will be disabled.

The Disable-PSSessionConfiguration cmdlet adds a deny all setting to the 
security descriptor of one or more registered session conigurations. As a result, you 
can unregister, view, and change the conigurations, but you cannot use them all in 
one session.

The Disable-PSRemoting cmdlet will disable all PS session conigurations available 
on the local computer.

The Enable-PSSessionConfiguration cmdlet can be used to enable a disabled 
coniguration. You can use the -Name parameter to specify what session 
coniguration you need to enable.

http:///


Using PowerShell Remoting

[ 124 ]

Deleting a session coniguration
You can use the Unregister-PSSessionConfiguration cmdlet to delete a 
previously deined session coniguration. It is quite possible to delete the  
default session coniguration—Microsoft.PowerShell—using this cmdlet. 
However, this default session coniguration gets recreated if you re-run the  
Enable-PSRemoting cmdlet.

Summary
In Windows PowerShell 3.0, you can run remote commands on a single computer or 
on multiple computers by using a temporary or persistent connection. You can also 
start an interactive session with a single remote computer. When you work remotely, 
you type commands in Windows PowerShell on a local computer, but the commands 
run on a remote computer. The experience of working remotely should be as much 
like working directly at the remote computer as possible.

In this chapter, we discussed how to enable/disable remoting, execute remote 
command, and save remote sessions to a disk. We also covered how to use an 
interactive remoting session and session coniguration.

When we submit a remote command, the command will be transmitted to the 
Windows PowerShell engine of the remote computer through the network and 
executed on the remote computer. The command results are sent back to the local 
computer and appear in the Windows PowerShell session on the local computer.

In the next chapter, we will discuss extending PowerShell by writing modules. A 
module is a set of related Windows PowerShell functionalities that can be dynamic 
or that can persist on a disk. Modules that persist on disk are referenced, loaded, and 
persisted as script modules, binary modules, or manifest modules respectively.

http:///


Extending Windows 
PowerShell

One of the great features of PowerShell is its extensibility. You are not limited 
to the commands that Microsoft ships. You can load additional commands and 
functionalities via a module. Many other Microsoft product teams and third-party 
vendors deliver PowerShell solutions for their products via modules.

A module is a set of related Windows PowerShell functionalities that can either be 
dynamic or that can persist on a disk. Modules that persist on a disk are referenced, 
loaded, and persisted as script modules, binary modules, or manifest modules. 
Unlike snap-ins, the members of these modules can include cmdlets, providers, 
functions, variables, aliases, and much more. A module is really nothing more than 
a PowerShell script with a .psm1 ile extension, although it can include binary code, 
typically delivered in a DLL ile.

In this chapter we will cover:

• Windows PowerShell modules

• PowerShell module types

• The PSModulePath environment variable

• Importing, removing, and reloading modules

• Writing a Windows PowerShell module

• Working with multiple versions of PowerShell modules

• Checking PowerShell module dependencies

You can run the Get-Module command to see what is loaded in your current session.

http:///


Extending Windows PowerShell

[ 126 ]

Introduction to Windows PowerShell 

modules
In the previous versions of Windows PowerShell, only developers could create 
packages using snap-ins that contained .NET Framework classes for cmdlets and 
providers. Now by using Windows PowerShell modules, you do not have to use 
a compiled language to create a package for your Windows PowerShell solutions. 
Modules allow cmdlet developers, script developers, and administrators to package 
and distribute their solutions.

Windows PowerShell modules allow you to partition, organize, and abstract your 
Windows PowerShell code into self-contained, reusable units. With these reusable 
units, administrators, script developers, and cmdlet developers can easily share 
their modules directly with others. Script developers can also repackage third-party 
modules to create custom script-based applications. Modules, similar to those in 
other scripting languages such as Perl and Python, enable production-ready  
scripting solutions that use reusable, redistributable components, with the added 
beneit of enabling you to repackage and abstract multiple components to create 
custom solutions.

PowerShell module types
PowerShell accepts several module types that can be used to package and deploy, 
just like script modules, binary modules, manifest modules, and dynamic modules.

Script modules
A script module is a ile (.psm1) that contains valid PowerShell code. Script 
developers and administrators can use this type of module to create modules  
whose members include functions, variables, and more.

Binary modules
A binary module is a .NET Framework assembly (.dll) that contains compiled 
code. Cmdlet developers can use this type of module to create modules that  
contain cmdlets, providers, and more. (Existing snap-ins can also be used as  
binary modules.)

http:///


Chapter 4

[ 127 ]

Manifest modules
A manifest module is a module that includes a manifest (which is described later 
in this section) to describe its components, but that does not specify a root module 
in the manifest. A module manifest does not specify a root module when the 
ModuleToProcess key of the manifest is blank. In most cases, a manifest module 
also includes one or more nested modules using script modules or binary modules. 
A manifest module that does not include any nested modules can be used when you 
want a convenient way to load assemblies, types, or formats.

Dynamic modules
A dynamic module is a module that does not persist to disk. This type of  
module enables a script to create a module on demand that does not need to be 
loaded or saved to persistent storage. By default, dynamic modules created with the 
New-Module cmdlet are intended to be short-lived and therefore are not visible using 
the Get-Module cmdlet. 

The PSModulePath environment variable
The PSModulePath environment variable stores the paths to the locations of modules 
that are installed on the disk. Windows PowerShell uses this variable to locate 
modules when the user does not specify the full path to a module. The paths in this 
variable are searched in the order in which they appear.

When Windows PowerShell starts, PSModulePath is created as a system environment 
variable with the default value $home\Documents\WindowsPowerShell\Modules; 
$pshome\Modules.

Viewing the PSModulePath variable
If you want to view the PSModulePath variable, you can type the  
following command:

$Env:PSModulePath

We can see that PSModulePath is an item of the $Env driver. Of course, we can add 
other locations to it for specifying custom module library paths. In this way, we can 
use the Import-Module cmdlet for importing the module to any current path.

http:///


Extending Windows PowerShell

[ 128 ]

Adding locations to the PSModulePath 

variable
To add paths to the PSModulePath variable, we can use the methods discussed in 
this section.

If we want to add a temporary value that is available only for the current session, we 
need to execute the following command at the command line:

$Env:PSModulePath=$Env:PSModulePath + ";C:\MyModules"

If we want to add a persistent value that is available whenever a session is opened, 
we need to add the following command to the PowerShell proile:

$Env:PSModulePath=$Env:PSModulePath + ";C:\MyModules"

After we add the content to the proile, any PowerShell command line will load the 
variable automatically.

The PSModulePath variable assigns a parameter for the PowerShell engine to search 
through the multiple paths speciied in this variable, to ind a directory named by the 
module name and load the module program when using the Import-Module cmdlet 
that loads modules into the current session.

Importing PowerShell modules
We can use the Import-Module cmdlet to import modules. When this command 
is executed, PowerShell searches for the speciied module within the directories 
speciied in the PSModulePath variable. When the speciied directory named as the 
module name is found, PowerShell searches for iles in the following order: 

• Manifest module iles (.psd1)

• Script module iles (.psm1)

• Binary module iles (.dll)

We can list the available modules using the Get-Module cmdlet with the 
-ListAvailable switch. To import a module, we can use the Import-Module 
cmdlet. Then we can use the Get-Command cmdlet to get the command list of this 
module with the -Module switch parameter. Finally, we can execute the cmdlet in 
the module. The effect of the command is shown in the following screenshot:

http:///


Chapter 4

[ 129 ]

In fact, observant readers may notice that the Get-WindowsFeature cmdlet lists all 
the server roles on this server, which is similar to the Add Roles Wizard in Server 
Manager, as shown in the following screenshot:

http:///


Extending Windows PowerShell

[ 130 ]

In PowerShell 3.0, modules are imported automatically when any cmdlet or 
function in the module is used in a command. This feature works on any module 
in a directory that is included with the value of the PSModulePath variable. The 
following actions will trigger the automatic import of a module:

• Using any cmdlet in a module: For example, executing the Get-Acl cmdlet 
imports the Microsoft.PowerShell.Security module that contains the 
Get-Acl cmdlet.

• Using the Get-Command cmdlet to get the command: For example, 
executing Get-Command Get-VpnConnection imports the VpnClient 
module that contains the Get-VpnConnection cmdlet. A Get-Command 
command that includes wildcard characters is considered to be a discovery 
and does not trigger the import of any module.

• Using the Get-Help cmdlet to get help: For example, executing the  
Get-Help Set-PSBreakpoint cmdlet imports the Microsoft.PowerShell.
Utility module that contains the Set-PSBreakpoint cmdlet.

By default, the Import-Module cmdlet does not return any object to the pipeline. 
Sometimes, we may need the cmdlet to return an object that is used for judging 
whether execution is normal or not. The cmdlet supports a PassThru parameter that 
can be used to return a PSModuleInfo object for each module that is imported.

When a module is imported using the Import-Module cmdlet, all the module 
members are imported into the current session by default. If we want to restrict 
the members that are imported, we use the -function, -cmdlet, -variable, and 
-alias parameters of the Import-Module cmdlet.

Removing PowerShell modules
The Remove-Module cmdlet removes modules from the current session. If a module 
contains assemblies (.DLL), the Remove-Module cmdlet will delete the program 
realization set of all the members but won't uninstall the programs.

Remove-Module -Name BitsTransfer

We can remove the BitsTransfer module by executing the preceding command.

http:///


Chapter 4

[ 131 ]

Reloading PowerShell modules
Sometimes, for the purpose of testing we need to reload the PowerShell modules. For 
instance, say we write a script module. Now in order to debug the function, we need 
to reload the modules when the scripts are modiied. In this section, we will deine a 
Reload-Module function that is used to reload the speciied module. Here is the code 
for it:

Function Reload-Module($ModuleName)

{ 

if((get-module -list | where{$_.name -eq "$ModuleName"} | measure-
object).count -gt 0)

{ 

  if((get-module -all | where{$_.Name -eq "$ModuleName"} | measure-
object).count -gt 0)

  {

    Remove-Module $ModuleName

    Write-Host "Module $ModuleName Unloading"

  } 

  Import-Module $ModuleName

  Write-Host "Module $ModuleName Loaded"

}

Else

{

  Write-Host "Module $ModuleName Doesn't Exist"

}

}

The function checks to make sure the module exists before running any commands, 
and if it exists, it also checks to make sure it's loaded, before attempting to unload it.

Writing a PowerShell module
In the earlier versions of PowerShell, snap-ins were popular with system 
administrators who used cmdlets provided by third-party vendors. However, it is 
easier to achieve the objective of sharing functions and scripts as part of a module. In 
addition to this, while a snap-in can only contain cmdlets and providers, a module 
can also contain other common PowerShell items, such as functions, variables, 
aliases, and PowerShell drives.

http:///


Extending Windows PowerShell

[ 132 ]

Each module should be stored in a subfolder of one of these paths and typically the 
name of the subfolder is the name of that module; within that folder you should 
then store the iles that make up the module. At the least, we need a *.psm1 ile. 
In this ile, a number of functions or variables that make up the module could be 
placed. In addition to this, it is possible to place PowerShell scripts in *.ps1 iles in 
the module's folder and reference them in the *.psm1 ile. As a inal touch, a module 
manifest ile can be created, which will give a more professional and rounded feel to 
your module, but we will discuss manifests later.

Let's look at the process of creating an example module.

Creating script modules
Script modules can contain any valid PowerShell code. We can place a couple of 
functions in a *.psm1 ile to make a module. There is nothing special about a *.psm1 
ile; it is a normal *.ps1 script ile. We can rename any *.ps1 script ile that contains 
our functions to *.psm1 to create a script module.

Firstly, let's create two functions for our module that we will use for sending and 
receiving TCP messages. The irst function will monitor a local TCP port that waits 
for an external program to connect, accept the messages sent by it, and display the 
message content in the console. We name it Receive-TCPMessage.ps1. Its code is  
as follows:

Function Receive-TCPMessage

{

  param ( [ValidateNotNullOrEmpty()]

  [int] $Port )

  try

  {

    $EndPoint = New-Object System.Net.IPEndPoint([System.Net.
IPAddress]::Loopback,$Port)

    $Socket = New-Object System.Net.Sockets.TCPListener($EndPoint)

    $Socket.Start()

    $Socket = $Socket.AcceptTCPClient()

    $EncodedText = New-Object System.Text.ASCIIEncoding

    $Stream = $Socket.GetStream()

    $Buffer = New-Object System.Byte[] $Socket.ReceiveBufferSize

    while( $Bytes = $Stream.Read($Buffer,0,$Buffer.Length) )

    {

        $Stream.Write($Buffer,0,$Bytes)

        Write-Output $EncodedText.GetString($Buffer,0,$Bytes)

    }

http:///


Chapter 4

[ 133 ]

    $Socket.Close()

    $Socket.Stop()

  }

  catch{}

}

We can see that Receive-TCPMessage is an ordinary function with a parameter 
$port. In the code, we use the New-Object cmdlet to create two .NET objects 
called System.Net.IPEndPoint and System.Net.Sockets.TCPListener. The 
System.Net.IPEndPoint object is used to resolve the loopback address for an IP 
address. The System.Net.Sockets.TCPListener object is used when waiting for a 
connection and for receiving messages.

The second function is Send-TCPMessage; it is saved as Send-TCPMessage.ps1. We 
will use it to connect to a TCP port of the destination host. Its code looks as follows:

Function Send-TCPMessage

{

  param ( [ValidateNotNullOrEmpty()]

  [string] $EndPoint,

  [int] $Port,

  [string] $Message ) 

  $IP = [System.Net.Dns]::GetHostAddresses($EndPoint)

  $Address = [System.Net.IPAddress]::Parse($IP)

  $Socket = New-Object System.Net.Sockets.TCPClient($Address,$Port)

  $Stream = $Socket.GetStream()

  $Writer = New-Object System.IO.StreamWriter($Stream)

  $Writer.AutoFlush = $true

  $Writer.NewLine = $true

  $Writer.Write($Message)

  $Socket.Close()

}

We can notice that the preceding code looks like the irst function that uses the 
System.Net.Sockets.TCPClient object to establish a connection. The function 
needs three parameters, namely $EndPoint, $Port, and $Message. The EndPoint 
parameter is used with the [System.Net.Dns]::GetHostAddresses method to 
resolve the domain of an IP address.

http:///


Extending Windows PowerShell

[ 134 ]

Execute these functions. The following screenshot shows how to send and receive 
TCP messages:

We now save these functions in the PSNet.psm1 ile and save them at C:\Users\
Administrator\Documents\WindowsPowerShell\Modules\PSNet\TCPOp.

In order to realize code package structure similar to the C# code namespace, we 
create the subdirectory PSNet\TCPOp in the directory speciied by the PSModulePath 
variable. Of course, we can create a UDP operation in PSNet\UDPOp and add  
dot-sourcing statements for the script ile in the PSNet.psm1 ile.

Now, we will talk about how to create the script module ile PSNet.psm1, which is  
as follows:

. $home/Documents/WindowsPowerShell/Module/PSNet/TCPOp/Receive-
TCPMessage.ps1

. $home/Documents/WindowsPowerShell/Module/PSNet/TCPOp/Send-
TCPMessage.ps1

Write-Host "PSNet Module Added" -BackgroundColor green 
-ForegroundColor blue

Export-ModuleMember -Function *  # Used for deriving function to 
members of the module

http:///


Chapter 4

[ 135 ]

We can see that the irst and second statements are used for dot sourcing two script 
iles. The third statement is used for notifying the users that the PSNet module has 
been added to the current session. The last statement is used for deriving a function 
for the members of the module.

So far, we have inished the task of writing a script module. If we want to import the 
module once the PowerShell session has already started, we can add the Import-
Module cmdlet into our PowerShell proile.

Import-Module PSNet –PassThru

Once the PowerShell session has already started, we will get the following results:

We can see that two functions are members of the module that is available to us in 
this PowerShell session using the Get-Command cmdlet.

Get-Command -Module PSNet

We can check whether or not our module PSNet is available using the Get-Module 
cmdlet with the -ListAvailable switch.

Get-Module –ListAvailable

http:///


Extending Windows PowerShell

[ 136 ]

We may get the result shown in the following screenshot:

We can see that the PSNet module has a ModuleType of script while other built-in 
and third-party modules have a ModuleType of manifest or script.

Binary modules
A binary module can be any assembly (.dll) that contains a cmdlet class. By default, 
all the cmdlets in the assembly are imported when the binary module is imported, 
unless the CmdletToExport keyword is speciied in the manifest ile of the binary 
module to restrict the cmdlet range when using Import-Module to import  
the module.

In fact, you can load most existing snap-ins as modules instead, which means you 
don't have to be an administrator to load a new snap-in. There is no need to register 
them by running InstallUtil.exe. You can simply place them in a folder and tell 
PowerShell where to ind them. In addition to this, any formatting or type iles that 
are referenced by the snap-in cannot be imported as part of a binary module. To 
import formatting and type iles, you must create a module manifest.

The development method of a binary module is completely similar to the method 
used for developing snap-ins in Chapter 2, Developing Snap-ins for PowerShell. Readers 
can review this chapter for the method to develop snap-ins.

http:///


Chapter 4

[ 137 ]

Manifest modules
A manifest module is a Windows PowerShell dataile (.psd1) that describes the 
contents of a module and determines how a module is processed. A manifest ile is 
a text ile that contains a hash table of keys and values. To use the manifest ile in a 
module, place the module manifest ile in the root of the module directory.

It is possible to smarten up your modules and give them a more professional look 
by using module manifests. For instance, you may wish to include some author 
and versioning information as part of the module, or you may wish to specify 
minimum versions of PowerShell and/or the .NET Framework that are needed for 
the components of your module. You should create a module manifest. Microsoft has 
made creating a basic module manifest easy by giving us the New-ModuleManifest 
cmdlet. While it is possible to create a module manifest manually (by simply creating 
a *.psd1 ile containing your requirements and placing it in the module folder), 
using the cmdlet makes it easy to create a basic one. Let's continue with the PSNet 
module and create a basic module manifest using New-ModuleManifest.

We can specify all of the parameters we wish to include in the manifest and supply 
them on the command line.

New-ModuleManifest -Author "fuhj" `

-CompanyName "Packt Publishing" `

-CopyRight "(c) 2009 fuhj" `

-Description "Sending and receivingTCP message" `

-FileList "PSNet.psm1" `

-FormatsToProcess @() `

-ModuletoProcess "PSNet.psm1" `

-NestedModules @() `

-Path "C:\Users\Administrator\Documents\WindowsPowerShell\Modules\
PSNet\PSNet.psd1" `

-RequiredAssemblies @() `

-TypesToProcess @()

You can use Get-Help New-ModuleManifest to examine in more detail other 
options that you may wish to include in your module manifest. When the  
command is executed, we get a module manifest ile named PSNet.psd1.

@{

# Script module or binary module file associated with this manifest.

RootModule = 'PSNet.psm1'

# Version number of this module.

ModuleVersion = '1.0'

# ID used to uniquely identify this module

GUID = '08766c71-a825-4d38-b2a2-477445be6a17'

# Author of this module

http:///


Extending Windows PowerShell

[ 138 ]

Author = 'fuhj'

# Company or vendor of this module

CompanyName = 'Pocket Publishing'

# Copyright statement for this module

Copyright = '(c) 2009 fuhj'

# Description of the functionality provided by this module

Description = 'Sending and receivingTCP message'

# Functions to export from this module

FunctionsToExport = '*'

# Cmdlets to export from this module

CmdletsToExport = '*'

# Variables to export from this module

VariablesToExport = '*'

# Aliases to export from this module

AliasesToExport = '*'

# List of all files packaged with this module

FileList = 'PSNet.psm1'

}

Now that we have created a basic module manifest, we can take that as a template 
for future modules and customize it as per our needs.

Dynamic modules
Using Add-Type and Import-Module, you can dynamically compile and load an 
assembly without any intermediate assembly iles to clean up. For instance, to run 
a cmdlet on a remote machine, you could send over the cmdlet source code and 
compile, import, and run it all on the ly.

Let's say you have your cmdlet in C# code with the variable $source:

PS> $source = @"

public class BasicTest

{

    public static int Add(int a, int b)

    {

        return (a + b);

    }

    public int Multiply(int a, int b)

    {

        return (a * b);

    }

}

http:///


Chapter 4

[ 139 ]

"@

PS> Invoke-Command {(Add-Type -TypeDefinition $args[0] -PassThru).
assembly | Import-Module} -ArgumentList $source

PS> Invoke-Command {(new-object BasicTest).Multiply(5, 2)}

All the code will be executed as follows:

The PowerShell session compiles the code with Add-Type and passes the resulting 
assembly object to Import-Module.

In the preceding example, we can consider a situation where we need to execute a 
cmdlet in a remote host. But we don't want to upload the compiled assembly ile 
to the remote host, delete iles, and clean up environment after the operation is 
completed. We can read cmdlet source code from local iles and then push the code 
to remote host with a remote session. The source code will be compiled, imported as 
a module, and run on the remote host. The cmdlet Execute-MyCmdlet is invoked in 
the remote session and then removed, without the need to remove any intermediate 
iles on the remote system.

PS> [string]$source = Get-Content myCmdletcode.cs

PS> $s = New-PSSession remoteHost

PS> Invoke-Command $s {(Add-Type -TypeDefinition $args[0] -PassThru).
assembly | Import-Module} -ArgumentList $source

PS> Invoke-Command $s {Execute-MyCmdlet}

PS> Remove-PSSession $s

It's very useful when we need to invoke a cmdlet in an assembly on the remote 
system without wanting to remove any intermediate iles.

http:///


Extending Windows PowerShell

[ 140 ]

Storing modules on a disk
After we have written script, binary, and manifest modules, there are several places 
where we can store them. They can be stored in the system folder where PowerShell 
is installed, or in a user's folder. In either case, the module is placed into a module 
directory, and the entire module is placed in the subdirectories that are named by 
module name, with the following exceptions:

• Dynamic modules created using the New-Modules cmdlet can be named 
using the -Name parameter of the cmdlet

• Modules imported from the assembly object using the Import-Module  
–Assembly command are named using the following syntax:

"dynamic_code_module_" + assembly.GetName().

When storing iles in the system folder, you have to create the following path:

C:\Windows\system32\WindowsPowerShell\v1.0\Modules\

It needs to be emphasized that to modify the directory, administrator privileges  
are required. When we store iles in the user's folder, we have to create the  
following path:

C:\Users\Administrator\Documents\WindowsPowerShell\Modules

Working with multiple versions of 
modules
Sometimes, we need to develop several versions of modules for different PowerShell 
versions or Windows versions. We have two or more versions of the module that we 
need to be able to load in order to support users and do development.

The PSModulePath variable contains a semicolon-delimited list of folder paths that 
PowerShell searches for modules. Some people may think of a PowerShell module as 
basically a .dll (binary module), .psm1 (script module), or .psd1 (manifest module) 
ile, but it's never just one ile; it's a group of folders and iles. In order for PowerShell 
to ind the PSNet module when you type Import-Module PSNet, you have to set 
up a folder in PSModulePath named PSNet and also a ile (.dll, .psm1, or .psd1) 
named PSNet.

As we all know, PowerShell has a -version parameter that is used to specify the 
PowerShell version. We can execute this in the console as follows:

powershell.exe -version 3.0

http:///


Chapter 4

[ 141 ]

We may get a different result when we tell the console to start PowerShell Version 
2.0 or Version 3.0, as shown in the following screenshot:

The Import-Module cmdlet has a version parameter that is an alias of 
MinimumVersion. We cannot use the version parameter of the Import-Module 
cmdlet to load a speciied version of the module. For instance:

PS C:\> Import-Module -Name PSWorkflow -MinimumVersion 3.0.0.0

This command imports the PSWorkflow module. It uses the MinimumVersion 
(alias=Version) parameter of Import-Module to import only version 3.0.0.0 or 
greater of the module. You can use the RequiredVersion parameter to import a 
particular version of a module, or use the Module and Version parameters of the 
#requires keyword to require a particular version of a module in a script.

http:///


Extending Windows PowerShell

[ 142 ]

Although we cannot use the -version parameter to specify the module's version, we 
can rename the module directory and module ile to distinguish between different 
versions of the module. Right now, we are going to copy the PSNet module to 
PSNet1.3 for our development version, then rename the manifest module ile to 
PSNet1.3.psd1 and rename the script module ile to PSNet1.3.psm1. Finally, we 
must modify the options of the manifest module ile in which all the options of the 
script module ile are ModuleVersion, RootModule, and FileList.

We can load the development version to the current session as follows:

Import-Module PSNet1.3

And then, we can ind the development version of PSNet1.3 in the list of  
available modules:

Checking PowerShell module 
dependencies
One problem with using modules is that sometimes you have a dependency on 
external code. This means that a script that uses the module must have the module 
installed, or the script will fail. If you can control the environment, taking an external 
dependency is not a bad thing. But most times, we write a module used for an 
external module on the user's computer, and we don't know whether or not this 
module has been installed on the user's computer; it must be a disaster.

http:///


Chapter 4

[ 143 ]

At this time, it is very important that we write some proper error handling code for 
our module. For example, we need to write some code using background intelligent 
transfer service (BITS) for implementing a speciic feature. But we don't know 
whether the user's computer has the BitsTransfer modules. For instance, the user's 
computer may have installed Windows XP OS, but the BitsTransfer modules are a 
feature of Windows 7 and the later versions of OS. We can use the following code for 
error handling:

if (Get-MyModule –name "BitsTransfer") { call your bits code here } 

else { "Bits module is not installed on this system." ; exit}

In this case, we use the Get-MyModule function to check whether a module has been 
installed on the user's computer or not. Now, we realize the Get-MyModule function. 
First of all, this function accepts a single string for storing the name of the module 
that we want to check. Then, the function needs to check whether the speciied 
module is currently loaded or not. If it is not loaded, the Get-Module cmdlet is used 
to see if the module exists on the system. If the module exists but is not loaded, the 
function loads it and returns $true. If the module is loaded, it directly returns $true. 
If the module does not exist, it directly returns $false. This section of the script is  
as follows:

Function Get-MyModule 

{ 

Param([string]$name) 

if(-not(Get-Module -name $name)) 

{ 

if(Get-Module -ListAvailable | 

Where-Object { $_.name -eq $name }) 

{ 

Import-Module -Name $name 

$true 

} #end if module available then import 

else { $false } #module not available 

} # end if not module 

else { $true } #module already loaded 

} #end function get-MyModule 

With this function, we can check module dependencies and write more robust code. 
When we write script code, we also need to know how to deal with a script error if it 
occurs, in order to avoid it bringing unnecessary trouble to the user.

http:///


Extending Windows PowerShell

[ 144 ]

Signing PowerShell modules
PowerShell supports a concept called execution policies in order to help deliver 
a more secure command-line administration experience. Execution policies deine 
the restrictions under which PowerShell loads iles for execution and coniguration. 
The four execution policies are Restricted, AllSigned, RemoteSigned, and 
Unrestricted.

Execution policies
PowerShell is conigured to run in its most secure mode by default. This mode is the 
Restricted execution policy, in which PowerShell operates as an interactive shell 
only. The modes are as follows:

• Restricted:

 ° Default execution policy

 ° Does not run scripts

 ° Interactive only

• AllSigned:

 ° Runs scripts

 ° All scripts and configuration files must be signed by a publisher that 
you trust

 ° Opens you to the risk of running signed (but malicious) scripts after 
confirming that you trust the publisher

• RemoteSigned:

 ° Runs scripts

 ° All scripts and configuration files are downloaded from 
communication applications, such as Microsoft Outlook, Internet 
Explorer, Outlook Express, and Windows Messenger; they must be 
signed by a publisher that you trust

 ° Opens you to the risk of running malicious scripts that are not 
downloaded from these applications, without prompting

http:///


Chapter 4

[ 145 ]

• Unrestricted:

 ° Runs scripts

 ° All scripts and configuration files are downloaded from 
communication applications, such as Microsoft Outlook, Internet 
Explorer, Outlook Express, and Windows Messenger; it runs them 
after confirming that you have understood that the file has originated 
from the Internet

 ° No digital signature is required

 ° Opens you to the risk of running unsigned, malicious scripts 
downloaded from these applications

You can use the Get-ExecutionPolicy cmdlet to check the execution policies  
as follows:

Changing the execution policy
Run the following script from a PowerShell prompt (AllSigned is an example):

This command requires administrator privileges. Changes to the execution policy are 
recognized immediately.

http:///


Extending Windows PowerShell

[ 146 ]

If you're executing PowerShell scripts for the irst time, PowerShell may just display 
an error message as you try to run a script:

The default execution policy of PowerShell is Restricted. In this mode, PowerShell 
operates as an interactive shell only. It does not run scripts, and it loads only 
coniguration iles signed by a publisher that you trust. The AllSigned execution 
policy is best for production since it forces the requirement for digital signatures on 
all scripts and coniguration iles.

Script signing background
Adding a digital signature to a script requires that it be signed with a code-signing 
certiicate. Two types are suitable:

• Those created by a certiicate authority for a fee (such as VeriSign  
and Thawte)

• Those created by a user (called a self-signed certiicate)

If your scripts are speciic to your internal network use, you may be able to self-sign. 
You can also buy a code-signing certiicate from another certiicate authority if  
you like.

For a self-signed certiicate, a designated computer is the authority that creates the 
certiicate. The beneits of self-signing include its zero cost as well as creation speed 
and convenience. The drawback is that the certiicate must be installed on every 
computer that will be running the scripts, since other computers will not trust the 
computer used to create the certiicate. Of course, you can deploy it through a GOP  
if your computers are in a domain environment.

To create a self-signed certiicate, the makecert.exe program is required. This is 
available as part of the Microsoft .NET Framework SDK or Microsoft Windows 
Platform SDK. The latest is the .NET Framework 2.0 SDK; after installing, makecert.
exe is found in the C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\
Bin\ directory.

http:///


Chapter 4

[ 147 ]

You can download it from http://www.microsoft.com/downloads/details.
aspx?familyid=fe6f2099-b7b4-4f47-a244-c96d69c35dec&displaylang=en.

Setting up a self-signed certiicate
You can create a local certiicate authority for your computer by running the 
following command:

You will be prompted for the private key:

Next, you'll be prompted to verify the private key you entered in the preceding screen:

http:///


Extending Windows PowerShell

[ 148 ]

And then, the self-signed certiicate will be added into the current user's Certiicate 
Store. Windows will notify users that if you install this root certiicate, Windows will 
automatically trust any certiicate issued by this CA. Installing a certiicate with an 
unconirmed thumbprint is a security risk.

We can run certmgr.msc to check the trusted root certiication authorities:

http:///


Chapter 4

[ 149 ]

After creating a trusted root certiication authority, we will generate a personal 
certiicate from the preceding certiication authority:

You will be prompted for the private key:

There will now be a certiicate present in the personal store:

http:///


Extending Windows PowerShell

[ 150 ]

After performing the preceding steps, verify from PowerShell that the certiicate was 
generated correctly:

Signing a module
In order to show how to sign a module, we will create a simple module 
called MyModule in the PowerShell module location C:\Windows\System32\
WindowsPowerShell\v1.0\Modules\MyModule.

We add the following content to the MyModule.psm1 ile in the preceding location:

We can see that the module ile is used for dot-sourcing a script ile and exporting 
the module function. And, the content of the script ile Say-Hello.ps1 will be as 
shown in the following screenshot:

To test the effectiveness of digitally signing a PowerShell module, use the script from 
the following screenshot:

http:///


Chapter 4

[ 151 ]

Now sign the script:

PowerShell appends your digital signature to the end of that ile. This signature 
veriies that the ile came from you and also ensures that nobody can tamper with 
the content in the ile without detection. After the script is signed, it looks as follows:

http:///


Extending Windows PowerShell

[ 152 ]

Import the module again and execute the function:

Answer A and the function proceeds to run, and runs without needing prompting 
thereafter. A new certiicate is also created in the Trusted Publishers container:

http:///


Chapter 4

[ 153 ]

To validate the signature of a script or formatting ile, use the  
Get-AuthenticodeSignature cmdlet:

The Get-AuthenticodeSignature cmdlet gets the authenticode signature from a 
ile. This can be a PowerShell script or formatting ile, but the cmdlet also supports 
DLLs and other Windows standard executable ile types.

Signed modules can be transported by exporting (from the original computer) and 
importing (to the new computer) the PowerShell certiicates found in the Trusted 
Root Certiication Authorities container. Optionally, the trusted publishers can also 
be moved to prevent the irst-time prompt. From the Current User certiicate store, 
go to the Trusted Root Certiication Authorities container and locate the PowerShell 
Local Certiicate Root certiicate. Right-click on it and click on All Tasks | Export.

http:///


Extending Windows PowerShell

[ 154 ]

Log in to the target machine as the user under which modules will be running. Open 
MMC and add the Certiicates snap-in for the current user, locating the Trusted Root 
Certiication Authorities container. Expand the container to ind the Certiicates 
store. Right-click on it and select All Tasks | Import.

Your signed modules should now run on the new computer. Note that PowerShell 
will prompt you the irst time they are run unless you also import the Trusted 
Publishers certiicate.

Summary
In Windows PowerShell 3.0, modules are a very important feature. You can load 
most existing snap-ins as a module instead, which means you don't need to have 
administrator privileges to load a new snap-in. There is no need to register snap-ins 
by running InstallUtil.exe. You can simply place them in any folder you can 
access and tell PowerShell where to ind them.

In this chapter, we discussed how to extend PowerShell by writing modules. The 
content covered how to import, remove, and reload PowerShell modules, create a 
module, and sign a module. This is a great encouragement to DBAs and systems 
administrators to create PowerShell cmdlets to automate a number of processes, 
and make them accessible via modules. It has also enabled Microsoft to provide 
modules to accompany added roles or features of the OS that ease the administrative 
workload. Getting access to these modules is a simple process of installing the correct 
role or feature and then importing the module. As IT organizations strive towards 
greater automation, it is well worth checking out the automation possibilities that 
these modules bring.

In the next chapter, we will have a look at the Windows Server 2012 Server Core 
installation option, which allows you to use Windows Server capabilities in a  
shell-like interface without any graphical interface. Also, we will cover how  
to use PowerShell to manage and conigure Server Core instead of the normal 
command-line interface cmd. 

http:///


Managing Core Infrastructure 

with PowerShell
A few years ago, Microsoft added a new feature called Server Core to the Windows 
Server operating system. Server Core is an option for installing the operating system 
with a minimal Graphical User Interface (GUI), which means less services footprint, 
less hardware requirements, and a more secure surface. Because Server Core is a 
minimal installation of GUI, each and every single administration task is done via 
the command line. In Windows Server 2012, a lot of new PowerShell modules have 
been developed in order to make the management of Server Core much easier.

In this chapter we will discuss the following points:

• What is Server Core?

• How to make PowerShell the default shell

• Preparing your operating system using PowerShell

• Managing and coniguring core infrastructure roles

http:///


Managing Core Infrastructure with PowerShell

[ 156 ]

The default shell for the Server Core is cmd.exe, so before we start building our core 
infrastructure, let's do a nice trick and change the default shell from the traditional 
command-line interface (cmd) to Windows PowerShell.

In order to accomplish this task, change the value of the Shell registry key under 
HKLM:\Software\Microsoft\Windows NT\CurrentVersion\winlogon from cmd.
exe to PowerShell.exe. We can do this by either using the registry editor RegEdit 
or Windows PowerShell.

To do that using PowerShell, we need to start Windows PowerShell by executing 
PowerShell in the cmd window, and then using the Set-ItemProperty cmdlet to 
change the registry key value.

C:\Users\Administrator> PowerShell.exe

PS > Set-ItemProperty "HKLM:\Software\Microsoft\Windows NT\
CurrentVersion\winlogon" Shell PowerShell.exe

http:///


Chapter 5

[ 157 ]

After changing the registry key value, log out and log in again to apply the  
new changes.

Preparing the operating system for irst 
time use
Now, after changing the default shell to PowerShell, it is time to do some basic 
preparation for the server before starting to build the infrastructure roles and 
services. Usually, after installing the operating system or running the Sysprep 
generalization utility, you need to rename the computer to a speciic naming 
convention to meet organization standards, assign a static IP address to your server, 
change the time zone, and so on. Although these kinds of tasks look very easy in the 
normal Windows Server GUI, the situation is different in Server Core where the GUI 
is no longer available. So, PowerShell will help us achieve our purpose.

http:///


Managing Core Infrastructure with PowerShell

[ 158 ]

Task 1 – changing the computer name
In this task, we will change the computer name that was generated during the 
installation of the operating system to a more meaningful name. In this example, we 
will use HQ-DC-01 to refer to the Domain Controller server in the headquarters. For 
this purpose, we will use the Rename-Computer cmdlet to rename the computer and 
then use the Restart-Computer cmdlet to restart the computer to apply the changes.

PS > Rename-Computer –NewName HQ-DC-01  

PS > Restart-Computer

Task 2 – changing the time zone settings
In this task, we will change the default time zone to Greenwich Standard Time.  
For this purpose, we will use the time zone utility to change the time zone.

#Display the Current Time Zone

PS > TZutil /g

#Display the list of available Time Zones

PS > TZutil /l

#Set the new Time Zone

PS > TZutil /s "Greenwich Standard Time"

Use TZutil with the Invoke-Command cmdlet to change the 
time zone settings on remote computers.

http:///


Chapter 5

[ 159 ]

Task 3 – setting the Network Interface Card 

(NIC) coniguration
In this task, we will change the coniguration for the Network Interface Card 
(NIC); this task will be accomplished in two steps. The irst step is to use the 
New-NetIPAddress cmdlet, which is a part of the NetTCPIP module, to set the 
IP address and default gateway coniguration. The second step is to use the 
Set-DNSClientServerAddress cmdlet, which is part of the DnsClient module,  
to set the DNS coniguration for the client computer.

#Setting static IP Address Configuration

PS > New-NetIPAddress -IPAddress 192.168.0.2 -InterfaceAlias Ethernet 
-DefaultGateway 192.168.0.1 -AddressFamily IPv4 -PrefixLength 24 

#Setting Client DNS Settings

PS > Set-DnsClientServerAddress -InterfaceAlias Ethernet 
-ServerAddresses 192.168.0.1,192.168.0.2 

If you want to revert the TCP/IP settings and use the DHCP assignment method for 
automatic IP addresses assignment, you have to perform the following steps:

1. Remove the IP address and subnet mask settings.

2. Remove the network route (default gateway) setting.

3. Reset the DNS client coniguration.
4. Enable the DHCP assignment on the interface.

You can use the following code:

#Remove static IP Address Setting

PS > Remove-NetIPAddress -InterfaceAlias Ethernet

#Remove network route

PS > Remove-NetRoute -InterfaceAlias Ethernet

#Reset Client DNS Settings

PS > Set-DnsClientServerAddress -ResetServerAddresses

#Enable the DHCP option on the interface

PS > Set-NetIPInterface -InterfaceAlias Ethernet -Dhcp Enabled

http:///


Managing Core Infrastructure with PowerShell

[ 160 ]

Task 4 – managing Windows Server roles and 
features
Managing server roles and features is one of the most important, basic, and repetitive 
tasks when dealing with a server operating system such as Windows Server. In 
this task, we will learn how to use the ServerManager module to display, add, and 
remove Windows roles and features.

Example 1
In this example, we will use the Get-WindowsFeature cmdlet to list all the installed 
roles and features on the local server.

#Get list of all installed Roles and Features 

PS > Get-WindowsFeature | where Installed –eq $true

Refer to the following screenshot:

Installing Windows features using PowerShell is very useful even if you have a full 
graphical user interface, especially when you want to install a set of prerequisites for 
a product such as Exchange Server or SharePoint Server on multiple servers.

http:///


Chapter 5

[ 161 ]

For this purpose, we will use the Install-WindowsFeature cmdlet that comes 
with a couple of very interesting switches, -IncludeAllSubFeature and 
-IncludeManagementTools, which make the installation easier.

• IncludeAllSubFeature: This is useful if you want to install a role or feature 
that has subfeatures and you want to install all of them in one step; it's a 
good candidate for roles such as Web Server and File Server.

• IncludeManagementTools: When you install a role or feature using 
PowerShell, it will install the role itself only without the management 
console. For example, if you install Internet Information Services (IIS) using 
PowerShell, it will not install the IIS Management Tool until you add the 
IncludeManagementTools switch.

Example 2
In this example, we will install the Web Server role with all subfeatures and 
management tools.

#Install-WindowsFeature 

PS > Install-WindowsFeature Web-Server -IncludeAllSubFeature 
-IncludeManagementTools

Deploying the Active Directory Domain 
Services (ADDS) role
The Directory Service is one of the core services that must be implemented when we 
consider building an integrated, secure, and centralized infrastructure. It is required 
for any organization looking for an integrated, central administration process 
for network resources, managing identities, and access control. There are three 
deployment scenarios related to the Active Directory deployment:

• Creating a new Active Directory forest

• Creating a new Active Directory Domain in an existing forest

• Creating a new Active Directory Domain Controller in an existing domain

http:///


Managing Core Infrastructure with PowerShell

[ 162 ]

These deployment options are available as part of Active Directory Domain Services 
Coniguration Wizard.

Before you start deploying the Active Directory, you need to add the Active 
Directory Domain Services Windows role irst. Installing this role will install the 
required binary iles to set up the Active Directory Domain Services and will also 
install the ADDSDeployment module that is required to deploy Active Directory  
using Windows PowerShell.

For this purpose, we will use the Add-WindowsFeature cmdlet:

#Install "Active Directory Domain Services" windows feature

PS > Add-WindowsFeature AD-Domain-Services

Scenario 1 – installing a new Active Directory 

Forest
In this scenario, we will install a new Active Directory Forest and an Active Directory 
Domain called contoso.local, and the functional level Windows Server 2012 for 
both the forest and domain in addition to installing and coniguring the DNS server 
role. The following example explains how to accomplish this task by using the 
Install-ADDSforest cmdlet with the following group of parameters:

• DomainName: Deines the root's domain name

http:///


Chapter 5

[ 163 ]

• DomainNetbiosName: Deines the NetBIOS name for the domain

• ForestMode: Speciies the forest functional level
• DomainMode: Speciies the domain functional level

• SafeModeAdministratorPassword: Deines the administrator password 
required for starting up a domain controller in an active directory  
restore mode

• InstallDNS: Installs and conigures the DNS server role; the default value is 
true if the parameter is not used

For the functional level for both the forest and domain, use the level name or the 
following equivalent values:

Functional level Name Value

Windows Server 2003 Win2003 2

Windows Server 2008 Win2008 3

Windows Server 2008 R2 Win2008R2 4

Windows Server 2012 Win2012 5

You can use the following code:

PS > Install-ADDSForest -DomainName contoso.local 

-SafeModeAdministratorPassword (ConvertTo-SecureString P@ssw0rd 

-AsPlainText -Force) -DomainMode Win2012 -DomainNetbiosname Contoso 
-ForestMode Win2012 -InstallDNS

Scenario 2 – installing a new domain in an 
existing forest
In this scenario, we will install a new Active Directory child domain called corp 
in the existing Active Directory Forest called contoso.local and with a domain 
functional level, that is, Windows Server 2012 in addition to installing and 
coniguring the DNS server role. The following example explains how to  
accomplish this task by using the Install-ADDSdomain cmdlet with the  
following group of parameters:

• NewDomainName: Deines the new domain name
• ParentDomainName: Deines the parent domain name for the new domain
• DomainMode: Speciies the domain functional level

http:///


Managing Core Infrastructure with PowerShell

[ 164 ]

• SafeModeAdministratorPassword: Deines the administrator password 
required for starting up a domain controller in the safe mode and the active 
directory restore mode

• InstallDNS: Installs and conigures the DNS server role; the default value is 
true if the parameter is not used

• DomainType: Deines the domain type, which can be either Child or Tree

• CreateDnsDelegation: Creates a DNS delegation for the new DNS server.

You can use the following code:

PS > Install-ADDSDomain -NewDomainName corp -ParentDomainName contoso.
local -SafeModeAdministratorPassword (ConvertTo-SecureString P@ssw0rd 
-AsPlainText -Force) -CreateDnsDelegation -Credential (Get-Credential 
Contoso\Administrator) -DomainMode Win2012 -DomainType ChildDomain

Scenario 3 – installing a new domain 
controller in an existing domain
In this scenario, we will install a new Active Directory Domain Controller in the 
existing Active Directory Domain in addition to installing and coniguring the DNS 
server role. The following example explains how to accomplish this task by using the 
Install-ADDSdomaincontroller cmdlet with the following group of parameters:

• DomainName: Deines the name of the domain that the Domain Controller will 
be a part of

• NoGlobalCatalog: Deines if the domain controller will hold a Global 
Catalog replica or not

• Site: Deines which Active Directory site the domain controller will be  
a part of

• ReplicationSourceDC: Deines the source domain controller for replication
• SafeModeAdministratorPassword: Deines the administrator password 

required for starting up a domain controller in the safe mode and the active 
directory restore mode

• InstallDNS: Installs and conigures the DNS server role

• CreateDnsDelegation: Creates a DNS delegation for the new DNS server

• ReadOnlyReplica: Use this option if you want to install a read-only  
domain controller

http:///


Chapter 5

[ 165 ]

You can use the following code:

PS > Install-ADDSDomainController -NoGlobalCatalog:$false 
-CreateDnsDelegation:$false -Credential (Get-Credential) 
-DomainName "contoso.local" -InstallDns:$true -ReplicationSourceDC 
"DC01.contoso.local" -SiteName "Default-First-Site-Name" 
-SafeModeAdministratorPassword (ConvertTo-SecureString P@ssw0rd 
-AsPlainText -Force)

Managing and coniguring the Domain 
Name System (DNS) role
The Domain Name System (DNS) is one of the most popular infrastructure  
roles not only for IT specialists but also for normal Internet users. DNS is an 
application-layer protocol responsible for the hierarchical naming structure  
for the different IT components either connected locally to the intranet or  
exposed to the Internet.

In this section, we will learn about the new Windows PowerShell modules for DNS 
that have been introduced in Windows Server 2012 and how you can use them to 
perform different DNS coniguration tasks.

By default if you are using Windows 8 or Windows Server 2012, you will have the 
DnsClient PowerShell module installed to allow you to manage and troubleshoot 
the DNS client component. However, the DnsServer PowerShell module will be 
available on Windows Server once you install the DNS role.

Task 1 – coniguring DNS server resource 
records
In this task, we will learn how to create a different type of DNS resources records. In 
this example, we will create records of types A, CName, and MX. For the purpose of this 
task, we will use the Add-DnsServerResourceRecord* cmdlets where * represents 
the type of the record.

You can use the Add-DnsServerResourceRecord cmdlet and deine 
the type of the resource record as a parameter such as –MX or -CName.

#Add DNS Server 'A' Resource Record

PS > Add-DnsServerResourceRecordA -Name FileServer -Ipv4Address 
192.168.1.20 -ZoneName Contoso.local

http:///


Managing Core Infrastructure with PowerShell

[ 166 ]

#Add DNS Server 'CName' Resource Record

PS > Add-DnsServerResourceRecordCName -Name OWA -HostNameAlias 
EXCH-MBXCAS-02.Contoso.local -ZoneName Contoso.local

#Add DNS Server 'MX' Resource Record

PS > Add-DnsServerResourceRecordMX -Name Mail -MailExchange 
EXCH-HUB-01.Contoso.local -ZoneName Contoso.local –Preference 10

Task 2 – creating primary forward and reverse 
lookup zones
In this task, we will learn how to create different DNS zones. For the purpose of this 
task, we will use the Add-DnsServerPrimaryZone cmdlet to create primary forward 
and reverse lookup zones.

#Add DNS Forward Zone

PS > Add-DnsServerPrimaryZone -Name 'Labs' -ReplicationScope Domain 
-DynamicUpdate Secure

#Add DNS Server Reverse Lookup zone

PS > Add-DnsServerPrimaryZone -NetworkId '192.168.1.0/24' 
-ReplicationScope Forest -DynamicUpdate NonsecureAndSecure

Task 3 – adding a DNS server forwarder
In this task, we will learn how to add a forwarder to the forwarders list in the DNS 
server. For the purpose of this task, we will use the Add-DnsServerForwarder cmdlet.

#Add DNS Server Forwarder

PS > Add-DnsServerForwarder –IPAddress '4.2.2.3','8.8.8.8'

Task 4 – exporting DNS server zones
In this task, we will learn how to back up the DNS server. For the purpose of this 
task, we will use the Export-DnsServerZone cmdlet to export the DNS zone to a  
ile that contains all records from this zone.

The DNS backup ile will be stored by default under the DNS physical 
directory C:\Windows\System32\Dns.

#Export DNS Zones

PS > ForEach($Zone in (Get-DnsServerZone | Where IsAutoCreated -eq 
$false))

http:///


Chapter 5

[ 167 ]

{

Export-DnsServerZone -Name $Zone.ZoneName -FileName $Zone.ZoneName

}

Deploying and coniguring the Dynamic 
Host Coniguration Protocol (DHCP) role
The main purpose of using Dynamic Host Coniguration Protocol (DHCP) is to 
automatically assign the IP addresses and the other TCP/IP coniguration to the 
network devices. This part explains how to use Windows PowerShell to install and 
conigure the DHCP role. In order to complete the DHCP deployment process, you 
should accomplish the following tasks.

Task 1 – installing the DHCP server role
The irst step in deploying the service is installing the DHCP server role. For this 
purpose, we will use Add-WindowsFeature to install the server role and also  
to install the DHCPServer module that contains the DHCP-related cmdlets  
and functions.

#Install DHCP Server Role

PS > Add-WindowsFeature DHCP

Task 2 – setting up the DHCP server scope
In this task, we will set up the DHCP server scope that deines the network subnet 
coniguration. In this example, we will create a DHCP scope called Contoso for the 
192.168.0.0 subnet with a subnet mask 255.255.255.0 and then activate it.

#Adding DHCP server IPv4 scope

PS > Add-DhcpServerv4Scope -Name "Contoso" -StartRange 192.168.0.1 
-EndRange 192.168.0.254 -SubnetMask 255.255.255.0 -State Active

Task 3 – coniguring DHCP scope options
In this task, we will set up the DHCP scope options that deine settings such as DNS 
Domain Name, DNS Server Address, WIN Server, and Default Gateway. In this 
example, we will conigure the DHCP scope options for the DHCP scope created in 
the previous example.

#Configuring DHCP Scope options (e.g. DNS Server and Router)

PS > Set-DhcpServerv4OptionValue -DnsDomain contoso.local -DnsServer 
192.168.0.2 -Router 192.168.0.1

http:///


Managing Core Infrastructure with PowerShell

[ 168 ]

Task 4 – coniguring DHCP scope exclusion
In this task, we will conigure range exclusion for the DHCP scope. Usually, range 
exclusion is used when you want to exclude a range of speciic IP addresses from 
your scope so that you can use it for static assignment for network devices. In this 
example, we will conigure exclusion for 30 IP addresses in the DHCP scope created 
in the irst example.

#Configuring DHCP scope exclusion

PS > Add-DhcpServerv4ExclusionRange -ScopeId 192.168.0.0 -StartRange 
192.168.0.100 -EndRange 192.168.0.130

Task 5 – coniguring DHCP scope 
reservations
In this task, we will conigure IP address reservations in the DHCP scope. DHCP 
reservation is used to reserve a speciic IP address for a speciic device (for example, 
network printer) in order to make sure that your device is always assigned the same 
IP address. It is similar to the idea of range exclusion, but the difference is DHCP 
assigns the same IP address to the same device every time automatically instead of 
deining range exclusion and then assigning it manually to each and every device.

In this example, we will reserve the IP address 192.168.0.10 for the network 
printer with the MAC address F4-DA-F1-78-00-6D.

#Add DHCP IP Address Reservation

PS > Add-DhcpServerv4Reservation -ScopeId 192.168.0.0 -IPAddress 
192.168.0.10 -ClientId F4-DA-F1-78-00-6D -Description "Multi-Function 
Network Printer in 3rd floor"

Task 6 – authorizing the DHCP server in 
Active Directory
In this task, we will authorize the DHCP server in Active Directory in order 
to start leasing the IP addresses to the clients. In this example, we will use the 
Add-DhcpServerInDC cmdlet to add the DHCP server created in the previous  
steps to the list of the authorized DHCP servers in the Active Directory.

#Authorize DHCP Server in Domain Controller

PS > Add-DhcpServerInDC -DnsName "DhcpServer.contoso.local"

http:///


Chapter 5

[ 169 ]

Managing Windows Firewall
Windows Firewall is a built-in component in Windows operating systems that allows 
you to control the incoming and outgoing network trafic and communications.

Task 1 – enabling or disabling Windows 

Firewall proiles
In this task, we will use the Set-NetFirewallProfile cmdlet to disable all 
Windows Firewall proiles, and then enable the irewall public proile.

#Disable all Firewall Profiles

PS > Set-NetFirewallProfile –All –Enabled False

#Enable Windows Firewall Public Profile

PS > Set-NetFirewallProfile –Name Public –Enabled True

Task 2 – creating Windows Firewall rules
In this task, we will use the New-NetFirewallRule cmdlet to create a new Windows 
Firewall rule.

Example 1
This example explains how to create a irewall rule that blocks all outbound trafic to 
any FTP protocol.

PS > New-NetFirewallRule -Name "Block FTP" -DisplayName "Block FTP" 
-Direction Outbound -Action Block -Protocol TCP -LocalPort FTP

Example 2
This example explains how to create a irewall rule that allows inbound trafic 
coming from an application (for example, Skype).

PS > New-NetFirewallRule -Name "Skype" -DisplayName "Skype" -Direction 
Inbound -Action Allow -Program "C:\Program Files (x86)\Skype\Phone\
Skype.exe"

http:///


Managing Core Infrastructure with PowerShell

[ 170 ]

Using the Best Practice Analyzer (BPA)
Best Practice Analyzer is a Windows management tool that assesses and evaluates 
the server coniguration against Microsoft's best practices and compliances, then 
reports the healthy and violated best practices, and then provides ways to ix it.

Task 1 – displaying the list of best practice 

models
In this task, we will use the Get-BpaModel cmdlet to display the list of available 
models and then ilter them to get the models that have not run on the server before.

#Get list of all BPA models
PS > Get-BpaModel

#Get list of all BPA filtered by LastScanTime propert
PS > Get-BpaModel | where LastScanTime –eq Never

The list in the following screenshot shows the available BPA models and  
their properties:

Task 2 – invoking a best practice model
In this task, we will use the Invoke-BpaModel cmdlet to start scanning the server for 
the best practices and compliances violations and problems for File Services.

#Invoke File Services BPA Model

PS > Invoke-BpaModel –ModelId Microsoft/Windows/FileServices 

http:///


Chapter 5

[ 171 ]

The following screenshot shows the output of invoking a single BPA model:

Task 3 – showing the best practice model 
result
In this task, we will use the Get-BpaResult cmdlet to display the result of the File 
Services best practice scan that has been invoked in the previous example.

#Get File Services BPA Model scan results

PS > Get-BpaResult –ModelId Microsoft/Windows/FileServices 

The following screenshot shows the results of the BPA model execution:

http:///


Managing Core Infrastructure with PowerShell

[ 172 ]

Summary
Windows Server Core is a great addition to the Windows Server operating system. 
It provides a new non-traditional concept of Windows, but the main challenge is to 
perform the normal administration tasks with no Graphical User Interface (GUI), 
especially for the administrator with no shell background.

In this chapter, we have seen how Windows PowerShell can make life easier in terms 
of deploying, managing, and coniguring the different server roles and features even 
without a GUI.

In the next chapter, we will discuss on how to manage organizational units, user 
accounts, user passwords and groups by using the Active Directory module. The 
Active Directory module for Windows PowerShell consolidates a group of cmdlets. 
You can use these cmdlets to manage your Active Directory domains.

http:///


Managing Active Directory  

with PowerShell
Active Directory (AD) is a directory service created by Microsoft for Windows 
domain networks. It is included in most Windows Server operating systems. Active 
Directory provides a central location for network administration and security. Server 
computers that run Active Directory are called domain controllers. An AD domain 
controller authenticates and authorizes all users and computers in a Windows 
domain-type network along with assigning and enforcing security policies for all 
computers and installing or updating software. For example, when a user logs  
in to a computer that is part of a Windows domain, Active Directory checks the 
submitted password and determines whether the user is a system administrator  
or a normal user.

In Windows Server 2000, Windows Server 2003, and Windows Server 2008, 
administrators used a variety of command-line tools and Microsoft Management 
Console (MMC) snap-ins to connect to their Active Directory domains and 
AD Lightweight Directory Services (LDS) coniguration sets for the purpose 
of monitoring and managing them. The Active Directory module for Windows 
PowerShell now provides a centralized experience for administering your  
directory service.

The Active Directory module for Windows PowerShell consolidates a group of 
cmdlets. You can use these cmdlets to manage your Active Directory domains, AD 
LDS coniguration sets, and Active Directory Database Mounting Tool instances in a 
single, self-contained package.

http:///


Managing Active Directory with PowerShell

[ 174 ]

In this chapter we will cover:

• Creating, listing, renaming, modifying, and deleting an organizational unit

• Creating a user account

• Getting and listing the properties of a user account

• Preventing the password change of a user

• Creating a security or distribution group

First of all, we should introduce some concepts of Active Directory services.

Active Directory-related concepts
Active Directory is a complicated technology. The following introduction to it will 
involve some proper nouns. In order to facilitate the reader's understanding, we irst 
explain some concepts.

Introduction to Active Directory
Active Directory provides information about the storage network object and 
makes the information available to users and network administrators that use the 
Active Directory services. Active Directory can store all kinds of information about 
the object, and also make the information easily accessible to administrators and 
users who may need to ind and use it. It uses information of the structured data 
storage directory as the logical structure of its foundation; at the same time it will 
be integrated safely in the Active Directory. Through the network login, the system 
administrator can manage the entire network of directory data and units, and 
empowered network users can also access the network on any local resource.

Active Directory includes two aspects: a directory object and a directory service.

A directory object stores information about all kinds of objects of a physical nature,  
which helps to understand the active directory from the static point of view. We  
have to consider the "catalogue" or "folder" as only an object or an entity, with no 
major difference.

A directory service enables the directory containing all the information and resources  
to play the role of a service. Active Directory is a distributed directory service. 
Although information can be spread in many sets of different computers, users can 
quickly access it. Since many machines have the same information, Active Directory 
has a strong fault-tolerance ability. Because of this, no matter where the user access 
and information are, Active Directory provides a uniied view to all users.

http:///


Chapter 6

[ 175 ]

Namespace
Essentially, Active Directory is a namespace. We can add the namespace for any 
given name at the analytic boundary. The boundary referred to the name can 
provide or associate the range for mapping the entire information. Name  
resolution provides a name that is translated into a name that represents object  
or information processing.

Object
Objects are the Active Directory information entities; we usually see them as 
properties, but they are sets of attributes, which often represent physical entities, 
such as user accounts and ilenames. Objects, with the help of the attribute 
description of their basic characteristics such as a user account attribute, may include 
customer name, telephone number, e-mail address, and home address.

Container
A container is Active Directory's name part of the space and directory object. It also 
has attributes, but the directory object is different. It does not represent a tangible 
entity, but represents a store object space; since it represents only a store object space, 
it is a small namespace.

Trees
In any namespace, a directory tree points to the object container and a hierarchical 
structure. The leaves and the nodes of the tree are often objects, and a tree without 
any leaves or nodes is a container. A directory tree expresses the mode of connection 
of objects; it also shows the path from one object to another object.

In the Active Directory, the directory tree is the basic structure. With every container 
as a starting point, using the layer-upon-layer method, it can constitute a subtree. A 
simple directory can constitute a tree, and a computer network or a domain can form 
a tree. In fact, a directory tree describes a kind of path relationship.

Domain
A domain is the fundamental, logical building block for the partitioning of Active 
Directory. Partitioning is a very important concept of directory services because 
it allows the use of multiple directory partitions rather than one massive store. 
Consequently, each domain's directory needs to store only the information about the 
objects located in that domain, and as a result of this, Active Directory as a whole 
becomes very scalable.

http:///


Managing Active Directory with PowerShell

[ 176 ]

Installing an Active Directory Domain 
Service (ADDS)
In the default installation of Windows 2012, Active Directory is not installed by 
default. We can install AD DS by using Server Manager or by using PowerShell in 
Windows Server 2012. When installing AD DS by using Server Manager, Active 
Directory Domain Server Coniguration Wizard (dcpromo.exe) is deprecated from 
the beginning in Windows Server 2012.

New AD server roles in Windows 2012
You can use Active Directory Domain Services (AD DS) in Windows Server 2012 
to deploy domain controllers more rapidly and easily, increase lexibility when 
auditing and authorizing access to iles, and more easily perform administrative 
tasks through consistent graphical and scripted management experiences.

Active Directory Certiicate Services
Active Directory Certiicate Services (AD CS) in Windows Server 2012 is the  
server role that allows you to build a public key infrastructure (PKI) and provides 
public key cryptography, digital certiicates, and digital signature capabilities for 
your organization.

Active Directory Domain Services
By using the Active Directory Domain Services (AD DS) server role, you can create 
a scalable, secure, and manageable infrastructure for management of users and 
resources, and provide support for directory-enabled applications such as Microsoft 
Exchange Server.

Active Directory Lightweight Directory 

Services
Active Directory Lightweight Directory Services (AD LDS) is a Lightweight 
Directory Access Protocol (LDAP) directory service that provides lexible support 
for directory-enabled applications without the dependencies and domain-related 
restrictions of AD DS.

http:///


Chapter 6

[ 177 ]

Active Directory Rights Management Services
Active Directory Rights Management Services (AD RMS) in Windows Server 
2012 is the server role that provides you with management and development tools 
that work with the security technologies in the industry. This includes encryption, 
certiicates, and authentication, which are used to help organizations create reliable 
information protection solutions.

Managing Active Directory with 

PowerShell
The Active Directory module for PowerShell consolidates a group of cmdlets. 
You can use these cmdlets to manage your Active Directory domains, AD LDS 
coniguration sets, and Active Directory Database Mounting Tool instances in a 
single, self-contained package. In the following sections, we will show examples to 
demonstrate how to operate Active Directory using PowerShell. In our examples, we 
add the computer Win8Client as a client to a domain fuhaijun.com with a domain 
controller named win2012-ad.

Account management
We can use the Active Directory module in PowerShell to manage your user and 
computer accounts in Active Directory Domain Services (AD DS). And now we will 
show how to use the Active Directory module to accomplish many of the common 
tasks that are associated with managing users.

User management
You can use the Active Directory module for Windows PowerShell to manage users 
in AD DS in Windows Server 2012. This section contains topics that explain how to 
use the Active Directory module to accomplish many of the common tasks that are 
associated with managing users.

Creating an AD User
The following example shows how to use the Active Directory module for Windows 
PowerShell to create a new user in AD DS.

http:///


Managing Active Directory with PowerShell

[ 178 ]

We create a new user (TestUser) with a password (p@ssword) in an organizational 
unit (Test) in the fuhaijun.com domain:

New-ADUser -SamAccountName TestUser -Name "A Test User" -AccountPassword 
(ConvertTo-SecureString -AsPlainText "p@ssw0rd" -Force) -Enabled $true 
-Path 'OU=Test,DC=FUHAIJUN,DC=COM'

Here, using the -Force parameter, we try to convert a plain text string to a security 
string used as a password. And the -Path parameter is used for specifying a domain 
path that the user creates.

Setting a user account to Expire
Sometimes, we need to create an account for a temporary user with a limited time 
available. Within the speciied time range, this account can be used, but after that 
period the account will be disabled.

Set-ADUser TestUser -AccountExpirationDate 11/27/2014

We can see that it is very simple. The Set-ADUser cmdlet is used for setting the user 
(TestUser) to expire on 11/27/2014.

Forcing a user to change the password at the next login
In order to ensure that the newly created user account's password remains 
conidential, you can force the user to change his/her password at the next login.

Set-ADUser -Identity TestUser -ChangePasswordAtNextLogon $true

We force the user (TestUser) to change the password by allocating the 
-ChangePasswordAtNextLogon switch parameter.

Preventing users from changing the password
When some user account is a special user account, such as a user account shared by 
multiple users, we need to prevent users from modifying the password.

Set-ADAccountControl -Identity TestUser -CannotChangePassword $true

The -CannotChangePassword parameter is used for preventing the user (TestUser) 
from modifying the password.

Computer management
If a computer needs to be operated in a domain, it must be connected to the 
domain. The following examples explain how to use the Active Directory module in 
PowerShell to perform many of the tasks associated with computer management.

http:///


Chapter 6

[ 179 ]

Joining a computer to a domain
You must run the following command on a local computer if you want to add  
the local computer to the fuhaijun.com domain by using the current logged-in 
user's credentials.

Add-Computer -DomainOrWorkgroupName fuhaijun

When we need to add the computer Win8Client to the fuhaijun.com domain 
and specify a domain controller with the -server parameter using the current 
credentials, we can run the following command on the local computer:

Add-Computer Win8Client -DN fuhaijun -Server Win2012-ad

Of course, we can also add a local computer to the OU in the directory speciied by 
the -OUPath parameter using the current logged-in user:

Add-Computer -DomainOrWorkgroupName fuhaijun -OUPath 
OU=testOU,DC=fuhaijun,DC=com

Renaming a computer
Sometimes we need to rename a computer. We can rename the local domain-joined 
computer by executing the following command:

Rename-Computer -NewName win8client2 -DomainCredential fuhaijun\
administrator –Restart

The preceding example demonstrates how to change a domain-joined computer's 
name to Win8Client2 with the parameter -DomainCredential for specifying 
the privilege of a domain controller administrator. In order for changes to take 
effect after modifying the hostname, the -Restart parameter is used to restart the 
computer after execution is inished. This command is run on the local computer.

Group management
A group is the concept for organization of objects with the same characteristics. 
Based on the operation of the group, the management tasks for the group members 
can be accomplished.

Viewing group permissions
If you want to manage a group, irst of all you need to know the permissions of the 
current group. You can run the following command from the AD:\> drive; the drive 
must be connected to the domain where the group exists.

Get-ACL (Get-ADGroup UserGroup) | fl * -f

http:///


Managing Active Directory with PowerShell

[ 180 ]

Executing the preceding command, we can get the following result:

We use the Get-ADGroup cmdlet to obtain the existing group, UserGroup, then  
pass it to the Get-ACL cmdlet, and inally transmit it to the Format-List cmdlet  
for formatting the output to the list.

Creating a group
Once we have viewed the group permissions, we need to create a group for 
managing a series of AD objects. The following example demonstrates how  
to create a group named ProductAdmins in the fuhaijun.com domain:

New-ADGroup -Name "Product Admins" -SamAccountName ProductAdmins 
-GroupCategory Security -GroupScope Global -DisplayName "Product 
Administrators" -Path "CN=Users,DC=fuhaijun,DC=Com"

http:///


Chapter 6

[ 181 ]

When this command executes, we can ind a new group named ProductAdmins by 
using ADSI Edit, as shown in the following screenshot:

Adding and removing members of a group
The most common maintenance operation is to add and remove group members. 
We can use the Add-ADGroupMember cmdlet for adding a user fuhj to the group 
ProductAdmins.

Add-ADGroupMember -Identity ProductAdmins -Member fuhj

http:///


Managing Active Directory with PowerShell

[ 182 ]

The parameter -Identity is used for specifying the group to to which to 
add the new member, and the parameter -Member is used for specifying the 
operating group's new member. After the command is executed, we can ind the 
ProductAdmins group in the fuhj user's properties on the Member Of tab.

When we need to remove a group, we can use the Remove-ADGroup cmdlet for 
removing an Active Directory group object. You can use this cmdlet to remove 
security and distribution groups.

Get-ADGroup -filter 'Name -like "Product*' | Remove-ADGroup

The preceding example shows how to get all the groups whose names start with 
Product and then remove them.

http:///


Chapter 6

[ 183 ]

The -Identity parameter speciies the Active Directory group to be removed. 
You can identify a group by its distinguished name (DN), GUID, security 
identiier (SID), Security Accounts Manager (SAM) account name, or canonical 
name. You can also set the -Identity parameter to an object variable such as 
$<localADGroupObject>, or you can pass an object through the pipeline to the 
-Identity parameter. For example, you can use the Get-ADGroup cmdlet to retrieve 
a group object and then pass the object through the pipeline to the Remove-ADGroup 
cmdlet. If ADGroup is being identiied by its DN, the -Partition parameter will be 
automatically determined.

For AD LDS environments, the -Partition parameter must be speciied except in 
the following two conditions:

• The cmdlet is run from an Active Directory provider drive

• A default naming context or partition is deined for the AD LDS environment

To specify a default naming context for an AD LDS environment, set the msDS-
defaultNamingContext property of the Active Directory directory service agent 
(DSA) object (nTDSDSA) for the AD LDS instance.

Organizational unit management
The OU is a particularly useful type of directory object in domains. OUs are Active 
Directory containers into which you can place users, groups, computers, and other 
OUs. An OU cannot contain objects from other domains. OUs can contain other OUs. 
An OU is the smallest scope or unit to which you can assign Group Policy settings or 
delegate administrative authority. By using OUs, you can create containers within a 
domain that represent the hierarchical and logical structures in your organization.

Creating a new organizational unit
We can create a new organizational unit named UserAccounts, which is located in 
the domain fuhaijun.com, as shown in the following example:

New-ADOrganizationalUnit -Name UserAccounts -Path "DC=FUHAIJUN,DC=COM"

We can also use the -instance parameter to specify a template from a completely 
set OU object, as follows:

$ouTemplate = Get-ADOrganizationalUnit "OU=UserAccounts,DC=FUHAIJUN,DC=c
om" -properties seeAlso,managedBy;

New-ADOrganizationalUnit -name UserReports -instance $ouTemplate

http:///


Managing Active Directory with PowerShell

[ 184 ]

In the preceding example, we can see that we create an OU named UserReports 
from the template $ouTemplate.

Listing organizational units
We can use the Get-ADOrganizationalUnit cmdlet to get one or more Active 
Directory organizational units. This cmdlet gets an organizational unit object or 
performs a search to retrieve multiple organizational units.

Get-ADOrganizationalUnit -Filter 'Name -like "*"' | ft -AutoSize

When we execute this command, we get the result as shown in the  
following screenshot:

We can see that all organizational units created in the preceding examples have been 
listed out. The Format-Tables cmdlet is used for formatting the output display.

Renaming an organizational unit
We can use the rename-ADObject cmdlet for changing the name of an  
organizational unit.

Rename-ADObject "OU=TestOU, DC=Fuhaijun,DC=Com" -NewName Groups

Rename the object having the distinguished name OU= 
TestOU,DC=Fuhaijun,DC=Com to Groups. After executing the command, the name of 
the OU TestOU will be changed to Groups.

Of course, we can also use the -Identity parameter with the object GUID in order 
to locate the organizational unit object to be renamed.

Rename-ADObject -Identity "d465ddc9-a5e6-4998-91aa-09e33fe22369" -NewName 
Groups

http:///


Chapter 6

[ 185 ]

Note that the -Partition parameter is not speciied because the object is in the 
default naming context of the domain.

Modifying an organizational unit
We can modify the description of the organizational unit with the distinguished 
name OU=TestOU,DC=Fuhaijun,DC=COM by using the Set-ADOrganizationalUnit 
cmdlet.

C:\PS>Set-ADOrganizationalUnit -Identity "OU=TestOU,DC=Fuhaijun,DC=COM" 
-Description "This Organizational Unit is a test OU of Fuhaijun.COM"

Of course, we can also modify several properties at once. The  
Get-ADOrganizationalUnit cmdlet can help us obtain the destination 
organizational unit, and then assign it to a variable $AsianSalesOU. Then we can 
set the properties of the variable and use the Set-ADOrganizationalUnit cmdlet 
with the -Instance parameter to save the modiication to the object. The command 
would be as follows:

$AsianSalesOU = Get-ADOrganizationalUnit "OU=Asia,OU=Sales,OU=UserAccount
s,DC=Fuhaijun,DC=COM"

$AsianSalesOU.StreetAddress = "No. 20 Chang An Avenue"

$AsianSalesOU.City = "Beijing"

$AsianSalesOU.PostalCode = "100000"

$AsianSalesOU.Country = "China"

Set-ADOrganizationalUnit -Instance $AsianSalesOU

Moving an organizational unit
When we need to adjust the organization structure, we need to move an OU to 
another location; to do so we must use the Move-ADObject cmdlet.

Move-ADObject "OU=ManagedGroups,DC=Fuhaijun,DC=Com" -TargetPath 
"OU=Managed,DC=Fuhaijun,DC=Com"

As we can see, we use the -TargetPath parameter to specify the destination path. 
Meanwhile, we can also use this cmdlet to move other AD objects.

http:///


Managing Active Directory with PowerShell

[ 186 ]

Deleting an organizational unit
As one of the daily tasks is to maintain the Active Directory, removing an Active 
Directory organizational unit is also very important. The following example will 
show how to delete an organizational unit:

C:\PS>Remove-ADOrganizationalUnit -Identity 
"OU=TestOU,DC=FUHAIJUN,DC=COM" -Recursive

Are you sure you want to remove the item and all its children?

Performing recursive remove on Target: 'OU=Accounting,DC=Fuhaijun,DC=com
'.

[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help

(default is "Y"):y

The preceding example shows how to remove an organizational unit and all of its 
children. If the organizational unit is protected from deletion, the organizational unit 
and its children will not be deleted. If the organizational unit is not protected even if 
any of the children are, both the organizational unit and the children will be deleted.

It is also possible to remove an organizational unit using its object GUID as the 
identity while suppressing the conirmation prompt.

Remove-ADOrganizationalUnit -Identity "d465ddc9-a5e6-4998-91aa-
09e33fe22369" -confirm:$false –ProtectedFromDeletion $false

We used the -Identity parameter to specify the object GUID for an organizational 
unit and the -confirm:$false parameter to suppress the conirmation prompt. If 
the lag for -ProtectedFromDeletion is set to True, this cmdlet does not delete the 
OU and it returns an error.

Domain controller management
You can use the Active Directory module for Windows PowerShell to manage your 
domain controllers and the operation's master roles in AD DS.

Finding a domain controller
The following example demonstrates how to ind a domain controller for the 
Fuhaijun.com domain:

Get-ADDomainController -Discover -DomainName fuhaijun.com

http:///


Chapter 6

[ 187 ]

The execution result is as follows:

We can ind all the information about the domain controller, including the hostname, 
IP address, and so on. If you want to ind all the domain controllers for the domain 
and you are currently logged in, just use the following command line:

Get-ADDomainController –filter *

When this command is executed, you get all the details as shown in the  
following screenshot:

http:///


Managing Active Directory with PowerShell

[ 188 ]

Finding a domain controller's site
After we ind the domain controller, we can also ind the domain controller's site 
using the Get-ADDomainController cmdlet with the -Identity parameter,  
as follows:

Get-ADDomainController -Identity Win2012-AD | FT Name,Site

Finding the global catalog servers in a forest
The Get-ADForest cmdlet gets the Active Directory forest speciied by the 
parameters. You can specify the forest by setting the -Identity or -Current 
parameters. The -Identity parameter speciies the Active Directory forest that is 
required. You can identify a forest by its fully qualiied domain name (FQDN), 
DNS hostname, or NetBIOS name. You can also set the parameter to a forest object 
variable, such as $<localForestObject>, or you can pass a forest object through the 
pipeline to the -Identity parameter.

Get-ADForest Fuhaijun.com | FL GlobalCatalogs

Summary
The Active Directory module for Windows PowerShell provides  
command-line scripting for administrative, coniguration, and diagnostic  
tasks, with a consistent vocabulary and syntax. The Active Directory module  
enables end-to-end manageability with Exchange Server, Group Policy,  
and other services.

In this chapter, we discussed how to manage organizational units, user accounts, 
user passwords, and groups by using the Active Directory module. The Active 
Directory module for Windows PowerShell can help users to manage the AD 
effectively through the PowerShell. If you are an administrator managing domains, 
computers, users, groups, mailboxes, organizational units, and so on, using the 
Active Directory module for PowerShell, you may no longer ind it dificult to 
manage time for eficiently managing all the AD objects and preparing AD reports 
for all the computers present in your organization. It will ease the task of managing 
AD objects and will also save a substantial lot of time of the administrator or of the 
help-desk person who is managing them.

In the next chapter, we will discuss how to manage a server with PowerShell.  
We will also look at adding roles and features, managing networks, group policy, 
managing IIS, and the DNS server.

http:///


Managing the Server with 

PowerShell
Having PowerShell built into Windows Server 2012 gives you lexibility while 
managing your server. Several PowerShell cmdlets let you perform many of the key 
administrative jobs that you may need to do on a daily basis, including installing 
features for your Windows Server, backing up your server, analyzing the server, 
managing IIS, and many others. PowerShell lets you perform many of these tasks 
consistently on a batch basis.

Managing your web servers and web farms is an ideal scenario for PowerShell. With 
PowerShell, you can conigure IIS as well as manage applications, sites, application 
pools, and many other aspects of IIS. Managing the core server coniguration of IIS 
is one key aspect of working with IIS. Another scenario is working with the websites 
themselves, including the sites, directories, and web applications on the server. From 
working with your server coniguration to deploying your applications, PowerShell 
can help you accomplish this in a scalable, automated, and consistent fashion.

In this chapter we will cover:

• Working with Server Manager cmdlets

• Managing Group Policy

• Managing IIS with PowerShell

• Managing DNS Server

• Managing Hyper-V with PowerShell

• Managing AppLocker with PowerShell

All demos in this book are based on Windows Server 2012 and PowerShell 3.0.

http:///


Managing the Server with PowerShell

[ 190 ]

Working with Server Manager cmdlets
Windows Server 2012 eases the task of managing and securing multiple server roles 
in an enterprise with the Server Manager console. Server Manager in Windows 
Server 2012 provides a single source for managing a server's identity and system 
information, displaying server status, identifying problems with server role 
coniguration, and managing all roles installed on the server.

Server Manager makes server administration more eficient by allowing 
administrators to do the following using a single tool:

• View and make changes to server roles and features installed on the server

• Perform management tasks associated with the operational lifecycle  
of the server, such as starting or stopping services, and managing local  
user accounts

• Perform management tasks associated with the operational lifecycle of roles 
installed on the server, including scanning certain roles for compliance with 
best practices

• Determine server status, identify critical events, and analyze and 
troubleshoot coniguration issues or failures

Adding roles or features by using PowerShell
PowerShell cmdlets can be used for server management. In Windows Server 2012, 
we can use the Get-WindowsFeature cmdlet to retrieve roles and features that are 
available on a computer. We can see the features that have been installed; those 
features will be marked with checkboxes ([X]) in its display name. The Install-
WindowsFeature and Uninstall-WindowsFeature cmdlets are used for installing 
and uninstalling a role or feature:

1. Open a PowerShell session with elevated user rights. To do this, navigate to 
Start | All Programs | Accessories | Windows PowerShell and right-click 
on the Windows PowerShell shortcut. Then click on Run as administrator.

2. Load the Server Manager module into the PowerShell session before working 
with Server Manager cmdlets. Type the following and press Enter:

Import-Module Servermanager

http:///


Chapter 7

[ 191 ]

3. If you do not know the command name of the role, role service, or feature 
that you want to install, type the following and then press Enter to return 
a list of all command names in the Name column. The command name is 
required for the next step.

Get-WindowsFeature web-*

When the command is executed, we get all the Windows features that have 
their names starting with 'web-'. It looks like the following screenshot:

4. Type the following command, in which the name represents the command 
name of the role, role service, or feature that was obtained in the previous 
step, and then press Enter to install the role or feature. The -restart 
parameter restarts the computer automatically after installation is complete, 
if a restart of the computer is required by the role or feature.

Install-WindowsFeature Telnet-Client

http:///


Managing the Server with PowerShell

[ 192 ]

Since the process of feature installation runs for a long duration, in order to let 
the user know the current progress of the installation, the installation will show 
a progress bar with the percentage of the installation completed, as shown in the 
following screenshot:

If you want to install several features at a same time, you can use the  
Get-WindowsFeature cmdlet to obtain some feature objects, and then pass  
them to the Install-WindowsFeature cmdlet. Say we want to install all  
features for IIS7.5; in this case, we type the following and press Enter:

Get-WindowsFeature web-* |Install-WindowsFeature

After these features have been installed, we can check the installation status, as 
shown in the following screenshot:

http:///


Chapter 7

[ 193 ]

You can install multiple roles, role services, and features by using commas to 
separate the command names, as shown in the following example:

Install-WindowsFeature Telnet-Server,Hyper-V

In this example, we install the Telnet Server and Hyper-V roles.

Advantages of PowerShell cmdlets for Server 
Manager
PowerShell cmdlets for Server Manager offer some signiicant advantages over 
the ServerManagerCmd.exe command. After Windows PowerShell and the Server 
Manager cmdlet sets are installed by using the Deployment Image Servicing 
and Management (DISM) tool, Windows PowerShell cmdlets can be run on a 
computer that is running the Server Core installation option of Windows Server 
2012. Instructions for installing Windows PowerShell and the Server Manager cmdlet 
sets on the Server Core installation option of Windows Server 2012 are available in 
Remote Management with Server Manager.

Managing networking using PowerShell
Managing network settings and services is a core task for administrators of Windows 
Server-based networks. Examples of network coniguration tasks include coniguring 
interfaces, IP addresses, default gateways, and similar tasks.

In previous versions of Windows Server, such tasks usually had to be performed 
using a combination of GUI tools and various command-line utilities. But with the 
signiicantly increased Windows PowerShell capabilities built into Windows Server 
2012, you can now perform most network administration tasks from the Windows 
PowerShell command line or by running Windows PowerShell scripts.

Running the Get-NetIPAddress cmdlet displays a list of all interfaces on the server:

http:///


Managing the Server with PowerShell

[ 194 ]

From the preceding command output, you can see that the interface you are looking 
for is identiied by the alias Ethernet 2. To view the existing TCP/IP coniguration 
of this interface, you can use -InterfaceAlias with the Get-NetIPAddress cmdlet 
as follows:

The preceding command output shows that the Ethernet interface currently has 
192.168.10.9/24 as its IPv4 address.

You can add a second IP address to the interface by executing the  
following command:

New-NetIPAddress -InterfaceAlias "Ethernet 2" -IPAddress  192.168.10.20 ` 
-AddressFamily IPv4 -PrefixLength 24

The resulting command output looks like this:

http:///


Chapter 7

[ 195 ]

By using -InterfaceAlias with the Get-NetIPAddress cmdlet again, you can 
verify that the command accomplishes the desired result.

Get-NetIPAddress -InterfaceAlias Ethernet

When the command is executed, all the information of Ethernet 2 will be listed out. 
It looks like the following:

http:///


Managing the Server with PowerShell

[ 196 ]

Viewing the Advanced TCP/IP Settings window for the interface from the Network 
Connections folder conirms the result. We can see two IP addresses have been 
added to the interface. It is shown in the following screenshot:

You can enable and disable bindings on a network adapter by using Windows 
PowerShell. For example, start by using the Get-NetAdapterBinding cmdlet to 
display the bindings for the speciied interface:

http:///


Chapter 7

[ 197 ]

To disable a speciic binding such as QoS Packet Scheduler, you can use the 
Disable-NetAdapterBinding cmdlet as follows:

Disable-NetAdapterBinding -Name "Ethernet 2" -ComponentID ms_lltdio

You can use the Enable-NetAdapterBinding cmdlet to re-enable the binding.

You can disable a speciic network adapter or even all network adapters using 
Windows PowerShell. For example, the following command disables the adapter 
named Ethernet 2.

Disable-NetAdapter -Name "Ethernet 2" -Confirm:$false

To disable all network adapters on the server, you can use the following command:

Disable-NetAdapter -Name *

Note that all remote connectivity with the server will be lost if you do this. To enable 
any network adapters that are disabled, you can use the Enable-NetAdapter cmdlet.

Managing Group Policy with PowerShell
While most administrative tasks for Group Policy can be most easily performed by 
using GUI tools such as the GPMC and the Group Policy Management Editor, some 
tasks can also be performed using Windows PowerShell. You can use the Windows 
PowerShell Group Policy cmdlets to automate many of the same tasks for domain-
based Group Policy objects (GPOs) that you perform in the user interface by using 
the Group Policy Management Console (GPMC).

The Group Policy cmdlets can only be run on a computer that has the Group Policy 
Management Console installed. You can use Windows PowerShell to conigure  
and manage Group Policy in an Active Directory environment based on Windows 
Server 2012.

Importing a GroupPolicy module
You can import the cmdlets manually by running the following commands from 
Windows PowerShell:

Import-Module ServerManager

Add-WindowsFeature GPMC

Get-Command -Module GroupPolicy

http:///


Managing the Server with PowerShell

[ 198 ]

The following screenshot shows that we have imported a GroupPolicy module and 
checked all the commands of the module:

We can use the Get-GPO cmdlet to get one GPO or all the GPOs in a domain.  
The usage of the Get-GPO cmdlet is as shown in the following screenshot:

http:///


Chapter 7

[ 199 ]

Creating GPOs with PowerShell
Only domain administrators, enterprise administrators, and members of the Group 
Policy Creator Owners group can create GPOs. These users must run Windows 
PowerShell in an elevated state. You can use the Domain parameter to explicitly 
specify the domain for this cmdlet. If you do not specify the domain explicitly, the 
cmdlet uses the default domain. The default domain is the domain that is used to 
access network resources by the security context under which the current session 
is running. This domain is typically the domain of the user that is running the 
session. For example, the domain of the user who has started the session by opening 
Windows PowerShell from the Program Files menu, or the domain of a user that is 
speciied in a runas command. However, computer startup and shutdown scripts 
run under the context of the LocalSystem account. The LocalSystem account is a 
built-in local account, and it accesses network resources under the context of the 
computer account. Therefore, when this cmdlet is run from a startup or shutdown 
script, the default domain is the domain to which the computer is connected.

Next, you can use the New-GPO cmdlet to create a new GPO as follows:

This command creates a GPO in the domain of the user. The GPO is created with the 
speciied comment.

Managing IIS with PowerShell
The web server management module (WebAdministration) for Windows 
PowerShell, which includes IIS cmdlets, can let you manage the coniguration and 
operation of IIS. It implements a namespace model that includes application pools, 
websites, web applications, and virtual directories.

http:///


Managing the Server with PowerShell

[ 200 ]

In Windows Server 2012, the Windows PowerShell icon is pinned to the task bar 
by default. However, you must start Windows PowerShell only once to make the 
Import all modules task appear. You can manually add the IIS module to the 
instance of Windows PowerShell that you have opened by using the following 
command at the PowerShell prompt:

Import-Module WebAdministration

If we want to operate the IIS objects, we must import the WebAdministration 
module. The following screenshot shows how to import this module and shows  
all the websites in this computer:

In the preceding example, we import the WebAdministration module and list the 
websites on the current computer. The IIS module implements a virtual drive named 
IIS. The root virtual folders are AppPools, websites, and SslBindings. In the 
AppPools folder, runtime data such as the current operation of the worker processes, 
application domains, and requests can be found. The sites folder contains website 
folders, as well as application procedures and virtual directories.

To use the Windows PowerShell cmdlets for IIS, you must be a member of the IIS 
Administrators group or you must have been delegated the appropriate authority.

Creating a new website
We can create a new IIS website by using the New-Website cmdlet with the settings 
speciied in the parameter values.

New-Website -Name testsite -Port 80 -HostHeader testsite -PhysicalPath 
c:\temp

The following screenshot shows that we create a website named testsite and 
specify the physical path as c:\temp.

http:///


Chapter 7

[ 201 ]

Meanwhile, we can ind the websites in the IIS Manager as shown in the  
following screenshot:

Modifying IIS binding
Sometimes, after we create a website, in order to adapt to a change of environment, 
we need to modify a property of an existing IIS site binding. We can execute the  
Set-WebBinding cmdlet to modify IIS binding as follows:

Set-WebBinding -Name 'Default Web Site' -BindingInformation "*:80:" 
-PropertyName Port -Value 1234

In the preceding example, we change the setting for the Port property for the default 
website from 80 to 1234.

Creating an FTP site
We can create a new FTP site using the New-WebFtpSite cmdlet. FTP 7 or later must 
be installed for this cmdlet to function successfully.

New-WebFtpSite -Name testFtpSite -Port 21 -PhysicalPath c:\test 
-HostHeader mySite -IPAddress 127.0.0.1

http:///


Managing the Server with PowerShell

[ 202 ]

When this command is executed, an FTP site named testFtpSite will be created. 
The FTP site will listen on port 21 and the physical path is c:\test. This is shown  
in the following screenshot:

Creating a virtual directory
A virtual directory simply designates a folder that appears in a path but is not actually 
a subfolder of the preceding folder in the path in IIS. Virtual directories present a 
uniied virtual view of user information from multiple systems so that it appears to 
reside in a single system. In PowerShell, we can use the New-WebVirtualDirectory 
cmdlet to create a virtual directory. The example is as follows:

New-WebVirtualDirectory -Site "Default Web Site" -Name TestVDir 
-PhysicalPath c:\inetpub\virtualdir

The example creates a new virtual directory named TestVDir on the default website.

Creating a WebAppPool
Application pools are used to separate sets of IIS worker processes that share the 
same coniguration and application boundaries. Application pools are used to isolate 
our web applications for better security, reliability, availability, and performance 
and keep them running without impacting each other. The worker process serves as 
the process boundary that separates each application pool so that when one worker 
process or application is having an issue or recycles, other applications or worker 
processes are not affected. We can use the New-WebAppPool cmdlet for creating a 
new application pool as shown in the following example:

New-WebAppPool MyAppPool

This example creates a new IIS application pool named MyAppPool.

Backing up and restoring WebConiguration
In order to mitigate mistake we make when we modify the IIS coniguration, we can 
back up the coniguration of IIS into a coniguration ile. If any errors occurred, we 
can restore the backup coniguration.

http:///


Chapter 7

[ 203 ]

The following example demonstrates how to create a backup of your IIS 
coniguration in a folder named MyIISConfigBackup.

Backup-WebConfiguration -Name MyIISConfigBackup

We can also use the Get-WebConfigurationBackup cmdlet to get a list of available 
IIS coniguration backups.

Get-WebConfigurationBackup

Restoring the IIS coniguration backup is very simple. We can use the  
Restore-WebConfiguration cmdlet with the -Name parameter to restore a 
coniguration ile named MyIISConfigBackup, as shown in the following example:

Restore-WebConfiguration -Name MyIISConfigBackup

When the IIS coniguration backup ile is no longer needed, we can use the  
Remove-WebConfiguration cmdlet with the -Name parameter to remove it.

Remove-WebConfiguration -Name MyIISConfigBackup

All the examples of this section are shown in the following screenshot:

In the preceding screenshot, we have demonstrated the maintenance process of an 
IIS coniguration backup ile.

http:///


Managing the Server with PowerShell

[ 204 ]

Managing a DNS server using PowerShell
You can manage Windows Server 2012 DNS servers using Windows PowerShell. 
Common DNS server management tasks are adding resource records to zones, 
coniguring forwarders, coniguring root hints, and so on.

For example, let's view a list of zones on a DNS server that is also a domain 
controller for the fuhaijun.com domain:

To view a list of resource records of type A (address) in the fuhaijun.com zone, we 
can pipe the output of the Get-DnsServerResourceRecord cmdlet into the Where-
Object cmdlet as follows:

To add a new A resource record for a test server, you can use the Add-
DnsServerResourceRecordA cmdlet as follows:

Add-DnsServerResourceRecordA -IPv4Address 192.168.10.1 -Name gateway 
-ZoneName fuhaijun.com

You can also add other types of resource records such as PTR, CN, or MX 
records using the Add-DnsServerResourceRecordA cmdlet, by replacing A 
with the record type, for example, Add-DnsServerResourceRecordPTR, Add-
DnsServerResourceRecordCN, and Add-DnsServerResourceRecordMX. And you 
can use the Remove-DnsServerResourceRecord cmdlet to remove resource records 
from a zone.

http:///


Chapter 7

[ 205 ]

When we set up a DNS server, we can use the Test-DNSServer cmdlet to verify 
whether it was conigured correctly or not. As we all know, DNS Server 8.8.8.8 is a 
server for the Google Public DNS service. Whereas, 192.168.10.9 is a DNS Server I 
installed in my private network. And 192.168.10.10 is just a common workstation, 
not a DNS server. We can use the Test-DNSServer cmdlet to check the three 
preceding IP addressed separately, as follows:

We can see the result of these commands; DNS servers return Success and the  
non-DNS Server returns NoRespnse. The Test-DNSServer cmdlet can check  
whether a server is a valid DNS server.

Managing Hyper-V with PowerShell
Microsoft Hyper-V, known as Windows Server Virtualization, is a native hypervisor 
that enables platform virtualization on an x86-64 system. Microsoft Hyper-V and 
VMware ESX Server are based on the hardware support Bare-Metal virtualization 
products. Their biggest difference is that Microsoft Hyper-V adopts a microkernel 
structure, and the ESX Server is a product of a single kernel.

The main characteristic of a single kernel is that the hardware driver present in the 
Hypervisor layer is shared by all virtual machines on the Hypervisor. When a virtual 
machine OS needs to access the hardware, it uses the Hypervisor driver model. 
This kind of single-kernel Hypervisor can provide very good performance, but it 
has defects in safety and compatibility. Due to the drivers and some third-party 
code running in a very sensitive area, the model has a large attack surface. Another 
problem is stability. The model relies on shared drivers, so any bug will affect all of 
the virtual machines. In addition, you also require the Hypervisor to support all of 
the drivers, and this causes this layer to be relatively large in size.

http:///


Managing the Server with PowerShell

[ 206 ]

The Hyper-V adopts a microkernel structure; it is a thin Hypervisor. Because it  
does not need third-party drivers, Hyper-V has the advantage on volume. In 
addition, since the microkernel volume is low, the running eficiency is very high.  
A driver runs in each partition within the virtual machine OS to be able to access  
the hardware directly by using the Hypervisor. It makes each partition independent 
of the others, so it has better security and stability.

The Hyper-V technology provides an environment that you can use to create and 
manage virtual machines and their resources. Each virtual machine is an isolated, 
virtualized computer system that is capable of running its own operating system. 
This allows you to run multiple operating systems at the same time on the same 
physical computer. In the following sections, we will introduce how to manage 
Hyper-V with PowerShell.

Installing Hyper-V on Windows Server 2012
We can use the Server Manager from the control panel to add the Hyper-V role. 
On the desktop, right-click on PowerShell in the task bar, and then click on Run as 
Administrator. In Windows PowerShell 3.0, there is no need to import the Server 
Manager cmdlet module into the PowerShell session before running cmdlets that 
are part of the module. A module is automatically imported the irst time you run a 
cmdlet that is part of the module. We can run the Get-WindowsFeature cmdlet to 
verify installation, as shown in the following screenshot:

We can see Hyper-V has not been installed. We can then use the Install-
WindowsFeature Hyper-V cmdlet to install Hyper-V, as shown in the  
following screenshot:

http:///


Chapter 7

[ 207 ]

After you add Hyper-V to your computer, a restart is required to complete the 
process. This restart is necessary to start the Windows Hypervisor and the Virtual 
Machine Management service. After that occurs, you can create and run virtual 
machines on this computer.

Creating a virtual machine
If you want to create a virtual machine that can be accessed by networking, you must 
create a virtual hard disk irst, and then create a virtual machine. Finally, connect 
the virtual network adapter to a virtual switch. The Hyper-V module supplies the 
needed cmdlet for our operations.

We can create a virtual hard disk by using the New-VHD cmdlet with the  
following parameters:

• -Path: Speciies the path of the virtual hard disk

• -ParentPath: Speciies the path to the parent of the differencing disk  
to be created

• -SizeBytes: The maximum size, in bytes, of the virtual hard disk to  
be created

For example, we can create a VHDX-format differencing virtual hard disk with a 
parent path of D:\vhd\webserver.vhdx, as shown in the following screenshot:

We can create a virtual machine by using the New-VM cmdlet with the  
following parameters:

• -Name: Speciies the name of the new virtual machine
• -Path: Speciies the path of the virtual machine

http:///


Managing the Server with PowerShell

[ 208 ]

• -VHDPath: Speciies the path to the parent of the differencing disk to be 
created

• -MemoryStartupBytes: Speciies the amount of memory, in megabytes, to 
assign to the virtual machine

For example, we can create a virtual machine named MyVM with 2 GB of memory and 
an existing virtual hard disk that uses the VHDX format connected to it, as shown in 
the following screenshot:

Starting and stopping a virtual machine
We can start or stop the virtual machine MyVM by using the Start-VM or Stop-VM 
cmdlet. The parameter -Name is the name of the virtual machine.

Start-VM -Name MyVM

Stop-VM -Name MyVM

Modifying a virtual machine
Sometimes, we need to add a virtual switch on a Hyper-V host. The New-VMSwitch 
cmdlet is used to add a virtual switch. The parameter SwitchType speciies the type 
of switch to be created. The allowed values are Internet and Private, just as shown 
in the following screenshot:

Meanwhile, we can create a VMNetworkAdapter and add it to a  
speciied virtual machine connecting to the virtual switch by using  
the Add-VMNetworkAdapter cmdlet.

Add-VMNetworkAdapter -VMName MyVM -SwitchName MyVMSwitch

http:///


Chapter 7

[ 209 ]

If we want to add a new hard drive for a virtual machine, we can use the Add-
VMHardDiskDrive cmdlet with the -VMName parameter for specifying the VM's name 
and the -Path parameter for the hard drive to be saved.

Add-VMHardDiskDrive -VMName MyVM -Path D:\vm\vhd\disk1.vhdx

We can add a DVD drive to a virtual machine when we need to install a new guest 
OS for it by using the Add-VMDvdDrive cmdlet. The -VMName parameter speciies the 
virtual machine. The -Path parameter speciies the location of the ISO image that 
will be mounted to the virtual machine.

Add-VMDvdDrive -VMName MyVM -Path D:\CentOS6.3_KS1-x86_64.iso

Operating a virtual machine snapshot
A virtual machine snapshot captures the state, data, and hardware coniguration of a 
virtual machine. Snapshots provide a fast and easy way to revert a virtual machine to 
a previous state.

We can create a snapshot of a virtual machine by using the Checkpoint-VM cmdlet.

Checkpoint-VM -Name MyVM -SnapshotName BeforeInstall

We can retrieve a list of the snapshots of a virtual machine by using the Get-
VMSnapshot cmdlet, as shown in the following screenshot:

We can restore a virtual machine snapshot by using the Restore-VMSnapshot 
cmdlet, as shown in the following screenshot:

We can delete a snapshot or snapshot tree by using the Remove-VMSnapshot cmdlet.

Remove-VMSnapshot –Name BeforeInstall –VMName MyVM

http:///


Managing the Server with PowerShell

[ 210 ]

Managing AppLocker with PowerShell
AppLocker is a new feature used for Software Restriction Policies. AppLocker 
contains new capabilities and extensions that allow users to create rules to allow or 
deny applications' permission to run based on the unique identities of iles, and to 
specify which users or groups can run those applications. Of course, you can create 
and manage AppLocker rules by using Windows PowerShell cmdlets.

Microsoft supplies an AppLocker module, which contains ive cmdlets that are 
used to help create, test, maintain, and troubleshoot an AppLocker policy. To edit 
or update a GPO by using the AppLocker cmdlet, you must have the Edit Setting 
permission. By default, members of the Domain Admins group, the Enterprise 
Admins group, and the Group Policy Creator Owners group have this permission. 
To perform tasks by using the Local Security policy snap-in, you must be a member 
of the Local Administrators group on the computer.

Importing the AppLocker PowerShell module
To use the AppLocker cmdlet, you must irst import the AppLocker module by using 
the following command at the PowerShell prompt:

Import-Module AppLocker

Retrieving application information
Now, after importing the AppLocker module, you need to retrieve application 
information for preparing to deny others access. For this purpose, we use the  
Get-AppLockerFileInformation cmdlet with the following parameters:

• -Path: List of paths to the iles from which the ile information is retrieved.
• -Directory: Deines the directory containing the iles from which the ile 

information is retrieved. To search all subfolders and iles in the directory, 
include the Recurse parameter.

• -FileType: Deines the generic ile type to ind. The ile type options are exe, 
secript, WindowsInstaller, or dll.

For example, we can get the ile information for the mspaint.exe ile at  
C:\Windows\System32\.

http:///


Chapter 7

[ 211 ]

We can get the ile information for all of the executable iles in the  
C:\Windows\System32 directory, as shown in the following screenshot:

Retrieving an AppLocker policy
Before we modify the AppLocker policy, we should irst get the AppLocker policy 
from the local GPO. We can use the Get-AppLockerPolicy cmdlet with the 
following parameters:

• -Local: Gets the AppLocker policy from the local GPO.

• -Domain: Gets the AppLocker policy from the GPO that is speciied by the 
path in the LDAP parameter.

• -LDAP: This is the LDAP path of the Group Policy object. It must specify a 
unique GPO.

• -XML: Speciies that the AppLocker policy be output as an XML-formatted 
string.

For example, we can get the local AppLocker policy as an AppLockerPolicy object, 
as shown in the following screenshot:

http:///


Managing the Server with PowerShell

[ 212 ]

We can also get the AppLocker policy of the unique GPO speciied by the LDAP 
path as an AppLockerPolicy object.

Setting an AppLocker policy
We can set the AppLocker policy for the speciied GPO. If no Lightweight Directory 
Access Protocol (LDAP) is speciied, the local GPO is the default. The Set-
AppLockerPolicy cmdlet has the following parameters:

• -XMLPolicy: Speciies the path where the AppLocker policy XML ile  
is saved.

• -PolicyObject: Speciies the AppLocker object that contains the  
AppLocker policy.

• -LDAP: The LDAP path of the Group Policy object. If this parameter is not 
speciied, the local AppLocker policy is set.

• -Merge: If the -Merge parameter is used, rules in the speciied AppLocker 
policy will be merged with the AppLocker rules in the target GPO speciied 
in the LDAP path. The merged policies will remove rules with duplicate rule 
IDs. If the -Merge parameter is not speciied, the new policy will overwrite 
the existing policy.

For example, we can set the local AppLocker policy to the policy speciied in  
D:\Policy.xml.

Get-AppLockerPolicy –Local –Xml -XMLPolicy C:\Policy.xml

We can also set the GPO speciied in the LDAP path to contain the AppLocker policy 
that is speciied in C:\Policy.xml.

Set-AppLockerPolicy -XMLPolicy C:\Policy.xml -LDAP "LDAP://Win2012AD.
fuhaijun.com/CN={31B2F340-016D-11D2-945F-00C04FB984F9},CN=Policies,CN=Sys
tem,DC=fuhaijun,DC=com"

http:///


Chapter 7

[ 213 ]

Generating rules for a given user or group
We can use a list of ile information to automatically generate rules for a given  
user or group. It can generate rules based on publisher, hash, or path information. 
We can use the Get-AppLockerFileInformation cmdlet to create the list of ile 
information, and then pass the information to the New-AppLockerPolicy cmdlet. 
The New-AppLockerPolicy cmdlet with the following parameters creates a new 
AppLocker policy from a list of ile information:

• -FileInformation: A ile can contain publisher, path, and hash information. 
Some information may be missing, such as publisher information for an 
unsigned ile.

• -RuleType: Speciies the type of rules to create from the ile information.
• -RuleNamePrefix: Speciies a name to add as a preix to each rule that  

is created.

• -User: Deines the user or group that rules are applied to. You can provide 
the value in one of the following formats:

 ° DNS user name (domain\username)

 ° User Principal Name (username@domain.com)

 ° SAM user name (username)

• -Optimize: Instructs that similar rules should be grouped together.

For example, we can create an AppLocker policy that allows rules for all of the 
executable iles in C:\Windows\System32. The policy contains publisher rules for 
those iles with publisher information and hash rules for those that do not.

Testing the AppLocker policy against a ileset
After you create AppLockerPolicy rules, you can use the Test-AppLockerPolicy 
cmdlet to test whether a speciied list of iles is allowed to run or not on the  
local computer for a speciied user. The Test-AppLockerPolicy cmdlet has 
following parameters:

• -PolicyObject: Speciies the policy object that contains the  
AppLocker policy

http:///


Managing the Server with PowerShell

[ 214 ]

• -Path: Speciies the list of ile paths to test
• -User: Deines the user or group to be used for testing the rules in the 

speciied AppLocker policy
• -Filter: Filters the output by the policy decision for each input ile

We can use the AppLocker policy in C:\Policy.xml to test whether or not mspaint.
exe and taskmgr.exe are allowed to run for users who are members of the 
Everyone group, as shown in the following screenshot:

Summary
Using Windows PowerShell commands in Windows Server 2012 for basic 
administration and networking tasks can save a lot of time. This is true not only 
because you can script the tasks for application on multiple computers, but you can 
also save time by not having to navigate through frequently complex user interface 
(UI) dialog boxes when you use PowerShell to conigure individual computers.

In this chapter, we discussed how to add roles or features and manage Group  
Policy. We also discussed the module extension manager, IIS, DNS Server,  
Hyper-V, and AppLocker.

DevOps is a modern term and there is some disagreement about what it demands, 
but at the heart it is all about making changes safely through automation and 
bridging the gap between operators and developers. There is a lot to do in this area, 
but Windows Server 2012 and PowerShell 3.0 have made excellent progress towards 
accomplishing those goals. PowerShell won't be the only tool in your automatic 
DevOps toolbox, but it should be in every eficient developer's toolbox.

In the next chapter, we will take a look at the usage of Windows PowerShell in 
managing and coniguring uniied communication (UC) components, especially 
Microsoft Exchange Server, Lync Server, and Ofice 365.

http:///


Managing Uniied 
Communication 

Environments with 

PowerShell
Uniied communication (UC) has become one of the most important components 
of any organization, regardless of the size of the business, not only because of the 
integration between different components but also because of the added value for 
end users that can stay connected to the business, and be reachable and in control. 
The term uniied communication from a technological perspective always refers to 
e-mails, Instant Messaging (IM), voice message, Voice over IP (VoIP), and a lot of 
other amazing technologies that everyone uses on a daily basis.

Today, a lot of vendors in the market are providing comprehensive uniied 
communication solutions for different types of business sectors. However, in this 
chapter the focus will be on Microsoft uniied communication on-premise and  
cloud-hosted solutions, and how Windows PowerShell can be used to conigure  
and manage them easily.

This chapter will discuss how to start using Windows PowerShell to perform the 
basic and advanced administration tasks for Exchange Server, Lync Server, and 
Ofice 365.

http:///


Managing Uniied Communication Environments with PowerShell

[ 216 ]

In this chapter we will cover:

• What Exchange Management Shell is

• How to use PowerShell to do Exchange Management tasks

• What Lync Management Shell is

• How to use PowerShell to do Lync Management tasks

• Windows PowerShell with Ofice 365 and Exchange Online Service

What Exchange Management Shell is
Exchange Management Shell (EMS) is a normal Windows PowerShell console that 
runs a set of Exchange-related Windows PowerShell snap-ins and cmdlets that are 
loaded when Exchange Management Shell is started up. It also shows a basic and 
quick guidance for using it and some effective daily Exchange Management Shell 
tips each time you open it.

EMS is the Windows PowerShell interface that allows you to easily perform 
Exchange Server administrative tasks, such as creating mailboxes, coniguring mail 
low policies, and managing security permissions in addition to being able to execute 
normal Windows PowerShell cmdlets and functions.

On having a deeper look at EMS shortcut properties, you will obviously notice that 
Exchange Management Shell is nothing more than running a powershell.exe ile 
with an Exchange script.

http:///


Chapter 8

[ 217 ]

The Exchange script loaded by Exchange Management Shell is located at 
%SystemDrive% | Program Files | Microsoft | Exchange Server | V15 
| Bin | RemoteExchange.ps1.

Exchange Management Shell tips

• Use the Get-ExCommand cmdlet to list the Exchange Server 
cmdlets and functions only

• Use the Get-Tip cmdlet to get a new Exchange tip

• Use the Get-ExBlog cmdlet to open the Exchange Server  
team blog

http:///


Managing Uniied Communication Environments with PowerShell

[ 218 ]

How to make Windows PowerShell 
understand Exchange Server cmdlets
Launching EMS is a quick and nice way to jump into the Exchange PowerShell 
environment and start doing things. However, sometimes you may want to write 
a long, complex script with a lot of debugging, comments, and breakpoints so that 
you can move from the traditional Windows PowerShell blue console to Windows 
PowerShell Integrated Scripting Environment (ISE) for a better scripting experience. 
Moreover, you may want to bring the Exchange environment to the ISE so a couple 
of options are available in order to achieve this goal.

Option 1 – do it like EMS
In this method, we will load into Windows PowerShell ISE the cmdlets and functions 
related to Exchange Server, by running the RemoteExchange.ps1 script inside the 
PowerShell ISE and then executing the Connect-ExchangeServer –Auto cmdlet to 
connect to the Exchange Server in your organization.

http:///


Chapter 8

[ 219 ]

Option 2 – loading Exchange Server snap-ins
In this method, you will load the snap-ins related to Exchange Server directly into 
Windows PowerShell ISE without using the RemoteExchange.ps1 script. During 
Exchange Server installation, the Exchange DLLs and snap-ins are installed and 
registered in the system.

You can get a list of the Windows PowerShell snap-ins available in the current 
PowerShell session using the Get-PSSnapin cmdlet, with the –Registered 
parameter used to display the list of registered snap-ins even if they are not added 
or available in the current Windows PowerShell session. In order to get the list of 
PowerShell snap-ins registered by Exchange Server, just ilter the cmdlet results by 
the word Exchange. And the wildcard symbol * is used to idetiiy all snap-ins that 
contain the word Exchange.

#Get list of Exchange available PowerShell Snap-ins

PS> Get-PSSnapin –Registered *Exchange*

Now after getting the list of available Exchange PowerShell snap-ins, we need to 
load it into the current PowerShell session using the Add-PSSnapin cmdlet.

http:///


Managing Uniied Communication Environments with PowerShell

[ 220 ]

Since the Exchange had registered four snap-ins, to quickly load them into Windows 
PowerShell, use the pipeline trick to get the list of Exchange PowerShell snap-ins and 
add them directly.

#Add Exchange Server PowerShell Snap-ins

PS> Get-PSSnapin –Registered *Exchange* | Add-PSSnapin

Managing Exchange using PowerShell 

Remoting
In Chapter 3, Using PowerShell Remoting, we had a long discussion about Windows 
PowerShell Remoting and how PowerShell uses different ways to allow you to 
connect to a remote computer using a remote shell. For Exchange Server, we use 
implicit remoting to connect to the Client Access Server (CAS) using a virtual 
directory called PowerShell in order to get the Exchange cmdlets and load them on 
the local computer.

http:///


Chapter 8

[ 221 ]

To connect to Exchange using implicit remoting, perform the following steps:

1. Create a new PowerShell Remoting session using the New-PSSession cmdlet.

2. Import the created session to the local computer using the Import-
PSSession cmdlet.

Use the following script:

#Create new implicit remoting session

$Session = New-PSSession -ConfigurationName Microsoft.Exchange 
-ConnectionUri "http://Exch.Contoso.local/PowerShell" -Credential 
(Get-Credential) -Authentication Kerberos

#Import the PowerShell remoting Session

Import-PSSession –Session $Session

In order to disconnect the Exchange remoting session, use the  
Remove-PSSession cmdlet:

#Remove Exchange Remoting Session

PS > Remove-PSSession –Session $Session

Getting started with Exchange scripting
In this section, we will help you get started with Exchange Server scripting and 
automation using a set of Windows PowerShell scenarios and examples.

Scenario 1 – creating multiple mailboxes from 
CSV ile
In this scenario, you are a messaging administrator who want to create multiple 
exchange mailboxes using a CSV ile that contains new employees' information  
sent by the HR department.

1. Import the CSV ile using the Import-CSV cmdlet, and then store the 
imported data in a deined variable.

2. Deine a variable called OU to store the organizational unit (OU) location 
information, and then prompt the user to enter the OU name.

3. Deine a variable called Domain to store the domain sufix information,  
and then prompt the user to enter the domain sufix.

4. Use the ForEach loop to iterate over the list of users imported from the  
CSV ile.

http:///


Managing Uniied Communication Environments with PowerShell

[ 222 ]

5. Use the New-Mailbox cmdlet within the ForEach loop deined in the 
previous step to create a new user account in the active directory,  
and then create a mailbox for this user account.

Use the following script:

#Import a file named "UsersList.CSV" and save it in variable called 
"$UsersList"

$UsersList = Import-Csv C:\UsersList.csv

#Prompt the user to enter the name of the OU that will store the new 
user accounts (e.g. IT)

$OU = Read-Host -Prompt "Enter the name of the OU..."

#Prompt the user to enter the Domain Suffix (e.g. Contoso.local) 

$Domain = Read-Host -Prompt "Enter the domain suffix..."

#Iterating over the $UsersList to create an account for each user 

ForEach($User in $UsersList)

{

    New-Mailbox -FirstName $User.Firstname `

    -LastName $User.Lastname `

    -DisplayName ($User.Firstname + " " + $User.Lastname) `

    -Name ($User.Firstname + " " + $User.Lastname) `

    -Alias $User.Alias `

    -SamAccountName $User.Alias `

    -UserPrincipalName "$User.Alias@$Domain" `

    -Password (ConvertTo-SecureString -String "P@ssw0rd" `-AsPlainText 
-Force) `

    -OrganizationalUnit $OU `

    -ResetPasswordOnNextLogon $true

}

Scenario 2 – creating a shared mailbox
In this scenario, you are messaging administrator who receive a request from the 
sales team asking for a shared mailbox for the department so that any member of the 
sales team can have the ability to read, and also reply to customer inquiries received 
on this alias.

1. Create a shared mailbox using the New-Mailbox cmdlet with the  
–Shared switch.

http:///


Chapter 8

[ 223 ]

2. Create a new distribution group for the sales team using the  
New-DistributionGroup cmdlet, and grant it access on the shared  
mailbox created in the previous step so that any member of the team  
can get access to the shared mailbox without having to having to manually 
assign, send, and receive rights for each user. The distribution group type 
should be Security to be able to assign security permissions on it.

3. Assign a FullAccess permission to the group created in the previous step on 
the shared mailbox using the Add-MailboxPermission cmdlet to grant the 
group members the ability to access the mailbox.

4. Assign a SendAs permission using the Add-RecipientPermission cmdlet to 
allow group members to send e-mails (reply) from the shared mailbox alias.

Use the following script:

#Enter the alias of Shared Mailbox to be created

$MBalias = Read-Host -Prompt "Enter Shared Mailbox name..."

#Enter the alias of Distribution Group to be access to Shared mailbox

$DGalias = Read-Host -Prompt "Enter Distribution Group name..."

#Create a new shared mailbox

New-Mailbox -Name $MBalias -Shared

#Create a new security distribution group 

New-DistributionGroup -Type Security -Name $DGalias -SamAccountName 
$DGalias

#Assign FullAccess rights on the shared mailbox to the distribution group

Add-MailboxPermission -Identity $MBalias -User $DGalias -AccessRights 
FullAccess -InheritanceType All

#Assign SendAs rights to disribution groupn on the shared mailbox

Add-RecipientPermission $MBalias -Trustee $DGalias -AccessRights 
"SendAs"

http:///


Managing Uniied Communication Environments with PowerShell

[ 224 ]

Scenario 3 – creating a resource (room/
equipment) mailbox
In this scenario, you are messaging administrators who receive a request from 
the corporate facilities team asking for help in automating the process of making 
meeting room and equipment reservations.

1. Create a resource mailbox using the New-Mailbox cmdlet with the –Room or 
-Equipment parameter to deine the type of resource mailbox you want to 
create, that is, either Room or Equipment.

2. Automate a resource calendar reservation using the Set-
CalendarProcessing cmdlet with the following group of parameters:

 ° –AutomateProcessing: To allow auto acceptance of a  
resource reservation

 ° -MaximumDurationInMinutes: To define the maximum duration for 
a single resource reservation

 ° -AddOrganizerToSubject: To show the organizer's name in the 
reservation subject

 ° -EnableResponseDetails: To send a detailed response for resource 
reservation acceptance or rejection

 ° –ProcessExtenralMeetingMessages: To define whether the 
resource can be reserved by external users or not

Use the following script:

#Enter the name of the resource mailbox
$Mailbox = Read-Host -Prompt "Enter the name of the resource 
mailbox..."

#Enter the type of required resource
Do {$type = Read-Host -Prompt "Enter the type of the resource (1 for 
Room, 2 for Equipment)"}
While (($type -ne 1) -and ($type -ne 2))

#Create resource mailbox with a selected type
If ($type -eq 1)
{New-Mailbox -Name $Mailbox -Room}
elseif($type -eq 2)
{New-Mailbox -Name $Mailbox -Equipment}

#Define resource reservation
Set-CalendarProcessing -Identity $Mailbox -AutomateProcessing 
AutoAccept -MaximumDurationInMinutes 120 -AddOrganizerToSubject $true 
-EnableResponseDetails $true -ProcessExternalMeetingMessages $false

http:///


Chapter 8

[ 225 ]

Scenario 4 – creating a distribution group
In this scenario, you are messaging administrators who want to create a distribution 
group for corporate departments, to make the communication between team 
members and corporate departments faster and easier.

1. Import the CSV ile using the Import-CSV cmdlet, select the column 
containing the department information using the Select-Object cmdlet, 
and then group the department rows in department column using the 
Group-Object cmdlet in order to unify the duplicate values.

2. Select the column that contains the results of departments' column iltering 
and grouping using the Select-Object cmdlet, then store the imported data 
in a deined variable.

3. Use the ForEach loop to iterate over the list of departments extracted from 
the CSV ile.

4. Use the New-DistributionGroup cmdlet within the ForEach loop deined in 
the previous step to create a new distribution group for each department.

5. Use the ForEach loop to iterate over the list of users extracted from the  
CSV ile.

6. Use the Update-DistributionGroupMember cmdlet to add each user to the 
related department's distribution group.

Use the following script:

#Import a file named "UsersList.CSV", select and group the department, 
save it in variable called "$DepartmentsList"
$UsersInfo = Import-Csv C:\UsersList.csv
$DepartmentsList = $UsersInfo | Select Department | Group Department | 
Select Name

#Iterating over the $DepartmentsList to create a distribbution group 
for each department. 
ForEach($Department in $DepartmentsList)
{
    New-DistributionGroup -Type Distribution -Name $Department.Name 
-SamAccountName $Department.Name.Trim() -DisplayName $Department.Name 
-MemberJoinRestriction Open -OrganizationalUnit "DGs"
}

#Iterating over the $UsersInfo to add each user to the related a 
distribbution group according to department. 
ForEach($User in $UsersInfo)
{
    Update-DistributionGroupMember -Identity $User.Department -Members 
$User.Alias -Confirm:$false
}

http:///


Managing Uniied Communication Environments with PowerShell

[ 226 ]

Scenario 5 – deining a MailTip for a 
distribution group
In this scenario, you are messaging administrators who want to add a MailTip for the 
technical support department's distribution group that is asking the users to check 
the IT support portal before opening an incident request.

1. Use the Set-DistributionGroup cmdlet to add a MailTip to the required 
distribution group.

2. Use the –MailTip parameter to deine the MailTip text.

Use the following script:

#Enter the Distribution Group Name/Alias

$Alias = Read-Host -Prompt "Enter the Distribution Group Name/
Alias..."

#Enter the MailTip Text

$TipText = Read-Host -Prompt "Enter the MailTip Test..."

#Update the DG with the MailTip

Set-DistributionGroup -Identity $Alias -MailTip $TipText

Scenario 6 – creating a dynamic distribution 
group
Unlike a normal distribution group, a dynamic distribution group does not have 
criteria for members but has one for membership. In other words, you do not have 
to add each member to the group, but you need to deine iltering criteria so that 
each time you send an e-mail to this group, the Exchange server will query active 
directory using the mentioned criteria and send the message to the list retrieved from  
this query.

In this scenario, you are messaging administrators who want to create a dynamic 
distribution group for a Technology department that contains subdepartments,  
such as Software, Networking, Infrastructure, and Security.

1. Create a dynamic distribution group using the New-
DynamicDistributionGroup cmdlet.

2. Use the –IncludedRecipients parameter to deine the recipients to be 
included in this group.

http:///


Chapter 8

[ 227 ]

3. Use the –RecipientContainer parameter to deine the scope of the 
recipients based on their location in active directory.

4. Use the –ConditionalDepartment parameter to deine which departments 
should be included in the group based on the department property of the 
user object in the active directory.

Use the following script:

New-DynamicDistributionGroup -Name "Information Technology Team" 
-IncludedRecipients MailboxUsers -RecipientContainer "Contoso.local/
HQ/IT" -Alias "ITteam" -ConditionalDepartment "Software","Security","N
etworking","Infrastructure" -OrganizationalUnit "DDGs"

Scenario 7 – creating multiple mailbox 
databases from a CSV ile
In this scenario, you are messaging administrators who want to minimize the 
administration efforts of Exchange mailbox databases. So, we create multiple 
Exchange mailbox databases for each department in our organization using a CSV 
ile that contains new employee information sent by the HR department.

1. Import the CSV ile using the Import-CSV cmdlet, select the column that 
contains department information using the Select-Object cmdlet, and then 
group the department column using the Group-Object cmdlet in order to 
unify the duplicate values.

2. Select the column that contains the results of the group of department 
columns using the Select-Object cmdlet, and then store the imported data 
in a variable.

3. Use the ForEach loop to iterate over the list of departments extracted from 
the CSV ile.

4. Use the New-MailboxDatabase cmdlet within the ForEach loop deined in 
the previous step to create new mailbox databases.

5. Use the Mount-Database cmdlet within the ForEach loop to mount the 
database created in the previous step.

Use the following script:

#Import a file named "UsersList.CSV", select and group the department, 
save it in variable called "$DepartmentsList"

$DepartmentsList = Import-Csv C:\UsersList.csv | Select Department | 
Group Department | Select Name

http:///


Managing Uniied Communication Environments with PowerShell

[ 228 ]

#Iterating over the $DepartmentsList to create a database for each 
department, and then mount it. 

ForEach($Department in $DepartmentsList)

{

New-MailboxDatabase -Name $Department.Name -Server "EXCH-MB-01" 
-EdbFilePath ("c:\Mailbox\" + "$Department.Name" + "\" + $Department.
Name + ".edb") | Mount-Database 

}

Scenario 8 – exporting mailboxes to PST iles
In this scenario, you are messaging administrators who want to back up the current 
Exchange Server environment using an alternative way that allows an easier and 
faster way to restore a single mailbox. So we will use Windows PowerShell to export 
every Exchange mailbox to PST iles. For the purpose of achieving this task, we will 
use the New-MailboxExportRequest cmdlet.

1. In order to get the New-MailboxExportRequest cmdlet, we have to load  
the Microsoft.Exchange.Management.PowerShell.E2010 PowerShell 
snap-in.

2. Use the Get-MailboxDatabase cmdlet to retrieve a list of all the available 
Exchange mailbox databases.

3. Use the ForEach loop to iterate over the list of mailbox databases retrieved in 
the previous step.

4. Use the Test-Path and New-Item cmdlets to validate the existence of a 
folder for each database, and create it if it does not exist.

5. Use the Get-Mailbox cmdlet with the –Database parameter to retrieve a list 
of all the available Exchange mailboxes per database.

6. Use the ForEach loop to iterate over the list of mailboxes retrieved in the 
previous step.

7. Use the New-MailboxExportRequest cmdlet within the ForEach loop 
deined in the previous step to export each mailbox to the PST ile.

8. Use the –IsArchive parameter with the New-MailboxExportRequest cmdlet 
to export the archived mailbox to the PST ile.

http:///


Chapter 8

[ 229 ]

Use the following script:

#Load Exchange PowerShell Snap-in
Add-PSSnapin Microsoft.Exchange.Management.PowerShell.E2010

#Iterating over the mailboxes database 
ForEach ($DB in Get-MailboxDatabase)
{ 
 #check the existence of database backup folder
    if( !(Test-Path "\\EXCH\Backup\$DB") )
    {
#Create backup folder for database if not exist
New-Item -ItemType Directory -Name $DB.Name -Path "\\EXCH\Backup\"
}
 #Iterating over the mailboxes for in each database  
     ForEach ($Mailbox in (Get-Mailbox -Database $DB.Name) ) 
    {
  #Export each mailbox into releated database folder
        New-MailboxExportRequest -Mailbox $Mailbox.Alias -FilePath 
("\\EXCH\Backup\" + $DB.Name + "\" + $Mailbox.Alias + ".pst")
    }
}

Scenario 9 – importing a mailbox from PST 
iles
In this scenario, you are messaging administrators who are trying to restore an 
Exchange database from a backup but facing a problem due to a corrupted  
backup ile. So, we need to restore the mailboxes by importing the PST ile  
for each mailbox. For the purpose of achieving this task, we will use the  
New-MailboxImportRequest cmdlet.

1. In order to get the New-MailboxImportRequest cmdlet, we have to load the 
Microsoft.Exchange.Management.PowerShell.E2010 PowerShell snap-in.

2. Use the Get-GetChilditem cmdlet to retrieve the list of all the available  
PST iles.

3. Use the ForEach loop to iterate over the list of iles retrieved in the  
previous step.

4. Use the New-MailboxImportRequest cmdlet within the ForEach loop 
deined in the previous step to import each mailbox to the PST ile.

5. Use the –IsArchive parameter with the New-MailboxImportRequest cmdlet 
to import the PST ile to the archived mailbox.

http:///


Managing Uniied Communication Environments with PowerShell

[ 230 ]

Use the following script:

#Load Exchange PowerShell Snap-in

Add-PSSnapin Microsoft.Exchange.Management.PowerShell.E2010

#Iterating over the backup file to get the list of *.pst files 

ForEach ($file in (Get-ChildItem "\\EXCH\Backup\" -Recurse -Include 
*.pst))

{ 

    #parse file name and remove the extension to get the user alias

    $Alias = $file.Name.Replace(".pst","")

    #Import the PST file to the user inbox

    New-MailboxImportRequest -Mailbox $Alias -FilePath $file.Name

}

Scenario 10 – hiding mailbox users from 
Global Address List (GAL)
In this scenario, you are messaging administrators and your manager has asked you 
to hide the users under the Directors OU from the corporate GAL.

1. Get the list of Exchange mailboxes using the Get-Mailbox cmdlet with the –
OrganizationUnit parameter in order to ilter by OU name.

2. Use the Set-Mailbox cmdlet with the -HiddenFromAddressListsEnabled 
parameter to hide the retrieved mailboxes from the GAL.

Use the following script:

PS > Get-Mailbox -OrganizationalUnit "Directors" | Set-Mailbox 
-HiddenFromAddressListsEnabled $true

Scenario 11 – getting mailbox users who 
never accessed their mailboxes
In this scenario, you are messaging administrators and you have got a request from 
the HR asking for a list of users who never access their mailboxes.

1. Get the list of Exchange mailboxes using the Get-Mailbox cmdlet.

2. Use the Get-MailboxStatistics cmdlet to get more insight on the 
mailboxes retrieved in the previous step.

3. Use the Where-Object cmdlet to ilter the list and show only the mailboxes 
with no available LastLogonTime information.

http:///


Chapter 8

[ 231 ]

Use the following script:

PS > Get-Mailbox | Get-MailboxStatistics | Where LastLogonTime -eq 
$null

Scenario 12 – generating an organization 
mailbox statistics report
In this scenario, you are messaging administrators and you want to generate a 
mailbox statistics report for all the Exchange mailboxes in the organization.

1. Get the list of Exchange mailboxes using the Get-Mailbox cmdlet.

2. Use the Get-MailboxStatistics cmdlet to get more insight on the 
mailboxes retrieved in the previous step.

3. Use the Where-Object cmdlet to ilter the list and show only the mailboxes 
with the available LastLogonTime information.

4. Use the Select-Object cmdlet to select the items to be included in  
the report.

5. Use the Export-CSV cmdlet to export the results to a CSV ile.

Use the following script:

#Generating CSV report for Exchange Mailboxes Statistics

Get-Mailbox | Get-MailboxStatistics | Where LastLogonTime –ne $null | 
Select DisplayName, ItemCount, LastLogonTime, MailboxType

, TotalItemSize, Database, ServerName, IsArchiveMailbox | Export-Csv 
C:\Reports\MailboxStatisticsReport.csv

Scenario 13 – generating a mailbox size 
report
In this scenario, you are messaging administrators and want to generate a mailbox 
size report for all the Exchange mailboxes in the organization that exceed a  
speciic size.

1. Prompt the user to enter the size that he/she wants to search for.

2. Get the list of Exchange mailboxes using the Get-Mailbox cmdlet.

3. Use the Get-MailboxStatistics cmdlet to get more insight on the 
mailboxes retrieved in the previous step.

4. Use the Where-Object cmdlet to ilter the list and show only the mailboxes 
with TotalItemSize that exceed the speciied size.

http:///


Managing Uniied Communication Environments with PowerShell

[ 232 ]

5. Use the Select-Object cmdlet to select the items to be included in  
the report.

6. Use the Export-CSV cmdlet to export the results to a CSV ile.

Use the following script:

#Get the maximum size of mailbox

$MailboxSize = Read-Host –Propmt "Enter maximum mailbox size (e.g. 
320MB)"

#Generating CSV report for Exchange Mailboxes Size

Get-Mailbox | Get-MailboxStatistics | Where TotalItemSize -gt 
$MailboxSize | Select DisplayName, ItemCount, LastLogonTime, 
MailboxType, TotalItemSize, Database, ServerName, IsArchiveMailbox | 
Export-Csv C:\Reports\MailboxStatisticsReport.csv

What Lync Server Management Shell is
Like EMS, Lync Server provides a Windows PowerShell interface that allows you 
to perform Lync Server administrative tasks available in Lync Control Panel using 
Windows PowerShell. An interesting fact about Lync Server is that most of its 
conigurations and settings cannot be done using the GUI but can be done using  
only Windows PowerShell.

Lync Server Management Shell is a normal Windows PowerShell console running a 
set of Lync-related cmdlets and functions loaded on Windows PowerShell startup. 
EMS uses a set of Windows PowerShell snap-ins to load Exchange cmdlets, however 
Lync Server Management Shell uses PowerShell modules to load Lync cmdlets.

http:///


Chapter 8

[ 233 ]

On having a deeper look at Lync Server Management Shell's shortcut properties, you 
will obviously notice that Lync Server Management Shell runs a powershell.exe 
ile that loads the Lync Server PowerShell module.

The Lync Server module loaded by Lync Server Management Shell is 
located at %SystemDrive% | Program Files | Microsoft | Common 
Files | Microsoft Lync Server 2013 | Modules | Lync | Lync.psd1.

http:///


Managing Uniied Communication Environments with PowerShell

[ 234 ]

How to make PowerShell understand 
Lync Server cmdlets
As we do with Exchange Server, if we want to launch Lync Server Management 
Shell, we have to either execute Lync Server Management Shell to load Lync Server 
cmdlets within the normal blue shell window or load related Lync PowerShell 
modules within the PowerShell ISE for a better experience when writing scripts  
that deal with Lync management.

Loading a Lync Server module
In this method, we will load Lync Server PowerShell modules directly on Windows 
PowerShell ISE. During the Lync Server installation preparation, a couple of 
Windows PowerShell modules are getting installed and registered in the system.

To get the list of PowerShell modules imported in the current PowerShell session, we 
will use the Get-Module cmdlet with the –ListAvailable parameter to display the 
list of available modules in our system even if they were not imported in the current 
PowerShell session. In order to get the list of PowerShell modules installed by Lync 
Server, use the Get-Module cmdlet with the –ListAvailable parameter and then 
ilter by the word Lync.

#Get list of LYNC available PowerShell modules

PS> Get-Module –ListAvailable *Lync*

http:///


Chapter 8

[ 235 ]

Now after getting the list of available Lync PowerShell modules, we have to load 
them into the current Windows PowerShell session using the Import-Module 
cmdlet. Since the Lync had registered two modules, you can import them directly 
in one step by using the pipeline method to get the list of Lync modules and import 
them directly.

#Import Lync Server PowerShell Modules

PS > Get-Module –ListAvailable *Lync* | Import-Module

Managing Lync using PowerShell 

Remoting
Like Exchange Server, Lync Server uses implicit remoting to connect to a frontend 
server using a virtual directory called OcsPowerShell, in order to load the Lync 
cmdlets on the local computer.

To connect to Lync using implicit remoting, perform the following steps:

1. Create a new PowerShell Remoting session using the New-PSSession cmdlet.

2. Import the created session to the local computer using the  
Import-PSSession cmdlet.

Use the following script:

#Create new implicit remoting session

$Session = New-PSSession -ConnectionUri "https://Lync.Contoso.local/
OcsPowerShell" -Credential (Get-Credential)

#Import the PowerShell remoting Session

Import-PSSession –Session $Session

In order to disconnect the Lync remoting session, use the Remove-PSSession cmdlet:

#Remove Lync Remoting Session

Remove-PSSession –Session $Session

http:///


Managing Uniied Communication Environments with PowerShell

[ 236 ]

Getting started with Lync scripting
In this section, we will help you getting started with Lync Server scripting and 
automation using a set of Windows PowerShell scenarios and examples.

Scenario 1 – enabling Lync to user accounts
In this scenario, you are voice administrators who have recently installed Lync 
Server in the corporate network and want to enable the users for Lync in order to be 
able to use the Lync client on their machines.

1. Get the list of available users using the Get-CsAdUser cmdlet, and then ilter 
the results to make sure that retrieved users have e-mail addresses and are 
not enabled for Lync use.

2. Deine a variable called Users to store the list of iltered users.
3. Use the ForEach loop to iterate over the list of users.

4. Deine a variable called SIP to store the parsed string of the user's  
SIP address.

5. Use the Enable-CsUser cmdlet within the ForEach loop deined in the 
previous step to enable each user for Lync capabilities. Use the Get-CSPool 
cmdlet to get the Lync pool.

Use the following script:

#Get list of users who are not enabled for lync

$Users = Get-CsAdUser -Filter {(Enabled -ne $true) -and 
(WindowsEmailAddress -ne $null)}

#Iterating over the list of users to enable each one of them

Foreach($User in $Users)

{    

    $sip = "sip:" + $User.WindowsEmailAddress

    

    #Enable users for LYNC

    Enable-CsUser -Identity $User.SamAccountName -RegistrarPool (Get-
CSPool).Identity -SipAddressType EmailAddress -SipAddress $sip

}

http:///


Chapter 8

[ 237 ]

Scenario 2 – coniguring IM ile transfer 
iltering coniguration
In this scenario, you are messaging administrators who want to add an extra layer of 
security to the Instant Messaging communication between the users. So, you enable 
ile transfer iltering to block speciic ile extensions from being sent over Lync. By 
default, Lync Server creates a ile transfer ilter coniguration with a global scope 
across the Lync environment. So, let's create another coniguration with SiteScope.

Create a new ile transfer iltering coniguration using the New-CsFileTransferFilt
erConfiguration cmdlet with the following group parameters:

• –Identity site: <Site_Name>: Deines the scope of the policy that is  
to be applied

• -Action: This parameter deines whether to block all the ile extensions  
or to just block speciic ones; by default, a list of extensions is added when 
you select to block any extensions

• –Extension: Modiies the list of extensions by adding, removing,  
or replacing extensions from the current list

• –WarningAction: Deines how to warn the sender about the ile  
transfer rejection

• –InMemory:  Temporarily keeps the policy in memory instead of  
committing it on the server

http:///


Managing Uniied Communication Environments with PowerShell

[ 238 ]

Use the following script:

#Create a new file transfer filtering configuration

New-CsFileTransferFilterConfiguration -Identity site:CoEx -Action 
Block -Extensions @{Add=".ps1"} -WarningAction Stop

Scenario 3 – coniguring IM URL iltering
In this scenario, you are messaging administrators who want to add an extra layer of 
security to the IM communication between the users. So, we will enable URL iltering 
to block hyperlinks from being sent over Lync.

Create a new ile transfer iltering coniguration using the New-
CsImFilterConfiguration cmdlet with the following parameters:

• –Identity site:<Site_Name>: Deines the scope of the policy that is to  
be applied

• -Action: Deines the default action, either Allow, Block, or Warn,  
of the policy

• –BlockFileExtension: Blocks hyperlinks containing the ile extension
• –WarnMessage: Sets the message to appear with hyperlinks if you choose the 

Warn action

• –IgnoreLocal: Bypasses this policy for local intranet URLs; the default value 
is true

Use the following script:

#Create a new url filtering configuration
New-CsImFilterConfiguration -Identity site:CoEx -Enabled $true 
-BlockFileExtension $true -Action Warn -WarnMessage "This is might 
contain a harmful content" -IgnoreLocal $false

Scenario 4 – bulk assignments of client PIN
In this scenario, you are voice administrators who want to assign a Personal 
Identiication Number (PIN) to the newly created and enabled Lync users.

1. Get the list of available users using the Get-CsAdUser cmdlet, and then ilter 
the results to make sure that the retrieved users are enabled for Lync.

2. Get the client PIN information for each user retrieved in the previous step 
using the Get-CsClientPinInfo cmdlet, and then ilter the results to get 
only the users with no PIN.

3. Assign a random client PIN using the Set-CsClientPin cmdlet, or add  
the –PIN switch to deine the PIN value.

http:///


Chapter 8

[ 239 ]

Use the following script:

#Set Client PIN

Get-CsAdUser -Filter {(Enabled -eq $true)} | Get-CsClientPinInfo | 
Where IsPinSet -eq $false | Set-CsClientPin

Or you can also use the following script:

#Get list of users with no PIN

$Users = Get-CsAdUser -Filter {(Enabled -eq $true)} | Get-
CsClientPinInfo | Where IsPinSet -eq $false

#define the initial start for PIN value

$PINinit = 50000

#iterating of users list 

Foreach($User in $Users)

{

    #setting the user PIN info

    Set-CsClientPin -Identity $User.Identity -Pin $PINinit

    #increase the PIN by 1 each

    $PINinit++

}

Scenario 5 – getting number of users using 
OCS/Lync
In this scenario, you are voice administrators who want to generate a simple report 
showing which users are using Ofice Communication Server (OCS) and which are 
using Lync Server.

1. Get the list of available users using the Get-CsUser cmdlet.

 ° –OnOfficeCommunnicationServer: Gets the list of users on Office 
Communication Server

 ° –OnLyncServer: Gets the list of users on Lync Server

2. Use (Get-CsUser).Count to count the number of records returned in  
the result.

http:///


Managing Uniied Communication Environments with PowerShell

[ 240 ]

Use the following script:

#Write the number of users on OCS
Write-Host "Office Communication Server Users:" (Get-csUser 
-OnOfficeCommunicationServer).Count -ForegroundColor Green
#Showing the list of OCS Users
Get-csUser -OnOfficeCommunicationServer | Select DisplayName, 
SamAccountName, sipAddress, LineURI, EnterpriseVoiceEnabled | ft

#Write the number of users on LYNC
Write-Host "Lync Server Users:" (Get-csUser -OnLyncServer).Count 
-ForegroundColor Green
#Showing the list of Lync Users
Get-csUser -OnLyncServer | Select DisplayName, SamAccountName, 
sipAddress, LineURI, EnterpriseVoiceEnabled | ft

Scenario 6 – setting the conference 

disclaimer
In this scenario, you are voice administrators who want to set a disclaimer for a 
conference so that each user can see it before joining the conference. For example, 
you want to inform the users that the meeting will be recorded.

Set the conference disclaimer using the Set-CsConferenceDisclaimer cmdlet.

Use the following script:

#Setting conference dislaimer
Set-CsConferenceDisclaimer -Header "Welcome to Contoso Conferencing 
Center" -Body "Kindly, note that according to corporate policy this 
meeting will be recorded"

Microsoft Ofice 365
Ofice 365 is the Microsoft cloud implementation for Exchange Server, Lync Server, 
SharePoint Server, and Ofice Web Apps. Ofice 365 is a Software-as-a-Service 
solution that provides you with the same experience as traditional on-premise 
technologies with an equivalent for each product.

On-premise product Equivalent cloud product

Microsoft Exchange Server Microsoft Exchange Online

Microsoft Lync Server Microsoft Lync Online

Microsoft SharePoint Server Microsoft SharePoint Online

Microsoft Office Professional Microsoft Office Web Apps

http:///


Chapter 8

[ 241 ]

Ofice 365 allows you to use the internal directory service to authenticate online 
services and also implement a hybrid environment that operates both on-premise 
and cloud-hosted solutions.

Ofice 365 and Windows PowerShell
In Ofice 365, Windows PowerShell is a critical component for performing 
almost every single administration task, and most tasks are not available on the 
management portal. So in order to start using Windows PowerShell for Ofice 365, 
you have to download and install the following components:

• Microsoft Online Service Sign-In Assistant

• Microsoft Online Service Module for Windows PowerShell

Download links for Microsoft Online Service components are available 
at http://onlinehelp.microsoft.com/en-us/office365-
enterprises/hh124998.aspx.

After installing the Microsoft Online Service Module for Windows PowerShell, the 
following modules should be available in your system:

• MSOnline

• MSOnlineExtended

Managing Ofice 365 using PowerShell
Now to start using the preceding modules, you have to either use Microsoft Online 
Service Module for the Windows PowerShell shortcut or import the modules 
using the Import-Module cmdlet to load the Microsoft Online Service cmdlets and 
functions. Then, use the Connect-MsolService cmdlet to connect to your Ofice 365 
account.

#Import MSOnline Modules

Get-Module –ListAvailable *MSOnline* | Import-Module

#Connect to Office 365 account

Connect-MsolService -Credential (Get-Credential username@domain.
onmicrosoft.com)

http:///


Managing Uniied Communication Environments with PowerShell

[ 242 ]

The following screenshot shows the Microsoft Online Services Module for  
Windows PowerShell:

Managing Microsoft Exchange Online using 

PowerShell
In order to manage Exchange Online using Windows PowerShell, we use the same 
method that we use for Microsoft Exchange Server implicit remoting, but with minor 
changes in the session coniguration.

The differences between the session coniguration for Microsoft Exchange Server and 
Exchange Online is as follows:

• The use of basic authentication for Exchange Online instead of Kerberos 
authentication for Exchange Server because we are connecting to a  
website hosted on the IIS server and not on a member of the local active 
directory domain.

• -ConnectionUri is https://ps.Outlook.com/PowerShell instead of 
https://Exchange-Server-FQDN/PowerShell

• The -AllowRedirection parameter allows a connection to Microsoft 
Exchange Online using a uniied address, then redirects the connection  
to an alternate URL based on the instruction that is returned by the  
remote destination.

http:///


Chapter 8

[ 243 ]

Use the following script:

#Create new implicit remoting session

$Session = New-PSSession -ConfigurationName Microsoft.Exchange 
-ConnectionUri "https://ps.Outlook.com/PowerShell" -Credential (Get-
Credential) -Authentication Basic -AllowRedirection

#Import the PowerShell remoting Session

Import-PSSession –Session $Session

The following screenshot shows the connection to Exchange Online and a warning 
that the connection will be redirected to another URI.

After connecting to Microsoft Exchange Online, you can start using the normal 
Microsoft Exchange Server cmdlets and functions.

For more information on available PowerShell cmdlets for Microsoft 
Exchange Online, please visit http://help.outlook.com/en-
us/140/dd575549.aspx.

http:///


Managing Uniied Communication Environments with PowerShell

[ 244 ]

Summary
In this chapter, we talked about uniied communication as a concept and how it 
becomes an important component, especially where complex business requirements 
exist. Also, we saw how Windows PowerShell can help in managing such solutions 
in a much faster and convenient way, especially for the cloud-hosted scenario as in 
Ofice 365.

In the next chapter, we will go on to discover Windows PowerShell in a different 
area and for different technologies. Our focus will be on the collaboration and data 
platforms represented in Microsoft SharePoint Server, SharePoint Online, and 
Microsoft SQL Server. Deinitely, no one can deny how complex it is to deal with 
these technologies, especially for people who do not have any previous experience. 
So, the target of the next chapter will be to show how PowerShell can make an 
administrator's life easier and happier.

http:///


Managing Collaboration 

and Data Platforms with 

PowerShell
Many years ago, if you were working on a project where you wanted to share iles, 
archive documents, or set a project time plan, the most proper way at that time was 
using a very simple network-sharing mechanism for creating a shared folder for each 
project and a spreadsheet under each project containing the names of the persons or 
departments contributing on that project. Do not be surprised by such a solution. At 
that time, this was one of the easiest ways to achieve your goal.

A few years later, the collaboration software such as Microsoft SharePoint Server 
was introduced to the market to provide a better way of communication and 
collaboration between people to achieve their tasks and goals in a more convenient 
way. Later on, the collaboration software was reinvented to be a platform where 
people would not only use it but also customize and integrate it with other 
components to meet the organization's requirements and obtain the best value.

Well, it is a must to mention that collaboration platforms do not work alone. You 
must have a data platform at the backend serving it. In our chapter, we will focus 
on the Microsoft SharePoint Server and pursue this chance to spot Microsoft SQL 
Server, which is the data platform behind it.

In this chapter we will cover:

• What is SharePoint Management Shell

• How to use PowerShell to do SharePoint Management tasks

• How to manage SharePoint online using PowerShell?

• What is SQL Server PowerShell?

• How to use PowerShell to do SQL Server Management Tasks?

http:///


Managing Collaboration and Data Platforms with PowerShell

[ 246 ]

What is SharePoint Management Shell
After a long discussion about management shells in the previous chapter, I believe 
that now you can easily guess what SharePoint Management Shell is. Yes, you 
are right, SharePoint Management Shell is the Windows PowerShell interface for 
SharePoint Application Programming Interface (API) that allows you to interact 
directly with SharePoint Server via Windows PowerShell cmdlets and functions. 
Refer to the following screenshot:

As usual, SharePoint Management Shell has a shortcut to launch it directly like Lync 
Management Shell and Exchange Management Shell. This shortcut is always nothing 
more than running a powershell.exe ile with a Windows PowerShell script that 
loads the products' snap-ins, modules, binaries, and assemblies. The following 
screenshot shows how we launch this shortcut:

http:///


Chapter 9

[ 247 ]

The SharePoint script loaded by SharePoint Management Shell is located under 
%SystemDrive%/Program Files/Common Files/Microsoft Shared/Web Server 

Extensions/15/Config/PowerShell/Registration/SharePoint.ps1.

Looking at the SharePoint.ps1 script you will notice that the script is simply doing 
the following three things:

• Setting the PowerShell runspace thread option to ReuseThread to make sure 
that every cmdlet is running within the same thread

• Adding the Microsoft.SharePoint.PowerShell snap-in

• Setting the console's location to the users' home folder

The following screenshot shows the content of the SharePoint.ps1 script:

http:///


Managing Collaboration and Data Platforms with PowerShell

[ 248 ]

How to make Windows PowerShell 
understand the SharePoint server 

cmdlets
In order to use the SharePoint Server cmdlets in Windows PowerShell, you can  
either directly launch SharePoint Management Shell to quickly jump into the 
SharePoint PowerShell environment, or execute the SharePoint.ps1 script in  
your runspace environment, or use the Add-PSSnapin cmdlet to add the  
Microsoft.SharePoint.PowerShell snap-in into your Windows  
PowerShell session using the following instructions:

#Add SharePoint Server PowerShell Snap-ins

PS> Add-PSSnapin Microsoft.SharePoint.PowerShell

Getting started with SharePoint scripting
In this part we will help you get started with SharePoint Server scripting and 
automation using a set of Windows PowerShell scenarios and examples.

Scenario 1 – creating a new site collection
In this scenario, you are a SharePoint administrator who wants to create a SharePoint 
site collection for your corporate intranet usage. For this purpose you will use the 
New-SPSite cmdlet with the following group of parameters:

• -Url: This parameter deines the URL of the site collection.
• -Name: This parameter deines the title of the site.

• -Description: This parameter writes a short description for the  
site collection.

• -Template: This parameter deines which template will be used to create the 
site. Use the Get-SPWebTemplate cmdlet to get the list of available templates.

• -OwnerAlias: This parameter deines the alias of the site collection's owner 
<Domain\User>.

• -Language: This parameter deines the Local ID (LCID) of the language.

http:///


Chapter 9

[ 249 ]

For more information about the list of LCIDs, check the following link:

http://msdn.microsoft.com/en-us/goglobal/bb964664.aspx

The script will be as follows:

#Creating new SharePoint Site Collection

New-SPSite -Url http://SharePoint.Contoso.local/sites/Contoso - 
Name "Contoso Team Site" -Description "Team collaboration  
intranet site for Contoso Team" -Template STS#0 -Language  
1033 -OwnerAlias "Contoso\SherifT"

Scenario 2 – creating a new website
In this scenario, you are a SharePoint administrator who wants to create a set of 
SharePoint sites (subsites) for different corporate teams and departments under an 
existing SharePoint site collection. For this purpose, you will use the New-SPWeb 
cmdlet with the following group of parameters:

• -Url: This parameter deines the URL of the site collection.
• -Name: This parameter deines the title of the site.
• -Description: This parameter writes a short description for the site 

collection.

• -Template: This parameter deines which template will be used to create the 
site. Use the Get-SPWebTemplate cmdlet to get the list of available templates.

• -AddToTopNav: This parameter adds the site to the top-level navigation bar.

• -UseParentTopNav: This parameter uses the parent's navigation bar as the 
top-level navigation bar.

• -AddToQuickLaunch: This parameter adds the subsite to the quick launch.

The script will be as follows: 

#Creating new SharePoint web site

New-SPWeb -Url http://SharePoint.Contoso.Local/Sites/Contoso/ 
Blog -Name "Contoso Blog" -Template BLOG#0 -AddToTopNav - 
UseParentTopNav –AddToQuickLaunch

http:///


Managing Collaboration and Data Platforms with PowerShell

[ 250 ]

Scenario 3 – creating a new quota template
In this scenario, you are a SharePoint administrator who wants to create a new 
quota template for the SharePoint site using Windows PowerShell. Unfortunately, 
there is no native cmdlet for creating a new quota template; however, you can call 
SharePoint assemblies using Windows PowerShell to create a new quota template.

This scenario shows a step-by-step procedure for creating a new quota template:

1. Create an object $template of the SharePoint quota template using the 
New-Object cmdlet.

2. Deine the properties of the SharePoint quota template, such as name, storage 
maximum level, and storage warning level.

3. Create an object $service of the SharePoint content service.

4. Add the template to the content service's object using the $service.
QuotaTemplates.Add($template) method.

5. Update the content service using the $service.Update() method.

The script is as follows:

#Create Object of SharePoint Quota Template

$Template = New-Object Microsoft.SharePoint.Administration.
SPQuotaTemplate

#Define template name

$Template.Name = "Blogs Quota Template"

#Assign Storage Maximum Level

$Template.StorageMaximumLevel = 100MB

#Assign Storage Warning Level

$Template.StorageWarningLevel = 80MB

#Creating object of SharePoint Content Service

$Service = [Microsoft.SharePoint.Administration.
SPWebService]::ContentService

#Add the template to the content service

$Service.QuotaTemplates.Add($Template)

#Update Content Service to create the template

$Service.Update()

http:///


Chapter 9

[ 251 ]

Scenario 4 – backing up your SharePoint 

environment
In this scenario, you are a SharePoint administrator who wants to perform a 
complete backup of the SharePoint environment components. By default, there is not 
a single cmdlet that can back up the whole SharePoint environment; however, you 
can use a combination of cmdlets to back it up.

These following steps show the SharePoint cmdlets that you need to use in order to 
perform a complete SharePoint environment backup.

1. Back up the SharePoint coniguration database using the 
Backup-SPConfigurationDatabase cmdlet.

2. Back up the SharePoint farm using the Backup-SPFarm cmdlet.

3. Back up the SharePoint sites using the Backup-SPSite cmdlet.

The script is as follows:

#Define the Back-up folder

$BackupFolder = "C:\SharePointBackup"

#Backup SharePoint Configuration Database

Backup-SPConfigurationDatabase -Directory $BackupFolder

#Backup SharePoint Farm

Backup-SPFarm -Directory $BackupFolder -BackupMethod Full 

#Backup SharePoint Sites

ForEach($Site in Get-SPSite)

{

    Backup-SPSite -Identity $Site.Url -Path (Join-Path $BackupFolder  
($Site.Url.Remove(0,$Site.Url.LastIndexOf("/")+1) + ".bak"))

}

http:///


Managing Collaboration and Data Platforms with PowerShell

[ 252 ]

Managing SharePoint Online using 

PowerShell
One of the services provided by Microsoft Ofice 365 is SharePoint Online, where 
you have Microsoft SharePoint Server hosted on the cloud like the Lync Online and 
Exchange Online mentioned in the previous chapter.

Microsoft SharePoint Online provides SharePoint Online Management Shell similar 
to SharePoint Management Shell for the on-premise SharePoint. SharePoint Online 
Management Shell is a Windows PowerShell module that allows you to easily 
manage and control your hosted SharePoint via Windows PowerShell.

Download the SharePoint Online Management Shell from http://www.
microsoft.com/en-eg/download/details.aspx?id=35588.

After installing the SharePoint Online Management Shell binaries, you will get a new 
shortcut called "SharePoint Online Management Shell". This shortcut refers to the 
Windows PowerShell module called Microsoft.Online.SharePoint.PowerShell, 
which is similar to Microsoft.SharePoint.PowerShell with "Online" referring to 
SharePoint Online.

http:///


Chapter 9

[ 253 ]

How to load SharePoint Online Management 
Shell
In order to use the SharePoint Online cmdlets and functions, use the Import-
Module cmdlet with the -DisableNameChecking switch to import the Microsoft.
Online.SharePoint.PowerShell module. The -DisableNameChecking switch 
is used because the SharePoint Online module has a set of cmdlets that start with 
unapproved –standard- verbs, so it used to avoid any warning message regarding 
those unapproved verbs.

For a list of Windows PowerShell verbs, you can refer to the following:

• http://social.technet.microsoft.com/wiki/
contents/articles/4537.powershell-approved-verbs-
en-us.aspx

• http://msdn.microsoft.com/en-us/library/windows/
desktop/ms714428(v=vs.85).aspx

• http://blogs.msdn.com/b/powershell/
archive/2009/07/15/final-approved-verb-list-for-
windows-powershell-2-0.aspx

The script will be as follows:

#Import SharePoint Online Module

PS > Import-Module Microsoft.Online.SharePoint. 
PowerShell -DisableNameChecking

http:///


Managing Collaboration and Data Platforms with PowerShell

[ 254 ]

How to connect to SharePoint Online
Now, after importing the SharePoint Online module, you deinitely want 
to connect to your SharePoint Online site. For this purpose you will use the 
Connect-SPOService cmdlet with the following group of parameters:

• -Url: This parameter deines the URL for your SharePoint Online site
• -Credential: This parameter deines the logon credentials for the 

SharePoint Online site administrator who must also be an Ofice 365  
global administrator

The script will be as follows:

#Connect to SharePoint Online

Connect-SPOService –Url https://<YOUR_OFFICE365_DOMAIN>-admin.SharePoint.
Com –Credential USER@<YOUR_OFFICE365_DOMAIN>.onmicrosoft.com

Let's assume that your SharePoint Online site is http://PowerShell.SharePoint.
com. So the command should look the following:

Connect-SPOService –Url https://PowerShell-admin.SharePoint.com 
-Credential admin@PowerShell.onmicrosoft.com

Scenario 1 – exporting a list of SharePoint 

Online sites to CSV
In this scenario, you are a SharePoint Online administrator who wants to generate a 
ile containing the list of all the SharePoint Online site collections and subsites. For 
this purpose you will use the Get-SPOSite cmdlet.

We will be performing the following steps:

1. Get the list of site collections and sites using the Get-SPOSite cmdlet with 
the -Detailed switch for detailed information about each site.

2. Use the Export-Csv cmdlet to export the list to a CSV ile.

The script will be as follows:

#Get and Export the list of SharePoint Online site

Get-SPOSite -Detailed | export-csv $home\desktop\SPO-sites.csv

http:///


Chapter 9

[ 255 ]

Scenario 2 – restoring a deleted SharePoint 
Online site
In this scenario, you are a SharePoint Online administrator who wants to restore 
a SharePoint Online site that has been deleted by mistake. The deleted sites of 
SharePoint Online go to the recycling bin for 30 days before they are permanently 
deleted. In order to restore the site, you need to get the list of deleted sites to make 
sure that your site is still retained and then restore it.

We will be performing the following steps:

1. Get the list of the deleted SharePoint Online sites using the 
Get-SPODeletedSite cmdlet.

2. Restore the deleted SharePoint Online sites using the 
Restore-SPODeletedSite cmdlet with the –NoWait switch to execute the 
restored job immediately.

The script will be as follows:

#Get and Restore the list of SharePoint Online deleted site

Get-SPODeletedSite | Restore-SPODeletedSite -NoWait

Scenario 3 – checking the SharePoint Online 

site's health status
In this scenario, you are a SharePoint Online administrator who wants to generate a 
health check report for all the SharePoint Online sites.

We will be performing the following steps:

1. Get the list of SharePoint Online sites using the Get-SPOSite cmdlet.

2. Check the site's health using the Test-SPOSite cmdlet.

The script will be as follows:

#Run health checks on the list of SharePoint Online sites

Get-SPOSite | Test-SPOSite 

http:///


Managing Collaboration and Data Platforms with PowerShell

[ 256 ]

Scenario 4 – setting the SharePoint Online 

User as Site Collection Administrator
In this scenario, you are a SharePoint Online administrator who wants to assign a 
"Site Collection Administrator" role to the SharePoint Online User. For this purpose 
you will use the Set-SPOUser cmdlet with the following group of parameters:

• -Identity: This parameter deines the URL of the site collection 
• -LoginName: This parameter is the login name for a SharePoint Online User 

(an Ofice 365 user)
• -IsSiteCollectionAdmin: This parameter assigns/removes users to/from 

the role of site collection administrators

The script will be as follows:

#Assign site collection admin role to user

Set-SPOUser https://WindowsPowerShell.sharepoint.com/sites/blog  
-LoginName Sherif@WindowsPowerShell.onmicrosoft.com  
-IsSiteCollectionAdmin $true

Windows PowerShell Command Builder 
for SharePoint and Ofice 365
Windows PowerShell Command Builder is a simple and nice web-based application 
that helps you to easily explore, discover, and build PowerShell commands for 
SharePoint 2010, SharePoint 2013, SharePoint Online, and Ofice 365.

All you have to do is drag-and-drop the chosen PowerShell cmdlets (Verbs and 
Nouns) over the Design Surface area to show all the required and optional 
parameters in the form of textboxes. Then, ill the textboxes with your values 
and click on the Copy to Clipboard button to copy it. It also has a list of prebuilt 
commands for the most common tasks for each product to help you in adopting the 
Windows PowerShell for these products. For example, for SharePoint 2010 you have 
tasks such as Create, Back up, and Remove sites. For SharePoint Online, you also 
have a task such as Connect to SharePoint online site, and the same can be used for 
each product. The following screenshot gives a peek into the Windows PowerShell 
Command Builder for SharePoint:

http:///


Chapter 9

[ 257 ]

What is SQL Server PowerShell
SQL Server introduced SQL Server PowerShell irst in SQL Server 2008 R2 where 
SQL Server provided a Windows PowerShell module called SQLPS. This module 
helps SQL Server administrators beneit from the capabilities of Windows 
PowerShell and T-SQL to perform SQL Server complex administration scripts.

The SQL Server PowerShell module provides a SQL Server Provider PS SQLSERVER 
:\> that allows to deal with SQL Server instances, databases, tables, and other 
SQL components as a ilesystem driver when you use the traditional commands to 
navigate, rename, and delete objects.

For more information about the PowerShell provider, refer to http://
msdn.microsoft.com/en-us/library/windows/desktop/
ee126186(v=vs.85).aspx.

http:///


Managing Collaboration and Data Platforms with PowerShell

[ 258 ]

The following screenshot shows how to use the normal dir command with the SQL 
Server provider for listing the available databases as if it is a ile or a folder:

SQL Server PowerShell also provides a set of cmdlets that allows executing T-SQL 
and XQuery statements.

How to load SQL Server PowerShell
In order to load the SQL Server PowerShell, you can either import the SQL Server 
PowerShell module directly into the PowerShell session or start it directly from the 
SQL Server Management Studio (SSMS).

Method 1 – importing the SQL Server PowerShell 
module
The script for this method will be as follows:

#Import SQL Server PowerShell Module

Import-Module SQLPS -DisableNameChecking

http:///


Chapter 9

[ 259 ]

Method 2 – launching SQL Server PowerShell from 
SSMS
This method uses the following steps:

1. Open the Microsoft SQL Server Management Studio.

2. Right-click on any item under the Object Explorer pane, as shown in the 
following screenshot:

http:///


Managing Collaboration and Data Platforms with PowerShell

[ 260 ]

3. Select Start PowerShell to launch the SQL PowerShell. Selecting this option 
will take us to the following window:

Getting started with SQL Server scripting
In this part we will help you get started with SQL Server scripting and automation 
using a set of Windows PowerShell scenarios and examples.

Scenario 1 – executing the T-SQL statement
In this scenario, you are a database administrator who is writing a set of SQL Server 
automation tasks and you want to execute the T-SQL statement via Windows 
PowerShell. For this purpose you will use the Invoke-Sqlcmd cmdlet with the 
following group of parameters:

• -ServerInstance: This parameter deines the SQL Server instance <SERVER_
NAME\INSTANCE_NAME>

• -Database: This parameter is the name of the database

• -Hostname: This parameter is the name of the server running the SQL Server

• -Query: This parameter deines the T-SQL statement

http:///


Chapter 9

[ 261 ]

The script will be as follows:

#Invoke SQL Query using PowerShell

Invoke-Sqlcmd -ServerInstance SQL01\SharePoint -Database Master  
-Query "SELECT db_name(dbid) as DB,name,filename FROM sysaltfiles"  
-HostName SQL01

Scenario 2 – backing up the SQL Server 
database
In this scenario, you are a database administrator who wants to use Windows 
PowerShell to back up all SQL Server databases hosted under a speciic instance. For 
this purpose you will use the Backup-SqlDatabase cmdlet.

We will be using the following steps:

1. Use the ForEach loop to iterate over the list of databases under the 
SharePoint\PowerPivot instance.

2. Deine variables to store the full ile path for each database and database log 
within the ForEach loop deined in the previous step.

3. Use the Backup-SqlCmdlet cmdlet to back up each database in the ile path 
deined in the previous step with a ilename similar to the database name.

The script will be as follows:

ForEach($Database in (Get-ChildItem SQLSERVER:\SQL\SharePoint\PowerPivot\
Databases))

{

   $FilePath = "C:\Backup\" + $Database.Name + ".bak"

  $LogFilePath = "C:\Backup\" + $Database.Name + ".log"

  #Backup Database File

Backup-SqlDatabase -ServerInstance SharePoint\PowerPivot -Database  
$Database.Name -BackupAction Database -BackupFile $FilePath 

#backup Database Log File

Backup-SqlDatabase -ServerInstance SharePoint\PowerPivot -Database  
$Database.Name -BackupAction Log -BackupFile $LogFilePath 

}

http:///


Managing Collaboration and Data Platforms with PowerShell

[ 262 ]

Scenario 3 – restoring the SQL Server 

database
In this scenario, you are a database administrator who wants to use Windows 
PowerShell to restore a SQL Server database. For this purpose you will use the 
Restore-SqlDatabase cmdlet.

We will use the following steps:

1. Use the ForEach loop to iterate over the folder that contains the database's 
backup iles.

2. Use the Restore-SqlCmdlet cmdlet to restore each database to the ile path 
deined in the previous step with a ilename similar to the database name.

The script will be as follows:

$BackupFolder = "C:\Backup\"

$ServerInstance = "SharePoint\PowerPivot"

ForEach($File in (Get-ChildItem $BackupFolder))

{

    $DatabaseName = $File.Name.Replace(".bak","")

#Restore Database File

Restore-SqlDatabase -ServerInstance SharePoint\PowerPivot -Database 
$DatabaseName -RestoreAction Database -BackupFile $File.FullName

}

Scenario 4 – getting server instances and 

databases properties
In this scenario, you are a database administrator who wants to generate a report 
that contains the SQL Server instance and underlying database properties. For 
this purpose, you will use SQL Server Management object (SMO) with Windows 
PowerShell.

http:///


Chapter 9

[ 263 ]

The following steps show a step-by-step procedure of how to use SQL SMO  
in PowerShell:

1. Load the SQL SMO assembly using [void][System.Reflection.Assembly
]::LoadWithPartialName(ASSEMBLY_NAME).

2. Create an SMO object $Server of the current SQL Server instance.

3. Use the previously created object to get the list of server instance properties 
and also the list of databases under this instance.

4. Use the ForEach loop to iterate over the list of retrieved databases to get the 
properties of each database.

The script will be as follows:

#Server Instance name

$ServerInstance = "SharePoint\PowerPivot"

#Load SQL SMO assembly

[void][System.Reflection.Assembly]::LoadWithPartialName('Microsoft.
SqlServer.SMO')

#Create SMO object of SQL Server Instance

$Server = new-object ('Microsoft.SqlServer.Management.Smo.Server') 
$ServerInstance

Write-Host "$ServerInstance Server Instance Properties" -ForegroundColor 
Red 

#Get the Server Instance Properties 

$Server.Properties | Select Name, Value 

#Iterate over the list of the databases under the Server Instance

ForEach($Database in $Server.Databases)

{

    Write-Host $Database.Name " Database Properties"  
    -ForegroundColor Green 

    

    #Get the Database Properties

    $Database.Properties | Select Name, Value

}

http:///


Managing Collaboration and Data Platforms with PowerShell

[ 264 ]

Scenario 5 – generating the SQL script for 
databases, tables, and stored procedures
In this scenario, you are a database administrator who wants to generate an SQL 
script for a speciic database and its tables and stored procedures. For this purpose 
you will use an SQL SMO with Windows PowerShell.

The following steps show a step-by-step procedure of how to use SQL SMO and 
PowerShell to generate the SQL scripts:

1. Load the SQL SMO assembly using [void][System.Reflection.Assembly
]::LoadWithPartialName(ASSEMBLY_NAME).

2. Create an SMO object $Server of the current SQL Server instance.

3. Use the previously created object to get the list of server instance properties 
and also the list of databases under this instance.

4. Use the ForEach loop to iterate over the list of retrieved databases to get the 
properties of each database.

5. Create a folder for each database, and then export the database script ile  
to it.

6. For each database, use the ForEach loop to iterate over the list of tables and 
stored procedures, and then export them to the SQL scripts.

The script will be as follows:

$ServerInstance = "SharePoint\PowerPivot"

$ExportFolder = "C:\SqlScripts"

#Load SQL SMO assembly

[void][System.Reflection.Assembly]::LoadWithPartialName('Microsoft.
SqlServer.SMO')

#Create SMO object of SQL Server Instance

$Server = new-object ('Microsoft.SqlServer.Management.Smo.Server') 
$ServerInstance 

#Iterate over the list of the databases under the Server Instance

ForEach($Database in $Server.Databases)

{

http:///


Chapter 9

[ 265 ]

    #Create Folder for each Database

    New-Item -ItemType Directory -Path ("$ExportFolder\" +  
    $Database.Name + "\") | Out-Null

    #Create folder for tables under each database folder

    New-Item -ItemType Directory -Path ("$ExportFolder\" +  
    $Database.Name + "\Tables\") | Out-Null

    #Create folder for stored procedures under each database folder

    New-Item -ItemType Directory -Path ("$ExportFolder\" +  
    $Database.Name + "\StoredProcedures\") | Out-Null

    

    #Generate and Export Database Script

    $Database.Script() | Out-File ("$ExportFolder\" +  
    $Database.Name + "\" + $Database.Name + ".sql")

    

    #Iterate over the list of the tables under each database

    ForEach($table in $Database.Tables)

    {

        #Generate and Export Tables Scripts

        $table.Script() | Out-File ("$ExportFolder\" +  
        $Database.Name + "\Tables\" + $table.Name + ".sql")

    }

    #Iterate over the list of the stored procedures under each database

    ForEach($SP in $Database.StoredProcedures)

    {

        #Generate and Export Stored Procedures Scripts

        $SP.Script() | Out-File ("$ExportFolder\" +  $Database.Name + "\
StoredProcedures\" + $SP.Name + ".sql")

    }

}

http:///


Managing Collaboration and Data Platforms with PowerShell

[ 266 ]

Summary
In this chapter, we have seen the capabilities of Windows PowerShell with 
SharePoint Server, SharePoint Online, and SQL Server and the real value of using it 
to manage and administer such complex technologies.

As part of your job as an IT administrator or a helpdesk executive, you need to make 
sure that your environment is in control and the end users are working ine with 
minimal problems. In any environment using a computer, the most painful part is 
dealing with desktops and client operating systems. You have to deal with many 
desktops and notebooks on a daily basis to ix and solve their problems, which is 
almost the same problem for everyone. Hence the virtualization concept has been 
invented to deliver another kind of solution called Desktop Virtualization.

In the next chapter, we will learn what is Desktop Virtualization, and Microsoft 
implementation for this concept in Windows Server 2012. We will also learn how 
to use Windows PowerShell to install, conigure, and manage the Remote Desktop 
Services (RDS).

http:///


Managing Microsoft Desktop 

Virtualization with PowerShell
Nowadays, one of the biggest sources of pain to any member of an IT department is 
the problems that the end user faces. You may be receiving many requests daily from 
many users complaining about the performance of their devices, asking for extra 
permission, wanting to install software, and so on.

As an IT administrator, you are always inside the loop, trying to balance between 
users' needs and business requirements that by nature of the situation require 
investment in tools, hardware resources, and manpower. That is why, the concept 
of Desktop Virtualization has been introduced to solve this formula and help the 
administrator satisfy users' needs, while keeping the environment secure and in 
control with a centralized management solution and, moreover, saving the money 
spent on devices such as CAPEX and OPEX.

In this chapter we will cover:

• What Desktop Virtualization is

• What the different types of Desktop Virtualization solutions are

• How to manage Microsoft Remote Desktop Services using PowerShell

What Desktop Virtualization is
Desktop Virtualization is an architecture model where the client operating system is 
separated from the physical hardware layer that is the end users' device.

http:///


Managing Microsoft Desktop Virtualization with PowerShell

[ 268 ]

There are two types of Desktop Virtualization solutions:

• Virtual Desktop Infrastructure (VDI): This solution provides the user with a 
virtual desktop that is a completely isolated operating system hosted on the 
data center

• Session Virtualization: This solution provides the user with just a session on 
the shared Session Host server

Desktop Virtualization gives you the following advantages:

• Centralized management: Manages all the desktops from a single console

• Enhanced security: Data is always locked inside the data center; no more 
vulnerability can be caused because if a device is stolen or lost, no one can 
take something out without proper permissions

• Anywhere access: The user can get connected any time, anywhere, from 
desktops, notebooks, thin clients, tablet devices, and smartphones

• Business continuity: The desktop's failure recovery and problem resolution 
is faster than physical desktops

Understanding Desktop Virtualization 
components
In order to build any Desktop Virtualization environment, you should have the 
following components:

• Virtualization platform: This component is the hypervisor layer responsible 
for providing virtualization capabilities in order to host the virtual desktops.

• Connection broker: This is the core component of any Desktop Virtualization 
solution. This layer is responsible for the communication between end users 
and the virtual desktop; it manages who can access what, and how. Also, it 
is responsible for features, such as optimizing virtual desktop performance 
over a WAN connection, redirecting local resources such as printers and USB 
devices to the virtual desktop, and providing a physical desktop such as user 
experience in terms of multimedia and graphics.

• Application delivery: This component is responsible for delivering the 
application to the end users' desktop on demand, using the concept of 
application virtualization, where the application is running on the desktop 
locally without being installed.

http:///


Chapter 10

[ 269 ]

• User proile and data: This technology is responsible for separating a user's 
proile and data from the operating system and ensuring that it is saved 
in a central store so that users can access their proiles, settings, and data 
anywhere, regardless of the desktop and operating system.

• Client access device: This is the device where the users can access their 
virtual desktops or sessions. The device could be a normal desktop, 
notebook, thin-client, tablet, or smartphone.

The following diagram shows the common Desktop Virtualization architecture:

What Remote Desktop Services is
Remote Desktop Services (RDS) is a Microsoft implementation of the Desktop 
Virtualization concept. Remote Desktop Services is a Windows Server role that 
allows you to build VDI, session-based virtualization, and RemoteApp.

http:///


Managing Microsoft Desktop Virtualization with PowerShell

[ 270 ]

Managing RDS using PowerShell
In order to manage RDS using Windows PowerShell, you have the Windows 
PowerShell module called RemoteDesktop that provides many RDS-related cmdlets 
that help you perform all the tasks available on the GUI wizards. You do not need 
to install any prerequisites in order to get the RemoteDesktop module; the module 
available by default in Windows Server 2012 so you can use it directly to implement 
the RDS itself.

#Import Remote Desktop Services Module PowerShell module

PS> Import-Module RemoteDesktop

Getting started with RDS scripting
In this part we will help you get started with RDS scripting and automation using a 
set of Windows PowerShell scenarios and examples.

In the following scenarios, we will build a hybrid Desktop Virtualization 
environment with the six RDS roles described later in this chapter in order to provide 
both VM-based and Session-based Desktop Virtualization scenarios. Also, we  
will build two nodes of the Remote Desktop Connection Broker (RDCB) for  
high-availability purposes.

Scenario 1 – creating new RDS deployments
In this scenario, you are a Desktop Virtualization administrator who wants to install 
RDS in order to implement a Desktop Virtualization solution for your organization.

In the previous version of Windows Server, we used to install RDS roles using the 
Server Manager wizard to install Windows Server roles and features. However in 
Windows Server 2012, if you want to install Windows roles or features, you will get 
a couple of options asking you what kind of installation you want to perform, either 
Role-based or feature-based installation or Remote Desktop Services installation, 
as shown in the following screenshot:

http:///


Chapter 10

[ 271 ]

By design, RDS has six different server roles that should be installed on at least three 
separate servers. So the second option—Remote Desktop Services installation—
exists to help you deploy different RDS roles on different servers in one installation 
step from a central location.

Well, does it make any difference while installing RDS from Windows PowerShell? 
Yes, indeed. You will not be able to use the Install-WindowsFeature cmdlet to 
install it. Instead, you will have to use the deployment cmdlet that comes with the 
RemoteDesktop PowerShell module.

http:///


Managing Microsoft Desktop Virtualization with PowerShell

[ 272 ]

An RDS installation provides two deployment scenarios, namely Virtual  
machine-based desktop deployment and Session-based desktop deployment  
as shown in the following screenshot:

Task 1.1 – creating a new virtual-machine-based 
deployment
In this type of deployment, you create an RDS environment capable of hosting 
VDI scenarios. This deployment requires three RDS roles: Remote Desktop 
Virtualization Host (RDVH), Remote Desktop Session Broker (RDCB), and 
Remote Desktop Web Access (RDWeb). For this purpose, you will use the 
New-RDVirtualDesktopDeployment cmdlet with the following parameters:

• -ConnectionBroker: This parameter deines the FQDN of the server to hold 
the Connection Broker role

• -WebAccessServer: This parameter deines the FQDN of the web server to 
hold the Web Access role

http:///


Chapter 10

[ 273 ]

• -VirtualizationHost: This parameter deines the FQDN of the Hyper-V 
server to host the Virtualization Host role

• -CreateVirtualSwitch: This parameter creates a virtual network switch on 
the Hyper-V server to be used by the virtual machine created by RDS

The script will be as follows:

#Remote Desktop Virtualization Host

$RDVH = 'RDVH-01.Contoso.local'

#Remote Desktop Connection Broker

$RDCB = 'RDCB-01.Contoso.local'

#Remote Desktop Web Access

$RDWeb = 'RDWeb-01.Contoso.local'

#Creating new Virtual Machine-based deployment

New-RDVirtualDesktopDeployment -ConnectionBroker $RDCB -WebAccessServer 
$RDWeb -VirtualizationHost $RDVH -CreateVirtualSwitch

Task 1.2 – creating a new session-based 
deployment
In this type of deployment, you create an RDS environment capable of hosting 
Session Virtualization scenarios. This deployment requires three RDS roles: Remote 
Desktop Session Host (RDSH), RDCB, and RDWeb. For this purpose, you will use 
the New-SessionDeployment cmdlet with the following parameters:

• -ConnectionBroker: This parameter deines the FQDN of the server to hold 
the Connection Broker role

• -WebAccessServer: This parameter deines the FQDN of the web server to 
hold the Web Access role

• -SessionHost: This parameter deines the FQDN of the server to host the 
Session Host role

The script will be as follows:

#Remote Desktop Session Host

$RDSH = 'RDSH-01.Contoso.local'

#Remote Desktop Connection Broker

$RDCB = 'RDCB-01.Contoso.local'

http:///


Managing Microsoft Desktop Virtualization with PowerShell

[ 274 ]

#Remote Desktop Web Access

$RDWeb = 'RDWeb-01.Contoso.local'

#Creating new Session-based deployment

New-SessionDeployment -SessionHost $RDSH -ConnectionBroker $RDCB 
-WebAccessServer $RDWeb

Scenario 2 – adding a Remote Desktop Server 
to an existing deployment
In the previous scenarios, you have created a Remote Desktop deployment twice, 
one for a VM-based environment and the other for a session-based environment. 
Each of those scenarios installed three RDS roles out of a total of six. So, what if you 
want to add other roles to the deployment? Or you want to combine the two kinds of 
deployment into a hybrid RD deployment?

In this scenario, you are a Desktop Virtualization administrator who has an existing 
RD deployment and wants to make it hybrid by adding either the RDSH role to the 
VM-based deployment or the RDVH role to the session-based deployment. For this 
purpose, you will use the Add-RDServer cmdlet with the following parameters:

• -ConnectionBroker: This parameter deines the FQDN of the server that 
holds the Connection Broker role for the existing deployment.

• -Server: This parameter deines the FQDN of the server to add to  
the deployment.

• -Role: This parameter deines which RD role the server will hold. The 
following values can be used with the –Role parameter:

 ° RDS-RD-Server to add an RD session host

 ° RDS-Virtualization to add an RD virtualization host

 ° RDS-Connection-Broker to add an RD connection broker

 ° RDS-Web-Access to add RD web access

 ° RDS-Gateway to add an RD gateway

 ° RDS-Licensing to add an RD licensing server

http:///


Chapter 10

[ 275 ]

The script will be as follows:

$RDCB = 'RDCB-01.Contoso.local'

#Adding Virtualization Host to Session-based deployment

Add-RDServer -Server 'RDVH-01.Contoso.local' -ConnectionBroker $RDCB 
-Role RDS-Virtualization -CreateVirtualSwitch $true

#Adding Session Host to VM-based deployment

Add-RDServer -Server 'RDSH-01.Contoso.local' -ConnectionBroker $RDCB 
-Role RDS-RD-Server

Scenario 3 – adding and coniguring an RD 
Gateway
In this scenario, you are a Desktop Virtualization administrator who wants to 
expose the current deployment to the Internet in order to make the environment 
accessible to remote users. So, you have to add the Remote Desktop Gateway 
(RDG) role to the existing deployment. For this purpose, you will use the Add-
RDServer cmdlet to add the gateway to the existing deployment and then use the 
Set-RDDeploymentGatewayConfiguration cmdlet to conigure the RD gateway 
settings using the following group of parameters:

• -ConnectionBroker: This parameter deines the FQDN of the server that 
holds the Connection Broker role for the existing deployment.

• -BypassLocal: This parameter allows the user to bypass the RD gateway by 
providing him/her with internal access.

• -LogonMethod: This parameter deines which logon method is to be used 
by the user. It could be either AllowUserToSelectDuringConnection, 
Smartcard, or Password.

• -GatewayMode: This parameter deines whether the RD gateway is used or 
not and how it will be conigured, either by auto detect or manually.

• -GatewayExternalFqdn: This parameter deines the external FQDN for RDG 
to be accessible remotely over the Internet.

http:///


Managing Microsoft Desktop Virtualization with PowerShell

[ 276 ]

This script will be as follows:

$RDCB = 'RDCB-01.Contoso.local'

$RDG = 'RDG01.contoso.local'

#Adding RD Gateway Server

Add-RDServer -Server $RDG -ConnectionBroker $RDCB -Role RDS-GATEWAY 
-GatewayExternalFqdn RDG.Contoso.com

#Configuring RD Gateway

Set-RDDeploymentGatewayConfiguration -ConnectionBroker $RDCB -BypassLocal 
$true -LogonMethod AllowUserToSelectDuringConnection -GatewayMode Custom 
-GatewayExternalFqdn RDG.Contoso.com

Scenario 4 – adding and coniguring RD 
Licensing Server
Remote Desktop Licensing (RDL) is the legal role of RDS. It has no technical 
impact on the environment or the deployment, however it is required to make sure 
that your RDS licenses are properly conigured. In this scenario, you will learn 
how to add and conigure the RDL role. For this purpose, you will use the Add-
RDServer cmdlet to add the gateway to the existing deployment and then use the 
Set-RDLicenseConfiguration cmdlet to conigure the RD gateway settings.

The Set-RDLicenseConfiguration cmdlet will be used with the following group  
of parameters:

• -ConnectionBroker: This parameter deines the FQDN of the server that 
holds the Connection Broker role for the existing deployment.

• -LicenseServer: This parameter deines the name of the server to hold the 
RDL role.

• -Mode: This parameter deines the license mode of the RDS. It could be 
PerUser or PerDevice.

The script will be as follows:

$RDCB = 'RDCB-01.Contoso.local'

$RDL = 'RDL01.contoso.local'

#Adding RD Licensing Server

Add-RDServer -Server $RDL -Role RDS-LICENSING -ConnectionBroker $RDCB

http:///


Chapter 10

[ 277 ]

#Configuring RD Licensing

Set-RDLicenseConfiguration -Mode PerUser -LicenseServer $RDL 
-ConnectionBroker $RDCB

Scenario 5 – creating new RDS collections
Now after completing the RDS deployments for the VM-based and session-
based environments, it is the time to create a collection for each deployment. RDS 
collections are a way to deine the settings of your environments, such as how the 
users will connect to it, which groups are authorized to access it, and which servers 
will be used for this collection. You can also consider RDS collections as a logical 
group for your Virtualization Desktop environment.

Task 5.1 – creating new session-based collections
In this scenario, you will need to create a collection for the session-based deployment 
created previously. For this purpose, you will use the New-RDSessionCollection 
cmdlet with the following parameters:

• -CollectionName: This parameter deines a name for the RDS collection
• -ConnectionBroker: This parameter deines the FQDN of the server 

currently holding the Connection Broker role

• -SessionHost: This parameter deines the FQDN of the RDSH server(s) to 
server to host the Session Host role 

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-01.Contoso.local'

#Remote Desktop Session Host(s)

$RDSH = @('RDSH-01.Contoso.local','RDSH-02.Contoso.local')

#Creating new Session-based Collection

New-RDSessionCollection -CollectionName "mySessions" 
-CollectionDescription "RDS - Session Virtualization Collection" 
-ConnectionBroker $RDCB -SessionHost $RDSH

http:///


Managing Microsoft Desktop Virtualization with PowerShell

[ 278 ]

Task 5.2 – creating new VM-based collections
A VM-based collection provides the authorized user with a complete operating 
system on a dedicated virtual desktop. The VM-based collection can be deined 
either as a Pooled or Personal VM collection.

• Pooled collection: In this type of collection, you create a group of virtual 
desktops and assign them to a users or groups. Assignment of the virtual 
desktop is automatic and random so the user will connect to a different 
machine every time. Moreover, the machine will roll back to the default  
state once the user logs off.

• Personal collection: In this type of collection, the virtual desktop is assigned 
manually so that the user connects to the same machine every time and 
changes are stored on the machine even after the user logs off and the 
machine restarts.

A Pooled or Personal VM collection could both be created as 
either a Managed collection, where virtual desktops are created 
using a single master template, or as an Unmanaged collection, 
where the virtual desktops are created manually or using 
different templates.

In real-world implementations, it is recommended to have 
Managed Pooled and Unmanaged Personal collections.

Task 5.2.A – creating a Managed Pooled collection
In this scenario, you will use the New-RDVirtualDesktopCollection cmdlet, and 
also the Grant-RDOUAccess cmdlet to grant the RDS permission on the OU that will 
host the VDI computer accounts and also with the following parameters:

• -CollectionName: This parameter deines the name of the RDS collection
• -ConnectionBroker: This parameter deines the FQDN of the server holding 

the Connection Broker role

• -PooledManaged: This parameter deines the Managed Pooled  
VM-based collection

• -UserGroups: This parameter deines the users and groups authorized to 
access this collection

• -Domain: This parameter deines the Managed Pooled VM-based collection
• -VirtualDesktopTemplateHostServer: This parameter deines the FQDN 

of the server hosting the new virtual desktop template

http:///


Chapter 10

[ 279 ]

• -VirtualDesktopTemplateName: This parameter deines the name of the 
new virtual desktop template

• -VirtualDesktopNamePrefix: This parameter deines the VM name preix
• -VirtualDesktopTemplateStorgePath: This parameter deines the path for 

the storage hosting the template

• -StorageType: This parameter deines the type of storage, either Local, SMB 
Shared, or SAN

• -VirtualDesktopAllocation: This parameter deines how the created 
virtual desktops will be allocated across the different RD virtualization hosts

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-01.Contoso.local'

#Virtual Server hosting the Virtual Desktop Template

$RDtemplateHost = 'RDVH-01.Contoso.local'

#Domain name

$DomainName = 'Contoso.local'

#AD OU  that will contain the VDI computer accounts

$OU = 'VDI'

#Grant RDS a permission on the selected OU to create/remove computer 
accounts for Virtual Desktops

Grant-RDOUAccess -Domain $DomainName -OU $OU -ConnectionBroker $RDCB

#Creating new VM-based Collection

New-VirtualDesktopCollection -CollectionName 'Win 7 SP1' -Description 
'RDS - Virtual Desktop Collection' -PooledManaged -UserGroups "Contoso\
Domain Users" -Domain "Contoso.local" -VirtualDesktopTemplateHostServer  
$RDtemplateHost -VirtualDesktopTemplateName 'Win7SP1-Temp'  
-ConnectionBroker $RDCB -OU $OU -VirtualDesktopNamePrefix  
"VD-W7-" -VirtualDesktopTemplateStoragePath "C:\VDs" 
 -StorageType LocalStorage -VirtualDesktopAllocation  
@{"RDVH-01.Contoso.local"=5;"RDVH-02.Contoso.local"=5} 

http:///


Managing Microsoft Desktop Virtualization with PowerShell

[ 280 ]

Task 5.2.B – creating an Unmanaged Personal collection
In this scenario, you will use the Grant-RDOUAccess cmdlet to grant the 
RDS permission on the OU that will host the VDI computer accounts, the 
New-RDVirtualDesktopCollection cmdlet to create the VM-based collection,  
and also the Set-RDPersonalVirtualDesktopAssignment cmdlet to assign a  
virtual desktop to a user.

The New-RDVirtualDesktopCollection cmdlet is used with the  
following parameters:

• -CollectionName: This parameter deines the name of the RDS collection
• -ConnectionBroker: This parameter deines the FQDN of the server holding 

the Connection Broker role

• -PersonalUnmanaged: This parameter deines the Unmanaged Personal VM-
based collection

• -UserGroups: This parameter deines the users and groups authorized to 
access this collection

• -VirtualDesktopName: This parameter speciies the name of the virtual 
machine to be added to the collection

• -VirtualDesktopTemplateName: This parameter deines the name of the 
new virtual desktop template

• -AutoAssignPersonalVirtualDesktopToUser: This parameter deines 
whether a virtual desktop is automatically assigned to the users or not

• -GrantAdministrativePrivilege: This parameter grants the user an 
administrative privilege on the virtual desktop

The Set-RDPersonalVirtualDesktopAssignment cmdlet is used with the  
following parameters:

• -CollectionName: This parameter deines the name of the RDS collection
• -ConnectionBroker: This parameter deines the FQDN of the server holding 

the Connection Broker role

• -VirtualDesktopName: This parameter deines the name of the VM to  
be assigned

• -User: This parameter deines the user who will get the virtual machine

http:///


Chapter 10

[ 281 ]

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-01.Contoso.local'

#Remote Desktop Virtualization Host(s)

$RDSH = @('RDSH-01.Contoso.local','RDSH-02.Contoso.local')

#Domain name

$DomainName = 'Contoso.local'

#AD OU will contain the VDI computer accounts

$OU = 'VDI'

#Grant RDS a permission on the selected OU to create/remove computer 
accounts for Virtual Desktops

Grant-RDOUAccess -Domain $DomainName -OU $OU -ConnectionBroker $RDCB

#Creating new VM-based Collection

New-RDVirtualDesktopCollection -CollectionName 'Win 7 SP1'  
-Description 'RDS - Virtual Desktop Collection' -PersonalUnmanaged  
-UserGroups "Contoso\Domain Admins" -ConnectionBroker $RDCB  
-VirtualDesktopName "XYZ" -AutoAssignPersonalVirtualDesktopToUser  
$false -GrantAdministrativePrivilege $true 

#Assign Virtual Desktop to a User

Set-RDPersonalVirtualDesktopAssignment -CollectionName 'Win 7 SP1'  
-User 'Contoso\Sherif' -VirtualDesktopName 'XYZ' -ConnectionBroker  
$RDCB

Scenario 6 – setting session-based collection 

coniguration
In this scenario, you will create an RD-session-based collection and set the collection 
coniguration in order to it make ready for end users. For this purpose, you will use the 
Set-RDSessionCollectionConfiguration cmdlet with the following parameters:

• -CollectionName: This parameter deines the name of the collection to  
be modiied.

http:///


Managing Microsoft Desktop Virtualization with PowerShell

[ 282 ]

• -UserGroup: This parameter deines which user groups are authorized to 
access this collection

• -ClientDeviceRedirectionOptions: This parameter deines what should 
be redirected from the client device to the remote session, for example, a 
clipboard, audio, or drive.

• -ClientPrinterRedirected: This parameter deines whether the user can 
use the locally installed printer on the remote session or not.

• -BrokenConnectionAction: This parameter deines the action to be taken 
when the user's session is broken. So the server can disconnect or log off the 
session to save the resources for other sessions.

• -AutomaticReconnectionEnabled: This parameter deines whether the 
broken session can be reconnected automatically or not.

• -MaxRedirectedMonitors: This parameter deines the number of monitors 
that can be redirected per user session.

• -IdleSessionLimitMin: This parameter deines the number of minutes 
before the idle sessions are disconnected.

• -TemporaryFoldersPerSession: This parameter creates a temporary folder 
for each session or uses one for all sessions.

• -ConnectionBroker: This parameter deines the FQDN of the server that 
holds the Connection Broker role for the existing deployment.

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-01.Contoso.local'

#Setting Session-based Collection Configuration

Set-RDSessionCollectionConfiguration -CollectionName mySessions  
-UserGroup "CoEx\Domain Users" -ClientDeviceRedirectionOptions  
Drive -ClientPrinterRedirected $true -BrokenConnectionAction  
Disconnect -AutomaticReconnectionEnabled $true  
-MaxRedirectedMonitors 4 -IdleSessionLimitMin 60  
-TemporaryFoldersPerSession $true -MaxRedirectedMonitors 4  
-ConnectionBroker $RDCB

http:///


Chapter 10

[ 283 ]

Scenario 7 – setting VM-based collection 

coniguration
In this scenario, you will create a VM-based collection and set the collection 
coniguration in order to make it ready for end users. For this purpose, you  
will use the Set-RDVirtualDesktopCollectionConfiguration cmdlet with  
the following parameters:

• -CollectionName: This parameter deines the name of the collection to  
be modiied

• -UserGroups: This parameter deines which users and groups are authorized 
to access this collection

• -RedirectAllMonitors: This parameter allows the users to redirect all 
monitors to the virtual desktop

• -GrantAdministrativePrivilege: This parameter grants the user an 
administrative privilege on the virtual desktop

• -AutoAssignPersonalVirtualDesktopToUser: This parameter 
automatically assigns virtual desktops to the user

• -ConnectionBroker: This parameter deines the FQDN of the server that 
holds the Connection Broker role for the existing deployment

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-01.Contoso.local'

#Setting VM-based Collection Configuration

Set-RDVirtualDesktopCollectionConfiguration "Call-Center Pool" 
-UserGroups "Contoso\CallCenter Users" -RedirectAllMonitors 
$false –ClientDeviceRedirectionOptions AudioVideoPlayBac
k,PlugAndPlayDevice -GrantAdministrativePrivilege $true 
-AutoAssignPersonalVirtualDesktopToUser $true -ConnectionBroker $RDCB

http:///


Managing Microsoft Desktop Virtualization with PowerShell

[ 284 ]

Scenario 8 – updating VM-based collections
In this scenario, you have a VM-based collection created using a speciied Windows 
7 template. For some reason, you made some changes on the master template and 
you want to apply these changes on the virtual desktops in this collection. For this 
purpose, you will use the Update-RDVirtualDesktopCollection cmdlet with the 
following parameters:

• -CollectionName: This parameter deines the name of the collection to  
be updated

• -ConnectionBroker: This parameter deines the FQDN of the server that 
holds the Connection Broker role for the existing deployment

• -VirtualDesktopTemplateHostServer: This parameter deines the FQDN 
of the server hosting the new virtual desktop template

• -VirtualDesktopTemplateName: This parameter deines the name of the 
new virtual desktop template

• -DisableVirtualDesktopRollback: This parameter deines whether the 
machine can be rolled back or not after the update

• -StartTime: This parameter deines the time at which the update operation 
will start

• -ForceLogoffTime: This parameter deines the time at which the connected 
user will be forced to log off to perform the update operation

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-01.Contoso.local'

#Virual Desktop Template Host Server

$VDtemplateHost = 'RDVH-01.Contoso.local'

#Virtual Desktop Template

$VDtemplate = 'Win 7 SP1 Jan 2013 Update'

#Updating VM-based Collection

Update-RDVirtualDesktopCollection -CollectionName "Win 7 SP1" 
-ConnectionBroker $RDCB -VirtualDesktopTemplateHostServer $VDtemplateHost 
-VirtualDesktopTemplateName $VDtemplate -DisableVirtualDesktopRollback 
$false -StartTime (Get-Date) -ForceLogoffTime (Get-Date).AddHours(8)

http:///


Chapter 10

[ 285 ]

Scenario 9 – assigning Proile Disks to 
collections
Proile Disks is a new feature introduced in RDS in Windows Server 2012. Proile 
Disks saves users' proiles on a Virtual Hard Disk (VHD) ile; this ile follows the 
user everywhere in the collection, so once the user connects to any virtual machine  
or session, Proile Disks will be attached automatically.

By default, the Proile Disks feature is disabled, and you have to 
activate it on the desired collection in order to use it. It can be used 
with the session-based and VM-based collections and conigured 
using the Set-RDSessionCollectionConfiguration and 
Set-RDVirtualDesktopCollectionConfiguration cmdlets.

I can hear you; you are wondering why we did not do that in the previous scenarios? 
The answer is the parameters related to Proile Disks must be used exclusively and 
not with normal coniguration parameters.

The following parameters are common for Proile Disks irrespective of whether you 
are coniguring it for a VM-based or session-based collection:

• -CollectionName: This parameter deines the name of the collection to  
be modiied.

• -EnableUserProfileDisk: This parameter enables the Proile Disks feature.
• -DisableUserProfileDisk: This parameter disables the Proile Disks feature.
• -DiskPath: This parameter is the path used to store Proile Disks. It could 

be a local directory or a shared folder. A shared folder is preferred if you are 
using multiple servers per collection.

• -MaxUserProfileDiskSizeGB: This parameter deines the maximum size for 
each Proile Disks feature.

• -IncludeFolderPath: This parameter deines the custom folder to be saved 
on Proile Disks.

• -ExcludeFolderPath: This parameter deines the default proile folder to be 
removed from Proile Disks.

• -RedirectAllMonitors: This parameter allows the users to redirect all 
monitors to the virtual desktop.

http:///


Managing Microsoft Desktop Virtualization with PowerShell

[ 286 ]

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RCCB-01.Contoso.local'

#Enable and Assign Profile Disk to Session-based Collection

Set-RDSessionCollectionConfiguration -CollectionName "mySessions" 
-EnableUserProfileDisk -DiskPath '\\FileServer-01\ProfileDisks' 
-MaxUserProfileDiskSizeGB 20 -IncludeFolderPath 'C:\myReports'  
-ConnectionBroker $RDCB

#Enable and Assign Profile Disk to VM-based Collection

Set-RDVirtualDesktopCollectionConfiguration -CollectionName "Win7SP1" 
-EnableUserProfileDisk -DiskPath '\\FileServer-01\ProfileDisks' 
-MaxUserProfileDiskSizeGB 20 -ExcludeFolderPath 'C:\Users\Sherif\Desktop\
myVideos' -ConnectionBroker $RDCB

Scenario 10 – publishing Remote Desktop 
RemoteApp to collections
RemoteApp is one of the RDS features that allows you to publish an application 
through RDS Web Access so that users can launch the application directly without 
even installing the application on the local machine.

In this scenario, you already have a VM-based collection and you want to set up 
a RemoteApp and publish it to this collection in order to allow users to use this 
application. For this purpose, you will use the New-RDRemoteApp cmdlet with the 
following parameters: 

• -CollectionName: This parameter deines the name of the collection to  
be modiied

• -ShowinWebAccess: This parameter chooses whether to show RemoteApp in 
the web access portal or to hide it

• -UserGroups: This parameter speciies the users and groups with authorized 
access to this RemoteApp feature

• -DisplayName: This parameter deines the display name of the  
RemoteApp feature

• -FilePath: This parameter gives the path ile of the RemoteApp feature 
executable ile

• -ConnectionBroker: This parameter deines the FQDN of the server that 
holds the Connection Broker role for the existing deployment

http:///


Chapter 10

[ 287 ]

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-01.Contoso.local'

#Publish Remote Desktop RemoteApp to Collection

New-RDRemoteApp -CollectionName "mySessions" -ShowInWebAccess $true 
-UserGroups "Contoso\CallCenter Users" -ConnectionBroker $RDCB  
-DisplayName Skype -FilePath "C:\Program Files (x86)\Skype\Phone\Skype.
exe"  

Scenario 11 – coniguring Remote Desktop 
Connection Broker for high availability
In this scenario, you are a virtualization administrator at Contoso where Desktop 
Virtualization is one of the important components, and you found that the current 
implementation has only one Remote Desktop Connection Broker (RDCB) that 
is a single point of failure. So, you have decided to add one more server for high 
availability to save the environment in case of a disaster.

For this purpose, you will use the Set-RDConnectionBrokerHighAvailabili
ty cmdlet to conigure the High-Availability settings and then the Add-RDServer 
cmdlet to add a new RDCB server to the array.

The Set-RDConnectionBrokerHighAvailability cmdlet is used with the following 
group of parameters:

• -ConnectionBroker: This parameter deines the FQDN of the server that 
holds the Connection Broker role for the existing deployment.

• -DatabaseConnectionString: This parameter deines the connection  
string to be used by the RDS to connect to the coniguration database  
on SQL Server.

• -ClientAccessName: This parameter deines the name used by the clients 
to access Connection Broker. The name should be conigured in DNS as a 
round-robin record.

• -DatabaseFilePath: This parameter deines the path that creates the RDCB 
coniguration database ile.

http:///


Managing Microsoft Desktop Virtualization with PowerShell

[ 288 ]

Before you start coniguring the RDCB high availability, ensure that:
• The RDCB servers have an administrative permissions on SQL 

Server

• The RDCB servers have SQL Server's native client installed

• The RDCB servers have a DNS round-robin record

• The RDCB servers have a static assigned IP Address 

The script will be as follows:

#Remote Desktop Connection Broker

$RDCB = 'RDCB-01.Contoso.local'

#SQL Server Instance

$SQLinstance 'SQL-01.Contoso.local'

#RD Connection Broker Database name

$RDCBDB = 'RDCB'

$ConStr = "DRIVER=SQL Server Native Client 10.0;SERVER=$SQLinstan
ce;Trusted_Connection=Yes;APP=Remote Desktop Services Connection 
Broker;Database=$RDCBDB"

#Configuring RDCB HA settings

Set-RDConnectionBrokerHighAvailability -ConnectionBroker $RDCB 
-DatabaseConnectionString $ConStr -ClientAccessName RDCB.Contoso.Local 
-DatabaseFilePath ("C:\$RDCBDB" + '.mdf')

#Adding the second RDCB the HA Array

Add-RDServer -ConnectionBroker $RDCB -Server RDSH-02.Contoso.local -Role 
RDS-CONNECTION-BROKER

http:///


Chapter 10

[ 289 ]

Summary
It is very obvious that virtualization in general has played a major role in changing 
the shape of the ICT industry. In this chapter, we had a sneak peek at Desktop 
Virtualization as a concept, its beneits, and the value of using it from a business and 
technical perspective. Also, we learned how to use Windows PowerShell to install, 
conigure, and manage Microsoft Remote Desktop Services.

In the next chapter, we will continue the Windows PowerShell's journey of 
knowledge with Microsoft Cloud solutions. The spotlight will be on how Windows 
PowerShell can help you to build and manage your infrastructure and the platforms 
hosted on the cloud, with a focus on Microsoft's implementation of Infrastructure-
as-a-Service (IaaS) represented in Windows Azure and Platform-as-a-Service (PaaS) 
represented in SQL Azure.

http:///


http:///


Managing Microsoft Cloud 

Platform with PowerShell
Cloud is one of the most popular words in the ICT industry nowadays; we hear it 
every day, everywhere, and at every occasion. In simple words, cloud computing 
is the concept of using and delivering computing resources to the end user as a 
service. A computing resource could be software such as web portals and messaging 
systems, or hardware such as CPU, memory, network, and storage. It could be 
hosted internally in a corporate's data center "Private Cloud" or externally in a 
vendor's data center "Public Cloud".

There are different types of cloud computing:

• Software-as-a-Service (SaaS): In SaaS, you get your software (for example, 
e-mail, web portals, or CRM) as a service hosted in the cloud; you do 
not have to worry about hardware requirements, software prerequisites, 
implementation, and maintenance hassles. In simple words, you can get 
software that is ready to use in a few clicks.

Popular solution(s): Microsoft Ofice 365 and Oracle CRM On Demand
• Platform-as-a-Service (PaaS): In PaaS, you get Data Platform such as SQL 

Server as a service such as SaaS hosted in the cloud. You can also get your 
SQL Server instance and database ready in no time.

Popular solution(s): Microsoft SQL Azure and Google App Engine

• Infrastructure-as-a-Service (IaaS): In IaaS, you get the infrastructure 
(hardware) components as a service. It is similar to the web hosting concept 
in which you get a speciic hardware coniguration to host your website; 
however, in IaaS you get the hardware coniguration to build and host your 
virtual servers.

Popular solution(s): Microsoft SQL Azure and Amazon Web Services

http:///


Managing Microsoft Cloud Platform with PowerShell

[ 292 ]

This chapter will cover how Windows PowerShell helps in administering, managing, 
and automating a cloud computing platform such as Microsoft Windows Azure.

We will also cover the following topics:

• What is Windows Azure?

• What is Windows Azure PowerShell?

• Managing Windows Azure using PowerShell.

What Windows Azure is
Windows Azure is a cloud-computing concept that is created by Microsoft. Mainly, 
Windows Azure provides IaaS and PaaS, so you can think about using it in many 
scenarios, such as hosting a web application, deploying a centralized data store, 
building a development and testing environment, or even implementing a disaster 
recovery (DR) site for your on-premise environment.

What Windows Azure PowerShell is
Windows Azure comes with a very neat and easy, web-based management interface 
that allows you to do any task in a few clicks, but unfortunately this interface is a 
bit limited. For example, you cannot create a couple of virtual machines in one shot; 
you have to repeat the same steps twice in order to get two virtual machines. The 
same goes for the rest of the Azure tasks. That is why, Windows Azure provides 
a powerful scripting environment via Windows PowerShell to make it easier for 
administrators to automate multiple Azure tasks, such as the provisioning of virtual 
machines, application deployment, and infrastructure management.

Installing Windows Azure PowerShell
Windows Azure PowerShell is provided with the Windows PowerShell module as 
part of the Windows Azure Software Development Kit (SDK). In order to install 
Windows Azure PowerShell:

1. Go to Windows Azure's download page:

http://www.windowsazure.com/en-us/manage/downloads/

2. In the Windows section, click on Install to download the web installer EXE 
ile for Windows Azure PowerShell:

http:///


Chapter 11

[ 293 ]

3. Launch the web installer ile; click on Install to start Windows Azure 
PowerShell's installation and coniguration.

4. Follow the installation wizard to complete the process.

After installing Windows Azure PowerShell, a module called "Azure" should be 
available in your system.

Making Windows PowerShell understand 

Windows Azure cmdlets
In order to use Windows Azure cmdlets in Windows PowerShell, you can either 
directly launch the Windows Azure PowerShell shortcut to quickly jump into  
the Windows Azure PowerShell environment or launch the import Windows  
Azure PowerShell module into your Windows PowerShell session using the 
following command:

#Import Windows Azure PowerShell module

PS> Import-Module Azure

http:///


Managing Microsoft Cloud Platform with PowerShell

[ 294 ]

Connecting to your Windows Azure 
environment
After downloading, installing, and importing the Windows Azure PowerShell, you 
are just one step away from managing your Windows Azure environment using 
PowerShell. The last step is connecting to your Windows Azure subscription. 

In order to set up your Windows Azure subscription in your PowerShell, you have to 
import the PublishSettings ile that contains your Windows Azure subscription's 
unique information, such as the subscription ID, name, service endpoint URL, and 
certiicate thumbprint. This information will be used by PowerShell to reach your 
Windows Azure environment.

You can get the PublishSettings ile easily by using the 
Get-AzurePublishSettingsFile cmdlet. This cmdlet will take you to the 
Windows Azure portal. When you enter your credentials, you will be redirected 
to an instructional page to generate and download your Windows Azure 
PublishSettings ile for your subscription.

#Generate and download the Windows Azure PublishSettings File

PS> Get-AzurePublishSettingsFile

Now you should have the publishsettings ile called <AzurePublishSettings>.
publishSettings that contains your Windows Azure subscription. The next 
step is to import it to PowerShell in order to deine your subscription information 
into Windows PowerShell. To import the PublishSettings ile, use the 
Import-AzurePublishSettingsFile cmdlet as follows:

#Import Windows Azure PublishSettings File

PS> Import-AzurePublishSettingsFile <FileName>.publishsettings

Once the PublishSettings ile is imported successfully, Windows PowerShell will 
set your subscription as a default subscription; so every time you open Windows 
PowerShell and use Windows Azure cmdlets, it will automatically connect to 
Windows Azure using the default subscription. In order to show your subscription 
information, use the Get-AzureSubscription cmdlet.

http:///


Chapter 11

[ 295 ]

So at this point, we can say congratulations!! Your Windows PowerShell 
environment is now ready to manage your Windows Azure.

Getting started with Windows Azure 
scripting
In this section, we will help you get started with Windows Azure scripting and 
automation using a set of Windows PowerShell scenarios and examples.

Scenario 1 – creating a new Azure Afinity 
Group
In this scenario, you are a Windows Azure administrator who wants to get the best 
performance by making sure that any related cloud components associated with a 
speciic cloud service are placed in the same data center, especially when Microsoft 
has multiple Azure data centers distributed across the United States, Europe, and 
Asia. So for this purpose, you need to create an "afinity group" in order to group the 
related components logically. For this, you will use the New-AzureAffinityGroup 
cmdlet with the following group of parameters:

• -Name: Deines the name of the new afinity group
• -Location: Deines the location of the afinity group; this will deine which 

data center needs to be used to place the cloud components associated with 
this afinity group

http:///


Managing Microsoft Cloud Platform with PowerShell

[ 296 ]

Use the Get-AzureLocation cmdlet to get the list of 
available locations.

You can use the following code:

#Create New Azure Affinity Group

PS> New-AzureAffinityGroup –Name "ContosoAffinityGroup" –Location 
"West US"

Scenario 2 – creating a new Azure storage 
account
In this scenario, you will create an Azure storage account in order to allow your 
services, applications, and infrastructure to utilize Windows Azure storage. For this 
purpose, you will use the New-AzureStorageAccount cmdlet with the following 
group of parameters:

• -StorageAccountName: Deines the name of the new azure storage account

• -AffinityGroup: Deines the name of the afinity group that the storage 
account should be associated with

You can use the following code:

#Create New Azure Storage Account

PS> New-AzureStorageAccount -StorageAccountName "contoso" 
-AffinityGroup "ContosoAffinityGroup"

Scenario 3 – assigning a storage account to 

an Azure subscription
In this scenario, you will assign a previously created Azure storage account to your 
Windows Azure subscription in order to make sure that any task created under this 
subscription will use this storage account by default. For this purpose, you will use 
the Set-AzureSubscription cmdlet to deine the Windows Azure subscription's 
settings with the following group of parameters:

• -SubscriptionName: Deines the name of the Azure subscription; use the 
Get-AzureSubscription cmdlet to list all the available subscriptions in 
Windows PowerShell

• -CurrentStorageAccount: Deines the name of the previously created 
Azure storage account

http:///


Chapter 11

[ 297 ]

You can use the following code:

#Assign Azure storage account to a specific azure subscription

PS> Set-AzureSubscription -SubscriptionName <Subscription_Name> 
-CurrentStorageAccount "Contoso"

Scenario 4 – creating a new Azure Cloud 
Service 
In this scenario, you will create a Windows Azure Cloud Service. A cloud service 
describes the components of each solution you have on Windows Azure. For 
example, if you have a web application hosted on a web server (IIS) that connects to 
a database hosted on a database server (SQL Server), these two components should 
be called "Cloud Service". So, cloud service is an essential requirement for any Azure 
component you want to create on Windows Azure. For this purpose, you will use the 
New-AzureService cmdlet with the following group of parameters:

• -ServiceName: Deines the name of the new Azure service

• -AffinityGroup: Deines the afinity group the storage account should be 
associated with

You can use the following code:

#Create new Azure Cloud Service

PS> New-AzureService -ServiceName "myCloudService" -AffinityGroup 
"ContosoAffinityGroup"

Scenario 5 – creating a new SQL Azure 
Database Server
In this scenario, you will create a centralized SQL Server database hosted in 
the cloud, utilizing the SQL Azure capabilities to host your database. So before 
you create your SQL Server database, you irst need to create a SQL Server 
instance to host this SQL database. For this purpose, you will use the New-
AzureSqlDatabaseServer cmdlet with the following group of parameters:

• -AdministratorLogin: Deines the login name for the SQL Azure  
instance administrator

• -AdministratorLoginPassword: Deines the login and password for the 
SQL Azure instance administrator

• -Location: Deines the SQL Azure server instance's location

http:///


Managing Microsoft Cloud Platform with PowerShell

[ 298 ]

You can use the following code:

#Create new SQL Azure Database Server instance

PS> New-AzureSqlDatabaseServer -AdministratorLogin "SherifT" 
-AdministratorLoginPassword "P@ssw0rd" -Location "West US"

Scenario 6 – creating a new SQL Azure 
database
In this scenario, you will create a SQL Azure database on a previously created SQL 
Azure database server instance. For this purpose you will use a couple of cmdlets; 
the irst cmdlet is the New-AzureSqlDatabaseServerContext cmdlet that is used 
to deine which server you will connect to, and the second cmdlet is the New-
AzureSqlDatabase cmdlet that is used to create the SQL Azure database.

Following are the group of parameters:

• New-AzureSqlDatabaseServerContext

 ° -ServerName: Defines SQL Azure server name

• New-AzureSqlDatabase

 ° -Context: Defines the database context object created using the New-
AzureSqlDatabaseServerContext cmdlet

 ° -DatabaseName: Defines the name of the new database you want to 
create

 ° -Collation: Defines the collation of the database

 ° -Edition: Defines the database edition, either "Web" or "Business"

 ° -MaxSizeGB: Defines the maximum size of the database in gigabytes; 
the maximum size of the database depends on which database 
edition you are using

You can use the following code:

#Create SQL Azure Database Server Context

PS> $context = New-AzureSqlDatabaseServerContext -ServerName <server_
Name>

#Create new SQL Azure Database

PS> New-AzureSqlDatabase –Context $context -DatabaseName "myDatabase" 
–Collation SQL_Latin1_General_CP1_CI_AS -Edition "Web" -MaxSizeGB 1

http:///


Chapter 11

[ 299 ]

Scenario 7 – creating a new SQL Azure 
Database Server irewall rule
In this scenario, you will create a SQL Azure Database server irewall rule in order to 
allow communication between your SQL Azure database server and web application 
that is hosted either somewhere else or on other computers in a speciic network 
range. For this purpose, you will use the New-AzureSqlDatabaseServerFirewallRu
le cmdlet to deine the irewall rule settings for SQL Azure Server.

Following are the group of parameters:

• -ServerName: Deines SQL Azure server name

• -RuleName: Deines the name of the irewall rule
• -StartIpAddress: Deines the start IP address

• -EndIpAddress: Deines the end IP address

Use 0.0.0.0 for -StartIpAddress and -EndIpAddress to allow 
communication between SQL Azure and Windows Azure.

You can use the following code:

#Create SQL Azure Database Server Firewall Rule

PS> New-AzureSqlDatabaseServerFirewallRule –ServerName <Server_Name> 
-RuleName "myIntranet" -StartIpAddress 192.168.1.1 -EndIpAddress 
192.168.1.254

Scenario 8 – provisioning the new Azure VM 
in Windows (quick mode) 
In this scenario, you will create a new Windows Azure virtual machine running 
a Windows operating system using the quick mode. The quick mode allows you 
to create a new virtual machine with minimal input from your side; it is good for 
testing purposes. For the purpose of creating a new virtual machine, you will use the 
New-AzureQuickVM cmdlet with the following group of parameters:

• -Windows: Deines that a virtual machine will run a Windows  
operating system.

• -ServiceName: Deines the cloud service that will host the virtual machine.

• -Name: Deines the name of the virtual machine.

http:///


Managing Microsoft Cloud Platform with PowerShell

[ 300 ]

• -Password: Deines the operating system's administrator password.

• -ImageName: Deines the name of the image that will be used to provision the 
virtual machine. 

Use the Get-AzureVMImage cmdlet to list all the images 
available in Windows Azure.

• -InstanceSize: Deines the size of the virtual machine: "ExtraSmall", 
"Small", "Medium", "Large", or "ExtraLarge". The difference between instance 
sizes is the number of CPU cores and memory.

You can use the following code:

#Create new Windows Azure VM – Windows using Quick Mode

PS > New-AzureQuickVM –Windows -ServiceName "DatabaseService" -Name 
"CAI-DC-03" -ImageName "MSFT__Windows-Server-2012-Datacenter-
201210.01-en.us-30GB.vhd" -Password P@ssw0rd -AffinityGroup 
"ContosoAffinityGroup" -AffinityGroup "ContosoAffinityGroup"

Scenario 9 – provisioning the new Azure VM 
in Linux (quick mode) 
In this scenario, you will create a new Windows Azure virtual machine that is 
running Linux operating system using the quick mode. For the purpose of creating a 
new virtual machine, you will use the New-AzureQuickVM cmdlet with the following 
group of parameters:

• -Linux: Deines that the virtual machine will run a Linux operating system.

• -ServiceName: Deines the cloud service that will host the virtual machine.

• -Name: Deines the name of the virtual machine.

• -LinuxUser: Deines the Linux administrator user.

• -Password: Deines the operating system's administrator password.

• -ImageName: Deines the name of the image that will be used to provision  
the virtual machine. Use the Get-AzureVMImage cmdlet to list all the 
available images.

• -InstanceSize: Deines the size of the virtual machine: "ExtraSmall", 
"Small", "Medium", "Large", or "ExtraLarge". The difference between  
instance sizes is the number of CPU cores and memory.

http:///


Chapter 11

[ 301 ]

You can use the following code:

#Create new Windows Azure VM – Linux using Quick Mode

PS> New-AzureQuickVM -Linux –ServiceName "myLinuxEnv" -Name 
"SUSE-02" –ImageName "b4590d9e3ed742e4a1d46e5424aa335e__SUSE-Linux-
Enterprise-Server-11-SP2-New" -LinuxUser "root"  -Password P@ssw0rd 
-AffinityGroup "CoontosoAffinityGroup"

Scenario 10 – provisioning the new Windows 

Azure VM (advanced mode) 
In this scenario, you will create a Windows Azure virtual machine that is running 
the Windows operating system using the advanced mode in order to add extra 
conigurations that are not available using the quick mode, such as virtual machine 
disk and endpoint conigurations. For this purpose, you will use a combination of 
the following Azure cmdlets:

• The New-AzureVMConfig cmdlet is used to conigure a new virtual machine 
coniguration. Its parameters are as follows:

 ° -Name: Defines the name of the virtual machine.

 ° -ImageName: Defines the name of the image that will be used to 
provision the virtual machine.

 ° -InstanceSize: Defines the size of the virtual machine: "ExtraSmall", 
"Small", "Medium", "Large", or "ExtraLarge". The difference between 
instance sizes is the number of CPU cores and memory.

• The Add-AzureProvisionConfig cmdlet is used to deine the virtual 
machine's provision coniguration, such as the operating system, domain, 
time zone, and automatic updates. Its parameters are as follows:

 ° -Windows: Defines that the virtual machine will run a Windows 
operating system

 ° -Password: Defines the operating system's administrator password

 ° -DisableAutomaticUpdates: Disables the automatic update feature 
on the virtual machine

 ° -ResetPasswordOnFirstLogon: Forces the user to change the 
password on the first login

 ° -TimeZone: Defines the time zone for the virtual machine

 ° -WindowsDomain: Defines that the virtual machine will join a domain

 ° -Domain: Defines the name of the domain the virtual machine  
will join

http:///


Managing Microsoft Cloud Platform with PowerShell

[ 302 ]

 ° -JoinDomain: Defines the fully qualified domain name (FQDN) of 
the domain the virtual machine will join

 ° -DomainUserName: Defines the username of the domain account that 
has permission to join the virtual machine to the domain

 ° -DomainPassword: Defines the password for the domain username

 ° -MachineObjectOU: Defines the fully qualified domain name 
(FQDN) for the Organizational Unit (OU) in which the computer 
account will be created

• The New-AzureVM cmdlet is used to create a new virtual machine using 
the previously created virtual machine coniguration and provisioning 
coniguration. Its parameters are as follows:

 ° -ServiceName: Defines the cloud service that will host the virtual 
machine

 ° -VMs: Defines the virtual machine configuration object that will be 
used to create the virtual machine

You can use the following code:

#Create Azure VM configuration 

PS> $vm1 = New-AzureVMConfig -Name myWeb01 -InstanceSize 
Medium -ImageName "a699494373c04fc0bc8f2bb1389d6106__Windows-
Server-2012-Datacenter-201212.01-en.us-30GB.vhd" | Add-
AzureProvisioningConfig -Windows –Password "P@ssw0rd" –WindowsDomain 
–Domain "Contoso" –JoinDomain "Contoso.com" –DomainUserName 
"Administrator" –DomainPassword "P@ssw0rd" -MachineObjectOU 
"OU=Azure,DC=Contoso,DC=com" -DisableAutomaticUpdates –
ResetPasswordOnFirstLogon –TimeZone "Pacific Standard Time"

#Create Azure VM using the previously created VM 

PS> New-AzureVM -ServiceName "ContosoWeb" -VMs $vm1

Scenario 11 – Adding a new endpoint to 

Windows Azure VM (NoLB)
In this scenario, you have a secure website running on the Windows Azure virtual 
machine and you want to make this website accessible to other users. In order to 
achieve this task, you will have to create an endpoint that is conigured to allow 
communication between users in different networks and the website on your 
virtual machine. Network Endpoint is similar to the concept of Network Address 
Translation (NAT) or the Port Forward features in network switches and routers.

http:///


Chapter 11

[ 303 ]

To make your website accessible to other users, you will use the Add-AzureEndPoint 
cmdlet with the following parameters to add a new Not Load-Balanced (NoLB) 
endpoint to the secure website-utilizing port 443 for HTTPS:

• -Name: Deines the name of the Endpoint rule

• -Protocol: Deines the protocol of the endpoint, either TCP or UDP

• -LocalPort: Deines the local port of the endpoint that is used for 
communicating with the application on the virtual machine

• -PublicPort: Deines the public port that the Endpoint will use to listen to 
incoming requests

You can use the following steps:

1. Get the Windows Azure VM you want to assign the Endpoint rule to, using 
the Get-AzureVM cmdlet with the –ServiceName and –Name parameters.

2. Use the Add-AzureEndPoint cmdlet to add a new endpoint.

3. Commit the changes on the virtual machine using the Update-AzureVM 
cmdlet.

You can use the following code:

#Add NoLB EndPoint to Windows Azure virtual machine

PS> Get-AzureVM -ServiceName "CorpWebsite" -Name "WebSrv01" | Add-
AzureEndpoint -Name "HTTPs" -Protocol tcp -LocalPort 443 -PublicPort 
443 | Update-AzureVM

Scenario 12 – coniguring the Windows Azure 
Virtual Machines load balancing (LB)
In this scenario, you have cloud services running on the corporate website portal; 
these cloud services consist of three virtual web servers, and you want to make sure 
that load balancing is conigured for this server. In order to achieve this task, you 
will have to add a new Load-Balancing Endpoint and assign this endpoint to all 
those virtual machines that should be members of the load balancing stack. 

http:///


Managing Microsoft Cloud Platform with PowerShell

[ 304 ]

For this purpose, you will use the Add-AzureEndPoint cmdlet with the following 
parameters to add a new Load-Balanced (LB) EndPoint for the server hosting the 
website portal:

• -Name: Deines a name for the EndPoint rule
• -Protocol: Deines the protocol for the endpoint, either TCP or UDP

• -LocalPort: Deines the local port for the endpoint that is used for 
communicating with the application on the virtual machine

• -PublicPort: Deines the public port that the endpoint will use to listen to 
incoming requests

• -LBSetName: Deines a name for the Load-Balanced EndPoint set

• -ProbeProtocol: Deines the protocol for the Load-Balanced EndPoint that 
is to be probed (tested); it's either HTTP or TCP

• -ProbePort: Deines the port to be used by the probes; by default, the public 
port is used if this parameter is not deined

• -ProbePath: Deines the URI to be used by the probes; it's used only with the 
HTTP probe protocol

You can use the following steps:

1. Get all Windows Azure VMs under the cloud service that you want to 
assign a Load-Balanced EndPoint to, using the Get-AzureVM cmdlet with the 
-ServiceName parameter.

2. Use the Add-AzureEndPoint cmdlet to add a new endpoint.

3. Commit the changes on the virtual machine using the Update-AzureVM cmdlet.

You can use the following code:

#Add Load-Balanced EndPoint to Windows Azure virtual machine

PS> Get-AzureVM -ServiceName CorpWebsite  | Add-AzureEndpoint -Name 
"LB-Http" -Protocol tcp -PublicPort 80 -LocalPort 80 -LBSetName "LB-
WebFarm" -ProbePort 80 -ProbeProtocol "http" -ProbePath "/" | Update-
AzureVM

http:///


Chapter 11

[ 305 ]

Scenario 13 – creating and assigning a data 

disk to Windows Azure Virtual Machine
In this scenario, you have a Windows Azure virtual machine with only one disk for 
the operating system, and you want to create a new data disk and attach it to this 
virtual machine. For this purpose, you will use the Add-AzureDataDisk cmdlet with 
the following group of parameters:

• -CreateNew: Creates a new data disk

• -DiskLabel: Deines the disk label for the new data disk

• -DiskSizeInGB: Deines the data disk size in gigabytes

• -LUN: Deines the Logical Unit Number (LUN) location for the data disk in 
the virtual machine; you can assign LUN from 0 to 15

You can use the following steps:

1. Get the Windows Azure VM to which you want to assign the data disk, using 
the Get-AzureVM cmdlet with the –ServiceName and –Name parameters.

2. Use the Add-AzureDataDisk cmdlet with –CreateNew to create a new  
data disk.

3. Commit the changes on the virtual machine using the Update-AzureVM 
cmdlet.

You can use the following code:

#Create and Assign a new data disk to Windows Azure VM

PS> Get-AzureVM -ServiceName "myWebFarm" -Name WebSrv01 | 
Add-AzureDataDisk -CreateNew -DiskSizeInGB 30 –DiskLabel 
"UserDataDisk" -LUN 0 | Update-AzureVM

Scenario 14 – moving the Local VHD to 
Windows Azure
In this scenario, you want to migrate a virtual machine from your on-premise 
Hyper-V server to Windows Azure without rebuilding the server from scratch. So 
you have decided to move the local VHD ile for the virtual machine to your storage 
on Windows Azure. For this purpose, you will use the Add-AzureVhd cmdlet with 
the following group of parameters:

• The Add-AzureVhd cmdlet is used to move the VHD ile from the local server 
to Windows Azure. Its parameters are as follows:

 ° -LocalFilePath: Assigns the file path for the local VHD file

http:///


Managing Microsoft Cloud Platform with PowerShell

[ 306 ]

 ° -Destination: Assigns the URI for the Windows Azure container to 
which the VHD will upload

• The Add-AzureDisk cmdlet is used to add the VHD to the Windows Azure 
Disk library. Its parameters are as follows:

 ° -OS: Defines that the VHD is an operating system disk; it accepts 
either Windows or Linux

 ° -DiskName: Defines the name of the disk on the library

 ° -MediaLocation: Defines the location of the VHD that is to be added 
to the disk library

You can use the following steps:

1. Deine a variable $LocalVHD to store the local path for the VHD ile.
2. Deine a variable $Destination to store the URI for the Windows Azure 

container.

3. Use the Add-AzureVhd cmdlet to move the VHD ile.
4. Use the Add-AzureDisk cmdlet to convert the VHD to Azure Disk and store 

it in the disk library.

You can use the following code:

#Get the Azure Storage Account for the default Azure Subscription

PS> $StorageAccountName = (Get-AzureSubscription).CurrentStorageAccount

#Define DiskName

PS> $DiskName = "AppVServerDisk"

#Define Local VHD file path

PS > $LocalVHD = 'D:\Hyper-V\Virtual Hard Disks\AppVServer.vhd'

#Define the URI for the Windows Azure Container

PS > $Destination = 'http://' + $StorageAccountName + '.blob.core.
windows.net/vhds/AppVServerDisk.vhd' 

#Move VHD file from local server to Windows Azure Storage

PS > Add-AzureVhd -LocalFilePath $LocalVHD -Destination $Destination

#Convert the VHD file to Windows Azure Disk

PS > Add-AzureDisk -OS Windows -DiskName $DiskName -MediaLocation 
$Destination

http:///


Chapter 11

[ 307 ]

Scenario 15 – provisioning a new Windows 
Azure VM from a Disk 
In this scenario, you have a VHD for one of your virtual servers that has recently 
been moved from the on-premise Hyper-V server to the Windows Azure storage, 
and you want to create a new Windows Azure virtual machine using this VHD. For 
this purpose, you will use a combination of the following Azure cmdlets:

• The New-AzureVMConfig cmdlet is used to create a new virtual machine 
coniguration. Its parameters are as follows:

 ° -Name: Defines the name for the new virtual machine.

 ° -DiskName: Defines the name of the disk that will be attached to the 
virtual machine to provision it.

 ° -InstanceSize: Defines the size of the virtual machine: "ExtraSmall", 
"Small", "Medium", "Large", or "ExtraLarge". The difference between 
instance sizes is the number of CPU cores and memory.

• The New-AzureVM cmdlet is used to create a new virtual machine using 
the previously created virtual machine coniguration and provisioning 
coniguration. Its parameters are as follows:

 ° -ServiceName: Defines the cloud service that will host the virtual 
machine

 ° -VMs: Defines the virtual machine configuration object that will be 
used to create the virtual machine

You can use the following code:

#Create Azure VM Configuration object

PS> $vm1 = New-AzureVMConfig -Name AppVServer -InstanceSize Medium 
-DiskName "AppVServerDisk" 

#Create new VM from Azure VM Configuration

PS> New-AzureVM -ServiceName "ContosoWeb" -VMs $vm1

http:///


Managing Microsoft Cloud Platform with PowerShell

[ 308 ]

Scenario 16 – creating Windows Azure Image 
from a VM
In this scenario, you have a customized Windows Azure virtual machine and you 
want to use this virtual machine as a base image for the future provisioning of virtual 
machines. For this purpose, you will use the Save-AzureVMImage cmdlet to capture 
the virtual machine and save it as an image.

The parameters of the Save-AzureVMImage cmdlet are as follows:

• -ServiceName: Deines the name of the cloud service hosting the  
virtual machine

• -Name: Deines the name of the virtual machine
• -NewImageName: Deines a name for the new image

Make sure to Sysprep your virtual machine before using 
the Save-AzureVMImage cmdlet.

You can use the following code:

#Create Azure VM Image

PS> Save-AzureVMImage -ServiceName "CorpWebsite" -Name "myWeb01" 
-NewImageName "Corp Website Core Image, Update Jan 2013"

Scenario 17 – exporting and importing 
Windows Azure VM
In this scenario, you have a Windows Azure virtual machine running under 
a speciic cloud service and you want to move it to another cloud service. 
Unfortunately, there is no option in the Windows Azure portal that allows moving 
the virtual machine between different cloud services. The workaround is to use 
a combination of Windows Azure PowerShell cmdlets to achieve this goal. These 
cmdlets are as follows:

• The Export-AzureVM cmdlet is used to export a virtual machine state 
(coniguration) to an XML ile. Its parameters are as follows:

 ° -ServiceName: Defines the name of the cloud service hosting the 
virtual machine

 ° -Name: Defines the name of the virtual machine

 ° -Path: Defines the path in which to export the XML state file

http:///


Chapter 11

[ 309 ]

• The Remove-AzureVM cmdlet is used to remove the current virtual machine 
and lease the attached disk. Its parameters are as follows:

 ° -ServiceName: Defines the name of the cloud service hosting the 
virtual machine

 ° -Name: Defines the name of the virtual machine

The Remove-AzureVM cmdlet removes the virtual machine 
but not the attached disk.

• The Import-AzureVM cmdlet is used to import the virtual machine state ile. 
Its parameter is as follows:

 ° -Path: Defines the path of the XML state file

The Import-AzureVM cmdlet might import the virtual 
machine with a new IP Address.

• he New-AzureVM cmdlet is used to create a new virtual machine using a state 
(coniguration) XML ile imported in the last step. Its parameter is as follows:

 ° -ServiceName: Defines the name of the cloud service hosting the 
virtual machine

You can use the following code:

#Export Azure VM configuration

PS> Export-AzureVM -ServiceName CorpWebsite -Name myWeb01 -Path $home\
desktop\myWeb01.xml

#Remove Azure VM

PS> Remove-AzureVM -ServiceName CorpWebsite -Name myWeb01

#Importing Azure VM configuration file, and create new VM using the 
import file

PS> Import-AzureVM -Path $home\desktop\myWeb01.xml | New-AzureVM 
-ServiceName CorpPortal

http:///


Managing Microsoft Cloud Platform with PowerShell

[ 310 ]

Scenario 18 – starting, stopping, and 
restarting the Windows Azure VM
In this scenario, you have a large number of Windows Azure virtual machines and 
you spend a lot of time starting, restarting, or stopping these using the management 
portal. Using the management portal, you are doing this task one by one and you 
want to discover the other possibilities in PowerShell. For this purpose, Windows 
Azure PowerShell provides a quick and basic task equivalent to this:

• The Start-AzureVM cmdlet used to power on a virtual machine

• The Stop-AzureVM cmdlet used to shut down a running virtual machine

• The Restart-AzureVM cmdlet used to restart a virtual machine

All three cmdlets use the same parameters as follows:

• -ServiceName: Deines the name of the cloud service hosting the virtual 
machine

• -Name: Deines the name of the virtual machine

You can use the following code:

#Start Azure VM 

PS> Start-AzureVM -ServiceName CorpWebsite -Name myWeb01 

#Restart Azure VM

PS> Restart-AzureVM -ServiceName CorpWebsite -Name myWeb01

#Shutdown Azure VM 

PS> Stop-AzureVM -ServiceName CorpWebsite -Name myWeb01

Scenario 19 – uploading the certiicate to 
Windows Azure
In this scenario, you have a Secure Socket Layer (SSL) certiicate that you want to 
use for one of the services hosted on Windows Azure. In order to use it, you will 
have to upload it irst to your Windows Azure subscription. For this purpose, you 
will use the Add-AzureCertificate cmdlet with the following group of parameters:

• -ServiceName: Deines the cloud service in which you will deploy the 
certiicate

http:///


Chapter 11

[ 311 ]

• -CertToDeploy: Deines the local path for the certiicate iles such as CER 
and PFX certiicates

• -Password: Deines the certiicate password, if any

You can use the following code:

#Upload certificate to Windows Azure service

PS> Add-AzureCertificate -ServiceName "myDevEnv" –CertToDeploy 
<myCertificate.pfx> -Password abc123

Scenario 20 – generating the Azure Virtual 
Machine RDP ile
In this scenario, you will generate a remote desktop ile for your Windows Azure 
virtual machines so you can connect to them directly instead of using the Windows 
Azure portal. For this purpose, you will use the Get-AzureRemoteDesktopFile 
cmdlet with the following group of parameters:

• -ServiceName: Deines the cloud service in which your virtual machine 
resides

• -Name: Deines the name of the virtual machine for which you want to 
generate the RDP ile

• -LocalPath: Deines the local path where you want to save the RDP ile
• -Launch: Launches the remote desktop session for the selected session

You can use the following code:

#Generate Remote Desktop File for Windows Azure VM

PS> Get-AzureRemoteDesktopFile -ServiceName "myDevEnv" –Name 
"DevTools" -LocalPath $home\Desktop\DevTools.rdp –Launch

http:///


Managing Microsoft Cloud Platform with PowerShell

[ 312 ]

Summary
It is very obvious that cloud computing is the future of our ICT industry; it is going 
to be a core component in each and every entity, and this is no secret. There are huge 
beneits and roadmaps provided by this technology for future growth.

In this chapter, we have seen Microsoft Windows Azure and SQL Azure as a  
real-life example of a cloud computing implementation, and we have learned  
how Windows PowerShell can play a major role in operating such a technology 
easily, as if managing a normal virtualized environment.

In the next chapter, we will talk about IT Process Automation (also known as 
Runbook automation) and the concept behind it. Also, we will learn how Windows 
PowerShell and System Center Orchestrator can be integrated together to implement 
and complete this concept in real life.

http:///


Integrating Windows 

PowerShell and System 

Center Orchestrator
In previous chapters of this book, we had a deeper look at Windows PowerShell 
and its capabilities as an automation engine. We also had a long tour discovering 
Windows PowerShell and its capabilities with different products and technologies. 
The fact is that PowerShell is not only a command-line interface (for products such 
as Exchange Server or Windows Server) that allows a better and easier coniguration 
and management, but it also plays a major role in areas such as Business Process 
Automation (BPA).

In this chapter we will cover the following topics:

• What is IT Process Automation (ITPA)?

• What is System Center Orchestrator (SCO)?

• Windows PowerShell and System Center Orchestrator are better together.

Completing your ITPA story with 
PowerShell and Orchestrator
ITPA, also known as Run Book Automation (RBA), is the concept of delivering an 
end-to-end automation, integration, and orchestration scenarios between people, 
processes, tools, and other different parties in enterprise and  
complex IT environments.

http:///


Integrating Windows PowerShell and System Center Orchestrator

[ 314 ]

ITPA is one of the best ways to:

• Increase IT resource utilization and allocation; the resources are either people 
or equipment

• Reduce the cost of operations as it reduces the human error factor, Mean 
Time To Respond/Repair (MTTR)

• Effectively and eficiently implement IT industry standards and best 
practices, such as ITIL and Microsoft Operations Framework (MOF)

What System Center Orchestrator is
System Center Orchestrator is the Microsoft platform for implementing ITPA. 
Orchestrator allows you to build worklows that automate and integrate the  
different tools and software from the same and different vendors together in  
order to standardize deployment, provisioning, coniguring, monitoring, and 
troubleshooting of the different components in your IT environment.

http:///


Chapter 12

[ 315 ]

Understanding Orchestrator worklows
As mentioned earlier in this book, the worklow term represents a set of objects, 
tasks, and activities that are connected together and are running concurrently 
or sequentially. In Orchestrator, the worklow activity represents a task such as 
creating a new domain user or creating a new mailbox, and each group of activities is 
wrapped together in a package called Integration Pack (IP), where each Integration 
Pack contains a set of related tasks. For example, Active Directory Integration Pack 
contains a set of activities that represents the different Active Directory tasks such 
as creating security groups, removing organizational units, and resetting computer 
accounts. The activities in Orchestrator are either .NET activities developed using 
Orchestrator SDK and C# or are activities created by Command Line Activity 
Wizard using command line tools such as Windows PowerShell or SSH.

If you had the time to play with System Center Operations Manager (SCOM), you 
deinitely know that SCOM requires a Management Pack (MP) for the different 
software and hardware in order to be capable to monitor these products. The concept 
applies to SCO, where vendors provide the Integration Pack for their products in 
order to automate and integrate them with each other. 

http:///


Integrating Windows PowerShell and System Center Orchestrator

[ 316 ]

Orchestrator and PowerShell are better 

together
The great thing about Orchestrator and PowerShell is that they complement the 
missing parts in each other. In this section you will ind how this can happen by 
covering the following points:

• Using PowerShell in Orchestrator worklow
• Using PowerShell to build Orchestrator Integration Packs

Using PowerShell in Orchestrator worklow
Although Orchestrator provides a variety of Integration Packs for different products 
across different vendors, you may sometimes need an activity that is not available or 
is has a limited functionality. That is why Orchestrator has a standard activity called 
Run .Net Script, which allows you to write your own PowerShell code to be executed 
as an activity within your worklow.

The following steps show how you can achieve this task:

1. Launch Runbook Designer in System Center Orchestrator.

2. Under the Connections pane on the left-hand side, select Runbook Server, 
and then right-click on Runbooks folder and go to New | Runbook to create 
a new Runbook, as shown in the following screenshot:

http:///


Chapter 12

[ 317 ]

3. Under the Activities pane on the right-hand side, select System | Run .NET 
Script, and then drag-and-drop the activity to the Runbook design area as 
shown in the following screenshot:

4. Open the Run .NET Script activity to select the language type and script 
code, as shown in the following screenshot:

http:///


Integrating Windows PowerShell and System Center Orchestrator

[ 318 ]

5. If you want to load speciic Namespaces or Assembly References, go to 
Advanced, and then add the binaries you want.

6. If you want to retrieve the results of the script in a variable that can be passed 
to another worklow activity, go to Published Data, and click on Add to add 
new published data, and then enter the following details:

1. Name: Name of the published data that will be used be Orchestrator

2. Type: Data type of the data populated from PowerShell

3. Variable name: PowerShell variable name that stores the results

7. Click on OK to add the new published data, and then click on Finish to close 
the activity properties wizard.

8. Launch Runbook Tester to test the worklow activities.
9. In the Runbook Tester window, click on Run to start worklow testing  

and monitor the testing logs in the bottom-center pane, as shown in the 
following screenshot:

http:///


Chapter 12

[ 319 ]

Using PowerShell to build Orchestrator Integration 

Packs
Usually, enterprises do not rely only on ready-made software and solutions 
from software vendors but might also develop their own Line-of-Business (LoB) 
applications. In order to automate such an application, you have to build your own 
custom activities and IPs. 

For the purpose of achieving this task, Orchestrator already comes with the 
Orchestrator Integration toolkit that helps you to extend Orchestrator's capabilities 
by developing different types of custom activities and IPs.

Orchestrator Integration Toolkit contains:

• Integration Toolkit SDK: This is a Software Development Kit (SDK) for 
System Center Orchestrator that allows building custom activities using C#.

• Command Line Activity Wizard: This wizard allows building custom 
activities using command line tools such as Windows cmd, Windows 
PowerShell, and SSH.

• Integration Pack Wizard: This utility allows wrapping the custom activities' 
assemblies generated by either Integration Toolkit SDK or Command-Line 
Activity Wizard in Integration Pack format.

http:///


Integrating Windows PowerShell and System Center Orchestrator

[ 320 ]

Orchestrator Integration Toolkit can be downloaded at: http://www.
microsoft.com/en-us/download/details.aspx?id=28725

After downloading and installing Orchestrator Integration Toolkit, it is now  
time to start building your irst custom activity and Integration Pack. In order to  
build a custom activity using PowerShell, you need to use the Command-Line 
Activity Wizard.

In the following example, you will create a custom activity that accepts the Computer 
Name as a parameter to retrieve its operating system information using the  
Win32_OperatingSystem WMI class.

Step 1 – creating the assembly ile (.dll)
In this step you will learn how the assembly ile that contains the commands and 
activities will be used later to build the Integration Pack.

1. Launch Orchestrator Command-Line Activity Wizard, and then click on 
Next to create a new custom activity assembly ile. 

This wizard allows you to either create a new assembly for the 
custom activity or modify an existing assembly.

http:///


Chapter 12

[ 321 ]

2. Enter the assembly ile's name and the path to create and save the assembly 
ile, and then click on Next to move to the commands step.

Use the Assembly Information button to add more details about 
the assembly, such as description, company, and version.

3. Now it is time to deine the commands that will be used by the custom 
activity. In this case, deine the command that will retrieve the operating 
system information for a speciic computer. Click on the Add button to 
deine your command.
Under the General tab, deine:

1. Name: Name of the command

2. Mode: Command mode such as Windows Command, PowerShell, SSH, 
or Run a Program

3. Program: select a program if the command's Mode is  
Run a Program

http:///


Integrating Windows PowerShell and System Center Orchestrator

[ 322 ]

4. Description: Description of the command

Under the Arguments tab, deine:

1. The parameters that will be passed to the command line:

http:///


Chapter 12

[ 323 ]

2. The command line that will be executed:

Under the Published Data tab, deine:

1. The results of command-line execution and how they will be 
displayed in Orchestrator.

2. You need to create a published data record for each property you 
want to show.

http:///


Integrating Windows PowerShell and System Center Orchestrator

[ 324 ]

The @ symbol is for published data record names for the sake 
of better sorting when displaying the results.

4. Click on Next to build and create the assembly ile.

Now, after building the assembly ile for the command-line custom activity, it is 
time to use it, either by loading it to the Runbook using the Invoke.Net activity or 
wrapping the assembly in an Integration Pack.

Step 2 – creating the Integration Pack
In this step you will learn how to use the assembly ile created in the previous step 
and the Integration Pack Wizard to build your irst integration pack.

1. Launch Orchestrator Integration Pack Wizard, and then click on Next to 
create a new IP ile. 

This wizard allows you to either create an IP or 
modify an existing IP.

http:///


Chapter 12

[ 325 ]

2. Enter the new Integration Pack details and then click on Next

3. Now it is time to deine the activities that will be part of this IP by selecting 
the custom assembly iles created in the previous step. Each command in the 
assembly ile represents a single activity in the Integration Pack.

http:///


Integrating Windows PowerShell and System Center Orchestrator

[ 326 ]

4. Deine the Integration Pack dependencies and the iles to be deployed with 
the Integration Pack, such as documentations, scripts, and the assembly ile.

5. Finally, deine the path to create and save the Integration Pack ile, and then 
click on Next to start building the ile, as shown in the following screenshot:

http:///


Chapter 12

[ 327 ]

Step 3 – importing the Integration Pack into Orchestrator
In this step you will learn how to import the Integration Pack created in the previous 
step into System Center Orchestrator.

1. Launch Orchestrator Deployment Manager.

2. Choose Orchestrator Management Server on which you want to deploy the 
Integration Pack if you have more than one server.

3. Right-click on the Integration Packs folder, select Register IP with the 
Orchestrator Management Server, and then follow the wizard to select the 
Contoso.OIP IP ile to register it with the server.

4. Right-click on the Integration Packs folder, select Deploy IP to Runbook 
Server or Runbook Designer, and then follow the wizard to select the IP that 
has been registered in the previous step, Contoso IP, and choose the server 
to deploy on it.

Step 4 – testing and using the new Integration Pack
In this step you will learn how to test and use the Integration Pack created and 
imported in steps 2 and 3.

1. Launch System Center Orchestrator Runbook Designer.

2. Under the Activities pane on the right-hand side, you will ind a new tab 
called Contoso Basic Automation with a single activity, GetOSInfo; select it 
and then drag-and-drop the activity to Runbook's design area.

http:///


Integrating Windows PowerShell and System Center Orchestrator

[ 328 ]

3. Open the GetOSInfo activity to modify the ComputerName property, which 
was deined as a parameter in the Command-Line Activity Wizard:

4. Launch the Runbook Tester application to test the worklow activities.
5. In the Runbook Tester window, click on Run to start worklow testing and 

monitor the testing logs in the bottom-center pane. In the irst few records 
in the log section, you will notice that the published data starts with the "@" 
symbol relecting the results from PowerShell execution:

http:///


Chapter 12

[ 329 ]

Summary
Windows PowerShell is not just a command-line tool or a scripting engine; it 
provides different capabilities and usage scenarios depending on the area you are 
using Windows PowerShell in and for.

In this chapter, we have seen how enterprises and entities with complex IT 
environments can use Windows PowerShell with another component such  
as System Center Orchestrator to deine a new meaning for automation and  
provide more beneits and values via IT Process Automation.

Now, having reached the inal destination together in this book, it is your turn to 
take the lead and continue sailing the Windows PowerShell sea with your own ship 
and the tools you have learned in this book to gain more, build your own scripting 
Arsenal, and become ready for any challenge. Just remember that PowerShell is the 
future, so be ready for more to learn.

http:///


http:///


Index
Symbols
[cmdlet()] attribute  61, 64
$args variable  33
$env  16
$Env driver  127
$null value  15
$numberPrint block  32
$result variable  32
$service.QuotaTemplates.Add($template) 

method  250
$service.Update() method  250
-Action parameter  237
-AddOrganizerToSubject parameter  224
-AddToQuickLaunch parameter  249
-AddToTopNav parameter  249
-AdministratorLogin parameter  297
-AdministratorLoginPassword parameter  

297
-AfinityGroup parameter  296, 297
-AllowRedirection parameter  242
-asjob parameter  109
-AutoAssignPersonalVirtualDesktopToUser 

parameter  280, 283
-AutomateProcessing parameter  224
-AutomaticReconnectionEnabled parameter  

282
-BrokenConnectionAction parameter  282
-BypassLocal parameter  275
-CertToDeploy parameter  311
-ClientAccessName parameter  287
-ClientDeviceRedirectionOptions parameter  

282
-ClientPrinterRedirected parameter  282
-Collation parameter  298
-CollectionName parameter  277-280, 284

-ConditionalDepartment parameter  227
-ConnectionBroker parameter  272-287
-ConnectionUri  242
-Context parameter  298
-CreateNew parameter  305
-CreateVirtualSwitch parameter  273
-credential parameter  254
-CurrentStorageAccount parameter  296
-DatabaseConnectionString parameter  287
-DatabaseFilePath parameter  287
-DatabaseName parameter  298
-database parameter  260
-description parameter  248, 249
-Destination parameter  306
-Directory  210
-DisableAutomaticUpdates parameter  301
-DisableUserProileDisk parameter  285
-DisableVirtualDesktopRollback parameter  

284
-DiskLabel parameter  305
-Diskname parameter  307
-DiskName parameter  306
-DiskPat parameter  285
-DiskSizeInGB parameter  305
-DisplayName parameter  286
.dll ile. See  binary module
-Domain  211
-DomainCredential parameter  179
-Domain parameter  278, 301
-DomainPassword parameter  302
-DomainUserName parameter  302
-Edition parameter  298
-EnableResponseDetails parameter  224
-EnableUserProileDisk parameter  285
-EndIpAddress parameter  299
-ExcludeFolderPath parameter  285

http:///


[ 332 ]

-Extension  237
-FileInformation  213
-FilePath parameter  286
-FileType  210
-Filter  214
-ForceLogoffTime parameter  284
-Force parameter  93, 178
-GatewayExternalFqdn parameter  275
-GatewayMode parameter  275
-GrantAdministrativePrivilege parameter  

280, 283
-Hostname parameter  260
-Identity parameter  186, 256
-IdleSessionLimitMin parameter  282
-ImageName parameter  300, 301
-IncludedRecipients parameter  226
-IncludeFolderPath parameter  285
-InMemory  237
-InstanceSize parameter  300, 301, 307
-InstantSize parameter  300
-IsArchive parameter  229
-IsSiteCollectionAdmin parameter  256
-JoinDomain parameter  302
-language parameter  248
-LBSetName parameter  304
-LDAP  211, 212
-LicenseServer parameter  276
-Linux parameter  300
-LinuxUser parameter  300
-ListAvailable parameter  234
-Local  211
-LocalFilePath parameter  305
-LocalPort parameter  303, 304
-Location parameter  295, 297
-LoginName parameter  256
-LogonMethod parameter  275
-LUN parameter  305
-MachineObjectOU parameter  302
-MaximumDurationInMinutes parameter  

224
-MaxRedirectedMonitors parameter  282
-MaxSizeGB parameter  298
-MaxUserProileDiskSizeGB parameter  285
-MediaLocation parameter  306
-MemoryStartupBytes  208
-Merge  212
-mode parameter  276

-Name  207
-name parameter  249
-Name parameter  248, 295, 299, 300-303, 310
.NET

creating  20
-Optimize  213
-OS parameter  306
-OwnerAlias parameter  248
-ParentPath  207
-Password parameter  300, 301
-Path parameter  178, 207, 214, 309
-PersonalUnmanaged parameter  280
-PolicyObject  212, 213
-PooledManaged parameter  278
-ProbePath parameter  304
-ProbePort parameter  304
-ProbeProtocol parameter  304
-ProcessExtenralMeetingMessages  

parameter  224
-Protocol parameter  303, 304
.psd1 ile. See  manifest module
.psm1 ile. See  script module
-PSSessionConiguration cmdlet  123
-PublicPort parameter  303, 304
-query parameter  260
-RecipientContainer parameter  227
-RedirectAllMonitors parameter  283, 285
-ResetPasswordOnFirstLogon parameter  

301
-Restart parameter  179, 191
-role parameter  274
-RuleName parameter  299
-RuleNamePreix  213
-RuleType  213
 Secure Socket Layer (SSL) certiicate

uploading, to Windows Azure  310
-ServerInstance parameter  260
-ServerName parameter  299
-server parameter  179, 274
-ServiceName parameter  297-310
-SessionHost parameter  273, 277
-ShowinWebAccess parameter  286
-SizeBytes  207
-StartIpAddress parameter  299
-StartTime parameter  284
-StorageAccountName parameter  296
-StorageType parameter  279

http:///


[ 333 ]

-SubscriptionName parameter  296
@ symbol  324
-template parameter  248, 249
-TemporaryFoldersPerSession parameter  

282
-TimeZone parameter  301
-URL parameter  248, 249, 254
-UseParentTopNav parameter  249
-User  213, 214
-UserGroups parameter  278, 280, 286
-User parameter  280
-version parameter  142
-VHDPath  208
-VirtualDesktopAllocation parameter  279
-VirtualDesktopName parameter  280
-VirtualDesktopNamePreix parameter  279
-VirtualDesktopTemplateHostServer  

parameter  278, 284
-VirtualDesktopTemplateName parameter  

279, 280, 284
-VirtualDesktopTemplateStorgePath  

parameter  279
-VirtualizationHost parameter  273
-VMName parameter  209
-VMs parameter  302
-WarningAction  237
-WebAccessServer parameter  272, 273
-WindowsDomain parameter  301
-Windows parameter  299, 301
-XML  211
-XMLPolicy  212

A

account management, AD
about  177
user management  177

Active Directory. See  AD
Active Directory Certiicate Services. See  

AD CS
Active Directory Domain Service. See  

ADDS
Active Directory Forest

installing  162, 163
Active Directory Lightweight Directory 

Services. See  AD LDS

Active Directory Rights Management  
Services. See  AD RMS

AD
about  173, 174
container  175
domain  175
namespace  175
new AD server roles  176
objects  175
trees  175

AD CS  176
Add-ADGroupMember cmdlet  181
Add-AzureCertiicate cmdlet

parameters  310
Add-AzureDisk cmdlet

parameters  305, 306
Add AzureEndPoint cmdlet

parameters  304
Add-AzureProvisionConig cmdlet

parameters  301
Add AzureVhd cmdlet

parameters  305
Add-DnsServerResourceRecordA cmdlet  

204
Add-MailboxPermission cmdlet  223
add-on tools  50
Add-PSSnapin cmdlet  219, 248
Add RDServer cmdlet

parameters  274
AD DS  176
ADDS

installing  176
ADDSDeployment module  162
ADDS role

deploying  161, 162
new Active Directory Forest, installing   

162, 163
new domain controller, installing in  

existing domain  164
new domain, installing in existing forest  

163, 164
Add-VMNetworkAdapter cmdlet  208
AD LDS  176
AD, managing

about  177
account management  177

http:///


[ 334 ]

domain controller management  186
group management  179
organizational unit management  183
with PowerShell  177

AD RMS  177
AllSigned mode  144
application delivery component  268
Application Programming Interface (API)  

246
AppLocker

application information, retrieving  210, 211
managing, with PowerShell  210
policy, retrieving  211
policy, setting  212
policy, testing against ileset  213
PowerShell module, importing  210
rules, generating for group  213
rules, generating for user  213

argument range
argument count, validating  68
argument length, validating  68
argument pattern, validating  67
validating  67

argument set
validating  66

AuthenticodeSignature cmdlet  153
Azure  293
Azure Afinity Group

creating  295
Azure Cloud Service 

creating  297
Azure storage account

creating  296
Azure Virtual Machine RDP ile

generating  311
Azure VM in Linux (quick mode)

provisioning  300
Azure VM in Windows (quick mode)

provisioning  299

B
background intelligent transfer service 

(BITS)  143
Backup-SqlCmdlet cmdlet  261
BeginProcessing() method  70, 73

Best Practice Analyzer. See  BPA
binary module  126
BPA

about  313
model, invoking  170
model list, displaying  170
model result, showing  171
using  170

Business Process Automation. See  BPA

C

CannotChangePassword parameter  178
Certiicate Authority (CA)  42
CIM class

details, displaying  18-20
listing  17

CIM objects
getting  17

client access device component  269
Client Access Server (CAS)  220
client PIN

bulk assignments  238
cloud computing

types  291
cloud computing, types

Infrastructure-as-a-Service (IaaS)  291
Platform-as-a-Service (PaaS)  291
Software-as-a-Service (SaaS)  291

cmdlet parameters
declaring  64

cmdlets
using, to redirect data  13, 14

code snippets
about  49
new snippets, adding  49, 50
new snippets, creating  49, 50
using  49

Command Line Activity Wizard  319
command-line interface (cmd)  156
commands, PowerShell Remoting

executing  106
persistent session, creating with  

invoke-command  107-109
remote commands, running as job  109
remoting credentials, specifying  110

http:///


[ 335 ]

ScriptBlock, running on remote computer  
106, 107

COM objects
creating  20

computer management
about  178
computer, joining to domain  179
computer, renaming  179

computer name
changing  158

ComputerName parameter  19, 86, 106
conditional statements

about  21, 22
managing, switches used  22, 23

conference disclaimer
setting  240

Connect ExchangeServer -Auto cmdlet  218
connection broker component  268
Connect-MsolService cmdlet  241
Connect SPOService cmdlet  254
container, AD  175
CreateDnsDelegation  164
CsImFilterConiguration cmdlet  238
custom permissions  122
CustomPSSnapIn class  58

D

data disk
assigning, to Windows Azure Virtual  

Machine  305
creating, for Windows Azure Virtual  

Machine  305
default domain  199
Deployment Image Servicing and  

Management (DISM) tool  193
Desktop Virtualization

about  267
advantages  268
architect  269
components  268
Session Virtualization  268
Virtual Desktop Infrastructure (VDI)  268

Desktop Virtualization, components
application delivery  268
client access device  269
connection broker  268

platform, virtualizing  268
user proile and data  269

DHCP role
about  167

DHCP scope exclusion
coniguring  168

DHCP scope options
coniguring  167

DHCP scope reservations
coniguring  168

DHCP server module  167
DHCP server

in Active Directory, authorizing  168
DHCP server role

installing  167
DHCP server scope

setting up  167
digital signature

adding, to script  146, 147
DisableNetAdapterBinding cmdlet  197
Disable-PSRemoting cmdlet  123
Disable-PSSessionConiguration cmdlet  

123
disaster recovery (DR)  292
disk

remote session, saving  115
Windows Azure VM, provisioning from  

307
distinguished name (DN)  183
distribution group

creating  225
MailTip, deining for  226

DistributionGroup cmdlet  223
DMZ (demilitarized zone)  40
DnsClient module  159
DNS role

about  165
DHCP scope exclusion, coniguring  168
DHCP scope options, coniguring  167
DHCP scope reservations, coniguring  168
DHCP server in Active Directory,  

authorizing  168
DHCP server role, installing  167
DHCP server scope, setting up  167
DNS server forwarder, adding  166
DNS server resource records, coniguring  

165

http:///


[ 336 ]

DNS server zones, exporting  166
primary forward and reverse lookup zones, 

creating  166
DNS server

managing, PowerShell used  204, 205
DNS server forwarder

adding  166
DNS server resource records

coniguring  165
DNS server zones

exporting  166
domain

in existing forest, installing  163, 164
domain, AD  175
domain controller

in existing domain, installing  164
domain controller, AD

inding  186
global catalog servers, inding in forest  188
site, inding  188

DomainMode   163
DomainName   162

Domain Name System role. See  DNS role
DomainType   164
dynamic distribution group

creating  226

E

EMS
about  216, 217
tips  217

Enable-CsUser cmdlet  236
Enable-NetAdapterBinding cmdlet  197
Enable-NetAdapter cmdlet  197
Enable-PSRemoting cmdlet  92, 93
endpoint

adding, to Windows Azure VM (NoLB)  
302, 303

EndPoint parameter  133
EndProcessing() method  70, 73
Enter-PSSession cmdlet  93, 110, 111, 117
Exchange

managing, PowerShell Remoting used   
220, 221

Exchange Management Shell. See  EMS

Exchange scripting
about  221
distribution group, creating  225
dynamic distribution group, creating  226
mailboxes, exporting to PST iles  228
mailboxes, importing from PST iles   

229, 230
mailbox size report, generating  231
mailbox users, getting  230
mailbox users, hiding from Global Address 

List (GAL)  230
MailTip, deining for distribution group  

226
multiple mailbox databases, creating from 

CSV ile  227
multiple mailboxes from CSV ile, creating  

221, 222
organization mailbox statistics report,  

generating  231
resource (room/equipment) mailbox,  

creating  224
shared mailbox, creating  222, 223

Exchange Server cmdlets  218
Exchange Server snap-ins

loading  219
Execute-MyCmdlet  139
execution policies

about  144
AllSigned mode  144
changing  145, 146
RemoteSigned mode  144
restricted mode  144
types  144
Unrestricted mode  145

Exit-PSSession cmdlet  110
Export-AzureVM cmdlet

parameters  308
Export-PSSession

limitations  117
Export-PSSession cmdlet  116

F

low control  21
foreach keyword  27
ForEach loop  221, 225, 227, 229, 264
Foreach-Object cmdlet  27

http:///


[ 337 ]

ForEach -parallel  53
foreach statement  24
ForestMode  163
for loop  27
format cmdlets

using, to modify output view  12
Format-List cmdlet  13, 180
for statement  23
FTP site

creating  201
fully qualiied domain name (FQDN)  188
function  34, 35

G

Get-ADDomainController cmdlet  188
Get-ADForest cmdlet  188
Get-ADOrganizationalUnit cmdlet  184, 185
Get-AuthenticodeSignature cmdlet  153
Get AzurePublishSettingsFile cmdlet  294
Get AzureRemoteDesktopFile cmdlet

parameters  311
Get-CimClass  17
Get-Command cmdlet  128, 130, 135
Get-Content cmdlet  36
Get-CSPool cmdlet  236
GetEnumerator() method  30
Get-ExBlog cmdlet  217
Get-ExCommand cmdlet  217
Get-ExecutionPolicy cmdlet  145
Get-GetChilditem cmdlet  229
Get-GPO cmdlet  198
Get-Help cmdlet  46, 130
Get-Job cmdlet  109
GetLifeCycleCommand class  74
Get-Location cmdlet  10
Get-Location command  10
Get-Mailbox cmdlet  228
Get-MailboxDatabase cmdlet  228
Get-MailboxStatistics cmdlet  230, 231
Get-Member command  12
Get-Module cmdlet  234
Get-MyModule function  143
Get-NetIPAddress cmdlet  193, 194, 195
Get-PSSessionConiguration cmdlet  121
Get-PSSessionConiguration cmdlet   120
Get-PSSnapin cmdlet  219

Get SPODeletedSite cmdlet  255
Get SPOSite cmdlet  254
Get-Tip cmdlet  217
Get-WebConigurationBackup cmdlet  203
Get-WindowsFeature cmdlet  129, 190
Global Address List (GAL)

mailbox users, hiding from  230
GPMC  96, 197
GPOs

about  197
creating, with PowerShell  199
performing  104

gpresult command  104
Graphical User Interface (GUI)  , 47
group management, AD

group, creating  180
group members, adding  181-183
group members, removing  181-183
group permissions, viewing  179, 180

Group-Object cmdlet  225
Group Policy Management Console. See  

GPMC
GroupPolicy module

importing  197, 198

Group Policy objects. See  GPOs

H

Hyper-V
installing, on Windows Server 2012   

206, 207
installing, Windows Server 2012 used   

206, 207
managing, PowerShell used  205, 206

I

IaaS  291
IIS

binding, modifying  201
FTP site, creating  201
managing, with PowerShell  199, 200
new website, creating  200, 201
virtual directory, creating  202
WebAppPool, creating  202
WebConiguration, backing up  202, 203
WebConiguration, restoring  202, 203

http:///


[ 338 ]

IM  215
IM ile transfer iltering

coniguring  237
Import-AzureVM cmdlet

parameters  309
Import-CSV cmdlet  221, 225
Import-Module cmdlet  127, 128, 136, 241, 

253
Import-PSSession cmdlet  221
IM URL iltering

coniguring  238

Infrastructure-as-a-Service. See  IaaS
InstallDNS  163
Install-WindowsFeature cmdlet  190, 271
Instant Messaging. See  IM
Integrated Scripting Environment. See  ISE
Integration Pack. See  IP
Integration Pack Wizard  319
Integration Toolkit SDK  319
Intellisense  48
interactive remoting session

about  110, 111
disconnecting  113-115
exiting  111
persistent session, using  112
reconnecting  113-115
starting, with existing session  112, 113

Internet Information Services (IIS)  161
Invoke-Command

about  106, 107, 117
used, for creating persistent session  107-109

IP  315
ISE  36, 48, 218
ITPA  313, 314
IT Process Automation. See  ITPA

L

LDAP  176
Lightweight Directory Access Protocol. See  

LDAP
Lightweight Directory Services (LDS)  173
Load-Balanced (LB) EndPoint  304
Local ID (LCID)  248
Local VHD

moving, to Windows Azure  305

locations
adding, to PSModulePath environment 

variable  128
loop statement

about  21
foreach statement  24
for statement  23
nested loops  24, 25

Lync
managing, PowerShell Remoting used  235

Lync scripting
about  236
client PIN, bulk assignments  238
conference disclaimer, setting  240
enabling, to user accounts  236
IM ile transfer iltering, coniguring  237
IM URL iltering, coniguring  238

Lync Server cmdlets  234
Lync Server Management Shell  232, 233
Lync Server module

loading  234, 235

M

mailbox
exporting, from PST iles  229, 230
exporting, to PST iles  228, 229
organization mailbox statistics report, gen-

erating  231
users, hiding from Global Address List 

(GAL)  230
MailboxImportRequest cmdlet  229
mailbox size report

generating  231
MailTip

deining, for distribution group  226
Managed Pooled collection

creating  278, 279
Management Pack (MP)  315
manifest module  127
Mean Time To Respond/Repair (MTTR)  

314
Microsoft Exchange Online

managing, PowerShell used  242, 243

Microsoft Hyper-V. See  Hyper-V
Microsoft Management Console (MMC)  

173

http:///


[ 339 ]

Microsoft Ofice 365
about  240, 241
and Windows PowerShell  241
managing, PowerShell used  241, 242

Microsoft Online Service components
URL, for downloading  241

Microsoft Operations Framework (MOF)  
314

module on disk
importing  117
remote session, exporting  116

msDS-defaultNamingContext property  183
multiple mailboxes

creating, from CSV iles  221, 222
databases, creating from CSV ile  227

N

namespace, AD  175
nested loops  24, 25
NetTCPIP module  118
Network Address Translation (NAT)  302
networking

managing, PowerShell used  193-197
Network Interface Card (NIC)

coniguration, setting  159
network location feature  90
New AzureAfinityGroup cmdlet

parameters  295
New-AzureQuickVM cmdlet

parameters  299, 300
New-AzureService cmdlet

parameters  297
New-AzureSqlDatabase cmdlet

parameters  298
New-AzureSqlDatabaseServer cmdlet

parameters  297
New-AzureSqlDatabaseServerFirewallRule 

cmdlet
parameters  299

New AzureStorageAccount cmdlet
parameters  296

New-AzureVM cmdlet
parameters  302, 307, 309

New-AzureVMConig cmdlet
parameters  301

New-DistributionGroup cmdlet  225

New-DynamicDistributionGroup cmdlet  
226

New-Mailbox cmdlet  222
New-MailboxDatabase cmdlet  227
New-MailboxImportRequest cmdlet  229
New-ModuleManifest cmdlet  137
New-Object cmdlet  20
New-PSSession cmdlet  108, 117
New RDSessionCollection cmdlet

parameters  277
New RDVirtualDesktopCollection cmdlet

parameters  280
New RDVirtualDesktopDeployment cmdlet  

272, 273
New SPWeb cmdlet

parameters  249
New-VHD cmdlet  207
New-WebFtpSite cmdlet  201
New-WebVirtualDirectory cmdlet  202
Notepad++  36
Not Load-Balanced (NoLB)  303

O

objects, AD  175
object structure

viewing  10-12

Ofice 365. See  Microsoft Ofice 365
Ofice Communication Server (OCS)

used, by users  239
operating system

computer name, changing  158
preparing  157
time zone settings, changing  158

Orchestrator
and PowerShell  316

Orchestrator Integration Packs
building, PowerShell used  319-324
creating  324-326

Orchestrator Integration Toolkit
URL  320

organizational unit (OU), AD
about  183, 221, 302
deleting  186
listing  184
modifying  185
moving  185

http:///


[ 340 ]

new organizational unit, creating  183, 184
renaming  184

OUPath parameter  179
Out-Host cmdlet  8, 10, 13
Out-Host -Paging command  9
overriding methods  69-75

P

PaaS  291
Parameter attribute  64
parameter inputs

validating  66
parameters

passing  31
Parameterset keyword  65
parameter sets

declaring  65, 66
Partition parameter  183
PathInfo object  10
persistent session

creating, Invoke-Command used  107-109
using, with interactive remoting session  

112
personal collection  278
Personal Identiication Number (PIN)  238
pipelines

about  8, 9
creating, in PowerShell  8

Platform-as-a-Service. See  PaaS
pooled collection  278
Port property  201
PowerGUI

about  36
PowerShell

about  7
and Orchestrator  316
AppLocker, managing with  210
function  34, 35
GPOs, creating with  199
IIS, managing with  199, 200
used, for adding features  190-193
used, for adding roles  190-193
used, for creating worklow  52, 53
used, for managing DNS server  204, 205
used, for managing Hyper-V  205, 206

used, for managing Microsoft Exchange 
Online  242, 243

used, for managing Microsoft Ofice  
365  241

used, for managing networking  193-197
used, for managing RDS  270
used, for managing SharePoint Online  252
using  156
using, in Orchestrator worklow  316-318
using, to build Orchestrator Integration 

Packs  319-324
PowerShell 3.0

modules, auto-loading  45
remote sessions, running on  86

PowerShell cmdlet
for Server Manager, advantages  193

powershell.exe ile  246
PowerShell installer class

creating  60, 61
PowerShell Remoting

about  50, 86
custom session coniguration ile  51
disabling  105
disconnected session  51
Enable-PSRemoting cmdlet  92, 93
enabling  87
enabling, on Windows PowerShell 2.0  86
in no-domain environment  88, 89
network location, setting to private  89-92
on public network  51
running, on Windows PowerShell 3.0  86
used, for managing Lync  235
used, for managing PowerShell Remoting  

220, 221
WSMan trusted hosts, coniguring  94, 95

PowerShell Remoting, domain  
coniguration

about  95
Group Policy Update (GPO), performing  

104
Group Policy used  95
remote server management, allowing 

through WinRM  96, 97
Service Windows Remote Management 

(WS-Management), turning on  101, 
103

http:///


[ 341 ]

Windows Remote Management through 
Windows Firewall, allowing  97-100

PowerShell snap-in
cmdlets, executing  79
cmdlets, listing  79
creating  58
debugging  81, 82
registering  75, 76
registering, in PowerShell 3.0  76-79
removing, from PowerShell 3.0  76-79
writing  58

PowerShell snap-in, writing
argument count, validating  68
argument length, validating  68
argument pattern, validating  67
argument range, validating  67
argument set, validating  66
class ile, creating to include PowerShell 

cmdlets  61-64
cmdlet parameters, declaring  65
cmdlet parameters, declsring  64
methods, overriding  69-75
new class library project, creating  58, 59
parameter inputs, validating  66
parameter sets, declaring  65, 66
PowerShell installer class, creating  60, 61

primary forward
creating  166

ProcessRecord() method  64, 70-73
Proile Disks

about  285
assigning, to collections  285
parameter  285

PSModuleInfo object  130
PSModulePath environment variable

about  127
locations, adding  128
viewing  127

PSModulePath variable  140
PSNet module  135
PS session conigurations  121
PSSnapIn class  58
PSW

about  51, 52
execution control  54, 55

PSWA
about  39

coniguring  41, 42
installing  40, 41
rules, coniguring  43
signing in to  44
working  40

PSWorklow module  141
public key infrastructure (PKI)  176
PublishSettings ile  294

Q

quota template
creating  250

R

RBA  313
RD Gateway  275
RDS

about  269
adding, to existing deployment  274
Managed Pooled collection, creating   

278, 279
managing, PowerShell used  270
new RDS collections, creating  277
new RDS deployments, creating  270, 271
new session-based collections, creating  277
new session-based deployment, creating  

273
new virtual-machine-based deployment, 

creating  272, 273
new VM-based collections, creating  278
Proile Disks, assigning to collections  285
RD Gateway, adding  275
RD Gateway, coniguring  275
RD Licensing Server, adding  276
RD Licensing Server, coniguring  276
Remote Desktop Connection Broker 

(RDCB), coniguring  287
Remote Desktop RemoteApp, publishing to 

collections  286, 287
scripting  270
session-based collection coniguration, 

creating  281, 282
Unmanaged Personal collection, creating  

280
VM-based collection coniguration, creating  

283

http:///


[ 342 ]

VM-based collections, updating  284
ReceivedData parameter  68
Register-PSSessionConiguration cmdlet  

118
remote commands

running, as job  109, 110
Remote Desktop Connection Broker 

(RDCB)  270, 272
Remote Desktop Licensing (RDL)  276
RemoteDesktop module  270
Remote Desktop RemoteApp

publishing, to collections  286

Remote Desktop Services. See  RDS
Remote Desktop Session Host (RDSH)  273
Remote Desktop Virtualization Host 

(RDVH)  272
Remote Desktop Web Access (RDWeb)  272
Remote Procedure Call. See  RPC
remote session

exporting, to module on disk  116
Export-PSSession, limitations  117
module on disk, importing  117
saving, to disk  115

RemoteSigned mode  144
Remove-AzureVM cmdlet

parameters  309
Remove-Module cmdlet  130
resource (room/equipment) mailbox

creating  224
Restart-AzureVM cmdlet  310
Restore-SqlCmdlet cmdlet  262
Restore SqlDatabase cmdlet  262
restricted mode  144
reverse lookup zones

creating  166
RPC  86
Run Book Automation. See  RBA
Run() method  71

S

SafeModelAdministratorPassword  163
SaaS  291
Save AzureVMImage cmdlet

parameters  308
scheduled jobs  46
SCO. See  System Center Orchestrator

script block
deining  30-34
operating  30

ScriptBlock
running, on remote computer  106, 107

ScriptBlock parameter  107
script libraries

developing  38
maintaining  38

script module  126
scripts

about  35
creating  36
invoking  37
parameters, passing  37
return values  38

Security Accounts Manager (SAM)  183
security identiier (SID)  183
Select-Object cmdlet  29, 225, 231
self-signed certiicate

setting up  147-150
server core  155
ServerManagerCmd.exe command  193
Server Manager cmdlets

working with  190
ServerManager module  160
Service Windows Remote Management 

(WS-Management)
turning on  102, 103, 104

session-based collection coniguration
setting  281, 282

session-based collections
creating  277

session-based deployment
creating  273

session conigurations
about  117
available session conigurations, listing  

120, 121
custom permissions  122
custom session coniguration, invoking  123
deleting  124
disabling  123
new session coniguration, creating  118, 

119
PS session conigurations  121

Session Virtualization  268

http:///


[ 343 ]

Set-ADUser cmdlet  178
Set-AzureSubscription cmdlet

parameters  296
Set-Content cmdlet  36
Set-DistributionGroup cmdlet  226
Set-RDConnectionBrokerHighAvailability 

cmdlet
parameters  287

Set RDDeploymentGatewayConiguration 
cmdlet

parameters  275
Set RDLicenseConiguration cmdlet

parameters  276
Set RDPersonalVirtualDesktopAssignment 

cmdlet
parameters  280

Set RDSessionCollectionConiguration 
cmdlet

parameters  281
Set RDVirtualDesktopCollectionConigura-

tion cmdlet
parameters  283, 286

shared mailbox
creating  222, 223

SharePoint environment
backing up  251

SharePoint Management Shell  246, 247
SharePoint Online

connecting to, steps  254
deleted SharePoint Online site, restoring  

255
Management Shell, loading  253
managing, PowerShell used  252
sites, exporting to CSV  254
sites health status, checking  255
user, setting as site collection administrator  

256
SharePoint Online Management Shell

URL, for downloading  252
SharePoint scripting

new quota template, creating  250
new site collection, creating  248
new website, creating  249
SharePoint environment, backing up  251

Show-Command cmdlet  47
Site  164
Software-as-a-Service. See  SaaS

Software Development Kit (SDK)  319
Sort-Object cmdlet  30
SQL Azure Database Server

creating  297, 298
SQL Azure Database server irewall rule

creating  299
SQL script

generating, for databases  264
SQL Server database

backing up  261
restoring  262

SQL Server Management object (SMO)  262
SQL Server PowerShell

about  257, 258
launching, from SSMS  259, 260
loading  258
module, importing  258

Start-AzureVM cmdlet  310
Start-Job cmdlet  46
Stop-AzureVM cmdlet  310
StopProcessing() method  70, 73
storage account

assigning, to Azure subscription  296
switches

using, to manage large conditional  
statements  22, 23

System Center Operations Manager 
(SCOM)  315

System Center Orchestrator
about  314
Integration Pack, importing  327
new Integration Pack, testing  327, 328
new Integration Pack, using  327, 328
worklow  315-318

System.Collections.ArrayList class  29
System.Net.Sockets.TCPClient object  133
System.Net.Sockets.TCPListener object  133

T

Task Scheduler wizard  46
time zone settings

changing  158
trees, AD  175
TrustedHosts coniguration setting  94
T-SQL statement

executing  260, 261

http:///


[ 344 ]

U

UC  215
UCEM  86
Uniied communication. See  UC
Uninstall-WindowsFeature cmdlet  190
Universal Code Execution Model. See  

UCEM
Unmanaged Personal collection

creating  280
Unregister-PSSessionConiguration cmdlet  

124
Unrestricted mode  145
Update-DistributionGroupMember cmdlet  

225
Update-Help cmdlet  46
Update RDVirtualDesktopCollection  

cmdlet
parameters  284

user interface (UI)  214
user management

AD user, creating  177
password change at next login, forcing  178
password change, preventing  178
user account, setting to Expire  178

user proile and data component  269

V

ValidateCount attribute  68
ValidateLength attribute  68
ValidatePattern attribute  68
ValidateRange attribute  67
variables

about  14
using, to store objects  15, 16

VerbsCommon.Get statement  72
Virtual Desktop Infrastructure (VDI)  268
virtual directory

creating  202
Virtual Hard Disk (VHD)  285
Virtualization platform component  268
virtual machine

modifying  208, 209
snapshot, operating  209

virtual-machine-based deployment
creating  272

VM
Windows Azure Image, creating from  308

VM-based collection coniguration
setting  283

VM-based collections
creating  278
personal collection  278
pooled collection  278
updating  284

Voice over IP (VoIP)  215

W

WebAppPool
creating  202

WebConiguration
backing up  202, 203
restoring  202, 203

Where-Object cmdlet  230, 231
Windows Azure

about  292
certiicate, uploading to  310

Windows Azure cmdlets  293
Windows Azure environment

connecting to  294
Windows Azure Image

creating, from VM  308
Windows Azure PowerShell

about  292
installing  292
installing, steps for  293

Windows Azure scripting
about  295
Azure Virtual Machine RDP ile, generating  

311
certiicate, uploading to Windows Azure  

310, 311
data disk, assigning to Windows Azure 

Virtual Machine  305
data disk, creating for Windows Azure 

Virtual Machine  305
Local VHD, moving  305, 306
new Azure Afinity Group, creating   

295, 296
new Azure Cloud Service, creating  297
new Azure storage account, creating  296
new Azure VM in Linux (quick mode), 

http:///


[ 345 ]

provisioning  300
new Azure VM in Windows (quick mode), 

provisioning  299
new endpoint, adding to Windows Azure 

VM (NoLB)  302, 303
new SQL Azure database, creating  298
new SQL Azure Database Server, creating  

297
new SQL Azure Database server irewall 

rule, creating  299
new Windows Azure VM (advanced 

mode), provisioning  301, 302
new Windows Azure VM, provisioning 

from disk  307
storage account, assigning to Azure  

subscription  296
Windows Azure Image, creating from VM  

308
Windows Azure Virtual Machines load 

balancing (LB), coniguring  303, 304
Windows Azure VM, exporting  308, 309
Windows Azure VM, importing  308, 309
Windows Azure VM, restarting  310
Windows Azure VM, starting  310
Windows Azure VM, stopping  310

Windows Azure Software Development Kit 
(SDK)  292

Windows Azure Virtual Machine
data disk, assigning  305
data disk, creating  305

Windows Azure Virtual Machines load 
balancing (LB)

coniguring  303, 304
Windows Azure VM

exporting  308, 309
importing  308, 309
provisioning, from disk  307
restarting  310
starting  310
stopping  310

Windows Azure VM (advanced mode)
provisioning  301, 302

Windows Azure VM (NoLB)
new endpoint, adding  302, 303

Windows Firewall
about  169
proiles, disabling  169

proiles, enabling  169
rules, creating  169

Windows Management Framework. See  
WMF

Windows Management Instrumentation. See  
WMI

Windows PowerShell
and Microsoft Ofice 365  241
EMS  216
Exchange Server cmdlets  218
Exchange Server snap-ins, loading  219, 220
Lync Server cmdlets  234
modules  126
SharePoint server cmdlets  248

Windows PowerShell 3.0
features  39

Windows PowerShell Command Builder
for Ofice 365  256
for SharePoint  256

Windows PowerShell, modules
about  126
automatic importing  130
binary module  126
dependencies, checking  142, 143
importing  128, 129
manifest module  127
multiple versions  140-142
reloading  131
removing  130
script module  126
signing  144
storing, on disk  140
types  126
writing  131

Windows PowerShell modules, signing
about  144
execution, policies  144, 145
execution policies, changing  145
execution policy, changing  146
script signing, background  146, 147
self-signed certiicate, creating  147-150
steps  150-154

Windows PowerShell modules, writing
binary modules  136
dynamic modules  138, 139
manifest modules  137, 138
script modules, creating  132-136

http:///


[ 346 ]

Windows PowerShell Web Access. See  
PSWA

Windows PowerShell Worklow. See  PSW
Windows Presentation Foundation (WPF)  

50
Windows Remote Management.  

See  WinRM
Windows SDK

URL, for downloading  58
Windows Server 2012

Hyper-V, installing  206, 207
virtual machine, creating  207, 208
virtual machine, modifying  208, 209
virtual machine, snapshot  209
virtual machine, starting  208
virtual machine, stopping  208

Windows Server roles
managing  160

Windows Server Virtualization.  
See  Hyper-V

WinRM
about  85
allowing, through Windows Firewall   

97-100
remote server management, allowing 

through  96, 97
winrm quickconig command  91
WMF  87
WMI  17
worklow

creating, PowerShell used  52, 53
Write-Host command  32
WSMan trusted hosts

coniguring  94, 95

http:///


 

Thank you for buying  

PowerShell 3.0 Advanced  

Administration Handbook 

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books give 
you the knowledge and power to customize the software and technologies you're using to get 
the job done. Packt books are more speciic and less general than the IT books you have seen in 
the past. Our unique business model allows us to bring you more focused information, giving 
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For more 
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to 
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to 
books published on enterprise software – software created by major vendors, including (but 
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer 
information relevant to a range of users of this software, including administrators, developers, 
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like 
to discuss it irst before writing a formal book proposal, contact us; one of our commissioning 
editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

http:///


SQL Server 2012 with PowerShell 
V3 Cookbook
ISBN: 978-1-84968-646-4             Paperback: 634 pages

Increase your productivity as a DBA, developer, or IT 
Pro, by using PowerShell with SQL Server to simplify 
database management and automate repetitive, 
mundane tasks 

1. Provides over a hundred practical recipes that 
utilize PowerShell to automate, integrate and 
simplify SQL Server tasks

2. Offers easy to follow, step-by-step guide 
to getting the most out of SQL Server and 
PowerShell

3. Covers numerous guidelines, tips, and 
explanations on how and when to use 
PowerShell cmdlets, WMI, SMO, .NET classes 
or other components

Microsoft Exchange 2010 
PowerShell Cookbook
ISBN: 978-1-84968-246-6             Paperback: 480 pages

Manage and maintain your Microsoft Exchange 2010 
environment with Windows PowerShell 2.0 and the 
Exchange Management Shell

1. Step-by-step instructions on how to write 
scripts for nearly every aspect of Exchange 2010 
including the Client Access Server, Mailbox, 
and Transport server roles

2. Understand the core concepts of Windows 
PowerShell 2.0 that will allow you to write 
sophisticated scripts and one-liners used with 
the Exchange Management Shel

Please check www.PacktPub.com for information on our titles

http:///


Microsoft Windows PowerShell 

3.0 First Look
ISBN: 978-1-84968-644-0             Paperback: 200 pages

A quick, succinct guide to the new and exciting 
features in PowerShell 3.0

1. Explore and experience the new features found 
in PowerShell 3.0

2. Understand the changes to the language and the 
reasons why they were implemented 

3. Discover new cmdlets and modules available in 
Windows 8 and Server 8

4. Quickly get up to date with the latest version of 
Powershell with concise descriptions and simple 
examples

Microsoft SharePoint 2010 and 
Windows PowerShell 2.0: Expert 
Cookbook
ISBN: 978-1-84968-410-1           Paperback: 310  pages

50 advanced recipes for administrators and IT Pros 
to master Microsoft SharePoint 2010 and Microsoft 
PowerShell 2.0 automation 

1. Dive straight into expert recipes for SharePoint 
and PowerShell administration without 
dwelling on the basics

2. Master how to administer BCS in SharePoint, 
automate the coniguration of records 
management features, create custom 
PowerShell cmdlets 

3. A hands-on cookbook focusing on only the 
most high level tips and tricks for mastering 
SharePoint and PowerShell administration

 

Please check www.PacktPub.com for information on our titles

http:///

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgement
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Getting Started with PowerShell
	Working with pipelines
	Viewing the object structure
	Using format cmdlets to change the output view
	Using cmdlets to redirect data

	Variables and objects
	Using variables to store objects
	Getting CIM objects
	Listing CIM classes
	Displaying details of the CIM class

	Creating .NET and COM objects

	Looping and flow control
	Comparison and logical operators
	Conditional statements
	Using switches to manage large conditional statements
	Repeat operations with loops
	The for statement
	The foreach statement
	Nested loops


	Lists, arrays, and hash tables
	Operating script block
	Defining script blocks
	Passing parameters and returning values

	Functions
	Scripts
	Creating scripts
	Invoking scripts
	Passing parameters
	Return values

	Developing and maintaining script libraries

	Discovering what's new in Windows PowerShell 3.0
	Windows PowerShell Web Access (PSWA)
	How PSWA works
	Installing and configuring Windows PowerShell Web Access
	Step 1 – installing the Windows PowerShell Web Access Windows feature
	Step 2 – configuring Windows PowerShell Web Access Gateway
	Step 3 – configuring the PowerShell Web Access authorization rules


	Auto-loading of modules
	Online and updatable Help
	Scheduled jobs
	The Show-Command cmdlet
	Integrated Scripting Environment (ISE)
	IntelliSense
	Script snippets
	How to use snippets
	How to create/add new snippets

	Add-on tools
	Autosave and restart manager

	PowerShell remoting
	Disconnected session
	Remoting on a public network
	The custom session configuration file

	Windows PowerShell Workflow (PSW)
	Creating a workflow using PowerShell
	Controlling PowerShell Workflow execution

	Summary

	Chapter 2: Developing Snap-ins  for PowerShell
	Creating a PowerShell snap-in
	Writing a PowerShell snap-in
	Creating a new class library project
	Creating a PowerShell installer class
	Creating a class file to include several PowerShell cmdlets
	Declaring cmdlet parameters
	Declaring parameter sets
	Validating the parameter inputs
	Overriding methods


	Registering and removing a PowerShell snap-in
	Registering and removing snap-in in PowerShell 1.0
	Registering and removing a snap-in in PowerShell 3.0

	Listing and executing cmdlets in a PowerShell snap-in
	Debugging a PowerShell snap-in
	Summary

	Chapter 3: Using PowerShell Remoting
	An overview of PowerShell remoting
	Enabling/disabling remoting
	Operating PowerShell in a no-domain environment
	Setting the network location to Private
	Enable-PSRemoting
	Configuring WSMan trusted hosts

	Configuring PowerShell remoting on a domain using Group Policy
	Allowing remote server management through WinRM
	Allowing Windows Remote Management through Windows Firewall
	Turning on Service Windows Remote Management (WS-Management)
	Doing a Group Policy Update

	Disabling remoting

	Executing the remoting commands
	Running ScriptBlock on a remote computer
	Creating a persistent session with Invoke-Command
	Running remote commands as a job
	Specifying credentials required for remoting

	Entering an interactive remoting session
	Exiting an interactive session
	Using a persistent session with interactive remoting
	Starting interactive remoting with an existing session
	Disconnecting and reconnecting sessions

	Saving a remote session to a disk
	Exporting a remote session to a module on a disk
	Importing a module saved on a disk
	Limitations of Export-PSSession

	Using session configurations
	Creating a new session configuration
	Listing available session configurations
	Custom permissions and PS session configurations
	Invoking a custom session configuration
	Disabling a session configuration
	Deleting a session configuration

	Summary

	Chapter 4: Extending Windows PowerShell
	Introduction to Windows PowerShell modules
	PowerShell module types
	Script modules
	Binary modules
	Manifest modules
	Dynamic modules

	The PSModulePath environment variable
	Viewing the PSModulePath variable
	Adding locations to the PSModulePath variable

	Importing PowerShell modules
	Removing PowerShell modules
	Reloading PowerShell modules
	Writing a PowerShell module
	Creating script modules
	Binary modules
	Manifest modules
	Dynamic modules

	Storing modules on disk
	Working with multiple versions of modules
	Checking PowerShell module dependencies
	Signing PowerShell modules
	Execution policies
	Changing the execution policy
	Script signing background
	Setting up a self-signed certificate
	Signing a module

	Summary

	Chapter5: Managing Core Infrastructure with PowerShell
	Preparing the operating system for first time use
	Task 1 – changing the computer name
	Task 2 – changing the time zone settings
	Task 3 – setting the Network Interface Card (NIC) configuration
	Task 4 – managing Windows Server roles and features
	Example 1
	Example 2


	Deploying the Active Directory Domain Services (ADDS) role
	Scenario 1 – installing a new Active Directory Forest
	Scenario 2 – installing a new domain in an existing forest
	Scenario 3 – installing a new domain controller in an existing domain

	Managing and configuring the Domain Name System (DNS) role
	Task 1 – configuring DNS server resource records
	Task 2 – creating primary forward and reverse lookup zones
	Task 3 – adding a DNS server forwarder
	Task 4 – exporting DNS server zones

	Deploying and configuring the Dynamic Host Configuration Protocol (DHCP) role
	Task 1 – installing the DHCP server role
	Task 2 – setting up the DHCP server scope
	Task 3 – configuring DHCP scope options
	Task 4 – configuring DHCP scope exclusion
	Task 5 – configuring DHCP scope reservations
	Task 6 – authorizing the DHCP server in Active Directory

	Managing Windows Firewall
	Task 1 – enabling or disabling Windows Firewall profiles
	Task 2 – creating Windows Firewall rules
	Example 1
	Example 2


	Using Best Practice Analyzer (BPA)
	Task 1 – displaying the list of best practice models
	Task 2 – invoking a best practice model
	Task 3 – showing the best practice model result

	Summary

	Chapter 6 : Managing Active Directory  with PowerShell
	Active Directory-related concepts
	Introduction to Active Directory
	Namespace
	Object
	Container
	Trees
	Domain

	Installing an Active Directory Domain Service (AD DS)
	New AD server roles in Windows 2012
	Active Directory Certificate Services
	Active Directory Domain Services
	Active Directory Lightweight Directory Services
	Active Directory Rights Management Services

	Managing Active Directory with PowerShell
	Account management
	User management
	Computer management

	Group management
	Viewing group permissions
	Creating a group
	Adding and removing members of a group

	Organizational unit management
	Creating a new organizational unit
	Listing organizational units
	Renaming an organizational unit
	Modifying an organizational unit
	Moving an organizational unit
	Deleting an organizational unit

	Domain controller management
	Finding a domain controller
	Finding a domain controller's site
	Finding the global catalog servers in a forest


	Summary

	Chapter 7: Managing the Server with PowerShell
	Working with Server Manager cmdlets
	Adding roles or features by using PowerShell
	Advantages of PowerShell cmdlets for Server Manager

	Managing networking using PowerShell
	Managing Group Policy with PowerShell
	Importing a GroupPolicy module
	Creating GPOs with PowerShell

	Managing IIS with PowerShell
	Creating a new website
	Modifying IIS binding
	Creating an FTP site
	Creating a virtual directory
	Creating a WebAppPool
	Backing up and restoring WebConfiguration

	Managing a DNS server using PowerShell
	Managing Hyper-V with PowerShell
	Installing Hyper-V on Windows Server 2012
	Creating a virtual machine
	Starting and stopping a virtual machine
	Modifying a virtual machine
	Operating a virtual machine snapshot

	Managing AppLocker with PowerShell
	Importing the AppLocker PowerShell module
	Retrieving application information
	Retrieving an AppLocker policy
	Setting an AppLocker policy
	Generating rules for a given user or group
	Testing the AppLocker policy against a fileset

	Summary

	Chapter 8: Managing Unified Communication Environments with PowerShell
	What Exchange Management Shell is
	How to make Windows PowerShell understand Exchange Server cmdlets
	Option 1 – do it like EMS
	Option 2 – loading Exchange Server snap-ins

	Managing Exchange using PowerShell Remoting
	Getting started with Exchange scripting
	Scenario 1 – creating multiple mailboxes from CSV file
	Scenario 2 – creating a shared mailbox
	Scenario 3 – creating a resource (room/equipment) mailbox
	Scenario 4 – creating a distribution group
	Scenario 5 – defining a MailTip for a distribution group
	Scenario 6 – creating a dynamic distribution group
	Scenario 7 – creating multiple mailbox databases from CSV file
	Scenario 8 – exporting mailboxes to PST files
	Scenario 9 – importing a mailbox from PST files
	Scenario 10 – hiding mailbox users from Global Address List (GAL)
	Scenario 11 – getting mailbox users who never accessed their mailboxes
	Scenario 12 – generating an organization mailbox statistics report
	Scenario 13 – generating a mailbox size report

	What Lync Server Management Shell is
	How to make PowerShell understand Lync Server cmdlets
	Loading a Lync Server module

	Managing Lync using PowerShell Remoting
	Getting started with Lync scripting
	Scenario 1 – enabling Lync to user accounts
	Scenario 2 – configuring IM file transfer filtering configuration
	Scenario 3 – configuring IM URL filtering
	Scenario 4 – bulk assignments of client PIN
	Scenario 5 – getting number of users using OCS/Lync
	Scenario 6 – setting the conference disclaimer

	Microsoft Office 365
	Office 365 and Windows PowerShell
	Managing Office 365 using PowerShell
	Managing Microsoft Exchange Online using PowerShell

	Summary

	Chapter 9: Managing Collaboration and Data Platforms with PowerShell
	What is SharePoint Management Shell
	How to make Windows PowerShell understand the SharePoint server cmdlets?
	Getting started with SharePoint scripting
	Scenario 1 – creating a new site collection
	Scenario 2 – creating a new website
	Scenario 3 – creating a new quota template
	Scenario 4 – backing up your SharePoint environment

	Managing SharePoint Online using PowerShell
	How to load SharePoint Online Management Shell?
	How to connect to SharePoint Online?
	Scenario 1 – exporting a list of SharePoint Online sites to CSV
	Scenario 2 – restoring a deleted SharePoint Online site
	Scenario 3 – checking the SharePoint Online site's health status
	Scenario 4 – setting SharePoint Online User as Site Collection Administrator

	Windows PowerShell Command Builder for SharePoint and Office 365
	What is SQL Server PowerShell?
	How to load SQL Server PowerShell?
	Method 1 – importing the SQL Server PowerShell module
	Method 2 – launching SQL Server PowerShell from SSMS


	Getting started with SQL Server scripting
	Scenario 1 – executing the T-SQL statement
	Scenario 2 – backing up the SQL Server database
	Scenario 3 – restoring the SQL Server database
	Scenario 4 – getting server instances and databases properties
	Scenario 5 – generating the SQL script for databases, tables, and stored procedures

	Summary

	Chapter 10: Managing Microsoft Desktop Virtualization with PowerShell
	What Desktop Virtualization is
	Understanding Desktop Virtualization components
	What Remote Desktop Services is
	Managing RDS using PowerShell
	Getting started with RDS scripting
	Scenario 1 – creating new RDS deployments
	Task 1.1 – creating a new virtual-machine-based deployment
	Task 1.2 – creating a new session-based deployment

	Scenario 2 – adding a Remote Desktop Server to an existing deployment
	Scenario 3 – adding and configuring an RD Gateway
	Scenario 4 – adding and configuring RD Licensing Server
	Scenario 5 – creating new RDS collections
	Task 5.1 – creating new session-based collections
	Task 5.2 – creating new VM-based collections

	Scenario 6 – setting session-based collection configuration
	Scenario 7 – setting VM-based collection configuration
	Scenario 8 – updating VM-based collections
	Scenario 9 – assigning Profile Disks to collections
	Scenario 10 – publishing Remote Desktop RemoteApp to collections
	Scenario 11 – configuring Remote Desktop Connection Broker for high availability

	Summary

	Chapter 11: Managing Microsoft Cloud Platform with PowerShell
	What is Windows Azure?
	What is Windows Azure PowerShell?
	Installing Windows Azure PowerShell
	Making Windows PowerShell understand Windows Azure cmdlets
	Connecting to your Windows Azure environment
	Getting started with Windows Azure scripting
	Scenario 1 – creating a new Azure Affinity Group
	Scenario 2 – creating a new Azure storage account
	Scenario 3 – assigning a storage account to an Azure subscription
	Scenario 4 – creating a new Azure Cloud Service 
	Scenario 5 – creating a new SQL Azure Database Server
	Scenario 6 – creating a new SQL Azure database
	Scenario 7 – creating a new SQL Azure Database server firewall rule
	Scenario 8 – provisioning the new Azure VM in Windows (quick mode) 
	Scenario 9 – provisioning the new Azure VM in Linux (quick mode) 
	Scenario 10 – provisioning the new Windows Azure VM (advanced mode) 
	Scenario 11 – Adding a new endpoint to Windows Azure VM (NoLB)
	Scenario 12 – configuring the Windows Azure Virtual Machines load balancing (LB)
	Scenario 13 – creating and assigning a data disk to Windows Azure Virtual Machine
	Scenario 14 – moving the Local VHD to Windows Azure
	Scenario 15 – provisioning a new Windows Azure VM from a Disk 
	Scenario 16 – creating Windows Azure Image from a VM
	Scenario 17 – exporting and importing Windows Azure VM
	Scenario 18 – starting, stopping, and restarting the Windows Azure VM
	Scenario 19 – uploading the certificate to Windows Azure
	Scenario 20 – generating the Azure Virtual Machine RDP file

	Summary

	Chapter 12: Integrating Windows PowerShell and System Center Orchestrator
	Completing your ITPA story with PowerShell and Orchestrator
	What is System Center Orchestrator?
	Understanding Orchestrator workflows
	Orchestrator and PowerShell are better together
	Using PowerShell in Orchestrator workflow
	Using PowerShell to build Orchestrator Integration Packs


	Summary

	Index

