
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PayPal APIs: Up and Running

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PayPal APIs: Up and Running

Michael Balderas

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

PayPal APIs: Up and Running
by Michael Balderas

Copyright © 2011 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Kristen Borg
Copyeditor: Genevieve d’Entremont
Proofreader: Kristen Borg

Indexer: Angela Howard
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
February 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. PayPal APIs: Up and Running, the image of an African wildcat, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-39612-1

[LSI]

1297358600

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.allitebooks.org

Table of Contents

Preface . vii

1. The PayPal API . 1
Overview of the PayPal API 1
Getting Started 3

Direct Versus SDK Integration 3
Testing Versus Live Implementation 4
Obtaining API Credentials 4
Creating an API Signature 4
Creating a Name-Value Pair (NVP) Request 6
Parsing an NVP Response 8

2. PayPal Express Checkout . 11
Checkout Process Workflows 11

Generic Checkout Workflow 11
Express Checkout Workflow 12
Generic Versus Express Checkout Workflow 12

Express Checkout Flow 13
PayPal Express Checkout API Operations 15

SetExpressCheckout 16
GetExpressCheckoutDetails 17
DoExpressCheckoutPayment 18
Callback 22

Simple Express Checkout Integration 24
Setting Up the Transaction 24

Express Checkout Integration 25

3. PayPal Website Payments Pro . 49
Overview of Direct Payment 49
Direct Payment Workflow 49
PayPal Direct Payment API Operations 50

v

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.allitebooks.com

http://www.allitebooks.org

Simple Direct Payment Integration 54
Direct Payment Integrations 55

4. PayPal Adaptive Payments . 59
Overview of Adaptive Payments 59
PayPal Adaptive Payments API Operations Overview 59
Adaptive Payments Permission Levels 60
Adaptive Payments Application Workflows 61
Payment Approval and Payment Flows 63

Explicit Payments 63
Preapproved Payments 64
Implicit Payments 66
Guest Payments 66

Adaptive Payments API Operations in Depth 66
Pay API Operation 67
SetPaymentOptions API Operation 68
ExecutePayment API Operation 70

Adaptive Payments Integration 71

5. PayPal Mobile Express Checkout . 99
Mobile Express Checkout Flow 100
Mobile Express Checkout Best Practices 100
Mobile Express Checkout Library for iOS 101

MEC Mobile Application Integration 101
MEC Mobile Website Integration 102
MEC Library Methods 102
MEC Localization Support 104
Sample MEC Code 105
Summary 106

Index . 107

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Virtually every application delivery model is experiencing a surging demand for trans-
action convenience. In this book, I introduce PayPal APIs, along with instructions and
resources for their integration in different environments, including websites and mobile
applications.

Goals of This Book
The goal of this book is to help you understand what PayPal has to offer. Let’s face it,
you want to get money from your customers into your bank account as quickly as
possible, and I want to help you accomplish this. By the end of this book, you will have
a better understanding of what PayPal is, how PayPal can streamline your payments,
and how to get the most out of PayPal for your particular payment situation.

Who Should Read This Book
This book is for anyone who wants to accept payments for their goods or services
through PayPal. You might be an individual with an open source project looking to
accept donations, a multimillion-dollar corporation, a nonprofit requesting donations
to help a cause, or a software developer writing mobile apps for cell phones. PayPal can
provide you with solutions, no matter who you are. The code samples in this book are
provided in PHP and Objective-C, and limited code coverage of Droid is included in
Chapter 5. An understanding of using APIs is recommended, but not required.

vii

www.allitebooks.com

http://www.allitebooks.org

How This Book Is Organized
Here is a brief summary of the chapters in the book and what you can expect from each:

Chapter 1, The PayPal API
Covers the PayPal API and how to start using it to accept payments, with an em-
phasis on choosing an integration method for your project as well as obtaining the
necessary credentials to get started. I also cover how to use the sandbox to test your
application.

Chapter 2, PayPal Express Checkout
Covers Express Checkout and how to use the API to execute Express Checkout
Payments. This chapter contrasts the Generic (or Traditional) checkout workflow
with the Express Checkout workflow. All four of the Express Checkout operations
(SetExpressCheckout, GetExpressCheckoutDetails, DoExpressCheckoutPayment, and
Callback) are covered.

Chapter 3, PayPal Website Payments Pro
Covers Website Payments Pro, with an emphasis on Direct Payments. I demon-
strate the Direct Payment workflow in a sample transaction. A simple Direct Pay-
ment Integration sample is also included.

Chapter 4, PayPal Adaptive Payments
Covers Adaptive Payments, including an overview of Adaptive Payments as well
as a breakdown of the Permission Levels provided via Adaptive Payments. Appli-
cation workflows, Payment Approval, and Payment flows are also included.

Chapter 5, PayPal Mobile Express Checkout
Covers Mobile Checkout, with an emphasis on the newly released Mobile Express
Checkout and the Mobile Payment Libraries for iOS- and Droid-based
smartphones.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

viii | Preface

www.allitebooks.com

http://www.allitebooks.org

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “PayPal APIs: Up and Running by Michael
Balderas. Copyright 2011 O’Reilly Media, Inc., 978-1-449-39612-1.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

Preface | ix

mailto:permissions@oreilly.com

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920014386

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

x | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/0636920014386
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

The PayPal API

Overview of the PayPal API
PayPal provides developer access to its payments system via its Name-Value Pair API,
referred to as NVP API for the remainder of this book. The NVP API allows a merchant
to access PayPal and accomplish the following tasks:

• Accept PayPal during your checkout process via Express Checkout

• Charge a credit card during a Direct Payment session

• Capture previously authorized Express Checkout and Direct Payment payments

• Reauthorize or void previous authorizations

• Pay single or multiple recipients via Mass Payment

• Issue full refunds or multiple partial refunds

• Search transactions using a specified search criteria

• Retrieve details of a specific transaction

• Accept PayPal for multiparty payments

• Accept PayPal for subscriptions or freemium models. (Freemium models offer a
basic product or service free of charge, while charging a premium for advanced
features. A good example is something like CCleaner: you can download it and use
it free, and pay for a license if you want support. You can also make donations to
future development—and they accept PayPal for both.)

PayPal’s NVP API makes it simple to integrate PayPal payments into your specific web
application. You, the merchant, construct an NVP string and post it via HTTPS (HTTP
Secure, aka TLS/SSL) to the PayPal authorization server. PayPal posts back an NVP-
formatted response that you then parse in your web application for the information
relevant to the payment. Figure 1-1 shows a basic request and response workflow.

1

The request identifies:

• The name or method of the API operation to be performed and its version

• PayPal API credentials

• Operation-specific parameters formatted as name/value pairs

Adaptive APIs also require an APP ID during the request.

The PayPal API server executes the operation and returns a response containing:

• Acknowledgment of success or failure (including any warnings returned in case of
failure)

• PayPal tracking information specific to the API operation

• Response-specific information required to fulfill the request

Some features of the NVP API, such as Express Checkout, require calls to multiple API
operations. Other APIs like Direct Pay only require one call. But typically, you are
required to:

1. Call an API operation—for example, SetExpressCheckout—that sets up the return
URL PayPal uses to redirect your buyer’s browser after the buyer finishes on PayPal.
Other setup routines can be performed by this same API operation.

2. Call additional API operations after receiving the buyer’s permission on PayPal,
such as GetExpressCheckoutDetails or DoExpressCheckoutPayment.

Figure 1-2 shows the execution workflow between your application and PayPal.

Figure 1-1. Basic NVP request and response

2 | Chapter 1: The PayPal API

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

Getting Started
There are two methods for integrating PayPal’s NVP API into your application: direct
integration and integration through a Software Development Kit (referred to as SDK).
I focus on direct integration into your website and applications.

Direct Versus SDK Integration
Direct integration allows you to use the programming language of your choice to com-
municate via the NVP API. This is the most flexible approach and allows direct access
to the Name-Value Pair elements of the API. SDK integration provides simple functions

Figure 1-2. Advanced Express Checkout NVP request and response

Getting Started | 3

for integration using the NVP API. There are SDKs are provided for Java, ASP.NET,
PHP, Coldfusion, and Ruby. This type of integration typically wraps the HTTPS in-
terfaces in the respective language, making the operations more natural for the devel-
oper to work with, because they are formatted in a familiar language and require just
a few simple function calls to access.

Testing Versus Live Implementation
PayPal provides a sandbox environment to use while developing your application. The
environment replicates the live environment, but true payment processing doesn’t oc-
cur when using the sandbox. Once you have fully developed and debugged your ap-
plication, you can then switch to the live environment and start taking payments.
Switching between the two is as simple as changing the target server and the API cre-
dentials used to access the server. The rest of your application will remain unchanged.

I recommend setting up your API credentials in separate files within
your application. This way, you can have your sandbox credentials in
one file and your production credentials in another file, referenced ac-
cordingly. For added security, I would locate these files on your server
outside the default webroot, so that they cannot be called directly from
the web browser.

Obtaining API Credentials
To access the NVP API, you first need to establish credentials. These identify who you
are and ensure payments get to where they need to go. You establish credentials through
either an API signature or an API certificate. You will need two sets of API credentials:
one for development and one for production.

Creating an API Signature
Developing your application only requires access to the PayPal API sandbox. You can
sign up for access to the sandbox at http://developer.paypal.com or http://x.com. Once
your account is established, you can create your test accounts and obtain your API
credentials. Sandbox accounts and live accounts require different processes to obtain
credentials. Use the following steps for a sandbox account:

1. Go to https://developer.paypal.com and click “Sign Up Now.”

2. Enter the requested information and click “Agree and Submit.”

3. PayPal will send you an email to complete the sign-up process.

4. After confirming your email address, click “Sign Up Now” to access the sandbox.

4 | Chapter 1: The PayPal API

http://developer.paypal.com
http://x.com
https://developer.paypal.com

5. Log into your sandbox account (after the initial login, this can be accessed directly
by going to https://www.sandbox.paypal.com).

6. Click the “Test Accounts” link.

7. Click the “Create Test Account” link.

8. Choose Seller for the account type and select the other appropriate options (going
with the defaults is highly recommended).

9. When using the defaults, API credentials are created automatically.

10. Click the API credentials link to access your API credentials.

PayPal recommends you use a different login and password for your
developer account than those for your live PayPal account. This will
allow other people on your development team to access the sandbox
and test your application without giving them access to your regular
PayPal account.

For a live account, use the following steps:

1. Log into your PayPal Account. Under “My Account”, click the “Profile” option.

2. Click “API Access.”

3. Click “Request API Credentials.”

4. Check the “Request API signature” option, and then click “Agree and Submit.”

We will use the API Signature method of specifying credentials throughout this book.
An API Signature is composed of three elements, as shown in Table 1-1.

Table 1-1. NVP API Signature components

API Signature component Example value

API username sdk-three_api1.sdk.com

API password QFZCWN5HZM8VBG7Q

API signature A-IzJhZZjhg29XQ2qnhapuwxIDzyAZQ92FRP5dqBzVesOkzbdUONzmOU

When you are ready to go live, you will need to activate either the Website Payments
Standard or Website Payments Pro Product on your account and establish your cre-
dentials for that account. You can sign up for your account at http://www.paypal.com.

Website Payments Pro requires additional vetting before being
activated.

Getting Started | 5

https://www.sandbox.paypal.com
http://www.paypal.com

Creating a Name-Value Pair (NVP) Request
There are three key steps that your application must accomplish to post to the NVP
API: URL encoding, constructing the request in a format the NVP API can interpret,
and posting the request via HTTPS to the server.

URL encoding

Both the request to the PayPal server and the response from the server are URL encoded.
This method ensures that you can transmit special characters, characters not typically
allowed in a URL, and characters that have reserved meanings in a URL. For example:

NAME=John Doe&COMPANY= Acme Goods & Services

is URL encoded as follows:

NAME=John+Doe&Company=Acme+Goods+%26+Services

Each application language typically has a specific built-in URL encode method. Refer
to the list in Table 1-2.

Table 1-2. URL encoding methods

Application language Function Method name

ASP.NET Encode System.Web.HttpUtility.UrlEncode(buffer, Encoding.Default)

Classic ASP Encode Server.URLEncode

Java Encode java.net.URLEncoder.encode

PHP Encode urlencode()

ColdFusion Encode URLEncodedFormatstring [, charset]

Request format

Each NVP API request is composed of required and optional parameters and their
corresponding values. Parameters are not case-sensitive, but certain values such as the
API Password, (PWD), are case-sensitive. The required parameters for all NVP API trans-
actions are USER, PWD, METHOD, and VERSION. The METHOD, or type of transaction you are
calling the NVP API to process, has an associated VERSION. Together the METHOD and
VERSION define the exact behavior of the API operation you want performed. This will
be followed by the information posted from your application, including things such as
Item, Quantity, and Cost.

API operations can change between versions, so when you change a
version number, I recommend retesting your application code before
going live.

6 | Chapter 1: The PayPal API

Figure 1-3 outlines the API operation of an NVP request, and Figure 1-4 shows the
same transaction with credentials provided.

Figure 1-3. NVP request

Figure 1-4. NVP request with credentials

Putting it together

Now that we have the basic elements laid out, let’s put together a sample URL encoded
NVP request via PHP, shown in Examples 1-1 and 1-2.

Example 1-1. developercredentials.php

<?php
//PayPal NVP API Test Developer Credentials//
$paypalusername = sdk-three_api1.sdk.com;
$paypalpassword = QFZCWN5HZM8VBG7Q;
$paypalsignature = A-IzJhZZjhg29XQ2qnhapuwxIDzyAZQ92FRP5dqBzVesOkzbdUONzmOU;
$paypalserver = api-3t.sandbox.paypal.com/nvp
?>

Example 1-2. simpletransactionrequestprocessor.php

<?php
// PayPal NVP API Simple Transaction Request Processor//
// Include the developercredentials.php file for relevant information
include("../path/outside/webroot/developercredentials.php");
// Build the credentials format of the Request String
$credentials= "USER=$paypaluser&PWD=$paypalpwd&SIGNATURE=$paypalsig";

Getting Started | 7

// Designate the API Method we are calling to have handled
$method = api_method_to_use;
$version = method_version_to_use;
// Build Initial Request string
$request = $method."&".$version."&".$credentials;
// Walk the posted form elements to gather additional information
// to pass URLEncoded to API via the request string
foreach ($_POST as $key => $value){
$value = urlencode(stripslashes($value));
$request. = "&$key=$value";
};
//Build transaction and execute via curl
$ch = curl_init();
// Ensure communication is done via SSL and over a fully verified
// SSL key and certificate
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, TRUE);
curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, TRUE);
// Return response as a string from server
curl_setopt($ch, CURL_RETURNTRANSFER, 1);
// Post values to server via URLEncoded string
curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_POSTFIELDS, $request);
//Execute Request
$response = curl_exec($ch);
?>

Notice that in Example 1-2, we reference the developercredentials.php
file from a path outside the webroot. As stated earlier, this will ensure
that no one can access your credentials file directly from their web
browser and ensures that this information stays secure. If we were sat-
isfied with this code and wanted to go to production, we would then
change this path to the location of our production credentials file.

Parsing an NVP Response
When it comes to parsing an NVP response, your application really has to accomplish
only one major step: URL decoding.

URL decoding

URL decoding the response from PayPal is basically just the reverse of URL encoding
the values to pass to PayPal. For example:

NAME=John+Doe&Company=Acme+Goods+%26+Services

is decoded as follows:

NAME=John Doe&COMPANY= Acme Goods & Services

As with URL encoding, each application language typically has a URL decode method
built into the language. Refer to the list in Table 1-3.

8 | Chapter 1: The PayPal API

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.allitebooks.com

http://www.allitebooks.org

Table 1-3. URL decoding methods

Application language Function Method name

ASP.NET Decode System.Web.HttpUtility.UrlDecode(buffer, Encoding.Default)

Classic ASP Decode No built-in function; several implementation examples are available on the Internet

Java Decode java.net.URLDecoder.decode

PHP Decode urldecode()

ColdFusion Decode URLDecodeurlEncodedString[, charset])

Response format

Each NVP API response is composed of an acknowledgment (or ACK), a timestamp,
a CorrelationID unique to the transaction, and a build number stating the API version
used to process the transaction. This basic response is then followed by a series of name/
value pairs holding the transaction data, which you can parse and handle accordingly
in your application. For example, you might want to display the response information
to your customer. The acknowledgment will be one of the responses outlined in
Table 1-4.

Table 1-4. ACK parameter values

Type of response Value

Successful response Success, SuccessWithWarning

Partially successful response (relevant only for parallel payments; some of

the payments were successful and others were not)

PartialSuccess

Error response code Failure, FailureWithWarning, Warning

Putting it together

Now that we know how the response is formatted, we can extend the simpletrans
actionrequestprocessor.php file to handle the information returned in the $response
string (see Example 1-3).

Example 1-3. simpletransactionrequestprocessor.php

//Parse $Response and handle values
$decoderesponse = explode ('&', $response);

foreach($decoderesponse as $key => $value){

 switch ($key){
 case "ACK":
 $ack = htmlspecialchars(urldecode($value));
 break;
 case "var1":
 $var1 = htmlspecialchars(urldecode($value));
 break;

Getting Started | 9

 default:
 break;
 }
 }
//Your code to display or handle values returned.........

This is just a glimpse of what you can do with the PayPal API. The different integration
methods, testing platforms, and credentials make it easy to debug and use the PayPal
API to accept payments in just about any application. Next, we take a look at the
simplest PayPal API method for accepting payments: Express Checkout.

10 | Chapter 1: The PayPal API

CHAPTER 2

PayPal Express Checkout

Express Checkout is PayPal’s premier checkout solution. It allows a customer to check
out on your site, log into his PayPal account, and purchase your goods or services.
Express Checkout puts PayPal in charge of data security with regard to the customer’s
billing and credit card information and removes that liability from the merchant. In
this chapter, we will look at generic versus Express Checkout workflows, Express
Checkout API operations, a simple Express Checkout integration, as well as an in-depth
integration method.

Checkout Process Workflows
Let’s start by looking at the process flow of a typical checkout and an Express Checkout.

Generic Checkout Workflow
Figure 2-1 shows the typical checkout flow a user experiences when buying goods or
services online, which includes the following steps:

1. Customer clicks the checkout button on your shopping cart page.

2. Customer enters all shipping information.

3. Customer chooses her payment method and provides all the relevant billing and
payment information.

4. Customer reviews order and pays.

5. Customer receives her order confirmation.

As you can see, this typical checkout method requires the customer to provide a lot of
information at the time of purchase. This is where PayPal’s Express Checkout can be
a real time saver for your customers.

11

Figure 2-1. Generic checkout workflow

Express Checkout Workflow
Figure 2-2 shows the checkout workflow a user experiences when using PayPal’s
Express Checkout:

1. Customer chooses Express Checkout by clicking the “Check out with PayPal”
button on your site.

2. Customer logs into PayPal.

3. Customer reviews the transaction on PayPal.

4. Customer confirms the order and pays from your site.

5. Customer receives an order confirmation.

Figure 2-2. PayPal Express Checkout workflow

With Express Checkout, the customer does not need to enter his billing and shipping
information each time. Consequently, customers can make purchases and move on to
other tasks much more quickly.

Generic Versus Express Checkout Workflow
Table 2-1 outlines the process steps required to complete a payment during a generic
checkout and Express Checkout. As you can see, Express Checkout saves both time
and processing steps.

12 | Chapter 2: PayPal Express Checkout

Table 2-1. Generic checkout versus Express Checkout

Checkout step Generic checkout Express Checkout

Select the checkout button ✓ ✓

Enter shipping info ✓ -

Select payment method ✓ -

Enter payment information ✓ -

Review order ✓ ✓

Confirm order ✓ ✓

Express Checkout Flow
To fully implement Express Checkout, you must allow your customers two entry points
into the Express Checkout payment process. Figure 2-3 outlines the complete checkout
flow for Express Checkout.

Figure 2-3. Complete Express Checkout flow

As you can see, customers can enter into the Express Checkout flow at either the Shop-
ping Cart Checkout entry point (dotted arrow) or the Payment Methods entry point
(solid arrow). Including both methods in your checkout routines is easy to
implement.

Express Checkout Flow | 13

Figure 2-4 outlines the Checkout Entry Point, which requires the following steps:

1. Customer clicks the “Check out with PayPal” button.

2. Customer logs into PayPal.

3. Customer confirms shipping and billing information on PayPal’s site.

4. Customer is returned to your application for final review and clicks the Purchase
button.

5. Customer is returned to a confirmation screen related to the purchase.

Figure 2-4. Checkout Entry Point

Figure 2-5 outlines the Payment Method Entry Point, which requires the following
steps:

1. Customer clicks the checkout button on your application.

2. Customer inputs shipping information into your application.

3. Customer chooses PayPal from the list of payment methods.

4. Customer logs into PayPal.

5. Customer reviews payment information on PayPal’s site.

6. Customer is returned to your application for final review and clicks the Purchase
button.

7. Customer is returned to a confirmation screen related to the purchase.

A token is a value assigned by PayPal that associates the execution of API operations
and commands with a specific instance of a user experience flow. Tokens are not shown
in Figures 2-1 through 2-5.

14 | Chapter 2: PayPal Express Checkout

Figure 2-5. Payment Method Entry Point

PayPal Express Checkout API Operations
The PayPal NVP API provides four key methods related to Express Checkout. These
operations initialize the transaction, obtain the buyer information and handle the pay-
ment, and then complete the transaction. Table 2-2 outlines these methods.

Table 2-2. Express Checkout API operations

API operation Description

SetExpressCheckout Sets up the Express Checkout transaction. You can specify information to customize the look and

feel of the PayPal site and the information it displays. You must include the following information:

• URL to the page on your website to which PayPal redirects after the buyer logs into PayPal

and approves the payment successfully

• URL to the page on your website to which PayPal redirects if the buyer cancels the

transaction

• Total amount of the order or your best estimate of the total (this should be as accurate

as possible)

GetExpressCheckout

Details

Obtains information about the buyer from PayPal, including shipping information.

DoExpressCheckout

Payment

Completes the Express Checkout transaction, including the actual total amount of the order.

Callback Updates the PayPal Review page with the relevant shipping options, insurance, and tax

information.

Let’s break down each API operation into its smaller components and outline the re-
lated request and response fields.

PayPal Express Checkout API Operations | 15

SetExpressCheckout
SetExpressCheckout initializes the Express Checkout session. It allows you to pass var-
iables that format how the PayPal pages look and specify where to redirect the buyer’s
browser based upon success of the payment transaction.Table 2-3 outlines the fields
required for SetExpressCheckout requests, and Table 2-4 outlines the field required for
SetExpressCheckout responses.

Table 2-3. SetExpressCheckout request fields

Field Description Required?

METHOD Must be SetExpressCheckout Yes

RETURNURL URL to which the customer’s browser is returned after choosing to pay

with PayPal. PayPal recommends that the value be the final review

page on which the customer confirms the order and payment or billing

agreement.

Limitation: Up to 2,048 characters.

Yes

CANCELURL URL to which the customer is returned if he does not approve the use

of PayPal to pay you. PayPal recommends that the value be the original

page on which the customer chose to pay with PayPal or establish a

billing agreement.

Limitation: Up to 2,048 characters.

Yes

PAYMENTREQUEST_n_AMT The total cost of the transaction to the customer. If shipping and tax

charges are known, include them in this value; if not, this value should

be the current subtotal of the order. If the transaction includes one or

more one-time purchases, this field must equal the sum of the

purchases.

Set this field to 0 if the transaction does not include a one-time

purchase, for example, when you set up a billing agreement for a

recurring payment that is not charged immediately. Purchase-specific

fields will be ignored.

Limitations: Must not exceed $10,000 USD in any currency. No currency

symbol. Must have two decimal places, the decimal separator must be

a period (.), and the optional thousands separator must be a comma (,).

Yes

PAYMENT_n_PAYMENTACTION How you want to obtain your payment. When implementing parallel

payments, this field is required and must be set to Order.

• Sale indicates that this is a final sale for which you are re-

questing payment (this is the default).

• Authorization indicates that this payment is a basic au-

thorization subject to settlement with PayPal Authorization and

Capture.

• Order indicates that this payment is an order authorization

subject to settlement with PayPal Authorization and Capture.

Yes

16 | Chapter 2: PayPal Express Checkout

Field Description Required?
If the transaction does not include a one-time purchase, this field is

ignored. You cannot set this value to Sale in SetExpressCheck

out request and then change this value to Authorization or

Order on the final API DoExpressCheckoutPayment request. If

the value is set to Authorization or Order in

SetExpressCheckout, the value may be set to Sale or the same

value (either Authorization or Order) in DoExpressCheck

outPayment.

Limitation: Up to 13 single-byte alphabetic characters.

A complete list of all fields allowed for the SetExpressCheckout request method can
be found in the online documentation located at http://www.x.com/community/ppx/
documentation.

Table 2-4. SetExpressCheckout response fields

Field Description

TOKEN A time-stamped token by which you identify to PayPal that you are processing this payment with Express Checkout.

The token expires after three hours. If you set the token in the SetExpressCheckout request, the value of the

token in the response is identical to the value in the request.

Limitation: Up to 20 single-byte characters.

A complete list of all fields allowed for the SetExpressCheckout response method can
be found in the online documentation located at http://www.x.com/community/ppx/
documentation.

GetExpressCheckoutDetails
GetExpressCheckoutDetails obtains information about an Express Checkout transac-
tion. Only the request has required fields, as the response just echoes back the infor-
mation and values enabled in SetExpressCheckout. Table 2-5 describes the required
GetExpressCheckoutDetails fields.

Table 2-5. GetExpressCheckoutDetails request fields

Field Description

METHOD Must be GetExpressCheckoutDetails

TOKEN A time-stamped token, limited to 20 single-byte characters, the value of which was returned by the

SetExpressCheckout response

A full listing of the GetExpressCheckoutDetails response fields can be found in the on-
line documentation located at http://www.x.com/community/ppx/documentation.

PayPal Express Checkout API Operations | 17

http://www.x.com/community/ppx/documentation
http://www.x.com/community/ppx/documentation
http://www.x.com/community/ppx/documentation
http://www.x.com/community/ppx/documentation
http://www.x.com/community/ppx/documentation

DoExpressCheckoutPayment
DoExpressCheckoutPayment completes the Express Checkout transaction and returns the
payment response. If you set up a billing agreement in your SetExpressCheckout API
call, the billing agreement is created when you call the DoExpressCheckoutPayment API
operation. Table 2-6 lists the DoExpressCheckoutPayment request fields, and Table 2-7
describes the response fields.

Table 2-6. DoExpressCheckoutPayment request fields

Field Description

METHOD Must be DoExpressCheckoutPayment.

TOKEN A time-stamped token, the value of which was returned by the

SetExpressCheckout response and passed on to the

GetExpressCheckoutDetails request.

Limitation: Up to 20 single-byte characters.

PAYERID Unique PayPal customer account identification number as returned by

the GetExpressCheckoutDetails response.

Limitation: Up to 13 single-byte alphanumeric characters.

PAYMENTREQUEST_n_AMT The total cost of the transaction to the customer (required). If shipping

and tax charges are known, include them in this value; if not, this value

should be the current subtotal of the order.

If the transaction includes one or more one-time purchases, this field must

equal the sum of the purchases.

Set this field to 0 if the transaction does not include a one-time purchase,

for example, when you set up a billing agreement for a recurring payment

that is not charged immediately. Purchase-specific fields will be ignored.

Limitations: Must not exceed $10,000 USD in any currency. No currency

symbol. Must have two decimal places, the decimal separator must be a

period (.), and the optional thousands separator must be a comma (,).

PAYMENTREQUEST_n_PAYMENTACTION How you want to obtain your payment. When implementing parallel

payments, this field is required and must be set to Order.

• Sale indicates that this is a final sale for which you are requesting

payment (this is the default).

• Authorization indicates that this payment is a basic authori-

zation subject to settlement with PayPal Authorization and Cap-

ture.

• Order indicates that this payment is an order authorization sub-

ject to settlement with PayPal Authorization and Capture.

If the transaction does not include a one-time purchase, this field is

ignored.

You cannot set this value to Sale in SetExpressCheckout request

and then change this value to Authorization or Order on the final

API DoExpressCheckoutPayment request. If the value is set to

18 | Chapter 2: PayPal Express Checkout

www.allitebooks.com

http://www.allitebooks.org

Field Description
Authorization or Order in SetExpressCheckout, the value

may be set to Sale or the same value (either Authorization or

Order) in DoExpressCheckoutPayment.

Limitation: Up to 13 single-byte alphabetic characters.

PAYMENTREQUEST_n_PAYMENTREQUESTID A unique identifier of the specific payment request, which is required for

parallel payments.

Limitation: Up to 127 single-byte character limit.

A full listing of the DoExpressCheckoutPayment request fields can be found in the online
documentation located at http://www.x.com/community/ppx/documentation.

Table 2-7. DoExpressCheckoutPayment response fields

Field Description

TOKEN A time-stamped token, the value of which was returned by the

SetExpressCheckout response and passed on to the

GetExpressCheckoutDetails request.

Limitation: Up to 20 single-byte characters.

PAYMENTTYPE Information about the payment.

SUCCESSPAGEREDIRECTREQUESTED Flag that indicates whether you need to redirect the customer to back to

PayPal after completing the transaction.

PAYMENTINFO_n_TRANSACTIONID Unique transaction ID of the payment. If the PaymentAction of the

request was Authorization or Order, this value is your Authori

zationID for use with the Authorization and Capture APIs.

Limitation: Up to 19 single-byte characters.

PAYMENTINFO_n_TRANSACTIONTYPE The type of transaction. Valid values are cart and express-

checkout.

Limitation: Up to 15 single-byte characters.

PAYMENTINFO_n_PAYMENTTYPE Indicates whether the payment is instant or delayed. Valid values are

none, echeck, and instant.

Limitation: Up to 7 single-byte characters.

PAYMENTINFO_n_ORDERTIME The time/date stamp of the payment.

PAYMENTINFO_n_AMT The final amount charged, including any shipping and taxes from your

Merchant Profile.

Limitations: Does not exceed $10,000 USD in any currency. No currency

symbol. Regardless of currency, the decimal separator is a period (.), and

the optional thousands separator is a comma (,). Equivalent to nine char-

acters maximum for USD.

PAYMENTINFO_n_FEEAMT PayPal fee amount charged for the transaction.

Limitations: Does not exceed $10,000 USD in any currency. No currency

symbol. Regardless of currency, the decimal separator is a period (.), and

the optional thousands separator is a comma (,). Equivalent to nine char-

acters maximum for USD.

PayPal Express Checkout API Operations | 19

http://www.x.com/community/ppx/documentation

Field Description

PAYMENTINFO_n_TAXAMT Tax charged on the transaction.

Limitations: Does not exceed $10,000 USD in any currency. No currency

symbol. Regardless of currency, the decimal separator is a period (.), and

the optional thousands separator is a comma (,). Equivalent to nine char-

acters maximum for USD.

PAYMENTINFO_n_EXCHANGERATE Exchange rate if a currency conversion occurred. Relevant only if you are

billing in the customer’s nonprimary currency. If the customer chooses to

pay with a currency other than the primary currency, the conversion occurs

in the customer’s account.

Limitations: A decimal value that does not exceed 17 characters, including

decimal points.

PAYMENTINFO_n_PAYMENTSTATUS The status of the payment, which will be one of the following:

• None: No status.

• Canceled-Reversal: A reversal has been canceled, for exam-

ple, when you win a dispute and the funds for the reversal are

returned to you.

• Completed: The payment has been completed and the funds

have transferred successfully to your account.

• Denied: You denied the payment. This will occur only if the pay-

ment was previously pending because of reasons described in the

PendingReason field.

• Expired: The authorization period for the payment has expired.

• Failed: The payment failed. This occurs only when the payment

was made from your customer’s bank draft account.

• In-Progress: Transaction has not terminated, most likely due

to an authorization awaiting completion.

• Partially-Refunded: Payment has been partially refunded.

• Pending: Payment is still pending for reasons described in the

PendingReason field.

• Refunded: You refunded the payment.

• Reversed: Payment was reversed due to a charge back or other

reversal. The funds have been removed from your account balance

and returned to the buyer. The reason will be described in the

ReasonCode field.

• Processed: Payment has been accepted.

• Voided: Authorization for the transaction has been voided.

PAYMENTINFO_n_PROTECTION

ELIGIBILITY

The type of seller protection in force for the transaction, which is one of

the following values:

• Eligible: Seller is protected by PayPal’s Seller protection policy

for Unauthorized Payments and Item Not Received.

• PartiallyEligible: Seller is protected by PayPal’s Seller

Protection Policy for Item Not Received.

20 | Chapter 2: PayPal Express Checkout

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

Field Description
• Ineligible: Seller is not protected under the Seller Protection

Policy.

PAYMENTREQUEST_n_PAYMENTREQUESTID The unique identifier of the specific payment request. The value should

match the one passed in the DoExpressCheckout request.

Limitation: Up to 127 single-byte characters.

L_PAYMENTINFO_n_FMFfilterIDn Filter ID, including the filter type (PENDING, REPORT, or DENY), the

filter ID, and the entry number, n, starting from 0. Filter ID is one of the

following values:

• 1 = AVS No Match

• 2 = AVS Partial Match

• 3 = AVS Unavailable/Unsupported

• 4 = Card Security Code (CSC) Mismatch

• 5 = Maximum Transaction Amount

• 6 = Unconfirmed Address

• 7 = Country Monitor

• 8 = Large Order Number

• 9 = Billing/Shipping Address Mismatch

• 10 = Risky Zip Code

• 11 = Suspected Freight Forwarder Check

• 12 = Total Purchase Price Minimum

• 13 = IP Address Velocity

• 14 = Risky Email Address Domain Check

• 15 = Risky Bank Identification Number (BIN) Check

• 16 = Risky IP Address Range

• 17 = PayPal Fraud Model

L_PAYMENTINFO_n_FMFfilterNAMEn Filter name, including the filter type (PENDING, REPORT, or DENY), the

filter NAME, and the entry number, n, starting from 0.

PAYMENTREQUEST_n_SHORTMESSAGE Payment error short message.

PAYMEMNTREQUEST_n_LONGMESSAGE Payment error long message.

PAYMENTREQUEST_n_ERRORCODE Payment error code.

PAYMENTREQUEST_n_SEVERITYCODE Payment error severity code.

PAYMENTREQUEST_n_ACK Application-specific error values indicating more about the error

condition.

SHIPPINGCALCULATIONMODE Describes how the options that were presented to the user were deter-

mined, and is one of the following values:

• API - Callback

• API - Flatrate

INSURANCEOPTIONSELECTED The Yes/No option that you chose for insurance.

PayPal Express Checkout API Operations | 21

Field Description

SHIPPINGOPTIONISDEFAULT Is true if the buyer chose the default shipping option. Value will be either

TRUE or FALSE.

SHIPPINGOPTIONAMOUNT The shipping amount that was chosen by the buyer. Limitations: Must

not exceed $10,000 USD in any currency. No currency symbol. Must have

two decimal places, the decimal separator must be a period (.), and the

optional thousands separator must be a comma (,).

SHIPPINGOPTIONNAME This is true if the buyer chose the default shipping option.

PAYMENTREQUEST_n_SELLERPAYPAL

ACCOUNTID

Unique identifier for the merchant. For parallel payments, this field con-

tains either the Payer ID or the email address of the merchant.

Callback
Callback allows you to return any relevant shipping information to the PayPal review
page.Table 2-8 outlines the required Fields for Callback requests and Table 2-9 outlines
the required fields for Callback responses.

Table 2-8. Callback request fields

Field Description

METHOD Must be Callback (required).

CURRENCYCODE The three-character currency code for the transaction from the Express Checkout API (required).

Default is USD.

L_NAMEn Item name from the Express Checkout API. Parameters must be numbered sequentially starting

with 0 (e.g., L_NAME0, L_NAME1).

L_NUMBERn Item number from the Express Checkout API. Parameters must be numbered sequentially starting

with 0 (e.g., L_NUMBER0, L_NUMBER1).

L_DESCn Item description from the Express Checkout API. Parameters must be numbered sequentially

starting with 0 (e.g., L_DESC0, L_DESC1).

L_AMTn Item unit price from the Express Checkout API. Parameters must be numbered sequentially

starting with 0 (e.g., L_AMT0, L_AMT1).

L_QTYn Item unit quantity from the Express Checkout API. Parameters must be numbered sequentially

starting with 0 (e.g., L_QTY0, L_QTY1).

L_ITEMWEIGHTVALUEn

L_ITEMWEIGHTUNITn

The weight of the item. You can pass this data to the shipping carrier as is, with no additional

database query. Parameters must be numbered sequentially starting with 0 (e.g., L_ITEM

WEIGHTVALUE0, L_ITEMWEIGHTVALUE1).

L_ITEMHEIGHTVALUEn

L_ITEMHEIGHTUNITn

The height of the item. You can pass this data to the shipping carrier as is, with no additional

database query. Parameters must be numbered sequentially starting with 0 (e.g., L_ITEM

HEIGHTVALUE0, L_ITEMHEIGHTVALUE1).

L_ITEMWIDTHVALUEn

L_ITEMWIDTHUNITn

The width of the item. You can pass this data to the shipping carrier as is, with no additional

database query. Parameters must be numbered sequentially starting with 0 (e.g., L_ITEM

WIDTHVALUE0, L_ITEMWIDTHVALUE1).

22 | Chapter 2: PayPal Express Checkout

Field Description

L_ITEMLENGTHVALUEn

L_ITEMLENGTHUNITn

The length of the item. You can pass this data to the shipping carrier as is, with no additional

database query. Parameters must be numbered sequentially starting with 0 (e.g., L_ITEM

LENGTHVALUE0, L_ITEMLENGTHVALUE1).

SHIPTOSTREET The first street address. This is required if using a shipping address. Limitation: Up to 100 single-

byte characters.

SHIPTOSTREET2 The second street address. Limitation: Up to 100 single-byte characters.

SHIPTOCITY The name of the city. This is required if using a shipping address. Limitation: Up to 40 single-

byte characters.

SHIPTOSTATE The state or province. Required if using a shipping address. Limitation: Up to 40 single-byte

characters.

SHIPTOZIP U.S. postal zip code or other country-specific postal code. Required if using a U.S. shipping

address; may be required for other countries. Limitation: Up to 20 single-byte characters.

SHIPTOCOUNTRY Country code. Required if using a shipping address. Limitation: Up to two single-byte characters.

A complete list of all fields allowed for the Callback request method and response
method can be found in the online documentation at http://www.x.com/community/
ppx/documentation.

Table 2-9. Callback response fields

Field Description

METHOD Must be CallbackResponse (required).

CURRENCYCODE The three-character currency code for the transaction from the Express Checkout

API (required).

L_SHIPPINGOPTIONNAMEn The internal/system name of a shipping option (e.g., Air, Ground, Expedited). This

field is required. Parameters must be ordered sequentially starting with 0 (e.g.,

L_SHIPPINGOPTIONNAME0, L_SHIPPINGOPTIONNAME1). Limitation: Up to

50 characters.

L_SHIPPINGOPTIONLABELn The label for the shipping options displayed to the buyer (e.g., Air: Next Day,

Expedited: 3-5 days, Ground: 5-7 days). This field is required. Labels can be localized

based on the buyer’s locale. Parameters must be numbered sequentially starting

with 0 (e.g., L_SHIPPINGOPTIONLABEL0, L_SHIPPINGOPTIONLABEL1).

Limitation: Up to 50 characters.

L_SHIPPINGOPTIONAMOUNTn Amount of the shipping option. Parameters must be numbered sequentially starting

with 0 (e.g., L_SHIPPINGOPTIONAMOUNT0, L_SHIPPINGOPTIONAMOUNT1).

Limitations: Must not exceed $10,000 USD in any currency. No currency symbol

allowed. The decimal separator must be a period (.), regardless of currency, and the

optional thousands separator must be a comma(,). Equivalent to nine characters

maximum for USD.

L_SHIPPINGOPTIONISDEFAULT The default option selected for the buyer; this is also reflected in the “default” total

(required).

PayPal Express Checkout API Operations | 23

http://www.x.com/community/ppx/documentation
http://www.x.com/community/ppx/documentation

Simple Express Checkout Integration
The simplest Express Checkout integration requires execution of only two PayPal API
operations: SetExpressCheckout and DoExpressCheckoutPayment. For example, option-
ally, you can call GetExpressCheckoutDetails to error check the information provided
to SetExpressCheckout against the form values and provide the customer a Confirm
Transaction screen before finalizing the payment.

Setting Up the Transaction
To set up an Express Checkout transaction, you must first invoke the SetExpressCheck
out API to provide sufficient information to initiate the payment flow and redirect your
customer to PayPal if the operation is successful.

When you initiate the Express Checkout transaction, you specify values in the Set
ExpressCheckout request, and then call the API. The values you specify control the
PayPal page flow and options available to your customers.

Let’s look at setting up a simple Express Checkout transaction.

1. First we need to specify the total dollar amount of the transaction, if known; oth-
erwise, specify the subtotal. Refer to Table 2-3’s PAYMENTREQUEST_n_AMT field
description for requirements and restrictions.

AMT=amount

CURRENCYCODE=currencyID

2. Specify the return URL. This is the page on your site that you want PayPal to
redirect the customer to after the customer logs into PayPal and approves the pay-
ment. Typically, the customer is redirected to a secure page on your site via SSL
(https://).

RETURNURL=return_url

3. Specify the cancel URL. This is the page on your site you want PayPal to redirect
the customer to if the buyer does not approve the payment. Typically, the customer
is redirected to a secure page on your site via SSL (https://).

CANCELURL=cancel_url

4. Specify the payment action. Even though the action is a Sale, it is best to explicitly
set the payment action. Refer to Table 2-3’s PAYMENT_n_PAYMENTACTION field de-
scription for allowed values.

5. Execute the SetExpressCheckoutAPI operation and test that the response was suc-
cessful. To test for success, check to see whether the API returns a TOKEN and other
variables.

24 | Chapter 2: PayPal Express Checkout

You can piggyback parameters between pages on your site in the return
URL call as well as the cancel URL call. For example, you can set your
return URL to specify additional parameters using something like
https://your.domain.ext/returnpage.php?param1=val1¶m2=val2,
etc. This allows you to pass parameters from the transaction without
making a GetExpressCheckoutDetails API call, or pass custom parame-
ters not provided by the SetExpressCheckout API.

To execute the transaction, you must invoke the DoExpressCheckoutPayment operation.
This is accomplished through the following steps:

1. Specify the TOKEN value returned by PayPal when it redirects the buyer’s browser
to your site.

TOKEN=tokenValue

2. Specify the payer ID returned by PayPal when it redirects the customer’s browser
to your site.

PAYERID=id

3. Specify the total amount of the payment, including shipping, handling, and tax,
and include the currency if not in U.S. dollars.

AMT=amount

CURRENCYCODE=currencyID

4. Specify the payment action. Even though the action is a Sale, it is best to explicitly
set the payment action. Refer to Table 2-3’s PAYMENT_n_PAYMENTACTION field de-
scription for allowed values.

5. Execute the DoExpressCheckoutAPI operation, and test that the response was
successful.

Express Checkout Integration
PayPal Express Checkout is the quickest and best solution for straight-out shopping
cart checkouts. PayPal’s Integration Wizard, found at https://www.paypal-labs.com/
integrationwizard/ecpaypal/main.php, helps you implement Express Checkout on your
site. The wizard takes you through five configuration steps, described next.

The Integration Wizard starts by presenting a basic overview of what the tool will do.
You can choose to watch the introduction or skip it at this point (Figure 2-6).

Express Checkout Integration | 25

https://www.paypal-labs.com/integrationwizard/ecpaypal/main.php
https://www.paypal-labs.com/integrationwizard/ecpaypal/main.php

Figure 2-6. Express Checkout Integration Wizard opening screen

Step 1 allows you to choose the programming language you want to use for the inte-
gration (see Figure 2-7). For the purposes of this example we are going to use PHP, but
you can choose any of the following options:

• Active Server Pages (ASP)

• ASP.NET-C#(ASPX)

• ASP.NET-VB.NET(ASPX)

• Java Server Pages (JSP)

• Java SDK

• PHP

You also are asked to specify the return and cancel URLs. The return URL is where the
purchaser will be returned to once the transaction is completed. The cancel URL is
where the purchaser is sent to if she cancels the checkout, typically back to your site’s
shopping cart. The payment type will be one of the following:

• Sale

• Authorization

• Order

26 | Chapter 2: PayPal Express Checkout

Figure 2-7. Express Checkout Integration Wizard step 1

The Currency Code section contains a list of currencies, both foreign and domestic,
from which to choose. For this example, we will choose U.S. Dollar [USD].

The form element generated in step 2 (see Figure 2-8) wraps around your shopping cart
order form, and allows you to submit the payment via PayPal (see Example 2-6). It will
also generate a button on-screen. You must be sure to enable a PHP $_SESSION and set
the variable $_SESSION['Payment_Amount'] that contains the amount of the purchase;
otherwise, the generated code will not work properly.

Express Checkout Integration | 27

Figure 2-8. Express Checkout Integration Wizard step 2

You now have the option to download expresscheckout.php (see Example 2-1), and
paypalfunctions.php (see Example 2-2). You will need to modify the paypalfunc-
tion.php file with your API credentials. For instructions on creating those credentials,
refer to “Creating an API Signature” on page 4. Additionally, after you have completed
testing and are ready to go live, change $SandboxFlag='true' to $SandboxFlag=
'false'. This will change the endpoints to the live PayPal endpoint.

For security reasons, I recommend putting your paypalfunctions.php file
in a location accessible to expresscheckout.php and the other generated
files, but outside your main webroot. This will help to prevent anyone
from potentially obtaining your API credentials.

28 | Chapter 2: PayPal Express Checkout

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.allitebooks.com

http://www.allitebooks.org

Step 3 generates code for your billing page that will be used if someone chooses PayPal
from the billing options page instead of the main shopping cart page (see Figure 2-9).

Figure 2-9. Express Checkout Integration Wizard step 3

You must be sure to enable a PHP $_SESSION and set the variable $_SESSION['Pay
ment_Amount']that contains the amount of the purchase; otherwise, the generated code
will not work properly. You can copy the code from the box generated by the Wizard,
and paste it into your billing handler (see Example 2-3).

Step 4 (Figure 2-10) generates code to add to your shipping page. You can copy the
code from the box generated by the Wizard and paste it into your shipping handler (see
Example 2-4). Step 5 (Figure 2-11) generates code for your order confirmation page.
You can copy the code from the box generated by the Wizard and paste it into your
order confirmation handler (see Example 2-5). Step 6 completes the Integration Wiz-
ard, as shown in Figure 2-12.

Express Checkout Integration | 29

Figure 2-10. Express Checkout Integration Wizard step 4

Figure 2-11. Express Checkout Integration Wizard step 5

30 | Chapter 2: PayPal Express Checkout

Figure 2-12. Express Checkout Integration Wizard step 6

Example 2-1. paypalfunctions.php

<?php
 /**
 PayPal API Module

 Defines all the global variables and the wrapper functions
 **/
 $PROXY_HOST = '127.0.0.1';
 $PROXY_PORT = '808';

 $SandboxFlag = true;

 //'------------------------------------
 //' PayPal API Credentials
 //' Replace <API_USERNAME> with your API Username
 //' Replace <API_PASSWORD> with your API Password
 //' Replace <API_SIGNATURE> with your Signature
 //'------------------------------------
 $API_UserName="mdbald_1287976381_biz_api1.michaelbalderas.com";
 $API_Password="1287976406";
 $API_Signature="APOxIKm-Fx0tSYmLLbuPFN42APwdAhhNTtvJ8YhTD2ALC9poKmbhBaf6";

Express Checkout Integration | 31

 // BN Code is only applicable for partners
 $sBNCode = "PP-ECWizard";

 /*
 ' Define the PayPal Redirect URLs.
 ' This is the URL where the buyer is first sent to authorize payment with their
 ' PayPal account. Change the URL depending on whether you are testing on the sandbox
 ' or the live PayPal site.
 '
 ' For the sandbox, the URL is
 ' https://www.sandbox.paypal.com/webscr&cmd=_express-checkout&token=
 ' For the live site, the URL is
 ' https://www.paypal.com/webscr&cmd=_express-checkout&token=
 */

 if ($SandboxFlag == true)
 {
 $API_Endpoint = "https://api-3t.sandbox.paypal.com/nvp";
 $PAYPAL_URL = "https://www.sandbox.paypal.com/webscr?cmd=_express-checkout&token=";
 }
 else
 {
 $API_Endpoint = "https://api-3t.paypal.com/nvp";
 $PAYPAL_URL = "https://www.paypal.com/cgi-bin/webscr?cmd=_express-checkout&token=";
 }

 $USE_PROXY = false;
 $version="64";

 if (session_id() == "")
 session_start();

 /* An express checkout transaction starts with a token that identifies
 to PayPal your transaction. In this example, when the script sees
 a token, the script knows that the buyer has already authorized
 payment through PayPal. If no token was found, the action is
 to send the buyer to PayPal to first authorize payment.
 */

 /*
 '--
 ' Purpose: Prepares the parameters for the SetExpressCheckout API Call.
 ' Inputs:
 ' paymentAmount: Total value of the shopping cart
 ' currencyCodeType: Currency code value the PayPal API
 ' paymentType: paymentType has to be one of the following values:
 ' Sale or Order or Authorization
 ' returnURL: The page where buyers return to after they are done
 ' with the payment review on PayPal
 ' cancelURL: The page where buyers return to when they cancel the
 ' payment review on PayPal
 '--
 */

32 | Chapter 2: PayPal Express Checkout

 function CallShortcutExpressCheckout($paymentAmount, $currencyCodeType,
 $paymentType, $returnURL, $cancelURL)
 {
 //--
 // Construct the parameter string that describes the SetExpressCheckout
 // API call in the shortcut implementation

 $nvpstr="&PAYMENTREQUEST_0_AMT=". $paymentAmount;
 $nvpstr = $nvpstr . "&PAYMENTREQUEST_0_PAYMENTACTION=" . $paymentType;
 $nvpstr = $nvpstr . "&RETURNURL=" . $returnURL;
 $nvpstr = $nvpstr . "&CANCELURL=" . $cancelURL;
 $nvpstr = $nvpstr . "&PAYMENTREQUEST_0_CURRENCYCODE=" . $currencyCodeType;

 $_SESSION["currencyCodeType"] = $currencyCodeType;
 $_SESSION["PaymentType"] = $paymentType;

 //'---
 //' Make the API call to PayPal
 //' If the API call succeeded, then redirect the buyer to PayPal to begin to
 //' authorize payment.
 //' If an error occurred, show the resulting errors.
 //'--
 $resArray=hash_call("SetExpressCheckout", $nvpstr);
 $ack = strtoupper($resArray["ACK"]);
 if($ack=="SUCCESS" || $ack=="SUCCESSWITHWARNING")
 {
 $token = urldecode($resArray["TOKEN"]);
 $_SESSION['TOKEN']=$token;
 }

 return $resArray;
}

 /*
 '--
 ' Purpose: Prepares the parameters for the SetExpressCheckout API Call.
 ' Inputs:
 ' paymentAmount: Total value of the shopping cart
 ' currencyCodeType: Currency code value the PayPal API
 ' paymentType: paymentType has to be one of the following values: Sale or Order or
 ' Authorization
 ' returnURL: The page where buyers return to after they are done with the payment
 ' review on PayPal
 ' cancelURL: The page where buyers return to when they cancel the payment review
 ' on PayPal
 ' shipToName: The Ship to Name entered on the merchant's site
 ' shipToStreet: The Ship to Street entered on the merchant's site
 ' shipToCity: the Ship to City entered on the merchant's site
 ' shipToState: The Ship to State entered on the merchant's site
 ' shipToCountryCode: The Code for Ship to Country entered on the merchant's site
 ' shipToZip: The Ship to ZipCode entered on the merchant's site
 ' shipToStreet2: The Ship to Street2 entered on the merchant's site
 ' phoneNum: The phoneNum entered on the merchant's site
'--
 */

Express Checkout Integration | 33

 function CallMarkExpressCheckout($paymentAmount, $currencyCodeType, $paymentType,
 $returnURL, $cancelURL, $shipToName, $shipToStreet, $shipToCity,
 $shipToState, $shipToCountryCode, $shipToZip, $shipToStreet2, $phoneNum
)
 {
 //---
 // Construct the parameter string that describes the SetExpressCheckout API call in
 // the shortcut implementation

 $nvpstr="&PAYMENTREQUEST_0_AMT=". $paymentAmount;
 $nvpstr = $nvpstr . "&PAYMENTREQUEST_0_PAYMENTACTION=" . $paymentType;
 $nvpstr = $nvpstr . "&RETURNURL=" . $returnURL;
 $nvpstr = $nvpstr . "&CANCELURL=" . $cancelURL;
 $nvpstr = $nvpstr . "&PAYMENTREQUEST_0_CURRENCYCODE=" . $currencyCodeType;
 $nvpstr = $nvpstr . "&ADDROVERRIDE=1";
 $nvpstr = $nvpstr . "&PAYMENTREQUEST_0_SHIPTONAME=" . $shipToName;
 $nvpstr = $nvpstr . "&PAYMENTREQUEST_0_SHIPTOSTREET=" . $shipToStreet;
 $nvpstr = $nvpstr . "&PAYMENTREQUEST_0_SHIPTOSTREET2=" . $shipToStreet2;
 $nvpstr = $nvpstr . "&PAYMENTREQUEST_0_SHIPTOCITY=" . $shipToCity;
 $nvpstr = $nvpstr . "&PAYMENTREQUEST_0_SHIPTOSTATE=" . $shipToState;
 $nvpstr = $nvpstr . "&PAYMENTREQUEST_0_SHIPTOCOUNTRYCODE=" . $shipToCountryCode;
 $nvpstr = $nvpstr . "&PAYMENTREQUEST_0_SHIPTOZIP=" . $shipToZip;
 $nvpstr = $nvpstr . "&PAYMENTREQUEST_0_SHIPTOPHONENUM=" . $phoneNum;

 $_SESSION["currencyCodeType"] = $currencyCodeType;
 $_SESSION["PaymentType"] = $paymentType;

 //'---
 //' Make the API call to PayPal
 //' If the API call succeeded, then redirect the buyer to PayPal to begin to
 //' authorize payment.
 //' If an error occurred, show the resulting errors.
 //'--
 $resArray=hash_call("SetExpressCheckout", $nvpstr);
 $ack = strtoupper($resArray["ACK"]);
 if($ack=="SUCCESS" || $ack=="SUCCESSWITHWARNING")
 {
 $token = urldecode($resArray["TOKEN"]);
 $_SESSION['TOKEN']=$token;
 }

 return $resArray;
}

 /*
 '---
 ' Purpose: Prepares the parameters for the GetExpressCheckoutDetails API Call.
 '
 ' Inputs:
 ' None
 ' Returns:
 ' The NVP Collection object of the GetExpressCheckoutDetails Call Response.
 '---
 */
 function GetShippingDetails($token)

34 | Chapter 2: PayPal Express Checkout

 {
 //'--
 //' At this point, the buyer has finished authorizing the payment
 //' on PayPal. The function will call PayPal to obtain the details
 //' of the authorization, including any of the buyer's shipping information.
 //' Remember, the authorization is not a completed transaction
 //' at this stage - the buyer still needs an additional step to finalize
 //' the transaction.
 //'--

 //'---
 //' Build a second API request to PayPal, using the token as the
 //' ID to get the details on the payment authorization
 //'---
 $nvpstr="&TOKEN=" . $token;

 //'---
 //' Make the API call and store the results in an array.
 //' If the call was a success, show the authorization details, and provide
 //' an action to complete the payment.
 //' If failed, show the error.
 //'---
 $resArray=hash_call("GetExpressCheckoutDetails",$nvpstr);
 $ack = strtoupper($resArray["ACK"]);
 if($ack == "SUCCESS" || $ack=="SUCCESSWITHWARNING")
 {
 $_SESSION['payer_id'] = $resArray['PAYERID'];
 }
 return $resArray;
 }

 /*
 '---
 ' Purpose: Prepares the parameters for the GetExpressCheckoutDetails API Call.
 '
 ' Inputs:
 ' sBNCode: The BN code used by PayPal to track the transactions
 ' from a given shopping cart.
 ' Returns:
 ' The NVP Collection object of the GetExpressCheckoutDetails Call Response.
 '--
 */
 function ConfirmPayment($FinalPaymentAmt)
 {
 /* Gather the information to make the final call to
 finalize the PayPal payment. The variable nvpstr
 holds the name-value pairs.
 */

 //Format the other parameters that were stored in the session from the previous calls
 $token = urlencode($_SESSION['TOKEN']);
 $paymentType = urlencode($_SESSION['PaymentType']);
 $currencyCodeType = urlencode($_SESSION['currencyCodeType']);
 $payerID = urlencode($_SESSION['payer_id']);

Express Checkout Integration | 35

 $serverName = urlencode($_SERVER['SERVER_NAME']);

 $nvpstr = '&TOKEN=' . $token . '&PAYERID=' . $payerID .
 '&PAYMENTREQUEST_0_PAYMENTACTION='.
 $paymentType . '&PAYMENTREQUEST_0_AMT=' . $FinalPaymentAmt .
 '&PAYMENTREQUEST_0_CURRENCYCODE=' . $currencyCodeType .'&IPADDRESS='.
 $serverName;

 /* Make the call to PayPal to finalize payment
 If an error occurred, show the resulting errors.
 */
 $resArray=hash_call("DoExpressCheckoutPayment",$nvpstr);

 /* Display the API response back to the browser.
 If the response from PayPal was a success, display the response parameters.
 If the response was an error, display the errors received using APIError.php.
 */
 $ack = strtoupper($resArray["ACK"]);

 return $resArray;
 }

 /*
 '---
 ' Purpose: This function makes a DoDirectPayment API call
 '
 ' Inputs:
 ' paymentType: paymentType has to be one of the following values: Sale or Order or
 ' Authorization
 ' paymentAmount: Total value of the shopping cart
 ' currencyCode: Currency code value in the PayPal API
 ' firstName: first name as it appears on credit card
 ' lastName: Last name as it appears on credit card
 ' street: Buyer's street address line as it appears on credit card
 ' city: Buyer's city
 ' state: Buyer's state
 ' countryCode: Buyer's country code
 ' zip: Buyer's zip
 ' creditCardType: Buyer's credit card type (e.g., Visa, MasterCard ...)
 ' creditCardNumber: Buyer's credit card number without any spaces, dashes, or any other
 ' characters
 ' expDate: Credit card expiration date
 ' cvv2: Card Verification Value
 '
 '---
 '
 ' Returns:
 ' The NVP Collection object of the DoDirectPayment Call Response.
 '---
 */

36 | Chapter 2: PayPal Express Checkout

 function DirectPayment($paymentType, $paymentAmount, $creditCardType, $creditCardNumber,
 $expDate, $cvv2, $firstName, $lastName, $street, $city, $state, $zip,
 $countryCode, $currencyCode)
 {
 //Construct the parameter string that describes DoDirectPayment
 $nvpstr = "&AMT=" . $paymentAmount;
 $nvpstr = $nvpstr . "&CURRENCYCODE=" . $currencyCode;
 $nvpstr = $nvpstr . "&PAYMENTACTION=" . $paymentType;
 $nvpstr = $nvpstr . "&CREDITCARDTYPE=" . $creditCardType;
 $nvpstr = $nvpstr . "&ACCT=" . $creditCardNumber;
 $nvpstr = $nvpstr . "&EXPDATE=" . $expDate;
 $nvpstr = $nvpstr . "&CVV2=" . $cvv2;
 $nvpstr = $nvpstr . "&FIRSTNAME=" . $firstName;
 $nvpstr = $nvpstr . "&LASTNAME=" . $lastName;
 $nvpstr = $nvpstr . "&STREET=" . $street;
 $nvpstr = $nvpstr . "&CITY=" . $city;
 $nvpstr = $nvpstr . "&STATE=" . $state;
 $nvpstr = $nvpstr . "&COUNTRYCODE=" . $countryCode;
 $nvpstr = $nvpstr . "&IPADDRESS=" . $_SERVER['REMOTE_ADDR'];

 $resArray=hash_call("DoDirectPayment", $nvpstr);

 return $resArray;
 }

 /**
 '---
 * hash_call: Function to perform the API call to PayPal using API signature
 * @methodName is name of API method.
 * @nvpStr is nvp string.
 * Returns an associative array containing the response from the server.
 '---
 */
 function hash_call($methodName,$nvpStr)
 {
 //declaring of global variables
 global $API_Endpoint, $version, $API_UserName, $API_Password, $API_Signature;
 global $USE_PROXY, $PROXY_HOST, $PROXY_PORT;
 global $gv_ApiErrorURL;
 global $sBNCode;

 //setting the curl parameters.
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL,$API_Endpoint);
 curl_setopt($ch, CURLOPT_VERBOSE, 1);

 //turning off the server and peer verification(TrustManager Concept).
 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, FALSE);
 curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, FALSE);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER,1);
 curl_setopt($ch, CURLOPT_POST, 1);

Express Checkout Integration | 37

 //if USE_PROXY constant set to TRUE in Constants.php, then only proxy will be enabled.
 //Set proxy name to PROXY_HOST and port number to PROXY_PORT in constants.php
 if($USE_PROXY)
 curl_setopt ($ch, CURLOPT_PROXY, $PROXY_HOST. ":" . $PROXY_PORT);

 //NVPRequest for submitting to server
 $nvpreq = "METHOD=" . urlencode($methodName) . "&VERSION=" . urlencode($version) .
 "&PWD=".
 urlencode($API_Password) . "&USER=" . urlencode($API_UserName) . "&SIGNATURE=".
 urlencode($API_Signature) . $nvpStr . "&BUTTONSOURCE=" . urlencode($sBNCode);

 //setting the nvpreq as POST FIELD to curl
 curl_setopt($ch, CURLOPT_POSTFIELDS, $nvpreq);

 //getting response from server
 $response = curl_exec($ch);

 //converting NVPResponse to an Associative Array
 $nvpResArray=deformatNVP($response);
 $nvpReqArray=deformatNVP($nvpreq);
 $_SESSION['nvpReqArray']=$nvpReqArray;

 if (curl_errno($ch))
 {
 // moving to display page to display curl errors
 $_SESSION['curl_error_no']=curl_errno($ch) ;
 $_SESSION['curl_error_msg']=curl_error($ch);

 //Execute the error-handling module to display errors.
 }
 else
 {
 //closing the curl
 curl_close($ch);
 }

 return $nvpResArray;
 }

 /*'---
 Purpose: Redirects to PayPal.com site.
 Inputs: NVP string.
 Returns:
 --
 */
 function RedirectToPayPal ($token)
 {
 global $PAYPAL_URL;

 // Redirect to paypal.com here
 $payPalURL = $PAYPAL_URL . $token;
 header("Location: ".$payPalURL);
 }

38 | Chapter 2: PayPal Express Checkout

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.allitebooks.com

http://www.allitebooks.org

/*'--
 * This function will take NVPString and convert it to an Associative Array and
 * then will decode the response.
 * It is useful to search for a particular key and display the arrays.
 * @nvpstr is NVPString.
 * @nvpArray is Associative Array.
 --
 */
 function deformatNVP($nvpstr)
 {
 $intial=0;
 $nvpArray = array();

 while(strlen($nvpstr))
 {
 //position of Key
 $keypos= strpos($nvpstr,'=');
 //position of value
 $valuepos = strpos($nvpstr,'&') ? strpos($nvpstr,'&'): strlen($nvpstr);

 /*getting the Key and Value values and storing in a Associative Array*/
 $keyval=substr($nvpstr,$intial,$keypos);
 $valval=substr($nvpstr,$keypos+1,$valuepos-$keypos-1);
 //decoding the respose
 $nvpArray[urldecode($keyval)] =urldecode($valval);
 $nvpstr=substr($nvpstr,$valuepos+1,strlen($nvpstr));
 }
 return $nvpArray;
 }

?>

Example 2-2. expresscheckout.php

<?php

require_once ("paypalfunctions.php");
// ==================================
// PayPal Express Checkout Module
// ==================================

//'------------------------------------
//' The paymentAmount is the total value of
//' the shopping cart, which was set
//' earlier in a session variable
//' by the shopping cart page.
//'------------------------------------
$paymentAmount = $_SESSION["Payment_Amount"];

//'------------------------------------
//' The currencyCodeType and paymentType
//' are set to the selections made in the Integration Assistant.
//'------------------------------------
$currencyCodeType = "USD";
$paymentType = "Sale";

Express Checkout Integration | 39

//'------------------------------------
//' The returnURL is the location where buyers return to when a
//' payment has been succesfully authorized.
//'
//' This is set to the value entered in the Integration Assistant.
//'------------------------------------
$returnURL = "http://www.michaelbalderas.com/paypal/expresscheckout/OrderConfirm.php";

//'------------------------------------
//' The cancelURL is the location buyers are sent to when they hit the
//' cancel button during authorization of payment during the PayPal flow.
//'
//' This is set to the value entered in the Integration Assistant.
//'------------------------------------
$cancelURL = "http://www.michaelbalderas.com/paypal/expresscheckout/shoppingcart.php";

//'------------------------------------
//' Calls the SetExpressCheckout API call
//'
//' The CallShortcutExpressCheckout function is defined in the file PayPalFunctions.php,
//' which is included at the top of this file.
//'---
$resArray = CallShortcutExpressCheckout ($paymentAmount, $currencyCodeType, $paymentType,
 $returnURL, $cancelURL);
$ack = strtoupper($resArray["ACK"]);
if($ack=="SUCCESS" || $ack=="SUCCESSWITHWARNING")
{
 RedirectToPayPal ($resArray["TOKEN"]);
}
else
{
 //Display a user-friendly Error on the page using any of the following error information
 //returned by PayPal.
 $ErrorCode = urldecode($resArray["L_ERRORCODE0"]);
 $ErrorShortMsg = urldecode($resArray["L_SHORTMESSAGE0"]);
 $ErrorLongMsg = urldecode($resArray["L_LONGMESSAGE0"]);
 $ErrorSeverityCode = urldecode($resArray["L_SEVERITYCODE0"]);

 echo "SetExpressCheckout API call failed. ";
 echo "Detailed Error Message: " . $ErrorLongMsg;
 echo "Short Error Message: " . $ErrorShortMsg;
 echo "Error Code: " . $ErrorCode;
 echo "Error Severity Code: " . $ErrorSeverityCode;
}
?>

Example 2-3. billing.php

<?php

require_once ("paypalfunctions.php");

if ($PaymentOption == "PayPal")
{

40 | Chapter 2: PayPal Express Checkout

 // ==================================
 // PayPal Express Checkout Module
 // ==================================

 //'------------------------------------
 //' The paymentAmount is the total value of
 //' the shopping cart, which was set
 //' earlier in a session variable
 //' by the shopping cart page.
 //'------------------------------------
 $paymentAmount = $_SESSION["Payment_Amount"];

 //'------------------------------------
 //' When you integrate this code,
 //' set the following variables with
 //' shipping address details
 //' entered by the user on the
 //' Shipping page.
 //'------------------------------------
 $shipToName = "<<ShiptoName>>";
 $shipToStreet = "<<ShipToStreet>>";
 $shipToStreet2 = "<<ShipToStreet2>>"; //Leave it blank if there is no value
 $shipToCity = "<<ShipToCity>>";
 $shipToState = "<<ShipToState>>";
 $shipToCountryCode = "<<ShipToCountryCode>>"; // Please refer to the PayPal country
 //codes in the API documentation.
 $shipToZip = "<<ShipToZip>>";
 $phoneNum = "<<PhoneNumber>>";

 //'------------------------------------
 //' The currencyCodeType and paymentType
 //' are set to the selections made in the Integration Assistant.
 //'------------------------------------
 $currencyCodeType = "USD";
 $paymentType = "Sale";

 //'------------------------------------
 //' The returnURL is the location where buyers return to when a
 //' payment has been succesfully authorized.
 //'
 //' This is set to the value entered in the Integration Assistant.
 //'------------------------------------
 $returnURL = "http://www.michaelbalderas.com/paypal/expresscheckout/OrderConfirm.php";

 //'------------------------------------
 //' The cancelURL is the location buyers are sent to when they hit the
 //' cancel button during authorization of payment during the PayPal flow.
 //'
 //' This is set to the value entered in the Integration Assistant.
 //'------------------------------------
 $cancelURL = "http://www.michaelbalderas.com/paypal/expresscheckout/shoppingcart.php";

 //'------------------------------------
 //' Calls the SetExpressCheckout API call
 //'

Express Checkout Integration | 41

 //' The CallMarkExpressCheckout function is defined in the file PayPalFunctions.php,
 //' it is included at the top of this file.
 //'---
 $resArray = CallMarkExpressCheckout ($paymentAmount, $currencyCodeType, $paymentType,
 $returnURL, $cancelURL, $shipToName, $shipToStreet, $shipToCity,
 $shipToState, $shipToCountryCode, $shipToZip, $shipToStreet2, $phoneNum
);

 $ack = strtoupper($resArray["ACK"]);
 if($ack=="SUCCESS" || $ack=="SUCCESSWITHWARNING")
 {
 $token = urldecode($resArray["TOKEN"]);
 $_SESSION['reshash']=$token;
 RedirectToPayPal ($token);
 }
 else
 {
 //Display a user-friendly Error on the page using any of the
 //following error information returned by PayPal.
 $ErrorCode = urldecode($resArray["L_ERRORCODE0"]);
 $ErrorShortMsg = urldecode($resArray["L_SHORTMESSAGE0"]);
 $ErrorLongMsg = urldecode($resArray["L_LONGMESSAGE0"]);
 $ErrorSeverityCode = urldecode($resArray["L_SEVERITYCODE0"]);

 echo "SetExpressCheckout API call failed. ";
 echo "Detailed Error Message: " . $ErrorLongMsg;
 echo "Short Error Message: " . $ErrorShortMsg;
 echo "Error Code: " . $ErrorCode;
 echo "Error Severity Code: " . $ErrorSeverityCode;
 }
}
else
{
 if ((($PaymentOption == "Visa") || ($PaymentOption == "MasterCard") ||
 ($PaymentOption == "Amex") || ($PaymentOption == "Discover"))
 && ($PaymentProcessorSelected == "PayPal Direct Payment"))

 //'------------------------------------
 //' The paymentAmount is the total value of
 //' the shopping cart, which was set
 //' earlier in a session variable
 //' by the shopping cart page.
 //'------------------------------------
 $paymentAmount = $_SESSION["Payment_Amount"];

 //'------------------------------------
 //' The currencyCodeType and paymentType
 //' are set to the selections made in the Integration Assistant.
 //'------------------------------------
 $currencyCodeType = "USD";
 $paymentType = "Sale";

 //' Set these values based on what was selected by the user on the
 //' Billing page Html form

42 | Chapter 2: PayPal Express Checkout

 $creditCardType = "<<Visa/MasterCard/Amex/Discover>>"; //' Set this to one of the
 // acceptable values (Visa/MasterCard/Amex/Discover) match it to
 // what was selected on your Billing page.
 $creditCardNumber = "<<CC number>>"; //' Set this to the string entered as the
 // credit card number on the Billing page.
 $expDate = "<<Expiry Date>>"; //' Set this to the credit card expiry date
 // entered on the Billing page.
 $cvv2 = "<<cvv2>>"; //' Set this to the CVV2 string entered on the Billing page
 $firstName = "<<firstName>>"; //' Set this to the customer's first name that was entered
 // on the Billing page.
 $lastName = "<<lastName>>"; //' Set this to the customer's last name that was entered on
 // the Billing page.
 $street = "<<street>>"; //' Set this to the customer's street address that was entered on
 // the Billing page.
 $city = "<<city>>"; //' Set this to the customer's city that was entered on
 // the Billing page.
 $state = "<<state>>"; //' Set this to the customer's state that was entered
 // on the Billing page.
 $zip = "<<zip>>"; //' Set this to the zip code of the customer's address that was
 // entered on the Billing page.
 $countryCode = "<<PayPal Country Code>>"; //' Set this to the PayPal code for the
 //Country of the customer's address that was entered on the Billing page.
 $currencyCode = "<<PayPal Currency Code>>"; //' Set this to the PayPal code for
 // the Currency used by the customer.

 /*
 '--
 ' Calls the DoDirectPayment API call
 '
 ' The DirectPayment function is defined in PayPalFunctions.php, included at the top of
 ' this file.
 '---
 */

 $resArray = DirectPayment ($paymentType, $paymentAmount, $creditCardType,
 $creditCardNumber, $expDate, $cvv2, $firstName, $lastName, $street,
 $city, $state, $zip, $countryCode, $currencyCode);

 $ack = strtoupper($resArray["ACK"]);
 if($ack=="SUCCESS" || $ack=="SUCCESSWITHWARNING")
 {
 //Getting transaction ID from API response.
 $TransactionID = urldecode9$resArray["TRANSACTIONID"]);

 echo "Your payment has been successfully processed";
 }
 else
 {
 //Display a user-friendly Error on the page using any of the following error information
 //returned by PayPal.
 $ErrorCode = urldecode($resArray["L_ERRORCODE0"]);
 $ErrorShortMsg = urldecode($resArray["L_SHORTMESSAGE0"]);
 $ErrorLongMsg = urldecode($resArray["L_LONGMESSAGE0"]);
 $ErrorSeverityCode = urldecode($resArray["L_SEVERITYCODE0"]);

Express Checkout Integration | 43

 echo "Direct credit card payment API call failed. ";
 echo "Detailed Error Message: " . $ErrorLongMsg;
 echo "Short Error Message: " . $ErrorShortMsg;
 echo "Error Code: " . $ErrorCode;
 echo "Error Severity Code: " . $ErrorSeverityCode;
 }
}
?>

Example 2-4. shipping.php

<?php
/*==
 PayPal Express Checkout Call
 ===
*/
// Check to see whether the Request object contains a variable named 'token'.
$token = "";
if (isset($_REQUEST['token']))
{
 $token = $_REQUEST['token'];
}

// If the Request object contains the variable 'token', then it means that the
// user is coming from the PayPal site.
if ($token != "")
{

 require_once ("paypalfunctions.php");

 /*
 '------------------------------------
 ' Calls the GetExpressCheckoutDetails API call
 '
 ' The GetShippingDetails function is defined in PayPalFunctions.jsp,
 ' included at the top of this file.
 '---
 */

 $resArray = GetShippingDetails($token);
 $ack = strtoupper($resArray["ACK"]);
 if($ack == "SUCCESS" || $ack == "SUCESSWITHWARNING")
 {
 /*
 ' The information that is returned by the GetExpressCheckoutDetails call should be
 ' integrated by the partner into his Order Review page.
 */
 $email = $resArray["EMAIL"]; // ' Email address of payer.
 $payerId = $resArray["PAYERID"]; // ' Unique PayPal customer account
 // identification number.
 $payerStatus = $resArray["PAYERSTATUS"]; // ' Status of payer.
 // Limited to 10 single-byte alphabetic
 // characters.
 $salutation = $resArray["SALUTATION"]; // ' Payer's salutation.

44 | Chapter 2: PayPal Express Checkout

 $firstName = $resArray["FIRSTNAME"]; // ' Payer's first name.
 $middleName = $resArray["MIDDLENAME"]; // ' Payer's middle name.
 $lastName = $resArray["LASTNAME"]; // ' Payer's last name.
 $suffix = $resArray["SUFFIX"]; // ' Payer's suffix.
 $cntryCode = $resArray["COUNTRYCODE"]; // ' Payer's country of residence in the form of
 // ISO standard 3166 two-character country codes.
 $business = $resArray["BUSINESS"]; // ' Payer's business name.
 $shipToName = $resArray["SHIPTONAME"]; // ' Person's name associated with this address.
 $shipToStreet = $resArray["SHIPTOSTREET"]; // ' First street address.
 $shipToStreet2 = $resArray["SHIPTOSTREET2"]; // ' Second street address.
 $shipToCity = $resArray["SHIPTOCITY"]; // ' Name of city.
 $shipToState = $resArray["SHIPTOSTATE"]; // ' State or province.
 $shipToCntryCode = $resArray["SHIPTOCOUNTRYCODE"]; // ' Country code.
 $shipToZip = $resArray["SHIPTOZIP"]; // ' U.S. Zip code or other country-specific
 // postal code.
 $addressStatus = $resArray["ADDRESSSTATUS"]; // ' Status of street address on file
 // with PayPal.
 $invoiceNumber = $resArray["INVNUM"]; // ' Your own invoice or tracking number, as set
 // by you in the element of the same name.
 //in SetExpressCheckout request.
 $phoneNumber = $resArray["PHONENUM"]; // ' Payer's contact telephone number. Note:
 // PayPal returns a contact telephone number only
 // if your Merchant account profile settings require
 // that the buyer enter one.
 }
 else
 {
 //Display a user-friendly Error on the page using any of the following error
 //information returned by PayPal.
 $ErrorCode = urldecode($resArray["L_ERRORCODE0"]);
 $ErrorShortMsg = urldecode($resArray["L_SHORTMESSAGE0"]);
 $ErrorLongMsg = urldecode($resArray["L_LONGMESSAGE0"]);
 $ErrorSeverityCode = urldecode($resArray["L_SEVERITYCODE0"]);

 echo "GetExpressCheckoutDetails API call failed. ";
 echo "Detailed Error Message: " . $ErrorLongMsg;
 echo "Short Error Message: " . $ErrorShortMsg;
 echo "Error Code: " . $ErrorCode;
 echo "Error Severity Code: " . $ErrorSeverityCode;
 }
}

?>

Example 2-5. orderconfirmation.php

<?php
/*==
 PayPal Express Checkout Call
 ===
*/
require_once ("paypalfunctions.php");

if ($PaymentOption == "PayPal")
{

Express Checkout Integration | 45

 /*
 '------------------------------------
 ' The paymentAmount is the total value of
 ' the shopping cart, which was set
 ' earlier in a session variable
 ' by the shopping cart page.
 '------------------------------------
 */

 $finalPaymentAmount = $_SESSION["Payment_Amount"];

 /*
 '------------------------------------
 ' Calls the DoExpressCheckoutPayment API call
 '
 ' The ConfirmPayment function is defined in the file PayPalFunctions.jsp,
 ' included at the top of this file.
 '---
 */

 $resArray = ConfirmPayment ($finalPaymentAmount);
 $ack = strtoupper($resArray["ACK"]);
 if($ack == "SUCCESS" || $ack == "SUCCESSWITHWARNING")
 {
 /*
 '**
 '
 ' THE PARTNER SHOULD SAVE THE KEY TRANSACTION-RELATED INFORMATION SUCH AS
 ' transactionId & orderTime
 ' IN THEIR OWN DATABASE AND THE REST OF THE INFORMATION
 ' CAN BE USED TO UNDERSTAND THE STATUS OF THE PAYMENT
 '
 '**
 */

 $transactionId = $resArray["TRANSACTIONID"]; // ' Unique transaction ID of the payment.
 // Note: If the PaymentAction of the request was Authorization or Order,
 // this value is your AuthorizationID for use with the Authorization &
 // Capture APIs.
 $transactionType = $resArray["TRANSACTIONTYPE"]; //' The type of transaction Possible
 // values: l cart l express-checkout
 $paymentType = $resArray["PAYMENTTYPE"]; //' Indicates whether the payment is instant
 // or delayed. Possible values: none,
 // echeck, instant
 $orderTime = $resArray["ORDERTIME"]; //' Time/date stamp of payment.
 $amt = $resArray["AMT"]; //' The final amount charged, including any shipping and
 // taxes from your Merchant Profile.
 $currencyCode = $resArray["CURRENCYCODE"]; //' A three-character currency code for
 // one of the currencies listed in
 // PayPal-Supported Transactional
 // Currencies. Default: USD.
 $feeAmt = $resArray["FEEAMT"]; //' PayPal fee amount charged for the transaction
 $settleAmt = $resArray["SETTLEAMT"]; //' Amount deposited in your PayPal account
 // after a currency conversion.
 $taxAmt = $resArray["TAXAMT"]; //' Tax charged on the transaction.

46 | Chapter 2: PayPal Express Checkout

 $exchangeRate = $resArray["EXCHANGERATE"]; //' Exchange rate if a currency conversion
 // occurred. Relevant only if you are
 // billing in their non-primary currency.
 // If the customer chooses to pay with a
 // currency other than the non-primary
 // currency, the conversion occurs
 // in the customer's account.

 /*
 'Status of the payment:
 'Completed: The payment has been completed, and the funds have been added
 'successfully to your account balance.
 'Pending: The payment is pending. See the PendingReason element for more information.
 */

 $paymentStatus = $resArray["PAYMENTSTATUS"];

 /*
 'The reason the payment is pending:
 ' none: No pending reason.
 ' address: The payment is pending because your customer did not include a
 ' confirmed shipping address and your Payment Receiving Preferences
 ' is set such that you want to manually accept or deny each of these
 ' payments. To change your preference, go to the Preferences section
 ' of your Profile.
 ' echeck: The payment is pending because it was made by an eCheck that has
 ' not yet cleared.
 ' intl: The payment is pending because you hold a non-U.S. account and
 ' do not have a withdrawal mechanism. You must manually accept or
 ' deny this payment from your Account Overview.
 ' multi-currency: You do not have a balance in the currency sent,
 ' and you do not have your Payment Receiving
 ' Preferences set to automatically convert and
 ' accept this payment. You must manually accept
 ' or deny this payment.
 ' verify: The payment is pending because you are not yet verified.
 ' You must verify your account before you can accept this payment.
 ' other: The payment is pending for a reason other than those listed above.
 ' For more information, contact PayPal customer service.
 */

 $pendingReason = $resArray["PENDINGREASON"];

 /*
 'The reason for a reversal if TransactionType is reversal:
 ' none: No reason code.
 ' chargeback: A reversal has occurred on this transaction due to a
 ' chargeback by your customer.
 ' guarantee: A reversal has occurred on this transaction due to
 ' your customer triggering a money-back guarantee.
 ' buyer-complaint: A reversal has occurred on this transaction
 ' due to a complaint about the transaction
 ' from your customer.

Express Checkout Integration | 47

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

 ' refund: A reversal has occurred on this transaction because
 ' you have given the customer a refund.
 ' other: A reversal has occurred on this transaction due to
 ' a reason not listed above.
 */

 $reasonCode = $resArray["REASONCODE"];
 }
 else
 {
 //Display a user-friendly Error on the page using any of the
 //following error information returned by PayPal.
 $ErrorCode = urldecode($resArray["L_ERRORCODE0"]);
 $ErrorShortMsg = urldecode($resArray["L_SHORTMESSAGE0"]);
 $ErrorLongMsg = urldecode($resArray["L_LONGMESSAGE0"]);
 $ErrorSeverityCode = urldecode($resArray["L_SEVERITYCODE0"]);

 echo "GetExpressCheckoutDetails API call failed. ";
 echo "Detailed Error Message: " . $ErrorLongMsg;
 echo "Short Error Message: " . $ErrorShortMsg;
 echo "Error Code: " . $ErrorCode;
 echo "Error Severity Code: " . $ErrorSeverityCode;
 }
}

?>

Example 2-6. shoppingcart.php

<form action='expresscheckout.php' METHOD='POST'>
<input type='image' name='submit'
src='https://www.paypal.com/en_US/i/btn/btn_xpressCheckout.gif'
border='0' align='top' alt='Check out with PayPal'/>
</form>

48 | Chapter 2: PayPal Express Checkout

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3

PayPal Website Payments Pro

PayPal’s Website Payments Pro allows you API access to two components: Express
Checkout (covered in Chapter 2) and Direct Payment. Direct Payment allows you to
accept debit and credit cards directly from your site. Direct Payment, unlike Express
Pay, requires the buyer to enter payment, billing, and shipping information, and does
not require the buyer to have a PayPal Account. In addition, Website Payments Pro
accounts do not show up as “PayPal” on your customer’s credit card statements: your
company’s name shows up instead.

Overview of Direct Payment
Direct Payment allows your customers to pay via credit or debit cards during your
checkout flow. This gives the seller complete control over the buyer’s transaction ex-
perience. When a buyer chooses to pay with a credit or debit card, he enters his card
number and other information directly on your site. This arrangement makes the seller/
merchant responsible for maintaining the security of the transaction, rather than Pay-
Pal, and it is highly recommended that you provide the checkout experience under an
SSL connection. After the buyer confirms his order and clicks the Pay button, you
complete the transaction by invoking the DoDirectPayment API operation.

Direct Payment Workflow
Figure 3-1 shows the checkout workflow a user experiences with Direct Payment:

1. The buyer clicks the Checkout button on your website, provides shipping and
billing information, and clicks Continue.

2. The buyer reviews the order for accuracy and clicks Pay.

3. Information is handed off to PayPal via the DoDirectPayment API operation, and
the buyer’s card is charged.

4. The customer receives the Order Complete summary page.

49

Figure 3-1. PayPal Direct Payment workflow

PayPal Direct Payment API Operations
The PayPal NVP API uses only one method related to Direct Payment: DoDirectPay
ment. This one method initializes the payment and returns the results all in one opera-
tion. Table 3-1 outlines the DoDirectPayment request fields, and Table 3-2 outlines the
method’s response fields.

Table 3-1. DoDirectPayment request fields

Field Description

METHOD Must be DoDirectPayment (required).

PAYMENTACTION Indicates how you want to obtain payment:

• Authorization: This payment is a basic authorization subject to settlement with PayPal

Authorization and Capture.

• Sale: This is the default value, indicating that it is a final sale.

Limitation: Up to 13 single-byte characters.

IPADDRESS The IP address of the buyer’s browser (required). PayPal records this IP address to detect possible

fraud. Limitation: Up to 15 single-byte characters, including periods. Must be an IPv4 address.

RETURNFMFDETAILS Flag that indicates whether you want the results returned by the Fraud Management Filters:

• 0: Do not receive FMF details (default)

• 1: Receive FMF details

CREDITCARDTYPE The type of credit card being used. Allowed values are:

• Visa

• MasterCard

• Discover

• Amex

• Maestro *

• Solo *

50 | Chapter 3: PayPal Website Payments Pro

Field Description
* If using Maestro or Solo, the CURRENCYCODE must be GBP. Additionally, either START

DATE or ISSUENUMBER must be specified.

Limitation: Up to 10 single-byte alphabetic characters. For the UK, only Maestro, Solo,

MasterCard, Discover, and Visa are allowed. For Canada, only MasterCard and Visa are

allowed.

ACCT The customer’s credit card number. Limitations: Numeric characters only, with no spaces or punc-

tuation. Must conform with the modulo and length required by each card type.

EXPDATE The credit card expiration date, in the format MMYYYY. Limitations: Six single-byte alphanumeric

characters, including the leading 0.

CVV2 The card verification value, version 2. This field may or may not be required, depending on your

merchant account settings.

The character length for Visa, MasterCard, and Discover is three digits. The character length for

American Express is four digits. To adhere to credit card processing regulations, you cannot store

this value after a transaction is complete.

STARTDATE The month and year that a Maestro or Solo card was issued, in MMYYYY format. This value must be

six digits, including the leading zero.

ISSUENUMBER The issue number of a Maestro or Solo card. Two numeric digit maximum.

EMAIL The email address of the buyer. Limited to 127 single-byte characters.

FIRSTNAME The buyer’s first name (required). Limited to 25 single-byte characters.

LASTNAME The buyer’s last name (required). Limited to 25 single-byte characters.

STREET The first street address (required). Limited to 100 single-byte characters.

STREET2 The second street address (required). Limited to 100 single-byte characters.

CITY The name of the city (required). Limited to 40 single-byte characters.

STATE The state or province (required). Limited to 40 single-byte characters.

COUNTRYCODE The country code (required). Limited to two single-byte characters.

ZIP The U.S. zip code or another country-specific postal code (required). Limited to 20 single-byte

characters.

SHIPTOPHONENUM The phone number. Limited to 20 single-byte characters.

AMT The total cost of the transaction to the customer (required).

If the shipping cost and tax charges are known, include them in this value; if not, this value should

be the current subtotal of the order. If the transaction includes one or more one-time purchases,

this field must be equal to the sum of the purchases. Set this field to 0 if the transaction does not

include a one-time purchase, for example, when you set up a billing agreement for a recurring

payment that is not charged immediately. Purchase-specific fields will be ignored.

Limitations: Must not exceed $10,000 USD in any currency. No currency symbol. Must have two

decimal places, the decimal separator must be a period (.), and the optional thousands separator

must be a comma (,).

CURRENCYCODE A three-character currency code. The default is USD.

PayPal Direct Payment API Operations | 51

Field Description

ITEMAMT Sum of the cost of all items in this order. ITEMAMT is required if you specify L_AMTn. Limitations:

Must not exceed $10,000 USD in any currency. No currency symbol. Must have two decimal places,

the decimal separator must be a period (.), and the optional thousands separator must be a

comma (,).

SHIPPINGAMT Total shipping cost for this order. If you specify a value for SHIPPINGAMT, you are required to

specify a value for ITEMAMT as well. Limitations: Must not exceed $10,000 USD in any currency. No

currency symbol. Must have two decimal places, the decimal separator must be a period (.), and the

optional thousands separator must be a comma (,).

HANDLINGAMT Total handling costs for this order. If you specify a value for HANDLINGAMT, you are required to

specify a value for ITEMAMT as well. Limitations: Must not exceed $10,000 USD in any currency. No

currency symbol. Must have two decimal places, the decimal separator must be a period (.), and the

optional thousands separator must be a comma (,).

TAXAMT Sum of the tax for all items in this order. TAXAMT is required if you specify L_TAXAMTn. Limitations:

Must not exceed $10,000 USD in any currency. No currency symbol. Must have two decimal places,

the decimal separator must be a period (.), and the optional thousands separator must be a comma

(,).

DESC A description of the items the customer is purchasing. Limited to 127 single-byte alphanumeric

characters.

CUSTOM A free-form field for your own use. Limited to 256 single-byte alphanumeric characters.

INVNUM Your own internal invoice or tracking number. Limited to 127 single-byte alphanumeric characters.

BUTTONSOURCE An identification code for use by third-party applications to identify transactions. Limited to 32

single-byte alphanumeric characters.

L_NAMEn The item name. Limited to 127 single-byte characters.

L_DESCn The item description. Limited to 127 single-byte characters.

L_AMTn The cost of the item. If you specify a value for L_AMTn, you must specify a value for ITEMAMT.

Limitations: Must not exceed $10,000 USD in any currency. No currency symbol. Must have two

decimal places, the decimal separator must be a period (.), and the optional thousands separator

must be a comma (,).

L_NUMBERn The item number. Limited to 127 single-byte characters.

L_QTYn The item quantity. Can be any positive integer.

L_TAXAMTn The item’s sales tax. Limitations: Must not exceed $10,000 USD in any currency. No currency symbol.

Must have two decimal places, the decimal separator must be a period (.), and the optional thousands

separator must be a comma (,).

SHIPTONAME The person’s name associated with the shipping address. Required if using a shipping address.

Limited to 32 single-byte characters.

SHIPTOSTREET The first street address. Required if using a shipping address. Limited to 100 single-byte characters.

SHIPTOSTREET2 The second street address. Limited to 100 single-byte characters.

SHIPTOCITY The name of the city. Required if using a shipping address. Limited to 40 single-byte characters.

SHIPTOSTATE The state or province. Required if using a shipping address. Limited to 40 single-byte characters.

52 | Chapter 3: PayPal Website Payments Pro

Field Description

SHIPTOZIP The U.S. zip code or other country-specific postal code. Required if using a U.S. shipping address and

might be required for other countries. Limited to 20 single-byte characters.

SHIPTOCOUNTRY The country code. Required if using a shipping address. Limited to two single-byte characters.

SHIPTOPHONENUM The phone number. Limited to 20 single-byte characters.

Table 3-2. DoDirectPayment response fields

Field Description

TRANSACTIONID The unique transaction ID of the payment. If the PaymentAction of the request was

Authorization, the value of TransactionID is your AuthorizationID for use with

the Authorization and Capture API.

AMT This value is the amount of the payment you specified in the DoDirectPayment request.

AVSCODE The Address Verification System response code. Limited to one single-byte alphanumeric

character.

CVV2MATCH The results of the CVV2 check by PayPal.

L_FMFfilterIDn The filter ID, including the filter type (PENDING, REPORT, or DENY), the filterID, and the

entry number, n, starting from 0. filterID is one of the following values:

• 1 = AVS No Match

• 2 = AVS Partial Match

• 3 = AVS Unavailable/Unsupported

• 4 = Card Security Code (CSC) Mismatch

• 5 = Maximum Transaction Amount

• 6 = Unconfirmed Address

• 7 = Country Monitor

• 8 = Large Order Number

• 9 = Billing/Shipping Address Mismatch

• 10 = Risky ZIP Code

• 11 = Suspected Freight Forwarder Check

• 12 = Total Purchase Price Minimum

• 13 = IP Address Velocity

• 14 = Risky Email Address Domain Check

• 15 = Risky Bank Identification Number (BIN) Check

• 16 = Risky IP address Range

• 17 = PayPal Fraud Model

L_FMFfilterNAMEn The filter name, including the filter type, (PENDING, REPORT, or DENY), the filterNAME,

and the entry number, n, starting from 0.

PayPal Direct Payment API Operations | 53

Simple Direct Payment Integration
To implement a Direct Payment transaction, you need to invoke the DoDirectPayment
API and provide information to identify the buyer’s credit or debit card and the amount
of the payment. Setting up the transaction is accomplished through the following steps:

1. Specify the amount of the transaction, including the currency if it is not in U.S.
dollars. You should specify the total amount of the transaction if it is known; oth-
erwise, specify the subtotal.

AMT=amount

CURRENCYCODE=currencyID

2. Specify the payment action. It is best practice to explicitly specify the payment
action as one of the following values:

PAYMENTACTION=Sale

PAYMENTACTION=Authorization

3. Specify the IP address of the buyer’s computer:

IPADDRESS=xxx.xxx.xxx.xxx

4. Specify information about the card being used. You must specify the type of card
as well as the account number:

CREDITCARDTYPE=Visa

ACCT=1234567891011123

The type of credit/debit card being used, the card issuer, and the Payment Receiving
Preferences setting on your PayPal Profile might require that you set the following
fields as well:

EXPDATE=012010

CVV2=123

5. Specify information about the card holder. You must provide the first and last name
of the card holder, as well as the billing address associated with the card:

FIRSTNAME=John

LASTNAME=Doe

STREET=1313 Mockingbird Lane

CITY=Any town

STATE=Any state

ZIP=11111

COUNTRYCODE=US

54 | Chapter 3: PayPal Website Payments Pro

Direct Payment Integrations
Direct Payment is probably the easiest component to integrate for NVP access. You can
add DoDirectPayment functionality to your checkout processor by adding the code
in Example 3-1 and providing your API credentials. For instructions on creating those
credentials, refer to “Creating an API Signature” on page 4. Additionally, after you
have completed testing and are ready to go live, change $environment = 'sandbox' to
$environment='live'.

Example 3-1. dodirectpayment.php

<?php

/** DoDirectPayment NVP example; last modified 08MAY23.
 *
 * Process a credit card payment.
*/

$environment = 'sandbox'; // or 'beta-sandbox' or 'live'

/**
 * Send HTTP POST Request
 *
 * @param string The API method name
 * @param string The POST Message fields in &name=value pair format
 * @return array Parsed HTTP Response body
 */
function PPHttpPost($methodName_, $nvpStr_) {
 global $environment;

 // Set up your API credentials, PayPal end point, and API version.
 $API_UserName = urlencode('my_api_username');
 $API_Password = urlencode('my_api_password');
 $API_Signature = urlencode('my_api_signature');
 $API_Endpoint = "https://api-3t.paypal.com/nvp";
 if("sandbox" === $environment || "beta-sandbox" === $environment) {
 $API_Endpoint = "https://api-3t.$environment.paypal.com/nvp";
 }
 $version = urlencode('51.0');

 // Set the curl parameters.
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL, $API_Endpoint);
 curl_setopt($ch, CURLOPT_VERBOSE, 1);

 // Turn off the server and peer verification (TrustManager Concept).
 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, FALSE);
 curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, FALSE);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_POST, 1);

Direct Payment Integrations | 55

 // Set the API operation, version, and API signature in the request.
 $nvpreq = "METHOD=$methodName_&VERSION=$version&PWD=$API_Password&USER=$API_UserName".
 "&SIGNATURE=$API_Signature$nvpStr_";

 // Set the request as a POST FIELD for curl.
 curl_setopt($ch, CURLOPT_POSTFIELDS, $nvpreq);

 // Get response from the server.
 $httpResponse = curl_exec($ch);

 if(!$httpResponse) {
 exit("$methodName_ failed: ".curl_error($ch).'('.curl_errno($ch).')');
 }

 // Extract the response details.
 $httpResponseAr = explode("&", $httpResponse);

 $httpParsedResponseAr = array();
 foreach ($httpResponseAr as $i => $value) {
 $tmpAr = explode("=", $value);
 if(sizeof($tmpAr) > 1) {
 $httpParsedResponseAr[$tmpAr[0]] = $tmpAr[1];
 }
 }

 if((0 == sizeof($httpParsedResponseAr))||!array_key_exists('ACK', $httpParsedResponseAr))
 {
 exit("Invalid HTTP Response for POST request($nvpreq) to $API_Endpoint.");
 }

 return $httpParsedResponseAr;
}

// Set request-specific fields.
$paymentType = urlencode('Authorization'); // or 'Sale'
$firstName = urlencode('customer_first_name');
$lastName = urlencode('customer_last_name');
$creditCardType = urlencode('customer_credit_card_type');
$creditCardNumber = urlencode('customer_credit_card_number');
$expDateMonth = 'cc_expiration_month';
// Month must be padded with leading zero
$padDateMonth = urlencode(str_pad($expDateMonth, 2, '0', STR_PAD_LEFT));

$expDateYear = urlencode('cc_expiration_year');
$cvv2Number = urlencode('cc_cvv2_number');
$address1 = urlencode('customer_address1');
$address2 = urlencode('customer_address2');
$city = urlencode('customer_city');
$state = urlencode('customer_state');
$zip = urlencode('customer_zip');
$country = urlencode('customer_country'); // US or other valid country code
$amount = urlencode('example_payment_amuont');
$currencyID = urlencode('USD'); // or other currency ('GBP', 'EUR', 'JPY', 'CAD', 'AUD')

56 | Chapter 3: PayPal Website Payments Pro

// Add request-specific fields to the request string.
$nvpStr ="&PAYMENTACTION=$paymentType&AMT=$amount&CREDITCARDTYPE=$creditCardType".
 "&ACCT=$creditCardNumber&EXPDATE=$padDateMonth$expDateYear&CVV2=$cvv2Number".
 "&FIRSTNAME=$firstName&LASTNAME=$lastName&STREET=$address1&CITY=$city".
 "&STATE=$state&ZIP=$zip&COUNTRYCODE=$country&CURRENCYCODE=$currencyID";

// Execute the API operation; see the PPHttpPost function above.
$httpParsedResponseAr = PPHttpPost('DoDirectPayment', $nvpStr);

if("SUCCESS" == strtoupper($httpParsedResponseAr["ACK"])||"SUCCESSWITHWARNING"==
 strtoupper($httpParsedResponseAr["ACK"])) {
 exit('Direct Payment Completed Successfully: '.print_r($httpParsedResponseAr, true));
} else {
 exit('DoDirectPayment failed: ' . print_r($httpParsedResponseAr, true));
}

?>

Direct Payment Integrations | 57

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4

PayPal Adaptive Payments

Overview of Adaptive Payments
PayPal’s Adaptive Payments allow you to send money in a variety of scenarios. Using
Adaptive Payments, you can build a “send money” application for a social networking
site or build a robust payment system. Through the Adaptive Payments API, you can
build an application that can handle payments, payment preapprovals, and refunds.
You can also create foreign currency exchange rates for a set list of amounts, which
then allows you to build a payment interface that shows the buyer her order total in
different currencies (e.g., U.S. dollars and euros).

Another advantage of Adaptive Payments is that you can be an application owner—for
example, an online merchant who owns a website, a payment application provider for
cell phones, or a widget developer of a payments widget on a social networking site—
without assuming the responsibility of sending or receiving the transactions.

PayPal Adaptive Payments API Operations Overview
Adaptive Payments is made up of 10 key API operations, listed in Table 4-1.

Table 4-1. Adaptive Payments API operations

API operation Description

CancelPreapproval Cancels a preapproval

ConvertCurrency Obtains foreign exchange currency conversion rates for a list of amounts

ExecutePayment Executes a payment

GetPaymentOptions Obtains the settings specified with the SetPaymentOptions API operation

Pay Transfers fund from a sender’s (buyer’s) PayPal account to on or more receivers’

PayPal accounts (up to six recipients)

PaymentDetails Obtains information about a payment set up with the Pay API operation

59

API operation Description

Preapproval Sets up preapprovals, which is an approval to make future payments on the sender’s

behalf

PreapprovalDetails Obtains information about a preapproval

Refund Refunds all or part of a payment

SetPaymentOptions Sets payment options

Adaptive Payments Permission Levels
PayPal’s Adaptive Payments adds an additional layer of security and permission levels
over other API functionality. Most of the Adaptive Payments API operations are avail-
able to all API callers, but some of the higher-level features are limited to those with
advanced permission levels.

A merchant using a third-party Adaptive Payments application, at minimum, must have
the same permission level required for the Adaptive Payments APIs called by the ap-
plication. If, for example, your application supports chained payments but the mer-
chant using it has a standard permission level, chained payments will not work for that
merchant. Table 4-2 outlines the current permission restrictions. This list is subject to
change, and so I suggest referring to http://www.paypal.com or http://www.x.com for
more information about current permission levels.

If you are distributing an application based upon Adaptive Payments, I
highly recommend putting the required permission levels in your ap-
plication distribution notes.

Table 4-2. Adaptive Payments permission levels and allowed features

Standard permission level Advanced permission level

Simple and parallel payments with explicit approval

Get payment details

Refunds

Currency conversion

Chained payments

Payments with implicit approval

Preapprovals and preapproval cancellations

Get preapproval details

Pay request with CREATE action type

SetPaymentOptions API operation

GetPaymentOptions API operation

ExecutePayment API operation

Personal payments

60 | Chapter 4: PayPal Adaptive Payments

http://www.paypal.com
http://www.x.com

Adaptive Payments Application Workflows
Adaptive Payments facilitates payments between a sender and one or more receivers of
that payment. You as the application owner and your application are the caller of the
Adaptive Payments API operations. The application owner must have a PayPal
business-level account, but senders and receivers can have a PayPal account of any type.
Given the complexity and power for Adaptive Payments, you can be both the applica-
tion owner and the receiver of payments. Outlined in Figure 4-1, this is referred to as
a simple payment, where a sender makes a payment to a single recipient. This type of
payment is equivalent to what is done with Express Checkout.

Figure 4-1. Adaptive Payments owner as recipient workflow

The Adaptive Payments API allows you and your application to act as an intermediary
that facilitates payments for others, without you being a recipient of the funds, as
outlined in Figure 4-2. This is referred to as a parallel payment, in which the sender
transmits a single payment to multiple recipients and can see who those recipients are.
Parallel payments are commonly used in aggregated shopping, and allow a customer
to order from multiple vendors with a single shopping cart.

Figure 4-2. Adaptive Payments owner as intermediary workflow: parallel

Adaptive Payments Application Workflows | 61

Another way in which your application can function as an intermediary is facilitating
a chained payment, outlined in Figure 4-3. In a chained transaction, your application
receives the payment, and the funds are then split between multiple recipients on the
backend. In a chained setup, your application can take a percentage off the top and
then disperse the remaining funds to the other recipients. You can even set up what
is called a delayed chained payment. This can be used when your secondary receivers
are required to ship goods, for example, before they receive their payment for the
transaction.

Figure 4-3. Adaptive Payments owner as intermediary workflow: chained

And finally, your application also can be the sender of the transaction, outlined in
Figure 4-4. This could be used to facilitate commission payments to your sales reps,
for example.

Figure 4-4. Adaptive Payments application as sender

So, as you can see from these workflow diagrams and notes, Adaptive Payments
is probably the most powerful payment method PayPal provides to application
developers.

62 | Chapter 4: PayPal Adaptive Payments

Payment Approval and Payment Flows
Once a payment transaction via your application has been submitted, the sender of the
payment must take an additional step and approve the transfer of funds. This can be
one of four different payment approval types: Explicit, Preapproved, Implicit, or Guest
Payments.

Explicit Payments
Explicit Payments require the sender to log into PayPal.com and approve each indi-
vidual payment. This is the traditional method for paying via PayPal and is the only
option a sender has, unless he has previously set up a preapproval agreement with you,
or unless the sender is also the application provider. You can control the interaction
between your application and PayPal during the transaction process by providing URLs
for redirecting the sender, dependent on the situation. Figure 4-5 outlines an Explicit
Payment flow, which consists of the following steps:

Figure 4-5. Explicit Payment flow

Payment Approval and Payment Flows | 63

http://www.paypal.com/

1. Your application sends a Pay request to PayPal.

2. PayPal responds with a key that you use to redirect the sender to PayPal.

3. You redirect the sender to PayPal.com.

4. The sender approves the transfer of the payment, and PayPal redirects the sender
to a URL you specify.

5. PayPal sends both you and the sender an email summarizing the payment that was
made.

Preapproved Payments
Preapproved Payments require senders to log into PayPal.com and set up preapprovals
for future payments, for example, payments to a supplier they use frequently. Once the
preapproval is set up, payments automatically are considered approved, and the sender
will not have to log in to approve payments to that vendor in the future. During the
preapproval setup process, the sender can specify the following:

• Duration of the preapproval, including the start date and end date. This comes in
handy if you are paying a specific vendor for supplies on a particular project that
has a known start and end date, for example.

• The maximum amount being approved at one time.

• The maximum number of payments allowed for the vendor.

Figure 4-6 outlines a Preapproved Payment flow, which consists of the following steps:

1. Your application sends a preapproval request to PayPal.

2. PayPal responds with a key, called a preapproval key, that you use in redirecting
the sender to PayPal. If the preapproval has already been established, you will use
this key to complete payments automatically on the sender’s behalf.

3. You redirect the sender to PayPal.

4. After the sender approves the preapproval, PayPal redirects the sender to a URL
you specify.

5. PayPal sends both you and the sender an email summarizing the payment that was
made.

Once the sender approves the preapproval setup, you can make payments on behalf of
the sender directly, as outlined in Figure 4-7:

1. Your application sends a Pay request to PayPal that includes a preapproval key
identifying the payment agreement.

2. PayPal responds with a payment key that you can use for other API functions.

64 | Chapter 4: PayPal Adaptive Payments

http://www.paypal.com/
http://www.paypal.com/

Figure 4-6. Preapproved Payment flow

Figure 4-7. Preapproved Payment direct sending

Payment Approval and Payment Flows | 65

Implicit Payments
Implicit Payments are payments sent directly by your application in which the sender
and API caller are using the same PayPal account. Since your account is the one sending
the payments, no approval is necessary for the payment transaction. Figure 4-8 outlines
an Implicit Payment:

1. Your application sends a Pay request to PayPal.

2. PayPal responds with a key to use for other API operations.

Figure 4-8. Implicit Payment flow

Guest Payments
Adaptive Payments also supports Guest Payments, where the sender can pay using her
credit card, similar to using Direct Payment. The recipient must have either a business-
or premier-level PayPal account. Guest Payments are handled in the same manner as
Explicit Payments, except that the sender provides credit card information directly on
the PayPal payment screen.

Adaptive Payments API Operations in Depth
In the remaining pages of this chapter, we look at the following Adaptive Payments API
operations in depth:

• Pay API

• SetPaymentOptions API

• ExecutePayment API

A complete list of all the defined Adaptive Payments API operations can be found at
http://developer.paypal.com or http://x.com.

66 | Chapter 4: PayPal Adaptive Payments

http://developer.paypal.com
http://x.com

Pay API Operation
All payments made via Adaptive Payments have the same required fields. These are
outlined in Table 4-3.

Table 4-3. Common required fields

Field Description

actionType Will be one of three possible values:

• PAY: Use this value if not using the request in combination with Execute

PaymentRequest.

• CREATE: Use to set up payment instructions with a SetPaymentOptions

request and then execute at a later time with an ExecutePaymentRequest.

• PAY_PRIMARY: Used for chained payments only. This allows you to delay

payments to secondary receivers at the time of the transaction and process only

the primary receiver. To process the secondary payments, initiate Execute

PaymentRequest and pass the pay key obtained from the PayResponse.

receiverList.receiver(n).email The receiver’s email address.

receiverList.receiver(n).amount The amount to be credited to the receiver’s account.

currencyCode The code for the currency in which the payment is made. You can specify only one

currency, regardless of the number of receivers.

cancelUrl The URL for sender redirection if the sender cancels the payment approval. This value

is required, but used only for explicit payments.

returnUrl The URL for sender redirection after completion of the payment. This value is required,

but used only for explicit payments.

requestEnvelope.errorLanguage The code for the language used when returning errors (must be en_US).

If you are performing a parallel payment, you must provide the additional fields out-
lined in Table 4-4.

Table 4-4. Parallel payments fields

Field Description

receiverList.receiver(n).email The email address for each receiver. n is an integer between 0 and 5, allowing

for a maximum of six receivers.

receiverList.receiver(n).amount The amount to send to each corresponding receiver.

If you are performing a chained payment, you must provide the additional fields out-
lined in Table 4-5.

Adaptive Payments API Operations in Depth | 67

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

Table 4-5. Chained payments fields

Field Description

receiverList.receiver(n).email The email address for each receiver. n is an integer between 0 and 5, for a

total of one primary receiver and one to five secondary receivers.

receiverList.receiver(n).amount The amount to send to each corresponding receiver.

receiverList.receiver(n).primary Set this value to true to indicate that this is a chained payment. Only one

receiver can be the primary receiver.

As discussed previously, a payment requires explicit approval by default. To initiate
the approval process, your application must redirect the sender to PayPal as follows:

https://www.paypal.com/webscr?cmd=_ap-payment&paykey=value

If you are the API caller and you specify your email address in the senderEmail field,
PayPal will implicitly approve the payment without redirecting to PayPal. You can also
use a preapproval to execute the payment and avoid explicit approval. The required
preapproval fields are outlined in Table 4-6.

Table 4-6. Preapproval fields

Field Description

preapprovalKey Preapproval key for the approval set up between you and the sender

pin Sender’s personal identification number, if one was specified when the approval agree-

ment was created

SetPaymentOptions API Operation
The SetPaymentOptions API is used to specify settings for a payment of the actionType
CREATE. SetPaymentOptions has four different request fields, outlined in Table 4-7.

Table 4-7. SetPaymentOptionsRequest fields

Field Descriptions

displayOptions The container used to specify which images should be used when emailing customers.

initiatingEntity The PayPal financial partner initiating the payment. These must be set up via the Admin

tool prior to using the PayPal APIs.

payKey This field identifies the payment for which you wish to set up payment options. This is

the key that is returned in the PayResponse message.

requestEnvelope This is required information common to each API operation. This would include things

such as the language in which error messages are displayed.

Next, we look at the different request fields and their additional values.

68 | Chapter 4: PayPal Adaptive Payments

displayOptions

displayOptions has two optional fields that you can specify, outlined in Table 4-8.

Table 4-8. displayOptions fields

Field Description

emailHeaderImageUrl The URL that points to the location of the image used in the header of customer emails.

The image dimensions are 43 pixels high x 240 pixels wide.

emailMarketingImageUrl The URL that points to the location of the marketing image used in customer emails. The

image dimensions are 80 pixels high x 530 pixels wide.

initiatingEntity

initiatingEntity has only one optional field, outlined in Table 4-9.

Table 4-9. initiatingEntity field

Field Description

institutionCustomer Details about the party that initiated this payment. This payment is made by the API caller

on behalf of the initiating party. The initiating party can be an institution or a customer

of that institution. The initiating party must be set up by PayPal Merchant Services.

institutionCustomer has the additional fields outlined in Table 4-10.

Table 4-10. institutionCustomer fields

Field Description

countryCode The two-character country code of the end user’s home country (required)

displayName The full name of the consumer as known by the institution (required)

email The email address of the consumer as known by the institution

firstName The first name of the consumer as known by the institution (required)

institutionCustomerId The unique identifier assigned to the consumer by the institution (required)

institutionId The unique identifier assigned to the institution (required)

lastName The last name of the consumer as known by the institution (required)

requestEnvelope

requestEnvelope has two fields, outlined in Table 4-11.

Table 4-11. requestEnvelope fields

Field Description

detailLevel The level of detail required by the client application for components such as Item and Transaction.

One possible value is ReturnAll , which provides the maximum level of detail (default).

errorLanguage The RFC 3066 language in which error messages are returned (required). By default, it is

en_US, which is the only language currently supported.

Adaptive Payments API Operations in Depth | 69

ResponseEnvelope

Once you execute your SetPaymentOptions request, you will receive a ResponseEnve
lope that contains information about the success or failure of the SetPaymentOptions
request. The response fields are outlined in Table 4-12.

Table 4-12. SetPaymentOptions response fields

Field Description

ack The acknowledgment code. Possible values are:

• Success: The operation completed successfully.

• Failure: The operation failed.

• Warning: Warning.

• SuccessWithWarning: The operation completed successfully, but there is a warning

message.

• FailureWithWarning: The operation failed with a warning message.

build The build number; used only by Developer Technical Support.

correlationId The correlation ID; used only by Developer Technical Support.

timestamp The date on which the response was sent. The time currently is not supported.

ExecutePayment API Operation
The ExecutePayment API operation allows you to execute a payment setup with the
Pay API operation using the actionType CREATE. The request is comprised of two fields,
outlined in Table 4-13.

Table 4-13. ExecutePayment request fields

Field Description

payKey The pay key that identifies the payment to be executed. This is the pay key returned in the

PayResponse message.

requestEnvelope Information common to each API operation, such as the language in which an error message is

returned.

Additionally, requestEnvelope contains two subfields, outlined in Table 4-14.

Table 4-14. requestEnvelope fields

Field Description

detailLevel The level of detail required by the client application for components such as Item and Transaction.

One possible value is ReturnAll , which provides the maximum level of detail (default).

errorLanguage The RFC 3066 language in which error messages are returned (required). By default, it is

en_US, which is the only language currently supported.

70 | Chapter 4: PayPal Adaptive Payments

ExecutePayment returns several elements in its response, outlined in Table 4-15.

Table 4-15. ExecutePayment response fields

Field Description

payErrorList Information about why a payment failed.

paymentExecStatus The status of the payment. Possible values are:

• CREATED: The payment request was received, and funds will be transferred once the

payment is approved.

• COMPLETED: The payment was successful.

• INCOMPLETE: Some transfers succeeded and some failed for a parallel payment.

• ERROR: The payment failed, and either all attempted transfers failed or all completed

transfers were successfully reversed.

• REVERSALERROR: One or more transfers failed when attempting to reverse a payment.

responseEnvelope Common response information, including a timestamp and the response acknowledgment

status.

Additional values and information related to the ExecutePayment response fields can
be found in the online documentation located at http://www.x.com/community/ppx/
documentation.

Adaptive Payments Integration
PayPal provides an Integration Wizard for Adaptive Payments as well. It can be found
at https://www.paypal-labs.com/integrationwizard/adaptive/main.php. The wizard for
Adaptive Payments contains only five steps.

The Integration Wizard starts by presenting an overview of the different types of pay-
ment methods you can implement via Adaptive Payments, as shown in Figure 4-9.

Step 1 asks you for your programming language and whether you are working with the
sandbox or a live implementation (see Figure 4-10).

Step 2 allows you to download the paypalplatform.php code, shown in Example 4-1
(see Figure 4-11). This code contains all the core handlers for Adaptive Payments in-
formation. You will need to provide your API credentials in this file. For instructions
on creating those credentials, refer to “Creating an API Signature” on page 4. Once you
have completed your testing and are ready to go live, change $Env="sandbox" to
$Env="live". This will change the endpoint to the live PayPal endpoint.

Adaptive Payments Integration | 71

http://www.x.com/community/ppx/documentation
http://www.x.com/community/ppx/documentation
https://www.paypal-labs.com/integrationwizard/adaptive/main.php

Figure 4-9. Adaptive Payments Integration Wizard overview

Step 3 generates the code to implement for your Preapproval Flow handler, shown in
Example 4-2 (see Figure 4-12).

Step 4 generates the different payment type handlers for use in your code (see Fig-
ure 4-13). You will have an Implicit Payment handler (Example 4-3), a Basic Payment
Handler (Example 4-4), a Parallel Payment Handler (Example 4-5), and a Chained
Payment Handler (Example 4-6).

Step 5 completes the Integration Wizard, as shown in Figure 4-14.

72 | Chapter 4: PayPal Adaptive Payments

Figure 4-10. Adaptive Payments Integration Wizard step 1

Figure 4-11. Adaptive Payments Integration Wizard step 2

Adaptive Payments Integration | 73

Figure 4-12. Adaptive Payments Integration Wizard step 3

Figure 4-13. Adaptive Payments Integration Wizard step 4

74 | Chapter 4: PayPal Adaptive Payments

Figure 4-14. Adaptive Payments Integration Wizard step 5

Example 4-1. paypalplatform.php

<?php
 /**
 PayPal Adaptive Payments API Module

 Defines all the global variables and the wrapper functions
 **/
 $PROXY_HOST = '127.0.0.1';
 $PROXY_PORT = '808';

 $Env = "sandbox";

 //------------------------------------
 // PayPal API Credentials
 // Replace <API_USERNAME> with your API Username
 // Replace <API_PASSWORD> with your API Password
 // Replace <API_SIGNATURE> with your Signature
 //------------------------------------
 $API_UserName = "<API_USERNAME>";
 $API_Password = "<API_PASSWORD>";
 $API_Signature = "<API_SIGNATURE>";
 // AppID is preset for sandbox use
 // If your application goes live, you will be assigned a value for the live
 // environment by PayPal as part of the live onboarding process.
 $API_AppID = "APP-80W284485P519543T";
 $API_Endpoint = "";

Adaptive Payments Integration | 75

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

 if ($Env == "sandbox")
 {
 $API_Endpoint = "https://svcs.sandbox.paypal.com/AdaptivePayments";
 }
 else
 {
 $API_Endpoint = "https://svcs.paypal.com/AdaptivePayments";
}

 $USE_PROXY = false;

 if (session_id() == "")
 session_start();

 function generateCharacter () {
 $possible = "1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
 $char = substr($possible, mt_rand(0, strlen($possible)-1), 1);
 return $char;
 }

 function generateTrackingID () {
 $GUID = generateCharacter().generateCharacter().generateCharacter();
 $GUID .=generateCharacter().generateCharacter().generateCharacter();
 $GUID .=generateCharacter().generateCharacter().generateCharacter();
 return $GUID;
 }

 /*
 '---
 ' Purpose: Prepares the parameters for the Refund API Call.
 ' The API credentials used in a Pay call can make the Refund call
 ' against a payKey, or a tracking id, or to specific receivers of a payKey or
 ' a tracking id that resulted from the Pay call.
 '
 ' A receiver itself with its own API credentials can make a Refund call against
 ' the transactionId corresponding to their transaction.
 ' The API credentials used in a Pay call cannot use transactionId to issue a refund
 ' for a transaction for which they themselves were not the receiver.
 '
 ' If you do specify specific receivers, you must provide the amounts as well.
 ' If you specify a transactionId, then only the receiver of that transactionId
 ' is affected. Therefore the receiverEmailArray and receiverAmountArray should
 ' have 1 entry each if you do want to give a partial refund.
 ' Inputs:
 '
 ' Conditionally Required:
 ' One of the following: payKey or trackingId or trasactionId or
 ' (payKey and receiverEmailArray and receiverAmountArray) or
 ' (trackingId and receiverEmailArray and receiverAmountArray)
 ' or (transactionId and receiverEmailArray
 ' and receiverAmountArray)
 ' Returns:
 ' The NVP Collection object of the Refund call response.
 '--
 */

76 | Chapter 4: PayPal Adaptive Payments

 function CallRefund($payKey, $transactionId, $trackingId,
 $receiverEmailArray, $receiverAmountArray)
 {
 /* Gather the information to make the Refund call.
 The variable nvpstr holds the name-value pairs.
 */

 $nvpstr = "";

 // conditionally required fields
 if ("" != $payKey)
 {
 $nvpstr = "payKey=" . urlencode($payKey);
 if (0 != count($receiverEmailArray))
 {
 reset($receiverEmailArray);
 while (list($key, $value) = each($receiverEmailArray))
 {
 if ("" != $value)
 {
 $nvpstr .= "&receiverList.receiver(" . $key . ").email=" . urlencode($value);
 }
 }
 }
 if (0 != count($receiverAmountArray))
 {
 reset($receiverAmountArray);
 while (list($key, $value) = each($receiverAmountArray))
 {
 if ("" != $value)
 {
 $nvpstr .= "&receiverList.receiver(" . $key . ").amount=" . urlencode($value);
 }
 }
 }
 }
 elseif ("" != $trackingId)
 {
 $nvpstr = "trackingId=" . urlencode($trackingId);
 if (0 != count($receiverEmailArray))
 {
 reset($receiverEmailArray);
 while (list($key, $value) = each($receiverEmailArray))
 {
 if ("" != $value)
 {
 $nvpstr .= "&receiverList.receiver(" . $key . ").email=" . urlencode($value);
 }
 }
 }
 if (0 != count($receiverAmountArray))
 {
 reset($receiverAmountArray);
 while (list($key, $value) = each($receiverAmountArray))
 {

Adaptive Payments Integration | 77

 if ("" != $value)
 {
 $nvpstr .= "&receiverList.receiver(" . $key . ").amount=" . urlencode($value);
 }
 }
 }
 }
 elseif ("" != $transactionId)
 {
 $nvpstr = "transactionId=" . urlencode($transactionId);
 // the caller should only have 1 entry in the email and amount arrays
 if (0 != count($receiverEmailArray))
 {
 reset($receiverEmailArray);
 while (list($key, $value) = each($receiverEmailArray))
 {
 if ("" != $value)
 {
 $nvpstr .= "&receiverList.receiver(" . $key . ").email=" . urlencode($value);
 }
 }
 }
 if (0 != count($receiverAmountArray))
 {
 reset($receiverAmountArray);
 while (list($key, $value) = each($receiverAmountArray))
 {
 if ("" != $value)
 {
 $nvpstr .= "&receiverList.receiver(" . $key . ").amount=" . urlencode($value);
 }
 }
 }
 }

 /* Make the Refund call to PayPal */
 $resArray = hash_call("Refund", $nvpstr);

 /* Return the response array */
 return $resArray;
 }

 /*
 '--
 ' Purpose: Prepares the parameters for the PaymentDetails API Call.
 ' The PaymentDetails call can be made with either
 ' a payKey, a trackingId, or a transactionId of a previously successful Pay call.
 ' Inputs:
 '
 ' Conditionally Required:
 ' One of the following: payKey or transactionId or trackingId
 ' Returns:
 ' The NVP Collection object of the PaymentDetails call response.
 '--
 */

78 | Chapter 4: PayPal Adaptive Payments

 function CallPaymentDetails($payKey, $transactionId, $trackingId)
 {
 /* Gather the information to make the PaymentDetails call.
 The variable nvpstr holds the name-value pairs.
 */

 $nvpstr = "";

 // conditionally required fields
 if ("" != $payKey)
 {
 $nvpstr = "payKey=" . urlencode($payKey);
 }
 elseif ("" != $transactionId)
 {
 $nvpstr = "transactionId=" . urlencode($transactionId);
 }
 elseif ("" != $trackingId)
 {
 $nvpstr = "trackingId=" . urlencode($trackingId);
 }

 /* Make the PaymentDetails call to PayPal */
 $resArray = hash_call("PaymentDetails", $nvpstr);

 /* Return the response array */
 return $resArray;
 }

 /*
 '--
 ' Purpose: Prepares the parameters for the Pay API Call.
 ' Inputs:
 '
 ' Required:
 '
 ' Optional:
 '
 ' Returns:
 ' The NVP Collection object of the Pay call response.
 '--
 */
 function CallPay($actionType, $cancelUrl, $returnUrl, $currencyCode,
 $receiverEmailArray, $receiverAmountArray, $receiverPrimaryArray,
 $receiverInvoiceIdArray, $feesPayer, $ipnNotificationUrl, $memo,
 $pin, $preapprovalKey, $reverseAllParallelPaymentsOnError,
 $senderEmail, $trackingId)
 {
 /* Gather the information to make the Pay call.
 The variable nvpstr holds the name-value pairs.
 */

Adaptive Payments Integration | 79

 // required fields
 $nvpstr = "actionType=" . urlencode($actionType) . "¤cyCode=";
 $nvpstr .= urlencode($currencyCode) . "&returnUrl=";
 $nvpstr .= urlencode($returnUrl) . "&cancelUrl=" . urlencode($cancelUrl);

 if (0 != count($receiverAmountArray))
 {
 reset($receiverAmountArray);
 while (list($key, $value) = each($receiverAmountArray))
 {
 if ("" != $value)
 {
 $nvpstr .= "&receiverList.receiver(" . $key . ").amount=" . urlencode($value);
 }
 }
 }

 if (0 != count($receiverEmailArray))
 {
 reset($receiverEmailArray);
 while (list($key, $value) = each($receiverEmailArray))
 {
 if ("" != $value)
 {
 $nvpstr .= "&receiverList.receiver(" . $key . ").email=" . urlencode($value);
 }
 }
 }

 if (0 != count($receiverPrimaryArray))
 {
 reset($receiverPrimaryArray);
 while (list($key, $value) = each($receiverPrimaryArray))
 {
 if ("" != $value)
 {
 $nvpstr = $nvpstr . "&receiverList.receiver(" . $key . ").primary=" .
 urlencode($value);
 }
 }
 }

 if (0 != count($receiverInvoiceIdArray))
 {
 reset($receiverInvoiceIdArray);
 while (list($key, $value) = each($receiverInvoiceIdArray))
 {
 if ("" != $value)
 {
 $nvpstr = $nvpstr . "&receiverList.receiver(" . $key . ").invoiceId=" .
 urlencode($value);
 }
 }
 }

80 | Chapter 4: PayPal Adaptive Payments

 // optional fields
 if ("" != $feesPayer)
 {
 $nvpstr .= "&feesPayer=" . urlencode($feesPayer);
 }

 if ("" != $ipnNotificationUrl)
 {
 $nvpstr .= "&ipnNotificationUrl=" . urlencode($ipnNotificationUrl);
 }

 if ("" != $memo)
 {
 $nvpstr .= "&memo=" . urlencode($memo);
 }

 if ("" != $pin)
 {
 $nvpstr .= "&pin=" . urlencode($pin);
 }

 if ("" != $preapprovalKey)
 {
 $nvpstr .= "&preapprovalKey=" . urlencode($preapprovalKey);
 }

 if ("" != $reverseAllParallelPaymentsOnError)
 {
 $nvpstr .= "&reverseAllParallelPaymentsOnError=";
 $nvpstr .= urlencode($reverseAllParallelPaymentsOnError);
 }

 if ("" != $senderEmail)
 {
 $nvpstr .= "&senderEmail=" . urlencode($senderEmail);
 }

 if ("" != $trackingId)
 {
 $nvpstr .= "&trackingId=" . urlencode($trackingId);
 }

 /* Make the Pay call to PayPal */
 $resArray = hash_call("Pay", $nvpstr);

 /* Return the response array */
 return $resArray;
 }

 /*
 '---
 ' Purpose: Prepares the parameters for the PreapprovalDetails API Call.
 ' Inputs:
 '

Adaptive Payments Integration | 81

 ' Required:
 ' preapprovalKey:A preapproval key that identifies the agreement
 ' resulting from a previously successful Preapproval call.
 ' Returns:
 ' The NVP Collection object of the PreapprovalDetails call response.
 '---
 */
 function CallPreapprovalDetails($preapprovalKey)
 {
 /* Gather the information to make the PreapprovalDetails call.
 The variable nvpstr holds the name-value pairs.
 */

 // required fields
 $nvpstr = "preapprovalKey=" . urlencode($preapprovalKey);

 /* Make the PreapprovalDetails call to PayPal */
 $resArray = hash_call("PreapprovalDetails", $nvpstr);

 /* Return the response array */
 return $resArray;
 }

 /*
 '---
 ' Purpose: Prepares the parameters for the Preapproval API Call.
 ' Inputs:
 '
 ' Required:
 '
 ' Optional:
 '
 ' Returns:
 ' The NVP Collection object of the Preapproval call response.
 '---
 */
 function CallPreapproval($returnUrl, $cancelUrl, $currencyCode,
 $startingDate, $endingDate, $maxTotalAmountOfAllPayments,
 $senderEmail, $maxNumberOfPayments, $paymentPeriod, $dateOfMonth,
 $dayOfWeek, $maxAmountPerPayment, $maxNumberOfPaymentsPerPeriod, $pinType)
 {
 /* Gather the information to make the Preapproval call.
 The variable nvpstr holds the name-value pairs.
 */

 // required fields
 $nvpstr = "returnUrl=" . urlencode($returnUrl) . "&cancelUrl=" . urlencode($cancelUrl);
 $nvpstr .= "¤cyCode=" . urlencode($currencyCode) . "&startingDate=";
 $nvpstr .= urlencode($startingDate) . "&endingDate=" . urlencode($endingDate);
 $nvpstr .= "&maxTotalAmountOfAllPayments=" . urlencode($maxTotalAmountOfAllPayments);

 // optional fields
 if ("" != $senderEmail)
 {
 $nvpstr .= "&senderEmail=" . urlencode($senderEmail);

82 | Chapter 4: PayPal Adaptive Payments

 }

 if ("" != $maxNumberOfPayments)
 {
 $nvpstr .= "&maxNumberOfPayments=" . urlencode($maxNumberOfPayments);
 }

 if ("" != $paymentPeriod)
 {
 $nvpstr .= "&paymentPeriod=" . urlencode($paymentPeriod);
 }

 if ("" != $dateOfMonth)
 {
 $nvpstr .= "&dateOfMonth=" . urlencode($dateOfMonth);
 }

 if ("" != $dayOfWeek)
 {
 $nvpstr .= "&dayOfWeek=" . urlencode($dayOfWeek);
 }

 if ("" != $maxAmountPerPayment)
 {
 $nvpstr .= "&maxAmountPerPayment=" . urlencode($maxAmountPerPayment);
 }

 if ("" != $maxNumberOfPaymentsPerPeriod)
 {
 $nvpstr .= "&maxNumberOfPaymentsPerPeriod=" . urlencode($maxNumberOfPaymentsPerPeriod);
 }

 if ("" != $pinType)
 {
 $nvpstr .= "&pinType=" . urlencode($pinType);
 }

 /* Make the Preapproval call to PayPal */
 $resArray = hash_call("Preapproval", $nvpstr);

 /* Return the response array */
 return $resArray;
 }

 /**
 '--
 * hash_call: Function to perform the API call to PayPal using API signature
 * @methodName is name of API method.
 * @nvpStr is nvp string.
 * returns an associative array containing the response from the server.
 '--
 */
 function hash_call($methodName, $nvpStr)
 {

Adaptive Payments Integration | 83

 //declaring of global variables
 global $API_Endpoint, $API_UserName, $API_Password, $API_Signature, $API_AppID;
 global $USE_PROXY, $PROXY_HOST, $PROXY_PORT;

 $API_Endpoint .= "/" . $methodName;
 //setting the curl parameters.
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL,$API_Endpoint);
 curl_setopt($ch, CURLOPT_VERBOSE, 1);

 //turning off the server and peer verification(TrustManager Concept).
 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, FALSE);
 curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, FALSE);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER,1);
 curl_setopt($ch, CURLOPT_POST, 1);

 // Set the HTTP Headers
 curl_setopt($ch, CURLOPT_HTTPHEADER, array(
 'X-PAYPAL-REQUEST-DATA-FORMAT: NV',
 'X-PAYPAL-RESPONSE-DATA-FORMAT: NV',
 'X-PAYPAL-SECURITY-USERID: ' . $API_UserName,
 'X-PAYPAL-SECURITY-PASSWORD: ' .$API_Password,
 'X-PAYPAL-SECURITY-SIGNATURE: ' . $API_Signature,
 'X-PAYPAL-SERVICE-VERSION: 1.3.0',
 'X-PAYPAL-APPLICATION-ID: ' . $API_AppID
));

 //if USE_PROXY constant set to TRUE in Constants.php,
 //then only proxy will be enabled.
 //Set proxy name to PROXY_HOST and port number to PROXY_PORT in constants.php
 if($USE_PROXY)
 curl_setopt ($ch, CURLOPT_PROXY, $PROXY_HOST. ":" . $PROXY_PORT);

 // RequestEnvelope fields
 $detailLevel = urlencode("ReturnAll"); // See DetailLevelCode in the WSDL
 // for valid enumerations
 $errorLanguage = urlencode("en_US"); // This should be the standard RFC
 // 3066 language identification tag,
 // e.g., en_US

 // NVPRequest for submitting to server
 $nvpreq = "requestEnvelope.errorLanguage=$errorLanguage&requestEnvelope";
 $nvpreq .= "detailLevel=$detailLevel&$nvpStr";

 //setting the nvpreq as POST FIELD to curl
 curl_setopt($ch, CURLOPT_POSTFIELDS, $nvpreq);

 //getting response from server
 $response = curl_exec($ch);

 //converting NVPResponse to an Associative Array
 $nvpResArray=deformatNVP($response);
 $nvpReqArray=deformatNVP($nvpreq);
 $_SESSION['nvpReqArray']=$nvpReqArray;

84 | Chapter 4: PayPal Adaptive Payments

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

 if (curl_errno($ch))
 {
 // moving to display page to display curl errors
 $_SESSION['curl_error_no']=curl_errno($ch) ;
 $_SESSION['curl_error_msg']=curl_error($ch);

 //Execute the Error handling module to display errors.
 }
 else
 {
 //closing the curl
 curl_close($ch);
 }

 return $nvpResArray;
 }

 /*'--
 Purpose: Redirects to PayPal.com site.
 Inputs: $cmd is the querystring
 Returns:

 */
 function RedirectToPayPal ($cmd)
 {
 // Redirect to paypal.com here
 global $Env;

 $payPalURL = "";

 if ($Env == "sandbox")
 {
 $payPalURL = "https://www.sandbox.paypal.com/webscr?" . $cmd;
 }
 else
 {
 $payPalURL = "https://www.paypal.com/webscr?" . $cmd;
 }

 header("Location: ".$payPalURL);
 }

 /*'--
 * This function will take NVPString and convert it to an Associative Array
 * and then will decode the response.
 * It is useful to search for a particular key and display arrays.
 * @nvpstr is NVPString.
 * @nvpArray is Associative Array.
 --
 */

Adaptive Payments Integration | 85

 function deformatNVP($nvpstr)
 {
 $intial=0;
 $nvpArray = array();

 while(strlen($nvpstr))
 {
 //postion of Key
 $keypos= strpos($nvpstr,'=');
 //position of value
 $valuepos = strpos($nvpstr,'&') ? strpos($nvpstr,'&'): strlen($nvpstr);

 /*getting the Key and Value values and storing in a Associative Array*/
 $keyval=substr($nvpstr,$intial,$keypos);
 $valval=substr($nvpstr,$keypos+1,$valuepos-$keypos-1);
 //decoding the respose
 $nvpArray[urldecode($keyval)] =urldecode($valval);
 $nvpstr=substr($nvpstr,$valuepos+1,strlen($nvpstr));
 }
 return $nvpArray;
 }
?>

Example 4-2. preapprovalflow.php

<?php

//---
// When you integrate this code,
// look for TODO as an indication
// that you may need to provide a value or take
// action before executing this code.
//---

require_once ("paypalplatform.php");

// ==================================
// PayPal Platform Preapproval Module
// ==================================

// Request specific required fields
$cancelUrl = "http://wwww.yoursite.com/PreapprovalCancelHandler.xxx";
 // TODO - The landing page on your site where the customer
 // is sent when they cancel the Preapproval action on PayPal
$returnUrl = "http://wwww.yoursite.com/PreapprovalReturnHandler.xxx";
 // TODO - The landing page on your site where the customer
 // returns to after the Preapproval is agreed to on PayPal
$currencyCode = "USD";
$startingDate = "2009-06-17T13:00:00"; // TODO - The datetime when this
 // preapproval agreement starts,
 // cannot be in the past
$endingDate = "2009-09-17T13:00:00"; // TODO - The datetime when this
 // preapproval agreement ends

86 | Chapter 4: PayPal Adaptive Payments

$maxTotalAmountOfAllPayments = "2000"; // TODO - The maximum total amount
 // of all payments, cannot exceed
 // $2,000 USD or the equivalent
 // in other currencies

// Request specific optional fields
// Provide a value for each field that you want to include in the request;
// if left as an empty string, the field will not be passed in the request.
$senderEmail = ""; // TODO - The PayPal account email address of the sender
$maxNumberOfPayments = ""; // TODO - The maximum number of payments for
 // this preapproval
$paymentPeriod = ""; // TODO - If this preapproval is for periodic payments,
 // this defines the payment period as one of the following:
 // NO_PERIOD_SPECIFIED
 // DAILY - each day
 // WEEKLY - each week
 // BIWEEKLY - every other week
 // SEMIMONTHLY - twice a month
 // MONTHLY - each month
 // ANNUALLY - each year
$dateOfMonth = ""; // TODO - The day of the month on which a monthly payment is
 // to be made, number between 1 and 31
$dayOfWeek = ""; // TODO - The day of the week that a weekly payment is to be
 // made, see DayOfWeek in the WSDL for valid enumerations
$maxAmountPerPayment = ""; // TODO - The maximum amount per payment, it
 //cannot exceed the value in maxTotalAmountOfAllPayments
$maxNumberOfPaymentsPerPeriod = ""; // TODO - The maximum number of all
 // payments per period
$pinType = ""; // TODO - Whether or not a personal identification number (PIN)
 // is required each time a Payment is made via the Pay API call
 // NOT_REQUIRED - a PIN is not required (default)
 // REQUIRED - a PIN is required; the sender must specify a PIN
 // when setting up the preapproval on PayPal, and the PIN must
 // be in the request of each subsequent Pay API call corresponding
 // to this preapproval
 // A PIN is typically required if a Pay call against the preapproval
 // can be made for a purchase or payment in which the sender takes an
 // explicit action to send the money.

//---
// Make the Preapproval API call
//
// The CallPreapproval function is defined in the paypalplatform.php file,
// which is included at the top of this file.
//---
$resArray = CallPreapproval ($returnURL, $cancelURL, $currencyCode, $startingDate,
 $endingDate, $maxTotalAmountOfAllPayments, $senderEmail,
 $maxNumberOfPayments, $paymentPeriod, $dateOfMonth, $dayOfWeek,
 $maxAmountPerPayment, $maxNumberOfPaymentsPerPeriod, $pinType
);

Adaptive Payments Integration | 87

$ack = strtoupper($resArray["responseEnvelope.ack"]);
if($ack=="SUCCESS")
{
 $cmd = "cmd=_ap-preapproval&preapprovalkey=" . urldecode($resArray["preapprovalKey"]);
 RedirectToPayPal ($cmd);
}
else
{
 //Display a user-friendly Error on the page using any of the following error information
 //returned by PayPal.
 //TODO - There can be more than 1 error, so check for "error(1).errorId",
 //then "error(2).errorId", and so on until you find no more errors.
 $ErrorCode = urldecode($resArray["error(0).errorId"]);
 $ErrorMsg = urldecode($resArray["error(0).message"]);
 $ErrorDomain = urldecode($resArray["error(0).domain"]);
 $ErrorSeverity = urldecode($resArray["error(0).severity"]);
 $ErrorCategory = urldecode($resArray["error(0).category"]);

 echo "Preapproval API call failed. ";
 echo "Detailed Error Message: " . $ErrorMsg;
 echo "Error Code: " . $ErrorCode;
 echo "Error Severity: " . $ErrorSeverity;
 echo "Error Domain: " . $ErrorDomain;
 echo "Error Category: " . $ErrorCategory;
}

?>

Example 4-3. implicitpayment.php

<?php

//---
// When you integrate this code,
// look for TODO as an indication
// that you may need to provide a value or take
// action before executing this code.
//---

require_once ("paypalplatform.php");

// ==================================
// PayPal Platform Implicit Payment Module
// ==================================

// Request specific required fields
$senderEmail = ""; // TODO - The PayPal account email address of the sender
 // Think of it as required for an implicit payment and
 // set to the same account that owns the API credentials
$actionType = "PAY";
$cancelUrl = "https://NoOp"; // There is no approval step for implicit payment
$returnUrl = "https://NoOp"; // There is no approval step for implicit payment
$currencyCode = "USD";

88 | Chapter 4: PayPal Adaptive Payments

// An implicit payment can be a simple or parallel or chained payment
// TODO - Specify the receiver emails
// Remove or set to an empty string the array entries for receivers
// that you do not have for a simple payment, specify only
// receiver0email, and remove the other array entries
$receiverEmailArray = array(
 'receiver0email',
 'receiver1email',
 'receiver2email',
 'receiver3email',
 'receiver4email',
 'receiver5email'
);

// TODO - Specify the receiver amounts as the amount of money,
// for example, '5' or '5.55'. Remove or set to an empty
// string the array entries for receivers that you do not have
// for a simple payment, specify only receiver0amount, and remove
// the other array entries
$receiverAmountArray = array(
 'receiver0amount',
 'receiver1amount',
 'receiver2amount',
 'receiver3amount',
 'receiver4amount',
 'receiver5amount'
);

// TODO - Specify values ONLY if you are doing a chained payment
// If you are doing a chained payment, then set ONLY 1 receiver in the
// array to 'true' as the primary receiver, and set the other receivers
// corresponding to those indicated in receiverEmailArray to 'false'
// Make sure that you do NOT specify more values
// in this array than in the receiverEmailArray
$receiverPrimaryArray = array(
 '',
 '',
 '',
 '',
 '',
 ''
);

// TODO - Set invoiceId to uniquely identify the transaction
// associated with each receiver
// Set the array entries with value for receivers that you have
// Each of the array values must be unique
$receiverInvoiceIdArray = array(
 '',
 '',
 '',
 '',
 '',
 ''
);

Adaptive Payments Integration | 89

// Request specific optional fields
// Provide a value for each field that you want to include in the
// request; if left as an empty string, the field will not be passed
// in the request.
$feesPayer = ""; // For an implicit payment use case, this cannot be "SENDER"
$ipnNotificationUrl = "";
$memo = ""; // maxlength is 1000 characters
$pin = ""; // No pin for an implicit payment use case
$preapprovalKey = ""; // No preapprovalKey for an implicit use case
$reverseAllParallelPaymentsOnError = ""; // Only specify if you are doing a
 //parallel payment as your implicit
 //payment
$trackingId = generateTrackingID(); // generateTrackingID function is found
 // in paypalplatform.php

//---
// Make the Pay API call
//
// The CallPay function is defined in the paypalplatform.php file,
// which is included at the top of this file.
//---
$resArray = CallPay ($actionType, $cancelUrl, $returnUrl, $currencyCode,
 $receiverEmailArray, $receiverAmountArray, $receiverPrimaryArray,
 $receiverInvoiceIdArray, $feesPayer, $ipnNotificationUrl, $memo,
 $pin, $preapprovalKey, $reverseAllParallelPaymentsOnError,
 $senderEmail, $trackingId
);

$ack = strtoupper($resArray["responseEnvelope.ack"]);
if($ack=="SUCCESS")
{
 // payKey is the key that you can use to identify the payment resulting
 // from the Pay call.
 $payKey = urldecode($resArray["payKey"]);
 // paymentExecStatus is the status of the payment
 $paymentExecStatus = urldecode($resArray["paymentExecStatus"]);
}
else
{
 //Display a user-friendly Error on the page using any of the following
 //error information returned by PayPal.
 //TODO - There can be more than 1 error, so check for "error(1).errorId",
 // then "error(2).errorId", and so on until you find no more errors.
 $ErrorCode = urldecode($resArray["error(0).errorId"]);
 $ErrorMsg = urldecode($resArray["error(0).message"]);
 $ErrorDomain = urldecode($resArray["error(0).domain"]);
 $ErrorSeverity = urldecode($resArray["error(0).severity"]);
 $ErrorCategory = urldecode($resArray["error(0).category"]);

 echo "Preapproval API call failed. ";
 echo "Detailed Error Message: " . $ErrorMsg;
 echo "Error Code: " . $ErrorCode;

90 | Chapter 4: PayPal Adaptive Payments

 echo "Error Severity: " . $ErrorSeverity;
 echo "Error Domain: " . $ErrorDomain;
 echo "Error Category: " . $ErrorCategory;
}
?>

Example 4-4. basicpayment.php

<?php

//---
// When you integrate this code,
// look for TODO as an indication
// that you may need to provide a value or take
// action before executing this code.
//---

require_once ("paypalplatform.php");

// ==================================
// PayPal Platform Basic Payment Module
// ==================================

// Request specific required fields
$actionType = "PAY";
$cancelUrl = "https://mycancelurl"; // TODO - If you are not executing the Pay call
 // for a preapproval, then you must set a valid
 // cancelUrl for the web approval flow that
 // immediately follows this Pay call
$returnUrl = "https://myreturnurl"; // TODO - If you are not executing the Pay call
 // for a preapproval, then you must set a valid
 // returnUrl for the web approval flow that
 // immediately follows this Pay call
$currencyCode = "USD";

// A basic payment has 1 receiver.
// TODO - specify the receiver email
$receiverEmailArray = array(
 'receiver0email'
);

// TODO - specify the receiver amount as the amount of money, for example, '5' or '5.55'
$receiverAmountArray = array(
 'receiver0amount'
);

// For basic payment, no primary indicators are needed, so set empty array.
$receiverPrimaryArray = array();

// TODO - Set invoiceId to uniquely identify the transaction associated with the receiver
// You can set this to the same value as trackingId if you wish
$receiverInvoiceIdArray = array(
 '1234abcd'
);

Adaptive Payments Integration | 91

// Request specific optional or conditionally required fields
// Provide a value for each field that you want to include in the request;
// If left as an empty string, the field will not be passed in the request
$senderEmail = ""; // TODO - If you are executing the Pay call against a
 // preapprovalKey, you should set senderEmail
 // It is not required if the web approval flow immediately
 // follows this Pay call
$feesPayer = "";
$ipnNotificationUrl = "";
$memo = ""; // maxlength is 1000 characters
$pin = ""; // TODO - If you are executing the Pay call against an
 // existing preapproval that requires a pin, then you
 // must set this
$preapprovalKey = ""; // TODO - If you are executing the Pay call
 // against an existing preapproval, set the
 // preapprovalKey here
$reverseAllParallelPaymentsOnError = ""; // Do not specify for basic payment
$trackingId = generateTrackingID(); // generateTrackingID function is
 // found in paypalplatform.php

//---
// Make the Pay API call
//
// The CallPay function is defined in the paypalplatform.php file,
// which is included at the top of this file.
//---
$resArray = CallPay ($actionType, $cancelUrl, $returnUrl, $currencyCode,
 $receiverEmailArray, $receiverAmountArray, $receiverPrimaryArray,
 $receiverInvoiceIdArray, $feesPayer, $ipnNotificationUrl, $memo,
 $pin, $preapprovalKey, $reverseAllParallelPaymentsOnError,
 $senderEmail, $trackingId
);

$ack = strtoupper($resArray["responseEnvelope.ack"]);
if($ack=="SUCCESS")
{
 if ("" == $preapprovalKey)
 {
 // redirect for web approval flow
 $cmd = "cmd=_ap-payment&paykey=" . urldecode($resArray["payKey"]);
 RedirectToPayPal ($cmd);
 }
 else
 {
 // payKey is the key that you can use to identify the payment resulting
 // from the Pay call.
 $payKey = urldecode($resArray["payKey"]);
 // paymentExecStatus is the status of the payment
 $paymentExecStatus = urldecode($resArray["paymentExecStatus"]);
 }
}
else
{
 //Display a user-friendly Error on the page using any of the following
 //error information returned by PayPal.

92 | Chapter 4: PayPal Adaptive Payments

 //TODO - There can be more than 1 error, so check for "error(1).errorId",
 // then "error(2).errorId", and so on until you find no more errors.
 $ErrorCode = urldecode($resArray["error(0).errorId"]);
 $ErrorMsg = urldecode($resArray["error(0).message"]);
 $ErrorDomain = urldecode($resArray["error(0).domain"]);
 $ErrorSeverity = urldecode($resArray["error(0).severity"]);
 $ErrorCategory = urldecode($resArray["error(0).category"]);

 echo "Preapproval API call failed. ";
 echo "Detailed Error Message: " . $ErrorMsg;
 echo "Error Code: " . $ErrorCode;
 echo "Error Severity: " . $ErrorSeverity;
 echo "Error Domain: " . $ErrorDomain;
 echo "Error Category: " . $ErrorCategory;
}
?>

Example 4-5. parallelpayment.php

<?php

//---
// When you integrate this code,
// look for TODO as an indication
// that you may need to provide a value or take
// action before executing this code.
//---

require_once ("paypalplatform.php");

// ==================================
// PayPal Platform Parallel Payment Module
// ==================================

// Request specific required fields
$actionType = "PAY";
$cancelUrl = "https://mycancelurl"; // TODO - If you are not executing the Pay call
 // for a preapproval, then you must set a valid
 // cancelUrl for the web approval flow that
 // immediately follows this Pay call
$returnUrl = "https://myreturnurl"; // TODO - If you are not executing the Pay call
 // for a preapproval, then you must set a valid
 // returnUrl for the web approval flow that
 // immediately follows this Pay call
$currencyCode = "USD";

// A parallel payment can be made among two to six receivers
// TODO - Specify the receiver emails
// Remove or set to an empty string the array entries for receivers that you
// do not have
$receiverEmailArray = array(
 'receiver0email',
 'receiver1email',
 'receiver2email',

Adaptive Payments Integration | 93

 'receiver3email',
 'receiver4email',
 'receiver5email'
);

// TODO - Specify the receiver amounts as the amount of money, for example, '5' or '5.55'
// Remove or set to an empty string the array entries for receivers that you
// do not have
$receiverAmountArray = array(
 'receiver0amount',
 'receiver1amount',
 'receiver2amount',
 'receiver3amount',
 'receiver4amount',
 'receiver5amount'
);

// For parallel payment, no primary indicators are needed, so set empty array.
$receiverPrimaryArray = array();

// TODO - Set invoiceId to uniquely identify the transaction associated with
// each receiver
// Set the array entries with value for receivers that you have
// Each of the array values must be unique
$receiverInvoiceIdArray = array(
 '',
 '',
 '',
 '',
 '',
 ''
);

// Request specific optional fields
// Provide a value for each field that you want to include in the request;
// if left as an empty string, the field will not be passed in the request
$senderEmail = ""; // TODO - If you are executing the Pay call against a
 // preapprovalKey, you should set senderEmail
 // It is not required if the web approval flow immediately
 // follows this Pay call
$feesPayer = "";
$ipnNotificationUrl = "";
$memo = ""; // maxlength is 1000 characters
$pin = ""; // TODO - If you are executing the Pay call against an existing
 // preapproval that requires a pin, then you must set this
$preapprovalKey = ""; // TODO - If you are executing the Pay call against
 // an existing preapproval, set the preapprovalKey here
$reverseAllParallelPaymentsOnError = ""; // TODO - Set this to "true" if you would
 // like each parallel payment to be reversed
 // if an error occurs
 // Defaults to "false" if you don't specify
$trackingId = generateTrackingID(); // generateTrackingID function is found
 // in paypalplatform.php

94 | Chapter 4: PayPal Adaptive Payments

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

//---
// Make the Pay API call
//
// The CallPay function is defined in the paypalplatform.php file,
// which is included at the top of this file.
//---
$resArray = CallPay ($actionType, $cancelUrl, $returnUrl, $currencyCode,
 $receiverEmailArray, $receiverAmountArray, $receiverPrimaryArray,
 $receiverInvoiceIdArray, $feesPayer, $ipnNotificationUrl, $memo,
 $pin, $preapprovalKey, $reverseAllParallelPaymentsOnError,
 $senderEmail, $trackingId
);

$ack = strtoupper($resArray["responseEnvelope.ack"]);
if($ack=="SUCCESS")
{
 if ("" == $preapprovalKey)
 {
 // redirect for web approval flow
 $cmd = "cmd=_ap-payment&paykey=" . urldecode($resArray["payKey"]);
 RedirectToPayPal ($cmd);
 }
 else
 {
 // payKey is the key that you can use to identify the result from this Pay call
 $payKey = urldecode($resArray["payKey"]);
 // paymentExecStatus is the status of the payment
 $paymentExecStatus = urldecode($resArray["paymentExecStatus"]);
 }
}
else
{
 //Display a user-friendly Error on the page using any of the following error
 //information returned by PayPal.
 //TODO - There can be more than 1 error, so check for "error(1).errorId",
 // then "error(2).errorId", and so on until you find no more errors.
 $ErrorCode = urldecode($resArray["error(0).errorId"]);
 $ErrorMsg = urldecode($resArray["error(0).message"]);
 $ErrorDomain = urldecode($resArray["error(0).domain"]);
 $ErrorSeverity = urldecode($resArray["error(0).severity"]);
 $ErrorCategory = urldecode($resArray["error(0).category"]);

 echo "Preapproval API call failed. ";
 echo "Detailed Error Message: " . $ErrorMsg;
 echo "Error Code: " . $ErrorCode;
 echo "Error Severity: " . $ErrorSeverity;
 echo "Error Domain: " . $ErrorDomain;
 echo "Error Category: " . $ErrorCategory;
}
?>

Adaptive Payments Integration | 95

Example 4-6. chainedpayment.php

<?php

//---
// When you integrate this code,
// look for TODO as an indication
// that you may need to provide a value or take
// action before executing this code.
//---

require_once ("paypalplatform.php");

// ==================================
// PayPal Platform Chained Payment Module
// ==================================

// Request specific required fields
$actionType = "PAY";
$cancelUrl = "https://mycancelurl"; // TODO - If you are not executing the Pay call
 // for a preapproval, then you must set a valid
 // cancelUrl for the web approval flow that
 // immediately follows this Pay call
$returnUrl = "https://myreturnurl"; // TODO - If you are not executing the Pay call
 // for a preapproval, then you must set a valid
 // returnUrl for the web approval flow that
 // immediately follows this Pay call
$currencyCode = "USD";

// A chained payment can be made with 1 primary receiver and between 1 and 5 secondary
// receivers
// TODO - Specify the receiver emails
// Remove or set to an empty string the array entries for receivers that you
// do not have
$receiverEmailArray = array(
 'receiver0email',
 'receiver1email',
 'receiver2email',
 'receiver3email',
 'receiver4email',
 'receiver5email'
);

// TODO - Specify the receiver amounts as the amount of money, for example, '5' or '5.55'
// Remove or set to an empty string the array entries for receivers that you
// do not have
$receiverAmountArray = array(
 'receiver0amount',
 'receiver1amount',
 'receiver2amount',
 'receiver3amount',
 'receiver4amount',
 'receiver5amount'
);

96 | Chapter 4: PayPal Adaptive Payments

// TODO - Set ONLY 1 receiver in the array to 'true' as the primary receiver, and set the
// other receivers corresponding to those indicated in receiverEmailArray to
// 'false'. Make sure that you do NOT specify more values in this array than
// in the receiverEmailArray.
$receiverPrimaryArray = array(
 '',
 '',
 '',
 '',
 '',
 ''
);

// TODO - Set invoiceId to uniquely identify the transaction associated with each receiver
// Set the array entries with value for receivers that you have each of the array
// Values must be unique across all Pay calls made by the caller's API credentials
$receiverInvoiceIdArray = array(
 '',
 '',
 '',
 '',
 '',
 ''
);

// Request specific optional fields
// Provide a value for each field that you want to include in the request;
// if left as an empty string, the field will not be passed in the request
$senderEmail = ""; // TODO - If you are executing the Pay call against a preapprovalKey,
 // you should set senderEmail
 // It is not required if the web approval flow immediately
 // follows this Pay call
$feesPayer = "";
$ipnNotificationUrl = "";
$memo = ""; // maxlength is 1000 characters
$pin = ""; // TODO - If you are executing the Pay call against an existing preapproval
 // that requires a pin, then you must set this
$preapprovalKey = ""; // TODO - If you are executing the Pay call against an existing
 // preapproval, set the preapprovalKey here
$reverseAllParallelPaymentsOnError = ""; // TODO - Do not specify for chained payment
$trackingId = generateTrackingID(); // generateTrackingID function is found
 // in paypalplatform.php

//---
// Make the Pay API call
//
// The CallPay function is defined in the paypalplatform.php file,
// which is included at the top of this file.
//---
$resArray = CallPay ($actionType, $cancelUrl, $returnUrl, $currencyCode,
 $receiverEmailArray, $receiverAmountArray, $receiverPrimaryArray,
 $receiverInvoiceIdArray, $feesPayer, $ipnNotificationUrl, $memo,
 $pin, $preapprovalKey, $reverseAllParallelPaymentsOnError,
 $senderEmail, $trackingId
);

Adaptive Payments Integration | 97

$ack = strtoupper($resArray["responseEnvelope.ack"]);
if($ack=="SUCCESS")
{
 if ("" == $preapprovalKey)
 {
 // redirect for web approval flow
 $cmd = "cmd=_ap-payment&paykey=" . urldecode($resArray["payKey"]);
 RedirectToPayPal ($cmd);
 }
 else
 {
 // The Pay API call was made for an existing preapproval agreement, so no approval
 // flow follows.
 // payKey is the key that you can use to identify the result from this Pay call.
 $payKey = urldecode($resArray["payKey"]);
 // paymentExecStatus is the status of the payment
 $paymentExecStatus = urldecode($resArray["paymentExecStatus"]);
 // Note that in order to get the exact status of the transactions resulting from
 // a Pay API call, you should make the PaymentDetails API call for the payKey
 }
}
else
{
 //Display a user-friendly Error on the page using any of the following error information
 //returned by PayPal.
 //TODO - There can be more than 1 error, so check for "error(1).errorId",
 // then "error(2).errorId", and so on until you find no more errors.
 $ErrorCode = urldecode($resArray["error(0).errorId"]);
 $ErrorMsg = urldecode($resArray["error(0).message"]);
 $ErrorDomain = urldecode($resArray["error(0).domain"]);
 $ErrorSeverity = urldecode($resArray["error(0).severity"]);
 $ErrorCategory = urldecode($resArray["error(0).category"]);

 echo "Pay API call failed. ";
 echo "Detailed Error Message: " . $ErrorMsg;
 echo "Error Code: " . $ErrorCode;
 echo "Error Severity: " . $ErrorSeverity;
 echo "Error Domain: " . $ErrorDomain;
 echo "Error Category: " . $ErrorCategory;
}
?>

98 | Chapter 4: PayPal Adaptive Payments

CHAPTER 5

PayPal Mobile Express Checkout

The latest wave of development focuses on creating applications and commerce inter-
faces for the mobile market. At the Innovate 2010 Developer Conference, PayPal
announced the release of Mobile Express Checkout (MEC), which is built on the ex-
isting Express Checkout API. Mobile Express Checkout allows for fast development,
especially if you already have an Express Checkout-based solution. In addition to Mo-
bile Express Checkout, PayPal provides development libraries, or Mobile Payment Li-
braries (MPL), for both the iPhone and Android platforms. Table 5-1, also provided by
Bill Day at https://www.x.com/docs/DOC-3035, outlines the standard PayPal APIs and
their mobile equivalents.

Table 5-1. Standard PayPal APIs and mobile equivalents

PayPal APIs you use today Use this for native mobile development Use this for mobile web development

Express Checkout MEC library for iOS MEC

Adaptive Payments MPL N/A

Website Payments Standard MPL N/A

MPL is a native application development option, and it is especially useful if you are
targeting apps on iOS- or Android-based devices that have no backend commerce in-
frastructure to interface with. MPL also supports some PayPal technologies currently
not addressed by MEC, such as Adaptive Payments.

To fully utilize the capabilities of Mobile Express Checkout and the development
libraries, you should be familiar with mobile website programming, the Name-Value
Pair API, and additionally the platform you are developing on if integrating with a
mobile application. It should also be noted that iOS uses Objective-C, and so knowl-
edge of this language is a plus. Let’s look at the MEC flow first.

99

https://www.x.com/docs/DOC-3035

Mobile Express Checkout Flow
The MEC flow, shown in Figure 5-1, has the following steps:

1. The customer clicks the “Checkout with PayPal” button on your site.

2. The customer logs into PayPal.

3. The customer reviews the transaction on PayPal and submits payment.

4. The customer receives an order confirmation.

Figure 5-1. Mobile Express Checkout flow

As you can see, Mobile Express Checkout functions identically to Express Checkout,
but MEC has several design and implementation best practices to consider, which are
outlined next.

Mobile Express Checkout Best Practices
Just as with Express Checkout, shortcut placement for MEC is key. Customers can
enter into MEC from either the Shopping Cart (where users see the items they are
purchasing) or the Payments page (where they are asked to provide all their billing and
payment information). The recommendations and requirements when entering from
the Shopping Cart are as follows:

• “Checkout with PayPal” buttons should be used.

• You must use approved, hosted PayPal buttons.

• You cannot resize any PayPal-supplied images.

• The checkout button should take the customer directly to PayPal.

• It should take no more then two pages after the PayPal pages to complete the
payment.

• The recommended flows are Shopping Cart→Login→Review→Confirmation, or
Shopping Cart→Login→Review→Additional Review with Submit→Confirmation.

100 | Chapter 5: PayPal Mobile Express Checkout

If you are entering into MEC from the Payments page, the recommendations and re-
quirements are as follows:

• The PayPal Payment Mark should be used.

• You must use approved, hosted PayPal marks.

• You cannot resize any PayPal-supplied images.

• Radio buttons should have at least a 44 pixel spacing to enable easy selection on
touch-enabled devices.

If your customer has already set up a billing agreement through Express Checkout
online, the “Checkout with PayPal” button should contain her email address. Doing
so helps to personalize the transaction. If there is no billing agreement set up, the basic
“Checkout with PayPal” button should be used.

Mobile Express Checkout Library for iOS
PayPal provides a MEC library for iOS, available for download from https://www.x.com/
community/ppx/xspaces/mobile/mobile_ec. This MEC library supports two different
programming flows: it can be called either directly from your mobile application or via
a PayPal button on your mobile website.

MEC Mobile Application Integration
MEC can be integrated into your mobile application, allowing you to start and end the
payment process with screens inside your application. The MEC checkout pages them-
selves are contained inside a web view. The steps for doing so are as follows:

1. Acquire a device token from the MEC library before rendering the payment screen
with the PayPal Button. Include a pointer to the method you delegate for handling
the device token.

2. Acquire a PayPal payment button from the Library and render it on your mobile
application screen. Include a pointer to the method you delegate for handling the
button-click event.

3. When your customer clicks the PayPal button, it will initialize your delegated
method to do the following:

a. Call a routine on your mobile web server for passing the payment information.

b. Your mobile web server will then send a SetExpressCheckout request with the
payment information to PayPal.

c. Pass the checkout token returned from SetExpressCheckout back to your
mobile application.

Mobile Express Checkout Library for iOS | 101

https://www.x.com/community/ppx/xspaces/mobile/mobile_ec
https://www.x.com/community/ppx/xspaces/mobile/mobile_ec

d. Open a web view redirecting the customer’s browser to PayPal with the
Mobile command, using the device token and the checkout token as URL
parameters. For example:

https://www.paypal.com/cgi-bin/webscr?cmd=_express-checkout-mobile

&drt=valueFromMobileExpressCheckoutLibrary&token=valueFromSetExpres

sCheckoutResponse

e. Watch the web view for a redirect call from PayPal to either your return or
cancel URLs.

f. If PayPal redirects the web view to your return URL, call surrogate routines on
your mobile web server that send GetExpressCheckoutDetails and DoExpress
CheckoutPayment requests to PayPal to complete the payment.

MEC Mobile Website Integration
MEC can be integrated directly with your mobile website, allowing you to start and
end the payment process with pages on your site. The steps for doing so are as follows:

1. Acquire a device token from the MEC library before rendering the web view of
your MEC implementation. Include a pointer to the method you delegate for han-
dling the device token.

2. Launch a web view of the web page or routine on your mobile server that initiates
your checkout process. Include the device token as a URL parameter, as well as
the item details in the shopping cart.

3. Watch the web view for a redirect from your mobile web server that contains a call
to a known URL, signaling the checkout process is complete.

MEC Library Methods
MEC contains three methods: fetchDeviceReferenceTokenWithAppID, getPayButtonWith
Target, and getInstance. Let’s look at each in depth.

fetchDeviceReferenceTokenWithAppID method

The fetchDeviceReferenceTokenWithAppID method returns a device token for use with
the transaction. Use the del parameter to specify your delegate function that receives
device tokens. Device tokens have a 45-minute expiration time limit, and are passed as
the &drt parameter on the URL when you redirect the mobile browser to PayPal.

The MEC library uses the PayPal production servers by default to get device tokens.
During your development process, use the env parameter to fetch device tokens from
the sandbox. Be sure to fetch the device token just before you get the PayPal button.
When you fetch the device token, the library determines whether the buyer stays logged
in on the device. If the buyer is already logged into PayPal, the library will display the

102 | Chapter 5: PayPal Mobile Express Checkout

buyer’s name above the button when it renders. Table 5-2 outlines the parameters for
fetchDeviceReferenceTokenWithAppID.

Table 5-2. fetchDeviceReferenceTokenWithAppID method

Parameter Description

inAppId: The PayPal Application ID from X.com (required). For the sandbox environment, use

APP-80W284485P519543T.

env: Indicates which PayPal servers the library uses (optional). Allowable values are:

• ENV_LIVE

• ENV_SANDBOX

• ENV_NONE

del: Your delegate function that receives device tokens (required).

getPayButtonWithTarget method

If your payment implementation is in a mobile application, you can get a button from
the MEC library. The getPayButtonWithTarget method returns a UIButton for use on
your mobile application screen, and it provides a target: parameter that allows you to
specify which UIViewController receives the callbacks. Table 5-3 outlines the parame-
ters for getPayButtonWithTarget.

Table 5-3. getPayButtonWithTarget method

Parameter Description

target: The UIViewController that is the delegate for callbacks (required).

action: Your method that responds to the PayPal button click (required).

buttonType: The size and appearance of the PayPal button (required). Allowable values are:

• BUTTON_152x33

• BUTTON_194x37

• BUTTON_278x43

• BUTTON_294x43

getInstance method

You can use the getInstance method to specify and access the library’s runtime prop-
erties. This can be used for debugging purposes as well as to verify that your payment
is working properly. Table 5-4 outlines the parameters for getInstance.

Mobile Express Checkout Library for iOS | 103

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

Table 5-4. getInstance method

Parameter Description

lang The locale code for the label of the PayPal button. By default, the library uses the locale of the

device.

errorMessage If the library fails to acquire a valid device token, the error message provides more details about

the failure.

paymentsEnabled If your attempt to fetch a device token succeeded, the value of this property is TRUE.

MEC Localization Support
MEC supports numerous locales, which can be specified after you initialize the library.
By default it will determine the local of the user’s device, and if it does not support the
device’s locale, it will fall back on en_US. You specify the locale with the lang property
of the PayPal object. This should be set after initializing the library and before you make
the call to getPayButtonWithTarget() to get a localized button. Table 5-5 lists the sup-
ported localizations.

Table 5-5. Supported localizations

Country or region Supported locale codes

Argentina es_AR

Brazil pt_BR

Australia en_AU

Belgium en_BE, nl_BR, fr_BE

Canada en_CA, fr_CA

France fr_FR, en_FR

Germany de_DE, en_DE

Hong Kong zh_HK, en_HK

India en_IN

Italy it_IT

Japan ja_JP, en_JP

Mexico es_MX, en_MX

Netherlands nl_NL, en_NL

Poland pl_PL, en_PL

Singapore en_SG

Spain es_ES, en_ES

Switzerland de_CH, en_CH, fr_CH

Taiwan zh_TW, en_TW

United States en_US

104 | Chapter 5: PayPal Mobile Express Checkout

Sample MEC Code
The MEC library includes a library header file, PayPal.h, for your mobile application
or mobile web code. The contents of PayPal.h are shown in Example 5-1. You can
access features of the MEC library using the "PayPal : NSObject <UIWebViewDelegate>"
interface.

Example 5-1. PayPal.h

#import <UIKit/UIKit.h>

typedef enum PayPalEnvironment {
 ENV_LIVE,
 ENV_SANDBOX,
 ENV_NONE,
} PayPalEnvironment;

typedef enum PayPalButtonType {
 BUTTON_118x24,
 BUTTON_152x33,
 BUTTON_194x37,
 BUTTON_278x43,
 BUTTON_294x43,
 BUTTON_TYPE_COUNT,
}PayPalButtonType;

@protocol DeviceReferenceTokenDelegate <NSObject>

@required
- (void)receivedDeviceReferenceToken:(NSString *)token;
- (void)couldNotFetchDeviceReferenceToken; //Check the errorMessage property to see what
 //the problem was.

@end

@interface PayPal : NSObject <UIWebViewDelegate> {
 @private
 BOOL initialized;//Determines if the initialization call has finished and the PayPal
 //object is initialized.
 BOOL paymentsEnabled;
 NSString *appID;
 NSString *lang;
 PayPalEnvironment environment;

 NSString *errorMessage;
 NSMutableArray *payButtons;

 id<DeviceReferenceTokenDelegate> delegate;
}

Mobile Express Checkout Library for iOS | 105

@property (nonatomic, retain) NSString *lang;
@property (nonatomic, retain) NSString *errorMessage;
@property (nonatomic, retain) NSMutableArray *payButtons;

@property (nonatomic, readonly) NSString *appID;
@property (nonatomic, readonly) BOOL initialized;
@property (nonatomic, readonly) BOOL paymentsEnabled;
@property (nonatomic, readonly) PayPalEnvironment environment;

+ (PayPal*)getInstance;

- (void)fetchDeviceReferenceTokenWithAppID:(NSString const *)
inAppID forEnvironment:(PayPalEnvironment)env
withDelegate:(id<DeviceReferenceTokenDelegate>)del;
- (void)fetchDeviceReferenceTokenWithAppID:(NSString const *)
inAppID withDelegate:(id<DeviceReferenceTokenDelegate>)del;

- (UIButton *)getPayButtonWithTarget:(NSObject const *)target andAction:(SEL)action
andButtonType:(PayPalButtonType)inButtonType;

@end

A full example of using the MEC library for an online pizza delivery service application
can be found in the library download at https://www.x.com/community/ppx/xspaces/
mobile/mobile_ec.

Summary
MEC is a new PayPal offering, but it builds on the tried and true PayPal Express Check-
out. PayPal continues to bring new technologies into the realm of payment solutions.
In this book, I’ve tried to provide the fundamental knowledge you need to choose which
PayPal solution is right for you and understand how to implement that solution into
your unique situation. I hope that I have succeeded in both of these avenues.

106 | Chapter 5: PayPal Mobile Express Checkout

https://www.x.com/community/ppx/xspaces/mobile/mobile_ec
https://www.x.com/community/ppx/xspaces/mobile/mobile_ec

Index

A
ACK parameter, response string, 9
Active Server Pages (see ASP)
Adaptive Payments, 59

basic payments, 72, 91–93
chained payments, 62, 67, 72, 96–98
delayed chained payments, 62
explicit payments, 63–64
guest payments, 66
implicit payments, 66, 72, 88–91
integration of, 71–98
live environment, setting, 71
methods for, 59–60

CancelPreapproval, 59
ConvertCurrency, 59
ExecutePayment, 59, 70–71
GetPaymentOptions, 59
Pay, 59, 67–68
PaymentDetail, 59
Preapproval, 60
PreapprovalDetails, 60
Refund, 60
SetPaymentOptions, 60, 68–70

parallel payments, 61, 67, 72, 93–96
payment approval types, 63–66
permission levels for, 60–61
preapproved payments, 64, 68, 72, 86–88
sandbox environment, setting, 71
workflows for, 61–62

Android, MEC support for, 99
API certificate, 4
API credentials

integrating in Express Checkout, 28
location of, 4, 8

obtaining, 4–5
API signature, 4–5
ASP (Classic)

decode method, 9
encode method, 6
Express Checkout supporting, 26

ASP.NET
decode method, 9
encode method, 6
Express Checkout supporting, 26
NVP API supporting, 4

authorization server, 1

B
basicpayment.php file, 91–93
billing.php file, 29, 40–44

C
Callback method, 15, 22–23
CancelPreapproval method, 59
chained payments, 62, 67, 72, 96–98
chainedpayment.php file, 96–98
checkout process, 11, 12

(see also Adaptive Payments; Direct
Payment; Express Checkout; Mobile
Express Checkout (MEC))

code examples, permission required to use, ix
ColdFusion

decode method, 9
encode method, 6
NVP API supporting, 4

contact information for this book, x
conventions used in this book, viii
ConvertCurrency method, 59

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

107

CorrelationID parameter, response string, 9

D
decode methods, 8
delayed chained payments, 62
Direct Payment, 49

compared to Express Checkout, 49
DoDirectPayment method for, 50–54
integration of, 54–55
live environment, setting, 55
sandbox environment, setting, 55
workflow for, 49

DoDirectPayment method, 50–54
dodirectpayment.php file, 55
DoExpressCheckoutPayment method, 15, 18–

22, 25, 102

E
encode methods, 6
examples (see code examples)
ExecutePayment method, 59, 70–71
explicit payments, 63–64
Express Checkout, 11

billing page, 29, 40–44
cancel URL for, 26
Checkout entry point, 13–14
compared to Direct Payment, 49
currency for, selecting, 27
integration of, 24–48
live environment, setting, 28
methods for, 15–16

Callback, 15, 22–23
DoExpressCheckoutPayment, 15, 18–

22, 25
GetExpressCheckoutDetails, 15, 17
SetExpressCheckout, 15, 16–17, 24–25

order confirmation page, 29, 45–48
Payment Method entry point, 14
programming language, selecting, 26
return URL for, 26
sandbox environment, setting, 28
shipping page, 29, 44–45
shopping cart order form, 27, 48
token for, 14
transaction, setting up, 24–25
workflow for, 12–14

expresscheckout.php file, 28, 39–40

F
fetchDeviceReferenceTokenWithAppID

method, 102
fonts used in this book, viii

G
GetExpressCheckoutDetails method, 15, 17,

102
getInstance method, 103
getPayButtonWithTarget method, 103
GetPaymentOptions method, 59
guest payments, 66

H
HTTPS (HTTP Secure), 1

I
implicit payments, 66, 72, 88–91
implicitpayment.php file, 88–91
Integration Wizard

for Adaptive Payments, 71–98
for Express Checkout, 25–48

iOS-based platforms, MEC support for, 99
iPhone, MEC support for, 99

J
Java

decode method, 9
encode method, 6
Express Checkout supporting, 26
NVP API supporting, 4

JSP (Java Server Pages), Express Checkout
supporting, 26

L
live environment, 4

account for, 5
for Adaptive Payments, 71
for Direct Payment, 55
for Express Checkout, 28

localization support, for MEC, 104

M
MEC (see Mobile Express Checkout)
METHOD parameter, request string, 6
Mobile Express Checkout (MEC), 99

108 | Index

application integration for, 101–102
best practices for, 100–101
example application for, 106
header file for, 105–106
localization support for, 104
MEC library for iOS, 101–106

fetchDeviceReferenceTokenWithAppID
method, 102

getInstance method, 103
getPayButtonWithTarget method, 103

Payments entry point for, 101
platforms supported, 99
Shopping Cart entry point for, 100
website integration for, 102
workflow for, 100

Mobile Payment Libraries (MPL), 99

N
NVP API (Name-Value Pair API), 1–2

Adaptive Payments methods, 59–60
API credentials for, 4–5
Callback method, 15, 22–23
CancelPreapproval method, 59
ConvertCurrency method, 59
direct integration of, 3–10
Direct Payment methods, 50–54
DoDirectPayment method, 50–54
DoExpressCheckoutPayment method, 15,

18–22, 25, 102
ExecutePayment method, 59, 70–71
Express Checkout methods, 15–16
GetExpressCheckoutDetails method, 15,

17, 102
GetPaymentOptions method, 59
live environment, 4, 5
Pay method, 59, 67–68
PaymentDetail method, 59
Preapproval method, 60
PreapprovalDetails method, 60
Refund method, 60
request string for, 2, 6–8
response string for, 2, 8–10
sandbox environment, 4
SDK integration of, 3
SetExpressCheckout method, 15, 16–17,

24–25, 101
SetPaymentOptions method, 60, 68–70

O
Objective-C, MEC library for iOS using, 99
orderconfirmation.php file, 29, 45–48

P
parallel payments, 61, 67, 72, 93–96
parallelpayment.php file, 93–96
Pay method, 59, 67–68
PaymentDetail method, 59
PayPal API (see NVP API)
PayPal.h file, 105–106
paypalfunctions.php file, 28, 31–39
paypalplatform.php file, 71, 75–86
permission levels, Adaptive Payments, 60–61
PHP

decode method, 9
encode method, 6
Express Checkout supporting, 26
NVP API supporting, 4

Preapproval method, 60
PreapprovalDetails method, 60
preapprovalflow.php file, 86–88
preapproved payments, 64, 68, 72, 86–88
programming language

for Express Checkout, 26
for MEC library for iOS, 99
for NVP API, 4

PWD parameter, request string, 6

R
Refund method, 60
request string, NVP API, 2, 6–8
response string, NVP API, 2, 8–10
Ruby, NVP API supporting, 4

S
sandbox environment, 4

account for, 4
for Adaptive Payments, 71
for Direct Payment, 55
for Express Checkout, 28

$_SESSION variable, 27, 29
SetExpressCheckout method, 15, 16–17, 24–

25, 101
SetPaymentOptions method, 60, 68–70
shipping.php file, 29, 44–45
shoppingcart.php file, 27, 48

Index | 109

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

T
testing environment (see sandbox

environment)
timestamp parameter, response string, 9
token, for Express Checkout, 14
typographical conventions used in this book,

viii

U
URL decoding, 8
URL encoding, 6
USER parameter, request string, 6

V
VERSION parameter, request string, 6

W
Website Payments Pro, 49

(see also Direct Payment; Express
Checkout)

websites
for this book, x
Integration Wizard, 25, 71
MEC example application, 106
MEC library, 101

110 | Index

About the Author
Michael Balderas started his technology career in 1995 in Fort Worth, Texas, with
hardware and Internet services. He began his transition to database architecture and
utility interfaces in 1996. Over the years, Mike has expanded his skills to include
frontend and middleware development. One of his most notable projects is the archi-
tecture of an enterprise suite for the law enforcement and homeland security market-
place, which has been lauded by the Director of the FBI and the Secretary of Homeland
Security. Mike enjoys designing and developing technology that delivers a seamless
integration with people and processes for optimal results.

Colophon
The animal on the cover of PayPal APIs: Up and Running is an African wildcat (Felis
silvestris cafra), also known as a desert cat or African caffre. Studies suggest that the
common domesticated cat is yet another subspecies of Felis silvestris and that the cats
domesticated themselves around 10,000 years ago in the Middle East. As agriculture
developed in ancient civilizations, humans began to store large amounts of grain. These
granaries attracted rodents, and in turn, wildcats.

Thus, the African wildcat bears a resemblance to domesticated cats, though it is roughly
1.5 times larger at 18‒30 inches long and 7‒14 pounds. Among their population, these
animals are also much more similar in appearance to each other than house cats. Their
coats range from sandy brown to gray, with a white belly and black stripes on the legs
and tail. They have shorter fur and are smaller than the main wildcat species of Europe.

The African wildcat can be found throughout sub-Saharan Africa, and another African
subspecies (F. s. lybica) ranges through northern Africa and the Middle East. These
animals live in a variety of habitats, such as grasslands and forests. They primarily hunt
at night, catching mice and other small mammals, as well as birds, reptiles, and am-
phibians if the opportunity arises. During the day, they rest in concealed places like old
burrows or thick vegetation.

Unsurprisingly, wildcats share many behaviors with domestic felines, such as burying
their droppings and vocalizing with purrs, yowls, meows, and hisses. Their genetic
similarities may pose a threat to the African wildcat, however; in areas where there is
a wildcat population living near human settlements, it is common for wild and domestic
cats to interbreed. It is now difficult to find purebred African wildcats anywhere near
civilization, which may not bode well for it remaining a unique species.

The cover image is from Lydekker’s Royal Natural History. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Goals of This Book
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. The PayPal API
	Overview of the PayPal API
	Getting Started
	Direct Versus SDK Integration
	Testing Versus Live Implementation
	Obtaining API Credentials
	Creating an API Signature
	Creating a Name-Value Pair (NVP) Request
	URL encoding
	Request format
	Putting it together

	Parsing an NVP Response
	URL decoding
	Response format
	Putting it together

	Chapter 2. PayPal Express Checkout
	Checkout Process Workflows
	Generic Checkout Workflow
	Express Checkout Workflow
	Generic Versus Express Checkout Workflow

	Express Checkout Flow
	PayPal Express Checkout API Operations
	SetExpressCheckout
	GetExpressCheckoutDetails
	DoExpressCheckoutPayment
	Callback

	Simple Express Checkout Integration
	Setting Up the Transaction

	Express Checkout Integration

	Chapter 3. PayPal Website Payments Pro
	Overview of Direct Payment
	Direct Payment Workflow
	PayPal Direct Payment API Operations
	Simple Direct Payment Integration
	Direct Payment Integrations

	Chapter 4. PayPal Adaptive Payments
	Overview of Adaptive Payments
	PayPal Adaptive Payments API Operations Overview
	Adaptive Payments Permission Levels
	Adaptive Payments Application Workflows
	Payment Approval and Payment Flows
	Explicit Payments
	Preapproved Payments
	Implicit Payments
	Guest Payments

	Adaptive Payments API Operations in Depth
	Pay API Operation
	SetPaymentOptions API Operation
	displayOptions
	initiatingEntity
	requestEnvelope
	ResponseEnvelope

	ExecutePayment API Operation

	Adaptive Payments Integration

	Chapter 5. PayPal Mobile Express Checkout
	Mobile Express Checkout Flow
	Mobile Express Checkout Best Practices
	Mobile Express Checkout Library for iOS
	MEC Mobile Application Integration
	MEC Mobile Website Integration
	MEC Library Methods
	fetchDeviceReferenceTokenWithAppID method
	getPayButtonWithTarget method
	getInstance method

	MEC Localization Support
	Sample MEC Code
	Summary

	Index

