
•฀
•฀
•฀

•฀
•฀
•฀
•฀
•฀
•฀
•฀
•฀
•฀

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author .. xiii

About the Technical Reviewer ... xv

Introduction ... xvii

Chapter 1: Hello World ■ .. 1

Chapter 2: Build and Run ■ .. 7

Chapter 3: Variables ■ ... 11

Chapter 4: Operators ■ .. 15

Chapter 5: Objects ■ .. 19

Chapter 6: Strings ■ ... 23

Chapter 7: Numbers ■ .. 27

Chapter 8: Arrays ■ ... 29

Chapter 9: Dictionaries ■ ... 33

Chapter 10: For Loops ■ .. 35

Chapter 11: While Loops ■ ... 37

Chapter 12: Do While Loops ■ .. 39

Chapter 13: For-Each Loops ■ ... 41

Chapter 14: If Statements ■ ... 43

Chapter 15: Switch Statements ■ .. 45

Chapter 16: Defining Classes ■ .. 49

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS AT A GLANCE

vi

Chapter 17: Class Methods ■ ... 57

Chapter 18: Inheritance ■ .. 59

Chapter 19: Categories ■ ... 65

Chapter 20: Blocks ■ ... 69

Chapter 21: Key-Value Coding ■ .. 73

Chapter 22: Key-Value Observation ■ .. 75

Chapter 23: Protocols ■ ... 81

Chapter 24: Delegation ■ ... 85

Chapter 25: Singleton ■ ... 89

Chapter 26: Error Handling ■ ... 91

Chapter 27: Background Processing ■ .. 95

Chapter 28: Object Archiving ■ .. 97

Chapter 29: Web Services ■ ... 101

Index .. 105

www.allitebooks.com

http://www.allitebooks.org

xvii

Introduction

Objective-C is a tool that you can use to create stunning applications for the Mac, iPhone,
and iPad. his unique programming language traces its linage back to the C programming
language. Objective-C is C with object-oriented programming.

Today, learning programming is about learning how to shape our world. Objective-C
programmers are in a unique position to create mobile applications that people all over
the world can use in their daily lives.

Objective-C is a delight to use. While other programming languages can feel clumsy
at times, Objective-C will show you its power and reach with grace. Problems that seem
intractable in other programming languages melt away in Objective-C.

At its core, this book is about laying out, without any fuss, what Objective-C can do.
When you know what you want to do, but you just need to know the Objective-C way to
do it, use this book to get help.

www.allitebooks.com

http://www.allitebooks.org

1

CHAPTER 1

Hello World

Xcode
Objective-C is a programming language that extends the C programming language
to include object-oriented programming capabilities. This means that most classic C
programming procedures are used in Objective-C programs. For the purposes of this
book, you will need to have an idea of how C programming works.

Before you write any Objective-C code, you will need to have the proper tool for
the job. For Objective-C, this tool is Xcode. Xcode will be your primary code editor and
integrated development environment (IDE).

Note ■ Xcode requires a Mac. You cannot install Xcode on a Windows-or Linux-based

computer.

To install Xcode, go to the Mac App Store by selecting your Mac’s menu bar and then
choosing � ➤ App Store. Use the App Store search feature to locate Xcode by typing the
word Xcode into the textbox next to the hourglass. Press return to search for Xcode. You
will be presented with a list of apps, and Xcode should be the first app in the list. Install
Xcode by clicking the button with the word free next to the Xcode icon. See Figure 1-1
for the screen that you should see once you searched for Xcode in the App Store.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ HELLO WORLD

2

Creating a New Project
Open Xcode by going to your Applications folder and clicking the Xcode app. You will
be presented with a welcome screen that includes text that reads Create a new Xcode

project (see Figure 1-2). Click the text Create a new Xcode project to get started.

Figure 1-1. Downloading Xcode from the App Store

Figure 1-2. Xcode welcome screen

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ HELLO WORLD

3

The next screen that appears will list options for creating apps both for iOS and Mac.
In this book, you will be using a Mac Command Line Tool app, so set up this by choosing
OSX ➤ Application ➤ Command Line Tool.

When the next screen appears, just give your new project a name, choose the type
Foundation, leave the other settings as they are, and then click Next.

Now choose a folder to save the Xcode project on your Mac. Once you do this, an
Xcode screen will appear. The Xcode screen will include a list of files on the left and a
code editor in the center (see Figure 1-3).

Figure 1-3. Code editor and project navigator

Hello World
Writing Hello World in code is what we do when want to make sure that we have set up a
code project correctly. Xcode makes this really easy to do because new Command Line
Tool projects come with Hello World already coded.

All you need to do is use the Project Navigator, the widget on the left-hand area of
your Xcode screen, to locate the file named main.m. Click main.m to open the file in the
code editor (Figure 1-4).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ HELLO WORLD

4

When you do this you will see code that looks a bit like this:

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]){
 @autoreleasepool {
 // insert code here...
 NSLog(@"Hello, World!");
 }
 return 0;
}

Much of the code above sets up the application, starting with the #import statement.
This statement imports the code that you need, called Foundation, for your Objective-C
program to work.

The next part of the code above is the function named main, which contains all the
program code and returns the integer 0 when the program is complete.

Inside the main function you will see an Objective-C auto release pool. Auto release
pools are required to support the memory management system used with Objective-C.
The auto release pool is declared with the @autoreleasepool keyword.

In the middle of all this code, you can see the Hello World code, which looks like this:

NSLog(@"Hello, World!");

The first piece of this is the function NSLog. NSLog is used to write messages to the
console log. Xcode’s console log is located at the bottom of the Xcode screen (Figure 1-5)
and presents error messages along with messages that you send using NSLog.

Figure 1-4. Editing main.m

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ HELLO WORLD

5

Note ■ By default the console log is hidden along with the debugger at the bottom of the

screen. To see these two components you must unhide the bottom screen by clicking the

Hide or Show Debug Area toggle located in the top right-hand part of the Xcode screen.

This button is located in the middle of a set of three buttons.

The string Hello World is enclosed with quotes ("") and the Objective-C escape
character @. The @ character is used in Objective-C to let the compiler know that certain
keywords or code have special Objective-C properties. When @ is before a string in double
quotes, as in @"Hello, World!", it means that the string is an Objective-C NSString object.

Code Comments
There is one more line of code that Xcode helpfully inserted into this project for you.
This line of code is a good example of a code comment and begins with these two special
characters: //. Here is what the code comment looks like:

// insert code here...

Code comments are used to help document your code by giving you a way to insert
text into the program that will not be compiled into a working program.

Figure 1-5. Hello World output in console screen

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ HELLO WORLD

6

Build and Run
To test the code, click the Run button in the top upper left area of the Xcode screen. See
Figure 1-6 to see which button to push.

When you click the Run button, Xcode will compile the code in the Xcode project
and then run the program. The program you have been working on will print out the
words Hello World. You can see the output circled in Figure 1-6.

Figure 1-6. Building and running the Hello World code

Where to Get More Information
This book is a quick reference for Objective-C, and I have focused on the code and
patterns that I judge will be most useful for most people. However, this means that I can’t
include everything in this book.

The best place to get complete information on Objective-C and the Mac and iOS
applications that you can create with Objective-C is the Apple Developer web site.
You can get to the Apple Developer web site by using a web browser to navigate to
http://developer.apple.com/resources.

This web site contains guides, source code, and code documentation. The part of the
web site that will be most relevant to the topics in this book is the code documentation
for the Foundation framework. You can use the web site’s search features to look for a
specific class like NSObject, or you can search for the word Foundation or Objective-C.

http://developer.apple.com/resources

7

CHAPTER 2

Build and Run

Compiling
Objective-C code needs to be turned into machine code that runs on an iOS device or
a Mac. This process is called compiling, and Xcode uses the LLVM compiler to create
machine code. Xcode templates used to create new projects, like you did in Chapter 1,
will have the settings that the compiler needs to set this up for you.

Building
Compiling code is usually only part of the process involved with creating an app. Apps
destined to be distributed to Mac and iPhone users require other resources in addition to
the compiled code. This includes content like pictures, movies, music, and databases.

These resources, along with an app directory structure, are all packed into a special
file called a Bundle. You will use Xcode to compile your source code and then package
everything into the bundle that you need for you app. This process is called Building
in Xcode.

If you look under the Project menu item in your Xcode menu bar (Figure 2-1), you
will see options for building your program. Usually you will just use the Build and Run
feature of Xcode to creating compile and test your code.

CHAPTER 2 ■ BUILD AND RUN

8

Build and Run
Use the Build and Run button (see Figure 2-2) located in the upper left-hand area of your
Xcode screen (this is an arrow that looks like a play button) to build your app.

Figure 2-1. Product build options

Figure 2-2. Build and Run button

CHAPTER 2 ■ BUILD AND RUN

9

Xcode will not only build your app, but execute the code as well. If you click the Build
and Run button for the current program, you should see the following text appear in your
console log (also shown in Figure 2-3):

Figure 2-3. Console log’s Hello World output

2014-01-12 06:22:48.382
Ch01_source_code[13018:303] Hello, World!
Program ended with exit code: 0

Your output won’t match mine exactly, but you should see the words Hello World!
and the name of your project on the screen.

Note ■ While most apps will get a bundle along with the compiled machine code included,

I don’t need that for the apps I am using to demonstrate the code used in this book. If you

locate your compiled code file, you will only find one Unix Executable File that you can run

with the Mac Terminal app.

11

CHAPTER 3

Variables

Variables Defined
Objective-C stores information in variables. These are divided into two types: primitive
types and composite types. Primitive variables store one piece of information, such as
a number or a character. Composite variables store a set of information, such as three
related numbers and a character.

Data Types
Table 3-1 shows the most common primitive data types that you will see in Objective-C.

Table 3-1. Objective-C Data Types

Data Type Format Specifier Description

NSInteger %li Signed integer

NSUInteger %lu Unsigned integer

BOOL %i Boolean (YES/NO)

CGFloat %f Floating point

Note ■ Objective-C programs can use C data types like int, long, float, double, and

char in addition to the Objective-C data types listed in Table 3-1. This is because Objective-C

is based on the C programming language and so inherits all of C’s functionality in addition to

the Objective-C syntax that we are discussing here.

CHAPTER 3 ■ VARIABLES

12

Declaring Variables
Variables are declared in Objective-C with their data type first, followed by a variable
name. You must declare a variable before using it. Variable names should be meaningful,
but you can name a variable anything that you want.

Here is how you would declare an integer in Objective-C:

NSUInteger numberOfPeople;

Assigning Values
You can use the assignment operator (=) to assign a value to a variable, like so:

numberOfPeople = 100;

Once you have assigned a value, you can retrieve and use that value by referencing
the variable name.

NSLog(@"The number of people is %lu", numberOfPeople);

Note ■ You may have noticed that the NSLog statement required the %lu symbol. This

symbol is called a format specifier and NSLog will use it as a placeholder to insert values in

the comma-separated list that appears right after the string. See Table 3-1 for a list of the

format specifiers that you must use with Objective-C data types.

You can also declare variables and assign values on the same line if you like.

NSUInteger numberOfGroups = 20;

Integer Types
Integers are whole numbers, so any number that doesn’t need a decimal point is an
integer. In Objective-C, integers are expressed with the data types NSInteger and
NSUInteger.

NSUIntegers are unsigned integers, which means that they can only be positive
numbers. The maximum value that an NSUInteger can take depends on the system for
which the Objective-C code is compiled. If you compile for a 64-bit Mac, the maximum
value will be 18,446,744,073,709,551,615.

For 32-bit platforms like the iPhone 5 and below, the maximum value is
4,294,967,295. You can check these numbers yourself using the NSUIntegerMax constant.

NSLog(@"NSUIntegerMax is %lu", NSUIntegerMax);

CHAPTER 3 ■ VARIABLES

13

NSIntegers are signed integers, which means that they can be either positive or
negative. The maximum value of an NSInteger is half of the NSUInteger value because
NSInteger must support both positive and negative numbers.

So, if you need huge numbers, you may need to stick to NSUInteger, but if you need
to handle both positive and negative numbers, you will need NSInteger. You can check
the minimum and maximum value of NSInteger on your system with the NSIntegerMin
and NSIntegerMax constants.

NSLog(@"NSIntegerMin is %li", NSIntegerMin);
NSLog(@"NSIntegerMax is %li", NSIntegerMax);

Boolean Types
Boolean date types are used when values can either be true or false. In Objective-C, this
data type is declared as a BOOL type. BOOL types have values that are either YES or NO.

BOOL success = YES;

Since Objective-C stores BOOL values as 1 for YES and 0 for NO, you must use the %i
format specifier print out a BOOL value. %i is another format specifier for integers.

NSLog(@"success is %i", success);

The NSLog statement above will print out 1 for YES and 0 for NO, but some people
prefer to see the YES or NO strings printed out to the log. You can do so using this alternate
statement:

NSLog(@"success: %@", success ? @"YES" : @"NO");

Here the variable success was replaced with a statement that has to be evaluated.
This statement will return either the string YES or the string NO depending on the value
of the variable success. If success is zero, then whatever is in the last position of the
statement is returned, and if success is any other value then whatever is in the first
position is returned. The ternary operator (?) tells the compiler to evaluate the statement.

Float Types
Float types are represented in Objective-C with the CGFloat data type. CGFLoat is what
you use when you want decimal places in your number. For example, if you want to
represent a percent, you may do something like this:

CGFloat percent = 33.34;

You can find the maximum value of CGFloat values for 32-bit systems using FLT_MAX.
For 64-bit systems you must use DBL_MAX.

CHAPTER 3 ■ VARIABLES

14

Scope
Like most programming languages that trace their history back to C, Objective-C variables
have their scope determined by the placement of these curly brackets, { }. When you
enclose lines of code in { }, you are defining a block of code. Variables placed inside a
block of code can only be used from inside that block of code. This is called scope.

For example, let’s take the previous example that declared an unsigned integer called
numberOfPeople, assigned a value to this variable, and then printed this value out to the log.

NSInteger numberOfPeople;
numberOfPeople = 100;
NSLog(@"The number of people is %li", numberOfPeople);

This code works perfectly fine because the variable numberOfPeople remains in
scope the entire time you need it to. But if you use curly brackets to enclose the first two
lines of code in their own region, the variable will work when you assign the value but not
when you attempt to write out the value to the log. You will not be able to compile your
program if you try to write out numberOfPeople to the log outside of the scope defined by
the curly brackets.

{
 NSInteger numberOfPeople;
 numberOfPeople = 100;
}
NSLog(@"The number of people is %li", numberOfPeople);

Scope is used to define blocks of code for functions, loops, methods, if-statements
and switch statements. All of these things are discussed later in this book.

15

CHAPTER 4

Operators

Operators Defined
Operators are used to perform operations on values. You can do arithmetic, assignment,
logical, and relational operations with operators.

Arithmetic Operators
Arithmetic operators are used to perform math on values. You can use arithmetic operators
to perform addition, subtraction, multiplication, division, and modulus (the remainder
from a division operation). Table 4-1 lists Objective-C’s arithmetic operators.

Table 4-1. Arithmetic Operators

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

An operation will look like a math problem.

1.0 + 2.0 – 3.0 * 4.0 / 5.0;

The result from the line of code above won’t do much because the result isn’t being
stored or used in a function. You can use the results of an operation immediately in a
function like:

NSLog(@"1.0 + 2.0 – 3.0 * 4.0 / 5.0 = %f", 1.0 + 2.0 - 3.0 * 4.0 / 5.0);

CHAPTER 4 ■ OPERATORS

16

You can also use an assignment operator to store the result in a variable to be used
later on.

CGFloat t2 = 1.0 + 2.0 - 3.0 * 4.0 / 5.0;

You may notice that floating point numbers are used in the operations above. Each
number in the expression has a decimal point and zero, and the t2 variable data type is
CGFloat. This was deliberate because I suspected that the operation would result in a
fractional number, requiring a floating point variable to be represented correctly.

Note ■ Using the correct data types is essential when doing arithmetic operations, and

the compiler will assume that any number without a decimal place is an integer. Operations

involving only integers will return integers, which means that the result will be rounded.

This could easily lead to unexpected results in your calculations.

Operator Precedence

Operators are evaluated from left to right. Multiplication, division, and modulus
operators are evaluated before addition and subtraction operators. If you want to
change the order that operators are evaluated, you can enclose parts of the expression in
parentheses. Doing this will change the results of your expressions, as shown:

NSLog(@"%f", 1.0 + 2.0 - 3.0 * 4.0 / 5.0); // 0.600000
NSLog(@"%f", 1.0 + (2.0 - 3.0 * 4.0) / 5.0); // -1.000000
NSLog(@"%f", (1.0 + 2.0 - 3.0 * 4.0) / 5.0); // -1.800000

Assignment Operators
The assignment operator (=) is used to assign a value to a variable. You can assign a value
or the results of an operation to a variable using the assignment operator.

NSUInteger t2 = 100;
NSUInteger t3 = 10 * 10;

Increment and Decrement Operators
You can combine the addition and subtraction operators with the assignment operator
as a shortcut. Add a ++ to the variable name and the value will be incremented by 1 and
automatically assigned to the variable.

t2++;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ OPERATORS

17

The line of code above will increment t2 by 1, making the value of t2 equal to 101.
The following is the longer way of doing the same thing:

t2 = t2 + 1;

You can also reduce the value of t2 by adding the decrement operator (--) to the
variable name.

t2--;

Relational Operators
Relational operators are used to evaluate the relationship between two values. When
you use relational operators, the result will be a BOOL data type. You can evaluate
whether two values are the same or different. See Table 4-2 for a list of the available
relational operators.

Table 4-2. Relational Operators

Operator Meaning

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Here is an example of how to use a relational operator:

BOOL t4 = 5 < 4;
NSLog(@"t4 = %@", t4 ? @"YES" : @"NO"); // NO

This case seems trivial, but when you have variables whose values you don’t know
beforehand, evaluating relational operators is important. Relational operators are also
used in if statements, which are a key programming tool. If statements are covered later.

Logical Operators
Logical operators are used when you are evaluating more than one relationship between
entities. These operators are used with the relational operators and they also return a
BOOL result.

CHAPTER 4 ■ OPERATORS

18

See Table 4-3 for a list of available logical operators.

Table 4-3. Logical Operators

Operator Meaning

&& AND

|| OR

! NOT (Reverse result)

Here’s an example of how to use the logical operators:

BOOL t5 = YES && NO; // NO
BOOL t6 = YES && YES; // YES
BOOL t7 = YES || NO; // YES
BOOL t8 = NO || NO; // NO
BOOL t9 = !YES; // NO

19

CHAPTER 5

Objects

Objects Defined
Objective-C objects are entities that contain both behavior and attributes in one place.
Behaviors are coded in methods while attributes are coded in properties. Objects can also
include private instance variables. Private instance variables are used when data storage
is required, but not needed to be shared.

NSObject Class
NSObject is the root class in Objective-C. A class is a definition that has all the code
needed to make an object’s methods and properties work. NSObject is called the root
class because it has all the code needed to make objects work in Objective-C and every
other class inherits from the NSObject class.

Object Declaration
A class is used like a data type. Data types are used to declare a variable and you have
many variables for each data type. A class is used to declare an object and you can have
one class with many objects.

Here is how you would declare an NSObject object:

NSObject object;

Object Constructors
While data type variables can just be assigned to a value, objects require functions called
constructors. Constructors assign memory resources to the object and do any setup that
the object needs to function. Usually, you will see constructors split up into two functions
called alloc and init.

object = [[NSObject alloc] init];

CHAPTER 5 ■ OBJECTS

20

The init function will sometimes have a different name, but it will usually start with
the letters init. For example, here is a constructor for an NSURL object that will point to
my web site:

NSURL *url = [[NSURL alloc] initWithString:@"https://mobileappmastery.com"];

Notice that instead of init you have initWithString:. There aren’t any rules, other
than convention, when it comes to names of constructors.

While the pattern of alloc and init is the most common, you will also see object
creation with other function names and with the new keyword.

NSDate *today = [NSDate date];
NSObject *object2 = [NSObject new];

While the new constructor is uncommon, the new keyword can be used in place of
alloc and init. Constructors other than new, alloc, and init are used for temporary
objects. The date object above is an example of an object that is used on a temporary
basis because you usually just want to get a timestamp and move on. There is no reason
to maintain an object like this for a long time.

Note ■ Temporary objects like the date object in the example are used more often

in projects where ARC is not being used for memory management. ARC, or Automatic

Reference Counting, is a system that manages each object’s memory requirements.

Projects built with ARC use temporary objects like the date object above when functionality

is needed, but the object doesn’t need to be maintained for any length of time.

Object Format Specifier
When you want to use NSLog to print out data type values you must use a format specifier
like %lu, %li, %f, or %i. The value gets substituted into the NSLog string, giving you a way
to observe variable values. You can do this with objects as well.

NSObject objects and every object that derives from NSObject use the %@ format
specifier. The output you get from NSLog depends on the type of object. If you print out
the object from the example above like this

NSLog(@"object = %@", object);

you will get output that gives you details about the object including the class name and
memory address.

object = <NSObject: 0x10010a0c0>

https://mobileappmastery.com/

CHAPTER 5 ■ OBJECTS

21

Other objects will report back more specific information; what gets reported back
depends on the type of object. If you tried the same trick with the url NSURL object like this

NSLog(@"website = %@", url);

the console would present a listing of the web site URL.

website = https://mobileappmastery.com

Messages
When you want an object to do something, you send a message to the object. Sending a
message directs the object to execute the method defined in the class that corresponds to
the message.

For instance, you could remove a file from your shared directory by sending a
message to an NSFileManager object.

NSFileManager *fileManager = [NSFileManager defaultManager];
[fileManager removeItemAtPath:@"/Users/Shared/studyreport.txt"
 error:nil];

The first line of code above is declaring an NSFileManager object named
fileManager. In the second line of code, you can see the example of the message being
sent. The message is removeItemAtPath:error: and you send this message by writing
this out and including the parameters (here, these are the item to remove and an optional
error object). All of this is enclosed in square brackets, [], and ends with a semi-colon.

If you were to look at the class definition in the header file for NSFileManager, you
would find the declaration for this method:

- (BOOL)removeItemAtPath:(NSString *)path error:(NSError **)error;

This method returns a BOOL value that you are not using here.

https://mobileappmastery.com/

23

CHAPTER 6

Strings

NSString
NSString is the class used in Objective-C to work with strings. NSString manages the list
of characters that forms a string. NSString objects are immutable, which means that once
you create an NSString object you can’t change it.

NSString objects can be created with many different constructors, but the most
common way you’ll see NSString objects created is with the @ symbol followed by quotes.
In fact, you’ve seen this already in the Hello World example from Chapter 1.

NSLog(@"Hello, World!");

That parameter is an NSString object, although it’s hard to see since you don’t need
the explicit NSString declaration here. More often you will see NSString objects created
like this:

NSString *firstName = @"Matthew";
NSString *lastName = @"Campbell";

Here is another NSString constructor, stringWithFormat:, that is used often when
other variables and objects are used to compose a new string:

NSString *n = [NSString stringWithFormat:@"%@ %@", firstName, lastName];

This constructor, stringWithContentsOfFile:encoding:error:, is used to create a
new NSString object based on the contents of a file.

NSString *fileName = @"/Users/Shared/report.txt";
NSString *fileContents = [NSString
 stringWithContentsOfFile:fileName
 encoding:NSStringEncodingConversionAllowLossy
 error:nil];

CHAPTER 6 ■ STRINGS

24

NSMutableString
Sometimes you want to be able to add or remove characters to a string as your program
executes. For instance, you may want to maintain a log of changes users make in your
program and you don’t want to create new strings each time a change is made. These
situations call for NSSMutableString.

You can use the same constructors to create NSMutableString objects except for
the shortcut where you assign an object to a string contained in @"". To create a simple
NSMutableString, use the stringWithString: constructor.

NSMutableString *alpha = [NSMutableString stringWithString:@"A"];

Inserting Strings
You can insert strings into a mutable string at any point in the list of characters that make
up the mutable string. You just have to be sure that the insertion point that you specify
is in range of the list of characters. Don’t attempt to insert a string in position 20 if your
string is only 10 characters long. You can find out the length of a string by sending the
length message to the string.

To insert a string, you will need to specify both the string that you want to insert and
the starting position. Here is how you would insert a B into the alpha mutable string:

[alpha insertString:@"B"
 atIndex:[alpha length]];

Here you are sending the insertString:atIndex: message. The first parameter
is @"B", which is the string you want to add to the mutable string A. The atIndex:
parameter is the length of the alpha string since you want to append the B to the end of
the A string to produce @"AB".

If you really just want to append a string, there is an even easier method available
to do that. You can send the appendString: message, which only requires the string
parameter. The insertion point is not required because it is assumed that the string will be
appended to the end of the mutable string.

[alpha appendString:@"C"];

Deleting Strings
Just as you can add strings to a mutable string, you can remove parts of a mutable
string. When you are deleting strings, you will need to specify both a starting point and
a length. There is a composite type called NSRange that can help with that. NSRange has
two variables associated with it, location and length. You need to create one of these
composite types first before sending the deleteCharactorsInRange: message to the
mutable string.

CHAPTER 6 ■ STRINGS

25

NSRange range;
range.location = 1;
range.length = 1;
[alpha deleteCharactersInRange:range];

This code will delete the B from the ABC string you created in the previous steps.

Note ■ When you use NSRange, you should keep in mind that strings are stored as a list

of letters that start with the index of 0.

Find and Replace
Anyone who has used a word processor knows how convenient the find and replace
function can be. You just supply the program with the text that you want to replace and
the text that you want in its place. NSMutableString also has this ability.

To do find and replace with a mutable string you will need to define a range and
supply the string that you are looking for and the string that you put in the first string’s
place. There are also search options that you can specify.

range.location = 0;
range.length = 2;

[alpha replaceOccurrencesOfString:@"AC"
 withString:@"ABCDEFGHI"
 options:NSLiteralSearch
 range:range];

The first thing you are doing here is reusing the NSRange range variable to specify
what part of the string you want to look at. You are going to start at the beginning and
search the entire length of the string.

Next, you define the string that you want to replace, @"AC", and the string that you
want to use as a replacement, @"ABCDEFGHI".

In the options you set the NSLiteralSearch option. This means that the method will
require an exact match for your strings. You could also specify NSCaseInsensitiveSearch
to ignore case and NSRegularExpressionSearch, which lets you use a regular expression.

Note ■ Regular expressions are a tool used to search strings for patterns. They are used

in many programming languages. A full explanation of regular expressions is out of the

scope of this book, but worth looking into if you spend a lot of time working with strings.

The last parameter is the range variable that you set up before the message.

27

CHAPTER 7

Numbers

NSNumber
NSNumber is the class used in Objective-C to work with numbers. NSNumber gives you a
way to turn floating point and integer values into object-oriented number objects. While
you can’t use NSNumber objects in expressions, NSNumber objects become useful when
complicated formatting is required.

NSNumber objects can be created with many different constructors, but the most
common way you’ll see NSNumber objects created is with the @ symbol followed by a number.

NSNumber *num1 = @1;
NSNumber *num2 = @2.25;

Sometimes you may want to use special constructors that are matched to numbers
stored in a particular way.

NSNumber *num3 = [NSNumber numberWithInteger:3];
NSNumber *num4 = [NSNumber numberWithFloat:4.44];

Converting to Primitive Data Types
NSNumber objects can’t be used in expressions, but NSNumber has some built-in functions
that will return the object in a primitive data type form. You will have to use these
functions to convert numbers before using them in expressions.

CGFloat result = [num1 floatValue] + [num2 floatValue];

The function used above is floatValue but there are more like intValue and
doubleValue that match primitive data types from C programming like int and
double. stringValue is another function that will return the number formatted as a
string, which can be useful in reports.

CHAPTER 7 ■ NUMBERS

28

Formatting Numbers
NSNumber becomes very useful when you want to format numbers for displays in reports
and presentations. When used with the NSNumberFormatter class you can output
numbers as localized currency, scientific notation, and they can even be spelled out.

To do this, you must create a new number formatter and then set the formatting style
that you want to use.

NSNumberFormatter *formatter = [[NSNumberFormatter alloc] init];
formatter.numberStyle = NSNumberFormatterCurrencyStyle;

Then you can send the stringFromNumber: message to get the formatted number.
Here is an example of doing this in the context of using NSLog to write a message to the
console:

NSLog(@"Formatted num2 = %@", [formatter stringFromNumber:num2]);

This will output $2.25 from my computer since I’m set up in the United States. Your
output will differ depending on the locale that you have set on your Mac or iOS device.

Converting Strings into Numbers
You can also convert a string into a number. If you have a number represented as a string,
you can use a number formatter to convert the string into an NSNumber object.

Just change the number formatter style to the style in which the number was stored.
Then create a new NSNumber object with the NSNumberFormatter numberFromString:
message. Here is how to convert the string “two point two five” into the number 2.25:

formatter.numberStyle = NSNumberFormatterSpellOutStyle;
NSNumber *num5 = [formatter numberFromString:@"two point two five"];

www.allitebooks.com

http://www.allitebooks.org

29

CHAPTER 8

Arrays

NSArray
NSArray is a class used to organize objects in lists. NSArray can maintain an index of
objects, search for objects, and enumerate through the list. Enumeration is the process of
moving through a list one item at a time and performing an action on each item in the list.

To create an array, you include a comma-separate list of objects enclosed in square
brackets and started with the @ symbol.

NSArray *numbers = @[@-2, @-1, @0, @1, @2];
NSArray *letters = @[@"A", @"B", @"C", @"D", @"E", @"F"];

The NSArray object numbers has a list of NSNumber objects, while letters has a list of
strings. Any object can be put into an NSArray object, but not primitives like NSInteger.

Referencing Objects
You put objects in arrays so that you have an easy way of getting references to these
objects later. The general way of getting these references is to send an objectAtIndex:
message to the array. Here is how to get the number object reference from the second
position in the numbers array:

NSNumber *num = [numbers objectAtIndex:1];

If you know that you want the last object in the list, you use lastObject to return the
last object in the list.

Note ■ Array indexes in Objective-C start with 0.

NSNumber *lastNum = [numbers lastObject];

CHAPTER 8 ■ ARRAYS

30

Sometimes you might already have a reference to the object in question, but you
want to find out the index number that corresponds to the object’s position in the array.
You can use indexOfObject: to get this information.

NSUInteger index = [numbers indexOfObject:num];

Enumeration
Enumeration is the process of moving through a list one item at time. Usually, you will be
performing some type of action on each item, like writing out the object’s contents to the
log or modifying a property on the object.

Blocks, or anonymous functions, are used to perform enumeration with arrays.
Blocks are functions that are not attached to an object. You can define a block on
enclosing lines of code in curly brackets. Blocks can be treated like objects, which means
that you can pass a block to an enumeration method just like you could do for a variable
or an object.

Note ■ Blocks deserve their own treatment, apart from their use in arrays, and so more

details about using blocks will be covered in Chapter 20.

Let’s say you want to go through the array of numbers and print out each
number’s value when squared. You could enumerate through the list using the NSArray
enumerateObjectsUsingBlock: method. This method will give you a reference to the
current object, which you can use to perform this simple operation.

[numbers enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"obj ^ 2= %f", [obj floatValue] * [obj floatValue]);
}];

All of the code after the colon is the block code. This block starts with the ^ symbol.
Then you can see a comma-separated list of parameters followed up by curly brackets.
The code inside the curly brackets is the block, and the parameters declared in the
parentheses are the variables that the block can reference.

NSMutableArray
More often than not, you need to be able to add and remove items from an array as your
program executes code. You could be maintaining a list of action items or video game
characters. When you need to do this, you can use NSMutableArray.

NSMutableArray does everything that NSArray does except that it gives you the ability
to change the contents of the array. You can add and remove items and do other types of
manipulations on objects in mutable arrays.

CHAPTER 8 ■ ARRAYS

31

You can’t use the shortcut for array creation here, though, and NSMutableArray will
require you to use a constructor, like this:

NSMutableArray *mArray = [NSMutableArray arrayWithArray:@[@-2, @-1, @0]];

The constructor used above is arrayWithArray: and you just passed on an NSArray
object to this constructor to get started.

To add an object to a mutable array, you use the addObject: message.

[mArray addObject:@1];

To remove an object, you must use the removeObject: message and pass a reference
to the object that you want to remove.

[mArray removeObject:@1];

If you want to exchange one object with another, you can use the method
exchangeObjectAtIndex:withObjectAtIndex:.

[mArray exchangeObjectAtIndex:0 withObjectAtIndex:1];

This will take whatever is in position 0 and switch with whatever is in position 1.
There are many other variations of these functions available to you. You can remove

all items, add arrays of items into the mutable array, or insert items or arrays of items at a
specific starting point in the array.

33

CHAPTER 9

Dictionaries

NSDictionary
NSDictionary is a class used to organize objects in lists using keys and values.
NSDictionary can maintain an index of objects and let you retrieve an object if you have
the right key. Usually, the key will be an NSString object while the value will be whatever
type of object you are indexing.

To create a dictionary, you include a comma-separate list of key value pairs enclosed
in curly brackets and started with the @ symbol.

NSDictionary *d1 = @{@"one": @1, @"two": @2, @"three": @3};

This creates a dictionary of NSNumber objects that you can reference with their string
keys. So, the key string @"one" can be used to retrieve the NSNumber object 1.

Referencing Objects
You put objects in dictionaries so that you have an efficient way of getting references to
these objects bases on keys. The general way of getting these references is to send an
objectForKey: message to the dictionary. Here is how to get the number referenced by
the key @"one":

NSNumber *n1 =[d1 objectForKey:@"one"];

Enumeration
Enumeration is the process of moving through a list one item at time. Usually, you will be
performing some type of action on each item, like writing out the object’s contents to the
log or modifying a property on the object.

You can enumerate through a dictionary in almost the same way as you do with an
array. But you will get a reference to each key in the dictionary as well as each object.

[d1 enumerateKeysAndObjectsUsingBlock:^(id key, id obj, BOOL *stop) {
 NSLog(@"key = %@, value = %@", key, obj);
}];

CHAPTER 9 ■ DICTIONARIES

34

Just like with the array enumeration procedure discussed in Chapter 8, the block
code declaration starts with the ^ character and the block code is enclosed in the curly
brackets, { }.

Here is the output that would be generated with this message:

key = one, value = 1
key = two, value = 2
key = three, value = 3

NSMutableDictionary
NSDictionary is an immutable object, so once you create an NSDictionary object you
can’t add or remove items from the dictionary. If you need to add or remove items from a
dictionary, you must use the NSMutableDictionary class.

You can’t use the shortcut for array creation here, though, and NSMutableDictionary
requires you to use a constructor, like this:

NSMutableDictionary *md1 = [[NSMutableDictionary alloc] init];

The easiest thing to do is to follow the alloc and init pattern to create an empty
dictionary to which you can add objects. When you are ready to add an object to the
dictionary, you will need a key and the value that you want to add. These two parameters
will be supplied to the setObject: for Key: method.

[md1 setObject:@4 forKey:@"four"];

To remove an object, send the removeObjectForKey: message and supply the key.

[md1 removeObjectForKey:@"four"];

You can remove every object from a mutable dictionary by sending the
removeAllObjects message.

[md1 removeAllObjects];

35

CHAPTER 10

For Loops

For Loops Defined
Loops are used when you want to repeat a similar type of task many times. For loops are
used when you know beforehand how many times you want to repeat a similar line of
code. Here is a for loop that will write to the console window 10 times:

for (int i=0; i<10; i++) {
 NSLog(@"i = %i", i);
}

This for loop will produce this output:

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9

Let’s take a closer loop at the parts of this loop. The first thing is the for keyword.
This lets the compiler know that you are coding a for loop.

Next, you have a series of code lines enclosed in parenthesis: (int i=0; i<10; i++).
These lines of code specify a starting condition (int i=0;), an ending condition (i<10),
and an increment instruction (i++). This means that the loop will repeat 10 times by
starting at 0 while the variable i increases by 1 each time the loop executes as long as
i is less than 10.

Finally, you have a code block defined by curly brackets, { }. The code contained
in these curly brackets will execute each time you go through the loop. In the example
above, the code block had only one line of code, NSLog(@"i = %i", i);. Notice that the
variable i, sometimes called the counter variable, is in scope and you can use i in the
code block.

CHAPTER 10 ■ FOR LOOPS

36

For Loops and Arrays
More often than not, you will use a for loop to go through a list and do something with
each object in that list. Let’s assume that you have an array named list that has a five
NSNumber objects ranging from -2.0 to 2.0.

NSArray *list = @[@-2.0, @-1.0, @0.0, @1.0, @2.0];

Let’s say that you want to construct a string that includes all values in list but
spelled out with words. For example, you want a string minus two, minus one, etc.
You would need to use NSNumberFormatter and an NSMutableString, both of which have
been covered in the chapters on numbers and strings.

Just to set this up, let’s get the number formatter, mutable string, and array before
you go into the for loop.

NSArray *list = @[@-2.0, @-1.0, @0.0, @1.0, @2.0];
NSMutableString *report = [[NSMutableString alloc] init];
NSNumberFormatter *formatter = [[NSNumberFormatter alloc] init];
formatter.numberStyle = NSNumberFormatterSpellOutStyle;

Note that you are specifying NSNumberFormatterSpellOutStyle here so that the
number formatter can give you the value of each number object spelled out.

Since you want the for loop to move through each number in the array list, you will
need to find out how many objects are contained in list. NSArray objects have a count
property that you can use to get the number of objects contained in the array, and you
can use this value directly in the for loop.

for (int i=0; i<list.count; i++) {
 NSNumber *num = [list objectAtIndex:i];
 NSString *spelledOutNum = [formatter stringFromNumber:num];
 [report appendString:spelledOutNum];
 [report appendString:@", "];
}

What you are doing above is going through each object in list and getting a reference
to the number in the list that corresponds to the index that is associated with the current
value of i.

Next, you use the number formatter to get the spelled-out string version of the
number. Finally, you append this spelled-out string value to the end of the mutable string.
Here is what the output would look like:

report = minus two, minus one, zero, one, two,

37

CHAPTER 11

While Loops

While Loops Defined
Like for loops, while loops are used when you want to repeat a similar type of task many
times. While loops are used when you want to execute a line of code many times until a
condition is met. Here is a while loop that will write to the console window 10 times:

int i = 0;

while (i < 10) {
 NSLog(@"i = %i", i);
 i++;
}

This while loop will produce this output:

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9

The loop above does the same thing as the for loop from Chapter 10, but note that
the specifications for the loop are in different spots. The first thing that you will notice is
that you need to have a counter variable on hand to use in a while loop. You can’t just
put the counter variable right in the body of the loop like you did before. So you need a
separate line of code before the while loop to declare and assign the counter variable.

int i = 0;

CHAPTER 11 ■ WHILE LOOPS

38

Then you have the while loop itself that is started with the while keyword. In the
parentheses after the while keyword is the ending condition, (i < 10). This means that
the loop will go on as long as the value of i is less than 10.

Finally, you have a code block defined by curly brackets. The code contained in these
curly brackets will execute each time you go through the loop. You have one line of code,
NSLog(@"i = %i", i);, to write to the log. You also increment the counter variable in
this code block, i++;.

Note ■ It’s important to remember to increment the counter variable here. If you don’t do

this, then i will never go beyond 10. The loop will never end, which will effectively cause

your program to hang until a user terminates it.

While Loops and Arrays
Now let’s go ahead and repeat the example from Chapter 10 where you formatted a list of
numbers in an array with a loop. This is the array and other objects that you worked with
in Chapter 10:

NSArray *list = @[@-2.0, @-1.0, @0.0, @1.0, @2.0];
NSMutableString *report = [[NSMutableString alloc] init];
NSNumberFormatter *formatter = [[NSNumberFormatter alloc] init];
formatter.numberStyle = NSNumberFormatterSpellOutStyle;

You are going to do the same thing you did in Chapter 10, but you will use the while
loop instead.

int i = 0;

while(i < list.count) {
 NSNumber *num = [list objectAtIndex:i];
 NSString *spelledOutNum = [formatter stringFromNumber:num];
 [report appendString:spelledOutNum];
 [report appendString:@", "];
 i++;
}

What you are doing above is going through each object in the list and getting a
reference to the number in the list that corresponds to the index that is associated with
the current value of i.

Next, you use the number formatter to get the spelled-out string version of the
number. Finally, you append this spelled-out string value to the end of the mutable string.
Here is what the value of report would look like:

report = minus two, minus one, zero, one, two,

39

CHAPTER 12

Do While Loops

Do While Loops Defined
Do while loops are used for the same reasons as for loops and while loops. The syntax
is different, and do while loops are notable because the code in the block will execute at
least once. This is because the ending condition is not evaluated until the end of the loop.
Here is how you would code a do while loop to count to 10:

int i = 0;

do{
 NSLog(@"i = %i", i);
 i++;
}while (i <10);

This do while loop will produce this output:

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9

The loop above does the same thing as the for loop from Chapter 10 and the while
loop in Chapter 11. The specifications for the do while loop are similar to the while loop
but they are located in different lines of code.

Like the while loop, you need to have a counter variable on hand.

int i = 0;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12 ■ DO WHILE LOOPS

40

Then you have the do while loop itself that is started with the do keyword.
Immediately after the do keyword you have a code block defined by curly brackets. The
code contained in these curly brackets will execute each time you go through the loop.
You have one line of code, NSLog(@"i = %i", i);, to write to the log. You also increment
the counter variable in this code block, i++;.

The condition (i < 10) is after the while keyword right after the code block. This
means that the loop will go on as long as the value of i is less than 10.

Note ■ It’s important to remember to increment the counter variable here. If you don’t do

this, then i will never go beyond 10, and the loop will never end, which will effectively cause

your program to hang until a user terminates it.

Do While Loops and Arrays
Now let’s go ahead and repeat the example from Chapter 10 and Chapter 11 where you
formatted a list of numbers in an array with a loop. This is the array and other objects that
you worked with in Chapter 10 and Chapter 11:

NSArray *list = @[@-2.0, @-1.0, @0.0, @1.0, @2.0];
NSMutableString *report = [[NSMutableString alloc] init];
NSNumberFormatter *formatter = [[NSNumberFormatter alloc] init];
formatter.numberStyle = NSNumberFormatterSpellOutStyle;

You are going to use the do while loop instead.

int i = 0;

do {
 NSNumber *num = [list objectAtIndex:i];
 NSString *spelledOutNum = [formatter stringFromNumber:num];
 [report appendString:spelledOutNum];
 [report appendString:@", "];
 i++;
}while(i < list.count);

NSLog(@"report = %@", report);

You will end up with a mutablable string that you can write out to the console log.
The output will look like this:

report = minus two, minus one, zero, one, two,

41

CHAPTER 13

For-Each Loops

For-Each Loops Defined
For-each loops are a more specific type of loop that can only be used with collection
objects like NSArray and NSDictionary. You can use a for loop when you want to move
through a list of objects to perform an action on each object in the list.

For example, let’s take the array example from Chapter 8.

NSArray *numbers = @[@-2, @-1, @0, @1, @2];

In Chapter 8, you used the enumeration method with a block to go through the list
and square each number. You can use a for loop as an alternative to the enumeration
method.

for (NSNumber *num in numbers){
 NSLog(@"num ^ 2= %f", [num floatValue] * [num floatValue]);
}

This loop starts with the for keyword before a specification in parentheses. The
specification starts with an object type (NSNumber) and a variable that will give you a
reference to the current object in the list, (*num).

Next, you can see the keyword in followed by the array (numbers). Taken all together,
you can read this as “for each number num in the array numbers, do something.” The
something here is defined in the code block that comes right after the first part of the
loop. It will go through the entire array and square each number, producing the following
output:

num ^ 2= 4.000000
num ^ 2= 1.000000
num ^ 2= 0.000000
num ^ 2= 1.000000
num ^ 2= 4.000000

CHAPTER 13 ■ FOR-EACH LOOPS

42

For Loops with NSDictionary
Dictionaries are a little bit more complicated than arrays because dictionaries maintain a
list of keys and objects. You might expect that a for each loop used on a dictionary would
yield a list of objects; however it turns out that you will just get a list of the dictionary keys.

So, if you code a for each loop with an NSDictionary, as in

NSDictionary *d1 = @{@"one": @1, @"two": @2, @"three": @3};
for (id object in d1){
 NSLog(@"object = %@", object);
}

you will get output that lists out all the keys like this :

object = one
object = two
object = three

If you want to output values in the dictionary, you will need to send the
objectForKey: message to the dictionary.

for (id object in d1){
 NSNumber *num = [d1 objectForKey:object];
 NSLog(@"num = %@", num);
}

This for loop will print out the values of the objects.

num = 1
num = 2
num = 3

43

CHAPTER 14

If Statements

If Statements Defined
If statements are used when you want to make a choice to execute code based on the
trueness of a condition. To make this work, you evaluate an expression that uses relational
operators to yield a YES or NO result. If you evaluate an express to be true, then you can
execute the code; otherwise you can ignore the code.

You need the if keyword and an expression here along with a code block to use the
if statement.

if(1 < 2){
 NSLog(@"That is true");
}

The statement is saying that if 1 is less than 2, then execute the code that will print
out the string “That is true” to the console log.

Else Keyword
You can also define an alternate action with the else keyword. This gives you a way of
executing either one of two actions based on the results of the expression that you are
evaluating.

if(1 < 2){
 NSLog(@"That is true");
}
else{
 NSLog(@"Not true");
}

CHAPTER 14 ■ IF STATEMENTS

44

Nested If Else

Each if statement can contain nested if statements. This gives you a way of testing multiple
conditions. Generally speaking, it’s best to limit yourself to three nested if statements at
most. Here is what a nested if statement looks like:

if(1 > 2){
 NSLog(@"True");
}
else{
 if(3 > 4){
 NSLog(@"True");
 }
 else{
 NSLog(@"Not True");
 }
}

If Statements and Variables
Generally you will see if statements used along with variables that are used to keep track
of the state of a program. You can use variables inside the parentheses as part of the
expression in the if statement or you can test the variables directly.

BOOL isTrue = 1 == 2;

if(isTrue){
 NSLog(@"isTrue = %@", isTrue ? @"YES" : @"NO");
 NSLog(@"That was a true statement.");
}
else{
 NSLog(@"isTrue = %@", isTrue ? @"YES" : @"NO");
 NSLog(@"That was not a true statement.");
}

In the code above, you are assigning the result of an expression to the Boolean
variable isTrue and then testing this later on with an if statement.

Here is what you will see in the console log if you test this code for yourself:

isTrue = NO
That was not a true statement.

45

CHAPTER 15

Switch Statements

Switch Statements Defined
Switch statements are used to execute code based on the value of an integer. To make
a switch statement work, you need to define a level variable and then you need to write a
code block for each possible value of the level variable that you expect.

For this chapter, let’s assume you are writing code to help you do some geometry
work. You have different shapes that you need to work with and you want to calculate
the area of each shape. You can keep track of what type of shape you are working with by
using an NSInteger variable like shape.

NSInteger shape = 0;

Each value of the NSInteger shape will correspond to a type of shape. Zero could be
a square, one could be a parallelogram, and two could be a circle. Variables like shape are
called a level variable because they represent possible levels.

For the purposes of this example, you also need a variable to store the results of any
calculation you make, which is why you have a float variable named area.

float area;

Switch Keyword
Now, let’s get to the switch statement itself. To start a switch statement, you need the
switch keyword followed by the level variable in parentheses. Also, you should use curly
brackets to create a code block for the switch statement.

switch (shape) {

}

Case Keyword
Next, you can define code blocks that will be associated with each value that the level
variable can take on. You use the case keyword to associate each possible value with a
code block.

CHAPTER 15 ■ SWITCH STATEMENTS

46

switch (shape) {

 case 0:{
 float length = 3;
 area = length * length;
 NSLog(@"Square area is %f", area);
 break;
 }

}

What you see above is the case keyword followed by the value that you are testing for,
which is 0. Then you have a colon followed by curly brackets that define the code block
that will execute whenever the value of shape is 0.

break Keyword
At the end of the code block above you can see the break keyword. This keyword will return
control the program back to the main program and outside of the case statement. If this
statement didn’t appear, then every line of code after would execute whenever the first case
was true (switch statements stop evaluating the level variable once it finds a true value).

Complete Switch Statement
Here is what the statement looks like with multiple case statements:

switch (shape) {

 case 0:{
 float length = 3;
 area = length * length;
 NSLog(@"Square area is %f", area);
 break;
 }
 case 1:{
 float base = 16;
 float height = 24;
 area = base * height;
 NSLog(@"Parallelogram area is %f", area);
 break;
 } default:{
 area = -999;
 NSLog(@"No Shape Specified");
 break;
 }

}

CHAPTER 15 ■ SWITCH STATEMENTS

47

Default Case
If you look closely at the code above, you can see that there is a default keyword. This
keyword is used to define a default case, which is a way to define a code block that will
execute if none of the other conditions are met. So, if the value of shape happened to be 6
and had no code block defined, you would be sure that at least the code that was included
in the default case would execute.

Here is what you will find in the console log if you run the code from this chapter:

Square area is 9.000000

49

CHAPTER 16

Defining Classes

Classes
I covered objects when I demonstrated the Objective-C objects used to work with strings,
number, arrays, and dictionaries. Objects are an essential object-oriented programming
pattern. While you will often simply use Foundation objects that are already set up for
you, usually you will need to define your own types of objects customized for your app.

You can use classes to define your own object types. Classes are code definitions that
are used to create objects. The primary purpose of coding class definitions is to express
an entity that has attributes and behaviors.

Attributes are called properties when coding classes and behaviors are called
methods. Properties are used to describe an object while methods are used to get objects
to perform an action.

You need to do two important tasks when defining a class: code an interface and
code an implementation.

Class Interfaces
You use a class interface to specify the name of the class and the properties and methods
that make up the class. Here is how you would set up a class called Project:

#import <Foundation/Foundation.h>

@interface Project : NSObject

@end

The line of the code that begins with the #import imports the Foundation framework.
This framework is needed whenever you want to work with Objective-C classes like
NSObject or NSString (which you almost always do).

In particular, you need to reference NSObject since that will be your base class.
A base class is what your class will be derived from and provides a starting point for you.
NSObject provides the object creation methods you need to make your objects work like
objects (such as alloc and init).

CHAPTER 16 ■ DEFINING CLASSES

50

In the line that starts with @interface keyword, you can use the name of the class,
Project, and the base class NSObject, which comes after the colon.

The @interface keyword must be matched with the @end keyword.

Property Forward Declarations
Properties require a forward declaration that is coded in the class interface. These belong
in the space between the @interface line and @end line.

#import <Foundation/Foundation.h>

@interface Project : NSObject

@property(strong) NSString *name;

@end

Property forward declarations start with the @property keyword followed by a
property descriptor in parenthesis. See Table 16-1 for a list of the possible parameter
descriptors that you can use.

Table 16-1. Parameter Descriptors

Attribute Description

Readwrite The property needs both a getter and a setter (default).

Readonly The property only needs a getter (objects cannot set this property).

strong The property will have a strong relationship.

weak The property will be set to nil when the destination object is
deallocated.

assign The property will simply use assignment (used with primitive types).

Copy The property returns a copy and must implement the NSCopying
protocol.

retain A retain message will be sent in the setter method.

nonatomic Specifies the property is not atomic (not locked while being
accessed).

The next two parts of the property forward declaration are the datatype and the
name of the property. You can read this forward declaration as defining a property name of
type NSString that Project will have a strong relationship with.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16 ■ DEFINING CLASSES

51

Note ■ Terms like strong, retain, and weak have to do with how memory management

is handled for the property value. Both strong and retain mean that your class objects will

always retain a reference to the property value, which guarantees that the object will stay

in scope for as long as you need it. Property descriptors weak and assign don’t provide this

guarantee.

Method Forward Declarations
Methods also need forward declarations. While properties describe an object, methods
represent actions that an object can take. Here is how you would add a forward
declaration to the Project class:

#import <Foundation/Foundation.h>

@interface Project : NSObject

@property(strong) NSString *name;

-(void)generateReport;

@end

Method forward declarations start with the minus sign followed by the return type in
parenthesis. This method has a void return type, but you can have any datatype or class
as a return type for a method.

After that is the method’s signature, which I will talk more about once you see
a method that includes parameters. Here is an example of a method that includes
parameters:

#import <Foundation/Foundation.h>

@interface Project : NSObject

@property(strong) NSString *name;

-(void)generateReport;
-(void)generateReportAndAddThisString:(NSString *)string
 andThenAddThisDate:(NSDate *)date;

@end

CHAPTER 16 ■ DEFINING CLASSES

52

In this parameter, you can see that the method signature is broken up into two parts.
Each part has a parameter and a parameter descriptor separated by a colon. In Objective-C,
method signatures are a collection of parameter descriptors and parameters. When you
have no parameters (like the first method), you just have a parameter descriptor to describe
the method.

Implementing Classes
Defining the class interface is the first part of the process of defining a class. The next part
is called the implementation because this is where you provide the code implementation
that makes the class objects work.

To start implementing a class, you use the @implementation keyword along with the
class name.

#import "Project.h"

@implementation Project

@end

The first line of code is importing the Project forward declarations into this file so the
class is aware of what needs to be implemented.

Note ■ While it is not required, usually class interfaces and implementations will be coded

in separate files. Interface files end with the .h file extension and are sometimes called

header files. Implementation files end with the .m file extension and are sometimes called

code files.

The implementation begins with the @implementation keyword followed by the
name of the class Project. Implementations end with the @end keyword. Now, you need
to implement the properties and methods.

Properties are implemented for you automatically and you don’t need to take any
action to make properties work.

Implementing Methods
When you implement a method, you repeat the forward declaration of the method from
the interface. But you add a code block and the code that you need to get the method to
do something.

CHAPTER 16 ■ DEFINING CLASSES

53

#import "Project.h"

@implementation Project

-(void)generateReport{
 NSLog(@"This is a report!");
}

@end

When you implement a method that includes parameters, you can reference those
parameter values in your code.

#import "Project.h"

@implementation Project

-(void)generateReport{
 NSLog(@"This is a report!");
}

-(void)generateReportAndAddThisString:(NSString *)string
 andThenAddThisDate:(NSDate *)date{
 [self generateReport];
 NSLog(@"%@", string);
 NSLog(@"Date: %@", date);
}

@end

Private Properties and Methods
The procedures above define properties and methods publically. This means that other
objects can reference these properties and use those methods. Classes that are derived
from this class can use and override these properties and methods. If you want to prevent
that from happening to make properties and methods private, you can use a class
extension.

Class Extensions

Class extensions give you a way to extend a class interface in the implementation file.
Since other classes will be importing the interface file that ends with the .h extension
(the header file), they will not be able to access anything with forward declarations that
are defined in a class extension.

CHAPTER 16 ■ DEFINING CLASSES

54

You can put a class extension in the implementation file like this:

#import "Project.h"

@interface Project()

@property(strong) NSArray *listOfTasks;

-(void)generateAnotherReport;

@end

@implementation Project

-(void)generateReport{
 NSLog(@"This is a report!");
}

-(void)generateReportAndAddThisString:(NSString *)string
 andThenAddThisDate:(NSDate *)date{
 [self generateReport];
 NSLog(@"%@", string);
 NSLog(@"Date: %@", date);
}

-(void)generateAnotherReport{
 NSLog(@"Another report!");
}

@end

The class extension looks like the interface but has empty parenthesis after the class
name. The forward declarations that are in the class extension above follow the same
rules as the other forward declarations for properties and methods. Class extensions must
end with the @end keyword (each @interface requires a matching @end).

Local Instance Variables

Sometimes you need storage variables that don’t merit a property declaration. For instance,
sometimes you want to have a “counter” or “progress” variable or a variable that maintains
a log. These are needed but don’t really describe the object so they don’t merit the same
treatment as a property.

CHAPTER 16 ■ DEFINING CLASSES

55

Instead, you can use an instance variable or ivar in these situations. Instance
variables can be included right in the class extension, like this:

#import "Project.h"

@interface Project() {
 int counter;
 NSString *log;
}

@property(strong) NSArray *listOfTasks;

-(void)generateAnotherReport;

@end

@implementation Project

-(void)generateReport{
 NSLog(@"This is a report!");
}

-(void)generateReportAndAddThisString:(NSString *)string
 andThenAddThisDate:(NSDate *)date{
 [self generateReport];
 NSLog(@"%@", string);
 NSLog(@"Date: %@", date);
}

-(void)generateAnotherReport{
 NSLog(@"Another report!");
}

@end

57

CHAPTER 17

Class Methods

Class Methods Defined
In Chapter 16, we described how to define classes with properties and methods. The type
of method we focused on was instance methods. Instance methods are methods can only
be used with objects. When you want to use an instance method, you send a message to
an object.

For instance, if you want to send the generateReport message to a Project object,
you first need create the object and then send the message right to the object.

Project *p = [[Project alloc] init];
[p generateReport];

Class methods are like instance methods except that they can only be used with
classes. When you want to use a class method, you must send the message to the class.
If you look closely at the constructor above, you can see that you are already using a class
method called alloc.

Coding Class Methods
If you want to create your own class method, you need to start in the class interface.
Let’s code a forward declaration for a class method that prints out a time stamp called
printTimeStamp. You can add this to the class that you started in the last chapter.

#import <Foundation/Foundation.h>

@interface Project : NSObject

@property(strong) NSString *name;

-(void)generateReport;
-(void)generateReportAndAddThisString:(NSString *)string
 andThenAddThisDate:(NSDate *)date;
+(void)printTimeStamp;

@end

CHAPTER 17 ■ CLASS METHODS

58

This method looks like the instance methods that you already coded, except that it
has a plus sign (+) in front of the return type.

The next step is to implement this method, which you must do in the
implementation for Project. Note that some of the code from Chapter 16 is omitted here
to avoid making this example too long and distracting.

#import "Project.h"

@implementation Project

+(void)printTimeStamp{
 NSLog(@"Timestamp: %@", [NSDate date]);
}

@end

You need to use the plus sign here again to define this as a class method, but the
coding follows the same pattern as the instance methods.

When you want to use the printTimeStamp method, you send the message directly to
the class. You don’t need to create an object first here.

[Project printTimeStamp];

This message will print the following out to the console log:

Timestamp: 2014-10-30 18:13:01 +0000

59

CHAPTER 18

Inheritance

When you want to code a new class that shares most of the properties and methods of
another class, you can use inheritance. A class that is inherited from another class takes
on all the properties and methods of the superclass.

You use inheritance when you want to leverage the work that has already been
completed and then add more properties and methods to customize the new class.
This pattern gives us code reuse.

You saw examples of inheritance in Chapter 16: when you created the Project class,
you inherited NSObject. This gave Project all the methods and properties of NSObject.

A more interesting application happens when you use this technique with your
object graph. For instance, let’s assume that now you want to create a new class that’s like
Project but has a few key differences.

Creating Subclasses
To create a new subclass, you can follow the same pattern that was laid out in Chapter 16.
You define an interface and implementation. The difference here is that you will choose
Project instead of NSObject as the superclass.

#import "Project.h"

@interface SpecialProject : Project

@end

The two things to note in the interface above are that you are importing Project.h
(and not Foundation as before) and you now have Project after the colon and not NSObject,
indicating that Project is the superclass and that SpecialProject is your subclass.

The implementation for SpecialProject is straightforward and resembles what you
did for the original Project class.

#import "SpecialProject.h"

@implementation SpecialProject

@end

CHAPTER 18 ■ INHERITANCE

60

If you were to use SpecialProject right now, it would behave just like Project. Now
you can add additional properties and methods to customize SpecialProject. This is
called extending a class.

Extending Classes
To extend a class, you can add properties and methods to the subclass. Your subclass
is SpecialProject. Let’s add a method named generateSpecialReport to your
SpecialProject class.

#import "Project.h"

@interface SpecialProject : Project

-(void)generateSpecialReport;

@end

Now, of course, you need to implement this method.

#import "SpecialProject.h"

@implementation SpecialProject

-(void)generateSpecialReport{
 NSLog(@"This is a special report!");
}

@end

The procedure to extend classes is identical to adding properties and methods as you
normally do. What makes this a good tool is that you can share the code for the methods
that are common among a type of class.

Overriding Methods
Another thing you can do is override a method from your superclass. Overriding a
method means that you are going to write your own version of a method with the exact
same signature (the collection of parameter descriptors). The code in your method will be
different so this means that objects from the inherited class will behave differently even
though they get the same message sent to them as the superclass.

Let’s say you want to make sure that SpecialProject objects always print out the
special report even if the generateReport message from the Project superclass is sent.

CHAPTER 18 ■ INHERITANCE

61

What you need to do first is code generateReport method in the SpecialProject
interface.

#import "Project.h"

@interface SpecialProject : Project

-(void)generateSpecialReport;
-(void)generateReport;

@end

Then you need to code a new implementation of generateReport and have that
method send a message to generateSpecialReport. Often in this situation, you will
also send a message to the super's implementation of the method, which you can do by
sending a message to super.

#import "SpecialProject.h"

@implementation SpecialProject

-(void)generateSpecialReport{
 NSLog(@"This is a special report!");
}

-(void)generateReport{
 [super generateReport];
 [self generateSpecialReport];
}

@end

Instance Variable Visibility
When I discussed instance variables, or ivars, in Chapter 16, the use case for these was
straightforward. If your class needed data storage that didn’t really describe an attribute
of the object (and therefore shouldn’t have a property), then you would just use an ivar.

Since you added ivars to the class extension, the class that you were implementing
in that file could only use them. These ivars are considered private because they are only
visible to the class that they are coded in.

Visibility Levels

When you are planning on using inheritance with your object graph, you may want
instance variables to have different levels of visibility. The term “visibility” refers to the
other entities’ access to the variable. Instance variables can either be private, protected,

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 18 ■ INHERITANCE

62

or public. When you want to have different visibility levels, you must code your instance
variables in the interface, which should be located in a header file since this is the file that
other classes will be importing.

Private Instance Variables

Private instance variables can only be used in the class they are coded in. To make an
instance variable private, you would declare the instance variable in the class interface.
Let’s say you wanted to add some NSString objects to act as logs for all of your Project
classes. To add a private log to be used in Project objects, you would do something like
this in the Project interface:

#import <Foundation/Foundation.h>

@interface Project : NSObject {
 @private NSString *log1;
}

@property(strong) NSString *name;

-(void)generateReport;
-(void)generateReportAndAddThisString:(NSString *)string
 andThenAddThisDate:(NSDate *)date;
+(void)printTimeStamp;

@end

You must use the @private keyword to designate that log1 will have private visibility.
This means you can use log1 in your Project methods, but not in your SpecialProject
methods.

Protected Instance Methods

Instance variables with protected visibility can be accessed by methods in the class they
are coded in as well as any derived classes. So, if you wanted to have an NSString log
variable that can be used by Project and SpecialProject, you would need to make it
protected by using the @protected keyword.

#import <Foundation/Foundation.h>

@interface Project : NSObject{
 @private NSString *log1;
 @protected NSString *log2;
}

CHAPTER 18 ■ INHERITANCE

63

@property(strong) NSString *name;

-(void)generateReport;
-(void)generateReportAndAddThisString:(NSString *)string
 andThenAddThisDate:(NSDate *)date;
+(void)printTimeStamp;

@end

Public Instance Variables

Public instance variables are available to the class they are coded in and all derived
classes. In addition, other objects can reference public instance variables directly.

Note ■ I am discussing public instance variables here for the sake of completeness, but it

is generally not accepted practice to use instance variables in this way. Instead, you should

define properties to return any values that you want to make available to other objects.

To make an instance variable public, you must use the @public keyword.

#import <Foundation/Foundation.h>

@interface Project : NSObject{
 @private NSString *log1;
 @protected NSString *log2;
 @public NSString *log3;
}

@property(strong) NSString *name;

-(void)generateReport;
-(void)generateReportAndAddThisString:(NSString *)string
 andThenAddThisDate:(NSDate *)date;
+(void)printTimeStamp;

@end

CHAPTER 18 ■ INHERITANCE

64

To use this object, you would need to use the member of operator, ->. The member
of operator is a traditional C operation that you can use to reference a member of a
structure that is referenced by a pointer. Here is an example of how you would do this:

#import <Foundation/Foundation.h>
#import "SpecialProject.h"

int main(int argc, const char * argv[]){
 @autoreleasepool {

 SpecialProject *sp = [[SpecialProject alloc]init];
 NSString *tempLog = sp->log3;
 NSLog(@"temp = %@", tempLog);

 return 0;
 }
}

65

CHAPTER 19

Categories

Categories Defined
Categories are used to extend classes without using inheritance. When you use a
category, you can add properties and methods to a class without declaring a super class.

To define a category, you need to add an interface and implementation. You can do
this by adding new header and code files or you can add the categories right in the code
file where you are working.

Category Example
As an example, let’s say that you want to take the Project class that you defined in
Chapter 16 and add a constructor method that would initialize a new Project object
and assign a name at the same time. You could add code like this right in the main.m file
where you are coding.

The first thing you would do is add the interface.

#import <Foundation/Foundation.h>
#import "Project.h"

@interface Project(ProjectExtension)

@end

int main(int argc, const char * argv[]){
 @autoreleasepool {

 return 0;
 }
}

Category interfaces look similar to class interfaces, but they follow a slightly different
format. These interfaces start with the @interface keyword and are followed by the
original class name. Following the class name is the name of the category in parentheses.

CHAPTER 19 ■ CATEGORIES

66

You put forward declarations in the category interface. Since you want an initializer
that sets the name for you, you would add something like this to your category interface:

#import <Foundation/Foundation.h>
#import "Project.h"

@interface Project(ProjectExtension)

-(id)initWithName:(NSString *)aName;

@end

int main(int argc, const char * argv[]){
 @autoreleasepool {

 return 0;
 }
}

The next step is to implement the new method, and to do that you must code the
category implementation. Category implementations follow the same pattern as the
category interface.

#import <Foundation/Foundation.h>
#import "Project.h"

@interface Project(ProjectExtension)

-(id)initWithName:(NSString *)aName;

@end

@implementation Project (ProjectExtension)

@end

int main(int argc, const char * argv[]){
 @autoreleasepool {

 return 0;
 }
}

Finally, you need to implement the new method just like you would for a class.

#import <Foundation/Foundation.h>
#import "Project.h"

CHAPTER 19 ■ CATEGORIES

67

@interface Project(ProjectExtension)

-(id)initWithName:(NSString *)aName;

@end

@implementation Project (ProjectExtension)

-(id)initWithName:(NSString *)aName{
 self = [super init];
 if (self) {
 self.name = aName;
 }

 return self;
}

@end

int main(int argc, const char * argv[]){
 @autoreleasepool {

 return 0;
 }
}

Now that you have the category set up, you can use this initializer to help you create
and initialize new Project classes right inside the main function.

#import <Foundation/Foundation.h>
#import "Project.h"

@interface Project(ProjectExtension)

-(id)initWithName:(NSString *)aName;

@end

@implementation Project (ProjectExtension)

-(id)initWithName:(NSString *)aName{
 self = [super init];
 if (self) {
 self.name = aName;
 }

 return self;
}

@end

CHAPTER 19 ■ CATEGORIES

68

int main(int argc, const char * argv[]){
 @autoreleasepool {

 Project *p = [[Project alloc] initWithName:@"ThisNewProject"];
 NSLog(@"p.name = %@", p.name);

 return 0;
 }
}

If you were to build and run this project now, this would print out to the log:

p.name = ThisNewProject

69

CHAPTER 20

Blocks

Blocks Defined
Blocks are a way to define a block of code that you will use at a later time. Blocks are a lot
like methods or functions in that they can take parameters and return a value. Sometimes
people refer to blocks as anonymous functions because they are functions that aren’t
attached to an entity.

One thing that sets blocks apart is that they are coded in the same scope as the rest of
your program so you can add a block without a class definition. Blocks have some other
properties that make them very useful. While blocks don’t need to be attached to objects,
blocks can be treated as objects. This means that you can code a set of blocks and then
store them in a data collection.

Blocks also copy all the variable values that are in scope where the block is declared.
This feature gives the block the ability to capture state and then use that state in the
future, even if the original variables are out of scope when the block is executed.

Defining Blocks
As an example, let’s code a block that will take a float number as a parameter and then
return a squared float result. Call the block squareThis. The first thing you need to do is
to declare the block. This follows a similar pattern to declaring a datatype or an object,
but with some differences that allow you to use the block’s function-like behavior.

float (^squareThis)(float);

The block declaration starts with the float return type. This means that when you
use this block, you will get a float number returned to you.

The next part of the block declaration is the name of the block squareThis
proceeded by the caret (^) symbol. The entire name is enclosed in parentheses.

Finally, you have a list of parameter types enclosed in parentheses. If there is more
than one parameter type, the list must be comma-separated. A semicolon ends the line
of code.

CHAPTER 20 ■ BLOCKS

70

Assigning Blocks
You can use the assignment operator (=) to assign a block of code to the block you just
declared. When you assign the block code to the block variable, you will need to use the
caret and declare variable names. You also need to include the code scoped with curly
brackets.

squareThis = ^(float x){
 return x * x;
};

This block will take the number supplied, multiply the number by itself, and then
return the result.

Using Blocks
You can call the block like a function when you are ready to execute the code. Here is how
you would use squareThis:

float result = squareThis(4);

NSLog(@"result = %f", result);

This will print out the following output to the console log:

result = 16.000000

Copying Scoped Variables
Blocks copy the variable values of every variable that is currently in scope where the block
is declared. This means that blocks can save the state of the variables around them to use
at a later time when the block is executed, whether or not the variable is still in scope.

Here is an example of a block called multiplyThese that takes two numbers and
multiplies them returning a float result. This block requires two parameters, and you
will define and assign the block at the same time. Notice that that you also have a string
defined near the multiplyThese block.

NSString *title = @"Multiply Block Execution";

float (^multiplyThese)(float, float) = ^(float x, float y){
 NSLog(title);

 return x * y;
};

CHAPTER 20 ■ BLOCKS

71

Before returning the result, the multiplyThese block will print out the string value it
captured from the context. To use this block, you would do this:

NSLog(@"multiplyThese(3,4) = %f", multiplyThese(3,4));

This will produce the following output:

Multiply Block Execution
multiplyThese(3,4) = 12.000000

Blocks as Properties
Even though blocks don’t require an entity like a class, you can use blocks to make objects
more flexible. By adding a block to an object as a property, you can provide an interface to
give clients a way to inject custom behavior into your objects.

Block Forward Declaration

You can use blocks as properties since you treat blocks just like objects. To do this,
you need to start in the class interface (either the public interface or the private class
extension). Here is how you would add a customReport block to the Project class that
you originally defined in Chapter 16:

#import <Foundation/Foundation.h>

@interface Project : NSObject{
 @private NSString *log1;
 @protected NSString *log2;
 @public NSString *log3;
}

@property(strong) NSString *name;
@property (copy) void (^makeCustomReport)(NSString *title);

-(void)generateReport;
-(void)generateReportAndAddThisString:(NSString *)string
 andThenAddThisDate:(NSDate *)date;
+(void)printTimeStamp;

@end

You need to use the copy property descriptor because you want the block and all its
scoped variables to be copied and retained appropriately. The next thing you need to do
as class authors is figure out when you want this block to execute, keeping in mind that
you never know beforehand what code will be present in the block.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 20 ■ BLOCKS

72

Use Blocks in a Class

For this example, the generateReport method seems like a good place to do this. You
need to go to the Project class implementation and find the generateReport method to
add this block call.

#import "Project.h"

@implementation Project

-(void)generateReport{
 NSLog(@"This is a report!");
 self.makeCustomReport(@"Custom Project Report Title");
}

@end

If you look at the bold code above, you will see that using parameter blocks is just
like using other blocks, except that you have the self keyword in place so that you can
reference the block.

Assigning Blocks

What is really powerful about this pattern is that you can set up a way to execute a
behavior even if you don’t know exactly what that behavior will be or if the behavior will
change over time.

To get this to work, a client will need to assign the block and actually define that
behavior for you. You can do this in the main function for your example.

Project *p =[[Project alloc]init];
p.makeCustomReport = ^(NSString* title){
 NSLog(@"%@", title);
 NSLog(@"This is a custom report requested by the author");
 NSLog(@"Say This");
 NSLog(@"Say That");
 NSLog(@"Say The Other Thing");
};
[p generateReport];

You need to send the generateReport message for your example; when you do,
you will get this output:

This is a report!
Custom Project Report Title
This is a custom report requested by the author
Say This
Say That
Say The Other Thing

73

CHAPTER 21

Key-Value Coding

Key-Value Coding Defined
Normally when you want to get or set property values in an object you use dot notation
to get a reference to the property to change the value. However, with key-value coding
you can store and retrieve property values indirectly using string keys. Applications that
require archiving need this type of functionality so that apps can retrieve object data from
archive files.

Setting Property Values
You can use key-value coding to set property values. To set property values, you must use
the setValue:forKey: message and provide the new property value and the NSString
name of the property.

[p setValue:@"New Project" forKey:@"name"];

Retrieving Property Values
To retrieve a property value using key-value coding, you can simply send the valueForKey
message to the object. This message requires the property name in NSString format as a
parameter. Here is how you would retrieve the name property value from a Project object:

NSString *retrievedName = [p valueForKey:@"name"];

This works for any type of object including data collection objects and custom
objects. You could now print this value out to the log using the NSLog function.

NSLog(@"retrievedName = %@", retrievedName);

If you do this, you will get the following output, assuming the Project name was
New Project:

retrievedName = New Project

75

CHAPTER 22

Key-Value Observation

Key-Value Observation Defined
One of the applications of key-value coding is implementing the observer pattern.
The observer pattern is used when you want an object to get a notification when the state
of another object changes. This pattern is implemented with key-value observation in
Objective-C.

To see a clear example of key-value observation, you need at least two objects. One
object will be observed while the other object will be observing. For this example, let’s
assume that you have two types of objects: a Project object and a Task object. Project
objects maintain a list of Task objects. The project object needs to be notified when the
state of a Task object changes (when the task is marked as complete, for example).

Project and Task Object Graph
Let’s go over this object graph before implementing key-value observation here. Project
has been simplified for this example and I’ve added a Task class definition. The object
graph will get set up in the main.m file.

Here is the interface for the Project class:

#import <Foundation/Foundation.h>
#import "Task.h"

@interface Project : NSObject

@property(strong) NSString *name;
@property(strong) NSMutableArray *listOfTasks;

-(void)generateReport;

@end

CHAPTER 22 ■ KEY-VALUE OBSERVATION

76

Here is the implementation for the Project class:

#import "Project.h"

@implementation Project

-(void)generateReport{
 NSLog(@"Report for %@ Project", self.name);
 [self.listOfTasks enumerateObjectsUsingBlock:^(id obj, NSUInteger idx,
BOOL *stop) {
 [obj generateReport];
 }];
}

@end

Here is the interface for the Task class:

#import <Foundation/Foundation.h>

@interface Task : NSObject

@property(strong) NSString *name;
@property(assign) BOOL done;

-(void)generateReport;

@end

Here is the implementation for the Task class:

#import "Task.h"

@implementation Task

-(void)generateReport{
 NSLog(@"Task %@ is %@", self.name, self.done ? @"DONE" : @"IN PROGRESS");
}

@end

Finally, you set up the object graph in main.m like this:

#import <Foundation/Foundation.h>
#import "Project.h"

CHAPTER 22 ■ KEY-VALUE OBSERVATION

77

int main(int argc, const char * argv[]){
 @autoreleasepool {

 Project *p = [[Project alloc]init];
 p.listOfTasks = [[NSMutableArray alloc]init];
 p.name = @"Cook Dinner";

 Task *t1 = [[Task alloc]init];
 t1.name = @"Choose Menu";
 [p.listOfTasks addObject:t1];

 Task *t2 = [[Task alloc]init];
 t2.name = @"Buy Groceries";
 [p.listOfTasks addObject:t2];

 Task *t3 = [[Task alloc]init];
 t3.name = @"Prepare Ingredients";
 [p.listOfTasks addObject:t3];

 Task *t4 = [[Task alloc]init];
 t4.name = @"Cook Food";
 [p.listOfTasks addObject:t4];

 return 0;
 }
}

This is going to give you a Project object named Cook Dinner with four tasks.
Now you are ready to implement key-value observation.

Implementing Key-Value Observation
You want Project objects to be notified when the state of their Task objects changes.
So, if a Task object gets marked as complete, then the Project object will be notified.
There are three steps to using key-value observation:

Send the •฀ addObserver:forKeyPath:options:context: message
to each object that is being observed.

Override the method •฀ observeValueForKeyPath:ofObject:chan
ge:content: in the class definition of the object that is doing the
observing.

Override the •฀ dealloc method and remove the observer reference
in the class definition of the object that is observing.

CHAPTER 22 ■ KEY-VALUE OBSERVATION

78

Add the Observer
The easiest way to send this message to each Task that Project is responsible for is to use
the listOfTasks enumeration method:

[p.listOfTasks enumerateObjectsUsingBlock:^(id obj, NSUInteger idx,
BOOL *stop) {
 [obj addObserver:p
 forKeyPath:@"done"
 options:NSKeyValueObservingOptionNew
 context:nil];
}];

This code can be located in the main.m file after all the Task objects have been added
to the Project object. The first parameter after the AddObserver parameter descriptor is
the object that will be observing. The next parameter is the key path, which is where you
put the key for the property that you want to observe. Next you have some options that
you can set; you can choose the NSKeyValueObservingOptionNew to keep track of new
changes to the property value.

Note ■ You could have chosen NSKeyValueObservingOptionOld to get the previous

values instead of the new values like you did above.

Observing Value Changes
To receive a notification when a property value has changed, the object that is observing
needs to override a method in the object’s class definition. This is where you locate the
code you need to respond to the change. Here is an example of how you would do this in
the Project.m implementation file:

#import "Project.h"

@implementation Project

-(void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context{

 if([keyPath isEqualToString:@"done"]){
 NSNumber *updatedStatus = [change objectForKey:@"new"];
 BOOL done = [updatedStatus boolValue];

CHAPTER 22 ■ KEY-VALUE OBSERVATION

79

 NSLog(@"Task '%@' is now %@", [object name], done ? @"DONE" :
@"IN PROGRESS");
 }
}

@end

Note ■ The code above is added to the code that you added in the beginning of

this chapter.

Whenever a Task object that you are watching changes its status, this method
will execute. When this happens, you first test to make sure that the property you are
expecting (done) is the property that changed. You need to do this because this method
can be shared for all sorts of notifications.

In the next line of code, you pull out the NSNumber version of your property from
the supplied NSDictionary changes before converting this to the BOOL type that you are
expecting. Finally, you write out a report to the console log, reporting the updated status
of the task.

Before you test this code, you need to clean up after yourself.

De-Registering Observers
You need to make sure that the observer object goes through and stops observing each
object since the observer object will soon be deleted. The place to perform this task is in
the dealloc method. Every object has a dealloc method that executes before the object
is removed from a program, so this is a good place to do this type of cleanup work.

Here is how you would code the dealloc method in the Project.m implementation file:

-(void)dealloc{
 [self.listOfTasks enumerateObjectsUsingBlock:^(id obj, NSUInteger idx,
BOOL *stop) {
 [obj removeObserver:self
 forKeyPath:@"done"];
 }];
}

This will enumerate through the listOfTasks array and remove the observer from
each object.

CHAPTER 22 ■ KEY-VALUE OBSERVATION

80

Testing the Observer
To test this, just change the done property in some of the Task objects. Each time you do
this, you will see the report written out to the log. For example, let’s say you did this in
main.m:

t4.done = YES;
t4.done = NO;
t2.done = YES;
t1.done = NO;

Your Project object would be notified each time this state is changed, which would
produce this output to the log:

Task 'Cook Food' is now DONE
Task 'Cook Food' is now IN PROGRESS
Task 'Buy Groceries' is now DONE
Task 'Choose Menu' is now IN PROGRESS

81

CHAPTER 23

Protocols

Protocols Overview
Protocols are used to define a set of methods and properties independently of a class. Any
class can adopt a protocol, which means that the class implements the properties and
methods defined by the protocol. In effect, protocols define a contract that classes can
agree to fulfill. When a class adopts a protocol, you can be confident that the class will
have implemented the properties and methods in the protocol.

Defining Protocols
To use protocols, you must start by defining the protocol. Use the @protocol keyword to
start defining the protocol. You can simply include this in the same file as the class that
the protocol is associated with or you can include the protocol in a separate header file.
If you want to define a protocol for the Task class that you coded in the previous chapter,
you could do this:

#import <Foundation/Foundation.h>
@class Task;

@protocol TaskDelegate <NSObject>

@optional

-(void)thisTask:(Task *)task statusHasChangedToThis:(BOOL)done;

@end

@interface Task : NSObject

@end

CHAPTER 23 ■ PROTOCOLS

82

The protocol name follows the @protocol keyword and the word in the angle
brackets is the protocol that you are inheriting. NSObject is the protocol that NSObject
classes must conform to. Inheriting a protocol is like inheriting a class, but the
implication now is that classes that adopt your protocol will be responsible for the
methods that you define, in addition to the methods defined in the inherited protocol.

The protocol definition ends with the @end keyword. All the methods and
properties between the @protocol and the @end are the methods that are required to be
implemented when a class adopts this protocol.

Note ■ You needed to use the @class keyword above because you referenced the Task

class in the protocol before defining the class below. @class gives you a way of referencing

a class without the interface.

Optional and Required Methods and Properties

Protocol methods are required by default. However, you can specify methods to be
optional. Optional methods are used when the functionality is present but not crucial. To
mark methods as optional, use the @optional keyword. Every property and method that
appears after the @optional keyword will be considered optional.

Use the @required key to mark methods and property as required. Every method and
property that follows will be considered required.

Adopting Protocols
You indicate that a class will adopt a protocol by including the protocol name in angle
brackets after the superclass in the class interface. If a class adopts more than one
protocol, then you must provide a comma-separated list of protocol names in the angle
brackets.

If you want Project to adopt the TaskDelegate protocol, you would go to the
Project interface and adopt the protocol, like this:

#import <Foundation/Foundation.h>
#import "Task.h"

@interface Project : NSObject<TaskDelegate>

@property(strong) NSString *name;
@property(strong) NSMutableArray *listOfTasks;

-(void)generateReport;

@end

CHAPTER 23 ■ PROTOCOLS

83

Once you adopt the TaskDelegate protocol, you are agreeing to implement the
TaskDelegate methods and properties. If you were to attempt to build your project right
now, you would get a warning. The next thing you have to do is implement the methods
defined in TaskDelegate.

Implementing Protocol Methods
You implement protocol methods just as you would any other methods. You implement
the protocol methods in the implementation of the class that adopted the protocol.

For this example, you would go to the Project class implementation and add
this method:

#import "Project.h"

@implementation Project

-(void)thisTask:(Task *)task statusHasChangedToThis:(BOOL)done{
 NSLog(@"Task '%@' is now %@", task.name, done ? @"DONE" : @"IN
PROGRESS");
}

@end

You can’t test this code yet because you still need to add code to give Task objects the
ability to use this protocol. This is part of the Delegation design pattern that is covered in
the next chapter.

85

CHAPTER 24

Delegation

Delegation Defined
Delegation is a design pattern where one object asks another object for help. Protocols
are an important part of Delegation, because protocols define how an object will
be helped.

Delegation works by defining a protocol that will list out all the methods and
properties an object will need help with. Another object, known as the delegate, will
provide the help needed by adopting and implementing the protocol methods. Objects
ask for help by sending messages to their delegates.

Defining Delegate Protocols
Let’s say you want to implement Delegation for your object graph that includes the
Project object and Task objects. In your object graph, your Task objects may need help
from the Project object. For instance, when a Task status is marked as Done, the task
may not know what to do next. The task could ask the Project for help if the Project was
capable of acting as the Task's delegate.

To make that happen, you would need to first define a protocol for Task that
defined the ways that Task would need help. Luckily for you, you already did that in the
previous chapter.

#import <Foundation/Foundation.h>
@class Task;

@protocol TaskDelegate <NSObject>

@optional

-(void)thisTask:(Task *)task statusHasChangedToThis:(BOOL)done;

@end

CHAPTER 24 ■ DELEGATION

86

@interface Task : NSObject

@property(strong) NSString *name;
@property(assign) BOOL done;

-(void)generateReport;

@end

The protocol is called TaskDelegate (because you are using this to define how
delegates can help you). thisTask:statusHasChangedToThis: is the method that
delegates can use to help you.

Delegate References
Objects that need help (Task objects in your example) need to maintain a reference
to their delegate. You can reference the delegate by adding a property, usually called
delegate, with the class type of id. The id class type must be followed by the protocol
name in angle brackets indicating that the property can be any object as long as the
protocol is implemented.

#import <Foundation/Foundation.h>
@class Task;

@protocol TaskDelegate <NSObject>

@optional

-(void)thisTask:(Task *)task statusHasChangedToThis:(BOOL)done;

@end

@interface Task : NSObject

@property(strong) NSString *name;
@property(assign) BOOL done;
@property(assign) id<TaskDelegate> delegate;

-(void)generateReport;

@end

You use the assign property descriptor because you don’t want Task objects to have a
strong relationship to the delegate object.

CHAPTER 24 ■ DELEGATION

87

Sending Messages to the Delegate
When Task objects need help, they can send messages to the delegate. Since you want
this to happen when the Task status is changed, you can do this by writing a custom
property accessor for the Task done property.

Note ■ In Chapter 16, you declared properties and allowed them to be supported by

automatically generated getters and setters. There are some situations where you want to

code your own getters and setters.

You can send the message right in the Task done setter method.

#import "Task.h"

@implementation Task

-(void)generateReport{
 NSLog(@"Task %@ is %@", self.name, self.done ? @"DONE" : @"IN
PROGRESS");
}

BOOL _done;

-(void)setDone:(BOOL)done{
 _done = done;
 [self.delegate thisTask:self statusHasChangedToThis:done];
}

-(BOOL)done{
 return _done;
}

@end

In the setter, you can see that you are sending the message to the delegate. Your
delegate can implement this method to respond to the event of the done property changing.

The other thing you may notice is that you have coded the getter as well. Even
though you don’t need to add any new code to the getter, you must manually implement
both the getter and the setter when you decide to implement one or the other.

Assigning the Delegate
The next step is to assign the delegate. In this example, this is something that can be
done in the main.m file. You can do this by simply assigning the project to each task’s
delegate property.

CHAPTER 24 ■ DELEGATION

88

Project *p = [[Project alloc]init];
p.listOfTasks = [[NSMutableArray alloc]init];
p.name = @"Cook Dinner";

Task *t1 = [[Task alloc]init];
t1.name = @"Choose Menu";
t1.delegate = p;
[p.listOfTasks addObject:t1];

Task *t2 = [[Task alloc]init];
t2.name = @"Buy Groceries";
[p.listOfTasks addObject:t2];
t2.delegate = p;

Task *t3 = [[Task alloc]init];
t3.name = @"Prepare Ingredients";
[p.listOfTasks addObject:t3];
t3.delegate = p;

Task *t4 = [[Task alloc]init];
t4.name = @"Cook Food";
[p.listOfTasks addObject:t4];
t4.delegate = p;

Now when you assign a different value to a task’s done property, the Project
delegate will be notified. In the last chapter, you already adopted the TaskDelegate
protocol and implemented the protocol method -(void)thisTask:(Task *)task
statusHasChangedToThis:(BOOL)done;.

When you set a done property on a Task object like this

t4.done = YES;

the protocol method you implemented in the Project implementation thisTask:
statusHasChangedToThis: will execute. Remember, this is what you coded in the last
chapter:

-(void)thisTask:(Task *)task statusHasChangedToThis:(BOOL)done{
 NSLog(@"Task '%@' is now %@", task.name, done ? @"DONE" : @"IN
PROGRESS");
}

This method will generate this output in the console log:

Task 'Cook Food' is now DONE

89

CHAPTER 25

Singleton

Singleton Defined
Singleton is a design pattern where you can have only one instance of a class. Usually,
when you define a class, you expect to use many instances of the class. But in some
designs this doesn’t make sense.

For instance, an application may only need one reference to the file system (since
there is only one file system). Or the app has a data model that should stay in sync and so
you want to make sure you have only one instance of a class available.

To implement a Singleton pattern, you will need to create a special type of
constructor and then only use this constructor to get a reference to the Singleton object.

Singleton Interface
The first step is to code the interface. Let’s assume that you are creating a class
AppSingleton that will be your singleton. Here is how you would code the interface:

#import <Foundation/Foundation.h>

@interface AppSingleton : NSObject

+ (AppSingleton *)sharedInstance;

@end

What you have above is a class method that returns an instance of AppSingleton.

Singleton Implementation
To implement this singleton, you need a static variable and the implementation of the
class method sharedInstance that you defined in the interface.

CHAPTER 25 ■ SINGLETON

90

#import "AppSingleton.h"

@implementation AppSingleton

static AppSingleton *singletonInstance = nil;

+ (AppSingleton *)sharedInstance{
 @synchronized(self){
 if (singletonInstance == nil)
 singletonInstance = [[self alloc] init];

 return(singletonInstance);
 }
}

@end

The static instance is an AppSingleton type named singletonInstance and
you have it initially set to nil. In the sharedInstance method, you are testing the
singletonInstance; if it is nil, then you will create a new instance. Either way you return
this instance to the caller.

The code in this method is surrounded by the @synchronized(self) block. This is
used to lock the code so that only one thread can use these lines of code at a time.
This ensures that you only have one instance of this singleton even when you have more
than one thread.

Referencing Singletons
When you need a singleton object, you must use the method that returns the instance.
This will be the method that you coded.

If you wanted to use the AppSingleton class, you would do this:

AppSingleton *ap = [AppSingleton sharedInstance];

This is used as in place of the alloc and init pattern normally used to create
objects. You can do this from any class or file in your app, and each one will get the same
instance of the class. The only caveat is that you must use the Singleton constructor; while
you can still use alloc and init, doing so will break the pattern because these methods
can still create more than one object while the constructor you created can only create
one object.

91

CHAPTER 26

Error Handling

Error Handling Defined
When programs encounter unexpected errors, they behave unexpectedly or stop
working altogether. Ideally, programmers would find and fix all bugs before programs are
used, but there are some situations were programmers don’t have control of the entire
situation. For instance, errors can happen when programs require resources like files or
web sites that are no longer present.

The best practice in dealing with situations like this is to add error handling to a
program. This means that when an error occurs, the program can recover or gracefully
shutdown. NSError is the Foundation class that programmers use to deal with errors.

NSError
One place where NSError is used frequently is when you are working with operations
involving files. Many Foundation classes use NSError objects to help with error handling.
The pattern is that you declare the NSError object and set it to nil before passing it by
reference. Here is how this works with the NSString method that creates a string from the
contents of a file:

NSError *error = nil;

NSString *file = @"/Users/Shared/array.txt";

NSString *content = [NSString stringWithContentsOfFile:file
 encoding:NSStringEncodingConversionAllowLossy
 error:&error];

The & symbol that you see in front of the error parameter is called the AddressOf
operator. This means that you are passing the memory address of the object and not a
copy, so when the code in the method needs to modify the error object you will be able to
see the results.

CHAPTER 26 ■ ERROR HANDLING

92

To check the error object, you would include code like this right after the message:

if(!error)
 NSLog(@"content = %@", content);
else
 NSLog(@"error = %@", error);

If there is no error, then do something with the content; otherwise, deal with the
error. If this code is successful, then you would get this printed out to the log:

content = <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <string>A</string>
 <string>B</string>
 <string>C</string>
 <string>D</string>
</array>
</plist>

This file is something I had on my Mac, but the actual content doesn’t matter. If
you changed the filename to a file that didn’t exist on my Mac, you would get the error
message instead and it would look like this:

error = Error Domain=NSCocoaErrorDomain Code=260 "The file "arrayf.txt"
couldn’t be opened because there is no such file." UserInfo=0x10010a8a0
{NSFilePath=/Users/Shared/arrayf.txt, NSUnderlyingError=0x10010a650 "The
operation couldn’t be completed. No such file or directory"}

This is when you would use the app user interface to prompt the user for assistance.

Try/Catch Statements
Try/catch statements are another way that you can try to catch errors. The idea is that you
can identify areas of code that are error-prone and then wrap up these areas in a block,
called the try block. You can also identify a block of code called the catch block that will
execute if the code in the try block fails.

You can also set up a block of code called the finally block that will execute regardless
of whether the try block fails or not. Let’s try this by reading in an array file that only has
four elements and then attempt to read a fifth element that would be out of bounds.

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

CHAPTER 26 ■ ERROR HANDLING

93

NSArray *array = [NSArray arrayWithContentsOfFile:file];

@try {
 NSString *fifthItem = [array objectAtIndex:4];
 NSLog(@"fifthItem = %@", fifthItem);
}
@catch (NSException *exception) {
 NSLog(@"exception = %@", exception);
}
@finally {
 NSLog(@"Moving on...");
}

If you execute this code, the try block would fail, and control would go to the catch
block, and you would get a message printed out to the log:

exception = *** -[__NSArrayM objectAtIndex:]: index 4 beyond bounds [0 .. 3]
Moving on...

The text “Moving on…” appears because that is part of the finally block and will
execute no matter what happens.

95

CHAPTER 27

Background Processing

Background Processing Defined
When your program needs to do more than one thing at a time, you can use background
processing. Background processing in Objective-C is done with a Foundation class called
NSOperationQueue.

NSOperationQueue manages lists of operations and decides how to schedule the
resources needed to run an operation. Operations are blocks of code. Operations can
execute simultaneously or one at a time.

Let’s say that you want to count to 10,000 while printing this out to the log. To do this,
you would code something like the following:

for (int y=0; y<=10000; y++) {
 NSLog(@"y = %i", y);
}

This works fine. If you run this in an app, you will see a long list of y values printed
out to the console log.

y = 0
. . .
y = 9998
y = 9999
y = 10000

Now, let’s say you also want to count backwards from 20,000 to 0. If you just code
another loop, then you would have to wait for the 10,000 count to complete before
moving on to the 20,000 count. But if you use a background queue, you can do both tasks
at once in potentially the same amount of time.

Here is how you could set this up using a background queue:

NSOperationQueue *background = [[NSOperationQueue alloc] init];
[background addOperationWithBlock:^{
 for (int i1=20000; i1>0; i1--) {
 NSLog(@"i1 = %i", i1);
 }
}];

CHAPTER 27 ■ BACKGROUND PROCESSING

96

for (int y=0; y<=10000; y++) {
 NSLog(@"y = %i", y);
}

You can create the queue with the alloc and init functions and then use the
addOperationWithBlock: message to add a code block to the queue. If you run this code,
you will get something like this printing out to the log:

i1 = 20000
y = 0
i1 = 19999
y = 1
i1 = 19998
y = 2
y = 3
i1 = 19997
i1 = 19996

. . .

y = 9997
i1 = 10001
y = 9998
y = 9999
i1 = 10000
i1 = 9999
y = 10000

97

CHAPTER 28

Object Archiving

Object Archiving Defined
Saving a copy of your app’s object graph to be used later on as a backup is called object
archiving. Objective-C has classes that can help you archive your object graph. Each class
that supports archiving must adopt the NSCoding protocol and implement two methods
needed by the NSKeyedArchiver and NSKeyedUnarchiver classes.

NSCoding
Each class that will support archiving must adopt the NSCoding protocol and implement
the required methods. These methods will help the archivers to store the property values
stored in the objects that need to be archived.

To adopt the NSCoding protocol, add the NSCoding protocol name in angle brackets
to the class interface. Here is how you would do this for the Task class that you already
coded:

#import <Foundation/Foundation.h>

@interface Task : NSObject<NSCoding>

@property(strong) NSString *name;
@property(assign) BOOL done;

-(void)generateReport;

@end

The syntax for the adopted protocol NSCoding is shown above in bold. Now you need
to implement two protocol methods. The first method is called an encoder because it will
be used to encode the property values into an archive file.

#import "Task.h"

@implementation Task

CHAPTER 28 ■ OBJECT ARCHIVING

98

-(void)generateReport{
 NSLog(@"Task %@ is %@", self.name, self.done ? @"DONE" : @"IN PROGRESS");
}

-(void)encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:self.name forKey:@"namekey"];
 [encoder encodeBool:self.done forKey:@"donekey"];
}

@end

Each property that you want to save in the archive needs to have an encode
message sent along with a key. Different data types require different messages. See
Apple’s NSCoding documentation for a complete listing of available methods. For
instance, objects require the encodeObject:forKey: message while Boolean require the
encodeBool:forKey: message.

Next, you need to implement the decoder method. This method is a type of
constructor initializer that will add the property values to the object. As before, the
significant methods are in bold.

#import "Task.h"

@implementation Task

-(void)generateReport{
 NSLog(@"Task %@ is %@", self.name, self.done ? @"DONE" : @"IN PROGRESS");
}

-(void)encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:self.name forKey:@"namekey"];
 [encoder encodeBool:self.done forKey:@"donekey"];
}

-(id)initWithCoder:(NSCoder *)decoder {
 self = [super init];
 if (self) {
 self.name = [decoder decodeObjectForKey:@"namekey"];
 self.done = [decoder decodeBoolForKey:@"donekey"];
 }
 return self;
}

@end

CHAPTER 28 ■ OBJECT ARCHIVING

99

Each key and property in this method must match the ones in the encodeWithCoder:
method. At this point, Task now supports NSCoding. To see an example, you also need to
add NSCoding support to Project. Here is what you would do to the Project interface:

#import <Foundation/Foundation.h>
#import "Task.h"

@interface Project : NSObject<NSCoding>

@property(strong) NSString *name;
@property(strong) NSMutableArray *listOfTasks;

-(void)generateReport;

@end

Here is what you would do the Project implementation:

#import "Project.h"

@implementation Project

-(void)generateReport{
 NSLog(@"Report for %@ Project", self.name);
 [self.listOfTasks enumerateObjectsUsingBlock:^(id obj, NSUInteger idx,
BOOL *stop) {
 [obj generateReport];
 }];
}

-(void)encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:self.name forKey:@"namekey"];
 [encoder encodeObject:self.listOfTasks forKey:@"listOfTaskskey"];
}

-(id)initWithCoder:(NSCoder *)decoder {
 self = [super init];
 if (self) {
 self.name = [decoder decodeObjectForKey:@"namekey"];
 self.listOfTasks = [decoder decodeObjectForKey:@"listOfTaskskey"];
 }
 return self;
}

@end

CHAPTER 28 ■ OBJECT ARCHIVING

100

Using the Archiver
Assuming that you have an object graph already set up, it’s easy to use the archiver.
The class that you use is called NSKeyedArchiver and you just need to send the
archiveRootObject:toFile: message. The two parameters are the filename that you
want to use and the root object in the object graph. Your root object is the Project p
object because you have only one p that contains many Task objects.

Let’s assume that you still have the object graph created in Chapter 24 that listed out
all the tasks for p. If you want to archive this, you could do this in the main.m file.

NSString *file = @"/Users/Shared/project.dat";
[NSKeyedArchiver archiveRootObject:p toFile:file];

This is will create a data file on your Mac. In the future, you could read in this file and
use it to restore the object graph to your app.

NSString *file = @"/Users/Shared/project.dat";
Project *p = [NSKeyedUnarchiver unarchiveObjectWithFile:file];
[p generateReport];

Since you sent the generateReport message here, you would get a printout of the
object graph in your console log.

Report for Cook Dinner Project
Task Choose Menu is IN PROGRESS
Task Buy Groceries is IN PROGRESS
Task Prepare Ingredients is IN PROGRESS
Task Cook Food is IN PROGRESS

101

CHAPTER 29

Web Services

Web Services Defined
Many companies like Facebook and Twitter make their services available to users via web
sites. Often these services are also available to developers to use in their apps; these are
called web services. Web services are functions and content that reside on a web server
that you can use via a well-defined set of rules called an API (Application Programming
Interface).

The general pattern to working with web services is to formulate a request, send
the request, receive the response, and then interpret the response. Objective-C comes
with support for web services. To send requests and receive responses you can use the
NSURLConnection class with the NSData class. To interpret, or parse, the response, you can
use the NSJSONSerialization class.

Note ■ JSON stands for JavaScript Object Notation and is used for data storage and

transportation. Web services that are implemented as REST (Representational State Transfer)

web services will provide JSON response data. The NSJSONSerialization class makes

working with JSON easier in Objective-C.

Bitly Example
Bitly is a good example of a web service that I like to use as a demonstration because it is
pretty simple and provides a very clear function. Bitly will take a long URL (the string that
you type into a web browser) and turn it into a short URL that is easier to type. I am going
to use the bitly web service to showcase the NSURLConnection class.

Note ■ To follow along with this recipe, you will need to create a free account with bit.

ly and get your own API key and API username. Go to https://bit.ly to get your account

if you wish to follow along with this example. In the examples, when I include [YOUR API

LOGIN] or [YOUR API KEY] you will need to substitute the login and key that you obtained

from bitly.

https://bit.ly/

CHAPTER 29 ■ WEB SERVICES

102

Formulate Request String
When you work with a web service, you should use the documentation provided by the com-
pany that published the web service as a reference. This documentation will give you a string
and parameters that you can use. You are going to use the string from the API documentation
(http://api.bit.ly/shorten?version=2.0.1&longUrl=&login=&apiKey=&format=json) as a
starting point along with the bitly login, bitly key, and a long URL as parameters to
formulate your request string.

NSString *APILogin = @"[YOUR API LOGIN]";
NSString *APIKey = @"[YOUR API KEY]";
NSString *longURL = @"https://mobileappmastery.com";
NSString *requestString = [NSString stringWithFormat:@"http://api.bit.ly/
shorten?version=2.0.1&longUrl=%@&login=%@&apiKey=%@&format=json", longURL,
APILogin, APIKey];

Create the Session and URL
You are going to need two objects: an NSURL object to represent the request URL that you
are sending to the server and a NSURLSession object to do your web work for you.

NSURL *requestURL = [NSURL URLWithString:requestString];
NSURLSession *session = [NSURLSession sharedSession];

Send and Receive the Response
You are going to use a block with the NSURLSession object to ask the web service to
shorten the URL. Put all the code that you need to work with the response in the block
that you send as a parameter. You are really doing two things at once with this method.

[[session dataTaskWithURL:requestURL
 completionHandler:^(NSData *data,
 NSURLResponse *response,
 NSError *error) {

 }] resume];

sleep(60);

You still need to fill in the block where you handle the response, but this will start the
action. Notice that you need to put a sleep function in this code. The sleep function will
stop new code from executing on the main thread for 60 seconds. You need this because
the method you are using is going to execute on a background thread (this is the best
practice when using web services). If you don’t stop the command line app from finishing
the web service, it won’t have enough time to fetch the results for you.

http://api.bit.ly/shorten?version=2.0.1&longUrl=&login=&apiKey=&format=json
https://mobileappmastery.com/
http://api.bit.ly/shorten?version=2.0.1&longUrl=%25@&login=%25@&apiKey=%25@&format=json
http://api.bit.ly/shorten?version=2.0.1&longUrl=%25@&login=%25@&apiKey=%25@&format=json

CHAPTER 29 ■ WEB SERVICES

103

Parsing JSON

Inside the completion block, you can add the code used to interpret the response from
the web server. Since you know that you are going to be working with JSON, you will use
the NSJSONSerialization class. You need an NSError object here as well as the NSData
object supplied by the block (this contains the data from the web service response).

[[session dataTaskWithURL:requestURL
 completionHandler:^(NSData *data,
 NSURLResponse *response,
 NSError *error) {

 NSError *e = nil;
 NSDictionary *bitlyJSON = [NSJSONSerialization
JSONObjectWithData:data

options:0

error:&e];

 }] resume];

This gives you all the JSON data organized in an NSDictionary collection. This
dictionary can have other dictionaries, arrays, numbers, and strings located inside it.
The next step is a process of going through all these returned objects to locate what you
need. You also need to test for errors here.

[[session dataTaskWithURL:requestURL
 completionHandler:^(NSData *data,
 NSURLResponse *response,
 NSError *error) {

NSError *e = nil;
NSDictionary *bitlyJSON = [NSJSONSerialization JSONObjectWithData:data

options:0

error:&e];

if(!error){
 NSDictionary *results = [bitlyJSON objectForKey:@"results"];
 NSDictionary *resultsForLongURL = [results objectForKey:longURL];
 NSString *shortURL = [resultsForLongURL objectForKey:@"shortUrl"];
 NSLog(@"shortURL = %@", shortURL);
}
else
 NSLog(@"There was an error parsing the JSON");

 }] resume];

CHAPTER 29 ■ WEB SERVICES

104

Once this is all set up, if you run your app, you will have retrieved the shortURL from
the response and printed the following out to your console log:

shortURL = http://bit.ly/1fHrAsT

Note ■ When you are parsing a web service response like this, you will need to

investigate where the important data is by looking at the API documentation or viewing

the string that is returned.

http://bit.ly/1fHrAsT

A���������
Alloc and init method, 49
AppendString, 24
Application Programming

Interface (API), 101
Arithmetic operators

loating point numbers, 16
operator precedence, 16
types, 15

Arrays, 38
count property, 36
mutablable string, 40
NSArray class

NSArray
enumerateObjectsUsingBlock
method, 30

numbers array, 29
NSMutableArray, 30–31
NSNumberFormatter, 36
NSNumber objects, 36
program, 40
spelled-out string, 36

Assignment operator (=), 16, 70

B���������
Background process

alloc and init functions, 96
for statement, 95
NSOperationQueue, 95

Bitly, 101
Blocks

assignment operator (=), 70
copy property, 71
declaration, 69
deinition, 69
generateReport method, 72

main function, 72
multiplyhese block, 70
Project class, 71
self keyword, 72
squarehis function, 70

Boolean types, 13
Boolean variable, 44
Build and run

building deinition, 7
bundle, 7
buttons, 8
compiling code, 7
console log’s, 9
product build options, 8

Bundle, 7

C���������
Categories

category interfaces (see Class interface)
deinition, 65
@interface keyword, 65
main function, 67–68
main.m ile, 65
method implementation, 66
Project class, 65

CGFloat data type, 13
Classes, 49
Class interface

base class, 49
deinition, 49
foundation framework, 49
implementation

class extension, 54
@end and @implementation

keyword, 52
instance variable/ivar, 55
method implementation, 52

Index

105

■฀INDEX

106

@interface line and @end
line, 50

Project class, 51
property descriptor, 50
void return type, 51

Class methods
alloc function, 57
console log, 58
instance methods, 57
printTimeStamp method, 57
project implementation, 58
project object, 57
sample program, 58

Command Line Tool, 3
Compilers, 7. See also Build

and run
Console log, 44
Constructors

alloc function, 19
init function, 20
new keyword, 20

Curly brackets {}, 14

D���������
Decrement operator (--), 17
Delegation

deinition, 85
hisTask: statusHasChangedTohis

method, 88
project assignment, 87
protocol, 85
references, 86
TaskDelegate, 86
Task done property, sending

messages, 87
thisTask:statusHasChangedTohis

method, 86
De-registering observers, 79
Dictionaries

NSDictionary
enumeration, 33
NSDictionary class, 33
objectForKey, 33
@ symbol, 33

NSMutableDictionary
add/remove items, 34
alloc patterns, 34
init patterns, 34

Do keyword, 40
Do While loops

and Array, 40
counter variable, 40
do keyword, 40
for loop, 39
sample program, 39

E���������
Else Keyword, 43
Error handling

NSError, 91
try/catch statements, 92

F, G���������
For-each loops

array (numbers), 41
collection objects, 41
NSDictionary, 42
output, 41
sample program, 41

For loop, 39
and arrays

count property, 36
NSNumberFormatter, 36
NSNumber objects, 36
spelled-out string, 36

curly brackets, 35
increment (i++), 35
usage, 35

Format speciier, 20

H���������
Hello World, 1

auto release pool, 4
build and run, 6
code comments, 5
Command Line Tool projects, 3
#import statement, 4
NSLog function, 4
NSString object, 5
project creation

Code editor and project
navigator, 3

Xcode welcome screen, 2
Project Navigator, 3
Xcode downloading steps, 2

106

Class interface (cont.)

■฀INDEX

107

I���������
If statements

Boolean variable, 44
deinition, 43
else keyword, 43
nested if else statement, 44

Implementation
class extension, 54
@end and @implementationkeyword, 52
instance variable/ivar, 55
method implementation, 52

Increment operator (++), 16
Inheritance

class extension, 60
instance variables

member of operator, 64
private instance variables, 62
@private keyword, 62
protected visibility, 62
public instance variable, 63
visibility levels, 61

method overriding, 60
subclass creation, 59

Instance methods, 57
Instance variables

member of operator, 64
private instance variables, 62
protected visibility, 62
public instance variable, 63
visibility levels, 61

Integer types
NSIntegers, 13
NSUIntegers, 12

Integrated development
environment (IDE), 1

Interface, 89

J���������
JSON

errors, 103
NSData object, 103
NSDictionary collection, 103

K���������
Key-value coding

deinition, 73
retrieve property value, 73
set property values, 73

Key-value observation
deinition, 75
implementation, 77
observer

adding, 78
de-registering observers, 79
testing, 80
value changes, 78

project and task object graph, 75

L���������
LLVM compiler, 7
Logical operators, 18

M���������
Method overriding, 60

N���������
Nested If Else statement, 44
NSArray class

NSArray enumerateObjectsUsingBlock
method, 30

numbers array, 29
NSCoding protocol

decoder method, 98–99
encoder method, 97
project implementation, 99
Task class, 97

NSDictionary
enumeration, 33
key, objects list, 42
NSDictionary class, 33
objectForKey, 33, 42
output, 42
sample program, 42
@ symbol, 33

NSError, 91
NSInteger variable, 45
NSLiteralSearch, 25
NSLog, 4
NSMutableArray, 30–31
NSMutableDictionary

add/remove items, 34
alloc patterns, 34
init patterns, 34

NSMutableString
atIndex parameter, 24
deleteCharactorsInRange, 24

107

■฀INDEX

108

ind function, 25
insertion, 24
NSSMutableString, 24
replace function, 25

NSNumber
converting strings into numbers, 28
NSNumberFormatter, 28
primitive data types, 27

NSNumberFormatter, 28
NSObject class, 19
NSString constructor, 23

O���������
Object archiving

console log, 100
deinition, 97
NSCoding protocol

decoder method, 98–99
encoder method, 97
project implementation, 99
Task class, 97

root object, 100
ObjectForKey, 33
Object-oriented programming, 1
Objects

constructors
alloc function, 19
init function, 20
new keyword, 20

declaration, 19
deinition, 19
format speciier, 20
messages

NSFileManager object, 21
removeItemAtPath:error, 21

NSObject class, 19
Operators

arithmetic operators
loating point numbers, 16
operator precedence, 16
types, 15

assignment operators (=), 16
decrement operator (--), 17
deinition, 15
increment operator (++), 16
logical operators, 18
relational operators, 17

P, Q���������
primitive data types, 27
PrintTimeStamp method, 58
Protocols, 85

adoption, 82
deinition, 81
optional methods, 82
methods implementation, 83

R���������
Relational operators, 17
RemoveItemAtPath:error, 21

S���������
Singleton

alloc and init function, 90
AppSingleton class, 90
deinition, 89
implementation, 89
interface, 89
@synchronized (self) block, 90

Squarehis function, 70
Strings

NSMutableString
atIndex parameter, 24
deleteCharactorsInRange, 24
ind function, 25
insertion, 24
NSSMutableString, 24
replace function, 25

NSString class, 23
NSString constructor, 23
NSStringobjects, 23

Switch statements
break keyword, 46
case keyword, 45
default case, 47
multiple case statements, 46
NSInteger variable, 45
sample program, 45
switch keyword, 45
usage, 45

T���������
Try/catch statements, 92

108

NSMutableString (cont.)

■฀INDEX

109

U���������
url NSURL object, 21

V���������
Variables

assignment operator (=), 12
boolean types, 13
CGFloat data type, 13
curly brackets {}, 14
data types, 11
declaration, 12
deinition, 11
integer types

NSIntegers, 13
NSUIntegers, 12

W���������
Web services

API, 101
Bitly, 101

deinition, 101
JSON

errors, 103
NSData object, 103
NSDictionary

collection, 103
request string, 102
sleep function, 102
URL creation, 102

While loops
Arrays, 38
counter variable, 37
curly brackets, 38
ending condition, 38
progarm, 37

X, Y, Z���������
Xcode

downloading steps, 2
Hello World project (see Hello World)
integrated development

environment (IDE), 1

109

Objective-C Quick
Syntax Reference

Matthew Campbell

Objective-C Quick Syntax Reference

Copyright © 2014 by Matthew Campbell

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, speciically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied speciically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6487-3

ISBN-13 (electronic): 978-1-4302-6488-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the beneit of the trademark owner, with no intention of
infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identiied as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. he publisher makes no warranty, express or implied,
with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Technical Reviewer: Charles Cruz
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Jonathan Gennick, James DeWolf Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Steve Weiss, Tom Welsh

Coordinating Editor: Anamika Panchoo
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

For my daughter, Keira

vii

Contents

About the Author .. xiii

About the Technical Reviewer ... xv

Introduction ... xvii

Chapter 1: Hello World ■ .. 1

Xcode .. 1

Creating a New Project ... 2

Hello World .. 3

Code Comments ... 5

Build and Run .. 6

Where to Get More Information ... 6

Chapter 2: Build and Run ■ .. 7

Compiling .. 7

Building ... 7

Build and Run .. 8

Chapter 3: Variables ■ ... 11

Variables Defined .. 11

Data Types .. 11

Declaring Variables ... 12

Assigning Values ... 12

Integer Types .. 12

Boolean Types ... 13

■ CONTENTS

viii

Float Types .. 13

Scope .. 14

Chapter 4: Operators ■ .. 15

Operators Defined ... 15

Arithmetic Operators .. 15

Assignment Operators .. 16

Increment and Decrement Operators ... 16

Relational Operators ... 17

Logical Operators ... 17

Chapter 5: Objects ■ .. 19

Objects Defined ... 19

NSObject Class ... 19

Object Declaration .. 19

Object Constructors .. 19

Object Format Specifier .. 20

Messages ... 21

Chapter 6: Strings ■ ... 23

NSString .. 23

NSMutableString ... 24

Inserting Strings ... 24

Deleting Strings .. 24

Find and Replace .. 25

Chapter 7: Numbers ■ .. 27

NSNumber ... 27

Converting to Primitive Data Types ... 27

Formatting Numbers ... 28

Converting Strings into Numbers ... 28

■฀CONTENTS

ix

Chapter 8: Arrays ■ ... 29

NSArray ... 29

Referencing Objects ... 29

Enumeration ... 30

NSMutableArray .. 30

Chapter 9: Dictionaries ■ ... 33

NSDictionary ... 33

Referencing Objects ... 33

Enumeration ... 33

NSMutableDictionary... 34

Chapter 10: For Loops ■ .. 35

For Loops Defined ... 35

For Loops and Arrays .. 36

Chapter 11: While Loops ■ ... 37

While Loops Defined .. 37

While Loops and Arrays .. 38

Chapter 12: Do While Loops ■ .. 39

Do While Loops Defined... 39

Do While Loops and Arrays ... 40

Chapter 13: For-Each Loops ■ ... 41

For-Each Loops Defined .. 41

For Loops with NSDictionary .. 42

Chapter 14: If Statements ■ ... 43

If Statements Defined .. 43

Else Keyword .. 43

If Statements and Variables .. 44

■ CONTENTS

x

Chapter 15: Switch Statements ■ .. 45

Switch Statements Defined ... 45

Switch Keyword .. 45

Case Keyword ... 45

break Keyword .. 46

Complete Switch Statement ... 46

Default Case ... 47

Chapter 16: Defining Classes ■ .. 49

Classes .. 49

Class Interfaces ... 49

Property Forward Declarations ... 50

Method Forward Declarations .. 51

Implementing Classes ... 52

Implementing Methods ... 52

Private Properties and Methods ... 53

Chapter 17: Class Methods ■ ... 57

Class Methods Defined .. 57

Coding Class Methods .. 57

Chapter 18: Inheritance ■ .. 59

Creating Subclasses .. 59

Extending Classes ... 60

Overriding Methods ... 60

Instance Variable Visibility .. 61

Chapter 19: Categories ■ ... 65

Categories Defined .. 65

Category Example ... 65

■฀CONTENTS

xi

Chapter 20: Blocks ■ ... 69

Blocks Defined .. 69

Defining Blocks ... 69

Assigning Blocks .. 70

Using Blocks ... 70

Copying Scoped Variables .. 70

Blocks as Properties ... 71

Chapter 21: Key-Value Coding ■ .. 73

Key-Value Coding Defined ... 73

Setting Property Values .. 73

Retrieving Property Values ... 73

Chapter 22: Key-Value Observation ■ .. 75

Key-Value Observation Defined ... 75

Project and Task Object Graph .. 75

Implementing Key-Value Observation ... 77

Add the Observer ... 78

Observing Value Changes ... 78

De-Registering Observers .. 79

Testing the Observer ... 80

Chapter 23: Protocols ■ ... 81

Protocols Overview ... 81

Defining Protocols .. 81

Adopting Protocols ... 82

Implementing Protocol Methods ... 83

Chapter 24: Delegation ■ ... 85

Delegation Defined .. 85

Defining Delegate Protocols ... 85

■ CONTENTS

xii

Delegate References .. 86

Sending Messages to the Delegate .. 87

Assigning the Delegate ... 87

Chapter 25: Singleton ■ ... 89

Singleton Defined .. 89

Singleton Interface ... 89

Singleton Implementation... 89

Referencing Singletons .. 90

Chapter 26: Error Handling ■ ... 91

Error Handling Defined .. 91

NSError ... 91

Try/Catch Statements ... 92

Chapter 27: Background Processing ■ .. 95

Background Processing Defined ... 95

Chapter 28: Object Archiving ■ .. 97

Object Archiving Defined ... 97

NSCoding .. 97

Using the Archiver .. 100

Chapter 29: Web Services ■ ... 101

Web Services Defined ... 101

Bitly Example .. 101

Formulate Request String ... 102

Create the Session and URL ... 102

Send and Receive the Response .. 102

Index .. 105

xiii

About the Author

Matthew Campbell is a professional software developer,
entrepreneur, author, and trainer. He works for Mobile
App Mastery, a web-based software development training
company he founded in 2008. Before building Mobile App
Mastery, Matt studied psychology, worked as a mental
health counselor, and supported psychometric research
as a data analyst at the Educational Testing Service in
Princeton. he books and trainings that he creates are
designed to remove the obstacles that stop developers
from mastering their craft.

xv

About the Technical
Reviewer

Charles Cruz is a mobile application developer for
the iOS, Android, and Windows Phone platforms.
He graduated from Stanford University with B.S. and
M.S. degrees in engineering. He lives in Southern
California and runs a photography business with his
wife (www.facebook.com/BellaLenteStudios). When
not doing technical things, he plays lead guitar in
an original metal band (www.taintedsociety.com).
Charles can be reached at codingandpicking@gmail.com
and @CodingNPicking on Twitter.

www.facebook.com/BellaLenteStudios
www.taintedsociety.com
codingandpicking@gmail.com
@CodingNPicking

	Contents at a Glance
	Contents
	About the Author
	About the Technical
Reviewer
	Introduction

