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Preface
This book is designed as a concise introduction to OpenCL programming for 
developers working on diverse domains. It covers all the major topics of OpenCL 
programming and illustrates them with code examples and explanations from 
different fields such as common algorithm, image processing, statistical computation, 
and machine learning. It also dedicates one chapter to Optimization techniques, 
where it discusses different optimization strategies on a single simple problem.

Parallel programming is a fast developing field today. As it is becoming increasingly 
difficult to increase the performance of a single core machine, hardware vendors see 
advantage in packing multiple cores in a single SOC. The GPU (Graphics Processor 
Unit) was initially meant for rendering better graphics which ultimately means  
fast floating point operation for computing pixel values. GPGPU (General purpose 
Graphics Processor Unit) is the technique of utilization of GPU for a general  
purpose computation. Since the GPU provides very high performance of floating 
point operations and data parallel computation, it is very well suited to be used 
as a co-processor in a computing system for doing data parallel tasks with high 
arithmetic intensity.

Before NVIDIA® came up with CUDA (Compute Unified Device Architecture) in 
February 2007, the typical GPGPU approach was to convert general problems' data 
parallel computation into some form of a graphics problem which is expressible 
by graphics programming APIs for the GPU. CUDA first gave a user friendly 
small extension of C language to write code for the GPU. But it was a proprietary 
framework from NVIDIA and was supposed to work on NVIDIA's GPU only.



Preface

[ 2 ]

With the growing popularity of such a framework, the requirement for an open 
standard architecture that would be able to support different kinds of devices from 
various vendors was becoming strongly perceivable. In June 2008, the Khronos 
compute working group was formed and they published OpenCL1.0 specification 
in December 2008. Multiple vendors gradually provided a tool-chain for OpenCL 
programming including NVIDIA OpenCL Drivers and Tools, AMD APP SDK, Intel® 
SDK for OpenCL application, IBM Server with OpenCL development Kit, and so on. 
Today OpenCL supports multi-core programming, GPU programming, cell and DSP 
processor programming, and so on.

In this book we discuss OpenCL with a few examples.

What this book covers
Chapter 1, Hello OpenCL, starts with a brief introduction to OpenCL and provides 
hardware architecture details of the various OpenCL devices from different vendors.

Chapter 2, OpenCL Architecture, discusses the various OpenCL architecture models.

Chapter 3, OpenCL Buffer Objects, discusses the common functions used to create an 
OpenCL memory object.

Chapter 4, OpenCL Images, gives an overview of functions for creating different types 
of OpenCL images.

Chapter 5, OpenCL Program and Kernel Objects, concentrates on the sequential steps 
required to execute a kernel.

Chapter 6, Events and Synchronization, discusses coarse grained and fine-grained 
events and their synchronization mechanisms.

Chapter 7, OpenCL C Programming, discusses the specifications and restrictions  
for writing an OpenCL compliant C kernel code.

Chapter 8, Basic Optimization Techniques with Case Studies, discusses various 
optimization techniques using a simple example of matrix multiplication.

Chapter 9, Image Processing and OpenCL, discusses Image Processing case studies. 
OpenCL implementations of Image filters and JPEG image decoding are provided  
in this chapter. 
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Chapter 10, OpenCL-OpenGL Interoperation, discusses OpenCL and OpenGL 
interoperation, which in its simple form means sharing of data between OpenGL  
and OpenCL in a program that uses both.

Chapter 11, Case studies – Regressions, Sort, and KNN, discusses general algorithm-like 
sorting. Besides this, case studies from Statistics (Linear and Parabolic Regression) 
and Machine Learning (K Nearest Neighbourhood) are discussed with their OpenCL 
implementations.

What you need for this book
The prerequisite is proficiency in C language. Having a background of parallel 
programming would undoubtedly be advantageous, but it is not a requirement. 
Readers should find this book compact yet a complete guide for OpenCL 
programming covering most of the advanced topics. Emphasis is given to illustrate 
the key concept and problem-solution with small independent examples rather 
than a single large example. There are detailed explanations of the most of the APIs 
discussed and kernels for the case studies are presented.

Who this book is for
Application developers from different domains intending to use OpenCL to 
accelerate their application can use this book to jump start. This book is also good for 
beginners in OpenCL and parallel programming.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: " Each OpenCL vendor, ships this library 
and the corresponding OpenCL.dll or libOpenCL.so library in its SDK."

A block of code is set as follows:

void saxpy(int n, float a, float *b, float *c)
{
    for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i];
}
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When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

#include <CL/cl.h>
#endif
#define VECTOR_SIZE 1024

//OpenCL kernel which is run for every work item created.
const char *saxpy_kernel =
"__kernel                                   \n"
"void saxpy_kernel(float alpha,     \n"
"                  __global float *A,       \n"
"                  __global float *B,       \n"
"                  __global float *C)       \n"
"{                                          \n"
"    //Get the index of the work-item       \n"
"    int index = get_global_id(0);          \n"
"    C[index] = alpha* A[index] + B[index]; \n"
"}                                          \n";

int main(void) {
  int i;

Any command-line input or output is written as follows:

# cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

     /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "clicking on 
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.



Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.



Hello OpenCL
Parallel Computing has been extensively researched over the past few decades and 
had been the key research interest at many universities. Parallel Computing uses 
multiple processors or computers working together on a common algorithm or task. 
Due to the constraints in the available memory, performance of a single computing 
unit, and also the need to complete a task quickly, various parallel computing 
frameworks have been defined. All computers are parallel these days, even your 
handheld mobiles are multicore platforms and each of these parallel computers uses 
a parallel computing framework of their choice. Let's define Parallel Computing.

The Wikipedia definition says that, Parallel Computing is a form of computation in 
which many calculations are carried out simultaneously, operating on the principle 
that large problems can often be divided into smaller ones, which are then solved 
concurrently (in parallel).

There are many Parallel Computing programming standards or API specifications, 
such as OpenMP, OpenMPI, Pthreads, and so on. This book is all about OpenCL 
Parallel Programming. In this chapter, we will start with a discussion on different 
types of parallel programming. We will first introduce you to OpenCL with different 
OpenCL components. We will also take a look at the various hardware and software 
vendors of OpenCL and their OpenCL installation steps. Finally, at the end  
of the chapter we will see an OpenCL program example SAXPY in detail and  
its implementation.
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Advances in computer architecture
All over the 20th century computer architectures have advanced by multiple folds. 
The trend is continuing in the 21st century and will remain for a long time to 
come. Some of these trends in architecture follow Moore's Law. "Moore's law is the 
observation that, over the history of computing hardware, the number of transistors 
on integrated circuits doubles approximately every two years". Many devices in 
the computer industry are linked to Moore's law, whether they are DSPs, memory 
devices, or digital cameras. All the hardware advances would be of no use if there 
weren't any software advances. Algorithms and software applications grow in 
complexity, as more and more user interaction comes into play. An algorithm can 
be highly sequential or it may be parallelized, by using any parallel computing 
framework. Amdahl's Law is used to predict the speedup for an algorithm, which 
can be obtained given n threads. This speedup is dependent on the value of the 
amount of strictly serial or non-parallelizable code (B). The time T(n) an algorithm 
takes to finish when being executed on n thread(s) of execution corresponds to:

T(n) = T(1) (B + (1-B)/n)

Therefore the theoretical speedup which can be obtained for a given algorithm is 
given by :

Speedup(n) =  1/(B + (1-B)/n)

Amdahl's Law has a limitation, that it does not fully exploit the computing power 
that becomes available as the number of processing core increase.

Gustafson's Law takes into account the scaling of the platform by adding more 
processing elements in the platform. This law assumes that the total amount of work 
that can be done in parallel, varies linearly with the increase in number of processing 
elements. Let an algorithm be decomposed into (a+b). The variable a is the serial 
execution time and variable b is the parallel execution time. Then the corresponding 
speedup for P parallel elements is given by:

(a + P*b)

Speedup = (a + P*b) / (a + b)

Now defining α as a/(a+b), the sequential execution component, as follows,  
gives the speedup for P processing elements:

Speedup(P) = P – α *(P - 1)
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Given a problem which can be solved using OpenCL, the same problem can also be 
solved on a different hardware with different capabilities. Gustafson's law suggests 
that with more number of computing units, the data set should also increase that 
is, "fixed work per processor". Whereas Amdahl's law suggests the speedup which 
can be obtained for the existing data set if more computing units are added, that is, 
"Fixed work for all processors". Let's take the following example:

Let the serial component and parallel component of execution be of one unit each.

In Amdahl's Law the strictly serial component of code is B (equals 0.5). For two 
processors, the speedup T(2) is given by:

T(2) = 1 / (0.5 + (1 – 0.5) / 2) = 1.33

Similarly for four and eight processors, the speedup is given by:

T(4) = 1.6 and T(8) = 1.77

Adding more processors, for example when n tends to infinity, the speedup obtained 
at max is only 2. On the other hand in Gustafson's law, Alpha = 1(1+1) = 0.5 (which is 
also the serial component of code). The speedup for two processors is given by:

Speedup(2) = 2 – 0.5(2 - 1) = 1.5

Similarly for four and eight processors, the speedup is given by:

Speedup(4) = 2.5 and Speedup(8) = 4.5

The following figure shows the work load scaling factor of Gustafson's law,  
when compared to Amdahl's law with a constant workload:

AMDAHL’s Law

GUSTAFSONS’s Law

When

workload

increases with

number of

processors

more speedup

is obtained

Workload

remains

constant

Comparison of Amdahl's and Gustafson's Law
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OpenCL is all about parallel programming, and Gustafson's law very well fits 
into this book as we will be dealing with OpenCL for data parallel applications. 
Workloads which are data parallel in nature can easily increase the data set and  
take advantage of the scalable platforms by adding more compute units. For 
example, more pixels can be computed as more compute units are added.

Different parallel programming 
techniques
There are several different forms of parallel computing such as bit-level, instruction 
level, data, and task parallelism. This book will largely focus on data and task 
parallelism using heterogeneous devices. We just now coined a term, heterogeneous 
devices. How do we tackle complex tasks "in parallel" using different types of 
computer architecture? Why do we need OpenCL when there are many (already 
defined) open standards for Parallel Computing?

To answer this question, let us discuss the pros and cons of different Parallel 
computing Framework.

OpenMP
OpenMP is an API that supports multi-platform shared memory multiprocessing 
programming in C, C++, and Fortran. It is prevalent only on a multi-core computer 
platform with a shared memory subsystem.

A basic OpenMP example implementation of the OpenMP Parallel directive  
is as follows:

#pragma omp parallel
{
  body;
}

When you build the preceding code using the OpenMP shared library, libgomp 
would expand to something similar to the following code:

void subfunction (void *data)
{
    use data;
    body;
}
     
setup data;
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GOMP_parallel_start (subfunction, &data, num_threads);
subfunction (&data);
GOMP_parallel_end ();
void GOMP_parallel_start (void (*fn)(void *), void *data,  
  unsigned num_threads)     

The OpenMP directives make things easy for the developer to modify the existing 
code to exploit the multicore architecture. OpenMP, though being a great parallel 
programming tool, does not support parallel execution on heterogeneous devices, 
and the use of a multicore architecture with shared memory subsystem does not 
make it cost effective.

MPI
Message Passing Interface (MPI) has an advantage over OpenMP, that it can 
run on either the shared or distributed memory architecture. Distributed memory 
computers are less expensive than large shared memory computers. But it has its 
own drawback with inherent programming and debugging challenges. One major 
disadvantage of MPI parallel framework is that the performance is limited by the 
communication network between the nodes.

Supercomputers have a massive number of processors which are interconnected 
using a high speed network connection or are in computer clusters, where computer 
processors are in close proximity to each other. In clusters, there is an expensive and 
dedicated data bus for data transfers across the computers. MPI is extensively used 
in most of these compute monsters called supercomputers.

OpenACC
The OpenACC Application Program Interface (API) describes a collection of 
compiler directives to specify loops and regions of code in standard C, C++, and 
Fortran to be offloaded from a host CPU to an attached accelerator, providing 
portability across operating systems, host CPUs, and accelerators. OpenACC is 
similar to OpenMP in terms of program annotation, but unlike OpenMP which can 
only be accelerated on CPUs, OpenACC programs can be accelerated on a GPU or 
on other accelerators also. OpenACC aims to overcome the drawbacks of OpenMP 
by making parallel programming possible across heterogeneous devices. OpenACC 
standard describes directives and APIs to accelerate the applications. The ease of 
programming and the ability to scale the existing codes to use the heterogeneous 
processor, warrantees a great future for OpenACC programming.
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CUDA
Compute Unified Device Architecture (CUDA) is a parallel computing architecture 
developed by NVIDIA for graphics processing and GPU (General Purpose GPU) 
programming. There is a fairly good developer community following for the CUDA 
software framework. Unlike OpenCL, which is supported on GPUs by many vendors 
and even on many other devices such as IBM's Cell B.E. processor or TI's DSP 
processor and so on, CUDA is supported only for NVIDIA GPUs. Due to this lack of 
generalization, and focus on a very specific hardware platform from a single vendor, 
OpenCL is gaining traction.

CUDA or OpenCL?
CUDA is more proprietary and vendor specific but has its own advantages. It is 
easier to learn and start writing code in CUDA than in OpenCL, due to its simplicity. 
Optimization of CUDA is more deterministic across a platform, since less number 
of platforms are supported from a single vendor only. It has simplified few 
programming constructs and mechanisms. So for a quick start and if you are sure 
that you can stick to one device (GPU) from a single vendor that is NVIDIA, CUDA 
can be a good choice.

OpenCL on the other hand is supported for many hardware from several vendors 
and those hardware vary extensively even in their basic architecture, which created 
the requirement of understanding a little complicated concepts before starting 
OpenCL programming. Also, due to the support of a huge range of hardware, 
although an OpenCL program is portable, it may lose optimization when ported 
from one platform to another.

The kernel development where most of the effort goes, is practically identical 
between the two languages. So, one should not worry about which one to choose. 
Choose the language which is convenient. But remember your OpenCL application 
will be vendor agnostic. This book aims at attracting more developers to OpenCL.

There are many libraries which use OpenCL programming for acceleration. Some 
of them are MAGMA, clAMDBLAS, clAMDFFT, BOLT C++ Template library, and 
JACKET which accelerate MATLAB on GPUs. Besides this, there are C++ and Java 
bindings available for OpenCL also.

Once you've figured out how to write your important "kernels" it's trivial to port to 
either OpenCL or CUDA. A kernel is a computation code which is executed by an 
array of threads. CUDA also has a vast set of CUDA accelerated libraries, that is, 
CUBLAS, CUFFT, CUSPARSE, Thrust and so on. But it may not take a long time  
to port these libraries to OpenCL.
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Renderscripts
Renderscripts is also an API specification which is targeted for 3D rendering and 
general purpose compute operations in an Android platform. Android apps can 
accelerate the performance by using these APIs. It is also a cross-platform solution. 
When an app is run, the scripts are compiled into a machine code of the device. This 
device can be a CPU, a GPU, or a DSP. The choice of which device to run it on is 
made at runtime. If a platform does not have a GPU, the code may fall back to the 
CPU. Only Android supports this API specification as of now. The execution model 
in Renderscripts is similar to that of OpenCL.

Hybrid parallel computing model
Parallel programming models have their own advantages and disadvantages. With 
the advent of many different types of computer architectures, there is a need to use 
multiple programming models to achieve high performance. For example, one may 
want to use MPI as the message passing framework, and then at each node level one 
might want to use, OpenCL, CUDA, OpenMP, or OpenACC.

Besides all the above programming models many compilers such as Intel ICC, GCC, 
and Open64 provide auto parallelization options, which makes the programmers job 
easy and exploit the underlying hardware architecture without the need of knowing 
any parallel computing framework. Compilers are known to be good at providing 
instruction-level parallelism. But tackling data level or task level auto parallelism has 
its own limitations and complexities.

Introduction to OpenCL
OpenCL standard was first introduced by Apple, and later on became part of 
the open standards organization "Khronos Group". It is a non-profit industry 
consortium, creating open standards for the authoring, and acceleration of parallel 
computing, graphics, dynamic media, computer vision and sensor processing on a 
wide variety of platforms and devices.

The goal of OpenCL is to make certain types of parallel programming easier, and to 
provide vendor agnostic hardware-accelerated parallel execution of code. OpenCL 
(Open Computing Language) is the first open, royalty-free standard for general-
purpose parallel programming of heterogeneous systems. It provides a uniform 
programming environment for software developers to write efficient, portable code 
for high-performance compute servers, desktop computer systems, and handheld 
devices using a diverse mix of multi-core CPUs, GPUs, and DSPs. 
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OpenCL gives developers a common set of easy-to-use tools to take advantage of 
any device with an OpenCL driver (processors, graphics cards, and so on) for the 
processing of parallel code. By creating an efficient, close-to-the-metal programming 
interface, OpenCL will form the foundation layer of a parallel computing ecosystem 
of platform-independent tools, middleware, and applications.

We mentioned vendor agnostic, yes that is what OpenCL is about. The different 
vendors here can be AMD, Intel, NVIDIA, ARM, TI, and so on. The following 
diagram shows the different vendors and hardware architectures which use  
the OpenCL specification to leverage the hardware capabilities:

TI DSP’s, FPGAs, Hardware

Accelerators.
Programming using propreitary

tools only

CPUs, x86, x86_64 or

ARM
MulticoreArchitecture.

Programming using

OpenMP, POSIX Threads etc
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OpenCL

GPUs AMD, NVIDIA

Imagination , MALI   Graphics.
large number of specialized

cores, targetted for General

Purpose Computing.

Programming using propreitary

tools.

®

®

The heterogeneous system

The OpenCL framework defines a language to write "kernels". These kernels are 
functions which are capable of running on different compute devices. OpenCL 
defines an extended C language for writing compute kernels, and a set of APIs for 
creating and managing these kernels. The compute kernels are compiled with a 
runtime compiler, which compiles them on-the-fly during host application execution 
for the targeted device. This enables the host application to take advantage of all the 
compute devices in the system with a single set of portable compute kernels.
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Based on your interest and hardware availability, you might want to do OpenCL 
programming with a "host and device" combination of "CPU and CPU" or "CPU and 
GPU". Both have their own programming strategy. In CPUs you can run very large 
kernels as the CPU architecture supports out-of-order instruction level parallelism 
and have large caches. For the GPU you will be better off writing small kernels for 
better performance. Performance optimization is a huge topic in itself. We will try  
to discuss this with a case study in Chapter 8, Basic Optimization Techniques with  
Case Studies

Hardware and software vendors
There are various hardware vendors who support OpenCL. Every OpenCL vendor 
provides OpenCL runtime libraries. These runtimes are capable of running only on their 
specific hardware architectures. Not only across different vendors, but within a vendor 
there may be different types of architectures which might need a different approach 
towards OpenCL programming. Now let's discuss the various hardware vendors who 
provide an implementation of OpenCL, to exploit their underlying hardware.

Advanced Micro Devices, Inc. (AMD)
With the launch of AMD A Series APU, one of industry's first Accelerated 
Processing Unit (APU), AMD is leading the efforts of integrating both the x86_64 
CPU and GPU dies in one chip. It has four cores of CPU processing power, and also 
a four or five graphics SIMD engine, depending on the silicon part which you wish 
to buy. The following figure shows the block diagram of AMD APU architecture:

AMD architecture diagram—© 2011, Advanced Micro Devices, Inc.



Hello OpenCL

[ 16 ]

An AMD GPU consist of a number of Compute Engines (CU) and each CU has 16 
ALUs. Further, each ALU is a VLIW4 SIMD processor and it could execute a bundle 
of four or five independent instructions. Each CU could be issued a group of 64  
work items which form the work group (wavefront). AMD Radeon ™ HD 6XXX 
graphics processors uses this design. The following figure shows the HD 6XXX  
series Compute unit, which has 16 SIMD engines, each of which has four  
processing elements:

AMD Radeon HD 6xxx Series SIMD Engine—© 2011, Advanced Micro Devices, Inc. 

Starting with the AMD Radeon HD 7XXX series of graphics processors from AMD, 
there were significant architectural changes. AMD introduced the new Graphics 
Core Next (GCN) architecture. The following figure shows an GCN compute unit 
which has 4 SIMD engines and each engine is 16 lanes wide:

GCN Compute Unit—© 2011, Advanced Micro Devices, Inc.

A group of these Compute Units forms an AMD HD 7xxx Graphics Processor. In 
GCN, each CU includes four separate SIMD units for vector processing. Each of these 
SIMD units simultaneously execute a single operation across 16 work items, but each 
can be working on a separate wavefront.

Apart from the APUs, AMD also provides discrete graphics cards. The latest family 
of graphics card, HD 7XXX, and beyond uses the GCN architecture. We will discuss 
one of the discrete GPU architectures in the following chapter, where we will discuss 
the OpenCL Platform model. AMD also provides the OpenCL runtimes for their 
CPU devices.
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NVIDIA®

One of NVIDIA GPU architectures is codenamed "Kepler". GeForce® GTX 
680 is one Kepler architectural silicon part. Each Kepler GPU consists of 
different configurations of Graphics Processing Clusters (GPC) and streaming 
multiprocessors. The GTX 680 consists of four GPCs and eight SMXs as shown  
in the following figure:

NVIDIA Kepler architecture—GTX 680, © NVIDIA®

Kepler architecture is part of the GTX 6XX and GTX 7XX family of NVIDIA discrete 
cards. Prior to Kepler, NVIDIA had Fermi architecture which was part of the GTX 
5XX family of discrete and mobile graphic processing units.

www.allitebooks.com
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Intel®

Intel's OpenCL implementation is supported in the Sandy Bridge and Ivy Bridge 
processor families. Sandy Bridge family architecture is also synonymous with the 
AMD's APU. These processor architectures also integrated a GPU into the same 
silicon as the CPU by Intel. Intel changed the design of the L3 cache, and allowed 
the graphic cores to get access to the L3, which is also called as the last level cache. It 
is because of this L3 sharing that the graphics performance is good in Intel. Each of 
the CPUs including the graphics execution unit is connected via Ring Bus. Also each 
execution unit is a true parallel scalar processor. Sandy Bridge provides the graphics 
engine HD 2000, with six Execution Units (EU), and HD 3000 (12 EU), and Ivy 
Bridge provides HD 2500(six EU) and HD 4000 (16 EU). The following figure shows 
the Sandy bridge architecture with a ring bus, which acts as an interconnect between 
the cores and the HD graphics:

Intel Sandy Bridge architecture—© Intel®
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ARM Mali™ GPUs
ARM also provides GPUs by the name of Mali Graphics processors. The Mali T6XX 
series of processors come with two, four, or eight graphics cores. These graphic 
engines deliver graphics compute capability to entry level smartphones, tablets,  
and Smart TVs. The below diagram shows the Mali T628 graphics processor.

ARM Mali—T628 graphics processor, © ARM

Mali T628 has eight shader cores or graphic cores. These cores also support 
Renderscripts APIs besides supporting OpenCL.

Besides the four key competitors, companies such as TI (DSP), Altera (FPGA), and 
Oracle are providing OpenCL implementations for their respective hardware. We 
suggest you to get hold of the benchmark performance numbers of the different 
processor architectures we discussed, and try to compare the performance numbers 
of each of them. This is an important first step towards comparing different 
architectures, and in the future you might want to select a particular OpenCL 
platform based on your application workload.

OpenCL components
Before delving into the programming aspects in OpenCL, we will take a look at 
the different components in an OpenCL framework. The first thing is the OpenCL 
specification. The OpenCL specification describes the OpenCL programming 
architecture details, and a set of APIs to perform specific tasks, which are all required 
by an application developer. This specification is provided by the Khronos OpenCL 
consortium. Besides this, Khronos also provides OpenCL header files. They are cl.h, 
cl_gl.h, cl_platform.h, and so on.
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An application programmer uses these header files to develop his application and the 
host compiler links with the OpenCL.lib library on Windows. This library contains 
the entry points for the runtime DLL OpenCL.dll. On Linux the application program 
is linked dynamically with the libOpenCL.so shared library. The source code for the 
OpenCL.lib file is also provided by Khronos. The different OpenCL vendors shall 
redistribute this OpenCL.lib file and package it along with their OpenCL development 
SDK. Now the application is ready to be deployed on different platforms.

The different components in OpenCL are shown in the following figure:
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On Windows, at runtime the application first loads the OpenCL.dll dynamic link 
library which in turn, based on the platform selected, loads the appropriate OpenCL 
runtime driver by reading the Windows registry entry for the selected platform 
(either of amdocl.dll or any other vendor OpenCL runtimes). On Linux, at runtime 
the application loads the libOpenCL.so shared library, which in turn reads the 
file /etc/OpenCL/vendors/*.icd and loads the library for the selected platform. 
There may be multiple runtime drivers installed, but it is the responsibility of the 
application developers to choose one of them, or if there are multiple devices in the 
platforms, he may want to choose all the available platforms. During runtime calls to 
OpenCL, functions queue parallel tasks on OpenCL capable devices. We will discuss 
more on OpenCL Runtimes in Chapter 5, OpenCL Program and Kernel Objects.
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An example of OpenCL program
In this section we will discuss all the necessary steps to run an OpenCL application.

Basic software requirements
A person involved in OpenCL programming should be very proficient in C 
programming, and having prior experience in any parallel programming tool will be 
an added advantage. He or she should be able to break a large problem and find out 
the data and task parallel regions of the code which he or she is trying to accelerate 
using OpenCL. An OpenCL programmer should know the underlying architecture 
for which he/she is trying to program. If you are porting an existing parallel code 
into OpenCL, then you just need to start learning the OpenCL programming 
architecture. 

Besides this a programmer should also have the basic system software details, such 
as compiling the code and linking it to an appropriate 32 bit or 64 bit library. He 
should also have knowledge of setting the system path on Windows to the correct 
DLLs or set the LD_LIBRARY_PATH environment variable in Linux to the correct 
shared libraries.

The common system requirements for Windows and Linux operating systems are  
as follows:

Windows
• You should have administrative privileges on the system
• Microsoft Windows XP, Vista, or 7
• Microsoft Visual Studio 2005, 2008, or 2010
• Display Drivers for AMD and NVIDIA GPUs. For NVIDIA GPUs you  

will need display drivers R295 or R300 and above

Linux
• You should have root permissions to install the SDK
• With the vast number of flavors of Linux, practically any supported version 

which has the corresponding graphic device driver installed for the GPU

The GCC compiler tool chain
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Installing and setting up an OpenCL 
compliant computer
To install OpenCL you need to download an implementation of OpenCL. We 
discussed about the various hardware and software vendors in a previous section. 
The major graphic vendors, NVIDIA and AMD have both released implementations 
of OpenCL for their GPUs. Similarly AMD and Intel provide a CPU-only runtime for 
OpenCL. OpenCL implementations are available in so-called Software Development 
Kits (SDK), and often include some useful tools such as debuggers and profilers. 
The next step is to download and install the SDK for the GPU you have on your 
computer. Note that not all graphic cards are supported.  
A list of which graphics cards are supported can be found in the respective vendor 
specific websites. Also you can take a look at the Khronos OpenCL conformance 
products list. If you don't have a graphics card, don't worry, you can use your 
existing processor to run OpenCL samples on CPU as a device.

If you are still confused about which device to choose, then take a look at the  
list of supported devices provided with each release of an OpenCL SDK from 
different vendors.

Installation steps
• For NVIDIA installation steps, we suggest you to take a look at the latest 

installation steps for the CUDA software. First install the GPU computing 
SDK provided for the OS. The following link provides the installation steps 
for NVIDIA platforms:
http://developer.download.nvidia.com/compute/cuda/3_2_prod/sdk/
docs/OpenCL_Release_Notes.txt

• For AMD Accelerated Parallel Processing (APP) SDK installation take  
a look at the AMD APP SDK latest version installation guide. The AMD 
APP SDK comes with a huge set of sample programs which can be used 
for running. The following link is where you will find the latest APP SDK 
installation notes:
http://developer.amd.com/download/AMD_APP_SDK_Installation_
Notes.pdf

• For INTEL SDK for OpenCL applications 2013, use the steps provided in the 
following link:

http://software.intel.com/en-us/articles/intel-sdk-for-opencl-
applications-2013-release-notes
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Note these links are subject to change over a period of time.

AMD's OpenCL implementation is OpenCL 1.2 conformant. Also download the 
latest AMD APP SDK version 2.8 or above.

For NVIDIA GPU computing, make sure you have a CUDA enabled GPU. 
Download the latest CUDA release 4.2 or above, and the GPU computing SDK 
release 4.2 or above.

For Intel, download the Intel SDK for OpenCL Applications 2013.

We will briefly discuss the installation steps. The installation steps may vary from 
vendor to vendor. Hence we discuss only AMD's and NVIDIA's installation steps. 
Note that NVIDIA's CUDA only supports GPU as the device. So we suggest that if you 
have a non NVIDIA GPU then it would be better that you install AMD APP SDK, as it 
supports both the AMD GPUs and CPUs as the device. One can have multiple vendor 
SDKs also installed. This is possible as the OpenCL specification allows runtime 
selection of the OpenCL platform. This is referred to as the ICD (Installable Client 
Driver) dispatch mechanism. We will discuss more about this in a later chapter.

Installing OpenCL on a Linux system with an AMD 
graphics card

1. Make sure you have root privileges and remove all previous installations  
of APP SDK.

2. Untar the downloaded SDK.
3. Run the Install Script Install-AMD-APP.sh.
4. This will install the developer binary, and samples in folder /opt/AMPAPP/.
5. Make sure the variables AMDAPPSDKROOT and LD_LIBRARY_PATH are set to the 

locations where you have installed the APP SDK.

For latest details you can refer to the Installation Notes provided with the APP SDK. 
Linux distributions such as Ubuntu, provide an OpenCL distribution package for 
vendors such as AMD and NVIDIA. You can use the following command to install 
the OpenCL runtimes for AMD:

sudo apt-get install amd-opencl-dev

For NVIDIA you can use the following command:

sudo apt-get install nvidia-opencl-dev

Note that amd-opencl-dev installs both the CPU and GPU OpenCL 
implementations.
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Installing OpenCL on a Linux system with an 
NVIDIA graphics card

1. Delete any previous installations of CUDA.
2. Make sure you have the CUDA supported version of Linux, and run lspci 

to check the video adapter which the system uses. Download and install the 
corresponding display driver.

3. Install the CUDA toolkit which contains the tools needed to compile and 
build a CUDA application.

4. Install the GPU computing SDK. This includes sample projects and other 
resources for constructing CUDA programs.

You system is now ready to compile and run any OpenCL code.

Installing OpenCL on a Windows system with an 
AMD graphics card

1. Download the AMD APP SDK v2.7 and start installation.
2. Follow the onscreen prompts and perform an express installation.
3. This installs the AMD APP samples, runtime, and tools such as the APP 

Profiler and APP Kernel Analyser.
4. The express installation sets up the environment variables AMDAPPSDKROOT 

and AMDAPPSDKSAMPLESROOT.
5. If you select custom install then you will need to set the environment 

variables to the appropriate path.

Go to the samples directory and build the OpenCL samples, using the Microsoft 
Visual Studio. 

Installing OpenCL on a Windows system with an 
NVIDIA graphics card

1. Uninstall any previous versions of the CUDA installation.
2. CUDA 4.2 or above release toolkit requires version R295, R300, or newer  

of the Windows Vista or Windows XP NVIDIA display driver.
3. Make sure you install the display driver and then proceed to the installation.
4. Install the Version 4.2 release of the NVIDIA CUDA toolkit 

cudatoolkit_4.2_Win_[32|64].exe.
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5. Install the Version 4.2 release of the NVIDIA GPU computing SDK by 
running gpucomputingsdk_4.2_Win_[32|64].exe.

Verify the installation by compiling and running some sample codes.

Apple OSX
Apple also provides an OpenCL implementation. You will need XCode developer 
tool to be installed. Xcode is a complete tool set for building OSX and iOS 
applications. For more information on building OpenCL application on OSX visit at 
the following link:

https://developer.apple.com/library/mac/documentation/Performance/
Conceptual/OpenCL_MacProgGuide/Introduction/Introduction.html

Multiple installations
As we have stated earlier, there can be multiple installations of OpenCL in a system. 
This is possible in OpenCL standard, because all OpenCL applications are linked 
using a common library called the OpenCL ICD library. Each OpenCL vendor, 
ships this library and the corresponding OpenCL.dll or libOpenCL.so library in its 
SDK. This library contains the mechanism to select the appropriate vendor-specific 
runtimes during runtime. The application developer makes this selection. Let's 
explain this with an example installation of an AMD and Intel OpenCL SDK. In the 
following screenshot of the Windows Registry Editor you can see two runtime DLLs. 
It is one of these libraries which is loaded by the OpenCL.dll library, based on the 
application developers selection. The following shows the Regedit entry with AMD 
and Intel OpenCL installations:

Registry Editor screenshot, showing multiple installations
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During runtime, the OpenCL.dll library will read the registry details specific to 
HKEY_LOCAL_MACHINE\SOFTWARE\Khronos (or libOpenCL.so in Linux, will read 
the value of the vendor-specific library in the ICD file in folder /etc/OpenCL/
vendors/*.icd), loads the appropriate library, and assigns the function pointers 
to the loaded library. An application developer can consider OpenCL.dll or 
libOpenCL.so as the wrapper around different OpenCL vendor libraries. This 
makes the application developers life easy and he can link it with OpenCL.lib 
or libOpenCL.so during link time, and distribute it with his application. This 
allows the application developer to ship his code for different OpenCL vendors/
implementations easily.

Implement the SAXPY routine in OpenCL
SAXPY can be called the "Hello World" of OpenCL. In the simplest terms, the first 
OpenCL sample shall compute A = alpha*B + C, where alpha is a constant and A, 
B, and C are vectors of an arbitrary size n. In linear algebra terms, this operation is 
called SAXPY (Single precision real Alpha X plus Y). You might have understood 
by now, that each multiplication and addition operation is independent of the other. 
So this is a data parallel problem.

A simple C program would look something like the following code:

void saxpy(int n, float a, float *b, float *c)
{
  for (int i = 0; i < n; ++i)
    y[i] = a*x[i] + y[i];
}

OpenCL code
An OpenCL code consists of the host code and the device code. The OpenCL kernel 
code is highlighted in the following code. This is the code which is compiled at run 
time and runs on the selected device. The following sample code computes A = 
alpha*B + C, where A, B, and C are vectors (arrays) of size given by the VECTOR_
SIZE variable:

#include <stdio.h>
#include <stdlib.h>
#ifdef __APPLE__
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif
#define VECTOR_SIZE 1024
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//OpenCL kernel which is run for every work item created.
const char *saxpy_kernel =
"__kernel                                   \n"
"void saxpy_kernel(float alpha,     \n"
"                  __global float *A,       \n"
"                  __global float *B,       \n"
"                  __global float *C)       \n"
"{                                          \n"
"    //Get the index of the work-item       \n"
"    int index = get_global_id(0);          \n"
"    C[index] = alpha* A[index] + B[index]; \n"
"}                                          \n";

int main(void) {
  int i;
  // Allocate space for vectors A, B and C
  float alpha = 2.0;
  float *A = (float*)malloc(sizeof(float)*VECTOR_SIZE);
  float *B = (float*)malloc(sizeof(float)*VECTOR_SIZE);
  float *C = (float*)malloc(sizeof(float)*VECTOR_SIZE);
  for(i = 0; i < VECTOR_SIZE; i++)
  {
    A[i] = i;
    B[i] = VECTOR_SIZE - i;
    C[i] = 0;
  }

  // Get platform and device information
  cl_platform_id * platforms = NULL;
  cl_uint     num_platforms;
  //Set up the Platform
  cl_int clStatus = clGetPlatformIDs(0, NULL, &num_platforms);
  platforms = (cl_platform_id *)
  malloc(sizeof(cl_platform_id)*num_platforms);
  clStatus = clGetPlatformIDs(num_platforms, platforms, NULL);

  //Get the devices list and choose the device you want to run on
  cl_device_id     *device_list = NULL;
  cl_uint           num_devices;

  clStatus = clGetDeviceIDs( platforms[0], CL_DEVICE_TYPE_GPU, 0, 
    NULL, &num_devices);
  device_list = (cl_device_id *) 
  malloc(sizeof(cl_device_id)*num_devices);

www.allitebooks.com
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  clStatus = clGetDeviceIDs( platforms[0], 
    CL_DEVICE_TYPE_GPU, num_devices, device_list, NULL);

  // Create one OpenCL context for each device in the platform
  cl_context context;
  context = clCreateContext( NULL, num_devices, device_list,  
    NULL, NULL, &clStatus);

  // Create a command queue
  cl_command_queue command_queue = clCreateCommandQueue( 
    context, device_list[0], 0, &clStatus);

  // Create memory buffers on the device for each vector
  cl_mem A_clmem = clCreateBuffer(context, CL_MEM_READ_ONLY, 
    VECTOR_SIZE * sizeof(float), NULL, &clStatus);
  cl_mem B_clmem = clCreateBuffer(context, CL_MEM_READ_ONLY, 
    VECTOR_SIZE * sizeof(float), NULL, &clStatus);
  cl_mem C_clmem = clCreateBuffer(context, CL_MEM_WRITE_ONLY, 
    VECTOR_SIZE * sizeof(float), NULL, &clStatus);

  // Copy the Buffer A and B to the device
  clStatus = clEnqueueWriteBuffer(command_queue, A_clmem,  
    CL_TRUE, 0, VECTOR_SIZE * sizeof(float),  
    A, 0, NULL, NULL);
  clStatus = clEnqueueWriteBuffer(command_queue, B_clmem,  
    CL_TRUE, 0, VECTOR_SIZE * sizeof(float),  
    B, 0, NULL, NULL);

  // Create a program from the kernel source
  cl_program program = clCreateProgramWithSource(context, 1, 
    (const char **)&saxpy_kernel, NULL, &clStatus);

  // Build the program
  clStatus = clBuildProgram(program, 1, device_list, NULL,  
    NULL, NULL);

  // Create the OpenCL kernel
  cl_kernel kernel = clCreateKernel(program, "saxpy_kernel",  
    &clStatus);

  // Set the arguments of the kernel
  clStatus = clSetKernelArg(kernel, 0, sizeof(float),  
    (void *)&alpha);
  clStatus = clSetKernelArg(kernel, 1, sizeof(cl_mem),  
    (void *)&A_clmem);
  clStatus = clSetKernelArg(kernel, 2, sizeof(cl_mem),  
    (void *)&B_clmem);
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  clStatus = clSetKernelArg(kernel, 3, sizeof(cl_mem),  
    (void *)&C_clmem);

  // Execute the OpenCL kernel on the list
  size_t global_size = VECTOR_SIZE; // Process the entire lists
  size_t local_size = 64;           // Process one item at a time
  clStatus = clEnqueueNDRangeKernel(command_queue, kernel, 1,  
    NULL, &global_size, &local_size, 0, NULL, NULL);

  // Read the cl memory C_clmem on device to the host variable C
  clStatus = clEnqueueReadBuffer(command_queue, C_clmem,  
    CL_TRUE, 0, VECTOR_SIZE * sizeof(float), C, 0, NULL, NULL);

  // Clean up and wait for all the comands to complete.
  clStatus = clFlush(command_queue);
  clStatus = clFinish(command_queue);

  // Display the result to the screen
  for(i = 0; i < VECTOR_SIZE; i++)
    printf("%f * %f + %f = %f\n", alpha, A[i], B[i], C[i]);

  // Finally release all OpenCL allocated objects and  
    host buffers.
  clStatus = clReleaseKernel(kernel);
  clStatus = clReleaseProgram(program);
  clStatus = clReleaseMemObject(A_clmem);
  clStatus = clReleaseMemObject(B_clmem);
  clStatus = clReleaseMemObject(C_clmem);
  clStatus = clReleaseCommandQueue(command_queue);
  clStatus = clReleaseContext(context);
  free(A);
  free(B);
  free(C);
  free(platforms);
  free(device_list);
  return 0;
}

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.PacktPub.com. If 
you have purchased this book elsewhere, you can visit http://www.
PacktPub.com/support and register to have the files e-mailed 
directly to you.
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The preceding code can be compiled on command prompt using the  
following command:

Linux:

gcc -I $(AMDAPPSDKROOT)/include -L $(AMDAPPSDKROOT)/lib -lOpenCL saxpy.
cpp -o saxpy

./saxpy

Windows:

cl /c saxpy.cpp /I"%AMDAPPSDKROOT%\include"

link  /OUT:"saxpy.exe" "%AMDAPPSDKROOT%\lib\x86_64\OpenCL.lib"  
  saxpy.obj

saxpy.exe

If everything is successful, then you will be able to see the result of SAXPY being 
printed in the terminal. For more ease in compiling the code for different OS 
platforms and different OpenCL vendors, we distribute the examples in this book 
with a CMAKE build script. Refer to the documentation of building the samples 
using the CMAKE build uitility.

By now you should be able to install an OpenCL implementation which your 
hardware supports. You can now compile and run any OpenCL sample code, on 
any OpenCL compliant device. You also learned the various parallel programming 
models and solved a data parallel problem of SAXPY computation.

Next you can try out some exercises on the existing code. Modify the existing 
program to take different matrix size inputs. Try to use a 2D matrix and perform  
a similar computation on the matrix.

OpenCL program flow
Every OpenCL code consists of the host-side code and the device code. The host 
code coordinates and queues the data transfer and kernel execution commands. The 
device code executes the kernel code in an array of threads called NDRange. An 
OpenCL C host code does the following steps:

1. Allocates memory for host buffers and initializes them.
2. Gets platform and device information. This is discussed in detail in Chapter 2, 

OpenCL Architecture.
3. Sets up the platform.
4. Gets the devices list and chooses the type of device you want to run on.
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5. Creates an OpenCL context for the device.
6. Creates a command queue.
7. Creates memory buffers on the device for each vector.
8. Copies the Buffer A and B to the device.
9. Creates a program from the kernel source.
10. Builds the program and creates the OpenCL kernel.
11. Sets the arguments of the kernel.
12. Executes the OpenCL kernel on the device.
13. Reads back the memory from the device to the host buffer. This step is 

optional, you may want to keep the data resident in the device for further 
processing.

14. Cleans up and waits for all the commands to complete.
15. Finally releases all OpenCL allocated objects and host buffers.

We will discuss the details of each step in the subsequent chapters. Platform and 
device selection, along with context and command queue creation will be discussed 
in Chapter 2, OpenCL Architecture. OpenCL buffers are integral parts of any OpenCL 
program. The creation of these buffers and transferring (copying) buffer data 
between the host and the device is discussed in Chapter 3, Buffers and Image Objects – 
Image Processing. Creating an OpenCL kernel object from an OpenCL program object, 
and setting the kernel arguments is discussed in Chapter 5, OpenCL Program and 
Kernel Objects.

Run on a different device
To make OpenCL run the kernel on the CPU, you can change the enum CL_DEVICE_
TYPE_GPU to CL_DEVICE_TYPE_CPU in the call to clGetDeviceIDs. This shows how 
easy it is to make an OpenCL program run on different compute devices. The first 
sample source code is self-explanatory and each of the steps are commented. If you 
are running a multi GPU hardware system, then you will have to modify the code to 
use the appropriate device ID.

The OpenCL specification is described in terms of the following four models:

• Platform model: This model specifies the host and device specification. The 
host-side code coordinates the execution of the kernels in the devices.

• Memory model: This model specifies the global, local, private, and constant 
memory. The OpenCL specification describes the hierarchy of memory 
architecture, regardless of the underlying hardware.
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• Execution model: This model describes the runtime snapshot of the host  
and device code. It defines the work-items and how the data maps onto  
the work-items.

• Programming model: The OpenCL programming model supports data 
parallel and task parallel programming models. This also describes the task 
synchronization primitives. 

We will discuss each model in detail in Chapter 2, OpenCL Architecture.

Finally to conclude this chapter, General Purpose GPU Computing (GPGPU or just 
GPU computing) is undeniably a hot topic in this decade. We've seen diminishing 
results in CPU speeds in the past decade compared to the decade before that. Each 
successive manufacturing node presents greater challenges than the preceding 
one. The shrink in process technology is nearing an end, and we cannot expect 
exponential improvements in serial program execution. Hence, adding more cores 
to the CPU is the way to go, and thereby parallel programming. A popular law 
called Gustafson's law suggests that computations involving large data sets can be 
efficiently parallelized.

Summary
In this chapter we got a brief overview of what an OpenCL program will look like. 
We started with a discussion of various parallel programming techniques, and their 
pros and cons. Different components of an OpenCL application were discussed. 
Various vendors providing OpenCL capable hardware were also discussed in 
this chapter. Finally, we ended the chapter with a discussion of a simple OpenCL 
example, SAXPY. In the following few chapters, we will discuss about the different 
OpenCL objects. We start with a discussion on the OpenCL architecture and various 
OpenCL models in the following chapter.



Chapter 1

[ 33 ]

References
• http://www.khronos.org/conformance/adopters/conformant-products

• http://www.khronos.org/opencl/resources

• http://gcc.gnu.org/onlinedocs/libgomp.pdf

• http://developer.amd.com/tools/hc/AMDAPPSDK/documentation/
Pages/default.aspx

• http://developer.nvidia.com/cuda/nvidia-gpu-computing-
documentation

• http://www.amd.com/jp/Documents/GCN_Architecture_whitepaper.pdf

• http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-
Whitepaper-FINAL.pdf

• http://en.wikipedia.org/wiki/Amdahl's_law

• http://en.wikipedia.org/wiki/Gustafson's_law





OpenCL Architecture
Heterogeneous computing is all about exploiting computing resources in a 
platform to maximize performance. Many developers have begun to realize that 
heterogeneous multi-core computer systems can provide significant performance 
opportunities to a range of applications. OpenCL specification targets expert 
programmers who want to run their code on various heterogeneous platforms. 
Unlike NVIDIA® CUDA framework, which is capable of running only on NVIDIA 
devices, library writers can provide acceleration on any parallel hardware device 
using OpenCL. Thus OpenCL provides a low-level hardware abstraction and a 
programming model to support a variety of hardware architectures.

OpenCL describes a hierarchy of models to describe the OpenCL  
programming framework:

• Platform model
• Memory model
• Execution model
• Programming model
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Platform model
In heterogeneous computing, knowledge about the architecture of the targeted device 
is critical to reap the full benefits of the hardware. We had discussed the hardware 
architectures from AMD, Intel, and NVIDIA in Chapter 1, Hello OpenCL. Though we 
will briefly discuss about the hardware from different vendors, we suggest you to take 
a deeper look at the underlying platform on which you will be working. In this section 
we will describe the OpenCL Platform model and map the AMD, NVIDIA, and Intel 
hardware architectures to the OpenCL Platform definitions.

Compute Unit

Processing
Element

Compute Device

Host

. . .
. . .

. . .
. . .

. . .
. . .. . .

. . .
. . .. . .

. . .
. . .

OpenCL platform model, Courtesy Khronos

An OpenCL Platform model consists of a host connected to one or more devices  
like CPU's, GPU's or hardware accelerators like DSP's. Each OpenCL device consists 
of one or more compute units, which in turn is further divided into one-to-many 
processing elements. Computations on a device that is the actual kernel (work item) 
execution occurs within these processing elements. We just coined the term work 
item. This we will discuss later in this chapter when we discuss about the OpenCL 
Execution model.

We will now discuss the four different architectures from different device vendors 
and try to map their architecture to the OpenCL Platform model. In the next diagram 
we have shown four different OpenCL architectures and their mappings to the 
Platform models.
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AMD A10 5800K APUs
A10 5800K APU has four AMD x86_64 processor cores, which forms the host. Its 
graphics processor includes as many as six SIMD engines, each with four texture 
units and sixteen thread processors. There are four ALUs in each thread processor, 
adding up to 384 total shader cores or processing elements. The following diagram 
shows the relation of the Trinity APU to the OpenCL Platform model:

APU Showing the Platform Model and the Graphics Core. Courtesy AMD

This platform has two devices, the CPU device and the GPU device. The x86 CPU 
device is also the host. The OpenCL Platform model can be mapped as having four 
compute units and each having one processing element. The graphics processor 
connected to the host CPU also forms an OpenCL device of type GPU. The six 
SIMD engines form the six GPU device compute units in the platform. Each of the 
six compute elements have sixteen thread processors, each having four processing 
elements. In all there are 384 processing elements or shader cores in this platform for 
the GPU device.

www.allitebooks.com
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AMD Radeon™ HD 7870 Graphics Processor
HD 7870 discrete card is a graphics processor based on the AMD GCN architecture. 
This compute device can be connected to any x86/x86_64 platform. The CPU forms 
the host and the GPU forms the device in the OpenCL platform. AMD Radeon HD 
7870 GPU has a total of twenty compute units. With each compute unit having 64 
shader cores a total of 1280 processing elements are there.

AMD Radeon™ HD 7870 Architecture diagram, © Advanced Micro Devices, Inc.

NVIDIA® GeForce® GTC 680 GPU
The NVIDIA GTX 680 graphics card architecture diagram is shown as follows. There 
are eight blocks of compute units in this graphics processor. Also referred to as the 
Kepler Architecture, the compute units are called the Streaming Multiprocessors-X 
(SMX). This SMX compute unit is an advance over previous architectures and has 
192 CUDA cores or processing elements. This is shown in the following diagram:
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NVIDIA GeForce® GTX 680 Architecture. © NVIDIA 

Intel® IVY bridge
The IVY bridge architecture is very similar to the sandy bridge architecture discussed 
in Chapter 1, Hello OpenCL. The CPU device can be mapped as any x86 CPU as 
discussed in the AMD A10 5800K APU's section. In the case of Intel hardware's, the 
GPU device offers what is called as the Execution Units (EUs). These numbers vary 
across different SOC solutions provided by Intel. In Intel HD 4000 there are sixteen 
EUs. These sixteen EUs form the processing elements or sixteen compute unit, that  
is each execution unit is a compute unit.
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For all the preceding OpenCL hardware architectures, which we have discussed 
till now an OpenCL application consists of a host program that runs according to 
the models native to the host platform. The host application submits commands to 
the device to which executes the OpenCL kernels on the processing elements in a 
compute device. The OpenCL specification describes the functions to create memory 
objects called buffers and run OpenCL kernels on an OpenCL device. The host 
queues the thread launch. Before processing the data the host application writes to 
device, and finally after processing it reads from device. It would be good if the data 
transfer bandwidth between the host and the device is good enough to hide the data 
transfer bottleneck with the highly parallel computing power of the device. Some 
computers may use a shared memory architecture between the host computer (CPU) 
and the OpenCL device (say a GPU). In such cases the memory transfer bottlenecks 
may be minimal.

Platform versions
The OpenCL is designed to support devices with different capabilities under a single 
platform. This includes devices which conform to different versions of the OpenCL 
specification. While writing an OpenCL based application one needs to query the 
implementation about the supported version in the platform. There are mainly two 
different types of version identifiers to consider. 

• Platform Version: Indicates the version of the OpenCL runtime supported. 
• Device Version: Indicates the device capabilities and attributes. The 

conformant version info provided cannot be greater than platform version.

Query platforms
Now let's write an OpenCL program to get the platform details. Use the get_
platform_property example in this chapter.

The OpenCL standard specifies API interfaces to determine the platform 
configuration. To query the platform versions and details of the OpenCL 
implementation, the following two APIs are used:

cl_int clGetPlatformIDs (cl_uint num_entries,
  cl_platform_id *platforms,
  cl_uint *num_platforms);
cl_int clGetPlatformInfo(cl_platform_id platform,
  cl_platform_info param_name,
  size_t param_value_size,
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  void *param_value,
  size_t *param_value_size_ret);

clGetPlatformIDs is used to obtain the total number of platforms available in the 
system. There can be more than one platform. If you install two OpenCL runtimes, 
one from AMD APP SDK and the other Intel OpenCL runtime for the CPU, you 
should be able to see two platforms in the system. Usually you don't want to pre-
allocate the memory for storing the platforms. Before getting the actual platform, 
an application developer should query for the number of OpenCL implementations 
available in the platform. This is done using the following OpenCL call:

clError = clGetPlatformIDs(0, NULL, &num_platforms);

This call returns the total number of available platforms. Once we have obtained the 
number of available platforms we can allocate memory and query for the platform 
IDs for the various OpenCL implementations as follows:

platforms = (cl_platform_id *)malloc 
                      (num_platforms*sizeof(cl_platform_id));
clError = clGetPlatformIDs (num_platforms, platforms, NULL);

Once the list of platforms is obtained, you can query for the platform attributes in 
a loop for each platform. In the example we have queried the following parameters 
using the API clGetPlatformInfo:

CL_PLATFORM_NAME
CL_PLATFORM_VENDOR
CL_PLATFORM_VERSION
CL_PLATFORM_PROFILE
CL_PLATFORM_EXTENSIONS

Example:

clError = clGetPlatformInfo (platforms[index], CL_PLATFORM_NAME, 1024, 
&queryBuffer, NULL);

In the get_device_property example where we get device properties, we default 
to the first available platform and query the device property for all the devices in 
default platform obtained. Take a look at the get_device_property example for  
this chapter.

clError = clGetPlatformIDs(1, &platform, &num_platforms);

Note the difference in the calls to clGetPlatformIDs in the two examples discussed.
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In this section we just wrote a small program to print the platform details. Take a 
look at how we allocate memory for platforms and how we get the details of the 
platform. As an exercise try to install multiple OpenCL implementations in your 
platform and see how many OpenCL platforms are enumerated by the function 
clGetPlatformIDs.

Multiple OpenCL implementations can be installed in the platform. You would 
question how would the application pick the appropriate runtime. The answer is 
OpenCL Installable Client Driver (ICD). We will study this more in a later section.

Query devices
We shall now continue with getting the attributes and resource limitations of 
an OpenCL device. In the last program we were able to print all the platform 
information available. In this example we shall try to enhance the existing code to 
print some basic device attributes and resource information for the first available 
platform. We will implement a function PrintDeviceInfo(), which will print 
the device specific information. The following two OpenCL APIs are used in the 
example:

cl_int clGetDeviceIDs (cl_platform_id platform,
  cl_device_type device_type,
  cl_uint num_entries,
  cl_device_id *devices,
  cl_uint *num_devices);
cl_int clGetDeviceInfo (cl_device_id device,
  cl_device_info param_name,
  size_t param_value_size,
  void *param_value,
  size_t *param_value_size_ret);

In the same way as we did for platforms, we first determine the number of devices 
available, and then allocate memory for each device found in the platform.

clError = clGetDeviceIDs (platform, 
  CL_DEVICE_TYPE_ALL, 
  0, NULL, &num_devices);

The above call gives the number of available device of CL_DEVICE_TYPE_ALL. You 
can otherwise use CL_DEVICE_TYPE_CPU or CL_DEVICE_TYPE_GPU, if you want to list 
the number of available CPU or GPU devices. 
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To understand better we we have added the PrintDeviceInfo function:

void PrintDeviceInfo(cl_device_id device)
{
  char queryBuffer[1024];
  int queryInt;
  cl_int clError;
  clError = clGetDeviceInfo(device, CL_DEVICE_NAME,
    sizeof(queryBuffer),
    &queryBuffer, NULL);
  printf("CL_DEVICE_NAME: %s\n", queryBuffer);
  queryBuffer[0] = '\0';
  clError = clGetDeviceInfo(device, CL_DEVICE_VENDOR,
    sizeof(queryBuffer), &queryBuffer,
    NULL);
  printf("CL_DEVICE_VENDOR: %s\n", queryBuffer);
  queryBuffer[0] = '\0';
  clError = clGetDeviceInfo(device, CL_DRIVER_VERSION, 
    sizeof(queryBuffer), &queryBuffer, 
    NULL);
  printf("CL_DRIVER_VERSION: %s\n", queryBuffer);
  queryBuffer[0] = '\0';
  clError = clGetDeviceInfo(device, CL_DEVICE_VERSION, 
    sizeof(queryBuffer), &queryBuffer, 
    NULL);
  printf("CL_DEVICE_VERSION: %s\n", queryBuffer);
  queryBuffer[0] = '\0';
  clError = clGetDeviceInfo(device, CL_DEVICE_MAX_COMPUTE_UNITS, 
    sizeof(int), &queryInt, NULL);
  printf("CL_DEVICE_MAX_COMPUTE_UNITS: %d\n", queryInt);
}

Note that each of the param_name associated with clGetDeviceInfo returns a 
different data type. In the routine PrintDeviceInfo you can see that the CL_
DEVICE_MAX_COMPUTE_UNITS param_name returns an integer type The CL_DRIVER_
VERSION param_name returns a character buffer.

The preceding function prints the following information about the device:

CL_DEVICE_NAME
CL_DEVICE_VENDOR
CL_DRIVER_VERSION
CL_DEVICE_VERSION
CL_DEVICE_MAX_COMPUTE_UNITS
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Following is the maximum number of compute units for different types of platforms 
when you query for the GPU type device:

For APU like processors:

AMD A10 5800K    - 6

AMD trinity has 6 SIMD engines (compute units) and each has 64 processing 
elements.

INTEL HD 4000 - 16

Intel HD 4000 has 16 compute units and each is a single thread processor.

For discrete graphics:

NVIDIA GTX 680 - 8

The NVIDIA GTX 680 has a total of eight Compute units; each compute unit has 192 
processing elements.

AMD Radeon HD 7870 - 32

The AMD Radeon HD 7870 GPU has 32 compute units and each has 64 processing 
elements.

It is not the case that if you have more compute units in the GPU device type, the 
faster the processor is. The number of compute units varies across different computer 
architectures and across different hardware vendors. Sometimes even within the 
vendors there are different families like the NVIDIA Kepler and Fermi architectures 
or the AMD Radeon HD 6XXX and Radeon HD 7XXX Architecture. The OpenCL 
specification is targeted at programming these different kinds of devices from different 
vendors.  As an enhancement to the sample program print all the device related 
attributes and resource sizes for some of the param_name instances listed as follows:

• CL_DEVICE_TYPE

• CL_DEVICE_MAX_CLOCK_FREQUENCY

• CL_DEVICE_IMAGE_SUPPORT

• CL_DEVICE_SINGLE_FP_CONFIG

Besides these there are many more device attributes which can be queried. Take a 
look at the different param_name instances provided in the OpenCL specification 1.2, 
table 4.3. You should try out all the param_name instances and try to understand each 
device property.
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Execution model
The two main execution units in OpenCL are the kernels and the host program. The 
kernels execute on the so called OpenCL device and the host program runs on the 
host computer. The main purpose of the host program is to create and query the 
platform and device attributes, define a context for the kernels, build the kernel, and 
manage the execution of these kernels.

On submission of the kernel by the host to the device, an N dimensional index space 
is created. N is at least 1 and not greater than 3. Each kernel instance is created at 
each of the coordinates of this index space. This instance is called as the "work item" 
and the index space is called as the NDRange. In the following screenshot we have 
shown the three scenarios for 1, 2 and 3 dimensional NDRange:

2D ND Range
(10,8)-global size
(5,4)- local size
(2,2)- num of work groups

3D ND Range
(10,8,4)-global size
(5,4,1)- local size
(2,2,4)- num of work groups

1D ND Range
20-global size
5- local size
4- num of work groups

OpenCL NDRange

In the saxpy example which we discussed in the previous chapter, we have  
taken a global size of 1024 and a local size of 64. Each work item computes  
the corresponding:

C[local id] = alpha* A[local id] + B[local id];
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A total of sixteen work groups are spawned. When the clEnqueueNDRange function 
is executed, a 1 Dimensional NDRange is created for the saxpy_kernel function. 
The explanation of clEnqueueNDRange function is given in the next section. Since in 
saxpy every data C[…] can be calculated independently, all the work items can run 
in a parallel way. We divide the problem of 1024 element saxpy into work groups, 
so that a group of contiguous elements can work on a separate OpenCL capable 
compute unit.

NDRange
An NDRange is the kernel execution index in an N-dimensional index space. The 
values which N can take are 1, 2, or 3. An NDRange value is given by an array 
of integers of length N specifying the index's extent in each dimension. Starting 
OpenCL 1.2 an offset index value can also be specified for each dimension, which 
gives the starting offset for an NDRange. If this offset is not specified then its 
value is 0 by default in each dimension. The extent of a work group is specified 
by local_work_size in the clEnqueueNDRangeKernel function below. Global ID 
and Local ID are N tuple values. The global_work_size function defines the total 
number of work items, which can be spawned for the OpenCL kernel. The global ID 
components are values in the range from offset X, to X plus the global_work_size 
function in their corresponding dimensions.

A group of work items are organized in OpenCL work groups. Take a look at the 
following diagram of a 2D NDRange. The work groups provide a coarse-grained 
decomposition of the index space. Each work group is assigned a unique ID with the 
same number of dimensions as the global index space used to define the work items. 
Every work item in a work group is assigned a unique local ID, so that every work 
item can be uniquely addressed during the kernel execution within a work group 
scope. Similarly work items are also assigned a unique global ID in the NDRange 
and can be uniquely addressed during the kernel execution.

Work groups are also assigned work group IDs. This is also an array of N integers, 
where each integer defines the number of work groups in each dimension. The work 
groups' IDs are assigned in the same manner as it is done for assigning global IDs. 
See equation 2 later in the section. Every work item has an associated work group 
ID and a local ID. It's easy to calculate the global ID of the work item, when we are 
given a work group ID and a local-ID. See equation 1 later in this section. Each work 
item can be identified in two ways; global index, and work group index plus a local 
index in each of its respective dimensions.

Let's explain the following with an equation: N=2 NDRange:
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We will be using the following terms for defining the Execution model:

• work-item: It is the individual kernel execution instance
• work-group: It is a group of work items form a work group
• global-id: A unique global ID given to each work item in the global 

NDRange
• local-id: A unique local ID given to each work item within a work group

Consider a (12,12) NDRange as shown in the following figure. Each of the smallest 
box is a work item. As you can see there are twelve of them in each row and there are 
twelve such rows.

work-item

sx ,sy(       ) (0,0)=

wx Sx+sx+Fx ,wy Sy+sy+Fy(                                       ). .

sx ,sy(       ) sx-1,0(         )=

wx Sx+sx+Fx ,wy Sy+sy+Fy(                                       ). .

wx Sx+sx+Fx ,wy Sy+sy+Fy(                                       ). .

sx ,sy(       ) (S -1,S -1)= x y

wx Sx+sx+Fx ,wy Sy+sy+Fy(                                       ). .

sx ,sy(       ) (0, S -1)= y

...

work-item

work-itemwork-item

...

... ......

work-group size (w ,w )x y

work-group size Sx

work-group size Sy

NDRange size Gx

NDRange size Gy

Execution model, Courtesy Khronos

In the preceding diagram the global size is defined by (12, 12) ~ (Gx, Gy). The extent 
of Gx and Gy is 0 to 11. The total number of work items is given by the product of Gx 
and Gy, which amounts to a total of 144 work items.

The size of each work group is (4, 4) ~ (Sx, Sy). The extent of Sx and Sy is 0 to 3. The 
total number of work items in a work group is given by the product of Sx and Sy. In 
this example there are sixteen work items in the work group.

www.allitebooks.com

http://www.allitebooks.org


OpenCL Architecture

[ 48 ]

From the extent of the global work items (Gx, Gy) and the extent of the local  
work items (Sx, Sy), we can compute the number of work groups (Wx, Wy)  
in the NDRange.

Each work item is identified by its global ID (gx, gy) or local ID (sx, sy). The 
work items in a work group belong to a work group ID (wx, wy) defined in the 
following equation 3. Similarly the global ID can be computed using a combination 
of local ID (sx, sy) and work group ID (wx, wy), as shown in the equation:

(gx , gy) = (wx * Sx + sx, wy * Sy + sy)                    (1)

The number of work groups can be computed using the equation:

(Wx, Wy) = (Gx / Sx, Gy / Sy)                                 (2)

The work-group ID for a work item is computed the using equation:

(wx, wy) = ( (gx - sx) / Sx, (gy - sy) / Sy )               (3)

Till now we have discussed about the work item, work group, local ID, and global 
ID. All these values can be determined inside a kernel execution at runtime using  
the built-in functions, which are listed as follows:

• get_global_id(int dim);

• get_local_id(int dim);

• get_num_groups(int dim);

• get_group_size(int dim);

• get_group_id(int dim);

The NDRange execution space is defined by the OpenCL API. The associated 
parameters should all be created in an OpenCL context as follows:

cl_int clEnqueueNDRangeKernel(cl_command_queue command_queue,
  cl_kernel        kernel,
  cl_uint          work_dim,
  const size_t   * global_work_offset,
  const size_t   * global_work_size,
  const size_t   * local_work_size,
  cl_uint          num_events_in_wait_list,
  const cl_event * event_wait_list,
  cl_event       * event)
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This function enqueue's a command to execute a kernel on the device associated 
with the command_queue function. Of all the OpenCL functions that run on the 
host, clEnqueueNDRangeKernel is the most important to understand. Not only 
does it deploys kernels to devices, it also specifies how many work items should be 
generated to execute the kernel (global_work_size) and the number of work items 
in each work group (local_work_size). The following list represents certain objects:

• command_queue: Every command_queue is associated with one device. kernel 
will be enqueued for execution on this device. The command_queue object is 
created using the clCreateCommandQueue function.

• kernel: It refers to an OpenCL kernel object. This kernel object would  
have been created using the OpenCL program object.

• work_dim: It specifies the dimension of the NDRange (index space).  
The value can be 1, 2 or 3.

• global_work_offset: This is a size_t pointer to the work_dim elements. 
If set to NULL all the values in each dimension take the default value as 0. 
Otherwise this is used to calculate the global ID of a work item.

• global_work_size: This is a size_t pointer to the work_dim elements, 
which specifies the extent of the global work items in every dimensions.

• local_work_size: This is also a size_t pointer to the work_dim elements 
and specifies the extent of local work items in every dimension.

• event_wait_list and num_events_in_wait_list: The event_wait_list 
object contains handles to events, which an OpenCL implementation will 
wait for before enqueuing this command.

• event: Every enqueued command returns an OpenCL event object that is the 
reference to the command in the queue. Here the kernel's execution handle is 
returned in the event pointer. This cl_event object can be used later on for 
reference to the execution status.

The OpenCL supports two of these execution models; the data parallel programming 
model and the task parallel programming model. The clEnqueueNDRangeKernel 
function is a kind of data parallel execution model, the task parallel programming 
model will be discussed in Chapter 5, OpenCL Program and Kernel Objects.

We just coined the term "enqueues a command", let's explain what a queue has  
to do with the OpenCL. Before that, let's discuss the OpenCL context.



OpenCL Architecture

[ 50 ]

OpenCL context
A context defines the entire OpenCL environment, including the devices, the 
program objects, the OpenCL kernels, memory objects, command queues, and so 
on. A context can be associated with multiple devices or with only one device. The 
OpenCL context associated with command queue and the kernel should be the same. 
They cannot be from different contexts.

Before we can create a context we must first query the OpenCL runtime to determine 
which vendor platforms are available in the system. After you have selected a 
vendor platform, the first step is to initialize the OpenCL implementation in order 
to create a context. The rest of the OpenCL work like creating devices and memory, 
compiling, and running programs is performed within this context. A context can 
have a number of associated devices, which can be either of CPU or GPU or both, 
and, within a context. Contexts in the OpenCL are referenced by a cl_context 
object, which must be initialized using the following OpenCL API:

cl_context clCreateContext (const cl_context_properties *properties,
                     cl_uint num_devices,
                     const cl_device_id *devices,
                     void (CL_CALLBACK *pfn_notify)
                            (const char *errinfo, 
                             const void *private_info, 
                             size_t cb, void *user_data),
                     void *user_data,
                     cl_int *errcode_ret)

The following is the list of few contexts of the OpenCL along with its description:

• properties: It is a list of name and its corresponding value. The name  
is the context property name like CL_CONTEXT_PLATFORM and this is  
followed by the property value. An example of the same is as follows:
cl_context_properties props[3] =
{
    CL_CONTEXT_PLATFORM,
    (cl_context_properties)platforms,
    0
}; 

One can add more property values based on the requirements of  
the application.
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• num_devices: It is the number of devices one wants to associate with the 
context. The devices pointer should have at least num_devices, cl_device_
id instance 

• devices: It is a pointer to a num_devices list of cl_device_id instances, 
which will be associated with the context.

• errcode_ret: The error code returned by the OpenCL implementation 
associated with a call to this function.

• pfn_notify: It is a function pointer to the callback function, which an 
application can register. The underlying OpenCL implementation will call 
this function to asynchronously report errors for context creation. If set to 
NULL then no callback function is registered. The prototype of a callback 
function is as follows:
void OpenCL_Context_Callback(const char *errinfo, 
  const void *private_info, 
  size_t cb, void *user_data);

• user_data: This is the pointer to the data, which will be passed to the 
callback function if registered by the application. If no callback function is 
registered this should be set to NULL.

OpenCL command queue
The OpenCL command queue is an object where OpenCL commands are queued 
to be executed by the device. The command queue is created for every usable 
OpenCL device for kernel execution. One can have multiple command queues for 
different tasks in applications. This way an application developer can run tasks 
independently on different command queues. We will discuss about the various 
synchronization mechanisms using multiple command queues in Chapter 6, Events 
and Synchronization. The following code snippet creates a command queue and a 
write (clEnqueueWriteBuffer), and NDRange execution of the kernel commands 
are queued on to the device:

cl_command_queue command_queue =  
  clCreateCommandQueue(context, device_list[0],
    0, &clStatus);
clStatus = clEnqueueWriteBuffer(command_queue, A_clmem, 
                   CL_TRUE, 0, 
                     VECTOR_SIZE * sizeof(float), A, 0, NULL, NULL); 
clStatus = clEnqueueNDRangeKernel(command_queue, kernel, 
                   1, NULL, &global_size, 
                     &local_size, 0, NULL, NULL);
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The host program creates this command queue. The snapshot of the queue anytime 
shall give you the list of enqueued commands. These commands can be of data 
transfer, or kernel execution commands or barriers within the command queue. The 
host enqueues these commands to the command queue. Each command or task is 
associated with an OpenCL event. These events can be used as a synchronization 
mechanism to coordinate execution between the host and the device. 

There can be multiple queues associated within a context. They can dispatch 
commands independently and concurrently with no explicit mechanism to 
synchronize between them.

Queues can be in-order of the execution queues. The commands are dequeued in 
first in first out (FIFO) manner. Hence application can send commands to the queue 
and be ensured that they execute in order.

Out of order command queues are also supported by the OpenCL. The commands 
are issued in order, but do not wait for the previous command to complete before 
the next command executes. We will discuss more about this in Chapter 5, OpenCL 
Program and Kernel Objects.

Memory model
The OpenCL Memory model guarantees a relaxed memory consistency between 
devices. This means that different work items may see a different view of global 
memory as the computation progresses. This leads to a bigger challenge for the 
developers to partition data and splitting computation tasks into different work 
items. Synchronization is required to ensure data consistency within the work items 
of a work group. One needs to make sure that the data the work item is accessing 
is always correct. This makes the application developers task a little complicated 
to write applications with relaxed consistency, and hence explicit synchronization 
mechanisms are required.

The x86/x86_64 CPU cache coherent architecture is different from the OpenCL 
relaxed memory architecture. In cache coherent systems, data that resides in the local 
processor caches is guaranteed to be consistent across processors. The programmer 
need not worry about the data partitioning in cache coherent architectures. This 
results in a lot of memory bandwidth at the back of the cache, and makes the task of 
an application programmer easier. The OpenCL Memory model scales well across 
cache coherent memory architectures also. An OpenCL programmer must have 
knowledge of partitioning the data across his application work load, to achieve the 
highest performance in massively parallel heterogeneous systems. The standard 
defines four distinct memory regions. Each region can be accessed by the work items 
executing a kernel. The following are the different types of memory.
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Global memory
Every OpenCL device has an associated global memory. This is the largest size 
memory subsystem. Memory accesses can be coalesced, to ensure contiguous 
memory reads and thereby increasing the performance. All the work items in all  
the work groups can read or write into this memory buffer. This memory can be 
cached depending on the OpenCL device. Take a look at the following OpenCL 
kernel prototype: 

__kernel
void histogram_kernel(__global const uint* data, 
  __local uchar* sharedArray, 
  __global uint* binResultR, 
  __global uint* binResultG, 
  __global uint* binResultB) 

The __global or global keyword identifies this buffer region. This memory region 
is device wide and changes made in this region are visible to all the work items in 
the NDRange.

Constant memory
An OpenCL device has a region of memory called the constant memory, which is 
initialized by the host. This is similar to creating an OpenCL buffer with CL_MEM_
READ_ONLY flag. This is the region of memory that remains constant throughout the 
execution time of the kernel.

Local memory
For high performance every OpenCL device has an associated local memory. This is 
the memory closest to the OpenCL processing element. Every work item in a work 
group can use this buffer and is shared amongst them that is if one work item modifies 
a local memory then the changes are visible across all the work items in a work group. 
As shown in the diagram the local memory is associated with one OpenCL compute 
unit. This means that the work items in a work group should all run on one compute 
unit. The __local or local keyword identifies this memory region.
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Private memory
Memory region or processing element scratch registers are all referred to as the 
private region. This region of memory is used by the OpenCL device complier to 
allocate all the local variables in the kernel code. Any modifications done to this 
memory region are not visible to the other work items. As shown in the following 
diagram every processing element has a private memory. This is the default memory 
attribute in an OpenCL kernel:

Compute Device
Compute unit 1

Private
memory 1

Private
memory M

PE 1 PE M

...

Local
memory 1

Compute unit N

Private
memory 1

Private
memory M

PE 1 PE M

...

Local
memory N

Global/Constant Memory Data Cache

Constant Memory

Global Memory

Compute Device Memory

OpenCL Memory Model, Courtesy Khronos

Based on the underlying architecture the work items in a given work group execute 
concurrently on the processing elements of a single compute unit. This means that 
one work group is associated with one compute unit of the hardware in OpenCL. 
This is because most of the hardware architectures have high speed memory local 
to the compute unit. In the context of OpenCL we refer to private memory as high 
speed memory.
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The private memory can be shared among all the work items in the work group. 
For example in some graphics architectures, every compute unit has a large private 
memory say of the size 64 KB. When all the work items in the work group run on 
the device this 64 KB is shared among all the work items. For example a work group 
of size 64 work items will allocate 1 KB of private memory for each work item. This 
makes the application programmer create the OpenCL kernels, which use small 
number of registers and the hardware scheduler should be able to launch many  
work items or wave fronts at a time.

OpenCL ICD
The OpenCL function clGetPlatformIDs is used to determine the different 
OpenCL implementations available in the platform. There can be multiple OpenCL 
implementations installed in the system. Let's define an OpenCL platform.

An OpenCL platform is a host computing machine and a collection of heterogeneous 
devices managed by OpenCL implementations, which allow an application to share 
hardware resources and execute kernels on different devices in the platform. Devices 
from different vendors will have their own OpenCL runtimes in the platform. Let's 
consider a system with an AMD graphics card and an NVIDIA graphics card. Now 
an AMD OpenCL implementation is not going to work on NVIDIA OpenCL devices. 
Remember only the code is portable not the underlying OpenCL runtime. So how 
does an application solve this problem of using the multiple OpenCL runtimes or use 
multiple platforms. The answer is OpenCL ICD.
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What is an OpenCL ICD?
The OpenCL Installable Client Driver (ICD) is a means of allowing multiple 
OpenCL implementations to co-exist and applications to select between them at 
runtime. With this it is now the applications responsibility for querying which 
OpenCL platform is present in the system and which one the application should use, 
instead of just requesting the default like we did in our first few example wherein  
we chose the first available platform as default.

OpenCL Application

OpenCL ICD - Installable Client Driver
OpenCL.dll or libOpenCL.so

cl_platform_id 0

cl_device_id_0 cl_device_id_1 cl_device_id_2

cl_contextcl_program objects cl_mem objects

cl_command_queue 0
for cl_device_id 0

cl_command_queue 1
for cl_device_id 1

cl_command_queue 2
for cl_device_id 2

Vendor 1

cl_platform_id 1

cl_device_id_0 cl_device_id_1 cl_device_id_2

cl_contextcl_program objects cl_mem objects

cl_command_queue 0
for cl_device_id 0

cl_command_queue 1
for cl_device_id 1

cl_command_queue 2
for cl_device_id 2

Vendor 2

OpenCL ICD and different vendors

In the preceding diagram, an OpenCL application is linked with the OpenCL 
ICD library. At runtime this ICD shared library (OpenCL.dll in windows and 
libOpencl.so in Linux) will query the registry and load the appropriate shared 
library as selected by the application. An application may want to use both the 
platforms available. The application developer can create a context for each device 
in the platform, and appropriately execute his algorithm on the device. It is not 
possible to pass device buffers between two different OpenCL contexts. It is the host 
applications responsibility to share, transfer, and synchronize data consumption 
between two contexts.
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Application scaling
A multithreaded program is partitioned into blocks of threads that execute 
independently from each other, so that a GPU with more cores will automatically 
execute the program in less time than a GPU with fewer cores. This is important 
since we can see here two levels of nested data parallelism or data parallelism nested 
within task parallelism. The upper level parallelism partitions a given problem into 
blocks of threads. Each block of thread will run on a compute unit, for example, a 
SIMD engine in the AMD APUs. Beyond this high level parallelism there is lower 
level parallelism, where a group of threads run cooperatively within the thread 
block. Each of these threads runs on the processing elements of the compute unit.

OpenCL Program
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Summary
In this chapter we started with the discussion of OpenCL Platform model, and  
briefly explained the various hardware from different vendors and tried to map  
the OpenCL terminologies to the devices which we discussed. We also discussed  
the Execution and Memory model of OpenCL. This chapter forms the foundation  
for any OpenCL programmer.

Till now we discussed about the OpenCL architecture and the OpenCL ecosystem 
in general. From here on we will study the OpenCL objects such as, buffers, 
images, programs, kernels, and so on in detail. In the next chapter we will start our 
discussion about the OpenCL buffers, and the mechanisms of data transfer between 
the host and the OpenCL devices.



OpenCL Buffer Objects
In the previous chapter we discussed about the OpenCL Architectural models, and 
also understood the device context and command queue creation. This forms the 
first step towards the OpenCL language programming. In Chapter 1, Hello OpenCL, 
we implemented a simple saxpy OpenCL example, which created memory objects 
(buffers in this case) and the kernel performed the saxpy operation on these buffers. 
These memory objects were created and transferred to and from the device's 
memory. Computations were performed on these memory objects by every instance 
of the kernel execution created in the NDRange. OpenCL memory objects form the 
most fundamental architectural unit in the OpenCL programming.

In this chapter we will study the OpenCL buffer memory object and the functions and 
characteristics related to these buffer objects. This is referred to as the cl_mem object for 
contiguous memory locations. We will discuss the following in this chapter:

• Create buffer objects
• Create subbuffer objects
• Use these buffer objects to compute the image histogram
• Transferring the buffer data to and from the device
• Mapping and querying the buffer objects

Besides this there is another form of OpenCL cl_mem object called the image buffer. 
The image buffer represents the various raw formats of an image. We will discuss  
the image objects in the next chapter.



OpenCL Buffer Objects

[ 60 ]

Memory objects 
Memory objects are encapsulated by cl_mem data structure. The two important 
functions to create a memory object are as follows:

cl_mem clCreateBuffer (cl_context context, 
  cl_mem_flags flags, 
    size_t size, 
      void *host_ptr, 
        cl_int *errcode_ret)
cl_mem clCreateImage (cl_context context, 
  cl_mem_flags flags, 
    const cl_image_format *image_format, 
      const cl_image_desc *image_desc, 
        void *host_ptr, 
          cl_int *errcode_ret)

Note that both the buffer and image data objects are of type cl_mem and these objects 
form the most important basic component in OpenCL. Both these functions return 
the cl_mem objects and the type of memory is specified by the flags variable of type 
cl_mem_flags. For comparison purpose the clCreateImage function is shown here. 
More details of this will be discussed in the next chapter. The possible values for the 
cl_mem_flags flags are shown in the following table:

cl_mem_flags Description
CL_MEM_READ_WRITE The buffer is created in the device global memory and 

can be read and written by the kernel.
CL_MEM_WRITE_ONLY The buffer is created in the device global memory and 

will be written by the compiler.
CL_MEM_READ_ONLY The buffer created with this memory attribute can 

only be read by the kernel code. This is also referred 
to as the constant memory in the OpenCL memory 
architecture.

CL_MEM_USE_HOST_PTR The cl_mem object to be created uses the memory 
referred by the host_ptr.

CL_MEM_ALLOC_HOST_PTR The cl_mem object to be created allocates the memory 
from the host accessible memory, that is, the memory 
allocated at the device can be mapped to the host 
memory.

CL_MEM_COPY_HOST_PTR The cl_mem object will allocate memory at the device 
and copy the data specified by the host pointer.

CL_MEM_HOST_WRITE_ONLY This cl_mem object can only be written by the host.
CL_MEM_HOST_READ_ONLY This cl_mem object can only be read by the host.
CL_MEM_HOST_NO_ACCESS This cl_mem object will neither be read nor written to.
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The cl_mem_flags flag specifies the property of the cl_mem object created. The first 
three memory flags create memory at the device and specify the constraints for the 
device and not the host. It can either be set as a single property or with multiple 
properties by applying bitwise OR to the different flag combinations, like (CL_
MEM_READ_WRITE |CL_MEM_USE_HOST_PTR). There may be different combinations 
possible, but each combination is restricted by the flag definition. The cl_mem_flags 
flag specification specifies some mutually exclusive combinations. For example (CL_
MEM_USE_HOST_PTR |CL_MEM_COPY_HOST_PTR) is not possible, because the CL_MEM_
COPY_HOST_PTR flag allocates memory at the device and copies the data pointed to 
by the host pointer. But CL_MEM_USE_HOST_PTR flag does not allocate any memory at 
the device; instead it uses the already existing buffer pointed by host_ptr to be used 
by the device. The host_ptr must be specified when we use the flag CL_MEM_USE_
HOST_PTR. It cannot be NULL.

The following are the ways in which COPY/HOST/ALLOC can be used:

• CL_MEM_COPY_HOST_PTR: This can be used when an application developer 
wants to create new device memory, and you are sure that any modifications 
on the created buffer object in the device side are not required at the host side.

• CL_MEM_USE_HOST_PTR: This is used when an application developer wants  
to process the buffer at the device, the input to which comes from the host 
and also wants the modified buffer back on the host.

• CL_MEM_ALLOC_HOST_PTR: This buffer is used when the host uses the data 
which is first filled by the device. For example, the device generates random 
numbers in the allocated buffer and this buffer will be used by the host.  
This is like performing malloc and not filling the memory, instead device  
fills the buffer.

The performance of the three flags we just saw are OpenCL implementation defined, 
for example CL_MEM_USE_HOST_PTR uses the host memory as a buffer location, but 
when it comes to accessing the data at the device side, the OpenCL implementation 
may pin this memory and then transfer the data over the memory bus interface (PCIe 
in the case of discrete graphics cards). But in the case of CL_MEM_ALLOC_HOST_PTR 
the OpenCL implementation may allocate memory directly on the pinned memory 
location which the OS uses for data transfer using the DMA. This may be faster when 
compared to CL_MEM_USE_HOST_PTR.

The cl_mem object or buffer refers to any type of contiguous data location which can 
be used by the kernel during execution. Image objects data are sampled in a different 
way and will be discussed in Chapter 4, OpenCL Images. The parameters passed to the 
clCreateBuffer API are described in the following table:
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Parameter name Description
context A valid context object for which the buffer is allocated.
flags The flags parameter is a bit field specifying buffer allocation 

and usage information. Multiple flags can be specified by OR'ing 
the different flag values.

size Size of the buffer to be allocated, in bytes.
host_ptr A pointer to data, allocated by the application; its use in a call 

to clCreateBuffer is determined by the flags parameter. The 
size of the data pointed to by host_ptr must be at least that of 
the requested allocation, that is, greater than or equal to the size 
bytes.

errcode_ret Error code, if any, will be set in this variable if it's a non-NULL 
parameter.

Creating subbuffer objects
There may be situations when you may want to create a subbuffer out of the existing 
buffer object. For this purpose OpenCL provides the API.

cl_mem clCreateSubBuffer (cl_mem buffer, 
  cl_mem_flags flags, 
    cl_buffer_create_type buffer_create_type, 
      const void *buffer_create_info, 
        cl_int *errcode_ret)

The clCreateSubBuffer function can be used to create a new partial buffer object 
(referred to as a subbuffer object) from an existing OpenCL cl_mem buffer object.

Parameter name Description
buffer Must be a valid buffer object created using the 

clCreateBuffer API and cannot itself be a subbuffer 
object. 

flags This parameter takes the same values as described in the 
table of cl_mem_flags shown earlier. The values taken 
by the flags variable should not get into any mutual 
exclusion condition with the flags of the original 
buffer. For example, if the original cl_mem object 
buffer is created with CL_MEM_HOST_WRITE_ONLY 
and the flag specified is CL_MEM_HOST_READ_ONLY, 
then the API shall return CL_INVALID_VALUE in the 
errcode_ret pointer. 

buffer_create_type Size of the buffer to be allocated, in bytes.
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Parameter name Description
buffer_create_info This is a pointer to the cl_buffer_region structure 

shown:
typedef struct _cl_buffer_region {

    size_t origin;

    size_t size;

} cl_buffer_region;

errcode_ret Error code if any will be set in this variable if it's a non-
NULL parameter. 

The buffer_create_info and buffer_create_type parameters describe the type 
of buffer object to be created. The only value which can be specified for buffer_
create_type is CL_BUFFER_CREATE_TYPE_REGION. The region specified is given by 
the cl_buffer_region object. The cl_buffer_region structure member origin 
is the offset in bytes in the cl_mem buffer object. The size is the size of the buffer 
object in bytes. Good care should be taken while specifying the size of the subbuffer. 
It should not go outside of the boundaries of buffer. There can be overlaps in 
the memory region, but writing to the overlapped region by two different kernels 
simultaneously is undefined.

Take a look at the following code snippet. The code creates three subbuffer cl_mem 
objects subuffer1, subBuffer2 and subBuffer3 from a larger cl_mem buffer.  
Note the overlap region as shown in the following diagram.

buffer = clCreateBuffer(
  context, 
    CL_MEM_READ_ONLY,
      sizeof(float) * 100, /*buffer of 100 floats*/
        NULL, 
          &status);
cl_buffer_region region;
region.size   = 50*sizeof(float);
region.origin = 0;
//Create first subBuffer with origin at the start of 
// buffer and of size 50 floats
cl_mem subBuffer1 = clCreateSubBuffer(
  buffer, 
    CL_MEM_READ_ONLY, 
      CL_BUFFER_CREATE_TYPE_REGION, 
        &region, 
          &err);        
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region.origin = 50*sizeof(float);            

cl_mem subBuffer2 = clCreateSubBuffer(
  buffer, 
    CL_MEM_READ_ONLY,
      CL_BUFFER_CREATE_TYPE_REGION, 
        &region, 
          &err);        

region.origin = 40*sizeof(float);         

cl_mem subBuffer3 = clCreateSubBuffer(
  buffer, 
    CL_MEM_READ_ONLY, 
      CL_BUFFER_CREATE_TYPE_REGION, 
        &region, 
          &err);        

The following figure explains the code we just saw and shows the overlap region:

Diagram showing overlap of buffers

An example usage of subbuffers may be that you want to divide the buffer across 
multiple devices and launch kernels for each buffer on a separate command-queue. 
An OpenCL developer can enqueue map commands on overlapped regions in the 
memory. These map commands should be done for reading purpose only using 
the CL_MAP_READ flag. It is an invalid operation if the memory mapping is done for 
writing purpose. We will discuss more about Mapping Buffers in a section later in 
this chapter.
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Histogram calculation
Histogram is a graphical representation of tonal distribution of a digital image. 
It plots the number of pixels for each tonal value. In this example we find the 
histogram of each of the RGB color components in the color image.

In this section, we will discuss the histogram sample. The sample code has two parts 
the host code and the device code which is defined as a const char *histogram_
kernel. For understanding purpose, we will discuss the OpenCL kernel code that 
follows. For an OpenCL application programmer most of the effort goes in writing 
the OpenCL kernel. The majority of the host code is that of setting up the OpenCL 
platform to run that kernel. We now start with the discussion of the kernel code.

Algorithm
The input image of size X height and Y width is divided into the small linear chunks 
of size BIN_SIZE=256. Each thread shall process 256 pixel values and compute 
the RGB histogram. Also the total number of threads in a work group which we 
have selected is 16. The 16 threads are chosen so that the code works well for all 
the available OpenCL hardware vendors. Ideally, one should query the device 
properties using clGetDeviceInfo with the param_name variable set to value CL_
DEVICE_MAX_WORK_GROUP_SIZE function and appropriately select the work group 
size for the algorithm.

One more factor which limits the number of work items in a work group is the local 
memory size. In this example we have created a local memory sharedArray of size 
16 * 256 = 4 KB of local memory per work group. On AMD graphics cards which 
have a local memory size of 32 KB across all GPU devices, you can launch upto 
64 work items per work group or multiples of 64 work items upto 256. This local 
memory is used by all the work items in the work group. Application developer can 
query the available local memory size using the function clGetDeviceInfo with the 
param_name CL_DEVICE_LOCAL_MEM_SIZE.

In a work group the kernel operates on the image area which is equal to 256*16 pixels 
linear image buffer. The histogram is computed for each of this local image area by a 
work group independently. So basically in the kernel we compute 

(X * Y) / (256 * 16)

sub histograms. The computed sub-histograms are stored in the uint * buffer 
pointed by binResultR, binResultG and binResultB for R, G, and B components 
respectively. This buffer is a global memory in the device.
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Each of the work items in a work group shall compute the histogram and store in its 
local buffer pointed by sharedArray. The pixel value used by each work-item is in 
the range:

(globalId * BIN_SIZE) to (globalId * BIN_SIZE + 255)

OpenCL Kernel Code
We first discuss the OpenCL kernel code for the histogram example. The kernel 
histogram_kernel is built by the OpenCL runtime compiler and is shown in the 
following code. This kernel computes the block histogram of 256*16 pixel values, 
each for R, G, and B components. Each work-item first computes the histogram of 
the 256 elements, into the local memory sharedArray. After each work-item has 
computed the histogram which is confirmed by a local barrier in the kernel code, 
the last loop in the kernel accumulates all the histogram values into a block level 
histogram that is, finally the binResultX will contain the histogram of 256*16  
pixel values of each of the color components.

#define BIN_SIZE 256
#pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable
__kernel
void histogram_kernel(__global const uint* data,
  __local uchar* sharedArray,
    __global uint* binResultR,
      __global uint* binResultG,
        __global uint* binResultB)
{
    size_t localId = get_local_id(0);
    size_t globalId = get_global_id(0);
    size_t groupId = get_group_id(0);
    size_t groupSize = get_local_size(0);
    __local uchar* sharedArrayR = sharedArray;
    __local uchar* sharedArrayG = sharedArray + 
                                   groupSize * BIN_SIZE;
    __local uchar* sharedArrayB = sharedArray + 
                                   2 * groupSize * BIN_SIZE;

    /* initialize shared array to zero */
    for(int i = 0; i < BIN_SIZE; ++i)
    {
        sharedArrayR[localId * BIN_SIZE + i] = 0;
        sharedArrayG[localId * BIN_SIZE + i] = 0;
        sharedArrayB[localId * BIN_SIZE + i] = 0;
    }
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Till now in the histogram_kernel, we have initialized the local memory uchar 
pointer pointed by sharedArray to 0 and assigned pointers to each of the R, G, and B 
components. In the next for loop we compute the histogram of BIN_SIZE pixels. This 
is computed in each of the 16 work-items in the work group.

/* calculate thread-histograms */
for(int i = 0; i < BIN_SIZE; ++i)
{
  uint value = data[globalId * BIN_SIZE + i];
  uint valueR = value & 0xFF;
  uint valueG = (value & 0xFF00) >> 8;
  uint valueB = (value & 0xFF0000) >> 16;
  sharedArrayR[localId * BIN_SIZE + valueR]++;
  sharedArrayG[localId * BIN_SIZE + valueG]++;
  sharedArrayB[localId * BIN_SIZE + valueB]++;
}

    barrier(CLK_LOCAL_MEM_FENCE);

Note the  barrier function in the code above . After the calculation of the histogram 
at each work-item, we need to count the number of pixels with the values 0, 1, and 
so on till 255. But before that each work-item must have computed its histogram 
count and stored the result in its corresponding sharedArray bins. To ensure that 
all the work-items in a work group have completed its execution we add a barrier 
function in the code. Every work-item in the work group shall wait for the barrier 
function to execute before proceeding further.

/* merge all thread-histograms into block-histogram */
for(int i = 0; i < BIN_SIZE / groupSize; ++i)
{
  uint binCountR = 0;
  uint binCountG = 0;
  uint binCountB = 0;
  for(int j = 0; j < groupSize; ++j)
  {
    binCountR +=  
      sharedArrayR[j * BIN_SIZE + i * groupSize + localId];
    binCountG +=  
      sharedArrayG[j * BIN_SIZE + i * groupSize + localId];
    binCountB +=  
      sharedArrayB[j * BIN_SIZE + i * groupSize + localId];
  }
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The for loop above adds up the local histogram computed. Finally we store the result 
from local memory sharedArray to global memory binResult.

binResultR[groupId * BIN_SIZE + i * groupSize + localId] = 
  binCountR;
binResultG[groupId * BIN_SIZE + i * groupSize + localId] = 
  binCountG;
binResultB[groupId * BIN_SIZE + i * groupSize + localId] = 
  binCountB;
  }
}

By now you must have understood the histogram kernel implementation and may 
have thought of several more ways to implement the same. We will discuss a way  
to optimize this solution in Chapter 8, Basic Optimization Techniques with Case  
Studies - Histogram calculation.

The Host Code
The host side code involves the following steps:

1. Read the BMP Image into a raw pixel buffer: In a BMP image the pixel 
values are stored as interleaved RGB pixel values or as a reference to a 
palette table. We first read the image pixels into system memory. For this 
purpose, we create a simple Image object, which stores the buffer and the  
size of the image using the utility function.
void ReadBMPImage(string filename, Image **image)

2. Setup the OpenCL Platform: Once we obtain the raw image pixel values in 
a contiguous system memory, we set up the OpenCL Platform and then pass 
this buffer to the OpenCL device. Setting up the OpenCL device involves 
selecting an available platform, selecting the device to execute the kernel, 
creating an execution context and an associated command queue.

3. Create OpenCL Buffers: For histogram computation we create as many as 
four OpenCL Buffers using the API clCreateBuffer. One is the input buffer 
which has the raw pixel values. This buffer needs to be written to the device 
memory using the clEnqueueWriteBuffer. The remaining three are the 
output buffers which after the histogram computation need to be read back 
to the host memory using the clEnqueueReadBuffer OpenCL runtime API. 
Take a look at the following code:
//Create OpenCL device input buffer
imageBuffer = clCreateBuffer(context, 
  CL_MEM_READ_ONLY, 
    sizeof(cl_uint) * image->width * image->height, 
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      NULL, 
        &status);  
LOG_OCL_ERR0R(status, "clCreateBuffer Failed." );

//Set input data 
cl_event writeEvt;
status = clEnqueueWriteBuffer(commandQueue, 
  imageBuffer, 
    CL_FALSE, 
      0, 
        image->width * image->height * sizeof(cl_uint), 
          image->pixels, 
            0, 
              NULL, 
                &writeEvt);
LOG_OCL_ERROR(status, "clEnqueueWriteBuffer Failed." );

status = clFinish(commandQueue);
LOG_OCL_ERROR(status, "clFinish Failed " );

The code snippet we just saw creates an OpenCL buffer. Once the buffer is  
created the application enqueues a command to write the buffer data pointed  
by image->pixels into the device associated with the commandQueue. It is 
at this point when the actual data transfer takes place to the device. Every 
command enqueued on the queue is associated with an event handle. 
The write operation results in the event writeEvt being returned by the 
application. The application can wait on this event to complete and continue 
with further processing. For now in this example we will use the clFinish 
function to complete all tasks in the queue.
There is one other way to create a buffer, which will not involve any data 
transfer, between the devices. (But instead have data transfer during the 
actual computation. This varies between different device architectures.) The 
buffer can be created with CL_MEM_USE_HOST_PTR flag. The OpenCL buffer 
is created using the existing host buffer. The maps and unmaps of OpenCL 
buffers will result in the same host pointer being returned. The creation of 
this buffer is shown in the following code snippet:
//Create OpenCL device input buffer
imageBuffer = clCreateBuffer( 
  context, 
  CL_MEM_READ_ONLY|CL_MEM_USE_HOST_PTR, 
  sizeof(cl_uint) * image->width * image->height, 
    image->pixels, 
      &status);  
LOG_OCL_ERROR(status, "clCreateBuffer Failed." );
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The LOG_OCL_ERROR utility is a macro used in the sample programs of this 
book, and is not related to OpenCL specification.
The other three OpenCL buffers are created as follows:
//Create OpenCL device output buffer
intermediateHistR = clCreateBuffer( 
  context,  
    CL_MEM_WRITE_ONLY, 
      sizeof(cl_uint) * binSize * subHistgCnt,  
        NULL,  
          &status); 
LOG_OCL_ERROR(status, "clCreateBuffer Failed." );

intermediateHistG = clCreateBuffer( 
  context, 
    CL_MEM_WRITE_ONLY, 
      sizeof(cl_uint) * binSize * subHistgCnt, 
        NULL, 
          &status);
LOG_OCL_ERROR(status, "clCreateBuffer Failed." );

intermediateHistB = clCreateBuffer( 
  context, 
    CL_MEM_WRITE_ONLY, 
      sizeof(cl_uint) * binSize * subHistgCnt, 
        NULL, 
          &status);
LOG_OCL_ERROR(status, "clCreateBuffer Failed." );

The buffers intermediateHistR, intermediateHistG, and 
intermediateHistB will store the computed RGB histogram values. These 
buffers are characterized by CL_MEM_WRITE_ONLY flags. The input and output 
buffers are characterized by the cl_mem_flags values CL_MEM_READ_ONLY 
and CL_MEM_WRITE_ONLY respectively.

4. Build the kernel: The kernel histogram_kernel shown in the code snippet 
is compiled and we are ready to setup the kernel parameters.

5. Setup the kernel arguments: After a brief look at the kernel code you will 
immediately realize the relation/correspondence between the host-side 
OpenCL buffer object and the actual kernel-side global memory pointer.
Host side variable  -- Kernel parameter
imageBuffer  --     data
intermediateHistR  --     binResultR
intermediateHistG  --     binResultG
intermediateHistB  --     binResultB
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// Set the arguments of the kernel
status = clSetKernelArg(kernel, 0, sizeof(cl_mem),  
  (void*)&imageBuffer); 
status = clSetKernelArg(kernel, 1, 3 * groupSize * binSize  
  * sizeof(cl_uchar), NULL); 
status = clSetKernelArg(kernel, 2, sizeof(cl_mem),  
  (void*)&intermediateHistR);
status = clSetKernelArg(kernel, 3, sizeof(cl_mem),  
  (void*)&intermediateHistG);
status = clSetKernelArg(kernel, 4, sizeof(cl_mem),  
  (void*)&intermediateHistB);

In the code snippet we just saw, the kernel arguments are set. Note that 
the arguments 0, 2, 3, and 4 are set using the cl_mem objects. The argument 
number 1 is specified with a NULL parameter, which indicates a local memory 
and is characterized by __local uchar* in the kernel. We will discuss more 
about setting the kernel arguments and executing the kernel in Chapter 5, 
OpenCL Program and Kernel Objects

6. Read the Buffer to the host memory: After each thread has computed  
its share of 256 elements histogram into the shared memory the final  
sub-histogram result is computed as the sum of each pixel counts and  
stored into the binResultR, binResultG, and binResultB global memory. 
Finally on completion of the kernel execution, the results are read back to  
the host memory.

Run the histogram sample code and check the correctness of the computed 
histogram result.

Reading and writing buffers
By now you know how to create buffer objects and how to read them in the kernel. 
Before the kernel is launched you may want to write the buffer to the device 
memory using the API clEnqueueWriteBuffer. And after the kernel has completed 
processing, you will want to get the buffer back to the host from the device memory. 
This can be achieved by using the clEnqueueReadBuffer function.

cl_int clEnqueueWriteBuffer (cl_command_queue command_queue, 
  cl_mem buffer, 
    cl_bool blocking_write, 
      size_t offset, 
        size_t size, 
          const void *ptr, 
            cl_uint num_events_in_wait_list, 
            const cl_event *event_wait_list, 
              cl_event *event)
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This function writes data from the host to the device memory. Following are the 
descriptions of the parameters passed.

Parameter name Description
command_queue The write command will be queued in this OpenCL 

queue. One should make sure that the cl_mem object 
buffer and the command_queue are created using the 
same context.

buffer A valid cl_mem buffer object, which will be written to. 
blocking_write If this value is set to CL_TRUE, then 

clEnqueueWriteBuffer blocks until the data is 
written from ptr; otherwise it returns immediately 
and the user must query event to check the 
command's status.

offset The offset, in bytes, into the destination buffer 
object. At this offset the first byte from the input source 
buffer is written to.

size Total bytes to be written into the device memory 
pointed by buffer. 

ptr The host memory pointer from where the data will be 
read.

num_events_in_wait_list The number of events to wait for before executing this 
command

event_wait_list The pointer to the events wait list. The size of this 
is specified by num_events_in_wait_list. The 
OpenCL implementation shall queue this command 
only after the events in event_wait_list is 
completed.

event A cl_event object is returned which describes this 
write command. This event can be used by any other 
OpenCL command for synchronization. If the event_
wait_list and the event arguments are not NULL, 
then the event argument should not refer to any 
element of the event_wait_list array. Also if the 
blocking_write is set to CL_TRUE then this event 
may not be of any use, because it is known that the 
event has completed execution after the blocking read 
has completed. 
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Similarly the function clEnqueueReadBuffer reads data from the device to the  
host memory.

cl_int clEnqueueReadBuffer (cl_command_queue command_queue, 
  cl_mem buffer, 
    cl_bool blocking_read, 
      size_t offset, 
        size_t size, 
          void *ptr, 
            cl_uint num_events_in_wait_list, 
              const cl_event *event_wait_list, 
                cl_event *event)

The parameters passed to this function are similar in description to the write 
command. command_queue, offset, size, ptr, num_events_in_wait_list, event_
wait_list, and event all have similar descriptions as discussed in the previous 
table.Other parameters are discussed further.

buffer: A valid cl_mem buffer object, which will be read from and written to ptr.

blocking_read: If set to CL_TRUE, then clEnqueueReadBuffer blocks until the data 
is read to the ptr; otherwise it returns directly and the user must query event to 
check the command's status.

event: An OpenCL event object is returned which describes this read command. This 
event can be used by any other OpenCL enqueue commands for synchronization by 
querying its state of execution.

Blocking_read and Blocking_write
Memory read/writes can be marked as blocked by setting it to CL_TRUE. This  
will cause the host thread to block, until the enqueued command has completed. 
OpenCL uses relaxed memory model. So it is up to the application programmer  
to make sure that the memory being written to by a particular device is updated 
across all the devices associated with the particular context. Similarly for the  
memory read operation. Some non-cache coherent devices may see different  
values for the same global address. Hence explicit synchronization is required  
by the application programmer.

If the read/write command is not blocking, then the host thread may return 
immediately before the enqueued task has completed, and the application cannot 
assume that the memory being written or read is ready to be consumed from. In 
such a case the host application can use OpenCL synchronization API clFinish or 
clWaitForEvents to ensure that the command has completed. We will discuss more 
on this in Chapter 6, Events and Synchronization.
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Now let's go back to the histogram sample code. The read commands are provided 
in the following code snippet. All these read commands have the blocking_read 
argument set to CL_FALSE. The order of execution of these commands will be defined 
by the property of commandQueue created. Take a look at the following code:

cl_event readEvt[3];
status = clEnqueueReadBuffer( 
  commandQueue, 
    intermediateHistR, 
      CL_FALSE, 
        0, 
          subHistgCnt * binSize * sizeof(cl_uint), 
            midDeviceBinR, 
              0, 
                NULL, 
                  &readEvt[0]); 
LOG_OCL_ERROR(status, "clEnqueueReadBuffer of intermediateHistR  
  Failed." );

status = clEnqueueReadBuffer( 
  commandQueue, 
    intermediateHistG, 
      CL_FALSE, 
        0, 
          subHistgCnt * binSize * sizeof(cl_uint), 
            midDeviceBinG, 
              0, 
                NULL, 
                  &readEvt[1]);
LOG_OCL_ERROR(status, "clEnqueueReadBuffer of intermediateHist 
  Failed." );

status = clEnqueueReadBuffer( 
  commandQueue, 
    intermediateHistB, 
      CL_FALSE, 
        0, 
          subHistgCnt * binSize * sizeof(cl_uint), 
            midDeviceBinB, 
              0, 
                NULL, 
                  &readEvt[2]);
LOG_OCL_ERROR(status, "clEnqueueReadBuffer of intermediateHistB 
  Failed." );
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At the first read command the function clEnqueueReadBuffer enqueue's a 
command in the cl_command_queue commandQueue to read a device memory object 
pointed by intermediateHistR into the host memory midDeviceBinR. The size read 
by this command is equal to subHistgCnt * binSize * sizeof(cl_uint). The 
blocking_read variable is set to CL_FALSE. The last API clWaitForEvents waits for 
the three read events to complete. Once we have the result read into host memory, 
one final step computes the count of each pixel tonal value.

As an exercise for you modify the histogram sample code in the following way. 
We have created the cl_mem objects for each of the output buffers. Combine these 
three into a single buffer object, and use the API clCreateSubBuffer to create 
three different subbuffers. Pass these subbuffers as cl_mem object to the histogram_
kernel and verify the execution of the histogram result.

Rectangular or cuboidal reads
OpenCL specification provides with an ability to read or write rectangular segments 
of data into host memory. The clEnqueueReadBufferRect function enqueues a 
command to read a rectangular 2D or 3D region from a cl_mem buffer object to host 
memory. This is shown in the following code:

cl_int 
clEnqueueReadBufferRect(cl_command_queue command_queue, 
  cl_mem buffer, 
    cl_bool blocking_read, 
      const size_t *buffer_origin, 
        const size_t *host_origin, 
          const size_t *region, 
            size_t buffer_row_pitch, 
              size_t buffer_slice_pitch, 
                size_t host_row_pitch, 
                  size_t host_slice_pitch, 
                    void *ptr, 
                      cl_uint num_events_in_wait_list, 
                        const cl_event *event_wait_list, 
                          cl_event *event)
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Similarly OpenCL provides a function clEnqueueWriteBufferRect which enqueues 
the command to write rectangular piece of buffer. As shown in the following code:

cl_int 
clEnqueueWriteBufferRect (cl_command_queue command_queue, 
  cl_mem buffer, 
    cl_bool blocking_write, 
      const size_t *buffer_origin, 
        const size_t *host_origin, 
          const size_t *region, 
            size_t buffer_row_pitch, 
              size_t buffer_slice_pitch, 
                size_t host_row_pitch, 
                  size_t host_slice_pitch, 
                    const void *ptr, 
                      cl_uint num_events_in_wait_list, 
                        const cl_event *event_wait_list, 
                          cl_event *event)

The following figure helps explain the rectangular region in 2D space. Note that 
every OpenCL buffer is a one-dimensional contiguous memory location. These 
rectangular functions help to visualize or access the 2D or 3D equivalent memory 
regions in that 1D contiguous buffer.

2D Image read marked with black color

The buffer_row_pitch and buffer_slice_pitch functions, define the 2D or 3D 
representation of the whole buffer.
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The offset in bytes into the cl_mem object is computed as:

buffer_origin[2] * buffer_slice_pitch +  
  buffer_origin[1] * buffer_row_pitch +  
    buffer_origin[0];

Let's take an example array of size 32 elements in 1D. In 2D it can be visualized as 8 
rows with buffer_row_pitch = 4 elements as described in the figure we just saw.  
In 3D it can be visualized as 4 slices of 4X2 each as shown in the following figure:

3D rectangular read

To explain the clEnqueue{Write|Read}BufferRect functions, we will discuss 
one of the sample codes. In the bufferRectangularReads sample code we create a 
buffer of size 32 elements and try to emulate a 2D and 3D buffer reads from the input 
1D buffer (all OpenCL buffer objects store data in a linear contiguous location). We 
will perform two operations in the sample code. First we emulate a 2D buffer and 
read a 3X2 size 2D rectangular read.

We first create a buffer as follows:

clBuffer = clCreateBuffer( 
  context, 
    CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
      sizeof(cl_uint) * NUM_OF_ELEMENTS, 
        hostBuffer, /*Pointer to 32 elements*/ 
          &status); 
LOG_OCL_ERROR(status, "clCreateBuffer Failed..." );
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The following code reads a 2D rectangular region as shown in the figure we just saw:

//Read a 2D rectangular object from the clBuffer of 32 elements
int hostPtr2D[6] = {0, 0, 0, 0, 0, 0};
size_t bufferOrigin2D[3] = {1*sizeof(int), 6, 0};
size_t hostOrigin2D[3] = {0 ,0, 0};
size_t region2D[3] = {3* sizeof(int), 2,1};
status = 
    clEnqueueReadBufferRect(
        commandQueue,
        clBuffer,
        CL_TRUE,
        bufferOrigin2D, /*Start of a 2D buffer to read from*/
        hostOrigin2D,
        region2D,
        (NUM_OF_ELEMENTS / 8) * sizeof(int), /*buffer_row_pitch  */
        0,                                   /*buffer_slice_pitch*/
        0,                                   /*host_row_pitch    */
        0,                                   /*host_slice_pitch  */
        static_cast<void*>(hostPtr2D),
        0,
        NULL,
        NULL);

Next we emulate a 3D buffer and read 3 contiguous slices of 3X1 each. The following 
code reads 3D cuboid as shown in the figure we just saw.

//Read a 3D rectangular object from the clBuffer of 32 elements
int hostPtr3D[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
size_t bufferOrigin3D[3] = {1*sizeof(int), 1, 0};
size_t hostOrigin3D[3] = {0 ,0, 0};
size_t region3D[3] = {3* sizeof(int), 1,3};
status = 
    clEnqueueReadBufferRect(
      commandQueue,
      clBuffer,
      CL_TRUE,
      bufferOrigin3D, /*Start of a 2D buffer to read from*/
      hostOrigin3D,
      region3D,
      (NUM_OF_ELEMENTS / 8) * sizeof(int), /*buffer_row_pitch  */
      (NUM_OF_ELEMENTS / 4) * sizeof(int), /*buffer_slice_pitch*/
      0,                                   /*host_row_pitch    */
      0,                                   /*host_slice_pitch  */
      static_cast<void*>(hostPtr3D),
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      0,
      NULL,
      NULL);

Compile and run the bufferRectangularReads project in the OpenCL examples 
and check the result. The code will print the highlighted sections in the figure.

Copying buffers
The two functions clEnqueueCopyBuffer and clEnqueueCopyBufferRect enable 
the application to copy data between two OpenCL buffer objects. It is equivalent to 
reading the buffer back from device to host and then writing it back to a destination 
cl_mem object. This mechanism is provided by these copy buffer routines:

cl_int 
clEnqueueCopyBuffer(cl_command_queue command_queue, 
  cl_mem src_buffer, 
    cl_mem dst_buffer, 
      size_t src_offset, size_t dst_offset, 
        size_t size, 
          cl_uint num_events_in_wait_list, 
            const cl_event *event_wait_list, 
              cl_event *event)

This OpenCL API enqueue's a command to copy a cl_mem buffer object 
identified by src_buffer to another cl_mem object destination buffer, dst_
buffer. Remaining parameters like offset and events are similar to the one in 
clEnqueue[Read|Write]Buffer routines.

Similarly if one wants to copy only a small rectangular region in the cl_mem buffer 
then he can use the API:

cl_int 
clEnqueueCopyBufferRect(cl_command_queue command_queue, 
  cl_mem src_buffer, 
    cl_mem dst_buffer, 
      const size_t *src_origin, 
        const size_t *dst_origin, 
          const size_t *region, 
            size_t src_row_pitch, 
              size_t src_slice_pitch, 
                size_t dst_row_pitch, 
                  size_t dst_slice_pitch, 
                    cl_uint num_events_in_wait_list, 
                      const cl_event *event_wait_list, 
                        cl_event *event)
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Take a look at the copyRectangular project in the book examples for this chapter. 
This example gives an explanation of the function clEnqueueCopyBufferRect.

What is the difference between the clEnqueueWriteBuffer and 
clEnqueueCopyBuffer? Unlike clEnqueueWriteBuffer function, 
clEnqueueCopyBuffer copies the data between two cl_mem objects directly in 
the device memory or through the device memory interface across two devices. 
clEnqueueReadBuffer function will read the data from the device memory to the 
host memory. The following figure explains the difference:

Difference between Copy Buffer and Read Write Buffer

Mapping buffer objects
OpenCL provides a mechanism to map a region of a buffer directly into host 
memory instead of using the clEnqueue[Read|Write]Buffer functions. These 
mapped regions can be returned to the application. The application can use this 
mapped memory region based on the cl_map_flags flag value which is set during 
mapping. Now the first question which would arise in the readers mind is that how 
different are the two APIs clEnqueueMapBuffer and clEnqueueReadBuffer.

The clEnqueueReadBuffer function reads into a memory location pre-allocated.  
But clEnqueueMapBuffer returns a pointer to the mapped region.
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Other difference between clEnqueueReadBuffer and clEnqueueMapBuffer is the 
map_flags argument. If map_flags is set to CL_MAP_READ, the mapped memory will 
be read only, and if it is set as CL_MAP_WRITE the mapped memory will be write only, 
if you want both read and write, then set the flags as CL_MAP_READ|CL_MAP_WRITE. 
The importance of CL_MAP_READ lies when an unmap is called on the mapped region. 
An OpenCL implementation will optimize a CL_MAP_READ by quickly relinquishing 
the data held by the mapped region. It will not do a write back operation to the 
device. But in the case of CL_MAP_WRITE the OpenCL implementation will have to 
copy the modified mapped buffer back to the device.

void * 
clEnqueueMapBuffer (cl_command_queue command_queue, 
  cl_mem buffer, 
    cl_bool blocking_map, 
      cl_map_flags map_flags, 
        size_t offset, 
          size_t size, 
             cl_uint num_events_in_wait_list, 
              const cl_event *event_wait_list, 
                cl_event *event, 
                  cl_int *errcode_ret)

The following table describes the parameters passed to the clEnqueueMapBuffer.

Parameter name Description
buffer A valid cl_mem buffer object, which will be 

mapped from. 
blocking_map If set to CL_TRUE, then clEnqueueMapBuffer 

blocks until the data is mapped into host memory; 
otherwise it returns directly and the user must 
query event to check the command's status.

offset The offset, in bytes, into the buffer object to begin 
reading from.

size The number of bytes to be read from buffer.
num_events_in_wait_list Number of events to wait for before executing this 

command.
event_wait_list The pointer to the events wait list. The size of this 

is specified by num_events_in_wait_list. The 
OpenCL implementation shall queue this command 
only when num_events_in_wait_list events in 
the event_wait_list is completed.
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Parameter name Description
event A cl_event object is returned which describes 

this map command. This event can be used by any 
other OpenCL command for synchronization. If 
event_wait_list and event arguments are not 
NULL, then the event argument should not be one 
of the events in event_wait_list array. Also 
if the blocking_map is set to CL_TRUE then this 
event may not be of any use, because it is known 
that the event has completed execution after the 
blocking read has completed. 

errcode_ret If non-NULL, the error code returned by the 
function will be returned in this parameter.

The clEnqueueMapBuffer function returns a pointer to the mapped host memory. 
This memory can later be unmapped using the function clEnqueueUnmapMemObject.

cl_int 
clEnqueueUnmapMemObject (cl_command_queue command_queue, 
  cl_mem memobj, 
    void *mapped_ptr, 
      cl_uint num_events_in_wait_list, 
        const cl_event *event_wait_list, 
          cl_event *event)

The mapped_ptr is the pointer to the mapped region returned by the 
clEnqueueMapBuffer function and the pointer.

It is a common consensus that memory mapping gives significant improvement in 
performance compared to regular read/write commands. The OpenCL driver can 
make use of DMA transfer to transfer data to the host. The efficiency of mapping 
the buffers is dependent on the OpenCL implementation. Compared to read/write 
functions, memory mapping is a three step process:

1. Use the function clEnqueueMapBuffer to map a device memory into  
the host.

2. Perform operations (read or write) on the mapped buffer.
3. Unmap the mapped buffer using clEnqueueUnmapObject.
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Querying buffer objects
As any other OpenCL objects, cl_mem objects can be queried to return information 
regarding how they are constructed, their status, reference count, and so on. The 
OpenCL function clGetMemObjectInfo helps in this.

cl_int 
clGetMemObjectInfo (cl_mem memobj, 
  cl_mem_info param_name, 
    size_t param_value_size, 
      void *param_value, 
        size_t *param_value_size_ret)

This function is similar to the clGetDeviceInfo discussed in Chapter 2, OpenCL 
Architecture. The param_name is a parameter specific to this function and is of type 
cl_mem_info. It can be used for both image and buffer type cl_mem objects. The 
following code snippet shows you how to retrieve the flags associated with a  
cl_mem object.

// Create memory buffers on the device for each vector
cl_mem A_clmem = clCreateBuffer(context, 
  CL_MEM_READ_ONLY|CL_MEM_USE_HOST_PTR, 
    VECTOR_SIZE * sizeof(float), A_ptr, &clStatus);
...
...
...
cl_mem_flags flags;
clStatus =  
  clGetMemObjectInfo (A_clmem, 
    CL_MEM_FLAGS, 
      sizeof(cl_mem_flags), 
        &flags, 
          NULL);

We created a cl_mem object A_clmem using the host malloc'd buffer A_ptr. 
Somewhere down the code or in a function you want to retrieve the flags associated 
with the cl_mem object, then you can use the function clGetMemObjectInfo to 
retrieve this information. Note that cl_mem_flags is a bit field representation of  
the different flags. In the cl.h header file each flag is associated with a bit in a cl_
ulong bit field, which is a 64 bit unsigned integer. For simplicity we have added  
the following code following code which shows the different flag values:

typedef cl_ulong            cl_bitfield;
typedef cl_bitfield         cl_mem_flags;
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/* cl_mem_flags - bitfield */
#define CL_MEM_READ_WRITE                           (1 << 0)
#define CL_MEM_WRITE_ONLY                           (1 << 1)
#define CL_MEM_READ_ONLY                            (1 << 2)
#define CL_MEM_USE_HOST_PTR                         (1 << 3)
#define CL_MEM_ALLOC_HOST_PTR                       (1 << 4)
#define CL_MEM_COPY_HOST_PTR                        (1 << 5)

The cl_mem_info function takes the following tabulated values.

cl_mem_info Description
CL_MEM_TYPE This determines the type of the buffer 

object.
CL_MEM_FLAGS This returns the flags argument 

value specified when memobj is 
created with clCreateBuffer, 
clCreateSubBuffer, or 
clCreateImage.

CL_MEM_HOST_PTR This function returns a host_ptr which 
was specified during the creation of the 
memobj using the clCreateBuffer or 
clCreateImage functions and CL_MEM_
USE_HOST_PTR was specified in mem_
flags. Otherwise a NULL ptr is returned.

CL_MEM_SIZE Returns the actual size of the memobj cl_
mem buffer in bytes. 

CL_MEM_CONTEXT Returns the context to which memobj 
belongs.

CL_MEM_MAP_COUNT Returns an integer representing the 
number of times the buffer is currently 
mapped.

CL_MEM_REFERENCE_COUNT Return reference count to memobj.
CL_MEM_ASSOCIATED_MEMOBJECT Returns a memory object from which cl_

mem memobj is created. This is used to get 
the cl_mem object from which subbuffer 
memobj was created with. Otherwise a 
NULL value is returned.

CL_MEM_OFFSET Return offset of memobj from the 
original buffer from which memobj was 
created with. That is memobj should 
have been created using the function 
clCreateSubBuffer otherwise it would 
return 0.
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Undefined behavior of the cl_mem 
objects
An OpenCL memory model, being a relaxed memory architecture, specifies some 
restrictions or undefined behavior around the cl_mem object. These undefined 
behaviors occur mostly when there is a simultaneous read and write to a buffer. 
Following are listed some undefined scenarios:

• If the buffer is created with CL_MEM_WRITE_ONLY flag and the kernel reads 
from this buffer pointer on the devices side, then it's an undefined behavior. 
That means reading from a CL_MEM_WRITE_ONLY buffer inside the kernel  
is undefined.

• Similarly writing to a buffer created using the flag CL_MEM_READ_ONLY is 
undefined inside the kernel.

• It is possible to create two OpenCL cl_mem buffers from the same host 
memory using the CL_MEM_USE_HOST_PTR flag. There may be an overlapping 
memory region. If one or more commands enqueued to the command queue 
operate on the two cl_mem objects but pointing to the same host memory 
host_ptr, then such an operation is not defined. It is the application 
programmer's responsibility to make sure that he is not writing and reading 
to the same host_ptr pointer simultaneously.

• Similarly reading from, writing to and copying between cl_mem buffer object 
and its corresponding subbuffer object is undefined.

• For cl_mem object created using CL_MEM_USE_HOST_PTR should meet the 
requirements that they contain the latest bits i.e. simultaneous writes from 
the host and the device kernel is undefined.

Summary
In this chapter we discussed about OpenCL cl_mem objects. There are two types of 
OpenCL buffers. In the next chapter we will study about the OpenCL Image buffers, 
and discuss similar characteristics which we have discussed in this chapter.

We also discussed an example of histogram computation of an image data with 
OpenCL buffers as an object. In the next chapter we will discuss the same sample 
example but with OpenCL Image Objects. Besides there were two more examples 
given in this chapter, one for copy rectangular regions and the other for rectangular 
reads from a buffer. Try the samples out and modify the kernel code at your will.





OpenCL Images
In the previous chapter, we discussed the OpenCL buffers, which are the most 
important OpenCL objects. They represent the handle to the OpenCL device 
memory. We discussed how to create a buffer, sub-buffer, transfer the host allocated 
data to the device, and mapping or un-mapping of the OpenCL buffer. The OpenCL 
buffers provide caching for regular linear buffers only in one dimension. Many 
OpenCL devices have a texture processor, which can cache pixels in an image which 
are its neighbor. So providing a separate interface for images is useful, and can be 
used to enhance the performance of applications.

In this chapter we will discuss the OpenCL image objects, which are also represented 
by cl_mem.

We will discuss the following topics: 

• Creating image and sampler objects
• Performing histogram equalization using image objects. Mapping and 

querying the image objects.

Before we start, we need to mention that not all OpenCL devices support image 
computations. An OpenCL programmer can query whether the device supports 
image formats or not using the function clGetDeviceInfo and param_name as CL_
DEVICE_IMAGE_SUPPORT. The image2d_t, image3d_t, image2d_array_t, image1d_t, 
image1d_buffer_t, image1d_array_t, and sampler_t types are only defined if 
the device supports images that is clGetDeviceInfo on CL_DEVICE_IMAGE_SUPPORT 
returns a true.

Let's start our discussion with how to create an image object.
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Creating images
Image objects can be created using the following function call:

cl_mem clCreateImage (cl_context context, 
  cl_mem_flags flags, 
  const cl_image_format *image_format, 
  const cl_image_desc *image_desc, 
  void *host_ptr, 
  cl_int *errcode_ret)

A single function call supports the creation of a 1D, 2D, and 3D image object, which 
can either be transferred to the device or can be formed in the device. Besides this, 
the same function call can be used to create an array of 1D and 2D image objects 
using the cl_image_desc data structure. We will discuss more on this later. In 
OpenCL 1.1 instead of one function clCreateImage, there were two different 
functions clCreateImage2D and clCreateImage3D.

The function call clCreateImage takes the usual four arguments as used in the 
clCreateBuffer. They are the context, flags, host_ptr, and error_code. 
The definition of these parameters is similar to that discussed in context with 
clCreateBuffer. If the flags parameter is specified as 0 then the default value 
is always CL_MEM_READ_WRITE. In the clCreateBuffer function, there is a size 
parameter. In the case of clCreateImage, the size field is embedded in the 
cl_image_desc *image_desc parameter, which is passed to this function. This 
describes the type and dimensions of the image to be created.

There is another parameter passed to this function cl_image_format *image_
format, which describes the properties of the image which is to be created.

host_ptr: This is a pointer to the raw image data that is allocated by the host. This is 
used if the flags parameter is specified as CL_MEM_COPY_HOST_PTR or CL_MEM_USE_
HOST_PTR.

Let's discuss about the cl_image_format and cl_image_desc format in more detail.

Image format descriptor cl_image_format
The cl_image_format image format descriptor is defined as follows:

typedef struct _cl_image_format { 
  cl_channel_order image_channel_order; 
  cl_channel_type image_channel_data_type; 
  } cl_image_format;
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The image_channel_data_type format specifies the size of the data type used to 
store each of the channel information. Most of these data types are of basic data types 
such as, int, unsigned int, short, unsigned short, and float. They can be CL_
SNORM_INT8, CL_UNORM_INT8, CL_SNORM_INT16, CL_UNORM_INT16, CL_UNSIGNED_
INT8, CL_UNSIGNED_INT16, CL_UNSIGNED_INT32, CL_SIGNED_INT8, CL_SIGNED_
INT16, CL_SIGNED_INT32, CL_HALF_FLOAT, or CL_FLOAT.

The image_channel_order format describes the memory layout of the channel 
data, which represents the image in memory. The channel can be one of R, G, B, or A. 
The combination of these channels forms a channel type/order. The following table 
shows the different types of channel orders possible.

No of Channels Enum values that specify the image_channel_order
Single channel format CL_R, CL_Rx, or CL_A can be used with any channel data type 

other than the packed data types.
Dual channel format CL_RG, CL_RGx, or CL_RA
Four channel format CL_RGBA can be used with any data type discussed earlier 

other than the packed data types. This is the minimum 
required supported image format if an OpenCL device is 
supporting images.
CL_ARGB and CL_BGRA can be used only with CL_UNORM_
INT8, CL_SNORM_INT8, CL_SIGNED_INT8, or CL_
UNSIGNED_INT8.

Packed format 
channel

CL_RGB or CL_RGBx. This format can be used only if the 
channel data type is CL_UNORM_SHORT_565, CL_UNORM_
SHORT_555, or CL_UNORM_INT_101010.

Other formats CL_INTENSITY and CL_LUMINANCE can be used if channel 
data type is CL_UNORM_INT8, CL_UNORM_INT16, CL_
SNORM_INT8, CL_SNORM_INT16, CL_HALF_FLOAT, or CL_
FLOAT.

There are some special forms of packed image_channel_data_type, which 
represents all the color components. They are CL_UNORM_SHORT_555, CL_UNORM_
SHORT_565, and CL_UNORM_INT_101010.

The value of image_channel_order and image_channel_data_type is used to 
calculate the size of a pixel element. This is useful when the pitch values are specified 
as 0 in the clEnqueue{Read|Write|Copy|Fill}Image functions.



OpenCL Images

[ 90 ]

The CL_R, CL_A, CL_RG, CL_RA, and CL_RGBA channel order types can be represented 
using all the available channel data type, except the packed ones. While creating an 
OpenCL image object using clCreateImage, if the image format specified by image_
channel_data_type and image_channel_order is not supported by the OpenCL 
implementation, then a NULL memory object is returned.

Image details descriptor cl_image_desc
The cl_image_desc structure contains fields with specifications required for the 
image to be created as follows:

typedef struct _cl_image_desc {
  cl_mem_object_type image_type,
  size_t image_width;
  size_t image_height;
  size_t image_depth;
  size_t image_array_size;
  size_t image_row_pitch;
  size_t image_slice_pitch;
  cl_uint num_mip_levels;
  cl_uint num_samples;
  cl_mem buffer;
}cl_image_desc;

The specifications are listed in the following bullet list with their description:

• image_type: It describes the type of the image 1D, 2D, 3D, or array types.
 ° For 1D image, use CL_MEM_OBJECT_IMAGE1D. For 1D image from an 

OpenCL cl_mem buffer use the CL_MEM_OBJECT_IMAGE1D_BUFFER 
format. To create an array of 1D images use CL_MEM_OBJECT_
IMAGE1D_ARRAY format.

 ° For 2D image and an array of 2D images, use CL_MEM_OBJECT_
IMAGE2D, CL_MEM_OBJECT_IMAGE2D_ARRAY respectively.

 ° For creating 3D image use CL_MEM_OBJECT_IMAGE3D.

• image_width: It specifies the width of the image in pixels. This is specified 
for all of 1D, 2D and 3D images.
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• image_height: It specifies the height of the image in pixels. This is specified 
for all of 2D and 3D images.

• image_depth: It specifies the depth of the image in pixels and is used only 
for 3D images.

Note that the width, height, and depth are not the byte lengths, 
they are the pixel lengths.

• image_array_size: It is the total number of images (1D or 2D only) to be 
created in the image array. 3D image arrays cannot be created.

For specifying the pitch in bytes for the array types, use the following specifications:

• image_row_pitch: This is the pitch in bytes for a row in an image. If host_
ptr is NULL, that is if you are creating a device resident buffer, then this value 
should be 0. If the host_ptr pointer is not NULL and if this value is 0 then the 
value of row pitch is calculated as follows:
image_width * (size of pixel element in bytes)

• image_slice_pitch: This is the size in bytes of a 2D slice in a 3D image. It 
can also represent the size in bytes of each image in an image array (both 
1D or 2D). This value can be zero or a multiple of the image_row_pitch 
value. If not zero then it should be greater than or equal to image_row_pitch 
* image_height. If host_ptr is NULL, that is if you are creating a device 
resident buffer, then this value should be 0. If the host_ptr is not NULL and if 
this value is 0 then the of slice pitch is calculated as follows:
image_row_pitch * image_height
Remember that num_mip_levels and num_samples must be set to 0.

• buffer: This is a valid OpenCL cl_mem buffer created using the 
clCreateBuffer function. This must be specified, if the image_type is CL_
MEM_OBJECT_IMAGE1D_BUFFER. The size of the buffers should be sufficiently 
large to hold image_width * size of pixel element in bytes. If the 
image_row_pitch specification is specified then it should be less than the 
size of buffer object data store. In all the other cases it should be set 
to NULL.
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The following diagrams show the different types of images:

- no pitch

ID image

2D image

....

pitch = rowsize

pitch

....

3D
2D Slice
describes pitch

1D, 2D, and 3D image formats.

The following diagram depicts an array of 1D and 2D images:

Array of 1D and 2D images.

CL_MEM_OBJECT_IMAGE1D_BUFFER is a special type of image representation. 
This image maps to the same buffer in the device, that is any modifications done 
on the buffer will reflect on the image also. Take a look at the following figure. 
Simultaneous writes at the image and buffer side are undefined.
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ID
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ID
Buffer

el CreateImage(
CL_MEM_OBJECT_IMAGE_BUFFER,

);

...

II

OpenCL provides a function clGetSupportedImageFormats to determine the 
different types of image formats image supported by an OpenCL implementation.

cl_int clGetSupportedImageFormats (cl_context context, 
  cl_mem_flags flags, 
  cl_mem_object_type image_type, 
  cl_uint num_entries, 
  cl_image_format *image_formats, 
  cl_uint *num_image_formats)

The following code snippet helps you to determine the supported image formats. 

cl_image_format *image_formats;
cl_uint num_image_formats;
clStatus= clGetSupportedImageFormats (context, 
  CL_MEM_READ_ONLY, 
  CL_MEM_OBJECT_IMAGE2D, 
  0, 
  NULL, 
  &num_image_formats);
image_formats = (cl_image_format *)malloc(sizeof(cl_image_format)  
  * num_image_formats);
clStatus= clGetSupportedImageFormats (context,
  CL_MEM_READ_ONLY,
  CL_MEM_OBJECT_IMAGE1D,
  num_image_formats,
  image_formats,
  &num_image_formats);

The input to the function is a valid OpenCL context. On return from the second call 
to clGetSupportedImageFormats, the image_formats buffer shall contain all the 
supported formats, Build and run the getSupportedImageFormats example code  
and see the out image formats supported by your platform.
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Let's take some examples and see how an OpenCL image object is created:

cl_image_format image_format;
image_format.image_channel_data_type = CL_FLOAT;
image_format.image_channel_order = CL_R;

image_width = 5; 
image_height = 5;
cl_image_desc image_desc;
image_desc.image_type = CL_MEM_OBJECT_IMAGE2D;
image_desc.image_width = image_width;
image_desc.image_height = image_height;
image_desc.image_depth = 1;
image_desc.image_array_size = 1;
image_desc.image_row_pitch = 0;
image_desc.image_slice_pitch = 0;
image_desc.num_mip_levels = 0;
image_desc.num_samples = 0;
image_desc.buffer= NULL;

clImage = clCreateImage(context, CL_MEM_WRITE_ONLY, 
  &image_format, &image_desc, 
  NULL, &status);

This will create a 2D image of width and height equal to five pixels. Note that pixel 
data is not yet filled in the image object. You can do so by using the CL_MEM_USE_
HOST_PTR. Assume that you want to use the following array of pixels given by data:

float *data = (float *)malloc(image_width* 
  image_height*sizeof(float));
float pixels[] = {            /* Pixel Values */
    10, 20, 30, 40, 50,
    10, 20, 30, 40, 50,
    10, 20, 30, 40, 50,
    10, 20, 30, 40, 50,
    10, 20, 30, 40, 50
};
memcpy(data, pixels, image_width*image_height*sizeof(float));
clImage = clCreateImage(context, 
  CL_MEM_WRITE_ONLY| CL_MEM_USE_HOST_PTR, 
  &image_format, &image_desc, 
  data, &status);
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You can also write the pixel data onto the destination image object using the 
clEnqueueWriteImage function as follows:

size_t origin[] = {0,0,0};
size_t region[] = {image_width,image_height,1};
status = clEnqueueWriteImage(command_queue, clImage, CL_TRUE, 
  origin, region, 
  image_width*sizeof(float), /*row pitch*/
  image_width*image_height*sizeof(float), /*slice pitch*/
  pixels, 0, NULL, NULL);

Passing image buffers to kernels
OpenCL C provides built-in image data types which can be used inside an OpenCL 
kernel. The following are the image argument types which correspond to the 
respective arguments in an image in the kernel:

• image2d_t: A 2D image created with CL_MEM_OBJECT_IMAGE2D
• image3d_t: A 3D image created with CL_MEM_OBJECT_IMAGE3D
• image2d_array_t: A 2D image array CL_MEM_OBJECT_IMAGE2D_ARRAY
• image1d_t: A 1D image created with CL_MEM_OBJECT_IMAGE1D
• image1d_buffer_t: A 1D image created from a buffer object using CL_MEM_

OBJECT_IMAGE1D_BUFFER

• image1d_array_t: A 1D image array created with CL_MEM_OBJECT_
IMAGE1D_ARRAY.

All the preceding image data types can be used as a datatype in a kernel argument. 
An image function kernel argument cannot be modified or read from directly. Every 
image argument should be declared with __read_only or __write_only qualifiers. 
__read_only images can only be read from and __write_only images can only 
be written to. OpenCL specification provides for built-in functions, which can be 
used to read or write pixel elements. They are read_image{f|u|i} and write_
image{f|u|i}. Also note that the calls to read_image and write_image to the same 
image memory object in a kernel are not supported.
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Samplers
One of the parameters passed to read_image and write_image built-ins is the image 
sampler object. Sampler variables in a program are declared to be of type sampler_t 
and enable the read and write routines to sample an input pixel value. The samplers 
are created inside a kernel by using the OR operator for the normalized coordinates, 
the addressing modes, and the filtering modes. Example is as follows:

const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |  
  CLK_ADDRESS_NONE |  
  CLK_FILTER_NEAREST;

Normalized coordinates can be set to either of the following two:

• CLK_NORMALIZED_COORDS_TRUE: The pixel coordinate values are in the range 
of 0 to 1.0.

• CLK_NORMALIZED_COORDS_FALSE: The pixel coordinate values will be having 
an extent of image dimensions. That is 0 for Height - 1 and 0 for WIDTH - 1. 
The following diagram shows a 3D-coordinate system when it is normalized 
or non-normalized:

The addressing mode can be one of: CLK_ADDRESS_MIRRORED_REPEAT, CLK_
ADDRESS_REPEAT, CLK_ADDRESS_CLAMP_TO_EDGE, CLK_ADDRESS_CLAMP, and CLK_
ADDRESS_NONE. These are described briefly in the following bullet list:

• CLK_ADDRESS_CLAMP_TO_EDGE: It clamps the pixel coordinate using the 
clamp (coord, 0, size – 1) function.

• CLK_ADDRESS_CLAMP: It clamps the pixel coordinate using the clamp 
(coord, -1, size) function.



Chapter 4

[ 97 ]

• CLK_ADDRESS_NONE: It returns the coord.
• CLK_ADDRESS_MIRRORED_REPEAT and CLK_ADDRESS_REPEAT: These 

addressing modes can be used only with normalized coordinates. The 
following diagram describes the difference between the two addressing 
modes visually. The CLK_ADDRESS_MIRRORED_REPEAT addressing mode flips 
the image coordinate at every junction of normalized coordinate 1.0. The 
CLK_ADDRESS_REPEAT addressing mode wraps the coordinates to a valid 
range by repeating the image at every junction of normalized coordinates.

Difference between Address Repeat and Address Mirrored Repeat.

Filter mode can be one of the following:

• CLK_FILTER_NEAREST: It calculates the pixel coordinate, which is nearest in 
terms of the normalized values. The nearest distance is calculated by using 
the Manhattan distance formula.

• CLK_FILTER_LINEAR: It returns the weighted average of the four texture 
elements that are closest to the specified texture coordinates.

The samplers can also be created at the host side using the clCreateSampler 
function:

cl_sampler clCreateSampler (cl_context context, 
  cl_bool normalized_coords, 
  cl_addressing_mode addressing_mode, 
  cl_filter_mode filter_mode, 
  cl_int *errcode_ret)
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The normalized_coords, addressing_mode, and filter_mode addressing modes 
can take the values as discussed earlier.

To understand the different types of addressing modes and filtering modes, one 
should try the example code image_sampler with different combinations of 
samplers in this chapter.

Reading and writing buffers
Till now we discussed how to create an image. The OpenCL provides APIs to 
transfer image data to device image buffer before the kernel is launched. Similarly, 
there is a function which transfers the image computed data back to the host 
memory. The clEnqueueWriteImage function copies the data from host to device 
memory as follows:

cl_int clEnqueueWriteImage (cl_command_queue command_queue,
  cl_mem image, 
  cl_bool blocking_write, 
  const size_t *origin, 
  const size_t *region, 
  size_t row_pitch, 
  size_t slice_pitch, 
  const void * ptr, 
  cl_uint num_events_in_wait_list, 
  const cl_event *event_wait_list, 
  cl_event *event)

The clEnqueueReadImage function copies the data back from device to host memory 
as follows:

cl_int clEnqueueReadImage (cl_command_queue command_queue, 
  cl_mem image, 
  cl_bool blocking_read, 
  const size_t *origin, 
  const size_t *region, 
  size_t row_pitch, 
  size_t slice_pitch, 
  void *ptr, 
  cl_uint num_events_in_wait_list, 
  const cl_event *event_wait_list, 
  cl_event *event)
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The following bullet list describes the objects mentioned in the preceding code:

• command_queue: The write command will be queued in this OpenCL queue. 
One should make sure that the cl_mem object buffer and the command_queue 
object are created using the same context.

• image: This is a valid cl_mem image object created using the clCreateImage 
function.

• blocking_write/blocking_read: This indicates whether the read or write 
operation is blocking or non-blocking. If set to CL_TRUE function does not 
return until the status of the event associated with enqueued read or write 
command has reached CL_COMPLETE.

• origin: This is a three tuple index for the start offset for the read or write 
operation. origin is an array of three elements, origin[0], origin[1], 
and origin[2]. For 3D images all the three tuples must be specified. For 
2D images only two tuples is specified, the third one is set to 0. Similarly, 
for 1D images and 1D image buffer objects only the first tuple is specified, 
the second and third are set to 0. If the image is a 2D array, then the first 
two tuples origin[0], origin[1] specify the pixel offset, the third tuple 
origin[2] specifies the image index. In the case of 1D image array types, the 
first tuple origin[0] specifies the pixel offset and origin[1] specifies the image 
array index.

• region: It is also a three element array and defines the region[0] as width, 
region[1] as height, and region[2] as depth in pixels for the 1D, 2D, or 3D 
rectangle. For a 2D image array region[0] specifies the width and region[1] 
specifies the height in pixels of the 2D rectangle, and region[2] specifies the 
number of images, if the image_type is a 2D image array. Similarly for 1D 
image the region[0] specifies the width in pixels of the 1D rectangle and 
region[1] specifies the number of images, if the image_type is a 1D image 
array. If image is a 2D image then region[2] must be 1. If image is a 1D image 
or 1D image buffer object, region[1] and region[2] should be set to 1. If 
image is 1D image array object then region[2] must be 1.

Note that both region and origin define the pixel offsets and not byte 
offsets. The byte offset is calculated internally using the channel data 
type and the channel order which was specified while creating the 
image object.

• row_pitch: It defines the length of each row in bytes. If set to 0 then the row_
pitch object is calculated as size of each element in bytes * width. width is 
specified as the first tuple element in region.
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• slice_pitch: This specifies the size of the 2D slice in a 3D image or 2D 
image array object in bytes. This is set to zero if the image is a 1D or 2D 
image. This can also be used to specify the size of 1D or 2D image in a 1D 
image array or 2D image array. The row_pitch and slice_pitch object are 
shown in the diagram "1D 2D and 3D image formats".

• ptr: It is the pointer to the image array, which will be the source for 
clEnqueueWriteImage and a destination for clEnqueueReadImage.

The parameters num_events_in_wait_list, event_wait_list, and event have 
their usual meaning as any other clEnqueue* functions.

If the cl_mem object is created using CL_MEM_USE_HOST_PTR, the read and write 
operation must ensure that the host_ptr buffer specified when creating the image 
object contains the latest bits. That means all the operations associated with the 
image object are completed. One way to make sure that the host_ptr is latest is to 
specify the events in event_wait_list which is associated with the image.

Copying and filling images
The write and read functions help to copy the data buffer from the host to the device 
memory or vice versa. There is another function which helps in copying the data 
from one OpenCL image buffer object to another. This is specified as src_image  
and dst_image in the following function:

cl_int clEnqueueCopyImage (cl_command_queue command_queue, 
  cl_mem src_image, 
  cl_mem dst_image, 
  const size_t *src_origin, 
  const size_t *dst_origin, 
  const size_t *region, 
  cl_uint num_events_in_wait_list, 
  const cl_event *event_wait_list, 
  cl_event *event)

The src_origin and dst_origin parameter have the usual meaning as specified  
for the origin parameter for the read and write routines in the previous section.

The region parameter also has the same meaning as specified in the previous section.

This function can be used to do one of the following tasks:

• Copy a 1D image object to a 1D image object, 2D image object, or 2D slice  
of a 3D image object and vice-versa

• Copy a 1D image object to a scan line of a specific image index of a 1D or 2D 
image array object and vice versa
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• Copy a 2D image object to a 2D image object or to a 2D slice of a 3D image 
object

• Copy a 2D image object to a specific image index of a 2D image array object 
and vice versa

• Copy a 3D image object to a 3D image object

The clEnqueueCopyImage function will copy data between two image objects. 
clEnqueueCopyImageToBuffer and clEnqueueCopyBufferToImage are the two 
APIs which allow to copy data from an image object to a buffer object or vice versa. 
Their function prototypes are as follows:

cl_int clEnqueueCopyImageToBuffer (cl_command_queue command_queue, 
  cl_mem src_image, 
  cl_mem dst_buffer, 
  const size_t *src_origin, 
  const size_t *region, 
  size_t dst_offset, 
  cl_uint num_events_in_wait_list, 
  const cl_event *event_wait_list, 
  cl_event *event);
cl_int clEnqueueCopyBufferToImage (cl_command_queue command_queue, 
  cl_mem src_buffer, 
  cl_mem dst_image, 
  size_t src_offset, 
  const size_t *dst_origin, 
  const size_t *region, 
  cl_uint num_events_in_wait_list, 
  const cl_event *event_wait_list, 
  cl_event *event);

The other function clEnqueueFillImage, helps an OpenCL developer to fill an 
image with a particular color value.

cl_int clEnqueueFillImage (cl_command_queue command_queue, 
  cl_mem image, 
  const void *fill_color, 
  const size_t *origin, 
  const size_t *region, 
  cl_uint num_events_in_wait_list, 
  const cl_event *event_wait_list, 
  cl_event *event)

The fill_color parameter will be converted to the appropriate image channel 
format associated with the image when it was specified while creating the image 
object. All the pixel elements in the image will be filled with this value.
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Mapping image objects
As discussed in the mapping of buffer objects in the previous chapter, images can 
also be mapped to a host pointer. Images computed at the device may sometimes 
needs to be available at the host address space, say for writing the image back to  
the file system. The clEnqueueMapImage function will map the image from the 
device memory to the host address space. This is also a task which is enqueued  
on the device command_queue.

void * clEnqueueMapImage (cl_command_queue command_queue, 
  cl_mem image, 
  cl_bool blocking_map, 
  cl_map_flags map_flags, 
  const size_t *origin, 
  const size_t *region, 
  size_t *image_row_pitch, 
  size_t *image_slice_pitch, 
  cl_uint num_events_in_wait_list, 
  const cl_event *event_wait_list, 
  cl_event *event, 
  cl_int *errcode_ret)

The clEnqueueMapImage function enqueue a command to map a region of the device 
buffer in the image object to host accessible buffer. Note that the return type of this 
function is void *.

• image: It is the valid image cl_mem object
• blocking_map: This is set to true or false for a blocking or a non-blocking call 

respectively
• map_flags: It has the same definition as discussed in the previous chapter

The origin, region, image_row_pitch, and image_slice_pitch functions, all have 
the same definition as discussed in the previous section where we discussed the read 
and write functions.

Querying image objects
Similar to all OpenCL objects, image objects can also be queried using 
the clGetImageInfo function. In the previous chapter, we discussed the 
clGetMemObjectInfo function, which was used to query the OpenCL cl_mem 
object. This API can be used to determine if the cl_mem object is of type CL_MEM_
OBJECT_BUFFER or one of the image types specified by cl_image_desc.image_type 
argument while creating the image object.
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Once you know that the cl_mem object is for an OpenCL image object, you can 
retrieve information about the image using the clGetImageInfo function.

cl_int clGetImageInfo (cl_mem image, 
  cl_image_info param_name, 
  size_t param_value_size, 
  void *param_value, 
  size_t *param_value_size_ret)

The different param_name values which can be given are as follows:

• CL_IMAGE_FORMAT: It gives the image format descriptor when the image was 
created

• CL_IMAGE_ELEMENT_SIZE: It gives the size of a pixel element in the image
• CL_IMAGE_ROW_PITCH: It gives the size of a row in bytes
• CL_IMAGE_SLICE_PITCH: It gives the size of a 2D slice in the 2D image array 

or in a 3D image
• CL_IMAGE_WIDTH: It gives the pixel width of the image
• CL_IMAGE_HEIGHT: It gives the pixel height of the image
• CL_IMAGE_DEPTH: It gives the pixel depth of the image
• CL_IMAGE_ARRAY_SIZE: It gives the number of images in a 1D or a 2D array 

image
• CL_IMAGE_BUFFER: It gives the cl_mem buffer object associated with the 

image

The following code snippet helps you to get information about the image width and 
height using the param_name values, CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT 

size_t image_width;
size_t image_height;
size_t size_returned;
cl_context context = . . .;
cl_mem clImage = . . .;
clStatus= clGetImageInfo (context, 
  CL_IMAGE_WIDTH, 
  sizeof(size_t), 
  & image_width, 
  & size_returned);
clStatus= clGetImageInfo (context, 
  CL_IMAGE_HEIGHT, 
  sizeof(size_t), 
  & image_height, 
  & size_returned);
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Image histogram computation
In the previous chapter, we computed the RGB histogram of an input image on 
an OpenCL buffer object. In this chapter, we will discuss the same with input as 
an OpenCL image object. The input image is read into a contiguous buffer and an 
image object is created using the clCreateImage function. At the kernel side the 
pixel values can be sampled using read_image OpenCL built-in. The next diagram 
illustrates how an image is read and processed in the example code. The input 
image from the file system is read into a contiguous buffer, row wise as shown by 
step 1 in the diagram. The input image can be of any format BMP, PNG, or JPEG. 
The raw image pixel buffer is then used to create an OpenCL image object using 
the clCreateImage function. The CL_MEM_USE_HOST_PTR flag is passed. This is 
shown as step 2 in the diagram. Finally each kernel instance executes on the image 
buffer as shown by step 3.

Take a look at the following histogram_image_kernel OpenCL kernel. This kernel 
processes 16 X 16 size image pixels. Let's consider an image of size (1024, 1024), then 
the NDRange of this kernel is globally (64,64), and the local work group dimensions 
are (4,4). We are using (4,4) because we want to keep our local memory usage within 
the permissible limit. The permissible limit for local device memory can be obtained 
using the clGetDeviceInfo function with param_name, CL_DEVICE_LOCAL_MEM_
SIZE. The histogram_kernel uses a local memory of size:

3*BIN_SIZE*groupSize* sizeof(cl_uchar);
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For a groupSize object of 16 and BIN_SIZE of 256 a total of 12288 bytes (12 K) of 
local memory is used. For almost all of AMD graphics devices, 32 K of local memory 
can be allocated. The OpenCL kernel code should ensure that it uses the local 
memory within this permissible limit otherwise it may result in adverse performance 
degradation. Each work item processes a 16 X 16 block of an image that is 256 
elements. So for a 1024 X 1024 image, a total of (64, 64) work items are spawned. 
With each work group size of (4,4) there are a total of 16 X 16 work groups. The 
following diagram shows work groups and work item processing on an image:

The execution model of histogram_image_kernel

The OpenCL device kernel code is as follows. The histogram_image_kernel 
computes the histogram of a 16 X 16 block in an image:

#define BIN_SIZE 256
#pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable 
  __kernel
void histogram_image_kernel(__read_only image2d_t image, 
  __local uchar* sharedArray, 
  __global uint* binResultR, 
  __global uint* binResultG, 
  __global uint* binResultB, 
    uint  blockWidth, 
    uint  blockHeight)
{
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    size_t localIdX = get_local_id(0);
    size_t localIdY = get_local_id(1);
    size_t localSizeX = get_local_size(0);
    size_t localSizeY = get_local_size(1);
    size_t globalIdX = get_global_id(0);
    size_t globalIdY = get_global_id(1);
    size_t groupIdX = get_group_id(0);
    size_t groupIdY = get_group_id(1);
    size_t totalGroupSize = get_local_size(0) *  
      get_local_size(1);
    size_t groupSizeX = get_global_size(0)/get_local_size(0);
    __local uchar* sharedArrayR = sharedArray;
    __local uchar* sharedArrayG = sharedArray +  
      totalGroupSize * BIN_SIZE;
    __local uchar* sharedArrayB = sharedArray +  
      2 * totalGroupSize * BIN_SIZE;
    sampler_t smplr = CLK_ADDRESS_REPEAT | CLK_FILTER_NEAREST;
    uint sharedArrayOffset = localIdY * localSizeX + localIdX;
    /* initialize shared array to zero */
    for(int i = 0; i < BIN_SIZE; ++i)
    {
        sharedArrayR[sharedArrayOffset * BIN_SIZE + i] = 0;
        sharedArrayG[sharedArrayOffset * BIN_SIZE + i] = 0;
        sharedArrayB[sharedArrayOffset * BIN_SIZE + i] = 0;
    }

    /* calculate the histograms */
    int xCoord = globalIdX*blockWidth;
    int yCoord = globalIdY*blockHeight;
    for(int i = 0; i < blockHeight; ++i)
    {
       for(int j = 0; j < blockWidth; ++j)
       {
           int pixelCoordX  = xCoord+j;
           int pixelCoordY  = yCoord+i;
           uint4 pixelValue = read_imageui(image, smplr, 
                         (int2)(pixelCoordX, pixelCoordY));
           uint valueR = pixelValue.x;
           uint valueG = pixelValue.y;
           uint valueB = pixelValue.z;
           sharedArrayR[sharedArrayOffset * BIN_SIZE + valueR]++;
           sharedArrayG[sharedArrayOffset * BIN_SIZE + valueG]++;
           sharedArrayB[sharedArrayOffset * BIN_SIZE + valueB]++;
       }
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    }
    barrier(CLK_LOCAL_MEM_FENCE);

    uint numOfElements = BIN_SIZE/totalGroupSize;
    uint offsetforWI = (localIdY*localSizeX + localIdX) 
      *numOfElements;
    for(int i = 0; i < numOfElements; ++i)    {
       int binCountR = 0;
       int binCountG = 0;
       int binCountB = 0;
       for(int k = 0; k < totalGroupSize; ++k)
       {
           int localOffset = k*BIN_SIZE + offsetforWI;
           binCountR += sharedArrayR[localOffset + i];
           binCountG += sharedArrayG[localOffset + i];
           binCountB += sharedArrayB[localOffset + i];
       }
       uint WGBinOffset = groupIdY * groupSizeX + groupIdX;
       binResultR[WGBinOffset * BIN_SIZE + offsetforWI + i] = 
         binCountR;
       binResultG[WGBinOffset * BIN_SIZE + offsetforWI + i] =  
         binCountG;
       binResultB[WGBinOffset * BIN_SIZE + offsetforWI + i] =  
         binCountB;
    }
}

In the first for loop of the kernel, each work item will set its share of 256 elements in 
sharedArrayR, sharedArrayG, and sharedArrayB memory to zero. Then the kernel 
computes the image histogram pixel wise. Note here that the image is read using the 
read_imageui function. This function takes as input a sampler_t object, the pixel 
coordinates, and the image itself from where the pixel values are to be read. Since the 
image is a 4-channel CL_RGBA format, the return value of the read_imageui function 
is a unit4 vector, which contains the RGB values of a pixel.

In the last step in the kernel the local histogram computed by each work item is 
added element wise to get the number of red pixels with 0,1, 2, and so on in that 
work group. Each work item would compute the numOfElements histogram values. 
In the end, we will have 256 elements per work group. This is filled in the global 
memory, which is transferred back to the host. At the host, we add each work group 
histogram values to get the final 256-histogram values for the entire image.
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Summary
In this chapter we discussed the OpenCL cl_mem image objects. We also understood 
why image objects are required, and how they can be used to represent pixels of 
different formats or data types. We also solved the image histogram problem using 
the OpenCL image objects. The same problem was discussed using OpenCL buffers 
in the previous chapter. Sampling of an image pixel is an important topic and one 
should try the image_sampler example program to understand that completely.

In this and the previous chapter we discussed we discussed the two important forms 
of cl_mem data objects. We created a program and kernel object in our histogram 
example in order to execute our kernels. In the next chapter we will understand 
the creation of program and kernel objects in detail. These kernel objects are the 
execution entities, which can run on any OpenCL capable device.



OpenCL Program and  
Kernel Objects

In the last two chapters we discussed about the OpenCL memory objects in the 
form of buffer and image objects. In the previously discussed examples of saxpy 
and histogram in first and the third chapter respectively; we implemented a parallel 
OpenCL C kernel, which is executed on a device. A program object and a kernel 
object were created before execution of the kernel. These kernel and program object 
are the important execution entities in the OpenCL framework. In this chapter we 
shall concentrate on the set up steps required to create a program object and execute 
a kernel. Once you have expertise in this then you can concentrate on the problem, 
which you want to solve using OpenCL. The following topics will be discussed  
in this chapter:

• Creating program objects
• Program build options
• Querying program objects
• Offline and online compilation
• Creating kernel objects
• Setting kernel arguments
• Executing the kernels
• Querying kernel objects
• Source versus binary program creation
• Querying kernel objects
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Creating program objects
An OpenCL application can execute a function in parallel on a device using the 
kernel objects. There may be more than one kernel functions, which run in parallel in 
an application based on the hardware you have. An application can create multiple 
program objects each for a different context. Each of these program objects can have 
more than one kernel object. Each kernel in a program source string is identified by 
a __kernel qualifier. Let us first create a cl_program object.

Creating and building program objects
The OpenCL kernel programs needs to be built and linked at runtime. In OpenCL 
a program object can be created using the functions, clCreateProgramWithSource 
or clCreateProgramWithBinary. A program object is created once for a context in 
execution. Input to these functions is a source text string in ASCII or in binary format 
respectively. The program object is created for the devices associated with the OpenCL 
context. The clCreateProgramWithSource function declaration is as follows:

cl_program
clCreateProgramWithSource (cl_context context, 
  cl_uint count, 
  const char **strings, 
  const size_t *lengths, 
  cl_int *errcode_ret)

The following bullet list explains the preceding function prototype in detail:

• context: It is an OpenCL context for the underlying platform.
• count: It specifies the number of pointers to be held in strings argument.
• strings: It is an array of count pointers. Each pointer is a char string  

which holds the OpenCL C source code. 
• lengths: It specifies the length of each strings pointer. The value of 

lengths[i] specifies the length of the strings[i], that is there is a one 
to one correspondence between lengths array and the strings array. If 
lengths is set to NULL then, strings is also considered NULL terminated.  
If lengths[i] = 0 then strings[i] = NULL.

• errorcode_ret: It holds the error code returned by the OpenCL 
implementation, after the API completes its execution. If it is NULL this 
parameter is ignored. A valid non-zero program object is created with 
clCreateProgramWithSource and errcode_ret is set to CL_SUCCESS. 
Otherwise an error code is set in errcode_ret. An important point to note is 
that this program object is a per context object and not per device object. It is 
when you build the program using the clBuildProgram function, and then 
only the program binary is created for the devices specified.
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Sometimes loading and building the program object will result in some delay during 
runtime. Take a look at the following CodeXL screenshot:

CodeXL snapshot showing the duration of clBuildProgram

Alternatively a program object can also be created using binary source files. Since 
the program is already compiled, loading them would be a faster option. Take a look 
at the following CodeXL screenshot, which shows the benefit of loading the binary 
using clCreateProgramWithBinary and then building the program object. The 
clBuildProgram function takes only 1.69 milliseconds for a binary program, whereas 
for the source program it takes approximately 95 milliseconds, which is a huge gap.

CodeXL snapshot showing the duration of clBuildProgram for a binary kernel

Note that the preceding two screenshots are from AMD CodeXL OpenCL debugging 
and profiler utility. CodeXL works only for AMD OpenCL runtimes.
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Binaries can be used to protect intellectual property. An application during 
installation time may only need the program binaries. In this way there is no need 
for storing the kernel source files on the disk. The important thing to note here is 
that each binary is device specific. Some implementations instead of storing many 
binaries for each device can store the binary in an intermediate representation, 
which can be common representation across all devices. The format of binary file 
is OpenCL implementation specific and OpenCL vendors are free to choose any 
format of representation. OpenCL standard does not specify any format for binary 
representation. The other important point to note is that once you create a program 
using binary source files you need to again build the program object using the 
clBuildProgram API. This is because the clBuildProgram function acts like a 
linking step. The OpenCL implementation during build step can resolve some of 
the proprietary implementations. Once a program is successfully built, one can 
get a binary file using the clGetProgramInfo function with the param_name, CL_
PROGRAM_BINARIES. Till now we have mentioned three new APIs clBuildProgram, 
clCreateProgramWithBinary, and clGetProgramInfo. Let us discuss each of these 
APIs in detail and also aid the discussion with an example code.

Programs created with clCreateProgramWithBinary, should provide a valid binary 
file created for any of the devices in context:

cl_program
clCreateProgramWithBinary (cl_context context, 
  cl_uint num_devices, 
  const cl_device_id *device_list, 
  const size_t *lengths, 
  const unsigned char **binaries, 
  cl_int *binary_status, 
  cl_int *errcode_ret)

The following bullet list explains the parameters of clCreateProgramWithBinary 
function in detail:

• context: It is an OpenCL context for the underlying platform.
• num_devices: It specifies the size of the device_list pointer.
• device_list: This is an array of num_devices devices that are present in the 

OpenCL context. The device_list array should not be NULL. Binaries are 
loaded for every device in the device_list array.

• lengths: It is the size of each pointer holding the number of bytes in binaries.
• binaries: This is an array of pointers to the program binaries. The program 

object is created for these pointer objects. The binaries[i] pointer of length 
lengths[i] will be loaded for device device_list[i].The binaries[i] 
pointer cannot be a NULL pointer and lengths[i] cannot be zero.
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• binary_status: The binary_status[i] pointer stores the status of load of 
binaries[i].

• errcode_ret: It holds the error code for the completion status of this API.

The program object can be
created with Binary file or
ASCll source file.

clCreateProgram
WithSource

clCreateProgram
With Binary

clCreateKernel

program

At this build step the OpenCL
runtime will compile and
resolve all the OpenCL
runtime library calls

clBuildProgram

clGetProgramInfo()
with

CL_PROGRAM_BINARIES
kernel

clEnqueueNDRangeKernel

Run on DEVICE

Binary file
reloaded

Input OpenCL
Binary Source

Input OpenCLC
Source

DISC

Flowchart showing creation of program object using binary and ASCII source files

Once a new program object is created for a context either using the binary or an 
OpenCL C source file, the next step is to build the program. The clBuildProgram 
function builds an OpenCL program. This build step involves the source code 
compilation if program was created using the clCreateProgramWithSource 
function and then linking the compiled binaries. If the program is created using 
clCreateProgramWithBinary then only the link step is performed.

cl_int
clBuildProgram (cl_program program, 
  cl_uint num_devices, 
  const cl_device_id *device_list, 
  const char *options, 
  void (CL_CALLBACK *pfn_notify)(cl_program program, 
    void *user_data), 
  void *user_data)
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The following bullets list explains the functioning of the objects used in the 
preceding code:

• program: A valid program object.
• num_devices: It specifies the size of the device_list pointer.
• device_list: This is an array of num_devices devices that are present in the 

OpenCL context. The program object is built for all the devices mentioned in 
this list. If it is NULL then an executable program is created for the devices list 
while creating the program object.

• options: The OpenCL runtime compiler invoked in this call can be given 
some compile time options. The options string is a NULL terminated string  
of compiler options.

• pfn_notify: This is a pointer to callback function, which is called when the 
OpenCL implementation completes the build procedure.

• user_data: This is the data which is passed by the OpenCL implementation 
to the callback routine.

The question which might arise to any reader is that, what if there is a compilation 
error? On a build failure the OpenCL implementation returns CL_BUILD_PROGRAM_
FAILURE for the call to clBuildProgram. OpenCL specification provides a function 
to look for the compilation error.

cl_int
clGetProgramBuildInfo (cl_program program, 
  cl_device_id device, 
  cl_program_build_info param_name, 
  size_t param_value_size, 
  void *param_value, 
  size_t *param_value_size_ret)

If the call to the previous clBuildProgram was not successful, an application can  
use clGetProgramBuildInfo to get the build error log per device associated with 
the program object.

• program: This program object is queried here to get error and warning logs.
• device: Every device in the OpenCL implementation may throw different 

errors. For example there may be a device which supports double precision 
data representation and the other does not. So the OpenCL developer needs 
to query the error logs for different devices separately.

• param_name: As shown in the next table, different values for cl_program_
build_info can be given.

• param_value_size: It is the size in bytes of the param_value pointer.
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• param_value: This is the pointer to memory where the result of this function 
will be returned.

• param_value_size_ret: On return from the function the actual size of the 
error log is stored. In any case the value of this will not exceed param_value_
size.

The following table is the list of cl_program_build_info enumerations, which can 
be used to query the program build status:

cl_program_build_info Description
CL_PROGRAM_BUILD_
STATUS

Returns the status for the last clBuildProgram 
operation for the device and the program. It can be 
either of the following:

• CL_BUILD_NONE: No build performed
• CL_BUILD_ERROR: Build error
• CL_BUILD_SUCCESS: Successful build
• CL_BUILD_IN_PROGRESS: Build is still running

CL_PROGRAM_BUILD_
OPTIONS

Returns the build, link, or compile options specified as 
arguments to clBuildProgram, clLinkProgram, or 
clCompileProgram, which was for the last operation 
on program for device.

CL_PROGRAM_BUILD_LOG Returns the log for the last build, compile, or link 
operation.

CL_PROGRAM_BINARY_TYPE Return the type of the binary associated with the 
program object. The returned values cab be one of the 
following:

• CL_PROGRAM_BINARY_TYPE_COMPILED_
OBJECT for compiled binary

• CL_PROGRAM_BINARY_TYPE_LIBRARY for 
a library based binary when created with 
clLinkProgram

• CL_PROGRAM_BINARY_TYPE_NONE for no 
associated binary program

The following MACRO example gives the details of how to query for the 
compilation error logs for a program and the associated device. This is defined 
in the include/ocl_macros.h file in our examples code distribution. First call 
to clGetProgramBuildInfo is used to determine the size of the build error log, 
once the size is determined; an equivalent size buffer is allocated using the malloc 
function. The subsequent call to the clGetProgramBuildInfo function is used to 
retrieve the actual build error.
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#define LOG_OCL_COMPILER_ERROR(PROGRAM, DEVICE)\
{\
    cl_int logStatus;\
    char * buildLog = NULL;\
    size_t buildLogSize = 0;\
    logStatus = clGetProgramBuildInfo(PROGRAM,\ 
      DEVICE,\ 
      CL_PROGRAM_BUILD_LOG,\ 
      buildLogSize,\ 
      buildLog,\ 
      &buildLogSize);\
    if(logStatus != CL_SUCCESS)\
    {\
        std::cout << "Error # "<< logStatus\
            <<":: clGetProgramBuildInfo<CL_PROGRAM_BUILD_LOG>  
              failed.";\
        exit(1);\
    }\
\
    buildLog = (char*)malloc(buildLogSize);\
    if(buildLog == NULL)\
    {\
        std::cout << "Failed to allocate host memory.  
          (buildLog)\n";\
        return -1;\
    }\
    memset(buildLog, 0, buildLogSize);\
    logStatus = clGetProgramBuildInfo(PROGRAM,\ 
      DEVICE,\ 
      CL_PROGRAM_BUILD_LOG,\ 
      buildLogSize,\ 
      buildLog,\ 
      NULL);\
    if(logStatus != CL_SUCCESS)\
    {\
        std::cout << "Error # "<< logStatus\
            <<":: clGetProgramBuildInfo<CL_PROGRAM_BUILD_LOG>  
              failed.";\
        exit(1);\
    }\
\
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    std::cout << " \n\t\t\tBUILD LOG\n";\
    std::cout << " ************************************************\n
";\
    std::cout << buildLog << std::endl;\
    std::cout << " ************************************************\n
";\
    free(buildLog);\
}

OpenCL program building options
The OpenCL kernels can be specified using some compiler options when the kernel 
is being built with clBuildProgram. These are categorized as pre-processor options, 
options that control optimization or options for math intrinsic.

Pre-processor options are used by the compiler during the pre-processing stage. –D 
option can be used to enable a specific type of code based on the different vendor.

#if defined(ENABLE_ATOMICS)
    atomic_add(ptr, 9);
#else
    *ptr = *ptr + 9;
#endif

If the compiler option –DENABLE_ATOMICS is given then the if part of the code is 
compiled otherwise the else part of the code is compiled. This is particularly useful 
when a vendor provides support for an OpenCL extension, which might be useful 
from programmers perspective, but he will have to provide an alternate code when 
the extension is not supported on other vendors.

Math intrinsic options control the behavior of the floating point math. Some floating 
point options are -cl-single-precision-constant (treats all constants as single 
precision constants). In most of the C compilers a floating point constant such as, 3.14 
is treated as a double precision constant, this might result in a significant performance 
loss as all floating point operations using constants will be up scaled to double 
precision and then the result is computed. A programmer has to explicitly specify 
3.14f for treating it as an single precision floating point constant. In order to avoid the 
explicit mention of the f after every constant, programmer can use this option.

-cl-denorms-are-zero (treats all denormals as zero). A denormal number is a 
floating point number whose biased exponent is zero. If the result of any floating 
point operation results is a denormal float then the results are truncated to 0.
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Besides these options there are some optimization control options. They are as follows:

• -cl-opt-disable: It disables all optimizations.
• -cl-mad-enable: It allows a * b + c to be replaced by a mad() operation. 

Note that mad are different from fused multiply add (fma) operation, the 
latter being more precise.

Some options are also provided to control the warnings thrown by the compiler for 
example, -w and -werror.

Querying program objects
Like any other OpenCL objects, every program object can be queried during runtime 
to gather information related to the compiled kernels. There are different types 
of query names given by cl_program_info. This is tabulated later. The input to 
the function is retrieved using the call to clGetProgramInfo with CL_PROGRAM_
BINARIES as the param_name which returns a binary and can be stored into a file  
for future loading. The clGetProgramInfo function is defined as follows:

cl_int
clGetProgramInfo (cl_program program, 
  cl_program_info param_name, 
  size_t param_value_size, 
  void *param_value, 
  size_t *param_value_size_ret)

The following bullets list explains the functioning of the objects used in the 
preceding code:

• program: It is a valid program object. This program object is queried to get 
the program object information.

• param_name: The following tabulated list of the cl_program_info 
enumerations, which can be used to retrieve information about the program 
object.

• param_value_size: It is the size in bytes of the param_value pointer.
• param_value: This is the pointer to memory where the result of this function 

will be returned.
• param_value_size_ret: On return from the function the actual size of the 

data in bytes is stored. If the param_value pointer is not NULL, the value of 
this will not exceed param_value_size.
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The following table is the list of the cl_program_info enumerations, which can be 
used to query the program object:

cl_program_info Description
CL_PROGRAM_REFERENCE_
COUNT

Returns the reference count of the program object.

CL_PROGRAM_CONTEXT Returns the context associated when the 
program object is created using the function, 
clCreateProgramWithBinary or 
clCreateProgramWithSource.

CL_PROGRAM_NUM_DEVICES Returns the number of devices specified when creating 
this program object.

CL_PROGRAM_DEVICES Returns the list of devices specified when creating this 
program object.

CL_PROGRAM_SOURCE Returns the OpenCL C source associated with the 
program. The size of the source code in bytes is 
specified by param_value_size_ret.

CL_PROGRAM_BINARY_SIZES This will return an array of size in bytes for the 
program binaries for each device associated with the 
program.

CL_PROGRAM_BINARIES The program binaries for each device associated with 
the program is returned. The output buffer param_
value must be pre-allocated as per the size in bytes 
returned by a call to CL_PROGRAM_BINARY_SIZES.

CL_PROGRAM_NUM_KERNELS A program may be associated with many kernels. The 
number of kernels associated with this program object 
is returned.

CL_PROGRAM_KERNEL_NAMES Programs source code may be associated with one 
or more OpenCL kernels. To retrieve the names of 
the kernel this function is used. These kernel names 
can then be used to create a cl_kernel object using 
the clCreateKernel function. The returned kernel 
names are semi-colon separated.

Till now we discussed few functions, clCreateProgramWithSource, 
clCreateProgramWithSource, clBuildProgram, clGetProgramInfo, and 
clGetProgramBuildInfo. Now let's explain all these functions with two different 
examples. We will refer back to our first example that is, saxpy discussed in Chapter 
1, Hello OpenCL. In this chapter we will discuss two different examples. In the first 
example create_binary we will create binary for the CPU and GPU device types.  
In the second example we will use the binary created in the first example to solve  
our saxpy problem.
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Creating binary files
To create a binary file out of the input source string, one should follow the following 
sequence of operations. First read the file and create a cl_program object for an 
OpenCL context in execution using the clCreateProgramWithSource API. Build 
this program object using the clBuildProgram function,  as follows:

cl_program program;
cl_int     clStatus = CL_SUCCESS;
cl_device_id  *device_list = NULL;
program  = clCreateProgramWithSource(context, 1, 
  (const char **)&kernelCode, NULL, &clStatus);
//Build the program
clStatus = clGetContextInfo(context,CL_CONTEXT_NUM_DEVICES, 
  sizeof(num_devices),&num_devices,NULL);
device_list = new cl_device_id[num_devices];
clStatus = clGetContextInfo(context,CL_CONTEXT_DEVICES, 
  num_devices*sizeof(cl_device_id), 
  device_list,NULL);
clStatus = clBuildProgram(program, num_devices, 
  device_list, NULL, NULL, NULL);

Note that we have used clGetContextInfo for getting the number of devices 
and the list of devices. Ideally it would have been good if we had used the 
clGetProgramInfo API. Since we had used the same context to create the program 
object, and we are sure that the OpenCL implementation will provide the same set 
of device_list as it would have provided if we had used clGetProgramInfo. But 
in large programs it would be good to get the number of devices num_device using 
the clGetProgramInfo API with param_name, CL_PROGRAM_NUM_DEVICES and the 
device_list with param_name as CL_PROGRAM_DEVICES. This is what we have done 
in our next code snippet.

After we have built the program for a set of devices, it's time to get the code binary 
size using CL_PROGRAM_BINARY_SIZE and then the actual built binary using CL_
PROGRAM_BINARIES. See the following code snippet:

//Get back the number of devices associated with the program object
clStatus = clGetProgramInfo(program, CL_PROGRAM_NUM_DEVICES, 
  sizeof(cl_uint), &num_devices, 
  &bytes_read);
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size_t *binarySize = new size_t[num_devices];//Create size array
clStatus = clGetProgramInfo(program, CL_PROGRAM_DEVICES, 
  sizeof(cl_device_id) * num_devices, 
  device_list, &bytes_read);
//Load the size of each binary associated with the corresponding 
device
clStatus = clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES, 
  sizeof(size_t)*num_devices, 
  binarySize, &bytes_read);
char** programBin = new char* [num_devices];
//Create the binary array
for(cl_uint i = 0; i < num_devices; i++)
    programBin[i] = new char[binarySize[i]]; 
//Read the Binary
clStatus = clGetProgramInfo(program, CL_PROGRAM_BINARIES, 
  sizeof(unsigned char *) * num_devices, 
  programBin, &bytes_read);

Finally after getting the binary buffer, we need to write it to a file for storing it in the 
disk and for future loading. Try to build and run the sample code and see the output 
binary file. There are some advantages of using the binary as a representation for 
the kernel. One is to save on compilation time for the OpenCL kernels. The other 
advantage is that the OpenCL developer may not want to deliver his proprietary 
kernel code in the form of a readable code. Instead he will store and distribute the 
binary. OpenCL SPIR extension also provides a standard intermediate representation 
for making the OpenCL kernel binaries portable across different vendors. We will 
discuss this in a later section.

As an exercise, try to link two different program objects using the clLinkProgram 
function. Once a new program object is created then try to store the binary of that 
kernel as shown earlier. You can additionally try to implement the code for creating 
binary files for multiple kernels.

Offline and online compilation
We have discussed the creation of binary object. An OpenCL kernel can be created 
at runtime, this is referred to as online compilation. In the previous section we have 
seen how a kernel binary can be created. We can store this kernel binary in the form 
of a library and an application can load it on demand from the disk. This is referred 
to as offline compilation. The following diagrams show the difference between the 
two compilation modes.
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For offline compilation the application developer shall create the binary and 
distribute the binary with his application as shown in the following diagram:

Application developer will
store the kernel libraries
and package it with his
executable

Input
OpenCLC
Source

clCreateProgram
WithSource

program

clGetProgtamInfo
CL_PROGRAM_BINARIES

Kernel Binaries

Offline Program Compilation and storing

In offline compilation mode the application will load the created kernel binary 
and execute the kernel. Note that even if the program is created using the 
clCreateProgramWithBinary function, clBuildprogram is necessary as the 
OpenCL runtimes library calls and built-ins are resolved at this step. The following 
diagram shows the offline compilation mode.

Note Build program is required
for programs created with
binaries. Since the OpenCL
runtime libraries are resolved at
this step.

Run on DEVICE

clEnqueueNDRangeKernel

kernel

clCreateKernel clBuildingProgram

Kernel Binaries clCreateProgram
WithBinary

program
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In online compilation mode the program is created with the 
clCreateProgramWithSource function. The clBuildProgram function step will 
compile and resolve the OpenCL runtime library calls. This is a little slower since 
compilation times may be high in an OpenCL implementation.

Run on DEVICE

clEnqueueNDRangeKernel

kernel

clCreateKernel clBuildingProgram

clCreateProgram
WithSource

program
Input

OpenCLC
Source

At this build step the
OpenCL runtime will
compile and resolve all
the OpenCL runtime
library calls.

Online Compilation

SAXPY using the binary file
In the previous section we discussed creating a binary file which will be loaded by 
some other host program. Let us now discuss another example wherein we will use 
the same binary file, which is created in the previous example and run the saxpy_
kernel function. We shall first read and load the binary file and create a program 
object using the clCreateProgramWithBinary API.

//Open the file for reading
fopen("saxpy_kernel_binary_gpu.clbin", "rb");
fseek(fp,0L,SEEK_END);
size_t fileSize = ftell(fp);
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rewind(fp);
unsigned char * saxpy_kernel = new unsigned char [fileSize];
fread(saxpy_kernel,fileSize,1,fp);
// Create a program from the kernel source
cl_int binary_status;
cl_program program = clCreateProgramWithBinary(context, 1, 
  &device_list[0], &fileSize, 
  (const unsigned char **)&saxpy_kernel, 
  &binary_status, &clStatus);

// Build the program
clStatus = clBuildProgram(program, 1, device_list, NULL, NULL, NULL);

Next we shall create a cl_kernel object with function clCreateKernel for the 
kernel saxpy_kernel, then set the arguments using the clSetKernelArg function. 
The details of these two functions are given after this code snippet.

// Create the OpenCL kernel
cl_kernel kernel = clCreateKernel(program, "saxpy_kernel", &clStatus);

// Set the arguments of the kernel
clStatus = clSetKernelArg(kernel, 0, sizeof(float), (void *)&alpha);
clStatus = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&A_clmem);
clStatus = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&B_clmem);
clStatus = clSetKernelArg(kernel, 3, sizeof(cl_mem), (void *)&C_clmem);

// Execute the OpenCL kernel on the list
size_t global_size = VECTOR_SIZE; // Process the entire lists
size_t local_size = 64;           // Process one item at a time
clStatus = clEnqueueNDRangeKernel(command_queue, kernel, 
  1, NULL, 
  &global_size, 
  &local_size, 
  0, NULL, NULL);
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SPIR – Standard Portable Intermediate 
Representation
One of the drawbacks with OpenCL is that by default an application can distribute 
there OpenCL program in one of the following two ways:

• In the form of a high level OpenCL C program
• Or in the form of a low-level binary which is compiled for the specific device

We have seen both with samples, about how to use them. But each of these has the 
drawback of the source code being available to as the distribution. And the later one 
has the drawback of the binary not being portable across different vendors' OpenCL 
devices. In order to avoid the two drawbacks, Khronos group came up with the SPIR 
specification. SPIR is an extension of OpenCL, where the vendors can provide a SPIR 
compliant binary consumer and a producer. Have a look at the following diagram:

Vendor specific
binaries are not
portable

OpenCL vendors who
provide support for
SPIR extensions, should
be able to consume the
SPIR binary

OpenCL Vendor-3
Library

OpenCL Vendor-2
Library

OpenCL Vendor-1
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Binary

SPIR Binary

SPIR Producer

SPIR Consumer

__kernel void
saxpy_kernel(...)
{
...
}

SPIR Producer and Consumer
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OpenCL vendor 1 or application developers can produce a SPIR compliant binary 
and distribute their proprietary algorithms in this intermediate representation. 
OpenCL vendor 2 and 3 can consume these binaries. Thus SPIR provides benefits 
by allowing code integrity and making the OpenCL applications portable across 
different vendors. SPIR is a mapping of the OpenCL C program to the LLVM IR;  
and it adopts two notations, which are part of the LLVM IR. One is the binary bit 
code representation and the other is the assembly language notation provided by 
LLVM. For more details take a look at the SPIR specification.

Creating kernel objects
In this section we will discuss details about the kernel objects, and how kernel objects 
can be created using the program objects. Every program is a collection of kernels, 
you can consider a program object as a library of kernels. As shown in the following 
figure a program is associated with kernel1 and kernel2. The program is built 
with inputs as two devices device1 and device2. A kernel when enqueued on the 
command queue, the OpenCL runtime generates the binary for execution on the 
device. Note that each kernel can be executed on different devices. It is at the runtime 
the binaries are generated.

A kernel object can be created from a well formed OpenCL C program, which is 
built as discussed in the previous section. A kernel object is an encapsulation for 
a parallel executable entity. The kernel object is used to pass arguments using the 
clSetKernelArg API, before running the kernel using the clEnqueueNDRangeKernel 
API. Have a look at the following diagram:
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In the OpenCL programs the cl_kernel objects are created using the 
clCreateKernel function. Each kernel in an OpenCL C code is identified by the __
kernel function keyword.

cl_kernel
clCreateKernel (cl_program program, 
  const char *kernel_name, 
  cl_int *errcode_ret);

The following bullets list explains the functioning of the objects used in the 
preceding code:

• program: It is a valid program object. This program object is used to create a 
kernel object

• kernel_name: It provides function name in the OpenCL C code declared 
with the __kernel qualifier

• errcode_ret: It returns an error code if the kernel was not created 
successfully

There is another mechanism with which kernels can be created. The 
clCreateKernelsInProgram function creates all the kernel objects associated with 
the program.

cl_int
clCreateKernelsInProgram (cl_program program, 
  cl_uint num_kernels, 
  cl_kernel *kernels, 
  cl_uint *num_kernels_ret)

• program: A program object which is successfully built
• num_kernels: It is the size of memory pointed to by kernels
• kernels: It is the buffer where all the kernel objects will be returned
• num_kernels_ret: It is the actual number of kernel objects returned

Setting kernel arguments
Before executing the kernel, the arguments must be set for the kernel using  
the clSetKernelArg function, as follows:

cl_int
clSetKernelArg (cl_kernel kernel, 
                cl_uint arg_index, 
                size_t arg_size, 
                const void *arg_value)
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The following bullets list explains the functioning of the objects used in the 
preceding code:

• kernel: It is a kernel object for which you want to set the arguments
• arg_index: The index of the argument starting from 0 to the last argument
• arg_size: It specifies the size of arg_value
• arg_value: It is the pointer to the data that shall be passed to the device  

 for the argument arg_index.

For memory objects, the arg_value is the address associated with the buffer or 
image object. The arg_value can be NULL also. If the associated kernel argument 
is a __global or __constant memory qualifier then this argument will be NULL 
while the kernel is executed. Otherwise if the argument is a __local address space 
qualifier the arg_value has to be NULL. The __local address space qualifier specifies 
a local memory in the device. This memory need not be allocated on the host, hence 
it is NULL. The size of the local memory is defined by the arg_size value.

Let's take our example in the saxpy_kernel:

// Set the arguments of the kernel
    clStatus = clSetKernelArg(kernel, 0, 
      sizeof(float), (void *)&alpha);
    clStatus = clSetKernelArg(kernel, 1, 
      sizeof(cl_mem), (void *)&A_clmem);
    clStatus = clSetKernelArg(kernel, 2, 
      sizeof(cl_mem), (void *)&B_clmem);
    clStatus = clSetKernelArg(kernel, 3, 
      sizeof(cl_mem), (void *)&C_clmem);

The saxpy_kernel takes four arguments. The first argument is a constant float 
value which is passed to the kernel. The next three arguments are memory buffers. 
For creating local memory buffers in the kernel one must pass the size of the buffer 
required in bytes to the arg_size argument and set the arg_value argument to 
NULL. The parameter received in the kernel code is a local memory buffer, which is 
specified with a __local qualifier. Similarly arg_value is set to pointer to sample 
objects for arguments of type sampler_t.

Let's take a sample kernel prototype which describes most of the preceding explanation:

__kernel
void example_kernel(int i, 
  float f, 
  __local float l_Array, 
  __global float g_Array, 
  read_only image2d_t srcImg, 
  sampler_t sampler)
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The following code snippet sets the arguments of the kernel, which is the cl_
kernel object for example_kernel:

// Set the arguments of the kernel
kernel = clCreateKernel(program, "example_kernel", NULL); 
clStatus = clSetKernelArg(kernel, 0, sizeof(int), 
  (void *)&host_int);
clStatus = clSetKernelArg(kernel, 1, sizeof(float), 
  (void *)&host_float);
clStatus = clSetKernelArg(kernel, 2, 1024, NULL);
clStatus = clSetKernelArg(kernel, 3, sizeof(cl_mem), 
  (void *)&host_clmem);
clStatus = clSetKernelArg(kernel, 4, sizeof(cl_mem), 
  (void *)&host_img_clmem);
clStatus = clSetKernelArg(kernel, 5, sizeof(cl_sampler), 
  (void *)&host_sampler);

Executing the kernels
The created cl_kernel object can now be run on the device associated with it using 
the clEnqueueNDRangeKernel API. This shall enqueue the command for kernel 
execution on the command_queue. The queue shall then run this command if there 
are no commands waiting to be executed or else complete the execution of all the 
commands and then execute this kernel on the device associated with the command_
queue command.

cl_int
clEnqueueNDRangeKernel (cl_command_queue command_queue, 
  cl_kernel kernel, 
  cl_uint work_dim, 
  const size_t *global_work_offset, 
  const size_t *global_work_size, 
  const size_t *local_work_size, 
  cl_uint num_events_in_wait_list, 
  const cl_event *event_wait_list, 
  cl_event *event)

The following bullets list explains the functioning of the objects used in the 
preceding code:

• command_queue: It is a command queue for the device where the command is 
enqueued.

• kernel: It is a valid OpenCL kernel object.
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• work_dim: It is the dimension for the NDRange. The value it can take is 1, 2, 
or 3. The value of work_dim specifies the size of the global_work_offset, 
global_work_size, and local_work_size arrays.

• global_work_offset: This is an array of work_dim unsigned values that 
gives the offset used to calculate the global ID of a work item.

• global_work_size: This is an array of the work_dim unsigned values that 
gives the global size of the NDRange. These values specify the number of 
work items, which will constitute the NDRange in each dimension.

• local_work_size: This is also an array of the work_dim unsigned values  
that gives the number of work items in a work group. A detailed explanation 
of this is given in Chapter 2, OpenCL Architecture.

The num_events_in_wait_list, event_wait_list, and event objects will have 
their usual meanings as explained for each of the clEnqueue* routines.

There is one other way with which a kernel can be executed. If clEnqueueNDRange 
is available for data parallel workloads then clEnqueueTask is available for task 
parallel workloads.

cl_int clEnqueueTask (cl_command_queue command_queue,  
  cl_kernel kernel,  
  cl_uint num_events_in_wait_list,  
  const cl_event *event_wait_list,  
  cl_event *event)

The clEnqueueTask function enqueues a task on command_queue to execute the 
kernel on the device associated with the command_queue command. Note that there 
is no dimension information provided and neither global nor local size are provided. 
That means this function executes only a single work item for the kernel. This is 
equivalent to call clEnqueueNDRange with dim=1, global_work_offset = NULL, 
local_work_size[0] = 1, and global_work_size[0] = 1.

Querying kernel objects
Similarly to get the information about the program object, OpenCL provides an API 
to receive information about the cl_kernel object created. One can use this API 
to receive information about the kernel function name, number of arguments, the 
associated program, context, and so on.

cl_int
clGetKernelInfo (cl_kernel kernel, 
  cl_kernel_info param_name, 
  size_t param_value_size, 
  void *param_value, 
  size_t *param_value_size_ret)
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The following bullets list explains the functioning of the objects used in the 
preceding code:

• kernel: This is a valid cl_kernel object for which information is being 
queried.

• param_name: The following tabulated list of cl_kernel_info enumerations 
can be used to retrieve information about the kernel object.

• param_value_size: size in bytes of the param_value pointer.
• param_value: This is the pointer to memory where the result of this function 

will be returned. 
• param_value_size_ret: On return from the function the actual size of the 

data in bytes is stored. If the param_value pointer is not NULL the value of 
this will not exceed param_value_size.

The following table is the list of cl_kernel_info enumerations that can be used to 
query the kernel object:

cl_kernel_info Description
CL_KERNEL_FUNCTION_NAME Returns the name of the kernel function.
CL_KERNEL_NUM_ARGS Returns the kernel function's number of arguments.
CL_KERNEL_REFERENCE_
COUNT

Returns the reference count of the kernel object.

CL_KERNEL_CONTEXT Returns the context associated with the kernel 
object. This context is the context which was 
passed during the creation of program object 
using clCreateProgramWithBinary or 
clCreateProgramWithSource.

CL_KERNEL_PROGRAM Returns the associated program object associated for 
the kernel.

CL_KERNEL_ATTRIBUTES Returns any attributes specified using the __
attribute__ qualifier with the kernel function 
declaration in the program source.

Querying kernel argument
OpenCL provides functions to query information regarding the kernel arguments 
also, which can be stored in the kernel binary using the -cl-kernel-arg-info 
option. This allows the compiler to store the argument information for the kernel. 
It gives information about the type of the argument, the name of the argument, it's 
address and the access qualifiers. The clGetKernelArgInfo function returns this 
information. The kernel argument information is only available for the program's 
created with the clCreateProgramWithSource function as follows:
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cl_int
clGetKernelArgInfo (cl_kernel kernel,  
  cl_uint arg_indx,  
  cl_kernel_arg_info param_name,  
  size_t param_value_size,  
  void *param_value,  
  size_t *param_value_size_ret)

The following bullets list explains the functioning of the objects used in the 
preceding code:

• kernel: It is a valid cl_kernel object for which information is being queried.
• arg_indx: It is the index of the argument for which information is queried. 

It takes values from 0 to n-1 for an n argument kernel. The total number 
of arguments for the kernel can be obtained using the clGetKernelInfo 
function with param_name as CL_KERNEL_NUM_ARGS.

• param_name: It is the list of cl_kernel_arg_info for which information can 
be queried. The param_value_size, param_value, and param_value_size 
objects have the same meaning as for any clGet*Info function.

The following table is the list of cl_kernel_arg_info enumerations, which can be 
used to query the details about the arguments to a kernel object:

cl_kernel_arg_info Description
CL_KERNEL_ARG_ADDRESS_
QUALIFIER

Returns the address space qualifier for the arg_indx 
argument. It can be one of the following:

• CL_KERNEL_ARG_ADDRESS_GLOBAL

• CL_KERNEL_ARG_ADDRESS_CONSTANT

• CL_KERNEL_ARG_ADDRESS_LOCAL

• CL_KERNEL_ARG_ADDRESS_PRIVATE

CL_KERNEL_ARG_ACCESS_
QUALIFIER

Returns the access qualifier for the argument arg_indx. 
It can be one of the following:

• CL_KERNEL_ARG_ACCESS_READ_ONLY

• CL_KERNEL_ARG_ACCESS_READ_WRITE

• CL_KERNEL_ARG_ACCESS_WRITE_ONLY

• CL_KERNEL_ARG_ACCESS_NONE

CL_KERNEL_ARG_TYPE_NAME Returns the argument type name for the arg_indx 
argument.
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cl_kernel_arg_info Description
CL_KERNEL_ARG_TYPE_
QUALIFIER

Returns the type qualifier for the arg_indx 
argument. It can be a combination of the following:

• CL_KERNEL_ARG_TYPE_CONST

• CL_KERNEL_ARG_TYPE_VOLATILE

• CL_KERNEL_ARG_TYPE_RESTRICT

• CL_KERNEL_ARG_TYPE_NONE

CL_KERNEL_ARG_NAME Returns the name argument arg_indx.

Another function which allows the user to query the kernel object for a particular 
device is clGetKernelWorkGroupInfo. The CL_KERNEL_WORK_GROUP_SIZE query 
can be used to determine the maximum work group size that can be used on the 
device. Optimal performance can be achieved if the work group size is selected to 
be a multiple of CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE. This value 
is useful as the OpenCL platforms dispatch the work items in warps or wave front. 
AMD GPUs dispatch work items in wave fronts. The size of a wave front is 64 in 
AMD GPUs. If the work group size is not a multiple of 64 then it would result in 
wastage of hardware resource. For example, Let's take 100 as the work group size. 
For a 64 preferred work group size, the hardware will schedule the 100 work items in 
chinks of 64 and 36 work items. This results in the wastage of 64 -36 = 28 processing 
elements not being utilized.

cl_int
clGetKernelWorkGroupInfo (cl_kernel kernel,  
  cl_device_id device,  
  cl_kernel_work_group_info param_name,  
  size_t param_value_size,  
  void *param_value,  
  size_t *param_value_size_ret)

The following bullets list explains the functioning of the objects used in the 
preceding code:

• kernel: It is a valid cl_kernel object for which information is being queried. 
• device: The information is queried for the combination of device associated 

with the kernel.
• param_name: It specifies the list of information which can be queried. This is 

tabulated below.

The param_value_size, param_value, and param_value_size values have the 
same meaning as for any get*Info function.
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The following table is the list of cl_kernel_work_group_info enumerations,  
which can be used to query the kernel object to get the kernel work group  
related information.

cl_kernel_work_group_info Description
CL_KERNEL_GLOBAL_WORK_
SIZE

This is used to query the maximum global size that 
can be used to execute a kernel.

CL_KERNEL_WORK_GROUP_SIZE This returns the maximum work group size, which 
can be used to execute the kernel on the device.

CL_KERNEL_COMPILE_ and 
WORK_GROUP_SIZE

This returns the work group size specified using the 
kernel attribute qualifier: __attribute__((reqd_
work_group_size(X, Y, Z))).

CL_KERNEL_LOCAL_MEM_SIZE This returns the local memory used in bytes by the 
kernel.

CL_KERNEL_PREFERRED_WORK_
GROUP_SIZE_MULTIPLE

This returns the performance hint to the application 
such that multiple of this value will result in optimal 
performance.

CL_KERNEL_PRIVATE_MEM_
SIZE

Returns the minimum amount of private memory in 
bytes used by each of the work items in the kernel.

Releasing program and kernel objects
Every program object needs to be released from the OpenCL implementation space. 
This is achieved by using the following code:

cl_int
clReleaseProgram(cl_program program)

Here, program is a valid program object.

The call to clReleaseProgram function will decrement a reference count, and if the 
count reaches 0, then the program object is released. To query the reference count 
associated with the program object, one can use clGetProgramInfo with the param_
name as CL_PROGRAM_REFERENCE_COUNT. For increasing the reference count of the 
program object one can use the OpenCL function, clRetainProgram.

cl_int
clRetainProgram(cl_program program)

Similar to  program objects kernel objects can also be released using 
clReleaseKernel. The kernel reference count can be determined using 
clGetKernelInfo with param_name as CL_KERNEL_REFERENCE_COUNT.  
The reference count can be increased using clRetainKernel.



Chapter 5

[ 135 ]

Built-in kernels
Some custom devices contain specific unique functionality that are now integrated 
more closely into the OpenCL framework. The OpenCL 1.2 specification allows 
devices with special capabilities to expose a standard kernel implementation to 
perform specific tasks. Kernels can be called to use specialized or non-programmable 
aspects of underlying hardware. Some of these examples include video encoding/
decoding and digital signal processors. The clCreateProgramWithBuiltInKernel 
function returns a cl_program object for the kernel names specified.

cl_program
clCreateProgramWithBuiltInKernels (cl_context context,  
  cl_uint num_devices,  
  const cl_device_id *device_list,  
  const char *kernel_names,  
  cl_int *errcode_ret)

The following bullets list explains the parameters passed to the function 
clCreateProgramWithBuiltInKernels:

• context: It is a valid OpenCL context
• num_devices: It is the number of devices listed in device_list
• device_list: This is an array of num_devices device's for which you want 

to get the list of kernel names
• kernel_names: It is a return value and contains the list of semicolon 

separated built-in kernel names

Summary
In this chapter we discussed the creation of the OpenCL program objects and the 
kernel objects. Kernel objects were created from the program objects. We also looked 
at how a program object can be used to look at the build errors. Additionally we took 
an example of creating a binary file from the program for a device and reload the 
binary file to perform our saxpy operation. We also discussed how SPIR will allow 
application developers to distribute there proprietary software and yet be portable.

In the next chapter we will discuss the OpenCL events and synchronization 
mechanisms. Events and synchronization are important topics for any parallel 
programming. Event handles are needed to keep track of the various tasks  
enqueued on to the command queue. We will also discuss the various 
synchronization models.





Events and Synchronization
The previous chapter was all about the OpenCL program and kernel creation, and 
enqueing the kernels in an NDRange. We also discussed different types of tasks, 
which will be queued on to a device command queue. Every application will need to 
keep track of these tasks and synchronize the data view for a computational task. The 
OpenCL standard provides this synchronizing entity in the form of cl_event objects.

A simple Wikipedia definition defines Events as an action that is usually initiated 
outside the scope of a program and the status of these events is handled by a piece of 
code inside the program. There may be multiple sources for events. A typical source 
of event handle is the OpenCL clEnqueue* routines. An OpenCL runtime libraries 
changes the state of all events enqueued to the command queue. It keeps track of all 
the operations, which a host program initiates on to the various OpenCL devices. 
OpenCL Events are used mainly to synchronize the execution of tasks, and also to 
determine/interpret the state of the task in execution.

In this chapter we shall discuss about the following topics:

• Coarse-grained events
• Fine-grained events
• Various synchronization models
• Querying events and event profiling

For "coarse grained" synchronization, OpenCL provides functions such as, clFlush, 
and clFinish. When the need arises for "finer grained" synchronization, the OpenCL 
specification provides a cl_event object, which is used to determine the status of 
a task enqueued on a command queue. The cl_event object helps to identify the 
status of unique commands in a queue and thus enable a host level monitoring of 
each event. An OpenCL developer may want to wait for the completion of event 
associated with any of the clEnqueue* functions unless they are explicitly specified  
to wait by setting the blocking_[read|write] variable to CL_TRUE. 
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If set to CL_FALSE these functions immediately return before the enqueued task 
is completed. Have a look at the following diagram. Execution of the kernel A is 
dependent on two write events of buffers A and B to complete. Similarly kernel  
B can be executed only when write of buffer C is completed and the execution  
of kernel A is also completed:

Write A buffer
(W_A)

Write B buffer
(W_B)

Wait for W_A
and W_B

Kernel A’s
execution is
dependent on
the writing of
buffers A and B

Kernel B’s execution is

dependent on the

completion of the

writing of buffer C and

also the completion of

execution of Kernel A

Write C buffer
(W_C)

Wait for W_C
and K_A

Kernel A
(K_A)

Kernel B
(K_B)

Wait for K_B

Read or MapC
buffer

Diagram showing dependency of task execution

All the OpenCL clEnqueue* functions provide a mechanism to submit the 
dependency list when enqueing a task on the device command queue.

You can make sure that queue has dequeued all the commands and every 
command is completed by calling clFinish. The clFinish function will block 
the host program until the entire queue has completed. If you want to monitor the 
execution of the task enqueued by the clEnqueue* functions, they have an optional 
cl_event parameter that can be passed. The clEnqueue* functions will return a 
handle to cl_event, which can be queried for its status using the clGetEventInfo 
function. An OpenCL program can also wait for a list of events to finish with 
clWaitForEvents. This is also a host blocking call but the developer has a control 
on the events on which he wants to wait for instead of the all the events in the 
command_queue queue. And if you don't want to stop the host execution then use 
clEnqueueBarrierWithWaitList and clEnqueueMarkerWithWaitList. We will 
discuss about all this later in this chapter.
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OpenCL events and monitoring  
these events
An event is a cl_event object that forms a medium of communication between 
the application and the OpenCL implementation. These event objects help in 
monitoring the OpenCL operations and commands. This monitoring can be of data 
transfer between the host and the devices and vice versa or either for the execution 
of the NDRange kernel. In OpenCL, an event is an object that specifies the state of 
a command queued into the OpenCL command queue. In OpenCL, events can be 
queried to notify the host that a command has completed its execution on the device. 
Besides this it can also be used for command synchronization. During command 
synchronization, a command which is queued for execution will wait on a list of 
events to complete before executing itself. In all the previous chapters you might 
have seen the last few parameters common across all the APIs starting with signature 
clEnqueue*.

clEnqueue*( ***, cl_uint num_events_in_wait_list, 
  const cl_event *event_wait_list, 
  cl_event *event);

For example, clEnqueue{Read|Write|Map}Buffer and clEnqueueNDRangeKernel 
all have to wait for event_wait_list events before finally executing itself. These 
event wait lists can be used to wait on one or more than one command. The num_
events_in_wait_list and event_wait_list parameters specifies the number of 
events to wait for. On return of this function the last parameter event shall contain 
the handle to the cl_event object for the task being enqueued. This handle can be 
used to keep track of the execution of the command which is being queued. Every 
event is associated with a context. The contexts associated with events in event_
wait_list and the context of the command_queue all should be same.

In OpenCL we can use events in three main ways which are follows:

• Host notification: An event can notify the host that a command has 
completed its execution on a device

• Command synchronization: An event can force commands to delay their 
execution until another event's occurrence has taken place

• Profiling: An event can monitor how much time a command takes to execute
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OpenCL event synchronization models
In OpenCL, the command queues are used to submit work to a device and each  
work or task can be associated with an event object. The queuing of the command 
takes place in-order or as the program flow occurs. But when the commands are 
dequeued the tasks can execute in-order or out-of-order. In ordered execution  
one does not need an explicit synchronization that means the next command is 
executed only when the previous one has completed its execution. But in the case  
of out-of-order execution, there is a need for synchronization. The OpenCL provides 
this framework for synchronization. Synchronization is needed in the case of 
multiple command queues also. The user might want to divide his work load across 
multiple devices, and the running dynamics of each device may be different. So it 
becomes necessary to do synchronization. Let us discuss some models for queuing 
commands in OpenCL.

No synchronization needed
This is the simplest form of OpenCL programming. This is the ideal situation when 
the algorithm is very simple and no interaction between the various OpenCL devices 
is needed.

Single device in-order usage
This is the simplest form of task queuing mechanism, which uses an in-order queue 
associated with a device in context. All commands execute on single device and all 
the memory operations occur in a single memory pool.

The following code snippet explains the scenario:

cl_uint num_devices;
cl_device_id devices;
err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_CPU, 
  1, &devices, &num_devices);
context = clCreateContext(0, 1, devices, NULL, NULL, &err);
cl_command_queue queue_cpu;
queue_cpu = clCreateCommandQueue(context, devices[0], 
  0 /* IN-ORDER */, &err);
/* ... enqueue the tasks for the selected device here ... */

Here we created an in-order OpenCL command queue for the CPU device. In this 
case the device executes commands after the previous one finishes, and all the 
memory transactions are synchronized and consistently viewed. Hence there may 
be no need for fine-grained synchronization of events. The clFlush and clFinish 
objects should suffice. We will discuss about these functions in a later section.
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Synchronization needed
This is bit more complex model and the complexity grows with multiple  
devices needing synchronization. This model is the default choice when the  
OpenCL developer wants to distribute his work load across multiple devices. 
Synchronization will also be needed when an out-of-order queue is used. In  
the following sections we will discuss the three different scenarios, where an 
OpenCL developer will need synchronization.

Single device and out-of-order queue
In this case we use an out-of-order queue, which is also associated with a single 
device in a context, same as the previous. All the memory operations occur in a 
single memory pool. All the commands will execute in a single device, but the 
order in which the commands get dequeued will have no guarantee for an ordered 
execution. The following code snippet shows how to create an out-of-order queue:

cl_uint num_devices;
cl_device_id devices;
err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_CPU, 1, &devices,  
  &num_devices);
context = clCreateContext(0, 1, devices, NULL, NULL, &err);
cl_command_queue queue_cpu;
queue_cpu = clCreateCommandQueue(context, devices[0], 
  CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err);
/* ... enqueue the tasks for the selected device here ... */

The device starts executing as soon as it can and the memory transactions may 
overlap. The device may have capability to execute multiple tasks simultaneously, 
which results in better hardware utilization. This results in a need for an explicit 
synchronization of the algorithm when out-of-order execution is used.

Multiple devices and different OpenCL contexts
Here the commands execute on separate devices associated with a queue and each 
device has a separate memory pool. This model is useful if there are multiple devices 
in the platform and one wants to divide and run separate algorithms in different 
devices. The following code snippet shows creation of different command queues for 
the CPU and GPU devices separately:

cl_uint num_devices;
cl_device_id devices[2];
err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_CPU, 
  1, /*Get one CPU device*/ 
  &devices[0], &num_devices);
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err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_GPU, 
  1, /*Get one GPU device*/ 
  &devices[1], &num_devices);
context_cpu = clCreateContext(0, 1, &devices[0], 
  NULL, NULL, &err);
context_gpu = clCreateContext(0, 1, &devices[1], 
  NULL, NULL, &err);
cl_command_queue queue_cpu, queue_gpu;
queue_cpu = clCreateCommandQueue(context_cpu, devices[0], 
  0 /* IN-ORDER */, &err);
queue_gpu = clCreateCommandQueue(context_gpu, devices[1], 
  0 /* IN-ORDER */, &err);

In this model the command queues cannot synchronize between the contexts.

Multiple devices and single OpenCL context
Multiple devices in the platform belong to the same context and each device has  
an associated queue and will modify or read data from a combined memory pool.

cl_uint num_devices;
cl_device_id devices[2];
err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_CPU, 1, 
  &devices[0], &num_devices);
err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_GPU, 1, 
  &devices[1], &num_devices);
context = clCreateContext(0, 2, devices, NULL, NULL, &err);
cl_command_queue queue_cpu, queue_gpu;
queue_cpu = clCreateCommandQueue(context, devices[0], 
  0 /* IN-ORDER */, &err);!
queue_gpu = clCreateCommandQueue(context, devices[1], 
  0 /* IN-ORDER */, &err);!

This is a true multi device model, and will need programming expertise to divide  
the workload across the different devices. Once each device completes its execution 
the associated event handle is set to CL_COMPLETE. The host program is expected  
to explicitly track the status of each task queued on each device. This is called 
as coarse-grained synchronization and OpenCL provides different functions for 
achieving this synchronization.

In this section we have discussed the various queuing synchronization models 
possible in OpenCL. Now we should be able to look into the various synchronization 
mechanisms which the OpenCL specification provides. It's true that basic 
synchronization can be done with simple OpenCL commands such as, clFinish and 
clFlush, but complex algorithms where you want to get the maximum out of the 
underlying hardware, will need functions for various event handling mechanisms 
and querying the event status. In the next few sections we will precisely explain each 
of these OpenCL functions.



Chapter 6

[ 143 ]

Coarse-grained synchronization
There are two APIs which enable coarse-grained synchronization, they are clFlush 
and clFinish. The reason why we call coarse grained is that both lack control over 
the individual tasks queued on the command queue. These two functions have 
control only at the queue level.

cl_int clFlush (cl_command_queue command_queue);

This function ensures that all the commands, which are queued on the command_queue 
object will be submitted to the corresponding device. This does not guarantee that all 
the commands in the command_queue will be completed after clFlush returns.

First question which would arise is that what would happen if there is any blocking 
command queued to the device. Blocking commands do an implicit flush of the 
command_queue and on return from the blocking commands it will result in an 
implicit finish for the command_queue. This means that these functions will not return 
until this command gets completed. All the clEnqueueRead* and clEnqueueWrite* 
commands with their corresponding parameters blocking_read and blocking_
write when set to CL_TRUE are referred to as blocking commands. The 
clReleaseCommandQueue function also performs an implicit flush of the command 
queue. Besides this the buffer mapping functions such as, clEnqueueMapBuffer and 
clEnqueueMapImage with blocking_map as CL_TRUE and the clWaitForEvents 
function all do an implicit flush of the command_queue.

There is another function clFinish, which helps in coarse-grained synchronization.

cl_int clFinish (cl_command_queue command_queue)

This function is a blocking function, that means clFinish will not return until all 
the previously enqueued commands in the command_queue are issued and reached 
its state of completion. This is a coarse-grained synchronization point. This function 
also guarantees that all the commands queued in the queue have reached the state 
CL_COMPLETE. If there is an error code associated with a command event handle then 
that indicates that the task was abnormally terminated.

The two APIs return CL_SUCCESS if the function calls were executed successfully, if 
not then either CL_INVALID_COMMAND_QUEUE, CL_OUT_OF_RESOURCES, or CL_OUT_OF_
HOST_MEMORY is returned.
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There is another function, clEnqueueBarrierWithWaitList, which queues a 
synchronization point.

cl_int
  clEnqueueBarrierWithWaitList (cl_command_queue command_queue, 
    cl_uint num_events_in_wait_list, 
      const cl_event *event_wait_list, 
        cl_event *event)

The barrier command will be queued in the command_queue OpenCL queue.

The clEnqueueBarrierWithWaitList function is a non-blocking call and can 
achieve the same result as the clFinish function. Here the application developer 
needs to wait for the event to reach CL_COMPLETE. This function has two uses. First, 
it will wait for num_events_in_wait_list events in event_wait_list to reach 
CL_COMPLETE. Only then the status of the event handle is set to CL_COMPLETE. The 
second use is that if num_events_in_wait_list and event_wait_list are set to 
0 and NULL respectively, then the event associated with this function will reach the 
state of CL_COMPLETE only if all the previously enqueued commands are completed. 
Any other command which is enqueued after this barrier command will not continue 
its execution until this barrier has reached a state of CL_COMPLETE. You might 
question what is the difference between clEnqueueBarrierWithWaitList() and 
clFinish()?

If you are using clFinish in your code then every kernel invocation using 
clEnqueueBarrierWithWaitList will have no impact on your code, because 
clFinish will wait for all the previously queued commands to complete. You can 
use clEnqueueBarrierWithWaitList when the queue is an out-of-order queue. 
Consider the following sequence of OpenCL function calls:

clEnqueueNDRangeKernel(queue, pre_compute_kernel, *** );
clEnqueueNDRangeKernel(queue, compute_kernel, *** );

Here the pre_compute_kernel must be completed first before the compute_kernel 
task is run. How would you synchronize this scenario when your queue is an out-of-
order queue? You will think of the following quick solution:

clEnqueueNDRangeKernel(queue, pre_compute_kernel, *** );
clFinish(queue);
clEnqueueNDRangeKernel(queue, compute_kernel, *** );
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But the moment you write clFinish in your code it will result in the host execution 
to block till all the previously issued commands complete execution. You can avoid 
this by using the following function:

clEnqueueNDRangeKernel(queue, pre_compute_kernel, *** );
clEnqueueBarrierWithWaitList (queue, *** );
clEnqueueNDRangeKernel(queue, compute_kernel, *** );

This will return the control back to the host and the host can continue with processing 
other useful code rather than waiting for the clFinish function to complete. 

Event-based or fine-grained 
synchronization
OpenCL has an event-based synchronization mechanism. These event handles 
identify the unique commands in the queue and can be used for synchronizing 
algorithm execution. It can also be used for profiling the queued task. We will 
discuss more about profiling in a later section. OpenCL event is an object which 
holds the state of the task. An OpenCL event state is defined as one of the following 
stages based on the life time of the task:

• CL_QUEUED: The command is enqueued into the command_queue queue, but 
it has not yet been submitted to the device. This state is the first state for all 
events except for the user events.

• CL_SUBMITTED: This state means that the host has submitted this command to 
the host. All user events reach this state before running.

• CL_RUNNING: When the command is dequeued on the device the event 
reaches the state of CL_RUNNING. The device has started to execute this 
command. If this event is waiting for other events to complete then all those 
events should reach the state of CL_COMPLETE, then only this event shall 
reach a state of CL_RUNNING.

• CL_COMPLETE: This state is reached when the command has successfully 
completed its execution on the device.

If the application does not need to monitor the commands execution status and wants 
to ignore all other events, then the clEnqueue* functions use the following code:

clEnqueue*( ***, cl_uint num_events_in_wait_list, 
  const cl_event *event_wait_list, 
    cl_event *event);
clEnqueue*( ***, 0, NULL, NULL);
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The application developer can set the num_events_in_wait_list queue to 0, 
event_wait_list and event to NULL. This call will not generate any event for the 
application to monitor. Note that num_events_in_wait_list must be 0 if event_
wait_list is NULL.

In OpenCL 1.1 there was an API as follows:

cl_int clEnqueueBarrier ( cl_command_queue command_queue )

This API was replaced with clEnqueueBarrierWithWaitList discussed earlier.  
You can perform the same operation as clEnqueueBarrier by passing parameters  
as discussed earlier.

Another function, clEnqueueMarkerWithWaitList helps in synchronizing. Unlike 
the clEnqueueBarrierWithWaitList function, it does not stop the execution of 
subsequent tasks enqueued in the command queue. It can be used to catch the status 
of execution of all the commands enqueued before this.

cl_int
clEnqueueMarkerWithWaitList (cl_command_queue command_queue, 
  cl_uint num_events_in_wait_list, 
    const cl_event *event_wait_list, 
      cl_event *event)

Let's take an example and explain an use case of this function as follows:

cl_event write_event[2];
clEnqueueWriteBuffer(queue, clmem_A, ***, &write_event[0] );
clEnqueueWriteBuffer(queue, clmem_B, ***, &write_event[1] );
clEnqueueMarkerWithWaitList (queue, 2, write_event, &marker);
clEnqueueNDRangeKernel(queue, kernel_1, *** );
clWaitForEvents(1, &marker);
clEnqueueNDRangeKernel(queue, kernel_2, *** );

The kernel_2 instance's execution is dependent on writing of two buffers 
clmem_A and clmem_B to the device. During the data transfer step, which might 
involve the data transfer through a DMA engine, the OpenCL device is not 
doing any computational work. So you can spawn another independent kernel 
kernel_1, so that both the data transfer and kernel execution can take place 
simultaneously. After the launch of kernel_1 the developer can wait on the 
marker event to reach CL_COMPLETE. Once completed only then it can go ahead 
and spawn the second kernel, kernel_2. This could not have been achieved using 
clEnqueueBarrierWithWaitList, since it would not have launched any task after 
the barrier in the preceding highlighted code.
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The clEnqueueMarkerWithWaitList function can also be used to simulate 
clEnqueueMarker, which is deprecated in OpenCL 1.2, by passing 0 to num_events_
in_wait_list and NULL to event_wait_list and event. A marker command 
is enqueued on to the command_queue queue. This marker command shall wait 
for all events in event_wait_list to complete before it sets the state of event to 
CL_COMPLETE. If event_wait_list is NULL then all the events prior to itself will be 
waiting for completion. Both the functions clEnqueueMarkerWithWaitList and 
clEnqueueBarrierWithWaitList are OpenCL runtime mechanisms, which can be 
used to track the task queuing in an out-of-order queue. In an in-order queue these 
may not be that important.

Barrier and Marker functions are asynchronous in nature, but the same operations 
can be performed using another function called clWaitForEvents. This function is 
synchronous in nature.

The code for this function is as follows:

cl_int clWaitForEvents (cl_uint num_events, 
  const cl_event *event_list);

This function waits on the host thread for commands identified by event objects in 
event_list to complete. The num_events object is the number of events specified 
in event_list. A command is considered complete if its execution status is CL_
COMPLETE. The events specified in event_list act as synchronization points.

Getting information about cl_event
Let's understand the cl_event object in more detail. Every object in OpenCL has a 
mechanism to get information about itself. A user can query its associated context, its 
command queue, its status of execution or the type of the command it is associated 
with. Similar to clGetContextInfo, clGetDevicenfo, and so on. The function is 
defined as follows:

cl_int clGetEventInfo (cl_event event, 
  cl_event_info param_name, 
    size_t param_value_size, 
      void *param_value, 
        size_t *param_value_size_ret);
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This function returns the information as requested in param_name for the event 
object. The following bullet list describes the objects used in the preceding code:

• event: It specifies the cl_event object being queried.
• param_name: It specifies the information to query and is of type cl_event_

info. The following table lists out the different enumerations of cl_event_
info, which can be queried and returned in param_value.

The param_value, param_value_size, and param_value_size_ret objects have the 
same meaning as for any clGet*Info function.

Let's take an example wherein you want to do a busy wait on an event to complete, 
as shown in the following code:

cl_event x_event;
cl_int   x_event_status;
/*... Task created here and associated with x_event...*/
while ( clGetEventInfo(x_event, CL_EVENT_COMMAND_EXECUTION_STATUS, 
  sizeof(int), &x_event_status, NULL) != CL_COMPLETE) 
{
  // spin here for fast completion detection.
}

The following table shows the different cl_event_info parameter names, which can 
be queried using clGetEventInfo:

cl_event_info Description
CL_EVENT_COMMAND_
QUEUE

Returns the command-queue associated with the 
event and is of type cl_command_queue.

CL_EVENT_CONTEXT Returns the OpenCL context associated with event 
and is of type cl_context.

CL_EVENT_COMMAND_TYPE Returns the cl_command_type value type for the 
command associated with event, and is of type 
cl_command_type. The value returned in param_
value can be one of the list of OpenCL enqueue 
commands.

CL_EVENT_COMMAND_
EXECUTION_STATUS

The event status is returned. It can be one of 
CL_SUBMITTED, CL_RUNNING, CL_QUEUED, or 
CL_COMPLETED. This is of type cl_int. Note that 
an error code which is a negative integer can also 
be returned. This may be because of an erroneous 
execution or abnormal termination of the command.

CL_EVENT_REFERENCE_
COUNT

Return the event reference count.
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The type of OpenCL commands associated with the CL_EVENT_COMMAND_TYPE object 
is the enumeration of cl_command_type given as follows:

• CL_COMMAND_NDRANGE_KERNEL

• CL_COMMAND_TASK

• CL_COMMAND_NATIVE_KERNEL

• CL_COMMAND_READ_BUFFER

• CL_COMMAND_WRITE_BUFFER

• CL_COMMAND_COPY_BUFFER

• CL_COMMAND_READ_IMAGE

• CL_COMMAND_WRITE_IMAGE

• CL_COMMAND_COPY_IMAGE

• CL_COMMAND_COPY_BUFFER_TO_IMAGE

• CL_COMMAND_COPY_IMAGE_TO_BUFFER

• CL_COMMAND_MAP_BUFFER

• CL_COMMAND_MAP_IMAGE

• CL_COMMAND_UNMAP_MEM_OBJECT

• CL_COMMAND_MARKER

• CL_COMMAND_ACQUIRE_GL_OBJECTS

• CL_COMMAND_RELEASE_GL_OBJECTS

• CL_COMMAND_READ_BUFFER_RECT

• CL_COMMAND_WRITE_BUFFER_RECT

• CL_COMMAND_COPY_BUFFER_RECT

• CL_COMMAND_USER

• CL_COMMAND_BARRIER

• CL_COMMAND_MIGRATE_MEM_OBJECTS

• CL_COMMAND_FILL_BUFFER

• CL_COMMAND_FILL_IMAGE

The CL_COMMAND_USER command is an user created event. Till now what we had 
discussed is the OpenCL generated event handle. In the next section we will take  
a look at how to create user events.
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Like every other OpenCL objects, cl_event is also an object and needs to be 
explicitly freed. An OpenCL object can be released or retained. Every OpenCL  
object is associated with a reference count. This event reference count can be 
retrieved for the event objects by calling the clGetEventInfo function with 
CL_EVENT_REFERENCE_COUNT as the param_name. The clRetainEvent function 
increments the event reference count.

cl_int clRetainEvent (cl_event event)

Similarly the following function decrements the event reference count and allows  
for the event object to be deleted. Once the reference count decrements to zero the 
event object is deleted:

cl_int clReleaseEvent (cl_event event)

User-created events
All the events which we have discussed till now are all command queue created 
events. Applications may want to create user defined events, and use it to track the 
progress of different workloads given to different devices in an OpenCL context.  
The function for performing the same is as follows:

cl_event clCreateUserEvent (cl_context context, 
  cl_int *errcode_ret)

The preceding function creates an user event object. Note that the user event created 
is per context. This means that each device in a context can wait on a user event to 
complete before the device command queue can execute next task. User-created 
events are useful for an application developer, in such a way that the developer 
can wait on this event in-order to reach a point of computation in his algorithm. An 
OpenCL algorithm may consist of many kernel tasks and data transfer operations. 
All user-created events reach a state of CL_SUBMIITTED first. They do not reach 
a state of CL_QUEUED since no task is queued to a command_queue queue. The 
clCreateUserEvent function sets errcode_ret to CL_SUCCESS if the user event 
object is created successfully.

How can one change the status of the user created event? OpenCL provides the 
clSetUserEventStatus function for this purpose, which is given as follows:

cl_int clSetUserEventStatus (cl_event event, 
  cl_int execution_status)



Chapter 6

[ 151 ]

This function sets the state of a user event object to either of CL_QUEUED, CL_
SUBMITTED, CL_RUNNING, or CL_COMPLETE. An OpenCL application developer must 
ensure that the events in event_wait_list argument of clEnqueue*** must reach 
a state of CL_COMPLETE. If any event is a user event then the application developer 
should set the state of that event to CL_COMPLETE. Have a look at the following 
example, which is adapted from the OpenCL specification and shows what is the 
undefined behavior:

user_event = clCreateUserEvent(context, NULL);
clEnqueueWriteBuffer(queue, buf1, CL_FALSE, ***,  
  1, &user_event, NULL);
clEnqueueWriteBuffer(queue, buf2, CL_FALSE, ***);
clReleaseMemObject(buf2);
clSetUserEventStatus(user_event, CL_COMPLETE);

Consider that the queue is an in-order queue, that is the second write will occur 
only after the first one is completed. The first write is enqueued and is waiting on 
the user_event to complete. The second write also gets enqueued. Immediately 
after that the clReleaseMemObject function will release the OpenCL buffer object. 
And finally the user_event is set to CL_COMPLETE. This will trigger the first write to 
complete, and then when the second write starts its execution, but the buffer object 
was already released. This will cause an undefined behavior.

Event profiling
Profiling is an important tool, which must be used for tuning any high performance 
application. OpenCL provides this mechanism by making the cl_event objects 
to hold the timing information. This timing information can be captured using 
the clGetEventProfilingInfo function. The command_queue queue should be 
created with CL_QUEUE_PROFILING_ENABLE flag set as properties argument in 
clCreateCommandQueue.

If the queue is enabled for profiling then the following function returns profiling 
information for the enqueued task associated with the event object:

cl_int clGetEventProfilingInfo (cl_event event, 
  cl_profiling_info param_name, 
    size_t param_value_size, 
      void *param_value, 
        size_t *param_value_size_ret)
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All the timestamps CL_PROFILING_COMMAND_[QUEUED|SUBMIT|START|END] can be 
obtained using this function. The returned value is a 64 bit cl_ulong value, which 
specifies the device time counter in nanoseconds. You can determine the time of when 
the command got enqueued|submitted|started|ends in a command queue by the 
host. The following code snippet calculates the start and end time of an OpenCL event:

double get_event_exec_time(cl_event event)
{
  cl_ulong start_time, end_time;
  /*Get start device counter for the event*/
  clGetEventProfilingInfo (event, 
    CL_PROFILING_COMMAND_START, 
    sizeof(cl_ulong), 
    &start_time, 
    NULL);
  /*Get end device counter for the event*/
  clGetEventProfilingInfo (event, 
    CL_PROFILING_COMMAND_END, 
    sizeof(cl_ulong), 
    &end_time, 
    NULL);
  /*Convert the counter values to milli seconds*/
  double total_time = (end_time - start_time) * 1e-6;
  return total_time;
}

The counter values are returned in a cl_ulong variable. The resolution of the counter 
values are in nanoseconds. We multiply it with 1e-6 to get the time in milliseconds.

Have a look at the example code profiling_saxpy given with the code distribution. 
In this example code we will modify the saxpy example to get the timing 
information of each of the tasks enqueued on the device.

Memory fences
OpenCL C specification provides for runtime barriers in a work item and across a 
single work group. Barriers may only synchronize threads in the same workgroup. 
There is no way to synchronize between different work groups. For synchronizing 
outside of the work group the kernel should complete its execution. There are two 
types of memory fences:
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• CLK_LOCAL_MEM_FENCE: This ensures correct ordering of operations on local 
memory. It is used as follows:
barrier(CLK_LOCAL_MEM_FENCE);

The barrier function will either flush any variables stored in local memory or 
queue a memory fence to ensure correct ordering of memory operations to 
local memory.

• CLK_GLOBAL_MEM_FENCE: This ensures correct ordering of operations on 
global memory. It is used as follows:

barrier(CLK_GLOBAL_MEM_FENCE);

To help you understand, in short you should use CLK_LOCAL_MEM_FENCE when 
reading and writing to the __local memory space, and CLK_GLOBAL_MEM_FENCE 
when reading and writing to the __global memory space.

Sometimes both can be used together as shown in the following code. This will help 
in debugging, or the algorithm uses both the global and local memory:

barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);

Summary
In this chapter we have learned about the various synchronization models,  
which can be used by an OpenCL programmer. We discussed everything  
about the OpenCL cl_event objects. These events can be clEnqueue* generated  
or user-created events. These synchronization models may be fine-grained  
or coarse-grained. An OpenCL developer can make use of these in his application.

In previous chapters we have seen all the OpenCL objects, and its creation and 
deletion. We discussed about the host side objects in the form of contexts, queues, 
programs, kernels, buffers, and events. In the next chapter we will see the device  
side kernel code, and the OpenCL C language specification in detail.





OpenCL C Programming
To support cross platform compatibility across a large combination of OpenCL 
devices, every OpenCL device should be compliant to a standard. OpenCL C 
language specification is based out of the C99 standard (ISO/IEC 9899:1999). Besides 
this there are certain restrictions, which are applicable to all the OpenCL C kernels. 
A compliant C kernel code is compiled by the OpenCL runtime compiler using the 
clBuildProgram function. In this chapter we will discuss the specifications and 
restrictions for writing an OpenCL compliant C kernel code. The following bullet  
list states the topics which will be discussed in this chapter:

• Built-in data types
• Conversions and type casting
• Address space qualifiers
• Function qualifiers
• Built-in functions

Built-in data types
OpenCL specification provides its own set of data types, whether vector or scalar. 
This is important since it will enable the kernel code to be portable across various 
OpenCL devices and different device compilers. In the following sections we will 
discuss the different data types, which are defined in the OpenCL specification.
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Basic data types and vector types
OpenCL C standard categorizes a list of data types referred to as "basic data types". 
This is tabulated in the following table. Associated with each basic data type is 
a vector data type, which can be used by a C programmer. Most of the OpenCL 
devices do support Instruction Set Architecture (ISA), which take inputs as vector 
data types. For example, the AMD FMA4 ISA extension supports Fused Multiply 
Add (FMA) operation on 256 bit vector data. So if these vector data types are used 
while writing code it is more likely that the vector data type are processed by codes, 
which uses vector instructions at runtime and is converted to a vector instruction 
binary at runtime. The basic data types have an associated application data type, 
which a programmer can use. The following table describes the various basic and 
vector data types, which can be used within the OpenCL C kernel code and there 
corresponding application data types.

The following table depicts the Basic and vector data types the contents of the first, 
column are referred to as the basic data type in this chapter. We exclude half data 
type for discussion in the subsequent sections:

Basic data types Application data 
types

Vector data types Application vector 
data types

bool n/a n/a n/a

char cl_char charn cl_charn

unsigned char, 
uchar

cl_uchar ucharn cl_ucharn

short cl_short shortn cl_shortn

unsigned 
short, ushort

cl_ushort ushortn cl_ushortn

int cl_int intn cl_intn

unsigned int, 
uint

cl_uint uintn cl_uintn

long cl_long longn cl_longn

unsigned long, 
ulong

cl_ulong ulongn cl_ulongn

float cl_float floatn cl_floatn

double cl_double doublen cl_doublen

half* cl_half halfn cl_halfn
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Let's explain the difference between the application data type (column 2 and 4)
and the OpenCL C data type (column 1 and 3) with an example. The following is a 
sample OpenCL C kernel code:

__kernel void opencl_kernel(int i_value, float f_value)
{
…
}

The application may want to launch the opencl_kernel as shown above.  
For this the application code will pass the kernel arguments as follows:

cl_int i_value;
cl_float f_value;
/*….Create the opencl_kernel for the OpenCL kernel showed above….*/
clSetKernelArg(opencl_kernel, 0, sizeof(cl_int), (void *) &i_value);
clSetKernelArg(opencl_kernel, 0, sizeof(cl_float), (void *) &f_value);

OpenCL application developers should use the cl_* data types as it will make the 
code portable across different host compilers, and also make sure that the size of these 
data types are same as the application data type across different OpenCL devices.

For all vector data types the supported value for n are 2, 3, 4, 8, and 16. They form a 
vector of n element data type. The built-in vector data types have a corresponding 
vector data type for an application programmer to use. As far as possible the 
application programmer should use these data types. Note that size_t does not 
have any vector data type. This is because size_t is a data type, which is dependent 
on the bit depth of the compiled target architecture. For example for 32 bit 
applications sizeof(size_t) is 4 bytes and for 64 bit applications it is 8 bytes.

The half data type
All floating point data types like float and double are IEEE 754-2008 compliant. The 
half data type must also be compliant to this standard data representation. This data 
type is a floating point value of length 16 bits, comprising of 1 sign bit, 5 exponent 
bits with values ranging from: 15 to 16, and 10 mantissa bits, with exponent bias 
constant as 15. They are all similar in definition of a 32 bit single precision floating 
point values with 1 sign bit, 8 exponent bits, and 23 mantissa bits with exponent bias 
constant as 127. The application programmer is responsible to choose for choosing 
the appropriate data type to represent dynamic range of the values taken by the 
data object. half is not supported as computing data type as a float data type that 
means there is no dedicated hardware to compute the half precision data types. 
Though some vendors may provide this feature, as of OpenCL 1.2 half data type 
can only be used to declare a pointer to a buffer of half values.
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The following half data type diagram shows the size of the data type and some 
values represented by half precision data types:

1 5 10

Sign bit Exponent bits Mantissa bits

Half Precision data type

Some examples of half precision data types:

• 0 01111 0000000000  = 1.0

• 0 10000 1000000000  = 2.0 + 2-1 = 2.5

• 1 10001 1000000001  = -4.0 + 2-1 + 2-10 = -4.0 - 0.5 - 
0.0009765625 =  -4.500976525

Other data types
Besides the data types discussed till now there are some other data types, which 
depend on the value of CL_DEVICE_ADDRESS_BITS. This value can be obtained using 
the OpenCL function, clGetDeviceInfo and passing the param_name value as CL_
DEVICE_ADDRESS_BITS. Based on the value of CL_DEVICE_ADDRESS_BITS returned,  
if its 32 or 64, the size of the following data types will be respectively 32 and 64 bits 
in size. This is similar to the size of size_t being 32 bits in a 32 bit application, and 
64 bits in a 64 bit application. The following table describes these special data types:

Data type Description
size_t This is an unsigned integer type and is the return type  

of the sizeof() operator.
ptrdiff_t This is a signed integer type which is a result of 

subtracting two pointers.
intptr_t and uintptr_t A signed and unsigned integer type which can be used 

to convert any pointer to this type and then can be 
converted back to a void pointer.

Another data type void comprises an empty set of value.
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Reserved data types
There is a list of data types which are reserved for OpenCL implementations, which 
may be used by OpenCL vendors as extensions or may be provided by the OpenCL 
specifications in the future. These reserved data types are listed in the OpenCL 1.2 
specification in table 6.4 section 6.1.4:

Example in the table given in section built-in data types all other values of n are reserved 
other than 2,3,4,8, and 16; which are already defined in the OpenCL specification.

Alignment of data types
Every built-in and vector data type in OpenCL as given in table of section built-in 
data types are aligned to the size of the data type itself. Example a float variable 
will be aligned on a 4 byte boundary, a float4 variable will be aligned to a 16 byte 
boundary. In the case of data types which are not the size equal to a power of 2, then 
such data types must be aligned to a size of the next power of 2 bytes. An example 
is a float3 or int3 vector data type. 3 component vector data types shall be aligned 
to 4* sizeof (component) bytes. Let's take an example of 4*sizeof (component) 
boundary and explain the data type alignment.

The OpenCL compiler while compiling the kernel code is responsible for aligning 
the local data items to the appropriate alignment as required by the data type. Let us 
consider the following example:

typedef struct
{
   cl_float8 x;
   cl_float3 y;
} OpenCLStruct;

Here the size of OpenCLStruct at the host compiler side is 48 or 64 bytes depending 
upon the compiler options you use. But the size of OpenCLStruct at the OpenCL 
device compiler will be 64 bytes. Assume that you create an array of elements with 
type as OpenCLStruct. The first element is aligned to their respective sizes that is, 
float8 is aligned to 32 bytes boundary, and float3 is aligned to 16 bytes boundary 
(3 component vector data type will be aligned to a 4 * sizeof (component) 
boundary). So the OpenCLStruct will be aligned to 48 byte boundary. Now when 
we access the second element in the array float8 parameter will not be aligned to 
32 byte boundary. So for compliance the OpenCL device compiler must add a filler 
of 16 bytes after float3 element which is also of 16 bytes. This makes the size of 
OpenCLStruct as 64 bytes. So subsequent data access of float8 variables will be 32 
byte aligned. Here the OpenCL device compiler refers to the device compiler when 
we call the clBuildProgram function to build a cl_program object.
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Now the question will arise if you create a buffer at the host side, and then try to 
pass on the buffer to the device using the cl_mem object, how will the difference be 
handled? Take a look at the following code snippet:

#if defined( _MSC_VER)
    typedef struct
    {
        cl_float8 __declspec(align(32)) y;
        cl_float3 __declspec(align(16)) x;
    } OpenCLStruct;
#elif defined( __GNUC__ )
    typedef struct
    {
        cl_float8 __attribute__ (aligned(32)) y;
        cl_float3 __attribute__ (aligned(16)) x;
    } OpenCLStruct;
#else
    #warning align data here
    typedef struct
    {
       float8 x; //Needs 32 byte alignment
       float3 y; //Needs 16 byte alignment
    } OpenCLStruct;    
#endif

The application programmer is responsible for aligning the respective data types 
to their respective boundaries. The code snippet shows for both the GCC and MS 
Visual Studio compilers. Now the reads and writes to the OpenCLStruct function 
buffer will result in the same behavior and data alignment for the host compiler and 
the OpenCL device compiler. If the kernel argument is a pointer argument then the 
OpenCL compiler will assume that the pointer is appropriately aligned as required 
by the data type.

Vector data types
One can create vectors using vector literals. Vector literals can be formed using a 
list of scalars or vectors or a mixture of a scalar and a vector. The following is an 
example of creating a vector data type:

int4 i4 = (int4)(1, 2, 3, 4); or 
int4 i4 = {1, 2, 3, 4};



Chapter 7

[ 161 ]

The operands are assigned vector lane wise to their respective positions in the 
resultant vector. The vector lanes are similar to contiguous array elements as they 
appear in memory. The elements are assigned in lane wise in the same order as they 
appear. An example of this is as follows:

float f = 4.0f;
float3 f3 = (float3)(1.0f, 2.0f, 3.0f);
float4 f4 = (float4)(f3, f); 
//f4.x = 1.0f, 
//f4.y = 2.0f, 
//f4.z = 3.0f, 
//f4.w = 4.0f

In the preceding code which is highlighted, f3 forms the first three entries for the 
float4 f4 variable, and finally followed by a scalar f value.

If the literal is of the form of a single scalar then the scalar value is replicated across 
all the lanes in a vector. All vector components are stored in a contiguous array.

float4

float2

float

float3

Vector

Scalar

float4= (float2, float2)
float4= (float3, float)

x s0

Vector

Vector

y s1 z s2 w s3

x s0 y s1

x s0 y s1 z s2

Vector assignments which are not allowed are as follows:

float4 f = (float4)(2.0f, 1.0f); // compiler error
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Vector components
The components of a vector of size 2, 3, and 4 can be accessed using, [x,y], [x,y,z], 
and [x,y,z,w] respectively. That is the first element of a four component vector v 
can be accessed using v.x, the second element using v.y, the third element using 
v.z, and the fourth element using v.w. Accessing beyond the vector size results in  
a compile time error for the OpenCL C runtime compiler. Example in a 2 component 
vector v you cannot access v.z. OpenCL provides mechanisms to select multiple 
components. You can also select multiple components shown as follows:

float4 pos       = (float4)(4.0f, 3.0f, 2.0f, 1.0f);
float4 reverse   = pos.wzyx; //reverse = (1.0f, 2.0f, 3.0f, 4.0f)
float4 duplicate = pos.xxyy; //duplicate =  
  //(4.0f, 4.0f, 3.0f, 3.0f)

The lanes in vector data types can also be accessed using numeric index to refer 
to the appropriate element in the vector. A 16 component vector data type can be 
indexed using [s|S]0, [s|S]1, [s|S]2, [s|S]3, [s|S]4, [s|S]5, [s|S]6, [s|S]7, 
[s|S]8, [s|S]9, [s|S][a|A], [s|S][b|B], [s|S][c|C], [s|S][d|D], [s|S][e|E] 
and, [s|S][f|F]. For example the 13th element in the 16 component vector v can  
be accessed using v.sc, v.Sc, v.Sc, or v.SC.

Vector sub components can be accessed using .lo, .hi, .even, .odd.

The .lo suffix refers to the lower half of the vector.

The .hi suffix refers to the upper half of the vector.

The .even and .odd suffixes can be used for interleaving the data. The .even suffix 
refers to the even elements in the vector. The .odd suffix refers to the odd elements 
of the vector lane.

It is illegal to take the address of the vector sub components.

• Allowed component group notations:
float4 pos = (float4)(4.0f, 3.0f, 2.0f, 1.0f);
pos.yw = (float2)(5.0f, 6.0f);// pos = (4.0f, 5.0f, 2.0f, 6.0f)
pos.wx = (float2)(8.0f, 9.0f);// pos = (9.0f, 5.0f, 2.0f, 8.0f)
pos.xyz = (float3)(5.0f, 6.0f, 9.0f); 
                              // pos = (5.0f, 6.0f, 9.0f, 8.0f)
float4 a, b, c, d;
float16 x;
x = (float16)(a, b, c, d);
x = (float16)(a.yyzz, b.xzwy, c.xyz, d.xyz, a.yzw);
float4 f, a;
a.xyzw = f.s0123; // valid
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• Illegal component group notations:

float4 pos = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
pos.xx = (float2)(3.0f, 4.0f);// illegal - 'x' used twice
pos.xy = (float4)(1.0f, 2.0f, 3.0f, 4.0f); // float4 cannot be 
assigned to 2 components 
a = f.x12w; // illegal use of numeric indices with .xyzw
// illegal - component a.xxxxxxx is not a valid vector type
x = (float16)(a.xxxxxxx, b.xyz, c.xyz, d.xyz);

float *f = &vf.x; // is illegal 

Aliasing rules
OpenCL C standard is based on the strict aliasing rules of the C99 standard. What is 
meant by strict aliasing rule? Consider the following example:

cl_int data;
cl_int *pToIntData = &data;
cl_short *pToShortData = (cl_short *)pToIntData;
//Now one can access the sub data as follows
cl_short hi = pToShortData[1];
cl_short lo = pToShortData[0];

In the preceding example pToShortData is an alias to pToIntData. According to C99 
standard an alias cannot be created for the type other than the original. Though the 
preceding code will compile just fine and may result in a correct behavior since you 
are only reading from the aliased pointer, but when you write to an aliased pointer, 
compiler will result in a "strict aliasing rule broken" warning and will result in an 
undefined behavior. The GCC compiler will throw a warning at higher optimization 
levels. Similarly aliasing a vector type pointer to a different data type pointer is 
illegal, though it may be correct since built-in vector types are similar to a contiguous 
array type.

Conversions and type casts
All programming languages support converting a numerical data type to another 
numerical data type. There is also a need to reinterpret a data type in some other 
form, for example, if one wants to extract only the exponent component from a 
floating point data type, how can one do that? We will discuss the implicit and 
explicit type conversions, followed by reinterpreting the data types.
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Implicit conversion
Implicit conversion refers to the conversion of a data in one type to another type, 
which is equivalent to the original data type. This conversion is allowed for basic 
data types, which is described in the table earlier. For example, the integer value 
1 will be converted to an equivalent floating point value 1.0f. The corresponding 
hex representation is 0x3F800000. When you convert a float value to an int, the 
compiler will usually throw a warning. To avoid that you explicitly cast the scalar 
data types. Example:

float f = 2.0f;
int i = (int) f;

Explicit cast of vector data types is not allowed. But the casting of basic data types 
from scalar to vector data type is allowed:

    int4 i;
    uint4 u = (uint4) i; // not allowed

Note that the implicit conversion of the corresponding vector data types is not 
allowed.

Type casting will result in converting the input data to the destination data type.  
The "round to zero" rounding modes will be used for converting to built-in 
integer vector types. The default rounding mode round-to-nearest will be used 
for conversions to floating-point vector types. This is in accordance with IEEE-754 
floating point standard. When casting a bool to a vector integer data type, if the  
bool value is true then all the bits are set to 1. If false they are all cleared to 0.

Explicit conversion
Explicit conversions are allowed in OpenCL using the intrinsics of the form:

    convert_destType(sourceType)

This conversion is possible between any basic data type and their corresponding 
vector types described in basic data types table earlier in this chapter except for  
bool and half.
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Example for the same is as follows:

uchar4 u4 = {'0', 'b', 'c', 'd'};
//u4.x = 48, u4.y = 98, u4.z = 99, u4.w = 100 – ASCII values
int4   i4 = convert_int4(u);
i4 = i4 + (int4)200;
//i4.x = 248, i4.y = 298, i4.z = 299, i4.w = 300
u4 = convert_char4_sat(i4);
//u4.x = 248, u4.y = 255, u4.z = 255, u4.w = 255

Here 4 unsigned char vector uchar4 u4 is converted to 4 signed integer vector int4. 
These u4 vector values are converted to integer vector values and stored in i4 using 
the OpenCL built-in convert_int4. A upper case adding 200 to each element in the 
vector i4, and then converting it back to unsigned char vector using the convert_
uchar4_sat function, will result in the saturation of the values to the maximum 
possible value which the destination type can take.

Rounding modes can also be specified for the input operand. There are 4 different 
rounding modes, rte (Round to nearest even), rtp (Round toward positive infinity), 
rtz (Round toward zero), and rtn (Round toward negative infinity). If the rounding 
mode is not specified the default rounding mode of rtz is considered when the 
destination is an integer. For floating point destination types the rounding mode  
is rte—Round to nearest even. The convert* function prototype when converting  
to a destination type is as follows:

Scalar convert function:

destType convert_destType[_sat][roundingMode] (sourceType val);

Vector convert function:

destTypen convert_destTypen[_sat][roundingMode] (sourceTypen  
  valn);

In the case of vector data types the destination and source operands must have  
the same number of elements. If the source and destination types are same then  
the conversion will have no effect. The saturation to floating point formats may  
not be used for example, _sat modifier is not used when converting to floating  
point formats.
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Some examples of explicit conversions:

Saturation conversions when converting from signed integer to unsigned  
integer format:

First example is as follows:

int4 i4;
uint4 u = convert_uint4_sat( i4 );
//Here the negative values are clamped to 0

Second example is as follows:

float4 f;
// values are implementation defined for
// f > INT_MAX, f < INT_MIN or NaN
int4 i = convert_int4( f );
// values > INT_MAX clamp to INT_MAX, values < INT_MIN clamp
// to INT_MIN. NaN should produce 0.
// The _rtz rounding mode is used to produce the integer values.
int4 i2 = convert_int4_sat( f );
// similar to convert_int4, except that floating-point values
// are rounded to the nearest integer instead of truncated
int4 i3 = convert_int4_rte( f );
// similar to convert_int4_sat, except that floating-point values
// are rounded to the nearest integer instead of truncated
int4 i4 = convert_int4_sat_rte( f );

Third example is as follows:

int4 i;
// convert ints to floats using the default rounding mode.
float4 f = convert_float4( i );
// convert ints to floats. integer values that cannot
// be exactly represented as floats should round up to the
// next representable float.
float4 f = convert_float4_rtp( i );

The arithmetic conversions occur based on the rank of the arithmetic type. A 
compile-time error will occur if any type with a higher rank is being converted  
to the type of the lower rank element. Following given are the rules of rank in  
the order of highest to lowest rank:
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• All vector types shall be considered to have higher conversion ranks  
than scalars.

• The rank of a floating-point type is greater than the rank of another floating 
point type, if the first floating point type can exactly represent all numeric 
values in the second floating point type. (For this purpose, the encoding of 
the floating-point value is used, rather than the subset of the encoding usable 
by the device.).

• The rank of any floating point type is greater than the rank of any integer 
type.

• The rank of an integer type is greater than the rank of an integer type with 
less precision.

• The rank of an unsigned integer type is greater than the rank of a signed 
integer type with the same precision.

• The rank of the bool type is less than the rank of any other type.
• The rank of an enumerated type shall equal the rank of the compatible 

integer type.
• For all types, T1, T2, and T3, if T1 has greater rank than T2, and T2 has greater 

rank than T3, then T1 has greater rank than T3.

Let's take an example and discuss the preceding rules:

int a;
short4 b;
short4 c = b + a;

Assuming a and b are initialized, here b is of lower rank than that of a since the 
size of short is 2 bytes, and int is of size 4 bytes (point 4 above). Hence this will 
be a compile time error and the arithmetic operation specified by b + a cannot be 
performed.

float  a;
float4 b;
float4 c = b + a;

Here b is of higher rank than that of a since a is a scalar component (point 1 above). 
And the rank of destination operand is equal to that of b or higher than a (point 8 
above). Hence this operation will work for an OpenCL device compiler.
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Reinterpreting data types
C programmers need a mechanism to take a look at the contents of the bit 
representation of a data type and perform an operation on them. For example a 
programmer will need to look at the sign bit, or mantissa bit or the exponent bit  
in a floating point representation. One of the mechanisms to achieve this is using 
unions is follows:

union{ 
   float f; 
   uint u; 
} u;
u.f = 1.0f;
//then u.u will 0x3f800000

Here both uint and float are of size 4 bytes. The OpenCL language allows the use 
of union to programmers to access a member of a union object using a member of  
a different type.

Pointer aliasing and memcpy are other methods to achieve the same. But pointer 
aliasing is not allowed in OpenCL C, and memcpy is not defined in OpenCL C either.

OpenCL C standard provides a mechanism to reinterpret data in another basic  
data type by using the following function prototype:

Scalar types:

type = as_type(src_type);

Vector types:

typen = as_typen(src_typen);

The difference between the as_* and convert_* routines is shown in the  
following example:

float f = 1.0f;
uint u1 = as_uint(f); //  Contains: 0x3f800000
uint u2 = convert_uint(f); //  Contains: 0x00000001 

The source and destination sizes for as_* routines must be the same. If they differ 
then it is an error. When "reinterpreted" from one type to another the usual bit 
representation of the source operand is retained. Note in the as_* routines the  
source data type is reinterpreted into the destination data type. No conversion  
takes place. Refer to the following for the same:

float4 f, g;
int4 is_less = f < g; 



Chapter 7

[ 169 ]

// Legal. f[i] = f[i] < g[i] ? f[i] : 0.0f
f = as_float4(as_int4(f) & is_less);

In the preceding example the OpenCL C compiler will perform a lane wise "less 
than" operation, and the resultant bool will set or clear all the corresponding lane 
bits, depending upon the result of the less than operation. The is_less function now 
contains a mask for the elements f[i] < g[i].

In the last step f shall contain the elements, which were less than the corresponding 
g elements.

Operators
C programming language has a big set of operators, which a programmer can use in 
OpenCL C also. Following is the list of operator categories, which OpenCL C allows 
for. For more information refer to section 6.3 of OpenCL 1.2 standard specification.

• Arithmetic operators: Arithmetic operators add (+), subtract (-), multiply 
(*), and divide (/) operate on built-in integer and floating point scalar, and 
vector data types. The remainder or the modulo operator (%) operates on 
built-in integer scalar and integer vector data types.

• Arithmetic unary operators: The arithmetic unary operators (+ and -) operate 
on built-in scalar and vector types.

• Arithmetic post- and pre-increment and decrement operators (++ and --).
• Relational operators
• Equality operators
• Bitwise operators
• Logical operators
• Logical unary operator
• Ternary selection operator
• Shift operators
• sizeof operator
• comma operator
• indirection (*) operator
• unary address (&) operator
• Assignment operator
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Operation on half data type
Except for the sizeof operator, the half data type cannot be used with any of the 
operators mentioned in the preceding section. This means that doing the following  
are invalid operations on the half data type:

half a;
half b[100];
half *p;
a = *p; 

Now the usual question would arise how can one do operations on half  
data types?

For loading and storing half data types vload_halfn and vload_storen should  
be used. The prototype of vload_halfn is as follows:

float vload_half (size_t offset, const __global half *p)

The vload_half function reads a half value from p + offset location and returns 
a float value. The half value is converted to a float value, and the float value is 
returned. Performance wise, half cannot be worse than float. But there are many 
devices which do not support half computation, but the half values are up scaled 
to a floating point value and computation can be performed on them. There may be 
a slight overhead but all this can be hardware specific but you can make up that loss 
by having a far superior transfer time of a half data type buffer. Hence half data 
types cannot be passed as kernel arguments.

Address space qualifiers
There are four different address space qualifiers supported by OpenCL. The address 
space qualifier is used in variable declarations to specify the region of memory  
to allocate the declared object. The following is the list of address qualifiers:

• __global or global

• __local or local

• __constant or constant

• __private or private
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A data type object in a kernel program is allocated space in the specified address 
space qualifier. If no specifier is given then a generic address space is considered. 
For example all kernel function arguments and local variables will take a __private 
if no address space qualifier is specified. Image memory objects arguments of type 
image2d_t, image3d_t, image2d_array_t, image1d_t, image1d_buffer_t, and 
image1d_array_t refer to the __global address space. Address space qualifiers for 
return types are allowed only for pointer types.

The OpenCL memory model specifies the different memory regions. Each of these 
are categorized into the address space qualifier, discussed as follows:

Compute Device

Compute unit 1

Private
memory 1

Private
memory M

Compute unit N

PE 1 PE M

Local
memory 1

Local
memory N

Global/Constant Memory Data Cache

Global memory

Constant Memory

...

Compute Device Memory

PE 1 PE M

Private
memory 1

Private
memory M

... ...

__global/global address space
The __global or global address space name is used to refer to memory objects 
(buffer or image objects) allocated from the global memory pool. They can be either 
pointers to scalar buffers or pointers to vector buffers. All the memory usually gets 
allocated at the host side, and is passed to the kernel as a cl_mem object created using 
the clCreateBuffer function. For image objects the argument is of type image2d_t, 
image3d_t, image2d_array_t, image1d_t, image1d_buffer_t, and image1d_
array_t. These by default refer to the __global address space qualifier.

The const qualifier can also be added to the __global qualifier to specify that the 
memory object is read only.
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__local/local address space
This memory address space specifier is allocated space in local memory of the 
computing device. It can be shared across all the work items in a work group. 
The variables or memory objects created with __local address space qualifier, 
have life time only till the execution of the work group executing the kernel. The 
clGetDeviceInfo function can be used with param_name as CL_DEVICE_LOCAL_
MEM_SIZE to determine the total local memory size offered by every compute unit.

__constant/constant address space
The __constant or constant address space name is used to describe variables 
allocated in global memory and which are accessed inside a kernel(s) as read-only 
variables and can be accessed by all the global work item of the kernels during its 
execution. Pointers to __constant variable are allowed inside the kernel and can be 
passed as an argument to the kernel. String literals are allocated __constant address 
space. All program scope variables get defined in the __constant address space. 
This means that these variables need to be initialized and must be resolved during 
compile time. Any write operation to a __constant variable should be a compile 
time error.

Now consider a following example where in you do filtering operations on the input 
buffer filter_in, by multiplying with the corresponding elements in the filter 
buffer. Here the buffer filter is accessed by every work item, and the filter variable 
is always a constant and is only read from and never written into. From a performance 
perspective it would be good to specify the filter argument with a __constant 
qualifier rather than global. Some hardware devices have a dedicated constant global 
buffer, which allows for fast access to itself. The constant buffers can be passed as a 
kernel argument using the clSetKernelArg function, or can also be defined in the 
global scope in the corresponding OpenCL kernel code. The OpenCL buffer objects 
which are meant to be "read only" inside the kernel, must be created with the CL_
MEM_READ_ONLY flag set. Performance wise it will be advantageous to define the __
constant variable in global program scope in the OpenCL kernel as follows:

__kernel void filterKernel (__constant float4 *filter, 
                            __constant float4* filter_in, 
                            __global float4* filter_out)
{
...
//l_tid -> local work item ID
//g_tid -> global work item ID
filter_out[tid] = filter_in[g_tid] * filter[l_id];
...
}
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__private/private address space
All the kernel arguments which do not specify any qualifier are by default treated  
as __private address space qualifiers. Similarly all variables inside non-kernel  
and kernel functions are in the __private or private address space.

Restrictions
Pointer arguments to kernel functions must be declared with any one of the address 
specifiers __global, __constant, or __local qualifier. By default unless specified 
they will be assumed in the __private region. The __constant, __local, or __
global pointers can only be assigned to a pointer declared with the __constant, 
__local, or __global qualifiers respectively. Function pointers are not allowed.  
The functions with __kernel function attribute cannot have arguments as pointer  
to pointer(s).

Image data types, image2d_t, image3d_t, image2d_array_t, image1d_t, image1d_
buffer_t, or image1d_array_t can only be passed as function arguments. Only 
global address space qualifiers can be applied on the image. These cannot be used 
to declare unions or structs. Image data types cannot be accessed directly, instead 
to read the contents one has to use samplers. This is discussed in detail in Samplers 
section of Chapter 4, OpenCL Images.

Image access qualifiers
OpenCL specification provides two types of access qualifiers for different types 
of image memory objects. They can be either read_only or write_only. In the 
following example imageA is read-only image object, and imageB is a write-only 
image object:

__kernel void foo (read_only image2d_t imageA,
                   write_only image2d_t imageB)

About function qualifiers and attributes, __kernel qualifier declares a function 
which is defined explicitly to run on an OpenCL device. A __kernel qualified 
function can be invoked inside another kernel function. In such a situation the  
kernel function just behaves as another function call. There are optional function 
attributes which can be specified for kernel functions.

The __kernel qualified functions cannot return any data type. The return type is 
always void for those functions.
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The keyword __attribute__ allows you to specify the special attributes for enums, 
structs, unions, or to the functions or kernels. An attribute specifier can be given  
in the form of:

__attribute__ ((attribute-list)) 

The attribute-list attribute is the list of comma separated attributes which will  
be associated with the object.

Let's consider some of the attributes supported by OpenCL C.

Function attributes
__attribute__((vec_type_hint(<type>)))

This attribute is a hint to the compiler, such that when the compiler is looking to auto 
vectorization, then it would vectorize around the <type> specified in the attribute. 
For example, when the hint <type> is float4 then the complier would decide to 
merge work items or possibly even separate one work item. This is an optimization 
hint to the compiler.

__attribute__((work_group_size_hint(X, Y, Z)))

This hints to the compiler about the local work group size for the kernel.

__attribute__((reqd_work_group_size(X, Y, Z)))

This specifies the work group size multiple that must be used to run the kernel.

Data type attributes
The two types of data attributes are aligned and packed. They are described as follows:

• aligned attribute: The aligned attribute is useful for getting good read 
and write bandwidths. The aligned attribute can be specified to mention 
the minimum alignment for the specified data type. Note all basic data types 
and vector types are naturally aligned by the complier to the multiple of their 
size. In the case of structures shown as follows, 3 shorts are of size 6 bytes. 
When you create an array of struct S, then each element is at an aligned 
address of 8 bytes.:
struct S { short f[3]; } __attribute__ ((aligned (8))); 

All the variables of type struct S are aligned to 8 byte boundary. That  
is S[0], S[1] and so all will be at multiples of 8 byte boundaries.
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• packed attribute: The packed attribute, packs the data types within a struct 
or union, such that memory requirements are reduced. The packed attribute 
can only be specified to C structures and unions.

Variable attribute
aligned and packed attributes can also be defined for variable declarations. Example:

int x __attribute__ ((aligned (16))) = 0;
struct foo { int x[2] __attribute__ ((aligned (8))); };
__attribute__((aligned(128))) struct A {int i;} a; 
//a is 128 byte aligned 

endian attribute: Another attribute called endian (endiantype) can also be specified. 
The endiantype attribute will be either host or device, if it's host then the variable 
is of type host endian, if it's device then the data type has device endian. If no 
endian type is specified then the endian type would default to device endian.

The kernel attribute specified in the kernel declaration can be retrieved using the 
clGetKernelInfo function using the param_name CL_KERNEL_ATTRIBUTES.

Storage class specifiers
The static and extern storage classes are supported. The auto and register 
specifiers are not supported inside the OpenCL kernel.

Built-in functions
In OpenCL C you cannot include the standard header files provided by C99 
standard such as, math.h, stdio.h, stdlib.h, errno.h, and so on. OpenCL C 
provides a huge set of built in functions, which can be used by the programmer for 
programming the OpenCL kernels. Using built-in functions wherever possible may 
result in performance enhancement. Also this will make sure the code is portable 
across different vendors. We will discuss briefly the group of built-ins and will  
leave it to the reader to take a look at section 6.12 of OpenCL specification 1.2.
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Work item function
While enqueuing a kernel using clEnqueueNDRangeKernel, we specify the global 
and local work sizes. To determine these values during the kernel function execution 
time or to which index a work item belongs in the NDRange, OpenCL provides some 
built-in functions. They are as follows:

Function Description
uint get_work_dim () Returns the number of dimensions 

associated with the kernel launch.
size_t get_global_size (uint 
dimindx)

Is used to determine the global number 
of work items in dimension specified by 
dimindx.

size_t get_global_id (uint 
dimindx)

Returns the global id of the kernel work 
item for the dimension specified by 
dimindx.

size_t get_local_size (uint 
dimindx)

Is used to determine the local number 
of work items in a work group for the 
dimension specified by dimindx.

size_t get_local_id (uint 
dimindx)

Returns the local id of the kernel work 
item in a work group for the dimension 
specified by dimindx.

size_t get_num_groups (uint 
dimindx)

Gives the number of work-groups that 
are executing with this kernel for the 
dimension identified by dimindx.

size_t get_group_id (uint 
dimindx)

Returns the group ID of the work group 
in the dimension dimindx

size_t get_global_offset (uint 
dimindx)

Returns the offset values specified in 
the global_work_offset argument 
during the launch of the kernel using the 
clEnqueueNDRangeKernel function.

Synchronization and memory fence functions
OpenCL is used to optimize the performance of data parallel workloads. During 
the execution of the kernel, the result of processing of data from a work item will be 
needed in some other work item. Most of the highly parallel OpenCL devices run 
all the work items in a work group in tandem that is all the work items run the same 
program counter instruction at the same time (mostly in NVIDIA® and AMD GPUs). 
In such a case how will a programmer synchronize to share data results across work 
items? OpenCL C provides the barrier routine to stop the execution of a work item, 
till to until all the work items in that work group reach the same execution point.
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void barrier (cl_mem_fence_flags flags)

The barrier function can be added to ensure all the work items synchronize at this 
point. It is a useful function for algorithm developers to optimize their code, using 
the local memory buffers. flags which is of type cl_mem_fence_flags can be CLK_
LOCAL_MEM_FENCE—this ensures correct ordering of operations on local memory.  
It is used as follows:

barrier(CLK_LOCAL_MEM_FENCE);

The barrier function will either flush any variables stored in local memory or queue a 
memory fence to ensure correct ordering of memory operations to local memory.

CLK_GLOBAL_MEM_FENCE—this ensures correct ordering of operations on global 
memory. It is used as follows:

barrier(CLK_GLOBAL_MEM_FENCE);

For understanding purposes, in short you should use CLK_LOCAL_MEM_FENCE, when 
reading and writing to the __local memory space, and CLK_GLOBAL_MEM_FENCE 
when reading and writing to the __global memory space.

Other built-ins
OpenCL 1.2 provides another set of OpenCL built-ins. These can be used by within 
any OpenCL kernel. Vector data load and store functions, image read and write 
functions, atomic functions, Math, geometric, and relational functions are all 
discussed in section 6.12 of OpenCL specification 1.2.

Summary
In this chapter we started our discussion with built-in scalar and vector data types, 
there to their conversion and type casting rules. These data types can be used by 
the programmer to make his kernel code cross platform and use the underlying 
hardware for optimization. We discussed the function attributes, data type attributes, 
and some built-in functions. We strongly encourage you to refer to the OpenCL spec 
for more details.

In the subsequent chapters we will take up some case studies and learn optimization 
techniques. Case studies is the most important part of this book as this will enable 
you to get an in depth knowledge of OpenCL. This will also help you to understand 
what types of applications can be accelerated using OpenCL.





Basic Optimization 
Techniques with Case 

Studies
In this chapter we will discuss a few optimization techniques and finally illustrate 
some of them using a simple example of matrix multiplication. In a step-by-step 
process we combine multiple optimization strategies one by one to get gradual 
performance improvement. The main advantages of matrix multiplication over  
many other simpler algorithms , is that its easy to understand the data parallel  
work load and it demonstrates well the advantage of private memory, local  
memory, vectors and the problem of bank conflicts.

We start this chapter with a discussion of various ways to find performance 
bottleneck. First we discuss event-based timing information collection using 
clWaitForEvent API. Then we mention some available tools for performance 
detection. After that we jump into case study, starting from sequential 
implementation for CPU. Then gradually describing naive OpenCL implementation 
on Graphics Processor Unit (GPU), followed by a series of implementation on GPU 
each illustrating some optimization techniques like using coalesced read, using 
vector operation, utilizing local memory, using a combination of local memory and 
coalesced access, utilizing private memory. Finally, we present some ideas to find the 
scope of OpenCL optimization in a sequential code, followed by a list of general tips 
on optimization.
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Finding the performance of your 
program?
In the ongoing process of optimization of an OpenCL program we need to find 
performance bottlenecks at each step so that we can improve on them. Here are 
some techniques for this investigation. In a Unix based system the time command 
provides user time, system time, and CPU time of a program-execution in detail. 
In Windows PowerShell, we use a built-in command called Measure-Command 
that gives total running time of a program. This is also similar to the linux time 
command. To get the execution time of a function or any part of code in C we can 
use either the clock_t clock (void); function or the time_t time (time_t* 
timer); and double difftime (time_t end, time_t beginning); functions 
from the standard header <time.h> or <ctime>. Those including several other 
techniques are good enough for measuring time of a CPU based program.

In OpenCL optimization, our area of interest is a bit different. As a part of 
optimization of the entire program, here we focus mainly on the optimization 
of kernel running on a device. In an OpenCL Kernel code that is running on a 
device (for example, GPU) we enqueue the kernel in a command_queue. Due to the 
existing pending jobs in that command_queue and a few other factors, we don't get 
a deterministic way to find an exact time difference between kernel submission and 
start of execution of the submitted kernel. Hence the previous clock and time based 
technique fails to find the actual duration of Kernel execution on device. We may 
also be interested to know exact data transfer time between host and device used 
by an OpenCL implementation. That means you may want to profile functions like 
clEnqueue[Read|Write]Buffer and clEnqueue[Map|Unmap]Buffer. For such 
enqueued commands, we use an event-based mechanism to get exact start and 
end time of a kernel execution on a device. All of the clEnqueue* commands (such 
as, clEnqueueNDRangeKernel, clEnqueueReadBuffer, clEnqueueWriteBuffer, 
clEnqueueCopyImageToBuffer) have their last parameter as cl_event *. This is 
an output parameter for the command. If we create a valid cl_event object before 
calling those commands and pass the address of the object to the command, after 
successful execution this cl_event object would contain the event object that 
identifies the task enqueued. This event has two possible uses, one, to enqueue 
another command that should wait for this command which is identified by this 
event, that is, for the purpose of synchronization, two, which is of our current 
interest is for profiling and query the timing information of the tasks enqueued.
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The Time query method is described here with a code snippet. Event objects are 
used to capture timing information that measures execution time of the enqueued 
tasks. For this, the application developer should enable the command_queue 
with the CL_QUEUE_PROFILING_ENABLE flag set in properties argument to 
clCreateCommandQueue.

...
cl_event someEvent;
cl_ulong start;//start time 
cl_ulong end;//end time
...
clEnqueueNDRangeKernel(commandQueue,
                someKernel,
                2,
                NULL,
                globalThreads,
                localThreads,
                0,
                NULL,
                &someEvent);
...
clWaitForEvents(1, &someEvent);
clGetEventProfilingInfo(someEvent,
        CL_PROFILING_COMMAND_START,x
        sizeof(cl_ulong),
        &start,
        0);
clGetEventProfilingInfo(someEvent,
        CL_PROFILING_COMMAND_END,
        sizeof(cl_ulong),
        &end,
        0);
std::cout << "someKernel time taken is : " 
             << (end - start) 
             << "nanoseconds" << std::endl;
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Explaining the code
The preceding code is explained in detail here.

1. Here we measure the duration of execution of a Kernel called someKernel on 
device. This kernel, using clEnqueueNDRangeKernel function, is enqueued 
in commandQueue. The commandQueue is created with CL_QUEUE_PROFILING_
ENABLE flag set.

2. Before this clEnqueueNDRangeKernel command we have defined a 
cl_event object, someEvent. Pointer to this someEvent is passed as last 
parameter of clEnqueueNDRangeKernel.

3. Then we call clWaitForEvent whose first parameter is number of events 
(here one) and second parameter is pointer to first element of the event array 
to wait for (here only one event). This waits for the command identified by 
the event to complete.

4. Then we make two successive calls to clGetEventProfilingInfo to get 
start and end time in the previously declared start and end respectively. 
Second parameter of this command is of type cl_profiling_info which 
is an enumerated type that can take any of the four values, which is 
CL_PROFILING_COMMAND_QUEUED, CL_PROFILING_COMMAND_SUBMIT, CL_
PROFILING_COMMAND_START, CL_PROFILING_COMMAND_END respectively  
for enqueue, submit, start and end time of the command identified by the 
event. In all cases the fourth parameter receives the device's time counter  
in nanoseconds.

Note that all the above commands return a value of cl_int type. This status must  
be equal to CL_SUCCESS to receive a valid data from the command.

Tools for profiling and finding performance 
bottlenecks
AMD and NVIDIA two major vendors for OpenCL on GPU provide their own 
profiling and debugging tools for performance profiling, identifying performance 
bottleneck and kernel debugging. AMD provides a static kernel analyzer for static 
analysis of OpenCL kernel So that you can see the disassembly of OpenCL kernel. It 
translates into AMD's Intermediate Language (IL) or hardware disassembly (ISA) 
for multiple driver version and GPU device combinations. NVIDIA had independent 
OpenCL Visual Profiler and later on released multiple versions of a combined 
profiler for OpenCL and CUDA together called Compute Visual Profiler. AMD 
provides an integrated GUI based tool for GPU profiling and debugging as well as 
CPU Profiling called CodeXL. This tool is also integrated with Visual Studio, and can 
work in Windows and Linux.
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To understand how these tools help, we limit our focus on a single tool and provide 
a very brief summary on it. We choose CodeXL. This tool is freely downloadable 
from AMD's website. There are many videos available on YouTube demonstrating 
how it works.

CodeXL can be used either as a standalone application or as Visual Studio plug-in. 
It has two modes called Debug and Profile. Profiling can be either CPU Profiling or 
GPU Profiling, at a run of an application.

In GPU Profiling user can profile an application to analyze application trace that 
shows a timeline view of occurrence of different important events (like start and 
end of Kernel or memory transfer) in the entire application and also a list of few 
top Kernels, Memory transfer, and so on with some relevant information. Another 
analysis of GPU Profiling is on the Performance Counter. Performance of a kernel 
depends on a few hardware events (called performance counters) whose counts are 
dependent on kernel code, hardware configuration in the device, and possibly on 
some other factors. For example, a branch inside the kernel within a workgroups will 
waste cycles, since the instructions run in a lock-step manner. Divergent branch (for 
example, some work item within a wave-front takes if part and some other work 
item in the same workgroup takes else part) has worse impact on performance. We 
can observe the hardware counters for branch indicating the number of branches 
occurred in the entire lifetime of the kernel and if possible, try to reduce the number 
of branches by rearranging the indexes of work items so that within a workgroup 
all the work item either takes the if part or takes the else part. A few other 
performance counters presented in CodeXL are the indicator of the amount of local 
memory used (LDS for GPU) in bytes, number of general purpose vector registers 
used, and so on.

CodeXL GPU Debugger is an OpenCL and OpenGL application debugger. Debugger 
enables user to view several statistics of function, view image, and buffer memory, 
set breakpoint on different OpenCL and OpenGL commands, and so on. It also 
provides the API function call history displayed in a log of OpenCL, OpenGL, 
OpenGL extensions, WGL, and glX function calls.

The link http://developer.amd.com/tools-and-sdks/heterogeneous-
computing/codexl/ provides some basic tutorial and download.

Both AMD and NVIDIA provide SDK samples which are optimized OpenCL code 
for reference.
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The following are the web pages with a link to download SDK for NVIDIA and 
AMD respectively.

• http://developer.download.nvidia.com/compute/cuda/3_0/sdk/
website/OpenCL/website/samples.html

• http://developer.amd.com/tools-and-sdks/heterogeneous-
computing/amd-accelerated-parallel-processing-app-sdk/
downloads/

NVIDIA also provides CUDA to OpenCL migration guide, to enable the CUDA 
developer to jump start OpenCL programming.

The following screenshot UI shows the state of an OpenCL Kernel where a 
breakpoint is hit and at the bottom it lists Properties of environment where  
the program is running, Watch, Call stack, and Locals:

OpenCL Debugger in Visual Studio
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The following screenshot displays the Occupancy Analysis in OpenCL Profiler:

OpenCL Profiler Standalone Version

Case study – matrix multiplication
As we discussed earlier, kernel is just similar to a C function. Each work item 
will execute this function on the device. We here discuss different optimization 
strategies and implementations of kernels based on them. In this chapter we present 
matrix multiplication example to illustrate those optimization strategies with 
few advantages and disadvantages of them. We need to keep in mind that all the 
techniques are not applicable to all the problems and also, unfortunately, sometimes 
they are even in conflict.
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Sequential implementation
For the sake of simplicity we take two square matrices called A and B to multiply (each 
1024 by 1024) as input and as a result get a square matrix say C of same size (1024 by 
1024). To recall, (iRow, iCol)-th element of matrix C is dot product of iRow-th row 
vector of A and iCol-th column vector of B. In other language, i-th element of iRow -th 
row of A is multiplied with i-th element of iCol -th column of B for i=1 to N (where 
N is the dimension of square matrix, here 1024) and all the i products are added to get 
(iRow, iCol)-th element of C. Illustrated in the following figure.
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Matrix multiplication algorithm

Sequential implementation is based on nested for loops as shown in the  
following code:.

void MatrixMul_sequential(int dim,
                          float *A,
                          float *B,
                          float *C)
{
  for(int iRow=0; iRow<dim;++iRow)
  {
    for(int iCol=0; iCol<dim;++iCol)
    {
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      float result  = 0.f;
      for(int i=0; i<dim;++i)
      {
        result +=
        A[iRow*dim + i]*B[i*dim + iCol]; 
      }
      C[iRow*dim + iCol] = result; 
    }
  }
}

The function MatrixMul_sequential takes four arguments namely, the dimension 
of matrix and three single dimensional arrays. Size of each array is equal to the 
square of the dimension, so that each of them holds all the elements of a matrix. A 
and B are for input matrices, respectively left and right multiplier. C is output matrix, 
that is,. the product of A and B.

The two dimensional matrix is represented in a one dimensional array by a row 
major form. It means the first dim elements represent 0 to dim-1 elements of first 
row, then dim to 2*dim-1 elements represent 1 to dim elements of second row, and 
so on. Hence to get, (iRow,iCol)-th element of matrix C we skip all the previous 
rows and because one row contains dim elements we have to skip in total iRow*dim 
elements. Then we get the first element of the iRow-th row. Hence (iRow, iCol)-th 
element is obtained by adding the iCol offset to first element of the row. So the 
(iRow, iCol)-th element of matrix would have index (iRow*dim + iCol) in our 
single dimensional array representation. We use one dimensional array for two 
dimensional data because two dimensional array is not allowed in OpenCL.
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Now the computational scheme is described. Innermost loop, indexed by i, 
computes the dot product, that is, sum of the products of row elements (of iRow 
-th row) and corresponding column elements (iCol -th Column) from A and B 
respectively and finally the sum is assigned to (iRow, iCol)-th element of C. 
Outermost loop, indexed by iRow, runs over all the rows of C and first inner  
loop indexed by iCol runs over all the column for each row of C.

Invoking the main() function is easy to write. Allocate memory for A, B, C,  
and initialize A and B with random numbers, and C's elements with 0.

main()
{
  int dim = 1024;
  float *A = (float*)malloc(sizeof(float)*dim*dim);
  float *B = (float*)malloc(sizeof(float)*dim*dim);
  float *C = (float*)malloc(sizeof(float)*dim*dim);
  for(i = 0; i < dim*dim; i++)
  {
    A[i] = (float) (rand() % 10);
    B[i] = (float) (rand() % 10);
    C[i] = 0;
  }
  MatrixMul_sequential(dim,A,B,C);
}

OpenCL implementation
With an understanding and background of the preceding implementation we jump 
to write kernels, to solve the matrix multiplication problem. We here present five 
variations of the matrix multiplication kernels. Except for the first one, which is a 
naive implementation of matrix multiplication using kernel, each kernel describes 
one or more techniques of optimization. To remind again, all the techniques would 
not give optimized performance in all environments (device hardware architecture, 
operating system, OpenCL implementation) with all possible data size. But they 
make us familiar with numerous possible techniques of optimization on GPU,  
which we can try on other problems with some idea of how they work.

All five kernels take just the same parameter list in same sequence. Instead of float 
which is allocated in host's stack or heap (in our example on heap), kernel takes the 
global memory pointers for its parameter arrays, for example, __global float *A. 
Since the kernel cannot directly access host memory, so global memory from device 
is allocated and the array data is copied to those location for kernel's use.
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Our NDRange is two dimensional for all the kernels with global_size in each 
dimension as dim (1024). Workgroup is also two dimensional and sizes are 256  
and 1 respectively in 0-th and 1-st dimension unless otherwise stated.

Simple kernel
For now we will not discuss how to prepare data and invoke kernel. This has been 
discussed extensively in the section Creating Kernel Objects of Chapter 5, OpenCL 
Program and Kernel Objects. We will now jump into our first kernel implementation, 
which is described in the code that follows:

void MatrixMul_kernel_basic(int dim,
                  __global float *A,
                  __global float *B,
                  __global float *C)
{
  //Get the index of the work-item
  int iCol = get_global_id(0);
  int iRow = get_global_id(1);
  float result = 0.0;
  for(int i=0;i< dim;++i)
  {
    result +=
    A[iRow*dim + i]*B[i*dim + iCol];
  }
  C[iRow*dim + iCol] = result;
}

Our first kernel, called MatrixMul_kernel_basic provides a naive implementation. 
Each work-item here computes one element of C. Precisely the work-item finds 
indices based on its global_ids, for example, get_global_id(1) and get_global_
id(0) are respectively row and column indices and then computes the sum  
of product.

Some performance analysis operation involves the amount of addition or 
multiplication involved in the task. In matrix multiplication we calculate the number 
of floating point operations and the amount of global memory read and write 
operations which we perform. In a single work item, the total number of floating 
point multiplication here is equal to dim, because each iteration of loop does one 
multiplication. The total number of floating point addition is also dim similarly.  
The total number of global memory fetch is dim + dim +1 (dim time A and dim  
times B within loop and one write operation to C). For the entire computation  
of matrix multiplication the total number of flops is equal to:
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work-items: total number of work items launched.

work-items * (2 * dim)    /*1 for addition and 1 for multiplication*/

The total global memory fetch is equal to:

work-items * (2 * dim)

The total global memory write is equal to:

work-items

Kernel optimization techniques
Our first step to kernel optimization is based on a technique called coalesced 
memory access. This is illustrated in kernel MatrixMul_kernel_coallesced_row. 
We will first explain coalesced memory access. Take a look at the following diagram. 
The two work groups have 64 work-items each. The input buffer of size 512 float 
elements is to be processed by a kernel.

Coalesced read illustration

In the diagram, we have shown two different types of read operations. In the first 
one, each kernel reads four float elements from the buffer. This is achieved by 
reading four elements in a loop and is shown with a thin line in the diagram. In the 
second case, each work-item reads four contiguous elements into a float4 variable. 
Both the cases above demonstrate coalesced accesses with respect to a float and a 
float4 variable respectively.
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As far as read is concerned for many types of data parallel workloads, most of the 
time it will result in coalesced access, easily. But sometimes when it comes to writing 
back to global memory coalescing is a challenge. The following figure is an example:

Image showing uncoalesced writes

So coalesced accessing is something like i-th work-item should access (i+k)-th 
element of global memory (for some constant k, preferably k=0). In the case of matrix 
multiplication we coalesce the reads from the A matrix as shown in the following code:

void MatrixMul_kernel_coallesced_row(int dim,
                  __global float *A,
                  __global float *B,
                  __global float *C)
{
  //Get the index of the work-item
  int iCol = get_global_id(0);
  int iRow = get_global_id(1);
  int localIdx = get_local_id(0);
  int localSizex = get_local_size(0);
  float result = 0.0f;
  int numElements = dim/localSizex;
  for(int j=0; j<numElements; j++)
  {
    result = 0.0f;
    for(int i=0;i< dim;++i)
    {
      result += 
            A[iRow*dim + i]*B[i*dim + j*localSizex + localIdx];
    }
    C[iRow*dim + j*localSizex + iCol] = result;
  }
}
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In the matrix multiplication kernel we just showed an example of coalesced global 
memory access. Some OpenCL devices may not show any gain in performance since 
all the accesses are from the global memory, and global memory accesses are very 
time consuming.

Next, we introduce another way of optimization using vectors and vector operations. 
Since vector operations for such sum of products are far more efficient and private 
memory access is far faster than global access, we would make out the first attempt for 
optimization using vectors keeping them in private memory. This is implemented in 
the kernel MatrixMul_kernel_basic_vector4, which computes four elements of C 
per work-item. Here two dimensional NDRange has sizes dim/4 and dim (that is, 256 
and 1024) respectively and work-group sizes are 16 in both dimensions.  
In localIdx and localIdy, global_id(0), and global_id(1) are stored.

#define VECTOR_SIZE 4
void MatrixMul_kernel_basic_vector4(int dim,
                  __global float4 *A,
                  __global float4 *B,
                  __global float *C)
{
  //Get the index of the work-item
  int globalIdx = get_global_id(0);
  int globalIdy = get_global_id(1);
  float result = 0.0;
  float4 Bvector[4];
  float4 Avector, temp;
  float4 resultVector[4] = {0,0,0,0};
  int    noOfVectorsInARow = dim/VECTOR_SIZE;
  for(int i=0; i<noOfVectorsInARow; ++i)
  {
    Avector = A[globalIdy*noOfVectorsInARow + i];
    Bvector[0] = B[dim*i + globalIdx];
    Bvector[1] = B[dim*i + noOfVectorsInARow + globalIdx];
    Bvector[2] = B[dim*i + 2*noOfVectorsInARow + globalIdx];
    Bvector[3] = B[dim*i + 3*noOfVectorsInARow + globalIdx];

    temp = (float4)(Bvector[0].x, Bvector[1].x,
                    Bvector[2].x, Bvector[3].x);
    resultVector[0] += Avector * temp;

    temp = (float4)(Bvector[0].y, Bvector[1].y,
                    Bvector[2].y, Bvector[3].y);
    resultVector[1] += Avector * temp;
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    temp = (float4)(Bvector[0].z, Bvector[1].z,
                    Bvector[2].z, Bvector[3].z);
    resultVector[2] += Avector * temp;

    temp = (float4)(Bvector[0].w, Bvector[1].w,
                    Bvector[2].w, Bvector[3].w);
    resultVector[3] += Avector * temp;

  }
  C[globalIdy*dim + globalIdx*VECTOR_SIZE] = resultVector[0].x +
                                             resultVector[0].y +
                                             resultVector[0].z +
                                             resultVector[0].w;
  C[globalIdy*dim + globalIdx*VECTOR_SIZE + 1] =
                                             resultVector[1].x +
                                             resultVector[1].y +
                                             resultVector[1].z +
                                             resultVector[1].w;
  C[globalIdy*dim + globalIdx*VECTOR_SIZE + 2] =
                                             resultVector[2].x +
                                             resultVector[2].y +
                                             resultVector[2].z +
                                             resultVector[2].w;
  C[globalIdy*dim + globalIdx*VECTOR_SIZE + 3] =
                                             resultVector[3].x +
                                             resultVector[3].y +
                                             resultVector[3].z +
                                             resultVector[3].w;
}

In the kernel MatrixMul_kernel_basic_vector4 we just saw, the integer 
globalIdy*dim gives the corresponding row's beginning and globalIdx*VECTOR_
SIZE is the offset part. Since one work-item computes the VECTOR_SIZE (here set 
to four) elements, so work-item with globalIdx index would start computation 
from the element which has the index just next to all the elements computed by all 
previous work-items. Total number of those elements which are already computed 
within current row is globalIdx*VECTOR_SIZE - 1 (since index starts from zero). 
Hence the first element that the current work-item would compute has the index 
globalIdy*dim + globalIdx*VECTOR_SIZE. Next three elements are obtained by 
merely adding 1, 2, and 3 respectively to this index. We first define two vector arrays 
of float4 of size four where each element of the array holds four floats. This array 
would ultimately contain 4*4 =16 floats. First, float4 Bvector[4];, would hold B's 
element and second, float4 resultVector[4] = {0,0,0,0}; which is initialized 
to zero, would hold the final results.
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Note the value of noOfVectorsInARow is equal to dim/VECTOR_SIZE because 
by using float4 Avector within loop, we are covering four elements in a single 
iteration of the loop.

The statement Avector = A[globalIdy * noOfVectorsInARow + i]; fetches 
four elements from the global memory starting from index globalIdy * 
noOfVectorsInARow + i, for current i and loads the values in Avector. This 
Avector is now being used to compute the corresponding parts of the sum of four 
elements of C.

First four elements of the global array B, with starting index dim*i + globalIdx 
are loaded in Bvector[0]. Next successive four element groups are loaded in 
Bvector[1], Bvector[2], Bvector[3]. Using float4 temp, we accumulate the  
sum in the array of resultVector and finally when the loop completes all the  
four elements are computed, we load them in corresponding element of C.

The usage of vectors resulted in a gain in performance. You can try this out in  
your OpenCL device.

Another gain in performance is due to caching the required part of A in a private 
memory (float4 Avector is private memory) and reusing it. The private memory 
is the fastest, but private memory is small, so it may be used up very quickly with 
variables. When the amount of private variable is so much that it demands more 
than available amount of private memory, it spills to the global memory which 
makes the memory access very slow. This reduces the overhead of repeated access 
to the global memory. Third factor for performance gain is device dependent. When 
a device has number of compute units say less than or equal to 4, it is advantageous 
to reduce the number of work-items launched. Here we have done that by a factor 
of four because each work-item is doing the work of four elements computation as 
against 1 for each work-item in  our previous kernels MatrixMul_kernel_basic  
and MatrixMul_kernel_coallesced_row.

Now we discuss few performance penalty factors of this kernel with respect to the 
previous one. First, extra overhead is due to allocation, initialization, and copy 
of all private memory elements. But this step overcomes the loss in performance 
by directly operating on the global memory. Second disadvantage is again device 
specific. If the number of compute unit is more than the number of work groups 
launched this may lead to inefficient occupancy which leads to wastage of hardware 
resources. That factor is aggravated if total number of compute units in the device 
are not a factor of the total number of work-groups. We have discussed this in the 
section Application Scaling in Chapter 2, OpenCL Architecture.
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We now further continue in writing next two kernels, namely, MatrixMul_kernel_
localA and MatrixMul_kernel_localA_coallesced. First we discuss the common 
characteristics between them. In fact, the only difference between these two kernels 
is in the body of the first loop. In both the kernels, we use the local memory for 
performance gain. Here again NDrange is two dimensional with dimensions equal 
to the size of destination Matrix C. Each work item computes one element of C. Work 
groups size is 256 by 1. In this Kernel we pass one extra parameter, the fifth parameter 
which is a float pointer allocated with the __local address space specifier.

void MatrixMul_kernel_localA(int dim,
                  __global float *A,
                  __global float *B,
                  __global float *C,
                  __local  float *lA)
{
  //Get the index of the work-item
  int iCol = get_global_id(0);
  int iRow = get_global_id(1);
  int localIdx = get_local_id(0);
  int localSizex = get_local_size(0);
  float result = 0.0f;
  int numElements = dim/localSizex;
  for(int i=0; i<numElements ; i++)
  {
    lA[localIdx*numElements + i] =
        A[iRow*dim + localIdx*numElements + i];
  }
  barrier(CLK_LOCAL_MEM_FENCE);
  for(int i=0;i< dim;++i)
  {
    result += lA[i]*B[i*dim + iCol];
  }
  C[iRow*dim + iCol] = result;
}

The statement in the host code that passes this argument is something like clStatus 
= clSetKernelArg(kernel, 4, 1024*sizeof(float), NULL); 4 indicates index 
of parameter in the parameter-list (this is fifth parameter). Then size of the array is 
passed. Here the size is MATRIX_WIDTH*sizeof(float) and the last argument which 
is the pointer to local is NULL. 
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Here the entire row of A matrix is copied into local memory so that it can be used 
by all the work-items of same work group. One copy of a row is available for each 
work-group. As before we do equal partition of task of copying, so each work-item 
here copies equal amount of the current row of A, since there are 256 work-item per 
work-group, so for a MATRIX_WIDTH equal to 1024 elements each work-item copies 
(1024/256) 4 elements.

To make sure the entire row of A is available on local memory of a work-group, 
before proceeding further we apply one work-group level synchronization primitive 
called barrier(CLK_LOCAL_MEM_FENCE);. This ensures that all the work-items in 
a work-group reached this line before any work-item in that work-group executes 
the next line. When entire row of A is available then we proceed to compute the 
corresponding element of C within next for loop. The main difference between the 
kernels is that second one uses coalesced memory access for populating row of A.

void MatrixMul_kernel_localA_coallesced(int dim,                                           
                  __global float *A,                                                       
                  __global float *B,                                                       
                  __global float *C,                                                       
                  __local  float *lA)                                                      
{                                                                                          
  //Get the index of the work-item                                                       
  int iCol = get_global_id(0);                                                           
  int iRow = get_global_id(1);                                                           
  int localIdx = get_local_id(0);                                                        
  int localSizex = get_local_size(0);                                                    
  float result = 0.0f;                                                                   
  int numElements = dim/localSizex;                                                      
  for(int i=0; i<numElements ; i++)                                                      
  {                                                                                      
    lA[i*localSizex + localIdx] = A[iRow*dim + i*localSizex +  
      localIdx];               
  }                                                                                      
  barrier(CLK_LOCAL_MEM_FENCE);                                                          
  for(int i=0;i< dim;++i)                                                                
  {                                                                                      
    result += lA[i]*B[i*dim + iCol];                                                             
  }                                                                                      
  C[iRow*dim + iCol] = result;                                                           
}

Main advantage in performance is the use of local memory and the reuse of it for 
the entire work-group. It is copied once and used 256 times, since 256 work-items 
are launched per work-group. Since the second kernel MatrixMul_kernel_localA_
coallesced uses coalesced access that would give some performance gain over first.
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Case study – Histogram calculation
In the section Histogram calculation in Chapter 3, Buffers and Image Objects, we 
discussed about the naive implementation of histogram computation of an image. 
We read an input image file and pass the pixel buffer to the OpenCL device to 
compute the histogram of the image. By now you must have observed that this 
implementation is not so optimized which involves sequential reads. In this section 
we will try to optimize this implementation by making use of atomic_inc OpenCL 
C built-in and make use of coalesced reads and writes to the global and local 
memory. Take a look at the following kernel:

#define BIN_SIZE            256
#define ELEMENTS_TO_PROCESS 256
__kernel
void histogram_kernel(__global const uint* data,
                  __global uint* binResultR,
                  __global uint* binResultG,
                  __global uint* binResultB)
{
  __local int sharedArrayR[BIN_SIZE];
  __local int sharedArrayG[BIN_SIZE];
  __local int sharedArrayB[BIN_SIZE];
  __global uchar4 * image_data = data;
  size_t localId   = get_local_id(0);
  size_t globalId  = get_global_id(0);
  size_t groupId   = get_group_id(0);
  size_t groupSize = get_local_size(0);

  /* initialize shared array to zero */
  sharedArrayR[localId] = 0;
  sharedArrayG[localId] = 0;
  sharedArrayB[localId] = 0;

  barrier(CLK_LOCAL_MEM_FENCE);
  int groupOffset = groupId * groupSize * ELEMENTS_TO_PROCESS;
  /* calculate thread-histograms */
  for(int i = 0; i < ELEMENTS_TO_PROCESS; ++i)
  {
    int index = groupOffset + i * groupSize + localId;
    //Coalesced read from global memory
    uchar4 value = image_data[index];
    atomic_inc(&sharedArrayR[value.x]);
    atomic_inc(&sharedArrayG[value.y]);
    atomic_inc(&sharedArrayB[value.w]);
  }

  barrier(CLK_LOCAL_MEM_FENCE);
  //Coalesced write to global memory
  binResultR[groupId * BIN_SIZE + localId] = sharedArrayR[localId];
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  binResultG[groupId * BIN_SIZE + localId] = sharedArrayR[localId];
  binResultB[groupId * BIN_SIZE + localId] = sharedArrayR[localId];

}

Note that in this kernel unlike the one which we discussed in Chapter 3, OpenCL 
Buffer Objects, we have not passed the local array size from the host side using the 
clSetKernelArg function. The local arrays can be created inside the kernel also. The 
__local address space specifier makes it clear that this array is accessible across all 
the work items in the work group. Next, we initialize the shared array to 0. As you 
can see, each of the accesses to sharedArrayR, sharedArrayG and sharedArrayB are 
coalesced accesses. And also since the sharedArray size is much less compared to 
the one in the naive implementation, this array is set only once by every work item. 
This setting to zero of the complete local array is synchronized by adding a barrier 
inside the kernel.

Following the barrier in the for loop we read the pixel values from global memory 
in a coalesced manner, and use atomic_inc OpenCL C built-in to increase the count 
of the corresponding pixel values. We wait for all work items to process ELEMENTS_
TO_PROCESS pixel values by adding a barrier instruction, before finally writing it 
to the global memory binResultR, binResultG and binResultB. There are more 
advantages in this kernel as compared to the naive implementation. The amount of 
global memory writes is the same though but the amount of local memory used in 
the kernel is far less. This enables for a large number of work items to be spawned 
per work group. In this example we have launched 256 work items as compared to 
the 16 work items in our naive implementation of Chapter 3, OpenCL Buffer Objects.

Now there is one more way that this kernel can be optimized, that is the number 
of pixels to process per work item is fixed to ELEMENTS_TO_PROCESS which is 256 
pixels in this case. This also makes the number of work groups to be launched 
dependent on the number of pixels to process. That is each work group shall process 
ELEMENTS_TO_PROCESS * work_group_size pixels only. So this might sometimes 
lead to underutilization of the available compute units in the OpenCL device. For 
example if the number of pixels to be processed is equal 1024*1024, then we shall be 
launching, (1024*1024)/(256*256) = 16 work groups. If the number of compute 
units available in the OpenCL device is say 12, then the OpenCL implementation 
shall launch in chunks of 12 work groups and four work groups. So to avoid this, 
the number of pixels to be computed is determined by the host and passed as a 
parameter to the kernel. Take a look at the kernel code below. Since the last work 
group will not be processing an exact multiple of work group size pixels, we need to 
calculate the elements_to_process for each work_item in the last work group. The 
if statement inside the for loop takes care of the boundary conditions and makes 
sure that the global memory is not read outside of the global memory buffer range.
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#define BIN_SIZE            256
__kernel
void histogram_kernel(__global const uint* data,
                  __global uint* binResultR,
                  __global uint* binResultG,
                  __global uint* binResultB,
                    int elements_to_process,
                    int total_pixels)
{
  __local int sharedArrayR[BIN_SIZE];
  __local int sharedArrayG[BIN_SIZE];
  __local int sharedArrayB[BIN_SIZE];
  __global uchar4 * image_data = data;
  size_t localId = get_local_id(0);
  size_t globalId = get_global_id(0);
  size_t groupId = get_group_id(0);
  size_t groupSize = get_local_size(0);

  /* initialize shared array to zero */
  sharedArrayR[localId] = 0;
  sharedArrayG[localId] = 0;
  sharedArrayB[localId] = 0;

  barrier(CLK_LOCAL_MEM_FENCE);
  int groupOffset = groupId * groupSize * elements_to_process;

  /* For the last work group calculate the number of elements required 
*/
  if(groupId == (get_num_groups(0) - 1))
    elements_to_process = 
    ((total_pixels - groupOffset) + groupSize - 1) /groupSize;

  /* calculate thread-histograms */
  for(int i = 0; i < elements_to_process; ++i)
  {
    int index = groupOffset + i * get_local_size(0) + localId;
    if(index > total_pixels)            \n"
      break;
    //Coalesced read from global memory
    uchar4 value = image_data[index];     \n"
    atomic_inc(&sharedArrayR[value.x]);
    atomic_inc(&sharedArrayG[value.y]);
    atomic_inc(&sharedArrayB[value.w]);
  }

  barrier(CLK_LOCAL_MEM_FENCE);
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  //Coalesced write to global memory
  binResultR[groupId * BIN_SIZE + localId] = 
                                   sharedArrayR[localId];
  binResultG[groupId * BIN_SIZE + localId] = 
                                   sharedArrayR[localId];
  binResultB[groupId * BIN_SIZE + localId] = 
                                   sharedArrayR[localId];
}

We conclude this chapter by summarizing a few general tips for OpenCL optimization. 
These are neither exhaustive nor universal. Remember "One size does not fit all".

Finding the scope of the use of OpenCL
Given an algorithm or even some sequential implementation of it, how do we 
determine whether OpenCL would really help in performance gain? First, find 
hotspots in your sequential code. If that hot part can be partitioned into smaller parts 
which can be executed at least to some extent independently, that is, one smaller 
computation part can be done without waiting for data of previous computation 
part? Can we find some part of the algorithm where the same instruction is executed 
on different data without any mutual dependency? Affirmative answer to the first 
and second part of questions respectively asserts the existence of task and data 
parallel components in the algorithm. In either case, taking advantage of OpenCL  
is probably a good option.

Second consideration is whether the program is memory-bound, I/O bound, or 
CPU-bound. If the algorithm is dense with conditional statements, a better candidate 
for OpenCL would be compute bound program with less branches.

General tips
Some of the following strategies are vendor and architecture specific but mostly have 
a corresponding counterpart in other vendors and architectures.

1. Try to minimize host-device transfer of memory. Also try to hide memory 
transfer latencies with parallel computation. Host-device transfer has much 
lower bandwidth than global memory access. (For example, for NVIDIA 
GTX 280 verses PCI-e it becomes approximately 17 times). So better to store 
and keep it on the Global memory. Sometimes it is even better to re-compute 
something in GPU rather than trying to fetch from host.

2. One large transfer is much better than many smaller transfers amounting to 
same size.
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3. Try for coalesced memory access as much as possible, that is, avoid out 
of sequence and misaligned transactions. This is more OpenCL device 
architecture and compute capability specific.

4. Use local memory (100 times better latency for GTX 280) for caching, but be 
careful about overuse to avoid performance penalty due to spilling to global 
memory. Local memory also helps to avoid non-coalesced global memory 
access. Entire work-group shares this local so cache ones and use for all 
work-item in the work-group. Another advantage of local memory is data 
sharing between work-items within same work-group.

5. Use private memory with same care. No thumb rule exists for local and 
private memory use. It needs some experiment to find the optimal strategy 
for your algorithm.

6. Avoid bank conflict as much as possible. In general multiple Read/Write on 
same memory bank becomes serialized instead of being parallel, resulting in 
performance penalty. This is more vendor architecture specific. Please refer 
to the vendor architecture manual for more detailed information, for example 
AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.
pdf downloadable from developer.amd.com for AMD GPUs and NVIDIA_
OpenCL_ProgrammingGuide.pdf downloadable from cudazone from the 
NVIDIA website for NVIDIA GPUs.

7. Number of work-groups should be always greater than number of compute 
units, so that all the compute units are getting at least one work-group, 
otherwise hardware resources would be under-utilized. Better to have the 
ratio of number of work-groups to that of number of compute units greater 
than or equal to two so that if one work-group on a compute-unit is stuck on a 
barrier, GPU time can be utilized by executing other work-group. Far better is 
making number of work-group a multiple of number of compute units so that 
the wavefronts are fully populated. Wavefront is AMD's term means unit of 
execution that executes in a lock step manner relative to each other. NVIDIA 
similar concept is termed as warp. More work-group per compute units helps 
in hiding latency. 

8. Number of work-items per work-group should be multiple of wavefront 
size. It can sometimes be beneficial to add "dummy" work-items so that the 
work-group becomes a multiple of the unit of execution size even though this 
means adding extra work.

9. Try to increase the occupancy which is ratio of active wavefront per compute 
unit to maximum allowed wavefront per compute unit. Occupancy is 
function of registers, local memory, hardware scheduling, and so on. AMD 
provides an occupancy analysis chart to see interactively how occupancy 
varies with different factors.
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10. Instruction throughput is defined as number of instructions executed per 
cycle. For a given architecture, generally the number of cycles needed to be 
execute each of the instructions is documented by the major vendors. Using 
that try to use smaller number of cycles to get things done. Avoid automatic 
conversion from double to float (for example, use 12.3f rather than 12.3 for 
float).

11. Use non-blocking command and queue multiple commands in the command 
queue before it gets flushed to GPU.

12. Avoid branch or divergent branch within a wave-front, since it serializes 
execution. Sometimes some restructuring of code or index may help. At least 
minimize the number of instruction within branch. For example, instead of 
using the following:
if(some_cond){ x += y;}else {x -=z;} 

prefer the following:
int tmp = some_cond ? y:-z; 
x+= tmp;

Take similar care for the while or for loops within kernel. Avoid nested 
if. Also avoid if statements with multiple conditions combined by AND 
operators like the following:
if(condition1 && condition2 && condition3)

Because they possibly generate nested if from the statements. Prefer the 
following:

bool singleCond = (condition1 && condition2 && condition3); 
if(singleCond)

13. For 2D/3D structured data, use texture or image memory, which has 
hardware accelerated data type conversion and interpolation and optimized 
2D/3D caching.

14. Prefer constant memory over global memory if device only needs to read the 
data, since constant memory is faster than global.

15. Avoid barrier when possible, since it is a costly operation.
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Summary
In this chapter we have discussed different optimization techniques. All are 
illustrated on the same simple problem of matrix multiplication to demonstrate 
how the same algorithm can be adjusted to accommodate different optimization 
techniques. We also optimized the histogram computation kernel which was 
originally discussed in Chapter 3, OpenCL Buffer Objects. Based on data size, hardware 
and software environment different optimization strategies can be applied. The 
chapter ends with a hint on the kind of application when OpenCL would show 
real performance improvement and then some general tips or checklist related to 
optimization. In the next chapter we describe image processing using OpenCL.





Image Processing  
and OpenCL

In the previous chapter we discussed an OpenCL implementation of a very basic 
algorithm called matrix multiplication. We saw that a matrix multiplication 
algorithm can be implemented in many different ways, such as by using local, global 
or private memory. In this chapter we delve into a different subject called image 
processing, in which we primarily discuss image convolution. Image processing 
in itself is a very big topic and there are many books which discuss the same. We 
will briefly deal with image processing in this chapter and explore the data parallel 
operations in image processing algorithms, and how it can be used with OpenCL. 
In this chapter, we will also discuss how to perform some filter operations using the 
convolution operators.

The list of filters we discuss in this case study are as follows:

• Mean filter
• Median filter
• Gaussian filter
• Sobel filter

Image compression is a research topic in itself. One of the most common 
compression algorithms is the JPEG standard. There are quite a few theoretical data 
compression techniques, such as Entropy Coding, Huffman decode, and Run Length 
Encoding. The JPEG decoder in itself is a huge topic. In this chapter, we will discuss 
a small subset of JPEG compression standard, and how we parallelize the inverse 
DCT operation using OpenCL.

Since these examples are a bit domain specific, we present a brief introduction to the 
problem and the algorithm before discussing the actual OpenCL implementation. 
Readers, who are already familiar with these concepts, may like to skip the sections.
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Image representation
We represent an image in a digital computer by a matrix of pixels (picture element). 
For an image containing only two colors (possibly black and white), the pixel can be 
a bi-level (Boolean) field with true (1) meaning white, and false (0) meaning black. 
One of the file formats for representing this kind of image is the PBM (Portable Bit 
Map) file format. In this file format, each pixel is represented by one bit. If the image 
is of size WIDTH * HEIGHT, then each row is WIDTH bits, packing eight pixels into a 
byte, with don't care bits to fill out the last byte in the row. There are HEIGHT number 
of such rows.

Now let's consider a gray scale image. The number of distinct gray scale values that 
can be represented by a pixel depends on the number of Bits Per Pixel (bpp). For 8 
bpp, 256 gray scale values can be represented. In this case, pixel values can vary from 
0 to 255. These pixel values are often referred to as pixel intensity levels. So a pixel 
may be represented as follows:

# define MAX_INTENSITY 255 
typedef cl_uchar pixel; //each pixel's valid value is  
  0-MAX_INTENSITY

An image format which represents the pixel is the PGM (Portable Gray Map). If 
the image is of size WIDTH * HEIGHT, each row consists of WIDTH gray scale values, 
in order from left to right. Each gray scale value is a number from 0 through MAX_
INTENSITY, with 0 being black and MAX_INTENSITY being white. BMP, also referred 
to as a bitmap image file, can be used to represent a gray scale image too. The BMP 
file consists of an image header, followed by the color palate information and the 
actual pixel colors for each color channel Red, Green, or Blue. The color palate is an 
array of colors used in the image. Then the actual color information is stored in row 
descending format, which means first we store all the pixels at height HEIGHT, then 
HEIGHT-1 and so on. The number of pixels in a row is equal to the WIDTH, and the 
order in which row elements are stored is from element at 0-th width to WIDTH-1. 
Each row may be followed by some padding to make it a multiple of 4 bytes. In our 
image processing samples we will be using bmp files as input images.

For a color image, each pixel (in order to represent a color) contains three different 
intensity values—Red, Green, and Blue. Other colors are composed of these three 
colors only, but in a unique proportion. If each of red, green, and blue's intensity 
level is represented by n-bits, then red may take 2n values, and similarly green and 
blue may take 2 superscript n. values each. So a total of 2n * 2n * 2n = 23n possible 
combinations are possible, which simply means if each of red, green, and blue color 
(also called channel in this context) is represented using n-bits, we can, in total, 
represent 23n distinct colors in the image. For example, when n=8, that is each color 
is given 8-bits, a pixel structure may be as follows:
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struct pixel{
    cl_uchar red; 
    cl_uchar green; 
    cl_uchar blue;
};

If the height and width of the image are respectively HEIGHT and WIDTH, then a total 
of HEIGHT * WIDTH number of pixels can be represented by a single dimensional 
array in either the row major form (discussed in Chapter 8, Basic Optimization 
Techniques with Case Studies – Compute Bound Problem), as in the following code,  
or in the column major form.

struct pixel image[HEIGHT * WIDTH];

Its two dimensional array representation, as shown in the following code, would be 
more straightforward:

struct pixel image[HEIGHT][WIDTH];

PPM (Portable Pixel Map) is one file format which represents this type of image 
data. In this file format each row consists of WIDTH number of pixels, in order from 
left to right. Each pixel is a triplet of red, green, and blue samples, in that order. Each 
sample is represented in a binary format by either 1 or 2 bytes. If the MAX_INTENSITY 
is less than 256, one channel is 1 byte. Otherwise, it is 2 bytes.

Two factors affecting image quality improvement, within perceivable range, are 
very evident. The first one being, number of bits representing a channel (color), if 
the number is increased, we can have more combinations, hence more colors can 
be represented, thus image quality would be improved. The second is, increase in 
number of pixels per unit area, called pixel density. Both these factors come at the 
cost of image size.
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Implementing image filters
An image filter is a mathematical operation on the original image that transforms 
it to the filtered image. The goal of the mathematical operation is to perform a 
mathematical computation for a pixel, based on the values of the neighboring 
pixels. A precisely defined image filter is a function that transforms each pixel of 
the original image to pixels of the filtered image. Consider a simple example—what 
would one do if he or she wants to decrease the brightness of an image?

In an image with gray scale representation, each pixel would contain one integer 
representing intensity. Deduct some positive integer say VALUE from all the pixels 
and if some integer becomes negative then truncate the result to zero. This is referred 
to as the mathematical operation which is applied to every pixel in the original 
image. This function would transform the image into one that is the same as the 
original image, but with lower brightness. Similarly adding a constant value to all 
pixels (and if some integer becomes more than MAX_INTENSITY, saturating it to MAX_
INTENSITY) is another function. This would increase the brightness of the image.

We will now discuss the four different types of image filters.

Mean filter
Mean filter also called the blur filter since it blurs the image. For an image of size 
WIDTH by HEIGHT, we choose some small window filter operator of size m by m (m is 
much smaller than the width or height of the image, in our example we have taken 
it as 3). This m is called as the window size of the applied filter. Now, for each pixel 
in (i,j)th position we consider the small window centered at (i,j)th pixel. This 
window would contain 3 X 3 = 9 pixels shown as follows:

(i-1,j-1)    (i-1,j)     (i-1,j+1)
(i,j-1)      (i, j)      (i,j+1)
(i+1,j-1)    (i+1,j)     (i+1,j+1)

We now take the mean of all the nine elements and output the (i,j)th pixel with 
the mean value. Impact of this operation is the reduction of difference in pixel 
intensity within a small region. So the contrast is reduced and the image becomes 
comparatively blurred in that region. This operation is done for all the pixels (for the 
pixels at border we can either discard or extrapolate, by taking the value of (i,j)th 
pixel and using it for all the missing neighbors) so the entire image is blurred.
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Input pixel with value 14 become 10 in the output Image
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Mean filter operation

Median filter
In this operation, we take the same window as in the mean filter but instead of taking 
the mean of the nine elements, we take the median and output it in the position of 
the center pixel. This means, finding the mid value among all the elements in the 
window with current pixel at center. This filter under certain conditions reduces the 
salt and pepper noise, but also retains the image edge information intact; hence it is 
often applied before applying the edge detection algorithm. This filter also provides 
a slight blurring effect.

Gaussian filter
The Gaussian filter is a low pass filter which removes high frequency values. This 
also creates a blurring effect. Here, we take the same windows from the original 
image and the two dimensional Gaussian distribution's coefficient, and convolute 
them. Convolution is nothing but simply multiplying the corresponding elements 
of two matrices of size m X m and then adding the obtained m X m products. The 
following equation describes the Gaussian distribution formula:
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Two dimensional Gaussian distribution's coefficients are obtained by approximating 
the Gaussian distribution. Here in our example we have used the following matrix 
with a sigma value of 0.85:

1.f/16,  2.f/16,  1.f/16,
2.f/16,  4.f/16,  2.f/16,
1.f/16,  2.f/16,  1.f/16,

The OpenCL Kernel code is as follows:

__constant sampler_t image_sampler = CLK_NORMALIZED_COORDS_FALSE  
  | CLK_ADDRESS_CLAMP_TO_EDGE| CLK_FILTER_NEAREST;

__kernel void gaussian_filter_kernel(__read_only image2d_t iimage,  
  __write_only image2d_t oimage,__constant float *filter,  
  int windowSize)
{
  unsigned int x = get_global_id(0);
  unsigned int y = get_global_id(1);
  int halfWindow = windowSize/2;
  float4 pixelValue;
  float4 computedFilter=0.0f;
  int i, j, ifilter, jfilter;

  for(i=-halfWindow, ifilter=0; i<=halfWindow; i++, ifilter++)
  {
    for(j=-halfWindow, jfilter=0; j<=halfWindow; j++,jfilter++)
    {
      pixelValue = read_imagef(iimage, image_sampler, 
        (int2)(x+i, y+j));
      computedFilter += 
      filter[ifilter*windowSize+jfilter]*pixelValue;
    }
  }

  write_imagef(oimage, (int2)(x, y), computedFilter);
}
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Convolution is described in the following figure:
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Sobel filter
Sobel filter is one of the most popular filters which can be used for edge detection 
of an image. Edge detection is important for many algorithms for feature extraction 
from an image. This is based on the idea that a pixel on an edge in the image, is 
different from other pixels which are not on any edge, by a unique property. The 
property is based on the fact that in edge there would be a sudden jump/change in 
intensity. This is found by computing the derivative along the two directions in a 2D 
image say Sx and Sy and then magnitude, followed by optional thresholding.

For a 3 x 3 window, this reduces to the following computational steps

1. Let the value of Sx be as follows:
          1,  0,  -1 
Sx =      2,  0,  -2 
          1,  0,  -1

and the value of Sy is as follows:

             1,  2,  1 
Sy = SxT =   0,  0,  0 
            -1, -2, -1 
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2. Now, given an input image I take window A. For each element in the 
window A multiply it with the corresponding element in the matrix Sx  
and Sy to obtain Tx and Ty matrices as follows:
Tx = Sx · A  and Ty = Sy · A

(· here means convolution)

3. Find the magnitude T for each element in the window, using the following 
formula:
T = sqrt(Tx2 + Ty2)

4. Choose a threshold Tr. This threshold value can be selected based on 
experiment.

5. Finally apply the threshold, that is if T >= Tr then this pixel has a characteristic 
edge, else not. Do this for all the pixels and get all the edge pixels.

OpenCL implementation of filters
Here we discuss how each of the filters is implemented. Similar filters are  
discussed together. Mean and Gaussian filters are imposed by convoluting  
with a fixed 3 x 3 matrix.

Mean and Gaussian filter
In our OpenCL implementation of the Mean and Gaussian filters, we write a kernel 
called filter_kernel that can be used for the two filters. We do this by configuring 
the third argument filter so that it can create effects of the corresponding filter. 
For the Mean filter we send a nine element array, where each element's value is 1/9 
and when this is convoluted with the corresponding window, it produces the effect 
of mean of that window. When the filter_kernel kernel is to be called for the 
Gaussian filter, we pass corresponding coefficients in row major form (1/16, 2/16, 
1/16, 2/16, 4/16, 2/16, 1/16, 2/16, 1/16).

So we explain these two filters together. The following code is the common kernel 
code for these two filters:

__constant sampler_t image_sampler = CLK_NORMALIZED_COORDS_FALSE | 
  CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
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__kernel void filter_kernel(__read_only image2d_t iimage,  
  __write_only image2d_t oimage, __constant float *filter,  
  int windowSize)
{
  unsigned int x = get_global_id(0);
  unsigned int y = get_global_id(1);
  int halfWindow = windowSize/2;
  float4 pixelValue;
  float4 computedFilter=0.0f;
  int i, j, ifilter, jfilter;

  for(i=-halfWindow, ifilter=0; i<=halfWindow; i++, ifilter++)
  {
    for(j=-halfWindow, jfilter=0; j<=halfWindow; j++,jfilter++)
    {
      pixelValue = read_imagef(iimage, image_sampler,(int2)( 
        x+i, y+j));
      computedFilter +=  
        filter[ifilter*windowSize+jfilter]*pixelValue;
    }
  }

  write_imagef(oimage, (int2)(x, y), computedFilter);
}

This kernel takes four arguments. The first two are input and output images, 
which are respectively attributed as read and write only, as defined by the 
attribute specifier __read_only and __write_only. Then comes the __global 
array of float which mentions the filter in row major form. The fourth argument 
is window size in a dimension. Hence the filter array would contain a total of 
windowSize*windowSize elements.

Within the kernel, based on the global_id variable of the work item in the two 
dimensions, the corresponding element of window of the input image is read using 
read_imagef and then multiplied with corresponding elements of the filter array. 
These products are added to each other and the accumulated sum is stored in the 
computedFilter variable using nested for loops. The private variable halfWindow 
is used to get index in left, right, up, and down properly from the current center 
element identified by the global_id of the current work item. Finally write_imagef 
writes back the resulting pixel to the output image.
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Note that both the variables computedFilter and pixelValue are float4 data 
types. This is because the read_imagef returns a float4 variable.

float4 read_imagef (image2d_t image, sampler_t sampler, 
  int2 coord)

As of the OpenCL 1.2 specification, there are no OpenCL sampler APIs which 
return a single float value. All the image sampler routines discussed in Table 6.23 of 
OpenCL specification 1.2 return vector data types. This is intended to return R, G, B, 
and A (alpha) image channel data. Now the question arises how one processes a gray 
scale image? Let's consider the following code snippet:

cl_int ImageFilter::setupOCLbuffers()
{
  cl_int status;
  //Intermediate reusable cl buffers
  cl_image_format image_format;
  cl_image_desc image_desc;
  image_format.image_channel_data_type = CL_FLOAT;
  image_format.image_channel_order = CL_R;
  
  image_desc.image_type = CL_MEM_OBJECT_IMAGE2D;
  image_desc.image_width = image->width;
  image_desc.image_height = image->height;
  image_desc.image_depth = 1;
  image_desc.image_array_size = 1;
  //Note when the host_ptr is NULL row_pitch and 
  //slice_pitch should be set to 0;
  //Otherwise you will get a CL_INVALID_IMAGE_DESCRIPTOR error
  image_desc.image_row_pitch = 0; 
  image_desc.image_slice_pitch = 0;
  image_desc.num_mip_levels = 0;
  image_desc.num_samples = 0;
  image_desc.buffer= NULL;
  ocl_input_image = clCreateImage(context, CL_MEM_READ_ONLY, 
    &image_format, &image_desc, NULL, &status);
  LOG_OCL_ERROR(status, "clCreateImage Failed" );

  //Note when the host_ptr is NULL row_pitch and 
  //slice_pitch should be set to 0.
  //Otherwise you will get a CL_INVALID_IMAGE_DESCRIPTOR error
  image_desc.image_row_pitch = 0; 
  image_desc.image_slice_pitch = 0;
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  ocl_filtered_image = clCreateImage(context, CL_MEM_WRITE_ONLY, 
  &image_format, &image_desc, NULL, &status);
  LOG_OCL_ERROR(status, "clCreateImage Failed" );

  ocl_filter = clCreateBuffer(context,  
    CL_MEM_READ_WRITE|CL_MEM_USE_HOST_PTR,  
    WINDOW_SIZE*WINDOW_SIZE*sizeof(float), filter, &status);
  LOG_OCL_ERROR(status, "clCreateBuffer Failed" );

  //Create OpenCL device output buffer
  return status;
}

In the preceding code, you will observe that the image_channel_order value is set 
to CL_R while describing the image_format variable. And besides this, the image_
channel_data_type variable is set to CL_FLOAT. Now when the image pixel value 
is sampled in the kernel using the read_imagef function, it will set the value of the 
first vector component to the pixel value and the remaining are set to 0.0f. This 
actually provides an added advantage in our kernel code, that it can take the input 
images with the image_channel_data_type variable set as CL_RGBA, CL_BGRA, CL_
ARGB CL_RGB, or CL_RGBx and so on. The preceding code snippet creates two image 
buffers, one for the input image ocl_input_image, and the other is the output image 
ocl_filtered_image.

Median filter
The median_filter_kernel kernel implements the Median filter. This takes three 
arguments, __read_only and __write_only input and output images respectively, 
and the third argument is windowSize. Since median is the mid value of a set, when 
elements are in sorted order, for the Median filter kernel no filter argument is needed, 
rather we need to find the median from the elements of the current window itself. We 
find the median of the windowSize*windowSize elements. This median value is the 
result of the current pixel in process. The following code is the OpenCL kernel for the 
Median Filter, which computes the median value of the neighboring pixels:

__constant sampler_t image_sampler = CLK_NORMALIZED_COORDS_FALSE  
  | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
  
__kernel void median_filter_kernel(__read_only image2d_t  
  in_image, __write_only image2d_t out_image, int windowSize)
  {
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    unsigned int x = get_global_id(0);
    unsigned int y = get_global_id(1);
    int halfWindow = windowSize/2;
    float4 pixelValue;
    int i, j, ifilter, jfilter;
    float oldPixels[9]; float tmp;
    int index =0;
    //Load the window in oldPixels
    for(i=-halfWindow, ifilter=0; i<=halfWindow; i++, ifilter++){
      for(j=-halfWindow, jfilter=0;j<=halfWindow;j++,  
        jfilter++){
        pixelValue = read_imagef(in_image,image_sampler,(int2)( 
          x+i, y+j));
        oldPixels[index] = pixelValue.x;
        index++;
      }
    }

    // Find the rank-th element
    int totalNumber = windowSize*windowSize;
    int rank = totalNumber/2 +1;
    for(int i=0; i< rank;++i)
    {
      for(int j=0; j< totalNumber-1 ; ++j)
      {
        if(oldPixels[j] > oldPixels[j+1])
        {
          tmp = oldPixels[j];
          oldPixels[j] = oldPixels[j+1];
          oldPixels[j+1] = tmp;
        }
      }
      totalNumber--;
    }
    //median is oldPixels[rank], update
    pixelValue.x = oldPixels[rank];
    write_imagef(out_image, (int2)(x, y), pixelValue);
  }
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To find the median of the windowSize*windowSize elements (let's keep 
windowSize=3) we need not sort the data completely. Rather, it is enough to find the 
top or bottom five elements, which we do and take the central element. The sorting 
which is implemented in the preceding kernel would be comparison based, and results 
in too many branches in the code. It is always good to avoid branches and use ternary 
operators and rely on the compiler to generate a good branchless code. In the case  
of median filtering we copy the global pixel elements to private memory anyway.

Sobel filter
In the sobel_filter_kernel kernel we can pass the filter operator as a global 
parameter in the kernel code or as a private variable inside the kernel. In the 
following kernel code, we have passed the filter operators filter_x_grad and 
filter_y_grad in global memory. These are the 3 x 3 matrices and are used to 
operate on each pixel. The other option is to store one matrix and compute the other 
using transpose within the kernel. The pixel value is read using the read_imagef 
function. This function returns a float4 pixel value. Since we had created the image 
in CL_R format, only the intensity value is read from the vector, that is the kernel 
processes a gray scale image. We compute the x and y gradients of the image pixel 
using the Sobel filter as in the following code:

__constant sampler_t image_sampler = CLK_NORMALIZED_COORDS_FALSE  
  | CLK_ADDRESS_CLAMP_TO_EDGE;      
__kernel void 
sobel_filter_kernel(__read_only image2d_t iimage,  
  __write_only image2d_t oimage, 
  __global float *filter_x_grad, 
  __global float *filter_y_grad,  
  int windowSize)
{
  unsigned int x = get_global_id(0);
  unsigned int y = get_global_id(1);
  int halfWindow = windowSize/2;
  float4 pixelValue;
  float gradientX = 0.0f;
  float gradientY = 0.0f;
  float computedFilter  = 0.0f;
  int i, j, ifilter, jfilter;
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  for(i=-halfWindow, ifilter=0; i<=halfWindow; i++, ifilter++)
  {
    for(j = -halfWindow,  jfilter=0;j<=halfWindow; j++,jfilter++)
    {
      pixelValue = read_imagef(iimage, image_sampler,  
        (int2)(x+i, y+j));
      gradientX += 
      filter_x_grad[ifilter*windowSize+jfilter]*pixelValue.x;
      gradientY += filter_y_grad[ifilter*windowSize+jfilter] 
        *pixelValue.y;
    }
  }
  //gradient and gradient is the image gradient in X and Y axes.
  //Now compute the gradient magnitude
  computedGradient = sqrt(gradientX*gradientX +  
    gradientY*gradientY);
  write_imagef(oimage, (int2)(x, y), (float4)(computedGradient, 
    0.0f, 0.0f, 1.0f);
}

Finally the kernel computes the square root of Tx2 and Ty2 which is the magnitude of 
gradient for that pixel. Finally the computed gradient value is written to the image 
buffer. Note that the two gradient matrices Sx and Sy are a transpose of each other. 
Also one row is negative of the second row. So ideally we could have computed 
the matrices Tx and Ty without passing the gradient matrices as an argument to 
the kernel. As an exercise, modify the sobel_filter_kernel to do edge detection 
without passing the gradient matrices Sx and Sy.

JPEG compression
Image compression is a huge topic in itself, and we cannot discuss it all here 
in the context of OpenCL. In the preceding section, we discussed the different 
kinds of filters which would perform some operation on the raw image data and 
result in some special effect to give the resultant image. After discussing different 
kinds of filters we would jump to compressed image data representation. Image 
representation is a tradeoff between space and quality. The image quality is directly 
related to the amount of storage required to store it. If we try to have better quality, 
it would come at the cost of space and if we want to reduce space, the quality 
is affected. When we capture an image and store it raw pixel by pixel, it is in its 
maximum size and also in its best natural quality.

In order to decrease the size of the image and retain as much quality as possible there 
are various compression algorithms. These algorithms are either lossless or lossy 
image compression.
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One such compression technique is JPEG (Joint Photographic Experts Group) 
compression. JPEG is a standard (first approved as ITU-T in 1992) that defines 
compression and decompression algorithms where compression amount and image 
quality reduction can be adjusted. With a little perceivable loss of image quality, size 
can be reduced approximately to one-tenth of the original. It is a lossy compression 
in the sense that due to compression of an image some original pixel details would 
be lost, that can never be recovered from the compressed image.

There are many variations of JPEG encoding. Baseline JPEG encoding is one of the 
most popular techniques among them. Basic outline of the steps are described step 
by step in the following section. Detailed discussion of each step is out of the scope 
of this chapter. Those who have basic knowledge of the JPEG decoder can skip this 
section and move to the following section on OpenCL implementation. For more 
details readers are requested to refer to the related materials.

Encoding JPEG
JPEG encoding contains multiple steps, each one makes some sort of compression  
or prepare data for compression at some future step. The steps are as follows:

1. Transform (R, G, B) representation to (Y', Cb, Cr) representation. The Y' 
image is essentially a greyscale copy of the main image. Cb and Cr are 
respectively blue and red difference chroma components. The transformation 
formulae are as follows:
Y = 0.299 R + 0.587 G + 0.114 B
Cb = - 0.1687 R - 0.3313 G + 0.5 B + 128
Cr = 0.5 R - 0.4187 G - 0.0813 B + 128

There is a lot of redundancy in the raw image representation. This 
redundancy can be removed by subsampling the chroma components. Y' 
represents the luminosity or gray scale components of the image. Y'CbCr is 
a color space that separates redundant and non-redundant information from 
the visual quality perspective.

2. The Cb Cr details provide less visual impact and can be subsampled easily. 
Resolution of Cb and Cr can be left as it is or it can be reduced to half, that is 
the Cb and Cr components are down sampled in both the x and y directions. 
This results in one Cb and Cr 8 x 8 block for every four Y component 8 x 8 
blocks. These four 8 x 8 blocks and one each of down sampled Cb and Cr 8 x 
8 blocks represents one MCU (Minimum Coded Unit) in JPEG.
The eye is more sensitive to brightness difference than fine color details, 
loosing less quality we reduce more size here.
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3. For each MCU and within each MCU, each 8 x 8 block is applied the Discrete 
Cosine Transformation (DCT) separately. As compared to a data range 0 
to 255, DCT works better in the data range -128 to 127. So data is converted 
to range -128 to 127 by subtracting 128 from each matrix element before 
performing DCT. In the end of the decoder, 128 must be added back to get 
the values correspondingly.
On transformation, the DCT operation converts a spatial domain image to 
frequency domain image. This saves space while affecting the quality to a 
lesser extent. Partitioning into small non-overlapping blocks of size 8 x 8 is 
done to one (reduce the cost of DCT 2) special redundancy is found based  
on a smaller region which is better for image quality.

4. Quantization of DCT coefficients: To scale the DCT coefficient to a 
smaller value, we use a quantization matrix say Q(i, j) of size 8 x 8. Each 
element of the coefficient matrix is divided by the corresponding element 
of quantization matrix, and then the resulting values are approximated to 
nearest integer to get a smaller suitable integral value. It is this step where 
one can control the compression level. A bigger value in quantization matrix 
element result in more compression but less quality and vice versa.

5. After quantization, many elements become zero and they are located towards 
the right bottom corner of matrix. While transforming the two dimensional 
matrix in one dimensional array of integers, instead of representing in row 
major or column major way, scanning is done in a zig-zag way described in 
the following figure:

H
E
I
G
H
T

WIDTH

Image showing zig-zag scanning of an 8 X 8 block
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This increases the probability of getting most of the zeros at the end of the 
array because of the fact that zeros are more likely to be located at the right 
bottom direction of the matrix. With mostly zeros at the end of the zig-zag 
scan, the trailing zeros can just be discarded, by putting an end of block 
marker. This results in saving of space.

6. Run length encoding: After doing the zig-zag scanning, Run-length 
encoding is employed on the coefficients to get one level of lossless 
compression. A run is a successive occurrence of the same symbol, and 
compression is achieved by replacing the entire run by a tuple of symbol and 
run-length which is illustrated by the following example:

7. 5,5,5,5,5,5,5,5,5,5,2,2,2,2,2,2,2,3,3,3,3,3,3 becomes (5,10), 
(2,7), (3,6).

8. Huffman coding: This is also a lossless compression algorithm based on 
entropy encoding. In this step we futher compress based on the strategy 
that employs lesser bits for representing more frequently occurring data, 
and gradually more and more bits for less frequently occurring data. Here 
we create a binary tree called the Huffman tree, where each leaf node 
represents a symbol (here, an integer representing the output of run-length 
encoded value). Each non-leaf node represents a letter of code-word. Just 
concatenating the letters encountered when traversed from root to a leaf 
would give the code-word for the symbol that the leaf represents. Since 
the path length to node at lower height from root is less than that to a node 
at higher height, length of the code-word for more frequently occurring 
symbols are less, and those for less frequently occurring are more. Leaves at 
a lower height have more frequency and higher height have lesser frequency. 
Huffman coding is employed on the data obtained from run-length encoding.

This completes the JFIF version of JPEG compression. The final file format is 
described in brief as follows.

JFIF stores 16-bit words in big-endian format in a stream of blocks each of which are 
identified by a marker value. The first two bytes are the Start of Image (SOI) marker 
with values 0FFD8. Then with marker APP0 with value 0xFFE0 a block starts. The 
APP0 marker refers to the JFIF baseline format encoded image. This block contains 
length, version, aspect ratio, and so on, header information.

A Quantization table is identified by the marker DQT with value 0xFFDB. This 
block, in addition to quantization values, contains table-length, precision, and the 
destination ID which is 0 or 1, indicating luminance or chrominance respectively. 
Quantization values form an 8 x 8 matrix Quantization Table. There would be two 
consecutive blocks of the preceding type one for luminance or chrominance.
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This is followed by the Huffman table section. The DHT (Define Huffman Table) 
marker with the value 0xFFC4 identifies this table section and after that the SOS 
(Start of Scan) marker with value 0xFFDA identifies the block of scan data. End of 
image is identified by the marker EOI (End of Image) with value 0xFFD9.

In JPEG decoding, JPEG files are read in the reverse order of the encoder algorithm 
(described in the preceding paragraphs) we transform data to finally get the pixels. 
In our implementation, we have used the JPEGdecoder_MCU kernel to compute DCT. 
This kernel takes the help of the device function DCTQuantInv8x8LS_JPEG_16s8u 
which in return is taking help of another device function Idct.

OpenCL implementation
In this section we will discuss implementation of a JPEG decoder. In a JPEG decoder, 
when the file is scanned and as the markers arrive one after the other, the different 
tables are decoded and a data structure is filled, corresponding to the Huffman Table 
and Quantization table. There is no scope for parallelizing here.

On parsing the DQT and DHT tables from a JPEG file, next arrives the SOS marker, 
which is the Start of Scan marker. After this all the MCUs are encoded. Each MCU 
is of variable length and varies for each 8 x 8 block. This is precisely the reason that 
it is difficult to find parallelism here, as there is no mechanism to predict an MCU 
boundary for the encoded bits. Only after running a Huffman decode and when a 
run length is applied we get the 64 element entry which when fills the 8 x 8 block in 
a zig-zag manner, we get the DCT coefficients of Y, Cb, and Cr components. Finally 
after multiplying with the Quantization table, we perform an inverse DCT on the 8 
x 8 block. The following code snippet computes the IDCT of an 8 x 8 block, which 
is applied to all the blocks of Y, Cb, and Cr components in an MCU. Only after 
obtaining the MCUs we can continue with the inverse DCT operation, which can run 
in parallel. It is this part of the JPEG decoder which we are trying to implement in 
parallel using OpenCL.

void Idct(const short  *pSrc, unsigned char *pDst)
{
 int i, j, k, l;
 float partialProduct;
 float tmp[64];
/*c is the precomputed cosine products from the I-DCT formula*/
  const float c[8][8] = {
    {0.35355338F,  0.35355338F,  0.35355338F,  0.35355338F,
     0.35355338F,  0.35355338F,  0.35355338F,  0.35355338F},
    {0.49039263F,  0.41573480F,  0.27778512F,  0.09754516F,
    -0.09754516F, -0.27778512F, -0.41573480F, -0.49039263F},
    {0.46193975F,  0.19134171F, -0.19134171F, -0.46193975F,
    -0.46193975F, -0.19134171F,  0.19134171F,  0.46193975F},
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    {0.41573480F, -0.09754516F, -0.49039263F, -0.27778512F,
     0.27778512F,  0.49039263F,  0.09754516F, -0.41573480F},
    {0.35355338F, -0.35355338F, -0.35355338F,  0.35355338F,
     0.35355338F, -0.35355338F, -0.35355338F,  0.35355338F},
    {0.27778512F, -0.49039263F,  0.09754516F,  0.41573480F,
    -0.41573480F, -0.09754516F,  0.49039263F, -0.27778512F},
    {0.19134171F, -0.46193975F,  0.46193975F, -0.19134171F,
    -0.19134171F,  0.46193975F, -0.46193975F,  0.19134171F},
    {0.09754516F, -0.27778512F,  0.41573480F, -0.49039263F,
     0.49039263F, -0.41573480F,  0.27778512F, -0.09754516F}
  };

  for (i=0; i<8; i++)
    for (j=0; j<8; j++)
    {
      partialProduct = 0.0F;
      for (k=0; k<8; k++)
        partialProduct+= c[k][j]*pSrc[8*i+k];
      tmp[8*i+j] = partialProduct;
    }

    // Transpose operation is integrated into address mapping  
      by switching
    // loop order of i and j

    for (j=0; j<8; j++)
      for (i=0; i<8; i++)
      {
        partialProduct = 0.0F;
        for (k=0; k<8; k++)
          partialProduct+= c[k][i]*tmp[8*k+j];
        l = (int)(partialProduct+0.5F);
        l = l+ 128;
        if(l < 0)
          l = 0;
        if(l > 255)
          l = 255;
        pDst[8*i+j] = l;
      }
}

Inverse DCT is an important computational step in decoding a JPEG image.  
This inverse DCT can be applied to the entire 8 x 8 block in an MCU in parallel.  
The role of the Idct()function is to compute inverse DCT, taking values in pSrc  
and output at pDst. It uses an 8 x 8 matrix of constant floats for this transformation. 
This matrix is the pre-computed cosine products for an 8X8 matrix.



Image Processing and OpenCL

[ 224 ]

The OpenCL kernel JPEGdecoder_MCU takes 11 arguments. For each of the three 
types (one for luminance and the other two for chrominance) of MCU data there are 
two parameters. One is the raw data array for which we want to compute the inverse 
DCT, and the other is the global buffer for the Quantization table for that type. The 
next parameter is simply the output buffer. The remaining four parameters are total 
height and width and also MCU height and width. Entire transformations are done 
just by calling the function void DCTQuantInv8x8LS_JPEG_16s8u six times for each 
8 x 8 block, followed by nested for loops for writing back the data. The first four are 
computing the luminance data and last two are the chrominance data. The following 
sample code computes the six 8 x 8 blocks for the luminance and chrominance data 
given one input MCU. There will be as many instances or work-items in the image  
as there are MCUs.

_kernel void
JPEGdecoder_MCU(__global short *pMCUdata1, __global unsigned  
  short *pQuantTable1, __global short *pMCUdata2, 
  __global unsigned short *pQuantTable2, __global  
  short *pMCUdata3, __global unsigned short *pQuantTable3, 
  __global unsigned char * output, const unsigned  
  int width, const unsigned int height, const unsigned  
  int mcuWidth, const unsigned int mcuHeight)
{

  /* get the block ids in both the directions */
  int bx = get_global_id(0);
  int by = get_global_id(1);
  int tbx = get_global_size(0);
  int tby = get_global_size(1);
  int index = 0;
  int imageSize=0;

  unsigned char dst[64];
  __global short *tempPtr1;

The first six parameters are the MCU data and their corresponding Quantization 
matrices. pMCUdata1 is the Y component MCU data, pMCUdata2 is the Cb 
component MCU data, and finally pMCUdata3 is the Cr component data.  
These pointers contain the raw decoded DCT coefficients. Each work-item finds the 
inverse DCT and multiplies it with the quantization coefficients. The following code 
is the continuation of the above kernel. Note, the __global address space qualifier 
for the tempPtr1 variable. OpenCL C has a restriction that casting a pointer of one 
address space to another pointer in a different address space is not allowed.  
Hence we provide the address space qualifier __global. Without that the tempPtr1 
variable would have been defaulted to the __private address space.
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  /* get the local ids within the block */
  /*Y component*/
  tempPtr1 = pMCUdata1 + by * tbx *( sizeof(int) * 64 ) + bx *   
    sizeof(int) * 64 ;
  DCTQuantInv8x8LS_JPEG_16s8u(tempPtr1,dst,8,(pQuantTable1));
  for (int i=0;i<8;i++)
  {
    for (int j=0;j<8;j++)
    {
      index = width*by*mcuHeight + bx*mcuWidth + i*width + j;
      output[index] = dst[i*8 + j];
    }
  }

  tempPtr1 = pMCUdata1 + by * tbx * sizeof(int) * 64 + bx *  
    sizeof(int) * 64 +  64;
  DCTQuantInv8x8LS_JPEG_16s8u(tempPtr1,dst,8,pQuantTable1);
  for (int i=0;i<8;i++)
  {
    for (int j=0;j<8;j++)
    {
      index = (width*by*mcuHeight) + (bx*mcuWidth + 8) + i*width  
        + j;
      output[index] = dst[i*8 + j];
    }
  }

  tempPtr1 = pMCUdata1 + by * tbx *(sizeof(int)*64) + bx *  
    sizeof(int) * 64 + ( 2 * 64 );
  DCTQuantInv8x8LS_JPEG_16s8u(tempPtr1,dst,8,pQuantTable1);
  for (int i=0;i<8;i++)
  {
    for (int j=0;j<8;j++)
    {
      index = (width*by*mcuHeight) + (bx*mcuWidth) + (i+8)*width  
        + j;
      output[index] = dst[i*8 + j];
    }
  }

  tempPtr1 = pMCUdata1 + by * tbx *(sizeof(int)*64) + bx *  
    sizeof(int) * 64 + 3 * 64;
  DCTQuantInv8x8LS_JPEG_16s8u(tempPtr1,dst,8,pQuantTable1);
  for (int i=0;i<8;i++)
  {
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    for (int j=0;j<8;j++)
    {
      index = (width*by*mcuHeight) + (bx*mcuWidth + 8) +  
        (i+8)*width + j;
      output[index] = dst[i*8 + j];
    }
  }

The preceding four for loops decode the four 8 x 8 Y components and stores the 
result in the output buffer. Similarly, the input buffer of Cb and Cr coefficients are 
taken and inverse DCT is applied to get the raw pixel values. The following code 
shows the decoding of the Cb and Cr components. You can see that a pixel value 
is copied to four different locations. The baseline JPEG compression which we are 
trying to evaluate here has a chroma subsampling of 4:1:1.

  /*Cb component*/
  tempPtr1 = pMCUdata2 + by * tbx *(1*64) + (bx * 1 * 64);
  DCTQuantInv8x8LS_JPEG_16s8u(tempPtr1,dst,8,pQuantTable2);

  imageSize = (width * height);
  for (int i=0;i<8;i++)
  {
    for (int j=0;j<8;j++)
    {
      index = imageSize + width*by*mcuHeight + bx*mcuWidth +  
        2*i*width + 2*j ;
      output[index] = dst[i*8 + j];
      index = imageSize + width*by*mcuHeight + bx*mcuWidth +  
        2*i*width + 2*j + 1;
      output[index] = dst[i*8 + j];
      index = imageSize + width*by*mcuHeight + bx*mcuWidth +  
        (2*i + 1)*width + 2*j;
      output[index] = dst[i*8 + j];
      index = imageSize + width*by*mcuHeight + bx*mcuWidth +  
        (2*i + 1)*width + 2*j + 1;
      output[index] = dst[i*8 + j];
    }
  }
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  /*Cr component*/
  tempPtr1 = pMCUdata3 + by * tbx *(1*64) + (bx * 1 * 64);
  DCTQuantInv8x8LS_JPEG_16s8u(tempPtr1, dst, 8, pQuantTable3);
  imageSize = 2*(width * height);
  for (int i=0;i<8;i++)
  {
    for (int j=0;j<8;j++)
    {
      index = imageSize + width*by*mcuHeight + bx*mcuWidth +  
        2*i*width + 2*j ;
      output[index] = dst[i*8 + j];
      index = imageSize + width*by*mcuHeight + bx*mcuWidth +  
        2*i*width + 2*j + 1;
      output[index] = dst[i*8 + j];
      index = imageSize + width*by*mcuHeight + bx*mcuWidth +  
        (2*i + 1)* width + 2*j;
      output[index] = dst[i*8 + j];
      index = imageSize + width*by*mcuHeight + bx*mcuWidth +  
        (2*i + 1)* width + 2*j + 1;
      output[index] = dst[i*8 + j];
    }
  }
}

Role of the function

void DCTQuantInv8x8LS_JPEG_16s8u(__global short int *pSrc,  
  unsigned char *pDst, int dstStp, __global unsigned short  
  pQuantInvTable) 

The role of the function is to compute the inverse DCT of the input 8 x 8 block 
pointed by pSrc. Once an inverse DCT is found the matrix is multiplied by the 
Quantization matrix to obtain the raw pixel values which are stored back in pDst. 
The Quantization matrix is given in the input parameter pQuantInvTable. For 
computing inverse DCT it uses the Idct function which was shown earlier in this 
chapter. All the functions are implemented in the JPEGDecoder sample code.

void Idct(const short  *pSrc, unsigned char *pDst).

Take a look at the JPEG sample code available with the code distribution. Other 
parts of JPEG decoding are not highly data parallel. So only the data parallel part 
from the Decode algorithm is extracted to make a parallel implementation using 
OpenCL. Remaining parts are implemented in host.



Image Processing and OpenCL

[ 228 ]

Summary
In this chapter we discussed a number of image processing algorithms. First we  
have discussed four filters namely Mean filter, Median filter, Gaussian filter,  
and Sobel filter. Then we discussed decoding of an image into a standard and very 
popular format called JPEG. In image processing, OpenCL is very well suited for 
point operation, since the operation is highly data parallel in nature. In the following 
chapter, we would discuss how OpenGL can be used along with OpenCL.
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OpenCL-OpenGL 
Interoperation

In this chapter we will discuss OpenCL and OpenGL interoperation, which in its 
simple form means sharing of data between OpenGL and OpenCL in a program that 
uses both. Interoperation is commonly abbreviated as interop.

OpenGL was first released in January 1992 for proving graphics acceleration  
APIs. OpenCL was first released in December 2008 for accelerating general purpose 
computing. Both OpenCL and OpenGL use a GPU for their acceleration (OpenCL 
can use many other devices though). This OpenCL-GL Interoperation feature was 
introduced from the earliest version of OpenCL, that is, 1.0, but was really improved 
in OpenCL 1.1 by linking OpenCL and OpenGL  
events and efficient sharing of image and buffers. The computational part is done  
by OpenCL and graphics rendering is done by OpenGL without transferring data  
to and from host. This optimization in memory bandwidth should lead to an increase  
in efficiency and simplicity in coding.

In this chapter we first provide a brief introduction to OpenGL. Readers who are 
already familiar with OpenGL programming may like to skip this section. OpenGL 
itself is a vast course in graphics programming. So its tutorial is out of the scope of 
the present chapter, as well as this book. OpenCL also supports interoperation with  
Microsoft's DirectX 3D application programming interface D3D (Direct 3D).

In this chapter we start with a descriptive definition of OpenCL-OpenGL 
interoperation. We then gradually move to discuss the actual implementation steps 
and APIs. This includes detecting if interoperation is supported in the current 
implementation, initializing OpenCL context for OpenGL interoperation, mapping 
of a buffer (CL and GL), synchronization techniques, and then using the Texture and 
Renderbuffer objects of OpenGL.
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Introduction to OpenGL
Open Graphics Language (OpenGL) is an open standard 2D and 3D graphics 
library standardized by Khronos group. It is supported on multiple platforms  
and also with many languages. Multiple vendors like AMD and NVIDIA,  
provide OpenGL implementation which are accelerated on a GPU (Graphics 
Processor Unit). Microsoft provided OpenGL support, for PC, from Windows 95.

There are two parts of an OpenGL program, shown as follows:

• Core OpenGL APIs, which are platform independent. For core API call,  
the header <GL/gl.h> must be included in all the files using OpenGL.  
It should be linked to OpenGL32.lib (part of Windows SDK) in Windows 
and libGL.so in Linux. Another OpenGL utility header <GL/glu.h> is 
included most of the time.

• The windowing and other platform-specific part. There are several libraries 
like GLX for X Window based system developed by Silicon Graphics, WGL 
or Wiggle for Windows developed and supported by Microsoft, and Core 
OpenGL (CGL) or Apple Graphics Library (AGL) for Mac. All these libraries 
provide APIs for interacting with their respective native Windowing system. 
There is a cross-platform OpenGL Utility Toolkit (GLUT) library which 
provides uniform interface for platform specific tasks. If GLUT is used then, 
#include <GL/glut.h> would include all GL-specific and platform-specific 
headers like the header required for WGL.

A very simple OpenGL program using GLUT would look like the following code:

#include <GL/glut.h>

#define WIN_WIDTH 350
#define WIN_HEIGHT 300 

#define WIN_POS_X 150
#define WIN_POS_Y 150

void myDraw()
{
  //Set the color of drawing object with green color
  glColor3f (0.0, 1.0, 0.0);
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  //Draw shape, vertices are enclosed 
  //within glBegin(...) and glEnd(...) 
  glBegin(GL_TRIANGLES);// Drawing Using Triangles
  glVertex3f( 0.0f, 1.0f, 0.0f);// Top vertex
  glVertex3f(-1.0f,0.0f, 0.0f);// Bottom Left vertex
  glVertex3f( 1.0f, 0.5f, 0.0f);// Bottom Right vertex
  glEnd();// Finished Drawing The Triangle

  //Actual execution of the drawing command is completed.
  glFlush();

}

int main(int argc, char** argv)
{
  //Initializes glut, so must be called before other glut routines
  glutInit(&argc, argv);

  //Sets the display in RGB mode with support of double bufferring
  glutInitDisplayMode (GLUT_RGB | GLUT_DOUBLE);

  //Sets window's size in pizel 
  glutInitWindowSize (WIN_WIDTH, WIN_HEIGHT); 

  //Sets windows position with respect to top left corner  
    of screen
  glutInitWindowPosition (WIN_POS_X, WIN_POS_Y);

  //Only create the window with the given name 
  //"myWindowName", but don't display at this point
  glutCreateWindow ("myWindowName");

  //Create read background
  //sets the background color to be used
  glClearColor (1.0, 0.0, 0.0, 0.0);

  //Projection matrix stack is the target for matrix operations 
  //default initial value is modelview stack
  glMatrixMode(GL_PROJECTION);
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  //Replace the current matrix with one identity matrix
  glLoadIdentity();

  //Set the co-ordinate system that determines how the drawn 
  //image is maped to the screen
  //First four arguments are left, right, bottom, top of 
  //the clipping planes
  //Fifth argument is nearValue which is nearer depth clipping 
  //planes, it is behind the viewer so negative
  //Sixth argument is farvalue which is farther depth  
    clipping planes
  glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

  //Sets the display function
  glutDisplayFunc(myDraw); 
  //Enters event processing loop,actually displays the windows 
  glutMainLoop();
  return 0;
}

The inline comments would explain the role of each API in brief. After setting 
myDraw as a display function, it would be used to draw a scene in an OpenGL  
window. To understand the detail of the matrix mode and co-ordinate system, 
readers are requested to refer to some OpenGL manual/book. A series of books 
are popularly known by the cover colors that is The Red Book, The Orange Book, The 
Blue Book, The Green Book, and The Alpha Book. The last two books are specific to X 
Window System and Windows respectively. An easy start can be Introduction to C 
Programming with a little OpenGL Graphics for fun by Robert P. Cook. For 3D graphics, 
a good introduction can be 3D Computer Graphics: A Mathematical Introduction with 
OpenGL by Samuel R Buss.

Defining Interoperation
Interoperation is a feature that allows an application to share data between OpenCL 
and OpenGL, without explicitly copying. Precisely, OpenCL-OpenGL interoperation 
means creating OpenCL memory objects directly from the existing OpenGL data 
structure without transferring data through the CPU. This saves a lot of data transfer 
time. It also saves memory in the GPU and solves the problem of data management, 
since the same data is being used by both OpenGL and OpenCL.

OpenCL applications can access data from two possible objects. They are as follows:

• Image Object
• Buffer Object
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On the other hand an OpenGL program can share data with OpenCL with three 
possible objects. They are as follows:

• Vertex Buffer Object (VBO)
• Texture Object
• RenderBuffer Object

The OpenGL Vertex buffer object can be linked to the OpenCL buffer object, as in the 
following figure:

Shared
Memory

VBO
Buffer
Object

OpenGL OpenCL

Similarly the OpenGL the texture or render buffer object can be linked to the 
OpenCL image, as in the following figure:

Shared
Memory

Texture
Image
Object

OpenGL OpenCL

Which kind of application would use both OpenCL and OpenGL and how?  
The answer is evidently not unique, but we can imagine a typical example of  
such a program easily. The program should fulfill the following requirements:

• It must have some graphics to render, so that OpenGL is used
• A general purpose data parallel computation should be there,
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• where OpenCL would be used
• The OpenCL kernel should be accessing a data buffer of OpenGL,  

probably updating with its own computation result

Implementing Interoperation
To use the Interoperation function we need to include the cl_gl.h header file.  
This header contains declaration of the required function for interoperation.

Detecting if OpenCL-OpenGL Interoperation  
is supported
Before discussing other implementation steps, we try to detect whether the 
current environment supports this interoperation. We use the OpenCL API 
clGetDeviceInfo(…) for this purpose. The first call would get the total size needed 
to store the string (char*) returned by the second call. This string is a list of all the 
device extensions that are supported by the current environment. We then try to find 
from this list, whether it has an item called cl_khr_gl_sharing for Windows and 
Linux and cl_apple_gl_sharing for Mac. Its presence would indicate the support 
of OpenCL-OpenGL interoperation, otherwise not.

Find the size of device info string in a variable sizeOfExtensionString called 
which is of type size_t as follows:

size_t sizeOfExtensionString;
cl_int errorStatus = clGetDeviceInfo(deviceToCheck,  
  CL_DEVICE_EXTENSIONS,  
  0,  
  NULL,  
  &sizeOfExtensionString);

Here, if CL_SUCCESS == errorStatus then sizeOfExtensionString gets the 
proper value. Then we can proceed to get the actual string of device extension.  
First we allocate sufficient memory to hold this string using the following code:

char* extensionString = (char*)malloc(sizeOfExtensionString);

On success of this memory allocation, we try to get the extension string into the 
extensionString variable using the following code:

errorStatus = clGetDeviceInfo(deviceToCheck,  
  CL_DEVICE_EXTENSIONS,  
  sizeOfExtensionString,  
  extensionString, 
  &sizeOfExtensionString);
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The extensionString variable is nothing but a list of space-separated strings,  
each indicating one extension. In this list we check the existence of the item  
cl_khr_gl_sharing with some code/function as follows:

bool isCLGLInteropSupported(char* extensionString)
{
  std::string allStrings(extensionString);
  std::string searchString("cl_khr_gl_sharing");
  std::size_t index = allStrings.find(searchString);
  if(std::string::npos == index)
  {
    return false;
  }
  else
  {
    return true;
  }
}

For Apple the statement std::string searchString("cl_
khr_gl_sharing"); must be replaced with std::string 
searchString("cl_apple_gl_sharing");.

If the preceding function returns true, we can continue our experiment of 
interoperation with the current environment.

Initializing OpenCL context for OpenGL 
Interoperation
The next task is to create OpenCL context with reference to OpenGL context in 
Linux and Windows, or to a shared group in Mac. This OpenGL context or shared 
group establishes a link between the operating system and graphic windows. The 
context would be created as usual, with the clCreateContext OpenCL call, but 
in addition we set the cl_context_properties which is the first argument of the 
clCreateContext function. In the cl_context_properties argument we set the 
corresponding property to mention the current context of OpenGL from which  
data should be shared. Unfortunately, the actual code varies across different 
operating systems. Here we present some code for Windows with a brief 
explanation. In Windows, three properties must be set. They are CL_CONTEXT_
PLATFORM, CL_WGL_HDC_KHR, and CL_GL_CONTEXT_KHR. The CL_CONTEXT_PLATFORM 
property specifies the platform. The CL_WGL_HDC_KHR property specifies the handle 
to device context (HDC) for the rendering window. The CL_GL_CONTEXT_KHR 
property specifies an OpenGL rendering context for the X11 or the Windows.
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To find the values of the CL_GL_CONTEXT_KHR and CL_WGL_HDC_KHR properties,  
we have to use operating system specific calls. For the CL_CONTEXT_PLATFORM 
property we use a standard OpenCL call and determine the platform ID using  
the function clGetPlatformId(). The following code is an example declaration  
of the cl_context_properties:

cl_context_properties custom_properties[] =
{
  //set platform
  CL_CONTEXT_PLATFORM,
  (cl_context_properties)currentPlatform,
  //set device context
  CL_WGL_HDC_KHR,
  (cl_context_properties) wglGetCurrentDC(),
  //set current context
  CL_GL_CONTEXT_KHR,
  (cl_context_properties) wglGetCurrentContext(),
  0
}

Then, we create the context as in the following code:

cl_context contextForInterop = clCreateContext( 
  custom_properties,  
  1,// number of devices 
  pDevice, //pointer to current device id 
  NULL,//pointer to pfn_notify  
  pUserData, // pointer to user data 
  clInt errNumner);

The enumeration type cl_context_properties specifies one property from a list 
of enumeration types, each with valid enumeration values. This array should be 
terminated with 0 to indicate the end.

The first argument currentPlatform is of type cl_platform structure. This value 
can be obtained by a call to the OpenCL clGetPlatformIDs(…) command as shown 
in the following code:

cl_uint noOfPlatforms;
clGetPlatformIDs (0, NULL, &noOfPlatforms);
cl_platform_id* PlatformIDList;
PlatformIDList =
 (cl_platform_id*)malloc(sizeof(cl_platform_id)*noOfPlatforms);
clGetPlatformIDs(noOfPlatforms, PlatformIDList, NULL);
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Then select the cl_platform in the variable currentPlatform from 
PlatformIDList. This PlatformIDList is of type cl_platform_id*,  
and on return contains the available list of platforms.

The functions wglGetCurrentDC() and wglGetCurrentContext() are called 
wiggle functions which require inclusion of the windows.h header. These functions 
are extensions of OpenGL in windows which allow linking OpenGL to Windows 
programming.

On Linux, the graphical interface is provided by X11, X Window system. Here  
the CL_WGL_HDC_KHR property is replaced by CL_GLX_DISPLAY_KHR. This specifies 
the display object, which represents a connection to the X server. The remaining 
enumeration for properties remain the same.

The following code creates the property-list and sets the suitable values for the 
properties:

cl_context_properties custom_properties [] = {
    //Platform  
    CL_CONTEXT_PLATFORM,  
    (cl_context_properties) platform, 
    // Connection to X server     
    CL_GLX_DISPLAY_KHR,  
    (cl_context_properties) glXGetCurrentDisplay(),  
    //Rendering context 
    CL_GL_CONTEXT_KHR,  
    (cl_context_properties) glXGetCurrentContext(), 
    0
}; 

After this, we create the context using the previous property-list as the first 
parameter in the following call:

cl_context contextForInterop = clCreateContext( 
  custom_properties,  
  1,// number of devices 
  pDevice, //pointer to current device id 
  NULL,//pointer to pfn_notify  
  NULL, // pointer to user data 
  clInt_errNumner);

On Mac, instead of three properties only one property is to be set. Its data 
type is CGLShareGroupObj and the value is obtained using the function call 
CGLGetShareGroup like in the following code:

CGLContextObj cglCtx = CGLGetCurrentContext();
CGLShareGroupObj cglShGrp = CGLGetShareGroup(cglCtx);
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The enumeration is CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE and the 
setting is done using the following code:

cl_context_properties custom_Properties[] = 
{ 
  CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE,  
  (cl_context_properties)kCGLShareGroup,  
  0 
};

Then create the context using the following code:

Ctx = clCreateContext( 
  custom_Properties,  
  0,  
  0,  
  NULL,  
  NULL,  
  clInt_errNumner);

Mapping of a buffer
Now we create the OpenCL buffer which is the same as some existing OpenGL 
buffers. The clCreateFromGLBuffer OpenCL command is used for this purpose  
as shown in the following code:

cl_mem clCreateFromGLBuffer ( 
  cl_context context,  
  cl_mem_flags flags,  
  GLuint bufObj,  
  cl_int * errCode)

Here, context is a valid OpenCL context which is created from an OpenGL context  
as described in preceding section. The flags field is a bit field which is similar to  
the flag used in clCreateBuffer() but, in the present clCreateFromGLBuffer call,  
only CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY, and CL_MEM_READ_WRITE values 
can be used. The name of the OpenCL Buffer object which is already created using 
OpenGL API is bufObj. The error code in case of error is errCode.

The OpenCL memory object should be created before the OpenGL rendering 
starts but after the corresponding OpenGL VBO has been created, so this bufObj 
must be created before the call of clCreateFromGLBuffer, although it may not be 
initialized and the size of this buffer is used as the buffer object returned by the 
clCreateFromGLBuffer call. The modification of the state of a GL Buffer object 
using the GL API (such as glBufferData) when corresponding to the CL buffer 
object exist and the buffer is acquired by CL buffer, it will lead to an undefined 
behavior in subsequent use of the CL Buffer object.
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If we create an OpenCL memory object from the OpenGL buffer, the OpenGL object 
would not get deleted until the OpenCL object is deleted.

Call of the cl_int clReleaseMemObject (cl_mem memobj) function decrements 
the reference count to the memory object. This can be used to release the Buffer 
object. Similarly call of the cl_int clRetainMemObject (cl_mem memobj) function 
increments the reference count to the memory object, hence it is used to retain the 
Buffer object.

Now we present a code snippet for illustration. The following code creates a vertex 
Buffer object called vBuffObj and links it to GL_ARRAY_BUFFER:

#define BUF_SIZE 350
…
GLuint vBuffObj;
glGenBuffers(1, &vBuffObj);
glBindBuffer(GL_ARRAY_BUFFER, vBuffObj);
glBufferData(GL_ARRAY_BUFFER, BUF_SIZE, NULL, GL_STATIC_DRAW);

The call glGenBuffers(…) generates the Buffer object name. The first argument 
specifies the number of names to be generated (here only one) and the second is 
populated with the generated name(s). The generated names are integers, and not 
necessarily continuous.

The call glBindBuffer(…) binds a Buffer object to the specified buffer binding point, 
here that is the array buffer. Here, the vertex array pointer parameter is interpreted 
as an offset within the buffer object, measured in basic machine units.

The call glBufferData(…)  actually creates a new data store for the Buffer object 
with specified size in bytes and usage (here, static draw).

After all the preceding steps we use the following code to create the corresponding 
vertex buffer object of OpenCL: 

cl_mem vboBuff = clCreateFromGLBuffer(ctx, CL_MEM_WRITE_ONLY,  
vBuffObj, &err);

Hence vboBuff is an OpenCL memory object that refers to the OpenGL vertex  
Buffer object vBuffObj.
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Listing Interoperation steps
After this creation, the typical steps are as follows:

1. Make sure that all the GL commands that were pending on the buffer  
are finished.

2. Acquire the Memory object in OpenCL.
3. Call the kernel with a parameter as this memory object, so that the kernel  

can update the memory buffer.
4. Make sure that kernel has finished.
5. OpenCL releases the acquisition of that buffer, and OpenGL reacquires the 

buffer and renders the graphics from the buffer.

create Buffer

sync lik
clFinish(...)
or event
based sync

Acquire buffer

buffer buffer buffer

buffer buffer buffer

buffer buffer

OpenCL work
on this buffer

Release buffer
all OpenCL
work on this
buffer is done

destroy bufferdisplay from
buffercreate Buffer

glFinish(...)
or similar
sync command

all OpenGL
work on that
buffer is done

OpenCL

OpenGL

timeline

The steps shown in the previous figure are done by the following code:

…
glFinish();
clEnqueueAcquireGLObjects(cmdQueue, 
  1,  
  &vboBuff,  
  0,//No event to wait for  
  NULL, // Wait event list pointer is NULL 
  NULL //Event of this command 
  );
clEnqueueNDRangeKernel(    
  cmdQueue, 
  KernelToWriteOnVBO,  
  2,  
  NULL,  
  globalSize,  
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  NULL,  
  0,  
  NULL,  
  NULL);
  
clFinish(cmdQueue);
clEnqueueReleaseGLObjects(cmdQueue, 
  1,  
  &vboBuff,  
  0, 
  NULL,  
  NULL );

Now render the vertex Buffer using OpenGL rendering steps.

When the compiler directive cl_khr_gl_event is enabled (also called OpenCL 
extension)we don't need to make an  explicit call to functions glFinish() and 
clFinish() because with cl_khr_gl_event implicit synchronization is enabled. 
Hence, clEnqueueAcquireGLObjects() acquires only after all corresponding 
OpenGL's pending commands (that writes on memory object) get finished.  
A similar thing happens for function clEnqueueReleaseGLObjects().

To check if this extension is available, we can use  clGetDeviceInfo(…).  
To enable it we can use the compiler directive  
#pragma OPENCL EXTENSION cl_khr_gl_event : enable
or 
#pragma OPENCL EXTENSION all : enable.

Synchronization
We have already found means to synchronize OpenCL and OpenGL via 
glFinish(), clFinish(…), or using implicit synchronization. Here we discuss some 
explicit synchronization mechanisms. The synchronization needs two things enabled, 
extension cl_khr_gl_event should be enabled and OpenGL context should support 
the fence synchronization object (for OpenGL Version 3.2 or greater, or in case the 
support exists for ARB_sync extension). The advantage of explicit synchronization  
is that it allows more fine-grained synchronization.

The fence synchronization object is created with an OpenGL call shown as follows

GLsync fSyncObj = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);

Here GLsync is the synchronization object type. Currently only one standard type 
is supported called fence. The first parameter specifies the condition on which it 
would receive the signal. Right now, the only supported option is GL_SYNC_GPU_
COMMANDS_COMPLETE, which is used here. The second parameter is bit based flags.  
No flag is supported right now so 0 is used.
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The function glFenceSync(…) not only creates a sync object of type fence but 
inserts it into the GL command stream. So at the location of the call of this function 
a fence is placed. This fence is signaled when the GPU completes all its vertex 
Buffer operations which were invoked before it. But it is non-blocking in the sense 
that the CPU can proceed with next command. Only the glWaitSync(…), and 
glClientWaitSync(…) commands are blocking commands.

This fence object created by calling the glFenceSync(…) function can be used to 
create an OpenCL event so that the event is completed when fence object is signaled. 
That way we would able to get the OpenGL signal at OpenCL context, the command 
for which is as follows:

cl_event fenceEvent = clCreateEventFromglsyncKHR ( 
  ctxCreatedFromGL, 
  fSyncObj, 
  NULL);

The first parameter ctxCreatedFromGL is a valid context that is created from 
OpenGL context. The second parameter is the fence sync object. The third  
parameter is cl_int* error code to be returned which is set to NULL here for  
the sake of simplicity.

This cl_event called fenceEvent generated from the 
clCreateEventFromglsyncKHR() call would have a few special characteristics.  
The clCreateEventFromGLsyncKHR command implicitly performs a 
clRetainEvent( ) call on this CL event object, and creates a reference on the fence 
sync object. When an event is deleted the reference is deleted. The value of CL_
EVENT_COMMAND_TYPE (of type cl_event_info) would be CL_COMMAND_GL_FENCE_
SYNC_OBJECT_KHR, and the value of CL_EVENT_COMMAND_QUEUE (of type cl_event_
info) would be NULL, since it's not directly associated with any command queue 
of OpenCL. The value returned by a call to clGetEventInfo with parameter CL_
EVENT_COMMAND_EXECUTION_STATUS is either CL_SUBMITTED or CL_COMPLETE, but 
never CL_QUEUED or CL_RUNNING. CL_SUBMITTED which means that the event has not 
completed yet. CL_COMPLETE means it is completed. All these values can be queried 
and verified with a clGetEventInfo() call. Due to the singular nature of the CL 
event created by clCreateEventFromglsyncKHR(), this cl_event viz. fenceEvent 
can only be used in a waitlist of events of clEnqueueAcquireGLObjects.  
The following code is a sample call 

clEnqueueAcquireGLObjects(cmdQueue, 
  1,  
  &vboBuff,  
  1, //Number of events in wait-for list  
  &fenceEvent, //GL event to wait for  
  NULL //Event of this command 
  );
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We have discussed how to get an OpenCL event from an OpenGL sync object. Now 
we discuss the opposite process. We will now see how to get an OpenGL sync object 
from an OpenCL event that is, cl_event. For this we need to have enabled the 
OpenGL extension ARB_cl_event.

Suppose we have a valid cl_event called eventFromCl, as follows:
 cl_event eventFromCl; eventFromCl;

To get a corresponding fence object we use the glCreateSyncFromCLeventARB() 
OpenGL call. This call returns a GLsync object, so that waiting on this object 
is the same as waiting on the corresponding cl_event, and can be used with 
glWaitSync(), glClientWaitSync(), and glFenceSync(). This call takes three 
parameters. The first parameter would be a valid context of OpenCL. The second 
parameter is the corresponding cl_event object which is linked with. The third 
parameter is a bit-field.

Creating a buffer from GL texture
Similarly to create a an OpenCL buffer from 2D and 3D texture memory we used the 
following calls respectively on OpenCL1.0 and OpenCL1.1:

cl_mem clCreateFromGLTexture2D (cl_context ctx, 
  cl_mem_flags flg, 
  GLenum txtr_target, 
  GLint miplevel, 
  GLuint texture, 
  cl_int * errcode_ret)

The preceding API creates an OpenCL 2D object from an OpenGL 2D texture object 
and the following code is for corresponding 3D:

cl_mem clCreateFromGLTexture3D (cl_context ctx, 
  cl_mem_flags flg, 
  GLenum txtr_target, 
  GLint miplevel, 
  GLuint texture, 
  cl_int * errcode_ret)

Both take a similar set of arguments. Parameter flg is a valid OpenCL context that  
is created from OpenGL context or OpenGL 3D context in respective cases.

The second parameter that is flg, is cl_mem_info enumeration whose permitted 
values here are limited to CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY, and CL_MEM_
READ_WRITE only for both the APIs.
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The third parameter is GLenum texture_target. For the 2D texture GLenum 
texture_target, it specifies the image type of texture without creating any 
reference to a bound GL texture object. GL_TEXTURE_2D, GL_TEXTURE_CUBE_
MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_
MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_
NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z are the permitted values. Value 
GL_TEXTURE_RECTANGLE is also permitted but only for Version 1.3 or higher . For 3D 
the only permitted value is GL_TEXTURE_3D.

The fourth parameter miplevel gives the mipmap level to be used. Mipmaps are  
pre-computed sets of images, which come with main texture for faster rendering.  
This value is mostly set to 0 because the implementations report error for  
higher values.

The fifth parameter GLuint texture is name of a texture object. In respective 
cases 2D and 3D texture objects. According to the rules of texture completeness in 
OpenGL, a texture object must be a complete texture.

The last parameter is as error code which may be one of the CL_OUT_OF_HOST_
MEMORY, CL_INVALID_MIPLEVEL, CL_INVALID_GL_OBJECT, CL_INVALID_CONTEXT, 
CL_INVALID_IMAGE_FORMAT_DESCRIPTOR, or CL_INVALID_VALUE (for invalid flags  
or texture target).

OpenCL 1.2 introduces a new API, as follows:

cl_mem clCreateFromGLTexture (cl_context ctx, 
  cl_mem_flags flg, 
  GLenum txtr_target, 
  GLint miplevel, 
  GLuint texture, 
  cl_int * errcode_ret)

The meaning of the parameters are similar, except the parameter texture should be 
the name of a OpenGL 1D, 1D array, 2D, 2D array, 3D, rectangle, cubemap or buffer 
texture object, and txtr_target can be the corresponding supported values.

Renderbuffer object
Renderbuffer are another type of OpenGL objects which are optimized for use  
as render targets, especially when the user doesn't need to sample from the produced 
image. Functions glGenRenderbuffers(), glDeleteRenderbuffers(),  
and glBindRenderbuffer()  are there respectively for the creation , deletion,  
and binding of the Renderbuffer object (refer to the OpenGL manual for detail).
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To create an OpenCL memory object from a Renderbuffer object we use the 
following function:

cl_mem clCreateFromGLRenderbuffer (cl_context cxt, 
  cl_mem_flags flg, 
  GLuint buff, 
  cl_int * errcode_ret);

The function clCreateFromGLRenderbuffer was introduced in OpenCL 1.0. The 
first parameter is an OpenCL context, created from OpenGL context. The second 
parameter is a bit-field flag. The values it can take are CL_MEM_READ_WRITE, CL_MEM_
READ_ONLY, and CL_MEM_WRITE_ONLY. The third parameter is a Renderbuffer object's 
name. The Renderbuffer dimension and format would be used to create an OpenCL 
2D image object. 

The OpenGL internal format of a Renderbuffer object can be  
GL_RGBA8I, GL_RGBA8I_EXT, GL_RGBA16I, GL_RGBA16I_EXT, GL_RGBA32I, GL_
RGBA32I_EXT, GL_RGBA8UI, GL_RGBA8UI_EXT, GL_RGBA16F, GL_RGBA16F_ARB, and  
so on. When an OpenCL object is created from a Renderbuffer object, the channel 
order and the channel data type is as given in the table below.

Internal format of 
Renderbuffer Object in GL

Image Channel Data  
Type in CL

Image Channel order in CL

GL_RGBA16 CL_UNORM_INT16 CL_RGBA 
GL_RGBA8 CL_UNORM_INT8 CL_RGBA or CL_BGRA
GL_RGBA32I CL_SIGNED_INT32 CL_RGBA
GL_RGBA16I CL_SIGNED_INT16 CL_RGBA
GL_RGBA8I CL_SIGNED_INT8 CL_RGBA
GL_RGBA32UI or GL_
RGBA32UI_EXT

CL_UNSIGNED_INT32 CL_RGBA

GL_RGBA16UI or GL_
RGBA16UI_EXT

CL_UNSIGNED_INT16 CL_RGBA

GL_RGBA8UI or GL_
RGBA8UI_EXT

CL_UNSIGNED_INT8 CL_RGBA

GL_RGBA32F or GL_
RGBA32F_ARB

CL_FLOAT CL_RGBA

GL_RGBA16F or GL_
RGBA16F_ARB

CL_HALF_FLOAT CL_RGBA
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The function clCreateFromGLRenderbuffer returns an image object or NULL 
respectively on success or failure to create the buffer object. The error code  
CL_SUCCESS is returned in the fourth parameter cl_int * errcode_ret; and in  
the second case error-code CL_INVALID_CONTEXT , CL_INVALID_VALUE (if flg is  
not valid), CL_INVALID_GL_OBJECT, CL_INVALID_IMAGE_FORMAT_DESCRIPTOR  
(if for current internal format of OpenGL there is no corresponding map in the 
OpenCL image), or CL_OUT_OF_HOST_MEMORY is returned.

After creating the OpenCL image object, if the format or dimension of the 
source OpenGL Renderbuffer object is modified (using OpenGL APIs such 
as glRenderbufferStorage(…)), then the behavior of the created OpenCL 
object is undefined in subsequent use. To release the image object we use the 
clReleaseMemObject function.

Summary
In this chapter we have covered the topic of CL-GL interoperation. After giving  
a brief description of OpenGL, we defined OpenCL-OpenGL interoperation and  
the required steps of implementation (including detection of interoperation  
support, initializing OpenCL context for OpenGL interoperation, mapping of  
Buffer (CL and GL), synchronization techniques, and then using the Texture 
and Renderbuffer objects of OpenGL). In the following chapter we will discuss 
application of OpenCL in some algorithms from various fields such as statistics, 
machine learning, and so on.



Case studies – Regressions, 
Sort, and KNN

In this chapter we present more examples to illustrate the capability of OpenCL in 
different domains. For each example, we present a very brief introduction to the 
problem and algorithm before discussing the implementation using OpenCL kernel. 
Readers who are already well-versed with any particular problem may like to 
directly jump to the discussion of kernel. It is worth remembering the fact that all the 
kernels are not going to give some performance benefit for all ranges of data and on 
every GPU. Here instead of discussing optimization techniques on these algorithms 
(which is already discussed in the section Case study – matrix multiplication of Chapter 
8, Basic Optimization Techniques with Case Studies) we aim to make the reader more 
comfortable to convert sequential algorithms from various domains into one that 
exploits the data parallel part of it to write OpenCL kernels.

We will discuss four problems in this chapter. The first two are from the statistics 
domain. The third one is the parallel sorting algorithm. The fourth, KNN 
classification will use the sorting algorithm. The following are the case studies 
discussed here:

• Curve Fitting with least squares Method
 ° Straight Line approximations
 ° Parabolic Approximations

• Sorting Algorithm – Bitonic Sort
• K-Nearest Neighborhood Classification Algorithms
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Regression with least square curve fitting
In least square curve fitting (line and parabola), we are given two interdependent 
scalar quantities described by two variables say X and Y, but the exact relationship 
between them is not known in terms of a function like Y =f(X). But instead we are 
given N pair of values (xi, yi) for i equals 1,2,…, N, which exactly means that when 
X takes the value xi, then Y takes the value yi. Generally X is called the independent 
variable and Y is called the dependent variable. We have to construct a function like 
Y =f(X) which approximates the exact relationship between X and Y. This function 
f(X) would be constructed using the given set of value pairs (xi, yi). Since function 
f is approximating the original function and choice of function f is in our hand, we 
choose a polynomial function for simplicity and also are motivated by a theorem 
in mathematical analysis called Stone Weierstrass Theorem. Informally speaking 
this theorem states that in every closed interval, any continuous function can be 
approximated by a polynomial sufficiently well as desired just by increasing the 
degree and adjusting the coefficient of the terms.

Linear approximations
First we consider a polynomial of degree one, which is the linear approximation.  
So the function f takes the form as the following:

0 1y a a x= +

Our task is to find the value of 0a  and 1a . To find these two values we use the  

given ( , y )i ix  for i equals 1,2,…, N and a technique called method of least square. 

This method states to find a straight line 0 1y a a x= + , that is, find the values of  
0a  and 1a  such that the sum of the square of vertical distance of all points ( , y )i ix  

from the line is minimized.

As described in the following figure, we are using basic analytical geometry 

knowledge to find the sum which is equal to 1

n
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Using optimization techniques (which is out of the scope of this book), we arrive  
at the result that the mentioned sum takes minimum value as shown in the  
following equations:
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Parabolic approximations
Secondly we consider the polynomial of degree two like y =a0 + a1x + a2x2 and 
use the same least square technique. This approximation is called the parabolic 
approximation. Here we need to find the values of three variables a0, a1, and a2.  
Using the minimization technique, we arrive at the following three equations:
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These three equations are solved to get the desired values of a0, a1, and a2. The 
solution is done using Cramer's Rule in the following way:
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Implementation
We start with a sequential implementation using two functions called 
linearApproximation and parabolicApproximation. Both take the first three 
arguments as inputs. First argument is the size of array N and second and third 
arguments are two arrays pX and pY (each of size N) containing the given values 
of coordinates X and Y. The remaining parameters are output parameters. For the 
linearApproximation function there are two output parameters, namely, pA0 and 
pA1. Pointers are passed to get the values. As explained in the following code:

void linearApproximation( size_t N,
                          float* pX,
                          float* pY,
                          float* pA0,
                          float* pA1)
{
  float sumX = 0.f;
  float sumY = 0.f;
  float sumXY = 0.f;
  float sumXX = 0.f;
  for(int i=0; i < N; ++i)
  {
    sumX += *(pX+i);// *(pX+i) is same as pX[i] in meaning
    sumY += *(pY+i));
    sumXY += ( *(pX+i) )*( *(pY+i)) );
    sumXX += ( *(pX+i) )*( *(pX+i)) );
  }

  *pA0 = (sumY*sumXX - sumX*sumXY)/(N*sumXX - sumX**2 );
  *pA1 = (N*sumXY - sumX*sumY)/(N*sumXX - sumX**2 );
}

For the parabolicApproximation function there are three output parameters, 
namely, pA0, pA1, and pA2. To get the values pointer to those are passed. Finding the 
values in the parabolicApproximation function is not straightforward as with the 
linearApproximation function, since we finally have to use Cramer's Rule.

void parabolicApproximation(size_t N,
                            float* pX,
                            float* pY,
                            float* pA0,
                            float* pA1,
                            float* pA2)
{
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  float sumX = 0.f;
  float sumY = 0.f;
  float sumXY = 0.f;
  float sumXX = 0.f;
  float sumXXY = 0.f;
  float sumXXX = 0.f;
  float sumXXXX = 0.f;

  float XX = 0.f;
  float XXX = 0.f;
  for(int i=0; i < N; ++i)
  {
    sumX += *(pX+i); // *(pX+i) is same as pX[i] in meaning
    sumY += *(pY+i));
    sumXY += ( *(pX+i) )*( *(pY+i)) );
    XX = ( *(pX+i) )*( *(pX+i)) );
    sumXX += XX;
    sumXXX += ( *(pX+i) )*XX );
    sumXXXX += XX*XX;
  }

  //compute *pA0, *pA1, *pA2 
  Bool result = true;
  findParabola(pA0, pA1, pA2, N, sumX,sumXX,sumXXX,sumXXXX,sumY, 
    sumXY, sumXXY, &result);      
}

Observe that this function uses the routine findParabola which in turn uses 
the function determinant3By3. The function findParabola merely implements 
Cramer's Rule to solve simultaneous equations of the three variables. When the 
determinant of the co-efficient matrix is zero, then we really don't have the solution 
of the equation system. The last parameter bool* resultValid indicates whether 
the solution could be found or it does not exist.

void findParabola(//Output parameters
                   float* pA0, 
                   float* pA1, 
                   float* pA2,
                   //Input parameters
                   int    N, 
                   float sumX, 
                   float sumXX, 
                   float sumXXX, 
                   float sumXXXX, 
                   float sumY, 
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                   float sumXY, 
                   float sumXXY,
                   bool* resultValid
                   )
{
  //compute detA
  float detA = determinant3By3((float)N, sumX,   sumXX,
                                                                                        
                                    sumX,    sumXX,  sumXXX,                                                                       
                                    sumXX,   sumXXX, sumXXXX);
if( 0.f == detA)
{
  *resultValid = false;
  return;
}
float detA0 = determinant3By3(sumY, sumX,   sumXX,
                              sumXY,    sumXX,  sumXXX,
                              sumXXY,   sumXXX, sumXXXX);
float detA1 = determinant3By3((float)N, sumY,   sumXX,
                               sumX,    sumXY,  sumXXX,
                               sumXX,   sumXXY, sumXXXX);

float detA2 = determinant3By3((float)N, sumX,   sumY,
                               sumX,    sumXX,  sumXY,
                               sumXX,   sumXXX, sumXXY);
  *pA0 = detA0/detA;
  *pA1 = detA1/detA;
  *pA2 = detA2/detA;
}

To compute the three by three matrix's determinant, we use the function 
determinant3By3 which takes all the nine elements of the determinant in  
a row-major way as shown below.

float determinant3By3(float a1, float b1, float c1,
                      float a2, float b2, float c2,
                      float a3, float b3, float c3
                      )
{
  float det = a1*b2*c3 - a1*b3*c2;
  det += a3*b1*c2 - a2*b1*c3;
  det += a2*b3*c1 - a3*b2*c1;
  return det;
}
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Now we describe the kernel implementations. First kernel is for linear approximation 
and is linear_regression_kernel. This takes eleven parameters and is used to 
compute the different sums. The first two parameters X and Y are input arrays.The 
next four are different summations sumX, sumY, sumXX and sunXY which is computed 
by the OpenCL kernel. These summations are used to compute a0 and a1. All these 
values are kept in global memory. The data type here is described using a macro 
called DATA_TYPE. This macro is defined to be float. The advantage of using such a 
macro is flexibility. With very little effort we can change the type from float to double 
or some other suitable type. For that we only need to change the #define DATA_
TYPE float to #define DATA_TYPE double, and so on.

Another macro used here is called SUM_STEP. The kernel first loads the 64 elements 
each of X and Y into a local memory before hitting a local memory barrier. The SUM_
STEP macro computes the sum of each of the local memory localSumX, localSumY, 
localSumXX, and localSumXY. Take a look at the following diagram which shows 
how the sum is calculated for 16 elements and shows the four SUM_STEP:

The SUM_STEP operation

The kernel first initializes the accumulatorX and accumulatorY two private 
variables with the array elements. Then it initializes the local variables which store 
the partial sums within a work group. Using local memory fence we make sure that 
all local data are properly initialized before we proceed further. Then using  
six consecutive SUM_STEP(…) calls we accumulate the sum of 32 elements into  
a single element. Lastly, we write the result in output variables. This creates a sum 
per work group.



Chapter 11

[ 255 ]

#define DATA_TYPE float                                                                            
#define  SUM_STEP(LENGTH,  INDEX,  _W)                               \
  if  ((INDEX  <  _W)  &&  ((INDEX  +  _W)  <  LENGTH))  {           \
    localSumX[INDEX]   = localSumX[INDEX]  +  localSumX[INDEX + _W]; \
    localSumY[INDEX]   = localSumY[INDEX]  +  localSumY[INDEX + _W]; \
    localSumXY[INDEX]  = localSumXY[INDEX] +  localSumXY[INDEX + _W];\
    localSumXXY[INDEX] = localSumXXY[INDEX] +                        \
                         localSumXXY[INDEX + _W];                    \
    localSumXX[INDEX]  = localSumXX[INDEX] +                         \
                         localSumXX[INDEX  + _W];                    \
    localSumXXX[INDEX] = localSumXXX[INDEX] +                        \
                         localSumXXX[INDEX + _W];                    \
    localSumXXXX[INDEX] = localSumXXXX[INDEX] +                      \
                          localSumXXXX[INDEX + _W];                  \
    }                                                                \
  barrier(CLK_LOCAL_MEM_FENCE);
                                                                                                   
__kernel                                                                                           
void linear_regression_kernel(                                                                     
                  __global DATA_TYPE *X,                                                           
                  __global DATA_TYPE *Y,                                                           
                  __global DATA_TYPE *sumX,                                                        
                  __global DATA_TYPE *sumY,                                                        
                  __global DATA_TYPE *sumXX,                                                       
                  __global DATA_TYPE *sumXY,                                                       
                  __local  DATA_TYPE *localSumX,                                                    
                  __local  DATA_TYPE *localSumY,                                                    
                  __local  DATA_TYPE *localSumXX,                                                    
                  __local  DATA_TYPE *localSumXY,                                                  
                           int        length )                                                   
{                                                                                                  
    //Get the index of the work-item                                                               
    int index = get_global_id(0);                                                                  
    int gx = get_global_id (0);                                                                    
    int gloId = gx;                                                                                
                                                                                                   
    //  Initialize the accumulator private variable with data from the 
input array                 
    //  This essentially unrolls the loop below at least once                                      
    DATA_TYPE accumulatorX;                                                                         
    DATA_TYPE accumulatorY;                                                                         
    if(gloId < length){                                                                            
       accumulatorX = X[gx];                                                                    
       accumulatorY = Y[gx];                                                                    
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    }                                                                                              
                                                                                                   
                                                                                                   
    //  Initialize local data store                                                                
    int local_index = get_local_id(0);                                                             
    localSumX[local_index] = accumulatorX;                                                            
    localSumY[local_index] = accumulatorY;                                                            
    localSumXY[local_index] = accumulatorX*accumulatorY;                                                            
    localSumXX[local_index] = accumulatorX*accumulatorX;                                                            
    barrier(CLK_LOCAL_MEM_FENCE);                                                                  
                                                                                                   
    //  Tail stops the last workgroup from reading past the end of the 
input vector                
    uint tail = length - (get_group_id(0) * get_local_size(0));                                    
                                                                                                   
    // Parallel reduction within a given workgroup using local data 
store                          
    // to share values between workitems                                                           
    SUM_STEP(tail, local_index, 32);                                                               
    SUM_STEP(tail, local_index, 16);                                                               
    SUM_STEP(tail, local_index,  8);                                                               
    SUM_STEP(tail, local_index,  4);                                                               
    SUM_STEP(tail, local_index,  2);                                                               
    SUM_STEP(tail, local_index,  1);                                                               
                                                                                                   
     //  Abort threads that are passed the end of the input vector                                 
    if( gloId >= length )                                                                          
        return;                                                                                    
                                                                                                   
    //  Write only the single reduced value for the entire workgroup                               
    if (local_index == 0) {                                                                        
        sumX[get_group_id(0)] = localSumX[0];                                                      
        sumY[get_group_id(0)] = localSumY[0];                                                      
        sumXX[get_group_id(0)] = localSumXX[0];                                                      
        sumXY[get_group_id(0)] = localSumXY[0];                                                      
    }                                                                                              
};

To get the final sum we accumulate them from all the workgroups. The following 
host code does this job:

clStatus = clEnqueueReadBuffer(command_queue, 
                               psumX_clmem, 
                               CL_TRUE, 
                               0,
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                               num_of_work_groups * sizeof(float),
 
                               psumX, 
                               0, 
                               NULL, 
                               NULL);
clStatus = clEnqueueReadBuffer(command_queue, 
                               psumY_clmem, 
                               CL_TRUE, 
                               0,
                               num_of_work_groups * sizeof(float), 
                               psumY, 
                               0, 
                               NULL, 
                               NULL);
clStatus = clEnqueueReadBuffer(command_queue, 
                               psumXX_clmem, 
                               CL_TRUE, 
                               0,
                               num_of_work_groups * sizeof(float), 
                               psumXX, 
                               0, 
                               NULL, 
                               NULL);
clStatus = clEnqueueReadBuffer(command_queue, 
                               psumXY_clmem, 
                               CL_TRUE, 
                               0,
                               num_of_work_groups * sizeof(float), 
                               psumXY, 
                               0, 
                               NULL, 
                               NULL);
    float sumX  = 0.0f;
    float sumY  = 0.0f;
    float sumXX = 0.0f;
    float sumXY = 0.0f;
    for(int i=0;i<num_of_work_groups;i++)
    {
        sumX  += psumX[i];
        sumY  += psumY[i];
        sumXY += psumXY[i];
        sumXX += psumXX[i];
    }
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Finally, the values of a0 and a1 (respectively in the variables A0 and A1) are 
computed using the obtained sums.

A0 = (sumY*sumXX - sumX*sumXY)/(NUM_OF_POINTS*sumXX - sumX*sumX );
A1 = (NUM_OF_POINTS*sumXY - sumX*sumY)/(NUM_OF_POINTS*sumXX - 
sumX*sumX );

Kernel for parabolic approximation works in exactly the same way except it takes 
extra arguments for the extra computational parameter. This kernel is listed in the 
following code:

#define DATA_TYPE float                                                                            

__kernel                                                                                           
void parabolic_regression_kernel(                                                                  
                  __global DATA_TYPE *X,                                                           
                  __global DATA_TYPE *Y,                                                           
                  __global DATA_TYPE *sumX,                                                        
                  __global DATA_TYPE *sumY,                                                        
                  __global DATA_TYPE *sumXY,                                                       
                  __global DATA_TYPE *sumXXY,                                                      
                  __global DATA_TYPE *sumXX,                                                       
                  __global DATA_TYPE *sumXXX,                                                      
                  __global DATA_TYPE *sumXXXX,                                                     
                  __local  DATA_TYPE *localSumX,                                                   
                  __local  DATA_TYPE *localSumY,                                                   
                  __local  DATA_TYPE *localSumXX,                                                  
                  __local  DATA_TYPE *localSumXY,                                                  
                  __local  DATA_TYPE *localSumXXY,                                                 
                  __local  DATA_TYPE *localSumXXX,                                                 
                  __local  DATA_TYPE *localSumXXXX,                                                
                           int        length )                                                     
{                                                                                                  
    //Get the index of the work-item                                                               
    int index = get_global_id(0);                                                                  
    int gx = get_global_id (0);                                                                    
    int gloId = gx;                                                                                
    DATA_TYPE XX;                                                                                  
                                                                                                   
    //  Initialize the accumulator private variable with data from the 
input array                 
    //  This essentially unrolls the loop below at least once                                      
    DATA_TYPE accumulatorX;                                                                        
    DATA_TYPE accumulatorY;                                                                        
    if(gloId < length){                                                                            
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       accumulatorX = X[gx];                                                                       
       accumulatorY = Y[gx];                                                                       
    }                                                                                              
                                                                                                   
    //  Initialize local data store                                                                
   int local_index = get_local_id(0);                                                             
    localSumX[local_index] = accumulatorX;                                                         
    localSumY[local_index] = accumulatorY;                                                         
    XX = accumulatorX*accumulatorX;                                                                
    localSumXY[local_index]   = accumulatorX*accumulatorY;                                         
    localSumXXY[local_index]  = XX*accumulatorY;                                                   
    localSumXX[local_index]   = XX;                                                                
    localSumXXX[local_index]  = XX*accumulatorX;                                                   
    localSumXXXX[local_index] = XX*XX;                                                             
    barrier(CLK_LOCAL_MEM_FENCE);                                                                  
                                                                                                   
    //  Tail stops the last workgroup from reading past the end of the 
input vector                
    uint tail = length - (get_group_id(0) * get_local_size(0));                                    
                                                                                                   
    // Parallel reduction within a given workgroup using local data 
store                          
    // to share values between workitems                                                           
    SUM_STEP(tail, local_index, 32);                                                               
    SUM_STEP(tail, local_index, 16);                                                               
    SUM_STEP(tail, local_index,  8);                                                               
    SUM_STEP(tail, local_index,  4);                                                               
    SUM_STEP(tail, local_index,  2);                                                               
    SUM_STEP(tail, local_index,  1);                                                               
                                                                                                   
     //  Abort threads that are passed the end of the input vector                                 
    if( gloId >= length )                                                                          
        return;                                                                                    
                                                                                                   
    //  Write only the single reduced value for the entire workgroup                               
    if (local_index == 0) {                                                                        
        sumX[get_group_id(0)]    = localSumX[0];                                                      
        sumY[get_group_id(0)]    = localSumY[0];                                                      
        sumXY[get_group_id(0)]   = localSumXY[0];                                                    
        sumXXY[get_group_id(0)]  = localSumXXY[0];                                                    
        sumXX[get_group_id(0)]   = localSumXX[0];                                                    
        sumXXX[get_group_id(0)]  = localSumXXX[0];                                                  
        sumXXXX[get_group_id(0)] = localSumXXXX[0];                                                
    }                                                                                              
};
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The preceding kernel takes the help of the following macro which computes the  
step sum:

#define  SUM_STEP(LENGTH,  INDEX,  _W)                               \
  if  ((INDEX  <  _W)  &&  ((INDEX  +  _W)  <  LENGTH))  {           \
    localSumX[INDEX]   = localSumX[INDEX]  +  localSumX[INDEX + _W]; \
    localSumY[INDEX]   = localSumY[INDEX]  +  localSumY[INDEX + _W]; \
    localSumXY[INDEX]  = localSumXY[INDEX]  +  localSumXY[INDEX + 
_W];\
    localSumXXY[INDEX] = localSumXXY[INDEX] +                        \
                         localSumXXY[INDEX + _W];                    \
    localSumXX[INDEX]  = localSumXX[INDEX]  +                        \
                         localSumXX[INDEX + _W];                     \
    localSumXXX[INDEX] = localSumXXX[INDEX] +                        \
                         localSumXXX[INDEX + _W];                    \
    localSumXXXX[INDEX] = localSumXXXX[INDEX] +                      \
                          localSumXXXX[INDEX + _W];                  \
    }                                                                \
  barrier(CLK_LOCAL_MEM_FENCE);

After the computation of summations in the OpenCL kernel. The data is transferred 
to the host using the clEnqueueReadBuffer function as shown below. Finally a for 
loop computes the final summations.

clStatus = clEnqueueReadBuffer(command_queue, psumX_clmem,
             CL_TRUE, 0,
             num_of_work_groups * sizeof(float), psumX, 0, NULL,
             NULL);
clStatus = clEnqueueReadBuffer(command_queue, psumY_clmem,
             CL_TRUE, 0,
             num_of_work_groups * sizeof(float), psumY, 0, NULL,
             NULL);
clStatus = clEnqueueReadBuffer(command_queue, psumXY_clmem,
             CL_TRUE, 0,
             num_of_work_groups * sizeof(float), psumXY, 0, NULL,
             NULL);
clStatus = clEnqueueReadBuffer(command_queue, psumXXY_clmem,
             CL_TRUE, 0,
             num_of_work_groups * sizeof(float), psumXXY, 0, NULL,
             NULL);
clStatus = clEnqueueReadBuffer(command_queue, psumXX_clmem,
             CL_TRUE, 0,
             num_of_work_groups * sizeof(float), psumXX, 0, NULL,
             NULL);
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clStatus = clEnqueueReadBuffer(command_queue, psumXXX_clmem,
             CL_TRUE, 0,
             num_of_work_groups * sizeof(float), psumXXX, 0, NULL,
             NULL);
clStatus = clEnqueueReadBuffer(command_queue, psumXXXX_clmem,
             CL_TRUE, 0,
             num_of_work_groups * sizeof(float), psumXXXX, 0, NULL,
             NULL);

    float sumX    = 0.0f;
    float sumY    = 0.0f;
    float sumXY   = 0.0f;
    float sumXXY  = 0.0f;
    float sumXX   = 0.0f;
    float sumXXX  = 0.0f;
    float sumXXXX = 0.0f;
    for(int i=0;i<num_of_work_groups;i++)
    {
        sumX    += psumX[i];
        sumY    += psumY[i];
        sumXY   += psumXY[i];
        sumXXY  += psumXXY[i];
        sumXX   += psumXX[i];
        sumXXX  += psumXXX[i];
        sumXXXX += psumXXXX[i];
    }

After this we use the function called findParabola to find the values of a0, a1, a2. 
This function and the function determinant3By3 which it uses to find determinant 
are briefly described in the preceding section with the descriptions of sequential 
implementation of parabolicApproximation.

Bitonic sort
Bitonic sort is a parallel sorting algorithm devised by Ken Batcher. A sequence of 
numbers from a(1), a(2), a(3), …, a(n) is called monotonic increasing or decreasing, 
if a(i) >= a(i+1) or a(i) <= a(i+1) respectively for all i equals 1,2,3,…, n-1. Sequence is 
monotonic if it is either monotonic increasing or monotonic decreasing.

A bitonic sequence is one that is monotonically increasing (or decreasing) up to some 
point where it reaches the maximum (or minimum) value of the sequence, and then 
it becomes monotonically decreasing (or increasing) up to the end. A sequence that 
can be converted to the aforementioned bitonic sequence by cyclic shifting is also 
called a bitonic sequence.
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Given a bitonic sequence, bitonic split is an operation on it which scans for i equals 
1 to n/2, and if a(i+n/2) < a(i) then swap a(i+n/2) and a(i). This operation produces 
two bitonic subsequences say L and R where L and R are left and right parts of the 
transformed sequence and all elements of L are less than all elements of R. The 
following is an illustrative example:

Index to 
elements

0 1 2 3 4 5 6 7 8 9

Bitonic 
sequence

5 9 24 39 65 
(max)

60 45 19 4 3

Increasing ----------------------------------------->  Decreasing -------------------------------------------->

Index to 
elements

0 1 2 3 4 5 6 7 8 9

Split 5 9 19 4 3 60 45 24 39 65
Subsequence L (smaller Bitonic sequence) R (smaller Bitonic sequence)

All elements of L are less than all elements of R

By repeatedly using bitonic split we can convert a bitonic sequence into a sorted 
sequence. But here initially we need a bitonic sequence. So if given any other 
sequence we first convert that into a bitonic sequence using the following technique.

Given an arbitrary sequence we first swap elements pair-wise if they are not in 
proper order (a proper order is a bitonic sequence of length four) and after the first 
pass we get several bitonic sequences, each of length four. The process is illustrated 
with the following example. Here we take an arbitrary sequence of number  
(not bitonic) and using the method of pair-wise exchange and split. First pairwise 
exchange making sure that given arbitrary sequence is converted into small bitonic 
sequences each of size four. So in a group of four elements to be converted to  
a bitonic sequence (like first four elements) we compare the first and the second 
elements. If first element is greater than the second element we exchange them. 
Then we compare third and fourth elements. If third is smaller than fourth, then we 
exchange. The following figure shows the same:
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Thus we get a bitonic sequence of all elements. Now we use our previous split 
method and merge method to get the sorted sequence.

First we use sort (by bitonic split on current bitonic subsequences) and finally at last 
stage swap if needed.
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With the preceding explanation and illustration of bitonic sort, we introduce the 
kernel in the following code:

#define DATA_TYPE int     
     
//The bitonic sort kernel does an ascending sort      
kernel      
void bitonic_sort_kernel(__global DATA_TYPE * input_ptr,     
                         const uint stage,      
                         const uint passOfStage )      
{    
    uint threadId = get_global_id(0);   
    uint pairDistance = 1 << (stage - passOfStage);   
    uint blockWidth   = 2 * pairDistance;      
    uint temp;     
    bool compareResult;   
    uint leftId = (threadId & (pairDistance -1))      
    + (threadId >> (stage - passOfStage) ) * blockWidth;
    uint rightId = leftId + pairDistance;      
     
    DATA_TYPE leftElement, rightElement;
    DATA_TYPE greater, lesser;   
    leftElement  = input_ptr[leftId];   
    rightElement = input_ptr[rightId];  
     
    uint sameDirectionBlockWidth = threadId >> stage; 
    uint sameDirection = sameDirectionBlockWidth & 0x1;      
     
    temp    = sameDirection?rightId:temp;      
    rightId = sameDirection?leftId:rightId;    
    leftId  = sameDirection?temp:leftId;
     
    compareResult = (leftElement < rightElement) ;    
     
    greater      = compareResult?rightElement:leftElement;   
    lesser= compareResult?leftElement:rightElement;   
     
    input_ptr[leftId]  = lesser; 
    input_ptr[rightId] = greater;
};
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This kernel takes three arguments. First one is the pointer to input buffer which is to 
sorted. Data type is defined by a macro so that it can be changed easily. Currently it 
is chosen to be int. Second and third parameters are respectively the stage and pass 
of stage which determine the state of the entire sort process. Stage value is initially 
set to log of array size to the base 2. As shown in the figure we just saw, there are 
four stages and those 1, 2, 3, and 4-th stages have respectively 1, 2, 3, and 4 passes. 
Outputs are shown after each pass of each stage.

Variables leftElement, rightElement; hold the two elements of the selected 
subsequence to be compared and exchanged if needed. The statement 
compareResult = (leftElement < rightElement); compares the left and right 
elements and accordingly selectes the greater and lesser elements greater = ompar
eResult?rightElement:leftElement; lesser = compareResult?leftElement:r
ightElement;. Finally the updated values are dumped in the original data structure 
by the statements input_ptr[leftId]  = lesser; and input_ptr[rightId] = 
greater;. Input pointer values are exchanged at the same time.

First part of the kernel determines the position and length of the bitonic subsequence. 
Left position is indicated by leftId and length is by pairDistance. Last element of 
the subsequence is rightId.

The following is the host code:

int main(void) {
    // Basic initialization and declaration...

    // Execute the OpenCL kernel on the list

  // Each work item shall compare two elements.
    size_t global_size = DATA_SIZE/2;
  // This is the size of the work group.
    size_t local_size  = WORK_GROUP_SIZE;
  // Calculate the Number of work groups.
    size_t num_of_work_groups = global_size/local_size;

    //Allocate memory and initialize the input buffer.
    DATA_TYPE *pInputBuffer = (DATA_TYPE*)malloc(
                          sizeof(DATA_TYPE)*DATA_SIZE);
    for(int i =0; i< DATA_SIZE; i++)
    {
        pInputBuffer[i] = DATA_SIZE - i;
        printf("pInputBuffer[i] = %4d\n",pInputBuffer[i]);
    }
    //Create memory buffers on the device for each vector
    cl_mem pInputBuffer_clmem = clCreateBuffer(
                                    context, 
                                    CL_MEM_READ_WRITE|
                                    CL_MEM_USE_HOST_PTR,
                                    DATA_SIZE * sizeof(DATA_TYPE), 
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                                    pInputBuffer, 
                                    &clStatus);

    // Create kernel...

    clSetKernelArg(bitonic_sort_kernel, 
                   0, 
                   sizeof(cl_mem), 
                   (void *)&pInputBuffer_clmem);

    unsigned int stage, passOfStage, numStages, temp;
    stage = passOfStage = numStages = 0;
    for(temp = DATA_SIZE; temp > 1; temp >>= 1)
        ++numStages;
    global_size = DATA_SIZE>>1;
    local_size  = WORK_GROUP_SIZE;
    for(stage = 0; stage < numStages; ++stage)
    {
        // stage of the algorithm
        clSetKernelArg(
           bitonic_sort_kernel, 
           1, 
           sizeof(int), 
           (void *)&stage);
        // Every stage has stage + 1 passes
        for(passOfStage = 0; passOfStage < stage + 1; ++passOfStage) {
            // pass of the current stage
            std::cout << "Pass no "<< passOfStage << std::endl;
            clStatus = clSetKernelArg(bitonic_sort_kernel, 
                                      2, 
                                      sizeof(int), 
                                     (void *)&passOfStage);
            //
            // Enqueue a kernel run call.
            // Each thread writes a sorted pair.
            // So, the number of  threads (global) should be half the 
length of the input buffer.
            //
            clEnqueueNDRangeKernel(
                                   command_queue, 
                                   bitonic_sort_kernel, 
                                   1, 
                                  NULL,
                                  &global_size, 
                                  &local_size, 
                                  0, 
                                  NULL, 
                                  NULL);
            LOG_OCL_ERROR(clStatus, "enqueueNDRangeKernel() failed for 
sort() kernel." );
            clFinish(command_queue);
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        }//end of for passStage = 0:stage-1
    }//end of for stage = 0:numStage-1

    DATA_TYPE *mapped_input_buffer = 
  (DATA_TYPE *)clEnqueueMapBuffer(
               command_queue, 
               pInputBuffer_clmem, 
               true, 
               CL_MAP_READ, 
               0, 
               sizeof(DATA_TYPE) * DATA_SIZE, 
               0, 
               NULL,  
               NULL, 
               &clStatus);
    // Display the Sorted data on the screen
    for(int i = 0; i < DATA_SIZE; i++)
        printf( "%d  ", mapped_input_buffer[i] );

    // cleanup...

    return 0;
}

As an example to understand Bitonic sort take an input array of numbers and try to 
calculate using Bitonic sort manually which will help you understand the amount of 
parallelism involved. We take a data array of numbers 16, 15, ..., 3,2,1. This is not a 
bitonic sequence and is in descending order (we would sort in ascending order). We 
have four stages (four values of the input parameter stage namely, 0, 1, 2, and 3). At 
stage 0, we covert the given sequence to four bitonic sequences each of size four. In 
the next two stages (stage equals 1 and 2) we merge stage 2 of the bitonic sequences 
of previous stages and double its size (hence reduce the number of sequences by a 
factor of two in each stage). So, after stage 1 we get two bitonic sequences each of size 
8 and after stage 2, we get a single bitonic sequence of size 16. At stage 3, we finally 
get the monotonic sequence, that is, a sorted sequence.

k-Nearest Neighborhood (k-NN) algorithm
In machine learning classification is the problem of identifying class/type of a given 
input quantity. Formally the problem can be stated like, we have a set of classes/
types represented by:

C={t(1), t(2),…, t(m)}. 
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We have a set P of objects, each of which is described by a vector. All the objects 
of P have a unique class from C. From P we are given n objects (that is their 
representative vectors) p(1), p(2), …, p(n) (each p(i) is d-dimensional vector) and for 
each one of them p(i) the class is also given c(i). These n vectors with their classes  
( p(i) , c(i)) are called as the training data. We are given a distance measure d( p1 , p2) 
that gives the relevant distance between two vectors of P. Now, we are presented 
an arbitrary point from P say p whose class is not known. The problem is to find the 
class of p (using each given data and distance).

To find the class of x we use the following algorithm called k-nearest  
neighborhood algorithm.

1. Fix a positive integer k. (choice of k is dependent on dataset size and other 
factors, which are out of scope of this discussion, rule of thumb is k is nearest 
integer of square root of n).

2. For each p(i) in P, compute distance d( p, p(i) ).
3. Find lowest k distances from the preceding distances. Let those lowest k 

distances correspond to the points z(1), z(2),…, z(k) where each of the points 
are from P. Suppose the classes of z(1), z(2),…, z(k) are respectively q(1), 
q(2),…, q(k) where each of q(1), q(2),…, q(k) belongs to Y.

4. Find the class/type that appears the most times in those list q(1) ,q(2) ,…, q(k). 
Predict x belongs to that class/type. A tie occurs when more than one class/
type has maximum frequency (same frequeny which is maximum among all 
the frequencies). The tie is broken by some strategy like choose the class that 
has the lower array index.

k-Nearest Neighbourhood
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The figure we just saw illustrates the k-NN algorithm for three classes, namely, a, b, 
c. Here we fix k equals 22. The dark point is the query point and all other points are 
labeled with their classes. We find all the distances from the query point and choose 
the nearest k equals 22 points. Those 22 points are shown within the green border. 
Then we find the number of occurrences of each of the classes a, b, c within that green 
border. The occurrence of a, b, c are respectively 6, 15, 1 times. Since class b occurs 
maximum number of times among these three classes, we infer that class of the 
query point is b.

The following is the sequential implementation of the k-NN algorithm followed by 
its explanation:

int KNearestNeighbourhoodAlgorithm(
             size_t trainingSetSize,
             float* pX,
             const int noOfClasses,
             int* pY,// class of X
             const int k,
             float queryPoint
             )
{
  // Compute all the distances from the queryPoint
  float* distances =  new float[trainingSetSize];
  for(int i = 0; i < trainingSetSize; ++i )
  {
    distances[i] = distanceF(queryPoint, pX[i]);
  }

  //Find nearest k points
  int* nearestK =  new int[k];
  for(int i=0;i<k;++i)
  {
    int index = -1;
    float min = FLT_MAX;
    //Find i-th minimum
    for(int j=0;j<trainingSetSize;++j)
    {
      if( min > distances[j])
      {
        min = distances[j];
        index = j;
      }
    }
    nearestK[i] = index;
             // so that is distance is not consider next time
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    distances[index] = FLT_MAX;
  } 
  delete distances[];

  //find the frequencies of each classes among those k chosen data
  int* frequencyOfClasses =  new int[noOfClasses];
  //initilize frequency array
  for(int i = 0; i < noOfClasses; ++i )
  {
    frequencyOfClasses[i] = 0;
  }
  //now compute the actual frequencies
  for(int i=0;i<k;++i)
  {
    frequencyOfClasses[pY[nearestK[i]]]++;
  } 
  delete nearestK[];

  //find max frequency among them
  int maxFreq = INT_MAX;
  int maxFreqIndex = 0;
  for(int i=0;i<k;++i)
  {
    if(maxFreq < frequencyOfClasses[i])
    {
      maxFreqIndex = i;
      maxFreq = frequencyOfClasses[i];
    }
  } 
  delete frequencyOfClasses[];

  //report the corresponding index
  return maxFreqIndex;
} 
float distanceF(float pointX, float pointY)
{
       float x = pointX – pointy;
  return sqrt(x*x);
}

To explain the code we start with the distanceF function. This computes 
the distance between two points. This we use in the following algorithm 
where we have a fixed value of k (integer). The main function int 
KNearestNeighbourhoodAlgorithm returns the integer representing class of the 
queryPoint, the sixth parameter to the function. Number of classes is given by the 
third parameter const int noOfClasses. We have trainingSetSize number of 
data points stored in pX and pY stores the corresponding class.
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First the for loop computes all the distances from the queryPoint function and 
stores them in dynamic array distances. Then we find the k nearest points from 
the queryPoint function using the nested for loops. First we find for i equals 0 the 
lowest value, then excluding that we find the second lowest value for i equals 1, 
then similarly exluding these two we find third lowest value for i equals 2 and so on. 
Now, we find the frequencies of those k nearest points and store them in the dynamic 
array frequencyOfClasses. Lastly, we find the class with maximum frequency and 
returns that class.

One of the most time consuming and complex parts of the preceding algorithm is 
finding the nearest k points. In OpenCL version that part is done a bit differently.  
We just sort the entire distance list and then take the bottom k items from that list.  
To sort we use the OpenCL kernel bitonic sort which is described earlier in Bitonic 
sort section.

The same kernel is reused with some small enhancement to the kernel according to 
the requirement of k-NN algorithm. The following is the listing of kernel:

kernel                                  
void knn_bitonic_sort_kernel(__global DISTANCE_TYPE * input_ptr,                           
                 __global POINT *data_set,                                             
                 const uint stage,                                                     
                 const uint passOfStage )                                              
{                                                                                      
    uint threadId = get_global_id(0);                                                  
    uint pairDistance = 1 << (stage - passOfStage);                                    
    uint blockWidth   = 2 * pairDistance;                                              
    uint temp;                                                                         
    uint leftId = (threadId & (pairDistance -1)) + (threadId >>  
      (stage - passOfStage) ) * blockWidth;            
    bool compareResult;                                                                
    uint rightId = leftId + pairDistance;                                              
                                                                                       
    DISTANCE_TYPE leftElement, rightElement;                                           
    DISTANCE_TYPE greater, lesser;                                                     
    POINT     leftPoint, rightPoint;                                                   
    POINT     greaterPoint, lesserPoint;                                               
    leftElement  = input_ptr[leftId];                                                  
    leftPoint    = data_set[leftId];                                                   
    rightElement = input_ptr[rightId];                                                 
    rightPoint   = data_set[rightId];                                                  
                                                                                       
    uint sameDirectionBlockWidth = threadId >> stage;                                  
    uint sameDirection = sameDirectionBlockWidth & 0x1;                                
    temp    = sameDirection?rightId:temp;                                              
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    rightId = sameDirection?leftId:rightId;                                            
    leftId  = sameDirection?temp:leftId;                                               
                                                                                       
    compareResult = (leftElement < rightElement) ;                                     
                                                                                       
    greater      = compareResult?rightElement:leftElement;                             
    greaterPoint = compareResult?rightPoint:leftPoint;                                 
    lesser       = compareResult?leftElement:rightElement;                             
    lesserPoint  = compareResult?leftPoint:rightPoint;                                 
                                           
    input_ptr[leftId]  = lesser;                                                       
    data_set[leftId]   = lesserPoint;                                                  
    input_ptr[rightId] = greater;                                                      
    data_set[rightId]  = greaterPoint;                                                 
} 

This kernel takes four arguments. Argument one is the distance array. And the 
second is the corresponding point array. As we sort the distance we need to maintain 
the distance point pair. The first two are the arrays it is supposed to sort. To keep the 
data type easily changeable we have used the macro DISTANCE_TYPE and typedef-ed 
structure POINT as data type.

#define DISTANCE_TYPE float 
typedef struct _point {    
    int x;
    int y;
    int classification;
} point;
typedef point POINT; 

Third and fourth arguments are stages and passOfStage which tell the kernel about 
the state of the algorithm so that length and location of bitonic subsequence can be 
determined.

As we discussed, to add flexibility we have taken the macro DISTANCE_TYPE and 
typedef'd structure POINT as data type. In addition to bitonic sort kernel we here use 
one device function called point_distance which takes two POINTS and computes 
the distance between them and another kernel called knn_distance_kernel.

This kernel knn_distance_kernel uses the distance function point_distance 
and computes the distance between the query point and all the elements of training 
data array. First parameter is the query point and second is the training data array 
pointer. Third parameter is output array pointer where the distances are dumped.
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__kernel
void knn_distance_kernel(                                                                      
                    POINT match,
                  __global POINT *data_set,
                  __global DISTANCE_TYPE *distance_data)
{                                                           
    //Get the index of the work-item
    int gid   = get_global_id (0);
    POINT read_point = data_set[gid];                                  
    DISTANCE_TYPE computed_distance = point_distance (
                                      read_point, 
                                      match );
                                                    
    distance_data[gid] = computed_distance;
}

Based on global ID of the kernel instanc we select an element of the data array 
and using the distance function find the distance and finally update the computed 
distance to output the array's corresponding element.

Here we list the main program that implements the complete algorithm of k-NN. 
Trivial parts like declarations, basic memory allocation, and so on are just skipped  
to focus on the core algorithm.

int main(void) {
  // declare clStatus, point *pPoints and allocate  
  // memory and load data for the second.
  // Set up the Platform etc.

  // Process all points. Each work item shall process a point
  size_t global_size = NUM_OF_POINTS;
  // This is the size of teh work group.
  size_t local_size  = WORK_GROUP_SIZE;           
  // Calculate the Number of work groups.
  size_t num_of_work_groups = global_size/local_size; 
  //Allocate memory for storing the sumations
  float *pDistance = (float*)malloc(
                    sizeof(float)*NUM_OF_POINTS);

    //Create memory buffers on the device for each vector
    cl_mem pPoints_clmem = clCreateBuffer(
                       context, 
                       CL_MEM_READ_WRITE|CL_MEM_USE_HOST_PTR,
                       NUM_OF_POINTS * sizeof(point), 
                       (void *)pPoints, 
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                       &clStatus);
    cl_mem pDistance_clmem = clCreateBuffer(
                             context, 
                             CL_MEM_READ_WRITE,
                             NUM_OF_POINTS * sizeof(float), 
                             NULL, 
                             &clStatus);

    // Create a program from source and build and create kernels 
distance_kernel and bitonic_sort_kernel
    // Set the arguments of the distance kernel
    clStatus  = clSetKernelArg(distance_kernel, 0, 
                           sizeof(point), &matchPoint);
    clStatus |= clSetKernelArg(distance_kernel, 
                              1, 
                              sizeof(cl_mem), 
                              (void *)&pPoints_clmem);
    clStatus |= clSetKernelArg(distance_kernel, 
                               2, 
                               sizeof(cl_mem), 
                               (void *)&pDistance_clmem);
    LOG_OCL_ERROR(clStatus, "Kernel Arguments setting failed." );
    cl_event distance_event;
    clStatus = clEnqueueNDRangeKernel(command_queue, 
                                      distance_kernel, 
                                      1, 
                                      NULL,
                                      &global_size, 
                                      &local_size, 
                                      0, 
                                      NULL, 
                                      &distance_event);
 clStatus = clWaitForEvents(1, &distance_event);
    //Sort the distance buffer using Bitonic Sort.
    clStatus = clSetKernelArg(bitonic_sort_kernel, 
                              0, 
                              sizeof(cl_mem), 
                              (void *)&pDistance_clmem);
    clStatus |= clSetKernelArg(bitonic_sort_kernel, 
                              1, 
                              sizeof(cl_mem), 
                              (void *)&pPoints_clmem);
    unsigned int stage, passOfStage, numStages, temp;
    stage = passOfStage = numStages = 0;
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    for(temp = NUM_OF_POINTS; temp > 1; temp >>= 1)
        ++numStages;
    global_size = NUM_OF_POINTS>>1;
    local_size  = WORK_GROUP_SIZE;
    for(stage = 0; stage < numStages; ++stage)
    {
        // stage of the algorithm
        clStatus = clSetKernelArg(bitonic_sort_kernel, 
                                 2, 
                                 sizeof(int), 
                                (void *)&stage);
        // Every stage has stage + 1 passes
        for(passOfStage = 0; 
            passOfStage < stage + 1;  
            ++passOfStage) {
            // pass of the current stage
            clStatus = clSetKernelArg(bitonic_sort_kernel, 
                                      3, 
                                      sizeof(int), 
                                      (void *)&passOfStage);
        // Enqueue a kernel run call.
        // Each thread writes a sorted pair.
        // So, the number of  threads (global) 
      //should be half the length of the input buffer.
        clStatus = clEnqueueNDRangeKernel(command_queue, 
                                          bitonic_sort_kernel, 
                                          1, 
                                          NULL,
                                          &global_size, 
                                          &local_size, 
                                          0, 
                                          NULL, 
                                          NULL);
            clFinish(command_queue);
        }//end of for passStage = 0:stage-1
    }//end of for stage = 0:numStage-1
    
    float *mapped_distance =  
      (float *)clEnqueueMapBuffer(command_queue, 
                                  pDistance_clmem, 
                                  true
                                  CL_MAP_READ, 
                                  0, 
                                  sizeof(float) * NUM_OF_POINTS, 
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                                  0, 
                                  NULL, 
                                  NULL,  
                                  &clStatus);
    point *mapped_points   = 
    (point *)clEnqueueMapBuffer(command_queue, 
                                pPoints_clmem, 
                                true, 
                                CL_MAP_WRITE, 
                                0, 
                                sizeof(point) * NUM_OF_POINTS, 
                                0, 
                                NULL, 
                                NULL, 
                                &clStatus);
    // Display the Sorted K points on the screen
    for(int i = 0; i < K_CLASSIFICATION_POINTS; i++)
        printf( "point(%d, %d, %d) = %3.8f \n", 
                  mapped_points[i].x,
                  mapped_points[i].y,
                  mapped_points[i].classification, 
                  mapped_distance[i] );
    //select class with max frequency
    // Finally release all OpenCL allocated objects and host buffers.
    return 0;
}

Following are the macros which are used to indicate different parameters of 
algorithm and kernel.

#define NUM_CLASSES 3

#define NUM_OF_POINTS 1024
#define WORK_GROUP_SIZE 64
#define K_CLASSIFICATION_POINTS 16

First we calculate the number of stages required. The nested for loops of stages and 
passOfStages launches the kernel knn_bitonic_sort_kernel at every loop. Finally 
the sorted distance array and the corresponding points array are the output of this 
multiple call.
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Summary
In this chapter we have discussed OpenCL implementation of several commonly 
occurring algorithms from different fields. Simple algorithms like linear regression 
to complex algorithms like k-NN could be explored to find the data and task parallel 
portion within this. Those are the scope of applying OpenCL. As shown in the case 
of k-NN algorithm, multiple kernels can be implemented and as shown in the case 
of Bitonic sort same kernel can be invoked multiple times within a loop. OpenCL 
is already applied to accelerate algorithms in diverse fields, such as Computational 
Finance, Computational Biology, Image Processing, Numerical Methods, Dense 
and Sparse linear algebra, mathematical or statistical modeling, simulation, spectral 
methods like weather forecasting, and computational fluid dynamics. More areas as 
well as more applications are yet to be explored for applicability of heterogeneous 
computing based on OpenCL.
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glGenBuffers(...)  239
global-id  47
global memory  53
global_work_offset  130
global_work_offset object  49
global_work_size  130
global_work_size function  46
global_work_size object  49
GL texture

buffer, creating from  243, 244
GPU  179
Graphics Core Next (GCN)  16
Graphics Processing Clusters (GPC)  17
Graphics Processor Unit. See  GPU

H
half data type  

about  157
operating on  170
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histogram
about  65
algorithm  65

histogram calculation  197-200
host code  68-71
host notification  139
host_ptr parameter  62, 88
Huffman coding

quantization  221
hybrid parallel computing model  13

I
ICD (Installable Client Driver)  23
image access qualifiers

about  173
data type attributes  174
function attributes  174
variable attribute  175

image_array_size  91
image buffers

passing, to kernels  95
image compression  205
image_depth  91
image filters

Gaussian filter  209-211
implementing  208
mean filter  208
median filter  209
Sobel filter  211, 212

image_height  91
image histogram

computing  104-107
image object

about  99
mapping  102
querying  102, 103

image_row_pitch  91
images

Bits Per Pixel (bpp)  206
cl_image_desc structure  90-95
cl_image_format image format descriptor  

88, 89
copying  100, 101
creating  88
filling  100, 101

image buffers, passing to kernels  95
PBM (Portable Bit Map)  206
PGM (Portable Gray Map)  206
PPM (Portable Pixel Map)  207
representing  206, 207

image_slice_pitch  91
image_type  90
image_width  90
Implicit conversion  164
Instruction Set Architecture (ISA)  156
Intel  18
Intel® Ivy bridge  39, 40
Intermediate Language (IL)  182
Interoperation

about  232, 233
buffer, creating from GL texture  243, 244
buffer, mapping  238, 239
implementing  234
OpenCL context, initializing for OpenGL 

Interoperation  235-237
OpenCL-OpenGL Interoperation support, 

detecting  234, 235
Renderbuffer object  244-246
steps, listing  240, 241
synchronization  241-243

intptr_t data type  158
is_less function  169

J
Joint Photographic Experts Group. See  JPEG
JPEG

about  219
encoding  219-221

JPEG compression
about  218
OpenCL implementation  222-227

JPEG encoding
about  219-222
Huffman coding  221
run length encoding  221

K
kernel  128-133, 189
kernel argument

querying  131-134
setting  127, 128
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kernel_name  127
kernel_names  135
kernel objects

about  49
built-in kernels  135
creating  126, 127
kernel argument, querying  131-134
kernel argument, setting  127, 128
kernels, executing  129, 130
program, releasing  134
querying  130, 131
releasing  134

kernel optimization techniques  190-195
kernels  

about  127
executing  129, 130
image buffers, passing to  95

k-Nearest Neighborhood (k-NN)  
algorithm  268-276

L
least square curve fitting

about  248
implementing  251-261
linear approximation  248, 249
parabolic approximation  250

lengths  110, 112
linear approximation  248, 249
local-id  47
local memory  53
local_work_size object  49, 130
LOG_OCL_ERROR utility  70

M
main() function  188
malloc function  115
matrix multiplication

kernel  189
kernel optimization techniques  190-195
OpenCL implementation  188
sequential implementation  186-188

MCU (Minimum Coded Unit)  219
Mean and Gaussian filter  212-215
mean filter  208

Median filter  209, 215, 217
memory fence functions  176, 177
memory fences  152
Memory model

about  31, 52
constant memory  53
global memory  53
local memory  53
private memory  54, 55

memory objects  60-62
Message Passing Interface. See  MPI
MPI  11
multiple devices

and different OpenCL contexts  141, 142
and single OpenCL context  142

N
NDRange  46-49
num_devices  51, 112, 114, 135
num_events_in_wait_list parameter  72, 81
num_events object  147
num_kernels  127
num_kernels_ret  127
NVIDIA®

configurations  17
Kepler architecture  17

NVIDIA graphics card
used, for OpenCL installation on Linux 

system  24
used, for OpenCL installation on Windows 

system  24
NVIDIA GeForce® GTX 680  38

O
offline compilation  121, 122
offset parameter  72, 81
online compilation  121, 122
OpenACC  11
OpenACC Application Program Interface. 

See  OpenACC
OpenCL

about  12-14
components  19, 20
filter implementation  212
goal  13
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hardware vendors  15
implementing  188
installation, steps  22, 23
SAXPY routine, implementing  26
using  200

OpenCL command queue  51, 52
OpenCL context  50, 51

initializing, for OpenGL Interoperation  
235-237

OpenCL event
about  139
monitoring  139
synchronization models  140

OpenCLfilter implementation
Mean and Gaussian filter  212-215
Median filter  215-217
Sobel filter  217, 218

OpenCL ICD  55, 56
OpenCL Installable Client Driver. See  

OpenCL ICD
OpenCL installation

Apple OSX  25
multiple installations  25, 26
on Linux system, with AMD graphics  

card  23
on Linux system, with NVIDIA  

graphics card  24
on Windows system, with NVIDIA  

graphics card  24, 25
OpenCL kernel code  66-68
OpenCL-OpenGL Interoperation support

detecting  234, 235
OpenCL program

compliant computer, installing  22
compliant computer, setting up  22
software requirements  21

OpenCL program building  117
OpenCLStruct function  160
Open Computing Language. See  OpenCL
OpenGL  230-232
OpenGL Interoperation

OpenCL context, initializing for  235-237
Open Graphics Language. See  OpenGL
OpenMP  10, 11
operators

about  169
half data type, operating on  170

options  114
origin  99

P
packed attribute  175
parabolic approximation  250
parallel computing  7
parallel programming techniques

about  10
CUDA  12
hybrid parallel computing model  13
MPI  11
OpenACC  11
OpenCL  12
OpenMP  10
Renderscripts  13

param_name  114, 118, 131-133, 148
param_value  115, 118, 131
param_value_size  114, 118, 131
param_value_size_ret  115, 118, 131
PBM (Portable Bit Map)  206
performance

advantages  196
finding, of program  180
finding, tools used  182-185

performance-bottleneck
finding, tools used  182-185

pfn_notify  51, 114
PGM (Portable Gray Map)  206
Platform model

about  31, 36
AMD Radeon HD 7870  38
AMD Trinity APU  37
INTEL IVY bridge  39, 40
NVIDIA GTX 680  38

Platform versions
about  40
Query devices  42-44
Query platforms  40-42

PPM (Portable Pixel Map)  207
PrintDeviceInfo() function  42
private memory  54, 55
profiling  139, 151
program  

about  114, 118, 127
performance, finding  180
releasing  134
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programming model  32
program objects

binary file, creating  120, 121
building  110-115
creating  110-115
offline compilation  121, 122
online compilation  121, 122
OpenCL program building  117
querying  118, 119
SAXPY, binary file used  123, 124
SPIR  125, 126

properties  50
ptr  100
ptrdiff_t data type  158
ptr parameter  72

Q
Query devices  42-44
Query platforms  40-42

R
read_imageui function  107
rectangular reads  75-79
region  99
regression

with least square curve fitting  248
Renderbuffer object  244-246
Renderscripts  13
reserved data type  159
restrictions  173
row_pitch object  99
rules

aliasing  163

S
samplers  96, 97
SAXPY

about  26
binary file, using  123, 124

saxpy_kernel function  46, 123
SAXPY routine

implementing, in OpenCL  26

SAXPY routine implementations,  
in OpenCL

about  26
execution model  32
kernel, runnin gon CPU  31, 32
memory model  31
OpenCL code  26-30
OpenCL program flow  30, 31
platform model  31
programming model  32

SDK
for AMD, URL  184
for NVIDIA, URL  184

sequential implementation  186-188
single device

and out-of-order queue  141
single device in-order usage  140
Single precision real Alpha X plus Y. See  

SAXPY
sizeof() operator  158
size parameter  62, 72, 81, 88
size_t data type  158
size_t get_global_id (uint dimindx) function  

176
size_t get_global_offset (uint dimindx) 

function  176
size_t get_global_size (uint dimindx) func-

tion  176
size_t get_group_id (uint dimindx) function  

176
size_t get_local_id (uint dimindx) function  

176
size_t get_local_size (uint dimindx) function  

176
size_t get_num_groups (uint dimindx) func-

tion  176
slice_pitch object  100
Sobel filter  211, 212, 217, 218
Software Development Kits (SDK)  22
software requirements, OpenCL program

about  21
Linux  21
Windows  21

SOS (Start of Scan)  222
SPIR  125, 126
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src_origin parameter  100
Standard Portable Intermediate Representa-

tion. See  SPIR
Start of Image (SO)  221
storage class specifiers  175
Streaming Multiprocessors-X (SMX)  38
strings  110
subbuffer objects

creating  62-64
synchronization  176, 177
synchronization, Interoperation  241-243
synchronization models

multiple devices and different OpenCL 
contexts  141, 142

multiple devices and single OpenCL  
context  142

single device and out-of-order queue  141
single device in-order usage  140

T
time command  180
tools

used, for finding performance  182-185
used, for finding performance-bottleneck  

182-185

U
uint get_work_dim () function  176
uintptr_t data type  158
user-created events  150, 151
user_data  51, 114

V
variable attribute  175
vector components  162
vector data types  160, 161
VECTOR_SIZE variable  26
vector types  156, 157
vendor

strategies  200-202
vload_half function  170

W
wglGetCurrentContext() function  237
wglGetCurrentDC() function  237
work_dim object  49, 130
work-group  47
work item function  47, 176
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