
Aaron Newton

MooTools
Essentials
The Official MooTools Reference for 
JavaScript™ and Ajax Development

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

MooTools Essentials:
The Official MooTools Reference for JavaScript™ and Ajax Development

Dear Reader,

Whether you are visiting or building a web site these days, you can’t deny that 
JavaScript has become an important part of the experience. Visitors to web sites 
expect them to be interactive and responsive, and that means that those of us who 
build them must spend the time to make that experience come alive.  

In the past, JavaScript was often a tedious business, with browsers each offer-
ing their own mercurial blend of standard and nonstandard functionality. Modern 
JavaScript has taken off with the advent of JavaScript frameworks: libraries that 
enhance the JavaScript language itself and help you avoid all the pesky browser bugs.

MooTools is a JavaScript framework that enables you to write clean, concise, reus-
able code to animate and dynamically change the content on your site using Ajax and 
other technologies, taking care of all the grunt work for you. This book aims to make 
the process of getting started with MooTools an easy one, covering everything from 
downloading the code and adding it to your pages to explaining what each class and 
method does (and, perhaps more importantly, when you’ll use each one).

I’ve combined real-world examples with nuanced explanations of everything you 
need to know to make your site fun and engaging. You’ll be adding effects and Ajax in 
no time.

Have fun,

Aaron Newton

New
ton

M
ooTools Essentials

Apress’s firstPress series is your source for understanding cutting-edge technology. Short, highly 
focused, and written by experts, Apress’s firstPress books save you time and effort. They contain 
the information you could get based on intensive research yourself or if you were to attend a 
conference every other week—if only you had the time. They cover the concepts and techniques 
that will keep you ahead of the technology curve. Apress’s firstPress books are real books, in your 
choice of electronic or print-on-demand format, with no rough edges even when the technology 
itself is still rough. You can’t afford to be without them.

User level:
Beginner–Intermediate

www.apress.com
SOURCE CODE ONLINE

276
PAGES

Available as a
PDF Electronic Book 
or Print On Demand

www.allitebooks.com

http://www.allitebooks.org


About firstPress 
Apress's firstPress series is your source for understanding cutting-edge technology. Short, 
highly focused, and written by experts, Apress's firstPress books save you time and effort. They 
contain the information you could get based on intensive research yourself or if you were to 
attend a conference every other week—if only you had the time. They cover the concepts and 
techniques that will keep you ahead of the technology curve. Apress's firstPress books are real 
books, in your choice of electronic or print-on-demand format, with no rough edges even when 
the technology itself is still rough. You can't afford to be without them. 
 

 

MooTools Essentials: The Official MooTools Reference for 
JavaScript™ and Ajax Development  

Dear Reader, 

Whether you are visiting or building a web site these days, you can’t deny that JavaScript has 
become an important part of the experience. Visitors to web sites expect them to be interactive 
and responsive, and that means that those of us who build them must spend the time to make 
that experience come alive.   

In the past, JavaScript was often a tedious business, with browsers each offering their own 
mercurial blend of standard and nonstandard functionality. Modern JavaScript has taken off 
with the advent of JavaScript frameworks: libraries that enhance the JavaScript language itself 
and help you avoid all the pesky browser bugs. 

MooTools is a JavaScript framework that enables you to write clean, concise, reusable code to 
animate and dynamically change the content on your site using Ajax and other technologies, 
taking care of all the grunt work for you. This book aims to make the process of getting started 
with MooTools an easy one, covering everything from downloading the code and adding it to 
your pages to explaining what each class and method does (and, perhaps more importantly, 
when you’ll use each one). 

I’ve combined real-world examples with nuanced explanations of everything you need to know 
to make your site fun and engaging. You’ll be adding effects and Ajax in no time. 

Have fun, 

Aaron Newton 
 

www.allitebooks.com

http://www.allitebooks.org


 MooTools Essentials     i 

 
 

Contents 
Preface ..................................................................................... xi 

Acknowledgments...................................................................................xi 
A Note on the Code Formatting in This Book......................................xi 

Introduction ............................................................................ xiii 

JavaScript Frameworks ....................................................................... xiv 

Why You Should Use a JavaScript Framework ................................. xiv 

About MooTools .................................................................................... xv 

MooTools vs. Other Frameworks ......................................................... xvii 

About the Author..................................................................................xix 

About This Book....................................................................................xx 

Who This Book Is For ................................................................................ xxi 
What You Need to Know .......................................................................... xxii 

Summary..............................................................................................xxii 

Chapter 1: Getting Started with MooTools.....................................1 

Downloading MooTools.......................................................................... 1 

Downloading MooTools Official Plug-Ins ................................................... 2 
Core Builder .................................................................................................. 4 
Making Use of MooTools’ Modular Design................................................. 4 
Compatibility................................................................................................. 5 
Compression Options .................................................................................... 5 

www.allitebooks.com

http://www.allitebooks.org


ii     MooTools Essentials 

Adding MooTools to Your Page(s) ......................................................... 6 

Coding for Reuse..................................................................................... 6 

Compression ............................................................................................ 7 

Using the YUI Compressor ........................................................................... 7 

Chapter 2: Reviewing MooTools ...................................................9 

MooTools File Structure......................................................................... 9 

Manifest of MooTools Scripts ..............................................................10 

The MooTools Core .................................................................................... 10 
The MooTools Plug-Ins: “More” ................................................................ 17 

Chapter 3: Shortcuts and Helpful Functions.................................23 

Determining the Type of an Object: $type ...........................................23 

$type :: Core/Core.js.................................................................................... 23 

Checking Whether Values Are Defined: 
    $defined, $chk, and $pick .................................................................25 

$defined :: Core/Core.js............................................................................... 25 
$chk :: Core/Core.js..................................................................................... 26 
$pick :: Core/Core.js.................................................................................... 26 

Working with Objects: $extend, 
    $merge, and $unlink .........................................................................28 

$extend :: Core/Core.js ................................................................................ 29 
$merge :: Core/Core.js ................................................................................ 31 
$unlink :: Core/Core.js ................................................................................ 33 

Iterable Helpers and Shortcuts: $arguments, 
    $each, $splat, $A, and $H.................................................................34 

$arguments :: Core/Core.js ......................................................................... 34 
$each :: Core/Core.js................................................................................... 35 
$splat :: Core/Core.js................................................................................... 36 

www.allitebooks.com

http://www.allitebooks.org


 MooTools Essentials     iii 

$A :: Core/Core.js ........................................................................................ 37 
$H :: Core/Core.js........................................................................................ 38 

Other Shortcuts: $clear, $empty, $lambda, 
    $random, $time, $try .........................................................................39 

$clear :: Core/Core.js .................................................................................. 39 
$empty :: Core/Core.js................................................................................. 39 
$lambda :: Core/Core.js .............................................................................. 40 
$random :: Core/Core.js .............................................................................. 41 
$time :: Core/Core.js.................................................................................... 42 
$try :: Core/Core.js ...................................................................................... 42 

Browser: Information About the Client ...............................................43 

Chapter 4: Native Objects..........................................................45 

Native.implement...................................................................................45 

Arrays.....................................................................................................47 

Array Methods............................................................................................. 47 
Array :: Iteration Methods........................................................................... 48 
Array.each ................................................................................................... 48 
Anonymous Methods vs. Named Functions ............................................... 50 
Other Iteration Methods .............................................................................. 50 
Array :: Introspection Methods ................................................................... 51 
Array :: Manipulation Methods................................................................... 51 

Objects (a.k.a. Hash).............................................................................53 

Hash............................................................................................................. 54 
$H ................................................................................................................ 55 
Hash Methods.............................................................................................. 55 
Hash :: Iteration Methods............................................................................ 56 
Hash.each .................................................................................................... 56 
Other Iteration Methods .............................................................................. 58 
Hash :: Introspection Methods .................................................................... 59 
Hash :: Manipulation Methods.................................................................... 61 

www.allitebooks.com

http://www.allitebooks.org


iv     MooTools Essentials 

Functions...............................................................................................62 

Function Methods Generate Copies ............................................................ 63 
Numbers ...................................................................................................... 70 
Strings.......................................................................................................... 72 
Events .......................................................................................................... 74 
Event Methods............................................................................................. 75 
Event Properties .......................................................................................... 76 

Chapter 5: Elements .................................................................79 

Creating and Cloning Elements ...........................................................79 

Collecting Elements from the DOM.....................................................81 

$ :: Element/Element.js ............................................................................... 81 
Using $ to Ensure You Have an Initialized Element .................................. 82 
$$ :: Element/Element.js ............................................................................. 83 

Element Methods and Collections........................................................84 

$E :: Element/Element.js............................................................................. 85 

Element Methods for Collecting Children, 
    Siblings, and Parents ........................................................................85 

Setting, Getting, and Erasing 
    Properties of Elements ......................................................................87 

Element.set .................................................................................................. 87 
Element.get.................................................................................................. 89 
Element.erase .............................................................................................. 89 
Custom Getters and Setters and Erasers...................................................... 90 

Element Injection and Removal ...........................................................91 

Element (CSS) Classes..........................................................................93 

Element Storage ....................................................................................93 

What’s New in 1.2: Element Storage .......................................................... 94 

www.allitebooks.com

http://www.allitebooks.org


 MooTools Essentials     v 

The Elements Object .............................................................................96 

Elements Methods ....................................................................................... 96 
Elements.filter ............................................................................................. 97 

Other Element Methods in Element.js .................................................97 

Element.Event.js....................................................................................98 

Adding and Removing Element Events ...................................................... 99 

Chapter 6: Utilities .................................................................. 105 

Selectors...............................................................................................105 

Complex CSS3 Expressions...................................................................... 106 

DomReady ...........................................................................................109 

The DomReady Custom Event.................................................................. 109 

JSON....................................................................................................110 

MooTools and JSON................................................................................. 110 
JSON.encode ............................................................................................. 110 
JSON.decode ............................................................................................. 111 

Cookie ..................................................................................................112 

Cookie.write .............................................................................................. 112 
Cookie.read................................................................................................ 113 
Cookie.dispose .......................................................................................... 113 

Swiff .....................................................................................................113 

Swiff Constructor ...................................................................................... 114 
Swiff.replaces, Swiff.inject ....................................................................... 115 
Swiff.remote .............................................................................................. 115 

www.allitebooks.com

http://www.allitebooks.org


vi     MooTools Essentials 

Chapter 7: Classes and Inheritance .......................................... 117 

Using the Class Constructor ...............................................................117 

Initialization ........................................................................................119 

Inheritance ..........................................................................................120 

Implement vs. Extend..........................................................................121 

Extending Classes ...............................................................................121 

Extending Classes into Themselves....................................................123 

Implementing Classes .........................................................................124 

Implementing Classes into Other Classes..........................................125 

Chapter 8: Getting Started with Classes.................................... 129 

Class.Extras.........................................................................................129 

The Options Class ..................................................................................... 129 
The Events Class ....................................................................................... 131 
The Chain Class......................................................................................... 134 

Chapter 9: Fx ......................................................................... 137 

Fx and Fx.CSS....................................................................................137 

Fx Options ................................................................................................. 137 
Fx Events................................................................................................... 138 
Fx.start ....................................................................................................... 139 
Fx.set ......................................................................................................... 140 
Fx.cancel, Fx.pause, Fx.resume ................................................................ 140 

Fx.Tween .............................................................................................141 

Element.tween ........................................................................................... 142 

Fx.Morph.............................................................................................143 

Element.morph .......................................................................................... 144 

www.allitebooks.com

http://www.allitebooks.org


 MooTools Essentials     vii 

Element.set/get with Fx.Morph................................................................. 144 
Using CSS Selectors with Fx.Morph ........................................................ 145 

Fx.Transitions .....................................................................................146 

The Transitions.......................................................................................... 146 
Specifying a Transition for an Effect ........................................................ 150 
Creating Your Own Transition.................................................................. 150 

The Rest of Fx.* ..................................................................................151 

Chapter 10: Request ............................................................... 153 

Request.................................................................................................153 

Request Options ........................................................................................ 155 
Request.send.............................................................................................. 155 
Request: .get, .post, .put, .delete................................................................ 157 
Request.cancel ........................................................................................... 157 
Element.send ............................................................................................. 158 

Request.HTML....................................................................................159 

Element.load.............................................................................................. 160 

Request.JSON......................................................................................161 

Chapter 11: Plug-Ins ............................................................... 163 

A More General Overview ..................................................................163 

Assets....................................................................................................164 

Assets.javascript ........................................................................................ 164 
Assets.css................................................................................................... 164 
Assets.image.............................................................................................. 164 
Assets.images ............................................................................................ 165 

Accordion.............................................................................................165 

Fx.Slide................................................................................................167 

Fx.Scroll ..............................................................................................167 

www.allitebooks.com

http://www.allitebooks.org


viii     MooTools Essentials 

Fx.Elements.........................................................................................168 

Drag .....................................................................................................169 

Element.makeResizeable........................................................................... 169 

Drag.Move ...........................................................................................170 

Element.makeDraggable ........................................................................... 171 

Color ....................................................................................................171 

Group ...................................................................................................171 

Hash.Cookie ........................................................................................172 

Sortables ..............................................................................................173 

Slider ....................................................................................................174 

Scroller.................................................................................................174 

Tips.......................................................................................................175 

Chapter 12: Third-Party Plug-Ins.............................................. 177 

The CNET Clientside Libraries..........................................................177 

dbug ........................................................................................................... 178 
Browser.Extras .......................................................................................... 178 
Native Extensions...................................................................................... 178 
Element Extensions ................................................................................... 178 
Effects Extensions ..................................................................................... 179 
Request ...................................................................................................... 179 
UI............................................................................................................... 179 
Layout........................................................................................................ 180 
Forms......................................................................................................... 181 

Other Third-Party Scripts ...................................................................182 

Autocompleter, FancyUpload, ReMooz, SqueezeBox, Roar.................... 182 
Slimbox ..................................................................................................... 183 
. . . And More ............................................................................................ 184 

www.allitebooks.com

http://www.allitebooks.org


 MooTools Essentials     ix 

Chapter 13: Real-World Examples ............................................ 185 

A Simple Page .....................................................................................186 

Dissecting the Example.......................................................................188 

Summary..............................................................................................190 

Chapter 14: Writing a Tab Class............................................... 191 

Step 1: Creating an Empty Class........................................................192 

Step 2: Defining Arguments ...............................................................192 

Step 3: Defining Methods ...................................................................194 

Instantiating Our Class.......................................................................197 

Review..................................................................................................198 

Chapter 15: Writing Flexible Classes ......................................... 201 

Step 1: Creating a Foundation Class .................................................203 

A Note on Using Methods......................................................................... 205 

Step 2: Adding Options .......................................................................206 

Step 3: Adding Events .........................................................................209 

Making Good Use of Events ..................................................................... 210 
Adding Events After Invokation ............................................................... 213 
You Don’t Have to Declare Events in the Options Object ....................... 214 

Step 4: Extending the Class ................................................................216 

Identifying What Needs to Change ........................................................... 217 
Adding a Few More Options and Events .................................................. 220 

Review..................................................................................................222 



x     MooTools Essentials 

Chapter 16: Where to Learn More ............................................ 227 

Appendix: Core Concepts in JavaScript ..................................... 229 

DOCTYPE Matters .............................................................................229 

Type Coercion: “Falsy” and “Truthy” Values..................................229 

Functional Programming (a.k.a. Lambda)........................................231 

Literals and Anonymous Functions...................................................232 

“this” and Binding ..............................................................................233 

Binding ...................................................................................................... 235 

Closures ...............................................................................................238 

Prototypal Inheritance ........................................................................239 

The Inheritance Chain........................................................................241 

Unobtrusive JavaScripting ........................................................................ 243 
DomReady................................................................................................. 245 
Namespacing ............................................................................................. 245 

Related Titles ......................................................................... 247 

 

 



 MooTools Essentials     xi 

Preface 

Acknowledgments 
I feel compelled to quickly thank the people who helped out in one way or 
another with the creation of this book. The MooTools development team 
deserves thanks for writing the library—Valerio Proietti in particular for 
starting and running the whole project and for helping out with the 
technical editing of this book. Ditto for Harald Kirschner, who also helped 
out with the technical editing. 
I’d like to thank CNET, who basically paid me to learn all this stuff and 
contribute to MooTools. I’d like to give mad props to the fine people at 
Apress, especially my copy editor, Ami. Previously I would have always 
said, “Whoever does QA for code I write are my favorite people because 
they find my mistakes and make me look better.” I’m going to have to add 
copy editors to that list as they make me seem like a far more learned man. 
Finally I’d like to thank my patient, supportive, and humble wife who 
insisted that I dedicate this book to her, which, of course, I do. 

A Note on the Code Formatting in This Book 
I’d like to take a moment to note that throughout the code examples in this 
book, you’ll see some occassionally odd code layouts. The margins of the 
book allow for only 56 characters per line before it wraps, and this 
presented a lot of challenges. My intention in the layouts in these situations 
was to format the code in a way that was most legible, not in a way that 
illustrated how I actually format the code I write. I mention it here lest you 
emulate the bizarre indentations you may encounter here. 





 MooTools Essentials     xiii 

Introduction 
Over the past several years, JavaScript has undergone some serious 
changes while simultaneously becoming more and more important to both 
developers and users of the Web. By now, people just expect pages to be 
interactive, and it’s up to you, the web developer, to meet those 
expectations and, when possible, exceed them. 
Say you went to a web site today and encountered an item—a video, a 
story, a photo, a download—and next to that item’s title was a five-star 
rating system with an invitation for you to click a star to rate it. Without 
thinking about it, you’d expect to be able to click the star of your choice 
and see the rating change. It might not surprise you if the page reloaded to 
ask you to register or log in, but the next time you rated something, you’d 
expect the rating to change to match your choice. But if every time you 
clicked a star the whole page reloaded, you’d feel something was wrong. 
Maybe you wouldn’t be able to put your finger on it (most users certainly 
wouldn’t think JavaScript or Ajax might be behind the problem), but 
something would feel odd. 
The users who visit your site will have expectations that the site behave 
like the others they go to, and if yours doesn’t, even if it looks great and 
has awesome content, it’ll feel old. This might not drive people from using 
your site, but it will certainly result in less usage of the features you 
develop. 
To meet these expectations, you’ll find that you can’t do it with the skill 
sets traditionally required to build a web site. Back-end developers of Java, 
Perl, PHP, Python, Ruby, and so forth often find writing JavaScript to be 
tedious and fraught with frustration when dealing with the browser quirks, 
while the people who spend most of their time working on the client side—
creating the design, HTML, CSS, and images—often don’t have a lot of 
serious programming experience. 



xiv     MooTools Essentials 

Because the functionality that users increasingly expect is robust, 
developers who actually know how to program find themselves working on 
the client side. This means graphic designers must work closely with 
engineers, who typically don’t think about interaction and interfaces. 

JavaScript Frameworks 
User expectations have driven application development, resulting in Ajax, 
animation, drag and drop, and other UI concepts making their way into the 
web browsing experience. Until a few years ago, accomplishing any of 
these things in JavaScript was painful and unpleasant, and consequently 
avoided. That all changed, though, with the introduction of JavaScript 
frameworks. 
The idea behind a JavaScript framework is that it will abstract all the code 
you write from the engine that executes it. This helps developers overcome 
the most frustrating part of working with JavaScript: the environment—the 
browser—is one over which you as a developer have no control. Without 
getting into the history of JavaScript and the various competing standards 
that were implemented in each new generation of browsers, it is sufficient 
to say that browsers don’t all behave the same way, which can also be said 
of how they handle HTML and CSS. 

Why You Should Use a JavaScript Framework 
JavaScript frameworks help alleviate the problems I just mentioned and 
bring a whole host of other benefits to the environment. Most notably, 
JavaScript frameworks 
 Abstract your code from the runtime environment (the browser) so that 

various environment quirks can be handled by the framework and new quirks 
that are introduced subsequently can be managed in one place. 

 Create a foundation base of code on which you can build and grow. 



 MooTools Essentials     xv 

 Create a common environment for groups to contribute (with their own 
extensions, plug-ins, and bug fixes). 

 Encourage the use of similar patterns across disparate web sites so that users 
can reuse the knowledge they learn (clicking five stars to rate something, for 
example). 

Of all the frameworks that hit the market in the last few years, Prototype.js 
(http://www.prototypejs.org) was perhaps the most influential. 
Released in 2005, it remains one of the most well-written and robust 
frameworks, and it gained a great deal of acceptance and praise from 
developers who were on the edge of client-side development. 
Prototype.js did three things that made it an instant hit: 
 It introduced concepts and shortcuts that became instant standards for 

JavaScript development, making things like Ajax and DOM selection easy to 
do. 

 It extended native objects like Strings, Arrays, and Functions (but not 
Elements) to add functionality that wasn’t built into JavaScript already. 

 It showed people that this kind of thing was even possible. 

Of all the contributions that Prototype.js offered (and continues to offer; 
it’s still very much supported and in development), it’s that last item that 
was, from my perspective, the most important gift. It showed developers 
that writing a framework that made JavaScript itself better and easier and 
even kind of fun was possible. 

About MooTools 
This book is about MooTools, a JavaScript framework, primarily authored 
by Valerio Proietti, that gets some of its original inspiration from 
Prototype.js as well as from other sources (most notably Dean Edwards’ 
Base library). Originally, MooTools began when Valerio released an add-
on to Prototype.js called Moo.fx (which is still available at 
http://moofx.mad4milk.net) in October 2005. It was a lightweight 

http://www.prototypejs.org
http://www.prototypejs.org
http://moofx.mad4milk.net
http://moofx.mad4milk.net


xvi     MooTools Essentials 

(3KB!) effects library that was quite popular for both its ease of use and its 
small size. 
Not content to just release an add-on for Prototype, Valerio began work on 
his own framework, MooTools (which stands for My Object-Oriented 
Tools), and released it in September 2006. The reason he started this task 
was because Prototype.js, which added numerous shortcuts to the 
prototypes of Array, String, Function, and so on, didn’t extend the 
Element prototype, and he was tired of repeatedly typing the prototype’s 
Element generic. 
At its heart, MooTools is a JavaScript framework that provides those three 
essential things that I mention earlier about Prototype.js: it provides 
shortcuts and foundation classes that make doing common things easy, it 
extends native objects to add functionality to them, and, perhaps most 
importantly, the library itself serves as an illustration of how to write 
JavaScript well, and, more specifically, how to write JavaScript using 
MooTools. 
These concepts aren’t necessarily unique to MooTools; indeed, nearly all 
JavaScript frameworks (and there are a LOT of them) do these things to 
varying degrees of success. What does make MooTools unique is its coding 
style, its well-rounded offering, and its basic philosophical approach to its 
continued development. The defining characteristics of MooTools are as 
follows: 
 Don’t duplicate code. 
 Add functionality that fits in principle with JavaScript’s own design 

philosophy. 
 If there’s a good standard in place that works well but is not yet implemented, 

implement the standard. 

 Extend native objects (String, Function, Array, Element, Event, and 
Number) as JavaScript was designed to do. 



 MooTools Essentials     xvii 

 Write clean, clear, well-named code that is understandable when read by 
anyone with the skills to understand it. 

 Be careful not to demand too much of the browser (memory, CPU cycles, 
etc.). 

 Abstract as much away from the browser as possible. 
 Whenever possible, make it still feel like you’re writing JavaScript. 
 Make it easy. Make it fun. Make it inspiring. 
 Make it modular. 

MooTools vs. Other Frameworks 
When people ask me which framework to choose, I can only give them my 
opinion, which is that you really can’t go wrong with Dojo, Yahoo! User 
Interface (YUI), Prototype, jQuery, or MooTools (there are others out 
there, so this short list is by no means definitive). These frameworks are all 
good choices. They all have their different focuses and approaches to 
problems. Some have very different philosophies and styles, but ultimately 
they are well written, efficient, and well supported. 
MooTools and Prototype both believe strongly in altering the prototypes of 
native elements (String, Array, Function, etc.—except Object, never 
Object!) as well as offering numerous methods on these prototypes to help 
you work with them. YUI, jQuery, and Dojo don’t do this. Both YUI and 
jQuery are highly namespaced, which makes them ideal for environments 
you don’t control completely (e.g., where there might be third-party 
JavaScript, such as ads), while MooTools and Prototype won’t play nice 
with other frameworks or environments that use function names like $() or 
modify the native objects themselves. The only downsides to the 
namespacing: in the case of YUI, the code is sometimes a little verbose, 
and frameworks that maintain all their methods in a namespace will always 
be slightly slower than methods added to native prototypes, although it’s 
unlikely that this speed hit will be noticeable to you unless you are iterating 



xviii     MooTools Essentials 

over a lot of objects. These things are not bad things—it’s just the way 
these frameworks are.  
The advantage to modifying the native elements (aside from a slight speed 
advantage) is that you can add methods to these elements and extend their 
functionality. It’s the difference between "hi".alert() and 
alert("hi"). It’s subtle, but the former example is how JavaScript itself 
works. The downside is that if you define a method (like, say, 
Array.each), and something else in your environment (another script) 
defines the same thing, one is overwritten. The upside is a more elegant 
model for adding functionality to things (at least I think so).  
Additionally, some frameworks focus on re-creating a somewhat traditional 
inheritance model. MooTools focuses on this and highly encourages code 
reuse and modular designs. All frameworks have methods to create 
reusable code—I’m not saying they don’t. But this is the heart of 
MooTools, and not all frameworks can make that claim. JavaScript has a 
prototypal inheritance model (see “Prototypal Inheritance” in the 
Appendix), and MooTools creates a structure to take advantage of this 
model in a way that will be more familiar to developers used to languages 
like Java.  
MooTools also is designed in a modular fashion so that you don’t need all 
of it to make a page work. If you only need Ajax, you can deliver less 
JavaScript, and therefore fewer bytes.  
If I were to sum up what makes MooTools special, it’s that it makes 
JavaScript itself better. It focuses on the JavaScript programming language 
and seeks to streamline it, but not deviate from the basic principles of what 
makes JavaScript JavaScript. It’s not trying to look like CSS, and it’s not 
trying to look like C++ or Java (although its class architecture is certainly 
more similar to Java than traditional JavaScript in some ways). Other 
frameworks do this, too (and here I’m thinking of Prototype.js). What 
MooTools has that Prototype.js doesn’t (the last time I looked anyway) is a 

www.allitebooks.com

http://www.allitebooks.org


 MooTools Essentials     xix 

set of powerful animation routines and plug-ins (like sortable lists and drag 
and drop). If you use Prototype.js and wish to have access to effects or drag 
and drop, you must include both it and another library like script.aculo.us 
or write this functionality yourself. Also, MooTools modular design takes 
up a much smaller footprint than Prototype and script.aculo.us together.  
I’ll reiterate that choosing any of these frameworks isn’t a bad thing to do. 
Look at the strengths of the other options. Choose the one that suits your 
needs and your design principles and offers the right mix of flexibility and 
functionality.  

About the Author 
I’m a product manager by trade, but I started my career as an interface 
designer in the early days of the Web. I’ve worked at numerous startups, 
including my current one, Iminta (http://www.iminta.com). In 2004, 
CNET hired me as a product manager for the development and launch of 
Download.com Music. In late 2005, I started focusing on JavaScript for the 
network, as it was always an interest of mine since my days doing interface 
design in the mid-1990s. I began blogging on an internal blog for CNET, 
trying to spread the knowledge I was aggregating. In February 2006, I 
began publicly blogging on the topic at my blog, Clientside 
(http://clientside.cnet.com/). 
At first, most of my effort was focused on Prototype.js, but when 
MooTools launched its suite of code in late 2006, I quickly became a 
convert and devoted my energy to it. 
Why did I choose MooTools? A few reasons, many of which had to do 
with CNET’s needs and some of which had to do with my own tastes. For 
starters, I always admired how much power Valerio Proietti managed to 
cram into Moo.fx. It was a 3KB effects library so cleanly written and 
manicured that I marveled at its artistry. I learned a lot from that 3KB. 

http://www.iminta.com
http://www.iminta.com
http://clientside.cnet.com
http://clientside.cnet.com


xx     MooTools Essentials 

When MooTools launched, I quickly read through the source code and 
learned more. 
In addition to that was the modular design of the library. Prototype.js is a 
relatively large library, and even with it in your environment you still 
needed other libraries (like Moo.fx) to really make the most of it. 
MooTools offered a modular design that let you choose which things you 
needed for any given project. 
Finally, MooTools was just more well rounded for the kind of work that we 
at CNET were doing. CNET wasn’t in the business of authoring the next 
webmail client to compete with Yahoo or Gmail. We had busy HTML 
pages that we wanted to add some interaction to, and MooTools seemed to 
be perfect for it. 
After I made this decision, I immediately began contributing to the 
MooTools project. I authored all the original documentation (at that time 
there were no docs; but to be fair, almost none of the other frameworks had 
comprehensive documentation either) and then the first comprehensive 
tutorial—the Mootorial (http://www.mootorial.com), which is the 
foundation of this book and the reason that I was approached to author it. 
Since I first started using it, MooTools has grown and matured 
dramatically, and it offers much of the same functionality that Prototype.js 
and other frameworks offer. What makes it remain my choice is the artistic 
elegance of the code itself and the design aesthetic that shapes its 
development. Simply put, MooTools makes writing JavaScript fun. 
I do commit code, but it’s a rare occurrence these days. Instead, I tend to 
author my own plug-ins and release those for others to use while 
communicating with the development team frequently and offering 
feedback to new features and changes. On occasion, something I write will 
get consumed by MooTools.  

http://www.mootorial.com
http://www.mootorial.com


 MooTools Essentials     xxi 

About This Book 
As I mention in the preceding section, I wrote the original documentation 
(though it’s now maintained by the developer group) and the online 
counterpart to this book. The online tutorial (the Mootorial) is 
comprehensive in that it covers all the methods and classes in MooTools, 
but it doesn’t cover all the nuances of writing good MooTools code. 
The online tutorial is meant to be a more thorough introduction than the 
documentation and a good place to go just to see something in action, but 
it’s not a great place to go if JavaScript is still somewhat new to you or if 
some of the key concepts used by MooTools aren’t familiar. 
This book is meant to be more complete. If the documentation and demos 
available at the MooTools site (http://mootools.net) aren’t enough to 
help you learn the framework, and the online Mootorial isn’t clear to you, 
this book is the place to start. Unlike the online resources, this book aims to 
be a cookbook with clear illustrations and time spent on those nuances that 
you may not pick up on with the online materials. 

Who This Book Is For 
This book is not meant for people who don’t know any programming. For 
experienced JavaScript developers, this book should be useful for quickly 
learning MooTools and as a good reference book to have on the shelf. 
Hopefully, it will also be useful if you’re trying to decide whether 
MooTools is the right framework for you. 
Experienced developers of other languages (Java, PHP, Ruby, Python, Perl, 
etc.) who have fooled around with JavaScript a little, but have shied away 
from JavaScript because of its environment (the browser), or maybe 
because JavaScript just didn’t seem like a “real” programming language, 
should find this book illustrative of how powerful JavaScript, and 
MooTools in particular, can be. 

http://mootools.net
http://mootools.net


xxii     MooTools Essentials 

This book is NOT for beginning programmers or for those with no 
programming experience. Readers should be familiar with object-oriented 
programming practices and ideally should have an understanding of 
JavaScript’s prototypal inheritance model and functional programming 
practices (also known as lambda), though these topics are reviewed in this 
book’s appendix.  

What You Need to Know 
Readers should be familiar with the basic syntax of JavaScript as well as 
the Document Object Model (DOM) presented by the browsers. Experience 
with HTML and CSS is also obviously necessary. 
Finally, you should be familiar with basic debugging practices for DOM 
scripting. The excellent Firefox plug-in Firebug is a must-have for this 
kind of development, so you should have experience using it or similar 
applications for debugging. 
If you aren’t familiar with these things, I suggest you check out 
Accelerated DOM Scripting with Ajax, APIs, and Libraries by Jonathan 
Snook et al. (Apress, 2007). I also recommend the following online 
resources: 
 The MooTools Blog: http://blog.mootools.net. Also be sure to 

check out the “Help, I don’t know JavaScript” page on this site at 
http://blog.mootools.net/2007/6/5/help-i-dont-know-
javascript. 

 W3Schools: http://www.w3schools.com 
 YUI Theater (specifically the videos on JavaScript and Firebug): 
http://developer.yahoo.com/yui/theater/ 

 Clientside (my blog): http://clientside.cnet.com 

 Ajaxian: http://www.ajaxian.com 

http://blog.mootools.net
http://blog.mootools.net
http://blog.mootools.net/2007/6/5/help-i-dont-know-javascript.%ED%AF%80%ED%B2%83
http://blog.mootools.net/2007/6/5/help-i-dont-know-javascript.%ED%AF%80%ED%B2%83
http://blog.mootools.net/2007/6/5/help-i-dont-know-javascript.%ED%AF%80%ED%B2%83
http://www.w3schools.com
http://developer.yahoo.com/yui/theater
http://clientside.cnet.com
http://www.ajaxian.com


 MooTools Essentials     xxiii 

Summary 
JavaScript has come a long way in the last few years, but so have user 
expectations. Writing JavaScript has become more important and now 
consumes an ever larger part of the resource pie, both in time spent to 
create a web site and the bytes delivered to the browser. 
Using a good JavaScript framework will help everyone who spends time on 
your web site, whether they are making the site with you or visiting it. 
JavaScript is a highly expressive and powerful language, and when you 
have mastered it and can make full use of a framework like MooTools, 
your visitors will notice. Once you get past the basics, you can start 
imagining user experiences that are fun and fluid, and that’s the whole 
point of putting in the time with something like MooTools. 

 



 



 MooTools Essentials     1 

Chapter 1: Getting Started with MooTools 
In this chapter, I’ll cover some key steps and concepts that you should 
understand before you start writing code with MooTools. For anyone 
familiar with modern DOM scripting principles, most of this chapter can be 
skimmed over, but if you’re new to this stuff, don’t miss out, as it’ll save 
you some headaches. 
Here I’ll cover the following: 
 Downloading MooTools 
 Using MooTools’ modular design 
 Understanding compatibility issues for upgrading from one version to the 

next 
 Adding MooTools to your page(s) after you’ve downloaded it 
 Coding for reuse 
 Understanding concatenation and compression 

Downloading MooTools 
Downloading MooTools is pretty straightforward, but you have some 
options to consider and some choices to make. 
Open up http://www.mootools.net in your browser, and then click the 
Download tab (or just skip to http://www.MooTools.net/download).  

http://www.mootools.net
http://www.MooTools.net/download
http://www.MooTools.net/download


2     MooTools Essentials 

You’ll get a page that looks like this: 

 

Here you can download the MooTools core compressed or uncompressed. I 
recommend using the uncompressed version for development and the 
compressed version for your live site. I’ll cover some methods to compress 
your own copy along with the code you write later in this chapter. 

Downloading MooTools Official Plug-Ins 
The Core download includes all the basic portions of the MooTools library 
needed to author Ajax, effects, and your own classes as well as all the 
extentions to the native objects (Element, Array, String, etc.). It does 
not, however, include some of the additional functionality that is available 



 MooTools Essentials     3 

from the official MooTools library. To get these add-ons, you’ll need to 
click the More Builder link on the right of the download page. Doing so 
will give you an interface where you can check off the additional plugins 
you want and let you download them as a separate file: 

 

Here you can download plug-ins that let you make elements draggable, 
create accordion type controls or tooltips, and more. Just check off the 
scripts you want and then select your compression and download it. 



4     MooTools Essentials 

Core Builder 
You can also, if you choose, build your own custom library instead of 
downloading the core file from the main download page. This can be useful 
if you’re building, say, a mobile app and you just want some of the basic 
functionality that MooTools has to offer. To build your own core, click the 
Core Builder link on the right. You’ll get an interface just like the More 
Builder with all the files that comprise the MooTools core. If you were to 
select all these and download them, you would get a file that had the same 
contents as the file listed in the first step earlier. 
Don’t get overwhelmed by all the download options. I’ll cover them all in 
the coming pages. 

Making Use of MooTools’ Modular Design 
MooTools is designed so that you can include only the JavaScript you need 
for your page. Part of the MooTools code base is a dependency map that 
allows this download page to fill in any gaps for what you need for your 
application. If, for example, you need to use the Fx.Tween class, just click 
the Fx.Tween.js option, and all the dependencies for that file are 
automatically selected for you. 

Tip For development purposes, you might want to download the 
whole library. I’ll stress that you shouldn’t launch your application like this; 
it's really rare for an application to need everything MooTools has to offer.  

However, if you want to get it all, it can get tedious to click everything on 
the list, so here’s a shortcut: open Firebug and execute the following in the 
console to check all the items for you to download: 

Download.all() 

www.allitebooks.com

http://www.allitebooks.org


 MooTools Essentials     5 

Compatibility 
With each release of MooTools, there is a corresponding compatibility 
script that will alias function and variable names to their counterparts in the 
newer version. This adds more code to your environment, but not much, 
and if you have a lot of code written for an earlier version, this can help 
you transition to the newer release. 

Note When using MooTools, you should always reference only the 
variables and methods outlined in the documentation. Though classes have 
more methods and properties than are defined in the documentation, these 
are considered private, and the compatibility scripts that accompany each 
release maintain only the public methods and properties. All the others are 
considered private, so if you reference them in your own code, you’ll have 
issues when you upgrade. 

Compression Options 
MooTools provides several options for compressing the code it delivers to 
you when you download it. Compressing the code doesn’t change the way 
you use it, but rather removes all the extra spaces and transforms inner 
variable names to save space. The result is a much smaller file than one 
with all the indentation and line breaks. 
The compression options you have with your download are 
 YUI Compressor: This compressor is the most efficient and is what you 

should use when you’re ready to release your code. 
 No Compression: The source code is delivered unaltered.  

For development, I recommend turning compression off entirely so that 
you can easily debug any errors you encounter. If you use a compressed 
version for development and get an error, the line number will always be 
line #1, because compression removes all the line breaks. 



6     MooTools Essentials 

Adding MooTools to Your Page(s) 
Now that you have the JavaScript file, you need to add it to your HTML 
documents. Once you’ve done that, you can write JavaScript using 
MooTools methods and classes. Here’s a simple example document that 
illustrates how to add MooTools to your page(s): 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"  
  lang="en" dir="ltr"> 
  <head profile="http://gmpg.org/xfn/11"> 
    <meta http-equiv="Content-Type" content="text/html; 
     charset=UTF-8" /> 
    <title>Your title</title> 
    <script type="text/javascript" 
      src="MooTools.js"></script> 
    <script type="text/javascript" 
      src="yourSiteCode.js"></script> 
    <script type="text/javascript"> 
      //or write some code in-line 
    </script> 
  </head> 
  <body>....</body> 
</html> 

Coding for Reuse 
If you divide your code into two types—implementation code and classes 
that are designed for reuse—you’ll find that your work can pay off for 
faster development, maintenance, and a smaller code base that has to be 
delivered to your users. 
If you are going to write code to animate several images in a carousel, 
consider writing a generic class that does that, with variables and options 
passed in and set whenever the class is invoked. When you explore the 

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://gmpg.org/xfn/11


 MooTools Essentials     7 

section of this book on classes (see Chapter 7), you’ll see how these can be 
extended and reused later. 
What’s more, using generic classes allows you to make your 
implementation code a much more brief set of instructions that just creates 
instances of these classes for individual pages. You can then deliver two 
JavaScript files to every page on your site: the common code that includes 
MooTools and the implementation code for that specific page. The fewer 
files you send to the browser, the faster your site will be; and with your 
code clearly separated, you’ll find it much easier to maintain and reuse. 

Compression 
As mentioned earlier, you can download MooTools with compression 
enabled or unaltered. When developing, it’s helpful to use the 
uncompressed code so that errors yield actual line numbers, and the code is 
readable. 
The same holds true for the code you write. If you have a lot of JavaScript 
on your site, it’s courteous to your visitors to compress the code you write 
in addition to MooTools. 
I recommend the YUI Compressor (http://developer.yahoo.com/ 
yui/compressor/ and also http://www.julienlecomte.net/ 
yuicompressor/) provided by Yahoo. It can be run at the command line 
or as part of a larger app. It even comes with a web interface in the 
distribution. All you need is Java to use it. 

Using the YUI Compressor 
The way that MooTools itself works is a good illustration of how to 
maintain and deliver JavaScript. It’s much easier to maintain a set of small 
files that each contain a specific set of functionality, but delivering these 
files individually will slow down your site. 

http://developer.yahoo.com/yui/compressor/andalsowww.julienlecomte.net/yuicompressor
http://developer.yahoo.com/yui/compressor/andalsowww.julienlecomte.net/yuicompressor


8     MooTools Essentials 

MooTools provides SVN (a.k.a. Subversion) access to download these 
small files, but offers a download page that lets you download a 
compressed version of the files you need for your application. 
In my own experience, this practice also works well for your code. 
In my environment, I use a set of shell scripts that will concatenate a 
library from the various source files that I maintain, and then process the 
resulting file through the YUI Compressor to output the compact file. 
Here’s an example of what that kind of script looks like: 
cat "MooTools/1-11/Core/Core.js" > global.js 
cat "MooTools/1-11/Class/Class.js" >> global.js 
cat "MooTools/1-11/Class/Class.Extras.js" >> global.js 
cat "mycode/slideshow.js" >> global.js 
cat "mycode/carousel.js" >> global.js 
java -jar yuicompressor-2.2.4.jar –o 
  global.compressed.js global.js 

The result is a set of two files: global.js, which is uncompressed, and 
global.compressed.js, which is much smaller. I can use the former for 
development and debugging and the latter for delivery to the visitors of my 
site. 
When editing the files that I maintain, I can just save my changes, run the 
shell script, and refresh my browser. 
There are more sophisticated methods for doing this sort of thing with Ant 
targets and the like, but if you know how to author those, this simple 
example should be enough to illustrate the concept. 



 MooTools Essentials     9 

Chapter 2: Reviewing MooTools 
This book is divided into chapters that correspond with the functionality 
found in the MooTools library so that you can easily use it as a reference, 
by paging through to find the information you’re seeking. In this way, it is 
very much like the online counterpart to this book (http://www. 
mootorial.com). 
Each chapter will cover a basic set of functionality (like effects, for 
example) and feature the following: 
 A short overview of the syntax of the methods and classes 
 Code examples illustrating how to use the classes, methods, and functions 
 A review of the important functionality provided and any nuances that will 

help you use the it properly 

In this manner, each chapter will attempt to illustrate not only how to use 
MooTools, but also why it works the way it does. 

Note In all cases, it’s always a good idea to look at the MooTools 
source code to gain a deeper understanding of how it works. There is no 
better illustration of how to use MooTools than MooTools itself. Using the 
library as a template for your own code will not only help you understand it 
better, but also help you write your code in a Moo way. 

MooTools File Structure 
MooTools is broken up into numerous files to make it easy to download 
only the part that you need for your page to work (see “Making Use of 
MooTools’ Modular Design” in the Introduction). Part of the process of 
organizing the code into the various libraries to make this modular design 
possible requires that some functionality be split up. For example, 

http://www.mootorial.com
http://www.mootorial.com
http://www.mootorial.com


10     MooTools Essentials 

Core/Core.js is required for all of MooTools, and it includes numerous 
shortcut methods as well as the base functionality for the Hash native 
object. But Hash has its own script in Native/Hash.js, which contains 
much more functionality. The functionality in Core.js is there just to 
support other scripts that need it. 
This splitting up of functionality isn’t reflected in the organization of this 
book; in order to illustrate how to use the library, it’s best that I keep ideas 
that are similar next to each other. 
In each section that I illustrate a method, function, or class, I’ll also note its 
location in the library whenever it isn’t obvious so you can find it in the 
code. 

Manifest of MooTools Scripts 
Here is a list of every file in the MooTools library, along with what it does 
and when you’ll use it. 
MooTools is broken into two separate libraries: The “Core” and plug-ins, 
which MooTools has in a repository called “More.” 

The MooTools Core 
When you visit MooTools and download the main library (the Core), you’ll 
get all the following files. 

Core/Core.js 

What it does: Defines the Native class and numerous helper functions 
used throughout MooTools. Core.js also defines the base functionality for 
the Hash and Array native objects. 
When you’ll use it: MooTools uses all the methods in this script. You 
yourself will use several of them, though likely not the Native function, as 
MooTools instantiates instances of the Native class for nearly all the 



 MooTools Essentials     11 

native objects (specifically, MooTools creates them for Array, Element, 
Event, Function, Hash, Number, and Function). 

Core/Browser.js 

What it does: Defines the Browser hash and identifies various properties 
about the client running library (i.e., the user’s browser). Browser.js also 
defines the Window and Document native objects.  
When you’ll use it: MooTools itself uses the methods of this script for 
scripts that help fix browser quirks. You’ll need to reference the properties 
and methods defined in this script whenever you have your own code that 
has conditionals based on the client (e.g., if you have code that should work 
differently for IE than it does in Safari or Firefox). 

Class/Class.js 

What it does: Defines Class and its methods and properties. 
When you’ll use it: Class is a powerful method for creating reusable 
functionality. This method is at the heart of MooTools, so you’ll use it all 
the time whether you’re authoring a class or instantiating one. 

Class/Class.Extras.js 

What it does: Defines the Events, Chain, and Options classes. 
When you’ll use it: The three classes defined in this script can be 
implemented into others, providing common, reusable patterns employed 
throughout MooTools and useful in your own work. 

Element/Element.js 

What it does: Extends the Element native object, providing numerous 
shortcut, selection, and initialization methods. 



12     MooTools Essentials 

When you’ll use it: Like all the scripts in the Native directory, 
Element.js extends the native DOM Element. This is one of the most 
important scripts in the library. The Element files are located in their own 
directory (instead of in the Native directory with the other scripts) because 
Element.*.js requires all the other Native scripts. 

Element/Element.Dimensions.js 

What it does: Extends the Element native with methods to inspect the 
location and dimensions of that element. 
When you’ll use it: Whenever you need to work with size, scrolling, or 
positioning of elements and the document.  

Element/Event.js 

What it does: Extends the native Event object with element-specific 
methods, defines the functionality to create custom events, and includes the 
mouseenter, mouseleave, and mousewheel custom events. 
When you’ll use it: Whenever you attach an event listener to a DOM 
element (click, load, mouseover, etc.), the method you attach is, by default, 
passed the event that fired it. Element.Events.js extends elements to 
make attaching events and managing the Event object easier. 

Element/Style.js 

What it does: Defines methods used to alter the style properties of 
elements. 
When you’ll use it: Whenever you wish to alter the style of a DOM 
element, you’ll use the methods defined in Element.Style.js.  

Fx/Fx.js 

What it does: Defines the base functionality for all the Fx.*.js scripts. 



 MooTools Essentials     13 

When you’ll use it: You probably won’t use Fx.js directly. It’s only 
useful if you wish to write your own effect extension. 

Fx/Fx.CSS.js 

What it does: Defines the animation logic for transitioning style 
properties.  
When you’ll use it: It’s used indirectly through Fx.Tween, Fx.Morph, and 
Fx.Elements, but, like Fx, it’s unlikely that you’ll use it directly unless 
you extend it to write your own effect. 

Fx/Fx.Morph.js 

What it does: Defines the Fx.Morph effect. 
When you’ll use it: Fx.Morph is used to transition more than one CSS 
property at once (e.g., height and width). 

Fx/Fx.Transitions.js 

What it does: Defines numerous transitions that can be used by any effect. 
When you’ll use it: Fx (and therefore the classes that extend it) comes with 
a basic linear transition, but Fx.Transitions.js defines a dozen more 
including bounce, circ, expo, elastic, and others. Additionally, 
Fx.Transitions.js defines methods that you can use to write your own. 

Fx/Fx.Tween.js 

What it does: Defines the Fx.Tween effect. 
When you’ll use it: Fx.Tween is used to transition a single CSS property 
(height, width, color, etc.). 

Native/Array.js 

What it does: Extends the Array native with additional methods. 



14     MooTools Essentials 

When you’ll use it: Whenever you work with data in array format, you’ll 
benefit from the 20 or so methods added to its prototype by Array.js. 

Native/Event.js 

What it does: Extends the native Event object to grant it cross-browser 
stability. 
When you’ll use it: Event.js works well with Element.Event.js. The 
former focuses on extending the Event native with properties and methods 
to remove the inconsistencies found in different browser implementations 
of the Event object, while the latter implements methods and properties on 
the Element native to make it easy to attach event listeners and manage 
them. 

Native/Function.js 

What it does: Extends the native Function object with numerous methods 
that enhance functional programming. 
When you’ll use it: You’ll use the methods added by MooTools to the 
native Function object constantly. Functional programming (see 
“Functional Programming (a.k.a. Lambda)” in the Appendix) requires that 
you interact with Function objects constantly, and Function.js includes 
several methods that make that management easier. 

Native/Hash.js 

What it does: Extends the native Object when you initialize it (new 
Hash()).  
When you’ll use it: Because all native objects in JavaScript inherit from 
Object, modifying its prototype is universally considered bad form. 
MooTools therefore provides an enhanced Object with various properties 
and methods applied to it, just like it does for the other natives (Array, 
Function, etc.). However, unlike the other native scripts, this script 

www.allitebooks.com

http://www.allitebooks.org


 MooTools Essentials     15 

requires you to initialize any object that you wish to apply these methods 
to. 

Native/Number.js 

What it does: Extends the native Number object to add numerous helpful 
methods.  
When you’ll use it: Whenever you’re doing math or managing numbers or 
even just iterating a function a specified number of times, the methods in 
Number.js will help make the process simpler. 

Native/String.js 

What it does: Extends the native String object to add numerous helpful 
methods. 
When you’ll use it: Like Number.js, String.js makes inspecting and 
altering strings much easier. 

Request/Request.js 

What it does: Defines the Request class, an XMLHttpRequest wrapper. 
When you’ll use it: This is MooTools’ Ajax class. It provides a rich 
interface to the native XMLHttpRequest, or XHR. 

Request/Request.HTML.js 

What it does: Extends the Request class to add functionality specific to 
updating content in the DOM with HTML retrieved from the server. 
When you’ll use it: Whenever your Ajax request retrieves HTML that is 
used to update the contents of a DOM element (a common practice). 



16     MooTools Essentials 

Request/Request.JSON.js 

What it does: Extends the Request class to automatically manage the 
receiving of JSON data. 
When you’ll use it: Whenever you are receiving data in a JSON notation 
(the result of converting a native JavaScript Object to a String). 

Selectors/Selectors.js 

What it does: Adds advanced CSS querying capabilities for selecting 
elements. 
When you’ll use it: Element.js includes the $$ function to collect 
objects out of the DOM as well as element methods such as 
Element.getElements. These methods by default only accept tag names 
for filters ($$('div') gets all the divs on a page). When you include 
Selectors.js, you can use any CSS expression with these methods to 
select elements from the DOM. 

Utilities/Cookie.js 

What it does: Defines a set of methods in the Cookie namespace for 
managing cookie values. 
When you’ll use it: Whenever you want to read, write, or remove cookies.  

Utilities/DomReady.js 

What it does: Defines the domready custom event. 
When you’ll use it: The domready event is used to delay the execution of 
your page initialization code until after all the HTML has been delivered to 
the browser and is available in memory. It’s crucial that you don’t interact 
with the DOM until after it’s loaded using this custom event. The onload 
event on the window can be used the same way, but has the negative 
quality of waiting for every image to load before running. 



 MooTools Essentials     17 

Utilities/JSON.js 

What it does: Contains methods for managing data in JSON format. 
When you’ll use it: Whenever you need to encode or decode JSON. 

Utilities/Swiff.js 

What it does: Serves as a wrapper for embedding SWF movies. Supports 
(and fixes) external interface communication. 
When you’ll use it: Whenever you wish to embed SWF (Flash) objects. 

The MooTools Plug-Ins: “More” 
When you download the plug-ins for MooTools, you can choose any of the 
following files to include. These are the “official” MooTools plug-ins, 
though numerous third-party plug-ins are also available (which I cover in 
Chapter 12). 

Fx/Fx.Elements.js 

What it does: Defines the Fx.Elements effect. 
When you’ll use it: When you need to alter CSS properties on several 
elements at once, it’s more efficient to use a single instance of 
Fx.Elements than to have several instances of Fx.Tween or Fx.Morph. 

Fx/Fx.Scroll.js 

What it does: Defines the Fx.Scroll effect. 
When you’ll use it: Fx.Scroll is used to smoothly scroll any DOM 
element, including the window. 



18     MooTools Essentials 

Fx/Fx.Slide.js 

What it does: Defines the Fx.Slide effect. 
When you’ll use it: The Fx.Slide effect moves an element in and out of 
view kind of like window blinds. A container element crops out the view of 
the element as it slides in or out. 

Drag/Drag.js 

What it does: Defines the base functionality for dragging items in the 
browser window. 
When you’ll use it: Any time you want to have an element on your page 
that the user interacts with by dragging, you’ll use Drag.js. You can 
attach any functionality to the dragging action, from resizing, to moving, 
to, say, changing the color of something. 

Drag/Drag.Move.js 

What it does: Provides support for the constraining of draggables to 
containers and droppables. 
When you’ll use it: If part of the drag functionality that you use requires 
the ability to drop things into containers and you wish to constrain the 
behavior to an area, Drag.Move.js provides basic methods to do this. 

Utilities/Assets.js 

What it does: Provides methods to dynamically load JavaScript, CSS, and 
image files into the document. 
When you’ll use it: If you’re injecting a lot of assets into the DOM, 
Assets.js provides some easy methods to make the process a little easier. 



 MooTools Essentials     19 

Utilities /Color.js 

What it does: Defines the Color class for creating and manipulating colors 
in JavaScript. It supports conversions from HSB to RGB and vice versa. 
When you’ll use it: If you’re doing color calculations, the Color class 
contains numerous methods that are helpful. 

Utilities/Group.js 

What it does: Defines the Group class used to monitor a collection of 
events. 
When you’ll use it: Whenever you have numerous classes or elements that 
you wish to monitor as a collection. For instance, you would use this class 
if you want to execute a function only after each div on the page has been 
clicked. 

Utilities/Hash.Cookie.js 

What it does: Defines the Hash.Cookie class. 
When you’ll use it: If you have a map of keys/values that you need to 
store in a cookie, Hash.Cookie automates the process by creating or 
retrieving the cookie and then providing methods to get and set the values, 
automatically updating the cookie in the process. 

Interface/Accordion.js 

What it does: Defines the Accordion UI class. 
When you’ll use it: If you have a long definition list (like an FAQ) or a 
menu that needs to expand, the Accordion class provides a nice way to 
make that interactive. 



20     MooTools Essentials 

Interface/Scroller.js 

What it does: Defines the Scroller class, which scrolls the contents of 
any element (including the window) when the mouse reaches the element’s 
boundaries. 
When you’ll use it: If you have draggable elements on the page, and they 
should be draggable to a location that is scrolled either off screen (in the 
case of the window) or out of view (in the case of an overflowed DOM 
element), you need some method for users to drag things from their 
location to their off-screen targets. The Scroller class provides the 
functionality to automatically scroll the DOM element or the window when 
users drag an element near the boundaries of the area that needs to scroll. 

Interface/Slider.js 

What it does: Defines the Slider class with two elements: a knob and a 
container. 
When you’ll use it: This basic UI component is useful when you want 
users to select a value from a set of values—like how big the thumbnails on 
a page should be or the maximum price they are willing to pay for 
something.  

Interface/SmoothScroll.js 

What it does: Defines the SmoothScroll class. 
When you’ll use it: SmoothScroll automatically converts any name 
anchors on the page (links that reference a different location on the same 
page with the # value) to animate the window so it scrolls smoothly to the 
target location instead of just jumping there. 



 MooTools Essentials     21 

Interface/Sortables.js 

What it does: Defines the Sortables class. 
When you’ll use it: Sortables lets you easily convert a collection of 
elements into a draggable, sortable list. You can have more than one list so 
that users can drag items from one list to another, dropping the item into a 
new location in the new list. 

Interface/Tips.js 

What it does: Defines the Tips class. 
When you’ll use it: The Tips class makes it easy to display tooltips when 
users hover their mouse over a given DOM element. 





 MooTools Essentials     23 

Chapter 3: Shortcuts and Helpful 
Functions 
MooTools has numerous stand-alone functions that make tasks easier and 
take fewer keystrokes. Most of these functions are used by MooTools itself 
and are located in Core/Core.js, which is required by all of MooTools. 
Others are more specific to specific kinds of tasks, and you’ll only have 
them available if you include the scripts that are needed to accomplish 
those tasks. 

Determining the Type of an Object: $type 
JavaScript is a loosely typed language, which allows for a great deal of 
expressiveness, but also results in a lot of headaches. On top of this, 
JavaScript does a lot of type coercion (see “Type Coercion—‘Falsy’ and 
‘Truthy’ Values” in the Appendix). 
Thankfully, MooTools fixes this for us developers with the $type function. 

$type :: Core/Core.js  
What it does: $type returns the type of the object that is passed in. 
Usage:  
  $type(object) //"string", "object", or "array", etc. 



24     MooTools Essentials 

Example: 
var ninja = { 
  wealth: 0, 
  getPaid: function(howMuch){ 
    if ($type(howMuch) == "string") { 
      ninja.wealth += parseInt(howMuch); 
    } else if ($type(howMuch) == "number") { 
      ninja.wealth += howMuch; 
    } 
  } 
}; 

When you’ll use it: Often, you’ll be unsure whether your method is being 
passed a string or a number, a DOM element or its ID, and so on. $type 
returns the type of an object as a string ('function', 'string', etc.) or 
false if the object is not defined. Here are the values it returns (all strings 
unless noted): 
 “element” if the object is a DOM element node 
 “textnode” if the object is a DOM text node 
 “whitespace” if the object is a DOM whitespace node 
 “arguments” if the object is an arguments object 
 “object” if the object is an object 
 “array” if the object is an array 
 “string” if the object is a string 
 “number” if the object is a number 
 “boolean” if the object is a Boolean 
 “function” if the object is a function 
 “regexp” if the object is a regular expression 
 “class” if the object is a MooTools class 

www.allitebooks.com

http://www.allitebooks.org


 MooTools Essentials     25 

 “collection” if the object is a native HTML elements collection, such as 
childNodes, getElementsByTagName, and so on 

 “window” if the object is the window object 

 “document” if the object is the document object 
 “date” if the object is a date 

 false (Boolean) if the object is not defined or is none of the above 

Checking Whether Values Are Defined: $defined, 
$chk, and $pick 
Often in your code, you’ll need to determine whether a variable has been 
defined by the user. MooTools gives you some helpful methods to simplify 
this basic task. 

$defined :: Core/Core.js 
What it does: $defined checks to see whether a variable is defined (i.e., 
not null or undefined). 
Usage:  
  $defined(object) 
Example: 
function myFunction(arg){ 
  if($defined(arg)) alert('The object is defined.'); 
  else alert('The object is null or undefined.'); 
} 

When you’ll use it: This is just a shortcut for 
value == undefined 

Because JavaScript performs type coercion (see “Type Coercion—‘Falsy’ 
and ‘Truthy’ Values” in the Appendix), you can’t just evaluate a value to 
see if it has a value. All the following examples perform type coercion: 



26     MooTools Essentials 

if ("") ... //false 
if (0) ... //false 
if (null) ... //false 
function test(value){   
  return !!value; 
}; 
test(); //No value passed, so it is undefined,  
        //and test() returns false 

As these examples demonstrate, $defined is a shortcut to determine 
whether a value has been set at all. 

$chk :: Core/Core.js 
What it does: $chk checks to see whether a value is defined or is zero. 
Usage:  
  $chk(value) 
Example: 
var ninja = { 
  wealth: 0, 
  getPaid: function(howMuch){ 
    if ($chk(howMuch)) wealth += howMuch; 
  } 
}; 

When you’ll use it: Much like $defined, $chk helps you manage type 
coercion. $chk will still return false for null, undefined, false, and 
empty strings, but it won’t return false for zero. 

$pick :: Core/Core.js   
What it does: $pick returns the first defined argument passed in or null. 
You can pass as many arguments to $pick as you like, and the first one 
that is not null or undefined will be returned. 



 MooTools Essentials     27 

Usage:  
  $pick(var1, var2, var3, etc.) 
Example: 
var ninja = { 
  chooseSide: function(isGood){ 
    ninja.isGood = $pick(isGood, ninja.side, false); 
  } 
}; 

In this example, when the method chooseSide is executed, the side of the 
ninja is set to be the value passed in. If no value is passed in, the side is 
set to the current state. If there is no current state, the side defaults to 
ninja.isGood = false. 
When you’ll use it: $pick is yet another shortcut. You can express its 
basic concept as a simple conditional: 
function test(var1, var2){ 
  if(var1 == undefined) return var2; 
  else return var1; 
}; 

Because $pick lets you pass in numerous arguments, it allows for 
numerous of these conditionals. In the preceding ninja example, I use 
$pick for three values. If I were to express this as a set of if/else 
conditionals, it would look like this: 
var ninja = { 
  chooseSide: function(isGood){ 
    if ($defined(isGood)) { 
      ninja.isGood = isGood; 
    } else if (!$defined(ninja.side)) { 
      ninja.isGood = false; 
    } 
  } 
}; 



28     MooTools Essentials 

The more things you need to consider, the more conditionals you have to 
add. $pick is shorthand for all that logic. 

Tip You can also use the logical “or” (||) for most of these 
operations. For example 

var ninja = { 
  setName: function(name){ 
    ninja.name = name || ninja.name ||‘fred’; 
  } 
}; 

Here we store name as the value passed in, or the current value of 
ninja.name, or a default (fred). You should use $pick whenever a valid 
value is “falsy” (zero, an empty string, the Boolean false, etc.). 

Working with Objects: $extend, $merge, and 
$unlink 
The native object—a Hash-like set of key/value pairs—is something that 
we developers use often in modern JavaScript. Unfortunately, the language 
doesn’t have many tools to help you manage the data in them. 
JavaScript objects do not contain any native methods or properties, and 
while MooTools does give us a more powerful version of this (with Hash—
see “Objects (a.k.a Hash)” in Chapter 4), it doesn’t alter the prototype of 
object (which is an important rule in JavaScript, as all other objects—
including functions and strings and arrays—inherit from the object 
prototype). 
To make things easier to work with native objects, MooTools provides the 
following core methods. 



 MooTools Essentials     29 

$extend :: Core/Core.js 
What it does: $extend copies all the properties from the second object 
passed in to the first object. 
Usage:  
  $extend(object1, object2) 
Example: 
var firstObj = { 
  'name': 'John', 
  'lastName': 'Doe' 
}; 
var secondObj = { 
  'age': '20', 
  'sex': 'male', 
  'lastName': 'Dorian' 
}; 
$extend(firstObj, secondObj); 
//firstObj is now:  
//{'name': 'John', 'lastName': 'Dorian', 'age': '20', 
// 'sex': 'male'}; 

When you’ll use it: The functionality defined in $extend is pretty 
straightforward—if you need to blend the properties of one object into 
another, $extend will do that for you. You should use $extend any time 
that you need to manage objects this way except when the objects being 
blended contain as properties other objects or arrays. 
The problem is that if you use $extend on objects that do contain arrays or 
other objects as properties, you will link them together. 



30     MooTools Essentials 

Here’s a simple illustration in code: 
var defaultNinja = { 
  weapons: ['sword', 'star', 'stealth'], 
  equipment: { 
    grapple: 'iron', 
    rope: '40 meters' 
  } 
}; 
var goodNinja = { 
  specialAbility: 'warrior spirit', 
  weakness: 'kittens' 
} 
$extend(goodNinja, defaultNinja);  
//Now goodNinja contains the weapons array and the 
//equipment object 

In this example, both goodNinja and defaultNinja contain properties for 
weapons and equipment because $extend copies them from the former 
into the latter. 
However, because they are of type array and object, respectively, they 
are linked—they are the same objects. If you subsequently added flying 
guillotine to goodNinja.weapons, both goodNinja.weapons and 
defaultNinja.weapons would contain that value. 
This is due to the way JavaScript assigns variables to memory. Consider 
this code: 
var x = 'foo'; 
var y = x; 
x = 'bar'; 
//x != y; 

Everything is fine if you’re just assigning values to variables. But when 
you’re dealing with objects, the equals sign means something a little 
different. If I say that two objects are equal to each other and then change a 



 MooTools Essentials     31 

property of one of them, I change that property for both. Consider the 
following: 
var myArmy = { 
  ninjas: { 
    side: 'evil' 
  } 
}; 
var yourArmy = {}; 
yourArmy.ninjas = myArmy.ninjas;  
//ninjas here are the same object 
 
yourArmy.ninjas.side = 'good'; 
//myArmy.ninjas.side == 'good'; 
//yourArmy.ninjas.side == 'good'; 

In this example, you can see that the property ninjas for both myArmy and 
yourArmy is assigned to the same object. These properties are the same 
object. Changing the value of that object using either reference changes it 
for both. 
This is why $extend is only useful for objects that do not contain 
properties that are also objects or arrays (arrays have the same problem), 
and why you should use $merge when you have members that are 
themselves objects or arrays. 
It’s important to note that this isn’t a fault with $extend or JavaScript; it’s 
how JavaScript is supposed to work. Most of the time it’s an asset, but 
occasionally when you encounter these kinds of links unintentionally, you 
can get some unintended results. 

$merge :: Core/Core.js 
What it does: $merge combines any number of objects recursively, 
dereferencing them or their subobjects from their parents. 



32     MooTools Essentials 

Usage:  
  $merge(object1, object2, object3, etc.) 
Example: 
var obj1 = {a: 0, b: 1}; 
var obj2 = {c: 2, d: 3}; 
var obj3 = {a: 4, d: 5}; 
var merged = $merge(obj1, obj2, obj3);  
//Returns {a: 4, b: 1, c: 2, d: 5} 
//(obj1, obj2, and obj3 are unaltered) 
 
var nestedObj1 = {a: {b: 1, c: 1}}; 
var nestedObj2 = {a: {b: 2}}; 
var nested = $merge(nestedObj1, nestedObj2);  
//Returns {a: {b: 2, c: 1}} 

When you’ll use it: Any time you need to combine two objects that 
contain members that are objects or arrays, you should use $merge to 
ensure you don’t link the result to the originals. $merge is slower than 
$extend, so you shouldn’t overuse it, but care should be taken that you use 
$merge when you need to (see the section “$extend :: Core/Core.js” section 
earlier in this chapter on this topic). 
As outlined in the discussion on $extend, $merge lets you blend objects 
together, but is recursive when it finds properties that are also arrays or 
objects. Unlike when you use $extend, you don’t have to worry about 
linking the objects together, but you pay a performance price for this 
recursion.  
Also, unlike $extend, $merge lets you pass it any number of objects. If 
any two objects contain the same properties (but different values), the last 
one wins.  



 MooTools Essentials     33 

For example: 
ninja.garb = $merge({ 
  mask: 'red', 
  sash: 'black' 
}, { 
  sash: 'white' 
}); //Returns {mask: 'red', sash: 'white'} 

When $merge encounters properties that are objects, it will execute itself 
on that property, blending the two properties together as illustrated in the 
second example in the preceding “Example” section. 
Finally, unlike objects passed to $extend, objects passed to $merge are not 
altered. Instead, the resulting merged object is returned by the method. If 
you want to assign the result to one of the objects passed in, you can do 
that easily enough: 
object1 = $merge(object1, object2); 

$unlink :: Core/Core.js 
What it does: $unlink will return a copy of an object or array that 
contains no links to the original. 
Usage: 
$unlink(array) 
$unlink(object) 

Example: 
evilNinja.desires = ['money', 'a worthy opponent',  
  'friends']; 
goodNinja.desires = $unlink(evilNinja.desires); 
goodNinja.desires.splice(0,1);  
//goodNinja doesn't need money 

If $unlink weren’t included in this example, the desires of evilNinja 
would point to the same array as the desires of goodNinja, and altering 



34     MooTools Essentials 

one would alter the other. Including $unlink creates a copy of the array 
(or object) and breaks any of these links. 
When you’ll use it: MooTools bakes this method into much of its 
functionality, so it’s not something you’re likely to call upon very often. 
Whenever you need a copy of an array or object that contains as members 
other arrays or objects, you’ll need to unlink them to ensure you don’t 
pollute the original. 

Iterable Helpers and Shortcuts: $arguments, $each, 
$splat, $A, and $H  
Both arrays and objects contain members that you’ll often find the need to 
iterate over. You can use the standard for loop, but this isn’t a very 
functional way of doing things. There are some advantages to iterating over 
a collection and executing methods on those members (see “Functional 
Programming (a.k.a. Lambda)” in the Appendix). 
The current specification for JavaScript includes more modern iteration 
methods like Array.each and others, but only certain browsers offer 
native support. MooTools extends arrays and objects (via its Hash class) 
with these methods, but it also supplies a few stand-alone iteration methods 
in its core that can be used on their own. 

$arguments :: Core/Core.js 
What it does: The $arguments function creates a function that returns the 
passed argument according to the index passed in. 
Usage:  
  var argument = $argument(i); 
Example: 
var secondArgument = $arguments(1); 
console.log(secondArgument('a','b','c')); // Alerts b 

www.allitebooks.com

http://www.allitebooks.org


 MooTools Essentials     35 

When you’ll use it: You will likely not find yourself using it, so if you 
don’t get why you’d want it, don’t sweat it. This function is used within 
MooTools, which has a lot of functionality that’s highly abstract. 
$arguments is an example of one of these abstract concepts that gets used 
in the framework itself, but it’s highly unlikely that you’ll find a reason in 
your own work to use it. 

$each :: Core/Core.js 
What it does: $each is used to iterate through iterables that are not regular 
arrays, such as built-in getElementsByTagName or Element.childNodes 
calls, arguments of a function, or objects. 
Usage: 
$each(arguments, function(value, [index or key]){ 
  alert(value); 
}, bin 

Example: 
//Simple example with function referencing each value 
$each([1,2,3], function(value){ 
  alert(value); //Alerts 1, 2, 3 
}); 
//Same concept but the function also references  
//the index of each value 
$each([1,2,3], function(value, index){ 
  alert('the value at index ' + index + ' is ' + value);  
  //Alerts 
  //"the value at index 0 is 1" 
  //"the value at index 1 is 2" 
  //"the value at index 2 is 3" 
}); 
//This example illustrates binding 



36     MooTools Essentials 

var example = { 
  say: function(msg) { 
    alert(msg); 
  }, 
  count: function(){ 
    $each([1,2,3], function(number) { 
      this.say(number); 
    }, this); //Here's the important part! 
  } 
}; 
//This example illustrates iterating over an object 
$each({apple: 'red', lemon: 'yellow'},  
  function (value, key) { 
    alert(key + 's are ' + value); 
    //Alerts 
    // "apples are red" 
    // "lemons are yellow" 
 }, this); //The binding of 'this' is optional 

When you’ll use it: $each is an alternative way to iterate over an array or 
object. It’s a substitute for these syntaxes:  
//Array loop: 
for(var i = 0; i < array.length; i++){ alert(array[i]) }  
//Object loop: 
for(key in object) { alert(object[key]) }  

More importantly, though, is the functional nature of the method. $each 
accepts a function that is applied to each item in the array or object and 
consequently encourages the user to develop in a functional manner. It 
provides the benefit of the ability to bind a scope to the passed function and 
to make use of closures (see “‘this’ Binding’ and “Closures” in the 
Appendix for more). 

$splat :: Core/Core.js 
What it does: $splat converts the argument passed in to an array if it is 
defined and not already an array. 



 MooTools Essentials     37 

Usage:  
  $splat(object) 
Example: 
$splat('hello') //['hello'] 
$splat([1,2,3]) //[1,2,3] 
var ninja = { 
  fight: function(who){ 
    //We don't know if who is a single enemy 
    //or an array of them 
    $splat(who).each(function(enemy){ 
      enemy.isAlive = false; 
    }); 
  } 
}; 

When you’ll use it: $splat is usually written for interfaces where it’s 
convenient to be able to hand a method a single thing or a bunch of them. If 
you are calling such a method and you have one thing, it’s nice to just be 
able to call the method with that one thing. But the method itself has to deal 
with getting an array or a single variable. $splat will take the object 
passed to it and, if it’s an array, just return the object; otherwise, it’ll add 
the object to an empty array and return that. 

$A :: Core/Core.js 
What it does: $A creates an array from an iterable object (such as the 
arguments of a method or a DOM node collection). If the item passed in is 
an array, $A will simply return it. 
Usage:  
  var myArray = $A(iterable); 



38     MooTools Essentials 

Example: 
var ninja = { 
  weapons: [], 
  equip: function(){ 
    $A(arguments).each(function(weapon){ 
      ninja.weapons.push(weapon); 
    }); 
  } 
}; 
ninja.equip("sword", "star", "smoke"); 

When you’ll use it: $A is mostly used by MooTools for applying the 
Array methods to iterable objects, but it can also be useful if you want to 
have a function or method that takes an unspecified number of arguments 
by referencing $A(arguments), as in the preceding example. You could 
make the function require an array as its argument, but it might be easier to 
use if you don’t. For example, see the discussion on $pick in the section 
“Checking Whether Values Are Defined: $defined, $chk, and $pick” earlier 
in this chapter. 

$H :: Core/Core.js 
What it does: $H is a shortcut to initialize an instance of Hash. 
Usage:  
$H(object) 

Example: 
  var fooHash = $H({foo: 'bar'}); 

When you’ll use it: This is just a shortcut for new Hash(obj), which 
returns an instance of Hash (see “Objects (a.k.a. Hash)” in Chapter 4 for 
more on Hash). 



 MooTools Essentials     39 

Other Shortcuts: $clear, $empty, $lambda, 
$random, $time, $try 
In addition to the iteration and inspection shortcuts listed previously in this 
chapter, MooTools provides a few other core tricks to make using 
JavaScript a little more pleasant. With the exception of these stand-alone 
functions (and a few others in the library), almost all the other functions 
provided by MooTools are in methods on native objects (like Array or 
String) or MooTools classes (like effects).  

$clear :: Core/Core.js 
What it does: $clear clears a timeout or an interval. 
Usage:  
  $clear(timer)  

Example: 
var timer = setTimeout(ninjas.attack, 500); 
$clear(timer); //Belay that order! 

When you’ll use it: This is just a shortcut for clearTimeout and 
clearInterval.  

$empty :: Core/Core.js 
What it does: $empty is, surprise, an empty function. Typically, it is used 
as a placeholder inside event methods of classes. 
Usage:  
  var callback = $empty; 



40     MooTools Essentials 

Example: 
var ninja = { 
  afterAttack: $empty, 
  attack: function(enemy) { 
      enemy.isAlive = false; 
      ninja.afterAttack(); 
  } 
}; 
//Later 
ninja.afterAttack = function(){ 
    ninja.weep(); 
}; 

When you’ll use it: A common practice in MooTools is to define a 
callback as an empty function (literally just function(){}). Then later, 
the user writes some code that defines that callback as something else. In 
the code that calls that callback, it doesn’t have to check to see whether the 
user set the function or not. If the user didn’t set it, it’s still just an empty 
function, and there’s no harm in executing it. $empty is just a shortcut for 
function(){}. 

$lambda :: Core/Core.js 
What it does: $lambda creates an empty function that does nothing but 
return the value passed, unless the passed-in item is a function, in which 
case it calls that function. 
Usage:  
  var returnTrue = $lambda(true); 



 MooTools Essentials     41 

Example: 
myLink.addEvent('click', $lambda(false));  
//Prevents a link Element from being clickable. 
var test = function(item){ 
  return $lambda(item)(); 
  //If item is not a function, 
  //lambda creates a function 
  //then we return the result of that function 
}; 

When you’ll use it: Basically, $lambda saves you the time of figuring out 
if a value is a function that returns a value or if it’s just a value. It’s a subtle 
concept, and you may not find yourself using it. 

$random :: Core/Core.js 
What it does: $random returns a random number in a given range. 
Usage:  
  $random(min, max) 

Example: 
var mortalKombat = { 
  contestants: [Scorpion, Sub-Zero, Ermac, Smoke,  
    Reptile, Noob Saibot, Rain], 
  play: function(player){ 
    //The player fights a random opponent  
    player.fight( 
      $random(0, mortalKombat.contestants.length-1) 
    ); 
  } 
}; 

When you’ll use it: This is pretty straightforward. $random just gives you 
a random number. 



42     MooTools Essentials 

$time :: Core/Core.js 
What it does: $time returns the current time as a timestamp (an integer). 
Usage:  
  $time() 

Example: 
var ninja = { 
  lastFight: 0, 
  fight: function(enemy){ 
    //Is the ninja too tired? 
    if ($time() - ninja.lastFight < 1000) return; 
    //No! Fight!!! 
    enemy.isAlive = false; 
    ninja.lastFight = $time(); 
  } 
}; 

When you’ll use it: $time can be used for a lot of things. Basically, it’s 
just a shortcut to new Date().getTime(), and it returns a large integer. 
You can use it to measure the duration between events or to generate a 
number that is unique for an event (provided you don’t have events firing 
at a rate faster than one per millisecond). 

$try :: Core/Core.js 
What it does: $try will attempt to execute any number of functions, 
returning either the return value of the first one that does not throw an error 
or null if none of them succeed. 
Usage:  
  $try (fn, fn, fn, etc.); 



 MooTools Essentials     43 

Example: 
var result = $try(function(){ 
    return some.made.up.object;  
    //Fails - this is nonsense 
}, function(){ 
    return jibberish.that.doesnt.exist;  
    //More junk, throws errors 
}, function(){ 
    return 2+2; 
}); //result == 4 

When you’ll use it: $try is just another shortcut to save a little time. It’s a 
functional programming way of looking at try/catch that basically does 
the same thing, except you can run numerous functions through it. 

Browser: Information About the Client 
MooTools contains a set of useful shortcuts to information about the 
visitor’s browser. All the engine detection is feature based (rather than 
sniffing the client string, which is unreliable). There’s not a lot to explain 
here, so I’ll just quote the documentation. You can reference this 
information by referring directly to the attribute. 
Example: 
if(Browser.Engine.trident4) { 
  alert('Hey, IE6 was released in 2001! UPGRADE!'); 
} 

Features: 
 Browser.Features.xpath: (Boolean) true if the browser supports DOM 

queries using XPath 

 Browser.Features.xhr: (Boolean) true if the browser supports the native 
XMLHTTP object 



44     MooTools Essentials 

Engine: 
 Browser.Engine.trident: (Boolean) True if the current browser is 

Internet Explorer (any version) 

 Browser.Engine.trident4: (Boolean) True if the current browser is 
Internet Explorer 6 

 Browser.Engine.trident5: (Boolean) True if the current browser is 
Internet Explorer 7 

 Browser.Engine.gecko: (Boolean) True if the current browser is 
Mozilla/Gecko 

 Browser.Engine.webkit: (Boolean) True if the current browser is 
Safari/Konqueror 

 Browser.Engine.webkit419: (Boolean) True if the current browser is 
Safari 2/WebKit prior to and including version 419 

 Browser.Engine.webkit420: (Boolean) True if the current browser is 
Safari 3 (WebKit SVN Build)/WebKit after version 419 

 Browser.Engine.presto: (Boolean) True if the current browser is Opera 

 Browser.Engine.name: (String) The name of the engine 

Platform: 
 Browser.Platform.mac: (Boolean) True if the platform is Mac 

 Browser.Platform.windows: (Boolean) True if the platform is Windows 

 Browser.Platform.linux: (Boolean) True if the platform is Linux 

 Browser.Platform.other: (Boolean) True if the platform is neither Mac, 
Windows, nor Linux 

 Browser.Platform.name: (String) The name of the platform 

www.allitebooks.com

http://www.allitebooks.org


 MooTools Essentials     45 

Chapter 4: Native Objects 
JavaScript contains numerous native object types (String, Array, 
Function, Boolean, Element, etc.) that in many ways leave a lot to be 
desired. What’s more, different browsers implement these objects 
differently, making it difficult to write code that works across them all 
without a lot of conditionals sniffing for different browsers. 
MooTools implements functionality into the native objects to make them 
both easier to work with (by adding shortcut methods) and more reliable 
(by doing all the browser sniffing for you and providing you with a single 
API that works for all browsers). These methods should always be used 
rather than their native counterparts. MooTools will not only help you deal 
with browser inconsistencies, but also protect you against things like 
memory leaks. For more on this, see “Why You Should Use a JavaScript 
Framework” in the Introduction. 

Native.implement 
In addition to altering these native objects, MooTools also allows you to 
change them yourself. If there’s a method you wish String or Array had, 
you can easily add it. The syntax is very similar to how implement works 
with classes. Here’s an example: 
String.implement({ 
  alert: function(){alert(this);}, 
  log: function(){console.log(this);} 
}); 
"foo".alert() //Alerts "foo" 
"foo".log() //Logs "foo" 



46     MooTools Essentials 

The implement method for both Class and Native work the same—they 
alter the prototype of all the objects of that type. So the preceding example 
doesn’t add the methods log and alert to a specific string, it adds it to all 
of them by modifying the parent—the prototype of all strings. 
This chapter will dig into the native objects: 
 Array* 

 Object (a.k.a. Hash) 

 Function* 

 Number* 

 String* 
 Event 
 Element 

For the items marked with an asterisk (*), you should use the literal 
declarations for each. For example: 
var numbers = [1,2,3]; //Yes 
var numbers = new Array(1,2,3); //No 

The exceptions are Event, Element, and Hash. For Hash, in particular, you 
should use literal declarations for objects, but you’ll need to initialize those 
objects into a Hash if you want to use the Hash methods: 
//This is a standard object 
var fruits = { 
  apple: 'red', 
  lemon: 'yellow', 
  grape: 'purple' 
}; 
//Here is the same object as a hash: 
var fruits = new Hash({ 
  apple: 'red', 
  lemon: 'yellow', 



 MooTools Essentials     47 

  grape: 'purple' 
}); 
fruits.each(function(color, fruit){ 
  alert(fruit + 's are ' + color); 
  //Alerts apples are red, lemons are yellow, etc. 
}); 

So even objects are declared as literals and only initialized as Hash 
instances if you want the methods of Hash applied to them (see more in 
“Objects (a.k.a. Hash)” later in this chapter). 

Arrays 
The native Array prototype gets a lot of love in MooTools. Arrays don’t 
require any instantiation to acquire these methods (unless you’re working 
with an iterable object that isn’t a true Array, like the arguments object—
see “Iterable Helpers and Shortcuts: $arguments, $each, $splat, $A, and 
$H” in Chapter 3). This means you can (and should) use the literal 
initialization for arrays. For example: 
var numbers = [1,2,3]; 
numbers.each(function(value){ 
  alert(value); 
  //Alerts 1, 2, 3 
}); 

Array Methods 
Arrays have numerous native methods (push, slice, pop, etc.), but not all 
of these are easy to use, and many of them leave something to be desired. 
In some cases, methods appear to have just been left out, like indexOf, 
which is not in the original JavaScript 1.0 specification. It is, however, in 
the 1.5 specification, which many modern browsers implement (Firefox, 
Safari, Opera, etc.). MooTools adds numerous methods to Array. Most of 
these are the methods defined in the 1.5 specification, and, for browsers 
that already support these methods natively, MooTools doesn’t alter them. 



48     MooTools Essentials 

For older browsers that don’t support them, MooTools adds them so that 
you can use them safely without having to worry whether they are present. 

Here’s a quick rundown of all the Array methods: 

METHOD TYPE METHOD NAME 

Iteration each, filter, some, every, map 

Introspection indexOf, getLast, getRandom 

Manipulation erase, extend, include, combine, 
associate, clean, flatten 

Less commonly used rgbToHex, link 

Array :: Iteration Methods 
The most used methods on Array will no doubt be employed to iterate over 
thier properties. All of the iteration methods have the following in 
common: 
 They take two arguments: a function to execute for each item in the array and 

an optional object to which that function should be bound. 
 The function passed as the first argument is passed two arguments: the item 

for that iteration and the index of it. 

Let’s look at each, which you’ll use the most. 

Array.each 
What it does: Iterates over each item in an array and executes a method for 
each item. The method is passed as arguments the value and the index of 
that value in the array. Array.each takes an optional second argument for 
an object to which to bind the passed-in method. 
Usage: 
  myArray.each(function, bind); 



 MooTools Essentials     49 

Example: 
[1,2,3].each(function(value, index){ 
  alert('the item at position ' + index + 
        ' is ' + value); 
  //Alerts "the item at position 0 is 1", 
  //"...1 is 2", etc. 
}); 

When you’ll use it: Using each instead of a for loop allows for a more 
functional approach to your code (see “Functional Programming” in the 
Appendix), but it also can make your code less verbose and easier to 
manage. 
The ability to bind something to that function is of course useful (see 
“‘this’ and Binding” in the Appendix), and note that you don’t have to use 
.bind on the function. For example: 
//Incorrect 
[1,2,3].each(function(value, index){}.bind(someObject)); 
//Correct 
[1,2,3].each(function(value, index){}, someObject); 

Also note that you don’t have to declare the index argument for the 
function passed in if you aren’t making use of it. There’s no expense in 
declaring it though, it just saves a few characters if you don’t need it. 
//Here, index is unused 
[1,2,3].each(function(value, index){alert(value);}); 
 
//I don't need index in my method, so there's 
//no point in declaring it 
[1,2,3].each(function(value){alert(value);}); 

The same is true for the bind object. If the contents of the method that you 
pass to each do not make a reference to this, there’s no point in binding 
the function to an object. Although there’s no real expense for doing it 
anyway, there’s no benefit. 



50     MooTools Essentials 

Anonymous Methods vs. Named Functions 
The preceding examples use an anonymous function, but there’s no reason 
why you can’t pass the method a function that’s already defined. Consider 
the following: 
var say = function(msg) {alert(msg);}; 
[1,2,3].each(say); //Alerts 1, 2, 3 
[1,2,3].each(function(msg){alert(msg);}); //Same thing 

Other Iteration Methods 
So each lets you iterate over the objects in an array, but what of the other 
methods? So long as you understand how each works, you can apply the 
same methodology to the other iteration methods. Here’s what they do: 

Array.filter: This method returns a new array excluding items for which 
the method passed to filter return something “falsy” (zero, empty string, 
null, undefined, or false). 

 var evens = [1,2,3,4,5].filter(function(value, index){ 
   return !(value % 2); 
 }); //Returns [2,4] 

Array.some: This method returns a Boolean—true if the method passed to 
some returns true at least once. 

 var atLeastOneOfTheseIsBiggerThanTwo = [1,2,3].some( 
   function(value, index){ 
     return value > 2; 
   } 
 ); //Returns true because 3 > 2 
 var oneIsEven = [1,3,5].some(function(value) { 
   return value % 2 == 0; 
 }); //Returns false, because 1,3,5 are each not even 

Array.every: This method returns a Boolean—true if the method passed 
to every returns true for each item in the array. 

 



 MooTools Essentials     51 

 var greaterThanOne = function(val){ return val > 1 }; 
 var lessThanFive = function(val) { return val < 5 }; 
 [1,2,3].every(greaterThanOne); //Returns false 
 [1,2,3].every(lessThanFive); //Returns true 

Array.map: This method returns a new array—the result of the returned 
values for the method passed to map. 

 var timesTwo = function(value){ 
   return value*2; 
 }; 
 var twoFourSix = [1,2,3].map(timesTwo); 
 var timesThree = [1,2,3].map( 
   function(value){return value*3} 
 ); 

Array :: Introspection Methods 
The following shortcut methods are mostly used for introspection. For 
instance, indexOf doesn’t alter the array or iterate over it, it just returns the 
index of an item in the array. 

Array.indexOf: This method returns the index of an item in the array. 
 [0,1,2,3].indexOf(3); //Returns 4 

Array.getLast: This method returns the last item in the array. 
 [0,1,2,3].getLast(); //Returns 3 

Array.getRandom: This method gets a random item from the array. 
 [0,1,2,3].getRandom(); //Returns a random value 

Array :: Manipulation Methods 
Finally, you have the methods that alter the array. As noted earlier, 
JavaScript already has numerous methods for doing this, including splice, 
unshift, pop, push, and so forth. MooTools adds a few more to your 
toolbox. All of these methods return the array to you, but in the case of 



52     MooTools Essentials 

erase, empty, and include, the array is also altered. So, for example, 
myArray.erase(foo) alters myArray. 

Array.erase: This method erases an item from the array. 
 ['ninja', 'samurai', 'ninja'].erase('ninja') 
 //Returns ['samurai'] 
 var warriors = ['ninja', 'samurai', 'ninja']; 
 warriors.erase('ninja'); //warriors = ['samurai'] 
 
 //When an item is not found the array is unaltered 
 ['shuriken', 'nunchucks', 'darts'].erase('katana') 
 //Returns ['shuriken', 'nunchucks', 'darts'] 

Array.empty: This method removes all the items from the array. 
 var foo = [1,2,3]; 
 foo.empty(); //foo.length == 0 

Array.extend: This method adds all the items in one array to the other 
(allows duplicates). 

 var foo = [1,2,3]; 
 foo.extend([2,3,4]; //foo = [1,2,3,2,3,4] 

Array.include: This method pushes the value into the array if it’s not 
already present. 

 ['ninja', 'samurai'].include('kung-foo master') 
 //Returns ['ninja', 'samurai', 'kung-foo master'] 
 ['ninja', 'samurai'].include('ninja') 
 //Returns ['ninja', 'samurai'] 
 var warriors = ['ninja', 'samurai']; 
 warriors.include('kung-foo master'); 
 //warriors = ['ninja', 'samurai', 'kung-foo master'] 



 MooTools Essentials     53 

All of the following methods return a new array to you: 
Array.combine: This method combines two arrays without duplicates. 
Note that combine will exclude any duplicates found in the array passed in. 

 ['ninja', 'samurai'].combine(['ninja', 
  'kung-foo  master']) 
 //Returns ['ninja', 'samurai', 'kung-foo master'] 

Array.associate: This method returns an object of keys/values where the 
passed-in array becomes the keys. 

 ['good', 'evil'].associate(['samurai', 'ninja']); 
 //Returns {samurai: 'good', ninja: 'evil'} 

Array.clean: This method is a shortcut to a version of Array.filter 
that simply returns the value as its condition. 

 [null, 0, "", false, true].filter(function(value){ 
   return value; 
 }); 
 //Returns [true], as all the other values are "falsy" 
 [null, 0, "" , false, true].clean(); //Same result 

Array.flatten: This method flattens an array of arrays into a single array, 
returning a new array. 

 var myArray = [1,2,3,[4,5, [6,7]], [[[8]]]]; 
 var newArray = myArray.flatten(); 
 //newArray is [1,2,3,4,5,6,7,8] 

Objects (a.k.a. Hash) 
JavaScript has a basic object type—a hash or map—for storing values in 
a single memory space. The language extends this very basic object for 
nearly all the other types in the library, so, for example, a function is also 
an object. 
Unlike other natives in the language, MooTools does not extend the 
object prototype to add helper methods, and neither should you. This is 



54     MooTools Essentials 

due to the way you iterate over the items in an object. Here’s what it looks 
like in plain vanilla JavaScript: 
var ninja = { 
  weapon: 'sword', 
  equipment: 'rope' 
}; 
for (var prop in ninja){ 
  alert("The ninja's " + prop + " is a " + ninja[prop]); 
} 

This example will send an alert that the ninja has a sword and a rope. 
However, if you extend the object prototype, you would get those 
properties too. Because this affects every type of object, it’s considered 
forbidden—a no-no. 
But working with objects is something developers do often in JavaScript, 
and it’s a hassle to not have the same kind of helper methods that 
MooTools offers for the other native types. To remedy this situation, 
MooTools offers the Hash class. By instantiating this class with an object, 
you get a new item that contains the properties of your object and the 
helper methods. 
This means that if you want to add methods to an object, you must 
initialize it as a special extended type of object, and that’s what Hash does. 
When you invoke new Hash(object), you are returned a copy of the 
object, but now it has new properties—methods that you can use to manage 
and inspect the data in the object. 

Hash 
What it does: Extends the native object (as in {foo: bar}) in JavaScript 
to add iteration methods. 
Core.js declares the Hash class specifically for the iteration method each 
because it’s used in other scripts in the library, and so it has to be defined 



 MooTools Essentials     55 

in Core.js. But because Hash is used liberally in MooTools, you’ll likely 
include Native/Hash.js in any code you write. 
Usage: 
new Hash({foo: 'bar'}); 
$H({foo: 'bar'}); //$H is just a shortcut for new Hash 

Example: 
var ninjas = new Hash({ 
  red: {side: 'unknown'}, 
  black: {side: 'evil'}, 
  white: {side: 'good'} 
}); 
ninjas.each(function(value, key){ 
  alert(key + ' ninja is on the side of ' + value.side); 
}); 

When you’ll use it: Hash extends a native JavaScript object to add 
methods to it that can be used to manage its data and to iterate over it. 

$H 
What it does: Serves as a shortcut for new Hash(). 
Usage: 
var myHash = $H({foo: 'bar'}); 
//Same as 
var myHash = new Hash({foo: 'bar'}); 

Hash Methods 
MooTools adds numerous methods to objects when you include 
Native/Hash.js, but Core/Core.js only adds the few that are required 
for everything in the library to work. Given how widely used it is, you’ll 
likely have Hash.js in your library. 



56     MooTools Essentials 

Much like the Array methods, the Hash methods, listed here, are mostly 
used for iteration and introspection: 

METHOD TYPE METHOD NAME 

Iteration each, filter, some, every, map 

Introspection has, keyOf, hasValue, 
toQueryString, get, getClean, 
getKeys, getLength, getValues 

Manipulation set, extend, combine, erase, empty, 
include 

Hash :: Iteration Methods 
Hash has all of the same iteration methods that Array uses, and they work 
exactly the same way with one distinction: the function passed to the 
method does not receive the value and the index but instead the value and 
the key. Let’s look at Hash.each: 

Hash.each 
What it does: Lets you iterate over each member of a hash and perform a 
function for each item, much like Array.each. The bind argument is 
optional (as with Array.each). The passed-in function will be executed for 
each item in the hash, and it will be passed as arguments the value and the 
key of that value in the hash. 
Usage: 
myHash.each(function(value, key){/*your code*/}, bind); 
//bind is optional 



 MooTools Essentials     57 

Example: 
//A conversation between two people arriving for work 
$H({ 
  goodNinja: 'Ralph', 
  evilNinja: 'Sam' 
}).each(function(value, key) { 
  alert(key + ': Morning ' + value + '.'); 
  //Alerts 
  //"goodNinja: Morning Ralph. " 
  //"evilNinja: Morning Sam. " 
}); 

When you’ll use it: Whenever you have an object of key/value pairs and 
need to iterate over them, it’s easier to use Hash.each than it is to use a 
for loop. In addition to the easier syntax, you have the ability to define 
scope (with binding) and use closures (see “Closures,” “Functional 
Programming (a.k.a. Lambda),” and “‘this’ and Binding” in the Appendix). 

Tip You can iterate quickly over an object without using Hash with 
$each: 

  $each(data, function(value, key) {...}[, bind]); 

Using $H.each requires about the same effort: 

  $H(data).each(function(value, key{...}[,bind]); 

All the other iteration methods for Hash follow this same pattern and do the 
same things they do for Array. 



58     MooTools Essentials 

Other Iteration Methods 
Using the same pattern as Hash.each, you can use these other iteration 
methods. As with Hash.each, each method here iterates over each member 
in the hash, applying the passed-in function to each member and passing 
that function the value and the key for each one. They also take a second, 
optional, argument for binding. 

Hash.filter: This method returns a new Hash excluding any item for 
which the method passed to filter returns something “falsy” (zero, empty 
string, null, undefined, or false). 

 var evens = $H({ 
   a: 1, b: 2, c: 3 
 }).filter(function(value, key){ 
    return !(value % 2); 
  }); //evens = Hash({b: 2}); 

Hash.some: This method returns a Boolean—true if the method passed to 
some returns true at least once. Note that you don’t have to declare the key 
in the passed function if you don’t use it. 

 var oneIsEven = $H({ 
   a: 1, b: 3, c: 5 
 }).some(function(value) { 
   return value % 2 == 0; 
 }); //Returns false, because 1,3,5 are each not even 

Hash.every: This method returns a Boolean—true if the method passed to 
every returns true for each item in the hash. 

 var greaterThanOne = function(value){return value > 1}; 
 var lessThanFive = function(value) {return value < 5}; 
 $H({a: 1, b: 2, c:3}).every(greaterThanOne); 
 //Returns false 
 $H({a: 1, b: 2, c:3}).every(lessThanFive); 
 //Returns true 



 MooTools Essentials     59 

Hash.map: This method returns a new hash—the result of the returned 
values for the method passed to map. 

 var timesTwo = function(value){ 
   return value*2; 
 }; 
 var twoFourSix = $H({a: 1, b: 2, c: 3}).map(timesTwo); 
 //twoFourSix = Hash({a: 2, b: 4, c: 6}); 
 var timesThree = $H({ 
   a: 1, b: 2, c: 3 
 }).map(function(value, index){ 
   return value*3 
 }); 
 //timesThree =  Hash({a: 3, b: 6, c: 9}); 

Hash :: Introspection Methods 
Hash provides methods to retrieve information about the data in the hash 
that should be used instead of the dot notation or bracket notation used in 
native objects. 
var ninja = {color: "black", side: "evil"}; 
ninja.color = "red"; 
//This is OK for native objects of course 
var ninjaHash = new Hash(ninja); 
ninjaHash.get('color') ; 
//Returns "red" 

Hash.get: This method returns the value for the given key. 
 $H({apple: 'red', lemon: 'yellow'}).get("apple"); 
 //Returns 'red' 
 $H({apple: 'red', lemon: 'yellow'}).get("grape"); 
 //Returns undefined 



60     MooTools Essentials 

Note Hash.get does not retrieve properties of Hash—only the 
properties of the object you pass in to Hash. So, for example, although 
Hash has the method each, invoking $H({foo: bar}).get('each') 
would return null; this is because each is not a member of {foo:bar}—
it’s a member of Hash. Hash wraps your object with its own methods, but it 
treats your object as if Hash has not altered it. 

Hash.getClean: This method returns an object that has none of the hash 
methods. 

 $H({apple: 'red', lemon: 'yellow'}).getClean; 
 //Returns {apple: 'red', lemon: 'yellow'} 

Hash.getKeys: This method returns an array of all the keys in the hash. 
 $H({apple: 'red', lemon: 'yellow'}).getKeys(); 
 //Returns ["apple", "lemon"] 

Hash.getLength: This method returns the length of the number of 
key/value objects in the hash. 

 $H({apple: 'red', lemon: 'yellow'}).getLength(); 
 //Returns 2 

Hash.getValues: This method returns an array of all the keys in the hash. 
 $H({apple: 'red', lemon: 'yellow'}).getValues(); 
 //Returns ['red', 'yellow'] 

Hash.has: This method returns true if the hash has a value for the 
specified key. 

 $H({apple: 'red', lemon: 'yellow'}).has('grape'); 
 //Returns false 
 $H({apple: 'red', lemon: 'yellow'}).has('apple'); 
 //Returns true 



 MooTools Essentials     61 

Hash.hasValue: This method returns true if the hash contains the 
specified value. 

 $H({apple: 'red', lemon: 'yellow'}).has('red'); 
 //Returns true 
 $H({apple: 'red', lemon: 'yellow'}).has('purple'); 
 // Returns false 

Hash.keyOf: This method returns the corresponding key for a given value if 
the hash contains that value. 

 $H({apple: 'red', lemon: 'yellow'}).keyOf('red'); 
 //Returns 'apple' 
 $H({apple: 'red', lemon: 'yellow'}).keyOf('purple'); 
 //Undefined 

Hash.toQueryString: This method returns a query string of key/value 
pairs for all the contents of the hash. Note that this really only works if the 
toString method of the values returns a useful notation of the object. So, 
for instance, if one of the values in your hash is a DOM element, the 
toString representation of that is not likely to be useful. Booleans, strings, 
numbers, and arrays are more likely to be useful with this method. 

 $H({apple: 'red', lemon: 'yellow'}).toQueryString(); 
 //Returns apple=red&lemon=yellow 

Hash :: Manipulation Methods 
Hash has several methods that allow you to alter the contents of the hash 
itself. 

Hash.empty: This method removes all key/value pairs from the object. 
 $H({apple: 'red', lemon: 'yellow'}).empty(); 
 //Hash no longer has any keys/values 

Hash.erase: This method removes a specific key/value pair (pass in the 
key). 

 $H({apple: 'red', lemon: 'yellow'}).erase('apple'); 
 //Hash is now {lemon: 'yellow'} 



62     MooTools Essentials 

Hash.extend: This method adds all the key/values for the object passed in, 
overwriting any namespace collisions. This is the equivalent syntax for 
$extend(obj1, obj2). 

 $H({ 
   apple: 'red', lemon: 'yellow' 
  }).extend({apple: 'green'}); 
 //Hash is now {apple: 'green', lemon: 'yellow'} 

Hash.include: This method adds the key/value set if the key is not already 
present. 

 $H({ 
   apple: 'red', lemon: 'yellow' 
 }).include('apple', 'green'); 
 //Hash is now {apple: 'red', lemon: 'yellow'}; 

Hash.combine: This method adds all the key/values for the object passed 
in, excluding any namespace collisions. 

 $H({apple: 'red', lemon: 'yellow'}).combine({ 
   apple: 'green', grape: 'purple' 
 }); 
 //Hash is now 
 //{apple: 'red', lemon: 'yellow', grape: 'purple'} 

Hash.set: This method sets the value for the given key. 
 $H({ 
   apple: 'red', lemon: 'yellow' 
 }).set('apple', 'green'); 
//Hash({apple: 'green', lemon: 'yellow'); 

Functions 
At the heart of modern JavaScript is the concept of functional 
programming (see “Functional Programming (a.k.a. Lambda)” in the 
Appendix). Unfortunately, there are a lot of things that you’ll likely want to 
accomplish with functions that the native JavaScript specification makes 



 MooTools Essentials     63 

far from simple. Thankfully, MooTools makes most of these tasks easier to 
accomplish. 

Function Methods Generate Copies 
As with most native objects, MooTools adds methods to the Function 
prototype. This makes these methods available on all functions. It’s 
important to note that executing most of these methods returns a new 
function (some of them return the result of invoking the function, like $try 
or .call). The new function is the same as the old one, except some new 
attribute has been defined for this new one, but it’s not the same function—
it’s a copy of it. 
This distinction is important to keep in mind whenever you have a pointer 
to a function and you need to reference it again. 
An example here requires that I jump ahead a bit, but I think it’s important, 
so bear with me. Consider adding an event to a DOM element (this is 
MooTools syntax): 
var highlight = function(){ 
  this.setStyle('background-color', 'yellow' 
}); 
$('myElement').addEvent('click', 
  highlight.bind($('myElement').getParent()) 
); 
//...Later 
$('myElement').removeEvent('click', highlight); 
//This won't work! 

Allow me to explain the preceding code. It contains a method that will 
change the background color of an element to yellow. It references the 
keyword this, meaning that you expect an element to be bound to the 
function (see “‘this’ and Binding” in the Appendix). Then you attach an 
event to an element, but you bind the highlight method to the parent of 
your element because you want to highlight that. Later you decide to 



64     MooTools Essentials 

remove that event. removeEvent takes as its argument the event (click) 
and the function you attached previously (highlight). 
But wait! This won’t work! Why? Because when you called bind on 
highlight when you attached the event, what was attached was a copy of 
highlight—a copy with its bind property set. 
So how do you manage this kind of scenario? You have to keep a reference 
to the new copy: 
var highlight = function(){ 
  this.setStyle('background-color', 'yellow') 
}; 
var parentHighlight = 
  highlight.bind($('myElement').getParent()); 
$('myElement').addEvent('click', parentHighlight); 
//...Later 
$('myElement').removeEvent('click', parentHighlight); 
//voila! 

This pattern isn’t one you’ll encounter a lot—needing to keep a reference 
like this—but it’s very important to recognize that when you call a method 
on a function, it usually returns a copy of the function. The methods that do 
not return a copy like this are the methods that return something other than 
the function—like attempt, which returns the result of the function or 
null if the attempt fails. 

Function.attempt 

This executes the function and returns the value that the function returns  
unless there is an exception, in which case it returns null; however, the 
exception is not raised to the browser. This takes an optional second 
argument for a bind object (see Function.bind next).



 MooTools Essentials     65 

  var say = function(msg){ 
  alert(msg.toString()); 
  return true; 
}; 
say(null); 
//This will throw an error as null.toString is undefined 
var spoke = say.attempt(null); 
//Will still fail, but will not raise an error 
//spoke == null 

Function.bind 

This binds an object to the this keyword within the function; it takes an 
optional second argument for arguments to be passed to the function. If you 
use this second argument, you can pass in a single object or, if you wish to 
pass in more than one argument to the function, pass in an array. 
myFunction.bind(object); 
myFunction.bind(object, argument); 
myFunction.bind(object, [arg1, arg2, etc.]); 

For example: 
var highlight = function(){ 
  this.setStyle('background-color', 'yellow'); 
}; 
var boundHighlight = highlight.bind($('myElement')); 
boundHighlight(); 
 
//Here it is again using the args option 
var highlight = function(color){ 
  this.setStyle('background-color', color); 
}; 
var boundHighlight = 
  highlight.bind($('myElement'), 'yellow'); 
boundHighlight(); 
 



66     MooTools Essentials 

//And here it is passing in more than one argument 
var highlight = function(color, border) { 
  this.setStyles({ 
    'background-color': color, 
    'border-color': border 
  }); 
}; 
var boundHighlight = 
  highlight.bind($('myElement'), ['red', 'green']); 
boundHighlight(); 

At this point, you are no doubt asking yourself why you would ever write 
JavaScript this way. The reality is that you wouldn’t in all likelihood. I’m 
trying to illustrate the concept of binding here so that when you get into the 
examples in the next section of the book, it’ll be clear to you. 
But to put it in perspective, by writing code this way, it is possible to write 
very abstract methods and collections of methods that can be reused in 
many, many different ways. Indeed, all you have to do is look through 
MooTools itself to see all of these concepts in action (see “‘this’ and 
Binding” in the Appendix for more details on binding). 

Function.bindWithEvent 

You probably won’t find yourself using this very often, but it does 
sometimes come in handy. Here’s what appears in the MooTools 
documentation: “Changes the scope of this within the target function to 
refer to the bind parameter. It also makes ‘space’ for an event. This allows 
the function to be used in conjunction with Element.addEvent and 
arguments.” Here’s the syntax: 
myFunction.bindWithEvent(bind, arguments); 
//arguments are optional 



 MooTools Essentials     67 

And here’s an example: 
function myFunc(event, add){ 
  //Note that 'this' here refers to the current 
  //scope, typically the window, not an element. 
  //We'll need to bind this function to the 
  //element we want to alter. 
  this.setStyle('top', event.client.x + add); 
}; 
$(myElement).addEvent('click', 
  myFunc.bindWithEvent(myElement, 100); 
//When clicked, the element will move to the 
//position of the mouse + 100. 

The reason you won’t use it very often is because you’ll typically work 
with events via the element method addEvent, which automatically does 
all this for you. 

Function.delay 

This method delays the function, executing it after the given duration 
specified. This method returns the JavaScript timeout ID, which can be 
used to cancel the call. This takes as optional arguments bind and 
arguments; see the discussion on function.bind earlier in the chapter 
for more on these arguments. 
var hilight = function(color){ 
  this.setStyle('background-color', color); 
}; 
var hilightDelay = 
  highlight.delay(500, $('myElement'), 'red'); 
//Wait 500ms, then execute highlight, passing 'red' 
//as its argument binding $('myElement') to 
//the function 
$clear(hilightDelay); //Nevermind! 



68     MooTools Essentials 

Function.pass 

This method will create a copy of a function with its arguments already 
specified (to be executed later). The second argument for binding is 
optional (see the discussion on function.bind earlier). 
var say = function(msg){ 
  alert(msg.toString()); 
  return true; 
}; 
var howdy = say.pass('howdy'); 
//...Later 
howdy(); //Alerts "howdy" 

Function.periodical 

This method works just like function.delay, except that it recurs. 
var blink = function(){ 
  if (this.getStyle('display') == 'none') 
    this.setStyle('display', 'block'); 
  else this.setStyle('display', 'none'); 
}; 
blink.periodical(500, $('myElement')); 
//Egads! The blink tag is back! 

Function.run 

JavaScript has its own native methods to execute a function while binding 
something to it at the same time: Function.apply and Function.call. 
Those methods take as arguments the this keyword to bind to the function 
and a second, optional list of arguments to pass to the function. The 
difference between them is that call takes a single argument, while apply 
takes an array.  



 MooTools Essentials     69 

For example: 
var highlight = function(color){ 
  this.setStyle('background-color', color); 
}; 
highlight.apply($('myElement'), ['yellow']); 
//Same as 
highlight.call($('myElement'), 'yellow'); 

This is handy if you need to bind something to a function before you 
execute it. Otherwise, you’d have to do something silly like this: 
highlight.bind($('myElement'), 'yellow')(); 

What if you want to just run a method and pass arguments to it but not 
necessarily bind anything to it? What if you want to call a function and 
pass it an array of arguments? It’s ugly to pass null values in for the bind 
argument just to be able to pass an array to the function: 
var say = function(name, msg){ 
  alert(name + ' says ' + msg); 
}; 
var words = ['bob','hi']; 
say.apply(null, words); 
//We don't need to bind anything, 
//but passing null is kinda ugly 

So MooTools gives you function.run, which takes as its first argument 
an array or a single object to pass to the function, and the bind argument is 
optional. 
var say = function(msg){ alert(msg); }; 
var talk = function(){ 
  $A(arguments).each(say); 
}; 
talk('I', 'like', 'cheese'); //Alerts each argument 
var msgs = ['I', 'like', 'cheese']; 
talk.run(msgs); 



70     MooTools Essentials 

OK, why not just pass the arguments straight to the function—why would 
you want to pass an array of arguments? Well, sometimes you are getting 
values programmatically, and you have the arguments for a function as a 
reference to an array or a string or whatever. You can throw any of these 
things at run, and it’ll handle it. 

Numbers 
Most of the native methods for Number in JavaScript are part of the Math 
object or are stand-alone functions. For example, parseInt is just a built-
in function to parse a string to an integer. 
This isn’t a very MooTools way of doing things though; MooTools prefers 
to add methods to the prototypes of natives, so MooTools translates most 
of these as methods on Number. 
As a result, most of the MooTools methods for Number are native methods 
just applied to the numbers as methods. 
var x = 3.5; 
x.floor(); //Returns 3 
Math.floor(3.5); //Same thing 

Note that you can’t execute these methods on the literal for numbers 
(because number literals can contain decimals), so this won’t work: 
3.floor(); 

But this would: 
(3).floor(); 

In addition to converting all the Math methods (abs, acos, asin, atan, 
atan2, ceil, cos, exp, floor, log, max, min, pow, sin, sqrt, and tan) to 
native methods, MooTools adds the following methods: 



 MooTools Essentials     71 

Number.limit: This method limits the number between two bounds. 
 (12).limit(2, 6.5);  //Returns 6.5 
 (-4).limit(2, 6.5);  //Returns 2 
 (4.3).limit(2, 6.5); //Returns 4.3 

Number.round: This method rounds a number to a given precision. 
 (12.45).round()   //Returns 12 
 (12.45).round(1)  //Returns 12.5 
 (12.45).round(-1) //Returns 10 

Number.times: This method iterates a method a given number of times, 
passing as the argument the number of the current iteration. It also takes an 
optional second argument for binding. 

 (4).times(alert); 
 //Alerts "0", then "1", then "2", then "3". 

In many ways, this is just a shortcut for a standard for loop, but it also 
conforms to that notion of functional programming discussed elsewhere in 
this book. 

Number.toFloat: This method returns a number as a float. This is useful 
because sometimes you have a value and you may not know whether it’s a 
string or a number (for example, Element.setStyle takes for the 
numerical property of CSS values either a number or a string). 

 (111).toFloat(); //Returns 111 
 (111.1).toFloat(); //Returns 111.1 

Number.toInt: Much like Number.toFloat, this is useful when you have 
a variable that may be a number or a string. It takes as an optional argument a 
base value that defaults to 10. This is an important distinction to the native 
parseInt, which also defaults to 10 unless the string you pass it starts with 
a zero; in that case, it switches to octal for the radix so that parseInt(012) 
returns 10 (awesome!), unless you pass it a second argument to explicitly tell 
it to use base 10, as it would otherwise . . . But I digress. MooTools adds 
Number.toInt and makes this all better. 



72     MooTools Essentials 

"111".toInt(); //Returns 111 
(111.1).toInt(); //Returns 111 
"012".toInt(); //Returns 12 
//You can specify a different base; this returns 7: 
"111".toInt(2); 

Strings 
Strings in MooTools get several methods that fall into two basic camps: 
introspection and manipulation (the bulk of them are in the latter): 

METHOD TYPE METHOD NAME 

Introspection contains, test 

Manipulation capitalize, camelCase, clean, escapeRegExp, 
hyphenate, stripScripts, substitute, 
toFloat, toInt, trim 

Less commonly used hexToRgb, rgbToHex 

String.contains: This method checks to see whether the string contains 
the passed-in string. You can pass in a second argument, which it will use to 
separate the string into chunks, and then compare each of those to the one 
you’re looking for. 

 'a bc'.contains('bc'); //Returns true 
 'a b c'.contains('c', ' '); //Returns true 
 'a bc'.contains('b', ' '); //Returns false 

String.test: This method checks to see whether a string passes a regular 
expression; it returns true or false. You can pass a second argument for 
RegExp options. Alternatively, you can pass in a RegExp object. 

 "I like cookies".test("cookie"); //Returns true 
 "I like cookies".test("COOKIE", "i"); 
  //Returns true (ignore case) 
 "I like cookies".test(/COOKIE/i); //Same as above 
 "I like cookies".test("cake"); //Returns false 



 MooTools Essentials     73 

String.toFloat, String.toInt: These methods convert a value to a 
float or an integer. 

 "3".toInt(); //Returns 3 
 "3.4".toInt(); //Returns 3 
 "3.4".toFloat(); //Returns 3.4 

String.camelCase, String.hyphenate: These two methods convert 
strings between each other. 

 "borderTop".hyphenate(); //Returns "border-top" 
 "border-top".camelCase(); //Returns "borderTop" 

String.capitalize: This method capitalizes the first letter of each word. 
 "i like cookies".toInt(); //Returns I Like Cookies 

String.trim, String.clean: This method removes whitespace at the 
beginning and end of a string; clean also removes line breaks. 

 " i   like     cookies   \n\n".clean(); 
 //Returns "i like cookies" 

String.escapeRegExp: This method escapes the characters in a string that 
would otherwise mess up a regular expression. 

 'animals.sheep[1]'.escapeRegExp(); 
 //Returns 'animals\.sheep\[1\]' 

String.stripScripts: This method removes all <script> tags from a 
string of HTML; you can optionally pass in true as the argument to evaluate 
those scripts before removing them. 

String.substitute: This method substitutes keywords in a string using 
an object of key/values. You can optionally pass in a RegExp as the second 
argument to denote the pattern used to match the keys. The default for this is 
/\?{([^}]+)}/g, which translates to “{key}”. 

 



74     MooTools Essentials 

var myString = 
   "{subject} just {property_1} to be  {property_2}."; 
 var myObject = { 
   subject: 'Lonely ninja', 
   property_1: 'wants', 
   property_2: 'friends' 
 }; 
 myString.substitute(myObject); 
 //Lonely ninja just wants to be friends. 

Events 
JavaScript is mostly about interactivity. The next chapter explores the 
native DOM element and the methods used to monitor them for clicks and 
drags and other events. When a user interacts with a DOM element, the 
browser fires events for each interaction—mouseover, click, and so on. 
Methods applied to these events are executed when they occur and are 
passed a native Event object. This object contains information about that 
event that is often very useful. Additionally, the event has methods that can 
be executed to prevent the default behavior from continuing. For example, 
you can monitor the submit event on a form and prevent the form from 
submitting by stopping the event. 
Unfortunately, different browsers implement this object in different ways. 
MooTools unifies all these disparate objects into a single one with 
attributes and methods that are easier to use and understand. 



 MooTools Essentials     75 

Event Methods 
Events only have three methods, and they all basically in some way or 
another obstruct the event from processing the way it normally would. To 
understand this requires knowledge of how DOM events are handled by 
browsers. 
When an event fires on a DOM element, in some circumstances two 
primary things occur: the default behavior (clicking a link takes you to 
another page, clicking the submit button submits the form) and also 
propagation. Propagation occurs when you click (or mouseover, keydown, 
etc.) an element inside another element. The browser fires the click event 
for both elements, which makes sense, if you think about it: if you click a 
box inside a box, the browser doesn’t really know which one you’re really 
clicking—you’re clicking both—so it fires the onclick event of the 
innermost element, and then its parent, and on up to the document. 
MooTools provide methods to stop either or both of these actions: 

Event.preventDefault: This prevents the default behavior from 
occurring. 

 $('myCheckbox').addEvent('click', function(event){ 
   event.preventDefault(); 
   //Will prevent the check box from being "checked". 
 }); 

Here the check box won’t get checked, but if there’s any other click behavior 
on this element or any of its parents, those events will fire. 

Element.stopPropagation: This method prevents the events that fire on 
the parents of an element. For example, clicking an element will fire the 
onclick event for that element, and then the onclick event for its parent, 
and its parent’s parent, and so on. Element.stopPropagation prevents 
these events from firing on the parents. 

  



76     MooTools Essentials 

$('myElement').addEvent('click', function(){ 
   alert('click'); 
   return false; 
   //Equivalent to stopPropagation and preventDefault. 
 }); 
 $('myChild').addEvent('click', function(event){ 
   event.stopPropagation(); 
   //This will prevent the event from bubbling up, 
   //and so that the parent's click event won't fire. 
 }); 

Element.stop: This is the method I use 99% of the time. It basically stops 
both the propagation of the event and the default behavior. 
HTML: 

 <a id="myAnchor" href="http://google.com/">Visit 
  Google.com</a> 

JavaScript: 
 $('myAnchor').addEvent('click', function(event){ 
   event.stop(); 
   //Prevents the browser from following the link. 
   this.setText("Where do you think you're going?"); 
   //'this' is Element that fires the Event. 
 }); 

Event Properties 
In addition to the methods to prevent events from continuing, the Event 
object contains data about the event. 
 shift: (Boolean) true if the user pressed the Shift key. 

 control: (Boolean) true if the user pressed the Ctrl key. 

 alt: (Boolean) true if the user pressed the Alt key. 

 meta: (Boolean) true if the user pressed the meta key. 

 wheel: (Integer) The amount of third button scrolling. 

http://google.com


 MooTools Essentials     77 

 code: (Integer) The keycode of the key pressed. 

 page.x: (Integer) The x position of the mouse, relative to the full window. 

 page.y: (Integer) The y position of the mouse, relative to the full window. 

 client.x: (Integer) The x position of the mouse, relative to the viewport. 

 client.y: (Integer) The y position of the mouse, relative to the viewport. 

 key: (String) The key pressed as a lowercase string. key can be “enter”, 
“up”, “down”, “left”, “right”, “space”, “backspace”, “delete”, “esc”, “a”, “b”, 
“c”, “d”, and so on. 

 target: (Element) The event target, not extended with $ for performance 
reasons. 

 relatedTarget: (Element) The event-related target, not extended with $. 

The data about the event can let you author complex interactions, like using 
Ctrl+S to save a form or altering a CSS property for a DOM element when 
users scroll their mousewheel. 





 MooTools Essentials     79 

Chapter 5: Elements 
Browsers implement what is known as the DOM—the Document Object 
Model. JavaScript as a language isn’t indigenous to browsers nor limited to 
them, it’s just that the browsers are where developers typically use 
JavaScript. But the browsers themselves extend the basic language to add 
methods and properties to JavaScript objects that relate to HTML tags 
rendered to the viewer. 
This relationship between the JavaScript world and the HTML world is the 
DOM. With the DOM comes numerous methods that only make sense in a 
browser, and most of these are methods on Element, the JavaScript object 
that relates to HTML tags in the page. The methods that are natively part of 
Element, much like other native JavaScript methods, leave something to 
be desired. Often they seem overly verbose or explicit, while other times 
they seem woefully insufficient to allow for the authoring of clean code. 
At its heart, MooTools really makes two things its priority: first, it strives 
to make writing object-oriented, reusable, and cleanly readable JavaScript 
an easy thing to do, and second, it strives to make interactive web pages 
easy to author. Consequently, MooTools gives a lot of attention to the 
Element native, adding many, many methods that allow you to write clean, 
legible, expressive code. 

Creating and Cloning Elements 
MooTools makes the task of creating an element much easier than native 
JavaScript, offering up a syntax that feels much like that for instantiating a 
class: 



80     MooTools Essentials 

var myImg = new Element('img', { 
  src: '/foo.jpg', 
  alt: 'this is foo', 
  //class is a reserved word in JS, 
  //so we must use quotes 
  'class': 'fooClass', 
  //In addition to basic attributes, 
  //you can declare special ones: 
  events: { 
    click: function(){ alert('click!');} 
  }, 
  styles: { 
    border: '1px solid blue', 
    marginTop: '10px' 
  }, 
  etc... 
}); 

Note Creating a new element doesn’t inject it into the DOM. You can 
attach events to it and change its styles and properties, but for it to show 
up in the browser, you must inject it into the DOM. See the section 
“Element Injection and Removal” later in this chapter. 

You can also clone elements. Doing so does not clone any events attached 
to that element, and by default it clones the children of the element, too. It 
also by default removes any IDs from the element (which according to 
standards should always be unique). 
var myCopy = myElement.clone(); 
//This copies children 
var myCopy_NoChildren = myElement.clone(false); 
//Copies children and IDs 
var myCopy_ChildrenAndIds = myElement.clone(true, true); 



 MooTools Essentials     81 

If you need to also clone events, that’s a different method entirely (in 
Element/Element.Events.js): 
var myCopy = myElement.clone(); 
//Clone the click events 
myCopy.cloneEvents(myElement, 'click'); 
//Clone all of the events 
myCopy.cloneEvents(myElement); 

Of course, creating and injecting elements into the DOM is only a small 
part of the picture. You’re much more likely to write most of your HTML 
the old fashioned way, and that means you must collect the elements from 
the document somehow. 

Collecting Elements from the DOM 
MooTools contains three shortcuts for collecting elements from the DOM: 
$, $$, and $E. 

$ :: Element/Element.js 
What it does: Collects an element from the DOM by ID. 
Usage: 
  $('myElementId'); 

Example: 
  $('ninja').setStyle('visibility', 'hidden'); 

When you’ll use it: The $ function has two main purposes: 
 Serves as a shortcut for document.getElementById, which we can all 

agree is so many keystrokes that it’s just cruel considering how often we need 
to perform the task 

 Initializes element objects with MooTools 

While it’s possible to still collect elements by ID using the standard method 
(document.getElementById), it’s a bad practice to use it when using 



82     MooTools Essentials 

MooTools for a couple reasons: it’s just more characters than using the 
MooTools method ($), and MooTools ensures that the element returned has 
had the MooTools element methods applied to it (see the next section). 
Also note that any of the DOM collection methods 
(Element.getElements, for example) will initialize the elements 
returned. 

Using $ to Ensure You Have an Initialized Element 
This function is also useful when you aren’t sure whether the value you 
have is a reference to an element or its ID, or if you are unsure whether that 
element has already been initialized for MooTools. For example, if you 
have a method or a function that accepts an element as an argument, the 
user might pass you an ID, an initialized element, or an element that hasn’t 
yet been initialized. You can use $ as a quick way to ensure that you get an 
initialized element. 
If you pass an argument to $ that is not an ID of an element in the DOM or 
isn’t an element reference, it returns null, so it’s also useful to check 
whether the ID of an element is found in the DOM or not. Consider the 
following demonstration: 
function hideNinja(element) { 
  element = $(element); 
  if (element) element.setStyle('visibility', 'hidden'); 
}; 

In this example, the user could pass an ID (a string), an element that was 
collected already using $, or an element collected using non-MooTools 
means (document.getElementById). The $ function will return the 
initialized element or false if it can’t locate the element in the DOM (if 
it’s passed an ID; if you pass it an element, the element doesn’t have to be 
in the DOM yet). 



 MooTools Essentials     83 

Using $ on an Element that’s already been initialized does not have any ill 
effects or costs. 

$$ :: Element/Element.js 
What it does: Returns a collection of elements that match the passed-in 
selector. 
Usage: 
$$('div'); //All the divs in the DOM 
$$('a', 'b'); //All the anchor & bold elements 

Note Using $$ with more than one selector will return a collection with 
the results of each selector grouped (so $$('a', 'b') will be a collection 
with all the links followed by all the bold elements). 

Example: 
$$('div.ninja').each(function(ninja){ 
  ninja.setStyle('visibility', 'hidden'); 
}); 

When you’ll use it: $$ collects all the elements that match a given selector 
and returns them as an array of elements that also has all the Element 
methods applied that MooTools refers to as an elements collection. If $$ 
does not find any elements that match the selector, it returns an empty 
collection (an empty array). 
By default, you can only pass tag names (div, b, a, etc.) to $$, but when 
you include Selectors/Selectors.js, $$ will also take richer CSS path 
expressions (e.g., div.someClass a#someId—see “Selectors” in Chapter 
6). 
When $$ doesn’t find any matching elements for a selector, it returns an 
empty array. 



84     MooTools Essentials 

Element Methods and Collections 
When you create a collection, all the Element methods are applied to it; for 
example, Element.setStyle can be used with an elements collection. 
$$('div.ninjas').setStyle('visibility', 'hidden'); 
//Hide all the ninjas 

When you execute an Element method on an element collection, 
MooTools iterates over the collection and executes the method on each 
one. While it’s possible to chain these methods, it’s bad form because you 
would iterate over the collection twice. For example: 
//This is bad 
$$('div.ninja').setStyle('visibility', 
   'hidden').addClass('invisible'); 
 
//It's the equivalent of the following 
$$('div.ninjas').each(function(ninja){ 
    ninja.setStyle('visibility','hidden'); 
}).each(function(ninja){ 
    ninja.addClass('invisible'); 
}); 
 
//This is better; you only iterate once 
$$('div.ninjas').each(function(ninja){ 
  ninja.setStyle('visibility', 
    'hidden').addClass('invisible'); 
}); 

MooTools has numerous methods for collecting a group of elements from 
the DOM, but $$ is the only stand-alone function. Other methods are 
attached to Element prototypes. Element.getElement, 
Element.getElements, Element.getChildren, and others allow for 
element collection, too. 



 MooTools Essentials     85 

$E :: Element/Element.js 
What it does: Returns the first element that matches the passed-in selector. 
Usage: 
//The first div in the DOM: 
$E('div'); 
//The first link or, if no links are found, 
//the first bold tag: 
$E('a', 'b'); 

Example: 
$E('div.ninja').setStyle('visibility', 'hidden'); 

When you’ll use it: Much like $, it’s a useful shortcut: $E is the equivalent 
of $$(selector)[0]. When $E does not find a match for the given 
selector, it returns null. 

Note $E was left out of MooTools 1.2, but has been re-added for the 
next release. I use this method a lot, so I’m leaving this in here because it 
will be useful again soon. In the mean time, if you want to use this method, 
just add this to your own code: 

  $E = document.getElement.bind(document); 

Element Methods for Collecting Children, Siblings, 
and Parents 
In addition to $, $$, and $E, which allow you to collect elements from the 
entire document, you can use methods attached to Element by MooTools 
that help you select specific child elements. These work mostly like the 
preceding methods, except that they only select children of the element on 
which they are run. 



86     MooTools Essentials 

Element.getElement: This method works just like $E; pass it a selector, 
and it returns the first child to match it. 

 $('myElement').getElement('div'); 
 //Returns the first div inside myElement 

Element.getElements: This method works similarly to $$; pass it a 
selector, and it returns a collection of children of the element that match it. 

$('myElement').getElements('div'); 
 //Returns the all divs inside myElement 

Element.getElementById: This method works just like $; pass it an ID, 
and it returns the first child to match it. 

 $('myElement').getElementById('myChildElement'); 
 //Returns the first element inside myElement 
 //with ID 'myChildElement'. This is the same 
 //as the following, which is the preferred method 
 $('myElement').getElement('#myChildElement'); 
 //Note the '#' 

Element.getChildren, Element.getChild: These methods work like 
getElement and getElements (you can pass these an optional selector) 
but are limited to direct children of the element. 

Element.getParent, Element.getParents: These methods work just 
like getChildren and getChild (you can pass an optional selector). If you 
pass a selector to getParent, it will flow up through the DOM, inspecting 
each parent to find a match; otherwise, if you don’t specify a selector, it 
returns the immediate parent of the element. getParents does the same but 
returns all the parents that match the selector (or, if no selector is specified, 
all the parents up to the document root). 

Element.getNext, Element.getAllNext, Element.getPrevious, 
Element.getAllPrevious: These methods work like getChild and 
getChildren, returning the first sibling to match the selector (for getNext; 
getPrevious obviously gets the previous sibling), or an array of siblings 
for the “All” methods. 



 MooTools Essentials     87 

Element.hasChild: This method returns true if the specified element is a 
child (of any depth, so it can be a child of a child, for example). 

 myElement.hasChild(kid); 
 //Returns true if myElement contains kid 

Setting, Getting, and Erasing Properties of Elements 
The JavaScript representation of an element provides both methods and 
attributes. Attributes of an element can be referenced using dot or bracket 
notation: 
myImg.src = "/foo.jpg"; 
myImg[“src”] = "/foo.jpg"; 

This method of setting a property is technically deprecated. The current 
specification for setting an attribute is to use the setAttribute method, 
and for getting one you have getAttribute: 
myImg.setAttribute('src', '/foo.jpg'); 
myImg.getAttribute('src'); //Returns '/foo.jpg' 

This is a more functional approach to managing attributes, but it isn’t well 
implemented across all the browsers. MooTools takes this and adds a lot 
more options and functionality, using the shorter set and get and adding 
into the mix the method erase, which lets you remove an attribute entirely. 

Element.set 
What it does: Sets an attribute of an element to a specified value. 
Usage: 
Element.set(property, value); 

Example: 
myImg.set('src', 'foo.jpg'); 



88     MooTools Essentials 

In addition to being able to get or set any attribute, you can also do things 
like set the innerHTML of an element: 
myDiv.set('html', '<b>new html!</b>'); 

In native JavaScript, you’d be forced to do the following: 
myDiv.innerHTML = '<b>new html</b>'; 

What’s so bad about that? Well, in addition to not being a method (which 
you could delay or bind, for instance), it has cross-browser issues 
(attributes sometimes have different names in different browsers, and you 
can’t use it to set every attribute as you would think you could). set and 
get solve these issues for you, providing a much more friendly interface to 
element attributes. 
set has more powerful capabilities than just specifying a single attribute. 
For instance, you can also pass it an object of values: 
myImg.set({ 
  src: '/foo.jpg', 
  alt: 'this is foo', 
  //Class is a reserved word in JS, 
  //so we must use quotes 
  'class': 'fooClass', 
  //In addition to standard attributes, you can also 
  //use set for some special attributes defined by 
  //MooTools 
  events: { 
    click: function(){ alert('click!');} 
  }, 
  styles: { 
    border: '1px solid blue', 
    marginTop: '10px' 
  }, 
  etc... 
}); 



 MooTools Essentials     89 

When you’ll use it: Any time you want to set an attribute on an element, 
you should use set. Note that MooTools has a few other Element methods 
(like setStyle) that allow you to set some specific properties. You can 
still use set for these if you prefer. 
myElement.setStyle('border', '1px solid blue'); 
myElement.set('styles', {border: '1px solid blue'}); 
//Same result 

Element.get 
What it does: Allows for custom functionality, which MooTools uses to 
create shortcuts that are useful, but you can use them, too. MooTools adds 
things like get('value'), which returns the value of an input or text area. 
The attributes that MooTools provides special access to are html, href, 
text, value, and tag, as well as shortcuts to effects (more in Chapter 9). 
Usage: 
myElement.get(property); 

Example: 
myInput.get('value'); 
myImage.get('src'); 

When you’ll use it: The get method allows you to inspect an element for 
various attributes, and in general you should always use it to do so. As 
noted with set, there are some methods (like getStyle) that MooTools 
provides its own methods for which are the preferred methods for 
retrieving that information. 

Element.erase 
What it does: Removes an attribute value altogether. 
Usage: 
myElement.erase(property); 



90     MooTools Essentials 

Example: 
myImg.erase('alt'); 

When you’ll use it: Sometimes (though I find somewhat rarely), you want 
to remove a property altogether. If you have a method that checks for an 
attribute on an element and performs an action based on the result, for 
example, then you need to remove the attribute—not just set it to some 
nonactive value (like an empty string). 

Custom Getters and Setters and Erasers 
MooTools allows you to define your own methodology for a get, set, and 
erase routine. This can be useful if you find you repeatedly need to process 
some attribute of an element. You can make a method and implement it 
into Element (see “Native.implement” in Chapter 4), or you could create 
your own custom getter and setter. 

Say that you wanted to add a new attribute, get/set('yellow'). You 
could implement this yourself: 
Element.Properties.yellow = { 
  set: function(){ 
    return this.setStyle('background-color', 'yellow'); 
  }, 
  get: function(){ 
    return this.getStyle('background-color')=='yellow'; 
  }, 
  erase: function(){ 
    return this.setStyle('background-color', 'inherit'); 
  } 
}; 
myDiv.set('yellow'); //It's yellow 
myDiv.get('yellow'); //Returns true 

In this way, MooTools allows you to define your own attributes and their 
meaning, much as it lets you extend native objects with new attributes and 



 MooTools Essentials     91 

methods. It’s a very powerful way to extend the environment to suit your 
needs. It’s especially useful if you have a widget or effect that requires an 
element to work. 

Element Injection and Removal 
What they do: Either manipulate the content of the DOM (inject, adopt, 
wraps, grab, and replaces) or remove elements or their contents 
(dispose, empty, and destroy). 
When you’ll use them: Selecting and creating elements is just the tip of 
the iceberg with what you can do with them, but it won’t do you any good 
if they aren’t in the DOM (as they are when you create a new element—it’s 
not part of the document until you inject it) or if they’re in the wrong place. 
The MooTools documentation is pretty straightforward on how to use these 
methods, but here’s a quick rundown of them: 

Element.inject: This method inserts or moves an element into the DOM 
at the specified location. The default placement is "bottom", meaning that it 
will inject the element into the specified parent as the last child of that parent. 
Other options include "before", "after", and "top". 

 myElement.inject(newParentElement); 
 //myElement is now the last child of newParentElement 
 
 myElement.inject(siblingElement, "before"); 
 //myElement is now inside the same parent 
 //as siblingElement 
 //and is previous to that sibling 

Element.grab: This method is just like inject, only in reverse—the 
passed-in argument is injected into the element invoking the method. The 
second, optional argument can be either "top" or "bottom" (the default). 



92     MooTools Essentials 

 newParentElement.grab(myElement); 
 //myElement is the last child of newParentElement 
 newParentElement.grab(myElement, "top"); 
 //myElement is the first child of newParentElement 

Element.adopt: This method is just like grab, except it allows multiple 
elements to be adopted, which are always at the bottom. 

 newParentElement.adopt(myElement, myOtherElement, etc); 

Element.wraps: This method is just like grab, except instead of moving 
the target into the parent, it moves the parent to be around the target. The 
parent of the target becomes the parent of the element grabbing the target, and 
the target becomes a child of the element doing the grabbing. You can pass an 
optional second argument for where the child should be put into the new 
parent—either 'top' or 'bottom'. 

 oldParent.grab(myElement); 
 //oldParent now has myElement as a child 
 newParent.wraps(myElement, 'top'); //top is optional 
 //newParent is now a child of oldParent 
 //and myElement is now a child of newParent 

Element.replaces: This method removes the specified element and puts a 
new one in its place. 

 myNewElement.replaces(myOldElement); 

Element.empty: This method removes all the child nodes from the element 
using the Element.destroy method. 

Element.dispose: This method removes the element from the document, 
but NOT from memory. This means you could inject it back into the DOM 
later if you wanted. 



 MooTools Essentials     93 

Element.destroy: This method removes the element from the document 
entirely and collects its memory. This means you CANNOT inject it back 
into the DOM later if you wanted. This is useful if you’re managing a lot of 
content on a page and you need to reclaim the memory (for instance, you 
have an image gallery where you only want to keep 50 images in memory at a 
time). 

Element (CSS) Classes 
You can easily add and remove classes to an element and also find out 
whether one is already there. These are fairly self explanatory. 
myElement.addClass('blue'); 
myElement.hasClass('blue'); //Returns true 
myElement.removeClass('blue'); //No more blue 
myElement.toggleClass('blue'); //Blue again 
myElement.toggleClass('blue'); //No more blue (again) 

Element Storage 
This is perhaps one of the coolest things in MooTools, if you ask me. 
Simply put, element storage is the ability to store anything in JavaScript 
(an object, function, value, class, another element, whatever) as an attribute 
of an element. 
You can technically do this natively like so: 
var myFoo = new Foo(); 
myElement.foo = myFoo; 

The problem with it is that it tends to leak memory when you reference 
certain types of objects (basically, anything except a string or a number). A 
lot. So it’s considered very bad form—irresponsible even—to store data 
this way. 
The excellent MooTools blog (http://blog.mootools.net) has this 
awesome explanation, and rather than rewrite it all, I’m going to just quote 
it because it explains it so well: 

http://blog.mootools.net
http://blog.mootools.net


94     MooTools Essentials 

What’s New in 1.2: Element Storage 
http://blog.mootools.net/2008/1/22/Element_Storage 

Jan. 22, 2008, Tom Occhino 
When developing advanced JavaScript applications, it’s sometimes 
beneficial to associate extra properties or attributes to DOM elements. 
While we have always been able to use DOM elements as storage 
containers for all sorts of other data, this generic technique has a few 
drawbacks. While the problems associated with this technique are almost 
exclusively Internet Explorer problems, they must be dealt with 
nonetheless. 
Let’s consider the following simple example: 
var element = $('myElement'); 
element.effectInstance = new Fx.Tween(element, 'color'); 
element.customProperty = 'someProperty'; 
element.effectInstance; //The Fx.Tween instance 
element.customProperty; //'someProperty' 

As we know, IE doesn’t like when objects are stored as Element attributes 
in this way, and the effectInstance property will leak if it’s not 
manually managed. Another problem we’ve seen is that when accessing the 
innerHTML of any parent of our element, IE will return simple custom 
properties (like strings, numbers, etc.) along with the expected properties. 
This means that customProperty would be copied as well, which could 
pose a problem if it was some unique custom attribute. Obviously, of the 
two cases, memory management is our biggest concern here, but both are 
issues to consider. 

http://blog.mootools.net/2008/1/22/Element_Storage


 MooTools Essentials     95 

A MooTools-Worthy Solution 

Element.Storage is brand new in MooTools 1.2. It is basically an 
external Hash that stores all the custom properties and events for every 
element you interact with. 
Let’s take another look at our previous example, this time using the new 
Element.Storage API: 
var element = $('myElement'); 
element.store('effectInstance', 
  new Fx.Tween(element, 'color')); 
element.store('customProperty', 'someProperty'); 
element.retrieve('effectInstance'); 
//The Fx.Tween instance 
element.retrieve('customProperty'); //'someProperty' 

Note that events and actions are no longer attached directly to the elements. 
Everything is stored in the external Hash and managed by MooTools, so as 
a developer, you have nothing to worry about. Finally, an elegant and 
coherent API for attaching custom properties, functions, and objects to 
elements. 

Advanced Examples 

Element:retrieve actually accepts an optional second parameter that 
will act as the default value to store if another value doesn’t previously 
exist. It will then retrieve the value as expected. 
$('myElement').retrieve('defaultValue', 
  'Some Default Value'); 
//Stores and returns 'Some Default Value' 
//if the key doesn't previously exist 

Also, many users have asked about namespacing the element storage. We 
have responded by telling them that it already allows this since you can 
store objects and hashes. Consider the following example: 



96     MooTools Essentials 

var element = $('myElement'); 
var data = element.retrieve('galleryData', {}); 
data.id = 16; 
data.source = '/images/16.jpg'; 
data.title = 'Some Title'; 
//Later 
$('myElement').retrieve('galleryData'); 
//{ id: 16, source: '/images/16.jpg', 
//  title: 'Some Title' } 
$('myElement').retrieve('galleryData').id; //16 

The Elements Object 
In addition to the native Element object, MooTools has a special type of 
array of elements called Elements (also referred to as a collection in this 
book). I outline the basic principal of the Elements object in the section 
“$$ :: Element/Element.js” earlier in the chapter. 
Any time you collect a group of elements from the DOM, you’ll be using 
one of these Elements objects. 

Elements Methods 
The Elements object is an array of elements that has all the properties of 
Array plus all the methods of Element. So, for example, indexOf (an 
Array method) works: 
$$('div').indexOf(myDiv); 

And so does set, an Element method: 
$$('img').set('src', '/foo.jpg'); 
//All the images' sources are /foo.jpg now 

As I pointed out in the section “$$ :: Element/Element.js,” it’s important to 
realize that this shortcut iterates over all the elements in the collection and 
executes the element method on each. Therefore, it’s inefficient (and bad 
form) to chain these methods (quoting from the $$ example earlier): 



 MooTools Essentials     97 

//This is bad 
$$('div.ninja').setStyle('visibility', 
  'hidden').addClass('invisible'); 
 
//It's the equivalent of 
$$('div.ninjas').each(function(ninja){ 
  ninja.setStyle('visibility','hidden'); 
}).each(function(ninja){ 
  ninja.addClass('invisible'); 
}); 
 
//This is better; you only iterate once 
$$('div.ninjas').each(function(ninja){ 
  ninja.setStyle('visibility', 
    'hidden').addClass('invisible'); 
}); 

Elements.filter 
This method lets you filter the elements based on a selector (unless you 
don’t have Selectors.js in your environment, in which case you can 
only filter on tag name): 
var allDivs = $$('div'); 
    var divsWithClassBlue = allDivs.filter('.blue'); 

Other Element Methods in Element.js 
As I stated previously, MooTools gives a lot of attention to the Element 
native. So much so that there are four separate files dedicated to the topic 
(outlined next). But Element.js alone contains numerous other methods 
that I haven’t covered here—things like toQueryString and 
getSelected. These are useful in their own right, but if you understand 
the methods that I’ve covered so far, the information in the online 
documentation should be easy to follow. 



98     MooTools Essentials 

Element.Event.js 
Any time you want to make a web page interactive, you’re going to have to 
deal with events. If the user must click something, you need to tell the 
browser that something should happen when they do. 
Historically, this was accomplished in a few different ways. There’s the 
inline method: 
<a href="#" onclick="myFunction()">click me!</a> 

The downside to this style of event management is that it’s intrusive. You 
must describe the functionality in the same place as the data (the HTML). 
With the advent of things like CSS, the whole point is to present the 
content generically, and then style it externally. The same principal holds 
true for JavaScript. 
Another method was to select the element out of the document and describe 
the event method as a property of the element: 
document.getElementById('foo').onclick = myFunction; 

Here the problem is that you can only ever describe one action for each 
event. You can’t have more than one onclick, for example. 
Then there’s the more modern way of attaching events, which, 
unfortunately, is different in Internet Explorer than it is in Firefox or Safari. 
Here’s what it looks like in Firefox: 
document.getElementById('foo').addEventListener( 
    'click', myFunction, useCapture 
    //useCapture = true/false 
); 

The big problem here is that it’s different in Internet Explorer, so your code 
must always have a conditional to do it one way for IE, and another way 
for everyone else. Not fun. 



 MooTools Essentials     99 

The other big problem with all three of these options is that they create 
potential for memory leaks, especially with closures (see “Closures” in the 
Appendix). 

Adding and Removing Element Events 
MooTools provides us with methods for adding events to elements that 
deals with the cross-browser issues and provides a more concise syntax. 

Element.addEvent 

What it does: Monitors an element for the specified event type (click, 
mouseover, etc.), and then executes the specified method, passing that 
method the event object that triggered it. 
Usage: 
  myElement.addEvent(eventType, function); 

Example: 
$('myElement').addEvent('click', function(event){ 
  alert('you clicked me!'); 
}); 

When you’ll use it: If you want your users to be able to interact in any way 
with the site, you’ll need to attach event listeners to execute your code 
when the user does anything. 
There are a few important things to note with addEvent: 
 The function receives as its argument the instance of the Event class 

containing the event object that triggered it (see the Event native 
documentation in Chapter 4). 

 By default, the object bound to the function (the “this”) is the element to 
which the event was attached. 



100     MooTools Essentials 

 Unlike methods such as Array.each, you cannot specify a third argument to 
set a different bound object, so you must use the more explicit 
Function.bind to change it if you need to. 

Consider these examples: 
$('myElement').addEvent('click', function(event){ 
  alert("your mouse is at " + event.page.x + 
        " by " + event.page.y); 
}); 
 
//You don't have to declare the event 
//argument if you don't use it 
$('myElement').addEvent('click', function(){ 
    this.setStyle('border', '1px solid red'); 
    //"this" here is $("myElement") by default 
}); 
 
$('myElement').addEvent('click', function(){ 
    //Here we bind something else to "this" 
    //in this case, a slideshow class 
    this.pageForward(); 
}.bind(slideShowClass)); 

Element.addEvents 

What it does: Allows you to attach more than one event with a single 
method: addEvents. 
Usage: 
myElement.addEvents(object); 

Example: 
myElement.addEvents({ 
  click: function(){ alert ('clicked!'); } 
}); 



 MooTools Essentials     101 

When you’ll use it: If you need to attach more than one event, you can call 
Element.addEvent for each one, but you can also use 
Element.addEvents to attach several at once. The syntax is basically the 
same: 
$('myElement').addEvents({ 
  click: function(event){ 
    alert("your mouse is at " + event.page.x + 
          " by " + event.page.y); 
  }, 
  mouseover: function(){ 
    this.setStyle('border', '1px solid red'); 
  }, 
  dblclick: function(){ 
    this.pageForward(); 
  }.bind(slideShowClass) 
}); 

Element.RemoveEvent 

What it does: Removes an event by passing the function you originally 
attached using the same syntax. 
Usage: 
myElement.removeEvent('click', function); 

Example: 
var foo = function(){ alert('hi there!'); }; 
$('myElement').addEvent('click', foo); 
$('myElement').removeEvent('click', foo); 

When you’ll use it: Sometimes you need to stop monitoring an element for 
user interaction. For example, you might only monitor an element until the 
user interacts with it once. Other times, you might find that you need to 
ensure that there’s only one event listener attached to it. If you have an 
event listener that alerts the user to some state when an object is clicked, 



102     MooTools Essentials 

you might want to remove any other click events on that element before 
you add another one. 
You can’t, however, remove an anonymous function: 
$('myElement').addEvent('click', function(){ 
  alert('hi there!'); 
}); 
//This won't work! 
$('myElement').removeEvent('click', function(){ 
  alert('hi there!'); 
}); 

The reason you can’t do this is because each function here is a different 
object. Likewise, you can’t remove a function that you use a method on 
when you attach it (like bind or pass): 
var say = function(msg){ alert(msg); }; 
$('myElement').addEvent('click', say.pass('hi there!')); 
$('myElement').removeEvent('click', say); 

As outlined in “Functions” in Chapter 4, using a method on a function 
returns a new function with those values set to it. So say.pass('hi 
there!'); is not the same as say. It’s a copy of say with the argument 
set. 
To work around this, you must keep a reference to the copy: 
var say = function(msg){ alert(msg); }; 
var hiThere = say.pass('hi there!'); 
$('myElement').addEvent('click', hiThere); 
$('myElement').removeEvent('click', hiThere); 

Element.removeEvents 

What it does: Removes all of the events of a given type (e.g., all onclick 
events) or all the events (of any type) entirely. 



 MooTools Essentials     103 

Usage: 
myElement.removeEvents([type]); 

Example: 
//Remove all the click events: 
$('myElement').removeEvents('click'); 
//Remove all the events, regardless of type: 
$('myElement').removeEvents(); 

When you’ll use it: Sometimes you might not have the pointer to a method 
that was added (see the preceding examples), or you might want to make 
sure that the element doesn’t get the same method added twice (for 
instance, if you add an event to alert some data, if you added the event 
twice, you’d alert it twice). You can remove all the events or all the events 
of a given type with removeEvents. 

Element.fireEvent 

What it does: Allows you to manually fire any events attached to an 
element. 
Usage: 
Element.fireEvent(type); 

Example: 
Element.fireEvent('click'); 

When you’ll use it: Consider something like the onsubmit event for a 
form. Perhaps you’re going to use Ajax to update some value on the server 
when the user submits the form, but maybe you also have some other event 
that might submit it, like if the user hits enter, for instance. 
You’d need to first capture the enter event and then submit the form. 



104     MooTools Essentials 

document.body.addEvent('keydown', function(event){ 
    if (event.key == "enter") 
      $('myForm').fireEvent('submit'); 
}); 

This is a crude example, but it should illustrate the concept. Firing an event 
like this isn’t something that happens often, but it does occasionally come 
in handy. 

Element.cloneEvents 

What it does: As outlined in “Creating and Cloning Elements” at the 
beginning of this chapter, I show how you can clone elements to create 
copies for various purposes, but doing so doesn’t also clone the events 
attached to the element. You have to do that manually. 
Usage: 
myElement.cloneEvents(targetElement[, type]); 

Example: 
var myCopy = myElement.clone(); 
//Clone the click events: 
myCopy.cloneEvents(myElement, 'click'); 
myCopy.cloneEvents(myElement); //Clone all of the events 



 MooTools Essentials     105 

Chapter 6: Utilities 
MooTools contains several scripts dedicated to helping you implement 
code into the page you’re using. I’ve already discussed all the native 
prototype extensions (on Element, Function, Array, etc.) and in the next 
chapter we’ll cover the Class pattern for writing reusable code. In Chapter 
8, I’ll start reviewing some of the classes that MooTools comes with (like 
Fx, Drag, and Sortables). 
But there’s another group of scripts that kind of exist between these two 
groups, composed of functions and extensions that make it easier to 
integrate the code you write with an actual HTML document. These are the 
scripts in the utilities group. 

Selectors 
In Chapter 5, I cover the function $$, as well as numerous extensions to the 
Element prototype that allow you to collect elements from the DOM. 
By default, these methods only allow for tag names as their arguments. 
When you include Selectors.js, these methods become much more 
powerful. This file extends their functionality to allow for any CSS 
selector. It doesn’t change the way you’ll use these methods; it only allows 
you to be more specific when you wish to select something from the DOM. 
Here’s a basic example: 
//Without Selectors.js, all you can select 
//on are tag names. 
//All the divs on the page: 
$$('div'); 
//All the divs and paragraphs 
//note: this returns an array with all the divs first, 
//then all the paragraphs: 
$$('div', 'p'); 
 



106     MooTools Essentials 

 
//When you include Selectors.js, you can 
//pass in CSS selectors. 
//All the divs with the css class 'myClass': 
$$('div.myClass') 
//All the paragraphs that are inside divs: 
$$('div p'); 
//All the bold tags in paragraphs with 
//Class 'foo' in divs with class 'myClass': 
$$('div.myClass p.foo b'); 

This functionality is applied to any of the methods that accept a selector as 
their argument. So in addition to $$, the same is true for the following 
element methods: 
Element.getElement 

Element.getElements 

Element.match 

Element.getPrevious 

Element.getAllPrevious 

Element.getNext 

Element.getAllNext 

Element.getFirst 

Element.getLast 

Element.getParent 

Element.getParents 

Element.getChildren 

Complex CSS3 Expressions 
In addition to standard CSS expressions, as in the examples in the previous 
section, Selectors.js also allows you to select on element properties 
such as name, value, or href using standard CSS3 expressions (see 
http://www.w3.org/TR/css3-selectors/#attribute-

representation). 
Example: 
//All the mail-to links on the page: 
$$('a[href^=mailto:]'); 

http://www.w3.org/TR/css3-selectors/#attribute-representation).Example:
http://www.w3.org/TR/css3-selectors/#attribute-representation).Example:
http://www.w3.org/TR/css3-selectors/#attribute-representation).Example:


 MooTools Essentials     107 

The following expressions are supported: 

= The property is equal to the value. 

^= The property begins with the value. 

$= The property ends with the value. 

!= The property is not equal to the value. 

*= The property contains the value. 

~= 
The property is found when the value is split on spaces (so 
~=foo matches “blah foo bar” but not “blahfoobar”). 

|= The property is found when the value is split on dashes (so 
|=foo matches “blah-foo-bar” but not “blahfoobar”). 

Here are a few more examples: 
//All the inputs where name equals 'email' 
$$('input[name=email]') 
//All the images with urls that end in .gif: 
$$('img[src$=gif]') 
//All the links without target="_blank": 
$$('a[target!=_blank]') 

Note that these expressions can take double or single quotes when you 
want to search for something that has a space or other character: 
$$('input[name!="user[username]"]') 
$$('img[src$=".gif"]') 

Using Structural Expressions 

In addition to the attribute expressions in the previous section, MooTools 
also supports structural selectors (see http://www.w3.org/TR/css3-
selectors/#structural-pseudos). These let you select elements based 
on their order in the document—every third paragraph, for example. You 
can also do searches for all the enabled form elements, or all the empty 
ones. 

http://www.w3.org/TR/css3-selectors/#structural-pseudos
http://www.w3.org/TR/css3-selectors/#structural-pseudos
http://www.w3.org/TR/css3-selectors/#structural-pseudos


108     MooTools Essentials 

Here are the structural selectors that MooTools supports: 

:enabled The element is not disabled. 

:disabled The element is disabled. 

:empty The element has no children. 

:contains(text) The element’s inner HTML contains the value. 

:nth-
child(expression) 

This returns every child that matches the 
expression (see examples that follow). 

:even This returns every other (even) child. 

:odd This returns every other (odd) child. 

:first The element is the first child. 

:last The element is the last child. 

:only The element is the only child of its parent. 

Examples: 
//All the paragraphs that are the first child 
//of their parents: 
$$('p:first'); 
//Every other link inside paragraphs: 
$$('p a:even'); 
//Every 3rd list item in a specific list: 
$$('ul#myList li:nth-child(3n)'); 
//All the links in paragraphs where the link is 
//the last child: 
$$('p a:last'); 

See the online documentation for MooTools for more details, as well as the 
documentation for CSS3 selectors. 



 MooTools Essentials     109 

DomReady 
In the Appendix, which covers core concepts in JavaScript, one of the 
topics I discuss is DomReady. 
MooTools implements a custom event for DomReady, and you’ll use it on 
nearly every page that includes your JavaScript. 

The DomReady Custom Event 
What it does: Runs any JavaScript that should wait for the document to 
load. 
Usage: 
window.addEvent('domready', function); 

Example: 
window.addEvent('domready', function(){ 
  $$('div.error').each(function(div){ 
    div.setStyle('border', '1px solid #F00'); 
  }); 
}); 

When you’ll use it: As outlined in the Appendix, the native event that was 
historically used was the onload event. This event, however, waits until all 
the assets on the page (e.g., images) have loaded before it fires. If you have 
code that is meant to run as soon as the document is ready, the earliest 
moment you could run it is when the HTML is delivered, but not 
necessarily after all the images load. MooTools provides a custom event 
(determined by various means for different browsers) for this HTML-is-
ready moment. 
Any code that you author that references the DOM (either by collecting 
elements, injecting new ones, or altering existing ones) should wait for this 
DomReady event. 



110     MooTools Essentials 

JSON 
JSON is a lightweight data-interchange format based on the object notation 
in JavaScript. It is a text format that is completely language independent 
but uses conventions that are familiar to programmers of the C family of 
languages. Think of it as XML for JavaScript. 
Declaring a native object in JavaScript looks like this (note that you can 
use single or double quotes; it doesn’t matter): 
{fruits: ['apple', 'pear'], veggies: ['peas', 'beans']} 

In JSON, the same data would look like this: 
{"fruits":["apple","pear"],"veggies":["peas","beans"]} 

They’re the same for all intents and purposes. The important thing is that 
the JSON standard is something that the JavaScript parser can understand. 
Consequently, using JSON as a method to transmit data between the client 
and the server is much easier than using XML. Visit 
http://www.json.org for more information as well as plug-ins for nearly 
every programming environment to convert XML to JSON and back again. 

MooTools and JSON 
MooTools contains methods useful for converting objects to and from 
JSON. These methods are fairly straightforward. 

JSON.encode 
What it does: Converts any object or array into a JSON string. 

http://www.json.org


 MooTools Essentials     111 

Usage: 
JSON.encode(myObj); 

Example: 
JSON.encode({ 
  fruits: ['apple', 'pear'], 
  veggies: ['peas', 'beans'] 
}); 
//Returns 
'{"fruits":["apple","pear"],"veggies":["peas","beans"]}' 

When you’ll use it: Mostly you’ll use JSON with Ajax to transmit and 
receive data from a server. It’s also possible that you’ll use it to store data 
elsewhere (like in a cookie), but mostly it’s used to communicate with 
other computers. 

JSON.decode 
What it does: Allows you to take a JSON string and convert it back into a 
native JavaScript object. This is the reciprocal method of JSON.encode. 
Usage: 
JSON.decode(jsonString[, secure]); 

Example: 
JSON.decode('{"fruits":["apple","pear"], 
            "veggies":["peas","beans"]}'); 

When you’ll use it: As with JSON.encode, this method is likely to be used 
when you’re communicating with a server. You’ll use it to decode the 
response. 
Note that, since JSON data is evaluated by the browser, it represents a 
security threat. If the JSON you decode turns out to be malicious code, it 
will be run. Consequently, you should ensure that the JSON is either 
coming from a secure source (e.g., the same domain as the document) or 



112     MooTools Essentials 

you should use the secure argument to ensure that the string being 
evaluated is an object and not a function. 
Json.decode("alert('you just got haxored!')", true); 
//Returns null 

Cookie 
Let’s face it, the interface to manage cookies in native JavaScript is a pain, 
which is why if you audit the JavaScript of nearly any web site that uses 
cookies, you’ll find functions to do it for you. 
MooTools, of course, gives us its own helpful methods for managing 
cookies. 

Cookie.write 
What it does: Allows you to write a cookie value to the client specifying 
only the options you need. 
Usage: 
Cookie.write(key, value[, options]); 

Example: 
//Simple session cookie 
Cookie.write('username', 'fred'); 
Cookie.write('font-preference', 'large', { 
  //Make this cookie available to the entire site: 
  path: '/', 
  //for 30 days: 
  duration: 30, 
  //Make it available to subdomains: 
  domain: 'mysite.com', 
  //Only readable if the user is accessing via https: 
  secure: true 
}); 



 MooTools Essentials     113 

When you’ll use it: You’ll use this method whenever you want to store 
stateful information for the user. 

Cookie.read 
What it does: Returns the value of a cookie from the client (always a 
string) or else returns false if no value was found. 
Usage: 
Cookie.read(name); 

Example: 
var preference = Cookie.read('font-preference'); 

When you’ll use it: You’ll use this method whenever you need to retrieve 
the value of a cookie. 

Cookie.dispose 
What it does: Removes a cookie from the client. 
Usage: 
Cookie.dispose(name); 

Example: 
Cookie.dispose('username'); 

When you’ll use it: You’ll use this method whenever you want to 
completely remove a cookie from the client. 

Swiff 
Adding Flash content to a page is not especially difficult, but there are 
some cross-browser issues with how one does it. Additionally, interacting 
with that Flash element with JavaScript takes a bit of labor, and 
consequently MooTools provides methods to manage this for you. 



114     MooTools Essentials 

Swiff Constructor 
What it does: Creates and returns a Flash object with the supplied 
parameters. 
Usage: 
new Swiff(path[, options]); 

Example: 
var mySwiff = new Swiff('/flash-movie.swf', { 
  id: 'myBeautifulMovie' 
  width: 500, 
  height: 400, 
  params: { 
    wmode: 'opaque', 
    bgcolor: '#ff3300' 
  }, 
  vars: { 
    myVariable: myJsVar, 
    myVariableString: 'hello' 
  }, 
  container: $('someElement') 
}); 

Note that when creating the instance of Swiff, if you do not specify a 
value for the container option, it does not inject the Flash element into 
the document. You’ll still need to do that yourself (see “Swiff.replaces, 
Swiff.inject”). 
When you’ll use it: You’ll use this method whenever you need to embed 
Flash into your pages. It eliminates cross-browser issues and simplifies the 
interface for creating these elements. 



 MooTools Essentials     115 

Swiff.replaces, Swiff.inject 
What they do: Allow you to inject a Flash object into a document. 
Usage: 
mySwiff.inject(element[, where]); 
  //See Element.inject for details 
mySwiff.replaces(element); 
  //See Element.replaces for details 

Examples: 
mySwiff.inject('myElement', 'after'); 
mySwiff.replaces('myElement'); 

When you’ll use them: When you use the constructor for Swiff (i.e., new 
Swiff), it creates the element but doesn’t inject it into the document unless 
you specify a value for the container option. You’ll use these methods to 
put them into the page. 

Swiff.remote 
What it does: Calls an ActionScript method from JavaScript. 
Usage: 
mySwiff.remote(function); 

Example: 
var obj = new Swiff('myMovie.swf'); 
obj.remote('myFlashFunctionToExecute'); 

When you’ll use it: This method is useful for running methods in your 
Flash file when something happens in the browser and you want to send 
information to the Flash environment. Note that your Flash file must be 
compiled with the ExternalInterface component. (See the Adobe 
documentation on ExternalInterface for more information.) 





 MooTools Essentials     117 

Chapter 7: Classes and Inheritance 
MooTools includes mechanisms for tapping into JavaScript’s native 
inheritance model (See also “Prototypal Inheritance” in the Appendix). The 
syntax looks very similar to the kinds of object-oriented models found in 
Java and even uses the name “Class” in the context. Still, it’s important to 
understand that the model here is still JavaScript’s. 
MooTools classes implement functionality into objects that can be 
initialized into numerous stateful instances. Each instance is an object with 
methods and properties unique to itself but based on the methods and 
properties in the class. Creating an instance of, say, Widget and assigning 
it specific values (options like location, visibility, etc.) returns that instance. 
You can then create another instance of Widget with different options and 
execute methods on either of them without affecting the other. 
In my experience, there are two types of code in JavaScript: reusable code 
and implementation code. The former includes all the things that you might 
ever want to use again—date pickers, form validators, sortable tables, 
whatever. The latter is the code you write on a specific page to tell it that 
these things are present and configured for the current content. All your 
implementation code should be a set of namespaced functions 
(myPage.load, myPage.search, etc.), and everything else—the reusable 
code—should be classes (FormValidator, DatePicker, Gallery). In this 
way, every page sets up new instances of these classes, passing along the 
data and configurations for them that are unique to the given environment. 

Using the Class Constructor 
What it does: The Class constructor creates functionality for defining 
reusable Class objects that can be extended and inherited from. 



118     MooTools Essentials 

Usage: 
  new Class(properties); 

Example: 
var SimpleClass = new Class({ 
  initialize: function(options){ 
    this.options = options; 
  }, 
  someProperty: 'foo', 
  someMethod: function(msg){ alert(msg); } 
}); 

When you’ll use it: MooTools contains a very elegant structure for 
authoring functionality that can be extended and altered in different 
contexts. JavaScript itself has the core capacity for this functionality, but 
no native methods to make use of it. Historically, people either didn’t make 
use of it or had to author their own methods to be able to make use of the 
inheritance model in JavaScript. 
Making best use of JavaScript’s prototypal inheritance model requires that 
you understand that model well. It’s important that you grasp how 
JavaScript’s constructor model works (see “‘this’ and Binding” in the 
Appendix) and how JavaScript’s prototypal inheritance model works (see 
“Prototypal Inheritance” also in the Appendix). 
Binding and prototypal inheritance are the two concepts at the heart of 
MooTools, and very little functionality in the library avoids using them. 
The core functionality for managing inheritance is the Class function. 
Remember that by convention, any function that begins with an uppercase 
letter requires the use of the new constructor when using it. So every class 
that you author should begin with an uppercase letter so that you know it 
needs new to initialize it.  



 MooTools Essentials     119 

The properties argument is an object of name/value properties for the 
class that defines what each instance should have when it is initialized. Say 
you have the following very simple class: 
var Human = new Class({ 
  isAlive: true, 
  energy: 1, 
  eat: function(){ 
    this.energy++; 
  } 
}); 

You’ve now defined some very simple functionality for your Human class. 
Whenever you want a new instance of Human, you just call it with the new 
constructor: 
var bob = new Human(); 

This instance—bob—is an instance of Human, and it has the properties 
isAlive, energy, and eat. These properties have the default values 
defined in your Human class, but you can change them easily enough. 
bob.eat(); //bob.energy is now 2 

Initialization 
When classes are invoked with their constructor, all the properties in the 
object passed in are applied to the new class and are available to each 
instance (like with Human.eat earlier). MooTools looks for a special 
property called initialize that it will execute whenever a new instance is 
created.  



120     MooTools Essentials 

Here’s what that might look like: 
var Human = new Class({ 
  initialize: function(name, age){ 
    this.name = name; 
    this.age = age; 
  }, 
  isAlive: true, 
  energy: 1, 
  eat: function(){ 
    this.energy++; 
  } 
}); 
var bob = new Human('Bob', 20); 
//bob.age = 20 
//bob.name = 'Bob' 

Here you have a class with default properties and methods (like isAlive 
and eat), but not all Humans are necessarily the same, so you allow 
arguments to be passed to the constructor, which are passed to the 
initialize method at invocation. 
Classes aren’t required to have an initialize method. If you have a class 
that doesn’t do anything when you initialize it, you can omit this method. 
Classes that are meant to be implemented by other classes (see 
“Implementing Classes into Other Classes” later in this chapter) usually 
don’t have an initialize method because they would overwrite the 
method in the class that you blend them into. Otherwise, you’ll use this 
method to set up the state of the class when the user creates it. Often 
options and arguments are passed in, and the initialize method stores 
those in the instance of the class and maybe processes them. 

Inheritance 
Creating classes is a really powerful way to reuse functionality. You can 
define all the methods and default values for a widget or UI component and 



 MooTools Essentials     121 

then create new instances of those things over and over again. If you 
discover a bug in your code, you only have to fix it in one place. It’s 
object-oriented programming in JavaScript, which for a long time was a 
concept that just didn’t seem to be in the language. 
But even this basic ability is somewhat limited if you can’t extend that 
functionality when you need to. If you have a class that validates form 
inputs, that’s awesome, but what if you need to make a class that does so a 
little differently? Copying all that code into another class doesn’t make 
sense, and thankfully you don’t have to. 
MooTools offers two ways to get more out of the classes that you write 
with Extends and Implements—two special properties of classes that let 
you get more mileage out of the code you write. 

Implement vs. Extend 
The Extends property is used to employ another class as a blueprint for the 
one you are creating, while the Implements property is used to enumerate 
other classes whose methods should be added to the one you are creating. 
In addition to these two properties are two methods for extending and 
implementing classes: Class.extend and Class.implement. 
Class.extend is used to add properties directly to a class, while 
Class.implement modifies the prototype of the class. 
These distinctions are further explained next, as it’s important that you 
learn when to use each if you want to get the full power of MooTools. 

Extending Classes 
Classes have a special property called Extends that allows you to build 
upon another class very easily. As stated earlier, Extends specifies an 
object (a Class) that will act as the template for the new class you define. 
Let’s build on the Human class shown earlier and make a Ninja class. 



122     MooTools Essentials 

var Human = new Class({ 
  initialize: function(name, age){ 
    this.name = name; 
    this.age = age; 
  }, 
  isAlive: true, 
  energy: 1, 
  eat: function(){ 
    this.energy++; 
  } 
}); 
var Ninja = new Class({ 
  Extends: Human, 
  initialize: function(side, name, age){ 
    this.side = side; 
    this.parent(name, age); 
  }, 
  energy: 100, 
  attack: function(target){ 
    this.energy = this.energy - 5; 
    target.isAlive = false; 
  } 
}); 
var bob = new Human('Bob', 25); 
var blackNinja =  
  new Ninja('evil', 'Nin Tendo', 'unknown'); 
//blackNinja.isAlive = true 
//blackNinja.name = 'Nin Tendo' 
blackNinja.attack(bob); 
//bob never had a chance 

Here you have your Human class and another class that builds upon it. If 
you inspect properties in blackNinja, you find properties from the Ninja 
class and the Human class. 
Let’s consider the two properties in Ninja that overlap those in Human: 
energy and initialize. In the Human class, you’ve defined the default 



 MooTools Essentials     123 

for energy as 1, but ninjas get 100. This will override the value for energy 
defined in Human. 
Then there’s the initialize method. Both classes have one, and here you 
see a special property for methods: this.parent. Classes that extend 
other classes can have overlapping methods but retain the ability to execute 
the method that they overwrite. In this way, you can extend a method in a 
class, with logic executed before and/or after the parent method is called. 
Extends is quite powerful, allowing you to overwrite methods in the 
parent class and optionally execute that overwritten method. Note that you 
must still pass the arguments to the parent method that it expects to receive, 
even if the new method you’ve defined takes different arguments. By using 
Extends, you can create small classes that do one thing well and then build 
upon them with more specific functionality. The result is more reusable 
code. 

Extending Classes into Themselves 
Extending a class into itself allows you to alter the way its instances behave 
without creating a new name for the result. You essentially get to add more 
stuff to the class itself. Why do this? Say you want to alter a class in a 
particular environment without changing it everywhere.  
Here’s an example of what this would look like: 
//Continuing from the Human and Ninja classes earlier 
Ninja = new Class({ 
    Extends: Ninja, 
    kills: 0, 
    attack: function(target){ 
      this.parent(target); 
      this.kills++; 
    } 
}); 



124     MooTools Essentials 

Here you add functionality to the Ninja class—now you can keep track of 
how many targets each Ninja has offed (I know, it’s a bit morbid, but hey, 
that’s just how ninjas are—it’s what they do). But you can see the 
advantage; you can still call the parent method as defined in what used to 
be Ninja.attack, so you don’t have to rewrite that logic. You can add 
your own additional logic that happens before or after you call the parent 
function. 
The only downside to this method is that any instances of Ninja that have 
already been created (as well as any classes that have already been created 
by extending this one) will not have this functionality, so it’s important that 
you have this kind of extension defined before you create any instances of 
the class or extend it further. 

Implementing Classes 
Extending classes allows you to create new classes based on the templates 
of old ones, making use of the properties defined in the parent classes, 
adding new properties, and overwriting ones that you wish to alter. But 
what if you want to change how an existing class works? That’s where 
implementing classes comes into play. 
Implementing functionality into classes has one big positive and one big 
negative. On the positive side, when you implement functionality into a 
class, all instances of the class are affected immediately (unlike using 
Extends to extend a class back onto itself, as discussed in the preceding 
section). On the negative side, you don’t have access to what used to be 
defined for methods—there’s no this.parent. You must overwrite the 
entire property when you implement changes. This is because implement 
changes the prototype of the object you are modifying, essentially altering 
the parent instead of the object itself. 



 MooTools Essentials     125 

There are two ways to implement functionality into a Class. The first is to 
use a method that comes with every class called implement. Here’s what it 
looks like: 
//Continuing from our Human and Ninja classes earlier 
Ninja.implement({ 
  kills: 0, 
  attack: function(target){ 
    target.isAlive = false; 
    this.energy = this.energy - 5; 
    this.kills++; 
  } 
}); 

Unlike with the example in the “Extending Classes into Themselves” 
section, you can’t reference this.parent, so you must reauthor all of the 
functionality in the attack method. This can be a real pain, which is why 
extending classes into themselves is so useful. 
Implements is really meant to be used to combine classes, and 
consequently there is no notion of a parent. If you add all the methods of 
class A into class B, class B now has the methods of class A in its 
prototype, but there is no “parent” relationship between class A and class 
B, which brings us to the next section. 

Implementing Classes into Other Classes 
It’s much more likely that you’ll use implementing to add functionality 
from one class to another via the Implements property. By implementing 
functionality from class into another, you can identify patterns that are 
shared across numerous classes and push that functionality into all of them. 
This creates an enormous opportunity to not only deliver less code to the 
browser, but also reuse what you write. 
Consider this example: 



126     MooTools Essentials 

var Warrior = new Class({ 
  energy: 100, 
  kills: 0, 
  attack: function(target){ 
    target.isAlive; 
    this.energy = this.energy - 5; 
    this.kills++; 
  } 
}); 
var Human = new Class({ 
  initialize: function(name, age){ 
    this.name = name; 
    this.age = age; 
  }, 
  isAlive: true, 
  energy: 1, 
  eat: function(){ 
    this.energy++; 
  } 
}); 
var Ninja = new Class({ 
  Extends: Human, 
  Implements: [Warrior], 
  initialize: function(side, name, age){ 
    this.side = side; 
    this.parent(name, age); 
  } 
}); 
var Samurai = new Class({ 
  Extends: Human, 
  Implements: [Warrior], 
  side: 'good' 
}); 

This set of examples extends the Human class into both the Ninja and 
Samurai classes, making use of that functionality twice. The methods 
contained in Warrior are also implemented into both these classes, but the 



 MooTools Essentials     127 

difference here is that the Warrior methods and properties don’t overlap 
with anything in the Human class. 
Implements is mostly used with helper classes—collections of commonly 
used functionality that often gets employed in numerous classes. Examples 
of these include the Options class and the Events class. 
The idea here is to project small bits of reusable functionality into your 
classes. If you write things well, you end up with all these little LEGO-like 
blocks that can be snapped together to get robust functionality, while each 
individual class does one thing specifically. 
The best way to understand the potential of MooTools’ class architecture is 
to look inside MooTools itself. The library is comprised of lots of these 
little blocks, and it extends and grows on itself to provide robust 
functionality, while each piece is as simple as it can be. 





 MooTools Essentials     129 

Chapter 8: Getting Started with Classes 
Chapter 7 covers the basics of writing classes. These reusable chunks of 
code are the building blocks of your application. MooTools itself offers 
numerous classes for you to use to create effects, drag functionality, 
tooltips, and more. 
In this chapter, I’ll cover some of the basics of using these classes. The 
conventions outlined here are true of nearly all the classes that come with 
MooTools and will likely be true of most of the classes you write for your 
own use. 

Class.Extras 
Because two of the goals of MooTools is to make it easy to reuse code and 
to eliminate duplication of effort, several patterns get used over and over 
again in MooTools. 
Three commonly used patterns in MooTools classes are options, events, 
and chaining. Class.Extras.js contains three classes that are designed to 
be implemented into other classes; they aren’t very useful on their own, but 
implemented into another class, they make that class much more useful. 

The Options Class 
What it does: This class is designed to be implemented into other classes. 
The options convention allows users to pass in none, some, or all of the 
optional values for a class, overwriting only the default values that they 
need to. By defining default behaviors in your class, you can make the 
interface both highly flexible and easier to use. 
When you look at the documentation for a MooTools class, you’ll see these 
defined as a list of named arguments that can be passed in (or not) along 
with their default values. 



130     MooTools Essentials 

These options passed in are then passed to the setOptions method defined 
in the Options class. Because you are implementing the Options class 
into your class, this method is now part of your class, too. 
Usage: 
new Class({ 
  Implements: Options, 
  options: { /*default options*/ }, 
  initialize: function(arg1, arg2, arg3, options){ 
    this.setOptions(options); 
  } 
}); 

Example: 
var Widget = new Class({ 
  Implements: Options, 
  options: { 
    color: '#fff', 
    size: { 
      width: 100, 
      height: 100 
    } 
  }, 
  initialize: function(options){ 
    this.setOptions(options); 
  } 
}); 
var myWidget = new Widget({ 
  color: '#f00', 
  size: { 
    width: 200 
  } 
}); 
 
//myWidget.options is now: 
//{color: #f00, size: {width: 200, height: 100}} 



 MooTools Essentials     131 

When you’ll use it: The options convention blends together the default 
values (using $merge). This allows you to define a default state for your 
class that users can easily override, but doesn’t force them to specify all the 
possible values. The result is a very flexible class with as many options as 
you care to implement without overloading the interface to the class. It also 
has two other nice consequences: 1) you don’t end up with classes that 
require a dozen arguments, and 2) if you change the options in the class at a 
later date, you don’t have to go find all the places that reference the class to 
create a compatibility layer to accomodate old code that still uses the old 
options. 

Note In general, you should consider the options object read-only in 
your code. You can (and should) reference this.options in your code to 
read the state that the user has defined, but you should not alter it directly. 
Instead you should use setOptions to alter it. 

... 
this.setStyle('color', this.options.color); //Yes 
this.options.color = '#000000'; //No 
this.setOptions({color: '#000000'}); //Yes 

 

The Events Class 
Another often-used pattern for classes are events. These work just like the 
events on elements (like onclick), and the interface is the same. Using 
Events in your classes allows flexibility where the class might do 
something in response to some other action. The events you define provide 
hooks into these actions. Consider a slideshow, for example. You might 
have events for when the user clicks forward or backward and events for 
when the user reaches the end of the slideshow (or back up to the start). 



132     MooTools Essentials 

Because your class handles all these behaviors, the appropriate place to put 
the logic to determine that these actions occur are in your class. Later, 
when you implement an instance of the class into your page, you might 
need to add additional functionality that should run when these events 
occur. 

addEvent, addEvents, fireEvent, removeEvent, removeEvents 

What they do: These methods work much like their countparts on the 
Element prototype, allowing you to attach functions to specific events. 
Usage: 
new Class({ 
  Implements: Events, 
  complete: function(){ 
    this.fireEvent('complete'); 
  } 
}); 

Example: 
var Widget = new Class({ 
  Implements: Events, 
  initialize: function(element){ 
    ... 
  }, 
  complete: function(){ 
    this.fireEvent('complete'[, arguments]); 
  } 
}); 
 
var myWidget = new Widget(); 
myWidget.addEvent('complete', myFunction); 

When you’ll use them: Unlike Element, there is no concept of a “native” 
event (like onclick or onmouseover) for a class. The events on a class are 
whatever you choose to call them. In order for them to be useful, you must 
include in your class calls to fireEvent for them to be executed. By 



 MooTools Essentials     133 

adding events to your class, you make it much more useful in different 
contexts. 

Note By convention, events on classes always begin with “on”—
onComplete, onFailure, and so forth—in the options. However, you can 
attach methods to events without the “on,” so onComplete just becomes 
complete when you attach a method to the event (e.g., 
myFx.addEvent('complete', myFunction)). More on this in the next 
section. 

Events and Options 

When you implement both Options and Events into your class, a bit of 
special magic occurs. When users initialize the class and pass in options, 
they can pass in event options as well. These will automatically get passed 
to addEvent when you pass the options to setOptions. 
Example: 
var Widget = new Class({ 
  Implements: [Events, Options], 
  initialize: function(element, options){ 
    this.element = $(element); 
    this.setOptions(options); 
  }, 
  complete: function(){ 
    this.fireEvent('complete', this.element); 
  } 
}); 
var myWidget = new Widget($('myElement'), { 
  onComplete: myFunction 
}); 

Here the user has passed in as one of the options a function for 
onComplete. When you pass the options to setOptions, any option that 



134     MooTools Essentials 

begins with “on” that is a function will be passed to addEvent 
automatically for the complete event. 

Note Any options that begin with “on” that are functions will be 
removed from the options when you pass the options to setOptions. This 
means that if the user passes in a function for onComplete, in the options, 
this.options.onComplete won’t be defined, as it’s removed in the 
process. 

Note You can actually reference either the event with “on” or without 
it. If you use fireEvent or addEvent and reference onComplete or 
complete, you’ll get the same result. By convention, MooTools drops the 
“on” for both element events and class events for consistency, but if you 
use the “on” with classes, it’s smart enough to know which one you’re 
referring to. 

The Chain Class 
MooTools also contains functionality similar to Events that lets you build 
a chain of functions to execute one after the other. Think of this as “when 
you’re finished, do this next thing” functionality. 

Chain.chain 

What it does: The chain method pushes a function onto a stack of 
methods defining the order of things to do next. When the method is 
executed, it is removed from the stack. 
Usage: 
var Widget = new Class({ Implements: Chain }); 
Widget.chain(function); 



 MooTools Essentials     135 

Example: 
var Widget = new Class({ 
  Implements: Chain, 
  someMethod: function(){ 
    //Some code that does stuff 
    this.callChain(); 
  } 
}); 
Widget.chain(function(){ alert('this comes next!'); }); 
Widget.someMethod(); 
//Alerts the message when someMethod finishes 

When you’ll use it: This method gets used mostly in the Fx class. 
Typically, it’s used when a class does something immediately and then 
completes, and often the class also has an onComplete event that is fired at 
the same time. 
The difference between adding a method to a chain and adding it as an 
event is that when you add it as an event, it will get fired every time the 
event is fired (until you remove it), while a chained function will only get 
called once. Here’s an example of it working on its own (which isn’t that 
useful): 
var myChain = new Chain(); 
myChain.chain( 
    function(){ alert('do dishes'); }, 
    function(){ alert('put away clean dishes'); } 
); 
myChain.callChain(); //Will alert 'do dishes'. 
myChain.callChain(); //Will alert 'put away clean 
                     // dishes'. 



136     MooTools Essentials 

And here’s a more useful example using Fx.Tween: 
var myTween = new Fx.Tween(myElement); 
myTween.start('opacity', 0).chain(function(){ 
  myTween.start('opacity', 1); 
}); 

Chain.callChain 

What it does: This calls the next method on the chain stack, passing any 
arguments passed to it (they are optional). 
Usage: 
myChain.callChain(arguments); 

Example: 
See the example in “Chain.chain” earlier. 
When you’ll use it: In order for the Chain class to really work, you have 
to call the next method on the stack whenever the operation that’s being 
performed is complete. Consider an effect—let’s say you’re fading the 
element in using its CSS opacity property. Over the duration of the effect, 
you repeatedly increment the value of the opacity until it reaches 1, and 
then you stop. At this point, you must execute this.callChain to call the 
next method on the chain stack. 

Chain.clearChain 

What it does: This removes all methods from the chain stack. 
Usage: 
myWidget.clearChain(); 

When you’ll use it: Sometimes it’s necessary to clear the chain to stop a 
behavior from continuing. This is especially true if you add things to the 
chain from within the class itself (which in general I don’t recommend). 



 MooTools Essentials     137 

Chapter 9: Fx 
Now comes the fun part of MooTools—the effects. Everything I’ve 
covered up to this point has been about the utility of writing JavaScript 
with MooTools and how to do so efficiently and without duplicating code. 
But the effects are where MooTools really shines. 

Fx and Fx.CSS 
The Fx class is one you’ll likely not use directly. It’s a foundation layer for 
all the other effect extensions. You’re more likely to use the extensions 
than you are these two core files, so I’m not going to spend a lot of time on 
them. It’s conceivable that you might extend one or the other to write your 
own effect, but even that is doubtful; if you were to undertake writing an 
effect, it’s more likely you’d extend Fx.Tween, Fx.Morph, or 
Fx.Elements (which MooTools considers a plug-in). 
What is interesting and useful to learn about the Fx class are the options 
and methods it defines, as all the other effects extend these and add to 
them. 

Fx Options 
Every effect extension accepts the following options in addition to any 
arguments and options that are defined by the extension. This is straight 
from the MooTools documentation: 
 fps: (Number: defaults to 50) The frames per second for the transition. 

 unit: (String: defaults to false) The unit, for example, “px”, “em”, or “%”. 
See Element.setStyle in Chapter 5. 

 link: (String: defaults to “ignore”) Can be “ignore”, “cancel”, or “link”. 
 “ignore”: Any calls made to start while the effect is running will be 

ignored. 



138     MooTools Essentials 

 “cancel”: Any calls made to start while the effect is running will take 
precedence over the currently running transition. The new transition will 
start immediately, canceling the one that is currently running. 

 “chain”: Any calls made to start while the effect is running will be 
chained up and will take place as soon as the current effect has finished, 
one after another. 

 duration: (Number: defaults to 500) The duration of the effect in 
milliseconds. Can also be one of the following: 
 “short”: 250 ms 
 “normal”: 500 ms 
 “long”: 1000 ms 

 transition: (Function: defaults to Fx.Transitions.Sine. 
easeInOut) The equation to use for the effect; see “Fx.Transitions” later in 
this chapter. Also accepts a string in the following form: 

 transition[:in][:out]: For example, “linear”, “quad:in”, “back:in”, 
“bounce:out”, “elastic:out”, “sine:in:out”. 

Fx Events 
Much like the preceding options, all effect extensions have these events 
(though they may have more): 
 onStart: The function to execute when the effect begins. 

 onCancel: The function to execute when you manually stop the effect. 

 onComplete: The function to execute after the effect has processed. 

 onChainComplete: The function to execute when using link 'chain' 
(see options earlier). It gets called after all effects in the chain have 
completed. 



 MooTools Essentials     139 

Fx.start 
What it does: All the effect extensions have a start method that starts the 
effect, which will continue until the transition is complete or the effect is 
canceled. 
Because each extension changes different things (Fx.Tween changes a 
single style property, Fx.Morph will change many, and Fx.Elements will 
change numerous style properties across numerous elements), the argument 
passed to start differs from extension to extension. 
When start is called, it fires the onStart event and begins the transition. 
If only one parameter of a transition is defined, the CSS property will be 
transitioned from its current state to the one defined. 
Usage: 
myEffect.start(arguments); 

Example: 
new Fx.Tween($('myElement')).start('opacity', 1); 

When you’ll use it: This method will transition the opacity of the element 
from its current state (if no starting state is specified) to the state specified. 
If the element is already at that state, no transition will occur (though the 
onComplete event will still be called and the chain will still be called—
see “The Chain Class” in Chapter 8). 
Here we specify the starting state: 
new Fx.Tween($('myElement')).start('opacity', 0, 1); 

This will transition the opacity from zero to one, regardless of the current 
state. 



140     MooTools Essentials 

Fx.set 
What it does: The set method works just like the start method, except 
no transition is applied (and neither the onComplete method nor the chain 
is called). 
Usage: 
myEffect.set(arguments); 

Example: 
new Fx.Tween($('myElement')).set('opacity', 1); 
//Opacity is immediately set to 1 

When you’ll use it: The set method is useful to quickly reset the state of a 
CSS property. For Fx.Tween, it’s not much different from 
Element.setStyle, but for something like Fx.Scroll or Fx.Elements, 
set is a bit more useful in allowing you to change the state of the effect. 

Fx.cancel, Fx.pause, Fx.resume 
What they do: These methods let you stop an effect entirely (Fx.cancel) 
or pause it and resume it later (Fx.pause, Fx.resume). Fx.cancel will 
fire the onCancel event (but does not call the chain method; instead it 
clears the chain with clearChain). 
Usage: 
myEffect.pause(); //Pauses the effect 
myEffect.resume(); //Resumes a paused effect 
myEffect.cancel(); //Cancels a running effect entirely 

When you’ll use them: It’s actually somewhat rare that I find myself using 
these methods, but there are occasions where user interaction might cause 
you to pause or cancel an effect. Note that when you pause or cancel an 
effect, the CSS property that was being transitioned will be left in whatever 
state it was in when you stopped the effect. So if you’re fading something 



 MooTools Essentials     141 

in and then stop the transition halfway through, the element will still be in 
that halfway state. You can use Fx.set in a case like this to set the state to 
whatever you want. 

Fx.Tween 
What it does: The simplest effect you’ll likely use is Fx.Tween. This class 
transitions a single CSS property from one state to another. It’s deceptively 
easy to use. When used properly, you can use it to create a highly engaging 
and expressive user experience. 
Usage: 
new Fx.Tween(element[, options]); 

Example: 
var myEffect = new Fx.Tween($('myElement'), { 
  property: 'width', 
  duration: 500, //Transition over half a second 
}); 
//Transition from 0px wide to 100px wide: 
myEffect.start(0, 100); 
//Transition from the current width to 200px: 
myEffect.start(200); 
//You can also specify the property in the 
//start method instead of the options 
var myEffect = new Fx.Tween($('myElement')); 
//Transition opacity to 1: 
myEffect.start('opacity', 1); 
//Transition width from zero to 100: 
myEffect.start('width', 0, 100); 

When you’ll use it: Fx.Tween is the most basic effect in MooTools. When 
you need to fade something in or move it to a new location or change its 
size or color, Fx.Tween is all you need. 



142     MooTools Essentials 

Element.tween 
What it does: Many of the effects extensions also extend the Element 
prototype to provide shortcuts to start an effect. 
Usage: 
myElement.tween(property, startvalue[, endvalue]); 
//If endvalue isn’t set, startvalue will be used for 
//the end value, and the start value will be the 
//current value 

Example: 
//Transition opacity to 1: 
$('myElement').tween('opacity', 1); 
//Transition width from 0 to 100: 
$('myElement').tween('width', 0, 100); 

When you’ll use it: This shortcut method not only saves you a few 
keystrokes, but also makes your code a little easier to read. I use it almost 
all the time that I want to tween an element, so maybe the title here should 
be “When you won’t use it.” The reason not to use it is when you need to 
have more than one effect to use for different properties. Maybe you have 
one transition that you use for showing an element (with different 
transitions, durations, etc.) than the one for hiding it. You could change 
these values before using the shortcut again, or you could have two 
instances of the effect. 

Using Element.get/set with Fx.tween 

What they do: The shortcut is managed using element storage (see 
Chapter 5). When you first use the shortcut, a new instance of Fx.Tween is 
created and stored for the element as “tween.” Subsequent calls to this 
shortcut just reuse this instance. This means you can modify the properties 
of this “built-in” version of Fx.Tween by using Element.get and 
Element.set (see Chapter 5). 



 MooTools Essentials     143 

Usage: 
//Set the options for the "built-in" 
//instance of Fx.Tween: 
myElement.set('tween', options); 
//Retrieve the "built-in" instance of Fx.Tween: 
myElement.get('tween'); 

Examples: 
//Cancels a running effect: 
myElement.get('tween').cancel(); 
myElement.set('tween', { 
  //Change the duration for the "built-in" instance: 
  duration: 1000 
}); 

When you’ll use them: These two methods are useful in managing the 
instance of Fx.Tween that gets created when you use the .tween shortcut. 
Setting the options for the duration or transition, for example, gives you 
greater control over what the effect looks like. Just be aware that there’s 
only one of these built-in instances. If you need more than one instance, 
you’ll need to use the constructor (new Fx.Tween). 

Fx.Morph 
What it does: This class is very similar to Fx.Tween in most respects 
except that it allows you to transition more than one property at the same 
time. 
Usage: 
var myEffect = new Fx.Morph(element[, options]); 
myEffect.start(to); 



144     MooTools Essentials 

Example: 
var myEffect = new Fx.Morph($('myElement'), { 
  duration: 1000 
}); 
myEffect.start({ 
  width: 100, //Transition the width to 100 
  height: [0, 100], //Transition height from 0 to 100 
  opacity: 1 //Transition opacity to 1 
}); 

When you’ll use it: You can use Fx.Morph to achieve the same results as 
Fx.Tween (specifying only one property to transition), but really this class 
is useful when you’re transitioning several attributes at once. 

Element.morph 
What it does: Just like Element.tween, Element.morph is a shortcut to a 
“built-in” instance of Fx.Morph. 
Usage: 
myElement.morph(to); 

Example: 
$('myElement').morph({ width: 100, height: 100}); 

When you’ll use it: As outlined with Element.tween, this shortcut to the 
“built-in” instance of Fx.Morph is what I use most of the time. The times 
when you won’t use it are the same with Fx.Tween/Element.tween, so 
I’ll direct you to the earlier section where I go into those details. 

Element.set/get with Fx.Morph 
You can use Element.set and Element.get to access the “built-in” 
instance of Fx.Morph just as with Fx.Tween. I won’t illustrate that here, 
but read the earlier section on how its done with Fx.Tween and refer to the 
MooTools documentation for more. 



 MooTools Essentials     145 

Using CSS Selectors with Fx.Morph 
What it does: One of Fx.Morph’s neat tricks is the ability for you to pass it 
a CSS selector instead of an object with properties to change. Think of this 
as analogous to Element.addClass, where you add a CSS class and this 
changes the style of the element, except here it does so with a transition 
(note that only numerical properties and colors are changed—changes to 
font family or background image would occur instantly). 
Usage: 
myElement.morph(selector); 

Example: 
$('myElement').morph('.myCssClass'); 

When you’ll use it: One of the problems with using effects to transition 
style properties is that you end up incorporating aspects of your design into 
the code that defines interaction. We have clear lines between presentation 
(CSS) and data (HTML), and between data (HTML) and interaction 
(JavaScript), but the lines between interaction (JavaScript) and design 
(CSS) are somewhat blurry. We use JavaScript to change the layout, and in 
the process we add all these CSS instructions to our code. 
To a certain extent, this is unavoidable. But Fx.Morph’s ability to accept a 
CSS selector allows us to remove at least some of the CSS properties from 
the layout. 



146     MooTools Essentials 

Note Using this functionality does not actually add the class to the 
element being transitioned. If you want the result of a morph operation to 
end with the element having the class applied, use the chain method: 

myElement.morph('.myCssClass').chain(function(){ 
  myElement.addClass('myCssClass'); 
}); 

 

Fx.Transitions 
By default, all the effects classes use a sinodal equation for their 
transitions, but if you include Fx.Transitions.js, you get several other 
ones that can create more expressive interactions. 

The Transitions 
Briefly, here are the transitions you get when you include this script: 

 
 



 MooTools Essentials     147 

 

 
 

 
 



148     MooTools Essentials 

 
 

 
 

 
 



 MooTools Essentials     149 

 
 

 
 

 
 



150     MooTools Essentials 

 

Specifying a Transition for an Effect 
When you initialize an effect, you can use the default transition 
(Liniear.easeInOut) or you can specify any of the transitions shown in 
the preceding section. 
Example: 
var effect = new Fx.Tween(myElement, { 
  transition: Fx.Transitions.Elastic.easeInOut 
}); 

Because this is a lot of typing to do, MooTools provides shortcuts to each 
of the transitions. Here’s the same thing as the preceding example, only this 
time using the shorthand for the transition: 
var effect = new Fx.Tween(myElement, { 
  transition: 'elastic:in:out' 
}); 

Creating Your Own Transition 
If you are a hard-core math whiz, you can actually create your own 
transitions. I’m not going to go into how to do this here, but I wanted to 
mention it. If you’re interested, look at the MooTools documentation on the 
Fx.Transition class and then look at the source of Fx.Transitions.js. 



 MooTools Essentials     151 

The Rest of Fx.* 
MooTools file organization gets rearranged periodically as our thinking on 
how best to organize the codebase changes and shifts. The classes and 
methods don’t change much (and where they do a compatibility layer is 
provided), but the location of these things often do. 
Currently, the Fx group consists solely of Fx, Fx.CSS, Fx.Tween, 
Fx.Morph, and Fx.Transitions, but these aren’t the only effects classes 
that MooTools has to offer. 
The rest are in the plug-ins group. I discuss these in greater detail in 
Chapter 11, but, briefly, they could be described as classes that are not 
fundmentally required to build a good web experience with MooTools. 
Classes like Drag or Tips are things that most web experiences can do 
without. 
The same can be said of the other effects libraries: 
 Fx.Slide: This effect slides elements in and out of view (I think of this 

effect like an old timey cash register that slides up the values of what you 
owe). 

 Fx.Scroll: This effect is used to smoothly scroll any overflown element 
(including the window). 

 Fx.Elements: This effect is used to transition numerous styles on numerous 
elements. 

You’ll see more on these in Chapter 11. 





 MooTools Essentials     153 

Chapter 10: Request 
If there’s any technology most associated with Web 2.0, it’s Ajax. Short for 
Asynchronous JavaScript and XML, Ajax refers to the process of sending 
and receiving data to and from a server without reloading an entire page. 
The native tools for doing this are tied up in a JavaScript object called 
XMLHttpRequest. Microsoft actually introduced the technology for 
support for Outlook Web Access 2000. In IE, it showed up as an ActiveX 
object called XMLHTTP. Since then it’s been implemented as a native 
JavaScript object (called XMLHttpRequest) for every browser except 
Internet Explorer, which still uses the ActiveX control. 
The obvious problem with these native solutions is that you have to use 
different objects for different browsers, but even if you look at the standard 
XMLHttpRequest object, the interface leaves a lot to be desired. 
This is where MooTools comes to our rescue, providing us with three 
classes that make Ajax much more pleasant to work with: Request, 
Request.HTML, and Request.JSON. 

Request 
What it does: The Request class is for standard request/response 
interactions when you need to send and/or receive data to and from the 
server. 
Usage: 
new Request(options); 



154     MooTools Essentials 

Example: 
var myRequest = new Request({ 
  url: '/requestHandler.php', 
  method: 'get', 
  onSuccess: function(responseText, responseXML) { 
    alert(responseText); 
  } 
}); 
myRequest.send('username=johndoe&first=john&last=doe'); 
//OR 
myRequest.send({ 
  username: "johndoe", 
  first: "john", 
  last: "doe" 
}); 

When you’ll use it: Making an interactive web experience will almost 
always include sending information about state changes to a server and 
requesting new information on demand. If a user can drag and drop and 
reorder items in a list, you’ll need to send the new order to the server for 
storage. If the user clicks a discussion thread to expand it and see the 
contents of that thread, you need to fetch that content to display it if you 
don’t deliver it when the page loads. These kinds of interactions are 
increasingly part of the user’s expectations. 
For example, consider something as simple as rating a product on a scale of 
one through five stars. Users expect to be able to click the star of their 
choice and see that decision immediately reflected. If the page reloaded 
entirely, they would feel that something was off. As users continue to 
expect more and more interactive experiences, our use of Ajax will grow. 



 MooTools Essentials     155 

Note Request has several events that you can use in your code: 

 onSuccess: This event is fired whenever the instance receives a 
successful response from the server. It is passed two arguments: 
responseText and responseXML. 

 onFailure: This event is fired whenever the instance receives an 
unsuccessful response from the server (like 404). It is passed as its 
argument the instance of the request object (either XMLHttpResponse 
or the XMLHTTP ActiveXObject in the case of Internet Explorer). 

 onCancel: This event is fired whenever a running request is canceled. It 
is not passed any arguments. 

 onException: This event is fired whenever there is an exception when 
setting the headers of the XMLHttpResponse object. 

 onRequest: This event is fired whenever the instance actually sends a 
request. It is not passed any arguments. 

 onComplete: This event is fired whenever onSuccess or onFailure 
occur. It is passed the same arguments as onSuccess or onFailure. 

 

Request Options 
The Request class has numerous options fully outlined in the MooTools 
documentation. You can see a few of them illustrated in the preceding 
example, but it’s important that you spend some time looking at the current 
documentation to learn about the various ways you can configure the class. 

Request.send 



156     MooTools Essentials 

What it does: When you create an instance of Request, no data is sent 
until you invoke its send method, which sends the request to the server. 
Usage: 
myRequest.send(); 
myRequest.send(object); 
myRequest.send(queryString); 

Example: 
var myRequest = new Request({ 
  url: '/requestHandler.php', 
  method: 'get', 
  data: { 
    layout: 'compact' 
  } 
}); 
//Send the default data, layout=compact: 
myRequest.send(); 
//Overwrite the data default: 
myRequest.send({layout: 'extended'}); 

When you’ll use it: This method accepts as an optional argument the data 
to include in the request. There is also a data option when you instantiate 
the class where you can specify default information. This gives you the 
ability to reuse an instance of Request repeatedly, sending different 
information with each request. 
Why would you want to reuse the class? Well, for instance, you can set the 
link option to “cancel” so that you can let the user initiate numerous 
requests but only use the last one. Consider an interface where users can 
filter data by checking check boxes. Each time they click your code 
requests new, filtered information from the server. By reusing the request 
and canceling previous requests, you can fetch only the most recent state 
that the user has created. 



 MooTools Essentials     157 

Note For security reasons, you can request data only from the same 
domain as the page (this restriction applies even to subdomains, so you 
cannot request or send data to http://foo.mysite.com from 
http://www.mysite.com). There are ways around this problem (see the 
discussion on my JsonP class in Chapter 12), but not with Ajax, and they 
should be used sparingly. 

Request: .get, .post, .put, .delete 
The Request class offers shortcut methods that work just like 
Request.send except that they use different “method” arguments in the 
request. Also, these shortcuts can accept an optional first argument for the 
URL. 
Examples: 
//Send the request as a "get": 
myRequest.get({username: 'johndoe'}); 
//Send the request as a "post": 
myRequest.post({username: 'johndoe'}); 
//Send the request as a "put": 
myRequest.put({username: 'johndoe'}); 
//Send the request as a "delete": 
myRequest.delete({username: 'johndoe'}); 
//Each of these can take a url, too: 
myRequest.delete('/delete_user', {username: 'johndoe'}); 

Request.cancel 
What it does: This method simply cancels a running request. 
Usage: 
myRequest.cancel(); 

http://foo.mysite.com
http://www.mysite.com


158     MooTools Essentials 

When you’ll use it: As illustrated in the earlier section “Request.send,” 
there are times when you need to stop listening for a response and instead 
send a new state to the server. By canceling the request, you’ll prevent the 
onSuccess, onFailure, and onComplete events from firing. So, for 
example, if you have an effect that displays a message that a user’s changes 
have been set to occur onSuccess, and the user makes a change followed 
by another quick change before the first one has received a response, you 
can cancel the first request and send a new instruction. Your message will 
only display when the second one returns. 

Note This does NOT cancel the request to the server. Rather, it 
instructs the client (the browser) to stop listening for a response. So, for 
example, if a user clicks “delete” on an item, and you send a request to the 
server to remove something from that user’s account, you can stop 
listening for the server to respond to this request, but the server has 
already been sent the instruction. 

Element.send 
What it does: MooTools integrates a shortcut into the Element prototype 
to make it easy to send information based on the contents of any DOM 
element that contains input elements (typically a form). 
Usage: 
$('myForm').send(url); 



 MooTools Essentials     159 

Example: 
$('myForm').set('send', { 
  onSuccess: function(response){ 
    alert(response); 
  } 
}).addEvent('submit', function(event){ 
  event.preventDefault(); 
  this.send(); //Uses the URL from “action” 
}); 

When you’ll use it: Like all the Element methods that allow you to invoke 
a class (as with the effects shortcuts), this just saves you keystrokes. When 
you use this method on a form, the parameters of the form (the method and 
the URL) and all the input values are used just as if the form had been 
submitted. The only difference is that the data is sent with Ajax. 

Using Element.set with Element.send 

As with the other shortcuts (as discussed previously in Chapter 9), you can 
get at the “built-in” instance of Request using Element.get and 
Element.set. This will allow you to set the default state for that instance. 
Example: 
//Set a default value for this element's 
//Request instance: 
myElement.set('send', {method: 'post'}); 
//Retrieve this element's Request instance 
//and cancel it: 
myElement.get('send').cancel(); 

Request.HTML 
What it does: This extension to the Request class automates updating the 
content of a DOM element with the response of an Ajax request. 



160     MooTools Essentials 

Usage: 
new Request.HTML(options); 

Example: 
new Request.HTML({ 
  url: '/userprofile.php', 
  data: { 
    userid: '1001' 
  }, 
  update: $('userProfileDiv'); 
}).send(); 

When you’ll use it: A very common pattern implied by the Web 2.0 
buzzword is the use of Ajax to fetch display data from the server on 
demand. If a user expands a section of content, rather than have that 
content loaded and hidden, it’s fashionable to instead go get the layout that 
belongs there only if and when the user requests it. 
There are some trade-offs to this practice. It means that this content is not 
visible to search engines, for example. But for the most part I encourage 
this practice. When used well, it can increase load times for the user and 
allow for a page to present a lot more information that the user can drill 
down into quickly. 

Element.load 
What it does: As with Element.send, which essentially posts a form via 
Ajax, this method allows you to update the contents of a DOM element 
quickly with minimal code. 
Usage: 
$('myElement').load(url[, data]); 

Example: 
$('myElement').load('/page2.html'); 



 MooTools Essentials     161 

When you’ll use it: This handy shortcut allows you to acquire any element 
from the DOM and update its content via Ajax. It’s very short and easy to 
read and understand, and you’ll likely find yourself using it more often 
than typing out new Request.HTML... etc. 

Request.JSON 
What it does: This class automates the sending and receiving of JSON 
information (see “JSON” in Chapter 6). 
Usage: 
new Request.JSON(options); 

Example: 
//This code will send a data object via a 
//GET request and alert the retrieved data. 
var jsonRequest = new Request.JSON({ 
  url: " /tellMeAge.php", 
  onComplete: function(person){ 
    alert(person.age);    //Alerts "25 years". 
    alert(person.height); //Alerts "170 cm". 
    alert(person.weight); //Alerts "120 kg". 
  } 
}).get({'firstName': 'John', 'lastName': 'Doe'}); 

When you’ll use it: As outlined in Chapter 6, JSON is a transport language 
much like XML, except that it uses native JavaScript notation. Using XML 
to transport the data in and out of JavaScript requires you to crawl up and 
down a document tree, while using JSON allows you to use dot notation (as 
illustrated previously). Despite it being the “x” in Ajax, it’s actually 
increasingly rare to use XML to manage data transactions from the browser 
to the server. 





 MooTools Essentials     163 

Chapter 11: Plug-Ins 
MooTools, at its heart, is focused on making JavaScript more pleasant to 
write. Making it easier to write well-designed code encourages reuse, 
flexibility, and object-oriented principles. 
Included in the library are several files that aren’t really part of this core 
mission. These files certainly allow for interesting interfaces with drag and 
drop, sortable lists, tooltips and more, but they aren’t really what 
MooTools, to date, has considered its core mission. 
This is why they are all lumped together and described as “plug-ins.” In 
Chapter 12, I talk about plug-ins available from third parties. It is the 
modular nature of MooTools itself that allows for the creation of plug-ins 
with relative ease, and while MooTools contains many files it considers 
plug-ins, this assignation should not imply that they aren’t great additions 
to the library, nor that writing your own plug-ins is something you should 
avoid. MooTools was built for extensibility, and to that end it illustrates 
how to do it with its own plug-ins. 

A More General Overview 
Now that you’ve seen how to write classes and how to use them, I’m going 
to spend a little less time on the classes in these next chapters than I have in 
the previous ones. By now, you should have the hang of how to initialize a 
class and pass it arguments and options, and how to invoke the methods of 
that class and integrate those methods with actions and events on your site. 
Consequently, I’m going to give an overview of all the MooTools plug-ins 
here, but for the most part I’m going to direct you to the online 
documentation and the demos of these classes so that you can see them in 
action in the browser, so I can spend more pages here on real-world 
examples (beginning in Chapter 13). 



164     MooTools Essentials 

Assets 
The Assets set of classes automate the injection of assets into the 
document (style sheets, images, JavaScript tags, etc.). Unless you’re doing 
a lot of this in your document(s), it’s usually not worth using this script and 
including its download weight. If you are injecting only one or two things, 
you’ll do better to just use the Element constructor and injection methods. 
The javascript and css methods all return an element object that has 
already been injected into the document. 

Assets.javascript 
This is pretty straightforward: 
var myScript = new Asset.javascript('/myscript.js', { 
  onload: function() { 
    //Call a function from myscripts.js 
    MyScript.start(); 
  } 
}); 

Assets.css 
Pretty much the same thing as the preceding JavaScript example: 
var myCSS = new Asset.css('/mycss.css'); 

Assets.image 
Unlike the Assets.css and Assets.javascript methods, this method 
does not inject the image into the document. It does, however, preload the 
image. 



 MooTools Essentials     165 

var myImage = new Asset.image('/myImg.gif', { 
  onload: function() { 
    //Image is loaded and you can read the dimensions. 
    //We resize it when it is bigger than 120px. 
    if (this.height > 120) this.height = 120; 
    if (this.width > 120) this.width = 120; 
    this.inject('gallery'); 
  } 
}); 

Assets.images 
This class just takes an array of URLs and returns an array of image 
elements. 
var myImages = new Asset.images([ 
  '/images/myImage.png', 
  '/images/myImage2.gif' 
], { 
  onProgress: function(counter, index){ 
    alert(counter + ' image loaded ...'); 
  }, 
  onComplete: function(){ 
    alert('All images loaded!'); 
  } 
}); 

Accordion 
The Accordion, for better or worse, is perhaps the interface effect most 
associated with MooTools. This is probably because the original Moo.Fx 
library (a 3KB add-on to Prototype.js) included it, and, at the time, few 
other libraries had anything like it (to my knowledge). Indeed, if you visit 
the Moo.Fx page (http://moofx.mad4milk.net/), you’ll see the 
Accordion is still in use. 

http://moofx.mad4milk.net
http://moofx.mad4milk.net


166     MooTools Essentials 

The way the interface works is that it takes a list of items and headers and 
hides all but one of the items. When the user clicks a different header, it 
simultaneously collapses the currently visible section while expanding the 
section that corresponds to the clicked header. 
Example: 
new Accordion($$('dl#accordionExample dt'), 
              $$('dl#accordionExample dd')); 

The first section displayed: 

 

The second section, when clicked, expands as the first section closes: 

 

The completed transition: 

 



 MooTools Essentials     167 

Fx.Slide 
This class slides the contents of an element in and out of view. It only 
allows for sliding down like a window blind or sliding in from the left. 

 

It accomplishes this by wrapping your content inside another div whose 
overflow is hidden, and then moving the offset of your content negatively 
up or to the left to “slide” it out. 
Example: 
var mySlide = new Fx.Slide($('myDiv'), {duration: 200}); 
mySlide.slideOut(); //My element slides out of view 
//mySlide.toggle will slide back in now because it 
//was hidden: 
mySlide.toggle(); 

Fx.Scroll 
This class smoothly scrolls the contents of any overflowed element (e.g., an 
element with scrollbars), including the window. You can use it to smoothly 
scroll back to the top of a window, to scroll to any x/y location, or to scroll 
to any element on the page. 



168     MooTools Essentials 

Example: 
var myScrollFx = new Fx.Scroll(document.body); 
//Scroll to 300px from the top of the page: 
myScrollFx.start(0, 300); 
//Scroll down to the specified element: 
myScrollFx.toElement($('myDiv')); 
//Scroll to the top of the page: 
myScrollFx.toTop(); 

Fx.Elements 
This effects class works kind of like Fx.Morph in that it lets you alter 
numerous CSS properties at once; however, in addition to this, it allows 
you to alter numerous properties on numerous elements at once. If you 
want to fade out three elements, while moving two others and fading out 
another three, Fx.Elements will handle this transition more smoothly than 
if you used Fx.Tween or Fx.Morph for each element. 
Example: 
var myFx = new Fx.Elements($$('div.animated')); 
//Let's say there are 3 of these div.animated objects 
myFx.start({ 
  '0': { //Animate the first one from a spec to a square 
    height: [0, 100], 
    width: [0, 100] 
  }, 
  '1': { //Resize the second one from a square to a spec 
    height: [100, 0], 
    width: [100, 0] 
  }, 
  '2': { //Fade the third out to zero 
    opacity: 0 
  } 
}); 



 MooTools Essentials     169 

Drag 
The Drag class automates the work of tracking the movement of the mouse 
and relating that movement to some value. Using Drag, you could alter the 
color of the background of an element based on where the mouse moved. 
You could alter the thickness of a border or iterate a counter up or down. 
Its numerous options and events allow you to create any interaction based 
on mouse movement that you can imagine. 
Example: 
//Create an Adobe Reader-style drag-to-scroll container 
//that moves the contents of the page as the user drags  
var myDragScroller = new Drag('myContainer', { 
    style: false, //Disable dragging by left/top style 
    invert: true, 
    modifiers: {x: 'scrollLeft', y: 'scrollTop'} 
}); 

Element.makeResizeable 
The only shortcut that comes with Drag.js is to make an element 
resizable. Using this, you can allow the user to grab an element and drag to 
make it wider, taller, or both. You can specify a “handle” that the user has 
to click and drag. Otherwise, the user can click anywhere inside the 
element and drag, and the element will resize. 
Example: 
$('myDiv').makeResizeable({ 
  //An element inside acts as handle, not the whole div: 
  handle: $('myHandle'), 
  //The user can only resize vertically 
  modifiers: {x: false, y: 'height'} }); 



170     MooTools Essentials 

Drag.Move 
This class automates the interface interaction of dragging objects around. It 
extends Drag to manage the process of relocating an element relative to the 
movement of the mouse. 
It has all the same options as Drag with the addition of two very useful new 
ones: 
 container: A DOM element that the draggable element should be 

constrained to; this will prevent the user from dragging the element outside of 
a certain space. 

 droppables: A collection of DOM elements that are OK for the user to drop 
the dragged element into. The events “over”, “leave”, and “drop” get fired on 
the class with the dragged element as first argument when the dragged 
element hovers, leaves, or get dropped on the droppable. 

Example: 
var myDrag = new Drag.Move('draggable', { 
    droppables: '.droppable', 
    onDrop: function(element, droppable){ 
        if (!droppable) 
          console.log(element, ' dropped on nothing'); 
        else 
          console.log(element, 'dropped on', droppable); 
    }, 
    onEnter: function(element, droppable){ 
        console.log(element, 'entered', droppable); 
    }, 
    onLeave: function(element, droppable){ 
        console.log(element, 'left', droppable); 
    } 
}); 



 MooTools Essentials     171 

Element.makeDraggable 
This is a shortcut method for making an element draggable. It accepts the 
same arguments as Drag.Move. 
Example: 
$('myElement').makeDraggable({ 
    droppables: '.droppable', 
    onDrop: function(element, droppable){ ... }, 
    onEnter: function(element, droppable) { ... }, 
    onLeave: function(element, droppable) { ... } 
}); 

Color 
The Color class is a utility plug-in that’s useful in altering color values. 
Using it, you can add and subtract color values, making a given color 
lighter or darker by mixing it with another color value. I personally don’t 
find myself using it that much, but if you have a design that requires a 
programatically defined color palette, this class can help you automate 
calculating color values. 

Group 
This utility class allows you to group numerous items together and attach 
events to them as a collection. For instance, if you want something to 
happen only after the user has clicked numerous items, or if you want 
something to happen when numerous Ajax requests complete, you can 
group the objects together and attach a single event to the group. 



172     MooTools Essentials 

Example: 
var xhr1 = new Request('/one.js', { 
  evalResponse: true 
}); 
var xhr2 = new Request('abstraction.js', { 
  evalResponse: true 
}); 
var xhr3 = new Request('template.js', { 
  evalResponse: true 
}); 
 
var group = new Group(xhr1, xhr2, xhr3); 
group.addEvent('onComplete', function(){ 
    alert('All Scripts loaded'); 
}); 
 
xhr1.request(); 
xhr2.request(); 
xhr3.request(); 
//When all three complete, the alert will display 

Hash.Cookie 
I know what you’re thinking. You’re thinking about hash cookies. Well, I 
hate to disappoint, but this class won’t give you a case of the munchies and 
satisfy them. This combination of Cookie and Hash automates the creation 
of a cookie containing a set of key values. It encodes the object into a query 
string value (a JSON string, to be precise) and then evaluates it on retrieval. 
This is more appropriate than having several cookies for storing user 
preferences and the like, though it has the limitation of only supporting a 
fixed amount of data (4KB is the limit). 



 MooTools Essentials     173 

Example: 
var fruits = new Hash.Cookie('fruit-colors', { 
  duration: 3600, 
  path: "/", 
  autoSave: true //Save on every operation 
}); 
fruits.extend({ 
    'lemon': 'yellow', 
    'apple': 'red' 
}); 
fruits.set('melon', 'green'); 
fruits.get('lemon'); //yellow 
 
// ... On another page ... values load automatically 
 
var fruits = new Hash.Cookie('fruit-colors', { 
  duration: 365, 
  path: "/" 
}); 
fruits.get('melon'); //green 
 
fruits.erase(); // Delete cookie 

Sortables 
If you have a list that you need to allow the user to reorder, the Sortables 
class takes most of the work out of the process for you. While it does 
automate all the interaction and dragging and whatnot, it doesn’t actually 
send any data anywhere as a result of the user changing the order. You’ll 
have to integrate something like the Request class to send stateful 
instructions back to the server for storage. 
The Sortables class allows you to drag and drop inside a single list or 
across several. This way users can reorder a single list, or reorder items 
across lists with ease. You control this distinction by passing in a single list 
element container or several. 



174     MooTools Essentials 

This class has many options, which allows it to be very flexible. The 
examples on MooTools.net and in the online companion to this book 
(http://www.mootorial.com) illustrate some of the ways you can 
configure the class. 
Example: 
var mySortables = new Sortables('#list-1, #list-2', { 
  constrain: true, 
  revert: true, 
  onComplete: function(){ 
    new Request({ 
      url: '/dragManager.php' 
    }).post({ 
      newOrder: this.serialize() 
    }); 
  } 
}); 

Slider 
Thought it’s not that commonly used on the Web, the slider is certainly a 
recognizable interface element appearing in desktop apps, the iPhone, and 
car dashboards. MooTools gives us an easy class to drop in when we want 
to implement this interface element into our own applications. The element 
consists of a knob (that is dragged left-right or up-down) and the element 
that contains (and therefore constrains) it. You can specify how many steps 
are in the range and what happens when the user moves the knob. 

 

Scroller 
This class will scroll the contents of any overflowed element (including the 
window) when the mouse approaches the edge of that element. This is very 

http://www.mootorial.com
http://www.mootorial.com


 MooTools Essentials     175 

useful for drag-and-drop applications. If the user can drag an object from 
one place to another, but the destination is out of view because it is scrolled 
above or below, then you need some way for the user whose mouse is 
engaged in dragging the item to scroll the window. 
Consequently, this class is typically used in conjunction with Drag and 
Drag.Move. 

Tips 
The Tips class automates tooltips. Give your elements a title property 
for the title of the tip and a rel property for the description, and then 
instantiate the Tips class. 
Example: 
<a href="/foo.html" title="The Foo Page" 
   rel="This link goes to the Foo Page" 
   class="tip">Go to Foo</a> 

Code: 
new Tips($$('a.tip')); 

Result: 

 





 MooTools Essentials     177 

Chapter 12: Third-Party Plug-Ins 
As stated at the beginning of the previous chapter, the MooTools 
framework has, to date, focused mainly on the core challenge of making it 
easy and pleasant to write good JavaScript. While it contains a healthy 
number of useful plug-ins, the framework itself is designed for 
extensibility. 
Consequently, numerous plug-ins are available on the Web for you to 
download and use. Most of the plug-ins that are well written and well 
documented follow all the patterns and conventions outlined in the 
previous chapters. These plug-ins tend to provide a lot of options and 
events to configure them, but regardless they are almost always classes that 
can be extended and altered. 

The CNET Clientside Libraries 
For the last few years, I’ve been the principal JavaScript developer at 
CNET Networks (despite the fact that my role there was never officially as 
an engineer—I was a product manager). I left CNET in the fall of 2007 to 
pursue my own startup, but I continue to contribute to the codebase that I 
authored as well as blog about JavaScript and MooTools at 
http://clientside.cnet.com. 
During the period that I spent authoring a lot of this code (and contributing 
to MooTools), we at CNET decided to release as much of our JavaScript as 
possible, and as a result we have a large number of plug-ins that have been 
thoroughly tested and put into production on a heavily trafficked network. 

http://clientside.cnet.com
http://clientside.cnet.com


178     MooTools Essentials 

Here is a brief overview of some of the files that can be found there to date. 
You can visit these libraries by going to the following URLs: 

http://clientside.cnet.com/js Download the JavaScript 
libraries. 

http://clientside.cnet.com/docs View the documentation. 

http://clientside.cnet.com/wiki See working code examples of 
all the classes. 

dbug 
This wrapper for the Firebug console allows you to leave debug lines in 
your code and “turn them on” only when you need them. In addition to 
allowing you to leave information for yourself to inspect when something 
goes wrong, it helps prevent the accidental publishing of code that contains 
console instructions that will break in browsers without Firebug. 

Browser.Extras 
This extension adds numerous methods for managing URL data as well as 
a class for launching pop-up windows. 

Native Extensions 
You’ll find extensions to String and Hash as well as a native Date object 
that includes string parsing and date formatting methods. 

Element Extensions 
You’ll find methods for selecting text in form elements, computing the 
actual size of elements, positioning elements relative to other elements, and 
shortcuts like Element.hide and Element.show. 

http://clientside.cnet.com/js
http://clientside.cnet.com/docs
http://clientside.cnet.com/wiki


 MooTools Essentials     179 

Effects Extensions 
Fx.Reveal will automatically and smoothly transition an element whose 
display style is set to “none” to “block”, expanding the element and fading 
it in. It’s a less abrupt method than just changing the display from “none” 
to “block” (or vice versa). 
Fx.Move allows you to move an element from one location to a location 
relative to another (e.g., move this element on top of, or below, or to the 
right of some other element). 
Fx.Sort allows you to reorder a list of elements smoothly; they all move 
to their new locations instead of just jumping to them. 
Fx.Marquee helps automate a marquee effect so you can repeatedly show 
messages with different transitions. 

Request 
The JsonP class allows you to send and receive data to a remote server on 
a different domain, a limitation that Ajax doesn’t allow. This has the 
potential to be insecure, so you should be sure to send and receive data to 
and from servers that you control and trust. 

UI 
The CNET Clientside Libraries have over a dozen interface classes, 
including the following: 
 IconMenu: An icon carousel that allows the user to paginate through a 

horizontal or vertical list of items. 

 Modalizer: A class that creates a “modal” layer that overlays the contents 
of the window with a semitransparent layer; this is integrated with our 
StickyWin class, detailed later in this list, to create dialogs that gray out the 
page content until they interact with the dialog. 



180     MooTools Essentials 

 PopupDetails: A class that creates an interface of tooltip-like displays with 
rich details. For instance, if you have a lot of products displayed, you can 
show rich metadata when the user mouses over the image of the product. 

 StickyWin.alert: A replacement for alert() that looks a little nicer and 
doesn’t freeze the browser. 

 StickyWin: An in-page DHTML pop-up manager for pop-up messages and 
forms. This highly configurable and flexible, draggable, resizable UI element 
can be used for nearly any pop-up interaction. 

 Waiter: A class that overlays a DOM element with a semitransparent layer 
and a spinning Ajax indicator to illustrate to users that there is some sort of 
transaction occurring that they must wait for. The class can be used on its 
own, but it is also integrated into the Request classes so that you can enable 
it with a single option passed when you create a Request instance. When the 
request is running, the waiter is displayed. 

Layout 
The CNET Clientside Libraries feature a few classes designed to animate 
layouts or facilitate creating them on the fly (like data tables). 
 HtmlTable: This automates the building of an HTML table from a data set, 

allowing you to add rows on the fly. 

 MultipleOpenAccordion: This is very similar to the Accordion class in 
MooTools except that it allows the user to open more than one section at a 
time. 

 MooScroller: This class re-creates the traditional scroll interface for 
overflowed elements using DOM elements that can be styled. 

 SimpleCarousel: This class offers a simple carousel interface with slides 
and buttons that show the corresponding slide. It can also automatically cycle 
through the slides until the user interacts with it. 

 SimpleSlideShow: This class creates a simple slide show with previous 
and next buttons. 



 MooTools Essentials     181 

 TabSwapper: A common interface element, the “tabbed box” allows users to 
click tabs above a set of content elements to see the corresponding element. 

Forms 
CNET builds a lot of internal tools, and consequently we have a lot of 
JavaScript tools for making managing content more pleasant. Here are a 
few of them: 
 DatePicker: A flexible date selector that lets the user choose from a 

calendar of dates, this class can be configured to allow for selecting a single 
date or a date range, as well as entering a specific time. 

 FormValidator: This class is a nonintrusive form validator. After assigning 
the inputs of a form various CSS classes, you can instantiate this class to give 
validation errors to users as they interact with the form, saving them the 
trouble of having to submit the form to get errors. It also allows for custom 
validation rules. 

 OverText: This class will take the alt or title text for an input and display it 
over the element when it has no value. This allows you to give a contextual 
element to empty inputs. When the user clicks into the element, the text is 
hidden. If the user clicks out without entering any values, the text returns. The 
text itself is a DOM element positioned above the input that can be styled 
however you like. It is not actual input text, so it won’t be submitted 
accidentally by the form. 

 SimpleEditor: This class creates a simple HTML editor. It is not a 
WYSIWYG editor, but instead offers buttons to wrap selected text with 
HTML tags or else prompts the user to fill out the attributes of a tag (like an 
image tag). 

This isn’t a complete accounting of all the scripts Clientside has to offer, 
but it should give you an idea of what’s there. 



182     MooTools Essentials 

Other Third-Party Scripts 
The collection of CNET’s Clientside scripts I outlined in the previous 
section aren’t the only plug-ins available. There are numerous other authors 
out there who have released plug-ins. Most of these plug-ins can be found 
by visiting the MooTools forums (http://forum.mootools.net) and 
browsing to the “Your Scripts” category. Here various users have 
submitted their own scripts for members of the MooTools community to 
use and provide feedback. 
Some of these are hit or miss. A good indication of a good script is how 
well documented it is and whether it has numerous examples that you can 
see in action. 

Note As of this writing, the MooTools forums have moved to a Google 
Group (http://groups.google.com/group/mootools-users). The old 
forum, however, is still there (in read-only mode) and features all the 
scripts I refer to earlier, so it’s still worth digging into. The MooTools team is 
currently working on a plug-in page to feature other third-party plug-ins, so 
check the MooTools site for updates. 

Of the scripts available in this section, I have used only a few, described 
next. 

Autocompleter, FancyUpload, ReMooz, SqueezeBox, Roar 
Harald Kirschner (a.k.a. digitarald) is another contributor to MooTools and 
has numerous plug-ins up on his site (http://digitarald.de). There 
you can find the following classes, all of which I recommend trying out: 
 Autocompleter: This is an autocompletion class that works with local data 

in memory (e.g., an object defined in the page), Ajax, or JSON. Note that I 
have integrated CNET’s JsonP class with Autocompleter and provided 

http://forum.mootools.net
http://forum.mootools.net
http://groups.google.com/group/mootools-users
http://digitarald.de
http://digitarald.de


 MooTools Essentials     183 

a copy in the CNET libraries. I’ve also documented all the options 
which, as of this writing, Harald hasn’t gotten around to yet. 

 FancyUpload: Swiff and Ajax come together for an elegant upload interface 
that displays the progress of any number of files being uploaded to the server. 

 ReMooz: This image gallery–like plug-in lets users zoom in on thumbnails 
and get a high-quality version of the image. 

 Roar Notifications: This notification widget streamlines incoming 
messages for updates or errors, adding only minimal distraction to the 
interface. 

 SqueezeBox: This Lightbox-inspired pop-up allows you to embed just about 
anything from images to Flash videos in an in-page pop-up. 

 History: This class adds back-button functionality to Ajax-applications. It 
provides a history-change event and a dynamic routing to manage several 
widgets in one page. 

Slimbox 
This is a clone of Lightbox, a slide show built for script.aculo.us and 
Prototype (http://www.lokeshdhakar.com/projects/lightbox2/). 
The original port of Lightbox into Slimbox (http://www.digitalia. 
be/software/slimbox) was basically a code conversion to MooTools 
syntax (with a refactoring of the effects queue and other parts), but it didn’t 
actually create a MooTools class out of it. Instead, it works like the 
Prototype version does, which is a collection of methods into the Lightbox 
namespace. 
The downside of this conversion is that it’s not a class, so it’s not possible 
to have more than one instance, it doesn’t have configurable options or 
events, and you can’t extend it. 
Finally, the other issue with the library is that it hasn’t been updated for 
MooTools 1.2 by the original converter. Consequently, you’ll find a new 

http://www.lokeshdhakar.com/projects/lightbox2
http://www.lokeshdhakar.com/projects/lightbox2
http://www.digitalia.be/software/slimbox
http://www.digitalia.be/software/slimbox
http://www.digitalia.be/software/slimbox


184     MooTools Essentials 

version in CNET’s library that does all this, though the credit for it all still 
belongs to the original author of Lightbox, Lokesh Dhakar (who wrote 
Lightbox for Prototype.js) and Christophe Beyl (who first ported it to 
MooTools). 

. . . And More 
I don’t spend a lot of my time digging around in the forums for plug-ins 
that people post, but there are a lot of them to play around with. If you’re 
looking for something that seems like the kind of thing someone else would 
have made (date pickers, form validators, pop-ups, etc.), chances are 
someone did. Actually, chances are that several people did and there are 
several versions for you to choose from, so I encourage you to dig around 
in the “Your Scripts” section of the MooTools forum when you have the 
time. 



 MooTools Essentials     185 

Chapter 13: Real-World Examples 
The bulk of this book up to this point is designed to help you learn the 
purpose of various methods and classes in the MooTools library. It’s 
possible, through reading about these methods and classes and looking at 
the examples, to glean the “MooTools way” of doing things. As outlined at 
the beginning of this book in “About MooTools” in the Introduction, the 
following goals are part of MooTools’s core mission: 
 Don’t duplicate code. 
 Add functionality that fits in principle with JavaScript’s own design 

philosophy. 

 Extend native objects (String, Function, Array, Element, Event, and 
Number) as JavaScript was designed to do. 

 Write clean, clear, well-named code that is understandable when read by 
anyone with the skills to understand it. 

 Abstract as much away from the browser as possible. 
 Whenever possible, make it still feel like you’re writing JavaScript. 
 Make it modular. 

These aren’t all the points outlined in the Introduction, but they are the 
pertinent points to what I’m going to cover next: the code you write. 
MooTools is a framework that makes authoring JavaScript easier and better 
in many ways, but you still need to write your own code to add 
functionality to your pages. If you include the MooTools library on your 
pages, absolutely nothing will happen unless you write code creating 
instances of effects, Ajax, and more. 
So let’s take on some real-world examples of how to author JavaScript in a 
“MooTools way.” 



186     MooTools Essentials 

A Simple Page 
As the section “Adding MooTools to Your Page(s)” in Chapter 1 
illustrates, adding the MooTools library to your pages is pretty 
straightfoward. You download the library and save it to the directory with 
the rest of your web assets and then reference it with a script tag: 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" 
  lang="en" dir="ltr"> 
  <head> 
    <meta http-equiv="Content-Type" 
     content="text/html; charset=UTF-8" /> 
    <title>Your title</title> 
    <script type="text/JavaScript" 
     src="MooTools.js"></script> 
    <script type="text/JavaScript" 
     src="yourSiteCode.js"></script> 
    <script type="text/JavaScript"> 
      //Or write some code inline 
    </script> 
  </head> 
  <body>....</body> 
</html> 

Let’s imagine that we want to attach a simple event to all the links on the 
page to load the content each points to into a container. In this example, we 
can see the DomReady custom event (see Chapter 6) in use, the get and 
addEvent element methods (see Chapter 5) in use, an instance of Request 
(see Chapter 10) to fetch data from the server, the native Event class (see 
Chapter 4) to stop the link clicks, as well as selectors (see Chapter 6) and 
array iteration (see Chapter 4). We’ll pick apart the code line by line after 
the full example that follows. 

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml


 MooTools Essentials     187 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" 
  lang="en" dir="ltr"> 
  <head> 
    <meta http-equiv="Content-Type" 
     content="text/html; charset=UTF-8" /> 
    <title>Your title</title> 
    <script type="text/JavaScript" 
     src="MooTools.js"></script> 
    <script type="text/JavaScript" 
     src="yourSiteCode.js"></script> 
    <script type="text/JavaScript"> 
      window.addEvent('domready', function(){ 
        $$('#pageLinks a').each(function(link){ 
          link.addEvent('click', function(event){ 
            event.preventDefault(); 
            $('pageContainer').load(link.get('href')); 
            //you could also express the above as: 
            //$('pageContainer').load(this.get('href')); 
            //as "this" here is the link 
          }); 
        }); 
      }); 
    </script> 
  </head> 
  <body> 
    <ul id="pageLinks"> 
      <li><a href="/page1.html">page 1</a></li> 
      <li><a href="/page2.html">page 2</a></li> 
      <li><a href="/page3.html">page 3</a></li> 
      <li><a href="/page4.html">page 4</a></li> 
    </ul> 
    <div id="pageContainer"></div> 
  </body> 
</html> 

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml


188     MooTools Essentials 

Dissecting the Example 
Let’s look at the preceding example line by line. I’m only going to focus on 
the JavaScript, as the HTML is pretty straightforward. 
First, we can’t reference anything in the DOM until it’s there, and our 
script tag, at the top of the page in the head, will be interpreted before 
the rest of the HTML loads. We use the addEvent method on the window 
to wrap our functionality in the DomReady event so that our code will be 
executed as soon as the HTML is loaded (but it won’t have to wait for 
images and whatnot to load). 
      window.addEvent('domready', function(){ 

Now that it’s safe to reference the DOM, we can select the links we want to 
modify. We use the $$ method to select all the links in the pageLinks div. 
We’ll need Selectors.js in order for this to work because $$ accepts 
only tag names unless you include this script in your copy of MooTools. 
With it you can specify a CSS selector. 
        $$('#pageLinks a').each(function(link){ 
        //Can be also written as 
        $('pageLinks').getElements('a').each(... 

Here we see an example of function chaining. This is when we execute a 
method on the object returned by another function (this shouldn’t be 
confused with the Chain class). All this means is that if a function returns a 
string, you can invoke the function and then execute a string method on 
the result. For example, $('myElement').setStyle(...) invokes the $ 
method and then invokes the setStyle method on the element returned by 
it. setStyle is a property of Element, not of $. So in the preceding 
example, we invoke $$, which always returns an array (even an empty one 
if it doesn’t find any elements that match the selector), and then we invoke 
.each, which is a property of Array. 



 MooTools Essentials     189 

Array.each accepts two arguments: the item in the array being iterated 
over and the index of that item in the array. In our example, we don’t need 
to reference the index, so we don’t have to declare it, but we could if we 
wanted to. 
Next, we take the link that is passed to our function and add an event to it 
for when the user clicks it: 
          link.addEvent('click', function(event){ 

We specify which event to monitor (click) and pass a function to be 
executed when the user clicks it. This function is anonymous (i.e., it is not 
declared as a variable with a name, it’s just a literal function(){} object) 
and accepts as its argument the event that is created when the user clicks 
the link. This is an instance of the Event class. 
Next, we prevent that event from doing what would normally happen if the 
user were to click the link (i.e., the page would load the URL as a new 
document). We don’t want this to happen; we want to update a portion of 
the page with the contents of the URL that the link points to, so we use the 
preventDefault method so that the link click doesn’t load a new page. 
            event.preventDefault(); 

Finally, when the user clicks the link, we want to update the div that holds 
our page information with the contents of that URL. We could create a new 
instance of Request to update the content, but the element shortcut load 
will work just fine here; no need to write more code than we need. This 
method accepts a URL that we need to retrieve from the link, which we do 
with element.get. 
            $('pageContainer').load(link.get('href')); 
          }); //End the addEvent statement 
        }); //End the each iteration 
      }); //End the domready statement 



190     MooTools Essentials 

Note Whenever you load content into a page this way, the URLs you 
request should not be entire documents; they shouldn’t have head and 
body tags but instead should be HTML fragments. Whatever is returned by 
these URLs will be injected in their entirety into the document. This means 
that if your site has a logo and navigation bar layout, and the links you 
point to also have this, you’ll see those elements loaded into your container. 
This is why you should just return the content that you would want to exist 
in the updated DOM container and nothing else. 

Summary 
This simple example strings together numerous native methods 
(Element.addEvent, Element.get, Element.load, Array.each, and 
Event.preventDefault), stand-alone methods ($$), and classes 
(Request) to add some nice functionality to our pages—all in just eight 
lines of readable code. 
But adding functionality in this manner will only get you so far, which is 
why you need to write classes. You’ll see an example of how to do so in 
the next chapter. 



 MooTools Essentials     191 

Chapter 14: Writing a Tab Class 
In the example in Chapter 13, we had some HTML with four links to 
different pages, followed by a container that would display the contents of 
the pages those links pointed to. We implemented the previous example to 
select a specific group of links on a specific page, but what if our site had 
lots of these things? What if we had a dozen pages, each with three or four 
different placements of this layout? Writing the same chunk of code over 
and over again wouldn’t be very efficient. 
Instead, we should turn the pattern into a class, which we can initialize over 
and over again for each placement, passing in only the variables that make 
each one unique. 
By making a piece of interaction into a class, we can maintain a state and a 
reference to various objects for effects, Ajax, or DOM elements. We can 
define methods that we can use to manipulate that state whenever we like. 
Finally, the resulting chunk of functionality can be extended to add more 
functionality later. All this adds up to resuable code that can save us a lot of 
time. For example, if you find a bug in your code, you fix it in one place, 
and every place that uses it is fixed, so you don’t have to hunt down all the 
places where you’ve written the functionality and fix it in each one. 
So let’s write a class for the pattern we have in our example from Chapter 
13. Our objective here will be to end up with the exact same result, but 
instead we’ll be able to reuse it and extend it. 



192     MooTools Essentials 

Step 1: Creating an Empty Class 
When writing a class, you’ll almost always start out the same way: 
var AjaxTabs = new Class({ 
  Implements: [Options, Events], 
  options: {}, 
  initialize: function(){} 
}); 

This template is the very basics of a class. Any class that you’re going to 
use more than once is going to have options (see Chapter 8), and any class 
that the user can interact with (or otherwise has functionality that happens 
at arbitrary times—like effects or Ajax) will likely have events. Any class 
that should do something when you instantiate it will have an initialize 
method. 
Because we started out this excercise with the specific goal of reproducing 
our example from the previous class, I’m going to remove the options and 
events lines from this example, but they’ll show up again as we progress. 
This leaves us with the following: 
var AjaxTabs = new Class({ 
  initialize: function(){ 
  } 
}); 

Step 2: Defining Arguments 
In our case, we can start off knowing what the variables are by looking at 
the example we’re trying to emulate from the previous chapter. We know 
we’ll have links to different HTML fragments (the “pages”) as well as a 
container where those fragments go. Our class can’t work without these 
things, so we’ll make them arguments. 
This is the key distinction between arguments and options: options are just 
that—optional—while arguments are required for the class to work. 



 MooTools Essentials     193 

Sticking with this pattern will help anyone else who uses this class 
understand the distinction (and it’ll help you, too, when you use it again 
after a few months pass). Being consistent with arguments versus options 
make it less likely that your class will break when someone else uses it. 
So let’s change our template by adding our arguments and storing them. 
I’ve emphasized the changes in bold here, which we’ll dissect after the 
example. Again, we won’t have options in this example yet, but they’ll 
show up later. 
var AjaxTabs = new Class({ 
  initialize: function(container, links){ 
    this.container = $(container); 
    this.links = $$(links); 
  } 
}); 

The bold changes now specify that our class accepts two options: a 
container (where the updated content goes) and links (the page links). 
Dissecting this a bit, we have the following: 
First, we store the container reference as a property of the class. This way 
we can reference it later. We also wrap the reference with the $ method. 
This serves several purposes: it allows the user to pass in an element’s ID 
(a string) or the element reference itself. It also ensures that that element is 
properly extended with MooTools methods. 
    this.container = $(container); 

Then we store the links. This array of links gets passed through $$, which 
serves the same purpose as the previous line being passed through $. The 
user can pass in an array of links or a selector to retrieve those links. If the 
user passes in an array of elements, we ensure that this array of elements is 
extended with MooTools by passing it through $$. In both cases, it won’t 
matter if the elements have already been passed through $$ or $—there’s 
no real expense to doing it twice. 



194     MooTools Essentials 

    this.links = $$(links); 

So now our class can be initialized, and the values stored in it can be 
referenced. If we did create an instance now, it wouldn’t do anything 
except store these references. Here’s what that would look like: 
var myAjaxTabs = new AjaxTabs($('pageContainer'), 
  $$('#pageLinks a')); 
myAjaxTabs.container //The $('pageContainer') div 
myAjaxTabs.links //The four $$('#pageLinks a') 
                 //link elements 

Now we need to actually do something with this information. 

Step 3: Defining Methods 
Our class now has stored references to the container and the links, but we 
need to actually add some behavior to them in order for our class to 
actually have an effect. Let’s add some methods to our class. 
var AjaxTabs = new Class({ 
  initialize: function(container, links){ 
    this.container = $(container); 
    this.links = $$(links); 
    this.attach(); 
  }, 
  attach: function(){ 
    this.links.each(function(link){ 
      link.addEvent('click', function(event){ 
        event.preventDefault(); 
        this.container.load(link.get('href')); 
      }.bind(this)); 
    }, this); 
  } 
}); 

Cool. Now we have a class that, when initialized, will make the links 
passed in to it load their contents into the container specified. We’ve now 
duplicated the code we started out with. Granted, it’s twice as many lines, 



 MooTools Essentials     195 

but now we have something we can reuse and build upon. Let’s dig into the 
new lines. 
In the initialize method, we reference another method in the class: 
    this.attach(); 

The this keyword is very important. It references the instance of the class. 
So if on our page we create three instances, each instance can refer to itself 
as “this” and not run into the other instances. This is a really powerful 
concept, as it allows these little buckets of functionality to keep track of 
their own state. When you get the hang of using the this keyword, you’ll 
see how it lets you make really clean code, even if you have a lot of this 
references all over the place, as evidenced in our attach method: 
  attach: function(){ 

This method, which is a property of every instance of our class, has no 
arguments. We could have specified some, but we don’t need to since we 
stored our references to the links we want to monitor as this.links. 
    this.links.each(function(link){ 

We iterate over the links using the array method each as we did in our 
example in the previous chapter, but there’s a difference here: each can 
take two arguments. In our previous example, we only used the first (a 
function to invoke with each item in the array), but not the second—an 
object to bind the this keyword to. 
By default, the function you pass to an array in its iteration methods is 
bound to that array, so the this in the function references the array. But 
here we need this to reference our class so we can continue to reference it. 
So if we jump ahead to the end of this statement, we see 
    this.links.each(function(link){ 
      ... 
    }, this); 



196     MooTools Essentials 

By specifying this second argument as a reference to our class, the function 
can reference this and point not to the array of links, but instead to our 
class. This is a little tricky, but it’s very important (see “‘this’ and Binding” 
in the Appendix for more detail). 
Inside our iteration, we add the event to the link just as we did in the 
previous chapter, but again, we have a subtle difference. Just like 
Array.each, Element.addEvent accepts as one of its arguments a 
function to invoke when the event is fired. If we want the contents of this 
inner function to be able to reference the this that refers to our class 
instance, we need to bind it to the function. 
Unlike the array iteration methods, addEvent doesn’t accept an additional 
argument for binding, so we must use the bind method on the function 
itself: 
      link.addEvent('click', function(event){ 
        ... 
      }.bind(this)); 

This is one of those gotcha things. Array and Hash iteration methods allow 
you to specify an argument for binding, but element event methods do not. 
Why doesn’t MooTools make this consistent? Well, it’s because the 
standards defined for JavaScript say otherwise, and where possible, 
MooTools follows those standards. Note that 
myArray.each(function(){...}.bind(this)) 

will work, though it’s not the “proper” way to do it. Moving on . . . 
The last bit of code inside our click event looks very similar to the 
original example, with the only difference being that now we reference the 
container as this.container. It’s because of this reference that we have 
to do the binding in the previous two lines. So, if you don’t reference 
this inside an inner function, you don’t need to bind anything to it. 



 MooTools Essentials     197 

      link.addEvent('click', function(event){ 
        event.preventDefault(); 
        this.container.load(link.get('href')); 
      }.bind(this)); 

Instantiating Our Class 
OK, so now we have a class that does what the previous example did. Now 
what? Just having a class doesn’t do anything—you have to instantiate it. 
So our new page would look like this: 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" 
  lang="en" dir="ltr"> 
  <head> 
    <meta http-equiv="Content-Type" 
     content="text/html; charset=UTF-8" /> 
    <title>Your title</title> 
    <script type="text/JavaScript" 
     src="MooTools.js"></script> 
    <script type="text/JavaScript"> 
      var AjaxTabs = new Class({ 
        initialize: function(container, links){ 
          this.container = $(container); 
          this.links = $$(links); 
          this.attach(); 
        }, 
 
        attach: function(){ 
          this.links.each(function(link){ 
            link.addEvent('click', function(event){ 
              event.preventDefault(); 
              this.container.load(link.get('href')); 
            }.bind(this)); 
          }, this); 
        } 
      }); 

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml


198     MooTools Essentials 

 
      window.addEvent('domready', function(){ 
        new AjaxTabs($('pageContainer'), 
                     $$('#pageLinks a')); 
      }); 
    </script> 
  </head> 
  <body> 
    <ul id="pageLinks"> 
      <li><a href="/page1.html">page 1</a></li> 
      <li><a href="/page2.html">page 2</a></li> 
      <li><a href="/page3.html">page 3</a></li> 
      <li><a href="/page4.html">page 4</a></li> 
    </ul> 
    <div id="pageContainer"></div> 
  </body> 
</html> 

Review 
First, I’ll again note that including all your JavaScript in the page like this 
isn’t a best practice. You should include most of your code—especially 
reusable classes—in an external .js file. I’m putting it in the page here just 
to make the example easier to read. 
We created a class that updates our page with the contents of the link URLs 
when clicked, and we can reuse that class in as many places as we want. As 
I outline in Chapter 1 in the section “Coding for Reuse,” I prefer to think of 
the code I write in two ways: implementation code and reusable code. The 
preceding example highlights these two principals quite clearly: our class is 
designed to be reused and extended, and we could really use it anywhere 
we wanted to. 
Classes, however, don’t do anything unless you invoke them. Invoking a 
class is something you do with specific variables passed to them to 
configure them for a specific use, as with our example here where we 



 MooTools Essentials     199 

create a new instance of our class with the links and container on the page. 
This code isn’t reusable at all—it’s quite specific to this page. When you 
build your site, your implementation code should be very light and as 
limited as much as possible to the things that are specific to a given page or 
a page’s components, while the code that is shared across your site should 
be filled with classes that manage these components when they are 
initialized. 
If you treat all the layout elements on your page this way, you’ll end up 
with a much more manageable codebase as well as code you can reuse that 
you perhaps hadn’t planned on reusing. It’s actually quite common for me 
to write a class for a layout component thinking I’ll never use it for 
anything else, only to find myself coming back to it to extend it for some 
other use. With that in mind, we’ll make our class a little more flexible and 
extend it for greater reuse in the next chapter. 





 MooTools Essentials     201 

Chapter 15: Writing Flexible Classes 
In the previous chapter, we wrote a class that featured a number of links 
that, when clicked, would update the contents of a container on the page. If 
we were to add a little bit of CSS styling, we might lay out the contents so 
it appears in a browser like this: 

 

 
This pattern—tabs essentially—is one that’s used a lot on web sites these 
days in lots of configurations. Look, here’s Yahoo’s home page: 



202     MooTools Essentials 

 

If we wrote our AjaxTabs class a little more generically, maybe it would 
be more broadly useful. The question then is what things do we need to be 
able to configure for it to behave differently in different use cases? 
Well, for starters, what if we didn’t want to use Ajax to get the content? 
What if we wanted to let the user click a tab and just show the appropriate 
container of content that’s already loaded on the page? Sure, if we need to 
fetch the information with Ajax, that should be an option, but if we already 
have the information, we shouldn’t go get it again. So let’s take the Ajax 
out of our little class, and then extend it so we can put the Ajax back in. 
Also, while we’re at it, let’s add some options and events so we can 
configure our pages in ways that we might need to. 



 MooTools Essentials     203 

Step 1: Creating a Foundation Class 
Starting with our example from the beginning of this chapter, let’s re-create 
our tab class without the Ajax. Unlike the previous chapters, I’m not going 
to dissect the example line by line (as our code examples are going to start 
getting somewhat long). Instead, I’ll include comments in the code briefly 
describing what each line is for. 
A preface to this new version of the example: unlike the previous version, 
which used Ajax to update the contents of a single container, we’re going 
to make this version hide and show the container that corresponds to the 
tab the user clicks. So if we have four tabs, we’ll have four containers. If 
the user clicks the first tab, we’ll show the first container and hide the 
others. Also, since we aren’t fetching information via Ajax, we won’t 
assume that the tabs are links, though they could be. 
var Tabs = new Class({ 
  //We are going to store our tabs in an array that's 
  //a property of the class - previously we called them 
  //links, but they don't have to be anchor tags 
  //anymore, so we'll be more generic with our name 
  tabs: [], 
  initialize: function(containers, tabs){ 
    //We need to make sure that the containers 
    //and tabs are an Elements collection 
    //so we pass them each through $$ 
    containers = $$(containers); 
    //For each tab passed in, we'll iterate over it 
    //and pass both the tab and the corresponding 
    //container to our new method that adds sections for 
    //us 
    $$(tabs).each(function(tab, index){ 
      this.addSection(tab, containers[index]); 
    }, this); 
    this.show(0); //Show the first tab on startup 
  }, 



204     MooTools Essentials 

    //Include the tab in the tabs array; use 
    //.include in case for some reason, it's already 
    //in there 
    this.tabs.include(tab); 
    //Store a reference between the tab and its 
    //container 
    tab.store('container', container); 
    //Pass the tab to our attach method 
    this.attach(tab); 
  }, 
  //Our attach method has changed; now it takes 
  //as its argument a single tab to monitor 
  attach: function(tab){ 
    tab.addEvent('click', function(event){ 
      event.preventDefault(); 
      //And we send the instruction to display a 
      //tab's content to a new "show" method, which 
      //can be invoked at any time, not just here 
      this.show(this.tabs.indexOf(tab)); 
    }.bind(this)); 
  }, 
  //Our show method takes the index of the item to show 
  show: function(index){ 
    //At the end of this method we store the index that 
    //is currently visible. If this method is called to 
    //show the tab that's already visible, don't do 
    //anything. 
    if (this.current === index) return; 
    //We iterate over each tab 
    this.tabs.each(function(tab, i){ 
      //If the index we're showing matches the index of 
      //the tab we're iterating over, then we set its 
      //display style to block, otherwise we set it to 
      //none to hide it 
      var container = tab.retreive('container'); 
      if (index === i) 
        container.setStyle('display', 'block'); 
      else container.setStyle('display', 'none'); 



 MooTools Essentials     205 

    }); 
    this.current = index; 
  } 
}); 

And here’s what it would look like to invoke this class: 
<script> 
window.addEvent('domready', function(){ 
  new Tabs($$('#tabContainers div.container'), 
           $$('#tabs li')); 
}); 
</script> 
//The HTML for it would look something like this: 
<ul id="tabs"> 
  <li>Tab 1</li> 
  <li>Tab 2</li> 
  <li>Tab 3</li> 
</li> 
<div id="tabContainers"> 
  <div class="container">This is the content 
   for the first tab.</div> 
  <div class="container">This is the content 
   for the second tab.</div> 
  <div class="container">This is the content 
   for the third tab.</div> 
  <div class="container">This is the content 
   for the fourth tab.</div> 
</div> 

So this is our “foundation” class. It does all the basics of a tabbed interface, 
but there are three big things missing: options, events, and the ability to 
load the content via Ajax (which is where we started). 

A Note on Using Methods 
A quick thing to note that’s new in this class from the previous chapter is 
the show method. Because we now have a method to show a specific tab, 



206     MooTools Essentials 

we could, in theory, change the tab at any time by referencing this method. 
For instance, let’s say we had another link on the page somewhere and we 
wanted to change to the second tab if the user clicked it. We could do 
something like this: 
var myTabs = new Tabs($$('div.container'), 
                      $$('#tabs li')); 
$('myOtherLink').addEvent('click', function(){ 
  myTabs.show(1); //Switch to the second tab 
  return false; //Stop the event from propagating 
}); 

This ability to reference the methods of the instance is obviously really 
useful. It allows you to create an instance of a class and then invoke the 
behaviors in that class when you need to. When you are authoring a class, 
consider how and where you’ll want access to functionality like this and 
make these methods easy to use. 

Step 2: Adding Options 
Whenever you have a class that’s designed to be used over and over again, 
it’s almost always a good idea to identify the things in the class that you 
might want to tweak for a given implementation. Regarding the preceding 
code, here are some things we might want the class to allow us to do when 
we create instances of it: 
 Add a CSS class to the selected tab and selected section. 
 Specify a different “start” index (right now, the first tab is shown on startup). 

There are potentially a lot of other things you might want to configure. You 
could make the sections fade in and out with effects. You could store a 
cookie with the state of the tabs so that it restores itself for users when they 
visit the page again. For our purposes, let’s keep things simple and just add 
these two options: a CSS class for the selected tabs and sections, and the 
ability to specify a different start option. 



 MooTools Essentials     207 

Here’s our class again, this time without all the earlier comments and with 
a few new lines I’ve emphasized in bold and commented about. 
var Tabs = new Class({ 
  //Add the functionality of the Options class 
  //to our class 
  Implements: Options, 
  options: { 
    //The default value of our options 
    //If we don't specify any of these, the 
    //default values are used 
    selectedTabCssClass: 'selected', 
    selectedSectionCssClass: 'selected', 
    firstShow: 0 
  }, 
  tabs: [], 
  //Our constructor now takes a 3rd argument: options 
    initialize: function(containers, tabs, options){ 
    //Merge the options passed in by the user with those 
    //defined by the class; note that it's OK if this 
    //argument is undefined 
    this.setOptions(options); 
    containers = $$(containters); 
    $$(tabs).each(function(tab, index){ 
      this.addSection(tab, containers[index]); 
    }, this); 
    //Show the panel specified in the options 
    this.show(this.options.firstShow); 
  }, 
  addSection: function(tab, container) { 
    this.tabs.include(tab); 
    tab.store('container', container); 
    this.attach(tab); 
  }, 



208     MooTools Essentials 

  attach: function(tab){ 
    tab.addEvent('click', function(event){ 
      event.preventDefault(); 
      this.show(this.tabs.indexOf(tab)); 
    }.bind(this)); 
  }, 
  show: function(index){ 
    if (this.current === index) return; 
    this.tabs.each(function(tab, i){ 
      var container = tab.retreive('container'); 
      //If we're showing the tab, add the CSS classes, 
      //else remove them 
      if (index === i) { 
        tab.addClass(this.options.selectedTabCssClass); 
        container.addClass( 
          this.options.selectedSectionCssClass); 
        container.setStyle('display', 'block'); 
      } else { 
        tab.removeClass( 
          this.options.selectedTabCssClass); 
        container.removeClass( 
          this.options.selectedSectionCssClass); 
        container.setStyle('display', 'none'); 
      } 
    }, this); //Now we're using 'this' inside this 
              //funciton, so we must specify a binding  
              //here to keep 'this' pointed to our  
              //instance. 
    this.current = index; 
  } 
}); 

Adding options is pretty easy. You shouldn’t go crazy with them, but in 
general, any place you can conceive of wanting to change a value for a 
specific instance is where you should add an option. 
Let’s look at how we’d invoke this class and specify different options. 



 MooTools Essentials     209 

window.addEvent('domready', function(){ 
  new Tabs($$('#tabContainers div.container'), 
           $$('#tabs div.tab'), { 
    selectedTabCssClass: "selectedTab", 
    selectedSectionCSSClass: "selectedSection", 
    firstShow: 2 
  }); 
}); 

Note that you can specify only a portion of the options. Whichever options 
you don’t specify will revert to the defaults specified in the class. So, if you 
invoked the class like this: 
window.addEvent('domready', function(){ 
  new Tabs($$('#tabContainers div.container'), 
           $$('#tabs div.tab'), { 
    firstShow: 2 
  }); 
}); 

then your instance would use “selected” for the selected tabs and sections 
CSS class, but the firstShow option would be changed from the default 
(zero) to what you specify here (two). 

Step 3: Adding Events 
Options let you configure your class to behave differently, while events let 
you attach additional functionality to your class. The best place to insert 
events are when the state changes in some way that you can’t control or 
predict. For instance, an Ajax request sends off a request for data from the 
server, but you have no way of knowing how long that will take to get a 
response. If you want a function to be called when the data has returned, 
you need some hook into that event. 
The same can be said when the unknown factor is the user. Consider 
dragging an element. If the user starts dragging an object, who can say 
when that user will stop? To handle the next step in the behavior—when 



210     MooTools Essentials 

the user drops what he or she has been dragging—we need a hook into that 
moment. 
The Events class, not to be confused with the native Event class that 
extends the native browser event created when users click, mouseover, etc., 
allows us to add events to our classes so that these unpredictable moments 
have the hooks we need to manage the behavior we want. 

Making Good Use of Events 
Like options, we want to use events judiciously. There’s no expense to 
having too many other than your code getting bloated, but at the same time 
we want to be able to quickly use our classes, so choosing the key points 
where an event is needed is important. 
The other key to using events is passing the best arguments to the event 
when it is fired. Not only must you choose the best places to add events, 
but you also need to decide which values to pass, since when you fire an 
event, you can pass any number of values to it. This is important because 
you need to be able to do something with the event when you add hooks 
into the class. Let’s reconsider the Ajax example we just discussed. 
Knowing that the server has returned something is only half the battle—we 
need to know what the server returned. 
So with our tab layout class, what events occur that we might want to know 
about? Well, when the user clicks a tab, the tabs change. That might be 
useful information. What would we want to know when this occurs? 
Certainly, we’d want to know what tab is now currently visible. Maybe 
we’d also want to know which tab just got hidden? Given that we do these 
two things separately as we iterate over all the tabs, we can’t have a single 
event, so instead we’ll have to fire them each off separately—one for when 
a tab is shown, and another for when a tab is hidden. 



 MooTools Essentials     211 

Again, here’s our class in its current form with the new code in bold: 
var Tabs = new Class({ 
  //We're implementing two classes in now, 
  //so we must use an array to specify both 
  //items to be implemented 
  Implements: [Options, Events], 
  options: { 
    selectedTabCssClass: 'selected', 
    selectedSectionCssClass: 'selected', 
    firstShow: 0, 
    //Our class now has two events that you can specify 
    //in the options 
    onShow: $empty, 
    onHide: $empty 
  }, 
  tabs: [], 
  initialize: function(containers, tabs, options){ 
    this.setOptions(options); 
    containers = $$(containers); 
    $$(tabs).each(function(tab, index){ 
      this.addSection(tab, containers[index]); 
    }, this); 
    this.show(this.options.firstShow); 
  }, 
  addSection: function(tab, container) { 
    this.tabs.include(tab); 
    tab.store('container', container); 
    this.attach(tab); 
  }, 
   
  attach: function(tab){ 
    tab.addEvent('click', function(event){ 
      event.preventDefault(); 
      this.show(this.tabs.indexOf(tab)); 
    }.bind(this)); 
  }, 
 



212     MooTools Essentials 

  show: function(index){ 
    if (this.current === index) return; 
    this.tabs.each(function(tab, i){ 
      var container = tab.retreive('container'); 
      if (index === i) { 
        tab.addClass(this.options.selectedTabCssClass); 
        container.addClass( 
          this.options.selectedSectionCssClass); 
        container.setStyle('display', 'block'); 
        //We must add the instruction to invoke, or 
        //"fire," the event in our code where we think 
        //is the most suitable time; here we fire it 
        //after the container has been displayed 
        this.fireEvent('onShow', [i, tab, container]); 
      } else { 
        tab.removeClass( 
          this.options.selectedTabCssClass); 
        container.removeClass( 
          this.options.selectedSectionCssClass); 
        container.setStyle('display', 'none'); 
         
        //If the current tab is the one we're iterating 
        //on OR there is no currently visible tab 
        //(because this is the first time we've called 
        //this method), then fire the 'onHide' event 
        if (this.current === i || !$chk(this.current)) 
          this.fireEvent('onHide', [i, tab, container]); 
      } 
    }, this);  
    this.current = index; 
  } 
}); 

Now our class has events for both when a tab is displayed and when one is 
hidden. Note that in both cases we pass as arguments the index, the tab, and 
the container that have just been shown or hidden. 



 MooTools Essentials     213 

So let’s look at what it’s like to actually use these events. Let’s say we 
want to show a tooltip when the user shows the fourth tab; maybe it has a 
form in it. The tooltip is out of context when the other tabs are displayed, 
so we need to show the tooltip when the fourth one is displayed, and hide it 
when the fourth one is hidden. 
window.addEvent('domready', function(){ 
  new Tabs($$('#tabContainers div.container'), 
           $$('#tabs div.tab'), { 
    //The function that's called when the event fires 
    //is passed the index, the tab, and the container: 
    onShow: function(index, tab, container){ 
      //If the fourth one is shown, show my tip 
      if (index == 3) 
        $('tip').setStyle('display', 'block'); 
    }, 
    //Hmmm. Here we’re not using the tab and container 
    //references. We can save a few keystrokes and just 
    // not declare them; there's no harm if we do, 
    //but we’re not using them so we’ll skip them: 
    onHide: function(index) { 
      //If the fourth one is hidden, hide my tip 
      if (index == 3) 
        $('tip').setStyle('display', 'none'); 
    } 
  }); 
}); 

Adding Events After Invokation 
In the preceding example, we create an instance of our tabs class and 
specify the onHide and onShow events in the options. This is some magic 
that’s provided by the Options class. If it finds an option that begins with 
“on” and the value is a function, it’ll treat it as an event. Note that when it 
encounters options like this, it removes them from the options object when 
it sets up the events. 



214     MooTools Essentials 

But you can also use the addEvent method to attach your events after 
you’ve instantiated your class. This can be especially useful if you end up 
with more than one function that needs to be invoked when an event fires. 
The sytnax is the same for classes as it is for elements: 
myTabs.addEvent('onShow', function(index, tab, 
  container){ ..... }); 

You Don’t Have to Declare Events in the Options Object 
In our class, the options with events look like this: 
var Tabs = new Class({ 
  Implements: [Options, Events], 
  options: { 
    selectedTabCssClass: 'selected', 
    selectedSectionCssClass: 'selected', 
    firstShow: 0, 
    onShow: $empty, 
    onHide: $empty 
  }, 
  ...etc 

In the options, we declare that the onShow and onHide events default to 
$empty, which is just an empty function. Because the Options method 
setOptions removes these values from the options object, you don’t really 
have to declare them like this. There’s no benefit. It doesn’t hurt anything, 
but it doesn’t get you anything. 
Still, it’s nice to be able to glance at the code and see what the options and 
events are, all right there at the top of the class. By convention, MooTools 
leaves these lines in the source code but comments them out. So if you look 
at any class in the MooTools library, you’ll find these declarations present, 
but commented. This is a good practice (as it cuts down on your code size, 
even if only a little), and I follow it in my own code. 



 MooTools Essentials     215 

So, taking my own advice, our finished “foundation” class would look like 
this: 
var Tabs = new Class({ 
  Implements: [Options, Events], 
  options: { 
    selectedTabCssClass: 'selected', 
    selectedSectionCssClass: 'selected', 
    firstShow: 0 //Don't forget to remove the trailing 
                 //comma here as it's now the last 
                 //item in this object 
 /* onShow: $empty, 
    onHide: $empty */ 
  }, 
  tabs: [], 
  initialize: function(containers, tabs, options){ 
    this.setOptions(options); 
    containers = $$(containers); 
    $$(tabs).each(function(tab, index){ 
      this.addSection(tab, containers[index]); 
    }, this); 
    this.show(this.options.firstShow); 
  }, 
  addSection: function(tab, container) { 
    this.tabs.include(tab); 
    tab.store('container', container); 
    this.attach(tab); 
  }, 
  attach: function(tab){ 
    tab.addEvent('click', function(event){ 
      event.preventDefault(); 
      this.show(this.tabs.indexOf(tab)); 
    }.bind(this)); 
  }, 
 



216     MooTools Essentials 

  show: function(index){ 
    if (this.current === index) return; 
    this.tabs.each(function(tab, i){ 
      var container = tab.retreive('container'); 
      if (index === i) { 
        tab.addClass(this.options.selectedTabCssClass); 
        container.addClass( 
          this.options.selectedSectionCssClass); 
        container.setStyle('display', 'block'); 
        this.fireEvent('onShow', [i, tab, container]); 
      } else { 
        tab.removeClass( 
          this.options.selectedTabCssClass); 
        container.removeClass( 
          this.options.selectedSectionCssClass); 
        container.setStyle('display', 'none'); 
        if (this.current === i || !$chk(this.current)) 
          this.fireEvent('onHide', 
             [i, tab, container]); 
      } 
    }, this); 
    this.current = index; 
  } 
}); 

Step 4: Extending the Class 
Our Tabs class is looking pretty sweet. We can use it to create numerous 
instances on a page or across a site. Initializing it on any given page is only 
a line or two of code. 
But wait a sec, we started this whole thing off with a tabbed area that 
loaded the content via Ajax. This new class doesn’t do that. Let’s extend 
our class to add Ajax back into the equation. 



 MooTools Essentials     217 

Identifying What Needs to Change 
To get started altering our foundation class, we need to consider what we 
need to add or change. For starters, we’re going to load the content in via 
Ajax, which means we need URLs for each tab. In our previous class 
(AjaxTabs in Chapter 14), each tab was a link. We got the URL from the 
link. That could work here, too, but maybe we want to make it optional to 
pass in a set of links instead. So we know we need some way to specify in 
the options what the links are. 
What else? Well, maybe we want the option to cache the results. If the user 
clicks a tab, and we fetch the info for that tab from the server, there’s no 
need to fetch it again if the user revisits the tab. These two changes will 
require new events and new options. First, let’s add the options for the 
URLs and the caching. 
var AjaxTabs = new Class({ 
  //Extend Tabs; unlike Implement, which lets 
  //you implement any number of classes, Extends 
  //can only take a single Class 
  Extends: Tabs, 
  options: { 
    //By default, we'll cache the results 
    cache: true, 
    //This empty array is the default for the URLs 
    //If the array remains empty, we'll try and get 
    //the URL from the tab element and assume it has 
    //an href property 
    urls: [] 
  } 
}); 

We now have a class that extends our Tabs class that has a few new 
options. Let’s put those to use. Both of these options are going to be used 
when we load the information via Ajax. This means that our show method 
needs some additional logic. 



218     MooTools Essentials 

var AjaxTabs = new Class({ 
  Extends: Tabs, 
  options: { 
    cache: true, 
    urls: [] 
  }, 
  show: function(index, force){ 
    //Get the tab: 
    var tab = this.tabs[index]; 
    //Get the URL from the options or, if that's not 
    //set, see if the tab has an href property 
    var url = this.options.urls[index] || 
              tab.get('href'); 
    //If the URL isn't set OR we're caching and the 
    //tab's data is already loaded, OR we’re forcing 
    //this method then just show the new tab 
    if (!url || force || 
       (this.options.cache && tab.retrieve('loaded'))) { 
      //this.parent(index) executes the show method 
      //in the Tabs class 
      this.parent(index); 
    } else { 
      //Otherwise, we're going to fetch the data from 
      //the server 
      this.fetchTabContent(index, url); 
    } 
  }, 
   



 MooTools Essentials     219 

  fetchTabContent: function(index, url) { 
    //Get the tab: 
    var tab = this.tabs[index]; 
    //Get the container we’re going to update: 
    var container = tab.retrieve('container'); 
    //See if we've already got an instance 
    //of Request.HTML for this tab: 
    var request = tab.retrieve('tabAjax'); 
    //If not, we’ll need to create one: 
    if (!request) { 
      request = new Request.HTML({ 
        //Tell it to insert the HTML into our container 
        update: container, 
        url: url, //Using the URL we got earlier 
        onSuccess: function(){ 
          //Show the container, and force it not to 
          //check for caching 
          this.show(index, true); 
          //On success the HTML is automatically 
          //injected into our container, so all 
          //that's left to do is set the loaded 
          //flag: 
          tab.store('loaded'); 
        }.bind(this) //Don't forget to bind the "this" 
      }); 
      tab.store('tabAjax', request); 
    } 
    request.send(); 
  } 
}); 

Now our class will attempt to get the URL for each tab and then get the 
data from the server, update the container, and then show it. We reuse the 
instances of Request.HTML so that we don’t create a race condition. We 
set a flag to cache the results if our options tell us to do so. 
We now have two classes—Tabs, which handles the basic functionality of 
a tabbed layout, and AjaxTabs, which extends that class to add just the 



220     MooTools Essentials 

Ajax bit. If, in the future, we decided to add more functionality to our Tabs 
class, our AjaxTabs class will automatically inherit that functionality. 
Here’s what it would look like to instantiate our extension: 
var myAjaxTabs = new AjaxTabs($$('div.container'), 
                              $$('div.tab'), { 
  urls: ['/page1.html', '/page2.html', 
         '/page3.html', '/page4.html'] 
}); 
//Or, if our tabs are links 
var myAjaxTabs = new AjaxTabs($$('div.container'), 
                              $$('a.tab')); 

Adding a Few More Options and Events 
var AjaxTabs = new Class({ 
  Extends: Tabs, 
  options: { 
    cache: true, 
    urls: [], 
    //Create the new option to be passed to Request 
    requestOptions: {} 
  }, 
  show: function(index, force){ 
    var tab = this.tabs[index]; 
    var url = this.options.urls[index] || 
              tab.get('href'); 
    if (!url || force || 
       (this.options.cache && tab.retrieve('loaded'))) { 
      this.parent(index); 
    } else { 
    this.fetchTabContent(index, url); 
    } 
  }, 
  fetchTabContent: function(index, url) { 
    var tab = this.tabs[index]; 
    var container = tab.retrieve('container'); 
    var request = tab.retrieve('tabAjax'); 



 MooTools Essentials     221 

    if (!request) { 
      //Here things get tricky; we need to merge the 
      //options with the data for this tab; we put the 
      //tab data last to make sure it overwrites 
      //anything in the options 
      request = new Request.HTML( 
        $merge(this.options.requestOptions, { 
          update: container, 
          url: url, 
          //Additionally, we need to allow for 
          //the options to specify their own 
          //onSuccess method, so we'll remove 
          //ours from the options and add our 
          //event to the instance 
          onSuccess: function(){ 
            tab.store('loaded', true); 
            this.parent(index); 
          }.bind(this) 
        }) 
      //Here we attach our own onSuccess method. If 
      //there's an onSuccess method in the options, 
      //it'll fire before ours 
      ).addEvent('onSuccess', function(){ 
        tab.store('loaded', true); 
        this.show(index, true) 
      }.bind(this)); 
      tab.store('tabAjax', request); 
    } 
    request.send(); 
  } 
}); 

This was a little tricky. We create an empty object in our options for the 
options to be passed along to the Request.HTML instance, but we need to 
specify the URL and the DOM element to update based on which tab got 
clicked. We use $merge to combine the two, making sure our URL and 
container are preserved by making them the second argument sent to 



222     MooTools Essentials 

$merge. Additionally, since the options might include an onSuccess 
method, we need to move our method out of the options so they don’t 
collide. We do this by using the addEvent method to attach our event after 
we create the instance. So long as we add this event before we send the 
request, we won’t have a problem. You can have as many functions 
attached to an event as you like. 
Here’s what that might look like in use: 
var myAjaxTabs = new AjaxTabs($$('div.container'), 
$$('div.tab'), { 
  urls: ['/page1.html', '/page2.html', 
         '/page3.html', '/page4.html'], 
  requestOptions: { 
    //Stop requests if the user clicks another tab 
    //before the previous one loads: 
    link: 'cancel', 
    evalScripts: true, 
    onSuccess: function(response){ 
      alert('Hey, ajax worked! Here\'s the response: ' 
         + response); 
    } 
  } 
}); 

Review 
We’ve now written two classes. The first one lets us manage tabs, and the 
second one adds Ajax functionality. Now we can initialize our classes on 
our pages with only a line or two of code. We can configure the behavior 
and manage several different types of uses, all with the same code. Nice! 
Here’s the code in its entirety without all the messy comments: 



 MooTools Essentials     223 

var Tabs = new Class({ 
  Implements: [Options, Events], 
  options: { 
    selectedTabCssClass: 'selected', 
    selectedSectionCssClass: 'selected', 
    firstShow: 0 
/*  onShow: $empty, 
    onHide: $empty */ 
  }, 
  tabs: [], 
  initialize: function(containers, tabs, options){ 
    this.setOptions(options); 
    $$(tabs).each(function(tab, index){ 
      this.addSection(tab, $$(containers)[index]); 
    }, this); 
    this.show(this.options.firstShow); 
  }, 
  addSection: function(tab, container) { 
    this.tabs.include(tab); 
    tab.store('container', container); 
    this.attach(tab); 
  }, 
  attach: function(tab){ 
    tab.addEvent('click', function(event){ 
      event.preventDefault(); 
      this.show(this.tabs.indexOf(tab)); 
    }.bind(this)); 
  }, 



224     MooTools Essentials 

  show: function(index){ 
    if (this.current === index) return; 
    this.tabs.each(function(tab, i){ 
      var container = tab.retreive('container'); 
      if (index === i) { 
        tab.addClass(this.options.selectedTabCssClass); 
        container.addClass( 
          this.options.selectedSectionCssClass); 
        container.setStyle('display', 'block'); 
        this.fireEvent('onShow', [i, tab, container]); 
      } else { 
        tab.removeClass( 
          this.options.selectedTabCssClass); 
        container.removeClass( 
          this.options.selectedSectionCssClass); 
        container.setStyle('display', 'none'); 
        if (this.current === i || !$chk(this.current)) 
          this.fireEvent('onHide', 
            [i, tab, container]); 
      } 
    }, this); 
    this.current = index; 
  } 
}); 
 
var AjaxTabs = new Class({ 
  Extends: Tabs, 
  options: { 
    cache: true, 
    urls: [], 
    requestOptions: {} 
  }, 



 MooTools Essentials     225 

  show: function(index, force){ 
    var tab = this.tabs[index]; 
    var url = this.options.urls[index] || 
              tab.get('href'); 
    if (!url || force ||  
       (this.options.cache && tab.retrieve('loaded'))) { 
      this.parent(index); 
    } else { 
      this.fetchTabContent(index, url); 
    } 
  }, 
  fetchTabContent: function(index, url) { 
    var tab = this.tabs[index]; 
    var container = tab.retrieve('container'); 
    var request = tab.retrieve('tabAjax'); 
    if (!request) { 
      request = new Request.HTML( 
        $merge(this.options.requestOptions, { 
          update: container, 
          url: url 
        }) 
      ).addEvent('onSuccess', function(){ 
        tab.store('loaded', true); 
        this.show(index, true) 
      }.bind(this)); 
      tab.store('tabAjax', request); 
    } 
    request.send(); 
  } 
}); 
 





 MooTools Essentials     227 

Chapter 16: Where to Learn More 
Once you have the hang of writing JavaScript with MooTools, and this 
book doesn’t seem to have any more secrets for you to uncover, there’s still 
a lot of resources you can turn to for improving your skills. 
The first place to start is MooTools itself. Look inside the code and try and 
pick apart some of its classes. The effects series of classes start with a very 
abstract foundation class (Fx), which is extended to add layers that are 
easier to worry with (Fx.Tween, Fx.Morph). Studying things like this will 
not only help you understand MooTools more, but also see new ways of 
doing things. 
Write some classes of your own. Post them to the forums at MooTools.net 
(http://forum.mootools.net) and seek feedback. If you really want to 
get feedback, write a plug-in and release it. All of the classes I’ve released 
on CNET’s Clientside result in a lot of feedback from people trying to use 
them. 
I also recommend the following blogs, which often discuss JavaScript 
(some of them cover nothing else): 
 The MooTools Blog: http://blog.mootools.net 

 Ajaxian: http://www.ajaxian.com 

 Clientside: http://clientside.cnet.com 

 Dean Edward’s Blog: http://dean.edwards.name/weblog/ 

 Solutoire: http://www.solutoire.com 

 d’bug: http://blog.reindel.com/ 

 Snook: http://www.snook.ca 

 Alternate Idea: http://www.alternateidea.com 

http://forum.mootools.net
http://forum.mootools.net
http://blog.mootools.net
http://www.ajaxian.com
http://clientside.cnet.com
http://dean.edwards.name/weblog
http://www.solutoire.com
http://blog.reindel.com
http://www.snook.ca
http://www.alternateidea.com


228     MooTools Essentials 

There’s one last resource on MooTools that often escapes the notice of 
many people, and that’s probably because it’s not well publicized. 
MooTools has an IRC channel: 
irc://irc.freenode.net/mootools 

You’ll often find the principal developer (Valerio Proietti) hanging out 
there, along with several members of the development team. 

irc://irc.freenode.net/mootools


 MooTools Essentials     229 

Appendix: Core Concepts in JavaScript 
There are a handful of important concepts that you need to be aware of 
with JavaScript, and if you aren’t aware of them, stuff just won’t work. 

DOCTYPE Matters 
It’s important that you use a proper document type. I recommend XHTML 
Strict, but others will work (XHTML Transitional, for example). Here’s an 
example of a strict DOCTYPE: 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" 
  lang="en" dir="ltr"> 
  <head> 

There’s sample documentation online about document types and how they 
work. I don’t spend much time thinking about the subject and just use Strict 
all the time. 
If you don’t specify a DOCTYPE or if you use one that isn’t XHTML, 
you’ll get strange results when you try and use several of the classes and 
effects in MooTools. 

Type Coercion: “Falsy” and “Truthy” Values 
JavaScript’s conditionals will do type coercion, and this is an important 
thing to know about, because if you don’t, you can get into trouble. It’s not 
a bad thing (if you ask me), so long as you know what to watch out for. In 
fact, it’s quite useful for writing concise code. 
What do I mean by type coercion? Consider this example: 
var x = 0; 
if (x) alert('x is truthy!'); 

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml


230     MooTools Essentials 

In the preceding code, the alert will never execute because JavaScript 
interprets zeros as being “falsy.” The same is true for empty strings, 
undefined, null, NaN (Not a Number), and, of course, false. 
Further, try this code out in your browser (in the Firebug console for 
example): 
0 == "" //true! 
false == 0 //true! 
false == "" //true! 

Note that this really only applies to items that are coerced. For example: 
"3" == 3 
"false" != false //Though "false" == true, 
                 //and for that matter, so does "true" 

Also note that if you are referring to objects in memory (arrays, objects, 
i.e., {}, etc.) can be coerced as true, but never anything else. You don’t 
have to work about "3,2,1" == [3,2,1] or anything. 
Further, if you do the following: 
{} == {} 
[] == [] 
[1,2,3] == [1,2,3] 

they are all false, because they are not the same object, despite the fact that 
they are both arrays or objects with equal values. 
You can force type coercion by using the ! and !! to produce Booleans: 
var x = !!"foo"; //x is true 
var x = !"foo"; //x is false 

To avoid type coercion, you must use === and !== if you wish to be 
explicit: 
var x = 0; 
if (!x) alert ('x is falsy!'); 
if (x !== false) alert('x is NOT *false*'); 



 MooTools Essentials     231 

Type coercion is not always a bad thing. In fact, it’s used throughout 
MooTools, and there are even some methods that help you work with it 
more explicitly. Here’s an example of how type coercion might be used: 
var anchors = document.getElementsByTagName('a'); 
if (anchors.length) setup(anchors); 

Here we save a few keystrokes (instead of writing if (anchors.length 
> 0)), but sometimes what you need to evaluate could be null, 
undefined, or an empty string, and writing a conditional to deal with all of 
those possibilities is more than two or three keystrokes. 

Functional Programming (a.k.a. Lambda) 
JavaScript is one of the most popular functional programming languages, 
but it’s not alone. To quote from the Wikipedia page on the subject: 
Pure functional programming languages typically enforce referential transparency, 
which is the notion that “equals can be substituted for equals”: if two expressions have 
“equal” values (for some notion of equality), then one can be substituted for the other 
in any larger expression without affecting the result of the computation. 

   http://en.wikipedia.org/wiki/Functional_programming 

Functional programming can be illustrated with the following examples: 
function sum(x,y) { 
  return x+y; 
} 
//Passing the result of the sum function as an argument 
alert(sum(1,2)); 
//Has the same result as storing that value in 
//a variable: 
var onePlusTwo = sum(1,2); 
alert(onePlusTwo); 
//But the same thing could be accomplished with 
//an anonymous function: 
alert(function(x,y){ return x+y; }(1,2)); 

http://en.wikipedia.org/wiki/Functional_programming


232     MooTools Essentials 

Here you can see how the result of all three alerts will be the same. The 
first and third examples evaluate a function as an argument to another one, 
passing the result as the argument. 
This is also how a practice called chaining works. A function returns a 
value that contains its own methods, which can be executed immediately: 
['one','two','three'].concat(['four']).toString(); 

First, we have an array with three values, and we execute a method called 
concat, which returns the array. When we execute toString, we are 
executing it on the result returned from concat. 
It’s very common practice to use these patterns in MooTools and 
JavaScript in general, and understanding them will make it easier to 
understand the examples in this book and the code you see in MooTools 
and elsewhere. 

Literals and Anonymous Functions 
Two very common patterns that you’ll see in MooTools and other 
JavaScript frameworks are the use of literal declarations and anonymous 
functions. 
Literal declarations are an alternative to declaring a value into a variable 
namespace. This is often done when passing arguments to a function. If a 
function accepts an array or an object, you can pass it one without 
declaring it first: 
function sumArrayValues(array){ 
  var value = 0; 
  for (var i = 0; i < array.length; i++){ 
    value += array[i]; 
  } 
  return value; 
}; 
var sum = sumArrayValues([0,1,1,3,5,8]); //sum is 18 



 MooTools Essentials     233 

Here we’ve passed an array ([0,1,1,3,5,8]) to our function without 
defining that array into a variable namespace. This pattern is often used for 
numbers, strings, functions, arrays, and objects: 
//An object literal: 
armNinjas({ 
  swords: 10, 
  stars: 99, 
  flyingGuillotines: 1 
}); 
//An anonymous function: 
setNinjaAttackMethod(function(weapons){ 
  ninja.leftHand = weapons.sword; 
  ninja.righHand = weapons.star; 
}); 
//Strings and numbers are much more familiar 
//10 here a literal number; it isn't defined into 
//a variable. Same goes for "poisoned": 
giveNinjaStars(10, "poisoned"); 

“this” and Binding 
JavaScript has a somewhat irregular scope schema that takes a little getting 
used to. For starters, the only things that have scope are functions. 
Conditional statements and iterations (if/else, try/catch, and for 
loops, while, switch, etc.) don’t have scope; only functions do. 
The other concept, which is a little hard to grok, is the this keyword. this 
is a pointer to an object that represents the current scope. By default, this 
is the window DOM object. When you declare a variable name or a 
function in your code, you are creating a property of the window. Thus, 
these are all the same thing: 
var x = 10; 
alert(window.x); //10 
alert(x); //10 
alert(this.x); //10 



234     MooTools Essentials 

Inside of a function you have a scope, but things can escape out of it. For 
example: 
function test(){ 
  x = 10; 
  var y = 20; 
}; 
test(); 
alert(window.x); //10 
alert(window.y); //undefined 

By declaring the variable y using the var prefix, we confine that variable to 
the test function’s scope. When you declare a variable without the var 
prefix, the JavaScript parser will attempt to find a reference to that variable 
in the current scope, and, if it cannot find it, it will search the parent scope 
and the parent’s parent until it reaches and searches the window scope. If it 
finds the variable, it will change it; otherwise it will create that variable in 
the global namespace (the window). This was intended to make JavaScript 
easier for people who weren’t used to writing code; however, if you ask 
me, it is just another example of the authors of the language trying to make 
it more forgiving but instead making it more unclear, but I digress. 
OK, so now you understand how functions have scope. The next thing that 
you need to understand is that, in JavaScript, everything inherits from the 
Object prototype (see “Prototypal Inheritance” later in this appendix). The 
Object prototype has a few methods, none of which are very useful (see 
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_R

eference:Global_Objects:Object). 
So functions extend this prototype and add their own methods. Array does 
the same, and so does String, Number, Element, and so on. 
Because functions are objects, you can assign properties to them. For 
example: 

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_R


 MooTools Essentials     235 

function foo(){}; 
foo.message = 'bar'; 
foo.say = function(){alert(foo.message)}; 

Here’s where the this keyword comes into play. JavaScript allows you to 
invoke a function or method (a method is just a function that is a property 
of an object) by calling it (foo()) or by using the new constructor (new 
foo()). When you put new in front of the function call, the function is 
executed, and the object that represents that object invocation is returned. 
As I stated, this concept is a little tough to wrap your head around, but it’s 
very important. Here’s an illustration: 
function Ninja(side, weapons) { 
  this.side = side; 
  this.weapons = weapons; 
}; 
var goodNinja = new Ninja('good', ['sword','star', 
  'Five-Point Palm Exploding Heart Technique']); 
//goodNinja.side == 'good' 

If you had just executed Ninja with those values, it would assign them to 
this which, in the default scope, is the window object. By using the new 
constructor, the Ninja function is executed, and the this of that 
invocation (Ninja) is returned. 

Note Because there is no distinction in the language between 
functions that are meant to be invoked with and without the new 
constructor, by convention capital letters are used for functions that are 
meant to use the constructor. 

Binding 
As outlined previously, the this keyword represents an object that is the 
current scope. By default it is the window object, but when you use a 



236     MooTools Essentials 

constructor (with the new prefix), you get back an object that represents the 
scope inside that function. 
function whatsThis(){ 
  alert(this); 
}; 
whatsThis(); //Window 
new whatsThis(); //Object - the object for 
                 //this invocation of whatsThis 

When you just call a function, the this is the scope from which you call it. 
What this means is that it’s possible to instruct a function what the this 
scope should be. By default, yes, it’s the window, but you can also tell a 
function to use a different this. But why would you? 
Turns out, there are a LOT of reasons. You’ll use this ability all the time. 
Sometimes it’s kind of crazy how much you’ll want to use it, which is why 
it’s crucial that you understand it well before you start really using 
MooTools. 
Because MooTools makes use of the functional programming concepts 
outlined in previously in this appendix, you’ll pass functions as arguments 
to other functions. Let’s take the Array.each extension that MooTools 
adds to the Array prototype. Array.each takes two arguments: a function 
and an object to be used for binding (the latter is optional). Here’s an 
example of it in action: 
['blue','green','yellow'].each(function(value, index){ 
  alert('item ' + index + ' is ' + value); 
  //Alerts: 
  // "item 0 is 'blue'" 
  // "item 1 is 'green'" 
  // "item 2 is 'yellow'" 
  if (index == this.length-1) this[index] = 'orange'; 
  //Changes the last item in the array to 'orange' 
}); 



 MooTools Essentials     237 

In this example, we pass an anonymous function to the each method. The 
each method loops through the items in the array and invokes the function. 
Because the method invoking that function is a property of the array, the 
this keyword points to the array. Our function can reference the array 
only by using the this keyword (how else could it?). 
Consider this example: 
var example = { 
  say: function(msg) {alert(msg); }, 
  count: function(){ 
    [1,2,3].each(function(number) { 
      this.say(number); 
    }); 
  } 
}; 

Now wait a second. Here we’re trying to reference the say method, and we 
could because inside the count method the this keyword points to the 
example object. But we’ve already seen that the function that we pass to 
Array.each has its this keyword mapped to the array. We need to 
instruct this function that its this is NOT the array—it’s the example 
object. 
And that’s what binding does. It lets us tell a function what its this is: 
var example = { 
  say: function(msg) { alert(msg); }, 
  count: function(){ 
    [1,2,3].each(function(number) { 
      this.say(number); 
    }, this); //Here's the important part! 
  } 
}; 

By passing along the this context here, we now can reference 
example.say inside our each function. 



238     MooTools Essentials 

I said earlier that this gets used a LOT in MooTools, and it does. It’s a 
core concept of JavaScript, so it’s not just MooTools that makes use of it. 
There are countless examples of where it’s used, but principally it’s used 
where functions are passed as arguments. Other cases exist, but typically 
you’ll apply it to anonymous functions. 
Some methods (like each) allow you to pass the bound object as an 
argument, but not always. When this isn’t an option, you’ll have to use the 
bind method that’s added to the native function object by MooTools. 
Here’s an example of that in action: 
//Imagine this code is inside of a broader scope, as 
//with the previous example 
$('myElement').addEvent('click', function(){ 
  this.say('clicked!'); 
}.bind(this)); //Here's the important bit 

When you start digging into Chapters 13 and on where we start actually 
looking at MooTools in action, you’ll see lots of references to binding, and 
you’ll start to get an idea of all the places where this practice comes into 
play. Simply put, binding and the this keyword are two of the most 
important concepts to grasp in modern JavaScript-ing. 

Closures 
One concept in JavaScript that is quite powerful is closure. A closure is a 
function declared or evaluated in a scope with bound variables, i.e., 
variables declared in the same scope as a function are accessible by that 
function. Another way to put this is that the scope of an inner function 
continues to exist even after the parent function has returned. 
Let’s consider this function, which will change the color of a box from 
white to black: 



 MooTools Essentials     239 

function fadeToBlack(element){ 
  var now = 16; 
  var fade = function(){ 
    var hex = level.toString(16); 
    element.style.backgroundColor = 
      "#"+hex+hex+hex+hex+hex+hex; 
    if (now > 0) { 
      now++; 
      setTimeout(fade, 50); 
    } 
  } 
  setTimeout(fade, 50); 
}; 

When fadeToBlack is executed, it will evaluate the two variable 
declarations (now and fade), and then the setTimeout instruction, and 
then exit. 50 milliseconds later, the inner method fade will be executed, 
and it in turn references the inner variable now. This illustrates what a 
closure is in that both fade and now still exist in memory even though their 
parent function (fadeToBlack) has completed. Indeed, fade will be called 
16 times over the course of a second and a half, and each time it will 
reference now, which was declared outside fade’s scope. 
This is a very powerful and expressive convention in functional languages. 

Prototypal Inheritance 
JavaScript’s inheritance model is somewhat different from many other 
languages that sport a classical inheritance model. In JavaScript, objects 
that inherit from other objects have a hidden link to their parent. This 
hidden link is a property called prototype. So, for example, all arrays 
inherit from the Array prototype, and you can reference that prototype by 
referencing Array.prototype. Using this reference, you can alter the 
prototype and therefore alter all arrays. If you wanted to add a method to 



240     MooTools Essentials 

Array called sum that would add up all the values in an array that were 
numbers, you could: 
Array.prototype.sum = function(){ 
  var result = 0; 
  for (var i = 0; i < this.length; i++) { 
  var value = parseInt(this[i]); 
  if (!isNaN(value)) result += value; 
  } 
  return result; 
} 
alert([1,2,3].sum()); //Alerts "6" 

All objects in JavaScript begin with the native Object prototype. 
Functions, Arrays, Numbers, Strings, and so forth all inherit from 
Object, which is one of the reasons why altering the Object prototype is 
considered forbidden. 
What this means is that, say, Functions can have properties just like 
Objects can. So can Arrays. In the example, Array.sum is just a property 
of the Array prototype. You could also define that method for a specific 
array rather than all of them. For example: 
var numbers = [1,2,3]; 
numbers.sum = function(){ 
  var result = 0; 
  for (var i = 0; i < this.length; i++) { 
  var value = parseInt(this[i]); 
  if (!isNaN(value)) result += value; 
  } 
  return result; 
} 
alert(numbers.sum()); //Alerts "6" 

The result here is that we’ve added a property to the array that isn’t a value 
of the array’s contents (1, 2, 3). Similarly, we can define properties of a 
function: 



 MooTools Essentials     241 

var ninja = function(){}; 
ninja.hiding = false; 
ninja.hide = function(){ ninja.hiding = true}; 

Here we have a function (that doesn’t do anything) called ninja. We 
define properties of that function just as if it were an object. Using binding, 
functions can reference themselves with the this keyword: 
ninja.hide = function(){ 
  this.hiding = true 
}.bind(ninja); 

The Inheritance Chain 
With prototypal inheritance, objects are first inspected for properties of 
their own, and, if an object does not have a property, then the object’s 
prototype is inspected, and, if not found there, then that object’s prototype 
is inspected, and on up the chain. So, if, for example, we had an inheritance 
chain like this: 
Animal > Human > Ninja 

and we referenced properties of Ninja, first the Ninja object would be 
inspected for that property to get the value, and if it wasn’t found, then 
Human would be inspected, and then Animal.  
Let’s say that we had the following: 
Animal = function(){}; 
Animal.isAlive = true; 
//Human inherits from Animal 
Human.hasOpposableThumbs = true; 
//Ninja inherits from Human 
Ninja.throwStar = function(target){ 
  target.isAlive = false 
}; 
var redNinja = new Ninja(); 



242     MooTools Essentials 

Don’t worry about how the inheritance gets applied, that’s what MooTools 
helps you do (see the discussion on classes in Chapter 7). 
If our code references redNinja.isAlive, the Ninja object doesn’t have 
that property, so Human is inspected. Human doesn’t have that property 
either, so it goes up the chain to Animal, which does have that property. 
This is not to say that all instances of Human or Ninja share the same value 
for that property. It’s more like saying that the default value for all Humans 
and Ninjas is that their property isAlive is true. 
If we were to execute the code: 
redNinja.isAlive = false; 

in addition to being sad because our ninja has died, what we would observe 
is that now redNinja has its own property for isAlive. The Animal 
prototype still has an isAlive property with the value of true, but when 
we inspect redNinja.isAlive, we don’t go up the chain to the prototype 
because redNinja has that property. 
One of the little gotchas that can occur here is that it is possible to delete a 
property from an object. If that property is defined for an object’s 
prototype, deleting the value from the object does not necessarily mean that 
the value is now undefined. 
Consider this: 
//Continuing from the preceding code 
//where the chain is Animal > Human > Ninja 
//and Animal.isAlive defaults to true 
redNinja.isAlive = false; 
if(!redNinja.isAlive) 
  alert("Oh what grief, our ninja is dead!"); 
delete redNinja.isAlive; 
if(redNinja.isAlive) alert("Oh happy day! Our ninja is 
alive again!"); 



 MooTools Essentials     243 

By deleting the isAlive property from our Ninja instance, we revert back 
to the value contained in Animal. 
This inheritance model—the prototypal inheritance model—is different 
from Classical inheritance and can take some getting used to. Thankfully, 
MooTools has tools to help us manage these relationships. 

Unobtrusive JavaScripting 
It’s good practice to have as little JavaScript in your actual document as 
possible. Opinions differ on whether JavaScript is best served externally or 
as a long string at the top of the document (for speed purposes), but it’s 
now common practice to avoid having JavaScript mixed in with your 
HTML. 
Even if you decide for your own design purposes to deliver JavaScript with 
the page (and sometimes it makes sense to do this), you should separate the 
JavaScript from the HTML. Not only does this make it easier to manage 
your code base, but it also makes your layouts more reusable. 
So, for example, compare the following two examples: 
“Intrusive” JavaScript: 
<a href="http://foo.com" 
 onclick="someFunction()">click me!</a> 

“Unobtrusive” JavaScript: 
<a href="http://foo.com" id="clickMe">click me!</a> 
<script> 
//This is MooTools syntax 
$('clickMe').addEvent('click', someFunction); 
</script> 

While both examples work just fine, the latter example is much easier to 
find and understand. When you pepper your HTML with function calls, it’s 
difficult to maintain, especially when things get complicated (and when 
you’re using Ajax to replace content and effects to fade stuff in and out, it 

http://foo.com
http://foo.com


244     MooTools Essentials 

gets even more complicated!). Additionally, if you deliver your JavaScript 
externally, your HTML documents will be clean, vanilla HTML and are 
more likely to degrade gracefully when things go wrong. 
Additionally, by using unobtrusive methods, you can add more than one 
event to an element, or remove an event at a later time. 

Note The JavaScript compiler in the browser has an odd feature: 
when the compiler encounters an error, it attempts to replace the nearby 
end of line with a semicolon and parse again. This was designed to make 
JavaScript “easier” for an audience that may not be used to strict standards 
in the things they were normally writing (in theory, HTML). The result is 
that if you have code that does not have a semicolon at the end of every 
declaration, the compiler will insert them for you. However, when 
compressing JavaScript, all line breaks are removed, which means that if 
you have any lines that are lacking semicolons, your code will break. Always 
put semicolons at the end of any of your declarations. Example: 

var ninja; 
var ninja.visible = false; 
var assassinate = function(ninja, target){ 
  ninja.kill(target); 
}; 
ninja.weapons = ['star','sword','surprise']; 
//You do NOT have to put semicolons at the 
//end of statements no semicolon necessary after 
//if/else, for, while, etc. 
if (target.isAlive){ ninja.kill(target);} 
for(var i = 0; i < targets.length; i++){ 
  ninja.kill(target[i]); 
} 

 



 MooTools Essentials     245 

DomReady 
Unobtrusive JavaScripting has a downside, though. In order to add 
functionality to the document (more specifically the Document Object 
Model, or DOM), you have to wait for the DOM to load. You can only 
collect elements from the DOM if they are in memory, which means your 
code can’t safely run until the document is loaded. 
Traditionally, the window.onload event was used for executing such code, 
but the onload event fires only after all the HTML has loaded and all the 
assets in it (the images, CSS, JavaScript, etc.). By the time every image and 
advertisement has loaded, the user can see the page and in some cases has 
already clicked something on the page, and it’s too late to execute your 
code. 
This is where the DomReady event comes into play. This event is added to 
the DOM by MooTools and fires as soon as the HTML is in memory but 
doesn’t wait for any assets to load. By attaching your DOM scripting code 
to DomReady, you can usually execute your code before the layout is drawn 
by the browser. 
<script> 
//Execute my method attack when the DOM is loaded 
window.addEvent('domready', ninjas.attack); 
</script> 

You can find more information on how addEvent and DomReady work in 
Chapters 5 and 6, respectively. 

Namespacing 
When writing implementation code—code that isn’t meant to be reused, 
but instead sets up all the actions and functionality for a page (for example, 
turn these images into a slide show, expose this content when the user 
clicks that link, etc.)—a common practice is to make all the variables and 
functions members of an object. 



246     MooTools Essentials 

This practice pays several dividends. Most notably, you don’t have to 
worry about another bit of code overwriting your function and variable 
names. So long as the namespace you choose is unique, any property you 
add to it is safe. Additionally, it helps keep your code organized and tidy. 
<script> 
var ninjas = { 
  function: attack(){ 
    for(var i = 0; i < ninjas.targets.length; i++){ 
      ninjas.kill(ninjas.targets[i]); 
    } 
  }, 
  kill: function(target){ 
    target.isAlive = false; 
  }, 
  targets: ['fred', 'bill', 'white ninja'] 
  }; 
ninjas.attack(); //!!! 
</script> 

By assigning functions and variables as members of a single namespace, it 
doesn’t matter the order that they are declared; you can reference members 
that are not yet defined, and you don’t have to worry about someone using 
the function name kill because yours is in the ninjas namespace. 



 MooTools Essentials     247 

Related Titles 
Snook, Jonathan et al. Accelerated DOM Scripting with Ajax, APIs, and 
Libraries. Berkeley, CA: Apress, 2007 





Copyright 
MooTools Essentials: The Official MooTools Reference for JavaScript™ and Ajax 
Development 

© 2008 by Aaron Newton 

All rights reserved. No part of this work may be reproduced or transmitted in any form or by 
any means, electronic or mechanical, including photocopying, recording, or by any information 
storage or retrieval system, without the prior written permission of the copyright owner and the 
publisher. 

ISBN-13 (electronic): 978-1-4302-0984-3 

ISBN-13 (paperback): 978-1-4302-0983-6 

Trademarked names may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, we use the names only in an editorial fashion and to the 
benefit of the trademark owner, with no intention of infringement of the trademark. 

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, 
Inc., in the United States and other countries. Apress, Inc., is not affiliated with Sun 
Microsystems, Inc., and this book was written without endorsement from Sun Microsystems, 
Inc. 

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 
Spring Street, 6th Floor, New York, NY 10013, and outside the United States by Springer-
Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany. 

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail 
orders@springer-ny.com, or visit http://www.springer-ny.com. Outside the 
United States: fax +49 6221 345229, e-mail orders@springer.de, or visit 
http://www.springer.de. 

For information on translations, please contact Apress directly at 2855 Telegraph Ave, Suite 
600, Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail 
info@apress.com, or visit http://www.apress.com. 

The information in this book is distributed on an “as is” basis, without warranty. Although 
every precaution has been taken in the preparation of this work, neither the author(s) nor Apress 
shall have any liability to any person or entity with respect to any loss or damage caused or 
alleged to be caused directly or indirectly by the information contained in this work. 

mailto:orders@springer-ny.com
http://www.springer-ny.com
mailto:orders@springer.de
http://www.springer.de
mailto:info@apress.com
http://www.apress.com

	Prelims
	Contents
	Preface
	Acknowledgments
	A Note on the Code Formatting in This Book

	Introduction
	JavaScript Frameworks
	Why You Should Use a JavaScript Framework
	About This Book
	Who This Book Is For
	What You Need to Know

	Summary

	Chapter 1: Getting Started with MooTools
	Downloading MooTools
	Downloading MooTools Official Plug-Ins
	Core Builder
	Making Use of MooTools’ Modular Design
	Compatibility
	Compression Options

	Adding MooTools to Your Page(s)
	Coding for Reuse
	Compression
	Using the YUI Compressor


	Chapter 2: Reviewing MooTools
	MooTools File Structure
	Manifest of MooTools Scripts
	The MooTools Core
	The MooTools Plug-Ins: fiMoref


	Chapter 3: Shortcuts and Helpful Functions
	Determining the Type of an Object:
	:: Core/Core.js

	Checking Whether Values Are Defined: $defined, $chk, and $pick
	:: Core/Core.js

	Working with Objects:
	,
	, and
	:: Core/Core.js

	Iterable Helpers and Shortcuts:
	,
	and
	:: Core/Core.js

	Other Shortcuts:
	,
	:: Core/Core.js

	Browser: Information About the Client

	Chapter 4: Native Objects
	Native.implement
	Arrays
	Array Methods
	:: Iteration Methods
	Array.each
	Anonymous Methods vs. Named Functions
	Other Iteration Methods
	:: Introspection Methods
	:: Manipulation Methods

	Objects (a.k.a.
	)
	Hash
	$H
	Hash Methods
	:: Iteration Methods
	Hash.each
	Other Iteration Methods
	:: Introspection Methods
	:: Manipulation Methods

	Functions
	Function Methods Generate Copies
	Numbers
	Strings
	Events
	Event Methods
	Event Properties


	Chapter 5: Elements
	Creating and Cloning Elements
	Collecting Elements from the DOM
	:: Element/Element.js
	Using
	to Ensure You Have an Initialized Element
	:: Element/Element.js

	Element Methods and Collections
	:: Element/Element.js

	Element Methods for Collecting Children, Siblings, and Parents
	Setting, Getting, and Erasing Properties of Elements
	Element.set
	Element.get
	Element.erase
	Custom Getters and Setters and Erasers

	Element Injection and Removal
	Element (CSS) Classes
	Element Storage
	What’s New in 1.2: Element Storage

	The Elements Object
	Elements Methods
	Elements.filter

	Other Element Methods in
	Element.Event.js
	Adding and Removing Element Events


	Chapter 6: Utilities
	Selectors
	Complex CSS3 Expressions

	DomReady
	The DomReady Custom Event

	JSON
	MooTools and JSON
	JSON.encode
	JSON.decode

	Cookie
	Cookie.write
	Cookie.read
	Cookie.dispose

	Swiff
	Swiff Constructor
	Swiff.replaces, Swiff.inject
	Swiff.remote


	Chapter 7: Classes and Inheritance
	Using the Class Constructor
	Initialization
	Inheritance
	Implement vs. Extend
	Extending Classes
	Extending Classes into Themselves
	Implementing Classes
	Implementing Classes into Other Classes

	Chapter 8: Getting Started with Classes
	Class.Extras
	The Options Class
	The Events Class
	The Chain Class


	Chapter 9: Fx
	Fx and Fx.CSS
	Fx Options
	Fx Events
	Fx.start
	Fx.set
	Fx.cancel, Fx.pause, Fx.resume

	Fx.Tween
	Element.tween

	Fx.Morph
	Element.morph
	Element.set/get with Fx.Morph
	Using CSS Selectors with Fx.Morph

	Fx.Transitions
	The Transitions
	Specifying a Transition for an Effect
	Creating Your Own Transition

	The Rest of Fx.*

	Chapter 10: Request
	Request
	Request Options
	Request.send
	Request: .get, .post, .put, .delete
	Request.cancel
	Element.send

	Request.HTML
	Element.load

	Request.JSON

	Chapter 11: Plug-Ins
	A More General Overview
	Assets
	Assets.javascript
	Assets.css
	Assets.image
	Assets.images

	Accordion
	Fx.Slide
	Fx.Scroll
	Fx.Elements
	Drag
	Element.makeResizeable

	Drag.Move
	Element.makeDraggable

	Color
	Group
	Hash.Cookie
	Sortables
	Slider
	Scroller
	Tips

	Chapter 12: Third-Party Plug-Ins
	The CNET Clientside Libraries
	dbug
	Browser.Extras
	Native Extensions
	Element Extensions
	Effects Extensions
	Request
	UI
	Layout
	Forms

	Other Third-Party Scripts
	Autocompleter, FancyUpload, ReMooz, SqueezeBox, Roar
	Slimbox
	. . . And More


	Chapter 13: Real-World Examples
	A Simple Page
	Dissecting the Example
	Summary

	Chapter 14: Writing a Tab Class
	Step 1: Creating an Empty Class
	Step 2: Defining Arguments
	Step 3: Defining Methods
	Instantiating Our Class
	Review

	Chapter 15: Writing Flexible Classes
	Step 1: Creating a Foundation Class
	A Note on Using Methods

	Step 2: Adding Options
	Step 3: Adding Events
	Making Good Use of Events
	Adding Events After Invokation
	You Don’t Have to Declare Events in the Options Object

	Step 4: Extending the Class
	Identifying What Needs to Change
	Adding a Few More Options and Events

	Review

	Chapter 16: Where to Learn More
	Appendix: Core Concepts in JavaScript
	DOCTYPE Matters
	Type Coercion: fiFalsyfl d fiTruthyfl Vaes
	Functional Programming (a.k.a. Lambda)
	Literals and Anonymous Functions
	fithisfl d Binding
	Binding

	Closures
	Prototypal Inheritance
	The Inheritance Chain
	Unobtrusive JavaScripting
	DomReady
	Namespacing


	Related Titles
	Copyright


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice




