
www.allitebooks.com

http://www.allitebooks.org

OpenCL Programming
by Example

A comprehensive guide on OpenCL programming
with examples

Ravishekhar Banger

Koushik Bhattacharyya

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

OpenCL Programming by Example

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1161213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-234-2

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Ravishekhar Banger

Koushik Bhattacharyya

Reviewers
Thomas Gall

Erik Rainey

Erik Smistad

Acquisition Editors
Wilson D'souza

Kartikey Pandey

Kevin Colaco

Lead Technical Editor
Arun Nadar

Technical Editors
Gauri Dasgupta

Dipika Gaonkar

Faisal Siddiqui

Project Coordinators
Wendell Palmer

Amey Sawant

Proofreader
Mario Cecere

Indexers
Rekha Nair

Priya Subramani

Graphics
Sheetal Aute

Ronak Dhruv

Yuvraj Mannari

Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Ravishekhar Banger calls himself a "Parallel Programming Dogsbody". Currently
he is a specialist in OpenCL programming and works for library optimization using
OpenCL. After graduation from SDMCET, Dharwad, in Electrical Engineering, he
completed his Masters in Computer Technology from Indian Institute of Technology,
Delhi. With more than eight years of industry experience, his present interest
lies in General Purpose GPU programming models, parallel programming, and
performance optimization for the GPU. Having worked for Samsung and Motorola,
he is now a Member of Technical Staff at Advanced Micro Devices, Inc. One of his
dreams is to cover most of the Himalayas by foot in various expeditions. You can
reach him at ravibanger@gmail.com.

Koushik Bhattacharyya is working with Advanced Micro Devices, Inc. as
Member Technical Staff and also worked as a software developer in NVIDIA®. He
did his M.Tech in Computer Science (Gold Medalist) from Indian Statistical Institute,
Kolkata, and M.Sc in pure mathematics from Burdwan University. With more than
ten years of experience in software development using a number of languages and
platforms, Koushik's present area of interest includes parallel programming and
machine learning.

We would like to take this opportunity to thank "PACKT publishing"
for giving us an opportunity to write this book.

Also a special thanks to all our family members, friends and
colleagues, who have helped us directly or indirectly in writing
this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Thomas Gall had his first experience with accelerated coprocessors on the
Amiga back in 1986. After working with IBM for twenty years, now he is working
as a Principle Engineer and serves as Linaro.org's technical lead for the Graphics
Working Group. He manages the Graphics and GPGPU teams. The GPGPU team
is dedicated to optimize existing open source software to take advantage of GPGPU
technologies such as OpenCL, as well as the implementation of GPGPU drivers for
ARM based SoC systems.

Erik Rainey works at Texas Instruments, Inc. as a Senior Software Engineer on
Computer Vision software frameworks in embedded platforms in the automotive,
safety, industrial, and robotics markets. He has a young son, who he loves playing
with when not working, and enjoys other pursuits such as music, drawing, crocheting,
painting, and occasionally a video game. He is currently involved in creating the
Khronos Group's OpenVX, the specification for computer vision acceleration.

Erik Smistad is a PhD candidate at the Norwegian University of Science and
Technology, where he uses OpenCL and GPUs to quickly locate organs and other
anatomical structures in medical images for the purpose of helping surgeons
navigate inside the body during surgery. He writes about OpenCL and his projects
on his blog, thebigblob.com, and shares his code at github.com/smistad.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Hello OpenCL 7

Advances in computer architecture 8
Different parallel programming techniques 10

OpenMP 10
MPI 11
OpenACC 11
CUDA 12

CUDA or OpenCL? 12
Renderscripts 13
Hybrid parallel computing model 13

Introduction to OpenCL 13
Hardware and software vendors 15

Advanced Micro Devices, Inc. (AMD) 15
NVIDIA® 17

Intel® 18

ARM Mali™ GPUs 19
OpenCL components 19
An example of OpenCL program 21

Basic software requirements 21
Windows 21
Linux 21

Installing and setting up an OpenCL compliant computer 22
Installation steps 22

Installing OpenCL on a Linux system with an AMD graphics card 23
Installing OpenCL on a Linux system with an NVIDIA graphics card 24
Installing OpenCL on a Windows system with an AMD graphics card 24
Installing OpenCL on a Windows system with an NVIDIA graphics card 24
Apple OSX 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Multiple installations 25
Implement the SAXPY routine in OpenCL 26

Summary 32
References 33

Chapter 2: OpenCL Architecture 35
Platform model 36

AMD A10 5800K APUs 37
AMD Radeon™ HD 7870 Graphics Processor 38
NVIDIA® GeForce® GTC 680 GPU 38
Intel® IVY bridge 39

Platform versions 40
Query platforms 40
Query devices 42

Execution model 45
NDRange 46
OpenCL context 50
OpenCL command queue 51

Memory model 52
Global memory 53
Constant memory 53
Local memory 53
Private memory 54

OpenCL ICD 55
What is an OpenCL ICD? 56

Application scaling 57
Summary 58

Chapter 3: OpenCL Buffer Objects 59
Memory objects 60
Creating subbuffer objects 62
Histogram calculation 65

Algorithm 65
OpenCL Kernel Code 66
The Host Code 68

Reading and writing buffers 71
Blocking_read and Blocking_write 73
Rectangular or cuboidal reads 75

Copying buffers 79
Mapping buffer objects 80
Querying buffer objects 83
Undefined behavior of the cl_mem objects 85
Summary 85

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 4: OpenCL Images 87
Creating images 88

Image format descriptor cl_image_format 88
Image details descriptor cl_image_desc 90
Passing image buffers to kernels 95

Samplers 96
Reading and writing buffers 98
Copying and filling images 100
Mapping image objects 102
Querying image objects 102
Image histogram computation 104
Summary 108

Chapter 5: OpenCL Program and Kernel Objects 109
Creating program objects 110

Creating and building program objects 110
OpenCL program building options 117
Querying program objects 118
Creating binary files 120
Offline and online compilation 121
SAXPY using the binary file 123
SPIR – Standard Portable Intermediate Representation 125

Creating kernel objects 126
Setting kernel arguments 127
Executing the kernels 129
Querying kernel objects 130
Querying kernel argument 131
Releasing program and kernel objects 134
Built-in kernels 135

Summary 135
Chapter 6: Events and Synchronization 137

OpenCL events and monitoring these events 139
OpenCL event synchronization models 140

No synchronization needed 140
Single device in-order usage 140

Synchronization needed 141
Single device and out-of-order queue 141
Multiple devices and different OpenCL contexts 141
Multiple devices and single OpenCL context 142

Coarse-grained synchronization 143
Event-based or fine-grained synchronization 145
Getting information about cl_event 147

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

User-created events 150
Event profiling 151
Memory fences 152
Summary 153

Chapter 7: OpenCL C Programming 155
Built-in data types 155

Basic data types and vector types 156
The half data type 157
Other data types 158
Reserved data types 159
Alignment of data types 159
Vector data types 160
Vector components 162

Aliasing rules 163
Conversions and type casts 163

Implicit conversion 164
Explicit conversion 164
Reinterpreting data types 168

Operators 169
Operation on half data type 170

Address space qualifiers 170
__global/global address space 171
__local/local address space 172
__constant/constant address space 172
__private/private address space 173
Restrictions 173

Image access qualifiers 173
Function attributes 174
Data type attributes 174
Variable attribute 175

Storage class specifiers 175
Built-in functions 175

Work item function 176
Synchronization and memory fence functions 176
Other built-ins 177

Summary 177
Chapter 8: Basic Optimization Techniques with Case Studies 179

Finding the performance of your program? 180
Explaining the code 182
Tools for profiling and finding performance bottlenecks 182

Table of Contents

[v]

Case study – matrix multiplication 185
Sequential implementation 186
OpenCL implementation 188
Simple kernel 189
Kernel optimization techniques 190

Case study – Histogram calculation 197
Finding the scope of the use of OpenCL 200
General tips 200
Summary 203

Chapter 9: Image Processing and OpenCL 205
Image representation 206
Implementing image filters 208

Mean filter 208
Median filter 209
Gaussian filter 209
Sobel filter 211

OpenCL implementation of filters 212
Mean and Gaussian filter 212
Median filter 215
Sobel filter 217

JPEG compression 218
Encoding JPEG 219
OpenCL implementation 222

Summary 228
References 228

Chapter 10: OpenCL-OpenGL Interoperation 229
Introduction to OpenGL 230
Defining Interoperation 232
Implementing Interoperation 234

Detecting if OpenCL-OpenGL Interoperation is supported 234
Initializing OpenCL context for OpenGL Interoperation 235
Mapping of a buffer 238
Listing Interoperation steps 240
Synchronization 241
Creating a buffer from GL texture 243
Renderbuffer object 244

Summary 246
Chapter 11: Case studies – Regressions, Sort, and KNN 247

Regression with least square curve fitting 248
Linear approximations 248

Table of Contents

[vi]

Parabolic approximations 251
Implementation 252

Bitonic sort 262
k-Nearest Neighborhood (k-NN) algorithm 269
Summary 278

Index 279

Preface
This book is designed as a concise introduction to OpenCL programming for
developers working on diverse domains. It covers all the major topics of OpenCL
programming and illustrates them with code examples and explanations from
different fields such as common algorithm, image processing, statistical computation,
and machine learning. It also dedicates one chapter to Optimization techniques,
where it discusses different optimization strategies on a single simple problem.

Parallel programming is a fast developing field today. As it is becoming increasingly
difficult to increase the performance of a single core machine, hardware vendors see
advantage in packing multiple cores in a single SOC. The GPU (Graphics Processor
Unit) was initially meant for rendering better graphics which ultimately means
fast floating point operation for computing pixel values. GPGPU (General purpose
Graphics Processor Unit) is the technique of utilization of GPU for a general
purpose computation. Since the GPU provides very high performance of floating
point operations and data parallel computation, it is very well suited to be used
as a co-processor in a computing system for doing data parallel tasks with high
arithmetic intensity.

Before NVIDIA® came up with CUDA (Compute Unified Device Architecture) in
February 2007, the typical GPGPU approach was to convert general problems' data
parallel computation into some form of a graphics problem which is expressible
by graphics programming APIs for the GPU. CUDA first gave a user friendly
small extension of C language to write code for the GPU. But it was a proprietary
framework from NVIDIA and was supposed to work on NVIDIA's GPU only.

Preface

[2]

With the growing popularity of such a framework, the requirement for an open
standard architecture that would be able to support different kinds of devices from
various vendors was becoming strongly perceivable. In June 2008, the Khronos
compute working group was formed and they published OpenCL1.0 specification
in December 2008. Multiple vendors gradually provided a tool-chain for OpenCL
programming including NVIDIA OpenCL Drivers and Tools, AMD APP SDK, Intel®
SDK for OpenCL application, IBM Server with OpenCL development Kit, and so on.
Today OpenCL supports multi-core programming, GPU programming, cell and DSP
processor programming, and so on.

In this book we discuss OpenCL with a few examples.

What this book covers
Chapter 1, Hello OpenCL, starts with a brief introduction to OpenCL and provides
hardware architecture details of the various OpenCL devices from different vendors.

Chapter 2, OpenCL Architecture, discusses the various OpenCL architecture models.

Chapter 3, OpenCL Buffer Objects, discusses the common functions used to create an
OpenCL memory object.

Chapter 4, OpenCL Images, gives an overview of functions for creating different types
of OpenCL images.

Chapter 5, OpenCL Program and Kernel Objects, concentrates on the sequential steps
required to execute a kernel.

Chapter 6, Events and Synchronization, discusses coarse grained and fine-grained
events and their synchronization mechanisms.

Chapter 7, OpenCL C Programming, discusses the specifications and restrictions
for writing an OpenCL compliant C kernel code.

Chapter 8, Basic Optimization Techniques with Case Studies, discusses various
optimization techniques using a simple example of matrix multiplication.

Chapter 9, Image Processing and OpenCL, discusses Image Processing case studies.
OpenCL implementations of Image filters and JPEG image decoding are provided
in this chapter.

Preface

[3]

Chapter 10, OpenCL-OpenGL Interoperation, discusses OpenCL and OpenGL
interoperation, which in its simple form means sharing of data between OpenGL
and OpenCL in a program that uses both.

Chapter 11, Case studies – Regressions, Sort, and KNN, discusses general algorithm-like
sorting. Besides this, case studies from Statistics (Linear and Parabolic Regression)
and Machine Learning (K Nearest Neighbourhood) are discussed with their OpenCL
implementations.

What you need for this book
The prerequisite is proficiency in C language. Having a background of parallel
programming would undoubtedly be advantageous, but it is not a requirement.
Readers should find this book compact yet a complete guide for OpenCL
programming covering most of the advanced topics. Emphasis is given to illustrate
the key concept and problem-solution with small independent examples rather
than a single large example. There are detailed explanations of the most of the APIs
discussed and kernels for the case studies are presented.

Who this book is for
Application developers from different domains intending to use OpenCL to
accelerate their application can use this book to jump start. This book is also good for
beginners in OpenCL and parallel programming.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: " Each OpenCL vendor, ships this library
and the corresponding OpenCL.dll or libOpenCL.so library in its SDK."

A block of code is set as follows:

void saxpy(int n, float a, float *b, float *c)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

#include <CL/cl.h>
#endif
#define VECTOR_SIZE 1024

//OpenCL kernel which is run for every work item created.
const char *saxpy_kernel =
"__kernel \n"
"void saxpy_kernel(float alpha, \n"
" __global float *A, \n"
" __global float *B, \n"
" __global float *C) \n"
"{ \n"
" //Get the index of the work-item \n"
" int index = get_global_id(0); \n"
" C[index] = alpha* A[index] + B[index]; \n"
"} \n";

int main(void) {
 int i;

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking on
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Hello OpenCL
Parallel Computing has been extensively researched over the past few decades and
had been the key research interest at many universities. Parallel Computing uses
multiple processors or computers working together on a common algorithm or task.
Due to the constraints in the available memory, performance of a single computing
unit, and also the need to complete a task quickly, various parallel computing
frameworks have been defined. All computers are parallel these days, even your
handheld mobiles are multicore platforms and each of these parallel computers uses
a parallel computing framework of their choice. Let's define Parallel Computing.

The Wikipedia definition says that, Parallel Computing is a form of computation in
which many calculations are carried out simultaneously, operating on the principle
that large problems can often be divided into smaller ones, which are then solved
concurrently (in parallel).

There are many Parallel Computing programming standards or API specifications,
such as OpenMP, OpenMPI, Pthreads, and so on. This book is all about OpenCL
Parallel Programming. In this chapter, we will start with a discussion on different
types of parallel programming. We will first introduce you to OpenCL with different
OpenCL components. We will also take a look at the various hardware and software
vendors of OpenCL and their OpenCL installation steps. Finally, at the end
of the chapter we will see an OpenCL program example SAXPY in detail and
its implementation.

www.allitebooks.com

http://www.allitebooks.org

Hello OpenCL

[8]

Advances in computer architecture
All over the 20th century computer architectures have advanced by multiple folds.
The trend is continuing in the 21st century and will remain for a long time to
come. Some of these trends in architecture follow Moore's Law. "Moore's law is the
observation that, over the history of computing hardware, the number of transistors
on integrated circuits doubles approximately every two years". Many devices in
the computer industry are linked to Moore's law, whether they are DSPs, memory
devices, or digital cameras. All the hardware advances would be of no use if there
weren't any software advances. Algorithms and software applications grow in
complexity, as more and more user interaction comes into play. An algorithm can
be highly sequential or it may be parallelized, by using any parallel computing
framework. Amdahl's Law is used to predict the speedup for an algorithm, which
can be obtained given n threads. This speedup is dependent on the value of the
amount of strictly serial or non-parallelizable code (B). The time T(n) an algorithm
takes to finish when being executed on n thread(s) of execution corresponds to:

T(n) = T(1) (B + (1-B)/n)

Therefore the theoretical speedup which can be obtained for a given algorithm is
given by :

Speedup(n) = 1/(B + (1-B)/n)

Amdahl's Law has a limitation, that it does not fully exploit the computing power
that becomes available as the number of processing core increase.

Gustafson's Law takes into account the scaling of the platform by adding more
processing elements in the platform. This law assumes that the total amount of work
that can be done in parallel, varies linearly with the increase in number of processing
elements. Let an algorithm be decomposed into (a+b). The variable a is the serial
execution time and variable b is the parallel execution time. Then the corresponding
speedup for P parallel elements is given by:

(a + P*b)

Speedup = (a + P*b) / (a + b)

Now defining α as a/(a+b), the sequential execution component, as follows,
gives the speedup for P processing elements:

Speedup(P) = P – α *(P - 1)

Chapter 1

[9]

Given a problem which can be solved using OpenCL, the same problem can also be
solved on a different hardware with different capabilities. Gustafson's law suggests
that with more number of computing units, the data set should also increase that
is, "fixed work per processor". Whereas Amdahl's law suggests the speedup which
can be obtained for the existing data set if more computing units are added, that is,
"Fixed work for all processors". Let's take the following example:

Let the serial component and parallel component of execution be of one unit each.

In Amdahl's Law the strictly serial component of code is B (equals 0.5). For two
processors, the speedup T(2) is given by:

T(2) = 1 / (0.5 + (1 – 0.5) / 2) = 1.33

Similarly for four and eight processors, the speedup is given by:

T(4) = 1.6 and T(8) = 1.77

Adding more processors, for example when n tends to infinity, the speedup obtained
at max is only 2. On the other hand in Gustafson's law, Alpha = 1(1+1) = 0.5 (which is
also the serial component of code). The speedup for two processors is given by:

Speedup(2) = 2 – 0.5(2 - 1) = 1.5

Similarly for four and eight processors, the speedup is given by:

Speedup(4) = 2.5 and Speedup(8) = 4.5

The following figure shows the work load scaling factor of Gustafson's law,
when compared to Amdahl's law with a constant workload:

AMDAHL’s Law

GUSTAFSONS’s Law

When

workload

increases with

number of

processors

more speedup

is obtained

Workload

remains

constant

Comparison of Amdahl's and Gustafson's Law

Hello OpenCL

[10]

OpenCL is all about parallel programming, and Gustafson's law very well fits
into this book as we will be dealing with OpenCL for data parallel applications.
Workloads which are data parallel in nature can easily increase the data set and
take advantage of the scalable platforms by adding more compute units. For
example, more pixels can be computed as more compute units are added.

Different parallel programming
techniques
There are several different forms of parallel computing such as bit-level, instruction
level, data, and task parallelism. This book will largely focus on data and task
parallelism using heterogeneous devices. We just now coined a term, heterogeneous
devices. How do we tackle complex tasks "in parallel" using different types of
computer architecture? Why do we need OpenCL when there are many (already
defined) open standards for Parallel Computing?

To answer this question, let us discuss the pros and cons of different Parallel
computing Framework.

OpenMP
OpenMP is an API that supports multi-platform shared memory multiprocessing
programming in C, C++, and Fortran. It is prevalent only on a multi-core computer
platform with a shared memory subsystem.

A basic OpenMP example implementation of the OpenMP Parallel directive
is as follows:

#pragma omp parallel
{
 body;
}

When you build the preceding code using the OpenMP shared library, libgomp
would expand to something similar to the following code:

void subfunction (void *data)
{
 use data;
 body;
}

setup data;

Chapter 1

[11]

GOMP_parallel_start (subfunction, &data, num_threads);
subfunction (&data);
GOMP_parallel_end ();
void GOMP_parallel_start (void (*fn)(void *), void *data,
 unsigned num_threads)

The OpenMP directives make things easy for the developer to modify the existing
code to exploit the multicore architecture. OpenMP, though being a great parallel
programming tool, does not support parallel execution on heterogeneous devices,
and the use of a multicore architecture with shared memory subsystem does not
make it cost effective.

MPI
Message Passing Interface (MPI) has an advantage over OpenMP, that it can
run on either the shared or distributed memory architecture. Distributed memory
computers are less expensive than large shared memory computers. But it has its
own drawback with inherent programming and debugging challenges. One major
disadvantage of MPI parallel framework is that the performance is limited by the
communication network between the nodes.

Supercomputers have a massive number of processors which are interconnected
using a high speed network connection or are in computer clusters, where computer
processors are in close proximity to each other. In clusters, there is an expensive and
dedicated data bus for data transfers across the computers. MPI is extensively used
in most of these compute monsters called supercomputers.

OpenACC
The OpenACC Application Program Interface (API) describes a collection of
compiler directives to specify loops and regions of code in standard C, C++, and
Fortran to be offloaded from a host CPU to an attached accelerator, providing
portability across operating systems, host CPUs, and accelerators. OpenACC is
similar to OpenMP in terms of program annotation, but unlike OpenMP which can
only be accelerated on CPUs, OpenACC programs can be accelerated on a GPU or
on other accelerators also. OpenACC aims to overcome the drawbacks of OpenMP
by making parallel programming possible across heterogeneous devices. OpenACC
standard describes directives and APIs to accelerate the applications. The ease of
programming and the ability to scale the existing codes to use the heterogeneous
processor, warrantees a great future for OpenACC programming.

Hello OpenCL

[12]

CUDA
Compute Unified Device Architecture (CUDA) is a parallel computing architecture
developed by NVIDIA for graphics processing and GPU (General Purpose GPU)
programming. There is a fairly good developer community following for the CUDA
software framework. Unlike OpenCL, which is supported on GPUs by many vendors
and even on many other devices such as IBM's Cell B.E. processor or TI's DSP
processor and so on, CUDA is supported only for NVIDIA GPUs. Due to this lack of
generalization, and focus on a very specific hardware platform from a single vendor,
OpenCL is gaining traction.

CUDA or OpenCL?
CUDA is more proprietary and vendor specific but has its own advantages. It is
easier to learn and start writing code in CUDA than in OpenCL, due to its simplicity.
Optimization of CUDA is more deterministic across a platform, since less number
of platforms are supported from a single vendor only. It has simplified few
programming constructs and mechanisms. So for a quick start and if you are sure
that you can stick to one device (GPU) from a single vendor that is NVIDIA, CUDA
can be a good choice.

OpenCL on the other hand is supported for many hardware from several vendors
and those hardware vary extensively even in their basic architecture, which created
the requirement of understanding a little complicated concepts before starting
OpenCL programming. Also, due to the support of a huge range of hardware,
although an OpenCL program is portable, it may lose optimization when ported
from one platform to another.

The kernel development where most of the effort goes, is practically identical
between the two languages. So, one should not worry about which one to choose.
Choose the language which is convenient. But remember your OpenCL application
will be vendor agnostic. This book aims at attracting more developers to OpenCL.

There are many libraries which use OpenCL programming for acceleration. Some
of them are MAGMA, clAMDBLAS, clAMDFFT, BOLT C++ Template library, and
JACKET which accelerate MATLAB on GPUs. Besides this, there are C++ and Java
bindings available for OpenCL also.

Once you've figured out how to write your important "kernels" it's trivial to port to
either OpenCL or CUDA. A kernel is a computation code which is executed by an
array of threads. CUDA also has a vast set of CUDA accelerated libraries, that is,
CUBLAS, CUFFT, CUSPARSE, Thrust and so on. But it may not take a long time
to port these libraries to OpenCL.

Chapter 1

[13]

Renderscripts
Renderscripts is also an API specification which is targeted for 3D rendering and
general purpose compute operations in an Android platform. Android apps can
accelerate the performance by using these APIs. It is also a cross-platform solution.
When an app is run, the scripts are compiled into a machine code of the device. This
device can be a CPU, a GPU, or a DSP. The choice of which device to run it on is
made at runtime. If a platform does not have a GPU, the code may fall back to the
CPU. Only Android supports this API specification as of now. The execution model
in Renderscripts is similar to that of OpenCL.

Hybrid parallel computing model
Parallel programming models have their own advantages and disadvantages. With
the advent of many different types of computer architectures, there is a need to use
multiple programming models to achieve high performance. For example, one may
want to use MPI as the message passing framework, and then at each node level one
might want to use, OpenCL, CUDA, OpenMP, or OpenACC.

Besides all the above programming models many compilers such as Intel ICC, GCC,
and Open64 provide auto parallelization options, which makes the programmers job
easy and exploit the underlying hardware architecture without the need of knowing
any parallel computing framework. Compilers are known to be good at providing
instruction-level parallelism. But tackling data level or task level auto parallelism has
its own limitations and complexities.

Introduction to OpenCL
OpenCL standard was first introduced by Apple, and later on became part of
the open standards organization "Khronos Group". It is a non-profit industry
consortium, creating open standards for the authoring, and acceleration of parallel
computing, graphics, dynamic media, computer vision and sensor processing on a
wide variety of platforms and devices.

The goal of OpenCL is to make certain types of parallel programming easier, and to
provide vendor agnostic hardware-accelerated parallel execution of code. OpenCL
(Open Computing Language) is the first open, royalty-free standard for general-
purpose parallel programming of heterogeneous systems. It provides a uniform
programming environment for software developers to write efficient, portable code
for high-performance compute servers, desktop computer systems, and handheld
devices using a diverse mix of multi-core CPUs, GPUs, and DSPs.

Hello OpenCL

[14]

OpenCL gives developers a common set of easy-to-use tools to take advantage of
any device with an OpenCL driver (processors, graphics cards, and so on) for the
processing of parallel code. By creating an efficient, close-to-the-metal programming
interface, OpenCL will form the foundation layer of a parallel computing ecosystem
of platform-independent tools, middleware, and applications.

We mentioned vendor agnostic, yes that is what OpenCL is about. The different
vendors here can be AMD, Intel, NVIDIA, ARM, TI, and so on. The following
diagram shows the different vendors and hardware architectures which use
the OpenCL specification to leverage the hardware capabilities:

TI DSP’s, FPGAs, Hardware

Accelerators.
Programming using propreitary

tools only

CPUs, x86, x86_64 or

ARM
MulticoreArchitecture.

Programming using

OpenMP, POSIX Threads etc

HeterogeneousComputing

OpenCL

GPUs AMD, NVIDIA

Imagination , MALI Graphics.
large number of specialized

cores, targetted for General

Purpose Computing.

Programming using propreitary

tools.

®

®

The heterogeneous system

The OpenCL framework defines a language to write "kernels". These kernels are
functions which are capable of running on different compute devices. OpenCL
defines an extended C language for writing compute kernels, and a set of APIs for
creating and managing these kernels. The compute kernels are compiled with a
runtime compiler, which compiles them on-the-fly during host application execution
for the targeted device. This enables the host application to take advantage of all the
compute devices in the system with a single set of portable compute kernels.

Chapter 1

[15]

Based on your interest and hardware availability, you might want to do OpenCL
programming with a "host and device" combination of "CPU and CPU" or "CPU and
GPU". Both have their own programming strategy. In CPUs you can run very large
kernels as the CPU architecture supports out-of-order instruction level parallelism
and have large caches. For the GPU you will be better off writing small kernels for
better performance. Performance optimization is a huge topic in itself. We will try
to discuss this with a case study in Chapter 8, Basic Optimization Techniques with
Case Studies

Hardware and software vendors
There are various hardware vendors who support OpenCL. Every OpenCL vendor
provides OpenCL runtime libraries. These runtimes are capable of running only on their
specific hardware architectures. Not only across different vendors, but within a vendor
there may be different types of architectures which might need a different approach
towards OpenCL programming. Now let's discuss the various hardware vendors who
provide an implementation of OpenCL, to exploit their underlying hardware.

Advanced Micro Devices, Inc. (AMD)
With the launch of AMD A Series APU, one of industry's first Accelerated
Processing Unit (APU), AMD is leading the efforts of integrating both the x86_64
CPU and GPU dies in one chip. It has four cores of CPU processing power, and also
a four or five graphics SIMD engine, depending on the silicon part which you wish
to buy. The following figure shows the block diagram of AMD APU architecture:

AMD architecture diagram—© 2011, Advanced Micro Devices, Inc.

Hello OpenCL

[16]

An AMD GPU consist of a number of Compute Engines (CU) and each CU has 16
ALUs. Further, each ALU is a VLIW4 SIMD processor and it could execute a bundle
of four or five independent instructions. Each CU could be issued a group of 64
work items which form the work group (wavefront). AMD Radeon ™ HD 6XXX
graphics processors uses this design. The following figure shows the HD 6XXX
series Compute unit, which has 16 SIMD engines, each of which has four
processing elements:

AMD Radeon HD 6xxx Series SIMD Engine—© 2011, Advanced Micro Devices, Inc.

Starting with the AMD Radeon HD 7XXX series of graphics processors from AMD,
there were significant architectural changes. AMD introduced the new Graphics
Core Next (GCN) architecture. The following figure shows an GCN compute unit
which has 4 SIMD engines and each engine is 16 lanes wide:

GCN Compute Unit—© 2011, Advanced Micro Devices, Inc.

A group of these Compute Units forms an AMD HD 7xxx Graphics Processor. In
GCN, each CU includes four separate SIMD units for vector processing. Each of these
SIMD units simultaneously execute a single operation across 16 work items, but each
can be working on a separate wavefront.

Apart from the APUs, AMD also provides discrete graphics cards. The latest family
of graphics card, HD 7XXX, and beyond uses the GCN architecture. We will discuss
one of the discrete GPU architectures in the following chapter, where we will discuss
the OpenCL Platform model. AMD also provides the OpenCL runtimes for their
CPU devices.

Chapter 1

[17]

NVIDIA®

One of NVIDIA GPU architectures is codenamed "Kepler". GeForce® GTX
680 is one Kepler architectural silicon part. Each Kepler GPU consists of
different configurations of Graphics Processing Clusters (GPC) and streaming
multiprocessors. The GTX 680 consists of four GPCs and eight SMXs as shown
in the following figure:

NVIDIA Kepler architecture—GTX 680, © NVIDIA®

Kepler architecture is part of the GTX 6XX and GTX 7XX family of NVIDIA discrete
cards. Prior to Kepler, NVIDIA had Fermi architecture which was part of the GTX
5XX family of discrete and mobile graphic processing units.

www.allitebooks.com

http://www.allitebooks.org

Hello OpenCL

[18]

Intel®

Intel's OpenCL implementation is supported in the Sandy Bridge and Ivy Bridge
processor families. Sandy Bridge family architecture is also synonymous with the
AMD's APU. These processor architectures also integrated a GPU into the same
silicon as the CPU by Intel. Intel changed the design of the L3 cache, and allowed
the graphic cores to get access to the L3, which is also called as the last level cache. It
is because of this L3 sharing that the graphics performance is good in Intel. Each of
the CPUs including the graphics execution unit is connected via Ring Bus. Also each
execution unit is a true parallel scalar processor. Sandy Bridge provides the graphics
engine HD 2000, with six Execution Units (EU), and HD 3000 (12 EU), and Ivy
Bridge provides HD 2500(six EU) and HD 4000 (16 EU). The following figure shows
the Sandy bridge architecture with a ring bus, which acts as an interconnect between
the cores and the HD graphics:

Intel Sandy Bridge architecture—© Intel®

Chapter 1

[19]

ARM Mali™ GPUs
ARM also provides GPUs by the name of Mali Graphics processors. The Mali T6XX
series of processors come with two, four, or eight graphics cores. These graphic
engines deliver graphics compute capability to entry level smartphones, tablets,
and Smart TVs. The below diagram shows the Mali T628 graphics processor.

ARM Mali—T628 graphics processor, © ARM

Mali T628 has eight shader cores or graphic cores. These cores also support
Renderscripts APIs besides supporting OpenCL.

Besides the four key competitors, companies such as TI (DSP), Altera (FPGA), and
Oracle are providing OpenCL implementations for their respective hardware. We
suggest you to get hold of the benchmark performance numbers of the different
processor architectures we discussed, and try to compare the performance numbers
of each of them. This is an important first step towards comparing different
architectures, and in the future you might want to select a particular OpenCL
platform based on your application workload.

OpenCL components
Before delving into the programming aspects in OpenCL, we will take a look at
the different components in an OpenCL framework. The first thing is the OpenCL
specification. The OpenCL specification describes the OpenCL programming
architecture details, and a set of APIs to perform specific tasks, which are all required
by an application developer. This specification is provided by the Khronos OpenCL
consortium. Besides this, Khronos also provides OpenCL header files. They are cl.h,
cl_gl.h, cl_platform.h, and so on.

Hello OpenCL

[20]

An application programmer uses these header files to develop his application and the
host compiler links with the OpenCL.lib library on Windows. This library contains
the entry points for the runtime DLL OpenCL.dll. On Linux the application program
is linked dynamically with the libOpenCL.so shared library. The source code for the
OpenCL.lib file is also provided by Khronos. The different OpenCL vendors shall
redistribute this OpenCL.lib file and package it along with their OpenCL development
SDK. Now the application is ready to be deployed on different platforms.

The different components in OpenCL are shown in the following figure:

From
Khronos

LINUX

Host Compiler
GCC Linux

Application Source

Executable/Library

OpenCL Headers

cl.h

OpenCL.h cl_platform
.h

cl_gl.h

amdoci.so

IntelOpenCL.soReads from Linuxfile

system

/etc/OpenCL/vendors/*.icd

stub lib for
OpenCL.dll

Complies

Links
with

OpenCL

Runtimes

provided by

OpenCL

vendorrs

Reads from

windows

registry

OpenCL

Devices

OpenCL Kernels

are compiled

during runtime

for a device

Host Compiler
Visual Studio

Host CPU

CPU device

OpenCL.lib

libOpenCL.so

libOpenCL.so

OpenCL.dll

GPU device

WINDOWS
amdoci.dll

IntelOpen

CL.dll

AMD

Different components in OpenCL

On Windows, at runtime the application first loads the OpenCL.dll dynamic link
library which in turn, based on the platform selected, loads the appropriate OpenCL
runtime driver by reading the Windows registry entry for the selected platform
(either of amdocl.dll or any other vendor OpenCL runtimes). On Linux, at runtime
the application loads the libOpenCL.so shared library, which in turn reads the
file /etc/OpenCL/vendors/*.icd and loads the library for the selected platform.
There may be multiple runtime drivers installed, but it is the responsibility of the
application developers to choose one of them, or if there are multiple devices in the
platforms, he may want to choose all the available platforms. During runtime calls to
OpenCL, functions queue parallel tasks on OpenCL capable devices. We will discuss
more on OpenCL Runtimes in Chapter 5, OpenCL Program and Kernel Objects.

Chapter 1

[21]

An example of OpenCL program
In this section we will discuss all the necessary steps to run an OpenCL application.

Basic software requirements
A person involved in OpenCL programming should be very proficient in C
programming, and having prior experience in any parallel programming tool will be
an added advantage. He or she should be able to break a large problem and find out
the data and task parallel regions of the code which he or she is trying to accelerate
using OpenCL. An OpenCL programmer should know the underlying architecture
for which he/she is trying to program. If you are porting an existing parallel code
into OpenCL, then you just need to start learning the OpenCL programming
architecture.

Besides this a programmer should also have the basic system software details, such
as compiling the code and linking it to an appropriate 32 bit or 64 bit library. He
should also have knowledge of setting the system path on Windows to the correct
DLLs or set the LD_LIBRARY_PATH environment variable in Linux to the correct
shared libraries.

The common system requirements for Windows and Linux operating systems are
as follows:

Windows
• You should have administrative privileges on the system
• Microsoft Windows XP, Vista, or 7
• Microsoft Visual Studio 2005, 2008, or 2010
• Display Drivers for AMD and NVIDIA GPUs. For NVIDIA GPUs you

will need display drivers R295 or R300 and above

Linux
• You should have root permissions to install the SDK
• With the vast number of flavors of Linux, practically any supported version

which has the corresponding graphic device driver installed for the GPU

The GCC compiler tool chain

Hello OpenCL

[22]

Installing and setting up an OpenCL
compliant computer
To install OpenCL you need to download an implementation of OpenCL. We
discussed about the various hardware and software vendors in a previous section.
The major graphic vendors, NVIDIA and AMD have both released implementations
of OpenCL for their GPUs. Similarly AMD and Intel provide a CPU-only runtime for
OpenCL. OpenCL implementations are available in so-called Software Development
Kits (SDK), and often include some useful tools such as debuggers and profilers.
The next step is to download and install the SDK for the GPU you have on your
computer. Note that not all graphic cards are supported.
A list of which graphics cards are supported can be found in the respective vendor
specific websites. Also you can take a look at the Khronos OpenCL conformance
products list. If you don't have a graphics card, don't worry, you can use your
existing processor to run OpenCL samples on CPU as a device.

If you are still confused about which device to choose, then take a look at the
list of supported devices provided with each release of an OpenCL SDK from
different vendors.

Installation steps
• For NVIDIA installation steps, we suggest you to take a look at the latest

installation steps for the CUDA software. First install the GPU computing
SDK provided for the OS. The following link provides the installation steps
for NVIDIA platforms:
http://developer.download.nvidia.com/compute/cuda/3_2_prod/sdk/
docs/OpenCL_Release_Notes.txt

• For AMD Accelerated Parallel Processing (APP) SDK installation take
a look at the AMD APP SDK latest version installation guide. The AMD
APP SDK comes with a huge set of sample programs which can be used
for running. The following link is where you will find the latest APP SDK
installation notes:
http://developer.amd.com/download/AMD_APP_SDK_Installation_
Notes.pdf

• For INTEL SDK for OpenCL applications 2013, use the steps provided in the
following link:

http://software.intel.com/en-us/articles/intel-sdk-for-opencl-
applications-2013-release-notes

Chapter 1

[23]

Note these links are subject to change over a period of time.

AMD's OpenCL implementation is OpenCL 1.2 conformant. Also download the
latest AMD APP SDK version 2.8 or above.

For NVIDIA GPU computing, make sure you have a CUDA enabled GPU.
Download the latest CUDA release 4.2 or above, and the GPU computing SDK
release 4.2 or above.

For Intel, download the Intel SDK for OpenCL Applications 2013.

We will briefly discuss the installation steps. The installation steps may vary from
vendor to vendor. Hence we discuss only AMD's and NVIDIA's installation steps.
Note that NVIDIA's CUDA only supports GPU as the device. So we suggest that if you
have a non NVIDIA GPU then it would be better that you install AMD APP SDK, as it
supports both the AMD GPUs and CPUs as the device. One can have multiple vendor
SDKs also installed. This is possible as the OpenCL specification allows runtime
selection of the OpenCL platform. This is referred to as the ICD (Installable Client
Driver) dispatch mechanism. We will discuss more about this in a later chapter.

Installing OpenCL on a Linux system with an AMD
graphics card

1. Make sure you have root privileges and remove all previous installations
of APP SDK.

2. Untar the downloaded SDK.
3. Run the Install Script Install-AMD-APP.sh.
4. This will install the developer binary, and samples in folder /opt/AMPAPP/.
5. Make sure the variables AMDAPPSDKROOT and LD_LIBRARY_PATH are set to the

locations where you have installed the APP SDK.

For latest details you can refer to the Installation Notes provided with the APP SDK.
Linux distributions such as Ubuntu, provide an OpenCL distribution package for
vendors such as AMD and NVIDIA. You can use the following command to install
the OpenCL runtimes for AMD:

sudo apt-get install amd-opencl-dev

For NVIDIA you can use the following command:

sudo apt-get install nvidia-opencl-dev

Note that amd-opencl-dev installs both the CPU and GPU OpenCL
implementations.

Hello OpenCL

[24]

Installing OpenCL on a Linux system with an
NVIDIA graphics card

1. Delete any previous installations of CUDA.
2. Make sure you have the CUDA supported version of Linux, and run lspci

to check the video adapter which the system uses. Download and install the
corresponding display driver.

3. Install the CUDA toolkit which contains the tools needed to compile and
build a CUDA application.

4. Install the GPU computing SDK. This includes sample projects and other
resources for constructing CUDA programs.

You system is now ready to compile and run any OpenCL code.

Installing OpenCL on a Windows system with an
AMD graphics card

1. Download the AMD APP SDK v2.7 and start installation.
2. Follow the onscreen prompts and perform an express installation.
3. This installs the AMD APP samples, runtime, and tools such as the APP

Profiler and APP Kernel Analyser.
4. The express installation sets up the environment variables AMDAPPSDKROOT

and AMDAPPSDKSAMPLESROOT.
5. If you select custom install then you will need to set the environment

variables to the appropriate path.

Go to the samples directory and build the OpenCL samples, using the Microsoft
Visual Studio.

Installing OpenCL on a Windows system with an
NVIDIA graphics card

1. Uninstall any previous versions of the CUDA installation.
2. CUDA 4.2 or above release toolkit requires version R295, R300, or newer

of the Windows Vista or Windows XP NVIDIA display driver.
3. Make sure you install the display driver and then proceed to the installation.
4. Install the Version 4.2 release of the NVIDIA CUDA toolkit

cudatoolkit_4.2_Win_[32|64].exe.

Chapter 1

[25]

5. Install the Version 4.2 release of the NVIDIA GPU computing SDK by
running gpucomputingsdk_4.2_Win_[32|64].exe.

Verify the installation by compiling and running some sample codes.

Apple OSX
Apple also provides an OpenCL implementation. You will need XCode developer
tool to be installed. Xcode is a complete tool set for building OSX and iOS
applications. For more information on building OpenCL application on OSX visit at
the following link:

https://developer.apple.com/library/mac/documentation/Performance/
Conceptual/OpenCL_MacProgGuide/Introduction/Introduction.html

Multiple installations
As we have stated earlier, there can be multiple installations of OpenCL in a system.
This is possible in OpenCL standard, because all OpenCL applications are linked
using a common library called the OpenCL ICD library. Each OpenCL vendor,
ships this library and the corresponding OpenCL.dll or libOpenCL.so library in its
SDK. This library contains the mechanism to select the appropriate vendor-specific
runtimes during runtime. The application developer makes this selection. Let's
explain this with an example installation of an AMD and Intel OpenCL SDK. In the
following screenshot of the Windows Registry Editor you can see two runtime DLLs.
It is one of these libraries which is loaded by the OpenCL.dll library, based on the
application developers selection. The following shows the Regedit entry with AMD
and Intel OpenCL installations:

Registry Editor screenshot, showing multiple installations

Hello OpenCL

[26]

During runtime, the OpenCL.dll library will read the registry details specific to
HKEY_LOCAL_MACHINE\SOFTWARE\Khronos (or libOpenCL.so in Linux, will read
the value of the vendor-specific library in the ICD file in folder /etc/OpenCL/
vendors/*.icd), loads the appropriate library, and assigns the function pointers
to the loaded library. An application developer can consider OpenCL.dll or
libOpenCL.so as the wrapper around different OpenCL vendor libraries. This
makes the application developers life easy and he can link it with OpenCL.lib
or libOpenCL.so during link time, and distribute it with his application. This
allows the application developer to ship his code for different OpenCL vendors/
implementations easily.

Implement the SAXPY routine in OpenCL
SAXPY can be called the "Hello World" of OpenCL. In the simplest terms, the first
OpenCL sample shall compute A = alpha*B + C, where alpha is a constant and A,
B, and C are vectors of an arbitrary size n. In linear algebra terms, this operation is
called SAXPY (Single precision real Alpha X plus Y). You might have understood
by now, that each multiplication and addition operation is independent of the other.
So this is a data parallel problem.

A simple C program would look something like the following code:

void saxpy(int n, float a, float *b, float *c)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

OpenCL code
An OpenCL code consists of the host code and the device code. The OpenCL kernel
code is highlighted in the following code. This is the code which is compiled at run
time and runs on the selected device. The following sample code computes A =
alpha*B + C, where A, B, and C are vectors (arrays) of size given by the VECTOR_
SIZE variable:

#include <stdio.h>
#include <stdlib.h>
#ifdef __APPLE__
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif
#define VECTOR_SIZE 1024

Chapter 1

[27]

//OpenCL kernel which is run for every work item created.
const char *saxpy_kernel =
"__kernel \n"
"void saxpy_kernel(float alpha, \n"
" __global float *A, \n"
" __global float *B, \n"
" __global float *C) \n"
"{ \n"
" //Get the index of the work-item \n"
" int index = get_global_id(0); \n"
" C[index] = alpha* A[index] + B[index]; \n"
"} \n";

int main(void) {
 int i;
 // Allocate space for vectors A, B and C
 float alpha = 2.0;
 float *A = (float*)malloc(sizeof(float)*VECTOR_SIZE);
 float *B = (float*)malloc(sizeof(float)*VECTOR_SIZE);
 float *C = (float*)malloc(sizeof(float)*VECTOR_SIZE);
 for(i = 0; i < VECTOR_SIZE; i++)
 {
 A[i] = i;
 B[i] = VECTOR_SIZE - i;
 C[i] = 0;
 }

 // Get platform and device information
 cl_platform_id * platforms = NULL;
 cl_uint num_platforms;
 //Set up the Platform
 cl_int clStatus = clGetPlatformIDs(0, NULL, &num_platforms);
 platforms = (cl_platform_id *)
 malloc(sizeof(cl_platform_id)*num_platforms);
 clStatus = clGetPlatformIDs(num_platforms, platforms, NULL);

 //Get the devices list and choose the device you want to run on
 cl_device_id *device_list = NULL;
 cl_uint num_devices;

 clStatus = clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, 0,
 NULL, &num_devices);
 device_list = (cl_device_id *)
 malloc(sizeof(cl_device_id)*num_devices);

www.allitebooks.com

http://www.allitebooks.org

Hello OpenCL

[28]

 clStatus = clGetDeviceIDs(platforms[0],
 CL_DEVICE_TYPE_GPU, num_devices, device_list, NULL);

 // Create one OpenCL context for each device in the platform
 cl_context context;
 context = clCreateContext(NULL, num_devices, device_list,
 NULL, NULL, &clStatus);

 // Create a command queue
 cl_command_queue command_queue = clCreateCommandQueue(
 context, device_list[0], 0, &clStatus);

 // Create memory buffers on the device for each vector
 cl_mem A_clmem = clCreateBuffer(context, CL_MEM_READ_ONLY,
 VECTOR_SIZE * sizeof(float), NULL, &clStatus);
 cl_mem B_clmem = clCreateBuffer(context, CL_MEM_READ_ONLY,
 VECTOR_SIZE * sizeof(float), NULL, &clStatus);
 cl_mem C_clmem = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
 VECTOR_SIZE * sizeof(float), NULL, &clStatus);

 // Copy the Buffer A and B to the device
 clStatus = clEnqueueWriteBuffer(command_queue, A_clmem,
 CL_TRUE, 0, VECTOR_SIZE * sizeof(float),
 A, 0, NULL, NULL);
 clStatus = clEnqueueWriteBuffer(command_queue, B_clmem,
 CL_TRUE, 0, VECTOR_SIZE * sizeof(float),
 B, 0, NULL, NULL);

 // Create a program from the kernel source
 cl_program program = clCreateProgramWithSource(context, 1,
 (const char **)&saxpy_kernel, NULL, &clStatus);

 // Build the program
 clStatus = clBuildProgram(program, 1, device_list, NULL,
 NULL, NULL);

 // Create the OpenCL kernel
 cl_kernel kernel = clCreateKernel(program, "saxpy_kernel",
 &clStatus);

 // Set the arguments of the kernel
 clStatus = clSetKernelArg(kernel, 0, sizeof(float),
 (void *)&alpha);
 clStatus = clSetKernelArg(kernel, 1, sizeof(cl_mem),
 (void *)&A_clmem);
 clStatus = clSetKernelArg(kernel, 2, sizeof(cl_mem),
 (void *)&B_clmem);

Chapter 1

[29]

 clStatus = clSetKernelArg(kernel, 3, sizeof(cl_mem),
 (void *)&C_clmem);

 // Execute the OpenCL kernel on the list
 size_t global_size = VECTOR_SIZE; // Process the entire lists
 size_t local_size = 64; // Process one item at a time
 clStatus = clEnqueueNDRangeKernel(command_queue, kernel, 1,
 NULL, &global_size, &local_size, 0, NULL, NULL);

 // Read the cl memory C_clmem on device to the host variable C
 clStatus = clEnqueueReadBuffer(command_queue, C_clmem,
 CL_TRUE, 0, VECTOR_SIZE * sizeof(float), C, 0, NULL, NULL);

 // Clean up and wait for all the comands to complete.
 clStatus = clFlush(command_queue);
 clStatus = clFinish(command_queue);

 // Display the result to the screen
 for(i = 0; i < VECTOR_SIZE; i++)
 printf("%f * %f + %f = %f\n", alpha, A[i], B[i], C[i]);

 // Finally release all OpenCL allocated objects and
 host buffers.
 clStatus = clReleaseKernel(kernel);
 clStatus = clReleaseProgram(program);
 clStatus = clReleaseMemObject(A_clmem);
 clStatus = clReleaseMemObject(B_clmem);
 clStatus = clReleaseMemObject(C_clmem);
 clStatus = clReleaseCommandQueue(command_queue);
 clStatus = clReleaseContext(context);
 free(A);
 free(B);
 free(C);
 free(platforms);
 free(device_list);
 return 0;
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If
you have purchased this book elsewhere, you can visit http://www.
PacktPub.com/support and register to have the files e-mailed
directly to you.

Hello OpenCL

[30]

The preceding code can be compiled on command prompt using the
following command:

Linux:

gcc -I $(AMDAPPSDKROOT)/include -L $(AMDAPPSDKROOT)/lib -lOpenCL saxpy.
cpp -o saxpy

./saxpy

Windows:

cl /c saxpy.cpp /I"%AMDAPPSDKROOT%\include"

link /OUT:"saxpy.exe" "%AMDAPPSDKROOT%\lib\x86_64\OpenCL.lib"
 saxpy.obj

saxpy.exe

If everything is successful, then you will be able to see the result of SAXPY being
printed in the terminal. For more ease in compiling the code for different OS
platforms and different OpenCL vendors, we distribute the examples in this book
with a CMAKE build script. Refer to the documentation of building the samples
using the CMAKE build uitility.

By now you should be able to install an OpenCL implementation which your
hardware supports. You can now compile and run any OpenCL sample code, on
any OpenCL compliant device. You also learned the various parallel programming
models and solved a data parallel problem of SAXPY computation.

Next you can try out some exercises on the existing code. Modify the existing
program to take different matrix size inputs. Try to use a 2D matrix and perform
a similar computation on the matrix.

OpenCL program flow
Every OpenCL code consists of the host-side code and the device code. The host
code coordinates and queues the data transfer and kernel execution commands. The
device code executes the kernel code in an array of threads called NDRange. An
OpenCL C host code does the following steps:

1. Allocates memory for host buffers and initializes them.
2. Gets platform and device information. This is discussed in detail in Chapter 2,

OpenCL Architecture.
3. Sets up the platform.
4. Gets the devices list and chooses the type of device you want to run on.

Chapter 1

[31]

5. Creates an OpenCL context for the device.
6. Creates a command queue.
7. Creates memory buffers on the device for each vector.
8. Copies the Buffer A and B to the device.
9. Creates a program from the kernel source.
10. Builds the program and creates the OpenCL kernel.
11. Sets the arguments of the kernel.
12. Executes the OpenCL kernel on the device.
13. Reads back the memory from the device to the host buffer. This step is

optional, you may want to keep the data resident in the device for further
processing.

14. Cleans up and waits for all the commands to complete.
15. Finally releases all OpenCL allocated objects and host buffers.

We will discuss the details of each step in the subsequent chapters. Platform and
device selection, along with context and command queue creation will be discussed
in Chapter 2, OpenCL Architecture. OpenCL buffers are integral parts of any OpenCL
program. The creation of these buffers and transferring (copying) buffer data
between the host and the device is discussed in Chapter 3, Buffers and Image Objects –
Image Processing. Creating an OpenCL kernel object from an OpenCL program object,
and setting the kernel arguments is discussed in Chapter 5, OpenCL Program and
Kernel Objects.

Run on a different device
To make OpenCL run the kernel on the CPU, you can change the enum CL_DEVICE_
TYPE_GPU to CL_DEVICE_TYPE_CPU in the call to clGetDeviceIDs. This shows how
easy it is to make an OpenCL program run on different compute devices. The first
sample source code is self-explanatory and each of the steps are commented. If you
are running a multi GPU hardware system, then you will have to modify the code to
use the appropriate device ID.

The OpenCL specification is described in terms of the following four models:

• Platform model: This model specifies the host and device specification. The
host-side code coordinates the execution of the kernels in the devices.

• Memory model: This model specifies the global, local, private, and constant
memory. The OpenCL specification describes the hierarchy of memory
architecture, regardless of the underlying hardware.

Hello OpenCL

[32]

• Execution model: This model describes the runtime snapshot of the host
and device code. It defines the work-items and how the data maps onto
the work-items.

• Programming model: The OpenCL programming model supports data
parallel and task parallel programming models. This also describes the task
synchronization primitives.

We will discuss each model in detail in Chapter 2, OpenCL Architecture.

Finally to conclude this chapter, General Purpose GPU Computing (GPGPU or just
GPU computing) is undeniably a hot topic in this decade. We've seen diminishing
results in CPU speeds in the past decade compared to the decade before that. Each
successive manufacturing node presents greater challenges than the preceding
one. The shrink in process technology is nearing an end, and we cannot expect
exponential improvements in serial program execution. Hence, adding more cores
to the CPU is the way to go, and thereby parallel programming. A popular law
called Gustafson's law suggests that computations involving large data sets can be
efficiently parallelized.

Summary
In this chapter we got a brief overview of what an OpenCL program will look like.
We started with a discussion of various parallel programming techniques, and their
pros and cons. Different components of an OpenCL application were discussed.
Various vendors providing OpenCL capable hardware were also discussed in
this chapter. Finally, we ended the chapter with a discussion of a simple OpenCL
example, SAXPY. In the following few chapters, we will discuss about the different
OpenCL objects. We start with a discussion on the OpenCL architecture and various
OpenCL models in the following chapter.

Chapter 1

[33]

References
• http://www.khronos.org/conformance/adopters/conformant-products

• http://www.khronos.org/opencl/resources

• http://gcc.gnu.org/onlinedocs/libgomp.pdf

• http://developer.amd.com/tools/hc/AMDAPPSDK/documentation/
Pages/default.aspx

• http://developer.nvidia.com/cuda/nvidia-gpu-computing-
documentation

• http://www.amd.com/jp/Documents/GCN_Architecture_whitepaper.pdf

• http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-
Whitepaper-FINAL.pdf

• http://en.wikipedia.org/wiki/Amdahl's_law

• http://en.wikipedia.org/wiki/Gustafson's_law

OpenCL Architecture
Heterogeneous computing is all about exploiting computing resources in a
platform to maximize performance. Many developers have begun to realize that
heterogeneous multi-core computer systems can provide significant performance
opportunities to a range of applications. OpenCL specification targets expert
programmers who want to run their code on various heterogeneous platforms.
Unlike NVIDIA® CUDA framework, which is capable of running only on NVIDIA
devices, library writers can provide acceleration on any parallel hardware device
using OpenCL. Thus OpenCL provides a low-level hardware abstraction and a
programming model to support a variety of hardware architectures.

OpenCL describes a hierarchy of models to describe the OpenCL
programming framework:

• Platform model
• Memory model
• Execution model
• Programming model

OpenCL Architecture

[36]

Platform model
In heterogeneous computing, knowledge about the architecture of the targeted device
is critical to reap the full benefits of the hardware. We had discussed the hardware
architectures from AMD, Intel, and NVIDIA in Chapter 1, Hello OpenCL. Though we
will briefly discuss about the hardware from different vendors, we suggest you to take
a deeper look at the underlying platform on which you will be working. In this section
we will describe the OpenCL Platform model and map the AMD, NVIDIA, and Intel
hardware architectures to the OpenCL Platform definitions.

Compute Unit

Processing
Element

Compute Device

Host

. . .
. . .

. . .
. . .

. . .
.

. . .
.

. . .
. . .

OpenCL platform model, Courtesy Khronos

An OpenCL Platform model consists of a host connected to one or more devices
like CPU's, GPU's or hardware accelerators like DSP's. Each OpenCL device consists
of one or more compute units, which in turn is further divided into one-to-many
processing elements. Computations on a device that is the actual kernel (work item)
execution occurs within these processing elements. We just coined the term work
item. This we will discuss later in this chapter when we discuss about the OpenCL
Execution model.

We will now discuss the four different architectures from different device vendors
and try to map their architecture to the OpenCL Platform model. In the next diagram
we have shown four different OpenCL architectures and their mappings to the
Platform models.

Chapter 2

[37]

AMD A10 5800K APUs
A10 5800K APU has four AMD x86_64 processor cores, which forms the host. Its
graphics processor includes as many as six SIMD engines, each with four texture
units and sixteen thread processors. There are four ALUs in each thread processor,
adding up to 384 total shader cores or processing elements. The following diagram
shows the relation of the Trinity APU to the OpenCL Platform model:

APU Showing the Platform Model and the Graphics Core. Courtesy AMD

This platform has two devices, the CPU device and the GPU device. The x86 CPU
device is also the host. The OpenCL Platform model can be mapped as having four
compute units and each having one processing element. The graphics processor
connected to the host CPU also forms an OpenCL device of type GPU. The six
SIMD engines form the six GPU device compute units in the platform. Each of the
six compute elements have sixteen thread processors, each having four processing
elements. In all there are 384 processing elements or shader cores in this platform for
the GPU device.

www.allitebooks.com

http://www.allitebooks.org

OpenCL Architecture

[38]

AMD Radeon™ HD 7870 Graphics Processor
HD 7870 discrete card is a graphics processor based on the AMD GCN architecture.
This compute device can be connected to any x86/x86_64 platform. The CPU forms
the host and the GPU forms the device in the OpenCL platform. AMD Radeon HD
7870 GPU has a total of twenty compute units. With each compute unit having 64
shader cores a total of 1280 processing elements are there.

AMD Radeon™ HD 7870 Architecture diagram, © Advanced Micro Devices, Inc.

NVIDIA® GeForce® GTC 680 GPU
The NVIDIA GTX 680 graphics card architecture diagram is shown as follows. There
are eight blocks of compute units in this graphics processor. Also referred to as the
Kepler Architecture, the compute units are called the Streaming Multiprocessors-X
(SMX). This SMX compute unit is an advance over previous architectures and has
192 CUDA cores or processing elements. This is shown in the following diagram:

Chapter 2

[39]

NVIDIA GeForce® GTX 680 Architecture. © NVIDIA

Intel® IVY bridge
The IVY bridge architecture is very similar to the sandy bridge architecture discussed
in Chapter 1, Hello OpenCL. The CPU device can be mapped as any x86 CPU as
discussed in the AMD A10 5800K APU's section. In the case of Intel hardware's, the
GPU device offers what is called as the Execution Units (EUs). These numbers vary
across different SOC solutions provided by Intel. In Intel HD 4000 there are sixteen
EUs. These sixteen EUs form the processing elements or sixteen compute unit, that
is each execution unit is a compute unit.

OpenCL Architecture

[40]

For all the preceding OpenCL hardware architectures, which we have discussed
till now an OpenCL application consists of a host program that runs according to
the models native to the host platform. The host application submits commands to
the device to which executes the OpenCL kernels on the processing elements in a
compute device. The OpenCL specification describes the functions to create memory
objects called buffers and run OpenCL kernels on an OpenCL device. The host
queues the thread launch. Before processing the data the host application writes to
device, and finally after processing it reads from device. It would be good if the data
transfer bandwidth between the host and the device is good enough to hide the data
transfer bottleneck with the highly parallel computing power of the device. Some
computers may use a shared memory architecture between the host computer (CPU)
and the OpenCL device (say a GPU). In such cases the memory transfer bottlenecks
may be minimal.

Platform versions
The OpenCL is designed to support devices with different capabilities under a single
platform. This includes devices which conform to different versions of the OpenCL
specification. While writing an OpenCL based application one needs to query the
implementation about the supported version in the platform. There are mainly two
different types of version identifiers to consider.

• Platform Version: Indicates the version of the OpenCL runtime supported.
• Device Version: Indicates the device capabilities and attributes. The

conformant version info provided cannot be greater than platform version.

Query platforms
Now let's write an OpenCL program to get the platform details. Use the get_
platform_property example in this chapter.

The OpenCL standard specifies API interfaces to determine the platform
configuration. To query the platform versions and details of the OpenCL
implementation, the following two APIs are used:

cl_int clGetPlatformIDs (cl_uint num_entries,
 cl_platform_id *platforms,
 cl_uint *num_platforms);
cl_int clGetPlatformInfo(cl_platform_id platform,
 cl_platform_info param_name,
 size_t param_value_size,

Chapter 2

[41]

 void *param_value,
 size_t *param_value_size_ret);

clGetPlatformIDs is used to obtain the total number of platforms available in the
system. There can be more than one platform. If you install two OpenCL runtimes,
one from AMD APP SDK and the other Intel OpenCL runtime for the CPU, you
should be able to see two platforms in the system. Usually you don't want to pre-
allocate the memory for storing the platforms. Before getting the actual platform,
an application developer should query for the number of OpenCL implementations
available in the platform. This is done using the following OpenCL call:

clError = clGetPlatformIDs(0, NULL, &num_platforms);

This call returns the total number of available platforms. Once we have obtained the
number of available platforms we can allocate memory and query for the platform
IDs for the various OpenCL implementations as follows:

platforms = (cl_platform_id *)malloc
 (num_platforms*sizeof(cl_platform_id));
clError = clGetPlatformIDs (num_platforms, platforms, NULL);

Once the list of platforms is obtained, you can query for the platform attributes in
a loop for each platform. In the example we have queried the following parameters
using the API clGetPlatformInfo:

CL_PLATFORM_NAME
CL_PLATFORM_VENDOR
CL_PLATFORM_VERSION
CL_PLATFORM_PROFILE
CL_PLATFORM_EXTENSIONS

Example:

clError = clGetPlatformInfo (platforms[index], CL_PLATFORM_NAME, 1024,
&queryBuffer, NULL);

In the get_device_property example where we get device properties, we default
to the first available platform and query the device property for all the devices in
default platform obtained. Take a look at the get_device_property example for
this chapter.

clError = clGetPlatformIDs(1, &platform, &num_platforms);

Note the difference in the calls to clGetPlatformIDs in the two examples discussed.

OpenCL Architecture

[42]

In this section we just wrote a small program to print the platform details. Take a
look at how we allocate memory for platforms and how we get the details of the
platform. As an exercise try to install multiple OpenCL implementations in your
platform and see how many OpenCL platforms are enumerated by the function
clGetPlatformIDs.

Multiple OpenCL implementations can be installed in the platform. You would
question how would the application pick the appropriate runtime. The answer is
OpenCL Installable Client Driver (ICD). We will study this more in a later section.

Query devices
We shall now continue with getting the attributes and resource limitations of
an OpenCL device. In the last program we were able to print all the platform
information available. In this example we shall try to enhance the existing code to
print some basic device attributes and resource information for the first available
platform. We will implement a function PrintDeviceInfo(), which will print
the device specific information. The following two OpenCL APIs are used in the
example:

cl_int clGetDeviceIDs (cl_platform_id platform,
 cl_device_type device_type,
 cl_uint num_entries,
 cl_device_id *devices,
 cl_uint *num_devices);
cl_int clGetDeviceInfo (cl_device_id device,
 cl_device_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret);

In the same way as we did for platforms, we first determine the number of devices
available, and then allocate memory for each device found in the platform.

clError = clGetDeviceIDs (platform,
 CL_DEVICE_TYPE_ALL,
 0, NULL, &num_devices);

The above call gives the number of available device of CL_DEVICE_TYPE_ALL. You
can otherwise use CL_DEVICE_TYPE_CPU or CL_DEVICE_TYPE_GPU, if you want to list
the number of available CPU or GPU devices.

Chapter 2

[43]

To understand better we we have added the PrintDeviceInfo function:

void PrintDeviceInfo(cl_device_id device)
{
 char queryBuffer[1024];
 int queryInt;
 cl_int clError;
 clError = clGetDeviceInfo(device, CL_DEVICE_NAME,
 sizeof(queryBuffer),
 &queryBuffer, NULL);
 printf("CL_DEVICE_NAME: %s\n", queryBuffer);
 queryBuffer[0] = '\0';
 clError = clGetDeviceInfo(device, CL_DEVICE_VENDOR,
 sizeof(queryBuffer), &queryBuffer,
 NULL);
 printf("CL_DEVICE_VENDOR: %s\n", queryBuffer);
 queryBuffer[0] = '\0';
 clError = clGetDeviceInfo(device, CL_DRIVER_VERSION,
 sizeof(queryBuffer), &queryBuffer,
 NULL);
 printf("CL_DRIVER_VERSION: %s\n", queryBuffer);
 queryBuffer[0] = '\0';
 clError = clGetDeviceInfo(device, CL_DEVICE_VERSION,
 sizeof(queryBuffer), &queryBuffer,
 NULL);
 printf("CL_DEVICE_VERSION: %s\n", queryBuffer);
 queryBuffer[0] = '\0';
 clError = clGetDeviceInfo(device, CL_DEVICE_MAX_COMPUTE_UNITS,
 sizeof(int), &queryInt, NULL);
 printf("CL_DEVICE_MAX_COMPUTE_UNITS: %d\n", queryInt);
}

Note that each of the param_name associated with clGetDeviceInfo returns a
different data type. In the routine PrintDeviceInfo you can see that the CL_
DEVICE_MAX_COMPUTE_UNITS param_name returns an integer type The CL_DRIVER_
VERSION param_name returns a character buffer.

The preceding function prints the following information about the device:

CL_DEVICE_NAME
CL_DEVICE_VENDOR
CL_DRIVER_VERSION
CL_DEVICE_VERSION
CL_DEVICE_MAX_COMPUTE_UNITS

OpenCL Architecture

[44]

Following is the maximum number of compute units for different types of platforms
when you query for the GPU type device:

For APU like processors:

AMD A10 5800K - 6

AMD trinity has 6 SIMD engines (compute units) and each has 64 processing
elements.

INTEL HD 4000 - 16

Intel HD 4000 has 16 compute units and each is a single thread processor.

For discrete graphics:

NVIDIA GTX 680 - 8

The NVIDIA GTX 680 has a total of eight Compute units; each compute unit has 192
processing elements.

AMD Radeon HD 7870 - 32

The AMD Radeon HD 7870 GPU has 32 compute units and each has 64 processing
elements.

It is not the case that if you have more compute units in the GPU device type, the
faster the processor is. The number of compute units varies across different computer
architectures and across different hardware vendors. Sometimes even within the
vendors there are different families like the NVIDIA Kepler and Fermi architectures
or the AMD Radeon HD 6XXX and Radeon HD 7XXX Architecture. The OpenCL
specification is targeted at programming these different kinds of devices from different
vendors. As an enhancement to the sample program print all the device related
attributes and resource sizes for some of the param_name instances listed as follows:

• CL_DEVICE_TYPE

• CL_DEVICE_MAX_CLOCK_FREQUENCY

• CL_DEVICE_IMAGE_SUPPORT

• CL_DEVICE_SINGLE_FP_CONFIG

Besides these there are many more device attributes which can be queried. Take a
look at the different param_name instances provided in the OpenCL specification 1.2,
table 4.3. You should try out all the param_name instances and try to understand each
device property.

Chapter 2

[45]

Execution model
The two main execution units in OpenCL are the kernels and the host program. The
kernels execute on the so called OpenCL device and the host program runs on the
host computer. The main purpose of the host program is to create and query the
platform and device attributes, define a context for the kernels, build the kernel, and
manage the execution of these kernels.

On submission of the kernel by the host to the device, an N dimensional index space
is created. N is at least 1 and not greater than 3. Each kernel instance is created at
each of the coordinates of this index space. This instance is called as the "work item"
and the index space is called as the NDRange. In the following screenshot we have
shown the three scenarios for 1, 2 and 3 dimensional NDRange:

2D ND Range
(10,8)-global size
(5,4)- local size
(2,2)- num of work groups

3D ND Range
(10,8,4)-global size
(5,4,1)- local size
(2,2,4)- num of work groups

1D ND Range
20-global size
5- local size
4- num of work groups

OpenCL NDRange

In the saxpy example which we discussed in the previous chapter, we have
taken a global size of 1024 and a local size of 64. Each work item computes
the corresponding:

C[local id] = alpha* A[local id] + B[local id];

OpenCL Architecture

[46]

A total of sixteen work groups are spawned. When the clEnqueueNDRange function
is executed, a 1 Dimensional NDRange is created for the saxpy_kernel function.
The explanation of clEnqueueNDRange function is given in the next section. Since in
saxpy every data C[…] can be calculated independently, all the work items can run
in a parallel way. We divide the problem of 1024 element saxpy into work groups,
so that a group of contiguous elements can work on a separate OpenCL capable
compute unit.

NDRange
An NDRange is the kernel execution index in an N-dimensional index space. The
values which N can take are 1, 2, or 3. An NDRange value is given by an array
of integers of length N specifying the index's extent in each dimension. Starting
OpenCL 1.2 an offset index value can also be specified for each dimension, which
gives the starting offset for an NDRange. If this offset is not specified then its
value is 0 by default in each dimension. The extent of a work group is specified
by local_work_size in the clEnqueueNDRangeKernel function below. Global ID
and Local ID are N tuple values. The global_work_size function defines the total
number of work items, which can be spawned for the OpenCL kernel. The global ID
components are values in the range from offset X, to X plus the global_work_size
function in their corresponding dimensions.

A group of work items are organized in OpenCL work groups. Take a look at the
following diagram of a 2D NDRange. The work groups provide a coarse-grained
decomposition of the index space. Each work group is assigned a unique ID with the
same number of dimensions as the global index space used to define the work items.
Every work item in a work group is assigned a unique local ID, so that every work
item can be uniquely addressed during the kernel execution within a work group
scope. Similarly work items are also assigned a unique global ID in the NDRange
and can be uniquely addressed during the kernel execution.

Work groups are also assigned work group IDs. This is also an array of N integers,
where each integer defines the number of work groups in each dimension. The work
groups' IDs are assigned in the same manner as it is done for assigning global IDs.
See equation 2 later in the section. Every work item has an associated work group
ID and a local ID. It's easy to calculate the global ID of the work item, when we are
given a work group ID and a local-ID. See equation 1 later in this section. Each work
item can be identified in two ways; global index, and work group index plus a local
index in each of its respective dimensions.

Let's explain the following with an equation: N=2 NDRange:

Chapter 2

[47]

We will be using the following terms for defining the Execution model:

• work-item: It is the individual kernel execution instance
• work-group: It is a group of work items form a work group
• global-id: A unique global ID given to each work item in the global

NDRange
• local-id: A unique local ID given to each work item within a work group

Consider a (12,12) NDRange as shown in the following figure. Each of the smallest
box is a work item. As you can see there are twelve of them in each row and there are
twelve such rows.

work-item

sx ,sy() (0,0)=

wx Sx+sx+Fx ,wy Sy+sy+Fy(). .

sx ,sy() sx-1,0()=

wx Sx+sx+Fx ,wy Sy+sy+Fy(). .

wx Sx+sx+Fx ,wy Sy+sy+Fy(). .

sx ,sy() (S -1,S -1)= x y

wx Sx+sx+Fx ,wy Sy+sy+Fy(). .

sx ,sy() (0, S -1)= y

...

work-item

work-itemwork-item

...

...

work-group size (w ,w)x y

work-group size Sx

work-group size Sy

NDRange size Gx

NDRange size Gy

Execution model, Courtesy Khronos

In the preceding diagram the global size is defined by (12, 12) ~ (Gx, Gy). The extent
of Gx and Gy is 0 to 11. The total number of work items is given by the product of Gx
and Gy, which amounts to a total of 144 work items.

The size of each work group is (4, 4) ~ (Sx, Sy). The extent of Sx and Sy is 0 to 3. The
total number of work items in a work group is given by the product of Sx and Sy. In
this example there are sixteen work items in the work group.

www.allitebooks.com

http://www.allitebooks.org

OpenCL Architecture

[48]

From the extent of the global work items (Gx, Gy) and the extent of the local
work items (Sx, Sy), we can compute the number of work groups (Wx, Wy)
in the NDRange.

Each work item is identified by its global ID (gx, gy) or local ID (sx, sy). The
work items in a work group belong to a work group ID (wx, wy) defined in the
following equation 3. Similarly the global ID can be computed using a combination
of local ID (sx, sy) and work group ID (wx, wy), as shown in the equation:

(gx , gy) = (wx * Sx + sx, wy * Sy + sy) (1)

The number of work groups can be computed using the equation:

(Wx, Wy) = (Gx / Sx, Gy / Sy) (2)

The work-group ID for a work item is computed the using equation:

(wx, wy) = ((gx - sx) / Sx, (gy - sy) / Sy) (3)

Till now we have discussed about the work item, work group, local ID, and global
ID. All these values can be determined inside a kernel execution at runtime using
the built-in functions, which are listed as follows:

• get_global_id(int dim);

• get_local_id(int dim);

• get_num_groups(int dim);

• get_group_size(int dim);

• get_group_id(int dim);

The NDRange execution space is defined by the OpenCL API. The associated
parameters should all be created in an OpenCL context as follows:

cl_int clEnqueueNDRangeKernel(cl_command_queue command_queue,
 cl_kernel kernel,
 cl_uint work_dim,
 const size_t * global_work_offset,
 const size_t * global_work_size,
 const size_t * local_work_size,
 cl_uint num_events_in_wait_list,
 const cl_event * event_wait_list,
 cl_event * event)

Chapter 2

[49]

This function enqueue's a command to execute a kernel on the device associated
with the command_queue function. Of all the OpenCL functions that run on the
host, clEnqueueNDRangeKernel is the most important to understand. Not only
does it deploys kernels to devices, it also specifies how many work items should be
generated to execute the kernel (global_work_size) and the number of work items
in each work group (local_work_size). The following list represents certain objects:

• command_queue: Every command_queue is associated with one device. kernel
will be enqueued for execution on this device. The command_queue object is
created using the clCreateCommandQueue function.

• kernel: It refers to an OpenCL kernel object. This kernel object would
have been created using the OpenCL program object.

• work_dim: It specifies the dimension of the NDRange (index space).
The value can be 1, 2 or 3.

• global_work_offset: This is a size_t pointer to the work_dim elements.
If set to NULL all the values in each dimension take the default value as 0.
Otherwise this is used to calculate the global ID of a work item.

• global_work_size: This is a size_t pointer to the work_dim elements,
which specifies the extent of the global work items in every dimensions.

• local_work_size: This is also a size_t pointer to the work_dim elements
and specifies the extent of local work items in every dimension.

• event_wait_list and num_events_in_wait_list: The event_wait_list
object contains handles to events, which an OpenCL implementation will
wait for before enqueuing this command.

• event: Every enqueued command returns an OpenCL event object that is the
reference to the command in the queue. Here the kernel's execution handle is
returned in the event pointer. This cl_event object can be used later on for
reference to the execution status.

The OpenCL supports two of these execution models; the data parallel programming
model and the task parallel programming model. The clEnqueueNDRangeKernel
function is a kind of data parallel execution model, the task parallel programming
model will be discussed in Chapter 5, OpenCL Program and Kernel Objects.

We just coined the term "enqueues a command", let's explain what a queue has
to do with the OpenCL. Before that, let's discuss the OpenCL context.

OpenCL Architecture

[50]

OpenCL context
A context defines the entire OpenCL environment, including the devices, the
program objects, the OpenCL kernels, memory objects, command queues, and so
on. A context can be associated with multiple devices or with only one device. The
OpenCL context associated with command queue and the kernel should be the same.
They cannot be from different contexts.

Before we can create a context we must first query the OpenCL runtime to determine
which vendor platforms are available in the system. After you have selected a
vendor platform, the first step is to initialize the OpenCL implementation in order
to create a context. The rest of the OpenCL work like creating devices and memory,
compiling, and running programs is performed within this context. A context can
have a number of associated devices, which can be either of CPU or GPU or both,
and, within a context. Contexts in the OpenCL are referenced by a cl_context
object, which must be initialized using the following OpenCL API:

cl_context clCreateContext (const cl_context_properties *properties,
 cl_uint num_devices,
 const cl_device_id *devices,
 void (CL_CALLBACK *pfn_notify)
 (const char *errinfo,
 const void *private_info,
 size_t cb, void *user_data),
 void *user_data,
 cl_int *errcode_ret)

The following is the list of few contexts of the OpenCL along with its description:

• properties: It is a list of name and its corresponding value. The name
is the context property name like CL_CONTEXT_PLATFORM and this is
followed by the property value. An example of the same is as follows:
cl_context_properties props[3] =
{
 CL_CONTEXT_PLATFORM,
 (cl_context_properties)platforms,
 0
};

One can add more property values based on the requirements of
the application.

Chapter 2

[51]

• num_devices: It is the number of devices one wants to associate with the
context. The devices pointer should have at least num_devices, cl_device_
id instance

• devices: It is a pointer to a num_devices list of cl_device_id instances,
which will be associated with the context.

• errcode_ret: The error code returned by the OpenCL implementation
associated with a call to this function.

• pfn_notify: It is a function pointer to the callback function, which an
application can register. The underlying OpenCL implementation will call
this function to asynchronously report errors for context creation. If set to
NULL then no callback function is registered. The prototype of a callback
function is as follows:
void OpenCL_Context_Callback(const char *errinfo,
 const void *private_info,
 size_t cb, void *user_data);

• user_data: This is the pointer to the data, which will be passed to the
callback function if registered by the application. If no callback function is
registered this should be set to NULL.

OpenCL command queue
The OpenCL command queue is an object where OpenCL commands are queued
to be executed by the device. The command queue is created for every usable
OpenCL device for kernel execution. One can have multiple command queues for
different tasks in applications. This way an application developer can run tasks
independently on different command queues. We will discuss about the various
synchronization mechanisms using multiple command queues in Chapter 6, Events
and Synchronization. The following code snippet creates a command queue and a
write (clEnqueueWriteBuffer), and NDRange execution of the kernel commands
are queued on to the device:

cl_command_queue command_queue =
 clCreateCommandQueue(context, device_list[0],
 0, &clStatus);
clStatus = clEnqueueWriteBuffer(command_queue, A_clmem,
 CL_TRUE, 0,
 VECTOR_SIZE * sizeof(float), A, 0, NULL, NULL);
clStatus = clEnqueueNDRangeKernel(command_queue, kernel,
 1, NULL, &global_size,
 &local_size, 0, NULL, NULL);

OpenCL Architecture

[52]

The host program creates this command queue. The snapshot of the queue anytime
shall give you the list of enqueued commands. These commands can be of data
transfer, or kernel execution commands or barriers within the command queue. The
host enqueues these commands to the command queue. Each command or task is
associated with an OpenCL event. These events can be used as a synchronization
mechanism to coordinate execution between the host and the device.

There can be multiple queues associated within a context. They can dispatch
commands independently and concurrently with no explicit mechanism to
synchronize between them.

Queues can be in-order of the execution queues. The commands are dequeued in
first in first out (FIFO) manner. Hence application can send commands to the queue
and be ensured that they execute in order.

Out of order command queues are also supported by the OpenCL. The commands
are issued in order, but do not wait for the previous command to complete before
the next command executes. We will discuss more about this in Chapter 5, OpenCL
Program and Kernel Objects.

Memory model
The OpenCL Memory model guarantees a relaxed memory consistency between
devices. This means that different work items may see a different view of global
memory as the computation progresses. This leads to a bigger challenge for the
developers to partition data and splitting computation tasks into different work
items. Synchronization is required to ensure data consistency within the work items
of a work group. One needs to make sure that the data the work item is accessing
is always correct. This makes the application developers task a little complicated
to write applications with relaxed consistency, and hence explicit synchronization
mechanisms are required.

The x86/x86_64 CPU cache coherent architecture is different from the OpenCL
relaxed memory architecture. In cache coherent systems, data that resides in the local
processor caches is guaranteed to be consistent across processors. The programmer
need not worry about the data partitioning in cache coherent architectures. This
results in a lot of memory bandwidth at the back of the cache, and makes the task of
an application programmer easier. The OpenCL Memory model scales well across
cache coherent memory architectures also. An OpenCL programmer must have
knowledge of partitioning the data across his application work load, to achieve the
highest performance in massively parallel heterogeneous systems. The standard
defines four distinct memory regions. Each region can be accessed by the work items
executing a kernel. The following are the different types of memory.

Chapter 2

[53]

Global memory
Every OpenCL device has an associated global memory. This is the largest size
memory subsystem. Memory accesses can be coalesced, to ensure contiguous
memory reads and thereby increasing the performance. All the work items in all
the work groups can read or write into this memory buffer. This memory can be
cached depending on the OpenCL device. Take a look at the following OpenCL
kernel prototype:

__kernel
void histogram_kernel(__global const uint* data,
 __local uchar* sharedArray,
 __global uint* binResultR,
 __global uint* binResultG,
 __global uint* binResultB)

The __global or global keyword identifies this buffer region. This memory region
is device wide and changes made in this region are visible to all the work items in
the NDRange.

Constant memory
An OpenCL device has a region of memory called the constant memory, which is
initialized by the host. This is similar to creating an OpenCL buffer with CL_MEM_
READ_ONLY flag. This is the region of memory that remains constant throughout the
execution time of the kernel.

Local memory
For high performance every OpenCL device has an associated local memory. This is
the memory closest to the OpenCL processing element. Every work item in a work
group can use this buffer and is shared amongst them that is if one work item modifies
a local memory then the changes are visible across all the work items in a work group.
As shown in the diagram the local memory is associated with one OpenCL compute
unit. This means that the work items in a work group should all run on one compute
unit. The __local or local keyword identifies this memory region.

OpenCL Architecture

[54]

Private memory
Memory region or processing element scratch registers are all referred to as the
private region. This region of memory is used by the OpenCL device complier to
allocate all the local variables in the kernel code. Any modifications done to this
memory region are not visible to the other work items. As shown in the following
diagram every processing element has a private memory. This is the default memory
attribute in an OpenCL kernel:

Compute Device
Compute unit 1

Private
memory 1

Private
memory M

PE 1 PE M

...

Local
memory 1

Compute unit N

Private
memory 1

Private
memory M

PE 1 PE M

...

Local
memory N

Global/Constant Memory Data Cache

Constant Memory

Global Memory

Compute Device Memory

OpenCL Memory Model, Courtesy Khronos

Based on the underlying architecture the work items in a given work group execute
concurrently on the processing elements of a single compute unit. This means that
one work group is associated with one compute unit of the hardware in OpenCL.
This is because most of the hardware architectures have high speed memory local
to the compute unit. In the context of OpenCL we refer to private memory as high
speed memory.

Chapter 2

[55]

The private memory can be shared among all the work items in the work group.
For example in some graphics architectures, every compute unit has a large private
memory say of the size 64 KB. When all the work items in the work group run on
the device this 64 KB is shared among all the work items. For example a work group
of size 64 work items will allocate 1 KB of private memory for each work item. This
makes the application programmer create the OpenCL kernels, which use small
number of registers and the hardware scheduler should be able to launch many
work items or wave fronts at a time.

OpenCL ICD
The OpenCL function clGetPlatformIDs is used to determine the different
OpenCL implementations available in the platform. There can be multiple OpenCL
implementations installed in the system. Let's define an OpenCL platform.

An OpenCL platform is a host computing machine and a collection of heterogeneous
devices managed by OpenCL implementations, which allow an application to share
hardware resources and execute kernels on different devices in the platform. Devices
from different vendors will have their own OpenCL runtimes in the platform. Let's
consider a system with an AMD graphics card and an NVIDIA graphics card. Now
an AMD OpenCL implementation is not going to work on NVIDIA OpenCL devices.
Remember only the code is portable not the underlying OpenCL runtime. So how
does an application solve this problem of using the multiple OpenCL runtimes or use
multiple platforms. The answer is OpenCL ICD.

OpenCL Architecture

[56]

What is an OpenCL ICD?
The OpenCL Installable Client Driver (ICD) is a means of allowing multiple
OpenCL implementations to co-exist and applications to select between them at
runtime. With this it is now the applications responsibility for querying which
OpenCL platform is present in the system and which one the application should use,
instead of just requesting the default like we did in our first few example wherein
we chose the first available platform as default.

OpenCL Application

OpenCL ICD - Installable Client Driver
OpenCL.dll or libOpenCL.so

cl_platform_id 0

cl_device_id_0 cl_device_id_1 cl_device_id_2

cl_contextcl_program objects cl_mem objects

cl_command_queue 0
for cl_device_id 0

cl_command_queue 1
for cl_device_id 1

cl_command_queue 2
for cl_device_id 2

Vendor 1

cl_platform_id 1

cl_device_id_0 cl_device_id_1 cl_device_id_2

cl_contextcl_program objects cl_mem objects

cl_command_queue 0
for cl_device_id 0

cl_command_queue 1
for cl_device_id 1

cl_command_queue 2
for cl_device_id 2

Vendor 2

OpenCL ICD and different vendors

In the preceding diagram, an OpenCL application is linked with the OpenCL
ICD library. At runtime this ICD shared library (OpenCL.dll in windows and
libOpencl.so in Linux) will query the registry and load the appropriate shared
library as selected by the application. An application may want to use both the
platforms available. The application developer can create a context for each device
in the platform, and appropriately execute his algorithm on the device. It is not
possible to pass device buffers between two different OpenCL contexts. It is the host
applications responsibility to share, transfer, and synchronize data consumption
between two contexts.

Chapter 2

[57]

Application scaling
A multithreaded program is partitioned into blocks of threads that execute
independently from each other, so that a GPU with more cores will automatically
execute the program in less time than a GPU with fewer cores. This is important
since we can see here two levels of nested data parallelism or data parallelism nested
within task parallelism. The upper level parallelism partitions a given problem into
blocks of threads. Each block of thread will run on a compute unit, for example, a
SIMD engine in the AMD APUs. Beyond this high level parallelism there is lower
level parallelism, where a group of threads run cooperatively within the thread
block. Each of these threads runs on the processing elements of the compute unit.

OpenCL Program

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

GPU with 2 Cores

Core 0 Core 1

Block 0 Block 0

Block 2

Block 4

Block 6

Block 3

Block 5

Block 7

GPU with 2 Cores

Core 0 Core 1

Block 0 Block 1

Block 4 Block 5

Core 2 Core 3

Block 2 Block 3

Block 6 Block 7

Less cores more time, Courtesy NVIDIA®

www.allitebooks.com

http://www.allitebooks.org

OpenCL Architecture

[58]

Summary
In this chapter we started with the discussion of OpenCL Platform model, and
briefly explained the various hardware from different vendors and tried to map
the OpenCL terminologies to the devices which we discussed. We also discussed
the Execution and Memory model of OpenCL. This chapter forms the foundation
for any OpenCL programmer.

Till now we discussed about the OpenCL architecture and the OpenCL ecosystem
in general. From here on we will study the OpenCL objects such as, buffers,
images, programs, kernels, and so on in detail. In the next chapter we will start our
discussion about the OpenCL buffers, and the mechanisms of data transfer between
the host and the OpenCL devices.

OpenCL Buffer Objects
In the previous chapter we discussed about the OpenCL Architectural models, and
also understood the device context and command queue creation. This forms the
first step towards the OpenCL language programming. In Chapter 1, Hello OpenCL,
we implemented a simple saxpy OpenCL example, which created memory objects
(buffers in this case) and the kernel performed the saxpy operation on these buffers.
These memory objects were created and transferred to and from the device's
memory. Computations were performed on these memory objects by every instance
of the kernel execution created in the NDRange. OpenCL memory objects form the
most fundamental architectural unit in the OpenCL programming.

In this chapter we will study the OpenCL buffer memory object and the functions and
characteristics related to these buffer objects. This is referred to as the cl_mem object for
contiguous memory locations. We will discuss the following in this chapter:

• Create buffer objects
• Create subbuffer objects
• Use these buffer objects to compute the image histogram
• Transferring the buffer data to and from the device
• Mapping and querying the buffer objects

Besides this there is another form of OpenCL cl_mem object called the image buffer.
The image buffer represents the various raw formats of an image. We will discuss
the image objects in the next chapter.

OpenCL Buffer Objects

[60]

Memory objects
Memory objects are encapsulated by cl_mem data structure. The two important
functions to create a memory object are as follows:

cl_mem clCreateBuffer (cl_context context,
 cl_mem_flags flags,
 size_t size,
 void *host_ptr,
 cl_int *errcode_ret)
cl_mem clCreateImage (cl_context context,
 cl_mem_flags flags,
 const cl_image_format *image_format,
 const cl_image_desc *image_desc,
 void *host_ptr,
 cl_int *errcode_ret)

Note that both the buffer and image data objects are of type cl_mem and these objects
form the most important basic component in OpenCL. Both these functions return
the cl_mem objects and the type of memory is specified by the flags variable of type
cl_mem_flags. For comparison purpose the clCreateImage function is shown here.
More details of this will be discussed in the next chapter. The possible values for the
cl_mem_flags flags are shown in the following table:

cl_mem_flags Description
CL_MEM_READ_WRITE The buffer is created in the device global memory and

can be read and written by the kernel.
CL_MEM_WRITE_ONLY The buffer is created in the device global memory and

will be written by the compiler.
CL_MEM_READ_ONLY The buffer created with this memory attribute can

only be read by the kernel code. This is also referred
to as the constant memory in the OpenCL memory
architecture.

CL_MEM_USE_HOST_PTR The cl_mem object to be created uses the memory
referred by the host_ptr.

CL_MEM_ALLOC_HOST_PTR The cl_mem object to be created allocates the memory
from the host accessible memory, that is, the memory
allocated at the device can be mapped to the host
memory.

CL_MEM_COPY_HOST_PTR The cl_mem object will allocate memory at the device
and copy the data specified by the host pointer.

CL_MEM_HOST_WRITE_ONLY This cl_mem object can only be written by the host.
CL_MEM_HOST_READ_ONLY This cl_mem object can only be read by the host.
CL_MEM_HOST_NO_ACCESS This cl_mem object will neither be read nor written to.

Chapter 3

[61]

The cl_mem_flags flag specifies the property of the cl_mem object created. The first
three memory flags create memory at the device and specify the constraints for the
device and not the host. It can either be set as a single property or with multiple
properties by applying bitwise OR to the different flag combinations, like (CL_
MEM_READ_WRITE |CL_MEM_USE_HOST_PTR). There may be different combinations
possible, but each combination is restricted by the flag definition. The cl_mem_flags
flag specification specifies some mutually exclusive combinations. For example (CL_
MEM_USE_HOST_PTR |CL_MEM_COPY_HOST_PTR) is not possible, because the CL_MEM_
COPY_HOST_PTR flag allocates memory at the device and copies the data pointed to
by the host pointer. But CL_MEM_USE_HOST_PTR flag does not allocate any memory at
the device; instead it uses the already existing buffer pointed by host_ptr to be used
by the device. The host_ptr must be specified when we use the flag CL_MEM_USE_
HOST_PTR. It cannot be NULL.

The following are the ways in which COPY/HOST/ALLOC can be used:

• CL_MEM_COPY_HOST_PTR: This can be used when an application developer
wants to create new device memory, and you are sure that any modifications
on the created buffer object in the device side are not required at the host side.

• CL_MEM_USE_HOST_PTR: This is used when an application developer wants
to process the buffer at the device, the input to which comes from the host
and also wants the modified buffer back on the host.

• CL_MEM_ALLOC_HOST_PTR: This buffer is used when the host uses the data
which is first filled by the device. For example, the device generates random
numbers in the allocated buffer and this buffer will be used by the host.
This is like performing malloc and not filling the memory, instead device
fills the buffer.

The performance of the three flags we just saw are OpenCL implementation defined,
for example CL_MEM_USE_HOST_PTR uses the host memory as a buffer location, but
when it comes to accessing the data at the device side, the OpenCL implementation
may pin this memory and then transfer the data over the memory bus interface (PCIe
in the case of discrete graphics cards). But in the case of CL_MEM_ALLOC_HOST_PTR
the OpenCL implementation may allocate memory directly on the pinned memory
location which the OS uses for data transfer using the DMA. This may be faster when
compared to CL_MEM_USE_HOST_PTR.

The cl_mem object or buffer refers to any type of contiguous data location which can
be used by the kernel during execution. Image objects data are sampled in a different
way and will be discussed in Chapter 4, OpenCL Images. The parameters passed to the
clCreateBuffer API are described in the following table:

OpenCL Buffer Objects

[62]

Parameter name Description
context A valid context object for which the buffer is allocated.
flags The flags parameter is a bit field specifying buffer allocation

and usage information. Multiple flags can be specified by OR'ing
the different flag values.

size Size of the buffer to be allocated, in bytes.
host_ptr A pointer to data, allocated by the application; its use in a call

to clCreateBuffer is determined by the flags parameter. The
size of the data pointed to by host_ptr must be at least that of
the requested allocation, that is, greater than or equal to the size
bytes.

errcode_ret Error code, if any, will be set in this variable if it's a non-NULL
parameter.

Creating subbuffer objects
There may be situations when you may want to create a subbuffer out of the existing
buffer object. For this purpose OpenCL provides the API.

cl_mem clCreateSubBuffer (cl_mem buffer,
 cl_mem_flags flags,
 cl_buffer_create_type buffer_create_type,
 const void *buffer_create_info,
 cl_int *errcode_ret)

The clCreateSubBuffer function can be used to create a new partial buffer object
(referred to as a subbuffer object) from an existing OpenCL cl_mem buffer object.

Parameter name Description
buffer Must be a valid buffer object created using the

clCreateBuffer API and cannot itself be a subbuffer
object.

flags This parameter takes the same values as described in the
table of cl_mem_flags shown earlier. The values taken
by the flags variable should not get into any mutual
exclusion condition with the flags of the original
buffer. For example, if the original cl_mem object
buffer is created with CL_MEM_HOST_WRITE_ONLY
and the flag specified is CL_MEM_HOST_READ_ONLY,
then the API shall return CL_INVALID_VALUE in the
errcode_ret pointer.

buffer_create_type Size of the buffer to be allocated, in bytes.

Chapter 3

[63]

Parameter name Description
buffer_create_info This is a pointer to the cl_buffer_region structure

shown:
typedef struct _cl_buffer_region {

 size_t origin;

 size_t size;

} cl_buffer_region;

errcode_ret Error code if any will be set in this variable if it's a non-
NULL parameter.

The buffer_create_info and buffer_create_type parameters describe the type
of buffer object to be created. The only value which can be specified for buffer_
create_type is CL_BUFFER_CREATE_TYPE_REGION. The region specified is given by
the cl_buffer_region object. The cl_buffer_region structure member origin
is the offset in bytes in the cl_mem buffer object. The size is the size of the buffer
object in bytes. Good care should be taken while specifying the size of the subbuffer.
It should not go outside of the boundaries of buffer. There can be overlaps in
the memory region, but writing to the overlapped region by two different kernels
simultaneously is undefined.

Take a look at the following code snippet. The code creates three subbuffer cl_mem
objects subuffer1, subBuffer2 and subBuffer3 from a larger cl_mem buffer.
Note the overlap region as shown in the following diagram.

buffer = clCreateBuffer(
 context,
 CL_MEM_READ_ONLY,
 sizeof(float) * 100, /*buffer of 100 floats*/
 NULL,
 &status);
cl_buffer_region region;
region.size = 50*sizeof(float);
region.origin = 0;
//Create first subBuffer with origin at the start of
// buffer and of size 50 floats
cl_mem subBuffer1 = clCreateSubBuffer(
 buffer,
 CL_MEM_READ_ONLY,
 CL_BUFFER_CREATE_TYPE_REGION,
 ®ion,
 &err);

OpenCL Buffer Objects

[64]

region.origin = 50*sizeof(float);

cl_mem subBuffer2 = clCreateSubBuffer(
 buffer,
 CL_MEM_READ_ONLY,
 CL_BUFFER_CREATE_TYPE_REGION,
 ®ion,
 &err);

region.origin = 40*sizeof(float);

cl_mem subBuffer3 = clCreateSubBuffer(
 buffer,
 CL_MEM_READ_ONLY,
 CL_BUFFER_CREATE_TYPE_REGION,
 ®ion,
 &err);

The following figure explains the code we just saw and shows the overlap region:

Diagram showing overlap of buffers

An example usage of subbuffers may be that you want to divide the buffer across
multiple devices and launch kernels for each buffer on a separate command-queue.
An OpenCL developer can enqueue map commands on overlapped regions in the
memory. These map commands should be done for reading purpose only using
the CL_MAP_READ flag. It is an invalid operation if the memory mapping is done for
writing purpose. We will discuss more about Mapping Buffers in a section later in
this chapter.

Chapter 3

[65]

Histogram calculation
Histogram is a graphical representation of tonal distribution of a digital image.
It plots the number of pixels for each tonal value. In this example we find the
histogram of each of the RGB color components in the color image.

In this section, we will discuss the histogram sample. The sample code has two parts
the host code and the device code which is defined as a const char *histogram_
kernel. For understanding purpose, we will discuss the OpenCL kernel code that
follows. For an OpenCL application programmer most of the effort goes in writing
the OpenCL kernel. The majority of the host code is that of setting up the OpenCL
platform to run that kernel. We now start with the discussion of the kernel code.

Algorithm
The input image of size X height and Y width is divided into the small linear chunks
of size BIN_SIZE=256. Each thread shall process 256 pixel values and compute
the RGB histogram. Also the total number of threads in a work group which we
have selected is 16. The 16 threads are chosen so that the code works well for all
the available OpenCL hardware vendors. Ideally, one should query the device
properties using clGetDeviceInfo with the param_name variable set to value CL_
DEVICE_MAX_WORK_GROUP_SIZE function and appropriately select the work group
size for the algorithm.

One more factor which limits the number of work items in a work group is the local
memory size. In this example we have created a local memory sharedArray of size
16 * 256 = 4 KB of local memory per work group. On AMD graphics cards which
have a local memory size of 32 KB across all GPU devices, you can launch upto
64 work items per work group or multiples of 64 work items upto 256. This local
memory is used by all the work items in the work group. Application developer can
query the available local memory size using the function clGetDeviceInfo with the
param_name CL_DEVICE_LOCAL_MEM_SIZE.

In a work group the kernel operates on the image area which is equal to 256*16 pixels
linear image buffer. The histogram is computed for each of this local image area by a
work group independently. So basically in the kernel we compute

(X * Y) / (256 * 16)

sub histograms. The computed sub-histograms are stored in the uint * buffer
pointed by binResultR, binResultG and binResultB for R, G, and B components
respectively. This buffer is a global memory in the device.

OpenCL Buffer Objects

[66]

Each of the work items in a work group shall compute the histogram and store in its
local buffer pointed by sharedArray. The pixel value used by each work-item is in
the range:

(globalId * BIN_SIZE) to (globalId * BIN_SIZE + 255)

OpenCL Kernel Code
We first discuss the OpenCL kernel code for the histogram example. The kernel
histogram_kernel is built by the OpenCL runtime compiler and is shown in the
following code. This kernel computes the block histogram of 256*16 pixel values,
each for R, G, and B components. Each work-item first computes the histogram of
the 256 elements, into the local memory sharedArray. After each work-item has
computed the histogram which is confirmed by a local barrier in the kernel code,
the last loop in the kernel accumulates all the histogram values into a block level
histogram that is, finally the binResultX will contain the histogram of 256*16
pixel values of each of the color components.

#define BIN_SIZE 256
#pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable
__kernel
void histogram_kernel(__global const uint* data,
 __local uchar* sharedArray,
 __global uint* binResultR,
 __global uint* binResultG,
 __global uint* binResultB)
{
 size_t localId = get_local_id(0);
 size_t globalId = get_global_id(0);
 size_t groupId = get_group_id(0);
 size_t groupSize = get_local_size(0);
 __local uchar* sharedArrayR = sharedArray;
 __local uchar* sharedArrayG = sharedArray +
 groupSize * BIN_SIZE;
 __local uchar* sharedArrayB = sharedArray +
 2 * groupSize * BIN_SIZE;

 /* initialize shared array to zero */
 for(int i = 0; i < BIN_SIZE; ++i)
 {
 sharedArrayR[localId * BIN_SIZE + i] = 0;
 sharedArrayG[localId * BIN_SIZE + i] = 0;
 sharedArrayB[localId * BIN_SIZE + i] = 0;
 }

Chapter 3

[67]

Till now in the histogram_kernel, we have initialized the local memory uchar
pointer pointed by sharedArray to 0 and assigned pointers to each of the R, G, and B
components. In the next for loop we compute the histogram of BIN_SIZE pixels. This
is computed in each of the 16 work-items in the work group.

/* calculate thread-histograms */
for(int i = 0; i < BIN_SIZE; ++i)
{
 uint value = data[globalId * BIN_SIZE + i];
 uint valueR = value & 0xFF;
 uint valueG = (value & 0xFF00) >> 8;
 uint valueB = (value & 0xFF0000) >> 16;
 sharedArrayR[localId * BIN_SIZE + valueR]++;
 sharedArrayG[localId * BIN_SIZE + valueG]++;
 sharedArrayB[localId * BIN_SIZE + valueB]++;
}

 barrier(CLK_LOCAL_MEM_FENCE);

Note the barrier function in the code above . After the calculation of the histogram
at each work-item, we need to count the number of pixels with the values 0, 1, and
so on till 255. But before that each work-item must have computed its histogram
count and stored the result in its corresponding sharedArray bins. To ensure that
all the work-items in a work group have completed its execution we add a barrier
function in the code. Every work-item in the work group shall wait for the barrier
function to execute before proceeding further.

/* merge all thread-histograms into block-histogram */
for(int i = 0; i < BIN_SIZE / groupSize; ++i)
{
 uint binCountR = 0;
 uint binCountG = 0;
 uint binCountB = 0;
 for(int j = 0; j < groupSize; ++j)
 {
 binCountR +=
 sharedArrayR[j * BIN_SIZE + i * groupSize + localId];
 binCountG +=
 sharedArrayG[j * BIN_SIZE + i * groupSize + localId];
 binCountB +=
 sharedArrayB[j * BIN_SIZE + i * groupSize + localId];
 }

OpenCL Buffer Objects

[68]

The for loop above adds up the local histogram computed. Finally we store the result
from local memory sharedArray to global memory binResult.

binResultR[groupId * BIN_SIZE + i * groupSize + localId] =
 binCountR;
binResultG[groupId * BIN_SIZE + i * groupSize + localId] =
 binCountG;
binResultB[groupId * BIN_SIZE + i * groupSize + localId] =
 binCountB;
 }
}

By now you must have understood the histogram kernel implementation and may
have thought of several more ways to implement the same. We will discuss a way
to optimize this solution in Chapter 8, Basic Optimization Techniques with Case
Studies - Histogram calculation.

The Host Code
The host side code involves the following steps:

1. Read the BMP Image into a raw pixel buffer: In a BMP image the pixel
values are stored as interleaved RGB pixel values or as a reference to a
palette table. We first read the image pixels into system memory. For this
purpose, we create a simple Image object, which stores the buffer and the
size of the image using the utility function.
void ReadBMPImage(string filename, Image **image)

2. Setup the OpenCL Platform: Once we obtain the raw image pixel values in
a contiguous system memory, we set up the OpenCL Platform and then pass
this buffer to the OpenCL device. Setting up the OpenCL device involves
selecting an available platform, selecting the device to execute the kernel,
creating an execution context and an associated command queue.

3. Create OpenCL Buffers: For histogram computation we create as many as
four OpenCL Buffers using the API clCreateBuffer. One is the input buffer
which has the raw pixel values. This buffer needs to be written to the device
memory using the clEnqueueWriteBuffer. The remaining three are the
output buffers which after the histogram computation need to be read back
to the host memory using the clEnqueueReadBuffer OpenCL runtime API.
Take a look at the following code:
//Create OpenCL device input buffer
imageBuffer = clCreateBuffer(context,
 CL_MEM_READ_ONLY,
 sizeof(cl_uint) * image->width * image->height,

Chapter 3

[69]

 NULL,
 &status);
LOG_OCL_ERR0R(status, "clCreateBuffer Failed.");

//Set input data
cl_event writeEvt;
status = clEnqueueWriteBuffer(commandQueue,
 imageBuffer,
 CL_FALSE,
 0,
 image->width * image->height * sizeof(cl_uint),
 image->pixels,
 0,
 NULL,
 &writeEvt);
LOG_OCL_ERROR(status, "clEnqueueWriteBuffer Failed.");

status = clFinish(commandQueue);
LOG_OCL_ERROR(status, "clFinish Failed ");

The code snippet we just saw creates an OpenCL buffer. Once the buffer is
created the application enqueues a command to write the buffer data pointed
by image->pixels into the device associated with the commandQueue. It is
at this point when the actual data transfer takes place to the device. Every
command enqueued on the queue is associated with an event handle.
The write operation results in the event writeEvt being returned by the
application. The application can wait on this event to complete and continue
with further processing. For now in this example we will use the clFinish
function to complete all tasks in the queue.
There is one other way to create a buffer, which will not involve any data
transfer, between the devices. (But instead have data transfer during the
actual computation. This varies between different device architectures.) The
buffer can be created with CL_MEM_USE_HOST_PTR flag. The OpenCL buffer
is created using the existing host buffer. The maps and unmaps of OpenCL
buffers will result in the same host pointer being returned. The creation of
this buffer is shown in the following code snippet:
//Create OpenCL device input buffer
imageBuffer = clCreateBuffer(
 context,
 CL_MEM_READ_ONLY|CL_MEM_USE_HOST_PTR,
 sizeof(cl_uint) * image->width * image->height,
 image->pixels,
 &status);
LOG_OCL_ERROR(status, "clCreateBuffer Failed.");

OpenCL Buffer Objects

[70]

The LOG_OCL_ERROR utility is a macro used in the sample programs of this
book, and is not related to OpenCL specification.
The other three OpenCL buffers are created as follows:
//Create OpenCL device output buffer
intermediateHistR = clCreateBuffer(
 context,
 CL_MEM_WRITE_ONLY,
 sizeof(cl_uint) * binSize * subHistgCnt,
 NULL,
 &status);
LOG_OCL_ERROR(status, "clCreateBuffer Failed.");

intermediateHistG = clCreateBuffer(
 context,
 CL_MEM_WRITE_ONLY,
 sizeof(cl_uint) * binSize * subHistgCnt,
 NULL,
 &status);
LOG_OCL_ERROR(status, "clCreateBuffer Failed.");

intermediateHistB = clCreateBuffer(
 context,
 CL_MEM_WRITE_ONLY,
 sizeof(cl_uint) * binSize * subHistgCnt,
 NULL,
 &status);
LOG_OCL_ERROR(status, "clCreateBuffer Failed.");

The buffers intermediateHistR, intermediateHistG, and
intermediateHistB will store the computed RGB histogram values. These
buffers are characterized by CL_MEM_WRITE_ONLY flags. The input and output
buffers are characterized by the cl_mem_flags values CL_MEM_READ_ONLY
and CL_MEM_WRITE_ONLY respectively.

4. Build the kernel: The kernel histogram_kernel shown in the code snippet
is compiled and we are ready to setup the kernel parameters.

5. Setup the kernel arguments: After a brief look at the kernel code you will
immediately realize the relation/correspondence between the host-side
OpenCL buffer object and the actual kernel-side global memory pointer.
Host side variable -- Kernel parameter
imageBuffer -- data
intermediateHistR -- binResultR
intermediateHistG -- binResultG
intermediateHistB -- binResultB

Chapter 3

[71]

// Set the arguments of the kernel
status = clSetKernelArg(kernel, 0, sizeof(cl_mem),
 (void*)&imageBuffer);
status = clSetKernelArg(kernel, 1, 3 * groupSize * binSize
 * sizeof(cl_uchar), NULL);
status = clSetKernelArg(kernel, 2, sizeof(cl_mem),
 (void*)&intermediateHistR);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem),
 (void*)&intermediateHistG);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem),
 (void*)&intermediateHistB);

In the code snippet we just saw, the kernel arguments are set. Note that
the arguments 0, 2, 3, and 4 are set using the cl_mem objects. The argument
number 1 is specified with a NULL parameter, which indicates a local memory
and is characterized by __local uchar* in the kernel. We will discuss more
about setting the kernel arguments and executing the kernel in Chapter 5,
OpenCL Program and Kernel Objects

6. Read the Buffer to the host memory: After each thread has computed
its share of 256 elements histogram into the shared memory the final
sub-histogram result is computed as the sum of each pixel counts and
stored into the binResultR, binResultG, and binResultB global memory.
Finally on completion of the kernel execution, the results are read back to
the host memory.

Run the histogram sample code and check the correctness of the computed
histogram result.

Reading and writing buffers
By now you know how to create buffer objects and how to read them in the kernel.
Before the kernel is launched you may want to write the buffer to the device
memory using the API clEnqueueWriteBuffer. And after the kernel has completed
processing, you will want to get the buffer back to the host from the device memory.
This can be achieved by using the clEnqueueReadBuffer function.

cl_int clEnqueueWriteBuffer (cl_command_queue command_queue,
 cl_mem buffer,
 cl_bool blocking_write,
 size_t offset,
 size_t size,
 const void *ptr,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

OpenCL Buffer Objects

[72]

This function writes data from the host to the device memory. Following are the
descriptions of the parameters passed.

Parameter name Description
command_queue The write command will be queued in this OpenCL

queue. One should make sure that the cl_mem object
buffer and the command_queue are created using the
same context.

buffer A valid cl_mem buffer object, which will be written to.
blocking_write If this value is set to CL_TRUE, then

clEnqueueWriteBuffer blocks until the data is
written from ptr; otherwise it returns immediately
and the user must query event to check the
command's status.

offset The offset, in bytes, into the destination buffer
object. At this offset the first byte from the input source
buffer is written to.

size Total bytes to be written into the device memory
pointed by buffer.

ptr The host memory pointer from where the data will be
read.

num_events_in_wait_list The number of events to wait for before executing this
command

event_wait_list The pointer to the events wait list. The size of this
is specified by num_events_in_wait_list. The
OpenCL implementation shall queue this command
only after the events in event_wait_list is
completed.

event A cl_event object is returned which describes this
write command. This event can be used by any other
OpenCL command for synchronization. If the event_
wait_list and the event arguments are not NULL,
then the event argument should not refer to any
element of the event_wait_list array. Also if the
blocking_write is set to CL_TRUE then this event
may not be of any use, because it is known that the
event has completed execution after the blocking read
has completed.

Chapter 3

[73]

Similarly the function clEnqueueReadBuffer reads data from the device to the
host memory.

cl_int clEnqueueReadBuffer (cl_command_queue command_queue,
 cl_mem buffer,
 cl_bool blocking_read,
 size_t offset,
 size_t size,
 void *ptr,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

The parameters passed to this function are similar in description to the write
command. command_queue, offset, size, ptr, num_events_in_wait_list, event_
wait_list, and event all have similar descriptions as discussed in the previous
table.Other parameters are discussed further.

buffer: A valid cl_mem buffer object, which will be read from and written to ptr.

blocking_read: If set to CL_TRUE, then clEnqueueReadBuffer blocks until the data
is read to the ptr; otherwise it returns directly and the user must query event to
check the command's status.

event: An OpenCL event object is returned which describes this read command. This
event can be used by any other OpenCL enqueue commands for synchronization by
querying its state of execution.

Blocking_read and Blocking_write
Memory read/writes can be marked as blocked by setting it to CL_TRUE. This
will cause the host thread to block, until the enqueued command has completed.
OpenCL uses relaxed memory model. So it is up to the application programmer
to make sure that the memory being written to by a particular device is updated
across all the devices associated with the particular context. Similarly for the
memory read operation. Some non-cache coherent devices may see different
values for the same global address. Hence explicit synchronization is required
by the application programmer.

If the read/write command is not blocking, then the host thread may return
immediately before the enqueued task has completed, and the application cannot
assume that the memory being written or read is ready to be consumed from. In
such a case the host application can use OpenCL synchronization API clFinish or
clWaitForEvents to ensure that the command has completed. We will discuss more
on this in Chapter 6, Events and Synchronization.

OpenCL Buffer Objects

[74]

Now let's go back to the histogram sample code. The read commands are provided
in the following code snippet. All these read commands have the blocking_read
argument set to CL_FALSE. The order of execution of these commands will be defined
by the property of commandQueue created. Take a look at the following code:

cl_event readEvt[3];
status = clEnqueueReadBuffer(
 commandQueue,
 intermediateHistR,
 CL_FALSE,
 0,
 subHistgCnt * binSize * sizeof(cl_uint),
 midDeviceBinR,
 0,
 NULL,
 &readEvt[0]);
LOG_OCL_ERROR(status, "clEnqueueReadBuffer of intermediateHistR
 Failed.");

status = clEnqueueReadBuffer(
 commandQueue,
 intermediateHistG,
 CL_FALSE,
 0,
 subHistgCnt * binSize * sizeof(cl_uint),
 midDeviceBinG,
 0,
 NULL,
 &readEvt[1]);
LOG_OCL_ERROR(status, "clEnqueueReadBuffer of intermediateHist
 Failed.");

status = clEnqueueReadBuffer(
 commandQueue,
 intermediateHistB,
 CL_FALSE,
 0,
 subHistgCnt * binSize * sizeof(cl_uint),
 midDeviceBinB,
 0,
 NULL,
 &readEvt[2]);
LOG_OCL_ERROR(status, "clEnqueueReadBuffer of intermediateHistB
 Failed.");

Chapter 3

[75]

At the first read command the function clEnqueueReadBuffer enqueue's a
command in the cl_command_queue commandQueue to read a device memory object
pointed by intermediateHistR into the host memory midDeviceBinR. The size read
by this command is equal to subHistgCnt * binSize * sizeof(cl_uint). The
blocking_read variable is set to CL_FALSE. The last API clWaitForEvents waits for
the three read events to complete. Once we have the result read into host memory,
one final step computes the count of each pixel tonal value.

As an exercise for you modify the histogram sample code in the following way.
We have created the cl_mem objects for each of the output buffers. Combine these
three into a single buffer object, and use the API clCreateSubBuffer to create
three different subbuffers. Pass these subbuffers as cl_mem object to the histogram_
kernel and verify the execution of the histogram result.

Rectangular or cuboidal reads
OpenCL specification provides with an ability to read or write rectangular segments
of data into host memory. The clEnqueueReadBufferRect function enqueues a
command to read a rectangular 2D or 3D region from a cl_mem buffer object to host
memory. This is shown in the following code:

cl_int
clEnqueueReadBufferRect(cl_command_queue command_queue,
 cl_mem buffer,
 cl_bool blocking_read,
 const size_t *buffer_origin,
 const size_t *host_origin,
 const size_t *region,
 size_t buffer_row_pitch,
 size_t buffer_slice_pitch,
 size_t host_row_pitch,
 size_t host_slice_pitch,
 void *ptr,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

OpenCL Buffer Objects

[76]

Similarly OpenCL provides a function clEnqueueWriteBufferRect which enqueues
the command to write rectangular piece of buffer. As shown in the following code:

cl_int
clEnqueueWriteBufferRect (cl_command_queue command_queue,
 cl_mem buffer,
 cl_bool blocking_write,
 const size_t *buffer_origin,
 const size_t *host_origin,
 const size_t *region,
 size_t buffer_row_pitch,
 size_t buffer_slice_pitch,
 size_t host_row_pitch,
 size_t host_slice_pitch,
 const void *ptr,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

The following figure helps explain the rectangular region in 2D space. Note that
every OpenCL buffer is a one-dimensional contiguous memory location. These
rectangular functions help to visualize or access the 2D or 3D equivalent memory
regions in that 1D contiguous buffer.

2D Image read marked with black color

The buffer_row_pitch and buffer_slice_pitch functions, define the 2D or 3D
representation of the whole buffer.

Chapter 3

[77]

The offset in bytes into the cl_mem object is computed as:

buffer_origin[2] * buffer_slice_pitch +
 buffer_origin[1] * buffer_row_pitch +
 buffer_origin[0];

Let's take an example array of size 32 elements in 1D. In 2D it can be visualized as 8
rows with buffer_row_pitch = 4 elements as described in the figure we just saw.
In 3D it can be visualized as 4 slices of 4X2 each as shown in the following figure:

3D rectangular read

To explain the clEnqueue{Write|Read}BufferRect functions, we will discuss
one of the sample codes. In the bufferRectangularReads sample code we create a
buffer of size 32 elements and try to emulate a 2D and 3D buffer reads from the input
1D buffer (all OpenCL buffer objects store data in a linear contiguous location). We
will perform two operations in the sample code. First we emulate a 2D buffer and
read a 3X2 size 2D rectangular read.

We first create a buffer as follows:

clBuffer = clCreateBuffer(
 context,
 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(cl_uint) * NUM_OF_ELEMENTS,
 hostBuffer, /*Pointer to 32 elements*/
 &status);
LOG_OCL_ERROR(status, "clCreateBuffer Failed...");

OpenCL Buffer Objects

[78]

The following code reads a 2D rectangular region as shown in the figure we just saw:

//Read a 2D rectangular object from the clBuffer of 32 elements
int hostPtr2D[6] = {0, 0, 0, 0, 0, 0};
size_t bufferOrigin2D[3] = {1*sizeof(int), 6, 0};
size_t hostOrigin2D[3] = {0 ,0, 0};
size_t region2D[3] = {3* sizeof(int), 2,1};
status =
 clEnqueueReadBufferRect(
 commandQueue,
 clBuffer,
 CL_TRUE,
 bufferOrigin2D, /*Start of a 2D buffer to read from*/
 hostOrigin2D,
 region2D,
 (NUM_OF_ELEMENTS / 8) * sizeof(int), /*buffer_row_pitch */
 0, /*buffer_slice_pitch*/
 0, /*host_row_pitch */
 0, /*host_slice_pitch */
 static_cast<void*>(hostPtr2D),
 0,
 NULL,
 NULL);

Next we emulate a 3D buffer and read 3 contiguous slices of 3X1 each. The following
code reads 3D cuboid as shown in the figure we just saw.

//Read a 3D rectangular object from the clBuffer of 32 elements
int hostPtr3D[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
size_t bufferOrigin3D[3] = {1*sizeof(int), 1, 0};
size_t hostOrigin3D[3] = {0 ,0, 0};
size_t region3D[3] = {3* sizeof(int), 1,3};
status =
 clEnqueueReadBufferRect(
 commandQueue,
 clBuffer,
 CL_TRUE,
 bufferOrigin3D, /*Start of a 2D buffer to read from*/
 hostOrigin3D,
 region3D,
 (NUM_OF_ELEMENTS / 8) * sizeof(int), /*buffer_row_pitch */
 (NUM_OF_ELEMENTS / 4) * sizeof(int), /*buffer_slice_pitch*/
 0, /*host_row_pitch */
 0, /*host_slice_pitch */
 static_cast<void*>(hostPtr3D),

Chapter 3

[79]

 0,
 NULL,
 NULL);

Compile and run the bufferRectangularReads project in the OpenCL examples
and check the result. The code will print the highlighted sections in the figure.

Copying buffers
The two functions clEnqueueCopyBuffer and clEnqueueCopyBufferRect enable
the application to copy data between two OpenCL buffer objects. It is equivalent to
reading the buffer back from device to host and then writing it back to a destination
cl_mem object. This mechanism is provided by these copy buffer routines:

cl_int
clEnqueueCopyBuffer(cl_command_queue command_queue,
 cl_mem src_buffer,
 cl_mem dst_buffer,
 size_t src_offset, size_t dst_offset,
 size_t size,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

This OpenCL API enqueue's a command to copy a cl_mem buffer object
identified by src_buffer to another cl_mem object destination buffer, dst_
buffer. Remaining parameters like offset and events are similar to the one in
clEnqueue[Read|Write]Buffer routines.

Similarly if one wants to copy only a small rectangular region in the cl_mem buffer
then he can use the API:

cl_int
clEnqueueCopyBufferRect(cl_command_queue command_queue,
 cl_mem src_buffer,
 cl_mem dst_buffer,
 const size_t *src_origin,
 const size_t *dst_origin,
 const size_t *region,
 size_t src_row_pitch,
 size_t src_slice_pitch,
 size_t dst_row_pitch,
 size_t dst_slice_pitch,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

OpenCL Buffer Objects

[80]

Take a look at the copyRectangular project in the book examples for this chapter.
This example gives an explanation of the function clEnqueueCopyBufferRect.

What is the difference between the clEnqueueWriteBuffer and
clEnqueueCopyBuffer? Unlike clEnqueueWriteBuffer function,
clEnqueueCopyBuffer copies the data between two cl_mem objects directly in
the device memory or through the device memory interface across two devices.
clEnqueueReadBuffer function will read the data from the device memory to the
host memory. The following figure explains the difference:

Difference between Copy Buffer and Read Write Buffer

Mapping buffer objects
OpenCL provides a mechanism to map a region of a buffer directly into host
memory instead of using the clEnqueue[Read|Write]Buffer functions. These
mapped regions can be returned to the application. The application can use this
mapped memory region based on the cl_map_flags flag value which is set during
mapping. Now the first question which would arise in the readers mind is that how
different are the two APIs clEnqueueMapBuffer and clEnqueueReadBuffer.

The clEnqueueReadBuffer function reads into a memory location pre-allocated.
But clEnqueueMapBuffer returns a pointer to the mapped region.

Chapter 3

[81]

Other difference between clEnqueueReadBuffer and clEnqueueMapBuffer is the
map_flags argument. If map_flags is set to CL_MAP_READ, the mapped memory will
be read only, and if it is set as CL_MAP_WRITE the mapped memory will be write only,
if you want both read and write, then set the flags as CL_MAP_READ|CL_MAP_WRITE.
The importance of CL_MAP_READ lies when an unmap is called on the mapped region.
An OpenCL implementation will optimize a CL_MAP_READ by quickly relinquishing
the data held by the mapped region. It will not do a write back operation to the
device. But in the case of CL_MAP_WRITE the OpenCL implementation will have to
copy the modified mapped buffer back to the device.

void *
clEnqueueMapBuffer (cl_command_queue command_queue,
 cl_mem buffer,
 cl_bool blocking_map,
 cl_map_flags map_flags,
 size_t offset,
 size_t size,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event,
 cl_int *errcode_ret)

The following table describes the parameters passed to the clEnqueueMapBuffer.

Parameter name Description
buffer A valid cl_mem buffer object, which will be

mapped from.
blocking_map If set to CL_TRUE, then clEnqueueMapBuffer

blocks until the data is mapped into host memory;
otherwise it returns directly and the user must
query event to check the command's status.

offset The offset, in bytes, into the buffer object to begin
reading from.

size The number of bytes to be read from buffer.
num_events_in_wait_list Number of events to wait for before executing this

command.
event_wait_list The pointer to the events wait list. The size of this

is specified by num_events_in_wait_list. The
OpenCL implementation shall queue this command
only when num_events_in_wait_list events in
the event_wait_list is completed.

OpenCL Buffer Objects

[82]

Parameter name Description
event A cl_event object is returned which describes

this map command. This event can be used by any
other OpenCL command for synchronization. If
event_wait_list and event arguments are not
NULL, then the event argument should not be one
of the events in event_wait_list array. Also
if the blocking_map is set to CL_TRUE then this
event may not be of any use, because it is known
that the event has completed execution after the
blocking read has completed.

errcode_ret If non-NULL, the error code returned by the
function will be returned in this parameter.

The clEnqueueMapBuffer function returns a pointer to the mapped host memory.
This memory can later be unmapped using the function clEnqueueUnmapMemObject.

cl_int
clEnqueueUnmapMemObject (cl_command_queue command_queue,
 cl_mem memobj,
 void *mapped_ptr,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

The mapped_ptr is the pointer to the mapped region returned by the
clEnqueueMapBuffer function and the pointer.

It is a common consensus that memory mapping gives significant improvement in
performance compared to regular read/write commands. The OpenCL driver can
make use of DMA transfer to transfer data to the host. The efficiency of mapping
the buffers is dependent on the OpenCL implementation. Compared to read/write
functions, memory mapping is a three step process:

1. Use the function clEnqueueMapBuffer to map a device memory into
the host.

2. Perform operations (read or write) on the mapped buffer.
3. Unmap the mapped buffer using clEnqueueUnmapObject.

Chapter 3

[83]

Querying buffer objects
As any other OpenCL objects, cl_mem objects can be queried to return information
regarding how they are constructed, their status, reference count, and so on. The
OpenCL function clGetMemObjectInfo helps in this.

cl_int
clGetMemObjectInfo (cl_mem memobj,
 cl_mem_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

This function is similar to the clGetDeviceInfo discussed in Chapter 2, OpenCL
Architecture. The param_name is a parameter specific to this function and is of type
cl_mem_info. It can be used for both image and buffer type cl_mem objects. The
following code snippet shows you how to retrieve the flags associated with a
cl_mem object.

// Create memory buffers on the device for each vector
cl_mem A_clmem = clCreateBuffer(context,
 CL_MEM_READ_ONLY|CL_MEM_USE_HOST_PTR,
 VECTOR_SIZE * sizeof(float), A_ptr, &clStatus);
...
...
...
cl_mem_flags flags;
clStatus =
 clGetMemObjectInfo (A_clmem,
 CL_MEM_FLAGS,
 sizeof(cl_mem_flags),
 &flags,
 NULL);

We created a cl_mem object A_clmem using the host malloc'd buffer A_ptr.
Somewhere down the code or in a function you want to retrieve the flags associated
with the cl_mem object, then you can use the function clGetMemObjectInfo to
retrieve this information. Note that cl_mem_flags is a bit field representation of
the different flags. In the cl.h header file each flag is associated with a bit in a cl_
ulong bit field, which is a 64 bit unsigned integer. For simplicity we have added
the following code following code which shows the different flag values:

typedef cl_ulong cl_bitfield;
typedef cl_bitfield cl_mem_flags;

OpenCL Buffer Objects

[84]

/* cl_mem_flags - bitfield */
#define CL_MEM_READ_WRITE (1 << 0)
#define CL_MEM_WRITE_ONLY (1 << 1)
#define CL_MEM_READ_ONLY (1 << 2)
#define CL_MEM_USE_HOST_PTR (1 << 3)
#define CL_MEM_ALLOC_HOST_PTR (1 << 4)
#define CL_MEM_COPY_HOST_PTR (1 << 5)

The cl_mem_info function takes the following tabulated values.

cl_mem_info Description
CL_MEM_TYPE This determines the type of the buffer

object.
CL_MEM_FLAGS This returns the flags argument

value specified when memobj is
created with clCreateBuffer,
clCreateSubBuffer, or
clCreateImage.

CL_MEM_HOST_PTR This function returns a host_ptr which
was specified during the creation of the
memobj using the clCreateBuffer or
clCreateImage functions and CL_MEM_
USE_HOST_PTR was specified in mem_
flags. Otherwise a NULL ptr is returned.

CL_MEM_SIZE Returns the actual size of the memobj cl_
mem buffer in bytes.

CL_MEM_CONTEXT Returns the context to which memobj
belongs.

CL_MEM_MAP_COUNT Returns an integer representing the
number of times the buffer is currently
mapped.

CL_MEM_REFERENCE_COUNT Return reference count to memobj.
CL_MEM_ASSOCIATED_MEMOBJECT Returns a memory object from which cl_

mem memobj is created. This is used to get
the cl_mem object from which subbuffer
memobj was created with. Otherwise a
NULL value is returned.

CL_MEM_OFFSET Return offset of memobj from the
original buffer from which memobj was
created with. That is memobj should
have been created using the function
clCreateSubBuffer otherwise it would
return 0.

Chapter 3

[85]

Undefined behavior of the cl_mem
objects
An OpenCL memory model, being a relaxed memory architecture, specifies some
restrictions or undefined behavior around the cl_mem object. These undefined
behaviors occur mostly when there is a simultaneous read and write to a buffer.
Following are listed some undefined scenarios:

• If the buffer is created with CL_MEM_WRITE_ONLY flag and the kernel reads
from this buffer pointer on the devices side, then it's an undefined behavior.
That means reading from a CL_MEM_WRITE_ONLY buffer inside the kernel
is undefined.

• Similarly writing to a buffer created using the flag CL_MEM_READ_ONLY is
undefined inside the kernel.

• It is possible to create two OpenCL cl_mem buffers from the same host
memory using the CL_MEM_USE_HOST_PTR flag. There may be an overlapping
memory region. If one or more commands enqueued to the command queue
operate on the two cl_mem objects but pointing to the same host memory
host_ptr, then such an operation is not defined. It is the application
programmer's responsibility to make sure that he is not writing and reading
to the same host_ptr pointer simultaneously.

• Similarly reading from, writing to and copying between cl_mem buffer object
and its corresponding subbuffer object is undefined.

• For cl_mem object created using CL_MEM_USE_HOST_PTR should meet the
requirements that they contain the latest bits i.e. simultaneous writes from
the host and the device kernel is undefined.

Summary
In this chapter we discussed about OpenCL cl_mem objects. There are two types of
OpenCL buffers. In the next chapter we will study about the OpenCL Image buffers,
and discuss similar characteristics which we have discussed in this chapter.

We also discussed an example of histogram computation of an image data with
OpenCL buffers as an object. In the next chapter we will discuss the same sample
example but with OpenCL Image Objects. Besides there were two more examples
given in this chapter, one for copy rectangular regions and the other for rectangular
reads from a buffer. Try the samples out and modify the kernel code at your will.

OpenCL Images
In the previous chapter, we discussed the OpenCL buffers, which are the most
important OpenCL objects. They represent the handle to the OpenCL device
memory. We discussed how to create a buffer, sub-buffer, transfer the host allocated
data to the device, and mapping or un-mapping of the OpenCL buffer. The OpenCL
buffers provide caching for regular linear buffers only in one dimension. Many
OpenCL devices have a texture processor, which can cache pixels in an image which
are its neighbor. So providing a separate interface for images is useful, and can be
used to enhance the performance of applications.

In this chapter we will discuss the OpenCL image objects, which are also represented
by cl_mem.

We will discuss the following topics:

• Creating image and sampler objects
• Performing histogram equalization using image objects. Mapping and

querying the image objects.

Before we start, we need to mention that not all OpenCL devices support image
computations. An OpenCL programmer can query whether the device supports
image formats or not using the function clGetDeviceInfo and param_name as CL_
DEVICE_IMAGE_SUPPORT. The image2d_t, image3d_t, image2d_array_t, image1d_t,
image1d_buffer_t, image1d_array_t, and sampler_t types are only defined if
the device supports images that is clGetDeviceInfo on CL_DEVICE_IMAGE_SUPPORT
returns a true.

Let's start our discussion with how to create an image object.

OpenCL Images

[88]

Creating images
Image objects can be created using the following function call:

cl_mem clCreateImage (cl_context context,
 cl_mem_flags flags,
 const cl_image_format *image_format,
 const cl_image_desc *image_desc,
 void *host_ptr,
 cl_int *errcode_ret)

A single function call supports the creation of a 1D, 2D, and 3D image object, which
can either be transferred to the device or can be formed in the device. Besides this,
the same function call can be used to create an array of 1D and 2D image objects
using the cl_image_desc data structure. We will discuss more on this later. In
OpenCL 1.1 instead of one function clCreateImage, there were two different
functions clCreateImage2D and clCreateImage3D.

The function call clCreateImage takes the usual four arguments as used in the
clCreateBuffer. They are the context, flags, host_ptr, and error_code.
The definition of these parameters is similar to that discussed in context with
clCreateBuffer. If the flags parameter is specified as 0 then the default value
is always CL_MEM_READ_WRITE. In the clCreateBuffer function, there is a size
parameter. In the case of clCreateImage, the size field is embedded in the
cl_image_desc *image_desc parameter, which is passed to this function. This
describes the type and dimensions of the image to be created.

There is another parameter passed to this function cl_image_format *image_
format, which describes the properties of the image which is to be created.

host_ptr: This is a pointer to the raw image data that is allocated by the host. This is
used if the flags parameter is specified as CL_MEM_COPY_HOST_PTR or CL_MEM_USE_
HOST_PTR.

Let's discuss about the cl_image_format and cl_image_desc format in more detail.

Image format descriptor cl_image_format
The cl_image_format image format descriptor is defined as follows:

typedef struct _cl_image_format {
 cl_channel_order image_channel_order;
 cl_channel_type image_channel_data_type;
 } cl_image_format;

Chapter 4

[89]

The image_channel_data_type format specifies the size of the data type used to
store each of the channel information. Most of these data types are of basic data types
such as, int, unsigned int, short, unsigned short, and float. They can be CL_
SNORM_INT8, CL_UNORM_INT8, CL_SNORM_INT16, CL_UNORM_INT16, CL_UNSIGNED_
INT8, CL_UNSIGNED_INT16, CL_UNSIGNED_INT32, CL_SIGNED_INT8, CL_SIGNED_
INT16, CL_SIGNED_INT32, CL_HALF_FLOAT, or CL_FLOAT.

The image_channel_order format describes the memory layout of the channel
data, which represents the image in memory. The channel can be one of R, G, B, or A.
The combination of these channels forms a channel type/order. The following table
shows the different types of channel orders possible.

No of Channels Enum values that specify the image_channel_order
Single channel format CL_R, CL_Rx, or CL_A can be used with any channel data type

other than the packed data types.
Dual channel format CL_RG, CL_RGx, or CL_RA
Four channel format CL_RGBA can be used with any data type discussed earlier

other than the packed data types. This is the minimum
required supported image format if an OpenCL device is
supporting images.
CL_ARGB and CL_BGRA can be used only with CL_UNORM_
INT8, CL_SNORM_INT8, CL_SIGNED_INT8, or CL_
UNSIGNED_INT8.

Packed format
channel

CL_RGB or CL_RGBx. This format can be used only if the
channel data type is CL_UNORM_SHORT_565, CL_UNORM_
SHORT_555, or CL_UNORM_INT_101010.

Other formats CL_INTENSITY and CL_LUMINANCE can be used if channel
data type is CL_UNORM_INT8, CL_UNORM_INT16, CL_
SNORM_INT8, CL_SNORM_INT16, CL_HALF_FLOAT, or CL_
FLOAT.

There are some special forms of packed image_channel_data_type, which
represents all the color components. They are CL_UNORM_SHORT_555, CL_UNORM_
SHORT_565, and CL_UNORM_INT_101010.

The value of image_channel_order and image_channel_data_type is used to
calculate the size of a pixel element. This is useful when the pitch values are specified
as 0 in the clEnqueue{Read|Write|Copy|Fill}Image functions.

OpenCL Images

[90]

The CL_R, CL_A, CL_RG, CL_RA, and CL_RGBA channel order types can be represented
using all the available channel data type, except the packed ones. While creating an
OpenCL image object using clCreateImage, if the image format specified by image_
channel_data_type and image_channel_order is not supported by the OpenCL
implementation, then a NULL memory object is returned.

Image details descriptor cl_image_desc
The cl_image_desc structure contains fields with specifications required for the
image to be created as follows:

typedef struct _cl_image_desc {
 cl_mem_object_type image_type,
 size_t image_width;
 size_t image_height;
 size_t image_depth;
 size_t image_array_size;
 size_t image_row_pitch;
 size_t image_slice_pitch;
 cl_uint num_mip_levels;
 cl_uint num_samples;
 cl_mem buffer;
}cl_image_desc;

The specifications are listed in the following bullet list with their description:

• image_type: It describes the type of the image 1D, 2D, 3D, or array types.
 ° For 1D image, use CL_MEM_OBJECT_IMAGE1D. For 1D image from an

OpenCL cl_mem buffer use the CL_MEM_OBJECT_IMAGE1D_BUFFER
format. To create an array of 1D images use CL_MEM_OBJECT_
IMAGE1D_ARRAY format.

 ° For 2D image and an array of 2D images, use CL_MEM_OBJECT_
IMAGE2D, CL_MEM_OBJECT_IMAGE2D_ARRAY respectively.

 ° For creating 3D image use CL_MEM_OBJECT_IMAGE3D.

• image_width: It specifies the width of the image in pixels. This is specified
for all of 1D, 2D and 3D images.

Chapter 4

[91]

• image_height: It specifies the height of the image in pixels. This is specified
for all of 2D and 3D images.

• image_depth: It specifies the depth of the image in pixels and is used only
for 3D images.

Note that the width, height, and depth are not the byte lengths,
they are the pixel lengths.

• image_array_size: It is the total number of images (1D or 2D only) to be
created in the image array. 3D image arrays cannot be created.

For specifying the pitch in bytes for the array types, use the following specifications:

• image_row_pitch: This is the pitch in bytes for a row in an image. If host_
ptr is NULL, that is if you are creating a device resident buffer, then this value
should be 0. If the host_ptr pointer is not NULL and if this value is 0 then the
value of row pitch is calculated as follows:
image_width * (size of pixel element in bytes)

• image_slice_pitch: This is the size in bytes of a 2D slice in a 3D image. It
can also represent the size in bytes of each image in an image array (both
1D or 2D). This value can be zero or a multiple of the image_row_pitch
value. If not zero then it should be greater than or equal to image_row_pitch
* image_height. If host_ptr is NULL, that is if you are creating a device
resident buffer, then this value should be 0. If the host_ptr is not NULL and if
this value is 0 then the of slice pitch is calculated as follows:
image_row_pitch * image_height
Remember that num_mip_levels and num_samples must be set to 0.

• buffer: This is a valid OpenCL cl_mem buffer created using the
clCreateBuffer function. This must be specified, if the image_type is CL_
MEM_OBJECT_IMAGE1D_BUFFER. The size of the buffers should be sufficiently
large to hold image_width * size of pixel element in bytes. If the
image_row_pitch specification is specified then it should be less than the
size of buffer object data store. In all the other cases it should be set
to NULL.

OpenCL Images

[92]

The following diagrams show the different types of images:

- no pitch

ID image

2D image

....

pitch = rowsize

pitch

....

3D
2D Slice
describes pitch

1D, 2D, and 3D image formats.

The following diagram depicts an array of 1D and 2D images:

Array of 1D and 2D images.

CL_MEM_OBJECT_IMAGE1D_BUFFER is a special type of image representation.
This image maps to the same buffer in the device, that is any modifications done
on the buffer will reflect on the image also. Take a look at the following figure.
Simultaneous writes at the image and buffer side are undefined.

Chapter 4

[93]

ID
Image

ID
Buffer

el CreateImage(
CL_MEM_OBJECT_IMAGE_BUFFER,

);

...

II

OpenCL provides a function clGetSupportedImageFormats to determine the
different types of image formats image supported by an OpenCL implementation.

cl_int clGetSupportedImageFormats (cl_context context,
 cl_mem_flags flags,
 cl_mem_object_type image_type,
 cl_uint num_entries,
 cl_image_format *image_formats,
 cl_uint *num_image_formats)

The following code snippet helps you to determine the supported image formats.

cl_image_format *image_formats;
cl_uint num_image_formats;
clStatus= clGetSupportedImageFormats (context,
 CL_MEM_READ_ONLY,
 CL_MEM_OBJECT_IMAGE2D,
 0,
 NULL,
 &num_image_formats);
image_formats = (cl_image_format *)malloc(sizeof(cl_image_format)
 * num_image_formats);
clStatus= clGetSupportedImageFormats (context,
 CL_MEM_READ_ONLY,
 CL_MEM_OBJECT_IMAGE1D,
 num_image_formats,
 image_formats,
 &num_image_formats);

The input to the function is a valid OpenCL context. On return from the second call
to clGetSupportedImageFormats, the image_formats buffer shall contain all the
supported formats, Build and run the getSupportedImageFormats example code
and see the out image formats supported by your platform.

OpenCL Images

[94]

Let's take some examples and see how an OpenCL image object is created:

cl_image_format image_format;
image_format.image_channel_data_type = CL_FLOAT;
image_format.image_channel_order = CL_R;

image_width = 5;
image_height = 5;
cl_image_desc image_desc;
image_desc.image_type = CL_MEM_OBJECT_IMAGE2D;
image_desc.image_width = image_width;
image_desc.image_height = image_height;
image_desc.image_depth = 1;
image_desc.image_array_size = 1;
image_desc.image_row_pitch = 0;
image_desc.image_slice_pitch = 0;
image_desc.num_mip_levels = 0;
image_desc.num_samples = 0;
image_desc.buffer= NULL;

clImage = clCreateImage(context, CL_MEM_WRITE_ONLY,
 &image_format, &image_desc,
 NULL, &status);

This will create a 2D image of width and height equal to five pixels. Note that pixel
data is not yet filled in the image object. You can do so by using the CL_MEM_USE_
HOST_PTR. Assume that you want to use the following array of pixels given by data:

float *data = (float *)malloc(image_width*
 image_height*sizeof(float));
float pixels[] = { /* Pixel Values */
 10, 20, 30, 40, 50,
 10, 20, 30, 40, 50,
 10, 20, 30, 40, 50,
 10, 20, 30, 40, 50,
 10, 20, 30, 40, 50
};
memcpy(data, pixels, image_width*image_height*sizeof(float));
clImage = clCreateImage(context,
 CL_MEM_WRITE_ONLY| CL_MEM_USE_HOST_PTR,
 &image_format, &image_desc,
 data, &status);

Chapter 4

[95]

You can also write the pixel data onto the destination image object using the
clEnqueueWriteImage function as follows:

size_t origin[] = {0,0,0};
size_t region[] = {image_width,image_height,1};
status = clEnqueueWriteImage(command_queue, clImage, CL_TRUE,
 origin, region,
 image_width*sizeof(float), /*row pitch*/
 image_width*image_height*sizeof(float), /*slice pitch*/
 pixels, 0, NULL, NULL);

Passing image buffers to kernels
OpenCL C provides built-in image data types which can be used inside an OpenCL
kernel. The following are the image argument types which correspond to the
respective arguments in an image in the kernel:

• image2d_t: A 2D image created with CL_MEM_OBJECT_IMAGE2D
• image3d_t: A 3D image created with CL_MEM_OBJECT_IMAGE3D
• image2d_array_t: A 2D image array CL_MEM_OBJECT_IMAGE2D_ARRAY
• image1d_t: A 1D image created with CL_MEM_OBJECT_IMAGE1D
• image1d_buffer_t: A 1D image created from a buffer object using CL_MEM_

OBJECT_IMAGE1D_BUFFER

• image1d_array_t: A 1D image array created with CL_MEM_OBJECT_
IMAGE1D_ARRAY.

All the preceding image data types can be used as a datatype in a kernel argument.
An image function kernel argument cannot be modified or read from directly. Every
image argument should be declared with __read_only or __write_only qualifiers.
__read_only images can only be read from and __write_only images can only
be written to. OpenCL specification provides for built-in functions, which can be
used to read or write pixel elements. They are read_image{f|u|i} and write_
image{f|u|i}. Also note that the calls to read_image and write_image to the same
image memory object in a kernel are not supported.

OpenCL Images

[96]

Samplers
One of the parameters passed to read_image and write_image built-ins is the image
sampler object. Sampler variables in a program are declared to be of type sampler_t
and enable the read and write routines to sample an input pixel value. The samplers
are created inside a kernel by using the OR operator for the normalized coordinates,
the addressing modes, and the filtering modes. Example is as follows:

const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |
 CLK_ADDRESS_NONE |
 CLK_FILTER_NEAREST;

Normalized coordinates can be set to either of the following two:

• CLK_NORMALIZED_COORDS_TRUE: The pixel coordinate values are in the range
of 0 to 1.0.

• CLK_NORMALIZED_COORDS_FALSE: The pixel coordinate values will be having
an extent of image dimensions. That is 0 for Height - 1 and 0 for WIDTH - 1.
The following diagram shows a 3D-coordinate system when it is normalized
or non-normalized:

The addressing mode can be one of: CLK_ADDRESS_MIRRORED_REPEAT, CLK_
ADDRESS_REPEAT, CLK_ADDRESS_CLAMP_TO_EDGE, CLK_ADDRESS_CLAMP, and CLK_
ADDRESS_NONE. These are described briefly in the following bullet list:

• CLK_ADDRESS_CLAMP_TO_EDGE: It clamps the pixel coordinate using the
clamp (coord, 0, size – 1) function.

• CLK_ADDRESS_CLAMP: It clamps the pixel coordinate using the clamp
(coord, -1, size) function.

Chapter 4

[97]

• CLK_ADDRESS_NONE: It returns the coord.
• CLK_ADDRESS_MIRRORED_REPEAT and CLK_ADDRESS_REPEAT: These

addressing modes can be used only with normalized coordinates. The
following diagram describes the difference between the two addressing
modes visually. The CLK_ADDRESS_MIRRORED_REPEAT addressing mode flips
the image coordinate at every junction of normalized coordinate 1.0. The
CLK_ADDRESS_REPEAT addressing mode wraps the coordinates to a valid
range by repeating the image at every junction of normalized coordinates.

Difference between Address Repeat and Address Mirrored Repeat.

Filter mode can be one of the following:

• CLK_FILTER_NEAREST: It calculates the pixel coordinate, which is nearest in
terms of the normalized values. The nearest distance is calculated by using
the Manhattan distance formula.

• CLK_FILTER_LINEAR: It returns the weighted average of the four texture
elements that are closest to the specified texture coordinates.

The samplers can also be created at the host side using the clCreateSampler
function:

cl_sampler clCreateSampler (cl_context context,
 cl_bool normalized_coords,
 cl_addressing_mode addressing_mode,
 cl_filter_mode filter_mode,
 cl_int *errcode_ret)

OpenCL Images

[98]

The normalized_coords, addressing_mode, and filter_mode addressing modes
can take the values as discussed earlier.

To understand the different types of addressing modes and filtering modes, one
should try the example code image_sampler with different combinations of
samplers in this chapter.

Reading and writing buffers
Till now we discussed how to create an image. The OpenCL provides APIs to
transfer image data to device image buffer before the kernel is launched. Similarly,
there is a function which transfers the image computed data back to the host
memory. The clEnqueueWriteImage function copies the data from host to device
memory as follows:

cl_int clEnqueueWriteImage (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_write,
 const size_t *origin,
 const size_t *region,
 size_t row_pitch,
 size_t slice_pitch,
 const void * ptr,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

The clEnqueueReadImage function copies the data back from device to host memory
as follows:

cl_int clEnqueueReadImage (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_read,
 const size_t *origin,
 const size_t *region,
 size_t row_pitch,
 size_t slice_pitch,
 void *ptr,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

Chapter 4

[99]

The following bullet list describes the objects mentioned in the preceding code:

• command_queue: The write command will be queued in this OpenCL queue.
One should make sure that the cl_mem object buffer and the command_queue
object are created using the same context.

• image: This is a valid cl_mem image object created using the clCreateImage
function.

• blocking_write/blocking_read: This indicates whether the read or write
operation is blocking or non-blocking. If set to CL_TRUE function does not
return until the status of the event associated with enqueued read or write
command has reached CL_COMPLETE.

• origin: This is a three tuple index for the start offset for the read or write
operation. origin is an array of three elements, origin[0], origin[1],
and origin[2]. For 3D images all the three tuples must be specified. For
2D images only two tuples is specified, the third one is set to 0. Similarly,
for 1D images and 1D image buffer objects only the first tuple is specified,
the second and third are set to 0. If the image is a 2D array, then the first
two tuples origin[0], origin[1] specify the pixel offset, the third tuple
origin[2] specifies the image index. In the case of 1D image array types, the
first tuple origin[0] specifies the pixel offset and origin[1] specifies the image
array index.

• region: It is also a three element array and defines the region[0] as width,
region[1] as height, and region[2] as depth in pixels for the 1D, 2D, or 3D
rectangle. For a 2D image array region[0] specifies the width and region[1]
specifies the height in pixels of the 2D rectangle, and region[2] specifies the
number of images, if the image_type is a 2D image array. Similarly for 1D
image the region[0] specifies the width in pixels of the 1D rectangle and
region[1] specifies the number of images, if the image_type is a 1D image
array. If image is a 2D image then region[2] must be 1. If image is a 1D image
or 1D image buffer object, region[1] and region[2] should be set to 1. If
image is 1D image array object then region[2] must be 1.

Note that both region and origin define the pixel offsets and not byte
offsets. The byte offset is calculated internally using the channel data
type and the channel order which was specified while creating the
image object.

• row_pitch: It defines the length of each row in bytes. If set to 0 then the row_
pitch object is calculated as size of each element in bytes * width. width is
specified as the first tuple element in region.

OpenCL Images

[100]

• slice_pitch: This specifies the size of the 2D slice in a 3D image or 2D
image array object in bytes. This is set to zero if the image is a 1D or 2D
image. This can also be used to specify the size of 1D or 2D image in a 1D
image array or 2D image array. The row_pitch and slice_pitch object are
shown in the diagram "1D 2D and 3D image formats".

• ptr: It is the pointer to the image array, which will be the source for
clEnqueueWriteImage and a destination for clEnqueueReadImage.

The parameters num_events_in_wait_list, event_wait_list, and event have
their usual meaning as any other clEnqueue* functions.

If the cl_mem object is created using CL_MEM_USE_HOST_PTR, the read and write
operation must ensure that the host_ptr buffer specified when creating the image
object contains the latest bits. That means all the operations associated with the
image object are completed. One way to make sure that the host_ptr is latest is to
specify the events in event_wait_list which is associated with the image.

Copying and filling images
The write and read functions help to copy the data buffer from the host to the device
memory or vice versa. There is another function which helps in copying the data
from one OpenCL image buffer object to another. This is specified as src_image
and dst_image in the following function:

cl_int clEnqueueCopyImage (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_image,
 const size_t *src_origin,
 const size_t *dst_origin,
 const size_t *region,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

The src_origin and dst_origin parameter have the usual meaning as specified
for the origin parameter for the read and write routines in the previous section.

The region parameter also has the same meaning as specified in the previous section.

This function can be used to do one of the following tasks:

• Copy a 1D image object to a 1D image object, 2D image object, or 2D slice
of a 3D image object and vice-versa

• Copy a 1D image object to a scan line of a specific image index of a 1D or 2D
image array object and vice versa

Chapter 4

[101]

• Copy a 2D image object to a 2D image object or to a 2D slice of a 3D image
object

• Copy a 2D image object to a specific image index of a 2D image array object
and vice versa

• Copy a 3D image object to a 3D image object

The clEnqueueCopyImage function will copy data between two image objects.
clEnqueueCopyImageToBuffer and clEnqueueCopyBufferToImage are the two
APIs which allow to copy data from an image object to a buffer object or vice versa.
Their function prototypes are as follows:

cl_int clEnqueueCopyImageToBuffer (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_buffer,
 const size_t *src_origin,
 const size_t *region,
 size_t dst_offset,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event);
cl_int clEnqueueCopyBufferToImage (cl_command_queue command_queue,
 cl_mem src_buffer,
 cl_mem dst_image,
 size_t src_offset,
 const size_t *dst_origin,
 const size_t *region,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event);

The other function clEnqueueFillImage, helps an OpenCL developer to fill an
image with a particular color value.

cl_int clEnqueueFillImage (cl_command_queue command_queue,
 cl_mem image,
 const void *fill_color,
 const size_t *origin,
 const size_t *region,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

The fill_color parameter will be converted to the appropriate image channel
format associated with the image when it was specified while creating the image
object. All the pixel elements in the image will be filled with this value.

OpenCL Images

[102]

Mapping image objects
As discussed in the mapping of buffer objects in the previous chapter, images can
also be mapped to a host pointer. Images computed at the device may sometimes
needs to be available at the host address space, say for writing the image back to
the file system. The clEnqueueMapImage function will map the image from the
device memory to the host address space. This is also a task which is enqueued
on the device command_queue.

void * clEnqueueMapImage (cl_command_queue command_queue,
 cl_mem image,
 cl_bool blocking_map,
 cl_map_flags map_flags,
 const size_t *origin,
 const size_t *region,
 size_t *image_row_pitch,
 size_t *image_slice_pitch,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event,
 cl_int *errcode_ret)

The clEnqueueMapImage function enqueue a command to map a region of the device
buffer in the image object to host accessible buffer. Note that the return type of this
function is void *.

• image: It is the valid image cl_mem object
• blocking_map: This is set to true or false for a blocking or a non-blocking call

respectively
• map_flags: It has the same definition as discussed in the previous chapter

The origin, region, image_row_pitch, and image_slice_pitch functions, all have
the same definition as discussed in the previous section where we discussed the read
and write functions.

Querying image objects
Similar to all OpenCL objects, image objects can also be queried using
the clGetImageInfo function. In the previous chapter, we discussed the
clGetMemObjectInfo function, which was used to query the OpenCL cl_mem
object. This API can be used to determine if the cl_mem object is of type CL_MEM_
OBJECT_BUFFER or one of the image types specified by cl_image_desc.image_type
argument while creating the image object.

Chapter 4

[103]

Once you know that the cl_mem object is for an OpenCL image object, you can
retrieve information about the image using the clGetImageInfo function.

cl_int clGetImageInfo (cl_mem image,
 cl_image_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

The different param_name values which can be given are as follows:

• CL_IMAGE_FORMAT: It gives the image format descriptor when the image was
created

• CL_IMAGE_ELEMENT_SIZE: It gives the size of a pixel element in the image
• CL_IMAGE_ROW_PITCH: It gives the size of a row in bytes
• CL_IMAGE_SLICE_PITCH: It gives the size of a 2D slice in the 2D image array

or in a 3D image
• CL_IMAGE_WIDTH: It gives the pixel width of the image
• CL_IMAGE_HEIGHT: It gives the pixel height of the image
• CL_IMAGE_DEPTH: It gives the pixel depth of the image
• CL_IMAGE_ARRAY_SIZE: It gives the number of images in a 1D or a 2D array

image
• CL_IMAGE_BUFFER: It gives the cl_mem buffer object associated with the

image

The following code snippet helps you to get information about the image width and
height using the param_name values, CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT

size_t image_width;
size_t image_height;
size_t size_returned;
cl_context context = . . .;
cl_mem clImage = . . .;
clStatus= clGetImageInfo (context,
 CL_IMAGE_WIDTH,
 sizeof(size_t),
 & image_width,
 & size_returned);
clStatus= clGetImageInfo (context,
 CL_IMAGE_HEIGHT,
 sizeof(size_t),
 & image_height,
 & size_returned);

OpenCL Images

[104]

Image histogram computation
In the previous chapter, we computed the RGB histogram of an input image on
an OpenCL buffer object. In this chapter, we will discuss the same with input as
an OpenCL image object. The input image is read into a contiguous buffer and an
image object is created using the clCreateImage function. At the kernel side the
pixel values can be sampled using read_image OpenCL built-in. The next diagram
illustrates how an image is read and processed in the example code. The input
image from the file system is read into a contiguous buffer, row wise as shown by
step 1 in the diagram. The input image can be of any format BMP, PNG, or JPEG.
The raw image pixel buffer is then used to create an OpenCL image object using
the clCreateImage function. The CL_MEM_USE_HOST_PTR flag is passed. This is
shown as step 2 in the diagram. Finally each kernel instance executes on the image
buffer as shown by step 3.

Take a look at the following histogram_image_kernel OpenCL kernel. This kernel
processes 16 X 16 size image pixels. Let's consider an image of size (1024, 1024), then
the NDRange of this kernel is globally (64,64), and the local work group dimensions
are (4,4). We are using (4,4) because we want to keep our local memory usage within
the permissible limit. The permissible limit for local device memory can be obtained
using the clGetDeviceInfo function with param_name, CL_DEVICE_LOCAL_MEM_
SIZE. The histogram_kernel uses a local memory of size:

3*BIN_SIZE*groupSize* sizeof(cl_uchar);

Chapter 4

[105]

For a groupSize object of 16 and BIN_SIZE of 256 a total of 12288 bytes (12 K) of
local memory is used. For almost all of AMD graphics devices, 32 K of local memory
can be allocated. The OpenCL kernel code should ensure that it uses the local
memory within this permissible limit otherwise it may result in adverse performance
degradation. Each work item processes a 16 X 16 block of an image that is 256
elements. So for a 1024 X 1024 image, a total of (64, 64) work items are spawned.
With each work group size of (4,4) there are a total of 16 X 16 work groups. The
following diagram shows work groups and work item processing on an image:

The execution model of histogram_image_kernel

The OpenCL device kernel code is as follows. The histogram_image_kernel
computes the histogram of a 16 X 16 block in an image:

#define BIN_SIZE 256
#pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable
 __kernel
void histogram_image_kernel(__read_only image2d_t image,
 __local uchar* sharedArray,
 __global uint* binResultR,
 __global uint* binResultG,
 __global uint* binResultB,
 uint blockWidth,
 uint blockHeight)
{

OpenCL Images

[106]

 size_t localIdX = get_local_id(0);
 size_t localIdY = get_local_id(1);
 size_t localSizeX = get_local_size(0);
 size_t localSizeY = get_local_size(1);
 size_t globalIdX = get_global_id(0);
 size_t globalIdY = get_global_id(1);
 size_t groupIdX = get_group_id(0);
 size_t groupIdY = get_group_id(1);
 size_t totalGroupSize = get_local_size(0) *
 get_local_size(1);
 size_t groupSizeX = get_global_size(0)/get_local_size(0);
 __local uchar* sharedArrayR = sharedArray;
 __local uchar* sharedArrayG = sharedArray +
 totalGroupSize * BIN_SIZE;
 __local uchar* sharedArrayB = sharedArray +
 2 * totalGroupSize * BIN_SIZE;
 sampler_t smplr = CLK_ADDRESS_REPEAT | CLK_FILTER_NEAREST;
 uint sharedArrayOffset = localIdY * localSizeX + localIdX;
 /* initialize shared array to zero */
 for(int i = 0; i < BIN_SIZE; ++i)
 {
 sharedArrayR[sharedArrayOffset * BIN_SIZE + i] = 0;
 sharedArrayG[sharedArrayOffset * BIN_SIZE + i] = 0;
 sharedArrayB[sharedArrayOffset * BIN_SIZE + i] = 0;
 }

 /* calculate the histograms */
 int xCoord = globalIdX*blockWidth;
 int yCoord = globalIdY*blockHeight;
 for(int i = 0; i < blockHeight; ++i)
 {
 for(int j = 0; j < blockWidth; ++j)
 {
 int pixelCoordX = xCoord+j;
 int pixelCoordY = yCoord+i;
 uint4 pixelValue = read_imageui(image, smplr,
 (int2)(pixelCoordX, pixelCoordY));
 uint valueR = pixelValue.x;
 uint valueG = pixelValue.y;
 uint valueB = pixelValue.z;
 sharedArrayR[sharedArrayOffset * BIN_SIZE + valueR]++;
 sharedArrayG[sharedArrayOffset * BIN_SIZE + valueG]++;
 sharedArrayB[sharedArrayOffset * BIN_SIZE + valueB]++;
 }

Chapter 4

[107]

 }
 barrier(CLK_LOCAL_MEM_FENCE);

 uint numOfElements = BIN_SIZE/totalGroupSize;
 uint offsetforWI = (localIdY*localSizeX + localIdX)
 *numOfElements;
 for(int i = 0; i < numOfElements; ++i) {
 int binCountR = 0;
 int binCountG = 0;
 int binCountB = 0;
 for(int k = 0; k < totalGroupSize; ++k)
 {
 int localOffset = k*BIN_SIZE + offsetforWI;
 binCountR += sharedArrayR[localOffset + i];
 binCountG += sharedArrayG[localOffset + i];
 binCountB += sharedArrayB[localOffset + i];
 }
 uint WGBinOffset = groupIdY * groupSizeX + groupIdX;
 binResultR[WGBinOffset * BIN_SIZE + offsetforWI + i] =
 binCountR;
 binResultG[WGBinOffset * BIN_SIZE + offsetforWI + i] =
 binCountG;
 binResultB[WGBinOffset * BIN_SIZE + offsetforWI + i] =
 binCountB;
 }
}

In the first for loop of the kernel, each work item will set its share of 256 elements in
sharedArrayR, sharedArrayG, and sharedArrayB memory to zero. Then the kernel
computes the image histogram pixel wise. Note here that the image is read using the
read_imageui function. This function takes as input a sampler_t object, the pixel
coordinates, and the image itself from where the pixel values are to be read. Since the
image is a 4-channel CL_RGBA format, the return value of the read_imageui function
is a unit4 vector, which contains the RGB values of a pixel.

In the last step in the kernel the local histogram computed by each work item is
added element wise to get the number of red pixels with 0,1, 2, and so on in that
work group. Each work item would compute the numOfElements histogram values.
In the end, we will have 256 elements per work group. This is filled in the global
memory, which is transferred back to the host. At the host, we add each work group
histogram values to get the final 256-histogram values for the entire image.

OpenCL Images

[108]

Summary
In this chapter we discussed the OpenCL cl_mem image objects. We also understood
why image objects are required, and how they can be used to represent pixels of
different formats or data types. We also solved the image histogram problem using
the OpenCL image objects. The same problem was discussed using OpenCL buffers
in the previous chapter. Sampling of an image pixel is an important topic and one
should try the image_sampler example program to understand that completely.

In this and the previous chapter we discussed we discussed the two important forms
of cl_mem data objects. We created a program and kernel object in our histogram
example in order to execute our kernels. In the next chapter we will understand
the creation of program and kernel objects in detail. These kernel objects are the
execution entities, which can run on any OpenCL capable device.

OpenCL Program and
Kernel Objects

In the last two chapters we discussed about the OpenCL memory objects in the
form of buffer and image objects. In the previously discussed examples of saxpy
and histogram in first and the third chapter respectively; we implemented a parallel
OpenCL C kernel, which is executed on a device. A program object and a kernel
object were created before execution of the kernel. These kernel and program object
are the important execution entities in the OpenCL framework. In this chapter we
shall concentrate on the set up steps required to create a program object and execute
a kernel. Once you have expertise in this then you can concentrate on the problem,
which you want to solve using OpenCL. The following topics will be discussed
in this chapter:

• Creating program objects
• Program build options
• Querying program objects
• Offline and online compilation
• Creating kernel objects
• Setting kernel arguments
• Executing the kernels
• Querying kernel objects
• Source versus binary program creation
• Querying kernel objects

OpenCL Program and Kernel Objects

[110]

Creating program objects
An OpenCL application can execute a function in parallel on a device using the
kernel objects. There may be more than one kernel functions, which run in parallel in
an application based on the hardware you have. An application can create multiple
program objects each for a different context. Each of these program objects can have
more than one kernel object. Each kernel in a program source string is identified by
a __kernel qualifier. Let us first create a cl_program object.

Creating and building program objects
The OpenCL kernel programs needs to be built and linked at runtime. In OpenCL
a program object can be created using the functions, clCreateProgramWithSource
or clCreateProgramWithBinary. A program object is created once for a context in
execution. Input to these functions is a source text string in ASCII or in binary format
respectively. The program object is created for the devices associated with the OpenCL
context. The clCreateProgramWithSource function declaration is as follows:

cl_program
clCreateProgramWithSource (cl_context context,
 cl_uint count,
 const char **strings,
 const size_t *lengths,
 cl_int *errcode_ret)

The following bullet list explains the preceding function prototype in detail:

• context: It is an OpenCL context for the underlying platform.
• count: It specifies the number of pointers to be held in strings argument.
• strings: It is an array of count pointers. Each pointer is a char string

which holds the OpenCL C source code.
• lengths: It specifies the length of each strings pointer. The value of

lengths[i] specifies the length of the strings[i], that is there is a one
to one correspondence between lengths array and the strings array. If
lengths is set to NULL then, strings is also considered NULL terminated.
If lengths[i] = 0 then strings[i] = NULL.

• errorcode_ret: It holds the error code returned by the OpenCL
implementation, after the API completes its execution. If it is NULL this
parameter is ignored. A valid non-zero program object is created with
clCreateProgramWithSource and errcode_ret is set to CL_SUCCESS.
Otherwise an error code is set in errcode_ret. An important point to note is
that this program object is a per context object and not per device object. It is
when you build the program using the clBuildProgram function, and then
only the program binary is created for the devices specified.

Chapter 5

[111]

Sometimes loading and building the program object will result in some delay during
runtime. Take a look at the following CodeXL screenshot:

CodeXL snapshot showing the duration of clBuildProgram

Alternatively a program object can also be created using binary source files. Since
the program is already compiled, loading them would be a faster option. Take a look
at the following CodeXL screenshot, which shows the benefit of loading the binary
using clCreateProgramWithBinary and then building the program object. The
clBuildProgram function takes only 1.69 milliseconds for a binary program, whereas
for the source program it takes approximately 95 milliseconds, which is a huge gap.

CodeXL snapshot showing the duration of clBuildProgram for a binary kernel

Note that the preceding two screenshots are from AMD CodeXL OpenCL debugging
and profiler utility. CodeXL works only for AMD OpenCL runtimes.

OpenCL Program and Kernel Objects

[112]

Binaries can be used to protect intellectual property. An application during
installation time may only need the program binaries. In this way there is no need
for storing the kernel source files on the disk. The important thing to note here is
that each binary is device specific. Some implementations instead of storing many
binaries for each device can store the binary in an intermediate representation,
which can be common representation across all devices. The format of binary file
is OpenCL implementation specific and OpenCL vendors are free to choose any
format of representation. OpenCL standard does not specify any format for binary
representation. The other important point to note is that once you create a program
using binary source files you need to again build the program object using the
clBuildProgram API. This is because the clBuildProgram function acts like a
linking step. The OpenCL implementation during build step can resolve some of
the proprietary implementations. Once a program is successfully built, one can
get a binary file using the clGetProgramInfo function with the param_name, CL_
PROGRAM_BINARIES. Till now we have mentioned three new APIs clBuildProgram,
clCreateProgramWithBinary, and clGetProgramInfo. Let us discuss each of these
APIs in detail and also aid the discussion with an example code.

Programs created with clCreateProgramWithBinary, should provide a valid binary
file created for any of the devices in context:

cl_program
clCreateProgramWithBinary (cl_context context,
 cl_uint num_devices,
 const cl_device_id *device_list,
 const size_t *lengths,
 const unsigned char **binaries,
 cl_int *binary_status,
 cl_int *errcode_ret)

The following bullet list explains the parameters of clCreateProgramWithBinary
function in detail:

• context: It is an OpenCL context for the underlying platform.
• num_devices: It specifies the size of the device_list pointer.
• device_list: This is an array of num_devices devices that are present in the

OpenCL context. The device_list array should not be NULL. Binaries are
loaded for every device in the device_list array.

• lengths: It is the size of each pointer holding the number of bytes in binaries.
• binaries: This is an array of pointers to the program binaries. The program

object is created for these pointer objects. The binaries[i] pointer of length
lengths[i] will be loaded for device device_list[i].The binaries[i]
pointer cannot be a NULL pointer and lengths[i] cannot be zero.

Chapter 5

[113]

• binary_status: The binary_status[i] pointer stores the status of load of
binaries[i].

• errcode_ret: It holds the error code for the completion status of this API.

The program object can be
created with Binary file or
ASCll source file.

clCreateProgram
WithSource

clCreateProgram
With Binary

clCreateKernel

program

At this build step the OpenCL
runtime will compile and
resolve all the OpenCL
runtime library calls

clBuildProgram

clGetProgramInfo()
with

CL_PROGRAM_BINARIES
kernel

clEnqueueNDRangeKernel

Run on DEVICE

Binary file
reloaded

Input OpenCL
Binary Source

Input OpenCLC
Source

DISC

Flowchart showing creation of program object using binary and ASCII source files

Once a new program object is created for a context either using the binary or an
OpenCL C source file, the next step is to build the program. The clBuildProgram
function builds an OpenCL program. This build step involves the source code
compilation if program was created using the clCreateProgramWithSource
function and then linking the compiled binaries. If the program is created using
clCreateProgramWithBinary then only the link step is performed.

cl_int
clBuildProgram (cl_program program,
 cl_uint num_devices,
 const cl_device_id *device_list,
 const char *options,
 void (CL_CALLBACK *pfn_notify)(cl_program program,
 void *user_data),
 void *user_data)

OpenCL Program and Kernel Objects

[114]

The following bullets list explains the functioning of the objects used in the
preceding code:

• program: A valid program object.
• num_devices: It specifies the size of the device_list pointer.
• device_list: This is an array of num_devices devices that are present in the

OpenCL context. The program object is built for all the devices mentioned in
this list. If it is NULL then an executable program is created for the devices list
while creating the program object.

• options: The OpenCL runtime compiler invoked in this call can be given
some compile time options. The options string is a NULL terminated string
of compiler options.

• pfn_notify: This is a pointer to callback function, which is called when the
OpenCL implementation completes the build procedure.

• user_data: This is the data which is passed by the OpenCL implementation
to the callback routine.

The question which might arise to any reader is that, what if there is a compilation
error? On a build failure the OpenCL implementation returns CL_BUILD_PROGRAM_
FAILURE for the call to clBuildProgram. OpenCL specification provides a function
to look for the compilation error.

cl_int
clGetProgramBuildInfo (cl_program program,
 cl_device_id device,
 cl_program_build_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

If the call to the previous clBuildProgram was not successful, an application can
use clGetProgramBuildInfo to get the build error log per device associated with
the program object.

• program: This program object is queried here to get error and warning logs.
• device: Every device in the OpenCL implementation may throw different

errors. For example there may be a device which supports double precision
data representation and the other does not. So the OpenCL developer needs
to query the error logs for different devices separately.

• param_name: As shown in the next table, different values for cl_program_
build_info can be given.

• param_value_size: It is the size in bytes of the param_value pointer.

Chapter 5

[115]

• param_value: This is the pointer to memory where the result of this function
will be returned.

• param_value_size_ret: On return from the function the actual size of the
error log is stored. In any case the value of this will not exceed param_value_
size.

The following table is the list of cl_program_build_info enumerations, which can
be used to query the program build status:

cl_program_build_info Description
CL_PROGRAM_BUILD_
STATUS

Returns the status for the last clBuildProgram
operation for the device and the program. It can be
either of the following:

• CL_BUILD_NONE: No build performed
• CL_BUILD_ERROR: Build error
• CL_BUILD_SUCCESS: Successful build
• CL_BUILD_IN_PROGRESS: Build is still running

CL_PROGRAM_BUILD_
OPTIONS

Returns the build, link, or compile options specified as
arguments to clBuildProgram, clLinkProgram, or
clCompileProgram, which was for the last operation
on program for device.

CL_PROGRAM_BUILD_LOG Returns the log for the last build, compile, or link
operation.

CL_PROGRAM_BINARY_TYPE Return the type of the binary associated with the
program object. The returned values cab be one of the
following:

• CL_PROGRAM_BINARY_TYPE_COMPILED_
OBJECT for compiled binary

• CL_PROGRAM_BINARY_TYPE_LIBRARY for
a library based binary when created with
clLinkProgram

• CL_PROGRAM_BINARY_TYPE_NONE for no
associated binary program

The following MACRO example gives the details of how to query for the
compilation error logs for a program and the associated device. This is defined
in the include/ocl_macros.h file in our examples code distribution. First call
to clGetProgramBuildInfo is used to determine the size of the build error log,
once the size is determined; an equivalent size buffer is allocated using the malloc
function. The subsequent call to the clGetProgramBuildInfo function is used to
retrieve the actual build error.

OpenCL Program and Kernel Objects

[116]

#define LOG_OCL_COMPILER_ERROR(PROGRAM, DEVICE)\
{\
 cl_int logStatus;\
 char * buildLog = NULL;\
 size_t buildLogSize = 0;\
 logStatus = clGetProgramBuildInfo(PROGRAM,\
 DEVICE,\
 CL_PROGRAM_BUILD_LOG,\
 buildLogSize,\
 buildLog,\
 &buildLogSize);\
 if(logStatus != CL_SUCCESS)\
 {\
 std::cout << "Error # "<< logStatus\
 <<":: clGetProgramBuildInfo<CL_PROGRAM_BUILD_LOG>
 failed.";\
 exit(1);\
 }\
\
 buildLog = (char*)malloc(buildLogSize);\
 if(buildLog == NULL)\
 {\
 std::cout << "Failed to allocate host memory.
 (buildLog)\n";\
 return -1;\
 }\
 memset(buildLog, 0, buildLogSize);\
 logStatus = clGetProgramBuildInfo(PROGRAM,\
 DEVICE,\
 CL_PROGRAM_BUILD_LOG,\
 buildLogSize,\
 buildLog,\
 NULL);\
 if(logStatus != CL_SUCCESS)\
 {\
 std::cout << "Error # "<< logStatus\
 <<":: clGetProgramBuildInfo<CL_PROGRAM_BUILD_LOG>
 failed.";\
 exit(1);\
 }\
\

Chapter 5

[117]

 std::cout << " \n\t\t\tBUILD LOG\n";\
 std::cout << " **\n
";\
 std::cout << buildLog << std::endl;\
 std::cout << " **\n
";\
 free(buildLog);\
}

OpenCL program building options
The OpenCL kernels can be specified using some compiler options when the kernel
is being built with clBuildProgram. These are categorized as pre-processor options,
options that control optimization or options for math intrinsic.

Pre-processor options are used by the compiler during the pre-processing stage. –D
option can be used to enable a specific type of code based on the different vendor.

#if defined(ENABLE_ATOMICS)
 atomic_add(ptr, 9);
#else
 *ptr = *ptr + 9;
#endif

If the compiler option –DENABLE_ATOMICS is given then the if part of the code is
compiled otherwise the else part of the code is compiled. This is particularly useful
when a vendor provides support for an OpenCL extension, which might be useful
from programmers perspective, but he will have to provide an alternate code when
the extension is not supported on other vendors.

Math intrinsic options control the behavior of the floating point math. Some floating
point options are -cl-single-precision-constant (treats all constants as single
precision constants). In most of the C compilers a floating point constant such as, 3.14
is treated as a double precision constant, this might result in a significant performance
loss as all floating point operations using constants will be up scaled to double
precision and then the result is computed. A programmer has to explicitly specify
3.14f for treating it as an single precision floating point constant. In order to avoid the
explicit mention of the f after every constant, programmer can use this option.

-cl-denorms-are-zero (treats all denormals as zero). A denormal number is a
floating point number whose biased exponent is zero. If the result of any floating
point operation results is a denormal float then the results are truncated to 0.

OpenCL Program and Kernel Objects

[118]

Besides these options there are some optimization control options. They are as follows:

• -cl-opt-disable: It disables all optimizations.
• -cl-mad-enable: It allows a * b + c to be replaced by a mad() operation.

Note that mad are different from fused multiply add (fma) operation, the
latter being more precise.

Some options are also provided to control the warnings thrown by the compiler for
example, -w and -werror.

Querying program objects
Like any other OpenCL objects, every program object can be queried during runtime
to gather information related to the compiled kernels. There are different types
of query names given by cl_program_info. This is tabulated later. The input to
the function is retrieved using the call to clGetProgramInfo with CL_PROGRAM_
BINARIES as the param_name which returns a binary and can be stored into a file
for future loading. The clGetProgramInfo function is defined as follows:

cl_int
clGetProgramInfo (cl_program program,
 cl_program_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

The following bullets list explains the functioning of the objects used in the
preceding code:

• program: It is a valid program object. This program object is queried to get
the program object information.

• param_name: The following tabulated list of the cl_program_info
enumerations, which can be used to retrieve information about the program
object.

• param_value_size: It is the size in bytes of the param_value pointer.
• param_value: This is the pointer to memory where the result of this function

will be returned.
• param_value_size_ret: On return from the function the actual size of the

data in bytes is stored. If the param_value pointer is not NULL, the value of
this will not exceed param_value_size.

Chapter 5

[119]

The following table is the list of the cl_program_info enumerations, which can be
used to query the program object:

cl_program_info Description
CL_PROGRAM_REFERENCE_
COUNT

Returns the reference count of the program object.

CL_PROGRAM_CONTEXT Returns the context associated when the
program object is created using the function,
clCreateProgramWithBinary or
clCreateProgramWithSource.

CL_PROGRAM_NUM_DEVICES Returns the number of devices specified when creating
this program object.

CL_PROGRAM_DEVICES Returns the list of devices specified when creating this
program object.

CL_PROGRAM_SOURCE Returns the OpenCL C source associated with the
program. The size of the source code in bytes is
specified by param_value_size_ret.

CL_PROGRAM_BINARY_SIZES This will return an array of size in bytes for the
program binaries for each device associated with the
program.

CL_PROGRAM_BINARIES The program binaries for each device associated with
the program is returned. The output buffer param_
value must be pre-allocated as per the size in bytes
returned by a call to CL_PROGRAM_BINARY_SIZES.

CL_PROGRAM_NUM_KERNELS A program may be associated with many kernels. The
number of kernels associated with this program object
is returned.

CL_PROGRAM_KERNEL_NAMES Programs source code may be associated with one
or more OpenCL kernels. To retrieve the names of
the kernel this function is used. These kernel names
can then be used to create a cl_kernel object using
the clCreateKernel function. The returned kernel
names are semi-colon separated.

Till now we discussed few functions, clCreateProgramWithSource,
clCreateProgramWithSource, clBuildProgram, clGetProgramInfo, and
clGetProgramBuildInfo. Now let's explain all these functions with two different
examples. We will refer back to our first example that is, saxpy discussed in Chapter
1, Hello OpenCL. In this chapter we will discuss two different examples. In the first
example create_binary we will create binary for the CPU and GPU device types.
In the second example we will use the binary created in the first example to solve
our saxpy problem.

OpenCL Program and Kernel Objects

[120]

Creating binary files
To create a binary file out of the input source string, one should follow the following
sequence of operations. First read the file and create a cl_program object for an
OpenCL context in execution using the clCreateProgramWithSource API. Build
this program object using the clBuildProgram function, as follows:

cl_program program;
cl_int clStatus = CL_SUCCESS;
cl_device_id *device_list = NULL;
program = clCreateProgramWithSource(context, 1,
 (const char **)&kernelCode, NULL, &clStatus);
//Build the program
clStatus = clGetContextInfo(context,CL_CONTEXT_NUM_DEVICES,
 sizeof(num_devices),&num_devices,NULL);
device_list = new cl_device_id[num_devices];
clStatus = clGetContextInfo(context,CL_CONTEXT_DEVICES,
 num_devices*sizeof(cl_device_id),
 device_list,NULL);
clStatus = clBuildProgram(program, num_devices,
 device_list, NULL, NULL, NULL);

Note that we have used clGetContextInfo for getting the number of devices
and the list of devices. Ideally it would have been good if we had used the
clGetProgramInfo API. Since we had used the same context to create the program
object, and we are sure that the OpenCL implementation will provide the same set
of device_list as it would have provided if we had used clGetProgramInfo. But
in large programs it would be good to get the number of devices num_device using
the clGetProgramInfo API with param_name, CL_PROGRAM_NUM_DEVICES and the
device_list with param_name as CL_PROGRAM_DEVICES. This is what we have done
in our next code snippet.

After we have built the program for a set of devices, it's time to get the code binary
size using CL_PROGRAM_BINARY_SIZE and then the actual built binary using CL_
PROGRAM_BINARIES. See the following code snippet:

//Get back the number of devices associated with the program object
clStatus = clGetProgramInfo(program, CL_PROGRAM_NUM_DEVICES,
 sizeof(cl_uint), &num_devices,
 &bytes_read);

Chapter 5

[121]

size_t *binarySize = new size_t[num_devices];//Create size array
clStatus = clGetProgramInfo(program, CL_PROGRAM_DEVICES,
 sizeof(cl_device_id) * num_devices,
 device_list, &bytes_read);
//Load the size of each binary associated with the corresponding
device
clStatus = clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES,
 sizeof(size_t)*num_devices,
 binarySize, &bytes_read);
char** programBin = new char* [num_devices];
//Create the binary array
for(cl_uint i = 0; i < num_devices; i++)
 programBin[i] = new char[binarySize[i]];
//Read the Binary
clStatus = clGetProgramInfo(program, CL_PROGRAM_BINARIES,
 sizeof(unsigned char *) * num_devices,
 programBin, &bytes_read);

Finally after getting the binary buffer, we need to write it to a file for storing it in the
disk and for future loading. Try to build and run the sample code and see the output
binary file. There are some advantages of using the binary as a representation for
the kernel. One is to save on compilation time for the OpenCL kernels. The other
advantage is that the OpenCL developer may not want to deliver his proprietary
kernel code in the form of a readable code. Instead he will store and distribute the
binary. OpenCL SPIR extension also provides a standard intermediate representation
for making the OpenCL kernel binaries portable across different vendors. We will
discuss this in a later section.

As an exercise, try to link two different program objects using the clLinkProgram
function. Once a new program object is created then try to store the binary of that
kernel as shown earlier. You can additionally try to implement the code for creating
binary files for multiple kernels.

Offline and online compilation
We have discussed the creation of binary object. An OpenCL kernel can be created
at runtime, this is referred to as online compilation. In the previous section we have
seen how a kernel binary can be created. We can store this kernel binary in the form
of a library and an application can load it on demand from the disk. This is referred
to as offline compilation. The following diagrams show the difference between the
two compilation modes.

OpenCL Program and Kernel Objects

[122]

For offline compilation the application developer shall create the binary and
distribute the binary with his application as shown in the following diagram:

Application developer will
store the kernel libraries
and package it with his
executable

Input
OpenCLC
Source

clCreateProgram
WithSource

program

clGetProgtamInfo
CL_PROGRAM_BINARIES

Kernel Binaries

Offline Program Compilation and storing

In offline compilation mode the application will load the created kernel binary
and execute the kernel. Note that even if the program is created using the
clCreateProgramWithBinary function, clBuildprogram is necessary as the
OpenCL runtimes library calls and built-ins are resolved at this step. The following
diagram shows the offline compilation mode.

Note Build program is required
for programs created with
binaries. Since the OpenCL
runtime libraries are resolved at
this step.

Run on DEVICE

clEnqueueNDRangeKernel

kernel

clCreateKernel clBuildingProgram

Kernel Binaries clCreateProgram
WithBinary

program

Offline Compilation

Chapter 5

[123]

In online compilation mode the program is created with the
clCreateProgramWithSource function. The clBuildProgram function step will
compile and resolve the OpenCL runtime library calls. This is a little slower since
compilation times may be high in an OpenCL implementation.

Run on DEVICE

clEnqueueNDRangeKernel

kernel

clCreateKernel clBuildingProgram

clCreateProgram
WithSource

program
Input

OpenCLC
Source

At this build step the
OpenCL runtime will
compile and resolve all
the OpenCL runtime
library calls.

Online Compilation

SAXPY using the binary file
In the previous section we discussed creating a binary file which will be loaded by
some other host program. Let us now discuss another example wherein we will use
the same binary file, which is created in the previous example and run the saxpy_
kernel function. We shall first read and load the binary file and create a program
object using the clCreateProgramWithBinary API.

//Open the file for reading
fopen("saxpy_kernel_binary_gpu.clbin", "rb");
fseek(fp,0L,SEEK_END);
size_t fileSize = ftell(fp);

OpenCL Program and Kernel Objects

[124]

rewind(fp);
unsigned char * saxpy_kernel = new unsigned char [fileSize];
fread(saxpy_kernel,fileSize,1,fp);
// Create a program from the kernel source
cl_int binary_status;
cl_program program = clCreateProgramWithBinary(context, 1,
 &device_list[0], &fileSize,
 (const unsigned char **)&saxpy_kernel,
 &binary_status, &clStatus);

// Build the program
clStatus = clBuildProgram(program, 1, device_list, NULL, NULL, NULL);

Next we shall create a cl_kernel object with function clCreateKernel for the
kernel saxpy_kernel, then set the arguments using the clSetKernelArg function.
The details of these two functions are given after this code snippet.

// Create the OpenCL kernel
cl_kernel kernel = clCreateKernel(program, "saxpy_kernel", &clStatus);

// Set the arguments of the kernel
clStatus = clSetKernelArg(kernel, 0, sizeof(float), (void *)&alpha);
clStatus = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&A_clmem);
clStatus = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&B_clmem);
clStatus = clSetKernelArg(kernel, 3, sizeof(cl_mem), (void *)&C_clmem);

// Execute the OpenCL kernel on the list
size_t global_size = VECTOR_SIZE; // Process the entire lists
size_t local_size = 64; // Process one item at a time
clStatus = clEnqueueNDRangeKernel(command_queue, kernel,
 1, NULL,
 &global_size,
 &local_size,
 0, NULL, NULL);

Chapter 5

[125]

SPIR – Standard Portable Intermediate
Representation
One of the drawbacks with OpenCL is that by default an application can distribute
there OpenCL program in one of the following two ways:

• In the form of a high level OpenCL C program
• Or in the form of a low-level binary which is compiled for the specific device

We have seen both with samples, about how to use them. But each of these has the
drawback of the source code being available to as the distribution. And the later one
has the drawback of the binary not being portable across different vendors' OpenCL
devices. In order to avoid the two drawbacks, Khronos group came up with the SPIR
specification. SPIR is an extension of OpenCL, where the vendors can provide a SPIR
compliant binary consumer and a producer. Have a look at the following diagram:

Vendor specific
binaries are not
portable

OpenCL vendors who
provide support for
SPIR extensions, should
be able to consume the
SPIR binary

OpenCL Vendor-3
Library

OpenCL Vendor-2
Library

OpenCL Vendor-1
Library

Vendor specific
Binary

SPIR Binary

SPIR Producer

SPIR Consumer

__kernel void
saxpy_kernel(...)
{
...
}

SPIR Producer and Consumer

OpenCL Program and Kernel Objects

[126]

OpenCL vendor 1 or application developers can produce a SPIR compliant binary
and distribute their proprietary algorithms in this intermediate representation.
OpenCL vendor 2 and 3 can consume these binaries. Thus SPIR provides benefits
by allowing code integrity and making the OpenCL applications portable across
different vendors. SPIR is a mapping of the OpenCL C program to the LLVM IR;
and it adopts two notations, which are part of the LLVM IR. One is the binary bit
code representation and the other is the assembly language notation provided by
LLVM. For more details take a look at the SPIR specification.

Creating kernel objects
In this section we will discuss details about the kernel objects, and how kernel objects
can be created using the program objects. Every program is a collection of kernels,
you can consider a program object as a library of kernels. As shown in the following
figure a program is associated with kernel1 and kernel2. The program is built
with inputs as two devices device1 and device2. A kernel when enqueued on the
command queue, the OpenCL runtime generates the binary for execution on the
device. Note that each kernel can be executed on different devices. It is at the runtime
the binaries are generated.

A kernel object can be created from a well formed OpenCL C program, which is
built as discussed in the previous section. A kernel object is an encapsulation for
a parallel executable entity. The kernel object is used to pass arguments using the
clSetKernelArg API, before running the kernel using the clEnqueueNDRangeKernel
API. Have a look at the following diagram:

Open CL Context

Device input while
creating program

cl_program program

cl_kernel kernel1 cl_kernel kernel2

command_queue1

Device1

command_queue2

Device2

Device input while
creating program

Kernels can run on any
device. The OpenCL
runtime appropriately
generates the ISA for the
device on which it is

executing

Kernels and Program

Chapter 5

[127]

In the OpenCL programs the cl_kernel objects are created using the
clCreateKernel function. Each kernel in an OpenCL C code is identified by the __
kernel function keyword.

cl_kernel
clCreateKernel (cl_program program,
 const char *kernel_name,
 cl_int *errcode_ret);

The following bullets list explains the functioning of the objects used in the
preceding code:

• program: It is a valid program object. This program object is used to create a
kernel object

• kernel_name: It provides function name in the OpenCL C code declared
with the __kernel qualifier

• errcode_ret: It returns an error code if the kernel was not created
successfully

There is another mechanism with which kernels can be created. The
clCreateKernelsInProgram function creates all the kernel objects associated with
the program.

cl_int
clCreateKernelsInProgram (cl_program program,
 cl_uint num_kernels,
 cl_kernel *kernels,
 cl_uint *num_kernels_ret)

• program: A program object which is successfully built
• num_kernels: It is the size of memory pointed to by kernels
• kernels: It is the buffer where all the kernel objects will be returned
• num_kernels_ret: It is the actual number of kernel objects returned

Setting kernel arguments
Before executing the kernel, the arguments must be set for the kernel using
the clSetKernelArg function, as follows:

cl_int
clSetKernelArg (cl_kernel kernel,
 cl_uint arg_index,
 size_t arg_size,
 const void *arg_value)

OpenCL Program and Kernel Objects

[128]

The following bullets list explains the functioning of the objects used in the
preceding code:

• kernel: It is a kernel object for which you want to set the arguments
• arg_index: The index of the argument starting from 0 to the last argument
• arg_size: It specifies the size of arg_value
• arg_value: It is the pointer to the data that shall be passed to the device

 for the argument arg_index.

For memory objects, the arg_value is the address associated with the buffer or
image object. The arg_value can be NULL also. If the associated kernel argument
is a __global or __constant memory qualifier then this argument will be NULL
while the kernel is executed. Otherwise if the argument is a __local address space
qualifier the arg_value has to be NULL. The __local address space qualifier specifies
a local memory in the device. This memory need not be allocated on the host, hence
it is NULL. The size of the local memory is defined by the arg_size value.

Let's take our example in the saxpy_kernel:

// Set the arguments of the kernel
 clStatus = clSetKernelArg(kernel, 0,
 sizeof(float), (void *)&alpha);
 clStatus = clSetKernelArg(kernel, 1,
 sizeof(cl_mem), (void *)&A_clmem);
 clStatus = clSetKernelArg(kernel, 2,
 sizeof(cl_mem), (void *)&B_clmem);
 clStatus = clSetKernelArg(kernel, 3,
 sizeof(cl_mem), (void *)&C_clmem);

The saxpy_kernel takes four arguments. The first argument is a constant float
value which is passed to the kernel. The next three arguments are memory buffers.
For creating local memory buffers in the kernel one must pass the size of the buffer
required in bytes to the arg_size argument and set the arg_value argument to
NULL. The parameter received in the kernel code is a local memory buffer, which is
specified with a __local qualifier. Similarly arg_value is set to pointer to sample
objects for arguments of type sampler_t.

Let's take a sample kernel prototype which describes most of the preceding explanation:

__kernel
void example_kernel(int i,
 float f,
 __local float l_Array,
 __global float g_Array,
 read_only image2d_t srcImg,
 sampler_t sampler)

Chapter 5

[129]

The following code snippet sets the arguments of the kernel, which is the cl_
kernel object for example_kernel:

// Set the arguments of the kernel
kernel = clCreateKernel(program, "example_kernel", NULL);
clStatus = clSetKernelArg(kernel, 0, sizeof(int),
 (void *)&host_int);
clStatus = clSetKernelArg(kernel, 1, sizeof(float),
 (void *)&host_float);
clStatus = clSetKernelArg(kernel, 2, 1024, NULL);
clStatus = clSetKernelArg(kernel, 3, sizeof(cl_mem),
 (void *)&host_clmem);
clStatus = clSetKernelArg(kernel, 4, sizeof(cl_mem),
 (void *)&host_img_clmem);
clStatus = clSetKernelArg(kernel, 5, sizeof(cl_sampler),
 (void *)&host_sampler);

Executing the kernels
The created cl_kernel object can now be run on the device associated with it using
the clEnqueueNDRangeKernel API. This shall enqueue the command for kernel
execution on the command_queue. The queue shall then run this command if there
are no commands waiting to be executed or else complete the execution of all the
commands and then execute this kernel on the device associated with the command_
queue command.

cl_int
clEnqueueNDRangeKernel (cl_command_queue command_queue,
 cl_kernel kernel,
 cl_uint work_dim,
 const size_t *global_work_offset,
 const size_t *global_work_size,
 const size_t *local_work_size,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

The following bullets list explains the functioning of the objects used in the
preceding code:

• command_queue: It is a command queue for the device where the command is
enqueued.

• kernel: It is a valid OpenCL kernel object.

OpenCL Program and Kernel Objects

[130]

• work_dim: It is the dimension for the NDRange. The value it can take is 1, 2,
or 3. The value of work_dim specifies the size of the global_work_offset,
global_work_size, and local_work_size arrays.

• global_work_offset: This is an array of work_dim unsigned values that
gives the offset used to calculate the global ID of a work item.

• global_work_size: This is an array of the work_dim unsigned values that
gives the global size of the NDRange. These values specify the number of
work items, which will constitute the NDRange in each dimension.

• local_work_size: This is also an array of the work_dim unsigned values
that gives the number of work items in a work group. A detailed explanation
of this is given in Chapter 2, OpenCL Architecture.

The num_events_in_wait_list, event_wait_list, and event objects will have
their usual meanings as explained for each of the clEnqueue* routines.

There is one other way with which a kernel can be executed. If clEnqueueNDRange
is available for data parallel workloads then clEnqueueTask is available for task
parallel workloads.

cl_int clEnqueueTask (cl_command_queue command_queue,
 cl_kernel kernel,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

The clEnqueueTask function enqueues a task on command_queue to execute the
kernel on the device associated with the command_queue command. Note that there
is no dimension information provided and neither global nor local size are provided.
That means this function executes only a single work item for the kernel. This is
equivalent to call clEnqueueNDRange with dim=1, global_work_offset = NULL,
local_work_size[0] = 1, and global_work_size[0] = 1.

Querying kernel objects
Similarly to get the information about the program object, OpenCL provides an API
to receive information about the cl_kernel object created. One can use this API
to receive information about the kernel function name, number of arguments, the
associated program, context, and so on.

cl_int
clGetKernelInfo (cl_kernel kernel,
 cl_kernel_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

Chapter 5

[131]

The following bullets list explains the functioning of the objects used in the
preceding code:

• kernel: This is a valid cl_kernel object for which information is being
queried.

• param_name: The following tabulated list of cl_kernel_info enumerations
can be used to retrieve information about the kernel object.

• param_value_size: size in bytes of the param_value pointer.
• param_value: This is the pointer to memory where the result of this function

will be returned.
• param_value_size_ret: On return from the function the actual size of the

data in bytes is stored. If the param_value pointer is not NULL the value of
this will not exceed param_value_size.

The following table is the list of cl_kernel_info enumerations that can be used to
query the kernel object:

cl_kernel_info Description
CL_KERNEL_FUNCTION_NAME Returns the name of the kernel function.
CL_KERNEL_NUM_ARGS Returns the kernel function's number of arguments.
CL_KERNEL_REFERENCE_
COUNT

Returns the reference count of the kernel object.

CL_KERNEL_CONTEXT Returns the context associated with the kernel
object. This context is the context which was
passed during the creation of program object
using clCreateProgramWithBinary or
clCreateProgramWithSource.

CL_KERNEL_PROGRAM Returns the associated program object associated for
the kernel.

CL_KERNEL_ATTRIBUTES Returns any attributes specified using the __
attribute__ qualifier with the kernel function
declaration in the program source.

Querying kernel argument
OpenCL provides functions to query information regarding the kernel arguments
also, which can be stored in the kernel binary using the -cl-kernel-arg-info
option. This allows the compiler to store the argument information for the kernel.
It gives information about the type of the argument, the name of the argument, it's
address and the access qualifiers. The clGetKernelArgInfo function returns this
information. The kernel argument information is only available for the program's
created with the clCreateProgramWithSource function as follows:

OpenCL Program and Kernel Objects

[132]

cl_int
clGetKernelArgInfo (cl_kernel kernel,
 cl_uint arg_indx,
 cl_kernel_arg_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

The following bullets list explains the functioning of the objects used in the
preceding code:

• kernel: It is a valid cl_kernel object for which information is being queried.
• arg_indx: It is the index of the argument for which information is queried.

It takes values from 0 to n-1 for an n argument kernel. The total number
of arguments for the kernel can be obtained using the clGetKernelInfo
function with param_name as CL_KERNEL_NUM_ARGS.

• param_name: It is the list of cl_kernel_arg_info for which information can
be queried. The param_value_size, param_value, and param_value_size
objects have the same meaning as for any clGet*Info function.

The following table is the list of cl_kernel_arg_info enumerations, which can be
used to query the details about the arguments to a kernel object:

cl_kernel_arg_info Description
CL_KERNEL_ARG_ADDRESS_
QUALIFIER

Returns the address space qualifier for the arg_indx
argument. It can be one of the following:

• CL_KERNEL_ARG_ADDRESS_GLOBAL

• CL_KERNEL_ARG_ADDRESS_CONSTANT

• CL_KERNEL_ARG_ADDRESS_LOCAL

• CL_KERNEL_ARG_ADDRESS_PRIVATE

CL_KERNEL_ARG_ACCESS_
QUALIFIER

Returns the access qualifier for the argument arg_indx.
It can be one of the following:

• CL_KERNEL_ARG_ACCESS_READ_ONLY

• CL_KERNEL_ARG_ACCESS_READ_WRITE

• CL_KERNEL_ARG_ACCESS_WRITE_ONLY

• CL_KERNEL_ARG_ACCESS_NONE

CL_KERNEL_ARG_TYPE_NAME Returns the argument type name for the arg_indx
argument.

Chapter 5

[133]

cl_kernel_arg_info Description
CL_KERNEL_ARG_TYPE_
QUALIFIER

Returns the type qualifier for the arg_indx
argument. It can be a combination of the following:

• CL_KERNEL_ARG_TYPE_CONST

• CL_KERNEL_ARG_TYPE_VOLATILE

• CL_KERNEL_ARG_TYPE_RESTRICT

• CL_KERNEL_ARG_TYPE_NONE

CL_KERNEL_ARG_NAME Returns the name argument arg_indx.

Another function which allows the user to query the kernel object for a particular
device is clGetKernelWorkGroupInfo. The CL_KERNEL_WORK_GROUP_SIZE query
can be used to determine the maximum work group size that can be used on the
device. Optimal performance can be achieved if the work group size is selected to
be a multiple of CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE. This value
is useful as the OpenCL platforms dispatch the work items in warps or wave front.
AMD GPUs dispatch work items in wave fronts. The size of a wave front is 64 in
AMD GPUs. If the work group size is not a multiple of 64 then it would result in
wastage of hardware resource. For example, Let's take 100 as the work group size.
For a 64 preferred work group size, the hardware will schedule the 100 work items in
chinks of 64 and 36 work items. This results in the wastage of 64 -36 = 28 processing
elements not being utilized.

cl_int
clGetKernelWorkGroupInfo (cl_kernel kernel,
 cl_device_id device,
 cl_kernel_work_group_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

The following bullets list explains the functioning of the objects used in the
preceding code:

• kernel: It is a valid cl_kernel object for which information is being queried.
• device: The information is queried for the combination of device associated

with the kernel.
• param_name: It specifies the list of information which can be queried. This is

tabulated below.

The param_value_size, param_value, and param_value_size values have the
same meaning as for any get*Info function.

OpenCL Program and Kernel Objects

[134]

The following table is the list of cl_kernel_work_group_info enumerations,
which can be used to query the kernel object to get the kernel work group
related information.

cl_kernel_work_group_info Description
CL_KERNEL_GLOBAL_WORK_
SIZE

This is used to query the maximum global size that
can be used to execute a kernel.

CL_KERNEL_WORK_GROUP_SIZE This returns the maximum work group size, which
can be used to execute the kernel on the device.

CL_KERNEL_COMPILE_ and
WORK_GROUP_SIZE

This returns the work group size specified using the
kernel attribute qualifier: __attribute__((reqd_
work_group_size(X, Y, Z))).

CL_KERNEL_LOCAL_MEM_SIZE This returns the local memory used in bytes by the
kernel.

CL_KERNEL_PREFERRED_WORK_
GROUP_SIZE_MULTIPLE

This returns the performance hint to the application
such that multiple of this value will result in optimal
performance.

CL_KERNEL_PRIVATE_MEM_
SIZE

Returns the minimum amount of private memory in
bytes used by each of the work items in the kernel.

Releasing program and kernel objects
Every program object needs to be released from the OpenCL implementation space.
This is achieved by using the following code:

cl_int
clReleaseProgram(cl_program program)

Here, program is a valid program object.

The call to clReleaseProgram function will decrement a reference count, and if the
count reaches 0, then the program object is released. To query the reference count
associated with the program object, one can use clGetProgramInfo with the param_
name as CL_PROGRAM_REFERENCE_COUNT. For increasing the reference count of the
program object one can use the OpenCL function, clRetainProgram.

cl_int
clRetainProgram(cl_program program)

Similar to program objects kernel objects can also be released using
clReleaseKernel. The kernel reference count can be determined using
clGetKernelInfo with param_name as CL_KERNEL_REFERENCE_COUNT.
The reference count can be increased using clRetainKernel.

Chapter 5

[135]

Built-in kernels
Some custom devices contain specific unique functionality that are now integrated
more closely into the OpenCL framework. The OpenCL 1.2 specification allows
devices with special capabilities to expose a standard kernel implementation to
perform specific tasks. Kernels can be called to use specialized or non-programmable
aspects of underlying hardware. Some of these examples include video encoding/
decoding and digital signal processors. The clCreateProgramWithBuiltInKernel
function returns a cl_program object for the kernel names specified.

cl_program
clCreateProgramWithBuiltInKernels (cl_context context,
 cl_uint num_devices,
 const cl_device_id *device_list,
 const char *kernel_names,
 cl_int *errcode_ret)

The following bullets list explains the parameters passed to the function
clCreateProgramWithBuiltInKernels:

• context: It is a valid OpenCL context
• num_devices: It is the number of devices listed in device_list
• device_list: This is an array of num_devices device's for which you want

to get the list of kernel names
• kernel_names: It is a return value and contains the list of semicolon

separated built-in kernel names

Summary
In this chapter we discussed the creation of the OpenCL program objects and the
kernel objects. Kernel objects were created from the program objects. We also looked
at how a program object can be used to look at the build errors. Additionally we took
an example of creating a binary file from the program for a device and reload the
binary file to perform our saxpy operation. We also discussed how SPIR will allow
application developers to distribute there proprietary software and yet be portable.

In the next chapter we will discuss the OpenCL events and synchronization
mechanisms. Events and synchronization are important topics for any parallel
programming. Event handles are needed to keep track of the various tasks
enqueued on to the command queue. We will also discuss the various
synchronization models.

Events and Synchronization
The previous chapter was all about the OpenCL program and kernel creation, and
enqueing the kernels in an NDRange. We also discussed different types of tasks,
which will be queued on to a device command queue. Every application will need to
keep track of these tasks and synchronize the data view for a computational task. The
OpenCL standard provides this synchronizing entity in the form of cl_event objects.

A simple Wikipedia definition defines Events as an action that is usually initiated
outside the scope of a program and the status of these events is handled by a piece of
code inside the program. There may be multiple sources for events. A typical source
of event handle is the OpenCL clEnqueue* routines. An OpenCL runtime libraries
changes the state of all events enqueued to the command queue. It keeps track of all
the operations, which a host program initiates on to the various OpenCL devices.
OpenCL Events are used mainly to synchronize the execution of tasks, and also to
determine/interpret the state of the task in execution.

In this chapter we shall discuss about the following topics:

• Coarse-grained events
• Fine-grained events
• Various synchronization models
• Querying events and event profiling

For "coarse grained" synchronization, OpenCL provides functions such as, clFlush,
and clFinish. When the need arises for "finer grained" synchronization, the OpenCL
specification provides a cl_event object, which is used to determine the status of
a task enqueued on a command queue. The cl_event object helps to identify the
status of unique commands in a queue and thus enable a host level monitoring of
each event. An OpenCL developer may want to wait for the completion of event
associated with any of the clEnqueue* functions unless they are explicitly specified
to wait by setting the blocking_[read|write] variable to CL_TRUE.

Events and Synchronization

[138]

If set to CL_FALSE these functions immediately return before the enqueued task
is completed. Have a look at the following diagram. Execution of the kernel A is
dependent on two write events of buffers A and B to complete. Similarly kernel
B can be executed only when write of buffer C is completed and the execution
of kernel A is also completed:

Write A buffer
(W_A)

Write B buffer
(W_B)

Wait for W_A
and W_B

Kernel A’s
execution is
dependent on
the writing of
buffers A and B

Kernel B’s execution is

dependent on the

completion of the

writing of buffer C and

also the completion of

execution of Kernel A

Write C buffer
(W_C)

Wait for W_C
and K_A

Kernel A
(K_A)

Kernel B
(K_B)

Wait for K_B

Read or MapC
buffer

Diagram showing dependency of task execution

All the OpenCL clEnqueue* functions provide a mechanism to submit the
dependency list when enqueing a task on the device command queue.

You can make sure that queue has dequeued all the commands and every
command is completed by calling clFinish. The clFinish function will block
the host program until the entire queue has completed. If you want to monitor the
execution of the task enqueued by the clEnqueue* functions, they have an optional
cl_event parameter that can be passed. The clEnqueue* functions will return a
handle to cl_event, which can be queried for its status using the clGetEventInfo
function. An OpenCL program can also wait for a list of events to finish with
clWaitForEvents. This is also a host blocking call but the developer has a control
on the events on which he wants to wait for instead of the all the events in the
command_queue queue. And if you don't want to stop the host execution then use
clEnqueueBarrierWithWaitList and clEnqueueMarkerWithWaitList. We will
discuss about all this later in this chapter.

Chapter 6

[139]

OpenCL events and monitoring
these events
An event is a cl_event object that forms a medium of communication between
the application and the OpenCL implementation. These event objects help in
monitoring the OpenCL operations and commands. This monitoring can be of data
transfer between the host and the devices and vice versa or either for the execution
of the NDRange kernel. In OpenCL, an event is an object that specifies the state of
a command queued into the OpenCL command queue. In OpenCL, events can be
queried to notify the host that a command has completed its execution on the device.
Besides this it can also be used for command synchronization. During command
synchronization, a command which is queued for execution will wait on a list of
events to complete before executing itself. In all the previous chapters you might
have seen the last few parameters common across all the APIs starting with signature
clEnqueue*.

clEnqueue*(***, cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event);

For example, clEnqueue{Read|Write|Map}Buffer and clEnqueueNDRangeKernel
all have to wait for event_wait_list events before finally executing itself. These
event wait lists can be used to wait on one or more than one command. The num_
events_in_wait_list and event_wait_list parameters specifies the number of
events to wait for. On return of this function the last parameter event shall contain
the handle to the cl_event object for the task being enqueued. This handle can be
used to keep track of the execution of the command which is being queued. Every
event is associated with a context. The contexts associated with events in event_
wait_list and the context of the command_queue all should be same.

In OpenCL we can use events in three main ways which are follows:

• Host notification: An event can notify the host that a command has
completed its execution on a device

• Command synchronization: An event can force commands to delay their
execution until another event's occurrence has taken place

• Profiling: An event can monitor how much time a command takes to execute

Events and Synchronization

[140]

OpenCL event synchronization models
In OpenCL, the command queues are used to submit work to a device and each
work or task can be associated with an event object. The queuing of the command
takes place in-order or as the program flow occurs. But when the commands are
dequeued the tasks can execute in-order or out-of-order. In ordered execution
one does not need an explicit synchronization that means the next command is
executed only when the previous one has completed its execution. But in the case
of out-of-order execution, there is a need for synchronization. The OpenCL provides
this framework for synchronization. Synchronization is needed in the case of
multiple command queues also. The user might want to divide his work load across
multiple devices, and the running dynamics of each device may be different. So it
becomes necessary to do synchronization. Let us discuss some models for queuing
commands in OpenCL.

No synchronization needed
This is the simplest form of OpenCL programming. This is the ideal situation when
the algorithm is very simple and no interaction between the various OpenCL devices
is needed.

Single device in-order usage
This is the simplest form of task queuing mechanism, which uses an in-order queue
associated with a device in context. All commands execute on single device and all
the memory operations occur in a single memory pool.

The following code snippet explains the scenario:

cl_uint num_devices;
cl_device_id devices;
err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_CPU,
 1, &devices, &num_devices);
context = clCreateContext(0, 1, devices, NULL, NULL, &err);
cl_command_queue queue_cpu;
queue_cpu = clCreateCommandQueue(context, devices[0],
 0 /* IN-ORDER */, &err);
/* ... enqueue the tasks for the selected device here ... */

Here we created an in-order OpenCL command queue for the CPU device. In this
case the device executes commands after the previous one finishes, and all the
memory transactions are synchronized and consistently viewed. Hence there may
be no need for fine-grained synchronization of events. The clFlush and clFinish
objects should suffice. We will discuss about these functions in a later section.

Chapter 6

[141]

Synchronization needed
This is bit more complex model and the complexity grows with multiple
devices needing synchronization. This model is the default choice when the
OpenCL developer wants to distribute his work load across multiple devices.
Synchronization will also be needed when an out-of-order queue is used. In
the following sections we will discuss the three different scenarios, where an
OpenCL developer will need synchronization.

Single device and out-of-order queue
In this case we use an out-of-order queue, which is also associated with a single
device in a context, same as the previous. All the memory operations occur in a
single memory pool. All the commands will execute in a single device, but the
order in which the commands get dequeued will have no guarantee for an ordered
execution. The following code snippet shows how to create an out-of-order queue:

cl_uint num_devices;
cl_device_id devices;
err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_CPU, 1, &devices,
 &num_devices);
context = clCreateContext(0, 1, devices, NULL, NULL, &err);
cl_command_queue queue_cpu;
queue_cpu = clCreateCommandQueue(context, devices[0],
 CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err);
/* ... enqueue the tasks for the selected device here ... */

The device starts executing as soon as it can and the memory transactions may
overlap. The device may have capability to execute multiple tasks simultaneously,
which results in better hardware utilization. This results in a need for an explicit
synchronization of the algorithm when out-of-order execution is used.

Multiple devices and different OpenCL contexts
Here the commands execute on separate devices associated with a queue and each
device has a separate memory pool. This model is useful if there are multiple devices
in the platform and one wants to divide and run separate algorithms in different
devices. The following code snippet shows creation of different command queues for
the CPU and GPU devices separately:

cl_uint num_devices;
cl_device_id devices[2];
err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_CPU,
 1, /*Get one CPU device*/
 &devices[0], &num_devices);

Events and Synchronization

[142]

err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_GPU,
 1, /*Get one GPU device*/
 &devices[1], &num_devices);
context_cpu = clCreateContext(0, 1, &devices[0],
 NULL, NULL, &err);
context_gpu = clCreateContext(0, 1, &devices[1],
 NULL, NULL, &err);
cl_command_queue queue_cpu, queue_gpu;
queue_cpu = clCreateCommandQueue(context_cpu, devices[0],
 0 /* IN-ORDER */, &err);
queue_gpu = clCreateCommandQueue(context_gpu, devices[1],
 0 /* IN-ORDER */, &err);

In this model the command queues cannot synchronize between the contexts.

Multiple devices and single OpenCL context
Multiple devices in the platform belong to the same context and each device has
an associated queue and will modify or read data from a combined memory pool.

cl_uint num_devices;
cl_device_id devices[2];
err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_CPU, 1,
 &devices[0], &num_devices);
err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_GPU, 1,
 &devices[1], &num_devices);
context = clCreateContext(0, 2, devices, NULL, NULL, &err);
cl_command_queue queue_cpu, queue_gpu;
queue_cpu = clCreateCommandQueue(context, devices[0],
 0 /* IN-ORDER */, &err);!
queue_gpu = clCreateCommandQueue(context, devices[1],
 0 /* IN-ORDER */, &err);!

This is a true multi device model, and will need programming expertise to divide
the workload across the different devices. Once each device completes its execution
the associated event handle is set to CL_COMPLETE. The host program is expected
to explicitly track the status of each task queued on each device. This is called
as coarse-grained synchronization and OpenCL provides different functions for
achieving this synchronization.

In this section we have discussed the various queuing synchronization models
possible in OpenCL. Now we should be able to look into the various synchronization
mechanisms which the OpenCL specification provides. It's true that basic
synchronization can be done with simple OpenCL commands such as, clFinish and
clFlush, but complex algorithms where you want to get the maximum out of the
underlying hardware, will need functions for various event handling mechanisms
and querying the event status. In the next few sections we will precisely explain each
of these OpenCL functions.

Chapter 6

[143]

Coarse-grained synchronization
There are two APIs which enable coarse-grained synchronization, they are clFlush
and clFinish. The reason why we call coarse grained is that both lack control over
the individual tasks queued on the command queue. These two functions have
control only at the queue level.

cl_int clFlush (cl_command_queue command_queue);

This function ensures that all the commands, which are queued on the command_queue
object will be submitted to the corresponding device. This does not guarantee that all
the commands in the command_queue will be completed after clFlush returns.

First question which would arise is that what would happen if there is any blocking
command queued to the device. Blocking commands do an implicit flush of the
command_queue and on return from the blocking commands it will result in an
implicit finish for the command_queue. This means that these functions will not return
until this command gets completed. All the clEnqueueRead* and clEnqueueWrite*
commands with their corresponding parameters blocking_read and blocking_
write when set to CL_TRUE are referred to as blocking commands. The
clReleaseCommandQueue function also performs an implicit flush of the command
queue. Besides this the buffer mapping functions such as, clEnqueueMapBuffer and
clEnqueueMapImage with blocking_map as CL_TRUE and the clWaitForEvents
function all do an implicit flush of the command_queue.

There is another function clFinish, which helps in coarse-grained synchronization.

cl_int clFinish (cl_command_queue command_queue)

This function is a blocking function, that means clFinish will not return until all
the previously enqueued commands in the command_queue are issued and reached
its state of completion. This is a coarse-grained synchronization point. This function
also guarantees that all the commands queued in the queue have reached the state
CL_COMPLETE. If there is an error code associated with a command event handle then
that indicates that the task was abnormally terminated.

The two APIs return CL_SUCCESS if the function calls were executed successfully, if
not then either CL_INVALID_COMMAND_QUEUE, CL_OUT_OF_RESOURCES, or CL_OUT_OF_
HOST_MEMORY is returned.

Events and Synchronization

[144]

There is another function, clEnqueueBarrierWithWaitList, which queues a
synchronization point.

cl_int
 clEnqueueBarrierWithWaitList (cl_command_queue command_queue,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

The barrier command will be queued in the command_queue OpenCL queue.

The clEnqueueBarrierWithWaitList function is a non-blocking call and can
achieve the same result as the clFinish function. Here the application developer
needs to wait for the event to reach CL_COMPLETE. This function has two uses. First,
it will wait for num_events_in_wait_list events in event_wait_list to reach
CL_COMPLETE. Only then the status of the event handle is set to CL_COMPLETE. The
second use is that if num_events_in_wait_list and event_wait_list are set to
0 and NULL respectively, then the event associated with this function will reach the
state of CL_COMPLETE only if all the previously enqueued commands are completed.
Any other command which is enqueued after this barrier command will not continue
its execution until this barrier has reached a state of CL_COMPLETE. You might
question what is the difference between clEnqueueBarrierWithWaitList() and
clFinish()?

If you are using clFinish in your code then every kernel invocation using
clEnqueueBarrierWithWaitList will have no impact on your code, because
clFinish will wait for all the previously queued commands to complete. You can
use clEnqueueBarrierWithWaitList when the queue is an out-of-order queue.
Consider the following sequence of OpenCL function calls:

clEnqueueNDRangeKernel(queue, pre_compute_kernel, ***);
clEnqueueNDRangeKernel(queue, compute_kernel, ***);

Here the pre_compute_kernel must be completed first before the compute_kernel
task is run. How would you synchronize this scenario when your queue is an out-of-
order queue? You will think of the following quick solution:

clEnqueueNDRangeKernel(queue, pre_compute_kernel, ***);
clFinish(queue);
clEnqueueNDRangeKernel(queue, compute_kernel, ***);

Chapter 6

[145]

But the moment you write clFinish in your code it will result in the host execution
to block till all the previously issued commands complete execution. You can avoid
this by using the following function:

clEnqueueNDRangeKernel(queue, pre_compute_kernel, ***);
clEnqueueBarrierWithWaitList (queue, ***);
clEnqueueNDRangeKernel(queue, compute_kernel, ***);

This will return the control back to the host and the host can continue with processing
other useful code rather than waiting for the clFinish function to complete.

Event-based or fine-grained
synchronization
OpenCL has an event-based synchronization mechanism. These event handles
identify the unique commands in the queue and can be used for synchronizing
algorithm execution. It can also be used for profiling the queued task. We will
discuss more about profiling in a later section. OpenCL event is an object which
holds the state of the task. An OpenCL event state is defined as one of the following
stages based on the life time of the task:

• CL_QUEUED: The command is enqueued into the command_queue queue, but
it has not yet been submitted to the device. This state is the first state for all
events except for the user events.

• CL_SUBMITTED: This state means that the host has submitted this command to
the host. All user events reach this state before running.

• CL_RUNNING: When the command is dequeued on the device the event
reaches the state of CL_RUNNING. The device has started to execute this
command. If this event is waiting for other events to complete then all those
events should reach the state of CL_COMPLETE, then only this event shall
reach a state of CL_RUNNING.

• CL_COMPLETE: This state is reached when the command has successfully
completed its execution on the device.

If the application does not need to monitor the commands execution status and wants
to ignore all other events, then the clEnqueue* functions use the following code:

clEnqueue*(***, cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event);
clEnqueue*(***, 0, NULL, NULL);

Events and Synchronization

[146]

The application developer can set the num_events_in_wait_list queue to 0,
event_wait_list and event to NULL. This call will not generate any event for the
application to monitor. Note that num_events_in_wait_list must be 0 if event_
wait_list is NULL.

In OpenCL 1.1 there was an API as follows:

cl_int clEnqueueBarrier (cl_command_queue command_queue)

This API was replaced with clEnqueueBarrierWithWaitList discussed earlier.
You can perform the same operation as clEnqueueBarrier by passing parameters
as discussed earlier.

Another function, clEnqueueMarkerWithWaitList helps in synchronizing. Unlike
the clEnqueueBarrierWithWaitList function, it does not stop the execution of
subsequent tasks enqueued in the command queue. It can be used to catch the status
of execution of all the commands enqueued before this.

cl_int
clEnqueueMarkerWithWaitList (cl_command_queue command_queue,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

Let's take an example and explain an use case of this function as follows:

cl_event write_event[2];
clEnqueueWriteBuffer(queue, clmem_A, ***, &write_event[0]);
clEnqueueWriteBuffer(queue, clmem_B, ***, &write_event[1]);
clEnqueueMarkerWithWaitList (queue, 2, write_event, &marker);
clEnqueueNDRangeKernel(queue, kernel_1, ***);
clWaitForEvents(1, &marker);
clEnqueueNDRangeKernel(queue, kernel_2, ***);

The kernel_2 instance's execution is dependent on writing of two buffers
clmem_A and clmem_B to the device. During the data transfer step, which might
involve the data transfer through a DMA engine, the OpenCL device is not
doing any computational work. So you can spawn another independent kernel
kernel_1, so that both the data transfer and kernel execution can take place
simultaneously. After the launch of kernel_1 the developer can wait on the
marker event to reach CL_COMPLETE. Once completed only then it can go ahead
and spawn the second kernel, kernel_2. This could not have been achieved using
clEnqueueBarrierWithWaitList, since it would not have launched any task after
the barrier in the preceding highlighted code.

Chapter 6

[147]

The clEnqueueMarkerWithWaitList function can also be used to simulate
clEnqueueMarker, which is deprecated in OpenCL 1.2, by passing 0 to num_events_
in_wait_list and NULL to event_wait_list and event. A marker command
is enqueued on to the command_queue queue. This marker command shall wait
for all events in event_wait_list to complete before it sets the state of event to
CL_COMPLETE. If event_wait_list is NULL then all the events prior to itself will be
waiting for completion. Both the functions clEnqueueMarkerWithWaitList and
clEnqueueBarrierWithWaitList are OpenCL runtime mechanisms, which can be
used to track the task queuing in an out-of-order queue. In an in-order queue these
may not be that important.

Barrier and Marker functions are asynchronous in nature, but the same operations
can be performed using another function called clWaitForEvents. This function is
synchronous in nature.

The code for this function is as follows:

cl_int clWaitForEvents (cl_uint num_events,
 const cl_event *event_list);

This function waits on the host thread for commands identified by event objects in
event_list to complete. The num_events object is the number of events specified
in event_list. A command is considered complete if its execution status is CL_
COMPLETE. The events specified in event_list act as synchronization points.

Getting information about cl_event
Let's understand the cl_event object in more detail. Every object in OpenCL has a
mechanism to get information about itself. A user can query its associated context, its
command queue, its status of execution or the type of the command it is associated
with. Similar to clGetContextInfo, clGetDevicenfo, and so on. The function is
defined as follows:

cl_int clGetEventInfo (cl_event event,
 cl_event_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret);

Events and Synchronization

[148]

This function returns the information as requested in param_name for the event
object. The following bullet list describes the objects used in the preceding code:

• event: It specifies the cl_event object being queried.
• param_name: It specifies the information to query and is of type cl_event_

info. The following table lists out the different enumerations of cl_event_
info, which can be queried and returned in param_value.

The param_value, param_value_size, and param_value_size_ret objects have the
same meaning as for any clGet*Info function.

Let's take an example wherein you want to do a busy wait on an event to complete,
as shown in the following code:

cl_event x_event;
cl_int x_event_status;
/*... Task created here and associated with x_event...*/
while (clGetEventInfo(x_event, CL_EVENT_COMMAND_EXECUTION_STATUS,
 sizeof(int), &x_event_status, NULL) != CL_COMPLETE)
{
 // spin here for fast completion detection.
}

The following table shows the different cl_event_info parameter names, which can
be queried using clGetEventInfo:

cl_event_info Description
CL_EVENT_COMMAND_
QUEUE

Returns the command-queue associated with the
event and is of type cl_command_queue.

CL_EVENT_CONTEXT Returns the OpenCL context associated with event
and is of type cl_context.

CL_EVENT_COMMAND_TYPE Returns the cl_command_type value type for the
command associated with event, and is of type
cl_command_type. The value returned in param_
value can be one of the list of OpenCL enqueue
commands.

CL_EVENT_COMMAND_
EXECUTION_STATUS

The event status is returned. It can be one of
CL_SUBMITTED, CL_RUNNING, CL_QUEUED, or
CL_COMPLETED. This is of type cl_int. Note that
an error code which is a negative integer can also
be returned. This may be because of an erroneous
execution or abnormal termination of the command.

CL_EVENT_REFERENCE_
COUNT

Return the event reference count.

Chapter 6

[149]

The type of OpenCL commands associated with the CL_EVENT_COMMAND_TYPE object
is the enumeration of cl_command_type given as follows:

• CL_COMMAND_NDRANGE_KERNEL

• CL_COMMAND_TASK

• CL_COMMAND_NATIVE_KERNEL

• CL_COMMAND_READ_BUFFER

• CL_COMMAND_WRITE_BUFFER

• CL_COMMAND_COPY_BUFFER

• CL_COMMAND_READ_IMAGE

• CL_COMMAND_WRITE_IMAGE

• CL_COMMAND_COPY_IMAGE

• CL_COMMAND_COPY_BUFFER_TO_IMAGE

• CL_COMMAND_COPY_IMAGE_TO_BUFFER

• CL_COMMAND_MAP_BUFFER

• CL_COMMAND_MAP_IMAGE

• CL_COMMAND_UNMAP_MEM_OBJECT

• CL_COMMAND_MARKER

• CL_COMMAND_ACQUIRE_GL_OBJECTS

• CL_COMMAND_RELEASE_GL_OBJECTS

• CL_COMMAND_READ_BUFFER_RECT

• CL_COMMAND_WRITE_BUFFER_RECT

• CL_COMMAND_COPY_BUFFER_RECT

• CL_COMMAND_USER

• CL_COMMAND_BARRIER

• CL_COMMAND_MIGRATE_MEM_OBJECTS

• CL_COMMAND_FILL_BUFFER

• CL_COMMAND_FILL_IMAGE

The CL_COMMAND_USER command is an user created event. Till now what we had
discussed is the OpenCL generated event handle. In the next section we will take
a look at how to create user events.

Events and Synchronization

[150]

Like every other OpenCL objects, cl_event is also an object and needs to be
explicitly freed. An OpenCL object can be released or retained. Every OpenCL
object is associated with a reference count. This event reference count can be
retrieved for the event objects by calling the clGetEventInfo function with
CL_EVENT_REFERENCE_COUNT as the param_name. The clRetainEvent function
increments the event reference count.

cl_int clRetainEvent (cl_event event)

Similarly the following function decrements the event reference count and allows
for the event object to be deleted. Once the reference count decrements to zero the
event object is deleted:

cl_int clReleaseEvent (cl_event event)

User-created events
All the events which we have discussed till now are all command queue created
events. Applications may want to create user defined events, and use it to track the
progress of different workloads given to different devices in an OpenCL context.
The function for performing the same is as follows:

cl_event clCreateUserEvent (cl_context context,
 cl_int *errcode_ret)

The preceding function creates an user event object. Note that the user event created
is per context. This means that each device in a context can wait on a user event to
complete before the device command queue can execute next task. User-created
events are useful for an application developer, in such a way that the developer
can wait on this event in-order to reach a point of computation in his algorithm. An
OpenCL algorithm may consist of many kernel tasks and data transfer operations.
All user-created events reach a state of CL_SUBMIITTED first. They do not reach
a state of CL_QUEUED since no task is queued to a command_queue queue. The
clCreateUserEvent function sets errcode_ret to CL_SUCCESS if the user event
object is created successfully.

How can one change the status of the user created event? OpenCL provides the
clSetUserEventStatus function for this purpose, which is given as follows:

cl_int clSetUserEventStatus (cl_event event,
 cl_int execution_status)

Chapter 6

[151]

This function sets the state of a user event object to either of CL_QUEUED, CL_
SUBMITTED, CL_RUNNING, or CL_COMPLETE. An OpenCL application developer must
ensure that the events in event_wait_list argument of clEnqueue*** must reach
a state of CL_COMPLETE. If any event is a user event then the application developer
should set the state of that event to CL_COMPLETE. Have a look at the following
example, which is adapted from the OpenCL specification and shows what is the
undefined behavior:

user_event = clCreateUserEvent(context, NULL);
clEnqueueWriteBuffer(queue, buf1, CL_FALSE, ***,
 1, &user_event, NULL);
clEnqueueWriteBuffer(queue, buf2, CL_FALSE, ***);
clReleaseMemObject(buf2);
clSetUserEventStatus(user_event, CL_COMPLETE);

Consider that the queue is an in-order queue, that is the second write will occur
only after the first one is completed. The first write is enqueued and is waiting on
the user_event to complete. The second write also gets enqueued. Immediately
after that the clReleaseMemObject function will release the OpenCL buffer object.
And finally the user_event is set to CL_COMPLETE. This will trigger the first write to
complete, and then when the second write starts its execution, but the buffer object
was already released. This will cause an undefined behavior.

Event profiling
Profiling is an important tool, which must be used for tuning any high performance
application. OpenCL provides this mechanism by making the cl_event objects
to hold the timing information. This timing information can be captured using
the clGetEventProfilingInfo function. The command_queue queue should be
created with CL_QUEUE_PROFILING_ENABLE flag set as properties argument in
clCreateCommandQueue.

If the queue is enabled for profiling then the following function returns profiling
information for the enqueued task associated with the event object:

cl_int clGetEventProfilingInfo (cl_event event,
 cl_profiling_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

Events and Synchronization

[152]

All the timestamps CL_PROFILING_COMMAND_[QUEUED|SUBMIT|START|END] can be
obtained using this function. The returned value is a 64 bit cl_ulong value, which
specifies the device time counter in nanoseconds. You can determine the time of when
the command got enqueued|submitted|started|ends in a command queue by the
host. The following code snippet calculates the start and end time of an OpenCL event:

double get_event_exec_time(cl_event event)
{
 cl_ulong start_time, end_time;
 /*Get start device counter for the event*/
 clGetEventProfilingInfo (event,
 CL_PROFILING_COMMAND_START,
 sizeof(cl_ulong),
 &start_time,
 NULL);
 /*Get end device counter for the event*/
 clGetEventProfilingInfo (event,
 CL_PROFILING_COMMAND_END,
 sizeof(cl_ulong),
 &end_time,
 NULL);
 /*Convert the counter values to milli seconds*/
 double total_time = (end_time - start_time) * 1e-6;
 return total_time;
}

The counter values are returned in a cl_ulong variable. The resolution of the counter
values are in nanoseconds. We multiply it with 1e-6 to get the time in milliseconds.

Have a look at the example code profiling_saxpy given with the code distribution.
In this example code we will modify the saxpy example to get the timing
information of each of the tasks enqueued on the device.

Memory fences
OpenCL C specification provides for runtime barriers in a work item and across a
single work group. Barriers may only synchronize threads in the same workgroup.
There is no way to synchronize between different work groups. For synchronizing
outside of the work group the kernel should complete its execution. There are two
types of memory fences:

Chapter 6

[153]

• CLK_LOCAL_MEM_FENCE: This ensures correct ordering of operations on local
memory. It is used as follows:
barrier(CLK_LOCAL_MEM_FENCE);

The barrier function will either flush any variables stored in local memory or
queue a memory fence to ensure correct ordering of memory operations to
local memory.

• CLK_GLOBAL_MEM_FENCE: This ensures correct ordering of operations on
global memory. It is used as follows:

barrier(CLK_GLOBAL_MEM_FENCE);

To help you understand, in short you should use CLK_LOCAL_MEM_FENCE when
reading and writing to the __local memory space, and CLK_GLOBAL_MEM_FENCE
when reading and writing to the __global memory space.

Sometimes both can be used together as shown in the following code. This will help
in debugging, or the algorithm uses both the global and local memory:

barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);

Summary
In this chapter we have learned about the various synchronization models,
which can be used by an OpenCL programmer. We discussed everything
about the OpenCL cl_event objects. These events can be clEnqueue* generated
or user-created events. These synchronization models may be fine-grained
or coarse-grained. An OpenCL developer can make use of these in his application.

In previous chapters we have seen all the OpenCL objects, and its creation and
deletion. We discussed about the host side objects in the form of contexts, queues,
programs, kernels, buffers, and events. In the next chapter we will see the device
side kernel code, and the OpenCL C language specification in detail.

OpenCL C Programming
To support cross platform compatibility across a large combination of OpenCL
devices, every OpenCL device should be compliant to a standard. OpenCL C
language specification is based out of the C99 standard (ISO/IEC 9899:1999). Besides
this there are certain restrictions, which are applicable to all the OpenCL C kernels.
A compliant C kernel code is compiled by the OpenCL runtime compiler using the
clBuildProgram function. In this chapter we will discuss the specifications and
restrictions for writing an OpenCL compliant C kernel code. The following bullet
list states the topics which will be discussed in this chapter:

• Built-in data types
• Conversions and type casting
• Address space qualifiers
• Function qualifiers
• Built-in functions

Built-in data types
OpenCL specification provides its own set of data types, whether vector or scalar.
This is important since it will enable the kernel code to be portable across various
OpenCL devices and different device compilers. In the following sections we will
discuss the different data types, which are defined in the OpenCL specification.

OpenCL C Programming

[156]

Basic data types and vector types
OpenCL C standard categorizes a list of data types referred to as "basic data types".
This is tabulated in the following table. Associated with each basic data type is
a vector data type, which can be used by a C programmer. Most of the OpenCL
devices do support Instruction Set Architecture (ISA), which take inputs as vector
data types. For example, the AMD FMA4 ISA extension supports Fused Multiply
Add (FMA) operation on 256 bit vector data. So if these vector data types are used
while writing code it is more likely that the vector data type are processed by codes,
which uses vector instructions at runtime and is converted to a vector instruction
binary at runtime. The basic data types have an associated application data type,
which a programmer can use. The following table describes the various basic and
vector data types, which can be used within the OpenCL C kernel code and there
corresponding application data types.

The following table depicts the Basic and vector data types the contents of the first,
column are referred to as the basic data type in this chapter. We exclude half data
type for discussion in the subsequent sections:

Basic data types Application data
types

Vector data types Application vector
data types

bool n/a n/a n/a

char cl_char charn cl_charn

unsigned char,
uchar

cl_uchar ucharn cl_ucharn

short cl_short shortn cl_shortn

unsigned
short, ushort

cl_ushort ushortn cl_ushortn

int cl_int intn cl_intn

unsigned int,
uint

cl_uint uintn cl_uintn

long cl_long longn cl_longn

unsigned long,
ulong

cl_ulong ulongn cl_ulongn

float cl_float floatn cl_floatn

double cl_double doublen cl_doublen

half* cl_half halfn cl_halfn

Chapter 7

[157]

Let's explain the difference between the application data type (column 2 and 4)
and the OpenCL C data type (column 1 and 3) with an example. The following is a
sample OpenCL C kernel code:

__kernel void opencl_kernel(int i_value, float f_value)
{
…
}

The application may want to launch the opencl_kernel as shown above.
For this the application code will pass the kernel arguments as follows:

cl_int i_value;
cl_float f_value;
/*….Create the opencl_kernel for the OpenCL kernel showed above….*/
clSetKernelArg(opencl_kernel, 0, sizeof(cl_int), (void *) &i_value);
clSetKernelArg(opencl_kernel, 0, sizeof(cl_float), (void *) &f_value);

OpenCL application developers should use the cl_* data types as it will make the
code portable across different host compilers, and also make sure that the size of these
data types are same as the application data type across different OpenCL devices.

For all vector data types the supported value for n are 2, 3, 4, 8, and 16. They form a
vector of n element data type. The built-in vector data types have a corresponding
vector data type for an application programmer to use. As far as possible the
application programmer should use these data types. Note that size_t does not
have any vector data type. This is because size_t is a data type, which is dependent
on the bit depth of the compiled target architecture. For example for 32 bit
applications sizeof(size_t) is 4 bytes and for 64 bit applications it is 8 bytes.

The half data type
All floating point data types like float and double are IEEE 754-2008 compliant. The
half data type must also be compliant to this standard data representation. This data
type is a floating point value of length 16 bits, comprising of 1 sign bit, 5 exponent
bits with values ranging from: 15 to 16, and 10 mantissa bits, with exponent bias
constant as 15. They are all similar in definition of a 32 bit single precision floating
point values with 1 sign bit, 8 exponent bits, and 23 mantissa bits with exponent bias
constant as 127. The application programmer is responsible to choose for choosing
the appropriate data type to represent dynamic range of the values taken by the
data object. half is not supported as computing data type as a float data type that
means there is no dedicated hardware to compute the half precision data types.
Though some vendors may provide this feature, as of OpenCL 1.2 half data type
can only be used to declare a pointer to a buffer of half values.

OpenCL C Programming

[158]

The following half data type diagram shows the size of the data type and some
values represented by half precision data types:

1 5 10

Sign bit Exponent bits Mantissa bits

Half Precision data type

Some examples of half precision data types:

• 0 01111 0000000000 = 1.0

• 0 10000 1000000000 = 2.0 + 2-1 = 2.5

• 1 10001 1000000001 = -4.0 + 2-1 + 2-10 = -4.0 - 0.5 -
0.0009765625 = -4.500976525

Other data types
Besides the data types discussed till now there are some other data types, which
depend on the value of CL_DEVICE_ADDRESS_BITS. This value can be obtained using
the OpenCL function, clGetDeviceInfo and passing the param_name value as CL_
DEVICE_ADDRESS_BITS. Based on the value of CL_DEVICE_ADDRESS_BITS returned,
if its 32 or 64, the size of the following data types will be respectively 32 and 64 bits
in size. This is similar to the size of size_t being 32 bits in a 32 bit application, and
64 bits in a 64 bit application. The following table describes these special data types:

Data type Description
size_t This is an unsigned integer type and is the return type

of the sizeof() operator.
ptrdiff_t This is a signed integer type which is a result of

subtracting two pointers.
intptr_t and uintptr_t A signed and unsigned integer type which can be used

to convert any pointer to this type and then can be
converted back to a void pointer.

Another data type void comprises an empty set of value.

Chapter 7

[159]

Reserved data types
There is a list of data types which are reserved for OpenCL implementations, which
may be used by OpenCL vendors as extensions or may be provided by the OpenCL
specifications in the future. These reserved data types are listed in the OpenCL 1.2
specification in table 6.4 section 6.1.4:

Example in the table given in section built-in data types all other values of n are reserved
other than 2,3,4,8, and 16; which are already defined in the OpenCL specification.

Alignment of data types
Every built-in and vector data type in OpenCL as given in table of section built-in
data types are aligned to the size of the data type itself. Example a float variable
will be aligned on a 4 byte boundary, a float4 variable will be aligned to a 16 byte
boundary. In the case of data types which are not the size equal to a power of 2, then
such data types must be aligned to a size of the next power of 2 bytes. An example
is a float3 or int3 vector data type. 3 component vector data types shall be aligned
to 4* sizeof (component) bytes. Let's take an example of 4*sizeof (component)
boundary and explain the data type alignment.

The OpenCL compiler while compiling the kernel code is responsible for aligning
the local data items to the appropriate alignment as required by the data type. Let us
consider the following example:

typedef struct
{
 cl_float8 x;
 cl_float3 y;
} OpenCLStruct;

Here the size of OpenCLStruct at the host compiler side is 48 or 64 bytes depending
upon the compiler options you use. But the size of OpenCLStruct at the OpenCL
device compiler will be 64 bytes. Assume that you create an array of elements with
type as OpenCLStruct. The first element is aligned to their respective sizes that is,
float8 is aligned to 32 bytes boundary, and float3 is aligned to 16 bytes boundary
(3 component vector data type will be aligned to a 4 * sizeof (component)
boundary). So the OpenCLStruct will be aligned to 48 byte boundary. Now when
we access the second element in the array float8 parameter will not be aligned to
32 byte boundary. So for compliance the OpenCL device compiler must add a filler
of 16 bytes after float3 element which is also of 16 bytes. This makes the size of
OpenCLStruct as 64 bytes. So subsequent data access of float8 variables will be 32
byte aligned. Here the OpenCL device compiler refers to the device compiler when
we call the clBuildProgram function to build a cl_program object.

OpenCL C Programming

[160]

Now the question will arise if you create a buffer at the host side, and then try to
pass on the buffer to the device using the cl_mem object, how will the difference be
handled? Take a look at the following code snippet:

#if defined(_MSC_VER)
 typedef struct
 {
 cl_float8 __declspec(align(32)) y;
 cl_float3 __declspec(align(16)) x;
 } OpenCLStruct;
#elif defined(__GNUC__)
 typedef struct
 {
 cl_float8 __attribute__ (aligned(32)) y;
 cl_float3 __attribute__ (aligned(16)) x;
 } OpenCLStruct;
#else
 #warning align data here
 typedef struct
 {
 float8 x; //Needs 32 byte alignment
 float3 y; //Needs 16 byte alignment
 } OpenCLStruct;
#endif

The application programmer is responsible for aligning the respective data types
to their respective boundaries. The code snippet shows for both the GCC and MS
Visual Studio compilers. Now the reads and writes to the OpenCLStruct function
buffer will result in the same behavior and data alignment for the host compiler and
the OpenCL device compiler. If the kernel argument is a pointer argument then the
OpenCL compiler will assume that the pointer is appropriately aligned as required
by the data type.

Vector data types
One can create vectors using vector literals. Vector literals can be formed using a
list of scalars or vectors or a mixture of a scalar and a vector. The following is an
example of creating a vector data type:

int4 i4 = (int4)(1, 2, 3, 4); or
int4 i4 = {1, 2, 3, 4};

Chapter 7

[161]

The operands are assigned vector lane wise to their respective positions in the
resultant vector. The vector lanes are similar to contiguous array elements as they
appear in memory. The elements are assigned in lane wise in the same order as they
appear. An example of this is as follows:

float f = 4.0f;
float3 f3 = (float3)(1.0f, 2.0f, 3.0f);
float4 f4 = (float4)(f3, f);
//f4.x = 1.0f,
//f4.y = 2.0f,
//f4.z = 3.0f,
//f4.w = 4.0f

In the preceding code which is highlighted, f3 forms the first three entries for the
float4 f4 variable, and finally followed by a scalar f value.

If the literal is of the form of a single scalar then the scalar value is replicated across
all the lanes in a vector. All vector components are stored in a contiguous array.

float4

float2

float

float3

Vector

Scalar

float4= (float2, float2)
float4= (float3, float)

x s0

Vector

Vector

y s1 z s2 w s3

x s0 y s1

x s0 y s1 z s2

Vector assignments which are not allowed are as follows:

float4 f = (float4)(2.0f, 1.0f); // compiler error

OpenCL C Programming

[162]

Vector components
The components of a vector of size 2, 3, and 4 can be accessed using, [x,y], [x,y,z],
and [x,y,z,w] respectively. That is the first element of a four component vector v
can be accessed using v.x, the second element using v.y, the third element using
v.z, and the fourth element using v.w. Accessing beyond the vector size results in
a compile time error for the OpenCL C runtime compiler. Example in a 2 component
vector v you cannot access v.z. OpenCL provides mechanisms to select multiple
components. You can also select multiple components shown as follows:

float4 pos = (float4)(4.0f, 3.0f, 2.0f, 1.0f);
float4 reverse = pos.wzyx; //reverse = (1.0f, 2.0f, 3.0f, 4.0f)
float4 duplicate = pos.xxyy; //duplicate =
 //(4.0f, 4.0f, 3.0f, 3.0f)

The lanes in vector data types can also be accessed using numeric index to refer
to the appropriate element in the vector. A 16 component vector data type can be
indexed using [s|S]0, [s|S]1, [s|S]2, [s|S]3, [s|S]4, [s|S]5, [s|S]6, [s|S]7,
[s|S]8, [s|S]9, [s|S][a|A], [s|S][b|B], [s|S][c|C], [s|S][d|D], [s|S][e|E]
and, [s|S][f|F]. For example the 13th element in the 16 component vector v can
be accessed using v.sc, v.Sc, v.Sc, or v.SC.

Vector sub components can be accessed using .lo, .hi, .even, .odd.

The .lo suffix refers to the lower half of the vector.

The .hi suffix refers to the upper half of the vector.

The .even and .odd suffixes can be used for interleaving the data. The .even suffix
refers to the even elements in the vector. The .odd suffix refers to the odd elements
of the vector lane.

It is illegal to take the address of the vector sub components.

• Allowed component group notations:
float4 pos = (float4)(4.0f, 3.0f, 2.0f, 1.0f);
pos.yw = (float2)(5.0f, 6.0f);// pos = (4.0f, 5.0f, 2.0f, 6.0f)
pos.wx = (float2)(8.0f, 9.0f);// pos = (9.0f, 5.0f, 2.0f, 8.0f)
pos.xyz = (float3)(5.0f, 6.0f, 9.0f);
 // pos = (5.0f, 6.0f, 9.0f, 8.0f)
float4 a, b, c, d;
float16 x;
x = (float16)(a, b, c, d);
x = (float16)(a.yyzz, b.xzwy, c.xyz, d.xyz, a.yzw);
float4 f, a;
a.xyzw = f.s0123; // valid

Chapter 7

[163]

• Illegal component group notations:

float4 pos = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
pos.xx = (float2)(3.0f, 4.0f);// illegal - 'x' used twice
pos.xy = (float4)(1.0f, 2.0f, 3.0f, 4.0f); // float4 cannot be
assigned to 2 components
a = f.x12w; // illegal use of numeric indices with .xyzw
// illegal - component a.xxxxxxx is not a valid vector type
x = (float16)(a.xxxxxxx, b.xyz, c.xyz, d.xyz);

float *f = &vf.x; // is illegal

Aliasing rules
OpenCL C standard is based on the strict aliasing rules of the C99 standard. What is
meant by strict aliasing rule? Consider the following example:

cl_int data;
cl_int *pToIntData = &data;
cl_short *pToShortData = (cl_short *)pToIntData;
//Now one can access the sub data as follows
cl_short hi = pToShortData[1];
cl_short lo = pToShortData[0];

In the preceding example pToShortData is an alias to pToIntData. According to C99
standard an alias cannot be created for the type other than the original. Though the
preceding code will compile just fine and may result in a correct behavior since you
are only reading from the aliased pointer, but when you write to an aliased pointer,
compiler will result in a "strict aliasing rule broken" warning and will result in an
undefined behavior. The GCC compiler will throw a warning at higher optimization
levels. Similarly aliasing a vector type pointer to a different data type pointer is
illegal, though it may be correct since built-in vector types are similar to a contiguous
array type.

Conversions and type casts
All programming languages support converting a numerical data type to another
numerical data type. There is also a need to reinterpret a data type in some other
form, for example, if one wants to extract only the exponent component from a
floating point data type, how can one do that? We will discuss the implicit and
explicit type conversions, followed by reinterpreting the data types.

OpenCL C Programming

[164]

Implicit conversion
Implicit conversion refers to the conversion of a data in one type to another type,
which is equivalent to the original data type. This conversion is allowed for basic
data types, which is described in the table earlier. For example, the integer value
1 will be converted to an equivalent floating point value 1.0f. The corresponding
hex representation is 0x3F800000. When you convert a float value to an int, the
compiler will usually throw a warning. To avoid that you explicitly cast the scalar
data types. Example:

float f = 2.0f;
int i = (int) f;

Explicit cast of vector data types is not allowed. But the casting of basic data types
from scalar to vector data type is allowed:

 int4 i;
 uint4 u = (uint4) i; // not allowed

Note that the implicit conversion of the corresponding vector data types is not
allowed.

Type casting will result in converting the input data to the destination data type.
The "round to zero" rounding modes will be used for converting to built-in
integer vector types. The default rounding mode round-to-nearest will be used
for conversions to floating-point vector types. This is in accordance with IEEE-754
floating point standard. When casting a bool to a vector integer data type, if the
bool value is true then all the bits are set to 1. If false they are all cleared to 0.

Explicit conversion
Explicit conversions are allowed in OpenCL using the intrinsics of the form:

 convert_destType(sourceType)

This conversion is possible between any basic data type and their corresponding
vector types described in basic data types table earlier in this chapter except for
bool and half.

Chapter 7

[165]

Example for the same is as follows:

uchar4 u4 = {'0', 'b', 'c', 'd'};
//u4.x = 48, u4.y = 98, u4.z = 99, u4.w = 100 – ASCII values
int4 i4 = convert_int4(u);
i4 = i4 + (int4)200;
//i4.x = 248, i4.y = 298, i4.z = 299, i4.w = 300
u4 = convert_char4_sat(i4);
//u4.x = 248, u4.y = 255, u4.z = 255, u4.w = 255

Here 4 unsigned char vector uchar4 u4 is converted to 4 signed integer vector int4.
These u4 vector values are converted to integer vector values and stored in i4 using
the OpenCL built-in convert_int4. A upper case adding 200 to each element in the
vector i4, and then converting it back to unsigned char vector using the convert_
uchar4_sat function, will result in the saturation of the values to the maximum
possible value which the destination type can take.

Rounding modes can also be specified for the input operand. There are 4 different
rounding modes, rte (Round to nearest even), rtp (Round toward positive infinity),
rtz (Round toward zero), and rtn (Round toward negative infinity). If the rounding
mode is not specified the default rounding mode of rtz is considered when the
destination is an integer. For floating point destination types the rounding mode
is rte—Round to nearest even. The convert* function prototype when converting
to a destination type is as follows:

Scalar convert function:

destType convert_destType[_sat][roundingMode] (sourceType val);

Vector convert function:

destTypen convert_destTypen[_sat][roundingMode] (sourceTypen
 valn);

In the case of vector data types the destination and source operands must have
the same number of elements. If the source and destination types are same then
the conversion will have no effect. The saturation to floating point formats may
not be used for example, _sat modifier is not used when converting to floating
point formats.

OpenCL C Programming

[166]

Some examples of explicit conversions:

Saturation conversions when converting from signed integer to unsigned
integer format:

First example is as follows:

int4 i4;
uint4 u = convert_uint4_sat(i4);
//Here the negative values are clamped to 0

Second example is as follows:

float4 f;
// values are implementation defined for
// f > INT_MAX, f < INT_MIN or NaN
int4 i = convert_int4(f);
// values > INT_MAX clamp to INT_MAX, values < INT_MIN clamp
// to INT_MIN. NaN should produce 0.
// The _rtz rounding mode is used to produce the integer values.
int4 i2 = convert_int4_sat(f);
// similar to convert_int4, except that floating-point values
// are rounded to the nearest integer instead of truncated
int4 i3 = convert_int4_rte(f);
// similar to convert_int4_sat, except that floating-point values
// are rounded to the nearest integer instead of truncated
int4 i4 = convert_int4_sat_rte(f);

Third example is as follows:

int4 i;
// convert ints to floats using the default rounding mode.
float4 f = convert_float4(i);
// convert ints to floats. integer values that cannot
// be exactly represented as floats should round up to the
// next representable float.
float4 f = convert_float4_rtp(i);

The arithmetic conversions occur based on the rank of the arithmetic type. A
compile-time error will occur if any type with a higher rank is being converted
to the type of the lower rank element. Following given are the rules of rank in
the order of highest to lowest rank:

Chapter 7

[167]

• All vector types shall be considered to have higher conversion ranks
than scalars.

• The rank of a floating-point type is greater than the rank of another floating
point type, if the first floating point type can exactly represent all numeric
values in the second floating point type. (For this purpose, the encoding of
the floating-point value is used, rather than the subset of the encoding usable
by the device.).

• The rank of any floating point type is greater than the rank of any integer
type.

• The rank of an integer type is greater than the rank of an integer type with
less precision.

• The rank of an unsigned integer type is greater than the rank of a signed
integer type with the same precision.

• The rank of the bool type is less than the rank of any other type.
• The rank of an enumerated type shall equal the rank of the compatible

integer type.
• For all types, T1, T2, and T3, if T1 has greater rank than T2, and T2 has greater

rank than T3, then T1 has greater rank than T3.

Let's take an example and discuss the preceding rules:

int a;
short4 b;
short4 c = b + a;

Assuming a and b are initialized, here b is of lower rank than that of a since the
size of short is 2 bytes, and int is of size 4 bytes (point 4 above). Hence this will
be a compile time error and the arithmetic operation specified by b + a cannot be
performed.

float a;
float4 b;
float4 c = b + a;

Here b is of higher rank than that of a since a is a scalar component (point 1 above).
And the rank of destination operand is equal to that of b or higher than a (point 8
above). Hence this operation will work for an OpenCL device compiler.

OpenCL C Programming

[168]

Reinterpreting data types
C programmers need a mechanism to take a look at the contents of the bit
representation of a data type and perform an operation on them. For example a
programmer will need to look at the sign bit, or mantissa bit or the exponent bit
in a floating point representation. One of the mechanisms to achieve this is using
unions is follows:

union{
 float f;
 uint u;
} u;
u.f = 1.0f;
//then u.u will 0x3f800000

Here both uint and float are of size 4 bytes. The OpenCL language allows the use
of union to programmers to access a member of a union object using a member of
a different type.

Pointer aliasing and memcpy are other methods to achieve the same. But pointer
aliasing is not allowed in OpenCL C, and memcpy is not defined in OpenCL C either.

OpenCL C standard provides a mechanism to reinterpret data in another basic
data type by using the following function prototype:

Scalar types:

type = as_type(src_type);

Vector types:

typen = as_typen(src_typen);

The difference between the as_* and convert_* routines is shown in the
following example:

float f = 1.0f;
uint u1 = as_uint(f); // Contains: 0x3f800000
uint u2 = convert_uint(f); // Contains: 0x00000001

The source and destination sizes for as_* routines must be the same. If they differ
then it is an error. When "reinterpreted" from one type to another the usual bit
representation of the source operand is retained. Note in the as_* routines the
source data type is reinterpreted into the destination data type. No conversion
takes place. Refer to the following for the same:

float4 f, g;
int4 is_less = f < g;

Chapter 7

[169]

// Legal. f[i] = f[i] < g[i] ? f[i] : 0.0f
f = as_float4(as_int4(f) & is_less);

In the preceding example the OpenCL C compiler will perform a lane wise "less
than" operation, and the resultant bool will set or clear all the corresponding lane
bits, depending upon the result of the less than operation. The is_less function now
contains a mask for the elements f[i] < g[i].

In the last step f shall contain the elements, which were less than the corresponding
g elements.

Operators
C programming language has a big set of operators, which a programmer can use in
OpenCL C also. Following is the list of operator categories, which OpenCL C allows
for. For more information refer to section 6.3 of OpenCL 1.2 standard specification.

• Arithmetic operators: Arithmetic operators add (+), subtract (-), multiply
(*), and divide (/) operate on built-in integer and floating point scalar, and
vector data types. The remainder or the modulo operator (%) operates on
built-in integer scalar and integer vector data types.

• Arithmetic unary operators: The arithmetic unary operators (+ and -) operate
on built-in scalar and vector types.

• Arithmetic post- and pre-increment and decrement operators (++ and --).
• Relational operators
• Equality operators
• Bitwise operators
• Logical operators
• Logical unary operator
• Ternary selection operator
• Shift operators
• sizeof operator
• comma operator
• indirection (*) operator
• unary address (&) operator
• Assignment operator

OpenCL C Programming

[170]

Operation on half data type
Except for the sizeof operator, the half data type cannot be used with any of the
operators mentioned in the preceding section. This means that doing the following
are invalid operations on the half data type:

half a;
half b[100];
half *p;
a = *p;

Now the usual question would arise how can one do operations on half
data types?

For loading and storing half data types vload_halfn and vload_storen should
be used. The prototype of vload_halfn is as follows:

float vload_half (size_t offset, const __global half *p)

The vload_half function reads a half value from p + offset location and returns
a float value. The half value is converted to a float value, and the float value is
returned. Performance wise, half cannot be worse than float. But there are many
devices which do not support half computation, but the half values are up scaled
to a floating point value and computation can be performed on them. There may be
a slight overhead but all this can be hardware specific but you can make up that loss
by having a far superior transfer time of a half data type buffer. Hence half data
types cannot be passed as kernel arguments.

Address space qualifiers
There are four different address space qualifiers supported by OpenCL. The address
space qualifier is used in variable declarations to specify the region of memory
to allocate the declared object. The following is the list of address qualifiers:

• __global or global

• __local or local

• __constant or constant

• __private or private

Chapter 7

[171]

A data type object in a kernel program is allocated space in the specified address
space qualifier. If no specifier is given then a generic address space is considered.
For example all kernel function arguments and local variables will take a __private
if no address space qualifier is specified. Image memory objects arguments of type
image2d_t, image3d_t, image2d_array_t, image1d_t, image1d_buffer_t, and
image1d_array_t refer to the __global address space. Address space qualifiers for
return types are allowed only for pointer types.

The OpenCL memory model specifies the different memory regions. Each of these
are categorized into the address space qualifier, discussed as follows:

Compute Device

Compute unit 1

Private
memory 1

Private
memory M

Compute unit N

PE 1 PE M

Local
memory 1

Local
memory N

Global/Constant Memory Data Cache

Global memory

Constant Memory

...

Compute Device Memory

PE 1 PE M

Private
memory 1

Private
memory M

... ...

__global/global address space
The __global or global address space name is used to refer to memory objects
(buffer or image objects) allocated from the global memory pool. They can be either
pointers to scalar buffers or pointers to vector buffers. All the memory usually gets
allocated at the host side, and is passed to the kernel as a cl_mem object created using
the clCreateBuffer function. For image objects the argument is of type image2d_t,
image3d_t, image2d_array_t, image1d_t, image1d_buffer_t, and image1d_
array_t. These by default refer to the __global address space qualifier.

The const qualifier can also be added to the __global qualifier to specify that the
memory object is read only.

OpenCL C Programming

[172]

__local/local address space
This memory address space specifier is allocated space in local memory of the
computing device. It can be shared across all the work items in a work group.
The variables or memory objects created with __local address space qualifier,
have life time only till the execution of the work group executing the kernel. The
clGetDeviceInfo function can be used with param_name as CL_DEVICE_LOCAL_
MEM_SIZE to determine the total local memory size offered by every compute unit.

__constant/constant address space
The __constant or constant address space name is used to describe variables
allocated in global memory and which are accessed inside a kernel(s) as read-only
variables and can be accessed by all the global work item of the kernels during its
execution. Pointers to __constant variable are allowed inside the kernel and can be
passed as an argument to the kernel. String literals are allocated __constant address
space. All program scope variables get defined in the __constant address space.
This means that these variables need to be initialized and must be resolved during
compile time. Any write operation to a __constant variable should be a compile
time error.

Now consider a following example where in you do filtering operations on the input
buffer filter_in, by multiplying with the corresponding elements in the filter
buffer. Here the buffer filter is accessed by every work item, and the filter variable
is always a constant and is only read from and never written into. From a performance
perspective it would be good to specify the filter argument with a __constant
qualifier rather than global. Some hardware devices have a dedicated constant global
buffer, which allows for fast access to itself. The constant buffers can be passed as a
kernel argument using the clSetKernelArg function, or can also be defined in the
global scope in the corresponding OpenCL kernel code. The OpenCL buffer objects
which are meant to be "read only" inside the kernel, must be created with the CL_
MEM_READ_ONLY flag set. Performance wise it will be advantageous to define the __
constant variable in global program scope in the OpenCL kernel as follows:

__kernel void filterKernel (__constant float4 *filter,
 __constant float4* filter_in,
 __global float4* filter_out)
{
...
//l_tid -> local work item ID
//g_tid -> global work item ID
filter_out[tid] = filter_in[g_tid] * filter[l_id];
...
}

Chapter 7

[173]

__private/private address space
All the kernel arguments which do not specify any qualifier are by default treated
as __private address space qualifiers. Similarly all variables inside non-kernel
and kernel functions are in the __private or private address space.

Restrictions
Pointer arguments to kernel functions must be declared with any one of the address
specifiers __global, __constant, or __local qualifier. By default unless specified
they will be assumed in the __private region. The __constant, __local, or __
global pointers can only be assigned to a pointer declared with the __constant,
__local, or __global qualifiers respectively. Function pointers are not allowed.
The functions with __kernel function attribute cannot have arguments as pointer
to pointer(s).

Image data types, image2d_t, image3d_t, image2d_array_t, image1d_t, image1d_
buffer_t, or image1d_array_t can only be passed as function arguments. Only
global address space qualifiers can be applied on the image. These cannot be used
to declare unions or structs. Image data types cannot be accessed directly, instead
to read the contents one has to use samplers. This is discussed in detail in Samplers
section of Chapter 4, OpenCL Images.

Image access qualifiers
OpenCL specification provides two types of access qualifiers for different types
of image memory objects. They can be either read_only or write_only. In the
following example imageA is read-only image object, and imageB is a write-only
image object:

__kernel void foo (read_only image2d_t imageA,
 write_only image2d_t imageB)

About function qualifiers and attributes, __kernel qualifier declares a function
which is defined explicitly to run on an OpenCL device. A __kernel qualified
function can be invoked inside another kernel function. In such a situation the
kernel function just behaves as another function call. There are optional function
attributes which can be specified for kernel functions.

The __kernel qualified functions cannot return any data type. The return type is
always void for those functions.

OpenCL C Programming

[174]

The keyword __attribute__ allows you to specify the special attributes for enums,
structs, unions, or to the functions or kernels. An attribute specifier can be given
in the form of:

__attribute__ ((attribute-list))

The attribute-list attribute is the list of comma separated attributes which will
be associated with the object.

Let's consider some of the attributes supported by OpenCL C.

Function attributes
__attribute__((vec_type_hint(<type>)))

This attribute is a hint to the compiler, such that when the compiler is looking to auto
vectorization, then it would vectorize around the <type> specified in the attribute.
For example, when the hint <type> is float4 then the complier would decide to
merge work items or possibly even separate one work item. This is an optimization
hint to the compiler.

__attribute__((work_group_size_hint(X, Y, Z)))

This hints to the compiler about the local work group size for the kernel.

__attribute__((reqd_work_group_size(X, Y, Z)))

This specifies the work group size multiple that must be used to run the kernel.

Data type attributes
The two types of data attributes are aligned and packed. They are described as follows:

• aligned attribute: The aligned attribute is useful for getting good read
and write bandwidths. The aligned attribute can be specified to mention
the minimum alignment for the specified data type. Note all basic data types
and vector types are naturally aligned by the complier to the multiple of their
size. In the case of structures shown as follows, 3 shorts are of size 6 bytes.
When you create an array of struct S, then each element is at an aligned
address of 8 bytes.:
struct S { short f[3]; } __attribute__ ((aligned (8)));

All the variables of type struct S are aligned to 8 byte boundary. That
is S[0], S[1] and so all will be at multiples of 8 byte boundaries.

Chapter 7

[175]

• packed attribute: The packed attribute, packs the data types within a struct
or union, such that memory requirements are reduced. The packed attribute
can only be specified to C structures and unions.

Variable attribute
aligned and packed attributes can also be defined for variable declarations. Example:

int x __attribute__ ((aligned (16))) = 0;
struct foo { int x[2] __attribute__ ((aligned (8))); };
__attribute__((aligned(128))) struct A {int i;} a;
//a is 128 byte aligned

endian attribute: Another attribute called endian (endiantype) can also be specified.
The endiantype attribute will be either host or device, if it's host then the variable
is of type host endian, if it's device then the data type has device endian. If no
endian type is specified then the endian type would default to device endian.

The kernel attribute specified in the kernel declaration can be retrieved using the
clGetKernelInfo function using the param_name CL_KERNEL_ATTRIBUTES.

Storage class specifiers
The static and extern storage classes are supported. The auto and register
specifiers are not supported inside the OpenCL kernel.

Built-in functions
In OpenCL C you cannot include the standard header files provided by C99
standard such as, math.h, stdio.h, stdlib.h, errno.h, and so on. OpenCL C
provides a huge set of built in functions, which can be used by the programmer for
programming the OpenCL kernels. Using built-in functions wherever possible may
result in performance enhancement. Also this will make sure the code is portable
across different vendors. We will discuss briefly the group of built-ins and will
leave it to the reader to take a look at section 6.12 of OpenCL specification 1.2.

OpenCL C Programming

[176]

Work item function
While enqueuing a kernel using clEnqueueNDRangeKernel, we specify the global
and local work sizes. To determine these values during the kernel function execution
time or to which index a work item belongs in the NDRange, OpenCL provides some
built-in functions. They are as follows:

Function Description
uint get_work_dim () Returns the number of dimensions

associated with the kernel launch.
size_t get_global_size (uint
dimindx)

Is used to determine the global number
of work items in dimension specified by
dimindx.

size_t get_global_id (uint
dimindx)

Returns the global id of the kernel work
item for the dimension specified by
dimindx.

size_t get_local_size (uint
dimindx)

Is used to determine the local number
of work items in a work group for the
dimension specified by dimindx.

size_t get_local_id (uint
dimindx)

Returns the local id of the kernel work
item in a work group for the dimension
specified by dimindx.

size_t get_num_groups (uint
dimindx)

Gives the number of work-groups that
are executing with this kernel for the
dimension identified by dimindx.

size_t get_group_id (uint
dimindx)

Returns the group ID of the work group
in the dimension dimindx

size_t get_global_offset (uint
dimindx)

Returns the offset values specified in
the global_work_offset argument
during the launch of the kernel using the
clEnqueueNDRangeKernel function.

Synchronization and memory fence functions
OpenCL is used to optimize the performance of data parallel workloads. During
the execution of the kernel, the result of processing of data from a work item will be
needed in some other work item. Most of the highly parallel OpenCL devices run
all the work items in a work group in tandem that is all the work items run the same
program counter instruction at the same time (mostly in NVIDIA® and AMD GPUs).
In such a case how will a programmer synchronize to share data results across work
items? OpenCL C provides the barrier routine to stop the execution of a work item,
till to until all the work items in that work group reach the same execution point.

Chapter 7

[177]

void barrier (cl_mem_fence_flags flags)

The barrier function can be added to ensure all the work items synchronize at this
point. It is a useful function for algorithm developers to optimize their code, using
the local memory buffers. flags which is of type cl_mem_fence_flags can be CLK_
LOCAL_MEM_FENCE—this ensures correct ordering of operations on local memory.
It is used as follows:

barrier(CLK_LOCAL_MEM_FENCE);

The barrier function will either flush any variables stored in local memory or queue a
memory fence to ensure correct ordering of memory operations to local memory.

CLK_GLOBAL_MEM_FENCE—this ensures correct ordering of operations on global
memory. It is used as follows:

barrier(CLK_GLOBAL_MEM_FENCE);

For understanding purposes, in short you should use CLK_LOCAL_MEM_FENCE, when
reading and writing to the __local memory space, and CLK_GLOBAL_MEM_FENCE
when reading and writing to the __global memory space.

Other built-ins
OpenCL 1.2 provides another set of OpenCL built-ins. These can be used by within
any OpenCL kernel. Vector data load and store functions, image read and write
functions, atomic functions, Math, geometric, and relational functions are all
discussed in section 6.12 of OpenCL specification 1.2.

Summary
In this chapter we started our discussion with built-in scalar and vector data types,
there to their conversion and type casting rules. These data types can be used by
the programmer to make his kernel code cross platform and use the underlying
hardware for optimization. We discussed the function attributes, data type attributes,
and some built-in functions. We strongly encourage you to refer to the OpenCL spec
for more details.

In the subsequent chapters we will take up some case studies and learn optimization
techniques. Case studies is the most important part of this book as this will enable
you to get an in depth knowledge of OpenCL. This will also help you to understand
what types of applications can be accelerated using OpenCL.

Basic Optimization
Techniques with Case

Studies
In this chapter we will discuss a few optimization techniques and finally illustrate
some of them using a simple example of matrix multiplication. In a step-by-step
process we combine multiple optimization strategies one by one to get gradual
performance improvement. The main advantages of matrix multiplication over
many other simpler algorithms , is that its easy to understand the data parallel
work load and it demonstrates well the advantage of private memory, local
memory, vectors and the problem of bank conflicts.

We start this chapter with a discussion of various ways to find performance
bottleneck. First we discuss event-based timing information collection using
clWaitForEvent API. Then we mention some available tools for performance
detection. After that we jump into case study, starting from sequential
implementation for CPU. Then gradually describing naive OpenCL implementation
on Graphics Processor Unit (GPU), followed by a series of implementation on GPU
each illustrating some optimization techniques like using coalesced read, using
vector operation, utilizing local memory, using a combination of local memory and
coalesced access, utilizing private memory. Finally, we present some ideas to find the
scope of OpenCL optimization in a sequential code, followed by a list of general tips
on optimization.

Basic Optimization Techniques with Case Studies

[180]

Finding the performance of your
program?
In the ongoing process of optimization of an OpenCL program we need to find
performance bottlenecks at each step so that we can improve on them. Here are
some techniques for this investigation. In a Unix based system the time command
provides user time, system time, and CPU time of a program-execution in detail.
In Windows PowerShell, we use a built-in command called Measure-Command
that gives total running time of a program. This is also similar to the linux time
command. To get the execution time of a function or any part of code in C we can
use either the clock_t clock (void); function or the time_t time (time_t*
timer); and double difftime (time_t end, time_t beginning); functions
from the standard header <time.h> or <ctime>. Those including several other
techniques are good enough for measuring time of a CPU based program.

In OpenCL optimization, our area of interest is a bit different. As a part of
optimization of the entire program, here we focus mainly on the optimization
of kernel running on a device. In an OpenCL Kernel code that is running on a
device (for example, GPU) we enqueue the kernel in a command_queue. Due to the
existing pending jobs in that command_queue and a few other factors, we don't get
a deterministic way to find an exact time difference between kernel submission and
start of execution of the submitted kernel. Hence the previous clock and time based
technique fails to find the actual duration of Kernel execution on device. We may
also be interested to know exact data transfer time between host and device used
by an OpenCL implementation. That means you may want to profile functions like
clEnqueue[Read|Write]Buffer and clEnqueue[Map|Unmap]Buffer. For such
enqueued commands, we use an event-based mechanism to get exact start and
end time of a kernel execution on a device. All of the clEnqueue* commands (such
as, clEnqueueNDRangeKernel, clEnqueueReadBuffer, clEnqueueWriteBuffer,
clEnqueueCopyImageToBuffer) have their last parameter as cl_event *. This is
an output parameter for the command. If we create a valid cl_event object before
calling those commands and pass the address of the object to the command, after
successful execution this cl_event object would contain the event object that
identifies the task enqueued. This event has two possible uses, one, to enqueue
another command that should wait for this command which is identified by this
event, that is, for the purpose of synchronization, two, which is of our current
interest is for profiling and query the timing information of the tasks enqueued.

Chapter 8

[181]

The Time query method is described here with a code snippet. Event objects are
used to capture timing information that measures execution time of the enqueued
tasks. For this, the application developer should enable the command_queue
with the CL_QUEUE_PROFILING_ENABLE flag set in properties argument to
clCreateCommandQueue.

...
cl_event someEvent;
cl_ulong start;//start time
cl_ulong end;//end time
...
clEnqueueNDRangeKernel(commandQueue,
 someKernel,
 2,
 NULL,
 globalThreads,
 localThreads,
 0,
 NULL,
 &someEvent);
...
clWaitForEvents(1, &someEvent);
clGetEventProfilingInfo(someEvent,
 CL_PROFILING_COMMAND_START,x
 sizeof(cl_ulong),
 &start,
 0);
clGetEventProfilingInfo(someEvent,
 CL_PROFILING_COMMAND_END,
 sizeof(cl_ulong),
 &end,
 0);
std::cout << "someKernel time taken is : "
 << (end - start)
 << "nanoseconds" << std::endl;

Basic Optimization Techniques with Case Studies

[182]

Explaining the code
The preceding code is explained in detail here.

1. Here we measure the duration of execution of a Kernel called someKernel on
device. This kernel, using clEnqueueNDRangeKernel function, is enqueued
in commandQueue. The commandQueue is created with CL_QUEUE_PROFILING_
ENABLE flag set.

2. Before this clEnqueueNDRangeKernel command we have defined a
cl_event object, someEvent. Pointer to this someEvent is passed as last
parameter of clEnqueueNDRangeKernel.

3. Then we call clWaitForEvent whose first parameter is number of events
(here one) and second parameter is pointer to first element of the event array
to wait for (here only one event). This waits for the command identified by
the event to complete.

4. Then we make two successive calls to clGetEventProfilingInfo to get
start and end time in the previously declared start and end respectively.
Second parameter of this command is of type cl_profiling_info which
is an enumerated type that can take any of the four values, which is
CL_PROFILING_COMMAND_QUEUED, CL_PROFILING_COMMAND_SUBMIT, CL_
PROFILING_COMMAND_START, CL_PROFILING_COMMAND_END respectively
for enqueue, submit, start and end time of the command identified by the
event. In all cases the fourth parameter receives the device's time counter
in nanoseconds.

Note that all the above commands return a value of cl_int type. This status must
be equal to CL_SUCCESS to receive a valid data from the command.

Tools for profiling and finding performance
bottlenecks
AMD and NVIDIA two major vendors for OpenCL on GPU provide their own
profiling and debugging tools for performance profiling, identifying performance
bottleneck and kernel debugging. AMD provides a static kernel analyzer for static
analysis of OpenCL kernel So that you can see the disassembly of OpenCL kernel. It
translates into AMD's Intermediate Language (IL) or hardware disassembly (ISA)
for multiple driver version and GPU device combinations. NVIDIA had independent
OpenCL Visual Profiler and later on released multiple versions of a combined
profiler for OpenCL and CUDA together called Compute Visual Profiler. AMD
provides an integrated GUI based tool for GPU profiling and debugging as well as
CPU Profiling called CodeXL. This tool is also integrated with Visual Studio, and can
work in Windows and Linux.

Chapter 8

[183]

To understand how these tools help, we limit our focus on a single tool and provide
a very brief summary on it. We choose CodeXL. This tool is freely downloadable
from AMD's website. There are many videos available on YouTube demonstrating
how it works.

CodeXL can be used either as a standalone application or as Visual Studio plug-in.
It has two modes called Debug and Profile. Profiling can be either CPU Profiling or
GPU Profiling, at a run of an application.

In GPU Profiling user can profile an application to analyze application trace that
shows a timeline view of occurrence of different important events (like start and
end of Kernel or memory transfer) in the entire application and also a list of few
top Kernels, Memory transfer, and so on with some relevant information. Another
analysis of GPU Profiling is on the Performance Counter. Performance of a kernel
depends on a few hardware events (called performance counters) whose counts are
dependent on kernel code, hardware configuration in the device, and possibly on
some other factors. For example, a branch inside the kernel within a workgroups will
waste cycles, since the instructions run in a lock-step manner. Divergent branch (for
example, some work item within a wave-front takes if part and some other work
item in the same workgroup takes else part) has worse impact on performance. We
can observe the hardware counters for branch indicating the number of branches
occurred in the entire lifetime of the kernel and if possible, try to reduce the number
of branches by rearranging the indexes of work items so that within a workgroup
all the work item either takes the if part or takes the else part. A few other
performance counters presented in CodeXL are the indicator of the amount of local
memory used (LDS for GPU) in bytes, number of general purpose vector registers
used, and so on.

CodeXL GPU Debugger is an OpenCL and OpenGL application debugger. Debugger
enables user to view several statistics of function, view image, and buffer memory,
set breakpoint on different OpenCL and OpenGL commands, and so on. It also
provides the API function call history displayed in a log of OpenCL, OpenGL,
OpenGL extensions, WGL, and glX function calls.

The link http://developer.amd.com/tools-and-sdks/heterogeneous-
computing/codexl/ provides some basic tutorial and download.

Both AMD and NVIDIA provide SDK samples which are optimized OpenCL code
for reference.

Basic Optimization Techniques with Case Studies

[184]

The following are the web pages with a link to download SDK for NVIDIA and
AMD respectively.

• http://developer.download.nvidia.com/compute/cuda/3_0/sdk/
website/OpenCL/website/samples.html

• http://developer.amd.com/tools-and-sdks/heterogeneous-
computing/amd-accelerated-parallel-processing-app-sdk/
downloads/

NVIDIA also provides CUDA to OpenCL migration guide, to enable the CUDA
developer to jump start OpenCL programming.

The following screenshot UI shows the state of an OpenCL Kernel where a
breakpoint is hit and at the bottom it lists Properties of environment where
the program is running, Watch, Call stack, and Locals:

OpenCL Debugger in Visual Studio

Chapter 8

[185]

The following screenshot displays the Occupancy Analysis in OpenCL Profiler:

OpenCL Profiler Standalone Version

Case study – matrix multiplication
As we discussed earlier, kernel is just similar to a C function. Each work item
will execute this function on the device. We here discuss different optimization
strategies and implementations of kernels based on them. In this chapter we present
matrix multiplication example to illustrate those optimization strategies with
few advantages and disadvantages of them. We need to keep in mind that all the
techniques are not applicable to all the problems and also, unfortunately, sometimes
they are even in conflict.

Basic Optimization Techniques with Case Studies

[186]

Sequential implementation
For the sake of simplicity we take two square matrices called A and B to multiply (each
1024 by 1024) as input and as a result get a square matrix say C of same size (1024 by
1024). To recall, (iRow, iCol)-th element of matrix C is dot product of iRow-th row
vector of A and iCol-th column vector of B. In other language, i-th element of iRow -th
row of A is multiplied with i-th element of iCol -th column of B for i=1 to N (where
N is the dimension of square matrix, here 1024) and all the i products are added to get
(iRow, iCol)-th element of C. Illustrated in the following figure.

A

i-throw

j
th
c
o
l
u
m
n

n

p

m

B

product of row of A is
Column of B

(i,j)-thelement

p
C

n

m

Matrix multiplication algorithm

Sequential implementation is based on nested for loops as shown in the
following code:.

void MatrixMul_sequential(int dim,
 float *A,
 float *B,
 float *C)
{
 for(int iRow=0; iRow<dim;++iRow)
 {
 for(int iCol=0; iCol<dim;++iCol)
 {

Chapter 8

[187]

 float result = 0.f;
 for(int i=0; i<dim;++i)
 {
 result +=
 A[iRow*dim + i]*B[i*dim + iCol];
 }
 C[iRow*dim + iCol] = result;
 }
 }
}

The function MatrixMul_sequential takes four arguments namely, the dimension
of matrix and three single dimensional arrays. Size of each array is equal to the
square of the dimension, so that each of them holds all the elements of a matrix. A
and B are for input matrices, respectively left and right multiplier. C is output matrix,
that is,. the product of A and B.

The two dimensional matrix is represented in a one dimensional array by a row
major form. It means the first dim elements represent 0 to dim-1 elements of first
row, then dim to 2*dim-1 elements represent 1 to dim elements of second row, and
so on. Hence to get, (iRow,iCol)-th element of matrix C we skip all the previous
rows and because one row contains dim elements we have to skip in total iRow*dim
elements. Then we get the first element of the iRow-th row. Hence (iRow, iCol)-th
element is obtained by adding the iCol offset to first element of the row. So the
(iRow, iCol)-th element of matrix would have index (iRow*dim + iCol) in our
single dimensional array representation. We use one dimensional array for two
dimensional data because two dimensional array is not allowed in OpenCL.

1R1 2 3 4

10

5

23

20

6

54

30

7

99

40

8

55

R2

R3

R4

1 2 3 4 10 20 30 40 5 6 7 8 23 54 99 55

Row major representation

Column major representation

1 2 3 410 20 30 405 6 7 823 54 99 55

R1 R2 R3 R4

R3

Row major and column major representation

Basic Optimization Techniques with Case Studies

[188]

Now the computational scheme is described. Innermost loop, indexed by i,
computes the dot product, that is, sum of the products of row elements (of iRow
-th row) and corresponding column elements (iCol -th Column) from A and B
respectively and finally the sum is assigned to (iRow, iCol)-th element of C.
Outermost loop, indexed by iRow, runs over all the rows of C and first inner
loop indexed by iCol runs over all the column for each row of C.

Invoking the main() function is easy to write. Allocate memory for A, B, C,
and initialize A and B with random numbers, and C's elements with 0.

main()
{
 int dim = 1024;
 float *A = (float*)malloc(sizeof(float)*dim*dim);
 float *B = (float*)malloc(sizeof(float)*dim*dim);
 float *C = (float*)malloc(sizeof(float)*dim*dim);
 for(i = 0; i < dim*dim; i++)
 {
 A[i] = (float) (rand() % 10);
 B[i] = (float) (rand() % 10);
 C[i] = 0;
 }
 MatrixMul_sequential(dim,A,B,C);
}

OpenCL implementation
With an understanding and background of the preceding implementation we jump
to write kernels, to solve the matrix multiplication problem. We here present five
variations of the matrix multiplication kernels. Except for the first one, which is a
naive implementation of matrix multiplication using kernel, each kernel describes
one or more techniques of optimization. To remind again, all the techniques would
not give optimized performance in all environments (device hardware architecture,
operating system, OpenCL implementation) with all possible data size. But they
make us familiar with numerous possible techniques of optimization on GPU,
which we can try on other problems with some idea of how they work.

All five kernels take just the same parameter list in same sequence. Instead of float
which is allocated in host's stack or heap (in our example on heap), kernel takes the
global memory pointers for its parameter arrays, for example, __global float *A.
Since the kernel cannot directly access host memory, so global memory from device
is allocated and the array data is copied to those location for kernel's use.

Chapter 8

[189]

Our NDRange is two dimensional for all the kernels with global_size in each
dimension as dim (1024). Workgroup is also two dimensional and sizes are 256
and 1 respectively in 0-th and 1-st dimension unless otherwise stated.

Simple kernel
For now we will not discuss how to prepare data and invoke kernel. This has been
discussed extensively in the section Creating Kernel Objects of Chapter 5, OpenCL
Program and Kernel Objects. We will now jump into our first kernel implementation,
which is described in the code that follows:

void MatrixMul_kernel_basic(int dim,
 __global float *A,
 __global float *B,
 __global float *C)
{
 //Get the index of the work-item
 int iCol = get_global_id(0);
 int iRow = get_global_id(1);
 float result = 0.0;
 for(int i=0;i< dim;++i)
 {
 result +=
 A[iRow*dim + i]*B[i*dim + iCol];
 }
 C[iRow*dim + iCol] = result;
}

Our first kernel, called MatrixMul_kernel_basic provides a naive implementation.
Each work-item here computes one element of C. Precisely the work-item finds
indices based on its global_ids, for example, get_global_id(1) and get_global_
id(0) are respectively row and column indices and then computes the sum
of product.

Some performance analysis operation involves the amount of addition or
multiplication involved in the task. In matrix multiplication we calculate the number
of floating point operations and the amount of global memory read and write
operations which we perform. In a single work item, the total number of floating
point multiplication here is equal to dim, because each iteration of loop does one
multiplication. The total number of floating point addition is also dim similarly.
The total number of global memory fetch is dim + dim +1 (dim time A and dim
times B within loop and one write operation to C). For the entire computation
of matrix multiplication the total number of flops is equal to:

Basic Optimization Techniques with Case Studies

[190]

work-items: total number of work items launched.

work-items * (2 * dim) /*1 for addition and 1 for multiplication*/

The total global memory fetch is equal to:

work-items * (2 * dim)

The total global memory write is equal to:

work-items

Kernel optimization techniques
Our first step to kernel optimization is based on a technique called coalesced
memory access. This is illustrated in kernel MatrixMul_kernel_coallesced_row.
We will first explain coalesced memory access. Take a look at the following diagram.
The two work groups have 64 work-items each. The input buffer of size 512 float
elements is to be processed by a kernel.

Coalesced read illustration

In the diagram, we have shown two different types of read operations. In the first
one, each kernel reads four float elements from the buffer. This is achieved by
reading four elements in a loop and is shown with a thin line in the diagram. In the
second case, each work-item reads four contiguous elements into a float4 variable.
Both the cases above demonstrate coalesced accesses with respect to a float and a
float4 variable respectively.

Chapter 8

[191]

As far as read is concerned for many types of data parallel workloads, most of the
time it will result in coalesced access, easily. But sometimes when it comes to writing
back to global memory coalescing is a challenge. The following figure is an example:

Image showing uncoalesced writes

So coalesced accessing is something like i-th work-item should access (i+k)-th
element of global memory (for some constant k, preferably k=0). In the case of matrix
multiplication we coalesce the reads from the A matrix as shown in the following code:

void MatrixMul_kernel_coallesced_row(int dim,
 __global float *A,
 __global float *B,
 __global float *C)
{
 //Get the index of the work-item
 int iCol = get_global_id(0);
 int iRow = get_global_id(1);
 int localIdx = get_local_id(0);
 int localSizex = get_local_size(0);
 float result = 0.0f;
 int numElements = dim/localSizex;
 for(int j=0; j<numElements; j++)
 {
 result = 0.0f;
 for(int i=0;i< dim;++i)
 {
 result +=
 A[iRow*dim + i]*B[i*dim + j*localSizex + localIdx];
 }
 C[iRow*dim + j*localSizex + iCol] = result;
 }
}

Basic Optimization Techniques with Case Studies

[192]

In the matrix multiplication kernel we just showed an example of coalesced global
memory access. Some OpenCL devices may not show any gain in performance since
all the accesses are from the global memory, and global memory accesses are very
time consuming.

Next, we introduce another way of optimization using vectors and vector operations.
Since vector operations for such sum of products are far more efficient and private
memory access is far faster than global access, we would make out the first attempt for
optimization using vectors keeping them in private memory. This is implemented in
the kernel MatrixMul_kernel_basic_vector4, which computes four elements of C
per work-item. Here two dimensional NDRange has sizes dim/4 and dim (that is, 256
and 1024) respectively and work-group sizes are 16 in both dimensions.
In localIdx and localIdy, global_id(0), and global_id(1) are stored.

#define VECTOR_SIZE 4
void MatrixMul_kernel_basic_vector4(int dim,
 __global float4 *A,
 __global float4 *B,
 __global float *C)
{
 //Get the index of the work-item
 int globalIdx = get_global_id(0);
 int globalIdy = get_global_id(1);
 float result = 0.0;
 float4 Bvector[4];
 float4 Avector, temp;
 float4 resultVector[4] = {0,0,0,0};
 int noOfVectorsInARow = dim/VECTOR_SIZE;
 for(int i=0; i<noOfVectorsInARow; ++i)
 {
 Avector = A[globalIdy*noOfVectorsInARow + i];
 Bvector[0] = B[dim*i + globalIdx];
 Bvector[1] = B[dim*i + noOfVectorsInARow + globalIdx];
 Bvector[2] = B[dim*i + 2*noOfVectorsInARow + globalIdx];
 Bvector[3] = B[dim*i + 3*noOfVectorsInARow + globalIdx];

 temp = (float4)(Bvector[0].x, Bvector[1].x,
 Bvector[2].x, Bvector[3].x);
 resultVector[0] += Avector * temp;

 temp = (float4)(Bvector[0].y, Bvector[1].y,
 Bvector[2].y, Bvector[3].y);
 resultVector[1] += Avector * temp;

Chapter 8

[193]

 temp = (float4)(Bvector[0].z, Bvector[1].z,
 Bvector[2].z, Bvector[3].z);
 resultVector[2] += Avector * temp;

 temp = (float4)(Bvector[0].w, Bvector[1].w,
 Bvector[2].w, Bvector[3].w);
 resultVector[3] += Avector * temp;

 }
 C[globalIdy*dim + globalIdx*VECTOR_SIZE] = resultVector[0].x +
 resultVector[0].y +
 resultVector[0].z +
 resultVector[0].w;
 C[globalIdy*dim + globalIdx*VECTOR_SIZE + 1] =
 resultVector[1].x +
 resultVector[1].y +
 resultVector[1].z +
 resultVector[1].w;
 C[globalIdy*dim + globalIdx*VECTOR_SIZE + 2] =
 resultVector[2].x +
 resultVector[2].y +
 resultVector[2].z +
 resultVector[2].w;
 C[globalIdy*dim + globalIdx*VECTOR_SIZE + 3] =
 resultVector[3].x +
 resultVector[3].y +
 resultVector[3].z +
 resultVector[3].w;
}

In the kernel MatrixMul_kernel_basic_vector4 we just saw, the integer
globalIdy*dim gives the corresponding row's beginning and globalIdx*VECTOR_
SIZE is the offset part. Since one work-item computes the VECTOR_SIZE (here set
to four) elements, so work-item with globalIdx index would start computation
from the element which has the index just next to all the elements computed by all
previous work-items. Total number of those elements which are already computed
within current row is globalIdx*VECTOR_SIZE - 1 (since index starts from zero).
Hence the first element that the current work-item would compute has the index
globalIdy*dim + globalIdx*VECTOR_SIZE. Next three elements are obtained by
merely adding 1, 2, and 3 respectively to this index. We first define two vector arrays
of float4 of size four where each element of the array holds four floats. This array
would ultimately contain 4*4 =16 floats. First, float4 Bvector[4];, would hold B's
element and second, float4 resultVector[4] = {0,0,0,0}; which is initialized
to zero, would hold the final results.

Basic Optimization Techniques with Case Studies

[194]

Note the value of noOfVectorsInARow is equal to dim/VECTOR_SIZE because
by using float4 Avector within loop, we are covering four elements in a single
iteration of the loop.

The statement Avector = A[globalIdy * noOfVectorsInARow + i]; fetches
four elements from the global memory starting from index globalIdy *
noOfVectorsInARow + i, for current i and loads the values in Avector. This
Avector is now being used to compute the corresponding parts of the sum of four
elements of C.

First four elements of the global array B, with starting index dim*i + globalIdx
are loaded in Bvector[0]. Next successive four element groups are loaded in
Bvector[1], Bvector[2], Bvector[3]. Using float4 temp, we accumulate the
sum in the array of resultVector and finally when the loop completes all the
four elements are computed, we load them in corresponding element of C.

The usage of vectors resulted in a gain in performance. You can try this out in
your OpenCL device.

Another gain in performance is due to caching the required part of A in a private
memory (float4 Avector is private memory) and reusing it. The private memory
is the fastest, but private memory is small, so it may be used up very quickly with
variables. When the amount of private variable is so much that it demands more
than available amount of private memory, it spills to the global memory which
makes the memory access very slow. This reduces the overhead of repeated access
to the global memory. Third factor for performance gain is device dependent. When
a device has number of compute units say less than or equal to 4, it is advantageous
to reduce the number of work-items launched. Here we have done that by a factor
of four because each work-item is doing the work of four elements computation as
against 1 for each work-item in our previous kernels MatrixMul_kernel_basic
and MatrixMul_kernel_coallesced_row.

Now we discuss few performance penalty factors of this kernel with respect to the
previous one. First, extra overhead is due to allocation, initialization, and copy
of all private memory elements. But this step overcomes the loss in performance
by directly operating on the global memory. Second disadvantage is again device
specific. If the number of compute unit is more than the number of work groups
launched this may lead to inefficient occupancy which leads to wastage of hardware
resources. That factor is aggravated if total number of compute units in the device
are not a factor of the total number of work-groups. We have discussed this in the
section Application Scaling in Chapter 2, OpenCL Architecture.

Chapter 8

[195]

We now further continue in writing next two kernels, namely, MatrixMul_kernel_
localA and MatrixMul_kernel_localA_coallesced. First we discuss the common
characteristics between them. In fact, the only difference between these two kernels
is in the body of the first loop. In both the kernels, we use the local memory for
performance gain. Here again NDrange is two dimensional with dimensions equal
to the size of destination Matrix C. Each work item computes one element of C. Work
groups size is 256 by 1. In this Kernel we pass one extra parameter, the fifth parameter
which is a float pointer allocated with the __local address space specifier.

void MatrixMul_kernel_localA(int dim,
 __global float *A,
 __global float *B,
 __global float *C,
 __local float *lA)
{
 //Get the index of the work-item
 int iCol = get_global_id(0);
 int iRow = get_global_id(1);
 int localIdx = get_local_id(0);
 int localSizex = get_local_size(0);
 float result = 0.0f;
 int numElements = dim/localSizex;
 for(int i=0; i<numElements ; i++)
 {
 lA[localIdx*numElements + i] =
 A[iRow*dim + localIdx*numElements + i];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 for(int i=0;i< dim;++i)
 {
 result += lA[i]*B[i*dim + iCol];
 }
 C[iRow*dim + iCol] = result;
}

The statement in the host code that passes this argument is something like clStatus
= clSetKernelArg(kernel, 4, 1024*sizeof(float), NULL); 4 indicates index
of parameter in the parameter-list (this is fifth parameter). Then size of the array is
passed. Here the size is MATRIX_WIDTH*sizeof(float) and the last argument which
is the pointer to local is NULL.

Basic Optimization Techniques with Case Studies

[196]

Here the entire row of A matrix is copied into local memory so that it can be used
by all the work-items of same work group. One copy of a row is available for each
work-group. As before we do equal partition of task of copying, so each work-item
here copies equal amount of the current row of A, since there are 256 work-item per
work-group, so for a MATRIX_WIDTH equal to 1024 elements each work-item copies
(1024/256) 4 elements.

To make sure the entire row of A is available on local memory of a work-group,
before proceeding further we apply one work-group level synchronization primitive
called barrier(CLK_LOCAL_MEM_FENCE);. This ensures that all the work-items in
a work-group reached this line before any work-item in that work-group executes
the next line. When entire row of A is available then we proceed to compute the
corresponding element of C within next for loop. The main difference between the
kernels is that second one uses coalesced memory access for populating row of A.

void MatrixMul_kernel_localA_coallesced(int dim,
 __global float *A,
 __global float *B,
 __global float *C,
 __local float *lA)
{
 //Get the index of the work-item
 int iCol = get_global_id(0);
 int iRow = get_global_id(1);
 int localIdx = get_local_id(0);
 int localSizex = get_local_size(0);
 float result = 0.0f;
 int numElements = dim/localSizex;
 for(int i=0; i<numElements ; i++)
 {
 lA[i*localSizex + localIdx] = A[iRow*dim + i*localSizex +
 localIdx];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 for(int i=0;i< dim;++i)
 {
 result += lA[i]*B[i*dim + iCol];
 }
 C[iRow*dim + iCol] = result;
}

Main advantage in performance is the use of local memory and the reuse of it for
the entire work-group. It is copied once and used 256 times, since 256 work-items
are launched per work-group. Since the second kernel MatrixMul_kernel_localA_
coallesced uses coalesced access that would give some performance gain over first.

Chapter 8

[197]

Case study – Histogram calculation
In the section Histogram calculation in Chapter 3, Buffers and Image Objects, we
discussed about the naive implementation of histogram computation of an image.
We read an input image file and pass the pixel buffer to the OpenCL device to
compute the histogram of the image. By now you must have observed that this
implementation is not so optimized which involves sequential reads. In this section
we will try to optimize this implementation by making use of atomic_inc OpenCL
C built-in and make use of coalesced reads and writes to the global and local
memory. Take a look at the following kernel:

#define BIN_SIZE 256
#define ELEMENTS_TO_PROCESS 256
__kernel
void histogram_kernel(__global const uint* data,
 __global uint* binResultR,
 __global uint* binResultG,
 __global uint* binResultB)
{
 __local int sharedArrayR[BIN_SIZE];
 __local int sharedArrayG[BIN_SIZE];
 __local int sharedArrayB[BIN_SIZE];
 __global uchar4 * image_data = data;
 size_t localId = get_local_id(0);
 size_t globalId = get_global_id(0);
 size_t groupId = get_group_id(0);
 size_t groupSize = get_local_size(0);

 /* initialize shared array to zero */
 sharedArrayR[localId] = 0;
 sharedArrayG[localId] = 0;
 sharedArrayB[localId] = 0;

 barrier(CLK_LOCAL_MEM_FENCE);
 int groupOffset = groupId * groupSize * ELEMENTS_TO_PROCESS;
 /* calculate thread-histograms */
 for(int i = 0; i < ELEMENTS_TO_PROCESS; ++i)
 {
 int index = groupOffset + i * groupSize + localId;
 //Coalesced read from global memory
 uchar4 value = image_data[index];
 atomic_inc(&sharedArrayR[value.x]);
 atomic_inc(&sharedArrayG[value.y]);
 atomic_inc(&sharedArrayB[value.w]);
 }

 barrier(CLK_LOCAL_MEM_FENCE);
 //Coalesced write to global memory
 binResultR[groupId * BIN_SIZE + localId] = sharedArrayR[localId];

Basic Optimization Techniques with Case Studies

[198]

 binResultG[groupId * BIN_SIZE + localId] = sharedArrayR[localId];
 binResultB[groupId * BIN_SIZE + localId] = sharedArrayR[localId];

}

Note that in this kernel unlike the one which we discussed in Chapter 3, OpenCL
Buffer Objects, we have not passed the local array size from the host side using the
clSetKernelArg function. The local arrays can be created inside the kernel also. The
__local address space specifier makes it clear that this array is accessible across all
the work items in the work group. Next, we initialize the shared array to 0. As you
can see, each of the accesses to sharedArrayR, sharedArrayG and sharedArrayB are
coalesced accesses. And also since the sharedArray size is much less compared to
the one in the naive implementation, this array is set only once by every work item.
This setting to zero of the complete local array is synchronized by adding a barrier
inside the kernel.

Following the barrier in the for loop we read the pixel values from global memory
in a coalesced manner, and use atomic_inc OpenCL C built-in to increase the count
of the corresponding pixel values. We wait for all work items to process ELEMENTS_
TO_PROCESS pixel values by adding a barrier instruction, before finally writing it
to the global memory binResultR, binResultG and binResultB. There are more
advantages in this kernel as compared to the naive implementation. The amount of
global memory writes is the same though but the amount of local memory used in
the kernel is far less. This enables for a large number of work items to be spawned
per work group. In this example we have launched 256 work items as compared to
the 16 work items in our naive implementation of Chapter 3, OpenCL Buffer Objects.

Now there is one more way that this kernel can be optimized, that is the number
of pixels to process per work item is fixed to ELEMENTS_TO_PROCESS which is 256
pixels in this case. This also makes the number of work groups to be launched
dependent on the number of pixels to process. That is each work group shall process
ELEMENTS_TO_PROCESS * work_group_size pixels only. So this might sometimes
lead to underutilization of the available compute units in the OpenCL device. For
example if the number of pixels to be processed is equal 1024*1024, then we shall be
launching, (1024*1024)/(256*256) = 16 work groups. If the number of compute
units available in the OpenCL device is say 12, then the OpenCL implementation
shall launch in chunks of 12 work groups and four work groups. So to avoid this,
the number of pixels to be computed is determined by the host and passed as a
parameter to the kernel. Take a look at the kernel code below. Since the last work
group will not be processing an exact multiple of work group size pixels, we need to
calculate the elements_to_process for each work_item in the last work group. The
if statement inside the for loop takes care of the boundary conditions and makes
sure that the global memory is not read outside of the global memory buffer range.

Chapter 8

[199]

#define BIN_SIZE 256
__kernel
void histogram_kernel(__global const uint* data,
 __global uint* binResultR,
 __global uint* binResultG,
 __global uint* binResultB,
 int elements_to_process,
 int total_pixels)
{
 __local int sharedArrayR[BIN_SIZE];
 __local int sharedArrayG[BIN_SIZE];
 __local int sharedArrayB[BIN_SIZE];
 __global uchar4 * image_data = data;
 size_t localId = get_local_id(0);
 size_t globalId = get_global_id(0);
 size_t groupId = get_group_id(0);
 size_t groupSize = get_local_size(0);

 /* initialize shared array to zero */
 sharedArrayR[localId] = 0;
 sharedArrayG[localId] = 0;
 sharedArrayB[localId] = 0;

 barrier(CLK_LOCAL_MEM_FENCE);
 int groupOffset = groupId * groupSize * elements_to_process;

 /* For the last work group calculate the number of elements required
*/
 if(groupId == (get_num_groups(0) - 1))
 elements_to_process =
 ((total_pixels - groupOffset) + groupSize - 1) /groupSize;

 /* calculate thread-histograms */
 for(int i = 0; i < elements_to_process; ++i)
 {
 int index = groupOffset + i * get_local_size(0) + localId;
 if(index > total_pixels) \n"
 break;
 //Coalesced read from global memory
 uchar4 value = image_data[index]; \n"
 atomic_inc(&sharedArrayR[value.x]);
 atomic_inc(&sharedArrayG[value.y]);
 atomic_inc(&sharedArrayB[value.w]);
 }

 barrier(CLK_LOCAL_MEM_FENCE);

Basic Optimization Techniques with Case Studies

[200]

 //Coalesced write to global memory
 binResultR[groupId * BIN_SIZE + localId] =
 sharedArrayR[localId];
 binResultG[groupId * BIN_SIZE + localId] =
 sharedArrayR[localId];
 binResultB[groupId * BIN_SIZE + localId] =
 sharedArrayR[localId];
}

We conclude this chapter by summarizing a few general tips for OpenCL optimization.
These are neither exhaustive nor universal. Remember "One size does not fit all".

Finding the scope of the use of OpenCL
Given an algorithm or even some sequential implementation of it, how do we
determine whether OpenCL would really help in performance gain? First, find
hotspots in your sequential code. If that hot part can be partitioned into smaller parts
which can be executed at least to some extent independently, that is, one smaller
computation part can be done without waiting for data of previous computation
part? Can we find some part of the algorithm where the same instruction is executed
on different data without any mutual dependency? Affirmative answer to the first
and second part of questions respectively asserts the existence of task and data
parallel components in the algorithm. In either case, taking advantage of OpenCL
is probably a good option.

Second consideration is whether the program is memory-bound, I/O bound, or
CPU-bound. If the algorithm is dense with conditional statements, a better candidate
for OpenCL would be compute bound program with less branches.

General tips
Some of the following strategies are vendor and architecture specific but mostly have
a corresponding counterpart in other vendors and architectures.

1. Try to minimize host-device transfer of memory. Also try to hide memory
transfer latencies with parallel computation. Host-device transfer has much
lower bandwidth than global memory access. (For example, for NVIDIA
GTX 280 verses PCI-e it becomes approximately 17 times). So better to store
and keep it on the Global memory. Sometimes it is even better to re-compute
something in GPU rather than trying to fetch from host.

2. One large transfer is much better than many smaller transfers amounting to
same size.

Chapter 8

[201]

3. Try for coalesced memory access as much as possible, that is, avoid out
of sequence and misaligned transactions. This is more OpenCL device
architecture and compute capability specific.

4. Use local memory (100 times better latency for GTX 280) for caching, but be
careful about overuse to avoid performance penalty due to spilling to global
memory. Local memory also helps to avoid non-coalesced global memory
access. Entire work-group shares this local so cache ones and use for all
work-item in the work-group. Another advantage of local memory is data
sharing between work-items within same work-group.

5. Use private memory with same care. No thumb rule exists for local and
private memory use. It needs some experiment to find the optimal strategy
for your algorithm.

6. Avoid bank conflict as much as possible. In general multiple Read/Write on
same memory bank becomes serialized instead of being parallel, resulting in
performance penalty. This is more vendor architecture specific. Please refer
to the vendor architecture manual for more detailed information, for example
AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.
pdf downloadable from developer.amd.com for AMD GPUs and NVIDIA_
OpenCL_ProgrammingGuide.pdf downloadable from cudazone from the
NVIDIA website for NVIDIA GPUs.

7. Number of work-groups should be always greater than number of compute
units, so that all the compute units are getting at least one work-group,
otherwise hardware resources would be under-utilized. Better to have the
ratio of number of work-groups to that of number of compute units greater
than or equal to two so that if one work-group on a compute-unit is stuck on a
barrier, GPU time can be utilized by executing other work-group. Far better is
making number of work-group a multiple of number of compute units so that
the wavefronts are fully populated. Wavefront is AMD's term means unit of
execution that executes in a lock step manner relative to each other. NVIDIA
similar concept is termed as warp. More work-group per compute units helps
in hiding latency.

8. Number of work-items per work-group should be multiple of wavefront
size. It can sometimes be beneficial to add "dummy" work-items so that the
work-group becomes a multiple of the unit of execution size even though this
means adding extra work.

9. Try to increase the occupancy which is ratio of active wavefront per compute
unit to maximum allowed wavefront per compute unit. Occupancy is
function of registers, local memory, hardware scheduling, and so on. AMD
provides an occupancy analysis chart to see interactively how occupancy
varies with different factors.

Basic Optimization Techniques with Case Studies

[202]

10. Instruction throughput is defined as number of instructions executed per
cycle. For a given architecture, generally the number of cycles needed to be
execute each of the instructions is documented by the major vendors. Using
that try to use smaller number of cycles to get things done. Avoid automatic
conversion from double to float (for example, use 12.3f rather than 12.3 for
float).

11. Use non-blocking command and queue multiple commands in the command
queue before it gets flushed to GPU.

12. Avoid branch or divergent branch within a wave-front, since it serializes
execution. Sometimes some restructuring of code or index may help. At least
minimize the number of instruction within branch. For example, instead of
using the following:
if(some_cond){ x += y;}else {x -=z;}

prefer the following:
int tmp = some_cond ? y:-z;
x+= tmp;

Take similar care for the while or for loops within kernel. Avoid nested
if. Also avoid if statements with multiple conditions combined by AND
operators like the following:
if(condition1 && condition2 && condition3)

Because they possibly generate nested if from the statements. Prefer the
following:

bool singleCond = (condition1 && condition2 && condition3);
if(singleCond)

13. For 2D/3D structured data, use texture or image memory, which has
hardware accelerated data type conversion and interpolation and optimized
2D/3D caching.

14. Prefer constant memory over global memory if device only needs to read the
data, since constant memory is faster than global.

15. Avoid barrier when possible, since it is a costly operation.

Chapter 8

[203]

Summary
In this chapter we have discussed different optimization techniques. All are
illustrated on the same simple problem of matrix multiplication to demonstrate
how the same algorithm can be adjusted to accommodate different optimization
techniques. We also optimized the histogram computation kernel which was
originally discussed in Chapter 3, OpenCL Buffer Objects. Based on data size, hardware
and software environment different optimization strategies can be applied. The
chapter ends with a hint on the kind of application when OpenCL would show
real performance improvement and then some general tips or checklist related to
optimization. In the next chapter we describe image processing using OpenCL.

Image Processing
and OpenCL

In the previous chapter we discussed an OpenCL implementation of a very basic
algorithm called matrix multiplication. We saw that a matrix multiplication
algorithm can be implemented in many different ways, such as by using local, global
or private memory. In this chapter we delve into a different subject called image
processing, in which we primarily discuss image convolution. Image processing
in itself is a very big topic and there are many books which discuss the same. We
will briefly deal with image processing in this chapter and explore the data parallel
operations in image processing algorithms, and how it can be used with OpenCL.
In this chapter, we will also discuss how to perform some filter operations using the
convolution operators.

The list of filters we discuss in this case study are as follows:

• Mean filter
• Median filter
• Gaussian filter
• Sobel filter

Image compression is a research topic in itself. One of the most common
compression algorithms is the JPEG standard. There are quite a few theoretical data
compression techniques, such as Entropy Coding, Huffman decode, and Run Length
Encoding. The JPEG decoder in itself is a huge topic. In this chapter, we will discuss
a small subset of JPEG compression standard, and how we parallelize the inverse
DCT operation using OpenCL.

Since these examples are a bit domain specific, we present a brief introduction to the
problem and the algorithm before discussing the actual OpenCL implementation.
Readers, who are already familiar with these concepts, may like to skip the sections.

Image Processing and OpenCL

[206]

Image representation
We represent an image in a digital computer by a matrix of pixels (picture element).
For an image containing only two colors (possibly black and white), the pixel can be
a bi-level (Boolean) field with true (1) meaning white, and false (0) meaning black.
One of the file formats for representing this kind of image is the PBM (Portable Bit
Map) file format. In this file format, each pixel is represented by one bit. If the image
is of size WIDTH * HEIGHT, then each row is WIDTH bits, packing eight pixels into a
byte, with don't care bits to fill out the last byte in the row. There are HEIGHT number
of such rows.

Now let's consider a gray scale image. The number of distinct gray scale values that
can be represented by a pixel depends on the number of Bits Per Pixel (bpp). For 8
bpp, 256 gray scale values can be represented. In this case, pixel values can vary from
0 to 255. These pixel values are often referred to as pixel intensity levels. So a pixel
may be represented as follows:

define MAX_INTENSITY 255
typedef cl_uchar pixel; //each pixel's valid value is
 0-MAX_INTENSITY

An image format which represents the pixel is the PGM (Portable Gray Map). If
the image is of size WIDTH * HEIGHT, each row consists of WIDTH gray scale values,
in order from left to right. Each gray scale value is a number from 0 through MAX_
INTENSITY, with 0 being black and MAX_INTENSITY being white. BMP, also referred
to as a bitmap image file, can be used to represent a gray scale image too. The BMP
file consists of an image header, followed by the color palate information and the
actual pixel colors for each color channel Red, Green, or Blue. The color palate is an
array of colors used in the image. Then the actual color information is stored in row
descending format, which means first we store all the pixels at height HEIGHT, then
HEIGHT-1 and so on. The number of pixels in a row is equal to the WIDTH, and the
order in which row elements are stored is from element at 0-th width to WIDTH-1.
Each row may be followed by some padding to make it a multiple of 4 bytes. In our
image processing samples we will be using bmp files as input images.

For a color image, each pixel (in order to represent a color) contains three different
intensity values—Red, Green, and Blue. Other colors are composed of these three
colors only, but in a unique proportion. If each of red, green, and blue's intensity
level is represented by n-bits, then red may take 2n values, and similarly green and
blue may take 2 superscript n. values each. So a total of 2n * 2n * 2n = 23n possible
combinations are possible, which simply means if each of red, green, and blue color
(also called channel in this context) is represented using n-bits, we can, in total,
represent 23n distinct colors in the image. For example, when n=8, that is each color
is given 8-bits, a pixel structure may be as follows:

Chapter 9

[207]

struct pixel{
 cl_uchar red;
 cl_uchar green;
 cl_uchar blue;
};

If the height and width of the image are respectively HEIGHT and WIDTH, then a total
of HEIGHT * WIDTH number of pixels can be represented by a single dimensional
array in either the row major form (discussed in Chapter 8, Basic Optimization
Techniques with Case Studies – Compute Bound Problem), as in the following code,
or in the column major form.

struct pixel image[HEIGHT * WIDTH];

Its two dimensional array representation, as shown in the following code, would be
more straightforward:

struct pixel image[HEIGHT][WIDTH];

PPM (Portable Pixel Map) is one file format which represents this type of image
data. In this file format each row consists of WIDTH number of pixels, in order from
left to right. Each pixel is a triplet of red, green, and blue samples, in that order. Each
sample is represented in a binary format by either 1 or 2 bytes. If the MAX_INTENSITY
is less than 256, one channel is 1 byte. Otherwise, it is 2 bytes.

Two factors affecting image quality improvement, within perceivable range, are
very evident. The first one being, number of bits representing a channel (color), if
the number is increased, we can have more combinations, hence more colors can
be represented, thus image quality would be improved. The second is, increase in
number of pixels per unit area, called pixel density. Both these factors come at the
cost of image size.

Image Processing and OpenCL

[208]

Implementing image filters
An image filter is a mathematical operation on the original image that transforms
it to the filtered image. The goal of the mathematical operation is to perform a
mathematical computation for a pixel, based on the values of the neighboring
pixels. A precisely defined image filter is a function that transforms each pixel of
the original image to pixels of the filtered image. Consider a simple example—what
would one do if he or she wants to decrease the brightness of an image?

In an image with gray scale representation, each pixel would contain one integer
representing intensity. Deduct some positive integer say VALUE from all the pixels
and if some integer becomes negative then truncate the result to zero. This is referred
to as the mathematical operation which is applied to every pixel in the original
image. This function would transform the image into one that is the same as the
original image, but with lower brightness. Similarly adding a constant value to all
pixels (and if some integer becomes more than MAX_INTENSITY, saturating it to MAX_
INTENSITY) is another function. This would increase the brightness of the image.

We will now discuss the four different types of image filters.

Mean filter
Mean filter also called the blur filter since it blurs the image. For an image of size
WIDTH by HEIGHT, we choose some small window filter operator of size m by m (m is
much smaller than the width or height of the image, in our example we have taken
it as 3). This m is called as the window size of the applied filter. Now, for each pixel
in (i,j)th position we consider the small window centered at (i,j)th pixel. This
window would contain 3 X 3 = 9 pixels shown as follows:

(i-1,j-1) (i-1,j) (i-1,j+1)
(i,j-1) (i, j) (i,j+1)
(i+1,j-1) (i+1,j) (i+1,j+1)

We now take the mean of all the nine elements and output the (i,j)th pixel with
the mean value. Impact of this operation is the reduction of difference in pixel
intensity within a small region. So the contrast is reduced and the image becomes
comparatively blurred in that region. This operation is done for all the pixels (for the
pixels at border we can either discard or extrapolate, by taking the value of (i,j)th
pixel and using it for all the missing neighbors) so the entire image is blurred.

Chapter 9

[209]

Input pixel with value 14 become 10 in the output Image

5

6

3

1

1

7 8 9 3

4 1 2 16

11 14 15 18

2 20 21 12

1 2 3 10

4 1 2

11 14 15

2 20 21

Sum = 4+1+2+11+14+15+2
+20+21=90

Aug = =10 (9 elements)90
9

. ..

Mean filter operation

Median filter
In this operation, we take the same window as in the mean filter but instead of taking
the mean of the nine elements, we take the median and output it in the position of
the center pixel. This means, finding the mid value among all the elements in the
window with current pixel at center. This filter under certain conditions reduces the
salt and pepper noise, but also retains the image edge information intact; hence it is
often applied before applying the edge detection algorithm. This filter also provides
a slight blurring effect.

Gaussian filter
The Gaussian filter is a low pass filter which removes high frequency values. This
also creates a blurring effect. Here, we take the same windows from the original
image and the two dimensional Gaussian distribution's coefficient, and convolute
them. Convolution is nothing but simply multiplying the corresponding elements
of two matrices of size m X m and then adding the obtained m X m products. The
following equation describes the Gaussian distribution formula:

Image Processing and OpenCL

[210]

Two dimensional Gaussian distribution's coefficients are obtained by approximating
the Gaussian distribution. Here in our example we have used the following matrix
with a sigma value of 0.85:

1.f/16, 2.f/16, 1.f/16,
2.f/16, 4.f/16, 2.f/16,
1.f/16, 2.f/16, 1.f/16,

The OpenCL Kernel code is as follows:

__constant sampler_t image_sampler = CLK_NORMALIZED_COORDS_FALSE
 | CLK_ADDRESS_CLAMP_TO_EDGE| CLK_FILTER_NEAREST;

__kernel void gaussian_filter_kernel(__read_only image2d_t iimage,
 __write_only image2d_t oimage,__constant float *filter,
 int windowSize)
{
 unsigned int x = get_global_id(0);
 unsigned int y = get_global_id(1);
 int halfWindow = windowSize/2;
 float4 pixelValue;
 float4 computedFilter=0.0f;
 int i, j, ifilter, jfilter;

 for(i=-halfWindow, ifilter=0; i<=halfWindow; i++, ifilter++)
 {
 for(j=-halfWindow, jfilter=0; j<=halfWindow; j++,jfilter++)
 {
 pixelValue = read_imagef(iimage, image_sampler,
 (int2)(x+i, y+j));
 computedFilter +=
 filter[ifilter*windowSize+jfilter]*pixelValue;
 }
 }

 write_imagef(oimage, (int2)(x, y), computedFilter);
}

Chapter 9

[211]

Convolution is described in the following figure:

5

6

3

1

1

7 8 9 3

4 1 2 16

11 14 15 18

2 20 21 12

1 2 3 10

1.f
16

2.f 1.f
16 16

2.f

1.f
16

16

4.f

2.f

2.f

1.f
16

16

16

16

4 1 2

11 14 15

2 20 21

Corresponding
Elements
Products

Sum = 4 x
1.f
16

+t x 2.f
16

+...

+21 x 2.f
16

Sobel filter
Sobel filter is one of the most popular filters which can be used for edge detection
of an image. Edge detection is important for many algorithms for feature extraction
from an image. This is based on the idea that a pixel on an edge in the image, is
different from other pixels which are not on any edge, by a unique property. The
property is based on the fact that in edge there would be a sudden jump/change in
intensity. This is found by computing the derivative along the two directions in a 2D
image say Sx and Sy and then magnitude, followed by optional thresholding.

For a 3 x 3 window, this reduces to the following computational steps

1. Let the value of Sx be as follows:
 1, 0, -1
Sx = 2, 0, -2
 1, 0, -1

and the value of Sy is as follows:

 1, 2, 1
Sy = SxT = 0, 0, 0
 -1, -2, -1

Image Processing and OpenCL

[212]

2. Now, given an input image I take window A. For each element in the
window A multiply it with the corresponding element in the matrix Sx
and Sy to obtain Tx and Ty matrices as follows:
Tx = Sx · A and Ty = Sy · A

(· here means convolution)

3. Find the magnitude T for each element in the window, using the following
formula:
T = sqrt(Tx2 + Ty2)

4. Choose a threshold Tr. This threshold value can be selected based on
experiment.

5. Finally apply the threshold, that is if T >= Tr then this pixel has a characteristic
edge, else not. Do this for all the pixels and get all the edge pixels.

OpenCL implementation of filters
Here we discuss how each of the filters is implemented. Similar filters are
discussed together. Mean and Gaussian filters are imposed by convoluting
with a fixed 3 x 3 matrix.

Mean and Gaussian filter
In our OpenCL implementation of the Mean and Gaussian filters, we write a kernel
called filter_kernel that can be used for the two filters. We do this by configuring
the third argument filter so that it can create effects of the corresponding filter.
For the Mean filter we send a nine element array, where each element's value is 1/9
and when this is convoluted with the corresponding window, it produces the effect
of mean of that window. When the filter_kernel kernel is to be called for the
Gaussian filter, we pass corresponding coefficients in row major form (1/16, 2/16,
1/16, 2/16, 4/16, 2/16, 1/16, 2/16, 1/16).

So we explain these two filters together. The following code is the common kernel
code for these two filters:

__constant sampler_t image_sampler = CLK_NORMALIZED_COORDS_FALSE |
 CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;

Chapter 9

[213]

__kernel void filter_kernel(__read_only image2d_t iimage,
 __write_only image2d_t oimage, __constant float *filter,
 int windowSize)
{
 unsigned int x = get_global_id(0);
 unsigned int y = get_global_id(1);
 int halfWindow = windowSize/2;
 float4 pixelValue;
 float4 computedFilter=0.0f;
 int i, j, ifilter, jfilter;

 for(i=-halfWindow, ifilter=0; i<=halfWindow; i++, ifilter++)
 {
 for(j=-halfWindow, jfilter=0; j<=halfWindow; j++,jfilter++)
 {
 pixelValue = read_imagef(iimage, image_sampler,(int2)(
 x+i, y+j));
 computedFilter +=
 filter[ifilter*windowSize+jfilter]*pixelValue;
 }
 }

 write_imagef(oimage, (int2)(x, y), computedFilter);
}

This kernel takes four arguments. The first two are input and output images,
which are respectively attributed as read and write only, as defined by the
attribute specifier __read_only and __write_only. Then comes the __global
array of float which mentions the filter in row major form. The fourth argument
is window size in a dimension. Hence the filter array would contain a total of
windowSize*windowSize elements.

Within the kernel, based on the global_id variable of the work item in the two
dimensions, the corresponding element of window of the input image is read using
read_imagef and then multiplied with corresponding elements of the filter array.
These products are added to each other and the accumulated sum is stored in the
computedFilter variable using nested for loops. The private variable halfWindow
is used to get index in left, right, up, and down properly from the current center
element identified by the global_id of the current work item. Finally write_imagef
writes back the resulting pixel to the output image.

Image Processing and OpenCL

[214]

Note that both the variables computedFilter and pixelValue are float4 data
types. This is because the read_imagef returns a float4 variable.

float4 read_imagef (image2d_t image, sampler_t sampler,
 int2 coord)

As of the OpenCL 1.2 specification, there are no OpenCL sampler APIs which
return a single float value. All the image sampler routines discussed in Table 6.23 of
OpenCL specification 1.2 return vector data types. This is intended to return R, G, B,
and A (alpha) image channel data. Now the question arises how one processes a gray
scale image? Let's consider the following code snippet:

cl_int ImageFilter::setupOCLbuffers()
{
 cl_int status;
 //Intermediate reusable cl buffers
 cl_image_format image_format;
 cl_image_desc image_desc;
 image_format.image_channel_data_type = CL_FLOAT;
 image_format.image_channel_order = CL_R;

 image_desc.image_type = CL_MEM_OBJECT_IMAGE2D;
 image_desc.image_width = image->width;
 image_desc.image_height = image->height;
 image_desc.image_depth = 1;
 image_desc.image_array_size = 1;
 //Note when the host_ptr is NULL row_pitch and
 //slice_pitch should be set to 0;
 //Otherwise you will get a CL_INVALID_IMAGE_DESCRIPTOR error
 image_desc.image_row_pitch = 0;
 image_desc.image_slice_pitch = 0;
 image_desc.num_mip_levels = 0;
 image_desc.num_samples = 0;
 image_desc.buffer= NULL;
 ocl_input_image = clCreateImage(context, CL_MEM_READ_ONLY,
 &image_format, &image_desc, NULL, &status);
 LOG_OCL_ERROR(status, "clCreateImage Failed");

 //Note when the host_ptr is NULL row_pitch and
 //slice_pitch should be set to 0.
 //Otherwise you will get a CL_INVALID_IMAGE_DESCRIPTOR error
 image_desc.image_row_pitch = 0;
 image_desc.image_slice_pitch = 0;

Chapter 9

[215]

 ocl_filtered_image = clCreateImage(context, CL_MEM_WRITE_ONLY,
 &image_format, &image_desc, NULL, &status);
 LOG_OCL_ERROR(status, "clCreateImage Failed");

 ocl_filter = clCreateBuffer(context,
 CL_MEM_READ_WRITE|CL_MEM_USE_HOST_PTR,
 WINDOW_SIZE*WINDOW_SIZE*sizeof(float), filter, &status);
 LOG_OCL_ERROR(status, "clCreateBuffer Failed");

 //Create OpenCL device output buffer
 return status;
}

In the preceding code, you will observe that the image_channel_order value is set
to CL_R while describing the image_format variable. And besides this, the image_
channel_data_type variable is set to CL_FLOAT. Now when the image pixel value
is sampled in the kernel using the read_imagef function, it will set the value of the
first vector component to the pixel value and the remaining are set to 0.0f. This
actually provides an added advantage in our kernel code, that it can take the input
images with the image_channel_data_type variable set as CL_RGBA, CL_BGRA, CL_
ARGB CL_RGB, or CL_RGBx and so on. The preceding code snippet creates two image
buffers, one for the input image ocl_input_image, and the other is the output image
ocl_filtered_image.

Median filter
The median_filter_kernel kernel implements the Median filter. This takes three
arguments, __read_only and __write_only input and output images respectively,
and the third argument is windowSize. Since median is the mid value of a set, when
elements are in sorted order, for the Median filter kernel no filter argument is needed,
rather we need to find the median from the elements of the current window itself. We
find the median of the windowSize*windowSize elements. This median value is the
result of the current pixel in process. The following code is the OpenCL kernel for the
Median Filter, which computes the median value of the neighboring pixels:

__constant sampler_t image_sampler = CLK_NORMALIZED_COORDS_FALSE
 | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;

__kernel void median_filter_kernel(__read_only image2d_t
 in_image, __write_only image2d_t out_image, int windowSize)
 {

Image Processing and OpenCL

[216]

 unsigned int x = get_global_id(0);
 unsigned int y = get_global_id(1);
 int halfWindow = windowSize/2;
 float4 pixelValue;
 int i, j, ifilter, jfilter;
 float oldPixels[9]; float tmp;
 int index =0;
 //Load the window in oldPixels
 for(i=-halfWindow, ifilter=0; i<=halfWindow; i++, ifilter++){
 for(j=-halfWindow, jfilter=0;j<=halfWindow;j++,
 jfilter++){
 pixelValue = read_imagef(in_image,image_sampler,(int2)(
 x+i, y+j));
 oldPixels[index] = pixelValue.x;
 index++;
 }
 }

 // Find the rank-th element
 int totalNumber = windowSize*windowSize;
 int rank = totalNumber/2 +1;
 for(int i=0; i< rank;++i)
 {
 for(int j=0; j< totalNumber-1 ; ++j)
 {
 if(oldPixels[j] > oldPixels[j+1])
 {
 tmp = oldPixels[j];
 oldPixels[j] = oldPixels[j+1];
 oldPixels[j+1] = tmp;
 }
 }
 totalNumber--;
 }
 //median is oldPixels[rank], update
 pixelValue.x = oldPixels[rank];
 write_imagef(out_image, (int2)(x, y), pixelValue);
 }

Chapter 9

[217]

To find the median of the windowSize*windowSize elements (let's keep
windowSize=3) we need not sort the data completely. Rather, it is enough to find the
top or bottom five elements, which we do and take the central element. The sorting
which is implemented in the preceding kernel would be comparison based, and results
in too many branches in the code. It is always good to avoid branches and use ternary
operators and rely on the compiler to generate a good branchless code. In the case
of median filtering we copy the global pixel elements to private memory anyway.

Sobel filter
In the sobel_filter_kernel kernel we can pass the filter operator as a global
parameter in the kernel code or as a private variable inside the kernel. In the
following kernel code, we have passed the filter operators filter_x_grad and
filter_y_grad in global memory. These are the 3 x 3 matrices and are used to
operate on each pixel. The other option is to store one matrix and compute the other
using transpose within the kernel. The pixel value is read using the read_imagef
function. This function returns a float4 pixel value. Since we had created the image
in CL_R format, only the intensity value is read from the vector, that is the kernel
processes a gray scale image. We compute the x and y gradients of the image pixel
using the Sobel filter as in the following code:

__constant sampler_t image_sampler = CLK_NORMALIZED_COORDS_FALSE
 | CLK_ADDRESS_CLAMP_TO_EDGE;
__kernel void
sobel_filter_kernel(__read_only image2d_t iimage,
 __write_only image2d_t oimage,
 __global float *filter_x_grad,
 __global float *filter_y_grad,
 int windowSize)
{
 unsigned int x = get_global_id(0);
 unsigned int y = get_global_id(1);
 int halfWindow = windowSize/2;
 float4 pixelValue;
 float gradientX = 0.0f;
 float gradientY = 0.0f;
 float computedFilter = 0.0f;
 int i, j, ifilter, jfilter;

Image Processing and OpenCL

[218]

 for(i=-halfWindow, ifilter=0; i<=halfWindow; i++, ifilter++)
 {
 for(j = -halfWindow, jfilter=0;j<=halfWindow; j++,jfilter++)
 {
 pixelValue = read_imagef(iimage, image_sampler,
 (int2)(x+i, y+j));
 gradientX +=
 filter_x_grad[ifilter*windowSize+jfilter]*pixelValue.x;
 gradientY += filter_y_grad[ifilter*windowSize+jfilter]
 *pixelValue.y;
 }
 }
 //gradient and gradient is the image gradient in X and Y axes.
 //Now compute the gradient magnitude
 computedGradient = sqrt(gradientX*gradientX +
 gradientY*gradientY);
 write_imagef(oimage, (int2)(x, y), (float4)(computedGradient,
 0.0f, 0.0f, 1.0f);
}

Finally the kernel computes the square root of Tx2 and Ty2 which is the magnitude of
gradient for that pixel. Finally the computed gradient value is written to the image
buffer. Note that the two gradient matrices Sx and Sy are a transpose of each other.
Also one row is negative of the second row. So ideally we could have computed
the matrices Tx and Ty without passing the gradient matrices as an argument to
the kernel. As an exercise, modify the sobel_filter_kernel to do edge detection
without passing the gradient matrices Sx and Sy.

JPEG compression
Image compression is a huge topic in itself, and we cannot discuss it all here
in the context of OpenCL. In the preceding section, we discussed the different
kinds of filters which would perform some operation on the raw image data and
result in some special effect to give the resultant image. After discussing different
kinds of filters we would jump to compressed image data representation. Image
representation is a tradeoff between space and quality. The image quality is directly
related to the amount of storage required to store it. If we try to have better quality,
it would come at the cost of space and if we want to reduce space, the quality
is affected. When we capture an image and store it raw pixel by pixel, it is in its
maximum size and also in its best natural quality.

In order to decrease the size of the image and retain as much quality as possible there
are various compression algorithms. These algorithms are either lossless or lossy
image compression.

Chapter 9

[219]

One such compression technique is JPEG (Joint Photographic Experts Group)
compression. JPEG is a standard (first approved as ITU-T in 1992) that defines
compression and decompression algorithms where compression amount and image
quality reduction can be adjusted. With a little perceivable loss of image quality, size
can be reduced approximately to one-tenth of the original. It is a lossy compression
in the sense that due to compression of an image some original pixel details would
be lost, that can never be recovered from the compressed image.

There are many variations of JPEG encoding. Baseline JPEG encoding is one of the
most popular techniques among them. Basic outline of the steps are described step
by step in the following section. Detailed discussion of each step is out of the scope
of this chapter. Those who have basic knowledge of the JPEG decoder can skip this
section and move to the following section on OpenCL implementation. For more
details readers are requested to refer to the related materials.

Encoding JPEG
JPEG encoding contains multiple steps, each one makes some sort of compression
or prepare data for compression at some future step. The steps are as follows:

1. Transform (R, G, B) representation to (Y', Cb, Cr) representation. The Y'
image is essentially a greyscale copy of the main image. Cb and Cr are
respectively blue and red difference chroma components. The transformation
formulae are as follows:
Y = 0.299 R + 0.587 G + 0.114 B
Cb = - 0.1687 R - 0.3313 G + 0.5 B + 128
Cr = 0.5 R - 0.4187 G - 0.0813 B + 128

There is a lot of redundancy in the raw image representation. This
redundancy can be removed by subsampling the chroma components. Y'
represents the luminosity or gray scale components of the image. Y'CbCr is
a color space that separates redundant and non-redundant information from
the visual quality perspective.

2. The Cb Cr details provide less visual impact and can be subsampled easily.
Resolution of Cb and Cr can be left as it is or it can be reduced to half, that is
the Cb and Cr components are down sampled in both the x and y directions.
This results in one Cb and Cr 8 x 8 block for every four Y component 8 x 8
blocks. These four 8 x 8 blocks and one each of down sampled Cb and Cr 8 x
8 blocks represents one MCU (Minimum Coded Unit) in JPEG.
The eye is more sensitive to brightness difference than fine color details,
loosing less quality we reduce more size here.

Image Processing and OpenCL

[220]

3. For each MCU and within each MCU, each 8 x 8 block is applied the Discrete
Cosine Transformation (DCT) separately. As compared to a data range 0
to 255, DCT works better in the data range -128 to 127. So data is converted
to range -128 to 127 by subtracting 128 from each matrix element before
performing DCT. In the end of the decoder, 128 must be added back to get
the values correspondingly.
On transformation, the DCT operation converts a spatial domain image to
frequency domain image. This saves space while affecting the quality to a
lesser extent. Partitioning into small non-overlapping blocks of size 8 x 8 is
done to one (reduce the cost of DCT 2) special redundancy is found based
on a smaller region which is better for image quality.

4. Quantization of DCT coefficients: To scale the DCT coefficient to a
smaller value, we use a quantization matrix say Q(i, j) of size 8 x 8. Each
element of the coefficient matrix is divided by the corresponding element
of quantization matrix, and then the resulting values are approximated to
nearest integer to get a smaller suitable integral value. It is this step where
one can control the compression level. A bigger value in quantization matrix
element result in more compression but less quality and vice versa.

5. After quantization, many elements become zero and they are located towards
the right bottom corner of matrix. While transforming the two dimensional
matrix in one dimensional array of integers, instead of representing in row
major or column major way, scanning is done in a zig-zag way described in
the following figure:

H
E
I
G
H
T

WIDTH

Image showing zig-zag scanning of an 8 X 8 block

Chapter 9

[221]

This increases the probability of getting most of the zeros at the end of the
array because of the fact that zeros are more likely to be located at the right
bottom direction of the matrix. With mostly zeros at the end of the zig-zag
scan, the trailing zeros can just be discarded, by putting an end of block
marker. This results in saving of space.

6. Run length encoding: After doing the zig-zag scanning, Run-length
encoding is employed on the coefficients to get one level of lossless
compression. A run is a successive occurrence of the same symbol, and
compression is achieved by replacing the entire run by a tuple of symbol and
run-length which is illustrated by the following example:

7. 5,5,5,5,5,5,5,5,5,5,2,2,2,2,2,2,2,3,3,3,3,3,3 becomes (5,10),
(2,7), (3,6).

8. Huffman coding: This is also a lossless compression algorithm based on
entropy encoding. In this step we futher compress based on the strategy
that employs lesser bits for representing more frequently occurring data,
and gradually more and more bits for less frequently occurring data. Here
we create a binary tree called the Huffman tree, where each leaf node
represents a symbol (here, an integer representing the output of run-length
encoded value). Each non-leaf node represents a letter of code-word. Just
concatenating the letters encountered when traversed from root to a leaf
would give the code-word for the symbol that the leaf represents. Since
the path length to node at lower height from root is less than that to a node
at higher height, length of the code-word for more frequently occurring
symbols are less, and those for less frequently occurring are more. Leaves at
a lower height have more frequency and higher height have lesser frequency.
Huffman coding is employed on the data obtained from run-length encoding.

This completes the JFIF version of JPEG compression. The final file format is
described in brief as follows.

JFIF stores 16-bit words in big-endian format in a stream of blocks each of which are
identified by a marker value. The first two bytes are the Start of Image (SOI) marker
with values 0FFD8. Then with marker APP0 with value 0xFFE0 a block starts. The
APP0 marker refers to the JFIF baseline format encoded image. This block contains
length, version, aspect ratio, and so on, header information.

A Quantization table is identified by the marker DQT with value 0xFFDB. This
block, in addition to quantization values, contains table-length, precision, and the
destination ID which is 0 or 1, indicating luminance or chrominance respectively.
Quantization values form an 8 x 8 matrix Quantization Table. There would be two
consecutive blocks of the preceding type one for luminance or chrominance.

Image Processing and OpenCL

[222]

This is followed by the Huffman table section. The DHT (Define Huffman Table)
marker with the value 0xFFC4 identifies this table section and after that the SOS
(Start of Scan) marker with value 0xFFDA identifies the block of scan data. End of
image is identified by the marker EOI (End of Image) with value 0xFFD9.

In JPEG decoding, JPEG files are read in the reverse order of the encoder algorithm
(described in the preceding paragraphs) we transform data to finally get the pixels.
In our implementation, we have used the JPEGdecoder_MCU kernel to compute DCT.
This kernel takes the help of the device function DCTQuantInv8x8LS_JPEG_16s8u
which in return is taking help of another device function Idct.

OpenCL implementation
In this section we will discuss implementation of a JPEG decoder. In a JPEG decoder,
when the file is scanned and as the markers arrive one after the other, the different
tables are decoded and a data structure is filled, corresponding to the Huffman Table
and Quantization table. There is no scope for parallelizing here.

On parsing the DQT and DHT tables from a JPEG file, next arrives the SOS marker,
which is the Start of Scan marker. After this all the MCUs are encoded. Each MCU
is of variable length and varies for each 8 x 8 block. This is precisely the reason that
it is difficult to find parallelism here, as there is no mechanism to predict an MCU
boundary for the encoded bits. Only after running a Huffman decode and when a
run length is applied we get the 64 element entry which when fills the 8 x 8 block in
a zig-zag manner, we get the DCT coefficients of Y, Cb, and Cr components. Finally
after multiplying with the Quantization table, we perform an inverse DCT on the 8
x 8 block. The following code snippet computes the IDCT of an 8 x 8 block, which
is applied to all the blocks of Y, Cb, and Cr components in an MCU. Only after
obtaining the MCUs we can continue with the inverse DCT operation, which can run
in parallel. It is this part of the JPEG decoder which we are trying to implement in
parallel using OpenCL.

void Idct(const short *pSrc, unsigned char *pDst)
{
 int i, j, k, l;
 float partialProduct;
 float tmp[64];
/*c is the precomputed cosine products from the I-DCT formula*/
 const float c[8][8] = {
 {0.35355338F, 0.35355338F, 0.35355338F, 0.35355338F,
 0.35355338F, 0.35355338F, 0.35355338F, 0.35355338F},
 {0.49039263F, 0.41573480F, 0.27778512F, 0.09754516F,
 -0.09754516F, -0.27778512F, -0.41573480F, -0.49039263F},
 {0.46193975F, 0.19134171F, -0.19134171F, -0.46193975F,
 -0.46193975F, -0.19134171F, 0.19134171F, 0.46193975F},

Chapter 9

[223]

 {0.41573480F, -0.09754516F, -0.49039263F, -0.27778512F,
 0.27778512F, 0.49039263F, 0.09754516F, -0.41573480F},
 {0.35355338F, -0.35355338F, -0.35355338F, 0.35355338F,
 0.35355338F, -0.35355338F, -0.35355338F, 0.35355338F},
 {0.27778512F, -0.49039263F, 0.09754516F, 0.41573480F,
 -0.41573480F, -0.09754516F, 0.49039263F, -0.27778512F},
 {0.19134171F, -0.46193975F, 0.46193975F, -0.19134171F,
 -0.19134171F, 0.46193975F, -0.46193975F, 0.19134171F},
 {0.09754516F, -0.27778512F, 0.41573480F, -0.49039263F,
 0.49039263F, -0.41573480F, 0.27778512F, -0.09754516F}
 };

 for (i=0; i<8; i++)
 for (j=0; j<8; j++)
 {
 partialProduct = 0.0F;
 for (k=0; k<8; k++)
 partialProduct+= c[k][j]*pSrc[8*i+k];
 tmp[8*i+j] = partialProduct;
 }

 // Transpose operation is integrated into address mapping
 by switching
 // loop order of i and j

 for (j=0; j<8; j++)
 for (i=0; i<8; i++)
 {
 partialProduct = 0.0F;
 for (k=0; k<8; k++)
 partialProduct+= c[k][i]*tmp[8*k+j];
 l = (int)(partialProduct+0.5F);
 l = l+ 128;
 if(l < 0)
 l = 0;
 if(l > 255)
 l = 255;
 pDst[8*i+j] = l;
 }
}

Inverse DCT is an important computational step in decoding a JPEG image.
This inverse DCT can be applied to the entire 8 x 8 block in an MCU in parallel.
The role of the Idct()function is to compute inverse DCT, taking values in pSrc
and output at pDst. It uses an 8 x 8 matrix of constant floats for this transformation.
This matrix is the pre-computed cosine products for an 8X8 matrix.

Image Processing and OpenCL

[224]

The OpenCL kernel JPEGdecoder_MCU takes 11 arguments. For each of the three
types (one for luminance and the other two for chrominance) of MCU data there are
two parameters. One is the raw data array for which we want to compute the inverse
DCT, and the other is the global buffer for the Quantization table for that type. The
next parameter is simply the output buffer. The remaining four parameters are total
height and width and also MCU height and width. Entire transformations are done
just by calling the function void DCTQuantInv8x8LS_JPEG_16s8u six times for each
8 x 8 block, followed by nested for loops for writing back the data. The first four are
computing the luminance data and last two are the chrominance data. The following
sample code computes the six 8 x 8 blocks for the luminance and chrominance data
given one input MCU. There will be as many instances or work-items in the image
as there are MCUs.

_kernel void
JPEGdecoder_MCU(__global short *pMCUdata1, __global unsigned
 short *pQuantTable1, __global short *pMCUdata2,
 __global unsigned short *pQuantTable2, __global
 short *pMCUdata3, __global unsigned short *pQuantTable3,
 __global unsigned char * output, const unsigned
 int width, const unsigned int height, const unsigned
 int mcuWidth, const unsigned int mcuHeight)
{

 /* get the block ids in both the directions */
 int bx = get_global_id(0);
 int by = get_global_id(1);
 int tbx = get_global_size(0);
 int tby = get_global_size(1);
 int index = 0;
 int imageSize=0;

 unsigned char dst[64];
 __global short *tempPtr1;

The first six parameters are the MCU data and their corresponding Quantization
matrices. pMCUdata1 is the Y component MCU data, pMCUdata2 is the Cb
component MCU data, and finally pMCUdata3 is the Cr component data.
These pointers contain the raw decoded DCT coefficients. Each work-item finds the
inverse DCT and multiplies it with the quantization coefficients. The following code
is the continuation of the above kernel. Note, the __global address space qualifier
for the tempPtr1 variable. OpenCL C has a restriction that casting a pointer of one
address space to another pointer in a different address space is not allowed.
Hence we provide the address space qualifier __global. Without that the tempPtr1
variable would have been defaulted to the __private address space.

Chapter 9

[225]

 /* get the local ids within the block */
 /*Y component*/
 tempPtr1 = pMCUdata1 + by * tbx *(sizeof(int) * 64) + bx *
 sizeof(int) * 64 ;
 DCTQuantInv8x8LS_JPEG_16s8u(tempPtr1,dst,8,(pQuantTable1));
 for (int i=0;i<8;i++)
 {
 for (int j=0;j<8;j++)
 {
 index = width*by*mcuHeight + bx*mcuWidth + i*width + j;
 output[index] = dst[i*8 + j];
 }
 }

 tempPtr1 = pMCUdata1 + by * tbx * sizeof(int) * 64 + bx *
 sizeof(int) * 64 + 64;
 DCTQuantInv8x8LS_JPEG_16s8u(tempPtr1,dst,8,pQuantTable1);
 for (int i=0;i<8;i++)
 {
 for (int j=0;j<8;j++)
 {
 index = (width*by*mcuHeight) + (bx*mcuWidth + 8) + i*width
 + j;
 output[index] = dst[i*8 + j];
 }
 }

 tempPtr1 = pMCUdata1 + by * tbx *(sizeof(int)*64) + bx *
 sizeof(int) * 64 + (2 * 64);
 DCTQuantInv8x8LS_JPEG_16s8u(tempPtr1,dst,8,pQuantTable1);
 for (int i=0;i<8;i++)
 {
 for (int j=0;j<8;j++)
 {
 index = (width*by*mcuHeight) + (bx*mcuWidth) + (i+8)*width
 + j;
 output[index] = dst[i*8 + j];
 }
 }

 tempPtr1 = pMCUdata1 + by * tbx *(sizeof(int)*64) + bx *
 sizeof(int) * 64 + 3 * 64;
 DCTQuantInv8x8LS_JPEG_16s8u(tempPtr1,dst,8,pQuantTable1);
 for (int i=0;i<8;i++)
 {

Image Processing and OpenCL

[226]

 for (int j=0;j<8;j++)
 {
 index = (width*by*mcuHeight) + (bx*mcuWidth + 8) +
 (i+8)*width + j;
 output[index] = dst[i*8 + j];
 }
 }

The preceding four for loops decode the four 8 x 8 Y components and stores the
result in the output buffer. Similarly, the input buffer of Cb and Cr coefficients are
taken and inverse DCT is applied to get the raw pixel values. The following code
shows the decoding of the Cb and Cr components. You can see that a pixel value
is copied to four different locations. The baseline JPEG compression which we are
trying to evaluate here has a chroma subsampling of 4:1:1.

 /*Cb component*/
 tempPtr1 = pMCUdata2 + by * tbx *(1*64) + (bx * 1 * 64);
 DCTQuantInv8x8LS_JPEG_16s8u(tempPtr1,dst,8,pQuantTable2);

 imageSize = (width * height);
 for (int i=0;i<8;i++)
 {
 for (int j=0;j<8;j++)
 {
 index = imageSize + width*by*mcuHeight + bx*mcuWidth +
 2*i*width + 2*j ;
 output[index] = dst[i*8 + j];
 index = imageSize + width*by*mcuHeight + bx*mcuWidth +
 2*i*width + 2*j + 1;
 output[index] = dst[i*8 + j];
 index = imageSize + width*by*mcuHeight + bx*mcuWidth +
 (2*i + 1)*width + 2*j;
 output[index] = dst[i*8 + j];
 index = imageSize + width*by*mcuHeight + bx*mcuWidth +
 (2*i + 1)*width + 2*j + 1;
 output[index] = dst[i*8 + j];
 }
 }

Chapter 9

[227]

 /*Cr component*/
 tempPtr1 = pMCUdata3 + by * tbx *(1*64) + (bx * 1 * 64);
 DCTQuantInv8x8LS_JPEG_16s8u(tempPtr1, dst, 8, pQuantTable3);
 imageSize = 2*(width * height);
 for (int i=0;i<8;i++)
 {
 for (int j=0;j<8;j++)
 {
 index = imageSize + width*by*mcuHeight + bx*mcuWidth +
 2*i*width + 2*j ;
 output[index] = dst[i*8 + j];
 index = imageSize + width*by*mcuHeight + bx*mcuWidth +
 2*i*width + 2*j + 1;
 output[index] = dst[i*8 + j];
 index = imageSize + width*by*mcuHeight + bx*mcuWidth +
 (2*i + 1)* width + 2*j;
 output[index] = dst[i*8 + j];
 index = imageSize + width*by*mcuHeight + bx*mcuWidth +
 (2*i + 1)* width + 2*j + 1;
 output[index] = dst[i*8 + j];
 }
 }
}

Role of the function

void DCTQuantInv8x8LS_JPEG_16s8u(__global short int *pSrc,
 unsigned char *pDst, int dstStp, __global unsigned short
 pQuantInvTable)

The role of the function is to compute the inverse DCT of the input 8 x 8 block
pointed by pSrc. Once an inverse DCT is found the matrix is multiplied by the
Quantization matrix to obtain the raw pixel values which are stored back in pDst.
The Quantization matrix is given in the input parameter pQuantInvTable. For
computing inverse DCT it uses the Idct function which was shown earlier in this
chapter. All the functions are implemented in the JPEGDecoder sample code.

void Idct(const short *pSrc, unsigned char *pDst).

Take a look at the JPEG sample code available with the code distribution. Other
parts of JPEG decoding are not highly data parallel. So only the data parallel part
from the Decode algorithm is extracted to make a parallel implementation using
OpenCL. Remaining parts are implemented in host.

Image Processing and OpenCL

[228]

Summary
In this chapter we discussed a number of image processing algorithms. First we
have discussed four filters namely Mean filter, Median filter, Gaussian filter,
and Sobel filter. Then we discussed decoding of an image into a standard and very
popular format called JPEG. In image processing, OpenCL is very well suited for
point operation, since the operation is highly data parallel in nature. In the following
chapter, we would discuss how OpenGL can be used along with OpenCL.

References
Digital image processing and analysis—B.Chandra and D. D. Majumdar,
Prentice Hall India.

OpenCL-OpenGL
Interoperation

In this chapter we will discuss OpenCL and OpenGL interoperation, which in its
simple form means sharing of data between OpenGL and OpenCL in a program that
uses both. Interoperation is commonly abbreviated as interop.

OpenGL was first released in January 1992 for proving graphics acceleration
APIs. OpenCL was first released in December 2008 for accelerating general purpose
computing. Both OpenCL and OpenGL use a GPU for their acceleration (OpenCL
can use many other devices though). This OpenCL-GL Interoperation feature was
introduced from the earliest version of OpenCL, that is, 1.0, but was really improved
in OpenCL 1.1 by linking OpenCL and OpenGL
events and efficient sharing of image and buffers. The computational part is done
by OpenCL and graphics rendering is done by OpenGL without transferring data
to and from host. This optimization in memory bandwidth should lead to an increase
in efficiency and simplicity in coding.

In this chapter we first provide a brief introduction to OpenGL. Readers who are
already familiar with OpenGL programming may like to skip this section. OpenGL
itself is a vast course in graphics programming. So its tutorial is out of the scope of
the present chapter, as well as this book. OpenCL also supports interoperation with
Microsoft's DirectX 3D application programming interface D3D (Direct 3D).

In this chapter we start with a descriptive definition of OpenCL-OpenGL
interoperation. We then gradually move to discuss the actual implementation steps
and APIs. This includes detecting if interoperation is supported in the current
implementation, initializing OpenCL context for OpenGL interoperation, mapping
of a buffer (CL and GL), synchronization techniques, and then using the Texture and
Renderbuffer objects of OpenGL.

OpenCL-OpenGL Interoperation

[230]

Introduction to OpenGL
Open Graphics Language (OpenGL) is an open standard 2D and 3D graphics
library standardized by Khronos group. It is supported on multiple platforms
and also with many languages. Multiple vendors like AMD and NVIDIA,
provide OpenGL implementation which are accelerated on a GPU (Graphics
Processor Unit). Microsoft provided OpenGL support, for PC, from Windows 95.

There are two parts of an OpenGL program, shown as follows:

• Core OpenGL APIs, which are platform independent. For core API call,
the header <GL/gl.h> must be included in all the files using OpenGL.
It should be linked to OpenGL32.lib (part of Windows SDK) in Windows
and libGL.so in Linux. Another OpenGL utility header <GL/glu.h> is
included most of the time.

• The windowing and other platform-specific part. There are several libraries
like GLX for X Window based system developed by Silicon Graphics, WGL
or Wiggle for Windows developed and supported by Microsoft, and Core
OpenGL (CGL) or Apple Graphics Library (AGL) for Mac. All these libraries
provide APIs for interacting with their respective native Windowing system.
There is a cross-platform OpenGL Utility Toolkit (GLUT) library which
provides uniform interface for platform specific tasks. If GLUT is used then,
#include <GL/glut.h> would include all GL-specific and platform-specific
headers like the header required for WGL.

A very simple OpenGL program using GLUT would look like the following code:

#include <GL/glut.h>

#define WIN_WIDTH 350
#define WIN_HEIGHT 300

#define WIN_POS_X 150
#define WIN_POS_Y 150

void myDraw()
{
 //Set the color of drawing object with green color
 glColor3f (0.0, 1.0, 0.0);

Chapter 10

[231]

 //Draw shape, vertices are enclosed
 //within glBegin(...) and glEnd(...)
 glBegin(GL_TRIANGLES);// Drawing Using Triangles
 glVertex3f(0.0f, 1.0f, 0.0f);// Top vertex
 glVertex3f(-1.0f,0.0f, 0.0f);// Bottom Left vertex
 glVertex3f(1.0f, 0.5f, 0.0f);// Bottom Right vertex
 glEnd();// Finished Drawing The Triangle

 //Actual execution of the drawing command is completed.
 glFlush();

}

int main(int argc, char** argv)
{
 //Initializes glut, so must be called before other glut routines
 glutInit(&argc, argv);

 //Sets the display in RGB mode with support of double bufferring
 glutInitDisplayMode (GLUT_RGB | GLUT_DOUBLE);

 //Sets window's size in pizel
 glutInitWindowSize (WIN_WIDTH, WIN_HEIGHT);

 //Sets windows position with respect to top left corner
 of screen
 glutInitWindowPosition (WIN_POS_X, WIN_POS_Y);

 //Only create the window with the given name
 //"myWindowName", but don't display at this point
 glutCreateWindow ("myWindowName");

 //Create read background
 //sets the background color to be used
 glClearColor (1.0, 0.0, 0.0, 0.0);

 //Projection matrix stack is the target for matrix operations
 //default initial value is modelview stack
 glMatrixMode(GL_PROJECTION);

OpenCL-OpenGL Interoperation

[232]

 //Replace the current matrix with one identity matrix
 glLoadIdentity();

 //Set the co-ordinate system that determines how the drawn
 //image is maped to the screen
 //First four arguments are left, right, bottom, top of
 //the clipping planes
 //Fifth argument is nearValue which is nearer depth clipping
 //planes, it is behind the viewer so negative
 //Sixth argument is farvalue which is farther depth
 clipping planes
 glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

 //Sets the display function
 glutDisplayFunc(myDraw);
 //Enters event processing loop,actually displays the windows
 glutMainLoop();
 return 0;
}

The inline comments would explain the role of each API in brief. After setting
myDraw as a display function, it would be used to draw a scene in an OpenGL
window. To understand the detail of the matrix mode and co-ordinate system,
readers are requested to refer to some OpenGL manual/book. A series of books
are popularly known by the cover colors that is The Red Book, The Orange Book, The
Blue Book, The Green Book, and The Alpha Book. The last two books are specific to X
Window System and Windows respectively. An easy start can be Introduction to C
Programming with a little OpenGL Graphics for fun by Robert P. Cook. For 3D graphics,
a good introduction can be 3D Computer Graphics: A Mathematical Introduction with
OpenGL by Samuel R Buss.

Defining Interoperation
Interoperation is a feature that allows an application to share data between OpenCL
and OpenGL, without explicitly copying. Precisely, OpenCL-OpenGL interoperation
means creating OpenCL memory objects directly from the existing OpenGL data
structure without transferring data through the CPU. This saves a lot of data transfer
time. It also saves memory in the GPU and solves the problem of data management,
since the same data is being used by both OpenGL and OpenCL.

OpenCL applications can access data from two possible objects. They are as follows:

• Image Object
• Buffer Object

Chapter 10

[233]

On the other hand an OpenGL program can share data with OpenCL with three
possible objects. They are as follows:

• Vertex Buffer Object (VBO)
• Texture Object
• RenderBuffer Object

The OpenGL Vertex buffer object can be linked to the OpenCL buffer object, as in the
following figure:

Shared
Memory

VBO
Buffer
Object

OpenGL OpenCL

Similarly the OpenGL the texture or render buffer object can be linked to the
OpenCL image, as in the following figure:

Shared
Memory

Texture
Image
Object

OpenGL OpenCL

Which kind of application would use both OpenCL and OpenGL and how?
The answer is evidently not unique, but we can imagine a typical example of
such a program easily. The program should fulfill the following requirements:

• It must have some graphics to render, so that OpenGL is used
• A general purpose data parallel computation should be there,

OpenCL-OpenGL Interoperation

[234]

• where OpenCL would be used
• The OpenCL kernel should be accessing a data buffer of OpenGL,

probably updating with its own computation result

Implementing Interoperation
To use the Interoperation function we need to include the cl_gl.h header file.
This header contains declaration of the required function for interoperation.

Detecting if OpenCL-OpenGL Interoperation
is supported
Before discussing other implementation steps, we try to detect whether the
current environment supports this interoperation. We use the OpenCL API
clGetDeviceInfo(…) for this purpose. The first call would get the total size needed
to store the string (char*) returned by the second call. This string is a list of all the
device extensions that are supported by the current environment. We then try to find
from this list, whether it has an item called cl_khr_gl_sharing for Windows and
Linux and cl_apple_gl_sharing for Mac. Its presence would indicate the support
of OpenCL-OpenGL interoperation, otherwise not.

Find the size of device info string in a variable sizeOfExtensionString called
which is of type size_t as follows:

size_t sizeOfExtensionString;
cl_int errorStatus = clGetDeviceInfo(deviceToCheck,
 CL_DEVICE_EXTENSIONS,
 0,
 NULL,
 &sizeOfExtensionString);

Here, if CL_SUCCESS == errorStatus then sizeOfExtensionString gets the
proper value. Then we can proceed to get the actual string of device extension.
First we allocate sufficient memory to hold this string using the following code:

char* extensionString = (char*)malloc(sizeOfExtensionString);

On success of this memory allocation, we try to get the extension string into the
extensionString variable using the following code:

errorStatus = clGetDeviceInfo(deviceToCheck,
 CL_DEVICE_EXTENSIONS,
 sizeOfExtensionString,
 extensionString,
 &sizeOfExtensionString);

Chapter 10

[235]

The extensionString variable is nothing but a list of space-separated strings,
each indicating one extension. In this list we check the existence of the item
cl_khr_gl_sharing with some code/function as follows:

bool isCLGLInteropSupported(char* extensionString)
{
 std::string allStrings(extensionString);
 std::string searchString("cl_khr_gl_sharing");
 std::size_t index = allStrings.find(searchString);
 if(std::string::npos == index)
 {
 return false;
 }
 else
 {
 return true;
 }
}

For Apple the statement std::string searchString("cl_
khr_gl_sharing"); must be replaced with std::string
searchString("cl_apple_gl_sharing");.

If the preceding function returns true, we can continue our experiment of
interoperation with the current environment.

Initializing OpenCL context for OpenGL
Interoperation
The next task is to create OpenCL context with reference to OpenGL context in
Linux and Windows, or to a shared group in Mac. This OpenGL context or shared
group establishes a link between the operating system and graphic windows. The
context would be created as usual, with the clCreateContext OpenCL call, but
in addition we set the cl_context_properties which is the first argument of the
clCreateContext function. In the cl_context_properties argument we set the
corresponding property to mention the current context of OpenGL from which
data should be shared. Unfortunately, the actual code varies across different
operating systems. Here we present some code for Windows with a brief
explanation. In Windows, three properties must be set. They are CL_CONTEXT_
PLATFORM, CL_WGL_HDC_KHR, and CL_GL_CONTEXT_KHR. The CL_CONTEXT_PLATFORM
property specifies the platform. The CL_WGL_HDC_KHR property specifies the handle
to device context (HDC) for the rendering window. The CL_GL_CONTEXT_KHR
property specifies an OpenGL rendering context for the X11 or the Windows.

OpenCL-OpenGL Interoperation

[236]

To find the values of the CL_GL_CONTEXT_KHR and CL_WGL_HDC_KHR properties,
we have to use operating system specific calls. For the CL_CONTEXT_PLATFORM
property we use a standard OpenCL call and determine the platform ID using
the function clGetPlatformId(). The following code is an example declaration
of the cl_context_properties:

cl_context_properties custom_properties[] =
{
 //set platform
 CL_CONTEXT_PLATFORM,
 (cl_context_properties)currentPlatform,
 //set device context
 CL_WGL_HDC_KHR,
 (cl_context_properties) wglGetCurrentDC(),
 //set current context
 CL_GL_CONTEXT_KHR,
 (cl_context_properties) wglGetCurrentContext(),
 0
}

Then, we create the context as in the following code:

cl_context contextForInterop = clCreateContext(
 custom_properties,
 1,// number of devices
 pDevice, //pointer to current device id
 NULL,//pointer to pfn_notify
 pUserData, // pointer to user data
 clInt errNumner);

The enumeration type cl_context_properties specifies one property from a list
of enumeration types, each with valid enumeration values. This array should be
terminated with 0 to indicate the end.

The first argument currentPlatform is of type cl_platform structure. This value
can be obtained by a call to the OpenCL clGetPlatformIDs(…) command as shown
in the following code:

cl_uint noOfPlatforms;
clGetPlatformIDs (0, NULL, &noOfPlatforms);
cl_platform_id* PlatformIDList;
PlatformIDList =
 (cl_platform_id*)malloc(sizeof(cl_platform_id)*noOfPlatforms);
clGetPlatformIDs(noOfPlatforms, PlatformIDList, NULL);

Chapter 10

[237]

Then select the cl_platform in the variable currentPlatform from
PlatformIDList. This PlatformIDList is of type cl_platform_id*,
and on return contains the available list of platforms.

The functions wglGetCurrentDC() and wglGetCurrentContext() are called
wiggle functions which require inclusion of the windows.h header. These functions
are extensions of OpenGL in windows which allow linking OpenGL to Windows
programming.

On Linux, the graphical interface is provided by X11, X Window system. Here
the CL_WGL_HDC_KHR property is replaced by CL_GLX_DISPLAY_KHR. This specifies
the display object, which represents a connection to the X server. The remaining
enumeration for properties remain the same.

The following code creates the property-list and sets the suitable values for the
properties:

cl_context_properties custom_properties [] = {
 //Platform
 CL_CONTEXT_PLATFORM,
 (cl_context_properties) platform,
 // Connection to X server
 CL_GLX_DISPLAY_KHR,
 (cl_context_properties) glXGetCurrentDisplay(),
 //Rendering context
 CL_GL_CONTEXT_KHR,
 (cl_context_properties) glXGetCurrentContext(),
 0
};

After this, we create the context using the previous property-list as the first
parameter in the following call:

cl_context contextForInterop = clCreateContext(
 custom_properties,
 1,// number of devices
 pDevice, //pointer to current device id
 NULL,//pointer to pfn_notify
 NULL, // pointer to user data
 clInt_errNumner);

On Mac, instead of three properties only one property is to be set. Its data
type is CGLShareGroupObj and the value is obtained using the function call
CGLGetShareGroup like in the following code:

CGLContextObj cglCtx = CGLGetCurrentContext();
CGLShareGroupObj cglShGrp = CGLGetShareGroup(cglCtx);

OpenCL-OpenGL Interoperation

[238]

The enumeration is CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE and the
setting is done using the following code:

cl_context_properties custom_Properties[] =
{
 CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE,
 (cl_context_properties)kCGLShareGroup,
 0
};

Then create the context using the following code:

Ctx = clCreateContext(
 custom_Properties,
 0,
 0,
 NULL,
 NULL,
 clInt_errNumner);

Mapping of a buffer
Now we create the OpenCL buffer which is the same as some existing OpenGL
buffers. The clCreateFromGLBuffer OpenCL command is used for this purpose
as shown in the following code:

cl_mem clCreateFromGLBuffer (
 cl_context context,
 cl_mem_flags flags,
 GLuint bufObj,
 cl_int * errCode)

Here, context is a valid OpenCL context which is created from an OpenGL context
as described in preceding section. The flags field is a bit field which is similar to
the flag used in clCreateBuffer() but, in the present clCreateFromGLBuffer call,
only CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY, and CL_MEM_READ_WRITE values
can be used. The name of the OpenCL Buffer object which is already created using
OpenGL API is bufObj. The error code in case of error is errCode.

The OpenCL memory object should be created before the OpenGL rendering
starts but after the corresponding OpenGL VBO has been created, so this bufObj
must be created before the call of clCreateFromGLBuffer, although it may not be
initialized and the size of this buffer is used as the buffer object returned by the
clCreateFromGLBuffer call. The modification of the state of a GL Buffer object
using the GL API (such as glBufferData) when corresponding to the CL buffer
object exist and the buffer is acquired by CL buffer, it will lead to an undefined
behavior in subsequent use of the CL Buffer object.

Chapter 10

[239]

If we create an OpenCL memory object from the OpenGL buffer, the OpenGL object
would not get deleted until the OpenCL object is deleted.

Call of the cl_int clReleaseMemObject (cl_mem memobj) function decrements
the reference count to the memory object. This can be used to release the Buffer
object. Similarly call of the cl_int clRetainMemObject (cl_mem memobj) function
increments the reference count to the memory object, hence it is used to retain the
Buffer object.

Now we present a code snippet for illustration. The following code creates a vertex
Buffer object called vBuffObj and links it to GL_ARRAY_BUFFER:

#define BUF_SIZE 350
…
GLuint vBuffObj;
glGenBuffers(1, &vBuffObj);
glBindBuffer(GL_ARRAY_BUFFER, vBuffObj);
glBufferData(GL_ARRAY_BUFFER, BUF_SIZE, NULL, GL_STATIC_DRAW);

The call glGenBuffers(…) generates the Buffer object name. The first argument
specifies the number of names to be generated (here only one) and the second is
populated with the generated name(s). The generated names are integers, and not
necessarily continuous.

The call glBindBuffer(…) binds a Buffer object to the specified buffer binding point,
here that is the array buffer. Here, the vertex array pointer parameter is interpreted
as an offset within the buffer object, measured in basic machine units.

The call glBufferData(…) actually creates a new data store for the Buffer object
with specified size in bytes and usage (here, static draw).

After all the preceding steps we use the following code to create the corresponding
vertex buffer object of OpenCL:

cl_mem vboBuff = clCreateFromGLBuffer(ctx, CL_MEM_WRITE_ONLY,
vBuffObj, &err);

Hence vboBuff is an OpenCL memory object that refers to the OpenGL vertex
Buffer object vBuffObj.

OpenCL-OpenGL Interoperation

[240]

Listing Interoperation steps
After this creation, the typical steps are as follows:

1. Make sure that all the GL commands that were pending on the buffer
are finished.

2. Acquire the Memory object in OpenCL.
3. Call the kernel with a parameter as this memory object, so that the kernel

can update the memory buffer.
4. Make sure that kernel has finished.
5. OpenCL releases the acquisition of that buffer, and OpenGL reacquires the

buffer and renders the graphics from the buffer.

create Buffer

sync lik
clFinish(...)
or event
based sync

Acquire buffer

buffer buffer buffer

buffer buffer buffer

buffer buffer

OpenCL work
on this buffer

Release buffer
all OpenCL
work on this
buffer is done

destroy bufferdisplay from
buffercreate Buffer

glFinish(...)
or similar
sync command

all OpenGL
work on that
buffer is done

OpenCL

OpenGL

timeline

The steps shown in the previous figure are done by the following code:

…
glFinish();
clEnqueueAcquireGLObjects(cmdQueue,
 1,
 &vboBuff,
 0,//No event to wait for
 NULL, // Wait event list pointer is NULL
 NULL //Event of this command
);
clEnqueueNDRangeKernel(
 cmdQueue,
 KernelToWriteOnVBO,
 2,
 NULL,
 globalSize,

Chapter 10

[241]

 NULL,
 0,
 NULL,
 NULL);

clFinish(cmdQueue);
clEnqueueReleaseGLObjects(cmdQueue,
 1,
 &vboBuff,
 0,
 NULL,
 NULL);

Now render the vertex Buffer using OpenGL rendering steps.

When the compiler directive cl_khr_gl_event is enabled (also called OpenCL
extension)we don't need to make an explicit call to functions glFinish() and
clFinish() because with cl_khr_gl_event implicit synchronization is enabled.
Hence, clEnqueueAcquireGLObjects() acquires only after all corresponding
OpenGL's pending commands (that writes on memory object) get finished.
A similar thing happens for function clEnqueueReleaseGLObjects().

To check if this extension is available, we can use clGetDeviceInfo(…).
To enable it we can use the compiler directive
#pragma OPENCL EXTENSION cl_khr_gl_event : enable
or
#pragma OPENCL EXTENSION all : enable.

Synchronization
We have already found means to synchronize OpenCL and OpenGL via
glFinish(), clFinish(…), or using implicit synchronization. Here we discuss some
explicit synchronization mechanisms. The synchronization needs two things enabled,
extension cl_khr_gl_event should be enabled and OpenGL context should support
the fence synchronization object (for OpenGL Version 3.2 or greater, or in case the
support exists for ARB_sync extension). The advantage of explicit synchronization
is that it allows more fine-grained synchronization.

The fence synchronization object is created with an OpenGL call shown as follows

GLsync fSyncObj = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);

Here GLsync is the synchronization object type. Currently only one standard type
is supported called fence. The first parameter specifies the condition on which it
would receive the signal. Right now, the only supported option is GL_SYNC_GPU_
COMMANDS_COMPLETE, which is used here. The second parameter is bit based flags.
No flag is supported right now so 0 is used.

OpenCL-OpenGL Interoperation

[242]

The function glFenceSync(…) not only creates a sync object of type fence but
inserts it into the GL command stream. So at the location of the call of this function
a fence is placed. This fence is signaled when the GPU completes all its vertex
Buffer operations which were invoked before it. But it is non-blocking in the sense
that the CPU can proceed with next command. Only the glWaitSync(…), and
glClientWaitSync(…) commands are blocking commands.

This fence object created by calling the glFenceSync(…) function can be used to
create an OpenCL event so that the event is completed when fence object is signaled.
That way we would able to get the OpenGL signal at OpenCL context, the command
for which is as follows:

cl_event fenceEvent = clCreateEventFromglsyncKHR (
 ctxCreatedFromGL,
 fSyncObj,
 NULL);

The first parameter ctxCreatedFromGL is a valid context that is created from
OpenGL context. The second parameter is the fence sync object. The third
parameter is cl_int* error code to be returned which is set to NULL here for
the sake of simplicity.

This cl_event called fenceEvent generated from the
clCreateEventFromglsyncKHR() call would have a few special characteristics.
The clCreateEventFromGLsyncKHR command implicitly performs a
clRetainEvent() call on this CL event object, and creates a reference on the fence
sync object. When an event is deleted the reference is deleted. The value of CL_
EVENT_COMMAND_TYPE (of type cl_event_info) would be CL_COMMAND_GL_FENCE_
SYNC_OBJECT_KHR, and the value of CL_EVENT_COMMAND_QUEUE (of type cl_event_
info) would be NULL, since it's not directly associated with any command queue
of OpenCL. The value returned by a call to clGetEventInfo with parameter CL_
EVENT_COMMAND_EXECUTION_STATUS is either CL_SUBMITTED or CL_COMPLETE, but
never CL_QUEUED or CL_RUNNING. CL_SUBMITTED which means that the event has not
completed yet. CL_COMPLETE means it is completed. All these values can be queried
and verified with a clGetEventInfo() call. Due to the singular nature of the CL
event created by clCreateEventFromglsyncKHR(), this cl_event viz. fenceEvent
can only be used in a waitlist of events of clEnqueueAcquireGLObjects.
The following code is a sample call

clEnqueueAcquireGLObjects(cmdQueue,
 1,
 &vboBuff,
 1, //Number of events in wait-for list
 &fenceEvent, //GL event to wait for
 NULL //Event of this command
);

Chapter 10

[243]

We have discussed how to get an OpenCL event from an OpenGL sync object. Now
we discuss the opposite process. We will now see how to get an OpenGL sync object
from an OpenCL event that is, cl_event. For this we need to have enabled the
OpenGL extension ARB_cl_event.

Suppose we have a valid cl_event called eventFromCl, as follows:
 cl_event eventFromCl; eventFromCl;

To get a corresponding fence object we use the glCreateSyncFromCLeventARB()
OpenGL call. This call returns a GLsync object, so that waiting on this object
is the same as waiting on the corresponding cl_event, and can be used with
glWaitSync(), glClientWaitSync(), and glFenceSync(). This call takes three
parameters. The first parameter would be a valid context of OpenCL. The second
parameter is the corresponding cl_event object which is linked with. The third
parameter is a bit-field.

Creating a buffer from GL texture
Similarly to create a an OpenCL buffer from 2D and 3D texture memory we used the
following calls respectively on OpenCL1.0 and OpenCL1.1:

cl_mem clCreateFromGLTexture2D (cl_context ctx,
 cl_mem_flags flg,
 GLenum txtr_target,
 GLint miplevel,
 GLuint texture,
 cl_int * errcode_ret)

The preceding API creates an OpenCL 2D object from an OpenGL 2D texture object
and the following code is for corresponding 3D:

cl_mem clCreateFromGLTexture3D (cl_context ctx,
 cl_mem_flags flg,
 GLenum txtr_target,
 GLint miplevel,
 GLuint texture,
 cl_int * errcode_ret)

Both take a similar set of arguments. Parameter flg is a valid OpenCL context that
is created from OpenGL context or OpenGL 3D context in respective cases.

The second parameter that is flg, is cl_mem_info enumeration whose permitted
values here are limited to CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY, and CL_MEM_
READ_WRITE only for both the APIs.

OpenCL-OpenGL Interoperation

[244]

The third parameter is GLenum texture_target. For the 2D texture GLenum
texture_target, it specifies the image type of texture without creating any
reference to a bound GL texture object. GL_TEXTURE_2D, GL_TEXTURE_CUBE_
MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_
MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_
NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z are the permitted values. Value
GL_TEXTURE_RECTANGLE is also permitted but only for Version 1.3 or higher . For 3D
the only permitted value is GL_TEXTURE_3D.

The fourth parameter miplevel gives the mipmap level to be used. Mipmaps are
pre-computed sets of images, which come with main texture for faster rendering.
This value is mostly set to 0 because the implementations report error for
higher values.

The fifth parameter GLuint texture is name of a texture object. In respective
cases 2D and 3D texture objects. According to the rules of texture completeness in
OpenGL, a texture object must be a complete texture.

The last parameter is as error code which may be one of the CL_OUT_OF_HOST_
MEMORY, CL_INVALID_MIPLEVEL, CL_INVALID_GL_OBJECT, CL_INVALID_CONTEXT,
CL_INVALID_IMAGE_FORMAT_DESCRIPTOR, or CL_INVALID_VALUE (for invalid flags
or texture target).

OpenCL 1.2 introduces a new API, as follows:

cl_mem clCreateFromGLTexture (cl_context ctx,
 cl_mem_flags flg,
 GLenum txtr_target,
 GLint miplevel,
 GLuint texture,
 cl_int * errcode_ret)

The meaning of the parameters are similar, except the parameter texture should be
the name of a OpenGL 1D, 1D array, 2D, 2D array, 3D, rectangle, cubemap or buffer
texture object, and txtr_target can be the corresponding supported values.

Renderbuffer object
Renderbuffer are another type of OpenGL objects which are optimized for use
as render targets, especially when the user doesn't need to sample from the produced
image. Functions glGenRenderbuffers(), glDeleteRenderbuffers(),
and glBindRenderbuffer() are there respectively for the creation , deletion,
and binding of the Renderbuffer object (refer to the OpenGL manual for detail).

Chapter 10

[245]

To create an OpenCL memory object from a Renderbuffer object we use the
following function:

cl_mem clCreateFromGLRenderbuffer (cl_context cxt,
 cl_mem_flags flg,
 GLuint buff,
 cl_int * errcode_ret);

The function clCreateFromGLRenderbuffer was introduced in OpenCL 1.0. The
first parameter is an OpenCL context, created from OpenGL context. The second
parameter is a bit-field flag. The values it can take are CL_MEM_READ_WRITE, CL_MEM_
READ_ONLY, and CL_MEM_WRITE_ONLY. The third parameter is a Renderbuffer object's
name. The Renderbuffer dimension and format would be used to create an OpenCL
2D image object.

The OpenGL internal format of a Renderbuffer object can be
GL_RGBA8I, GL_RGBA8I_EXT, GL_RGBA16I, GL_RGBA16I_EXT, GL_RGBA32I, GL_
RGBA32I_EXT, GL_RGBA8UI, GL_RGBA8UI_EXT, GL_RGBA16F, GL_RGBA16F_ARB, and
so on. When an OpenCL object is created from a Renderbuffer object, the channel
order and the channel data type is as given in the table below.

Internal format of
Renderbuffer Object in GL

Image Channel Data
Type in CL

Image Channel order in CL

GL_RGBA16 CL_UNORM_INT16 CL_RGBA
GL_RGBA8 CL_UNORM_INT8 CL_RGBA or CL_BGRA
GL_RGBA32I CL_SIGNED_INT32 CL_RGBA
GL_RGBA16I CL_SIGNED_INT16 CL_RGBA
GL_RGBA8I CL_SIGNED_INT8 CL_RGBA
GL_RGBA32UI or GL_
RGBA32UI_EXT

CL_UNSIGNED_INT32 CL_RGBA

GL_RGBA16UI or GL_
RGBA16UI_EXT

CL_UNSIGNED_INT16 CL_RGBA

GL_RGBA8UI or GL_
RGBA8UI_EXT

CL_UNSIGNED_INT8 CL_RGBA

GL_RGBA32F or GL_
RGBA32F_ARB

CL_FLOAT CL_RGBA

GL_RGBA16F or GL_
RGBA16F_ARB

CL_HALF_FLOAT CL_RGBA

OpenCL-OpenGL Interoperation

[246]

The function clCreateFromGLRenderbuffer returns an image object or NULL
respectively on success or failure to create the buffer object. The error code
CL_SUCCESS is returned in the fourth parameter cl_int * errcode_ret; and in
the second case error-code CL_INVALID_CONTEXT , CL_INVALID_VALUE (if flg is
not valid), CL_INVALID_GL_OBJECT, CL_INVALID_IMAGE_FORMAT_DESCRIPTOR
(if for current internal format of OpenGL there is no corresponding map in the
OpenCL image), or CL_OUT_OF_HOST_MEMORY is returned.

After creating the OpenCL image object, if the format or dimension of the
source OpenGL Renderbuffer object is modified (using OpenGL APIs such
as glRenderbufferStorage(…)), then the behavior of the created OpenCL
object is undefined in subsequent use. To release the image object we use the
clReleaseMemObject function.

Summary
In this chapter we have covered the topic of CL-GL interoperation. After giving
a brief description of OpenGL, we defined OpenCL-OpenGL interoperation and
the required steps of implementation (including detection of interoperation
support, initializing OpenCL context for OpenGL interoperation, mapping of
Buffer (CL and GL), synchronization techniques, and then using the Texture
and Renderbuffer objects of OpenGL). In the following chapter we will discuss
application of OpenCL in some algorithms from various fields such as statistics,
machine learning, and so on.

Case studies – Regressions,
Sort, and KNN

In this chapter we present more examples to illustrate the capability of OpenCL in
different domains. For each example, we present a very brief introduction to the
problem and algorithm before discussing the implementation using OpenCL kernel.
Readers who are already well-versed with any particular problem may like to
directly jump to the discussion of kernel. It is worth remembering the fact that all the
kernels are not going to give some performance benefit for all ranges of data and on
every GPU. Here instead of discussing optimization techniques on these algorithms
(which is already discussed in the section Case study – matrix multiplication of Chapter
8, Basic Optimization Techniques with Case Studies) we aim to make the reader more
comfortable to convert sequential algorithms from various domains into one that
exploits the data parallel part of it to write OpenCL kernels.

We will discuss four problems in this chapter. The first two are from the statistics
domain. The third one is the parallel sorting algorithm. The fourth, KNN
classification will use the sorting algorithm. The following are the case studies
discussed here:

• Curve Fitting with least squares Method
 ° Straight Line approximations
 ° Parabolic Approximations

• Sorting Algorithm – Bitonic Sort
• K-Nearest Neighborhood Classification Algorithms

Case studies – Regressions, Sort, and KNN

[248]

Regression with least square curve fitting
In least square curve fitting (line and parabola), we are given two interdependent
scalar quantities described by two variables say X and Y, but the exact relationship
between them is not known in terms of a function like Y =f(X). But instead we are
given N pair of values (xi, yi) for i equals 1,2,…, N, which exactly means that when
X takes the value xi, then Y takes the value yi. Generally X is called the independent
variable and Y is called the dependent variable. We have to construct a function like
Y =f(X) which approximates the exact relationship between X and Y. This function
f(X) would be constructed using the given set of value pairs (xi, yi). Since function
f is approximating the original function and choice of function f is in our hand, we
choose a polynomial function for simplicity and also are motivated by a theorem
in mathematical analysis called Stone Weierstrass Theorem. Informally speaking
this theorem states that in every closed interval, any continuous function can be
approximated by a polynomial sufficiently well as desired just by increasing the
degree and adjusting the coefficient of the terms.

Linear approximations
First we consider a polynomial of degree one, which is the linear approximation.
So the function f takes the form as the following:

0 1y a a x= +

Our task is to find the value of 0a and 1a . To find these two values we use the

given (, y)i ix for i equals 1,2,…, N and a technique called method of least square.

This method states to find a straight line 0 1y a a x= + , that is, find the values of
0a and 1a such that the sum of the square of vertical distance of all points (, y)i ix

from the line is minimized.

As described in the following figure, we are using basic analytical geometry

knowledge to find the sum which is equal to 1

n
ii
d

=∑ , where id equals vertical

distance between the line and the point (),i ix y , which is ()20 1i iy a a x− − . So we

have to optimize the ()20 11

n
i ii
y a a x

=
− −∑ by suitable choice of 0a and 1a .

Chapter 11

[249]

() ()2 2
0 0 1

1 1
,

N n

i i i i
i i
y a a x d F a a

= =

− − = =∑ ∑

Using optimization techniques (which is out of the scope of this book), we arrive
at the result that the mentioned sum takes minimum value as shown in the
following equations:

2

1 1 1 1
0 2

2

1 1

1 1 1
1 2

2

1 1

N N N N

i i i i i
i i i i

n N

i i
i i

N N N

i i i i
i i i

N N

i i
i i

y x x x y
a

N x x

N x y x y
a

N x x

= = = =

= =

= = =

= =

 −
 =

 −

 −
 =
 −

∑ ∑ ∑ ∑

∑ ∑

∑ ∑ ∑

∑ ∑

Case studies – Regressions, Sort, and KNN

[250]

Parabolic approximations
Secondly we consider the polynomial of degree two like y =a0 + a1x + a2x2 and
use the same least square technique. This approximation is called the parabolic
approximation. Here we need to find the values of three variables a0, a1, and a2.
Using the minimization technique, we arrive at the following three equations:

2
0 1 2

1 1 1

2 3
0 1 2

1 1 1 1

2 2 3 4
0 1 2

1 1 1 1

N N N

i i i
i i i
N N N N

i i i i i
i i i i
N N N N

i i i i i
i i i i

y a N a x a x

x y a x a x a x

x y a x a x a x

= = =

= = = =

= = = =

= + +

= + +

= + +

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

These three equations are solved to get the desired values of a0, a1, and a2. The
solution is done using Cramer's Rule in the following way:

01 1 1 1

2 2 2 1 2

3 3 3 2 3

1 1 1 1 1 1 1 1 1

2 2 2 1 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

1 1 1
31 2

2 2 2 0 1 3

3 3 3

, ,

, ,

0

ap q r s
p q r a s
p q r a s

p q r s s s p s p
and D p q r D s s s D p s p

p q r s s s p s p

p q r
DD DD p q r then a a a

D D D
p q r

provided D

 =

= = =

= = = =

≠

Chapter 11

[251]

Implementation
We start with a sequential implementation using two functions called
linearApproximation and parabolicApproximation. Both take the first three
arguments as inputs. First argument is the size of array N and second and third
arguments are two arrays pX and pY (each of size N) containing the given values
of coordinates X and Y. The remaining parameters are output parameters. For the
linearApproximation function there are two output parameters, namely, pA0 and
pA1. Pointers are passed to get the values. As explained in the following code:

void linearApproximation(size_t N,
 float* pX,
 float* pY,
 float* pA0,
 float* pA1)
{
 float sumX = 0.f;
 float sumY = 0.f;
 float sumXY = 0.f;
 float sumXX = 0.f;
 for(int i=0; i < N; ++i)
 {
 sumX += *(pX+i);// *(pX+i) is same as pX[i] in meaning
 sumY += *(pY+i));
 sumXY += (*(pX+i))*(*(pY+i)));
 sumXX += (*(pX+i))*(*(pX+i)));
 }

 *pA0 = (sumY*sumXX - sumX*sumXY)/(N*sumXX - sumX**2);
 *pA1 = (N*sumXY - sumX*sumY)/(N*sumXX - sumX**2);
}

For the parabolicApproximation function there are three output parameters,
namely, pA0, pA1, and pA2. To get the values pointer to those are passed. Finding the
values in the parabolicApproximation function is not straightforward as with the
linearApproximation function, since we finally have to use Cramer's Rule.

void parabolicApproximation(size_t N,
 float* pX,
 float* pY,
 float* pA0,
 float* pA1,
 float* pA2)
{

Case studies – Regressions, Sort, and KNN

[252]

 float sumX = 0.f;
 float sumY = 0.f;
 float sumXY = 0.f;
 float sumXX = 0.f;
 float sumXXY = 0.f;
 float sumXXX = 0.f;
 float sumXXXX = 0.f;

 float XX = 0.f;
 float XXX = 0.f;
 for(int i=0; i < N; ++i)
 {
 sumX += *(pX+i); // *(pX+i) is same as pX[i] in meaning
 sumY += *(pY+i));
 sumXY += (*(pX+i))*(*(pY+i)));
 XX = (*(pX+i))*(*(pX+i)));
 sumXX += XX;
 sumXXX += (*(pX+i))*XX);
 sumXXXX += XX*XX;
 }

 //compute *pA0, *pA1, *pA2
 Bool result = true;
 findParabola(pA0, pA1, pA2, N, sumX,sumXX,sumXXX,sumXXXX,sumY,
 sumXY, sumXXY, &result);
}

Observe that this function uses the routine findParabola which in turn uses
the function determinant3By3. The function findParabola merely implements
Cramer's Rule to solve simultaneous equations of the three variables. When the
determinant of the co-efficient matrix is zero, then we really don't have the solution
of the equation system. The last parameter bool* resultValid indicates whether
the solution could be found or it does not exist.

void findParabola(//Output parameters
 float* pA0,
 float* pA1,
 float* pA2,
 //Input parameters
 int N,
 float sumX,
 float sumXX,
 float sumXXX,
 float sumXXXX,
 float sumY,

Chapter 11

[253]

 float sumXY,
 float sumXXY,
 bool* resultValid
)
{
 //compute detA
 float detA = determinant3By3((float)N, sumX, sumXX,

 sumX, sumXX, sumXXX,
 sumXX, sumXXX, sumXXXX);
if(0.f == detA)
{
 *resultValid = false;
 return;
}
float detA0 = determinant3By3(sumY, sumX, sumXX,
 sumXY, sumXX, sumXXX,
 sumXXY, sumXXX, sumXXXX);
float detA1 = determinant3By3((float)N, sumY, sumXX,
 sumX, sumXY, sumXXX,
 sumXX, sumXXY, sumXXXX);

float detA2 = determinant3By3((float)N, sumX, sumY,
 sumX, sumXX, sumXY,
 sumXX, sumXXX, sumXXY);
 *pA0 = detA0/detA;
 *pA1 = detA1/detA;
 *pA2 = detA2/detA;
}

To compute the three by three matrix's determinant, we use the function
determinant3By3 which takes all the nine elements of the determinant in
a row-major way as shown below.

float determinant3By3(float a1, float b1, float c1,
 float a2, float b2, float c2,
 float a3, float b3, float c3
)
{
 float det = a1*b2*c3 - a1*b3*c2;
 det += a3*b1*c2 - a2*b1*c3;
 det += a2*b3*c1 - a3*b2*c1;
 return det;
}

Case studies – Regressions, Sort, and KNN

[254]

Now we describe the kernel implementations. First kernel is for linear approximation
and is linear_regression_kernel. This takes eleven parameters and is used to
compute the different sums. The first two parameters X and Y are input arrays.The
next four are different summations sumX, sumY, sumXX and sunXY which is computed
by the OpenCL kernel. These summations are used to compute a0 and a1. All these
values are kept in global memory. The data type here is described using a macro
called DATA_TYPE. This macro is defined to be float. The advantage of using such a
macro is flexibility. With very little effort we can change the type from float to double
or some other suitable type. For that we only need to change the #define DATA_
TYPE float to #define DATA_TYPE double, and so on.

Another macro used here is called SUM_STEP. The kernel first loads the 64 elements
each of X and Y into a local memory before hitting a local memory barrier. The SUM_
STEP macro computes the sum of each of the local memory localSumX, localSumY,
localSumXX, and localSumXY. Take a look at the following diagram which shows
how the sum is calculated for 16 elements and shows the four SUM_STEP:

The SUM_STEP operation

The kernel first initializes the accumulatorX and accumulatorY two private
variables with the array elements. Then it initializes the local variables which store
the partial sums within a work group. Using local memory fence we make sure that
all local data are properly initialized before we proceed further. Then using
six consecutive SUM_STEP(…) calls we accumulate the sum of 32 elements into
a single element. Lastly, we write the result in output variables. This creates a sum
per work group.

Chapter 11

[255]

#define DATA_TYPE float
#define SUM_STEP(LENGTH, INDEX, _W) \
 if ((INDEX < _W) && ((INDEX + _W) < LENGTH)) { \
 localSumX[INDEX] = localSumX[INDEX] + localSumX[INDEX + _W]; \
 localSumY[INDEX] = localSumY[INDEX] + localSumY[INDEX + _W]; \
 localSumXY[INDEX] = localSumXY[INDEX] + localSumXY[INDEX + _W];\
 localSumXXY[INDEX] = localSumXXY[INDEX] + \
 localSumXXY[INDEX + _W]; \
 localSumXX[INDEX] = localSumXX[INDEX] + \
 localSumXX[INDEX + _W]; \
 localSumXXX[INDEX] = localSumXXX[INDEX] + \
 localSumXXX[INDEX + _W]; \
 localSumXXXX[INDEX] = localSumXXXX[INDEX] + \
 localSumXXXX[INDEX + _W]; \
 } \
 barrier(CLK_LOCAL_MEM_FENCE);

__kernel
void linear_regression_kernel(
 __global DATA_TYPE *X,
 __global DATA_TYPE *Y,
 __global DATA_TYPE *sumX,
 __global DATA_TYPE *sumY,
 __global DATA_TYPE *sumXX,
 __global DATA_TYPE *sumXY,
 __local DATA_TYPE *localSumX,
 __local DATA_TYPE *localSumY,
 __local DATA_TYPE *localSumXX,
 __local DATA_TYPE *localSumXY,
 int length)
{
 //Get the index of the work-item
 int index = get_global_id(0);
 int gx = get_global_id (0);
 int gloId = gx;

 // Initialize the accumulator private variable with data from the
input array
 // This essentially unrolls the loop below at least once
 DATA_TYPE accumulatorX;
 DATA_TYPE accumulatorY;
 if(gloId < length){
 accumulatorX = X[gx];
 accumulatorY = Y[gx];

Case studies – Regressions, Sort, and KNN

[256]

 }

 // Initialize local data store
 int local_index = get_local_id(0);
 localSumX[local_index] = accumulatorX;
 localSumY[local_index] = accumulatorY;
 localSumXY[local_index] = accumulatorX*accumulatorY;
 localSumXX[local_index] = accumulatorX*accumulatorX;
 barrier(CLK_LOCAL_MEM_FENCE);

 // Tail stops the last workgroup from reading past the end of the
input vector
 uint tail = length - (get_group_id(0) * get_local_size(0));

 // Parallel reduction within a given workgroup using local data
store
 // to share values between workitems
 SUM_STEP(tail, local_index, 32);
 SUM_STEP(tail, local_index, 16);
 SUM_STEP(tail, local_index, 8);
 SUM_STEP(tail, local_index, 4);
 SUM_STEP(tail, local_index, 2);
 SUM_STEP(tail, local_index, 1);

 // Abort threads that are passed the end of the input vector
 if(gloId >= length)
 return;

 // Write only the single reduced value for the entire workgroup
 if (local_index == 0) {
 sumX[get_group_id(0)] = localSumX[0];
 sumY[get_group_id(0)] = localSumY[0];
 sumXX[get_group_id(0)] = localSumXX[0];
 sumXY[get_group_id(0)] = localSumXY[0];
 }
};

To get the final sum we accumulate them from all the workgroups. The following
host code does this job:

clStatus = clEnqueueReadBuffer(command_queue,
 psumX_clmem,
 CL_TRUE,
 0,

Chapter 11

[257]

 num_of_work_groups * sizeof(float),

 psumX,
 0,
 NULL,
 NULL);
clStatus = clEnqueueReadBuffer(command_queue,
 psumY_clmem,
 CL_TRUE,
 0,
 num_of_work_groups * sizeof(float),
 psumY,
 0,
 NULL,
 NULL);
clStatus = clEnqueueReadBuffer(command_queue,
 psumXX_clmem,
 CL_TRUE,
 0,
 num_of_work_groups * sizeof(float),
 psumXX,
 0,
 NULL,
 NULL);
clStatus = clEnqueueReadBuffer(command_queue,
 psumXY_clmem,
 CL_TRUE,
 0,
 num_of_work_groups * sizeof(float),
 psumXY,
 0,
 NULL,
 NULL);
 float sumX = 0.0f;
 float sumY = 0.0f;
 float sumXX = 0.0f;
 float sumXY = 0.0f;
 for(int i=0;i<num_of_work_groups;i++)
 {
 sumX += psumX[i];
 sumY += psumY[i];
 sumXY += psumXY[i];
 sumXX += psumXX[i];
 }

Case studies – Regressions, Sort, and KNN

[258]

Finally, the values of a0 and a1 (respectively in the variables A0 and A1) are
computed using the obtained sums.

A0 = (sumY*sumXX - sumX*sumXY)/(NUM_OF_POINTS*sumXX - sumX*sumX);
A1 = (NUM_OF_POINTS*sumXY - sumX*sumY)/(NUM_OF_POINTS*sumXX -
sumX*sumX);

Kernel for parabolic approximation works in exactly the same way except it takes
extra arguments for the extra computational parameter. This kernel is listed in the
following code:

#define DATA_TYPE float

__kernel
void parabolic_regression_kernel(
 __global DATA_TYPE *X,
 __global DATA_TYPE *Y,
 __global DATA_TYPE *sumX,
 __global DATA_TYPE *sumY,
 __global DATA_TYPE *sumXY,
 __global DATA_TYPE *sumXXY,
 __global DATA_TYPE *sumXX,
 __global DATA_TYPE *sumXXX,
 __global DATA_TYPE *sumXXXX,
 __local DATA_TYPE *localSumX,
 __local DATA_TYPE *localSumY,
 __local DATA_TYPE *localSumXX,
 __local DATA_TYPE *localSumXY,
 __local DATA_TYPE *localSumXXY,
 __local DATA_TYPE *localSumXXX,
 __local DATA_TYPE *localSumXXXX,
 int length)
{
 //Get the index of the work-item
 int index = get_global_id(0);
 int gx = get_global_id (0);
 int gloId = gx;
 DATA_TYPE XX;

 // Initialize the accumulator private variable with data from the
input array
 // This essentially unrolls the loop below at least once
 DATA_TYPE accumulatorX;
 DATA_TYPE accumulatorY;
 if(gloId < length){

Chapter 11

[259]

 accumulatorX = X[gx];
 accumulatorY = Y[gx];
 }

 // Initialize local data store
 int local_index = get_local_id(0);
 localSumX[local_index] = accumulatorX;
 localSumY[local_index] = accumulatorY;
 XX = accumulatorX*accumulatorX;
 localSumXY[local_index] = accumulatorX*accumulatorY;
 localSumXXY[local_index] = XX*accumulatorY;
 localSumXX[local_index] = XX;
 localSumXXX[local_index] = XX*accumulatorX;
 localSumXXXX[local_index] = XX*XX;
 barrier(CLK_LOCAL_MEM_FENCE);

 // Tail stops the last workgroup from reading past the end of the
input vector
 uint tail = length - (get_group_id(0) * get_local_size(0));

 // Parallel reduction within a given workgroup using local data
store
 // to share values between workitems
 SUM_STEP(tail, local_index, 32);
 SUM_STEP(tail, local_index, 16);
 SUM_STEP(tail, local_index, 8);
 SUM_STEP(tail, local_index, 4);
 SUM_STEP(tail, local_index, 2);
 SUM_STEP(tail, local_index, 1);

 // Abort threads that are passed the end of the input vector
 if(gloId >= length)
 return;

 // Write only the single reduced value for the entire workgroup
 if (local_index == 0) {
 sumX[get_group_id(0)] = localSumX[0];
 sumY[get_group_id(0)] = localSumY[0];
 sumXY[get_group_id(0)] = localSumXY[0];
 sumXXY[get_group_id(0)] = localSumXXY[0];
 sumXX[get_group_id(0)] = localSumXX[0];
 sumXXX[get_group_id(0)] = localSumXXX[0];
 sumXXXX[get_group_id(0)] = localSumXXXX[0];
 }
};

Case studies – Regressions, Sort, and KNN

[260]

The preceding kernel takes the help of the following macro which computes the
step sum:

#define SUM_STEP(LENGTH, INDEX, _W) \
 if ((INDEX < _W) && ((INDEX + _W) < LENGTH)) { \
 localSumX[INDEX] = localSumX[INDEX] + localSumX[INDEX + _W]; \
 localSumY[INDEX] = localSumY[INDEX] + localSumY[INDEX + _W]; \
 localSumXY[INDEX] = localSumXY[INDEX] + localSumXY[INDEX +
_W];\
 localSumXXY[INDEX] = localSumXXY[INDEX] + \
 localSumXXY[INDEX + _W]; \
 localSumXX[INDEX] = localSumXX[INDEX] + \
 localSumXX[INDEX + _W]; \
 localSumXXX[INDEX] = localSumXXX[INDEX] + \
 localSumXXX[INDEX + _W]; \
 localSumXXXX[INDEX] = localSumXXXX[INDEX] + \
 localSumXXXX[INDEX + _W]; \
 } \
 barrier(CLK_LOCAL_MEM_FENCE);

After the computation of summations in the OpenCL kernel. The data is transferred
to the host using the clEnqueueReadBuffer function as shown below. Finally a for
loop computes the final summations.

clStatus = clEnqueueReadBuffer(command_queue, psumX_clmem,
 CL_TRUE, 0,
 num_of_work_groups * sizeof(float), psumX, 0, NULL,
 NULL);
clStatus = clEnqueueReadBuffer(command_queue, psumY_clmem,
 CL_TRUE, 0,
 num_of_work_groups * sizeof(float), psumY, 0, NULL,
 NULL);
clStatus = clEnqueueReadBuffer(command_queue, psumXY_clmem,
 CL_TRUE, 0,
 num_of_work_groups * sizeof(float), psumXY, 0, NULL,
 NULL);
clStatus = clEnqueueReadBuffer(command_queue, psumXXY_clmem,
 CL_TRUE, 0,
 num_of_work_groups * sizeof(float), psumXXY, 0, NULL,
 NULL);
clStatus = clEnqueueReadBuffer(command_queue, psumXX_clmem,
 CL_TRUE, 0,
 num_of_work_groups * sizeof(float), psumXX, 0, NULL,
 NULL);

Chapter 11

[261]

clStatus = clEnqueueReadBuffer(command_queue, psumXXX_clmem,
 CL_TRUE, 0,
 num_of_work_groups * sizeof(float), psumXXX, 0, NULL,
 NULL);
clStatus = clEnqueueReadBuffer(command_queue, psumXXXX_clmem,
 CL_TRUE, 0,
 num_of_work_groups * sizeof(float), psumXXXX, 0, NULL,
 NULL);

 float sumX = 0.0f;
 float sumY = 0.0f;
 float sumXY = 0.0f;
 float sumXXY = 0.0f;
 float sumXX = 0.0f;
 float sumXXX = 0.0f;
 float sumXXXX = 0.0f;
 for(int i=0;i<num_of_work_groups;i++)
 {
 sumX += psumX[i];
 sumY += psumY[i];
 sumXY += psumXY[i];
 sumXXY += psumXXY[i];
 sumXX += psumXX[i];
 sumXXX += psumXXX[i];
 sumXXXX += psumXXXX[i];
 }

After this we use the function called findParabola to find the values of a0, a1, a2.
This function and the function determinant3By3 which it uses to find determinant
are briefly described in the preceding section with the descriptions of sequential
implementation of parabolicApproximation.

Bitonic sort
Bitonic sort is a parallel sorting algorithm devised by Ken Batcher. A sequence of
numbers from a(1), a(2), a(3), …, a(n) is called monotonic increasing or decreasing,
if a(i) >= a(i+1) or a(i) <= a(i+1) respectively for all i equals 1,2,3,…, n-1. Sequence is
monotonic if it is either monotonic increasing or monotonic decreasing.

A bitonic sequence is one that is monotonically increasing (or decreasing) up to some
point where it reaches the maximum (or minimum) value of the sequence, and then
it becomes monotonically decreasing (or increasing) up to the end. A sequence that
can be converted to the aforementioned bitonic sequence by cyclic shifting is also
called a bitonic sequence.

Case studies – Regressions, Sort, and KNN

[262]

Given a bitonic sequence, bitonic split is an operation on it which scans for i equals
1 to n/2, and if a(i+n/2) < a(i) then swap a(i+n/2) and a(i). This operation produces
two bitonic subsequences say L and R where L and R are left and right parts of the
transformed sequence and all elements of L are less than all elements of R. The
following is an illustrative example:

Index to
elements

0 1 2 3 4 5 6 7 8 9

Bitonic
sequence

5 9 24 39 65
(max)

60 45 19 4 3

Increasing ---> Decreasing -->

Index to
elements

0 1 2 3 4 5 6 7 8 9

Split 5 9 19 4 3 60 45 24 39 65
Subsequence L (smaller Bitonic sequence) R (smaller Bitonic sequence)

All elements of L are less than all elements of R

By repeatedly using bitonic split we can convert a bitonic sequence into a sorted
sequence. But here initially we need a bitonic sequence. So if given any other
sequence we first convert that into a bitonic sequence using the following technique.

Given an arbitrary sequence we first swap elements pair-wise if they are not in
proper order (a proper order is a bitonic sequence of length four) and after the first
pass we get several bitonic sequences, each of length four. The process is illustrated
with the following example. Here we take an arbitrary sequence of number
(not bitonic) and using the method of pair-wise exchange and split. First pairwise
exchange making sure that given arbitrary sequence is converted into small bitonic
sequences each of size four. So in a group of four elements to be converted to
a bitonic sequence (like first four elements) we compare the first and the second
elements. If first element is greater than the second element we exchange them.
Then we compare third and fourth elements. If third is smaller than fourth, then we
exchange. The following figure shows the same:

Chapter 11

[263]

Thus we get a bitonic sequence of all elements. Now we use our previous split
method and merge method to get the sorted sequence.

First we use sort (by bitonic split on current bitonic subsequences) and finally at last
stage swap if needed.

Case studies – Regressions, Sort, and KNN

[264]

With the preceding explanation and illustration of bitonic sort, we introduce the
kernel in the following code:

#define DATA_TYPE int

//The bitonic sort kernel does an ascending sort
kernel
void bitonic_sort_kernel(__global DATA_TYPE * input_ptr,
 const uint stage,
 const uint passOfStage)
{
 uint threadId = get_global_id(0);
 uint pairDistance = 1 << (stage - passOfStage);
 uint blockWidth = 2 * pairDistance;
 uint temp;
 bool compareResult;
 uint leftId = (threadId & (pairDistance -1))
 + (threadId >> (stage - passOfStage)) * blockWidth;
 uint rightId = leftId + pairDistance;

 DATA_TYPE leftElement, rightElement;
 DATA_TYPE greater, lesser;
 leftElement = input_ptr[leftId];
 rightElement = input_ptr[rightId];

 uint sameDirectionBlockWidth = threadId >> stage;
 uint sameDirection = sameDirectionBlockWidth & 0x1;

 temp = sameDirection?rightId:temp;
 rightId = sameDirection?leftId:rightId;
 leftId = sameDirection?temp:leftId;

 compareResult = (leftElement < rightElement) ;

 greater = compareResult?rightElement:leftElement;
 lesser= compareResult?leftElement:rightElement;

 input_ptr[leftId] = lesser;
 input_ptr[rightId] = greater;
};

Chapter 11

[265]

This kernel takes three arguments. First one is the pointer to input buffer which is to
sorted. Data type is defined by a macro so that it can be changed easily. Currently it
is chosen to be int. Second and third parameters are respectively the stage and pass
of stage which determine the state of the entire sort process. Stage value is initially
set to log of array size to the base 2. As shown in the figure we just saw, there are
four stages and those 1, 2, 3, and 4-th stages have respectively 1, 2, 3, and 4 passes.
Outputs are shown after each pass of each stage.

Variables leftElement, rightElement; hold the two elements of the selected
subsequence to be compared and exchanged if needed. The statement
compareResult = (leftElement < rightElement); compares the left and right
elements and accordingly selectes the greater and lesser elements greater = ompar
eResult?rightElement:leftElement; lesser = compareResult?leftElement:r
ightElement;. Finally the updated values are dumped in the original data structure
by the statements input_ptr[leftId] = lesser; and input_ptr[rightId] =
greater;. Input pointer values are exchanged at the same time.

First part of the kernel determines the position and length of the bitonic subsequence.
Left position is indicated by leftId and length is by pairDistance. Last element of
the subsequence is rightId.

The following is the host code:

int main(void) {
 // Basic initialization and declaration...

 // Execute the OpenCL kernel on the list

 // Each work item shall compare two elements.
 size_t global_size = DATA_SIZE/2;
 // This is the size of the work group.
 size_t local_size = WORK_GROUP_SIZE;
 // Calculate the Number of work groups.
 size_t num_of_work_groups = global_size/local_size;

 //Allocate memory and initialize the input buffer.
 DATA_TYPE *pInputBuffer = (DATA_TYPE*)malloc(
 sizeof(DATA_TYPE)*DATA_SIZE);
 for(int i =0; i< DATA_SIZE; i++)
 {
 pInputBuffer[i] = DATA_SIZE - i;
 printf("pInputBuffer[i] = %4d\n",pInputBuffer[i]);
 }
 //Create memory buffers on the device for each vector
 cl_mem pInputBuffer_clmem = clCreateBuffer(
 context,
 CL_MEM_READ_WRITE|
 CL_MEM_USE_HOST_PTR,
 DATA_SIZE * sizeof(DATA_TYPE),

Case studies – Regressions, Sort, and KNN

[266]

 pInputBuffer,
 &clStatus);

 // Create kernel...

 clSetKernelArg(bitonic_sort_kernel,
 0,
 sizeof(cl_mem),
 (void *)&pInputBuffer_clmem);

 unsigned int stage, passOfStage, numStages, temp;
 stage = passOfStage = numStages = 0;
 for(temp = DATA_SIZE; temp > 1; temp >>= 1)
 ++numStages;
 global_size = DATA_SIZE>>1;
 local_size = WORK_GROUP_SIZE;
 for(stage = 0; stage < numStages; ++stage)
 {
 // stage of the algorithm
 clSetKernelArg(
 bitonic_sort_kernel,
 1,
 sizeof(int),
 (void *)&stage);
 // Every stage has stage + 1 passes
 for(passOfStage = 0; passOfStage < stage + 1; ++passOfStage) {
 // pass of the current stage
 std::cout << "Pass no "<< passOfStage << std::endl;
 clStatus = clSetKernelArg(bitonic_sort_kernel,
 2,
 sizeof(int),
 (void *)&passOfStage);
 //
 // Enqueue a kernel run call.
 // Each thread writes a sorted pair.
 // So, the number of threads (global) should be half the
length of the input buffer.
 //
 clEnqueueNDRangeKernel(
 command_queue,
 bitonic_sort_kernel,
 1,
 NULL,
 &global_size,
 &local_size,
 0,
 NULL,
 NULL);
 LOG_OCL_ERROR(clStatus, "enqueueNDRangeKernel() failed for
sort() kernel.");
 clFinish(command_queue);

Chapter 11

[267]

 }//end of for passStage = 0:stage-1
 }//end of for stage = 0:numStage-1

 DATA_TYPE *mapped_input_buffer =
 (DATA_TYPE *)clEnqueueMapBuffer(
 command_queue,
 pInputBuffer_clmem,
 true,
 CL_MAP_READ,
 0,
 sizeof(DATA_TYPE) * DATA_SIZE,
 0,
 NULL,
 NULL,
 &clStatus);
 // Display the Sorted data on the screen
 for(int i = 0; i < DATA_SIZE; i++)
 printf("%d ", mapped_input_buffer[i]);

 // cleanup...

 return 0;
}

As an example to understand Bitonic sort take an input array of numbers and try to
calculate using Bitonic sort manually which will help you understand the amount of
parallelism involved. We take a data array of numbers 16, 15, ..., 3,2,1. This is not a
bitonic sequence and is in descending order (we would sort in ascending order). We
have four stages (four values of the input parameter stage namely, 0, 1, 2, and 3). At
stage 0, we covert the given sequence to four bitonic sequences each of size four. In
the next two stages (stage equals 1 and 2) we merge stage 2 of the bitonic sequences
of previous stages and double its size (hence reduce the number of sequences by a
factor of two in each stage). So, after stage 1 we get two bitonic sequences each of size
8 and after stage 2, we get a single bitonic sequence of size 16. At stage 3, we finally
get the monotonic sequence, that is, a sorted sequence.

k-Nearest Neighborhood (k-NN) algorithm
In machine learning classification is the problem of identifying class/type of a given
input quantity. Formally the problem can be stated like, we have a set of classes/
types represented by:

C={t(1), t(2),…, t(m)}.

Case studies – Regressions, Sort, and KNN

[268]

We have a set P of objects, each of which is described by a vector. All the objects
of P have a unique class from C. From P we are given n objects (that is their
representative vectors) p(1), p(2), …, p(n) (each p(i) is d-dimensional vector) and for
each one of them p(i) the class is also given c(i). These n vectors with their classes
(p(i) , c(i)) are called as the training data. We are given a distance measure d(p1 , p2)
that gives the relevant distance between two vectors of P. Now, we are presented
an arbitrary point from P say p whose class is not known. The problem is to find the
class of p (using each given data and distance).

To find the class of x we use the following algorithm called k-nearest
neighborhood algorithm.

1. Fix a positive integer k. (choice of k is dependent on dataset size and other
factors, which are out of scope of this discussion, rule of thumb is k is nearest
integer of square root of n).

2. For each p(i) in P, compute distance d(p, p(i)).
3. Find lowest k distances from the preceding distances. Let those lowest k

distances correspond to the points z(1), z(2),…, z(k) where each of the points
are from P. Suppose the classes of z(1), z(2),…, z(k) are respectively q(1),
q(2),…, q(k) where each of q(1), q(2),…, q(k) belongs to Y.

4. Find the class/type that appears the most times in those list q(1) ,q(2) ,…, q(k).
Predict x belongs to that class/type. A tie occurs when more than one class/
type has maximum frequency (same frequeny which is maximum among all
the frequencies). The tie is broken by some strategy like choose the class that
has the lower array index.

k-Nearest Neighbourhood

Chapter 11

[269]

The figure we just saw illustrates the k-NN algorithm for three classes, namely, a, b,
c. Here we fix k equals 22. The dark point is the query point and all other points are
labeled with their classes. We find all the distances from the query point and choose
the nearest k equals 22 points. Those 22 points are shown within the green border.
Then we find the number of occurrences of each of the classes a, b, c within that green
border. The occurrence of a, b, c are respectively 6, 15, 1 times. Since class b occurs
maximum number of times among these three classes, we infer that class of the
query point is b.

The following is the sequential implementation of the k-NN algorithm followed by
its explanation:

int KNearestNeighbourhoodAlgorithm(
 size_t trainingSetSize,
 float* pX,
 const int noOfClasses,
 int* pY,// class of X
 const int k,
 float queryPoint
)
{
 // Compute all the distances from the queryPoint
 float* distances = new float[trainingSetSize];
 for(int i = 0; i < trainingSetSize; ++i)
 {
 distances[i] = distanceF(queryPoint, pX[i]);
 }

 //Find nearest k points
 int* nearestK = new int[k];
 for(int i=0;i<k;++i)
 {
 int index = -1;
 float min = FLT_MAX;
 //Find i-th minimum
 for(int j=0;j<trainingSetSize;++j)
 {
 if(min > distances[j])
 {
 min = distances[j];
 index = j;
 }
 }
 nearestK[i] = index;
 // so that is distance is not consider next time

Case studies – Regressions, Sort, and KNN

[270]

 distances[index] = FLT_MAX;
 }
 delete distances[];

 //find the frequencies of each classes among those k chosen data
 int* frequencyOfClasses = new int[noOfClasses];
 //initilize frequency array
 for(int i = 0; i < noOfClasses; ++i)
 {
 frequencyOfClasses[i] = 0;
 }
 //now compute the actual frequencies
 for(int i=0;i<k;++i)
 {
 frequencyOfClasses[pY[nearestK[i]]]++;
 }
 delete nearestK[];

 //find max frequency among them
 int maxFreq = INT_MAX;
 int maxFreqIndex = 0;
 for(int i=0;i<k;++i)
 {
 if(maxFreq < frequencyOfClasses[i])
 {
 maxFreqIndex = i;
 maxFreq = frequencyOfClasses[i];
 }
 }
 delete frequencyOfClasses[];

 //report the corresponding index
 return maxFreqIndex;
}
float distanceF(float pointX, float pointY)
{
 float x = pointX – pointy;
 return sqrt(x*x);
}

To explain the code we start with the distanceF function. This computes
the distance between two points. This we use in the following algorithm
where we have a fixed value of k (integer). The main function int
KNearestNeighbourhoodAlgorithm returns the integer representing class of the
queryPoint, the sixth parameter to the function. Number of classes is given by the
third parameter const int noOfClasses. We have trainingSetSize number of
data points stored in pX and pY stores the corresponding class.

Chapter 11

[271]

First the for loop computes all the distances from the queryPoint function and
stores them in dynamic array distances. Then we find the k nearest points from
the queryPoint function using the nested for loops. First we find for i equals 0 the
lowest value, then excluding that we find the second lowest value for i equals 1,
then similarly exluding these two we find third lowest value for i equals 2 and so on.
Now, we find the frequencies of those k nearest points and store them in the dynamic
array frequencyOfClasses. Lastly, we find the class with maximum frequency and
returns that class.

One of the most time consuming and complex parts of the preceding algorithm is
finding the nearest k points. In OpenCL version that part is done a bit differently.
We just sort the entire distance list and then take the bottom k items from that list.
To sort we use the OpenCL kernel bitonic sort which is described earlier in Bitonic
sort section.

The same kernel is reused with some small enhancement to the kernel according to
the requirement of k-NN algorithm. The following is the listing of kernel:

kernel
void knn_bitonic_sort_kernel(__global DISTANCE_TYPE * input_ptr,
 __global POINT *data_set,
 const uint stage,
 const uint passOfStage)
{
 uint threadId = get_global_id(0);
 uint pairDistance = 1 << (stage - passOfStage);
 uint blockWidth = 2 * pairDistance;
 uint temp;
 uint leftId = (threadId & (pairDistance -1)) + (threadId >>
 (stage - passOfStage)) * blockWidth;
 bool compareResult;
 uint rightId = leftId + pairDistance;

 DISTANCE_TYPE leftElement, rightElement;
 DISTANCE_TYPE greater, lesser;
 POINT leftPoint, rightPoint;
 POINT greaterPoint, lesserPoint;
 leftElement = input_ptr[leftId];
 leftPoint = data_set[leftId];
 rightElement = input_ptr[rightId];
 rightPoint = data_set[rightId];

 uint sameDirectionBlockWidth = threadId >> stage;
 uint sameDirection = sameDirectionBlockWidth & 0x1;
 temp = sameDirection?rightId:temp;

Case studies – Regressions, Sort, and KNN

[272]

 rightId = sameDirection?leftId:rightId;
 leftId = sameDirection?temp:leftId;

 compareResult = (leftElement < rightElement) ;

 greater = compareResult?rightElement:leftElement;
 greaterPoint = compareResult?rightPoint:leftPoint;
 lesser = compareResult?leftElement:rightElement;
 lesserPoint = compareResult?leftPoint:rightPoint;

 input_ptr[leftId] = lesser;
 data_set[leftId] = lesserPoint;
 input_ptr[rightId] = greater;
 data_set[rightId] = greaterPoint;
}

This kernel takes four arguments. Argument one is the distance array. And the
second is the corresponding point array. As we sort the distance we need to maintain
the distance point pair. The first two are the arrays it is supposed to sort. To keep the
data type easily changeable we have used the macro DISTANCE_TYPE and typedef-ed
structure POINT as data type.

#define DISTANCE_TYPE float
typedef struct _point {
 int x;
 int y;
 int classification;
} point;
typedef point POINT;

Third and fourth arguments are stages and passOfStage which tell the kernel about
the state of the algorithm so that length and location of bitonic subsequence can be
determined.

As we discussed, to add flexibility we have taken the macro DISTANCE_TYPE and
typedef'd structure POINT as data type. In addition to bitonic sort kernel we here use
one device function called point_distance which takes two POINTS and computes
the distance between them and another kernel called knn_distance_kernel.

This kernel knn_distance_kernel uses the distance function point_distance
and computes the distance between the query point and all the elements of training
data array. First parameter is the query point and second is the training data array
pointer. Third parameter is output array pointer where the distances are dumped.

Chapter 11

[273]

__kernel
void knn_distance_kernel(
 POINT match,
 __global POINT *data_set,
 __global DISTANCE_TYPE *distance_data)
{
 //Get the index of the work-item
 int gid = get_global_id (0);
 POINT read_point = data_set[gid];
 DISTANCE_TYPE computed_distance = point_distance (
 read_point,
 match);

 distance_data[gid] = computed_distance;
}

Based on global ID of the kernel instanc we select an element of the data array
and using the distance function find the distance and finally update the computed
distance to output the array's corresponding element.

Here we list the main program that implements the complete algorithm of k-NN.
Trivial parts like declarations, basic memory allocation, and so on are just skipped
to focus on the core algorithm.

int main(void) {
 // declare clStatus, point *pPoints and allocate
 // memory and load data for the second.
 // Set up the Platform etc.

 // Process all points. Each work item shall process a point
 size_t global_size = NUM_OF_POINTS;
 // This is the size of teh work group.
 size_t local_size = WORK_GROUP_SIZE;
 // Calculate the Number of work groups.
 size_t num_of_work_groups = global_size/local_size;
 //Allocate memory for storing the sumations
 float *pDistance = (float*)malloc(
 sizeof(float)*NUM_OF_POINTS);

 //Create memory buffers on the device for each vector
 cl_mem pPoints_clmem = clCreateBuffer(
 context,
 CL_MEM_READ_WRITE|CL_MEM_USE_HOST_PTR,
 NUM_OF_POINTS * sizeof(point),
 (void *)pPoints,

Case studies – Regressions, Sort, and KNN

[274]

 &clStatus);
 cl_mem pDistance_clmem = clCreateBuffer(
 context,
 CL_MEM_READ_WRITE,
 NUM_OF_POINTS * sizeof(float),
 NULL,
 &clStatus);

 // Create a program from source and build and create kernels
distance_kernel and bitonic_sort_kernel
 // Set the arguments of the distance kernel
 clStatus = clSetKernelArg(distance_kernel, 0,
 sizeof(point), &matchPoint);
 clStatus |= clSetKernelArg(distance_kernel,
 1,
 sizeof(cl_mem),
 (void *)&pPoints_clmem);
 clStatus |= clSetKernelArg(distance_kernel,
 2,
 sizeof(cl_mem),
 (void *)&pDistance_clmem);
 LOG_OCL_ERROR(clStatus, "Kernel Arguments setting failed.");
 cl_event distance_event;
 clStatus = clEnqueueNDRangeKernel(command_queue,
 distance_kernel,
 1,
 NULL,
 &global_size,
 &local_size,
 0,
 NULL,
 &distance_event);
 clStatus = clWaitForEvents(1, &distance_event);
 //Sort the distance buffer using Bitonic Sort.
 clStatus = clSetKernelArg(bitonic_sort_kernel,
 0,
 sizeof(cl_mem),
 (void *)&pDistance_clmem);
 clStatus |= clSetKernelArg(bitonic_sort_kernel,
 1,
 sizeof(cl_mem),
 (void *)&pPoints_clmem);
 unsigned int stage, passOfStage, numStages, temp;
 stage = passOfStage = numStages = 0;

Chapter 11

[275]

 for(temp = NUM_OF_POINTS; temp > 1; temp >>= 1)
 ++numStages;
 global_size = NUM_OF_POINTS>>1;
 local_size = WORK_GROUP_SIZE;
 for(stage = 0; stage < numStages; ++stage)
 {
 // stage of the algorithm
 clStatus = clSetKernelArg(bitonic_sort_kernel,
 2,
 sizeof(int),
 (void *)&stage);
 // Every stage has stage + 1 passes
 for(passOfStage = 0;
 passOfStage < stage + 1;
 ++passOfStage) {
 // pass of the current stage
 clStatus = clSetKernelArg(bitonic_sort_kernel,
 3,
 sizeof(int),
 (void *)&passOfStage);
 // Enqueue a kernel run call.
 // Each thread writes a sorted pair.
 // So, the number of threads (global)
 //should be half the length of the input buffer.
 clStatus = clEnqueueNDRangeKernel(command_queue,
 bitonic_sort_kernel,
 1,
 NULL,
 &global_size,
 &local_size,
 0,
 NULL,
 NULL);
 clFinish(command_queue);
 }//end of for passStage = 0:stage-1
 }//end of for stage = 0:numStage-1

 float *mapped_distance =
 (float *)clEnqueueMapBuffer(command_queue,
 pDistance_clmem,
 true
 CL_MAP_READ,
 0,
 sizeof(float) * NUM_OF_POINTS,

Case studies – Regressions, Sort, and KNN

[276]

 0,
 NULL,
 NULL,
 &clStatus);
 point *mapped_points =
 (point *)clEnqueueMapBuffer(command_queue,
 pPoints_clmem,
 true,
 CL_MAP_WRITE,
 0,
 sizeof(point) * NUM_OF_POINTS,
 0,
 NULL,
 NULL,
 &clStatus);
 // Display the Sorted K points on the screen
 for(int i = 0; i < K_CLASSIFICATION_POINTS; i++)
 printf("point(%d, %d, %d) = %3.8f \n",
 mapped_points[i].x,
 mapped_points[i].y,
 mapped_points[i].classification,
 mapped_distance[i]);
 //select class with max frequency
 // Finally release all OpenCL allocated objects and host buffers.
 return 0;
}

Following are the macros which are used to indicate different parameters of
algorithm and kernel.

#define NUM_CLASSES 3

#define NUM_OF_POINTS 1024
#define WORK_GROUP_SIZE 64
#define K_CLASSIFICATION_POINTS 16

First we calculate the number of stages required. The nested for loops of stages and
passOfStages launches the kernel knn_bitonic_sort_kernel at every loop. Finally
the sorted distance array and the corresponding points array are the output of this
multiple call.

Chapter 11

[277]

Summary
In this chapter we have discussed OpenCL implementation of several commonly
occurring algorithms from different fields. Simple algorithms like linear regression
to complex algorithms like k-NN could be explored to find the data and task parallel
portion within this. Those are the scope of applying OpenCL. As shown in the case
of k-NN algorithm, multiple kernels can be implemented and as shown in the case
of Bitonic sort same kernel can be invoked multiple times within a loop. OpenCL
is already applied to accelerate algorithms in diverse fields, such as Computational
Finance, Computational Biology, Image Processing, Numerical Methods, Dense
and Sparse linear algebra, mathematical or statistical modeling, simulation, spectral
methods like weather forecasting, and computational fluid dynamics. More areas as
well as more applications are yet to be explored for applicability of heterogeneous
computing based on OpenCL.

Index
Symbols
__constant/constant address space 172
__global/global address space 171
__local/local address space 172
__private/private address space 173

A
Accelerated Parallel Processing (APP) 22
address space qualifiers

__constant/constant address space 172
__global/global address space 171
__local/local address space 172
__private/private address space 173
about 170
restrictions 173

algorithm
host code 68-71
OpenCL kernel code 66-68

aligned attribute 174
AMD

about 16
GCN compute unit 16
graphics cards 16
AMD A Series APU architecture 15, 16

AMD graphics card
used, for OpenCL installation on Linux

system 23
used, for OpenCL installation on Windows

system 24
AMD Radeon ™ HD 7870 38
AMD AMD A10 5800K APU APU 37
Apple OSX

using, for OpenCL installation 25
application

scaling 57
architecture

strategies 200-202
arg_index 128
arg_indx 132
arg_size 128
arg_value 128
Arithmetic operators 169
Arithmetic unary operators 169
ARM

Mali T6XX 19
Mali T628 19
Mali T628 graphics 19

B
barrier function 67
basic data types 156, 157
binaries 112
binary file

creating 120, 121
used, for SAXPY 123, 124

binary_status 113
Bitonic sort 261-267
Bits Per Pixel (bpp) 206
blocking_map parameter 81
Blocking_read 73, 75
blocking_[read|write] variable 137
Blocking_write 73, 75
blocking_write/blocking_read 99
blocking_write parameter 72
buffer_create_info parameter 63
buffer_create_type parameter 62
buffer objects

mapping 80-82
querying 83, 84

[280]

buffer parameter 62, 72, 81
buffers

about 91
Blocking_read 73, 75
Blocking_write 73, 75
copying 79, 80
creating, from GL texture 243, 244
cuboidal reads 75-79
mapping 238, 239
reading 71, 73, 98, 99
rectangular reads 75-79
writing 71, 73, 98, 99

built-in data types
alignment 159, 160
basic data types 156, 157
half data type 157
reserved data type 159
vector components 162
vector data types 160, 161
vector types 156, 157

built-in functions
about 175
memory fence functions 176
synchronization 176, 177
work item function 176

built-in kernels 135

C
case study

histogram calculation 197-200
matrix multiplication 185

clBuildProgram function 111-113, 120-124,
159

CL_COMMAND_USER command 149
CL_COMPLETE 145
clCreateBuffer function 88
clCreateCommandQueue function 49
clCreateEventFromGLsyncKHR

command 242
clCreateImage function 99, 104
clCreateKernel function 127
clCreateKernelsInProgram function 127
clCreateProgramWithBinary function 122
clCreateProgramWithBuiltInKernel

function 135

clCreateProgramWithSource function 110,
113, 131

clCreateSampler function 97
clCreateUserEvent function 150
clEnqueueBarrierWithWaitList function

144, 146
clEnqueueCopyImage function 101
clEnqueueFillImage function 101
clEnqueue* function 137, 138
clEnqueueMapBuffer function 82
clEnqueueMapImage function 102
clEnqueueMarkerWithWaitList

function 147
clEnqueueNDRange function 46
clEnqueueNDRangeKernel function 46, 182
clEnqueueReadBuffer function 71, 80
clEnqueueReadImage function 98
clEnqueueReleaseGLObjects() function 241
clEnqueueTask function 130
clEnqueueWriteImage function 98
CL_EVENT_COMMAND_EXECUTION_

STATUS 148
CL_EVENT_COMMAND_QUEUE 148
CL_EVENT_COMMAND_TYPE 148
CL_EVENT_CONTEXT 148
cl_event object 147-150, 180
CL_EVENT_REFERENCE_COUNT 148
clFinish function 69, 138, 144
clFinish() function 241
clGetDeviceInfo function 104, 172
clGetEventInfo function 138, 150
clGetEventProfilingInfo function 151
clGetImageInfo function 103
clGet*Info function 148
clGetKernelArgInfo function 131
clGetKernelInfo function 175
clGetMemObjectInfo function 102
clGetPlatformIDs 41
clGetPlatformIDs() command 236
clGetProgramBuildInfo function 115
clGetProgramInfo function 112, 118
CL_IMAGE_ARRAY_SIZE 103
CL_IMAGE_BUFFER 103
CL_IMAGE_DEPTH 103
cl_image_desc structure 90-95
CL_IMAGE_ELEMENT_SIZE 103

[281]

CL_IMAGE_FORMAT 103
cl_image_format image format descriptor

88, 89
CL_IMAGE_HEIGHT 103
CL_IMAGE_ROW_PITCH 103
CL_IMAGE_SLICE_PITCH 103
CL_IMAGE_WIDTH 103
CLK_ADDRESS_CLAMP 96
CLK_ADDRESS_CLAMP_TO_EDGE 96
CLK_ADDRESS_MIRRORED_REPEAT 97
CLK_ADDRESS_NONE 97
CLK_ADDRESS_REPEAT 97
CL_KERNEL_ARG_ACCESS_QUALIFIER

132
CL_KERNEL_ARG_ADDRESS_QUALI-

FIER 132
CL_KERNEL_ARG_NAME 133
CL_KERNEL_ARG_TYPE_NAME 132
CL_KERNEL_ARG_TYPE_QUALIFIER 133
CL_KERNEL_ATTRIBUTES 131
CL_KERNEL_CONTEXT 131
CL_KERNEL_FUNCTION_NAME 131
CL_KERNEL_GLOBAL_WORK_SIZE 134
CL_KERNEL_LOCAL_MEM_SIZE 134
CL_KERNEL_NUM_ARGS 131
cl_kernel object 124, 130
CL_KERNEL_PREFERRED_WORK_

GROUP_SIZE_MULTIPLE 134
CL_KERNEL_PRIVATE_MEM_SIZE 134
CL_KERNEL_PROGRAM 131
CL_KERNEL_REFERENCE_COUNT 131
CL_KERNEL_WORK_GROUP_SIZE 134
CLK_FILTER_LINEAR 97
CLK_FILTER_NEAREST 97
CLK_GLOBAL_MEM_FENCE 153
CLK_LOCAL_MEM_FENCE 153
CLK_NORMALIZED_COORDS_FALSE 96
CLK_NORMALIZED_COORDS_TRUE 96
clLinkProgram function 121
CL_MEM_ALLOC_HOST_PTR 60, 61
CL_MEM_ASSOCIATED_MEMOBJECT 84
cl_mem buffer object 63
CL_MEM_CONTEXT 84
CL_MEM_COPY_HOST_PTR 60, 61
CL_MEM_FLAGS 84
CL_MEM_HOST_NO_ACCESS 60
CL_MEM_HOST_PTR 84

CL_MEM_HOST_READ_ONLY 60
CL_MEM_HOST_WRITE_ONLY 60
CL_MEM_MAP_COUNT 84
cl_mem object 61, 85, 100
CL_MEM_OFFSET 84
CL_MEM_READ_ONLY 60
CL_MEM_READ_WRITE 60
CL_MEM_REFERENCE_COUNT 84
CL_MEM_SIZE 84
CL_MEM_TYPE 84
CL_MEM_USE_HOST_PTR 60, 61
CL_MEM_WRITE_ONLY 60
CL_PROGRAM_BINARIES 119
CL_PROGRAM_BINARY_SIZES 119
CL_PROGRAM_BINARY_TYPE 115
CL_PROGRAM_BUILD_LOG 115
CL_PROGRAM_BUILD_OPTIONS 115
CL_PROGRAM_BUILD_STATUS 115
CL_PROGRAM_CONTEXT 119
CL_PROGRAM_DEVICES 119
CL_PROGRAM_KERNEL_NAMES 119
CL_PROGRAM_NUM_DEVICES 119
CL_PROGRAM_NUM_KERNELS 119
cl_program object 110, 135, 159
CL_PROGRAM_REFERENCE_COUNT 119
CL_PROGRAM_SOURCE 119
CL_QUEUED 145
clReleaseCommandQueue function 143
clReleaseMemObject function 151
clReleaseProgram function 134
clRetainEvent function 150
CL_RUNNING 145
clSetKernelArg function 124, 127, 172, 198
CL_SUBMITTED 145
cl_ulong variable 152
clWaitForEvents function 143, 147
coalesced memory access 190
coarse-grained synchronization 143, 145
code 182
command_queue command 129
command_queue object 49, 99
command_queue parameter 72
command synchronization 139
Compute Engines (CU) 16
computer architecture 8-10
Compute Unified Device Architecture. See

CUDA

[282]

constant memory 53
context 110, 112, 135
context parameter 62
convert* function 165
count 110
cuboidal reads 75-79
CUDA 12

D
data type attributes

about 174
aligned attribute 174
packed attribute 175

data types
reinterpreting 168

DCT coefficient
about 220
quantization 220

device 114, 133
device_list 112, 114, 135
devices 51
DHT (Define Huffman Table) 222
Discrete Cosine Transformation. See DCT

coefficient
distanceF function 270
dst_origin parameter 100

E
endiantype attribute 175
EOI (End of Image) 222
errcode_ret parameter 51, 62, 63, 82, 113, 127
errorcode_ret 110
event 49, 148
event-based synchronization 145-147
event object 151
event parameter 72, 82
event profiling 151, 152
event_wait_list object 49
event_wait_list parameter 72, 81
Execution model

about 32, 45, 46
global-id 47
local-id 47
NDRange 46-49

OpenCL command queue 51, 52
OpenCL context 50, 51
work-group 47
work-item 47

Execution Units (EUs) 18, 39
Explicit conversion 164-167
extensionString variable 234

F
fence object 242
fill_color parameter 101
filter variable 172
fine-grained synchronization 145-147
first in first out (FIFO) 52
flags parameter 62, 88
float variable 159
function attributes 174
Fused Multiply Add (FMA) 156

G
Gaussian filter 209, 211
glBindBuffer(...) 239
glBufferData(...) 239
glFenceSync() function 242
glFinish() function 241
glGenBuffers(...) 239
global-id 47
global memory 53
global_work_offset 130
global_work_offset object 49
global_work_size 130
global_work_size function 46
global_work_size object 49
GL texture

buffer, creating from 243, 244
GPU 179
Graphics Core Next (GCN) 16
Graphics Processing Clusters (GPC) 17
Graphics Processor Unit. See GPU

H
half data type

about 157
operating on 170

[283]

histogram
about 65
algorithm 65

histogram calculation 197-200
host code 68-71
host notification 139
host_ptr parameter 62, 88
Huffman coding

quantization 221
hybrid parallel computing model 13

I
ICD (Installable Client Driver) 23
image access qualifiers

about 173
data type attributes 174
function attributes 174
variable attribute 175

image_array_size 91
image buffers

passing, to kernels 95
image compression 205
image_depth 91
image filters

Gaussian filter 209-211
implementing 208
mean filter 208
median filter 209
Sobel filter 211, 212

image_height 91
image histogram

computing 104-107
image object

about 99
mapping 102
querying 102, 103

image_row_pitch 91
images

Bits Per Pixel (bpp) 206
cl_image_desc structure 90-95
cl_image_format image format descriptor

88, 89
copying 100, 101
creating 88
filling 100, 101

image buffers, passing to kernels 95
PBM (Portable Bit Map) 206
PGM (Portable Gray Map) 206
PPM (Portable Pixel Map) 207
representing 206, 207

image_slice_pitch 91
image_type 90
image_width 90
Implicit conversion 164
Instruction Set Architecture (ISA) 156
Intel 18
Intel® Ivy bridge 39, 40
Intermediate Language (IL) 182
Interoperation

about 232, 233
buffer, creating from GL texture 243, 244
buffer, mapping 238, 239
implementing 234
OpenCL context, initializing for OpenGL

Interoperation 235-237
OpenCL-OpenGL Interoperation support,

detecting 234, 235
Renderbuffer object 244-246
steps, listing 240, 241
synchronization 241-243

intptr_t data type 158
is_less function 169

J
Joint Photographic Experts Group. See JPEG
JPEG

about 219
encoding 219-221

JPEG compression
about 218
OpenCL implementation 222-227

JPEG encoding
about 219-222
Huffman coding 221
run length encoding 221

K
kernel 128-133, 189
kernel argument

querying 131-134
setting 127, 128

[284]

kernel_name 127
kernel_names 135
kernel objects

about 49
built-in kernels 135
creating 126, 127
kernel argument, querying 131-134
kernel argument, setting 127, 128
kernels, executing 129, 130
program, releasing 134
querying 130, 131
releasing 134

kernel optimization techniques 190-195
kernels

about 127
executing 129, 130
image buffers, passing to 95

k-Nearest Neighborhood (k-NN)
algorithm 268-276

L
least square curve fitting

about 248
implementing 251-261
linear approximation 248, 249
parabolic approximation 250

lengths 110, 112
linear approximation 248, 249
local-id 47
local memory 53
local_work_size object 49, 130
LOG_OCL_ERROR utility 70

M
main() function 188
malloc function 115
matrix multiplication

kernel 189
kernel optimization techniques 190-195
OpenCL implementation 188
sequential implementation 186-188

MCU (Minimum Coded Unit) 219
Mean and Gaussian filter 212-215
mean filter 208

Median filter 209, 215, 217
memory fence functions 176, 177
memory fences 152
Memory model

about 31, 52
constant memory 53
global memory 53
local memory 53
private memory 54, 55

memory objects 60-62
Message Passing Interface. See MPI
MPI 11
multiple devices

and different OpenCL contexts 141, 142
and single OpenCL context 142

N
NDRange 46-49
num_devices 51, 112, 114, 135
num_events_in_wait_list parameter 72, 81
num_events object 147
num_kernels 127
num_kernels_ret 127
NVIDIA®

configurations 17
Kepler architecture 17

NVIDIA graphics card
used, for OpenCL installation on Linux

system 24
used, for OpenCL installation on Windows

system 24
NVIDIA GeForce® GTX 680 38

O
offline compilation 121, 122
offset parameter 72, 81
online compilation 121, 122
OpenACC 11
OpenACC Application Program Interface.

See OpenACC
OpenCL

about 12-14
components 19, 20
filter implementation 212
goal 13

[285]

hardware vendors 15
implementing 188
installation, steps 22, 23
SAXPY routine, implementing 26
using 200

OpenCL command queue 51, 52
OpenCL context 50, 51

initializing, for OpenGL Interoperation
235-237

OpenCL event
about 139
monitoring 139
synchronization models 140

OpenCLfilter implementation
Mean and Gaussian filter 212-215
Median filter 215-217
Sobel filter 217, 218

OpenCL ICD 55, 56
OpenCL Installable Client Driver. See

OpenCL ICD
OpenCL installation

Apple OSX 25
multiple installations 25, 26
on Linux system, with AMD graphics

card 23
on Linux system, with NVIDIA

graphics card 24
on Windows system, with NVIDIA

graphics card 24, 25
OpenCL kernel code 66-68
OpenCL-OpenGL Interoperation support

detecting 234, 235
OpenCL program

compliant computer, installing 22
compliant computer, setting up 22
software requirements 21

OpenCL program building 117
OpenCLStruct function 160
Open Computing Language. See OpenCL
OpenGL 230-232
OpenGL Interoperation

OpenCL context, initializing for 235-237
Open Graphics Language. See OpenGL
OpenMP 10, 11
operators

about 169
half data type, operating on 170

options 114
origin 99

P
packed attribute 175
parabolic approximation 250
parallel computing 7
parallel programming techniques

about 10
CUDA 12
hybrid parallel computing model 13
MPI 11
OpenACC 11
OpenCL 12
OpenMP 10
Renderscripts 13

param_name 114, 118, 131-133, 148
param_value 115, 118, 131
param_value_size 114, 118, 131
param_value_size_ret 115, 118, 131
PBM (Portable Bit Map) 206
performance

advantages 196
finding, of program 180
finding, tools used 182-185

performance-bottleneck
finding, tools used 182-185

pfn_notify 51, 114
PGM (Portable Gray Map) 206
Platform model

about 31, 36
AMD Radeon HD 7870 38
AMD Trinity APU 37
INTEL IVY bridge 39, 40
NVIDIA GTX 680 38

Platform versions
about 40
Query devices 42-44
Query platforms 40-42

PPM (Portable Pixel Map) 207
PrintDeviceInfo() function 42
private memory 54, 55
profiling 139, 151
program

about 114, 118, 127
performance, finding 180
releasing 134

[286]

programming model 32
program objects

binary file, creating 120, 121
building 110-115
creating 110-115
offline compilation 121, 122
online compilation 121, 122
OpenCL program building 117
querying 118, 119
SAXPY, binary file used 123, 124
SPIR 125, 126

properties 50
ptr 100
ptrdiff_t data type 158
ptr parameter 72

Q
Query devices 42-44
Query platforms 40-42

R
read_imageui function 107
rectangular reads 75-79
region 99
regression

with least square curve fitting 248
Renderbuffer object 244-246
Renderscripts 13
reserved data type 159
restrictions 173
row_pitch object 99
rules

aliasing 163

S
samplers 96, 97
SAXPY

about 26
binary file, using 123, 124

saxpy_kernel function 46, 123
SAXPY routine

implementing, in OpenCL 26

SAXPY routine implementations,
in OpenCL

about 26
execution model 32
kernel, runnin gon CPU 31, 32
memory model 31
OpenCL code 26-30
OpenCL program flow 30, 31
platform model 31
programming model 32

SDK
for AMD, URL 184
for NVIDIA, URL 184

sequential implementation 186-188
single device

and out-of-order queue 141
single device in-order usage 140
Single precision real Alpha X plus Y. See

SAXPY
sizeof() operator 158
size parameter 62, 72, 81, 88
size_t data type 158
size_t get_global_id (uint dimindx) function

176
size_t get_global_offset (uint dimindx)

function 176
size_t get_global_size (uint dimindx) func-

tion 176
size_t get_group_id (uint dimindx) function

176
size_t get_local_id (uint dimindx) function

176
size_t get_local_size (uint dimindx) function

176
size_t get_num_groups (uint dimindx) func-

tion 176
slice_pitch object 100
Sobel filter 211, 212, 217, 218
Software Development Kits (SDK) 22
software requirements, OpenCL program

about 21
Linux 21
Windows 21

SOS (Start of Scan) 222
SPIR 125, 126

[287]

src_origin parameter 100
Standard Portable Intermediate Representa-

tion. See SPIR
Start of Image (SO) 221
storage class specifiers 175
Streaming Multiprocessors-X (SMX) 38
strings 110
subbuffer objects

creating 62-64
synchronization 176, 177
synchronization, Interoperation 241-243
synchronization models

multiple devices and different OpenCL
contexts 141, 142

multiple devices and single OpenCL
context 142

single device and out-of-order queue 141
single device in-order usage 140

T
time command 180
tools

used, for finding performance 182-185
used, for finding performance-bottleneck

182-185

U
uint get_work_dim () function 176
uintptr_t data type 158
user-created events 150, 151
user_data 51, 114

V
variable attribute 175
vector components 162
vector data types 160, 161
VECTOR_SIZE variable 26
vector types 156, 157
vendor

strategies 200-202
vload_half function 170

W
wglGetCurrentContext() function 237
wglGetCurrentDC() function 237
work_dim object 49, 130
work-group 47
work item function 47, 176

Thank you for buying
OpenCL Programming
by Example

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

OpenCL Parallel Programming
Development Cookbook
ISBN: 978-1-849694-52-0 Paperback: 302 pages

Accelerate your applications and understand high-
performance computing with over 50 OpenCL recipes

1. Learn about parallel programming
development in OpenCL and also the various
techniques involved in writing high-performing
code

2. Find out more about data-parallel or task-
parallel development and also about the
combination of both

3. Understand and exploit the underlying
hardware features like processor registers and
caches that run potentially tens of thousands of
threads across the processors

OpenGL Development Cookbook
ISBN: 978-1-849695-04-6 Paperback: 326 pages

Over 40 recipes to help you learn, understand, and
implement modern OpenGL in your applications

1. Explores current graphics programming
techniques including GPU-based methods from
the outlook of modern OpenGL 3.3

2. Includes GPU-based volume rendering
algorithms

3. Discover how to employ GPU-based path and
ray tracing

4. Create 3D mesh formats and skeletal animation
with GPU skinning

Please check www.PacktPub.com for information on our titles

OpenGL 4.0 Shading Language
Cookbook
ISBN: 978-1-849514-76-7 Paperback: 340 pages

Over 60 highly focused, practical recipes to maximize
your use of the OpenGL Shading Language

1. A full set of recipes demonstrating simple
and advanced techniques for producing high-
quality, real-time 3D graphics using GLSL 4.0

2. How to use the OpenGL Shading Language to
implement lighting and shading techniques

3. Use the new features of GLSL 4.0 including
tessellation and geometry shaders

.NET 4.5 Parallel Extensions
Cookbook
ISBN: 978-1-849690-22-5 Paperback: 336 pages

80 recipes to create scalable, task-based parallel
programs using .NET 4.5

1. Create multithreaded applications using .NET
Framework 4.5

2. Get introduced to .NET 4.5 parallel extensions
and familiarized with .NET parallel loops

3. Use new data structures introduced by
.NET Framework 4.5 to simplify complex
synchronisation problems

4. Practical recipes on everything you will need to
create task-based parallel programs

Please check www.PacktPub.com for information on our titles

 ~StormRG~

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Hello OpenCL
	Advances in computer architecture
	Different parallel programming techniques
	OpenMP
	MPI
	OpenACC
	CUDA
	CUDA or OpenCL?

	Renderscripts
	Hybrid parallel computing model

	Introduction to OpenCL
	Hardware and software vendors
	Advanced Micro Devices, Inc. (AMD)
	NVIDIA®
	Intel®
	ARM Mali™ GPUs

	OpenCL components
	An example OpenCL program
	Basic software requirements
	Windows
	Linux

	Installing and setting up an OpenCL compliant computer
	Installation steps
	Installing OpenCL on a Linux system with an AMD graphics card
	Installing OpenCL on a Linux system with an NVIDIA graphics card
	Installing OpenCL on a Windows system with an AMD graphics card
	Installing OpenCL on a Windows system with an NVIDIA graphics card
	Apple OSX
	Multiple installations
	Implement the SAXPY routine in OpenCL

	Summary
	References

	Chapter 2: OpenCL Architecture
	Platform model
	AMD A10 5800K APUs
	AMD Radeon™ HD 7870 Graphics Processor
	NVIDIA® GeForce® GTC 680 GPU
	Intel® IVY bridge

	Platform versions
	Query Platforms
	Query devices

	Execution model
	NDRange
	OpenCL context
	OpenCL command queue

	Memory model
	Global memory
	Constant memory
	Local memory
	Private memory

	OpenCL ICD
	What is an OpenCL ICD?

	Application scaling
	Summary

	Chapter 3: OpenCL Buffer Objects
	Memory Objects
	Creating Subbuffer objects
	Histogram calculation
	Algorithm
	OpenCL Kernel Code
	The Host Code

	Reading and writing buffers
	Blocking_read and Blocking_write
	Rectangular or cuboidal reads

	Copying buffers
	Mapping buffer objects
	Querying buffer objects
	Undefined behavior of the cl_mem objects
	Summary

	Chapter 4: OpenCL Images
	Creating images
	Image format descriptor cl_image_format
	Image details descriptor cl_image_desc
	Passing image buffers to kernels

	Samplers
	Reading and writing buffers
	Copying and filling images
	Mapping image objects
	Querying image objects
	Image histogram computation
	Summary

	Chapter 5: OpenCL Program and Kernel Objects
	Creating program objects
	Creating and building program objects
	OpenCL program building options
	Querying program objects
	Creating binary files
	Offline and online compilation
	SAXPY using the binary file
	SPIR – Standard Portable Intermediate Representation

	Creating kernel objects
	Setting kernel arguments
	Executing the kernels
	Querying kernel objects
	Querying kernel argument
	Releasing program and kernel objects
	Built-in kernels

	Summary

	Chapter 6: Events and Synchronization
	OpenCL events and monitoring of
these events
	OpenCL event synchronization models
	No synchronization needed
	Single device in-order usage

	Synchronization needed
	Single device and out-of-order queue
	Multiple devices and different OpenCL contexts
	Multiple devices and single OpenCL context

	Coarse grained synchronization
	Event based or fine grained synchronization
	Getting information about cl_event
	User created events
	Event profiling
	Memory fences
	Summary

	Chapter 7: OpenCL C Programming
	Built-in data types
	Basic data types and vector types
	The half data type
	Other data types
	Reserved data types
	Alignment of data types
	Vector data types
	Vector components

	Aliasing rules
	Conversions and type casts
	Implicit conversion
	Explicit conversion
	Reinterpreting data types

	Operators
	Operation on half data type

	Address space qualifiers
	__global/global address space
	__local/local address space
	__constant/constant address space
	__private/private address space
	Restrictions

	Image access qualifiers
	Function attributes
	Data type attributes
	Variable attribute

	Storage class specifiers
	Built-in functions
	Work item function
	Synchronization and memory fence functions
	Other built-ins

	Summary

	Chapter 8: Basic Optimization Techniques with Case Studies
	Finding the performance of your program?
	Explaining the code
	Tools for profiling and finding performance bottlenecks

	Case study – matrix multiplication
	Sequential implementation
	OpenCL implementation
	Simple kernel
	Kernel optimization techniques

	Case study – Histogram calculation
	Finding the scope of the use of OpenCL
	General tips
	Summary

	Chapter 9: Image Processing and OpenCL
	Image representation
	Implementing image filters
	Mean filter
	Median filter
	Gaussian filter
	Sobel filter

	OpenCL implementation of filters
	Mean and Gaussian filter
	Median filter
	Sobel filter

	JPEG compression
	Encoding JPEG
	OpenCL implementation

	Summary
	References

	Chapter 10: OpenCL-OpenGL Interoperation
	Introduction to OpenGL
	Defining Interoperation
	Implementing Interoperation
	Detecting if OpenCL-OpenGL interoperation
is supported
	Initializing OpenCL context for OpenGL Interoperation
	Mapping of a Buffer
	Listing interoperation steps
	Synchronization
	Creating a Buffer from GL texture
	Renderbuffer object

	Summary

	Chapter 11: Case studies – Regressions, Sort, and KNN
	Regression with least square curve fitting
	Linear approximations
	Parabolic approximations
	Implementation

	Bitonic sort
	K-Nearest Neighborhood (k-NN) algorithm
	Summary

	Index

