
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Mastering	jQuery	UI

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

Mastering	jQuery	UI

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Designing	a	Simple	Quiz	Application

Setting	up	jQuery	UI

Downloading	the	required	files

Using	jQuery/jQuery	UI	libraries	with	a	CDN

Setting	up	the	folder	structure	for	the	JavaScript	and	CSS	files

Creating	the	layout

Markup	for	the	quiz	page

Styling	elements

Making	the	quiz	functional

www.allitebooks.com

http://www.allitebooks.org

Displaying	data	on	the	page

Draggable	country	names

Droppable	capital	names	and	scoring

Accepting	a	draggable	element

The	drop	event

Resetting	the	quiz

Improving	the	quiz

Summary

2.	Building	a	Jigsaw	Puzzle	Game

Getting	ready

Creating	the	layout

Creating	the	markup	for	the	puzzle

Styling	elements

Making	the	puzzle	functional

Creating	slices	of	the	image

The	CSS	background-position	property

Starting	the	game

Handling	events	for	puzzle	pieces

Checking	for	puzzle	completion

Resetting	the	puzzle

Improving	the	puzzle

Summary

3.	Creating	a	Website	Tour

Getting	ready

Designing	the	home	page

Writing	markup	for	the	page

Styling	elements

Making	the	tour	functional

Initializing	accordion	and	tooltips

Defining	the	dialog

Defining	the	tour	steps

www.allitebooks.com

http://www.allitebooks.org

Initializing	the	tour

Displaying	a	tour	step

Making	the	Previous	and	Next	buttons	functional

Ending	the	tour

Improving	the	tour

Summary

4.	Creating	a	Tabbed	News	Reader

Creating	the	folder	structure

Designing	the	page

Writing	markup	for	tabs

Styling	the	content

Getting	the	code	structure	ready

Adding	event	handlers	in	the	init	method

Displaying	posts	of	a	subreddit

Creating	the	tab	structure

Building	the	DOM	for	posts

Getting	comments	for	a	post

Improving	MyjqReddit

Summary

5.	Implementing	CAPTCHA	using	Draggable	and	Droppable

Creating	the	folder	structure

Implementing	the	drag	and	drop	CAPTCHA

Setting	a	random	color

Displaying	the	CAPTCHA

Making	the	drag	and	drop	functional

Validating	on	the	server

Improving	the	color	CAPTCHA

Creating	the	slider	CAPTCHA

Generating	minimum	and	maximum	values	for	the	slider

Making	the	slider	functional

Validating	the	slider	values

www.allitebooks.com

http://www.allitebooks.org

Improving	the	slider	CAPTCHA

Creating	the	number	CAPTCHA

Generating	the	five-digit	number

Displaying	CAPTCHA	on	the	page

Adding	the	sortable	functionality

Validating	the	number	on	the	server

Summary

6.	Creating	an	Event	Timeline	Using	a	Slider

Creating	the	folder	structure

Designing	the	page

Styling	the	content

Getting	the	code	structure	ready

Creating	the	timeline	markup	from	data

Implementing	the	timeline	functionality

Making	the	slider	work

The	if	block

The	else	block

Dragging	the	year	window

Displaying	event	details	when	a	year	window	is	clicked	on

Closing	the	event	details	window

Improving	the	timeline

Summary

7.	Using	jQuery	UI	with	Google	Maps	API

Creating	the	folder	structure

Getting	a	Google	Maps	API	key

Designing	the	page

Styling	the	content

Getting	the	code	structure	ready

Setting	minimum	and	maximum	prices

Displaying	hotels	in	accordion

Setting	up	the	spinner

www.allitebooks.com

http://www.allitebooks.org

Displaying	the	map

Setting	markers	and	infowindows	in	the	map

Implementing	the	slider

Improving	the	functionality

Summary

8.	Creating	a	Photo	Album	Manager

Creating	the	folder	structure

Designing	the	page

Creating	placeholders	for	albums	and	pictures

Writing	markup	for	dialog	boxes

Styling	the	content

Creating	the	JSON	file	for	albums

Getting	code	structure	ready

Implementing	the	initialize	method

Filling	album	names

Displaying	the	albums

Making	the	pictures	sortable

Initializing	dialogs	for	edit,	delete,	and	zoom

Handling	click	events	for	edit,	delete	icons,	and	zooming	pictures

Editing,	deleting,	and	rearranging	pictures

Editing	a	picture	name

Deleting	a	picture

Rearranging	pictures	of	an	album

The	ajaxAlbum.php	file

Improving	album	manager

Summary

9.	Creating	Widgets	Using	the	Widget	Factory

The	folder	structure

Creating	a	widget	to	search	data	in	a	table

Writing	markup	for	the	table

Styling	the	content

www.allitebooks.com

http://www.allitebooks.org

Implementing	the	widget

Defining	the	widget	structure

Setting	up	default	options

Initializing	the	widget	and	attaching	event	handlers

Filtering	the	table

Making	changes	when	the	option	value	is	changed

Destroying	the	widget

Calling	the	widget	from	the	page

Improving	the	searchable	widget

Creating	a	widget	to	display	a	slideshow

Writing	markup	for	slides

Styling	the	content

Implementing	the	widget

Defining	the	widget	structure

Setting	up	default	options

Initializing	the	widget	and	displaying	the	first	slide

Displaying	slides	one	by	one

Making	changes	when	the	option	value	is	changed

Destroying	the	widget

Calling	the	widget	from	the	page

Improving	the	banner	widget

Summary

10.	Building	a	Color	Picker	with	Hex	RGB	Conversion

Setting	up	the	folder	structure

Writing	markup	for	the	page

Styling	the	content

Implementing	the	color	picker

Defining	the	object	structure

The	init	method

Changing	colors	and	updating	the	spinner

The	getHexColor	method

www.allitebooks.com

http://www.allitebooks.org

Converting	to	hex

Improving	the	Colorpicker

Summary

11.	Creating	a	Fully	Functional	Dashboard

Setting	up	the	stage

Designing	the	page

Styling	the	content

Getting	the	code	structure	ready

Initializing	the	portlets

Implementing	sharing	buttons

Displaying	Flickr	photos

Creating	a	weather	widget

Displaying	posts	from	the	reddit	front	page

Creating	an	image	display	widget

Improving	the	portlets

Summary

A.	Best	Practices	for	Developing	with	jQuery	UI

General	Guidelines

Using	a	CDN

Use	a	customized	build	of	jQuery	UI

Using	the	jQuery	UI	icons

Be	specific	about	elements	as	much	as	possible

Chain,	chain,	and	chain

Cache	selectors

Cache	your	loop	variables

DOM	manipulation	is	costly

Using	jQuery	UI	Themeroller	to	customize	a	theme

Index

www.allitebooks.com

http://www.allitebooks.org

Mastering	jQuery	UI

Mastering	jQuery	UI
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1200215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78328-665-2

www.packtpub.com

http://www.packtpub.com

Credits
Author

Vijay	Joshi

Reviewers

Ilija	Bojchovikj

Thodoris	Greasidis

Commissioning	Editor

Owen	Roberts

Acquisition	Editor

Owen	Roberts

Content	Development	Editor

Athira	Laji

Technical	Editor

Anushree	Arun	Tendulkar

Copy	Editors

Roshni	Banerjee

Merilyn	Pereira

Vikrant	Phadke

Project	Coordinator

Harshal	Ved

Proofreaders

Maria	Gould

Samantha	Lyon

Elinor	Perry-Smith

Indexer

Mariammal	Chettiyar

Production	Coordinator

Manu	Joseph

Cover	Work

Manu	Joseph

About	the	Author
Vijay	Joshi	is	a	web	developer	who	lives	in	New	Delhi,	India,	with	his	wife	and	daughter.
Coming	from	a	small	town	named	Pithoragarh,	Uttarakhand,	in	the	Himalayas,	he	fell	in
love	with	coding	while	in	college.	He	has	also	loved	PHP	and	JavaScript/jQuery	since	his
early	coding	days.	Vijay	believes	that	if	you	are	passionate	and	enjoy	your	work,	it
becomes	more	of	a	hobby	that	is	not	boring	and	it	never	feels	like	a	job.	After	freelancing
for	a	few	years,	he	founded	a	web	development	firm	called	Developers	Lab	along	with
two	of	his	friends	in	New	Delhi,	where	they	build	products	for	the	travel	industry	and
create	custom	web	applications.	Vijay	is	also	the	author	of	PHP	jQuery	Cookbook,	Packt
Publishing,	and	the	technical	reviewer	of	PHP	AJAX	Cookbook	and	jQuery	UI	1.8:	The
User	Interface	Library	for	jQuery.	When	not	coding,	he	likes	to	read,	spend	time	with	his
family,	blog	occasionally	at	http://vijayjoshi.org,	and	dream	about	getting	back	in	shape.

Writing	a	book	is	a	long	and	complicated	task	and	it	requires	the	support	and	coordination
of	many	people.	I	am	thankful	to	the	entire	team	at	Packt,	especially	my	content
development	editor,	Athira	Laji,	for	being	so	cooperative	and	patient	with	me.

A	big	thank	you	to	all	the	technical	reviewers	as	well,	who	helped	me	immensely	in
increasing	the	overall	quality	of	this	book.

Lastly,	I	am	feeling	both	proud	and	excited	to	be	able	to	contribute	to	the	open	source
community	that	made	me	what	I	am	today.

http://vijayjoshi.org

About	the	Reviewers
Ilija	Bojchovikj,	is	a	senior	manager	of	user	experience,	design,	and	development.	He	has
the	know-how	required	to	combine	creativity	and	usability	viewpoints	resulting	in	world-
class	web	and	mobile	applications	and	systems.

Ilija	has	more	than	4	years	of	experience,	partnering	with	internal	and	external
stakeholders	in	discovering,	building,	improving,	and	expanding	user	experiences	and
creating	and	developing	outstanding	user	interfaces.

Ilija	has	experience	in	creating	cutting-edge	interface	designs	and	information	architecture
for	websites	and	mobile	applications	through	user-centered	design	processes	by
constructing	screen	flows,	prototypes,	and	wireframes.

Special	thanks	to	my	girlfriend,	Monika,	for	having	the	patience	and	letting	me	take	yet
another	challenge	that	decreased	the	amount	of	time	I	could’ve	spent	with	her.

Thodoris	Greasidis	is	a	senior	web	developer	from	Greece.	He	holds	a	polytechnic
diploma	in	computer,	networking,	and	communications	engineering,	and	a	master’s	in
computer	science.

Thodoris	is	part	of	the	Angular-UI	team	and	has	made	many	open	source	contributions,
with	special	interest	in	Mozilla	projects.

He	is	a	JavaScript	enthusiast	and	loves	bitwise	operations.	His	interests	also	include	web
applications	and	services	and	artificial	intelligence,	especially	multiagent	systems.

Special	thanks	to	my	family	and	fiancée,	who	supported	me	while	reviewing	this	book,
and	to	the	guys	from	work	who	encouraged	me	to	get	involved.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

To	Tanu	and	Nauni,	with	all	my	love.

http://www.PacktPub.com

Preface
jQuery	UI	needs	no	introduction	for	itself.	As	the	official	website	says,	“jQuery	UI	is	a
curated	set	of	user	interface	interactions,	effects,	widgets,	and	themes	built	on	top	of	the
jQuery	JavaScript	Library.”	It	is	very	likely	that	any	developer	who	has	worked	with
jQuery	would	have	used	at	least	one	of	the	jQuery	UI	widgets.

Since	it	is	a	large	library	having	many	components	with	each	component	having	multiple
options,	it	is	common	for	developers	to	get	confused.	Despite	having	excellent
documentation,	there	are	only	a	few	resources	that	describe	jQuery	UI	using	its	practical
applications.	To	become	an	expert,	you	must	know	how	jQuery	UI	fits	with	real	world
applications	and	which	of	its	components	have	to	be	used	when	a	use	case	is	provided.

This	is	the	goal	of	this	book.	Our	aim	is	to	improve	your	knowledge	of	jQuery	UI	to	a
master	level,	so	that	you	can	use	it	in	complex	real	world	projects	with	ease.

Each	chapter	of	the	book	is	a	mini	project	in	itself.	There	are	detailed	step-by-step
instructions	along	with	helpful	pictures	that	will	guide	you	through	each	chapter.	The
chapters	are	not	arranged	in	any	particular	order,	so	you	may	pick	up	any	one	at	random.

I	am	optimistic	that	this	book	will	help	you	take	jQuery	UI	skills	to	the	next	level.

Happy	Coding!

What	this	book	covers
Chapter	1,	Designing	a	Simple	Quiz	Application	,	makes	use	of	jQuery	UI’s	interaction
components	to	create	a	quiz	application.	You	will	learn	about	jQuery	UI’s	sortable,
draggable,	and	droppable	components	in	this	chapter.

Chapter	2,	Building	a	Jigsaw	Puzzle	Game,	teaches	you	to	create	a	Jigsaw	puzzle	game
using	some	of	the	jQuery	UI’s	interaction	components.	You	will	learn	to	divide	an	image
into	multiple	tiles	along	with	sortable	techniques.

Chapter	3,	Creating	a	Website	Tour,	will	create	a	user-friendly	tool	to	tour	different	parts
of	a	web	page.	You	will	learn	about	jQuery	UI’s	tooltip	component	and	some	other
components	in	this	chapter.

Chapter	4,	Creating	a	Tabbed	News	Reader,	teaches	you	to	create	a	news	reader	using	an
external	API.	Using	the	reddit	API,	you	will	learn	about	creating	a	mashup	with	jQuery
UI’s	tabs	and	dialog	components.

Chapter	5,	Implementing	CAPTCHA	using	Draggable	and	Droppable,	deals	with	creating
CAPTCHAs.	Using	jQuery	UI’s	draggable	and	droppable	components,	you	will	be	able	to
create	three	different	CAPTCHA	implementations.

Chapter	6,	Creating	an	Event	Timeline	Using	a	Slider,	will	teach	you	to	create	an
interactive	timeline	to	visualize	events	that	occurred	in	different	years.	You	will	also	learn
different	techniques	of	using	the	slider	component.

Chapter	7,	Using	jQuery	UI	with	Google	Maps	API,	teaches	you	to	use	jQuery	UI
components	with	Google	Maps.	You	will	learn	to	control	markers	on	a	map	using	a	slider.
You	will	also	learn	to	control	the	zoom	level	using	a	spinner.

Chapter	8,	Creating	a	Photo	Album	Manager,	explains	how	to	create	a	photo	album	to
display	pictures.	Users	will	be	able	to	edit	the	names	of	any	picture	as	well	as	delete
and/or	rearrange	pictures	in	an	album.

Chapter	9,	Creating	Widgets	Using	the	Widget	Factory,	teaches	you	to	create	new	widgets.
In	detailed	steps,	you	will	learn	to	create	two	different	widgets	to	cover	all	aspects	of	the
jQuery	UI	widget	factory.

Chapter	10,	Building	a	Color	Picker	with	Hex	RGB	Conversion,	creates	a	simple	color
selector	tool.	Along	with	RGB	to	Hex	conversion,	this	chapter	will	guide	you	in	creating	a
tool	that	will	allow	you	to	change	the	text	as	well	as	the	background	color	of	a	page,	using
multiple	slider	and	spinner	components.

Chapter	11,	Creating	a	Fully	Functional	Dashboard,	puts	together	all	the	learning
acquired	through	the	previous	10	chapters	to	create	a	dashboard	with	multiple	widgets.
You	will	learn	to	create	six	different	widgets	in	this	chapter.

Appendix,	Best	Practices	for	Developing	with	jQuery	UI,	guides	you	with	the	best
possible	ways	to	create	rich	applications.	This	chapter	will	also	teach	you	about	the	best
coding	practices	and	optimizations.

What	you	need	for	this	book
You	should	have	a	web	server	installed	on	your	system.	Apache	is	recommended	but	you
can	use	IIS	as	well.	You	will	also	need	PHP	(version	5.2	or	above)	for	some	chapters.	You
can	install	all	of	these	in	a	single	go	using	a	software	such	as	Wamp	Server	or	you	can
install	them	separately.	jQuery	(version	1.6	or	higher	recommended)	and	jQuery	UI
libraries	(version	1.11.2	recommended)	will	also	be	required.

In	terms	of	technical	proficiency,	this	book	assumes	that	you	have	worked	with	jQuery
and	jQuery	UI	libraries,	HTML,	CSS,	and	JSON.	This	book	will	take	care	of	the	rest.

www.allitebooks.com

http://www.allitebooks.org

Who	this	book	is	for
This	book	is	aimed	at	frontend	developers	who	use	jQuery	and	jQuery	UI	on	a	daily	basis
and	want	to	take	their	skills	of	jQuery	UI	to	an	advanced	level.	The	book	provides	step-
by-step	instructions,	with	details	supported	by	pictures	to	help	you	become	an	expert	in
using	different	jQuery	UI	components.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We
have	created	a	div	with	CSS	class	container	which	will	act	as	parent	div	for	all	the	page
elements”

A	block	of	code	is	set	as	follows:

var	t	=	this;

		$(".slider").slider(

		{

				range:	"min",

				max:	255,

				slide	:	function	(event,	ui)	

				{

						t.setColor($(this),	ui.value);

				},

				change	:	function	(event,	ui)	

				{

						t.setColor($(this),	ui.value);

				}

		});

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

var	t	=	this;

		$(".slider").slider(

		{

				range:	"min",

				max:	255,

				slide	:	function	(event,	ui)	

				{

						t.setColor($(this),	ui.value);

				},

				change	:	function	(event,	ui)	

				{

						t.setColor($(this),	ui.value);

				}

		});

Any	command-line	input	or	output	is	written	as	follows:

#	cp	/usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

					/etc/asterisk/cdr_mysql.conf

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“clicking	the	Next	button
moves	you	to	the	next	screen”.

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

Downloading	the	color	images	of	this	book
We	also	provide	you	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in
this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from:
http://www.packtpub.com/sites/default/files/downloads/2018_6652OS_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/2018_6652OS_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
https://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Designing	a	Simple	Quiz
Application
To	begin	with,	we	will	design	a	simple	quiz	application	where	users	have	to	match	country
names	to	their	corresponding	capital	names	by	dragging	a	country	name	over	its	correct
capital.	A	correct	match	will	result	in	one	point,	and	drag	and	drop	will	be	disabled	for
both	the	country	and	its	capital.

The	display	will	contain	two	columns,	the	first	one	will	have	country	names	and	the
second	one	will	have	the	names	of	the	capitals	of	those	countries.	Both	the	columns	will
be	shuffled	randomly.	Once	the	user	has	matched	all	the	names	successfully,	a	modal
dialog	will	appear.	Users	will	also	be	given	the	option	to	reset	the	quiz.	Resetting	will
restart	the	game	and	shuffle	the	lists	again.

Setting	up	jQuery	UI
We	will	need	the	jQuery	and	jQuery	UI	libraries	before	going	ahead.	Throughout	this
book,	we’ll	use	jQuery	Version	1.10.2	and	jQuery	UI	Version	1.10.4	with	the	UI
lightness	theme	.	Note	that	the	jQuery	UI	files	also	contain	a	copy	of	the	jQuery	source
file.

Downloading	the	required	files
To	download	jQuery,	visit	the	download	page	on	the	jQuery	website	at
http://jquery.com/download/.

Tip
Make	sure	that	you	download	the	correct	version	as	per	your	requirements.

For	jQuery	UI,	visit	the	download	page	at	http://jqueryui.com/download/	to	download	the
jQuery	UI	library.

Tip
Since	we	will	cover	all	components	throughout	the	book,	download	the	full	version	of	the
library.

http://jquery.com/download/
http://jqueryui.com/download/

Using	jQuery/jQuery	UI	libraries	with	a	CDN
You	might	be	aware	that	Content	Delivery	Networks	(CDN)	host	many	popular	libraries.
Since	the	browsers	cache	JavaScript	files,	your	page	will	not	have	to	load	a	JavaScript	file
again	if	it	is	referenced	from	a	CDN	and	already	cached	in	browser.	You	can	link	jQuery
and	jQuery	UI	among	CDN’s	many	other	libraries.

Tip
Make	sure	that	you	are	connected	to	the	Internet	if	you	have	referenced	the	libraries	from
the	CDN	in	your	pages.

Google,	Microsoft,	and	some	other	companies	provide	CDN	for	jQuery,	jQuery	UI,	and
other	libraries.	Here	are	the	links	to	pages	for	downloading	these	libraries:

Google	CDN	can	be	downloaded	from
https://developers.google.com/speed/libraries/devguide#jquery.
Microsoft	CDN	can	be	downloaded	from
http://www.asp.net/ajaxlibrary/cdn.ashx#Using_jQuery_from_the_CDN_21.
CDNJS	can	be	downloaded	from	https://cdnjs.com/.	It	is	a	helpful	site	where	you	can
find	many	libraries	and	their	different	versions.

https://developers.google.com/speed/libraries/devguide#jquery
http://www.asp.net/ajaxlibrary/cdn.ashx#Using_jQuery_from_the_CDN_21
https://cdnjs.com/

Setting	up	the	folder	structure	for	the	JavaScript
and	CSS	files
We	will	now	set	up	the	folder	structure	that	we	will	use	for	all	the	chapters	in	this	book.
The	steps	are	as	follows:

1.	 In	your	document	root,	create	a	folder	named	MasteringjQueryUI.	Then,	create	a
folder	for	each	chapter	inside	it.

2.	 For	this	chapter,	create	a	new	folder	named	Chapter1	inside	MasteringjQueryUI	and
two	more	folders	named	js	and	css	inside	the	Chapter1	folder.

3.	 Now	extract	the	jQuery	UI	files	into	a	separate	folder	and	go	to	its	js	folder.	You	will
see	three	files:	jQuery	source	file	and	full	and	minified	versions	of	jQuery	UI.

4.	 Copy	the	jQuery	source	file	and	any	one	version	of	jQuery	UI	source	files	and	place
them	inside	the	js	folder	that	you	created	inside	Chapter1	of	the	MasteringjQueryUI
folder.

5.	 Also,	copy	the	ui-lightness	folder	from	the	css	folder	from	the	downloaded	jQuery
UI	to	the	css	folder	of	Chapter1.

Now	we	are	ready	to	experiment	with	jQuery	UI	and	create	some	informative	and	fun
examples.	Let’s	start	our	journey	by	creating	the	quiz	application.

www.allitebooks.com

http://www.allitebooks.org

Creating	the	layout
In	the	newly	created	folder	Chapter1,	create	a	file	named	index.html	and	another	.js	file
named	quiz.js	inside	the	js	folder	of	Chapter1.	The	quiz.js	file	will	contain	all	the
code	that	we	need	to	make	the	quiz	functional.

Markup	for	the	quiz	page
Open	the	index.html	file	for	editing	using	your	favorite	text	editor,	and	write	the
following	code	in	it:

<!DOCTYPE	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>Designing	a	simple	quiz	application</title>

				<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

		</head>

		<body>

				<div	class="container">

						

						<button	id="reset"	type="button">Reset</button>

						<div	class="clear"></div>

						<hr/>

						<div	id="leftCol">

								<ul	id="source">

								

						</div>

						<div	id="rightCol">

								<ul	id="target">

								

						</div>

				</div>

				<div	id="dialog-complete"	title="Well	Done!">

						<p>

						Well	done.	You	have	completed	the	quiz	successfully.</p>

				</div>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

				<script	src="js/quiz.js"></script>

		</body>

</html>

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

In	the	preceding	code,	inside	the	head	section,	we	referenced	the	jQuery	UI	.css	file.	If
you	have	placed	the	.css	file	elsewhere,	make	sure	to	correct	the	path	accordingly.	The
path	can	either	be	an	absolute	path	or	a	relative	path.

http://www.packtpub.com
http://www.packtpub.com/support

Inside	the	body,	we	have	a	div	element	named	container	that	wraps	our	entire	markup.
Inside	container,	we	have	created	two	span	elements.	The	first	span	has	the	id	value
score	and	it	will	be	used	to	show	the	score	of	the	user.	The	second	span	has	the	id	value
reset	and	it	will	be	used	to	reset	the	quiz	to	its	initial	state.

After	this,	we	have	to	create	two	more	div	elements	having	the	id	value	leftCol	and
rightCol,	respectively.	leftCol	has	an	ul	element	with	the	id	value	source	inside	it.	This
ul	element	will	contain	the	names	of	countries	as	list	items.	Similarly,	rightCol	has
another	ul	element	with	the	id	value	target	inside	it.	It	will	have	the	names	of	capitals	as
list	items.

After	the	container	element,	we	have	created	yet	another	div	element	with	the	id	value
dialog-complete,	which	will	be	displayed	once	the	user	has	completed	the	quiz
successfully.	Inside	the	dialog-complete	element,	we	have	placed	a	success	message.

Finally,	at	the	bottom	of	the	page,	reference	the	jQuery,	jQuery	UI,	and	quiz.js	files.

Note
Make	sure	that	jQuery	is	included	first	before	jQuery	UI,	and	that	any	other	JavaScript	file
or	custom	jQuery	code	is	included	or	written.

Styling	elements
We	will	also	need	some	CSS	styling	to	make	the	elements	look	good.	In	the	head	section
of	the	index.html	file,	write	the	following	code:

<style	type="text/css">

		body{

				font-family:arial,verdana;

				font-size:12px;

				margin:	0px	auto;	

				width:	600px;

		}

		div.container{

				border:	1px	solid	#000;

				float:left;

				margin:0	auto;

				padding:10px;

				width:	100%;

		}

		#leftCol{

				float:left;

		}

		#rightCol{

				float:right;

		}

		ul{

				list-style:none;

				margin:0;

				padding:0;

				width:50%;

		}

		li{

				border:1px	solid	#000;

				font-weight:bold;

				margin:5px	0;

				padding:10px	0;

				text-align:center;

				width:175px;

		}

		#source	li{

				cursor:move;

		}

		#score{

				font-weight:bold;

				float:left;

				color:#ff0000;

		}

		#reset{

				color:#ff0000;

				cursor:pointer;

				font-weight:bold;

				text-align:right;

				text-decoration:underline;

				float:right;

		}

		.clear{

		clear:both;

		}

		#dialog-complete{

				display:none;

		}

		#dialog-complete	span{

				float:left;

				margin:0	7px	20px	0;

		}

</style>

In	the	preceding	code,	first	we	defined	some	basic	styles	for	the	body	and	the	container
elements.	After	that,	the	styles	were	defined	for	the	ul	element	and	its	li	items.	These
styles	will	display	the	list	items	in	the	form	of	individual	boxes.	CSS	for	the	score	and
reset	items	follow	next	and	finally	some	basic	styling	for	the	dialog	elements.

Making	the	quiz	functional
Our	UI	part	is	now	complete	and	we	can	proceed	to	make	the	quiz	functional.	We	will	do
this	in	a	few	steps.	First	of	all,	we	will	display	the	data	on	the	page	in	two	columns.	Then,
we	will	make	the	country	names	draggable.	Finally,	the	list	items	with	the	capital	names
will	be	made	droppable	so	that	we	can	drop	a	country	name	inside	a	capital.	We	will	also
have	to	ensure	that	a	droppable	capital	name	accepts	only	the	correct	country	name.
Finally,	the	resetting	logic	will	be	built.

Displaying	data	on	the	page
Open	the	quiz.js	file	for	editing	and	write	the	following	code:

$(document).ready(function()

{

		createQuizLayout();

});

On	the	document	ready	event	we	call	a	function	named	createQuizLayout	which	we	need
to	define	now.

function	createQuizLayout()

{

		//declare	arrays	of	countries	and	their	capitals.

		var	countries	=	["USA",	"UK",	"India",	"Germany",	"Turkey",	"France",	

"Nepal",	"Japan",	"South	Africa",	"Maldives"];

		var	capitals	=	["Washington",	"London",	"Delhi",	"Berlin",	"Istanbul",	

"Paris",	"Kathmandu",	"Tokyo",	"Capetown",	"Male"];

		var	arrCountry	=	[];

		for(var	i=0;	i<countries.length;	i++)

		{

				arrCountry.push('<li	data-index="'	+	(i+1)	+	'">'	+	countries[i]	

+'');

		}

		var	arrCapital	=	[];

		for(var	i=0;	i<capitals.length;	i++)

		{

				arrCapital.push('<li	data-index="'	+	(i+1)	+	'">'	+	capitals[i]	

+'');

		}

		//shuffle	the	arrays

		arrCountry	=	shuffle(arrCountry);

		arrCapital	=	shuffle(arrCapital);

		//	once	country	and	capital	items	are	ready,	we	insert	them	into	DOM

		$('#source').html(arrCountry.join(''));

		$('#target').html(arrCapital.join(''));

}

Here	is	what	the	preceding	code	does:

We	have	defined	two	arrays	named	countries	and	capitals.
The	countries	array	contains	names	of	10	countries	and	the	capitals	array	contains
names	of	the	capitals	of	the	countries	defined	in	the	countries	array.	The	names	of
capitals	must	be	in	the	same	order	as	their	respective	countries.
Since	we	want	to	display	the	names	of	countries	and	capitals	in	a	random	order,	we
will	create	two	arrays	and	fill	them	with	list	items	and	shuffle	them.
We	started	with	country	first.	We	declared	an	array	named	arrCountry.	Then,	we
loop	in	the	countries	array	and	create	a	list	item	with	the	country	name	and	push	it
into	the	arrCountry	array.

The	same	process	is	repeated	for	the	capitals	array.

An	important	point	to	note	here	is	that	we	are	giving	a	data	attribute	named	index	to	each
list	item	having	a	value	from	1	to	10.	Since	we	have	both	the	countries	and	capital	names
in	the	same	order,	index	will	be	used	to	match	which	country	belongs	to	which	capital.

After	both	arrays	are	populated,	we	will	shuffle	them	so	that	the	order	of	countries	and
capitals	becomes	random.	For	this,	we	will	use	a	simple	shuffle	function	from	the
website	http://jsfromhell.com/array/shuffle.	The	shuffle	function	is	defined	as	follows:

function	shuffle(o)

{

		for(var	j,	x,	i	=	o.length;	i;	j	=	Math.floor(Math.random()	*	i),	x	=	o[-

-i],	o[i]	=	o[j],	o[j]	=	x);

				return	o;

};

After	calling	the	shuffle	function	on	both	arrays	arrCountry	and	arrCapital,	the	array
elements	are	inserted	in	DOM	after	combining	them	into	a	single	string	using	the
JavaScript	join	function.	The	elements	in	the	array	arrCountry	are	inserted	in	ul	with	the
id	value	source	and	those	in	the	array	arrCapital	are	inserted	in	ul	with	the	id	value
target.

Open	your	browser	and	point	it	to	the	index.html	file	of	the	Chapter1	folder	now.	You
will	see	a	page	similar	to	the	one	shown	in	the	following	screenshot:

www.allitebooks.com

http://jsfromhell.com/array/shuffle
http://www.allitebooks.org

If	you	reload	the	page,	you	will	see	that	the	order	of	countries	and	capitals	changes	each
time.	This	is	because	shuffling	creates	a	new	order	for	items	of	both	lists.

Draggable	country	names
To	make	the	country	names	draggable,	we	will	use	the	draggable	component	of	jQuery
UI.	As	the	name	suggests,	the	draggable	component	allows	DOM	components	to	be
moved	around	using	a	mouse.	To	do	this,	go	to	the	$(document).ready()	section	of	our
quiz.js	file	and	call	another	function	named	initQuiz.	The	$(document).ready()
callback	function	should	look	like	this	now:

$(document).ready(function()

{

		createQuizLayout();

		initQuiz();

});

Now	define	the	initQuiz	function	outside	document	ready	handler	as	follows:

function	initQuiz()

{

		$('#source	li').draggable(

		{

				revert	:	true,

				revertDuration:	200,

				cursor:	"move"

		});

}

The	preceding	code	calls	the	draggable	method	of	the	jQuery	UI	library.	It	is	being	called
upon	the	li	elements	of	the	ul	source,	which	means	it	will	make	all	the	list	items
draggable	inside	the	source	ul.	Further,	we	are	also	giving	the	draggable	method	three
options	that	we	need	for	our	application:	revert,	revertDuration,	and	cursor.	Let’s	look
at	these	in	more	detail:

revert:	This	decides	whether	the	element	being	dragged	should	revert	to	its	original
position	or	not.	In	our	case,	we	will	set	it	to	true.	We	will	drag	a	country	name	onto	a
capital	name	and	revert	it	to	its	original	position,	that	is,	the	country	list.	Another
possible	value	for	revert	is	false,	which	means	it	will	stay	at	the	place	where	it	is
when	dragging	stops.	The	values,	valid	and	invalid,	can	also	be	provided	(as
strings)	for	the	revert	option.	The	value	valid	means	the	draggable	object	will
revert	only	if	the	draggable	object	has	been	dropped	on	a	droppable	element.	The
value	invalid	means	the	draggable	fuction	will	revert	if	the	draggable	object	has
not	been	dropped.	Alternatively,	a	function	can	also	be	provided	to	revert.	This	is
required	in	complex	cases	where	we	need	to	perform	any	manipulations.	The	return
value	for	this	function	will	decide	if	it	will	revert	or	not.	If	true	is	returned,	the
element	will	revert.
revertDuration:	This	defines	the	duration	for	the	revert	option	in	milliseconds.
The	lower	the	value,	the	faster	it	will	revert.	This	value	is	not	considered	if	the	revert
option	is	set	to	false.
cursor:	This	is	the	style	of	cursor	while	an	element	is	being	dragged.

Our	draggable	elements	are	ready	now,	and	so	it	is	time	to	make	the	capital	names

droppable	and	build	the	logic	to	match	countries	to	their	correct	capitals.

Droppable	capital	names	and	scoring
In	the	previous	section,	we	created	an	initQuiz	function	where	we	made	our	countries
draggable.	After	the	draggable	code,	write	the	following	code	to	make	the	capitals
droppable:

var	totalScore	=	0;

$('#score').text(totalScore	+	'	points.');

$('#target	li').droppable(

{

		accept	:	function(draggable)

		{

				if(parseInt(draggable.data('index'),	10)	===	

parseInt($(this).data('index'),	10))

				{

						return	true;

				}

				else

				{

						return	false;

				}

		},

		drop:	function(event,	ui)	

		{

				var	that	=	$(this);

				that.addClass("ui-state-highlight").html('Correct!'	

).effect('bounce');

				that.droppable('disable');

				ui.draggable.addClass('correct	ui-state-error');

				(ui.draggable).draggable('disable');

				totalScore++;

				$('#score').text(totalScore	+	'	points.');

				if($('li.correct').length	==	10)

				{

						$("#dialog-complete").dialog({

								resizable:	false,

								modal:	true

						});

				}

		}

});	

Now	save	the	quiz.js	file	and	refresh	your	browser.	You	will	be	able	to	drag	the	country
names	now.	Drag	a	country	name	to	its	correct	capital	and	you	will	see	that	the	country
will	revert	to	its	original	position.	The	capital	list	item	will	show	a	bounce	effect	and	its
text	will	change	to	Correct!.	Both	the	country	and	capital	names	will	be	disabled	now.
You	will	not	be	able	to	drag	the	country	name	as	well.	On	the	top	left	hand	side,	the	page
will	show	the	score	as	1	points.

The	screen	will	look	like	the	following	screenshot:

Try	the	drag	and	drop	for	all	countries	in	the	left-hand	side	list.	When	you	have	matched
all	countries	correctly,	you	will	see	a	dialog	box	and	the	page	will	look	like	the	following
screenshot:

So,	a	lot	is	happening	in	the	preceding	code.	We	will	look	at	it	step	by	step.

We	defined	a	variable	named	totalScore	and	set	it	to	0.	We	also	inserted	the	score	inside
the	HTML	element	with	the	id	value	score.	Each	time	the	quiz	starts,	the	score	will	be
reset	as	well.	After	this,	we	call	the	droppable	method	of	jQuery	UI	on	the	list	items	of	ul
with	the	id	value	target	to	make	them	ready	to	accept	the	draggable	country	elements.

We	are	using	the	accept	option	of	the	jQuery	UI	draggable	method	to	check	for	the
correct	matches	of	country	and	capital,	and	we	are	using	the	drop	event	to	change	the	UI
and	scoring.

Accepting	a	draggable	element
The	accept	option	of	a	droppable	method	defines	which	draggable	element	will	be
accepted	by	the	droppable	method	when	a	draggable	element	is	over	it;	either	a	jQuery
selector	or	a	function	can	be	provided	for	this	purpose.	If	a	selector	is	given,	only	the
draggable	element	matching	that	selector	will	be	accepted	by	the	droppable	method.
Since	we	want	to	match	an	individual	country	to	its	capital,	it	is	better	for	us	to	use	a
function	instead.	The	function	will	receive	the	current	draggable	element	that	is	being
dragged	as	a	parameter.	Inside	the	function,	$(this)	will	refer	to	the	current	droppable
element.	The	code	is	as	follows:

if(parseInt(draggable.data('index'),	10)	==	parseInt($(this).data('index'),	

10))

		{

				return	true;

		}

		return	false;

Since	we	have	already	defined	data	attributes	for	both	countries	and	capitals,	we	can
match	those	to	check	if	the	current	draggable-droppable	pair	is	a	correct	country-capital
pair	or	not.	If	the	indexes	match,	we	return	true;	otherwise,	we	return	false.

A	return	value	true	means	the	droppable	method	will	accept	the	draggable	element,	and
will	allow	the	draggable	element	to	be	dropped	in	it.

The	drop	event

The	drop	event	will	receive	a	draggable	element	once	it	has	been	passed	from	the	accept
option.	If	the	accept	option	returns	false	for	any	draggable	element,	then	the	drop	event
will	not	be	called.	In	our	case,	this	means	we	will	only	receive	a	country’s	draggable
element	and	its	corresponding	capital’s	droppable	element.

The	callback	function	for	the	drop	event	receives	two	parameters:	event	and	ui.	Of	these
two,	we	are	interested	in	the	ui	object.	Among	other	values,	it	provides	us	with	a
reference	to	the	draggable	element	that	was	dropped.	To	refer	to	the	current	droppable
element	where	the	draggable	element	is	dropped,	we	have	$(this)	variable	with	us.	The
code	is	as	follows:

$(this).addClass("ui-state-highlight").html('Correct!'	

).effect('bounce');

$(this).droppable('disable');

In	the	preceding	code,	we	added	the	jQuery	UI	framework’s	CSS	class	ui-state-
highlight	to	the	current	droppable	element	and	then	changed	that	list	item’s	HTML
content	to	Correct!	and	added	the	bounce	effect	to	the	droppable	capital.

Since	the	droppable	capital	has	been	matched	successfully	with	its	country,	we	no	longer
need	it	as	a	droppable	element.	Hence,	the	preceding	code	uses	the	disable	method	of	the
droppable	component	to	disable	the	droppable	functionality.

The	next	two	lines	add	CSS	classes	named	correct	and	ui-state-error	to	the
draggable	method	and	then	disable	it.	The	code	is	as	follows:

ui.draggable.addClass('correct	ui-state-error');

(ui.draggable).draggable('disable');

The	correct	class	will	be	used	to	determine	how	many	successful	countries	have	been
matched.	The	class	ui-state-error	is	just	for	presentation	purposes	to	make	the
successfully	matched	country	name	highlighted.	Using	the	draggable	disable	method,	we
disable	the	specific	draggable	element	as	well,	because	it	has	been	matched	and	we	do	not
want	it	to	be	dragged	again.

Since	the	drop	event	receives	only	the	accepted	draggable	elements,	we	can	safely
increase	the	variable	totalScore	by	1	and	insert	the	new	value	back	to	the	DOM	in	the
element	score.	This	shows	us	the	latest	score	each	time	a	new	match	is	made.

Finally,	we	count	the	number	of	list	items	in	the	countries’	column	that	have	the	CSS	class

named	correct	associated	with	them.	Since	we	have	10	elements,	if	all	the	10	list	items
have	the	CSS	class	correct	attached	to	them,	it	means	the	quiz	is	complete.	We	then	show
a	jQuery	UI	dialog	component	that	we	kept	hidden	in	our	HTML	page	initially.

Resetting	the	quiz
If	you	were	wondering	why	we	created	the	functions	createQuizLayout	and	initQuiz
when	we	wrote	the	code	without	them,	the	answer	is	that	we	need	to	call	them	again.	It	is
better	not	to	repeat	yourself.	We	can	now	reset	the	quiz	without	having	to	reload	the	page.

We	have	already	created	an	element	with	id	reset.	Visit	the	$(document).ready()
callback	again	and	write	the	following	code	after	those	two	function	calls.	The	section	will
now	look	like	this:

$(document).ready(function()

{

		createQuizLayout();

		initQuiz();

		$('#reset').on('click',	function()

		{

				$('#source	li').draggable('destroy');

				$('#target	li').droppable('destroy');

				createQuizLayout();

				initQuiz();

		});

});

We	have	an	event	handler	registered	at	the	click	of	the	reset	button.	It	is	using	the
destroy	method	of	jQuery	UI	on	the	draggable	and	droppable	elements.	The	destroy
method	will	remove	the	complete	draggable	and	droppable	functionality	from	respective
elements.	It	will	also	remove	any	special	CSS	classes	that	jQuery	UI	might	have	applied
earlier.

After	bringing	the	page	to	its	initial	state,	we	call	the	createQuizLayout	and	initQuiz
functions	again,	which	will	initialize	our	quiz	once	more.

www.allitebooks.com

http://www.allitebooks.org

Improving	the	quiz
This	was	a	basic	application	to	begin	with.	There	can	be	many	more	enhancements	to	this
quiz	to	make	it	more	feature	rich.	You	are	encouraged	to	add	more	features	to	it	and
refactor	the	code	as	well.

Here	are	some	ideas	that	you	can	start	with:

Remove	successfully	matched	countries	and	capitals
If	you	watch	closely,	we	do	not	need	the	variable	totalScore

Tip
List	items	with	the	class	correct	are	enough	for	calculating	scores.

Allow	negative	scoring	if	the	user	drops	the	country	in	an	incorrect	capital

Summary
The	draggable	and	droppable	methods	are	important	components	of	jQuery	UI	in	order
to	make	interactive	applications.	We	explored	a	few	options	presented	by	these	two
components	and	created	a	simple	quiz	application	in	this	process.	We	will	see	more
options	presented	by	these	two	components	in	the	following	chapters	as	well,	where	we
will	create	a	jigsaw	puzzle	game.

Chapter	2.	Building	a	Jigsaw	Puzzle
Game
Moving	forward	a	bit	more,	in	this	chapter,	we	will	see	more	(and	slightly	complex)	use
cases	of	draggable	and	droppable	components.	We	will	develop	a	jigsaw	puzzle	game
where	we	will	divide	a	picture	into	small	pieces	of	the	same	size,	and	the	user	will	have	to
rearrange	these	small	pieces	by	dragging	and	dropping	them	to	form	a	complete	picture.

The	UI	will	have	two	containers	on	the	page.	One	container	will	be	used	to	keep	the
puzzle	pieces,	and	the	other	will	act	as	a	canvas	for	arranging	these	pieces.	Initially,	users
will	be	displayed	a	picture	along	with	a	Start	button.	Once	the	Start	button	is	clicked,	the
image	will	be	divided	into	16	pieces	and	these	pieces	will	be	placed	in	a	separate
container.	Users	will	have	to	drag	and	drop	the	individual	pieces	on	the	canvas	and
arrange	them	to	make	the	complete	picture.

Getting	ready
Make	sure	that	you	have	set	up	jQuery	and	jQuery	UI	files	as	explained	in	Chapter	1,
Designing	a	Simple	Quiz	Application.	You	will	also	need	an	image	that	has	dimensions
equal	to	400px	x	400px.	The	code	in	this	chapter	uses	an	image	of	a	cute	cat,	named
kitty.jpg.	Of	course,	you	can	use	any	image	of	your	choice.	Keep	this	image	in	the
Chapter2	folder.

Since	we	will	create	16	pieces	of	this	image,	each	having	both	width	and	height	equal	to
100	px,	keep	in	mind	that	the	image	you	choose	should	not	have	a	single	square	area	of
the	same	color	exceeding	100px	x	100px.	This	will	create	problems	while	solving	the
puzzle	as	you	will	be	unable	to	determine	the	correct	locations	of	multiple	pieces	of	the
same	color.

Creating	the	layout
Create	a	file	named	index.html	inside	the	Chapter2	folder.	It	will	contain	the	entire
HTML.	For	the	JavaScript	code,	create	another	file	named	puzzle.js	inside	the	js	folder
of	Chapter2.	Now	the	Chapter2	folder	will	have	four	items:	the	index.html	file,	the
image	file	for	the	puzzle	(kitty.jpg),	the	js	folder,	and	the	css	folder.

Creating	the	markup	for	the	puzzle
Our	first	step	towards	creating	the	puzzle	will	be	to	prepare	the	required	HTML	markup.
This	HTML	markup	will	then	be	styled	using	CSS.	The	following	HTML	markup	will
prepare	the	bare-bones	structure	of	the	page	required	to	make	the	puzzle:

<html>

		<head>

				<meta	charset="utf-8">

				<title>Designing	a	Jigsaw	Puzzle</title>

				<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

		</head>

		<body>

				<div	class="container">

						<div	id="pieceBox"></div>

						<div	id="puzzleContainer"></div>

						<class="clear"> </div>

						<div	class="clear">	</div>

						

						<div	class="clear">	</div>

						<ul	class="buttons">

								<button	id="start">Start</button>

								<button	id="reset">Reset</button>

						

				</div>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

				<script	src="js/puzzle.js"	type="text/javascript"></script>

		</body>

</html>

In	the	preceding	markup,	we	have	a	div	element	with	the	value	of	id	as	container,	which
is	a	wrapper	for	whole	page.	Inside	it	are	two	div	elements	with	pieceBox	and
puzzleContainer	as	the	values	for	id.	The	element	pieceBox	will	act	as	a	box	in	which
we	will	keep	the	16	sliced	pieces	of	the	image,	whereas	the	element	puzzleContainer	will
be	the	canvas	on	which	users	will	drop	these	pieces	and	arrange	them.	Next,	there	is	a
span	element	where	we	will	show	a	success	or	error	message	after	the	user	has	placed	all
the	pieces.	There	is	also	a	list	containing	two	list	items.	We	will	use	them	as	Start	and
Reset	buttons.

Finally,	at	the	bottom	of	the	page	are	the	references	to	the	jQuery,	jQueryUI,	and	puzzle	.
js	files.

Tip
Ensure	that	the	path	for	the	CSS	and	JavaScript	files	is	correct.

Styling	elements
After	our	page	structure	is	ready,	we	need	to	add	CSS	styles	for	different	elements	created
in	the	markup	to	give	the	page	the	desired	appearance.	This	will	be	done	by	adding	some
CSS	rules	to	the	head	section	of	the	index.html	file.	The	styles	that	we	will	use	are
explained	here:

<style	type="text/css">

		body{

				font-family:arial,verdana;

				font-size:12px;

				margin:	0	auto;	

				width:	900px;

		}

		div.container{

				border:	1px	solid	#000;

				float:left;

				margin:0	auto;

				padding:10px;

				width:	100%;

		}

		#pieceBox{

				border:	1px	solid	#000;

				float:	left;

				height:	408px;

				margin:	0	auto;

				position:relative;

				width:	408px;

		}

		#puzzleContainer

		{

				border:	1px	solid	#000;

				float:	right;

				margin:	0	auto;

				height:	408px;

				width:	408px;

		}

		div.img{

				background-image:	url('kitty.jpg');

				background-repeat:	no-repeat;

				height:100px;

				width:100px;

				float:left;

				border:1px	solid	#000;

		}

		ul{

				text-align:center;

				list-style:none;

				margin:0;

				padding:0;

		}

		span#message{

				clear:both;

				display:	none;	

				font-size:	20px;

				padding:	20px	0;

				text-align:	center;	

				width:	100%;	

		}

		ul.buttons{

				cursor:pointer;

				margin-top:10px;

		}

		ul	button{

				border:1px	solid	#000;

				font-weight:bold;

				margin:0	auto;

				padding:10px	0;

				text-align:center;

				width:175px;

				display:inline-block;

		}

		#reset{

				display:none;

		}

		.clear{

				clear:both;

		}

</style>

First,	we	defined	some	basic	styles	for	body,	container,	pieceBox,	and	puzzleContainer.
Then	we	defined	styling	for	the	div	elements	that	have	the	.img	class.	This	class	will	be
applied	to	the	pieces	of	the	puzzle.	Since	it	will	not	be	efficient	to	create	16	different
images	to	use	as	jigsaw	pieces,	we	will	use	a	single	image	as	a	sprite.	Therefore,	we	set
the	background-image	property	to	kitty.jpg,	which	is	the	image	that	we	are	going	to
use.	Using	the	background-position	CSS	property,	we	will	be	able	to	show	a	specific	100
px	x	100	px	part	of	the	image.

After	this,	we	defined	some	CSS	properties	for	the	success	or	error	message	and	the
buttons.	In	the	last	CSS	rule,	we	hid	the	Reset	button	as	it	will	not	be	required	initially.

After	writing	the	HTML	and	markup,	we	are	ready	to	make	the	puzzle	functional	by
plugging	in	the	JavaScript	to	create	the	game.

Meanwhile,	run	the	index.html	file	in	your	browser	and	you	will	see	a	screen	with	two
boxes,	as	shown	in	the	following	screenshot.	Based	on	their	IDs,	we	will	call	these	boxes
pieceBox	and	puzzleContainer,	respectively:

Making	the	puzzle	functional
Before	writing	any	JavaScript	code	to	create	a	functional	puzzle,	let’s	write	down	the
features	of	our	puzzle	and	see	how	we	will	achieve	them.

When	the	page	loads,	an	image	will	be	displayed	to	the	user	in	puzzleContainer,	and	a
Start	button	will	be	displayed	under	it.	The	image	will	actually	be	a	collection	of	16
different	div	elements,	each	having	the	same	background	image	but	a	different
background	position.	Using	the	background-position	CSS	property,	we	will	be	able	to
display	the	complete	image	to	the	user.	Once	the	Start	button	is	clicked,	we	will	take
these	16	images	and	place	them	at	random	positions	inside	pieceBox.	We	will	also	display
a	4	x	4	grid,	puzzleContainer,	where	any	of	the	16	pieces	could	be	dropped.	We	will	then
attach	appropriate	event	handlers	that	will	allow	us	to	drag	an	individual	puzzle	piece
from	pieceBox	to	puzzleContainer.	Once	a	piece	has	been	moved	to	puzzleContainer,
it	cannot	be	dropped	back	to	pieceBox.	It	can,	however,	be	dragged	into	any	other	cell	in
puzzleContainer.	Once	the	user	has	arranged	all	the	pieces,	a	relevant	message	will	be
displayed.

Enough	with	the	theory	for	now!	Let’s	dive	into	some	practical	JavaScript.	In	your	text
editor,	open	the	puzzle.js	file.

Creating	slices	of	the	image
Write	the	following	code	in	the	puzzle.js	file:

var	rows	=	4;

var	cols	=	4;

$(document).ready(function(){

		var	sliceStr	=	createSlices(true);

		$('#puzzleContainer').html(sliceStr);

});

function	createSlices(useImage){

		var	str	=	'';

		var	sliceArr	=	[];

		for(var	i=0,	top=0,	c=0;	i	<	rows;	i++,	top-=100)

		{

				for(var	j=0,	left=0;	j<cols;	j++,	left-=	100,	c++)

				{

						if(useImage)

						{

								sliceArr.push('<div	style="background-position:	'	+	left	+	'px	'	+	

top	+'px;"	class="img"	data-sequence="'+c+'">');

						}

						else

						{

								sliceArr.push('<div	style="background-image:none;"	class="img	

imgDroppable">');

						}

						sliceArr.push('</div>');

				}

		}

		return	sliceArr.join('');

}

The	16	div	elements	will	be	in	the	form	of	a	grid	of	4	rows	and	4	columns.	In	the
preceding	code,	we	defined	two	variables,	rows	and	cols,	and	set	their	value	to	4.

Next,	there	is	the	$(document).ready(function()	handler,	in	which	we	will	write	our
code.	Inside	this	handler,	we	call	the	createSlices	function.	This	function	will	create	the
required	16	div	elements	and	return	a	string	with	their	HTML	structure.	This	string	will
then	be	inserted	into	the	puzzleContainer	div	element.

After	you	have	written	this	code,	save	the	puzzle.js	file	and	refresh	the	index.html	page
on	your	browser.	You	will	see	a	screen	resembling	the	following	screenshot:

Now	let’s	look	at	the	createSlices	function	in	detail.

We	defined	a	variable	named	str	to	store	the	HTML	structure.	Next,	there	are	two	for
loops.	In	the	outer	loop,	we	initialized	another	variable	named	top	to	0,	which	will	be
decremented	by	100	in	each	iteration.

Similarly,	inside	the	inner	loop,	another	variable	named	left	is	defined,	and	this	will	also
be	decreased	by	100	in	each	iteration.	Inside	the	inner	loop,	a	div	element	is	created,
where	we	set	the	div’s	left	and	top	values	using	the	background-position	CSS	property.
This	is	done	in	order	to	create	all	16	slides	with	appropriate	images.

A	CSS	class	named	img	is	also	added	to	the	div	element.	We	have	already	defined	CSS
properties	for	this	class	in	the	index.html	file.	This	class	sets	the	background	image	as
kitty.jpg	for	the	div	element.	It	also	defines	the	height	and	width	of	the	div	as	100	px
each,	and	a	border	of	1	px	is	also	applied.

A	data	attribute	named	data-sequence	is	also	added	to	each	div.	This	attribute	will	be
used	later	to	check	whether	all	the	div	elements	are	arranged	correctly	or	not.	Its	value	will
be	0	for	the	first	div,	1	for	the	second	div,	2	for	the	third	div,	and	so	on	until	15,	which	is
set	as	a	value	for	the	last	div.	Once	both	the	loops	are	completed,	we	return	the	complete
DOM	structure	from	the	function.	This	structure	will	now	be	inserted	in	div
puzzleContainer.

The	CSS	background-position	property
To	create	a	complete	image	using	different	pieces,	we	will	need	perfect	placement	of	the
background-image	property.	The	background-position	property	defines	the	starting	left
and	top	positions	of	the	background	image	for	that	specific	div	element.	Therefore,	if	we
define	the	background	position	as	background-position:	0px	0px,	it	means	that	the
image	will	get	positioned	at	the	top-left	corner	of	element.	Similarly,	if	we	set
background-position:	-100px	0px,	the	left	corner	will	skip	the	initial	100	pixels	of	the

image.

To	understand	this	more	clearly,	go	to	the	browser	page	and	inspect	the	DOM	using
Firebug	(you	can	download	this	for	Firefox	from	https://addons.mozilla.org/en-
US/firefox/addon/firebug/)	or	Chrome	DevTools	(check	out	the	help	on	Google	Chrome
DevTools	at	https://developer.chrome.com/devtools).	You	will	see	that	the	DOM	structure
resembles	the	following	screenshot:

This	structure	clearly	shows	16	different	divs,	each	having	a	different	background-position
setting.	You	can	play	with	these	values	in	Firebug	or	Chrome	Developer	tools	in	the
options	provided	by	the	browser	by	increasing	or	decreasing	their	values	to	see	how	the
background	images	are	positioned	on	a	puzzle	piece.

https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://developer.chrome.com/devtools

Starting	the	game
Now	that	we	have	our	puzzle	pieces	ready,	we	need	to	implement	the	Start	button	by
adding	an	event	handler	for	it.	This	event	handler	will	shuffle	all	the	slices	created	earlier
and	will	place	them	at	random	positions	in	the	div,	having	pieceBox	as	the	id.	The
following	code	needs	to	be	added	to	the	$(document).ready(function()	handler:

$('#start').on('click',	function()

{

		var	divs	=	$('#puzzleContainer	>	div');

		var	allDivs	=	shuffle(divs);

		$('#pieceBox').empty();

		allDivs.each(function(){

				var	leftDistance	=	Math.floor((Math.random()*280))	+	'px';

				var	topDistance	=	Math.floor((Math.random()*280))	+	'px';

				$(this)

				.addClass('imgDraggable')

				.css({

						position	:	'absolute',

						left	:	leftDistance,

						top	:	topDistance

				});

				$('#pieceBox').append($(this));

		});

		var	sliceStr	=	createSlices(false);

		$('#puzzleContainer').html(sliceStr);

		$(this).hide();

		$('#reset').show();

});

Also,	outside	the	$(document).ready(function()	handler,	define	the	shuffle	function.
This	is	the	same	function	that	we	used	in	Chapter	1,	Designing	a	Simple	Quiz	Application:

function	shuffle(o)

{

		for(var	j,	x,	i	=	o.length;	i;	j	=	Math.floor(Math.random()	*	i),	x	=	o[-

-i],	o[i]	=	o[j],	o[j]	=	x);

		return	o;

}

We	registered	a	click	event	handler	to	the	list	item	with	the	start	ID.	In	the	first	line,	we
find	all	the	div	elements	inside	puzzleContainer	in	a	divs	variable.	We	pass	this	array	to
the	shuffle	function	in	the	next	line,	which	randomizes	this	array	and	returns	it	in	a
variable	named	allDivs.	Now	the	allDivs	variable	is	an	array	of	puzzle	pieces	(div
elements)	in	a	random	order.	We	need	to	place	these	pieces	in	the	piecebox	div.

Since	we	want	these	pieces	to	look	scattered	inside	the	pieceBox	div,	first	we	loop	over
the	elements	of	the	allDivs	array.	In	each	loop	iteration,	we	generate	two	random
numbers	for	the	left	and	top	positions	for	each	div.	We	then	set	the	div’s	position	to
absolute	and	add	the	left	and	top	values.	Since	the	pieceBox	div	has	its	position	set	to

relative,	each	of	these	divs	will	be	positioned	using	the	left	and	top	values	relative	to
pieceBox.	A	css	class,	imgDraggable,	is	also	added	to	each	div.	This	class	name	will	be
used	while	dragging	and	dropping	pieces.	Finally,	the	div	is	appended	to	pieceBox.

The	next	line	uses	the	createSlices	function	again	to	create	a	DOM	with	empty	divs	and
without	any	background	image.	The	DOM	created	using	this	function	will	be	inserted	to
the	puzzleContainer	div	again.	Note	that	false	is	passed	as	a	parameter	to	the
createSlices	function	this	time.	This	is	because	we	do	not	want	any	background	image
in	puzzleContainer	when	the	game	starts.	This	will	require	some	modification	in	the
createSlices	function.

Modify	the	createSlices	function	written	earlier	to	match	the	following	code:

function	createSlices(useImage)

{

		var	str	=	'';

		for(var	i=0,	top=0,	c=0;	i	<	rows;	i++,	top-=100)

		{

				for(var	j=0,	left=0;	j<cols;	j++,	left-=	100,	c++)

				{

						if(useImage)

						{

								str+=	'<div	style="background-position:	'	+	left	+	'px	'	+	top	

+'px;"	class="img"	data-sequence="'+c+'">';

						}

						else	

						{

								str+=	'<div	style="background-image:none;"	class="img	

imgDroppable">';

						}

						str+=	'</div>';

				}

		}

		return	str;

}

Note
Do	not	forget	to	change	the	function	call	in	the	first	line	inside	the
$(document).ready(function())	section.	Make	sure	var	sliceStr	=	createSlices();
is	written	as	var	sliceStr	=	createSlices(true);.

If	the	useImage	argument	for	the	createSlices	function	is	set	to	true,	the	background
image	will	be	used.	If	it	is	false,	no	background	image	will	be	set	but	a	class	named
imgDroppable	will	be	added.	This	class	will	be	used	to	attach	event	handlers	to	the	places
where	the	puzzle	pieces	will	be	dropped.

Finally,	after	preparing	the	DOM	for	the	pieceBox	and	puzzleContainer	divs,	the	Start
button	is	hidden	and	the	Reset	button	is	displayed.

Reload	the	HTML	page	in	your	browser	and	you	should	see	something	resembling	the
following	screenshot:

Reloading	the	page	and	clicking	the	Start	button	will	display	different	positions	of	the
puzzle	pieces	every	time.

Handling	events	for	puzzle	pieces
To	be	able	to	move	pieces	and	use	the	possible	movements,	we	first	need	to	add	events.
We	will	have	to	add	two	event	handlers,	one	to	make	the	puzzle	pieces	inside	pieceBox
draggable	and	second	to	make	the	puzzleContainer	pieces	droppable.

Inside	the	event	handler	of	the	Start	button,	add	a	new	function	call	named
addPuzzleEvents().

Outside	the	$(document).ready(function())	event	handler,	define	the	addPuzzleEvents
function	by	writing	the	following	code:

function	addPuzzleEvents()

{

		$('.imgDraggable').draggable(

		{

				revert	:	'invalid',

						start	:	function(event,	ui){

						var	$this	=	$(this);

						if($this.hasClass('pieceDropped'))

						{

								$this.removeClass('pieceDropped');

								($this.parent()).removeClass('piecePresent');

						}

				}

		});

		$('.imgDroppable').droppable({

				hoverClass:	"ui-state-highlight",

				accept	:	function(draggable)

				{

						return	!$(this).hasClass('piecePresent');

				},

				drop:	function(event,	ui)	{

						var	draggable	=	ui.draggable;

						var	droppedOn	=	$(this);

						droppedOn.addClass('piecePresent');

						$(draggable).detach().addClass('pieceDropped').css({

								top:	0,

								left:	0,	

								position:'relative'

						}).appendTo(droppedOn);

						checkIfPuzzleComplete();

				}

		});

}

There	are	two	important	points	to	be	remembered	here.	Whenever	a	draggable	puzzle
piece	is	dropped	on	a	droppable	space,	a	CSS	class	named	pieceDropped	will	be	added	to
that	draggable	piece	,	which	will	indicate	that	the	puzzle	piece	has	been	dropped.	Another
CSS	class,	piecePresent,	will	be	added	to	the	droppable	space	on	which	the	piece	is

dropped.	The	presence	of	the	piecePresent	CSS	class	on	a	space	will	indicate	that	the
space	already	has	a	piece	dropped	on	it	and	we	will	disallow	dropping	any	other	draggable
pieces	on	it.

All	the	puzzle	pieces	in	pieceBox	have	a	CSS	class,	imgDraggable,	applied	to	them.	We
initialized	the	draggable	component	for	all	such	pieces.	While	initializing,	we	provided
two	options	for	the	draggable	component.	The	first	option	is	revert,	which	we	set	to
invalid.	As	you	may	recall	from	Chapter	1,	Designing	a	Simple	Quiz	Application,
invalid	means	that	a	draggable	piece	will	revert	to	its	original	position	if	it	has	not	been
dropped	on	any	space.	This	also	means	when	a	piece	is	dropped	inside	puzzleContainer,
you	will	not	be	able	to	place	it	back	inside	pieceBox.

Secondly,	we	added	a	start	event	handler	to	the	piece.	This	event	handler	is	called	when
the	dragging	begins.	In	the	preceding	code,	we	check	whether	the	element	being	dragged
has	the	pieceDropped	class	applied	to	it.	If	the	pieceDropped	class	is	not	present	on	it,	it
means	the	piece	is	still	inside	pieceBox	and	has	not	been	dropped	in	puzzleContainer
yet.

If	the	pieceDropped	class	has	been	applied	to	the	element,	it	means	the	puzzle	piece	was
already	dropped	and	it	is	being	dragged	inside	puzzleContainer	only.	In	this	case,	we
want	to	allow	the	puzzle	piece	to	be	dropped	onto	other	droppables	spaces	present	inside
puzzleContainer.	Therefore,	we	remove	the	pieceDropped	class	from	the	draggable
piece.	In	the	next	line,	we	also	remove	the	piecePresent	class	from	its	parent	droppable
because	we	want	the	parent	droppable	to	accept	other	draggable	items.

Next,	we	will	prepare	the	droppable	space.	In	puzzleContainer,	we	have	16	different
divs,	which	are	used	to	accept	the	puzzle	pieces.	All	of	these	have	the	imgDroppable	CSS
class	applied	to	them.	We	initialize	the	droppable	component	using	for	all	elements	that
have	the	imgDroppable	class.	While	initializing,	we	provide	three	options,	which	are	as
follows:

hoverClass:	In	this	option,	we	can	specify	the	name	of	any	CSS	class,	and	it	will	be
applied	to	the	droppable	element	when	a	draggable	element	will	be	over	it.	Note	that
the	class	name	will	only	be	applied	when	an	accepted	draggable	element	is	over	the
droppable	element.	In	the	preceding	code,	we	used	the	ui-state-highlight	class,
which	is	available	by	default	in	jQueryUI	themes.
accept:	This	option	specifies	which	draggable	elements	can	be	dropped	on	to	a
droppable	space.	Either	a	jQuery	selector	or	a	function	can	be	provided.	We	are	using
a	function	here	to	check	whether	the	current	droppable	space	already	has	a	draggable
element	dropped	in	it	or	not.	If	the	current	droppable	already	has	the	piecePresent
class,	we	return	false,	which	means	that	the	draggable	element	will	not	be	allowed
to	drop	on	the	current	droppable	space.
drop:	This	event	takes	place	once	an	accepted	draggable	element	(described	in	the
previous	bullet	point)	is	dropped	onto	a	droppable	space.	Once	the	draggable	is
dropped,	we	add	the	piecePresent	CSS	class	to	the	droppable.	We	also	want	the
dragged	puzzle	piece	to	fit	to	the	parent	droppable	completely.	For	this,	we	remove
the	draggable	element	from	the	DOM	using	jQuery’s	detach	method.	Then	we	add	a

CSS	class,	pieceDropped,	to	this	droppable	space.	We	set	its	left	and	top	positions
to	0	and	position	to	relative.	Finally,	we	append	it	to	the	parent	droppable.	The
CSS	properties	specified	with	it	fit	it	to	its	parent	droppable.

After	each	drop,	we	call	the	checkIfPuzzleComplete	function	to	check	whether	the
puzzle	has	been	solved.

Checking	for	puzzle	completion
Every	time	a	piece	is	dropped	inside	puzzleContainer,	we	will	have	to	check	whether	all
the	pieces	are	in	the	correct	order	or	not.	To	do	this,	we	will	create	a	function	named
checkIfPuzzleComplete.	This	function	will	be	called	from	the	drop	event	of	the
droppables.	Define	this	function	as	shown	in	the	following	code:

function	checkIfPuzzleComplete()

{

		if($('#puzzleContainer	div.pieceDropped').length	!=	16)

		{

				return	false;

		}

		for(var	i	=	0;	i	<	16;	i++)

		{

				var	puzzlePiece	=	$('#puzzleContainer	div.pieceDropped:eq('+i+')');

				var	sequence	=	parseInt(puzzlePiece.data('sequence'),	10);

				if(i	!=	sequence)

				{

						$('#message').text('Nope!	You	made	the	kitty	sad	:(').show();

						return	false;

				}

		}

		$('#message').text('YaY!	Kitty	is	happy	now	:)').show();

		return	true;

}

It	doesn’t	make	any	sense	to	check	the	puzzle	if	all	16	pieces	have	not	been	placed	inside
puzzleContainer.	Since	each	puzzle	piece	dropped	inside	puzzleContainer	will	have	a
pieceDropped	CSS	class,	we	find	out	how	many	div	elements	with	pieceDropped	classes
are	present.	If	they	are	less	than	16,	we	can	assume	that	all	pieces	have	not	been	placed
inside	the	puzzle	and	return	false	from	the	function.	If	all	16	pieces	are	present	inside
puzzleContainer,	we	proceed	to	next	step.

You	may	remember	that	we	assigned	a	data-sequence	attribute	to	each	puzzle	piece.	In	a
correctly	solved	puzzle,	all	div	elements	will	be	in	a	sequence,	which	means	their	data-
sequence	attributes	will	have	values	from	0	to	15	in	ascending	order.	Similarly,	in	an
incorrectly	solved	puzzle,	the	data-sequence	attributes	of	all	div	elements	will	still	have
values	from	0	to	15,	but	they	will	not	be	in	order.

The	for	loop	checks	the	mentioned	condition.	We	are	running	a	loop	from	0	to	15.	Each
iteration	of	the	loop	picks	a	div	element	from	puzzleContainer	whose	index	is	equal	to
current	loop	value.	The	eq	jQuery	function	is	used	for	this	purpose.	The	sequence	value
for	this	div	element	is	then	retrieved	and	compared	to	the	current	loop	value.	If	any	of	the
values	inside	loop	does	not	match	this	value,	it	will	mean	that	the	puzzle	pieces	are	not	in
a	sequence.	In	this	case,	we	display	the	Nope!	You	made	the	kitty	sad	:(message	inside
the	div	with	the	message	ID,	and	exit	from	the	function.

If	the	loop	completes	all	iterations,	it	means	that	all	puzzle	pieces	are	in	order.	Then	we
display	the	YaY!	Kitty	is	happy	now	:)	message	and	return	from	the	function.	A	correctly
solved	puzzle	will	resemble	the	following	screenshot:

Resetting	the	puzzle
To	reset	the	puzzle,	all	we	need	to	do	is	create	the	pieces	again	and	fill	puzzleContainer
with	them.	Write	the	following	code	inside	the	$(document).ready(function())	handler
to	handle	the	reset	button	events:

$('#reset').on('click',	function()

{

		var	sliceStr	=	createSlices(true);

		$('#puzzleContainer').html(sliceStr);

		$('#pieceBox').empty();

		$('#message').empty().hide();

		$(this).hide();

		$('#start').show();

});

In	the	preceding	code,	we	used	the	createSlices	function	with	the	true	parameter	and
inserted	the	generated	HTML	inside	puzzleContainer.	Next,	we	emptied	the	pieceBox.
The	success	or	error	message	displayed	earlier	is	also	hidden.	Finally,	the	Reset	button	is
hidden	and	the	Start	button	is	displayed	again.

Note
We	do	not	need	to	call	the	addPuzzleEvents	function	to	add	drag	and	drop	events.	This	is
because	the	events	were	already	attached	to	the	DOM	the	first	time	the	Start	button	was
clicked.

Improving	the	puzzle
This	puzzle	can	be	made	more	interesting	in	a	number	of	ways.	Some	ideas	have	been
listed	here.	You	are	encouraged	to	add	more	features	of	your	own	as	well:

Allow	removal	of	pieces	from	puzzleContainer	to	pieceBox
Take	a	rectangular	image	where	number	of	columns	and	rows	are	different
Add	a	countdown	timer	to	check	how	long	the	user	took	to	finish	the	puzzle
Display	three	to	four	images	to	users	and	allow	them	to	select	one	image	to	be	used
with	the	puzzle

Summary
We	made	a	somewhat	complex	example	in	this	chapter,	where	you	learned	to	use	some
important	events	of	draggable	and	droppable	components.	Both	of	these	are	important
components,	and	I	encourage	you	to	practice	and	try	different	variations	as	much	as
possible.

In	the	next	chapter,	we	will	look	at	some	other	equally	useful	components	such	as	dialog,
tooltip,	accordion,	and	so	on.

Chapter	3.	Creating	a	Website	Tour
By	now,	we	have	become	familiar	with	the	extremely	useful	draggable	and	droppable
components	of	jQuery	UI,	both	of	which	were	used	in	the	previous	chapter.	We	will	now
explore	some	other	components	in	this	chapter	that	will	prove	to	be	a	valuable	asset	in
your	web	development	toolbox.	We	will	learn	practical	usage	of	the	dialog,	tooltip,	and
accordion	components	together.

If	you	change	the	layout	of	your	website,	it	becomes	difficult	for	regular	users	to	navigate
the	new	website	initially.	This	might	also	mean	a	loss	of	visitors,	if	users	find	difficulty	in
searching	for	specific	links	or	sections	of	the	website	they	were	familiar	with	earlier.

We	will	address	this	problem	in	this	chapter	and	solve	it	by	creating	a	website	tour	for	a
page.	We	will	first	design	a	simple	home	page	for	an	imaginary	company,	and	then	create
the	tour	to	navigate	different	sections	in	the	page.	We	will	place	a	Take	a	Tour	button	on
the	page.	Clicking	on	this	button	will	start	the	tour.	Each	step	of	the	tour	will	be	a	jQuery
UI	dialog	box	that	will	be	positioned	near	the	link	or	section	we	want	to	explain.	The
dialog	box	will	have	a	title	specific	to	the	section	and	some	text/HTML	that	will	explain
the	functionality	of	the	link	or	section.	We	will	also	place	three	buttons	called	Previous,
Next,	and	End	Tour	to	navigate	the	tour.	While	navigating	with	the	Previous	and	Next
buttons,	it	is	possible	that	a	section	where	the	tour	box	has	to	be	displayed	is	not	in	the
current	viewport.	In	such	a	case,	we	will	scroll	the	page	using	jQuery.	This	will	make	sure
that	the	tour	box	is	visible	in	viewport.

Apart	from	this,	there	will	also	be	helpful	tooltips	in	different	parts	of	the	page.	We	will
use	the	following	jQuery	UI	components	to	build	the	complete	page	with	the	tour	feature:

Dialog
Buttons
Tooltip
Accordion
Effects

Getting	ready
We	will	start	by	creating	a	new	folder	named	Chapter3	inside	the	MasteringjQueryUI
folder.	As	explained	in	Chapter1,	Designing	a	Simple	Quiz	Application,	copy	the	js	and
css	folders	inside	the	Chapter3	folder.	Create	a	file	and	name	it	index.html	inside	the
Chapter3	folder,	and	create	another	JavaScript	file	named	tour.js	inside	the	js	folder.

The	file	structure	of	the	Chapter3	folder	should	look	like	this	now:

Designing	the	home	page
Let’s	assume	our	imaginary	company	is	called	Cats	and	Dogs	Store	and	it	sells	goods	for
cats	and	dogs.	For	this	company,	we	will	design	a	page	that	will	contain	a	header	with	a
logo	on	the	left	and	some	links	on	the	right.	There	will	be	a	two-column	layout	underneath
it.	The	left	column	will	be	a	menu	with	several	links	and	the	right	column	will	have	an
accordion	and	a	“shopping	cart”	box.	Each	link	or	section	where	we	want	to	display	a	step
of	the	tour	will	be	given	an	ID.	These	IDs	will	be	used	in	JavaScript	to	make	the	tour
functional.	After	the	page	is	designed,	it	will	look	like	the	this:

Writing	markup	for	the	page
Now	that	we	have	a	basic	idea	about	what	the	home	page	should	look	like,	let’s	start
writing	some	markup	now.	Using	Notepad++	or	your	favorite	text	editor,	write	the
following	HTML	markup	in	the	index.html	file:

<html>

		<head>

				<meta	charset="utf-8">

				<title>Creating	a	Website	Tour</title>

				<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

		</head>

		<body>

				<div	id="dialog"></div>

				<div	class="container">

				</div>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

				<script	src="js/tour.js"	type="text/javascript"></script>

		</body>

</html>

The	preceding	code	creates	the	skeleton	of	our	page.	In	the	head	section,	we	linked	the
HTML	page	to	the	jQuery	UI	CSS	file	and	just	before	closing	the	body	tag,	we	included
the	jQuery	source	file,	the	jQuery	UI	JavaScript	file,	and	the	tour.js	file.

Inside	the	body	section,	we	defined	an	empty	div	with	id	dialog.	This	div	element	will
be	converted	to	dialog	box	using	jQuery	UI’s	dialog	component	to	display	the	steps	of	the
tour.

Next,	we	have	a	div	with	the	container	class	that	will	wrap	all	the	elements	of	the	page.
Inside	the	container	class,	we	will	first	create	the	page	header	with	the	following	HTML
code:

<div	class="header">

		<div	id="logo">Cats	and	Dogs	Store</div>

		<ul	class="topLinks">

				Home

				About	Us

				<li	id="contact">Contact	Us

				<li	id="startTour"	title="Click	to	start	Tour">Take	a	Tour

		

</div>

<div	class="clear"> </div>

The	header	has	two	elements	inside	it.	The	first	element	is	a	div	with	an	id	logo	and	the
second	element	is	an	unordered	list	ul	with	the	class	toplinks.	This	unordered	list	has
four	items	inside	it.	The	third	list	item	has	the	id	value	contact.	This	list	item	will	be
used	to	show	a	tooltip	with	some	contact	details	when	the	mouse	hovers	over	it.	The	last
list	item	with	the	id	value	startTour	will	act	as	a	trigger	button	for	starting	the	tour.	After
the	header,	there	is	an	empty	div	with	the	class	clear	to	clear	the	floats.

Now,	we	need	to	create	two	more	div	elements,	one	each	for	left	and	right	columns,
respectively.	Write	the	following	code	after	you	have	defined	the	header,	as	explained
previously:

<div	class="leftCol">

		<ul	id="menu">

				Home

				<small>Lorem	ipsum	dolor	sit	amet,	consectetur	adipisicing	elit.	

Unde	magnam	illum	tempore	eum	a	minima	quisquam	sunt	sequi	facere	maxime	in	

vel	voluptates	ea	veritatis	repellat	at	est	natus	quod.</small>

				<li	id="orders">Orders

						<ul	class="submenu">

								<a>All	Orders

								<a>Track	Order

								<a>Another	item

						

				

				<small>Lorem	ipsum	dolor	sit	amet,	consectetur	adipisicing	elit.	

Unde	magnam	illum	tempore	eum	a	minima	quisquam	sunt	sequi	facere	maxime	in	

vel	voluptates	ea	veritatis	repellat	at	est	natus	quod.</small>

				<li	id="profile">Profile

				<small>Lorem	ipsum	dolor	sit	amet,	consectetur	adipisicing	elit.	

Unde	magnam	illum	tempore	eum	a	minima	quisquam	sunt	sequi	facere	maxime	in	

vel	voluptates	ea	veritatis	repellat	at	est	natus	quod.</small>

				<li	id="help">Help

				<li	class="empty"><small>Lorem	ipsum	dolor	sit	amet,	consectetur	

adipisicing	elit.	Unde	magnam	illum	tempore	eum	a	minima	quisquam	sunt	

sequi	facere	maxime	in	vel	voluptates	ea	veritatis	repellat	at	est	natus	

quod.</small>

				<li	id="lastLink">Last	Link

		

</div>

<div	class="rightCol">

		<div	id="accordion">

				<h3	id="section1">Cat	Posters</h3>

				<div>

						<p>

								Cat	posters	available	in	different	categories.

								Mauris	mauris	ante,	blandit	et,	ultrices	a,	suscipit	eget,	quam.	

Integer

								ut	neque.	Vivamus	nisi	metus,	molestie	vel,	gravida	in,	condimentum	

sit

								amet,	nunc.	Nam	a	nibh.	Donec	suscipit	eros.	Nam	mi.	Proin	viverra	

leo	ut

								odio.	Curabitur	malesuada.	Vestibulum	a	velit	eu	ante	scelerisque	

vulputate.

								

										Cat	1

										Cat	1

										Cat	1

								

						</p>

				</div>

				<h3	id="section2">Dog	Posters</h3>

				<div>

						<p>

								Dog	posters	available	in	different	categories.

								Mauris	mauris	ante,	blandit	et,	ultrices	a,	suscipit	eget,	quam.	

Integer

								ut	neque.	Vivamus	nisi	metus,	molestie	vel,	gravida	in,	condimentum	

sit

								amet,	nunc.	Nam	a	nibh.	Donec	suscipit	eros.	Nam	mi.	Proin	viverra	

leo	ut

								odio.	Curabitur	malesuada.	Vestibulum	a	velit	eu	ante	scelerisque	

vulputate.

								

										Cat	1

										Cat	1

										Cat	1

								

						</p>

				</div>

				<h3	id="section3">Videos</h3>

				<div>

						<p>

								Videos	available	in	different	categories.

								Mauris	mauris	ante,	blandit	et,	ultrices	a,	suscipit	eget,	quam.	

Integer

								ut	neque.	Vivamus	nisi	metus,	molestie	vel,	gravida	in,	condimentum	

sit

								amet,	nunc.	Nam	a	nibh.	Donec	suscipit	eros.	Nam	mi.	Proin	

viverra	leo	ut

								odio.	Curabitur	malesuada.	Vestibulum	a	velit	eu	ante	scelerisque	

vulputate.

								

										Cat	1

										Cat	1

										Cat	1

								

						</p>

				</div>

		</div>

		<div	id="cart">2	items</div>

</div>

<div	class="clear"> </div>

First	we	created	a	div	with	class	leftCol.	We	created	an	unordered	list	ul	inside	it	that
will	act	as	a	menu.	This	ul	has	some	list	items	that	will	act	as	menu	items	but	some	are
only	placeholders	with	random	text	to	make	the	page	longer.	Also,	note	that	we	assigned
id	values	to	some	elements.

After	leftCol,	we	created	another	div	with	the	class	rightCol.	Inside	it,	there	is	yet

another	div	with	the	id	accordion.	This	div	holds	the	markup	that	is	required	to	create	a
jQuery	UI	accordion.	Each	panel	of	accordion	consists	of	an	h3	element	and	a	div
element.	h3	will	act	as	a	header	for	that	panel	and	div	will	become	the	body	for	that	panel.
Next	to	the	accordion	markup,	there	is	another	div	that	has	the	id	cart.

This	completes	our	HTML	markup	for	the	page	and	we	are	ready	to	assign	CSS	styling	to
the	elements	to	make	the	page	presentable.

Styling	elements
Without	any	CSS	styling	to	elements,	HTML	markup	alone	would	make	the	page	useless.
To	spice	up	the	page,	let’s	apply	some	CSS	rules	to	decorate	the	page.	In	the	head	section,
create	a	<style>	block	and	write	the	following	CSS	rules	for	the	different	elements:

<style	type="text/css">

		body

		{

				font-family:arial,verdana;

				font-size:12px;

				margin:	0px	auto;	

				width:	900px;

		}

		div.container

		{

				border:	1px	solid	#000;

				float:left;

				margin:10px	auto	0;

				padding:10px;

				width:	100%;

		}

		.header

		{

				height:	100px;	border:	1px	solid;

		}

		

		#logo

		{

				border:	1px	solid	#000000;

				float:	left;

				font-weight:	bold;

				height:	57px;

				margin:	5px;

				padding-top:	30px;

				text-align:	center;

				width:	100px;

		}

		

		ul.topLinks

		{

				float:	right;

				list-style:	none	outside	none;

				margin:	20px	20px	0	0;

				padding:	0;

				text-align:	right;

				width:	70%;

		}

		ul.topLinks	li

		{

				display:	inline-block;

				margin:	0;

				padding:	0;

				text-decoration:	underline;

				width:	15%;

				cursor:pointer;

		}

		#startTour

		{

				color:	#ff0000;

		}

		.leftCol

		{

				border:	1px	solid	#000;

				float:left;

				min-height:500px;

				width:25%;

		}

		.rightCol

		{

				border:	1px	solid	#000;

				float:	right;

				min-height:690px;

				width:	75%;

		}

		ul#menu	{

				list-style:none;

				margin:0;

				padding:0;

		}

		

		ul#menu	>	li

		{

				padding:10px	5px	10px	10px;

				border-top:	1px	solid	#000;

				cursor:pointer;

				font-weight:bold;

		}

		ul#menu	>	li:last-child

		{

				border-bottom:	1px	solid	#000;

		}

		#accordion

		{

				width:80%;

				float:left;

				padding:10px	5px;

		}

		

		#cart

		{

						border:	1px	solid	#000000;

						float:	right;

						font-weight:	bold;

						height:	65px;

						margin-right:	5px;

						margin-top:	12px;

						padding-top:	35px;

						text-align:	center;

						width:	100px;

		}

		a

		{

				text-decoration:none;

		}

		

		.submenu	li

		{

				padding:5px;

		}

		small

		{

				font-weight:normal;

		}

		.empty

		{	

				height:150px;

		}

		footer

		{

				border:	1px	solid;

				padding:	10px	0px;

		}

		#dialog

		{

				display:none;

		}

		.clear

		{

				clear:both;

		}

</style>

The	preceding	CSS	rules	will	change	the	layout	and	look	of	the	elements	in	the	page.	The
div	with	the	id	logo	will	become	a	box	and	will	be	placed	left	in	the	header.	The	ul	list
with	the	class	topLinks	will	be	floated	to	the	right.	Inside	it,	the	li	with	id	tourStart
has	been	set	to	a	red	color	so	that	it	could	stand	out	as	an	indicator	to	start	the	tour.

The	div	with	the	classes	leftCol	and	rightCol	has	been	made	25%	and	75%	wide,
respectively,	and	a	border	has	been	applied	to	both	of	them.	Similarly,	all	the	li	elements
inside	the	ul	list,	the	leftCol	div	has	been	padded	and	border	has	been	applied	to	them.
For	elements	inside	rightCol,	we	floated	the	div	with	id	accordion	and	cart	to	the	left
and	right,	respectively.	We	have	not	written	any	CSS	for	the	accordion	because	its
styling	will	be	taken	care	of	by	jQuery	UI’s	theme	after	the	accordion	is	initialized.

After	all	the	markup	has	been	applied,	run	the	index.html	file	in	your	local	web	server.
You	will	see	a	home	page	similar	to	the	following	one:

Making	the	tour	functional
Now	that	the	layout	of	our	page	is	complete,	let’s	discuss	in	brief	how	we	are	going	to
implement	the	tour	functionality.	We	have	already	created	a	tour.js	file	that	we	will	use
for	writing	all	the	JavaScript	code.

We	will	initialize	the	accordion	for	which	we	have	already	written	the	markup,	and	we
will	also	initialize	the	tooltip	that	will	appear	on	hovering	over	the	Contact	Us	link.

After	that,	we	will	define	a	jQuery	UI	dialog	component	with	some	basic	settings	and
buttons	for	navigating	the	tour.	Next,	we	will	define	a	JavaScript	array	that	will	contain	all
the	steps	of	the	tour.	Finally,	we	will	create	a	tour	object,	and	we	will	write	the	functions
that	will	initialize	the	tour,	display	a	tour	step,	and	handle	the	Previous,	Next,	and	End
Tour	buttons.

Let’s	write	the	code	for	the	aforementioned	steps	and	discuss	them	in	detail.

Initializing	accordion	and	tooltips
The	best	practice	when	writing	JavaScript	is	to	start	by	writing	a	jQuery
$(document).ready()	handler	that	ensures	the	related	jQuery	or	JavaScript	code	is
executed	after	the	page	has	loaded.	Open	the	tour.js	file	and	start	by	writing	the
following	code	in	it:

$(document).ready(function(){

		$('#accordion').accordion({animate	:	false});

		$(document).tooltip(

		{

				items	:	'#contact',

				content	:	function()

				{

						var	strContact	=	'<img	

src="http://maps.googleapis.com/maps/api/staticmap?

center=New+Delhi,India&zoom=13&size=300x200&sensor=false"/>';

						strContact+=	'<hr/>In	case	of	any	issues,	here	is	the	address	of	our	

new	office	in	Central	Delhi	which	is	well	connected	to	all	the	places.Feel	

free	to	visit	us	anytime.';

						strContact+=	'<hr><span	class="ui-icon	ui-icon-home"	style="float:	

left;	margin-right:	5px;">#23,	Rachna	Building,	Karol	Bagh	-110005';

						strContact+=	'<hr><span	class="ui-icon	ui-icon-mail-closed"	

style="float:	left;	margin-right:	5px;">awesomecompany@ourlocation.com

';

						return	strContact;

				}

		});

});

In	our	markup,	we	assigned	the	id	value	accordion	to	the	div	that	contains	the	markup
for	the	accordion.	Inside	the	$(document).ready()	handler,	the	first	line	initializes	the
accordion	with	the	animate	option	set	to	false.	We	also	want	a	tooltip	to	appear	on	the
Contact	Us	link.	To	achieve	this,	we	initialize	the	tooltip	component	of	jQuery	UI.

If	the	tooltip	component	is	initialized	without	providing	any	options,	it	displays	the
value	of	the	title	attribute	in	a	tooltip.	Since	we	want	to	display	custom	HTML,	we	have
used	two	options,	items	and	content,	for	it.	The	items	option	decides	which	elements
will	display	the	tooltip,	and	in	the	content	option,	we	can	provide	any	text	or	HTML	to	be
displayed	inside	the	tooltip.	The	value	of	items	option	has	been	set	to	#contact.	To	set
the	value	of	the	content	option,	we	created	a	string.	This	string	contains	an	image	and
some	information	text.	The	source	for	image	is	a	static	image	tile	from	Google	Maps	that
shows	the	location	of	a	place.	You	can	set	the	value	from	center	to	any	place	of	your
choice.

Now,	we	can	check	the	progress	so	far.	Save	the	file	and	refresh	the	index.html	page	in
the	browser.	You	will	find	that	jQuery	UI’s	accordion	has	been	styled	using	jQuery	UI’s
theme	and	has	also	become	active.	Hovering	your	mouse	over	the	Contact	Us	link	will
show	the	tooltip	with	an	image	and	the	text	we	defined	in	the	content	option	while
initializing	the	tooltip.

Defining	the	dialog
It’s	time	to	initialize	the	dialog	box.	We	already	defined	a	div	with	id	dialog	in	the
markup.	We	will	convert	the	said	div	to	jQuery	UI	dialog	box.	For	this,	we	need	to	define
settings	for	the	dialog	and	also	the	buttons	that	will	appear	in	it.	We	will	add	the	following
code	outside	the	$(document).ready()	event	handler	to	create	the	dialog:

var	tourDialog	=	$('#dialog').dialog(

{

		minWidth	:	315,

		draggable	:	false,

		buttons:	[

		{

				id	:	'buttonPrevious',

				text:	'Previous',

				click:	function()

				{

				},

				icons:

				{

						primary:	'ui-icon-carat-1-w'

				}

		},

		{

				id	:	'buttonNext',

				text:	'Next',

				click:	function(event)

				{

				},

				icons:

				{

						secondary:	'ui-icon-carat-1-e'

				}

				},

		{

				text:	'End	Tour',

				click:	function()

				{

				},

				icons:

				{

						secondary:	'ui-icon-close'

				}

		}

],

		show	:	'fold',

		hide	:	'fold'

});

In	the	preceding	code,	we	defined	five	options	while	creating	the	dialog.	Let’s	look	at	all

of	these	one	by	one:

minWidth:	This	option	defines	the	minimum	width	the	dialog	must	take.	For	our
purposes,	we	have	set	it	to	315.
draggable:	Since	the	dialog	box	will	appear	at	specific	places	denoting	respective
steps	of	the	tour,	we	do	not	want	users	to	drag	the	dialog.	Hence,	we	have	set	this
option	to	false.
buttons:	A	dialog	box	can	have	one	or	more	buttons	that	can	be	defined	using	the
buttons	option.	We	need	to	provide	an	array	of	objects	for	buttons.	Each	object	in
the	array	represents	a	button	that	will	be	displayed	at	the	bottom	of	the	dialog.	We
have	defined	three	buttons,	each	having	an	id,	a	display	text,	a	click	event	handler,
and	an	icon.	The	first	button	has	the	id	buttonPrevious	and	display	text	is
Previous;	we	have	also	provided	a	primary	icon	for	this	button.	The	second	button
has	id	buttonNext	and	the	display	text	is	Next.	Note	that	we	have	provided	a
secondary	icon	here.	The	difference	between	the	primary	and	secondary	icons	is	that
the	primary	icon	appears	on	the	left	of	the	text	and	the	secondary	icon	appears	to	the
right	of	the	text.	The	third	button	has	no	id	but	has	the	display	text	End	Tour	and	a
secondary	icon.	We	have	left	the	click	event	handlers	for	all	three	buttons	empty	for
now.	We	will	go	back	to	these	event	handlers	later	in	the	chapter.
show:	We	can	decide	which	effect	will	be	used	when	the	dialog	is	displayed.	Any
value	mentioned	in	jQuery	UI	effects	can	be	provided.
hide:	This	is	used	to	define	the	effect	that	will	be	used	when	the	dialog	closes.

After	writing	the	preceding	code,	if	you	reload	the	index.html	page	in	your	browser,	you
will	see	that	an	empty	dialog	box	with	three	buttons	appears	at	the	centre	of	the	page	as
soon	as	the	page	finishes	loading.

We	definitely	do	not	want	this	to	happen;	the	dialog	must	be	displayed	at	the	appropriate
position	only	when	the	Start	Tour	button	is	clicked.	Hence,	we	will	add	another	option	to
the	dialog,	which	will	initialize	the	dialog	but	will	not	display	it	automatically.	Add
another	option	to	the	dialog	initialization	code	with	the	following	code:

autoOpen	:	false

Note
If	you	have	other	options	defined	after	the	preceding	code,	make	sure	that	you	end	the	line
with	a	comma.	However,	there	is	no	need	for	a	comma	if	you	defined	autoOpen	as	the	last
option.

You	can	check	again	by	reloading	the	page;	the	dialog	box	will	not	appear	now.

Another	important	thing	to	note	is	that	we	used	the	variable	tourDialog	to	keep	a
reference	to	the	initialized	dialog.	This	tourDialog	variable	will	be	used	henceforth	in	the
code	to	access	the	dialog.

Defining	the	tour	steps
For	the	home	page	we	have	designed,	our	tour	will	have	12	steps.	Each	of	these	steps	will
be	represented	by	a	JavaScript	object	that	has	the	following	structure:

{

		element	:	'#logo',

		title	:	'We	have	changed	the	logo	!',

		content	:	'Did	you	notice	that	we	have	made	some	changes	to	our	logo	as	

well.	',

		sequence	:	1

}

Let’s	see	what	each	property	does:

element:	This	indicates	the	HTML	element	where	the	tour	dialog	box	will	appear
title:	This	is	the	title	that	will	be	displayed	in	the	dialog	box
content:	This	is	the	HTML	content	displayed	in	the	dialog	box
sequence:	This	is	a	number	indicating	the	step	of	the	tour.	We	will	start	with	1	and
proceed	with	2,	3,	and	so	on

Since	we	plan	to	display	the	tour	steps	on	accordion	as	well,	we	will	need	two	more
properties:

isAccordion:	The	value	for	this	property	will	be	set	to	true	if	the	element	property
is	part	of	an	accordion.
accordionIndex:	This	is	the	0-based	index	of	accordion	panels	where	the	tour	step
will	be	displayed.	Using	this	property	value,	we	will	be	able	to	open	a	specific	panel
of	accordion	before	displaying	a	tour	step.

Here	is	the	full	structure	of	steps	of	the	tour	for	our	example	home	page	in	this	chapter:

var	steps	=

		[

				{

						element	:	'#logo',

						title	:	'We	have	changed	the	logo	!',

						content	:	'Did	you	notice	that	we	have	made	some	changes	to	our	logo	

as	well.	',

						sequence	:	1

				},

				{

						element	:	'#menu',

						title	:	'Menu	On	Left',

						content	:	'We	have	placed	all	the	menu	items	on	left	hand	side	for	

quick	access.',

						sequence	:	2

				},

				{

						element	:	'#orders',

						title	:	'Your	Orders',

						content	:	'Orders	menu	has	a	submenu	which	links	to	different	

pages.',

						sequence	:	3

				},

				{

						element	:	'#profile',

						title	:	'Your	Profile',

						content	:	'This	link	will	take	you	to	your	profile	page	where	you	

will	be	able	to	edit	your	profile	and	change	password	among	other	things',

						sequence	:	4

				},

				{

						element	:	'#help',

						title	:	'Get	Help',

						content	:	'Use	this	link	to	get	help	related	to	any	issues',

						sequence	:	5

				},

				{

						element	:	'#lastLink',

						title	:	'Last	Menu	Link',

						content	:	'This	is	last	link	of	menu',

						sequence	:	6

				},

				{

						element	:	'#section1',

						title	:	'Buy	Cat	Posters',

						content	:	'We	have	introduced	a	new	category	where	you	can	buy	

posters	of	cute	cats	',

						isAccordion	:	true,

						accordionIndex	:	0,

						sequence	:	7

				},

				{

						element	:	'#section2',

						title	:	'Buy	Dog	Posters',

						content	:	'Dog	lovers	also	welcome.',

						isAccordion	:	true,

						accordionIndex	:	1,

						sequence	:	8

				},

				{

						element	:	'#section3',

						title	:	'Watch	videos',

						content	:	'We	have	collected	some	of	the	best	videos	from	web	and	you	

can	see	them	here',

						isAccordion	:	true,

						accordionIndex	:	2,

						sequence	:	9

				},

				{

						element	:	'#cart',

						title	:	'Your	Cart',

						content	:	'This	is	your	shopping	cart	where	all	the	products	you	have	

selected	will	be	displayed.',

						sequence	:	10

				},

				{

						element	:	'#contact',

						title	:	'Contact	Us',

						content	:	function()

						{

								var	strContact	=	'<img	

src="http://maps.googleapis.com/maps/api/staticmap?

center=New+Delhi,India&zoom=13&size=280x200&sensor=false"/>';

								strContact+=	'<hr/>In	case	of	any	issues,	here	is	the	address	of	

our	new	office	in	Central	Delhi	which	is	well	connected	to	all	the	

places.Feel	free	to	visit	us	anytime.';

								strContact+=	'<hr><span	class="ui-icon	ui-icon-home"	style="float:	

left;	margin-right:	5px;">#23,	Rachna	Building,	Karol	Bagh	-110005';

								strContact+=	'<hr><span	class="ui-icon	ui-icon-mail-closed"	

style="float:	left;	margin-right:	5px;">

awesomecompany@ourlocation.com';

								strContact+=	'<hr>You	can	take	your	mouse	over	Contact	Us	link	if	

you	want	to	see	this	information	later.';

								return	strContact;

						},

						sequence	:	11

				},

				{

						element	:	'#startTour',

						title	:	'Thank	You!',

						content	:	'Thank	you	for	going	through	through	the	tour.',

						sequence	:	12

				}

];

We	defined	an	array	named	steps	with	12	objects.	On	going	through	each	of	these
objects,	you	will	see	that	we	are	starting	with	the	logo,	then	proceeding	to	the	menu,	and
so	on.	For	quick	reference,	here	are	the	id	values	of	all	the	HTML	elements	where	tour
will	be	displayed	one	step	at	a	time:

logo

menu

orders

profile

help

lastLink

section1

section2

section3

cart

contact

startTour

Initializing	the	tour
We	have	prepared	the	entire	markup	and	JavaScript	required	to	build	the	tour.	Let’s	dive	in
and	write	some	awesome	JavaScript	code.	But	before	that,	I	would	like	to	introduce	you	to
a	JavaScript	best	coding	practice.

Since	the	code	size	will	grow	in	this	chapter,	as	well	as	in	following	chapters,	we	will	use
a	JavaScript	pattern	called	object	literal	to	organize	our	code.	Simply	put,	an	object	literal
pattern	implies	defining	a	single	JavaScript	object	with	a	set	of	comma-separated	key-
value	pairs.	Keys	can	be	strings	or	identifiers	and	values	can	be	strings,	identifiers,	or
functions.	The	advantage	of	this	pattern	is	that	it	does	not	pollute	the	global	namespace.
Keys	that	are	defined	inside	the	object	will	not	be	accessible	directly	outside	that	object.
You	will	see	this	in	practice	in	a	moment.

First	of	all,	visit	the	$(document).ready()	event	handler	and	add	the	following	line	of
code	in	the	end:

tour.init();

The	preceding	line	calls	the	init	function	of	a	JavaScript	object	named	tour.	Outside	the
$(document).ready()	event	handler,	let’s	define	the	tour	object	and	its	init	function
with	the	following	code:

var	tour	=

		{

				triggerElement	:	'#startTour',

				tourStep	:	0,	

				tourSteps	:	steps,

				defaultTitle	:	'Welcome	to	the	tour	!',

				defaultContent:	'This	tour	will	show	you	the	new	changes	we	have	made	

to	our	site	layout.	
	Please	use	next	previous	buttons	to	proceed.	Click	

the	End	Tour	button	whenever	you	want	to	finish	the	tour.',

				init	:	function()

				{

						if(this.tourSteps	==	undefined	||	this.tourSteps.length	==	0)

						{

								alert('Cannot	start	tour');

								return;

						}

						

						$(this.triggerElement).on('click',	function(event)

						{

								tour.showStep(tour.defaultTitle,	tour.defaultContent,	$(this));

								return	false;

						});

				}

		};

The	value	of	the	triggerElement	property	is	the	id	of	the	element,	by	clicking	on	which
the	tour	will	start.	You	can	set	it	to	any	element.	In	our	example	page,	we	have	created	an
element	with	the	id	startTour	for	this	purpose.	The	tourStep	property	will	keep	track	of
the	current	step	of	the	tour.	Then,	the	tourSteps	property	to	which	we	have	assigned	the

variable	steps.	This	variable	is	the	array	of	twelve	steps	of	the	tour	that	we	declared
earlier.	After	this,	there	are	two	more	properties	named,	defaultTitle	and
defaultContent.	The	defaultTitle	property	contains	some	text	that	will	be	displayed	as
the	title	of	the	dialog	box	when	the	triggerElement	is	clicked.	Similarly,	tourContent
will	serve	as	the	content	of	dialog	box.

The	init	property	declares	a	closure.	Inside	this	closure,	we	check	to	make	sure	whether
the	tourSteps	variable	has	been	defined	and	is	actually	an	array.	After	this,	a	click	event
handler	is	added	to	the	triggerElement.	This	event	handler	will	be	responsible	for
opening	the	dialog	initially.	From	here,	the	user	will	start	navigating	the	tour	using	the
Previous	and	Next	buttons.	The	event	handler	calls	the	showStep	function.	The	showStep
function	will	be	responsible	for	displaying	the	dialog	box	and	positioning	it	correctly	next
to	the	element,	as	defined	in	the	element	property	of	the	tourSteps	array.	Three
parameters	are	passed	to	the	showStep	function.	Since	this	is	the	first	time	dialog	opens,
we	pass	defaultTitle,	defaultContent,	and	the	current	trigger	element	startElement.
We	need	to	display	the	dialog	box	for	the	first	time	now.	This	will	all	be	explained	in	the
next	section.

Displaying	a	tour	step
The	showStep	function	is	responsible	for	displaying	the	dialog	box	and	enabling	or
disabling	the	Previous	and	Next	buttons.	After	the	init	function,	write	the	following
code	to	define	the	showStep	function	and	another	function	named	prevNextButtons:

showStep	:	function(tourStepTitle,	tourStepContent,	whichElement)

{

		this.prevNextButtons();

		$('body').animate(

		{

				scrollTop:	$(whichElement).offset().top

		},	500,	function()

				{

						$('.ui-state-highlight').removeClass('ui-state-highlight');

								

						$(whichElement).addClass('ui-state-highlight');

						

						tourDialog.dialog('option',	'title',	tourStepTitle);

						tourDialog.html(tourStepContent);

						tourDialog.dialog('option',	'position',	{	my:	'left	top',	at:	'right	

top',	of:	whichElement,	collision	:	'flipfit'	});

						

						tourDialog.dialog('open');

				});

},

prevNextButtons	:	function()

{

		$('#buttonNext').button('enable');

		$('#buttonPrevious').button('enable');

		if(this.tourStep	==	0	||	this.tourStep	==	1)

		{

				$('#buttonPrevious').button('disable');

		}

		if(this.tourStep	==	this.tourSteps.length)

		{

				$('#buttonNext').button('disable');

		}

		return;

}

Note
If	you	keep	the	code	for	showStep	after	init,	make	sure	that	you	have	placed	a	comma	(,)
after	the	closing	brace	of	the	init	closure.

Inside	the	showStep	function,	we	receive	three	function	arguments:	the	title	text,	content
HTML,	and	the	target	element	where	a	step	of	the	tour	will	be	displayed.

In	the	first	line	of	showStep,	we	have	called	another	function	called	prevNextButtons.
Since	the	showStep	function	will	display	and	position	a	tour	step,	we	need	to	enable	or
disable	the	Previous	and	Next	buttons.	The	prevNextButtons	function	is	used	to	achieve

this.	If	the	user	is	on	the	first	step	of	the	tour,	the	Previous	button	will	be	disabled;	if	the
user	is	on	the	last	step	of	the	tour,	the	Next	button	will	be	disabled.

First,	we	enable	both	the	Next	and	Previous	buttons.	Then,	we	check	the	tourStep
property	to	determine	which	step	is	being	displayed	currently.	If	it	is	the	welcome	dialog
that	is	shown	after	clicking	on	the	Start	Tour	link	or	the	first	step	of	the	tour,	we	disable
the	Previous	button.	In	the	next	line,	we	disable	the	Next	button.	If	the	value	of	the
tourStep	variable	equals	the	length	of	all	the	steps	in	the	array,	it	means	the	user	is	on	the
last	step	of	the	tour	and	hence	we	disable	the	Next	button.

The	End	Tour	button	need	not	be	handled,	since	the	user	can	choose	to	end	the	tour
during	any	step.

With	the	Next	and	Previous	buttons	taken	care	of,	the	control	now	returns	to	the	showStep
function.

Inside	the	showStep	function,	we	used	jQuery’s	animate	function	to	scroll	the	page	first	so
that	the	target	element	(whichElement	received	as	a	function	argument)	scrolls	to	the	top
of	the	viewport	in	500	milliseconds.	After	scrolling	is	done,	the	callback	function	for
animate	fires.	We	remove	the	CSS	class	ui-state-highlight	if	it	has	been	applied	to	any
element.	This	is	to	ensure	that	there	is	no	highlighted	element	in	the	page.	In	the	very	next
line,	the	same	class	is	applied	to	the	current	element	(represented	by	whichElement)	to
highlight	it.	The	ui-state-highlight	class	from	jQuery	UI’s	theme	framework	applies	a
yellowish	background	color	to	an	element	to	make	it	look	highlighted.

We	have	already	initialized	the	dialog	component	inside	the	$(document).ready()	event
handler	earlier.	We	now	set	the	title	of	dialog	box	using	jQuery	UI’s	option	method.	Then,
we	set	its	inner	HTML.

Now,	we	are	left	with	one	most	important	thing,	that	is,	positioning	the	dialog.	Remember
that	target	elements	can	be	in	any	corner	of	the	web	page,	so	we	need	to	position	the
dialog	so	that	its	maximum	area	is	available.	To	position	the	dialog,	we	have	used	the
position	option	of	jQuery	UI.	To	properly	position	the	dialog,	we	have	set	four	properties
of	the	position	option.	The	name	of	the	first	property	is	my.	We	have	set	it	to	left	top.
Another	property	is	at,	which	we	have	set	to	right	top.	Setting	it	to	right	top	will	align
the	dialog	to	the	right	top	of	the	target	element.	The	third	property	is	of,	where	we	provide
the	element	that	we	want	to	position	the	dialog	against.	Since	we	want	the	dialog	to	be
positioned	against	the	target	element,	we	provide	it	as	a	value	of	the	of	parameter.	The	last
property	is	collision,	which	is	used	to	ensure	that	the	maximum	part	of	the	dialog	is
visible.	We	supplied	the	value	flip.	This	property	checks	to	either	side	of	the	element	and
positions	it	to	the	side	where	more	space	is	available.	With	this,	our	positioning	is	done.
We	can	now	display	the	dialog.

In	the	last	line	of	showStep,	we	called	the	open	method	of	the	jQuery	UI	dialog	which
displays	the	dialog.	We	can	now	check	the	result	of	our	hard	work	so	far	in	the	browser.
Reload	the	index.html	page	and	click	on	the	Take	a	Tour	link.	Windows	will	scroll	a
little	and	then	the	dialog	will	open	with	a	fold	effect.	It	will	have	the	Previous	button
disabled.

Making	the	Previous	and	Next	buttons	functional
We	have	successfully	started	the	tour	by	showing	a	welcome	dialog.	Now,	we	need	to
make	use	of	the	Previous	and	Next	buttons,	and	the	tourSteps	array	to	navigate	them.

If	you	recall,	while	we	created	the	dialog	earlier	in	the	chapter,	we	created	the	Previous
and	Next	buttons	and	their	event	handlers.	We	will	now	make	these	buttons	functional	by
calling	appropriate	code	for	moving	forward	or	backward	in	the	tour.	Visit	the	code	where
buttons	have	been	defined,	and	write	the	following	code	inside	the	click	handler	for	the
Previous	button:

tour.navigate('previous');

Similarly,	go	to	the	click	handler	for	the	Next	button	and	write	the	following	code:

tour.navigate('next');

With	this	done,	we	will	now	define	the	navigate	method.	The	navigate	method	will	be
defined	inside	the	tour	object	after	the	code	for	the	prevNextButtons	function.	Though
you	can	define	the	function	anywhere	inside	the	tour	object,	writing	the	methods	in
sequence	makes	the	code	more	readable:

navigate	:	function(previousOrNext)

{

		if(previousOrNext	==	'previous')

		{

				(this.tourStep)	=	(this.tourStep)	-	1;

		}

		else	

		{

				this.tourStep	=	this.tourStep	+	1;

		}

		

		for(var	i	=	0;	i<this.tourSteps.length;	i++)

		{

				if(this.tourSteps[i].sequence	==	this.tourStep)

				{

						if(this.tourSteps[i].isAccordion)

						{

								$("#accordion").accordion("option",	"active"	,	

this.tourSteps[i].accordionIndex);

						}

						this.showStep(this.tourSteps[i].title,	this.tourSteps[i].content,	

this.tourSteps[i].element);

						return;

				}

		}

}

A	single	function	will	be	used	for	handling	both	the	Previous	and	Next	buttons.	The
navigate	function	has	an	previousOrNext	argument,	based	on	which	we	can	decide	if	the
tour	has	to	be	moved	forward	or	backward.	If	its	value	is	previous,	we	increment	the
tourStep	property	of	the	tour	object	by	one.	Otherwise,	we	decrement	its	value	by	one.

The	increment	or	decrement	in	value	ensures	that	we	will	pick	the	correct	element,	title,
and	content	properties	from	the	tourSteps	object	while	moving	forward	or	backward.

A	for	loop	is	used	to	iterate	in	the	tourSteps	array.	When	we	find	that	the	sequence	value
of	a	tourSteps	object	matches	the	tourStep	value,	we	call	the	showStep	function	and
send	the	corresponding	object’s	values	for	element,	title,	and	content.	There	is	another
check	that	we	place	here	for	accordion.	We	have	already	defined	the	isAccordion	and
accordionIndex	properties	for	the	tour	steps.	So,	if	we	find	that	the	isAccordion	value	is
true,	we	activate	the	corresponding	accordion	panel.

We	can	now	check	whether	the	Previous	and	Next	buttons	are	working	by	reloading	the
page	in	our	browser.	A	typical	screen	when	the	tour	is	on	an	accordion	panel	will	look
like	this:

Ending	the	tour
Ending	the	tour	is	very	simple	compared	to	the	complex	code	we	have	written	so	far.	Just
visit	the	event	handler	for	the	End	Tour	button	and	use	the	following	code:

tour.endTour();

We	called	the	endTour	method	of	the	tour	object.	Let’s	define	it	as	well.	Add	the
following	code	inside	the	tour	object:

endTour	:	function()

{

		this.tourStep	=	1;

		$('.ui-state-highlight').removeClass('ui-state-highlight');

		tourDialog.dialog('close');

}

The	preceding	code	simply	resets	the	tourStep	to	1	so	that	the	correct	data	is	displayed
when	the	tour	is	started	again.	The	CSS	class	ui-state-highlight	is	also	removed	from
any	elements	in	the	page.

Finally,	the	close	method	of	dialog	component	is	called,	which	hides	the	tour	dialog	with
the	fold	animation.

Improving	the	tour
You	can	add	some	more	interesting	features	to	the	tour	to	make	it	more	dynamic.	Here	are
some	tips	to	get	you	started:

Modify	the	tour	so	that	it	moves	to	the	next	step	automatically	after	5	seconds
Ability	to	pause	the	automated	tour
Embed	videos	in	the	tour	dialog	box

Summary
In	this	chapter,	you	learned	how	components	can	be	used	in	different	and	interesting	ways.
You	went	through	the	tooltip,	the	accordion,	and	most	importantly	the	dialog	components.
You	also	learned	to	better	organize	our	code	using	Object	Literal	pattern.

In	the	next	chapter,	we	will	move	one	step	ahead	and	use	AJAX	and	the	reddit	API	to
build	a	cool	news	reader.

Chapter	4.	Creating	a	Tabbed	News
Reader
jQuery	UI	offers	a	number	of	components	that	can	be	used	in	a	variety	of	combinations	to
create	rich	interfaces.	We	saw	such	a	combination	in	the	previous	chapter,	Chapter	3,
Creating	a	Website	Tour,	where	we	used	dialog,	buttons,	tooltips,	and	other	components	to
create	a	neat	website	tour	feature.

Moving	forward,	let’s	talk	about	tabs.	Tabs	are	a	very	useful	widget	for	the	presentation
layer,	that	is,	the	user	interface	(UI).	Most	common	use	cases	for	tabbed	interfaces	are
UIs	where	there	is	limited	space.	Tabs	have	multiple	panels	in	which	different	contents
can	be	displayed.	Clicking	on	a	tab	opens	its	corresponding	panel.

In	this	chapter,	you	will	focus	on	tabs	and	dialog	components	and	learn	to	integrate	the
reddit	API	with	the	tabs.	If	you	are	not	familiar	with	reddit,	it	is	a	news	aggregation
website	where	all	the	content	is	submitted	by	the	users.	There	are	different	“subreddits”
created	by	users	for	different	topics	such	as	web	development,	world	news,	technology,
PHP,	jQuery,	and	so	on.	Whenever	content	(text	or	a	link	to	any	website)	is	submitted	by	a
user,	other	users	can	comment	on	it	and	upvote	or	downvote	the	content	as	well	as	other
comments.	This	makes	the	quality	content	more	visible	and	features	on	top	of	the	list.
Reddit	also	provides	an	API,	using	which	we	can	retrieve	the	posts	of	a	particular
subreddit	and	the	comments	users	made	on	a	particular	post.

Using	the	reddit	API,	we	will	create	a	tabbed	interface	as	an	exercise	that	we	will	call
MyjqReddit.	In	the	first	tab,	we	will	ask	the	name	of	a	subreddit	in	a	textbox	and	then	we
will	load	the	posts	of	that	subreddit	in	a	new	tab	that	will	be	created	dynamically.	For	each
post,	we	will	create	a	View	comments	button.	On	clicking	this	button,	we	will	use	the	API
to	fetch	comments	for	that	post.	These	comments	will	then	be	displayed	in	a	dialog	box.
Users	will	also	be	able	to	close	any	tab	by	clicking	on	the	close	icon	placed	beside	the	tab
name.

In	this	chapter,	we	will	cover	these	two	components:

Tabs
Dialog

Creating	the	folder	structure
The	first	step	is	to	create	the	required	folder	structure.	We	will	follow	the	same	format	we
have	been	using	in	previous	chapters:

1.	 Create	a	folder	named	Chapter4	inside	the	MasteringjQueryUI	folder.
2.	 Inside	the	Chapter4	folder,	create	an	HTML	file	with	the	name	index.html,	which

will	contain	our	HTML	markup.
3.	 Also,	copy	the	js	and	css	folders	inside	the	Chapter4	folder.
4.	 Now,	inside	the	js	folder,	create	a	new	file,	and	name	it	myReddit.js.	This	file	will

contain	all	the	code	required	for	creating	our	news	reader.

Once	this	setup	is	complete,	we	can	move	to	the	next	step	–	designing	the	page.

Designing	the	page
The	page	we	are	going	to	design	will	consist	of	a	tab	widget	and	markup	for	a	dialog.
Initially	when	the	page	loads,	we	will	display	one	tab	by	default.	This	tab	will	serve	as	the
home	page	of	our	news	reader.	The	tab	will	have	two	HTML	controls,	a	textbox	and	a
button.	All	other	tabs	will	be	generated	dynamically.	Unlike	other	tabs,	the	first	tab	will	be
available	at	all	times	and	users	will	not	be	able	to	remove	or	close	it	from	the	tabs	panel.	A
dialog	is	required	because	we	will	use	it	to	display	comments	for	a	particular	post.

Writing	markup	for	tabs
To	create	both	the	tabs	and	the	dialog,	we	will	follow	the	markup	required	by	the	jQuery
UI	library.	Add	the	following	code	to	our	newly	created	index.html	file:

<html>

		<head>

				<meta	charset="utf-8">

				<title>MyjqReddit</title>

				<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

				<style	type="text/css"></style>

		</head>

		<body>

				<div	id="redditTabs">

						<ul	id="tabList">

								Welcome

						

						<div	id="tabs-1"	class="tabContent">

								<h2>Welcome	to	MyjqReddit</h2>

								<p>

										Please	enter	the	name	of	any	subreddit	in	textbox	and	click	the	

Add	It	button.	The	subreddit	contents	will	be	loaded	in	a	

new	tab.

										

										You	can	click	the	comments	for	a	post	by	clicking	the	

"View	Comments"	link	under	the	post	title.

								</p>

								<label	for="subredditName">Enter	a	subreddit	name	:	</label>

								<input	type="text"	id="subredditName"	name="subredditName"	value=""	

class="ui-widget-content	ui-corner-all">	

								<button	id="addNewSubreddit"	type="button">Add	it</button>	

								<hr/>

								To	start	with,	you	can	try	any	of	these	subreddit	names	:	

<small>webdev,	technology,	AskReddit,	IAMA,	india,	

worldnews</small>

								<hr/>

								<div	class="ui-widget"	id="errorContainer"	style="display:none;">

										<div	class="ui-state-error	ui-corner-all">

												

												<div	id="errorMessage"></div>

										</div>

								</div>

						</div>

				</div>

				<div	id="dialog">

						<div	id="loader">

								Loading	Comments…	Please	wait…

						</div>

						<div	id="commentsList"></div>

				</div>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

				<script	src="js/myReddit.js"	type="text/javascript"></script>

		</body>

</html>

We	started	by	creating	an	HTML	document	and	included	the	jQuery	UI	CSS	file	in	the
head	section.	Inside	the	body	section,	we	created	a	div	and	assigned	id	value	redditTabs
to	it.	This	div	will	act	as	a	container	for	the	tabs.	Inside	it,	there	is	an	unordered	list	ul
with	the	id	value	tabList.	Individual	list	items	inside	this	list	will	act	as	tab	headers.	By
default,	we	created	one	list	item	inside	it.	This	list	item	contains	an	anchor	that	points	to
the	div	element	with	id	value	tabs-1.

After	creating	the	tab	headers,	tab	panels	need	to	be	created	for	each	of	the	defined	tab
headers.	Since	we	declared	only	one	tab	header,	we	will	define	only	one	panel.	This	has
been	done	by	creating	another	div	with	id	tabs-1.	Note	that	we	provided	a	link	to	this	id
inside	the	tab	header	we	created	before	it.	This	is	needed	to	let	jQuery	UI	know	which	tab
headers	have	to	be	linked	to	which	panels.

Inside	the	tab	panel	tabs-1,	we	wrote	some	text	to	explain	to	the	user	what	the	page	is
about.	There	is	also	a	textbox	with	id	value	subredditName	and	next	to	it	there	is	a	button
with	id	vlaue	addNewSubreddit.

Below	these	elements,	we	created	a	div	with	id	errorContainer	by	utilizing	the	CSS
classes	provided	by	jQuery	UI.	We	also	set	its	display	style	to	none	as	this	div	will	be
displayed	only	when	there	is	any	error.	We	used	CSS	class	named	ui-state-error	on	a
div	and	inside	it	we	have	placed	an	icon	and	another	div	where	any	error	message	will	be
displayed.

After	the	div	redditTabs,	we	defined	a	div	with	id	value	dialog.	It	will	be	used	to
display	the	comments.

Since	we	created	the	basic	page	layout,	we	can	check	it	as	well.	Fire	up	your	browser	and
open	the	index.html	file	in	it.	You	should	see	a	page	similar	to	the	following	screenshot:

Do	not	worry	if	the	page	looks	raw.	We	are	going	to	take	care	of	basic	styling	in	the	next
section.

Styling	the	content
jQuery	UI	will	apply	its	own	style	sheet	of	the	downloaded	theme	once	tabs	are	initialized.
But	before	that,	we	need	to	add	some	styles	of	our	own	to	make	the	look	and	feel
consistent.	The	rules	we	are	going	to	add	will	control	the	display	of	reddit	posts	in	tabs,
and	the	comments	that	will	be	displayed	in	the	dialog.	Here	are	the	CSS	rules	that	we	will
add	inside	the	style	part	of	the	head	section:

body{

		font-family:arial,verdana;

		font-size:12px;

		margin:	0px	auto;	

		width:	900px;

}

div#redditTabs{

		border:	1px	solid	#000;

		float:left;

		margin:10px	auto	0;

		padding:10px;

		width:	100%;

}

a{

		text-decoration:underline;

}

.ui-tabs-panel	.ui-icon	

{

		float:left;

}

.extras	{	

		clear:	both;

		padding-bottom:	20px;

}

.extras	a	{

		border:	1px	solid	#A2A2A2;

		cursor:	pointer;

		display:	block;

		float:	left;

		margin-left:	5px;

		text-decoration:	none;

		width:	140px;

}

.postTitle{

		display:	block;	

		padding:	5px	0px	5px	5px;

		font-weight:bold;

}

.postTitle	a	{

		color:#07c;

		text-decoration:none;

}

.postList{

		list-style:	none;

		margin:	0;

		padding:	0	0	0	10px;

		width:	100%;

}

.postList	li	{

		background:none	#fff;

		margin:5px	0;

		padding:5px;

}

.postDescription{

		border-top:1px	solid	#ddd;

		margin-top:5px;

		padding:5px	0	5px	5px;

		display:none;

}

.postDescription	a	{

		color:#07c;

}

.ui-icon-close{

		float:left;

		margin-top:5px;cursor:pointer;

}

small	{

		font-size:12px;

}

.comments	{

		background-color:	#eee;

		list-style:	none	outside	none;

		margin-bottom:	5px;

		margin-right:	0;

		margin-top:	5px;

		padding:	2px	0;

}

.comments	a.username	{

		color:	#ff0000;

}

.comment	{

		background-color:	#FFFFFF;

		border-color:	#5D5D5D;

		border-image:	none;

		border-style:	dotted	dotted	none;

		border-width:	1px	1px	0;

		margin-bottom:	10px;

		padding:	0	10px	2px;

}

.hide	{

		display:none;

}

#dialog	{

		display:none;

}

.clear	{

		clear:both;

}

The	CSS	rules	which	we	have	defined,	first	add	some	default	properties	for	the	body.
Then,	we	added	CSS	properties	to	customize	the	display	of	reddit	posts	and	the	comments
that	will	be	displayed	in	the	dialog.	We	added	these	properties	to	make	sure	that	the	UI
remains	clutter-free	and	readable.

After	adding	these	rules,	if	you	reload	the	index.html	page	in	your	browser,	it	will	look	a
bit	more	organized	and	readable.

After	jQuery	UI	tabs	and	dialog	components	are	initialized	in	the	next	section,	the	jQuery
UI	theme	CSS	will	also	be	applied	and	the	page	will	look	much	prettier.

Getting	the	code	structure	ready
As	we	did	in	previous	chapter,	Chapter	3,	Creating	a	Website	Tour,	we	will	use	the	object
literal	pattern	to	keep	our	code	manageable	and	inside	a	single	object.	We	will	define	an
object	named	myReddit,	inside	which	there	will	be	properties	and	methods	(they	can	be
called	members	as	well)	to	create	our	news	reader.	Let’s	start	by	writing	the	code	for	the
same	in	the	myReddit.js	file:

var	myReddit	=	

{

		apiURL	:	'http://www.reddit.com',

		tabCount	:	1,

		init	:	function()

		{

		},

		getJSONFromAPI	:	function(type,	id)

		{

		},

		createTab	:	function(subredditName,	postList)

		{

		},

		getPostListingHtml	:	function(postListing)

		{

		},

		displayComments	:	function(data)

		{

		},

		getCommentsHTML	:	function(commentsList)

		{

		},

		htmlDecode	:	function(input)

		{

		}

};

$(document).ready(function()

{

		myReddit.init();

});

We	created	an	object	called	myReddit	with	some	members.	Let’s	analyze	these	members
one	by	one:

The	first	name	value	pair	is	apiURL.	This	is	the	base	URL	for	requests	that	will	be
made	to	reddit’s	JSONP	API.	Since	there	will	be	separate	URLs	for	posts	and
comments,	we	have	only	defined	base	URL	which	we	will	change	depending	on	the
request	that	will	be	sent.
Next	is	tabCount	which	will	be	used	to	manage	the	addition	and	removal	of	tabs
dynamically.	Initially	tabCount	is	set	to	1	as	we	already	have	one	tab	present.
Then,	there	are	the	methods	by	which	we	will	implement	the	required	functionality.
We	begin	by	defining	an	init	function	where	we	will	do	the	basic	initializations	and
add	the	required	event	handlers.

The	getJSONFromAPI	method	is	responsible	for	getting	responses	from	the	reddit	API
by	sending	appropriate	requests.	We	will	use	this	method	to	retrieve	the	posts	as	well
as	retrieve	the	comments	for	a	post.
Once	we	have	fetched	the	posts	for	a	subreddit	from	the	API,	we	will	need	to	create	a
new	tab	and	add	it	to	existing	tab	structure.	We	will	also	have	to	create	the	DOM	to
display	the	posts	in	the	newly	created	tab.
As	the	name	suggests,	the	createTab	method	will	be	used	for	this.	It	will	also	use	the
getPostListingHtml	method	to	create	the	DOM	using	the	API	response.	The
getPostListingHtml	method	will	take	the	API	response	as	input	and	will	create	the
DOM.	It	will	return	the	created	HTML	structure	back	to	the	createTab	method
where	it	will	be	inserted	into	the	DOM.
Now	that	posts	are	taken	care	of,	we	defined	another	method	named
displayComments.	This	method	will	use	the	API	response	for	comments	(which	we
will	fetch	using	the	getJSONFromAPI	method	defined	earlier)	to	create	the	DOM	for
displaying	comments.	It	will	use	the	getCommentsHTML	method	to	iterate	into	the
comments	and	create	the	DOM.
Since	comments	could	be	nested	multiple	levels	deep,	the	getCommentsHTML	function
will	be	called	recursively	to	display	all	available	comments.
The	helper	method	htmlDecode	is	used	to	unescape	the	HTML	in	the	responses	from
reddit	API.
Finally,	after	the	myReddit	object	definition,	there	is	jQuery’s	document	ready	event
handler	where	we	call	the	init	function	of	myReddit.	Let’s	begin	by	defining	the
init	method.

Adding	event	handlers	in	the	init	method
The	init	method	is	the	first	method	of	the	myReddit	object	that	is	called.	Since	this	is	a
starting	point	for	us,	let’s	begin	by	creating	the	tabs	and	attaching	all	the	event	handlers
that	will	be	used	later	in	the	code.

Tip
It	is	good	practice	to	define	all	event	handlers	in	one	place.	Different	event	handlers
scattered	all	over	the	code	are	bad	for	readability,	as	well	as	for	debugging	the	code	later.

Look	for	the	init	method	in	the	myReddit.js	file	and	write	the	following	code	to	set	up
tabs	and	event	handlers:

$("#redditTabs").tabs();

$('#addNewSubreddit').button();

$('#tabList').on('click',	'.ui-icon-close',	function()

{

		var	tabPanelContainer	=	$(this).prev('a').attr('href');

		$(this).parent('li').remove();

		$(tabPanelContainer).remove();

		$("#redditTabs").tabs('refresh');

});

$('#redditTabs').on('click',	'#addNewSubreddit',	function()

{

		myReddit.getJSONFromAPI('posts',	$('#subredditName').val());

});

$('#redditTabs').on('click',	'.viewText',	function()

{

		$(this).parent('div').next('div.postDescription').toggle();

});

$("#dialog").dialog(

{

		autoOpen:	false,

		modal	:	true,

		title	:	'Comments',

		position:	{	my:	"center",	at:	"top",	of:	window	},

		width:	800,

		height:	600

});

$('#redditTabs').on('click',	'.viewComments',	function()

{

		myReddit.getJSONFromAPI('comments',	$(this).data('commentsid'));

		$("#dialog").dialog('open');

});

$("#dialog").on("dialogopen",	function(event,	ui)	

{

		$(this).text('Loading	Comments…	Please	wait…');

});

In	the	first	line,	we	created	jQuery	UI	tabs	by	calling	the	tabs	method	on	the	div
redditTabs.	Doing	so	will	make	the	tabs	functional,	and	jQuery	UI	will	also	add	various
CSS	classes	from	the	CSS	theme.	The	next	line	creates	a	jQuery	UI	button	that	we	placed
in	the	first	tab.	jQuery	UI	CSS	classes	will	be	applied	to	the	button	to	make	its	appearance
consistent	with	the	theme.	Save	the	file	now	and	reload	the	index.html	page	in	the
browser.	You	will	see	that	the	jQuery	UI	theme	has	been	applied	to	the	tabs	and	the	button.

Once	a	new	tab	is	created,	we	will	put	a	close	icon	left	to	the	tab	name	to	close	the	tab.
The	icon	will	have	the	base	class	ui-icon	for	icons	and	CSS	class	ui-icon-close.	Hence,
we	have	now	added	an	event	handler	for	the	selector	ui-icon-close.

By	clicking	on	the	close	icon,	we	remove	the	tab	as	well	as	its	corresponding	tab	panel.
The	first	line	inside	the	event	handler	finds	out	the	corresponding	tab	panel	for	this	tab	by
getting	the	value	of	the	href	attribute	of	the	tab	header.	In	the	second	line,	we	remove	the
parent	li	of	the	icon.	Since	li	is	what	makes	the	tab	header,	removing	li	will	remove	the
tab.	Finally,	we	remove	the	tab	container	as	well.	The	last	line	calls	the	refresh	option.
Remember	that	calling	the	refresh	method	is	very	important.	This	is	because	we	have
just	removed	a	tab	and	we	should	let	jQuery	UI	know	to	update	the	tab	structure.

The	next	event	handler	is	a	simple	one.	We	register	the	click	handler	on	the	button
addNewSubreddit.	This	event	handler	will	take	the	subreddit	name	from	the	input	textbox
with	id	as	subredditName	and	will	call	the	method	getJSONFromAPI,	which	will	then
fetch	posts	for	the	inputted	subreddit	using	the	API.	Note	that	we	are	calling
getJSONFromAPI	with	two	arguments.	The	getJSONFromAPI	method	will	be	called	both	for
subreddits	and	comments;	hence,	we	have	passed	the	first	argument	as	posts	because	we
want	to	fetch	the	posts	of	a	subreddit.	The	second	argument	is	the	unique	name	of	the
subreddit.

Our	next	event	handler	will	be	for	toggling	the	description	of	a	particular	post.	When	the

posts	are	displayed,	the	HTML	structure	of	a	single	post	will	be	like	this:

When	the	anchor	with	class	viewText	is	clicked,	we	need	to	toggle	the	div	with	the	class
postDescription.	This	div	will	have	a	description	inside	it.	Therefore,	we	are	accessing
its	parent,	which	is	div	with	the	class	extras	and	then	toggling	the	div	next	to	it.

With	posts	done,	we	can	now	move	to	attach	event	handlers	for	comments.	As	stated
earlier,	we	are	going	to	display	comments	in	a	dialog.	Hence,	we	need	to	define	a	dialog
and	corresponding	event	handlers.

The	div	with	id	dialog	will	act	as	jQuery	UI	dialog.	We	have	initialized	it	using	some
standard	options	such	as	height,	width,	title,	and	position.	Two	options	need	specific
attention:	the	first	one	is	autopen,	which	we	have	set	to	false	because	we	do	not	want	the
modal	to	open	as	soon	as	the	page	loads,	and	the	second	one	is	the	modal	option	that	is	set
to	true.	This	is	to	ensure	that	the	user’s	focus	remains	solely	on	the	dialog	and	they	do	not
interact	with	the	page	while	the	dialog	is	open.

After	the	posts	are	displayed,	we	will	need	to	retrieve	the	comments	for	a	specific	post.
All	the	posts	will	have	a	View	XXX	Comments	link	underneath	them,	where	XXX	is	the
number	of	comments	for	the	post.	Each	of	these	links	will	have	a	CSS	class	viewComments
and	a	data	attribute	called	data-commentsid.	We	have	attached	an	event	handler	on	the
click	event	of	the	viewComments	selector.

Clicking	on	this	selector	will	call	the	getJSONFromAPI	method	once	again.	However,	this
time	the	arguments	will	be	different.	The	first	argument	will	be	comments	and	the	second
one	will	be	the	id	of	the	comment	thread.	After	this	method	is	called,	we	open	the	jQuery
UI	dialog	using	the	open	option.

Our	last	event	handler	is	called	when	the	dialog	opens.	Inside	this,	we	simply	insert	some
text	notifying	the	user	that	comments	are	being	loaded.

With	all	the	event	handlers	in	place,	half	of	our	work	is	done.	Now,	let’s	implement	the
methods	that	we	have	called	in	callbacks	of	event	handlers.

Displaying	posts	of	a	subreddit
Before	proceeding	further,	let’s	discuss	the	reddit	API.	Reddit	provides	a	REST-based	API
and	multiple	response	formats	for	the	data.	Out	of	these,	the	simplest	is	adding	.json	to	a
URL	and	accessing	it.	Adding	.json	at	the	end	of	any	URL	will	get	us	the	JSON	object
for	that	page.	You	can	try	it	yourself.	If	you	want	to	get	the	JSON	for	webdev	subreddit,
enter	the	URL	http://reddit.com/r/webdev.json	in	your	browser	and	you	will	see	the	JSON
response.	If	you	want	to	see	the	formatted	JSON,	use	Google	Chrome.	Similarly,	to	get	the
comments	JSON	for	any	particular	post,	the	URL	becomes
http://reddit.com/comments/XYZ.json,	where	XYZ	is	the	id	for	that	post.	You	will
learn	how	to	find	the	id	as	well	in	this	section.

There	is	a	restriction	in	browsers	that	you	need	to	be	aware	of.	Browsers	do	not	allow	you
to	make	cross-domain	AJAX	requests.	It	means	if	your	application	is	running	on	the
domain	abc.com,	you	cannot	make	AJAX	requests	to	any	other	domain	except	that	one.
However,	you	can	load	images,	style	sheets,	and	other	resources	from	any	domain.	Since
scripts	can	also	be	loaded	from	any	domain,	they	can	be	used	as	a	workaround	for	getting
responses	from	other	domains.	Suppose	we	created	a	script	tag	with	its	src	set	to
http://reddit.com/r/webdev.json.	However,	it	will	simply	load	the	JSON	object	inside	the
scrip	tags,	which	will	be	useless	for	us.	Enter	JSONP,	with	the	URL	a	callback	function
name	is	sent	to	the	target	domain.	On	receiving	the	callback	name,	the	server	wraps	the
data	inside	this	callback	name	and	sends	it	back,	where	it	is	loaded	inside	script	tags.

For	example,	reddit	expects	the	JSONP	callback	name	to	be	jsonp.	So	if	we	set	the	src	tag
of	script	tag	to	http://reddit.com/r/webdev.json?jsonp=jsonp,	it	will	return	us	the	same
JSON	response	in	a	slightly	different	format.	It	will	look	something	like	this:

jsonp({"kind":	"Listing",	"data":	{}	})

Looks	familiar	now?	Yes,	it	is	a	function	call.	This	means	that	you	must	have	a	jsonp
function	present	on	your	page	which	will	be	passed	the	received	data	as	an	argument.
Inside	this	function,	you	can	do	anything	with	this	data	now.	This	is	how	cross-domain
requests	are	performed.

jQuery	simplifies	this	task	by	providing	jsonp	as	a	data	type	and	taking	care	of	loading
the	data.	If	you	have	provided	a	callback	function	name	in	the	JSONP	request	and	have
defined	that	function	in	your	code,	it	will	get	executed	before	the	success	callback	of	the
AJAX	request.	However,	we	will	use	the	success	callback	in	order	to	maintain
consistency.

Let’s	come	back	to	our	application;	once	user	enters	a	subreddit	name	in	the	textbox	and
click	on	the	Add	it	button	(having	id	value	addNewSubreddit),	the	event	handler	that	we
defined	inside	the	init	method	will	be	called.	Suppose	the	user	enters	a	subreddit	name
webdev	in	the	textbox,	the	event	handler	will	call	the	method	getJSONFromAPI	with	two
arguments.	The	first	argument	will	be	the	string	posts	and	the	second	one	will	be	the
name	of	subreddit,	which	is	webdev	in	this	case.	Add	the	following	code	inside	the
getJSONFromAPI	method:

http://reddit.com/r/webdev.json
http://reddit.com/r/webdev.json
http://reddit.com/r/webdev.json?jsonp=jsonp

var	apiURL	=	this.apiURL;

if(type	==	'posts')

{

		apiURL+=	'/r/'	+	id	+	'.json';

}

else	if(type	==	'comments')

{

		apiURL+=	'/comments/'	+	id	+	'.json';

}

else	

{

		alert('Error');

		return;

}

$('#errorMessage').empty();

$('#errorContainer').hide();

$.ajax(

{

		url:	apiURL,

		dataType:	"jsonp",

		jsonp:	'jsonp',

		success:	function(data)

		{

				if(type	==	'posts')

				{

						myReddit.createTab(id,	data);

				}

				else	if(type	==	'comments')

				{

						myReddit.displayComments(data);

				}

		},

		error:	function	(xhr,statusString,	errorString)

		{

				$('#errorMessage').html('An	error	occured	and	content	could	not	be	

loaded.');

				$('#errorContainer').show();

		}

});

We	stored	the	base	apiURL	in	a	local	variable	url.	Next,	we	created	the	full	URL	to	access
the	API.	Since	we	are	using	this	function	for	both	posts	and	comments,	we	placed	an	if-
else	block	to	create	the	URL.	This	time	the	if	block	will	get	executed,	as	the	value	for
the	parameter	type	is	posts.

After	this,	we	removed	any	error	message	that	might	be	on	the	page	and	hid	the	div	with
id	errorContainer.

Now,	let’s	discuss	the	AJAX	request	that	will	get	the	data	from	the	reddit	API.	We
provided	the	URL	in	the	variable	apiURL.	The	dataType	is	jsonp	which,	as	explained
previously,	will	get	the	JSON	response	wrapped	in	a	parameter.	This	parameter	has	also
been	defined	in	the	next	line	using	the	option	jsonp.	Since	reddit’s	API	expects	the

callback	function	name	in	the	JSONP	request	to	be	jsonp,	we	provided	this	value.	Next
we	have	the	success	and	error	callbacks	that	will	be	fired	depending	on	whether	the	API
returns	a	successful	response	or	any	error	is	encountered.	Inside	the	success	callback
function,	there	is	another	if-else	block.	Since	this	request	was	made	for	posts,	the	if
block	will	be	executed	and	the	createTab	function	will	be	called	with	the	parameters	id
and	data.	Here,	id	refers	to	the	respective	subreddit	names	and	data	is	the	JSON	response
received	from	the	API	as	a	parameter.	Had	the	request	been	for	comments,	the	else	block
would	have	executed	and	displayComments	would	be	called	with	response	data	as	a
parameter.

Inside	the	error	callback,	we	set	an	error	message	inside	the	div	errorMessage	and
displayed	the	div	errorContainer.

Assuming	a	successful	response	has	been	received	from	API,	we	need	to	define	two	more
methods	to	be	able	to	display	the	posts.	These	functions	are	createTab	and
getPostListingHtml.	The	method	getPostListingHtml	will	be	called	from	inside	the
createTab	method.

Before	defining	these	functions,	you	need	to	be	familiar	with	the	response	JSON	structure.
The	response	for	posts	of	a	particular	subreddit	is	shown	in	the	following	screenshot:

As	you	can	see,	the	data	has	the	properties	after,	before,	and	children.	We	are	only
interested	in	children	in	this	chapter.	The	children	property	is	an	array	with	each
element	of	the	array	representing	a	post.	We	will	see	the	structure	of	a	children	node	when
we	create	the	DOM	for	posts.

Creating	the	tab	structure
With	the	JSON	structure	clear,	let’s	write	the	code	for	the	createTab	method:

if(postList.data	==	null	||	postList.data.children	==	null)

{

		$('#errorMessage').html('Oops	some	thing	is	wrong');

		$('#errorContainer').show();

		return;

}

var	tabContent	=	myReddit.getPostListingHtml(postList.data.children);

(myReddit.tabCount)++;

$('#tabList').append(''	+	

subredditName	+	'	<span	class="ui-icon	ui-icon-close"	

role="presentation">Remove	Tab');

$("#redditTabs").append('<div	id="tabs-'+(myReddit.tabCount)+'">'	+	

tabContent	+	'</div>');

$("#redditTabs").tabs('refresh');

var	lastTabIndex	=	$('#tabList	li').length	-	1;

$("#redditTabs").tabs('option',	'active',	lastTabIndex);

In	the	createTab	method,	we	are	receiving	the	data	in	the	parameter	postList.	The	first
if	block	is	pretty	straightforward.	It	is	checking	for	children	in	the	received	response.	If
there	are	no	children,	an	error	message	will	be	displayed	and	we	will	return	from	the
function.

The	next	line	calls	the	getPostListingHtml	method,	which	will	be	explained	in	the	next
section.	We	are	passing	the	children	array	as	the	argument	here.	This	method	will	create
the	DOM	and	return	the	HTML	that	will	be	stored	in	the	variable	tabContent.

Now,	we	need	to	create	a	tab	and	insert	it	inside	the	existing	tab	list.	While	defining	the
myReddit	object,	we	created	the	tabCount	property	that	we	initially	set	to	1.	Since	a	new
tab	is	being	created	now,	we	increment	its	value	by	one.	This	value	is	used	in	the	next	line
where	we	create	a	list	item	with	an	anchor	inside	it.	We	also	set	the	anchor’s	href	attribute
and	placed	the	subreddit	name	using	the	variable	subredditName	inside	it.	A	span	element
that	has	the	CSS	classes	ui-icon	and	ui-icon-close	is	also	created.	These	classes	are
from	the	jQuery	UI	theme	that	will	display	the	close	icon	on	the	right-hand	side	of	tab.
Finally,	the	jQuery	append	method	is	used	to	append	this	newly	created	tab	to	the
unordered	list	with	id	tabList,	where	tabList	is	the	list	that	keeps	all	the	tab	headers
inside	it.

After	tab	header,	we	need	the	corresponding	tab	body	panel	as	well,	which	we	referred	to
as	the	href	attribute	of	the	anchor.	For	this,	a	new	div	is	created	and	tabContent,	which
holds	the	HTML	for	posts	list,	is	inserted	inside	it.	An	id	is	also	provided	to	this	div.	The
value	for	the	id	must	be	the	same	as	the	value	of	the	href	attribute	defined	earlier.	Finally,
this	div	is	appended	to	the	div	with	id	redditTabs.

Once	the	tab	header	and	tab	body	are	present	in	the	DOM,	we	need	to	let	jQuery	UI	know

that	the	DOM	has	changed	and	it	needs	to	update	itself.	This	is	done	by	calling	the
refresh	option	in	the	next	line.

Still,	the	page	will	show	the	first	tab	as	active.	We	will	have	to	switch	to	the	newly	created
tab.	Since	the	newly	created	tabs	are	being	appended	to	the	end	of	the	list,	we	need	to	find
the	zero-based	index	of	the	last	list	item.	This	was	done	by	finding	the	number	of	li
elements	inside	the	ul	tabList	and	subtracting	1	from	it.	So,	if	there	are	four	tabs,	the
length	will	be	4	and	the	index	of	last	tab	will	be	3,	stored	in	variable	lastTabIndex.

Finally,	we	use	the	active	option	of	jQuery	UI	tabs	to	set	the	active	tab	by	proving	the
value	as	lastTabIndex.

Before	seeing	any	result	in	the	browser,	we	need	to	define	the	displayComments.	Buckle
up	once	again.	Only	one	more	function	to	go	and	you	will	see	the	results.

Building	the	DOM	for	posts
In	the	previous	section,	we	implemented	the	createTab	method	that	called
getPostListingHtml	to	get	the	HTML	that	displays	the	posts.	This	function	receives	an
array	of	children	elements	from	the	API	response	as	a	parameter.	We	will	iterate	over
these	children	elements	and	create	the	DOM.	An	unordered	list	will	be	created	with	one
post	as	a	list	item.	We	will	also	display	the	description	text,	if	available,	and	a	link	to	view
the	comments.

We	need	to	know	beforehand	the	structure	of	a	children	node	in	order	to	extract	data	and
create	the	HTML.	The	following	screenshot	shows	the	structure	of	a	single	children	node:

There	are	many	more	properties	of	a	children	element,	but	we	have	displayed	only	the
relevant	ones.	To	display	the	posts,	we	will	refer	to	the	structure	displayed	in	the
preceding	screenshot.

Start	by	writing	the	following	code	inside	the	getPostListingHtml	method	to	create	the
HTML	structure:

var	strHtml	=	'<ul	class="postList">';

for(var	i	=	0;	i	<	postListing.length;	i++)

{

		var	aPost	=	postListing[i].data;

		strHtml+=	'';

		if(aPost.is_self)

		{

				strHtml+=	'<div	class="postTitle">'	+	aPost.title	+	'</div>';

		}

		else	

		{

				strHtml+=	'<div	class="postTitle"><a	href="'+aPost.url+'"	

target="_blank">'	+	aPost.title	+	'</div>';

		}

		strHtml+=	'<div	class="extras">';

		if(aPost.is_self	&&	aPost.selftext_html	!=	null)

		{

				strHtml+=	'

	View	Text';

		}

		if(parseInt(aPost.num_comments,	10)	>	0)

		{

				strHtml+=	'<a	class="viewComments"	data-commentsid='	+	aPost.id	+	

'>View	'	+	aPost.num_comments	+	'	Comments';

		}

		else	

		{

				strHtml+=	'<a>No	comments	so	far.';

		}

		strHtml+=	'</div>';

		if(aPost.is_self	&&	aPost.selftext_html	!=	null)

		{

				strHtml+=	'<div	class="postDescription">'	+	

this.htmlDecode(aPost.selftext_html)	+	'</div>';

		}

		strHtml+=	'';

}

strHtml+=	'';

return	strHtml;

Let’s	go	through	the	preceding	code	step	by	step:

We	started	by	declaring	a	variable	strHtml	and	assigning	the	opening	tag	for	a	ul
element.	The	CSS	class	postList	has	also	been	assigned	to	it.
Then,	there	is	a	for	loop	to	iterate	over	the	children	array.	Note	that	there	is	a	data
property	on	the	top	level	for	each	children	node,	inside	which	there	are	key-value
pairs.	We	have	taken	these	values	in	a	variable	aPost.
We	then	append	an	opening	li	tag	to	strHtml.
After	this,	there	is	an	if-else	block.	Here	is	a	property	named	is_self	that	tells	us
whether	the	post	is	a	text	post	or	a	link.	In	reddit,	a	self-post	means	some	text	as	title
and	some	text	as	description	submitted	by	a	user.	A	link	post	means	the	submitted
content	is	some	text	as	title	and	a	link.	Therefore,	if	is_self	is	true,	we	append	the
post	title	in	a	div	that	is	available	in	the	title	property	of	a	child	element.	Otherwise,
we	create	an	anchor	and	set	its	href	to	aPost.url.	Then,	aPost.title	is	appended
as	the	display	text.
Now,	we	want	to	display	the	text	description	for	self	posts	and	a	link	to	view

comments.	For	self-posts,	the	property	selftext_html	contains	the	post	description.
We	create	another	div	with	the	CSS	class	extras.	If	it	is	a	self-post	and
selftext_html	is	not	null,	we	create	an	anchor	with	the	class	viewText.	Inside	it,
we	place	a	plus	icon	and	View	Text	as	the	display	text.	If	you	remember,	in	the	init
function,	we	have	already	defined	an	event	handler	for	the	selector	viewText;	hence,
this	class	was	assigned.
There	is	an	if-else	block	to	check	if	there	are	any	comments	on	this	post.	A	number
of	comments	can	be	determined	from	the	value	of	the	num_comments	property	of	a
child	node.	If	comments	are	available,	we	create	an	anchor	with	the	CSS	class
viewComments	and	a	data	attribute	data-commentsid.	The	data-commentsid	attribute
is	assigned	the	id	property	from	child	node.	This	is	the	attribute	that	will	be	used	to
fetch	comments	for	this	post.	Therefore,	make	sure	that	it	is	assigned	correctly.
If	there	are	no	comments,	we	simply	append	the	text	No	comments	so	far.	The	div
with	the	CSS	class	extras	is	closed	in	the	next	line.
Then,	we	display	the	post	description	if	it	is	available.	It	has	been	kept	inside	a	div
with	the	class	postDescription.	One	important	point	should	be	noted	here.	The
selftext_html	property	contains	an	HTML	string	and	this	HTML	is	escaped.	Before
inserting	it	into	the	page,	it	will	have	to	be	escaped.	This	is	where	our	little	helper
function	htmlDecode	is	useful.	We	pass	the	HTML	string	to	it.	It	simply	creates	a	div
element,	inserts	the	HTML	string	inside	it,	and	retrieves	the	inserted	HTML	using
jQuery’s	text	method.	This	process	returns	unescaped	HTML	that	we	can	use	to
insert	in	our	page.

Define	the	htmlDecode	method	as	follows:

return	$('<div/>').html(input).text();

The	last	bit	is	to	close	the	ul	tag	and	return	the	variable	strHtml	back	to	createTab
method	where	it	will	be	inserted	into	the	page.

With	these	two	methods	complete,	we	can	see	the	fruits	of	our	efforts.	Reload	the
index.html	page,	enter	webdev	in	textbox,	and	click	on	the	Add	it	button.	Once	the
response	is	received,	a	new	tab	will	be	visible	and	you	will	see	the	post	listing	with	all
other	options.	The	screen	will	resemble	the	following	screenshot:

Note	that	self-posts	titles	are	black	in	color	and	link	posts	have	a	different	color.	Link
posts	will	open	the	linked	URL	in	a	new	tab.	The	look	and	feel	of	the	posts	are	due	to	the
CSS	rules	we	defined	earlier.

A	couple	of	important	points	need	to	be	mentioned	here:

Clicking	on	the	View	Text	link	will	toggle	the	post	description	if	it	is	available.	This
is	because	we	already	defined	a	related	event	handler	in	the	init	method.
You	will	also	be	able	to	remove	the	tab	by	closing	the	cross	button	present	on	right
side	of	the	tab	header.	Again,	this	behavior	is	due	to	the	event	handler	defined	in	the
init	method	at	the	beginning	of	the	chapter.

We	will	now	move	on	to	the	next	section	where	we	will	display	the	comments	for	a
particular	post	in	a	dialog.

Getting	comments	for	a	post
We	have	already	displayed	the	posts	and	a	link	to	view	comments	with	each	post.	Each	of
these	links	has	a	CSS	class	named	viewComments.	In	the	init	method,	we	have	defined
an	event	handler	for	the	click	event	on	this	selector.	This	event	handler	calls	the	method
getJSONFromAPI	with	two	arguments.	The	first	argument	is	the	set	of	string	comments	that
will	let	getJSONFromAPI	know	that	the	API	request	has	to	be	made	for	comments.	The
second	parameter	is	the	comments	id	for	that	particular	post,	which	we	assigned	using	the
data-commentsid	attribute.	The	event	handler	for	viewComments	gets	this	value	and
passes	it	as	a	second	argument	to	getJSONFromAPI.	We	have	already	defined	and	discussed
the	working	of	getJSONFromAPI.	This	method	will	request	the	API	for	comments	and	will
call	the	displayComments	method	with	the	API	response	as	an	argument.	Since	we	are
going	to	display	the	comments	in	a	dialog,	the	event	handler	for	the	viewComments
selector	opens	the	dialog	box	as	well.

The	displayComments	method	will	use	another	method	called	getCommentsHTML	to	create
the	DOM	structure	for	comments.	As	mentioned	in	the	Getting	ready	section,	since
comments	could	be	nested	multiple	levels	deep,	the	getCommentsHTML	function	will	be
called	recursively	to	display	the	comments.	Let’s	begin	by	defining	the	displayComments
method	first.	Add	the	following	code	to	the	displayComments	method:

if(data	!=	undefined	&&	data.length	>	0)

{

		var	permalink	=	this.apiURL	+	data[0].data.children[0].data.permalink;

		var	linkToReddit	=	'View	all	the	

comments	on	reddit';

		var	commentsHTML	=	this.getCommentsHTML(data[1].data.children);

		$('#dialog').html(linkToReddit	+	commentsHTML);

}

In	the	preceding	code,	data	is	an	array	containing	two	elements.	The	first	element
contains	the	metadata	related	to	the	post,	such	as	the	post’s	author,	permalink,	number	of
comments,	and	so	on.	The	following	screenshot	shows	its	structure:

After	making	sure	we	have	comments	in	the	first	place,	we	got	the	permalink	property
from	metadata.	Permalink	is	the	web	URL	for	the	comments	page	of	the	related	post.	We
added	the	base	URL	before	it	to	make	a	full	URL.	In	the	next	line,	we	created	an	anchor	to
open	this	comments	page	URL.

Note
Since	there	can	be	hundreds	of	comments	for	a	post,	reddit	API	sends	a	fixed	number	of
comments	in	response.	There	is	an	important	property	that	can	be	used	to	retrieve	more
comments:	after.	If	you	want	to	load	more	comments	using	a	second	AJAX	request,	you
can	send	the	value	of	after	property	as	the	comment	id.

The	next	line	calls	the	method	getCommentsHTML	and	it	will	receive	an	HTML	string	in
response	from	the	method,	which	we	assigned	to	commentsHTML	variable.	The	last	line	of
our	method	simply	inserts	the	permalink	and	HTML	structure	for	the	comments	into	the
dialog.

The	getCommentsHTML	method	was	called	by	passing	data[1].data.children	as	an
argument.	The	data[1]	element	refers	to	the	second	element	of	the	API	response.	This
element	holds	the	actual	comments	inside	a	node	that	is	named	children.	Each	element	of
the	children	array	is	a	top-level	comment.	To	get	the	replies	for	a	comment,	each	element
of	the	children	node	has	a	property	called	replies.	Again,	its	structure	is	the	same	as	the
top-level	children	element.	Therefore,	we	can	create	a	recursive	function	which	will	get
us	all	the	replies	for	a	comment.

The	following	screenshot	displays	the	data	structure	for	your	reference.	We	will	refer	to	it
while	creating	the	DOM.	Note	that	there	are	many	more	properties	inside	the	data
element,	but	we	have	removed	those	to	show	us	only	the	ones	relevant	to	us.

The	HTML	structure	for	comments	will	be	an	unordered	list	ul	with	each	top-level
comment	being	a	list	item	li.	Inside	this	li,	we	will	display	the	username	along	with	up
and	down	votes	for	the	comment.	The	actual	comment	made	by	the	user	will	be	next	to	it.
If	there	are	any	replies	for	this	comment,	another	ul	will	be	created	following	the	same
HTML	structure.	The	HTML	structure	we	are	targeting	to	achieve	is	shown	in	the
following	screenshot:

Now,	let’s	define	the	getCommentsHTML	method	to	create	this	HTML.	The	following	code
will	be	used	to	create	the	HTML	structure	for	comments:

getCommentsHTML	:	function(commentsList)

{

		var	str		=	'<ul	class="comments">';

		for(var	i	=	0;	i<	commentsList.length;	i++)

		{

				var	x	=	commentsList[i];

				str+=	'<li	class="comment">	'	+	x.data.author	+	

'('+x.data.ups+'|'+x.data.downs+')	'	+	

this.htmlDecode(x.data.body_html);

				if(x.data.replies	!=	undefined	&&	x.data.replies	!=	"")

				{

						str+=	this.getCommentsHTML(x.data.replies.data.children);

				}

				str+=	'';

		}

		str+=	'';

		return	str;

}

We	receive	a	commentsList	parameter	that	contains	the	top-level	children	array.	To
create	HTML,	we	begin	by	creating	a	string	named	str	that	will	keep	storing	the	HTML
strings	as	we	create	it.	A	top-level	ul	is	created	and	the	CSS	class	comments	is	assigned	to
it.	Then,	we	iterate	over	the	elements	in	the	commentsList	array,	create	a	li	element	for
each	list	item,	and	assign	CSS	class	comment	to	it.	Inside	this	li,	an	anchor	with	class
name	username	is	created,	where	we	place	the	username	and	up	and	down	votes	for	the
comments	that	are	available	in	the	author,	ups,	and	downs	properties,	respectively.	The
comment	body	is	available	in	the	body_html	property	that	we	have	unescaped	using	the
helper	function	htmlDecode.

The	conditional	statement	checks	if	there	are	any	replies	to	this	comment.	If	the	replies

property	is	not	empty,	we	call	the	getCommentsHTML	method	again	and	pass	the	children
array	of	the	replies	property	to	it.	This	method	will	keep	getting	called	until	there	are	no
replies	for	any	children	and	the	resulting	HTML	will	keep	getting	added	to	the	variable
str.	The	li	element	is	closed	in	the	last	line	of	the	for	loop.

After	the	loop	is	finished,	we	close	the	ul	element	as	well	and	return	the	HTML	created	so
far	back	to	the	displayComments	method,	where	it	is	inserted	into	the	DOM.

Our	minimal	reddit	clone	MyjqReddit	is	complete	now	and	you	can	check	the	comments
for	a	post	as	well.	Reload	the	index.html	page	in	your	browser	and	enter	a	subreddit
name	(for	example,	webdev	or	technology)	in	the	textbox	and	click	on	the	Add	It	button.
From	the	post	listing	in	the	new	tab,	click	on	the	View	XXX	Comments	link.	A	dialog
will	appear	with	the	text	Loading	Comments…	Please	wait…	and	after	the	response	is
received,	you	will	see	the	comments	in	dialog.	Due	to	the	CSS	classes	we	have	applied	to
the	ul,	li,	and	other	elements,	you	will	see	that	child	comments	are	shifted	to	the	right	as
the	comment	level	gets	deeper.

Here	is	a	screenshot	of	what	you	will	see	in	the	case	of	large	number	of	comments:

Improving	MyjqReddit
In	this	chapter,	we	deliberately	left	out	a	few	things	in	order	to	focus	more	on	jQuery	UI
and	less	on	API.	You	can	take	these	as	an	exercise	to	improve	the	mashup	we	created	in
this	chapter.	Here	are	a	few	suggestions	to	take	it	to	the	next	level:

We	display	only	the	first	set	of	comments	for	a	particular	post.	Use	the	API	to	load
more	comments	by	making	new	requests	to	the	API	using	the	value	of	after
property.
Modify	the	code	so	that	if	the	linked	URL	of	any	post	is	an	image,	that	image	should
be	displayed	in	a	modal	dialog	if	the	URL	is	clicked.
Avoid	opening	duplicate	tabs	with	the	same	subreddit	name.	For	example,	if	the
webdev	subreddit	is	already	open	in	a	tab,	disallow	any	fresh	requests	for	it	and
switch	to	the	corresponding	tab	instead.
Use	the	progressbar	component	to	display	an	animated	progress	bar	when	an	AJAX
request	is	being	sent.

Summary
This	chapter	was	a	long	read	focusing	on	the	tab	and	dialog	components.	You	worked	with
tabs	and	dialog,	learned	to	create	dynamic	tabs,	and	in	this	process	learned	about	JSONP
and	the	reddit	API	as	well.	You	must	be	comfortable	with	the	object	literal	pattern	by	now.

We	will	see	another	challenge	in	the	next	chapter,	where	we	will	create	three	different
implementations	of	CAPTCHA.

Chapter	5.	Implementing	CAPTCHA
using	Draggable	and	Droppable
In	the	previous	chapter,	we	created	a	reddit	news	reader	that	was	a	bit	complex	from	a
coding	point	of	view.	To	compensate	for	this,	we	will	reduce	our	pace	a	bit	in	this	chapter
and	develop	various	implementations	of	CAPTCHA.

CAPTCHA	(short	for	Completely	Automated	Public	Turing	test	to	tell	Computers
and	Humans	Apart)	is	a	form	of	test	where	web	forms	present	questions	to	users	that	are
supposed	to	be	solved	by	humans	only.

Imagine	a	simple	registration	form	of	a	website.	If	you	know	all	the	fields	present	in	the
page,	you	can	write	a	script	to	register	as	many	times	as	you	can.

Now,	suppose	a	CAPTCHA	challenge	is	placed	in	the	registration	form,	where	the	user	is
shown	10	different	colors	and	is	asked	to	select	a	random	color.	A	regular	bot	will	not	be
able	to	do	so	and	hence	the	registration	will	fail.

Note
The	main	purpose	of	CAPTCHAs	is	to	present	such	tests	that	only	human	users	could
pass.	Any	scripts	or	bots	should	not	be	able	to	pass	the	CAPTCHA	test.

In	this	chapter,	we	will	focus	on	how	we	can	create	simple	CAPTCHA	implementations
using	some	of	the	components	from	the	jQuery	UI	library.

We	will	create	three	different	types	of	CAPTCHA	implementations.	In	all	the
implementations,	we	will	generate	CAPTCHA	values	on	the	server	side	and	store	them	in
session.	Then,	the	page	will	be	displayed	to	the	user	and	user	will	validate	the	CAPTCHA
and	submit	the	form.	The	submitted	value	will	then	be	validated	against	the	value	in	the
session.	On	successful	validation,	a	success	message	will	be	displayed	but	an	error
message	is	displayed	if	CAPTCHA	fails.	Here	are	the	variations	that	we	will	implement	in
this	chapter:

Draggable	color	CAPTCHA:	The	user	will	be	shown	five	different	colored	boxes.
A	color	name	will	also	be	written.	To	validate	CAPTCHA,	the	user	will	have	to	drag
the	said	colored	box	to	a	droppable	box.	After	this,	the	form	will	be	submitted	and
the	values	will	be	validated	on	the	server	side.	jQuery	UI’s	draggable	and	droppable
components	will	be	used	to	built	this.
Slider	CAPTCHA:	Two	numbers	between	0	and	100	will	be	generated	from	the
server	side	that	will	be	kept	in	session	and	will	be	shown	to	the	user	as	well.	In	the
page,	there	will	also	be	a	slider	component.	The	user	will	have	to	drag	the	slider	and
set	its	minimum	and	maximum	values	to	the	given	values.	After	setting	the	slider
values,	the	form	will	be	submitted	and	values	set	on	the	slider	will	be	matched
against	the	session	values.	This	implementation	will	use	jQuery	UI’s	slider
component.
Number	CAPTCHA:	We	will	make	this	CAPTCHA	a	bit	more	difficult	than	the

previous	two	versions.	We	will	generate	a	five-digit	number	from	the	server-side
script	but	this	number	will	not	be	printed	on	the	page	directly.	We	will	use	a	CSS
sprite	image	to	display	this	number	using	five	different	images.	Under	these	images,
we	will	display	five	more	numbers	that	will	actually	be	the	images	of	digits	of
original	number.	The	user	will	have	to	arrange	these	images	in	the	order	they	appear
in	original	five-digit	number.	After	this,	the	form	will	be	submitted	and	the	number
formed	by	arranging	the	images	will	be	validated	against	the	five-digit	number	that	is
in	session.	jQuery	UI’s	sortable	component	will	be	used	for	this	implementation.

Note
Since	the	CAPTCHA	values	need	to	be	generated	from	a	server-side	script,	we	will
use	PHP	as	server-side	script	in	these	examples.	Even	if	you	are	not	familiar	with
PHP,	you	will	not	face	any	difficulty	in	following	it,	as	the	code	for	generating	values
is	simple	and	will	be	explained	in	full	detail.	The	majority	of	the	work	will	be	done	in
jQuery	only.	The	logic	is	the	same	and	you	can	use	any	other	scripting	language	on
the	server	side	to	achieve	the	same	effect.

Now	that	we	are	clear	about	what	we	are	going	to	create,	let’s	write	the	code	and	create
the	CAPTCHAs	one	by	one.	We	will	start	with	the	draggable	color	CAPTCHA.

Creating	the	folder	structure
As	we	did	in	the	previous	chapters,	we	will	first	create	the	folder	structure.

1.	 Create	a	folder	named	Chapter5	inside	the	MasteringjQueryUI	folder.
2.	 Copy	the	js	and	css	folders	from	the	downloaded	jQuery	UI	folder	inside	the

Chapter5	folder.
3.	 Inside	the	Chapter5	folder,	create	a	PHP	file	named	colorCAPTCHA.php	for	the	first

CAPTCHA.

Note
Since	we	are	using	PHP	as	server-side	language,	you	will	need	PHP	installed	on	your
machine	along	with	a	web	server,	such	as	Apache,	to	run	these	files.	You	can	use	a
software	bundle,	such	as	WAMP	or	XAMPP,	to	install	all	at	one	go.

Implementing	the	drag	and	drop
CAPTCHA
For	our	first	implementation,	as	mentioned	previously,	we	will	first	create	an	array	of	five
color	names.	Then,	we	will	generate	a	random	number	between	zero	and	four	and	pick	the
color	on	that	index	from	the	array.	This	color	name	will	be	saved	in	session	for	validation
later	on.	Then,	we	will	create	five	colored	boxes	in	HTML	and	set	their	background	color
using	the	color	names	defined	in	the	array	earlier.	We	will	then	create	a	separate	div	where
the	user	will	drag	and	drop	a	colored	box.	Finally,	we	will	make	the	dragging	and
dropping	functional.

As	far	as	rules	go,	we	will	apply	two	restrictions:	the	droppable	box	could	have	only	one
colored	box	inside	it	at	a	time	and	second,	users	should	also	be	able	to	remove	an	earlier
dropped	colored	box	from	the	droppable	container	and	drop	another	box.

Setting	a	random	color
Let’s	begin	by	create	the	colored	array	first.	Open	the	file	colorCAPTCHA.php	in	your
editor	and	write	the	following	PHP	code:

<?php

		session_start();

		$arrColors	=	array('red',	'green',	'blue',	'white',	'black');

		$randomKey	=	array_rand($arrColors);

		$randomColor	=	$arrColors[$randomKey];

		$_SESSION['randomColor']	=	$randomColor;

?>

In	PHP,	the	session_start	function	is	used	to	create	a	new	session	or	access	a	session	if
it	already	exists.	By	using	session_start	in	the	first	line,	we	created	a	new	session.	In	the
next	line,	we	defined	an	array	named	$arrColors	that	contains	names	of	five	commonly
known	colors.	After	this,	we	picked	a	random	key	from	an	array	using	the	array_rand
function	of	PHP.	Using	this	random	key,	we	select	the	corresponding	color	name	from	the
array,	which	we	stored	in	variable	$randomColor.	This	variable	will	be	used	to	let	the	user
know	which	colored	box	he/she	has	to	drag	and	drop.

The	last	line	stores	the	generated	random	color	name	in	session.	It	will	be	used	after	the
page	is	submitted	to	check	against	the	user-submitted	value.

Displaying	the	CAPTCHA
We	have	the	colors	array	ready,	and	a	random	color	name	from	it	as	well.	We	can	now
use	this	data	to	create	our	page.	Along	with	the	HTML	markup,	we	will	need	some	CSS
styling	to	make	the	elements	look	better.	Here	is	the	code	that	will	be	used	to	create	the
HTML.	Add	this	code	after	the	closing	tag	of	PHP	written	in	previous	section:

<html>

		<head>

				<meta	charset="utf-8">

				<title>Color	CAPTCHA</title>

				<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

				<style	type="text/css">

				body{

						font-family:arial,verdana;

						font-size:12px;

						margin:	0px	auto;

						width:	700px;

				}

				#frmCAPTCHA{

						border:	1px	solid	#aaa;

						float:	left;

						margin:	0	auto;	

						padding:	20px;	

						width:	100%;

				}

				h3{

						border-bottom:1px	solid	#aaa;

				}

				.row{

						display:	block;

						padding:	20px	10px;	

						clear:left;	

						float:left;

				}

				.colors{

						float:	left;	

						border:	1px	solid	#aaa;

						padding:	20px	10px;

				}

				.colorTile{

						border:1px	solid	#000;

						margin:0	5px;

						display:	block;

						float:	left;

						height:	40px;

						width:	40px;

						z-index:1;

				}

				.row	label{

						float:	left;

						padding:	0px	10px;

						width:	25px;

						text-align:	center;

				}

				.dropbox{

						border:	1px	solid	#aaa;

						float:	left;

						height:	82px;	

						width:	100px;

						z-index:	0;

				}

				.clear{

						clear:both;

				}

		</style>

		</head>

		<body>

				<form	id="frmCAPTCHA"	method="post">

						<h3>Color	CAPTCHA</h3>

						<div	class="row">

								<div	class="colors">

										<?php	

												foreach($arrColors	as	$color)

												{

												?>

										<div	class="colorTile"	style="background-color:<?php	echo	

$color;?>;"	data-key="<?php	echo	$color;?>"></div>

										<?php

												}

										?>

								</div>

						</div>

						<div	class="row">

								<div	class="dropbox">Drop	here	</div>

								</div>

						</div>

						<div	class="row">

								Solve	the	CAPTCHA	by	dragging	the	<u><?php	echo	

strtoupper($randomColor);?></u>	colored	box	in	the	box	above.

						</div>

						<div	class="row">

								<input	type="hidden"	name="selectedColor"	id="selectedColor"/>

								<button	type="submit"	name="submit">Check</button>

						</div>

				</form>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

		</body>

</html>

In	the	preceding	code,	inside	the	head	section,	we	included	the	jQuery	UI	CSS	file.	Then,
we	have	custom	CSS	styles.	These	CSS	rules	create	a	700	pixels-wide	document	that	is
centered	on	the	page.	Various	other	classes	are	also	defined	to	apply	borders	and	fix	the
height	and	width	of	elements.

In	the	body	section,	we	start	by	creating	a	form	and	setting	its	id	as	frmCAPTCHA.	Inside
this	form,	there	is	an	h3	element	that	acts	a	page	heading.	There	is	a	div,	inside	which	we
will	display	the	colored	boxes.	The	div	has	the	class	row	and	it	has	another	div	with	the
class	colors	inside	it.	The	CSS	class	row	as	defined	in	the	style	section	has	been	applied
specifically	to	make	the	div	behave	as	rows.	Inside	the	div	with	the	class	colors,	we	have
a	foreach	loop	that	iterates	in	the	array	$arrColors	and	creates	a	div	for	each	array
element.	Note	that	the	array	$arrColors	holds	the	names	of	the	five	colors.	Each	div	that
is	being	created	is	being	assigned	a	colorTile	class	and	a	background	color.	The	CSS
serves	two	purposes	here.	First,	it	defines	the	height,	width,	and	a	few	other	CSS
properties	that	make	the	div	look	like	a	square	box.	Second,	this	class	will	be	used	to
implement	the	draggable	behavior	later	on	for	other	purposes.

An	important	thing	should	be	noted	here.	We	are	also	defining	a	data	attribute	for	the	div
called	data-key.	The	value	of	this	attribute	is	the	name	of	color.	We	will	get	back	to	this
in	the	following	sections.

Another	div	with	the	class	row	is	defined	in	the	code,	along	with	a	div	with	the	class
dropbox	inside	it.	The	class	dropbox	has	been	defined	in	the	style	section	to	make	this
div	a	box	of	size	100	x	100.	This	div	will	be	converted	to	a	droppable	container	where
users	will	drag	the	colored	boxes.

In	the	next	row,	we	display	a	message	to	the	user	to	tell	them	which	color	has	to	be
selected.	Remember	that	we	have	the	color	name	in	the	variable	$randomColor.

In	the	last	row,	we	have	a	hidden	input	field	and	a	submit	button.	The	hidden	field	has	its
name	as	well	as	id	set	to	selectedColor.	This	hidden	field	will	be	used	to	hold	the	value
of	colored	box	that	has	been	dropped	by	the	user	on	the	droppable	container.	The	submit
button	has	the	name	submit.

Finally,	we	included	the	main	jQuery	file	and	the	jQuery	UI	JavaScript	file.

Making	the	drag	and	drop	functional
In	order	to	comply	with	the	rules	we	have	laid	out	in	the	beginning	of	this	section,	we	will
need	one	draggable	and	two	droppable	components.	The	colored	boxes	have	the	class
colorTile	that	will	be	made	draggable.	For	droppable,	users	can	drop	the	colored	boxes
into	div	with	the	class	dropbox	and	they	can	also	drag	a	dropped	box	from	dropbox	to	the
original	list	of	colors.	Hence,	two	droppables	will	be	required.	After	clicking	on	the
Check	button,	we	will	have	to	fill	the	hidden	field	with	the	value	of	color	that	is	present	in
dropbox.

Add	the	following	code	in	the	file,	after	the	line	where	jQuery	UI’s	JavaScript	file	has
been	loaded:

<script>

		$(document).ready(function(){

				$('button').button();

				$('.colorTile').draggable({

						revert	:	'invalid',

						helper:	'clone',

						cursor:	'move'

				});

				$('.dropbox').droppable({

						accept:	function(item){

								if(item.hasClass('colorTile')	&&	!$('.dropbox	.colorTile').length)

								{

										return	true;

								}

								return	false;

						},

						activeClass:	'ui-state-highlight',

								drop:	function(event,	ui)	

						{

								var	$item	=	(ui.draggable);

								$item.css({'left'	:	'0',	'top'	:	0}).appendTo('.dropbox');

						}

				});

				$('.colors').droppable({

						accept:	'.colorTile',

						drop:	function(event,	ui)	

						{

								var	$item	=	(ui.draggable);

								$item.css({'left'	:	'0',	'top'	:	0}).appendTo('.colors');

						}

				});

				$('#frmCAPTCHA').submit(function(){

								var	x	=	$('.dropbox	.colorTile').data('key');

								$('#selectedColor').val(x);

				});

		});

</script>

First	of	all,	we	converted	the	button	into	a	jQuery	UI	button.	This	creates	a	look	and	feel
for	the	button	as	per	jQuery	UI’s	theme.

Next,	we	made	the	colored	boxes	with	the	draggable	class	colorTile.	We	also	provided
three	options	for	the	draggable	component.	The	first	option	is	revert,	which	has	been	set
to	invalid.	This	means	that	draggable	will	revert	to	its	original	position	if	a	drop	action	is
not	performed.	The	second	option	is	helper,	which	we	have	set	to	clone.	Setting	helper
to	clone	creates	a	duplicate	copy	of	the	element	being	dragged	and	drags	the	clone	instead
of	the	original	one.	Once	drop	is	done,	the	clone	is	placed	in	a	new	drop	position	and	the
original	element	is	removed.	This	gives	a	good	visual	feel	to	the	user,	as	the	UI	changes
only	after	a	drop	is	performed.	The	last	option	is	cursor,	which	has	been	set	to	move.	This
will	change	the	cursor	as	soon	as	dragging	starts.

We	made	the	div	with	the	class	dropbox	droppable.	The	drop	can	happen	only	if	the	div
being	dragged	has	the	class	colorTile	and	dropbox	has	no	colorTile	divs	inside	it.	We
defined	an	accept	method	to	achieve	this.	Inside	the	achieve	method,	the	first	part	of	the
if	condition	checks	whether	it	is	indeed	a	div	with	the	class	colorTile	that	is	being
dragged.	The	second	part	checks	if	there	are	any	divs	with	the	class	colorTile	inside
dropbox.	If	both	conditions	are	met,	true	is	returned,	which	means	the	drop	has	been
accepted.	The	activeClass	option	has	been	assigned	the	value	ui-state-highlight.	This
is	a	class	name	of	the	jQuery	UIs	CSS	framework.	Providing	a	class	name	to	the
activeClass	options	assigns	the	class	name	to	droppable,	while	an	accepted	element	is
being	dragged.	Finally,	there	is	the	drop	function.	Normally,	we	would	not	require	a	drop
method	as	the	div	dropbox	is	already	a	droppable	for	div	with	the	classes	colorTile.
However,	since	we	want	to	allow	dragging	from	the	div	dropbox	as	well,	we	will	have	to
detach	the	div	colorTile	from	DOM	and	append	it	to	dropbox.	Inside	the	drop	method,
we	are	setting	the	top	and	left	CSS	attributes	of	an	accepted	colorTile	to	0	and
appending	it	to	dropbox.	Setting	these	values	to	0	for	the	div	colorTile	is	required.	This
is	because	while	being	dragged,	they	were	positioned	inside	the	div	with	the	class	colors
and	dragging	will	cause	the	top	and	left	values	to	change.	Since	we	are	appending	it
inside	dropbox,	the	old	left	and	top	values	should	not	be	retained.

The	second	droppable	is	the	div	with	the	class	colors	itself	that	originally	holds	all	divs
with	the	class	colorTile.	This	droppable	will	be	used	when	a	user	drags	a	div	with	id
colorTile	from	dropbox	to	div	with	the	class	colors.	Like	the	previous	droppable,	we
have	set	its	accept	option	to	.colorTile	and	have	similarly	defined	a	drop	method	where
we	are	setting	its	top	and	left	values	to	0	and	appending	it	inside	the	div	with	class
colors.

In	the	end	a	submit	event	handler	for	form	is	defined.	Remember	we	defined	a	data
attribute	data-key	for	each	draggable	div.	This	event	handler	is	checking	inside	the
dropbox	div	if	there	is	any	colorTile	present.	If	it	is,	we	take	its	key	value	and	set	it	as
the	value	of	the	hidden	input	with	the	id	and	name	selectedColor,	which	is	present	just
before	the	submit	button.

We	can	now	check	how	our	page	looks.	Save	the	file	and	access	the	file	through	your	web
server.	You	will	see	a	screen	like	this:

Clicking	on	the	Check	button	will	submit	the	form	but	nothing	will	happen,	as	we	have
not	yet	validated	the	CAPTCHA.

Validating	on	the	server
To	check	whether	the	CAPTCHA	has	passed	or	failed,	we	need	to	compare	the	value	of
the	color	that	is	present	in	the	session	to	the	one	which	was	set	in	the	hidden	input
selectedColor.	In	the	colorCAPTCHA.php	file,	write	the	following	code	just	after
session_start()	method:

if(isset($_POST['submit']))

{

		if($_POST['selectedColor']	!=	$_SESSION['randomColor'])

		{

?>

		<div	class="row	ui-widget"	style="line-height:	20px;">

				<div	class="ui-state-error	ui-corner-all">

						<p>

						<span	class="ui-icon	ui-icon-alert"	style="float:	left;	margin-right:	

.3em;">

								CAPTCHA	Failed.	Try	again.

						</p>

				</div>

				</div>

		<?php	

				}

				else

				{

		?>

		<div	class="row	ui-widget"	style="line-height:	20px;">

				<div	class="ui-state-highlight	ui-corner-all">

						<p>

								<span	class="ui-icon	ui-icon-alert"	style="float:	left;	margin-

right:	.3em;">

								CAPTCHA	Passed.	

						</p>

				</div>

		</div>

		<?php	

		}

}

The	first	line	of	the	code	checks	whether	the	form	was	submitted.	Inside	it,	we	take	the
value	stored	in	the	session	(from	the	session	variable	randomColor)	and	the	value	posted
from	the	form	(which	will	be	available	via	$_POST['selectedColor'])	and	compare
them.	If	they	match,	a	jQuery	UI	themed	success	message	is	displayed;	otherwise,	an	error
message	is	shown.	The	success	and	error	message	will	appear	at	the	top	of	the	page.

A	success	message	is	displayed	first:

The	following	error	message	is	shown	if	CAPTCHA	fails:

Improving	the	color	CAPTCHA
The	preceding	CAPTCHA	is	a	basic	one	and	can	be	improved.	Just	try	to	think	of	new	and
unusual	ways	in	which	components	can	be	used.	Here	are	a	few	suggestions	to	get	you
started:

Since	not	all	people	might	recognize	colors,	use	pictures	of	daily	objects	such	as
bikes,	cars,	cats,	chocolate,	and	so	on.
Allow	the	user	to	drop	things	in	groups.	Like,	show	3	apples,	3	oranges	and	3
mangoes	and	ask	to	drop	1	apple	and	2	oranges	in	the	dropbox.

Creating	the	slider	CAPTCHA
In	our	second	implementation,	we	will	use	jQuery	UI’s	slider	component	to	create	a
CAPTCHA.	Two	numbers	between	0	and	100	will	be	generated	from	the	server	and	will
be	stored	in	session.	In	the	page,	a	range	slider	with	two	handles	from	0	to	100	will	be
displayed.	The	user	will	have	to	drag	the	slider	handles	and	set	the	slider	values	so	that
they	match	the	values	generated	from	the	server	side.

Generating	minimum	and	maximum	values	for	the
slider
Inside	the	Chapter5	folder,	create	a	new	file	named	sliderCAPTCHA.php	and	start	by
adding	the	following	code	to	it:

<?php	

		session_start();

		$randomNumber1	=	(string)rand(0,	49);

		$randomNumber2	=	(string)rand(50,	100);

		$_SESSION['sliderMin']	=	$randomNumber1;

		$_SESSION['sliderMax']	=	$randomNumber2;

?>

The	first	line	after	the	PHP	opening	tag	<?php	is	a	call	to	the	session_start	function
(which	you	will	remember	from	the	previous	CAPTCHA	implementation).	In	the	next	two
lines,	we	generate	two	random	numbers	using	the	rand	function	of	PHP.	The	first	random
number	will	be	between	0	and	49,	and	the	second	number	will	be	between	50	and	100.
Both	of	these	numbers	are	then	stored	in	session	in	the	session	keys	sliderMin	and
sliderMax,	respectively,	to	be	validated	later.

Making	the	slider	functional
After	getting	two	random	numbers,	we	can	now	proceed	to	create	the	slider	itself.	We	will
now	create	the	HTML	file	that	will	display	the	values	generated	from	the	server,	the	slider,
and	a	button	to	submit	the	form.	Just	below	the	closing	tag	of	PHP,	add	the	following	code
to	create	the	page:

<html>

		<head>

				<meta	charset="utf-8">

				<title>Slider	CAPTCHA</title>

				<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

				<style	type="text/css">

						body{

								font-family:arial,verdana;	

								font-size:12px;

								margin:	0px	auto;	

								width:	500px;

						}

						.frmCAPTCHA{

								border:	1px	solid	#EEEEEE;

								float:	left;

								margin:	0	auto;

								padding:	20px;

								width:	100%;

						}

						h3{

								border-bottom:1px	solid	#eee;

						}

						.row{

								display:	block;

								padding:	20px	10px;

						}

						.row	label{

								float:	left;

								padding:	0px	10px;

								width:	25px;

								text-align:	center;

						}

						#slider{

								width:300px;float:left;

						}

						.clear{

								clear:both;

						}

				</style>

		</head>

		<body>

				<form	class="frmCAPTCHA"	method="post">

						<h3>Slider	CAPTCHA

								

								<small>Set	the	minimum	and	maximum	values	of	slider	to	<?php	echo	

$randomNumber1;?>	and	<?php	echo	$randomNumber2;?>	respectively.</small>

						</h3>

						<div	class="row">

								<label	class="minVal">0</label>

								<div	id="slider"></div>

								<label	class="maxVal">100</label>

						</div>

						<div	class="row">

								<input	type="hidden"	name="minValSelected"	id="minValSelected"/>

								<input	type="hidden"	name="maxValSelected"	id="maxValSelected"/>

								<button	type="submit"	name="submit">Check</button>

						</div>

				</form>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

				<script>

						$(document).ready(function(){

								$('button').button();

								$('#slider').slider({

										values	:	[0,	100],

										min	:	0,

										max	:	100,

										slide:	function(event,	ui){

												$('.minVal').text(ui.values[0]);

												$('.maxVal').text(ui.values[1]);

												$('#minValSelected').val(ui.values[0]);

												$('#maxValSelected').val(ui.values[1]);

										}

								});

						});

				</script>

		</body>

</html>

We	included	the	jQuery	UI	theme	CSS	file	in	the	head	section.	Then,	we	have	some	CSS
rules	for	the	elements	on	the	page.	Other	classes	and	their	properties	are	the	same	as	the
previous	CAPTCHA.	We	defined	a	new	CSS	class	for	the	element	with	the	id	slider	and
have	set	its	width.

The	document	body	begins	by	opening	a	form	with	the	class	frmCAPTCHA.	Inside	the	form,
there	is	an	h3	element	and	two	div	elements	with	the	class	name	row.	Inside	h3,	we	have
displayed	both	the	numbers	that	have	to	be	set	on	the	slider.	First	div	with	class	row	has
another	div	with	id	as	slider	and	two	label	elements,	one	label	before	and	one	after	the
slider.	These	labels	will	hold	the	current	value	of	slider	while	it	is	dragged.	The	slider
div	will	be	converted	into	an	actual	jQuery	UI	slider.	The	last	div	with	the	class	row	has
two	hidden	fields	inside	it	and	a	submit	button.	The	id	and	name	attributes	of	these
hidden	inputs	are	minValSelected	and	maxValSelected,	respectively.	Whenever	the	slider
is	dragged,	the	current	minimum	and	maximum	values	of	the	slider	will	be	set	inside	these
hidden	fields.	This	finishes	up	our	form,	after	which	we	include	the	jQuery	js	file	and

jQuery	UI	js	file.

Then,	there	is	the	jQuery	code	that	makes	the	slider	functional.	Inside	the
$(document).ready	handler,	we	converted	the	button	element	to	jQuery	UI	button
component.

Now,	we	can	focus	on	the	slider.	Since	we	have	two	numbers	that	are	going	to	be	from	0
to	100,	we	will	need	2	handles	where	each	handle	will	be	used	to	set	one	number.	To
create	handles,	we	need	to	provide	the	values	option.	It	must	be	an	array	where	the	value
of	each	element	is	set	as	the	handle	value.	So	if	you	provide	three	elements	in	this	array,
the	slider	will	have	three	handles.

We	provided	[0,	100]	as	the	value	for	the	slider	because	our	minimum	and	maximum
values	are	0	and	100,	respectively,	and	we	need	handles	for	these	two.	Next,	we	have	set
the	minimum	and	maximum	values	for	slider.	These	values	specify	the	starting	and	end
limits	of	the	slider.

In	the	end,	we	defined	the	slide	method.	This	method	is	invoked	when	a	slider	handle	is
being	dragged.	Like	other	jQuery	UI	methods,	this	method	receives	two	parameters:	event
and	ui.	The	ui	object	is	what	we	need	here.	This	object	has	three	properties:

handle:	This	is	the	object	corresponding	to	the	slider	handle	that	is	being	dragged
value:	This	is	the	current	value	of	the	current	handle
values:	This	is	the	an	array	that	contains	the	current	values	of	all	handles

Using	the	ui.values	array,	we	first	update	the	text	of	labels	that	are	to	the	left	and	right	of
the	slider	to	the	current	values	of	the	slider	handles.	These	same	values	are	also	being	set
as	the	values	of	the	hidden	input	elements.	So,	each	time	any	of	the	slider	handles	is
moved,	the	hidden	input	fields	will	have	the	updated	value.

Our	slider	is	functional	now	and	we	can	see	it	in	action.	Run	the	sliderCAPTCHA.php	file
using	your	web	server,	and	you	will	see	a	page	like	this:

The	page	will	display	which	values	have	to	be	set	on	the	slider.

Validating	the	slider	values
Clicking	on	the	Check	button	on	the	page	will	submit	the	page,	but	will	do	nothing	as	of
now.	To	check	whether	the	CAPTCHA	has	passed	or	failed,	we	need	to	validate	the	values
against	the	ones	stored	in	session.

Open	the	sliderCAPTCHA.php	file	again	and	add	the	validation	code	in	PHP.	Add	the
following	code	after	the	line	session_start():

if(isset($_POST['submit']))

{

		if($_POST['minValSelected']	!=	$_SESSION['sliderMin']	||	

$_POST['maxValSelected']	!=	$_SESSION['sliderMax'])

		{

				?>

						<div	class="row	ui-widget"	style="line-height:	20px;">

								<div	class="ui-state-error	ui-corner-all">

										<p>

												<span	class="ui-icon	ui-icon-alert"	style="float:	left;	margin-

right:	.3em;">

												CAPTCHA	Failed.	Try	again.

										</p>

								</div>

						</div>

				<?php	

		}

		else

		{

				?>

						<div	class="row	ui-widget"	style="line-height:	20px;">

								<div	class="ui-state-highlight	ui-corner-all">

										<p>

												<span	class="ui-icon	ui-icon-alert"	style="float:	left;	margin-

right:	.3em;">

												CAPTCHA	Passed.

										</p>

								</div>

						</div>

				<?php	

		}

}

The	first	if	condition	is	checking	whether	the	form	was	submitted	or	not.	Inside	it,	we
check	the	values	of	the	hidden	input	elements	submitted	from	forms	that	are	in	the
variables	$_POST['minValSelected']	and	$_POST['maxValSelected'].	The
$_POST['minValSelected']	variables	is	being	checked	against	the	minimum,	that	is,
$_SESSION['sliderMin'],	and	$_POST['maxValSelected']	is	being	checked	against	the
maximum,	that	is,	$_SESSION['sliderMax'].	If	either	of	these	values	do	not	match,	we
display	a	jQuery	UI	themed	error	message;	on	successful	match,	we	display	a	success
message	on	the	page.

Improving	the	slider	CAPTCHA
You	can	make	more	than	two	handles	and	ask	the	user	to	set	different	values	for	each	of
them.	Instead	of	numbers,	create	an	array	of	animal	names	and	select	two	random	names.
Now,	set	up	the	slider	so	that	the	animal	name	changes	on	each	step.	Ask	the	user	to	set
the	slider	in	such	a	way	that	both	handles	have	the	required	values	for	the	generated
names.

Creating	the	number	CAPTCHA
So	far,	we	have	seen	two	examples	with	draggable,	droppable,	and	slider.	For	our	last
implementation,	we	will	use	the	sortable	component	of	jQuery	UI.

We	will	generate	a	five-digit	number	on	the	server	side	and	display	it	to	the	user.	Then,	we
will	display	five	digits	of	the	same	numbers	in	random	order	and	ask	the	user	to	arrange
them	using	sortables	to	make	the	original	number.	However,	this	time	there	will	be	a
difference	in	how	we	display	the	original	number.	Instead	of	printing	the	five-digit	number
directly	on	the	screen,	we	will	display	it	as	an	image.	To	do	this,	we	will	need	an	image	of
all	10	digits	from	zero	to	nine.	This	can	be	created	as	a	single	sprite	of	10	images.	We	will
then	create	five	div	elements,	set	the	background	image	to	the	sprite	image,	and
appropriately	calculate	and	apply	the	background	position	property	to	display	the	correct
number.	You	can	find	this	image	in	the	code	bundle.	Look	inside	the	Chapter5	folder	for
an	image	named	sprite.png.

Here	is	what	the	image	looks	like:

You	will	also	have	to	create	a	new	file	for	this	example.	Create	a	new	file	named
numberCAPTCHA.php	inside	the	Chapter5	folder	and	place	the	sprite.png	image	here.

Generating	the	five-digit	number
We	have	used	PHP’s	rand	function	in	the	previous	examples.	It	will	be	used	here	as	well
to	generate	a	five-digit	number.	Write	the	following	code	in	the	numberCAPTCHA.php	file:

<?php	

		session_start();

		$randomNumber	=	(string)rand(10000,	99999);

		$_SESSION['CAPTCHAValue']	=	$randomNumber;

?>

By	now,	you	must	be	familiar	with	session_start.	A	new	session	is	started	and	in	the
next	line,	we	used	the	rand	function	to	generate	a	number	between	10000	and	99999	and
stored	it	in	the	variable	$randomNumber.	Note	that	we	have	cast	the	number	as	a	string.
This	has	been	done	because	we	will	be	using	it	as	a	string	array	later	on.	In	the	last	line,
this	value	is	stored	in	a	session	variable	called	CAPTCHAValue.

Displaying	CAPTCHA	on	the	page
We	will	now	design	the	page	where	the	generated	number	will	be	displayed.	Along	with
the	generated	number,	we	will	display	the	five	digits	of	this	number	separately.	The
following	diagram	shows	the	page	design	we	want	to	create:

The	following	code	needs	to	be	added	after	the	closing	tag	of	PHP:

<html>

		<head>

				<meta	charset="utf-8">

				<title>Number	CAPTCHA</title>

				<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

				<style	type="text/css">

						body{

								font-family:arial,verdana;

								font-size:12px;

								margin:	0px	auto;

								width:	500px;

						}

						#frmCAPTCHA{

								border:	1px	solid	#EEEEEE;

								float:	left;

								margin:	0	auto;

								padding:	20px;

								width:	100%;

						}

						h3{

								border-bottom:1px	solid	#eee;

						}

						.row{

								display:	block;

								padding:	10px;

								clear:	left;

						}

						.row	label{

								float:	left;	

								padding:	0px	10px;

								width:	125px;

								text-align:	center;

						}

						.bgNumber{

								background:	url("sprite.png")	no-repeat	scroll	0	0	rgba(0,	0,	0,	

0);

								display:	block;

								float:	left;

								height:	27px;

								width:	27px;

						}

						#CAPTCHATiles{

								float:left;

						}

						.clear{

								clear:both;

						}

				</style>

		</head>

		<body>

				<form	id="frmCAPTCHA"	method="post">

						<h3>Number	CAPTCHA</h3>

						<div	class="row">

								<label>CAPTCHA	Number:	</label>

								<?php	

										$arrayNumbers	=	array();

										for($i	=0;	$i<5;	$i++)

										{

												array_push($arrayNumbers,	$randomNumber[$i]);

												$pos	=	($randomNumber[$i]	*	26	*	-1);

								?>

								<div	class="bgNumber"	style="background-position:0px	<?php	echo	

$pos;?>px;"></div>

								<?php	

						}

						?>

						</div>

						<div	class="row">

								<small>Rearrange	the	numbers	given	below	to	make	the	5	

digit	number	displayed	above.</small>

						</div>

						<div	class="row">

						<?php	

								shuffle($arrayNumbers);

						?>

						<label>Drag	to	reorder:	</label>

						<div	id="CAPTCHATiles">

								<?php	

										for($i	=0;	$i<count($arrayNumbers);	$i++)

										{

												$pos	=	($arrayNumbers[$i]	*	26	*	-1);

												echo	'<div	data-value="'.$arrayNumbers[$i].'"	

name="letter_'.$arrayNumbers[$i].'"	id="letter_'.$arrayNumbers[$i].'"	

class="bgNumber"	style="background-position:0	'.$pos.'px;"></div>';

										}

										echo	'</div>';

								?>

						</div>

						<div	class="row">

								<input	type="hidden"	name="filledCAPTCHAValue"	

id="filledCAPTCHAValue"/>

								<button	type="submit"	name="submit">Check</button>

						</div>

				</form>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

		</body>

</html>

As	we	did	earlier,	we	included	the	jQuery	UI	CSS	file	in	the	head	section	and	added	some
CSS	rules	after	it.	Since	the	numbers	will	be	displayed	as	individual	divs,	we	have	created
a	CSS	class	named	bgNumber	that	will	set	the	background	image	as	sprite.png	and	will
also	set	the	height	and	width	of	the	element.	Other	CSS	classes	and	properties	have	also
been	defined	to	fix	the	look	of	the	other	elements.

Coming	to	the	body	section,	there	is	a	form	with	id	frmCAPTCHA.	Inside	it,	there	is	an	h3
element	that	serves	as	the	page	heading.	After	this,	there	is	a	div	having	the	class	row
where	we	display	the	CAPTCHA	value,	that	is,	our	five-digit	number.

To	display	the	number,	a	for	loop	is	used	that	runs	through	the	length	of	the	string.	Each
iteration	of	the	loop	gives	us	access	to	a	digit	of	the	five-digit	string.	This	digit	is
multiplied	by	26	and	then	multiplied	by	-1	and	the	result	is	stored	in	the	variable	$pos.	In
the	next	line,	a	div	with	the	class	bgNumber	is	created	and	its	background-position	CSS
property	is	set.	The	background-position	property	requires	setting	two	values	for	the	x
and	y	axes	of	the	background	image	of	the	element	where	“0px	0px”	is	“horizontal
vertical”.	In	our	sprite	image,	each	digit	covers	around	26	pixels	space	horizontally	and
vertically.	Hence,	we	are	multiplying	the	digit	by	26.	Multiplying	it	with	-1	makes	this
value	negative.	So,	if	0	is	top,	any	negative	value	will	be	towards	the	bottom	of	the	image.
Since	the	image	is	vertical,	we	do	not	need	to	change	the	x	axis	position	for	the
background.	The	value	in	the	$pos	variable	is	set	as	the	y	axis	position	value.

For	example,	if	the	digit	is	4,	it	becomes	4	*	26	*	-1	which	is	-104.	We	set	the	background
position	to	“0	-104px”.	It	causes	the	sprite	to	position	itself	on	the	div	at	the	104th	pixel
position	vertically,	which	displays	the	sprite	where	the	number	written	is	4.

Moving	on,	in	the	next	line,	we	display	an	informative	message	for	users.	There	is	another
div	with	the	class	row	inside	where	we	have	to	display	the	shuffled	numbers.	To	shuffle
the	five-digit	string	that	we	have,	we	use	the	in-built	str_shuffle	function	of	PHP	and
store	the	result	in	the	variable	$shuffledNumber.	Then,	inside	this	div,	we	create	another
div	with	id	CAPTCHATiles.	We	now	loop	on	the	variable	$shuffledNumber	inside	this	div
and	set	the	background-position	property	as	we	did	earlier.

Note

We	have	an	extra	data-value	attribute	while	creating	divs	here.	The	value	for	this
attribute	is	the	digit	itself.	This	value	will	be	used	just	before	the	form	is	submitted	to
create	the	five-digit	number	the	user	has	made.

We	have	now	two	sets	of	five-digit	numbers.	The	first	one	represents	the	original	number
that	was	generated	on	the	server,	and	the	second	set	is	the	same	five	digits	but	in	random
order.

The	final	div	with	the	class	row	contains	a	hidden	input	field	and	a	submit	button.	The
hidden	field	has	its	id	and	name	as	filledCAPTCHAValue.	This	field	will	hold	the	five-digit
number	that	the	user	has	made	after	arranging	the	numbered	boxes.

Close	the	form	tag	and	include	the	jQuery	JavaScript	and	jQuery	UI	JavaScript	files	after
it.	If	you	run	the	file	on	your	browser	now,	you	will	see	both	the	original	five-digit	number
and	the	shuffled	digits	under	it.	Reloading	the	page	will	result	in	different	numbers	each
time.

Adding	the	sortable	functionality
Until	now,	users	were	not	able	to	rearrange	the	divs	to	make	the	number	required	for
CAPTCHA.	For	this,	we	need	to	make	the	shuffled	digits	sortable.	After	jQuery	UI	is
included,	use	the	following	code	to	make	the	digits	sortable:

<script>

		$(document).ready(function(){

				$('button').button();

				$('#CAPTCHATiles').sortable({

						cursor	:	'pointer'

				});

				$('#frmCAPTCHA').submit(function(){

						var	str	=	'';

						$('#CAPTCHATiles	div.bgNumber').each(function(){

								str+=	$(this).data('value');

						});

						$('#filledCAPTCHAValue').val(str);

				});

		});

</script>

In	the	first	line,	we	initialized	the	button	component.	After	that,	we	made	all	the	bgNumber
elements	inside	the	div	CAPTCHATiles	sortable.	We	have	only	provided	an	option	here,
which	is	the	move	value	for	the	cursor	property	that	will	change	the	cursor	as	sorting
starts.

When	the	user	clicks	on	the	Check	button,	we	need	to	know	which	five-digit	number	the
user	has	made	after	arranging	the	sortable	boxes.	To	achieve	this,	we	find	all	the	sortable
divs,	that	is,	the	divs	with	the	class	bgNumber	and	get	the	value	of	their	data	attributes.	A
variable	str	is	appends	all	these	values	together,	which	will	give	us	a	five-digit	string
representing	the	number	that	the	user	has	made	with	the	sortables.	We	assign	this	number
as	a	value	to	the	hidden	element	filledCAPTCHAValue.

Validating	the	number	on	the	server
Clicking	on	the	Check	button	will	send	the	value	of	the	element	filledCAPTCHAValue	to
the	server,	where	it	will	be	available	in	the	variable	$_POST['filledCAPTCHAValue'].	We
can	check	this	value	against	the	value	in	session	to	see	if	the	user	has	arranged	the
numbers	correctly.	The	following	PHP	code	will	be	appended	to	the	file
numberCAPTCHA.php	just	after	the	line	that	has	the	call	to	the	session_start()	function:

if(isset($_POST['submit']))

{

		if($_POST['filledCAPTCHAValue']	!=	$_SESSION['CAPTCHAValue'])

		{

				?>

						<div	class="row	ui-widget"	style="line-height:	20px;">

								<div	class="ui-state-error	ui-corner-all">

										<p>

												<span	class="ui-icon	ui-icon-alert"	style="float:	left;	margin-

right:	.3em;">

												CAPTCHA	Failed.	Try	again.

										</p>

								</div>

						</div>

				<?php	

		}

		else	

		{

				?>

						<div	class="row	ui-widget"	style="line-height:	20px;">

								<div	class="ui-state-highlight	ui-corner-all">

										<p>

												<span	class="ui-icon	ui-icon-alert"	style="float:	left;	margin-

right:	.3em;">

												CAPTCHA	Passed.

										</p>

								</div>

						</div>

				<?php	

		}

}

The	preceding	code	is	pretty	straightforward.	We	check	the	value
$_POST['filledCAPTCHAValue']	against	the	value	in	the	session,	which	is
$_SESSION['CAPTCHAValue'].	In	the	case	of	a	successful	match,	we	display	a	success
message,	or	display	an	error	message	on	failure.

Summary
We	used	three	different	jQuery	UI	components	in	this	chapter.	Although	not	many	options
for	components	were	used,	these	examples	should	give	you	the	knowledge	required	to	use
these	components	in	unusual	ways.	Our	purpose	is	to	not	only	learn	about	the	jQuery	UI
components,	but	to	learn	about	their	practical	usages	and	the	ability	to	think	out	of	the
box.

In	the	next	chapter,	we	will	make	extensive	use	of	the	slider	component	to	create	an	event
timeline.	Meanwhile,	try	to	think	differently	and	create	CAPTCHAs	using	other
components.

Chapter	6.	Creating	an	Event	Timeline
Using	a	Slider
We	have	used	many	components	of	the	fabulous	jQuery	UI	so	far.	In	the	previous	chapter,
Chapter	5,	Implementing	CAPTCHA	Using	Draggable	and	Droppable,	we	used	draggable,
droppable,	and	the	slider	functionalities	to	create	some	new	CAPTCHA	implementations.
In	this	chapter,	we	will	use	the	slider	again,	and	we	will	create	an	event	timeline	that
makes	use	of	it.

The	following	screenshot	shows	what	the	timeline	will	look	like.	It	will	be	a	scrollable,
horizontal	list	of	events	from	the	year	2001	to	the	year	2010.	The	data	for	the	events	of
each	year	will	be	kept	in	a	JavaScript	object	and	displayed	using	JavaScript.

Each	year	will	be	displayed	as	a	separate	block	wherein	we	will	display	the	number	of
events	that	occurred	in	that	year.	Initially,	five	blocks	for	each	year	will	be	visible	when
the	page	loads,	but	we	will	keep	the	number	of	items	to	display	configurable:

There	will	be	a	slider	under	the	timeline.	It	will	have	its	range	from	2001	to	2010.
Dragging	the	slider	will	scroll	the	timeline	to	set	focus	to	the	year	set	by	the	slider.	If	the
selected	year	is	not	visible,	the	timeline	will	be	scrolled	to	bring	it	in	focus.

To	focus	on	a	particular	year,	we	will	use	another	div	element	as	a	window.	In	the
preceding	screenshot,	we	can	see	2006	selected	by	a	red-bordered	window.	The	user	will
be	able	to	drag	this	window	to	set	focus	on	other	years.	This	will	also	set	the	slider	to	that
particular	year.

Clicking	on	any	year	will	expand	the	corresponding	div	block	to	full	width	and	will	list	all
events	in	detail,	which	will	resemble	the	following	screenshot:

There	will	be	some	mathematics	required	to	perform	the	animation,	and	calculations	to
position	the	elements	dynamically,	so	grab	a	cup	of	coffee	and	jump	to	the	next	section.

Creating	the	folder	structure
The	first	step	is	to	create	the	required	folder	structure:

1.	 Just	as	in	the	previous	chapters,	create	a	folder	named	Chapter6	inside	the
MasteringjQueryUI	folder.

2.	 Inside	this	folder,	create	an	HTML	file	and	name	it	index.html.	This	file	will	keep
our	HTML	markup.

3.	 Also	copy	the	js	and	css	folder	inside	the	Chapter6	folder.
4.	 Now	go	inside	the	js	folder,	create	a	new	file,	and	name	it	timeline.js.	This	file

will	have	all	of	the	JavaScript	code	required	for	our	timeline.

We	can	now	move	to	the	next	step	and	write	the	HTML	markup.

Designing	the	page
HTML	markup	and	CSS	are	very	important	when	it	comes	to	designing	a	feature	like
timeline	using	a	slider,	because	precision	will	be	required	to	position	the	elements.	Most
of	the	data	will	be	filled	using	JavaScript.	Because	of	this,	we	will	need	minimal	markup,
but	it	must	be	accurate.	Write	this	HTML	code	in	your	index.html	file	to	create	a	basic
structure:

<html>

		<head>

		<meta	charset="utf-8">

		<title>Event	Timeline</title>

		<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

		</head>

		<body>

				<div	class="container">

						<div	id="timeline"></div>

						<div	id="leftOverlay"class="overlay"	></div>

						<div	id="rightOverlay"	class="overlay"	></div>

						<div	id="window">

								<div	class="ui-state-default	ui-corner-all	close"><span	class="ui-

icon	ui-icon-closethick"></div>

								<div	id="yearEvents"></div>

								<div	class="link">Click	to	see</div>

						</div>

				</div>

				<div	class="clear">	</div>

				<div	id="slider"></div>

				<div	class="clear"> </div>

				<label	id="sliderVal"></label>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

				<script	src="js/timeline.js"></script>

		</body>

</html>

We	start	by	creating	a	div	element	with	a	class	container.	This	div	will	contain	the
entire	markup	for	the	timeline.	Inside	it	are	four	more	div	elements.	The	first	element	has
its	id	set	as	timeline.	This	div	will	contain	individual	div	elements	corresponding	to
each	year.	There	are	10	years	in	our	case	(from	2001	to	2010).	Then	there	are	two	div
elements	with	their	id	values	as	leftOverlay	and	rightOverlay,	respectively.	If	you
recall	the	first	screenshot	earlier	in	this	chapter,	you	will	realize	that	the	year	2006	is
selected	and	other	years	to	its	left	and	right	have	overlays	on	them.	Therefore,
leftOverlay	will	act	as	an	overlay	for	the	elements	that	are	towards	left	of	the	currently
selected	year,	and	rightOverlay	will	be	the	overlay	for	the	elements	to	the	right	of

currently	selected	year.

At	the	end	is	a	div	with	its	id	set	as	window.	This	div	will	act	as	a	handle	or	window	for
the	selected	year.	User	will	be	able	to	drag	it	and	set	focus	to	any	other	year.	Clicking	it
will	expand	it	to	cover	whole	timeline	div	and	events	will	be	listed	inside	it.	To	achieve
this,	we	will	require	three	div	elements	inside	it.

The	first	div	is	a	close	icon	that	has	been	created	using	the	ui-icon-closethick	class	of
the	jQuery	UI	themeroller.	Clicking	on	it	will	collapse	the	window	and	return	the	timeline
to	its	original	state.	The	second	div	has	the	id	set	as	yearEvents.	It	will	display	all	the
events	for	a	selected	year.	The	final	div	is	just	for	information.	It	asks	the	user	to	click
when	the	window	is	focused	on	a	particular	year.

Since	markup	is	incomplete	without	any	CSS	styling,	we	will	now	write	the	CSS	rules	for
different	elements.

Styling	the	content
We	will	have	to	be	very	precise	about	the	CSS	rules	for	all	elements,	especially	for	all	the
elements	inside	the	div	having	id	container.	Write	the	following	CSS	rules	in	the	head
section	of	the	index.html	file,	and	then	we	will	go	through	each	of	these	to	see	the
concepts	behind	them:

<style	type="text/css">

		body{

				font-family:arial,verdana;

				font-size:12px;

				margin:	0px	auto;

				width:	900px;

		}

		.container{

				border:	1px	solid	#333;

				border-left:0;

				height:	250px;

				margin:	100px	auto	0;

				overflow:	hidden;

				position:relative;

				width:	500px;

		}

		#timeline{

				border-left:	1px	solid;

				width:	2000px;

				position:absolute;

		}

		.year{

				border-left:	1px	solid	#333;

				float:	left;

				height:	250px;

				width:	99px;

				text-align:center;

		}

		.year	div{

				margin-top:	50px;

		}

		#window	 {

				border:	2px	solid	#ff0000;

				height:	247px;

				left:	0;

				position:	absolute;

				cursor:pointer;

				top:	0;

				width:	99px;

				z-index:300;

		}

		.close{

				display:none;

				position:	absolute;

				right:	5px;

				text-decoration:	underline;

				top:	5px;

		}

		.link{

				bottom:	20px;

				position:	absolute;

				text-align:	center;

				width:	100%;

		}

		.overlay{

				background-color:	#2b2b2b;

				height:	250px;

				opacity:	0.15;

				position:absolute;

				z-index:100;

		}

		#leftOverlay{

				left:0;

		}

		#rightOverlay{

				right:0px;

				width:	400px;

		}

		#yearEvents	ul	li{

				font-size:	16px;

				line-height:	25px;

		}

		#slider{

				margin:0	auto;

				width:500px;

		}

		#sliderVal{

				width:	100%;

				display:	block;

				text-align:	center;

				font-weight:bold;

		}

		.clear{

				clear:both;

		}

</style>

Now	let’s	try	to	understand	the	important	properties	of	all	the	CSS	rule	declarations	one
by	one:

body:	General	CSS	properties	that	will	be	applied	to	whole	document	are	defined
here.	The	font	details	and	document	width	are	declared.	The	document	is	centered.
.container:	This	class	defines	the	outer	body	of	the	timeline.	We	have	applied	all
borders	except	on	the	left.	The	left	border	will	be	applied	by	a	year	div.	The	three
most	important	properties	to	note	here	are	width,	position,	and	overflow.	Since	the
div	for	one	year	is	going	to	be	100px	wide	and	we	are	initially	going	to	display	5
years,	we	have	set	the	width	to	500px.	Since	the	overlays	and	the	window	div	inside
this	div	will	have	to	be	positioned	absolutely,	we	have	set	the	postion	property	for
the	container	as	relative.	This	will	cause	the	inside	elements	to	position	them
relative	to	the	container	div.	Because	the	width	is	set	to	only	500px	and	there	can

be	more	than	five	div	elements	for	years,	we	have	set	the	overflow	to	hidden.	This
will	hide	all	elements	after	the	500px	width.
#timeline:	This	div	will	contain	all	other	divs	for	each	year,	so	we	have	defined	its
width	as	2000px.
.year:	This	class	will	be	applied	to	div	elements	for	individual	years.	We	have
defined	its	width	as	99px.	The	1px	value	has	been	assigned	to	left	border.	A	height
of	250px	has	also	been	assigned.	This	will	give	us	the	appearance	of	the	columns.
.year	div:	This	rule	will	be	applied	to	div	elements	inside	the	year	div.
#window:	This	div	will	work	as	a	focus	window	for	a	year.	To	make	it	stand	out,	we
have	applied	a	2px	red-colored	border	to	it.	It	has	also	been	positioned	absolute,	and
the	left	margin	has	been	set	to	0.	Absolute	positioning	is	required	so	that	we	can
easily	position	it	anywhere	inside	the	timeline	div.	Its	z-index	value	has	been
defined	as	300	to	make	it	appear	on	top.
.close:	This	div	will	work	as	a	close	icon	when	the	window	is	expanded.	Initially,	it
will	be	hidden,	so	we	have	set	its	display	property	to	none.	It	has	been	positioned
absolutely	and	5px	far	from	the	top	and	right	margins.
.overlay:	We	will	have	two	overlays,	one	on	each	side	of	the	window	div.	This	class
defines	general	CSS	properties	for	them.	We	have	set	the	background-color	and
opacity	to	make	it	semi-transparent.	The	height	has	been	set	to	250px,	and
absolute	positioning	has	been	done	so	that	we	can	adjust	the	positions	whenever	the
window	div	moves.
#leftOverlay:	This	is	specific	to	the	overlay	on	the	left	of	window	div.	We	have	set
its	left	property	to	0	because	initially,	the	window	will	be	focused	on	the	first	year
of	the	timeline,	and	we	do	not	need	left	overlay.	Since	its	parent	is	the	container
div,	it	will	be	positioned	relative	to	the	container.
#rightOverlay:	This	overlay	has	been	positioned	to	the	right	and	its	width	is	400px.
This	is	easy	to	calculate	as	the	width	of	window	div	is	set	to	100px,	which	leaves	a
400	px	space	to	its	right	for	the	overlay.	Since	its	parent	is	the	container	div,	it	will
be	positioned	relative	to	the	container.
#yearEvents	ul	li:	When	a	particular	year	is	clicked	on,	we	will	display	all	events
for	that	year	in	the	form	of	an	unordered	list	ul.	This	list	will	be	appended	to	the	div
with	the	id	yearEvents.	We	have	set	the	font-size	and	line-height	properties	for
each	list	item	li	in	the	list.
#slider:	Similar	to	the	timeline,	the	slider	width	has	been	made	500px	and	set	to
the	center	of	the	document	using	the	margin	property.
#sliderVal:	This	is	a	label	where	we	will	display	the	currently	selected	year	when
the	slider	is	sliding.
.clear:	This	is	the	generic	CSS	class	used	to	clear	the	floats.

With	the	preceding	list,	we	have	covered	all	the	CSS	rules	required	to	structure	the
timeline	div	as	well	as	to	beautify	it	to	some	extent.

Save	the	index.html	file	if	you	have	not	done	so	and	open	it	in	browser.	The	basic
structure	of	the	page	will	resemble	the	following	screenshot:

Since	no	jQuery	has	been	applied,	the	slider	will	not	be	visible	yet.	The	rest	of	the	display
will	be	created	using	jQuery	and	jQuery	UI.

Let	us	now	go	to	the	next	section,	where	we	will	jump	into	jQuery	and	get	our	JavaScript
code	structure	ready	to	implement	the	timeline.

Getting	the	code	structure	ready
Just	as	we	saw	in	the	last	couple	of	chapters,	we	will	continue	with	the	object-literal
pattern	to	organize	our	code.	Our	$(document).ready()	section	will	have	only	a	call	to
the	init	method	of	the	object,	which	will	encapsulate	the	rest	of	the	functionality.	We	will
first	declare	all	the	properties	and	methods	required	to	make	the	timeline	functional,	and
later	implement	each	method.

Navigate	to	the	js	folder	in	your	filesystem	and	open	the	timeline.js	file.	In	this	file,
write	the	following	code	to	set	up	our	object	and	a	$(document).ready()	handler	to	call
its	init	method:

$(function(){

		objTimeline.init();

});

var	objTimeline	=	

{

		itemsToDisplay	:	5,

		minYear	:	0,

		maxYear	:	0,

		currentYear	:	0,

		maxScrollYear	:	0,

		timelineWindowStartYear	:	0,

		windowLeft:0,

		isWindowOpen	:	false,

		timelineData	:	

		[

				{

						year	:	2001,

						events	:	['Human	Genome	Sequence	Revealed',	'World	Economic	

Slowdown']

				},

				{

						year	:	2002,

						events	:	[]

				},

				{

						year	:	2003,

						events	:	['Space	shuttle	Columbia	crashed',	'India	and	Pakistan	reach	

cease-fire	in	Kashmir',	'Earthquake	in	Iran	kills	over	15,000	people']

				},

				{

						year	:	2004,

						events	:	['NASA	rover	Opportunity	lands	on	Mars',	'Yasar	Arafat	

dies',	'Bird	flu	spreads	in	many	countries']

				},

				{

						year	:	2005,

						events	:	['Hurricane	Katrina	on	August	29']

				},

				{

						year	:	2006,

						events	:	['Google	buys	YouTube	for	more	than	$1.5	billion',	'Apple	

iTunes	sold	1	billionth	song',	'Saddam	Hussein	executed',	'	Italy	won	FIFA	

World	Cup	5-3	vs.	France']

				},

				{

						year	:	2007,

						events	:	['	Halo	3	released',	'Microsoft	released	Windows	Vista']

				},

				{

						year	:	2008,

						events	:	['Barack	Obama	became	first	African-American	president	of	

USA',	'Summer	olympic	games	held	in	Beijing']

				},

				{

						year	:	2009,

						events	:	['Israel	attacks	Gaza',	'Michael	Jackson	dies	at	50	years']

				},

				{

						year	:	2010,

						events	:	['Apple	released	first	iPad',	'Earthquake	in	Haiti']

				}

],

		init	:	function()

		{

				this.createMarkup();

				this.createTimeline();

		},

		createMarkup	:	function()

		{

		},

		createTimeline:	function()

		{

		},

		closeWindow	:	function()

		{

		}

};

The	first	block	of	code	is	jQuery’s	event	handler,	which	is	fired	once	the	page	has	loaded
and	the	DOM	is	ready.	Inside	it,	we	call	the	init	method	of	an	objTimeline	object.	Let’s
look	at	each	of	the	properties	of	objTimeline	in	detail:

itemsToDisplay:	This	is	a	configuration	option	with	which	we	will	decide	how	many
years	have	to	be	displayed	in	the	timeline.	This	parameter	is	very	important	as	we
will	have	to	calculate	the	size	of	container	div	using	this	parameter	only.	Initially,
we	have	set	it	to	5.
minYear:	From	the	list	of	events,	we	will	calculate	the	minimum	year	that	is	available
for	events	and	store	it	in	this	property.
maxYear:	Just	like	minYear,	this	property	will	store	the	year	with	the	maximum	value.
Both	the	minYear	and	maxYear	properties	will	be	used	to	set	the	minimum	and
maximum	values	for	the	slider.
currentYear:	This	stores	the	year	that	is	currently	selected	either	by	the	slider	or	by
dragging	the	window	div.
maxScrollYear:	This	property	will	be	calculated	at	runtime.	It	defines	the	maximum

year	beyond	which	the	timeline	will	not	scroll.	Let’s	see	why	this	is	important.	We
have	a	500	px	wide	container	and	years	from	2001	to	2010.	When	the	timeline	div
scrolls	and	2006	is	in	the	extreme	left,	we	have	2010	as	the	last	available	year	on	the
right.	Now,	if	we	select	2007,	the	timeline	must	stay	intact	and	only	the	focus
window	should	move.	Otherwise,	we	will	have	only	4	years	visible	in	the	timeline,
and	empty	space	to	the	right.
timelineWindowStartYear:	This	property	will	store	the	value	of	the	year	that	is
currently	at	the	extreme	left	of	the	timeline.	Along	with	the	previous	property,
maxScrollYear,	the	decision	to	scroll	or	not	to	scroll	the	window	will	be	taken	here.
windowLeft:	This	will	store	the	value	of	the	CSS	left	property	for	the	div	with	the	id
window.	Since	clicking	on	a	year	window	will	expand	it	to	take	up	the	full	width	and
closing	it	will	collapse	it	to	the	original	size,	we	need	to	know	which	position	it	was
in	before	expanding.
isWindowOpen:	This	keeps	track	of	whether	a	year	window	is	open	in	the	expanded
view	or	not.	Initially,	it	will	be	false.
timelineData:	This	property	is	where	we	define	the	year	and	events	for	those	years.
As	you	can	see	in	the	code,	timelineData	is	an	array	of	objects.	Each	object	in	the
array	represents	an	array	and	has	two	properties,	namely	year	and	events.	The
events	property	is	an	array	where	each	item	of	the	array	represents	an	event.	In	our
case,	we	defined	years	and	their	events	from	2001	to	2010.
init:	This	is	the	first	method	of	objTimeline	to	be	called.	It	simply	calls	two	more
methods,	createMarkup	and	createTimeline.
createMarkup:	This	method	will	be	responsible	for	creating	markup	for	the	timeline
div	and	the	years	div	from	the	event	array	defined	via	the	timelineData	property.
createTimeline:	Event	handlers	for	slider,	dragging	window	div,	window	click,	and
so	on	will	be	implemented	here.
closeWindow:	This	is	used	to	close	the	window	div	when	it	is	expanded	after	clicking
on	a	specific	year.

The	preceding	object	structure	makes	clear	the	way	we	are	going	for	our	implementation.
We	will	start	by	creating	and	displaying	the	timeline	on	our	page.

Creating	the	timeline	markup	from	data
To	create	the	required	markup,	we	will	iterate	on	the	array	defined	for	the	timelineData
property	and	fill	the	div	with	the	id	timeline.	We	will	also	resize	the	container	div
based	on	the	value	of	the	itemsToDisplay	property.	Other	properties	such	as	minYear,
maxYear,	currentYear,	timelineWindowStartYear,	and	maxScrollYear	will	also	be	set.

In	the	timeline.js	file,	locate	the	createMarkup	method	and	write	this	code	to	create	the
timeline:

$('.container').css({width:	(objTimeline.itemsToDisplay*100)+'px'});

$('#rightOverlay').css({	width:	((objTimeline.itemsToDisplay	*	100)	-	100)	

+	'px'	});

this.minYear	=	this.timelineData[0].year;

this.maxYear	=	this.timelineData[0].year;

var	strYearDivs	=	'';

for(var	i=0;	i<	this.timelineData.length;	i++)

{

		strYearDivs+=	'<div	class="year">';

		strYearDivs+=	''+	this.timelineData[i].year	+	'';

		strYearDivs+=	'<div	class="numEvents">'	+	

(this.timelineData[i].events.length)	+	'	events	found</div>';

		strYearDivs+=	'</div>';

		this.minYear	=	this.timelineData[i].year	<	this.minYear	?	

this.timelineData[i].year	:	this.minYear;

		this.maxYear	=	this.timelineData[i].year	>	this.maxYear	?	

this.timelineData[i].year	:	this.maxYear;

}

this.currentYear	=	this.minYear;

this.timelineWindowStartYear	=	this.currentYear;

$('#sliderVal').text(this.currentYear);

this.maxScrollYear	=	this.maxYear	-	(objTimeline.itemsToDisplay	-	1);

$('#timeline').html(strYearDivs);

The	first	line	sets	the	width	of	the	div	with	the	id	set	as	container.	Since	we	have	set
itemsToDisplay	to	5,	a	500px	width	will	be	set	for	the	container.	Similarly,	the	next	line
sets	the	width	for	the	rightOverlay	div.	Since	we	want	the	first	year	to	be	selected	(or
focused)	by	default,	the	width	for	rightOverlay	will	be	100	px	less	than	the	container
size.

The	next	two	lines	set	a	default	value	for	minYear	and	maxYear	by	getting	the	value	of	the
year	of	the	first	element	in	the	timelineData	array.

A	variable	named	strYearDivs	is	defined	as	an	empty	string.	It	will	hold	the	DOM	for	the
timeline	divs	having	class	year.	A	for	loop	iterates	in	timelineData	and	creates	a	div
with	the	year	class,	with	the	year	number	written	inside	it.	Another	div	with	the
numEvents	class	is	created,	in	which	the	length	of	the	events	array	for	each	array	element
is	written.	This	loop	also	sets	the	correct	minYear	and	maxYear	values	using	two	ternary
operators.

After	the	loop	is	complete,	we	have	the	HTML	string	ready	as	well	as	the	correct	values
for	minYear	and	maxYear.

Now	we	set	the	currentYear	property	to	minYear.	The	timelineWindowStartYear
property	is	set	to	currentYear	as	well	because	the	first	year	will	be	focused	by	default.
The	HTML	of	the	sliderVal	label	is	also	set	to	currentYear.

The	penultimate	line	sets	the	maxScrollYear	property.	If	you	recall,	maxScrollYear	is	the
value	of	the	year	beyond	which	the	timeline	will	not	scroll.	It	is	calculated	by	subtracting
itemsToDisplay-1	from	maxYear.	For	our	example,	maxYear	is	2010	and	itemsToDisplay
is	5,	which	gives	us	maxScrollYear	as	(2010	–	(5-1))	=	2006.	Thus,	2006	will	be	the
value	beyond	which	the	timeline	will	not	scroll.

In	the	last	line,	we	insert	the	strYearDivs	HTML	string	into	the	timeline	div.	At	this
moment,	you	can	save	the	file	and	see	after	reloading	the	page	in	the	browser	that	5	years
have	appeared	in	timeline	and	the	window	is	fixed	on	the	first	year,	as	shown	in	the
following	screenshot:

You	can	change	the	value	of	the	itemsToDisplay	property	and	see	that	the	UI	changes
accordingly.

Implementing	the	timeline	functionality
The	page	that	we	designed	is	static	as	of	now.	There	are	three	things	we	need	to	change	to
get	the	timeline	working:	slider	functionality,	window	dragging,	and	displaying	events	for
selected	year.

Let	us	begin	implementing	them	one	by	one,	starting	with	the	slider.

Making	the	slider	work
The	slider	will	have	its	range	set	to	the	minYear	and	maxYear	properties.	We	will	update
the	value	of	the	sliderVal	label	as	the	slider	slides,	and	when	it	stops,	we	will	animate	the
interface	that	includes	the	positioning	of	the	timeline,	window	div,	leftOverlay	div	and
rightOverlay	div.	In	order	to	achieve	this,	we	will	write	the	following	code	inside	the
createTimeline	method:

$('#slider').slider(

{

		min:	objTimeline.minYear,

		max:	objTimeline.maxYear,

		step	:	1,

		start	:	function(event,	ui)

		{

				if(objTimeline.isWindowOpen)

				{

						objTimeline.closeWindow();

				}

		},

		slide:	function(event,	ui)

		{

				objTimeline.currentYear	=	ui.value;

				$('#sliderVal').text(objTimeline.currentYear);

		},

		stop	:	function(event,	ui)

		{

				if(objTimeline.currentYear	>=	objTimeline.maxScrollYear)

				{

						objTimeline.timelineWindowStartYear	=	objTimeline.maxScrollYear;

						//animate	timeline

						$('#timeline').animate(

						{

								left	:	(objTimeline.timelineData.length	-	

objTimeline.itemsToDisplay)	*	100	*	-1

						},	400);

						var	yearsToScroll	=	objTimeline.currentYear	-	

objTimeline.maxScrollYear;

						//animate	window

						$('#window').animate(

						{

								left	:yearsToScroll	*	100

						},	400);

						//animate	overlays

						$('#leftOverlay').show().animate(

						{

								width:	(yearsToScroll	*	100)

						},	400);

						$('#rightOverlay').show().animate(

						{

								width:	((objTimeline.itemsToDisplay	-1)	*	100)	-	

yearsToScroll	*	100)

						},	400);

				}

				else	

				{

						objTimeline.timelineWindowStartYear	=	objTimeline.currentYear;

						var	yearDiff	=	Math.abs(objTimeline.currentYear	-	

objTimeline.minYear);

						var	newLeft	=	((yearDiff	*	100))	*	-1;

						$('#timeline').animate(

						{

								left	:	newLeft

						},	400);

						$('#window').animate(

						{

								left	:	0

						},	400);

						$('#leftOverlay').hide();

						$('#rightOverlay').show().animate(

						{

								width:	(objTimeline.itemsToDisplay	*	100)	-	100

						},	400);

				}

		}

});

We	begin	by	initializing	the	jQuery	UI	slider	and	defining	its	properties.	First,	the	min	and
max	properties	are	set	to	minYear	and	maxYear,	respectively,	which	will	set	the	lower	and
upper	bounds	for	the	slider	to	slide.

Next,	we	set	the	step	property	to	1.	This	property	determines	the	value	by	which	the	slider
will	increment	or	decrement	on	each	slide.	Its	value	is	1	by	default,	so	even	if	we	do	not
provide	the	step	property,	it	will	work	perfectly	for	our	application.	It	can	be	useful	in
certain	cases;	for	example,	when	you	want	to	step	decade	by	decade,	you	can	set	step	to
10.

After	properties,	we	defined	the	start,	slide,	and	stop	methods.	The	start	method	is
called	when	the	user	starts	sliding,	slide	is	called	when	the	slide	is	in	progress,	and	stop
is	called	when	the	sliding	stops.

Inside	the	start	method,	we	check	the	value	of	the	isWindowOpen	property.	If	it	is	set	to
true,	we	call	the	closeWindow	method.	Since	isWindowOpen	has	been	set	to	false	initially,
if	block	will	not	be	executed.	The	isWindowOpen	method	will	be	set	to	true	later	when	the
user	clicks	on	a	year	and	the	window	expands	to	cover	whole	timeline.	We	are	calling
closeWindow	method	on	startup	because	we	want	the	timeline	to	be	in	its	original	state
when	the	sliding	starts.

Since	the	slide	method	is	called	when	the	slider	is	being	moved,	we	are	setting	the	value
for	currentYear.	The	ui	parameter	receives	the	current	value	in	the	ui.value	property.
This	will	ensure	that	we	have	an	updated	value	whenever	the	slider	moves.

The	stop	method	is	where	we	scroll	the	timeline	and	set	the	positions	for	the	window	and
overlays	based	on	the	selected	year.	This	is	a	bit	complex,	so	please	go	through	it	slowly.

The	if	block
We	have	an	if	block	that	will	be	executed	only	if	the	value	of	currently	selected	year	is
equal	to	or	more	than	maxScrollYear.	Since	maxScrollYear	is	2006	in	our	case,	the	if
block	will	be	executed	only	if	currentYear	is	2006	or	greater.

Since	in	this	case	timeline	will	not	scroll	but	only	windows	and	overlays	will	scroll,	we	set
the	timelineWindowStartYear	property	to	maxScrollYear.	Now	we	set	the	left	property
of	the	timeline	so	that	the	div	that	represents	the	maxScrollYear	year	remains	on	the
extreme	left.	We	have	used	jQuery’s	animate	function,	which	will	set	the	left	property	by
animating	it	in	400	milliseconds.	The	formula	we	are	using	is
(objTimeline.timelineData.length	-	objTimeline.itemsToDisplay)	*	100	*	-1.
This	will	give	us	(10	-	5)	*	100	*	-1,	which	is	-500.	The	negative	value	will	cause	the
timeline	div	to	scroll	to	the	left	and	set	2006	in	the	extreme	left.

Note
Remember	that	in	this	case,	2006	will	always	be	on	the	extreme	left	and	the	timeline	will
not	scroll	(this	applies	if	itemsToDisplay	is	equal	to	5).

Now	we	need	to	animate	the	window	and	the	overlays.	We	have	calculated	the	difference
in	number	of	years	in	the	yearsToScroll	variable.

To	set	up	the	window,	we	need	to	set	its	left	property	depending	on	which	year	is	selected.
If	2006	is	selected,	its	left	will	property	be	0;	if	2007	is	selected,	left	will	be	100;	left	will
be	200	for	2008;	and	so	on.	Hence,	the	formula	becomes	yearsToScroll	*	100.

To	set	the	leftOverlay	div,	we	need	to	set	its	width.	Again,	if	the	year	is	2006,	it	should
not	be	visible,	or	width	can	be	0;	in	the	case	of	2007,	the	width	will	be	100	px.	Therefore,
the	same	formula	(yearsToScroll	*	100)	will	be	applied.	Since	leftOverlay	is
absolutely	positioned,	its	left	value	is	set	to	0	and	it	will	cover	the	timeline	from	left	to
right.

For	rightOverlay,	the	formula	becomes	((objTimeline.itemsToDisplay	-1)	*	100)
-	(yearsToScroll	*	100).	Since	rightOverlay	begins	from	the	right,	it	will	cover	the
timeline	until	it	touches	the	right	border	of	the	window.

Since	width	and	left	are	all	numerical	values,	we	have	used	jQuery’s	animate	function	to
create	the	visual	effect	when	windows	and	overlays	change	their	position.

The	else	block
The	else	block	will	be	executed	when	we	need	to	scroll	the	timeline	as	well.	The
calculations	here	are	simple	compared	to	those	of	the	if	block.

In	this	case,	the	selected	year	will	always	be	the	first	item	in	the	timeline	div,	so	we	start
by	setting	timelineWindowStartYear	to	currentYear.	Then	we	calculate	the	absolute
number	of	years	between	minYear	and	currentYear.	For	example,	if	minYear	is	2001	and

currentYear	is	2005,	the	difference	is	5	years.	Since	each	year	div	is	100	px	wide,	we
can	set	the	left	property	of	the	timeline	to	500	px,	which	will	position	the	div	for
currentYear	to	the	extreme	left.

For	leftOverlay	can	simply	hide	it	because	the	currentYear	div	is	already	on	the
extreme	left,	and	we	do	not	need	a	left	overlay.

The	calculation	of	the	width	of	rightOverlay	is	pretty	straightforward	as	well.	We	can	use
the	(objTimeline.itemsToDisplay	*	100)	–	100	formula	to	find	the	width.	Using	the
itemsToDisplay	property	rather	than	hard	coding	a	value	such	as	5	or	3	is	a	good	idea.	It
gives	you	the	flexibility	to	configure	more.

This	concludes	our	scrolling	and	animations	for	the	slider.	After	saving	the	file,	reload	the
page	in	your	browser	and	give	the	slider	a	try.	You	will	see	the	div	window	and	the	left	and
right	overlays	moving	with	smooth	animation.

Dragging	the	year	window
Apart	from	the	slider,	we	also	want	to	be	able	to	drag	the	window	div	in	the	visible
viewport	to	focus	on	other	years.	This	should	also	move	the	overlays	and	the	slider	value.
For	this,	we	will	convert	the	window	div	into	a	draggable	and	use	its	methods	to	control
the	UI	behavior.	In	the	same	method	after	the	slider	code,	write	this	code	to	make	the
window	draggable	and	move	overlays:

$('#window').draggable(

{

		containment:	'.container',	

		grid	:	[100,0],

		cursor:	'pointer',

		drag	:	function(event,	ui)

		{

				var	leftPos	=	ui.position.left;

				$('#leftOverlay').css({width:	leftPos}).show();

				$('#rightOverlay').css({width	:	(objTimeline.itemsToDisplay	*	100)	-	

leftPos	-	100}).show();

		},

		stop	:	function(event,	ui)

		{

				var	leftPos	=	ui.position.left;

				leftPos	=	leftPos/100;

				objTimeline.currentYear	=	objTimeline.timelineWindowStartYear	+	

leftPos;

				$('#slider').slider('value',	objTimeline.currentYear);

				$('#sliderVal').text(objTimeline.currentYear);

		}

});

The	first	option	is	containment,	which	has	been	set	to	.container.	Since	the	#window	div
is	inside	div.container,	we	don’t	want	it	to	go	outside	while	dragging.	Instead	of
specifying	.container,	we	could	write	the	parent	as	well.

The	grid	option	is	used	to	snap	the	grid	by	an	(x,y)	distance	horizontally	and	vertically.
We	specified	it	as	(100,0),	which	means	that	dragging	the	div	horizontally	will	move	it
100	px	away	from	its	current	position.

The	cursor	property	changes	the	cursor	while	the	div	is	being	dragged.	We	specified
pointer	as	its	value.

Next,	we	implemented	the	drag	method.	This	method	invokes	while	div	is	being	dragged.
Since	the	window	is	being	dragged	and	the	draggable	component	will	position	it,	we	need
to	take	care	of	the	left	and	right	overlays.	The	drag	event	receives	the	left	CSS	property	as
a	property	of	the	ui	parameter.	We	store	it	in	the	leftPos	variable.	Then	we	set	the	width
of	leftOverlay	to	leftPos.	Doing	so	expands	leftOverlay	from	the	extreme	left	to	the
left	border	of	the	window.

Similarly,	we	set	the	width	of	rightOverlay	using	the	(objTimeline.itemsToDisplay	*
100)	-	leftPos	-	100})	formula.

Once	the	user	stops	dragging	the	window,	the	stop	method	of	draggable	is	called.	Inside

this	method,	we	first	take	the	left	CSS	value	for	the	window	as	in	the	drag	method.
Because	each	year	div	is	100	px	wide,	we	divide	it	by	100	to	find	out	how	many	years	it
has	moved	by.	The	number	of	these	years	is	added	to	timelineWindowStartYear	to	get
the	year	where	the	window	is	currently	placed.	Once	we	have	calculated	the	value,	we	set
the	value	of	the	currentYear	property.	After	this,	we	set	the	slider’s	value	to	currentYear
and	change	the	text	inside	the	sliderVal	label	to	reflect	the	currently	selected	year.

If	you	reload	the	page	in	the	browser	now,	you	will	be	able	to	drag	the	window.	Overlays
will	adjust	their	widths	accordingly,	and	once	you	stop	dragging,	the	slider	will	also	be	set
to	the	year	where	the	window	div	rests.

Displaying	event	details	when	a	year	window	is
clicked	on
With	all	the	sliding	and	dragging	done,	we	now	have	to	add	the	click	event,	which	works
when	a	year	div	is	clicked.	It	will	expand	the	window	to	cover	the	full	timeline	and	we
will	display	the	event	details	inside	it:

1.	 Write	this	code	after	the	window	dragging	code	to	implement	the	click	handler	for
div#window:

$('#window').click(function()

{

		if(objTimeline.isWindowOpen)

		{

				return;

		}

		objTimeline.isWindowOpen	=	true;

		$('.link').hide();

		objTimeline.windowLeft	=	$(this).css('left');

		$(this).css({'background-color'	:	'#fff'})

		.animate({

				left	:	0,

						width	:	(objTimeline.itemsToDisplay	*	100)	-4	+	'px',

						height:	'246px'

		},	100,	function()

		{

				$('.container').css({'border'	:	0});

				$('.close').show();

				var	str	=	'';

				for(var	i=0;	i	<objTimeline.timelineData.length;	i++)

				{

						if(objTimeline.timelineData[i].year	==	objTimeline.currentYear)

						{

								var	allEvents	=	(objTimeline.timelineData[i]).events;

								if(allEvents.length	==	0)

								{

										str+=	'No	events	found.';

								}

								for(var	j=0;	j<	allEvents.length;	j++)

								{

										str+=	'';

										str+=	allEvents[j];

										str+=	'';

								}

								break;

						}

				}

				str+=	'';

				$('#yearEvents').html(str);

		});

});

2.	 Check	whether	the	window	is	already	open	using	isWindowOpen	property.	If	window

is	already	expanded	for	some	other	year,	we	just	return	from	the	handler.
3.	 Otherwise,	we	set	isWindowOpen	to	true.
4.	 Then	we	hide	the	div	having	the	link	class.
5.	 Next	we	set	the	value	of	the	objTimeline.windowLeft	property	by	assigning	it	the

current	CSS	to	left	for	the	div	having	the	id	as	window.	We	need	to	keep	this
property	because	we	will	need	to	reset	it	after	the	window	is	closed.

6.	 Now	we	set	the	background	color	of	the	window	to	white	and	animate	it	by	setting
the	left,	width,	and	height	properties.	The	left	property	is	set	to	0	and	width	is	set
to	full	width	of	the	container	div	so	that	the	window	covers	the	full	timeline	div.
For	the	animation,	we	provide	a	time	of	100	ms	and	a	callback	function	that	fires
when	the	animation	is	completed.

7.	 After	the	animation	is	completed,	we	set	the	border	of	the	parent	container	to	0	and
display	the	close	icon.

8.	 Now	we	proceed	to	create	an	unordered	list	of	events	for	the	selected	year.	This	is
done	easily	by	iterating	on	the	objTimeline.timelineData	array	and	comparing	the
year	value	of	each	array	item	with	the	currentYear	property.

9.	 Once	a	match	is	found,	we	create	the	HTML	of	the	list’s	items	by	iterating	in	the
events	array	for	that	year.

10.	 Once	complete,	this	HTML	is	inserted	into	the	yearEvents	element.
11.	 This	can	be	checked	by	reloading	the	page	and	clicking	on	a	year.	If	you	clicked	on

2009,	you	will	see	something	like	this:

Closing	the	event	details	window
Finally,	we	are	left	with	implementing	the	close	button	and	resetting	the	timeline	to	its
original	state:

$('.close').click(function(event)

{

		objTimeline.closeWindow();

});

The	event	handler	for	the	close	button	calls	the	closeWindow	method	of	objTimeline.	If
you	remember,	we	called	the	closeWindow	method	in	the	start	method	of	slider	as	well.
Go	to	the	closeWindow	method	in	your	file	and	write	this	code	to	close	and	reset	the
window:

$('.container').css({'border'	:	'1px	solid	#333',	'border-left'	:	0});

$('#yearEvents').empty();

$('.close').hide();

$('.link').show();

$('#window').animate(

{

		width:	'99px',	

		left	:	objTimeline.windowLeft

},	500,	function()

{

		$(this).css({'background-color'	:	'transparent'});

		objTimeline.isWindowOpen	=	false;

});

This	is	basically	some	cleanup	we	are	doing.	Borders	are	applied	to	the	div	container	as
it	was	originally.	Then	the	yearEvents	div	is	emptied.	The	close	button	is	hidden	and	the
link	div	is	displayed	again.

Finally,	we	animate	the	window	div	to	reset	it	to	its	original	size	and	position.	We	set	its
size	to	99px,	and	the	left	value	is	set	to	windowLeft,	which	we	had	saved	earlier.	A	500
ms	duration	is	set	for	the	animation,	and	a	callback	function	is	provided.

The	callback	function	sets	the	background-color	of	window	to	transparent	and	resets
the	isWindowOpen	property	to	false	so	that	it	may	be	used	later	when	another	window	is
configured.

Improving	the	timeline
Here	are	a	few	suggestions	on	how	some	more	features	can	be	added	to	the	timeline	to
make	it	more	useful:

Currently,	we	are	relying	on	sequential	years	for	some	calculations.	Design	the
timeline	such	that	nonsequential	years	and	missing	years	can	be	handled	(let	me	give
you	a	hint;	use	an	index).
Along	with	the	slider,	implement	a	date	picker	that	allows	the	user	to	select	a	date
and	search	for	matching	events	for	that	specific	date.
Implement	jQuery	UI’s	effects	to	close	the	expanded	window.

Summary
We	saw	that	even	the	simplest	of	components,	such	as	slider,	can	be	helpful	in	creating
nice	effects	when	used	creatively.	We	used	the	slider	in	a	unique	way	to	achieve	a	nice
timeline	effect	in	this	chapter.	There	was	a	bit	of	mathematics	involved	as	we	did	many
calculations	to	position	the	elements	correctly.

In	the	next	chapter,	we	will	explore	another	jQuery	UI	component	called	spinner,	along
with	the	slider,	to	create	a	Google	Maps	mashup	that	lists	hotels	of	a	city.

Chapter	7.	Using	jQuery	UI	with	Google
Maps	API
We	made	extensive	use	of	the	slider	in	the	previous	chapter	to	display	a	timeline	of	events.
In	this	chapter,	we	will	create	a	mashup	using	some	components	of	jQuery	UI	along	with
the	Google	Maps	API.

We	will	create	a	page	to	display	the	hotels	in	a	particular	city.	The	page	will	be	divided
into	two	columns.	On	the	left-hand	side,	we	will	display	the	list	of	hotels,	and	on	the	right-
hand	side,	we	will	have	a	Google	map	of	the	city	with	locations	of	hotels	marked	in	the
map.	Clicking	on	any	marker	on	the	map	will	display	an	information	window	with	some
more	details.	The	end	result	will	resemble	the	following	screenshot:

During	this	process,	you	will	learn	the	functionalities	of	the	Google	Maps	API,	along	with
jQuery	UI	components.	The	jQuery	UI	components	that	we	will	use	in	this	chapter	are
slider,	accordion,	tabs,	and	spinner.

Creating	the	folder	structure
Just	as	we	did	in	previous	chapters,	let’s	begin	by	creating	the	folder	structure.	Create	a
new	folder	named	Chapter7	inside	the	MasteringjQueryUI	folder.	Go	inside	this	folder
and	create	an	HTML	file	called	index.html	for	our	HTML	markup.	Copy	the	js	and	css
folders	of	jQuery	UI	inside	the	Chapter7	folder.	Now	go	inside	the	js	folder,	create	a	new
file,	and	name	it	myMap.js.	This	file	will	contain	all	of	the	code	required	for	creating	our
maps	mashup.

Getting	a	Google	Maps	API	key
We	will	be	using	Google	Maps	JavaScript	API	v3	to	display	the	maps.	Google	requires
that	you	register	your	application	and	get	an	API	key.	Getting	an	API	key	is	pretty	easy.
Visit	https://developers.google.com/maps/documentation/javascript/tutorial#api_key	from
your	browser	to	get	detailed	instructions	on	how	to	obtain	an	API	key.

Once	you	are	done	setting	up	the	folder	structure	and	have	an	API	key,	move	on	to	the
next	step	–	designing	the	page.

https://developers.google.com/maps/documentation/javascript/tutorial#api_key

Designing	the	page
The	left-hand	side	of	the	page	will	have	jQuery	UI’s	slider,	spinner,	and	an	accordion.	The
slider	will	be	used	to	filter	hotels	based	on	price,	and	the	spinner	will	control	the	zoom
level	of	the	map.	The	accordion	will	display	the	hotels	such	that	the	header	of	each
accordion	panel	will	display	the	hotel	name	and	its	content	panel	will	have	the	hotel	price
and	some	description	text.	Write	the	following	markup	in	the	index.html	file	to	create	the
HTML	structure:

<html>

		<head>

				<meta	charset="utf-8">

				<title>Google	Maps	with	jQuery	UI</title>

				<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

		</head>

		<body>

				<div>

						<div	class="left"	>

								<div	class="ui-state-highlight	ui-corner-all"	style="padding:	

7px;">

										Filter	by	Price:

										

										<div	class="clear"> </div>

										<div	id="slider"></div>

								</div>

								<div	class="clear"> </div>

								<div	class="ui-state-highlight	ui-corner-all"	style="padding:	

5px;">

										<p>

												Zoom	Level:

												<input	id="spinner"	value="12"	readonly="readonly"/>

										</p>

								</div>

								<div	class="clear"> </div>

								<div	id="listing">

								</div>

						</div>

						<div	class="right"	id="hotelsMap"></div>

						<div	id="tabs"	style="display:none;">

								

										Info

										Facilities

										Attractions

								

								<div	id="info">

										Proinelitarcu,	rutrumcommodo,	vehicula	tempus,	commodo	a,	

risus.Curabiturnecarcu.	Donecsollicitudin	mi	sitametmauris.	Nam	elementum	

quam	ullamcorper	ante.Etiamaliquetmassa	et	lorem.	Maurisdapibus	lacus	

auctorrisus.Aeneantemporullamcorperleo.	Vivamussed	magna	quis	ligula	

eleifendadipiscing.Duisorci.Aliquamsodalestortor	vitae	

ipsum.Aliquamnulla.Duisaliquammolestieerat.Utetmaurisvelpedevariussollicitu

din.	Sedut	dolor	necorcitinciduntinterdum.	Phasellusipsum.Nunctristique	

tempus	lectus.

								</div>

								<div	id="facilities">

										

												High	Speed	Internet

												Health	Club

												Airport	pickup	and	drop

												Bar

												Cultural	Activities

										

								</div>

								<div	id="attractions">

										

												International	Airport	-	45	minutes/16.00	Kms

												New	Delhi	Railway	Station	-	10	minutes/3.00	Kms

										

								</div>

						</div>

				</div>

				<script	type="text/javascript"	

src="https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY_HERE">

</script>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

				<script	src="js/myMap.js"></script>

		</body>

</html>

Inside	the	head	section,	we	have	the	page	title	and	have	included	jQuery	UI’s	CSS	theme
file.

In	the	body	section,	there	is	a	wrapper	div	element.	Inside	this	div,	there	is	another	div
with	the	left	CSS	class.	This	div	will	hold	the	slider,	spinner,	and	accordion.	First	we
created	a	div	for	slider	and	applied	jQueryUI’s	ui-state-highlight	and	ui-corner-all
CSS	classes	to	it	to	theme	it.	Inside	it	is	a	strong	element	that	works	as	a	label.	Then	there
is	a	span	element	with	the	id	value	currentRange	where	we	will	display	the	price	range
selected	using	the	slider.	Finally	comes	another	div	with	the	id	value	slider.	This	div
will	be	converted	to	a	slider	using	the	slider	component	of	the	library.

Next,	we	cleared	the	floats	and	created	another	div	for	the	spinner.	We	applied	the	same
ui-state-highlight	and	ui-corner-all	classes	to	theme	it.	Inside	this	div	are	a
strong	element	and	a	text	box	with	the	id	set	as	spinner.	We	made	this	text	box
readonly	and	set	its	value	to	12	so	that	when	the	map	is	loaded,	we	can	set	the	zoom	to
12.	Google	maps	generally	have	zoom	levels	starting	from	0	to	18.	A	value	of	12	is
enough	to	focus	on	most	cities.

The	last	element	inside	the	div	with	the	left	class	is	a	div	with	the	id	value	listing.
This	div	will	list	all	the	hotels	and	will	be	converted	into	an	accordion.

After	div	with	the	left	class,	we	have	another	div	with	the	right	class	and	the	id	value
hotelsMap.	This	div	will	work	as	a	canvas	and	will	be	used	to	display	the	maps.

Finally,	we	have	a	div	with	the	id	set	as	tabs	and	it’s	display	set	to	none.	We	will	convert
this	into	jQuery	UI	tabs.	This	div	will	be	used	after	the	maps	are	loaded.	When	a	marker
is	clicked	on,	the	infowindow	will	open.	We	will	display	these	tabs	in	the	infowindow.	In
real	life,	the	data	in	the	tabs	will,	of	course,	be	filled	dynamically.	This	is	just	an	example
of	how	we	can	incorporate	any	jQuery	UI	component	in	windows.infowindow.	For	this
chapter,	we	have	created	three	tabs	named	Info,	Facilities,	and	Attractions,	each	of
which	will	display	its	content	for	a	particular	hotel.

The	structure	of	the	tabs	adheres	to	what	jQuery	UI	recommends.	There	is	an	unordered
list	with	three	li	elements	inside	it.	Each	of	these	li	elements	has	an	anchor	element	with
the	value	of	the	href	attribute	set.

After	the	list	ul,	there	are	three	div	elements.	The	id	of	each	div	corresponds	to	the	href
value	provided	in	ul.

Finally,	before	closing	the	body	tag,	we	included	all	JavaScript	files	required.	The	first	is
the	Google	Maps	API,	which	has	been	included	by	setting	the	src	value	as
https://maps.googleapis.com/maps/api/js?key=	YOUR_API_KEY_HERE.	Do	not	forget
to	replace	the	value	of	key	with	your	API	key.	After	this,	jQuery	source	file	and	jQuery	UI
source	files	are	included.	Finally,	myMap.js	is	also	included.

This	is	the	entire	markup	that	will	be	required	to	display	the	page	initially.	Let’s	now	style
it	by	applying	CSS	rules	for	different	elements.

Styling	the	content
We	need	to	float	the	div	element	with	the	left	class	to	the	left	and	the	maps	div	to	the
right.	We	also	need	separation	for	the	slider,	spinner,	and	accordion.	You	can	write	the
following	CSS	rules	in	the	head	section	after	the	jQuery	UI	theme	file	has	been	included:

<style	type="text/css">

		body

		{

				font-family:arial,verdana;

				font-size:12px;

				margin:	0px	auto;	

				width:	100%;

		}

		.left

		{

				height:600px;

				width:20%;

				border:	1px	solid	#333;

				float:left;

				padding:5px;

				margin-left:10px;

		}

		.ui-accordion	.ui-accordion-content

		{

				padding:10px;

		}

		#slider

		{

				margin-left:10%;

				width:80%;

		}

		.right

		{

				height:610px;

				width:77%;

				border:	1px	solid	#333;

				float:right;

				margin-right:10px;

		}

		.clear

		{

				clear:both;

		}

</style>

There	are	very	few	styles	that	we	have	defined	here.	The	styles	for	body	set	its	font
properties	and	center	the	page.	The	next	style	is	for	the	div	with	the	left	class.	We	gave	it
a	fixed	height	of	600px	and	20%	width.	It	is	also	floated	to	left	and	has	a	border.	After
this,	we	override	the	padding	property	for	the	accordion	content	panels	by	giving	a	10px
padding.	Styles	for	slider	include	only	the	setup	of	the	margin	and	width.

Finally,	the	style	for	div	with	the	right	class	includes	setting	up	its	height	and	width.	It

is	also	floated	to	right.	A	border	has	been	provided,	and	a	small	margin	is	also	added.

After	saving	the	index.html	file,	if	you	load	it	in	browser,	you	will	see	a	page	that
resembles	the	following	screenshot:

With	the	markup	and	CSS	ready,	we	can	now	write	the	JavaScript	to	make	this	page	live.

Getting	the	code	structure	ready
By	now,	you	should	have	become	comfortable	with	the	object	literal	notation	that	we	have
been	using.	We	will	work	with	it	in	this	chapter	as	well,	and	first	define	an	object	with	all
the	properties	we	require	to	create	the	maps	mashup.	Open	the	myMap.js	file	inside	the	js
folder	and	use	the	following	code	to	create	the	object	structure	and	initialize	it:

$(document).ready(function(){

		myMap.initialize();

});

var	myMap	=

{

		map	:	null,

		markers	:	[],

		infowindow		:	null,

		minPrice	:	0,

		maxPrice	:	0,

		hotelsList	:	[

				{

						name	:	'Shangri	La',

						lat	:	'28.631541',

						lng	:	'77.213287',

						price	:	1000,

						description:	'Pellentesqueaccumsanmolestieipsumutfeugiat.	

Nuncvariusnislsed	ligula	vehicula,	vitae	sodales	magna	volutpat!	Praesent	

tempus	faucibusnisl,	velaliquetlectusviverraquis.Curabiturleoenim,	

tinciduntviverravestibulumluctus,	cursus	et	velit.	Proin	id	metusut	mi	

sagittisvarius	in	at	nulla.Aliquam	semper	

lobortispellentesque.Donecaliquamrisus	sit	ametipsumconsecteturpulvinar.',

				},

				{

						name	:	'Ashu	Palace',

						lat	:	'28.652257',

						lng	:	'77.19243',

						price	:	1893,

						description:	'Pellentesqueaccumsanmolestieipsumutfeugiat.	

Nuncvariusnislsed	ligula	vehicula,	vitae	sodales	magna	volutpat!	Praesent	

tempus	faucibusnisl,	velaliquetlectusviverraquis.Curabiturleoenim,	

tinciduntviverravestibulumluctus,	cursus	et	velit.	Proin	id	metusut	mi	

sagittisvarius	in	at	nulla.Aliquam	semper	

lobortispellentesque.Donecaliquamrisus	sit	ametipsumconsecteturpulvinar.'

				},

				{

						name	:	'Hotel	Vikram',

						lat	:	'28.573668',

						lng	:	'77.245388',

						price	:	2500,

						description:	'Pellentesqueaccumsanmolestieipsumutfeugiat.	

Nuncvariusnislsed	ligula	vehicula,	vitae	sodales	magna	volutpat!	Praesent	

tempus	faucibusnisl,	velaliquetlectusviverraquis.Curabiturleoenim,	

tinciduntviverravestibulumluctus,	cursus	et	velit.	Proin	id	metusut	mi	

sagittisvarius	in	at	nulla.Aliquam	semper	

lobortispellentesque.Donecaliquamrisus	sit	ametipsumconsecteturpulvinar.'

				},

				{

						name	:	'Hotel	Conclave	Boutiq',

						lat	:	'28.556124',

						lng	:	'77.241197',

						price	:	2361,

						description:	'Pellentesqueaccumsanmolestieipsumutfeugiat.	

Nuncvariusnislsed	ligula	vehicula,	vitae	sodales	magna	volutpat!	Praesent	

tempus	faucibusnisl,	velaliquetlectusviverraquis.Curabiturleoenim,	

tinciduntviverravestibulumluctus,	cursus	et	velit.	Proin	id	metusut	mi	

sagittisvarius	in	at	nulla.Aliquam	semper	

lobortispellentesque.Donecaliquamrisus	sit	ametipsumconsecteturpulvinar.'

				},

				{

						name	:	'Hotel	Parkland',

						lat	:	'28.588139',

						lng	:	'77.23526',

						price	:	800,

						description:	'Pellentesqueaccumsanmolestieipsumutfeugiat.	

Nuncvariusnislsed	ligula	vehicula,	vitae	sodales	magna	volutpat!	Praesent	

tempus	faucibusnisl,	velaliquetlectusviverraquis.Curabiturleoenim,	

tinciduntviverravestibulumluctus,	cursus	et	velit.	Proin	id	metusut	mi	

sagittisvarius	in	at	nulla.Aliquam	semper	

lobortispellentesque.Donecaliquamrisus	sit	ametipsumconsecteturpulvinar.'

				},

],

		initialize	:	function()

		{

				this.setMinMaxPrices();

				this.displayHotels();

				this.setSpinner();

				this.createMap();

				this.setMarkersAndInfoWindow();

				this.setSlider();

		},

		setMinMaxPrices	:	function()

		{

		},

		displayHotels	:	function()

		{

		},

		setSpinner	:	function()

		{

		},

		createMap	:	function()

		{

		},

		setMarkersAndInfoWindow	:	function()

		{

		},

		setSlider	:	function()

		{

		}

};

The	event	handler	for	$(document).ready()	calls	the	initialize	method	of	the	myMap

object.	Since	this	event	handler	is	called	only	after	the	page	is	loaded,	it	is	safe	to	call	the
initialize	method	even	though	we	are	going	to	define	it	later.

In	the	myMap	object,	let’s	first	look	at	each	of	its	properties	in	a	nutshell,	and	then	we	will
implement	each	of	the	methods:

map:	This	will	store	the	reference	to	the	Google	maps	object	that	will	be	created.
markers:	This	is	used	to	keep	track	of	all	the	markers	placed	in	the	map,	markers	has
been	declared	as	an	array.
infowindow:	On	clicking	on	a	marker,	an	infowindow	will	be	opened.	Since	only	one
infowindow	can	be	open	at	any	time,	we	need	to	store	its	reference	so	that	we	can
open	it	when	other	markers	are	clicked	on.
minPrice:	This	is	the	lowest	available	price	from	the	list	of	hotels.
maxPrice:	This	is	the	highest	available	price	from	the	list	of	hotels.
hotelsList:	This	is	the	main	array	that	stores	information	about	hotels	we	will
display	in	the	left	panel.	In	real-world	cases,	this	can	be	populated	using	JSON	data
from	the	backend.	For	this	chapter,	we	have	created	the	array	with	five	elements	(that
is,	five	hotels).	Each	hotel	has	five	properties:	name,	lat,	lng,	price,	and
description,	where	lat	and	lng	refer	to	latitude	and	longitude,	respectively,	and
will	be	used	to	place	markers	on	the	map.	For	the	example	in	this	chapter,	all	the
coordinates	are	of	hotels	in	New	Delhi,	India.
initialize:	This	is	the	entry	point	for	the	object.	This	method	is	responsible	for
calling	other	methods	of	the	object	one	by	one.	We	have	already	called	upcoming	six
methods	in	this	method.
setMinMaxPrices:	This	is	a	simple	method	to	set	the	values	of	the	minPrice	and
maxPrice	properties.
displayHotels:	Using	the	hotelsList	property,	this	method	will	populate	the	div
with	id	listing	and	convert	it	into	an	accordion.
setSpinner:	We	will	initialize	the	spinner	component	in	this	method	and	write	an
event	handler	that	will	allow	us	to	zoom	into	the	map.
createMap:	As	the	name	suggests,	this	method	will	simply	initialize	the	map	using
Google	Maps.
setMarkersAndInfoWindow:	After	the	map	is	displayed,	this	method	will	place
markers	on	the	map.	It	will	also	have	event	handlers	that	will	open	infowindow	when
a	marker	is	clicked	on.
setSlider:	This	will	convert	the	div	with	the	id	slider	into	a	jQuery	UI	slider
component	and	will	set	its	range	between	minPrice	and	maxPrice.	We	will	also	write
event	handlers	that	will	show	or	hide	hotels	from	the	accordion	based	on	the	price.
Markers	will	also	be	displayed	or	hidden	depending	on	the	values	set	by	the	slider.

Setting	minimum	and	maximum	prices
To	find	out	the	lowest	and	highest	prices	available,	we	will	have	to	loop	in	the	hotelsList
array	and	set	the	values	accordingly.	The	following	code	will	set	the	minimum	and
maximum	prices	for	us:

setMinMaxPrices	:	function()

{

		this.minPrice	=	this.hotelsList[0].price;

		this.maxPrice	=	this.hotelsList[0].price;

		for(var	i	=	0;	i<this.hotelsList.length;	i++)

		{

				this.minPrice	=	this.hotelsList[i].price	<this.minPrice	?

this.hotelsList[i].price	:this.minPrice;

				this.maxPrice	=	this.hotelsList[i].price	>this.maxPrice	?

this.hotelsList[i].price	:this.maxPrice;

		}

		$('#currentRange').text('USD	'+	this.minPrice	+	'	-	'	+	'USD	'	+	

this.maxPrice);

}

We	begin	by	setting	both	minPrice	and	maxPrice	as	the	value	of	the	price	attribute	of	the
first	array	element.	Then	we	start	a	for	loop	and	use	the	ternary	operator	to	set	the	values
for	minPrice	and	maxPrice.	After	the	loop	finishes,	we	have	both	the	values	set.

We	then	display	these	values	inside	the	span	element	with	the	currentRange	ID.

Displaying	hotels	in	accordion
To	display	hotels,	we	simply	have	to	iterate	in	the	hotelsList	array	and	build	a	DOM.
Once	this	is	done,	we	can	push	this	DOM	into	the	div	with	the	id	listing.	After	that,	we
will	set	the	slider	as	well.	Here	is	the	code	you	can	use	for	the	displayHotels	method:

displayHotels	:	function()

{

		var	str	=	'';

		for(var	i	=	0;	i<this.hotelsList.length;	i++)

		{

				var	hotel	=	this.hotelsList[i];

				str+=	'<h3	data-price="'+	hotel.price+'">'+hotel.name+'</h3>';

				str+=	'<div>';

				str+=	'<div	class="ui-state-highlight	ui-corner-all"	style="padding:	

5px;">Price:	USD	'	+	hotel.price	+	'</div>';

				str+=	hotel.description;

				str+=	'</div>';

		}

		$('#listing').html(str);

		$('#listing').accordion(

		{

				collapsible:	true,

				active	:	false,

				heightStyle	:	'content'

		});

}

We	begin	by	declaring	str,	a	blank	string.	Then	we	start	the	loop.	Since	we	have	to
convert	this	hotels	list	into	an	accordion,	we	need	to	create	the	HTML	compatible	with	it.
We	create	an	h3	element	and	a	div	for	each	hotel.	The	hotel’s	name	is	written	inside	the	h3
element,	and	inside	the	div,	we	write	the	price	of	hotel	and	the	description.

Note
Note	that	we	have	created	a	data	attribute	named	data-price	with	the	h3	element.	It	will
be	used	later	in	the	chapter	to	filter	hotels	when	the	slider	will	be	changed.

Once	the	loop	is	over,	we	insert	this	HTML	into	the	div	with	the	id	listing.

Finally,	we	convert	it	into	an	accordion	component.	Note	that	we	have	provided	three
properties	while	initializing	the	accordion.	These	properties	are	as	follows:

collapsible:	At	least	one	panel	is	open	as	per	the	accordion’s	default	behavior.	If	we
want	to	make	all	panels	collapsible	at	once,	this	option	has	to	be	set	to	true.
active:	This	property	decides	which	panel	to	open	when	the	accordion	loads.	We
have	set	it	to	false,	which	means	that	no	panel	will	be	open	by	default.	You	can	also
pass	a	zero-based	index	if	you	want	to	open	a	particular	panel	by	default.	Keep	in
mind	that	for	active	:	false	to	work,	you	should	have	collapsible	set	to	true.
heightStyle:	We	set	the	heightStyle	property	to	content,	which	will	make	each
accordion	panel	as	tall	as	its	content.	Two	other	values	are	also	allowed,	which	are
auto	and	fill.	When	set	to	auto,	the	height	of	the	accordion	is	set	to	the	panel	with

maximum	height.	Setting	it	to	fill	makes	the	height	of	accordion	equal	to	its	parent
container’s	height.

You	can	now	check	out	the	fruits	of	hard	work	we	have	done	by	saving	the	file	and
viewing	it	in	browser,	as	shown	in	the	following	screenshot:

You	will	see	the	price	range	on	the	top	of	the	left	panel,	followed	by	the	input	element	for
spinner.	After	the	spinner,	there	will	be	the	accordion.	All	panels	of	the	accordion	will	be
closed,	and	the	hotel	name	will	be	visible	in	accordion	header.	You	can	click	on	any	hotel
name	and	the	content	panel	will	be	displayed,	which	will	show	the	price	and	some
description.

Setting	up	the	spinner
The	spinner	is	a	simple	component	that	is	great	to	use	with	numbers.	It	has	up	and	down
buttons,	using	which	the	numerical	value	of	spinner	can	be	increased	or	decreased.

We	will	use	the	spinner	component	to	zoom	into	the	map.	The	following	code	will	create
the	spinner	and	zoom	into	the	map:

setSpinner	:	function()

{

		$('#spinner').spinner(

				{

						min	:	0,

						max	:	18,

						stop	:	function(event,	ui)

						{

								myMap.map.setZoom(parseInt($(this).val(),	10));

						}

		});

}

We	have	provided	three	properties	for	the	spinner.	The	first	two	are	the	min	and	max
values,	which	we	have	set	to	0	and	18,	respectively.	These	will	restrict	the	user	from
selecting	values	above	or	below	the	set	limits.

As	mentioned	earlier	in	this	chapter,	0	and	18	are	used	because	these	are	the	minimum	and
maximum	zoom	levels	in	Google	Maps.

The	third	method	is	an	event	handler	called	stop.	This	is	called	when	a	spin	occurs,	which
means	that	it	will	be	called	each	time	the	user	clicks	on	either	the	up	or	the	down	arrow
and	the	value	of	the	spinner	changes.	Inside	this	method,	we	used	the	setZoom	method	to
set	the	zoom	level.	This	is	a	method	provided	by	the	Google	Maps	API	that	takes	an
integer	as	a	parameter	and	sets	the	zoom	to	the	said	level.	Since	we	have	the	map	object
stored	in	the	map	property	of	the	myMap	object,	we	are	calling	setZoom	on	it.	The
parseInt	is	used	because	the	value	of	the	spinner	will	be	a	string	and	we	need	to	convert
it	to	a	number.

Note
Always	use	the	second	parameter	while	using	parseInt.	The	second	parameter	is	the	base
in	which	you	are	trying	to	parse.	Not	doing	so	may	result	in	erratic	behavior.

Displaying	the	map
This	method	simply	creates	the	map	and	stores	its	reference	in	myMap.map.	We	will	center
it	on	New	Delhi	and	set	its	zoom	level	to	the	value	set	in	the	spinner.	The	following	code
will	define	the	options	that	we	will	pass	to	the	map,	and	then	call	the	maps	API	to	display
the	map:

createMap	:	function()

{

		var	mapOptions	=

		{

				center:	new	google.maps.LatLng(28.637926,	77.223726),

				zoom:	parseInt($('#spinner').val(),	10),

				disableDefaultUI	:	true,

				mapTypeId:	google.maps.MapTypeId.ROADMAP,

				scrollwheel:	false

		};

		this.map	=	new	google.maps.Map($("#hotelsMap")[0],	mapOptions);

		this.infowindow	=	new	google.maps.InfoWindow();

}

We	created	an	object	named	mapOptions,	where	we	defined	the	default	values	for	some
properties.	Here	are	the	properties	we	defined:

center:	The	Google	maps	API’s	LatLng	class	is	used	to	set	the	map’s	center	at
required	coordinates.	For	this,	we	pass	the	latitude	and	longitude	to	the	LatLng
classes	constructor.	The	coordinates	provided	in	the	preceding	code	are	of	New
Delhi.
zoom:	This	sets	the	zoom	level.	We	just	set	it	to	the	current	value	in	the	input	box
spinner.
disableDefaultUI:	For	this	example,	we	will	remove	all	the	controls	that	Google
maps	loads	by	default.	These	include	Zoom,	Pan,	MapType,	and	Scale	controls.	Setting
disableDefaultUI	to	true	loads	the	maps	without	any	of	these	controlled.	If	you
want	the	default	UI	but	with	some	of	the	controls,	you	can	turn	the	other	controls	off
individually;	for	example,	you	can	set	panControl	and	zoomControl	to	true	or
false	to	add	or	remove	these	controls,	respectively.	Refer	to
https://developers.google.com/maps/documentation/javascript/controls	for	more
information	on	controls.
mapTypeId:	There	are	four	basic	map	types	that	are	available	in	the	Google	Maps
API.	These	are	ROADMAP,	SATELLITE,	HYBRID,	and	TERRAIN.	We	have	set	this
property’s	value	to	ROADMAP.
scrollwheel:	Setting	scrollwheel	to	false	disables	the	zooming	using	the	mouse
scroll	wheel.

After	defining	these	options,	we	can	load	the	map.	This	is	done	using	the	Map	constructor,
where	we	need	to	provide	two	arguments.	The	first	is	the	DOM	element	in	which	we	want
to	load	the	map,	and	the	second	is	the	options	object	that	we	defined	in	the	preceding
code.

https://developers.google.com/maps/documentation/javascript/controls

Since	$("#hotelsMap")	will	give	us	the	jQuery	object	for	the	hotelsMap	element,	we
used	$("#hotelsMap")[0]	to	get	the	DOM	element	to	pass	to	the	map	constructor.	The
reference	to	the	loaded	map	has	been	stored	in	the	myMap.map	property	as	well.

The	last	line	initializes	an	infowindow	and	stores	its	reference	in	myMap.infowindow,
which	will	be	used	whenever	we	want	to	do	any	operation	involving	infowindows.

Save	the	file	and	reload	the	browser.	You	will	see	that	the	map	has	been	loaded	and	is
centered	on	Delhi,	as	shown	in	the	following	screenshot.	Using	the	spinner,	you	will	also
be	able	to	zoom	in	or	out	of	the	map:

Setting	markers	and	infowindows	in	the	map
Now	that	the	map	is	being	displayed,	let’s	put	the	markers	and	info	windows	on	the
marker	click	event.	The	myMap.setMarkersAndInfoWindow	method	will	be	used	for	this.

We	will	iterate	in	hotelsList	and	set	up	a	marker	at	each	location.	Along	with	setting	up
the	marker,	we	will	add	the	event	handler	for	every	click	on	the	marker,	which	will	open
an	infowindow.	Write	this	code	in	your	myMap.js	file	to	create	markers	and	info	windows:

setMarkersAndInfoWindow	:	function()

{

		for(var	i	=	0;	i<this.hotelsList.length;	i++)

		{

				var	hotel	=	this.hotelsList[i];

				var	marker	=	new	google.maps.Marker(

				{

						position:	new	google.maps.LatLng(hotel.lat,	hotel.lng),

						map:	myMap.map,

								title:	hotel.name

				});

				this.markers.push(marker);

				google.maps.event.addListener(marker,	'click',	function(marker,	hotel)

				{

						return	function()

						{

								var	content	=	$('#tabs').html();

								myMap.infowindow.setContent('<div	id="hotelFeatures"	

style="height:280px;">'+	hotel.name+	'<hr/>'	+	content	+	'</div>');

								myMap.infowindow.open(myMap.map,	marker);

						};

				}(marker,	hotel));

		}

		google.maps.event.addListener(myMap.infowindow,	'domready',	function(){

				$('#hotelFeatures').tabs();

		});

}

To	create	a	marker,	we	have	to	use	the	Marker	class	of	Google	Maps.	There	are	many
properties	and	methods	available	in	the	Marker	class,	but	we	will	confine	ourselves	to	the
basic	properties	and	methods	because	they	will	let	us	place	the	markers.

We	are	looping	in	the	hotelsList	array	and	creating	a	Marker	per	iteration.	The	three
properties	we	have	passed	to	the	constructor	of	the	Marker	class	are	position,	map,	and
title.	The	position	property	refers	to	the	coordinates	where	the	marker	will	be	placed,
and	like	other	places,	it	is	represented	by	the	LatLng	class.	The	map	property	refers	to	the
map	on	which	we	want	markers.	The	last	property	is	title,	for	which	we	have	provided
the	hotel	name	hotel.name	as	string.	This	property	appears	as	a	tooltip	when	the	user
places	the	mouse	over	a	marker.

We	also	need	to	keep	track	of	all	the	markers	so	that	we	can	show	or	hide	them	when	the

user	changes	the	price	range	using	the	slider.	In	order	to	do	this,	we	created	an	array	called
myMap.markers	earlier.	Here,	we	push	each	marker	into	this	array.

Next,	we	have	to	add	the	event	handler	on	a	marker	click.	This	has	been	done	using
Google’s	event	handler	method,	addListener,	which	attached	a	click	event	handler	to	the
click	event	of	a	marker.	Inside	this	method,	we	have	a	closure	being	returned	by	a
return	statement.	Inside	this	closure,	we	take	the	HTML	of	the	div	with	id	tabs	in	the
content	variable.	Using	the	API’s	setContent	method	for	myMap.infowindow,	we	set	the
HTML	string	that	will	be	displayed	in	the	info	window.	Note	that	we	are	wrapping	this
HTML	in	a	div	with	the	id	hotelFeatures.	Finally,	we	call	the	open	method	on
myMap.infowindow	to	display	the	info	window.	The	open	method	takes	two	parameters,
which	are	the	map	object	and	the	marker	object	for	which	infowindow	is	being	opened.

After	the	loop,	there	is	another	event	listener.	It	attaches	a	domready	event	listener	to
infowindow.	The	event	handler	will	be	called	each	time	an	info	window	is	created	and
displayed.	Since	the	infowindow	contains	the	HTML	structure	compatible	with	a	tab
component,	we	convert	the	div	with	the	id	hotelFeatures	to	jQuery	UI	tabs.

Check	out	the	file	in	the	browser	again	and	click	on	a	marker.	You	will	see	the	tab
structure	in	info	windows,	as	shown	in	the	following	screenshot:

Implementing	the	slider
We	are	almost	done	now.	The	last	bit	is	to	make	the	slider	functional	and	filter	out	the
hotels	from	the	accordion	and	markers	from	the	map.	We	will	also	use	the	slide	method
of	the	slider	component	to	change	the	inner	text	of	the	span	element,	which	has	the	id
currentRange.	To	filter	hotels	and	markers,	we	will	use	the	stop	method	of	the	slider
component.

Here	is	the	code	used	to	create	the	slider	and	its	events:

setSlider	:	function()

{

		$('#slider').slider(

		{

				min:	myMap.minPrice,

				max:	myMap.maxPrice,

				range	:	true,

				values	:	[myMap.minPrice,	myMap.maxPrice],

				step	:	100,

				slide	:	function(event,	ui)

				{

						$('#currentRange').text('USD	'+	ui.values[0]	+	'	-	'	+	'USD	'	+	

ui.values[1]);

				},

				stop	:	function(event,	ui)

				{

						$('#listing	h3').each(function()

						{

								var	price	=	parseInt($(this).data('price'),	10);

								//headerIndex	corresponds	to	0	based	index	of	hotels	in	object	as	

well	as	in	DOM

								varheaderIndex	=	$('#listing	h3').index($(this));

								if(price	>=	ui.values[0]	&&	price	<=	ui.values[1])

								{

										$('#listing	h3:eq('+headerIndex+')').show();

										myMap.markers[headerIndex].setMap(myMap.map);

								}

								else

								{

										$('#listing	h3:eq('+headerIndex+')').hide();

										$('#listing	div.ui-accordion-

content:eq('+headerIndex+')').hide();

										myMap.markers[headerIndex].setMap(null);

								}

						});

				}

		});

}

Since	we	will	allow	the	user	to	set	the	minimum	and	maximum	prices,	we	have	set	up	a
range	slider.	Let’s	discuss	in	detail	the	properties	and	methods	we	have	used:

min:	This	is	the	minimum	value	to	which	a	slider	would	slide.
max:	This	is	the	maximum	value	to	which	a	slider	would	slide.

range:	This	is	set	to	true	because	we	want	the	user	to	select	between	min	and	max
values.
values:	In	the	case	of	range	sliders,	we	have	to	provide	an	array	of	values	where	the
slider’s	handles	will	rest	by	default.	Hence,	we	have	provided	minPrice	and
maxPrice,	which	means	that	the	current	range	is	between	minPrice	and	maxPrice.
step:	This	is	the	measure	by	which	the	slider	will	increment	in	each	slide.	We	have
set	it	to	100,	but	you	can	set	it	to	any	other	value.
slide:	This	method	is	invoked	when	the	user	drags	the	slider.	While	the	user	is
sliding,	we	are	updating	the	currentRange	span	element	with	the	slider’s	currently
selected	values.
stop:	This	method	is	called	when	the	user	stops	dragging	the	slider.	In	this	method,
we	are	taking	all	the	h3	elements	inside	div	with	id	listing	and	iterating	over	them.
The	total	number	of	h3	elements	is	equal	to	the	number	of	accordion	panels.	For	each
h3,	we	are	getting	the	price	data	attribute,	which	we	defined	earlier.	Next,	we	find
the	index	of	the	current	h3	element	among	all	the	h3	elements.	The	next	if	block
checks	whether	the	price	of	the	current	item	falls	within	the	range	selected	by	the
slider.	If	it	is	within	the	selected	range,	we	show	the	h3	element.	The	next	line	shows
the	corresponding	marker	from	the	myMap.markers	array.	We	have	used	Google
maps’	setMap	method	on	a	marker	object	to	show	it	on	map.	If	the	price	is	out	of	the
range,	we	hide	the	h3	element	and	its	next	div,	which	is	the	accordion	content	panel.
Along	with	it,	we	set	the	marker	to	null	as	well	using	the	setMap	again,	which
removes	it	from	the	map.

This	makes	the	last	bit	of	the	slider	functional	as	well,	and	we	are	ready	to	check	it	out.
You	will	see	that	the	slider	is	visible	now,	and	dragging	any	of	its	handles	shows	or	hides
respective	hotels	and	markers	related	to	those	hotels:

Improving	the	functionality
This	application	has	a	lot	of	scope	for	enhancements.	Here	are	a	few	tips	to	get	you
started:

Use	hotel	ratings	with	the	slider	component.	Allow	the	user	to	filter	content	based	on
the	rating	of	the	hotel,	such	as	four-star,	five-star,	and	so	on.
Load	data	of	hotels	from	the	backend.
In	the	information	windows,	show	real	information	in	the	tabs	instead	of	hardcoded
information.

Summary
In	this	chapter,	we	covered	different	components	of	jQuery	UI	and	the	Google	Maps	API,
and	saw	that	mashups	can	be	built	easily	using	different	APIs	with	jQuery	UI.	In	the	next
chapter,	we	will	create	a	photo	album	manager	with	the	help	of	jQuery	UI’s	sortable	and
dialog	components.

Chapter	8.	Creating	a	Photo	Album
Manager
So	far	we	have	experimented	with	the	jQuery	UI	components	in	many	new	ways	and	have
touched	almost	all	of	the	components.	In	Chapter	7,	Using	jQuery	UI	with	Google	Maps
API,	we	created	a	mashup	with	the	help	of	slider,	accordion,	tabs,	and	spinner	along	with
the	Google	Maps	API.

This	chapter	will	teach	you	to	create	a	simple	photo	album	manager.	Users	will	be
presented	a	list	of	photo	albums	on	the	left-hand	side	of	the	page.	Clicking	any	album	will
display	all	the	pictures	in	that	album	on	the	right-hand	side	panel.	The	following	is	a
screenshot	of	the	finished	example.	Icons	for	edit	and	delete	are	visible	towards	the	right-
hand-side	of	each	image	caption:

We	will	allow	users	to	edit	the	title	of	an	image	and	delete	an	image	by	providing	icons	for
these	actions.	Clicking	on	an	image	will	open	its	larger	version	in	a	dialog	box.	Users	will
also	be	able	to	rearrange	the	pictures	of	an	album	in	a	sequence	as	per	their	preference.

The	following	image	displays	the	page	that	appears	when	a	user	clicks	the	edit	icon:

Since	our	focus	is	primarily	on	JavaScript/jQuery	and	not	on	backend,	we	will	use	a	JSON
file	instead	of	a	database	to	store	albums	and	picture	data.	Although	you	will,	most	likely,
use	a	database	or	an	API	in	a	practical	real-world	application,	to	perform	the	edit	and
delete	operations	and	reordering	of	pictures	in	an	album,	we	will	use	a	simple	server-side
script	written	in	PHP.	Do	not	frown	if	you	are	unfamiliar	with	PHP.	There	will	be	simple
code	and	you	will	be	able	to	replace	PHP	with	any	server-side	language	of	your	choice.

In	creating	the	example	in	this	chapter,	we	will	use	the	sortable	and	dialog	components	of
jQuery	UI.	You	will	also	learn	about	basic	themeroller	classes	that	assist	in	giving	a
uniform	look	to	the	jQuery	UI	components.

Creating	the	folder	structure
As	usual,	we	will	begin	by	setting	up	the	folder	structure:

1.	 Create	a	folder	named	Chapter8	inside	the	MasteringjQueryUI	folder.	Directly
inside	this	folder	create	an	html	file	and	name	it	index.html.	This	file	will	keep	our
html	markup.

2.	 For	this	chapter,	we	will	need	two	more	files	here.	Create	two	files	and	name	them
albums.json	and	ajaxAlbum.php.	The	albums.json	file	will	keep	the	albums	and
pictures	data	in	the	JSON	format	and	ajaxAlbum.php	is	the	backend	script	that	will
be	called	via	AJAX	to	edit	the	image	name,	delete	an	image,	and	reorder	images	of
an	album.

3.	 Also,	copy	the	js	and	css	folders	of	jQuery	UI	inside	the	Chapter8	folder.
4.	 Create	a	new	folder	named	images	inside	the	Chapter8	folder	and	put	eight	different

images	of	size	400	px	x	400	px	inside	it.
5.	 Now	create	thumbnails	of	these	images	of	the	size	150	px	x	150	px.	Create	another

subfolder	named	thumbs	inside	images	and	put	these	thumbnails	there.
6.	 Now	open	the	js	folder	and	create	a	new	file	named	photoAlbum.js.	This	file	will

have	all	the	JavaScript	code	for	our	timeline.

That	is	all	we	need	for	the	folder	structure.	Let’s	now	begin	by	writing	the	HTML	code	to
make	the	page.

Designing	the	page
For	the	basic	markup	we	will	split	the	page	in	two	parts.	The	left-hand	side	will	have
placeholders	for	album	names	and	some	help	text	for	users.	The	right-hand	side	will	have
a	placeholder	div	to	display	album	pictures.

After	these	two	partitions,	there	will	be	markup	for	dialog	boxes	to	edit,	delete,	and	zoom
in	to	an	image.

Creating	placeholders	for	albums	and	pictures
Since	the	album	names	and	pictures	will	be	displayed	in	the	page	using	JavaScript,	we
only	need	to	specify	placeholder	divs	for	these.	The	following	HTML	markup	for	the
index.html	file	will	be	used	to	divide	the	page	in	two	parts	and	create	the	required
elements:

<html>

		<head>

				<meta	charset="utf-8">

				<title>Photo	Album	Manager</title>

				<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

		</head>

		<body>

				<div	class="ui-widget">

						<div	class="left	ui-widget-content">

								<div	id="albumNames"></div>

								<div	class="ui-state-highlight	ui-corner-all"	style="padding:0	

5px;">

										<p><span	class="ui-icon	ui-icon-info"	style="float:	left;	margin-

right:	.3em;">

										</p>

										<p>

													-	Click	the	pencil	icon	to	edit	image	name

												

													-	Click	the	trash	icon	to	delete	an	image

												

													-	Click	an	image	to	view	large	size										

										</p>

								</div>

						</div>

						<div	class="right	ui-widget-content">

								<div	class="ui-state-highlight	ui-corner-all">

										<p><span	class="ui-icon	ui-icon-info"	style="float:	left;	margin-

right:	.3em;">

										Click	on	an	Album	name	to	view	its	images.

										<strong	id="numImages">

								</div>

								<ul	id="albumPics"	class="ui-helper-reset	ui-helper-clearfix">

								<button	id="btnSave">Save	Sequence</button>

						</div>

				</div>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

				<script	src="js/photoAlbum.js"></script>

		</body>

</html>

We	have	started	by	providing	a	title	and	including	the	jQuery	UI	theme	file	in	the	head
section.	In	the	body,	we	have	a	div	with	the	ui-widget	class.	The	ui-widget	class	is	from
the	jQuery	UI	theme	framework	that	applies	font	settings	for	the	div	and	elements	inside
it.	Inside	this	div	are	two	more	div	elements	with	classes	left	and	right	respectively.
Both	these	divs	have	another	CSS	class	ui-widget-content	attached	to	them.	The	class
ui-widget-content	is	also	from	the	jQuery	UI	theme	framework	that	sets	up	styles	like
the	background	border	and	color.

In	div	element	having	the	.left	class,	there	is	a	div	with	an	id	value	of	albumNames.	The
names	of	all	the	albums	will	be	displayed	in	this	container.	After	this	div	is	a	highlight
box	in	which	we	have	an	info	icon	and	some	text	to	help	the	user.

In	div	element	.right,	we	have	a	highlight	div	with	some	text	written	in	it.	We	will	also
display	the	number	of	pictures	in	an	album	in	the	strong	element	that	has	been	given	the
id	as	numImages.	Next	is	a	div	with	the	id	set	as	albumPics.	This	is	a	placeholder
unordered	list	for	album	images.	Clicking	an	album	name	from	the	left	panel	will	display
its	pictures	inside	this	ul.	Each	picture	will	be	placed	inside	each	individual	li	element.
The	markup	for	each	li	will	be	created	from	the	JSON	file.	The	markup	structure	will	be
as	follows:

<li	id="picture_1"	class="ui-widget-content">

		<h5	class="ui-widget-header">

				Rangoli

				<div	class="icons">

						<a	data-name="Rangoli"	data-id="1"	class="ui-icon	ui-icon-pencil"	

title="Edit?"	href="#">	

						<a	data-id="1"	class="ui-icon	ui-icon-trash"	title="Delete?"	

href="#">

				</div>

		</h5>

		

				

		

Each	li	will	have	an	id	and	a	ui-widget-content	class.	Inside	it	will	be	an	h5	element
with	the	ui-widget-header	class.	This	h5	element	will	have	a	span	element	to	display	the
picture	name	and	a	div	with	class	icons	to	display	the	edit	and	delete	icons.	After	h5,	there
is	an	anchor	element	<a>	and	an	image	element	inside	it.	The	href	attribute	of	the	anchor
will	be	the	path	to	large	image	sizes	and	the	img	element	will	have	its	src	set	to
thumbnail.

Note
The	id	of	the	li	element	has	been	created	by	appending	the	picture	ID	to	the	picture_
string.

Note	that	both	the	anchor	elements	inside	div	having	the	class	.icons	have	data	attribute
data-id.This	is	the	ID	of	the	picture.	First	anchor	has	another	data	attribute	data-name.

The	last	element	in	div	having	.right	class	is	a	button	element	with	id	btnSave.	It	will
be	used	to	save	the	sequence	of	pictures	in	an	album.

Finally,	before	closing	the	body	tag,	we	have	included	the	jQuery	and	jQuery	UI	files	and
most	importantly,	the	photoAlbum.js	file.

Writing	markup	for	dialog	boxes
We	will	also	require	three	dialog	boxes	as	follows:

Clicking	on	the	edit	icon	for	a	picture	will	open	a	dialog	box	with	a	text	box	and
Save	and	Cancel	buttons
Clicking	on	the	delete	icon	will	open	a	delete	confirmation	dialog	box	with	Delete
and	Cancel	buttons
Clicking	on	the	thumbnail	of	a	picture	will	open	another	dialog	box,	which	will
display	the	large	version	of	that	image

For	the	edit	and	delete	dialogs,	we	will	not	create	the	buttons	in	markup;	instead,	they	will
be	created	when	dialogs	will	be	initialized	using	jQuery	UI.	The	remaining	markup	for
these	dialogs	is	mentioned	here.	Place	them	outside	the	outer	div	with	the	ui-widget
class:

<div	id="dialogEdit"	title="Edit	Image"	class="dialogBoxes">

		<fieldset>

		<label	for="name">Image	Name</label>

		<input	type="text"	id="txtImageName"	value=""	class="text	ui-widget-

content	ui-corner-all"/>

		</fieldset>

</div>

<div	id="dialogDelete"	title="Confirm	Delete"	class="dialogBoxes">

		<p>

		<span	class="ui-icon	ui-icon-trash"	style="float:left;	margin:0	7px	50px	

0;">

		Are	you	sure	you	want	to	delete	this	image?	

		</p>

		<p>

				This	action	is	permanent.

		</p>

</div>

<div	id="dialogZoom"	title="zoom"	class="dialogBoxes">

</div>

The	first	dialog	has	an	id	dialogEdit,	and	we	created	a	label	and	a	textbox	inside	it.	The
textbox	will	be	used	by	user	to	input	new	names	for	an	image.

The	second	dialog	has	the	id	dialogDelete	and	it	has	a	confirmation	message	inside	it.

The	last	is	the	dialog	with	id	dialogZoom.	We	will	load	a	large	version	of	an	image	inside
it.

The	title	attribute	of	each	of	these	divs	will	become	the	title	of	the	dialog.	All	three	divs
also	has	a	class	dialogBoxes	attached	to	them	which,	as	we	will	see	in	the	next	section,
will	hide	them.

This	is	the	entire	markup	we	need	initially.	The	rest	will	be	created	using	jQuery	UI	after
different	elements	are	initialized.

Styling	the	content
Some	basic	styles	will	be	required	to	partition	the	page	into	two	sections	and	layout	of	the
pictures	in	an	album.	We	will	need	these	styles	inside	the	head	section	to	structure	the
page:

<style	type="text/css">

		body{

				font-size:12px;

				margin:	0px	auto;

				width:	75%;

		}

		.left{

				height:500px;

				width:20%;

				float:left;

				padding:5px;

				margin-left:10px;

		}

		.ui-widget-header{

				margin:5px	0;

				padding:5px;

				cursor:pointer;

		}

		.right{

				height:500px;

				width:75%;

				float:right;

				margin-right:10px;

				position:relative;

				padding:5px;

		}

		#albumPics	li{

				float:	left;

				height:	190px;

				margin:	0	0	5px;

				padding:	0	5px;

				width:	150px;

				text-align:center;

		}

		#albumPics	li	h5{

				position:relative;

				cursor:move;

		}

		#albumPics	li	div.icons{

				position:	absolute;

				right:	0;

				top:	3px;

		}

		#albumPics	li	div.icons	a{

				float:left;

		}

		#btnSave{

				display:none;

		}

		.dialogBoxes

		{

				display:none;

		}

</style>

We	have	set	up	the	.left	class	of	div	element	with	a	width	of	20%	and	height	of	500px.
Similarly,	the	.right	class	of	div	element	has	75%	width	and	500px	height.	The
div.left	and	div.right	have	also	been	floated	to	the	left	and	right	respectively.

Next,	we	provided	CSS	properties	for	the	li	elements	of	the	#albumPics	list	and	the
elements	inside	it.	Each	li	element	is	150	px	x	190	px	in	dimension	and	is	floated	to	the
left.	We	have	also	added	some	padding	to	each	li.

Last	are	the	styles	for	the	button	#btnSave	and	div	having	the	.dialogBoxes	class.	The
display	has	been	set	to	none	for	both	of	these	so	that	they	are	not	visible	when	the	page
loads.

We	can	now	have	the	first	look	at	our	page.	Save	the	index.html	file	and	load	it	on	your
browser.	The	page	structure	will	be	similar	to	the	following	screenshot:

Not	much	is	visible	here	but	it	will	change	once	we	start	writing	some	jQuery	UI	code	to
display	albums.

Creating	the	JSON	file	for	albums
Before	writing	any	JavaScript	code,	we	need	to	prepare	a	JSON	file	with	information
about	albums	and	the	pictures	in	it.	For	this,	we	will	create	an	array	of	objects.	Each	object
will	represent	an	album.	For	this	chapter,	we	will	create	the	JSON	with	three	albums.	The
first	album	will	have	eight	images,	second	will	have	four,	and	third	will	have	none.	While
experimenting,	you	can	of	course	change	the	number	of	images	as	you	wish.

To	begin	with,	let’s	write	the	complete	JSON	structure	we	will	use	for	this	chapter.	Open
the	albums.json	file	in	your	text	editor	and	write	this	data	into	it:

[

		{

				"id":"A1",

				"albumName":"First	Album",

				"pictures":

				[

						{

								"id":1,

								"sequence":1,

								"imageTitle":"Rangoli",

								"imageThumb":"images/thumbs/1.jpg",

								"imageLarge":"images/1.jpg"

						},

						{

								"id":2,

								"sequence":2,

								"imageTitle":"Fair",

								"imageThumb":"images/thumbs/2.jpg",

								"imageLarge":"images/2.jpg"

						},

						{

								"id":3,

								"sequence":3,

								"imageTitle":"Glass	House",

								"imageThumb":"images/thumbs/3.jpg",

								"imageLarge":"images/3.jpg"

						},

						{

								"id":4,

								"sequence":4,

								"imageTitle":"Cottages",

								"imageThumb":"images/thumbs/4.jpg",

								"imageLarge":"images/4.jpg"

						},

						{

								"id":5,

								"sequence":5,

								"imageTitle":"Snow",

								"imageThumb":"images/thumbs/5.jpg",

								"imageLarge":"images/5.jpg"

						},

						{

								"id":6,

								"sequence":6,

								"imageTitle":"Playground",

								"imageThumb":"images/thumbs/6.jpg",

								"imageLarge":"images/6.jpg"

						},

						{

								"id":7,

								"sequence":7,

								"imageTitle":"View	from	hills",

								"imageThumb":"images/thumbs/7.jpg",

								"imageLarge":"images/7.jpg"

						},

						{

								"id":8,

								"sequence":8,

								"imageTitle":"Signboard",

								"imageThumb":"images/thumbs/8.jpg",

								"imageLarge":"images/8.jpg"

						}

]

		},

		{

				"id":"A2",

				"albumName":"Second	Album",

				"pictures":

				[

						{

								"id":1,

								"sequence":1,

								"imageTitle":"Snow",

								"imageThumb":"images/thumbs/5.jpg",

								"imageLarge":"images/5.jpg"

						},

						{

								"id":2,

								"sequence":2,

								"imageTitle":"Playground",

								"imageThumb":"images/thumbs/6.jpg",

								"imageLarge":"images/6.jpg"

						},

						{

								"id":3,

								"sequence":3,

								"imageTitle":"Hills",

								"imageThumb":"images/thumbs/7.jpg",

								"imageLarge":"images/7.jpg"

						},

						{

								"id":4,

								"sequence":4,

								"imageTitle":"Sign	board",

								"imageThumb":"images/thumbs/8.jpg",

								"imageLarge":"images/8.jpg"

						}

]

		},

		{

				"id":"A3",

				"albumName":"Third	Album",

				"pictures":[]

		}

]

As	you	can	see,	there	are	3	elements,	that	is,	albums,	in	this	array.	Each	album	has	3
properties,	which	are	id,	albumName,	and	pictures,	where	id	refers	to	the	unique	id	of	an
album,	albumName	is	the	display	name	for	that	album,	and	pictures	is	an	array	again	that
will	have	information	of	all	the	pictures	in	that	album.

Note
Change	the	values	of	the	imageThumb	and	imageLarge	variables	to	paths	of	the	pictures	on
your	system.

Each	element	of	the	pictures	array	represents	one	picture	and	it	has	5	properties	that	are
described	here:

id:	This	is	the	unique	id	of	a	picture	in	that	album
sequence:	This	displays	the	sequence	of	the	image
imageTitle:	This	is	the	name	of	the	image
imageThumb:	This	is	the	path	to	the	150	px	x	150	px	thumbnail	of	an	image
imageLarge:	This	is	the	path	to	the	400	px	x	400	px	larger	version	of	the	same	image

With	the	JSON	also	ready,	we	can	now	proceed	to	create	and	display	albums.	I	know	you
have	been	waiting	so	far	to	write	some	jQuery	UI	code.	Let’s	dive	in	right	now.

Getting	code	structure	ready
We	will	begin	by	identifying	and	declaring	all	the	methods	required	for	all	the	operations.
We	will	first	have	to	retrieve	the	JSON	from	the	server.	Then	we	will	display	album	names
in	the	left-hand-side	panel.	After	this,	we	will	attach	several	event	handlers	for	operations
such	as	displaying	the	pictures	of	an	album,	edit	image,	delete,	and	so	on.

Start	with	the	following	code	structure	in	your	js/photoAlbum.js	file,	which	defines	an
object	literal	to	wrap	the	functionality	for	the	album	manager	and	a	document	ready
handler	for	jQuery:

var	albums	=	

{

		jsonAlbums	:	null,

		currentAlbum	:	null,

		currentPictureId	:	null,

		initialize	:	function()

		{

				$.getJSON("albums.json",	function(data)	

				{

						albums.jsonAlbums	=	data;

						albums.fillAlbumNames();

						albums.addEventHandlers();

				});

		},

		fillAlbumNames	:	function()

		{

		},

		addEventHandlers	:	function()

		{				

				

		},

		displayAlbum	:	function(albumId)

		{

		},

		editImage	:	function()

		{

		},

		deleteImage	:	function()

		{

		},

		saveNewSequence	:	function()

		{

		}

};

$(document).ready(function()

{

		albums.initialize();

});

The	album’s	object	contains	all	the	properties	and	methods	we	need	to	create	an	album
manager.	Let’s	have	a	look	at	each	of	its	properties:

jsonAlbums:	After	retrieving	the	JSON	from	the	server,	we	will	store	it	in	this
variable
currentAlbum:	This	is	the	id	of	the	current	album	being	viewed.	It	will	be	set	when
an	album	name	is	clicked	on	from	the	panel	on	the	left-hand	side.
currentPictureId:	This	is	the	id	of	an	individual	picture.	We	will	need	it	for	edit
and	delete	operations.
initialize:	This	will	be	the	starting	functions	that	will	make	the	AJAX	call	to
server	and	start	the	process	to	build	the	page.
fillAlbumNames:	As	the	name	suggests,	this	method	will	display	the	names	of
albums	in	the	left-hand	side	panel.
addEventHandlers:	Event	handlers	to	handle	all	the	events	on	the	page	will	be	added
inside	this	method.
displayAlbum:	This	method	will	display	the	pictures	of	an	album.	It	will	be	called
when	an	album	name	on	the	left	panel	is	clicked.	The	id	of	the	album	will	be	passed
to	it.
editImage:	This	method	will	save	the	edited	name	for	an	image	in	the	source	JSON
file
deleteImage:	This	method	will	delete	an	image	from	the	source	JSON	file
saveNewSequence:	This	will	be	called	when	the	Save	Sequence	button	is	clicked	on.
It	will	save	the	new	order	of	images	in	an	album	after	the	user	has	rearranged	the
sequence	by	sorting	the	images.	This	will	change	the	sequence	in	the	source	JSON
file

After	this	object	is	the	$(document).ready()	handler	for	jQuery,	which	simply	calls	the
initialize	method	of	the	album’s	object.	Therefore,	we	will	start	by	implementing	the
initialize	method	first.

Implementing	the	initialize	method
In	this	method,	we	will	load	the	JSON	from	the	server	and	display	the	album	names	in	the
left	panel.	Write	the	following	code	inside	the	initialize	method	to	get	the	JSON	from	the
server:

$.getJSON("albums.json",	function(data)	

{

		albums.jsonAlbums	=	data;

		albums.fillAlbumNames();

		albums.addEventHandlers();

});

Here	we	are	using	jQuery’s	getJSON	method	to	fetch	JSON	from	the	server.	We	have
specified	albums.json	as	the	URL	and	a	success	handler	when	a	response	is	received.	In
success	event	handler,	response	is	received	in	a	variable	data	that	we	place	in	property
jsonAlbums.

Next,	we	call	the	methods	fillAlbumNames	and	addEventHandlers	of	the	albums	object.

Filling	album	names
To	fill	the	album	names,	we	will	iterate	in	the	response	JSON	and	create	HTML	with
album	names.	We	will	then	place	this	HTML	inside	the	placeholder	in	the	left	panel:

1.	 Write	this	code	for	method	fillAlbumNames	to	display	albums	in	the	left	panel:

var	albumNames	=	[];

$.each(this.jsonAlbums,	function(key,	album)

{

		albumNames.push('<h4	class="ui-widget-header	album"	data-id="'	+	

album.id	+	'">'	+	album.albumName	+	'	</h4>');

});

$('#albumNames').html(albumNames.join(''));

We	have	declared	an	array	albumNames	that	will	hold	the	DOM	structure	for	each
album.

2.	 Next	we	iterate	in	jsonAlbums	property	using	jQuery’s	$.each	iterator.	In	each
iteration	we	create	an	h4	element	with	the	album	name	inside	it.

3.	 We	also	attach	CSS	classes	ui-widget-header	and	album	to	it,	and	a	data	attribute
data-id,	which	is	set	to	the	id	of	the	album,	has	also	been	added.

4.	 After	$.each	is	finished,	we	push	the	DOM	inside	the	div	albumNames.
5.	 You	can	now	verify	that	album	names	are	being	displayed	in	the	left	panel	if	you

reload	the	index.html	page:

Displaying	the	albums
Once	album	names	are	visible	in	the	left	panel,	our	first	task	now	is	to	add	event	handlers.
The	first	event	handler	that	we	will	add	will	be	to	display	pictures	when	an	album	name	is
clicked	on.	Then	we	will	proceed	gradually	towards	other	event	handlers.

Since	each	album	name	has	a	class	name	album	attached	to	it,	we	can	add	an	event	handler
for	the	click	event	of	this	class	name.	Go	to	the	addEventHandlers	method	in	albums
object	literal	and	write	the	following	code	for	the	event	handler:

$('.album').on('click',	function()

{

		albums.displayAlbum($(this).data('id'));

});

The	click	handler	calls	the	method	displayAlbum.	The	argument	passed	to	displayAlbum
is	the	id	of	the	album.	Note	that	we	had	provided	a	data-id	attribute	for	each	album	in
the	previous	section.

Let’s	now	define	the	displayAlbum	method.	In	this	method,	we	will	iterate	in	the
jsonAlbums	object	and	create	HTML	to	display	all	the	pictures	in	the	album.	Go	to	the
displayAlbum	method	and	write	the	following	code	to	create	DOM	and	push	it	into	the
page:

$('#albumPics').empty();

$('#btnSave').hide();

this.currentAlbum	=	albumId;

var	listItems	=	'';

for(var	i	=	0;	i	<	this.jsonAlbums.length;	i++)

{

		if(this.jsonAlbums[i].id	==	albumId)

		{

				if(this.jsonAlbums[i].pictures.length	>	0)

				{

						var	allPictures	=	this.jsonAlbums[i].pictures;

						/*	sort	pictures	by	sequence	before	displaying*/

						allPictures.sort(function(a,b)

						{

								return	a.sequence	-	b.sequence;

						});

						$.each(allPictures,	function(key,	picture)

						{

								listItems+=	'<li	class="ui-widget-content"	id="picture_'+	

picture.id	+'">';

										listItems+=	'<h5	class="ui-widget-header"><span	

id="pictureName_'+		picture.id	+'">'+	picture.imageTitle	+	'';

												listItems+=	'<div	class="icons">';

														listItems+=	'<a	href="#"	title="Edit?"	class="ui-icon	ui-

icon-pencil"	data-id="'	+	picture.id	+'"	data-name="'	+	picture.imageTitle	

+	'">	';

														listItems+=	'<a	href="#"	title="Delete?"	class="ui-icon	ui-

icon-trash"	data-id="'	+	picture.id	+'">';

												listItems+=	'</div>';

										listItems+=	'</h5>';

										listItems+=	'';

												listItems+=	'<img	src="'	+	picture.imageThumb	+	'"	width="150"	

height="150"	class="large">';

										listItems+=	'';

								listItems+=	'';

						});

						$('#btnSave').show();

				}

				else	

				{

						listItems+=	'<li	class="ui-widget-content">No	pictures	in	this	

album';

				}

				$('#numImages').text(this.jsonAlbums[i].pictures.length	+	'	pictures');

				$('#albumPics').html(listItems);

				break;

		}

}

We	start	by	emptying	the	#albumPics	list	and	hiding	the	Save	button.	Then	we	set	the
currentAlbum	property	to	albumId	and	create	a	variable	named	listItems,	which	will
hold	the	DOM	for	album	pictures.

Next	we	iterate	over	jsonAlbums	and	compare	the	id	of	each	album	in	JSON	to	the
variable	albumId.	When	a	match	is	found,	we	check	whether	there	are	any	pictures
available	for	this	album.	In	case	the	pictures	array	of	an	album	has	more	than	0	items,	we
store	them	in	a	variable	allPictures.	Then	we	sort	the	pictures	array	by	key	sequence.

After	this,	we	iterate	over	all	the	pictures	using	$.each	and	create	DOM	by	appending	the
HTML	string	to	the	listItems	variable	in	each	iteration.	We	have	already	discussed	the
structure	of	li	elements	in	the	Creating	placeholders	for	albums	and	pictures	section.

Once	iteration	is	complete,	we	display	the	Save	button.	If	there	are	no	pictures	in	the
album,	we	create	an	appropriate	message	for	DOM.

After	the	if-else	condition,	we	display	the	number	of	pictures	in	an	element	with	id
numImages.	And	finally,	we	push	the	newly	created	HTML	that	is	in	the	variable
listItems	inside	list	#albumPics.

Save	the	photoAlbum.js	file	and	hit	reload	for	index.html	in	your	browser.	Click	on	any
album	name	in	the	left	panel	and	you	will	see	beautiful	pictures	in	the	album	in	the	grid
format:

Making	the	pictures	sortable
To	make	the	pictures	sortable,	go	to	the	addEventHandlers	method	again	and	append	this
code	to	initialize	the	sortable	component	of	jQuery	UI:

$('#albumPics').sortable(

{

		handle	:	'.ui-widget-header',

		placeholder:	"ui-state-highlight",

		cursor:'move'

});

We	have	initialized	the	sortable	components	with	three	options:

handle:	Normally,	sortable	elements	can	be	moved	by	dragging	any	part	of	the
container.	The	handle	option	allows	us	to	provide	a	custom	handle,	which	could	be
only	a	part	of	a	sortable	element,	to	move	the	element.	In	our	case,	each	list	item	that
displays	the	picture	is	made	up	of	two	parts;	the	first	is	an	h5	element	that	displays
image	name	and	icons	and	acts	as	a	header.	The	second	is	the	anchor	that	holds	the
image.	Since	we	want	to	reserve	the	anchor	for	zooming	the	image,	we	have	made
the	h5	element	the	handle.	Since	the	h5	element	has	the	ui-widget-header	class
attached	to	it,	we	have	provided	this	class	name	for	the	handle	option.
placeholder:	When	a	sortable	element	is	moved,	its	original	position	becomes
empty.	By	providing	a	placeholder	value,	a	class	is	applied	to	the	empty	space,	which
we	can	customize.	Here	we	have	provided	ui-state-highlight	as	the	placeholder
value.	This	class	name	is	from	jQuery	UI	the	framework	that	applies	a	highlight
effect.
cursor:	This	is	the	style	for	the	mouse	pointer	when	a	sortable	element	is	moved.	We
have	set	it	as	move.

After	initializing	the	sortable,	you	can	check	it	on	the	browser.	You	will	be	able	to
rearrange	the	pictures	by	moving	them	using	the	specified	handle.

Initializing	dialogs	for	edit,	delete,	and	zoom
We	have	also	written	markup	for	three	dialogs	that	are	used	for	editing	an	image	name,
deleting	an	image,	and	zooming	an	image.	In	order	to	use	those	dialogs,	we	will	first	have
to	initialize	them	and	convert	them	into	jQuery	UI	dialog	components.

The	code	for	initializing	these	dialogs	will	be	written	inside	the	addEventHandlers
method	as	well.	Go	ahead	and	write	this	code	after	the	sortable	initialization	to	initialize
the	dialogs:

$("#dialogEdit").dialog(

{

		resizable:	false,

		autoOpen	:	false,

		modal:	true,

		buttons:{

				Save:	function()

				{

						albums.editImage();

				},

				Cancel:	function()

				{

						$('#txtImageName').val('');

						albums.currentPictureId	=	null;

						$(this).dialog("close");

				}

		}

});

$("#dialogDelete").dialog(

{

		resizable:	false,

		autoOpen	:	false,

		modal:	true,

		buttons:	

		{

				Delete:	function()	

				{

						albums.deleteImage();

				},

				Cancel	:	function()

				{

						albums.currentPictureId	=	null;

						$(this).dialog("close");

				}

		}

});

$("#dialogZoom").dialog(

{

		resizable:	false,

		autoOpen	:	false,

		modal:	true,

		position	:	"top",

		width:430,

		show	:	'scale',

		hide	:	'scale'

});

Three	options	are	common	while	creating	all	three	dialogs.	These	properties	are
resizable,	autoOpen,	and	modal.	Setting	the	resizable	option	to	true	will	allow	the	user
to	resize	the	dialog	box	by	dragging	it	from	its	bottom	right	corner.	We	have	disabled	this
in	our	code.	The	autoOpen	property	defines	whether	a	dialog	will	open	automatically	upon
initialization	or	not.	We	have	set	it	to	false	because	we	want	to	open	it	manually:

For	dialogEdit	we	have	defined	two	buttons,	Save	and	Cancel:

Clicking	on	the	Save	button	will	call	the	editImage	method,	which	we	will
implement	later
Clicking	on	Cancel	will	empty	the	textbox	txtImageName,	set
currentPictureId	to	null,	and	close	the	dialog

For	deleteDialog,	the	two	buttons	are	Delete	and	Cancel:

Clicking	on	Delete	will	call	the	deleteImage	method,	which	we	will	implement
later
Clicking	on	Cancel	will	set	the	currentPictureId	to	null	and	close	the	dialog

The	last	dialog	is	dialogZoom:

For	this	dialog,	we	have	defined	position	as	top	so	that	it	appears	at	the	top	of
viewport
Since	large	image	size	of	a	picture	is	400	px,	we	have	defined	width	as	430,
adding	for	padding	towards	left	and	right.

The	show	and	hide	options	define	which	effects	will	be	used	when	dialog	opens	and
closes.	We	have	set	it	to	the	scale	effect.

The	dialogs	have	been	initialized	now	and	we	can	display	them	when	the	user	clicks	on
the	edit	and	delete	icons	or	tries	to	zoom	in	to	an	image.	We	will	handle	these	events	in	the
following	sections.

Handling	click	events	for	edit,	delete	icons,	and
zooming	pictures
Since	all	the	icons	are	inside	ul#albumPics,	instead	of	adding	events	for	each	item
individually,	we	can	add	an	event	handler	on	ul#albumPics	and	then	check	which	element
was	clicked	on.	All	event	handlers	are	passed	an	event	object.	We	can	use	the	target
property	of	this	event	object	to	check	which	element	was	clicked	on	and	take	action
accordingly.

Still	inside	the	addEventHandlers	method,	this	code	will	be	used	to	handle	edit,	delete,
and	image	zoom:

$('ul#albumPics').on('click',	function(event)	

{

		var	target	=	$(event.target);

		if(target.is('a.ui-icon-pencil'))	

		{

				var	pictureId	=	target.data('id');

				var	pictureName	=	target.data('name');

				albums.currentPictureId	=	pictureId;

				$('#txtImageName').val(pictureName);

				$("#dialogEdit").dialog('open');

		}	

		else	if(target.is('a.ui-icon-trash'))	

		{

				var	pictureId	=	target.data('id');

				albums.currentPictureId	=	pictureId;

				$("#dialogDelete").dialog('open');

		}	

		else	if(target.is('img.large'))	

		{

				var	largeImagePath	=	target.parent().attr('href');

				$('#dialogZoom').html('<img	src="'	+	largeImagePath	+	

'">').dialog('open');

		}

		return	false;

});

Inside	the	event	handler,	we	have	taken	the	target	element	in	a	variable	named	target.
The	jQuery	function	is	is	then	used	to	check	which	element	was	clicked	on.

The	first	if	condition	checks	whether	the	clicked	element	was	the	edit	icon	as	the	edit
icon	has	the	ui-icon-pencil	class.	In	this	case,	we	take	the	id	and	name	of	the	picture
using	the	data	attributes	data-id	and	data-name	from	the	edit	icon.	Then	we	set	the
currentPictureId	property	to	the	pictureId.

We	then	fill	the	picture	name	in	the	text	box	with	the	id	txtImageName.	Finally,	we	open
the	dialogEdit	dialog.

The	second	condition	checks	whether	the	clicked	element	was	the	Delete	icon.	In	this
case,	we	take	the	picture	id	from	the	data-id	attribute	and	set	the	currentPictureId
property.	Then	we	open	the	dialogDelete	dialog.

The	last	condition	checks	whether	the	thumbnail	image	itself	was	clicked	on.	If	this	is	the
case,	we	get	the	value	of	the	href	attribute	of	the	image’s	parent	anchor.	If	you	recall,	the
value	of	the	href	attribute	is	the	path	to	the	large	image.	We	then	create	an	image	element
and	push	it	inside	div#dialogZoom	and	then	call	the	open	method	of	the	dialog	,which	will
display	the	dialog	with	the	scale	effect.

As	the	icons	are	anchors	and	the	image	is	also	wrapped	inside	an	anchor,	return	false	is
used	to	disable	the	default	behavior.

Reload	the	index.html	page	on	the	browser	and	try	clicking	on	the	Edit	and	Delete	icons.
Respective	dialogs	will	open	for	these:

Nothing	will	happen	on	clicking	either	the	Save	and	Delete	buttons,	as	we	have	not	yet
implemented	them.

However,	clicking	on	the	thumbnail	will	open	a	dialog	box	and	will	display	a	large	version
of	the	image	in	it.	You	will	also	see	the	scale	effect	when	the	dialog	opens	and	closes:

Last	event	handler	inside	the	addEventHandlers	method	is	the	click	handler	for	btnSave.
Let’s	define	it	as	well:

$('#btnSave').button().on('click',	function()

{

		albums.saveNewSequence();

});

Clicking	on	the	Save	Sequence	button	will	call	the	saveNewSequence	button,	which	we
are	going	to	implement	in	the	next	section	along	with	the	edit	and	delete	operations.

Editing,	deleting,	and	rearranging
pictures
Before	we	code,	let’s	see	how	the	edit,	delete,	and	rearrange	operations	will	work.

On	clicking	on	the	edit	icon,	a	dialog	box	appears	with	the	image	name	in	a	text	box.	The
user	will	edit	this	name	and	click	on	the	Save	button.	Clicking	on	the	Save	button	will
send	an	AJAX	request	to	a	PHP	script.	The	album	ID,	picture	ID,	and	edited	name	will	be
sent	to	this	script.	Depending	on	the	album	ID	and	picture	ID,	the	PHP	script	will	change
the	name	of	said	image	in	the	original	albums.json	file.

Similarly,	to	delete	an	image,	we	will	send	the	album	id	and	picture	id	to	the	PHP	script.
The	PHP	script	will	delete	the	image	from	the	original	albums.json	file.

To	rearrange	the	sequence	of	images,	we	will	get	the	current	sequence	on	the	page,	which
the	user	has	made	after	reordering	the	images.	We	will	send	this	sequence	to	the	PHP
script,	and	the	script	will	update	sequence	values	for	each	picture	in	album.

Editing	a	picture	name
On	clicking	on	the	Save	button	of	the	edit	image	dialog,	the	editImage	method	will	be
called	that	will	send	the	required	AJAX	request.	Here	is	how	we	will	define	this	method:

var	editImageRequest	=	$.ajax(

{

		url	:	'ajaxAlbum.php',

		type:	"POST",

		data:	{	action	:	'edit',	albumId:	albums.currentAlbum,	pictureId:	

albums.currentPictureId,	newImageName	:	$('#txtImageName').val()	}

});

editImageRequest.done(function(data)

{

		$.getJSON("albums.json",	function(data)	

		{

				albums.jsonAlbums	=	data;

				$('#pictureName_'	+	

albums.currentPictureId).text($('#txtImageName').val());

				$("#dialogEdit").dialog('close');

		});

});

editImageRequest.fail(function(xhr,	status)	

{

		alert("Error	-	"	+	status);

});

In	the	preceding	code,	we	send	a	POST	request	to	the	ajaxAlbum.php	file.	Four	parameters
are	also	being	sent	along	with	the	request.	These	parameters	are	as	follows:

action:	This	is	required	by	the	server-side	script	to	identify	which	operation	to
perform.	We	have	sent	edit	in	this	case.
albumId:	This	is	the	ID	of	the	album	whose	picture	is	being	edited.	We	had	set	it	in
albums.currentAlbum	when	the	album	name	was	clicked	on.
pictureId:	This	is	the	ID	of	the	picture	whose	name	is	being	edited.	We	had	set	it	in
albums.currentPictureId	when	the	edit	icon	was	clicked	on.
newImageName:	This	is	the	name	of	the	image	specified	by	the	user	in	the	text	box.

Success	callback	for	this	AJAX	request	is	defined	next	using	the	.done	method.	Once	the
PHP	script	is	done,	the	control	will	reach	here	and	any	response	from	the	server	will	be
received	via	a	parameter	to	this	method.	In	our	case,	nothing	is	being	returned	from	the
server.

Since	the	original	JSON	has	changed	now,	we	need	to	update	the	jsonAlbums	property,
which	still	has	old	JSON	data.	To	do	this,	we	make	an	AJAX	call	again	with	getJSON	and
place	the	response	in	jsonAlbums.	Then	the	dialog	is	closed.

In	case	of	an	error,	we	have	an	error	callback	as	well,	which	will	display	the	error	message
in	the	alert	box.

Deleting	a	picture
Similar	to	edit,	an	AJAX	request	will	be	sent	when	the	user	clicks	the	Delete	button	on	the
dialog	box.	Go	to	the	deleteImage	method	and	write	this	code	to	send	an	AJAX	request	to
delete	the	image:

var	deleteImageRequest	=	$.ajax(

{

		url	:	'ajaxAlbum.php',

		type:	"POST",

		data:	{	action	:	'delete',	albumId:	albums.currentAlbum,	pictureId:	

albums.currentPictureId	}

});

deleteImageRequest.done(function(data)

{

		$.getJSON("albums.json",	function(data)	

		{

				albums.jsonAlbums	=	data;

				albums.displayAlbum(albums.currentAlbum);

		});						

		$("#dialogDelete").dialog('close');

});

deleteImageRequest.fail(function(xhr,	status)	

{

		alert("Error	-	"	+	status);

});

In	this	AJAX	request,	we	only	need	to	send	the	album	ID	and	the	picture	ID	we	want	to
delete	along	with	the	key	action	whose	value	will	be	delete	this	time.

Similar	to	edit	image,	we	have	defined	a	success	event	handler	that	will	get	the	updated
albums.json	file	from	the	server	and	put	it	in	the	albums.jsonAlbums	file.

Since	an	image	has	been	deleted,	we	need	to	refresh	the	UI	as	well.	Hence,	we	call	the
displayAlbum	method	again	for	the	current	album.

Refreshing	the	page	and	selecting	an	album	will	show	that	deleted	images	have	been
removed	permanently	from	the	original	JSON	file.

Rearranging	pictures	of	an	album
To	rearrange	pictures,	we	need	to	get	the	new	sequence	of	images,	which	is	in	the	page.
Clicking	on	the	Save	Sequence	button	will	send	the	AJAX	request	with	this	sequence	and
the	PHP	script	will	do	the	rest.	This	can	be	done	easily	using	the	serialize	method	of	the
sortable	component.	Go	to	the	saveNewSequence	method	and	write	this	code:

var	x	=	($('#albumPics').sortable('serialize'));

var	editSequenceRequest	=	$.ajax(

{

		url	:	'ajaxAlbum.php',

		type:	"POST",

		data:	'action=reorder&albumId='+	albums.currentAlbum	+		'&'	+	x

});

editSequenceRequest.done(function(data)

{

		$.getJSON("albums.json",	function(data)	

		{

				albums.jsonAlbums	=	data;

				albums.displayAlbum(albums.currentAlbum);

		});

});

editSequenceRequest.fail(function(xhr,	status)	

{

		alert("Error	-	"	+	status);

});

Here’s	what	we	did	in	the	code:

First	of	all	we	used	the	serialize	method	to	get	new	sequence	of	IDs.
Note	that	we	have	already	created	IDs	of	sortable	elements	as	picture_1,	picture_2,
picture_3,	and	so	on,	where	the	number	after	underscore(_)	is	the	image	ID.
Using	the	serialize	option	of	the	sortable	component	will	create	a	hash	that	will
be	something	like	picture[]=1&	picture[]=2&	picture[]=3.	On	server	side	these
IDs	will	be	received	in	an	array.
An	AJAX	request	is	then	sent	with	action	set	to	reorder,	album	ID	set	to
currentAlbum,	and	the	hash	that	is	stored	in	variable	x.
The	success	handler	for	this	request	will	be	similar	to	the	delete	operations	success
handler.	We	will	fetch	the	updated	JSON	using	getJSON,	set	value	of	jsonAlbums,
and	call	the	displayAlbum	method	again.

You	can	now	refresh	the	page	and	see	that	images	of	albums	will	appear	in	the	sequence
you	saved	them.

The	ajaxAlbum.php	file
All	the	AJAX	calls	in	previous	sections	were	sent	to	the	ajaxAlbum.php	file.	This	is	the
PHP	file	that	will	make	all	changes	to	the	JSON	file	albums.json.	We	will	place	a	switch
case	in	this	file	to	identify	paths	for	edit,	delete,	and	reorder.	Since	PHP	is	not	in	the	scope
of	this	chapter	or	book,	we	will	not	go	through	server-side	code	in	too	much	detail.	The
following	is	the	code	that	will	make	the	changes:

<?php

		$albumId	=	$_POST['albumId'];

		$pictureId	=	$_POST['pictureId'];

		$jsonAlbums	=	file_get_contents('albums.json');

		$jsonAlbums	=	json_decode($jsonAlbums);

		switch($_POST['action'])

		{

				case	'edit':

						foreach($jsonAlbums	as	$album)

						{

								if($album->id	==	$albumId)

								{

										foreach($album->pictures	as	$picture)

										{

												if($picture->id	==	$pictureId)

												{

														$picture->imageTitle	=	$_POST['newImageName'];

														file_put_contents('albums.json',	json_encode($jsonAlbums));

														break;

												}

										}

										break;

								}

						}

				break;

				case	'delete':

						foreach($jsonAlbums	as	$album)

						{

								if($album->id	==	$albumId)

								{

										foreach($album->pictures	as	$index	=>	$picture)

										{

												if($picture->id	==	$pictureId)

												{

														unset($album->pictures[$index]);

														$remaining	=	array_values($album->pictures);

														$album->pictures	=	$remaining;

														file_put_contents('albums.json',	json_encode($jsonAlbums));

														break;

												}

										}

										break;

								}

						}

				break;

				case	'reorder':

						$pictureIds	=	$_POST['picture'];

						foreach($jsonAlbums	as	$album)

						{

								if($album->id	==	$albumId)

								{

										$sequenceStart	=	1;

										foreach($pictureIds	as	$id)

										{

												/*	find	this	id	in	in	album	pictures	and	set	sequence*/

												foreach($album->pictures	as	$picture)

												{

														if($picture->id	==	$id)

														{

																$picture->sequence	=	$sequenceStart;

																$sequenceStart++;

																break;

														}

												}

										}

										file_put_contents('albums.json',	json_encode($jsonAlbums));

										break;

								}

						}

				break;

		}

?>

The	first	and	second	lines	get	the	album	ID	and	picture	ID	in	variables	$albumId	and
$pictureId,	respectively.	Then	we	load	the	albums.json	file	and	convert	it	into	an	object.

Note
A	key	named	action	will	be	sent	with	each	AJAX	request	so	that	the	PHP	script	may
identify	which	operation	to	perform.	The	possible	values	are	edit,	delete,	and	reorder	for
editing,	deleting,	and	rearranging	images,	respectively.

Depending	on	the	value	of	the	action,	any	of	the	three	operations	take	place.

For	editing	the	image,	we	iterate	in	the	JSON	and	after	finding	the	correct	album	and
picture	based	on	$albumId	and	$pictureId,	we	update	the	name.	After	updating	the	name,
we	convert	the	object	to	JSON	and	write	it	back	in	the	albums.json	file	with	the	help	of
the	PHP	file_put_contents	function.

Similarly,	the	delete	operation	is	performed.	After	finding	the	correct	album	and	image,
the	array	element	from	the	pictures	array	is	removed.	The	remaining	JSON	is	written	to
albums.json	file,	like	before.

To	reorder	the	images	we	have	an	array	of	the	latest	sequence	in	the	form	of	an	array	in
the	variable	picture	that	was	sent	in	the	AJAX	request.	Then	for	the	specified	album,	we
loop	over	all	the	ids	sent	from	the	browser	and	set	a	sequence	accordingly.	The	modified
object	is	converted	back	to	JSON	and	written	in	the	albums.json	file.

Note
Make	sure	that	you	have	write	permissions	on	the	albums.json	file.	Without	this,	no
changes	will	be	written	to	the	file.

Improving	album	manager
There	is	a	lot	of	scope	for	improvement	in	this	album	manager.	You	can	start	with	these
suggestions:

Use	a	database	instead	of	a	JSON	file
Use	a	Flickr	API	instead	of	a	JSON	file
Allow	users	to	move	pictures	from	one	album	to	another	(Hint:	use	connected
sortables)
Use	jQuery	UI’s	slider	component	to	zoom	in	and	zoom	out	of	an	image

Summary
This	was	a	long	chapter	with	a	lot	of	functionalities	to	cover.	You	learned	to	create	a	basic
photo	album	manager	application.	We	were	able	to	edit	image	description	and	delete	an
image	from	an	album.	We	were	also	able	to	reorder	the	pictures	in	an	album.	In	this
process,	you	made	use	of	jQuery	UI’s	sortable	and	dialog	components	and	learned	about
some	themeroller	classes	as	well.

Going	forward,	the	next	chapter	is	going	to	be	interesting	as	you	will	learn	to	create	your
own	widgets	using	jQuery	UI’s	widget	factory.

Chapter	9.	Creating	Widgets	Using	the
Widget	Factory
So	far,	we	worked	with	the	default	components	or	widgets	provided	by	the	jQuery	UI
library.	In	this	chapter,	we	will	take	a	step	forward	and	use	the	power	of	jQuery	UI’s
widget	factory	to	create	our	own	widgets.

The	widget	factory	of	jQuery	UI	is	the	basic	building	block	of	all	the	components	of
jQuery	UI.	This	means	that	if	you	create	your	own	widgets	using	the	widget	factory	as	a
base,	you	are	doing	so	in	a	standardized	manner	similar	to	the	way	other	native	widgets
have	been	written.	This	helps	in	maintaining	consistency	among	all	widgets.	Another
advantage	is	that	the	widget	factory	follows	an	object-oriented	approach	to	create	a
widget.

We	will	use	the	widget	factory	in	this	chapter	to	create	two	widgets.	Our	first	widget	will
be	used	to	search	for	a	string	in	the	rows	of	a	HTML	table.	Initializing	this	widget	for	a
table	will	create	an	input	textbox	in	the	first	row	of	the	table.	Typing	any	characters	in	the
textbox	will	start	a	search	for	the	matching	string	in	the	table.	Based	on	the	input	string,
only	matching	rows	will	be	visible	and	any	nonmatching	rows	will	be	hidden.	We	will	also
allow	users	to	customize	the	options	for	the	widget	as	well.

The	second	widget	will	convert	a	list	of	elements	into	a	slideshow.	Elements	will	be
displayed	one	by	one	after	a	fixed	duration.	We	will	allow	users	to	customize	this	widget
with	options,	have	such	as	the	duration	for	which	an	element	will	be	displayed,	effects
used	while	showing	and	hiding	an	element,	and	the	speed	of	the	“show	and	hide”	effects.
We	will	also	provide	a	callback	method	that	will	be	available	for	users	of	the	widget	to
implement.	This	callback	will	be	called	before	any	element	is	displayed.

Both	of	these	widgets	will	cover	the	concepts	of	custom	widget	creation,	and	you	will	be
able	to	create	similar	and	advanced	widgets	like	these	easily	in	future.

The	folder	structure
The	folder	structure	for	this	chapter	will	be	same	as	that	of	the	previous	chapters.	Create	a
folder	named	Chapter9	inside	the	MasteringjQueryUI	folder.	Inside	the	Chapter9	folder,
create	two	HTML	files	and	name	them	search.html	and	slides.html,	respectively.	Also,
copy	the	js	and	css	folders	inside	the	Chapter9	folder.	Now,	open	the	js	folder	and	create
two	more	JavaScript	files	with	the	names	searchable.js	and	slides.js.	These	files	will
be	used	to	write	widget-specific	codes	for	searchable	and	slide	widgets,	respectively.

With	the	folder	setup	complete,	let’s	start	to	build	our	first	widget:	searchable.

Creating	a	widget	to	search	data	in	a	table
The	searchable	widget	will	insert	a	new	row	at	the	beginning	of	the	table	element.
Inside	this	row,	there	will	be	a	td	element	that	will	have	a	label	and	a	textbox	for
searching.

For	the	markup	on	the	HTML	page,	we	will	only	need	a	table	with	some	rows.

Writing	markup	for	the	table
The	entire	markup	will	be	written	inside	the	search.html	file.	We	will	create	a	table	with
three	columns.	The	first	column	will	be	the	serial	number,	the	second	column	will	be	the
name	of	a	place,	and	the	third	column	will	have	comma-separated	tags	related	to	that
place.	To	create	such	a	table,	open	the	search.html	file	and	write	the	following	code	to
create	a	regular	HTML	table:

<html>

		<head>

				<title>Searchable	Widget</title>

				<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

		</head>

		<body>

				<p>

						<button	id="btnEnable">Enable	Searchable</button>

						<button	id="btnDestroy">Destroy	Searchable</button>

				</p>

				<table	width="100%"	id="tblData"	class="tables">

						<tbody>

								<tr>

										<th	width="10%">#</th>

										<th	width="35%">Place</th>

										<th	width="55%">Tags</th>

								</tr>

								<tr>

										<td	class="odd">1</td>

										<td	class="odd">Pithoragarh</td>

										<td	class="odd">Hills,	Snow</td>

								</tr>

								<tr>

										<td	class="even">2</td>

										<td	class="even">Dhakuri</td>

										<td	class="even">Trekking,	Himalayas,	Camping</td>

								</tr>

								<tr>

										<td	class="odd">3</td>

										<td	class="odd">Goa</td>

										<td	class="odd">Beach,	Fun,	Holidays</td>

								</tr>

								<tr>

										<td	class="even">4</td>

										<td	class="even">Nainital</td>

										<td	class="even">Snow,	Lake,	Hills</td>

								</tr>

								<tr>

										<td	class="odd">5</td>

										<td	class="odd">Dayara	Bugyal</td>

										<td	class="odd">Trekking,	Camping</td>

								</tr>

								<tr>

										<td	class="even">6</td>

										<td	class="even">Mumbai</td>

										<td	class="even">Beach,	Bollywood</td>

								</tr>

								<tr>

										<td	class="odd">7</td>

										<td	class="odd">Agra</td>

										<td	class="odd">Taj	Mahal,	Holiday</td>

								</tr>

								<tr>

										<td	class="even">8</td>

										<td	class="even">Ranikhet</td>

										<td	class="even">Sunset,	Hills</td>

								</tr>

								<tr>

										<td	class="odd">9</td>

										<td	class="odd">Auli</td>

										<td	class="odd">Skiing,	Snow,	Honeymoon</td>

								</tr>

								<tr>

										<td	class="even">10</td>

										<td	class="even">Chopta</td>

										<td	class="even">Trekking,	Honeymoon</td>

								</tr>

						</tbody>

				</table>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

				<script	src="js/searchable.js"></script>

		</body>

</html>

The	preceding	code	begins	by	referencing	the	path	to	the	jQuery	UI	CSS	file	inside	the
head	section.	There	is	not	much	to	do	for	this	file	in	this	example.	We	are	using	it	just	to
beautify	the	buttons.	You	can	avoid	including	it	altogether.

Then,	inside	the	body	tag,	we	defined	two	buttons.	These	buttons	have	the	id	btnEnable
and	btnDestroy	and	these	will	be	used	to	enable	and	destroy	the	widget,	respectively.

Then,	we	created	the	table	that	has	the	id	set	to	tblData	and	class	set	to	tables.	Inside
it,	there	are	10	rows,	each	having	three	columns	with	some	data	in	each	of	them.	Note	that
each	alternate	row	has	classes	odd	and	even	applied	to	its	cells.	This	is	just	for
presentation	purpose	and	is	not	in	any	way	related	to	the	widget.

After	creating	the	table,	we	referenced	the	jQuery	core	file,	the	jQuery	UI	core	file,	and
finally	a	reference	to	the	searchable.js	file	where	we	will	write	the	code	to	create	the
widget.

Styling	the	content
We	will	do	some	basic	styling	to	make	the	table	look	better.	We	will	apply	styles	for	the
table	and	td	elements.	There	will	be	an	interesting	addition,	though.	We	will	also	define
some	CSS	rules	for	classes	of	elements	that	will	be	generated	by	the	widget.	Here	are	the
CSS	rules	to	apply	in	the	head	section	of	the	file:

<style	type="text/css">

		body{

				margin:0	auto;

				font-family:verdana,arial;

				font-size:12px;width:45%

		}

		.tables{

				border:1px	solid	#000;

				margin:0	auto;

				width:600px;

				background-color:#acaafc;

		}

		.tables	th{

				color:#fff;

		}

		th,td{

				padding:5px;

				font-size:12px;

		}

		p{

				background-color:#acaafc;

				padding:10px;

		}

		.even{

				color:#343234;

				background-color:#fff;

		}

		.odd{

				color:#343234;

				background-color:#dcdefc;

		}

/*	styles	specific	to	search	widget	*/

		.mywidget-searchBoxContainer{

		}

		.mywidget-searchBoxContainer	td{

				border:1px	solid	#fff;

		}

		.mywidget-label-search{

				color:#fff;

		}

		.mywidget-textbox{

		}

</style>

Note	the	four	CSS	rules	at	the	end	of	the	code.	When	the	widget	generates	a	new	row,	the
mywidget-searchBoxContainer	class	will	be	applied	to	the	row.	For	the	widget’s	td

element,	the	mywidget-searchBoxContainer	td	rule	will	be	applied.	The	label	and	the
textbox	will	have	the	mywidget-label-search	and	mywidget-textbox	classes	applied	to
them,	respectively.

The	purpose	of	applying	these	CSS	rules	in	widget’s	HTML	code	is	to	allow	theming.	You
can	place	any	CSS	properties	for	these	to	customize	the	look	of	the	HTML	generated	by
the	widget.

If	you	load	the	search.html	file	in	the	browser	now,	you	will	see	a	nice-looking	table	and
two	buttons	at	the	top,	as	shown	in	the	following	screenshot:

Implementing	the	widget
The	widget	factory	follows	a	common	pattern	to	define	its	methods.	There	are	some	basic
methods	that	must	be	implemented	in	order	to	create	a	widget.	Hence,	we	will	first	define
the	structure	of	the	widget,	and	then	understand	the	widget	in	detail	to	see	what	each	of
the	methods	do,	and	how	we	can	use	these	methods	to	create	widgets	of	our	own.

Let’s	look	at	the	widget	structure	first.

Defining	the	widget	structure
The	following	code	represents	the	life	cycle	of	a	typical	jQuery	UI	widget.	There	are
many	more	properties	that	are	not	used	so	often.	We	will	look	at	those	properties	at	the
end	of	this	chapter.

For	now,	write	the	following	code	in	the	js/searchable.js	file	to	create	the	basic
skeleton	of	the	widget:

(function	($)	{

		$.widget("mywidget.searchable"	,

		{

				options:	

				{

								characterLength:	3,

										searchLabel	:	'Enter	characters	:	'

				},

				_create:	function	()	

				{

				},

				_destroy:	function	()	

				{

				},

				_setOption:	function	(key,	value)	

				{

				}

		});

})(jQuery);

The	widget	is	defined	using	$.widget()	that	takes	two	arguments:	the	first	argument	is
the	name	of	the	widget	with	the	namespace	and	the	second	argument	is	the	set	of
properties	of	the	widget.	We	set	the	name	as	mywidget.searchable.	Here,	mywidget	is	the
namespace	and	searchable	is	the	widget	name	by	which	it	will	be	initialized	by	other
users.	All	the	widgets	of	jQuery	UI	share	the	namespace	ui.	Hence,	the	dialog	widget	is
created	using	ui.dialog	and	so	on.	You	can	assign	any	namespace	to	your	widgets.

After	the	widget	name,	we	defined	the	properties	for	the	widget.	The	preceding	code
contains	the	basic	properties	that	are	required	by	$.widget.	Let’s	look	at	all	of	these:

options:	This	is	an	object	that	has	the	key-value	pairs.	The	keys	and	values	provided
here	serve	as	the	default	options	values	for	the	widget.	These	keys	will	be	provided
by	users	when	the	widget	is	initialized.
_create:	This	is	the	constructor	of	the	widget.	We	will	create	the	DOM	required	for

the	widget	inside	this	method	and	inject	it	into	the	page.	Event	handlers	for	the
widget’s	elements	will	also	be	added	here.
_destroy:	This	method	is	invoked	when	the	destroy	option	is	called	on	the	method.
Calling	the	destroy	method	invokes	a	public	destroy	method	of	the	jQuery	UI,
which	removes	any	event	handlers	and	data	present	in	DOM.	It	then	passes	control	to
_destroy,	where	we	can	remove	the	widget’s	HTML	from	the	page	and	revert	any
changes	that	the	widget	made	to	the	DOM.
_setOption:	Whenever	any	option	is	set	for	the	widget	by	using	the	option	method,
a	method	named	_setOptions	is	called	(note	the	s	at	the	end).	This	method	calls	the
_seOption	method	for	each	option	provided	by	the	user.	This	method	receives	the
option	key	and	value.	Depending	on	the	value	of	a	particular	key,	changes	are	made
to	the	widget	state,	as	required.

Now,	we	are	ready	to	implement	the	code	for	various	widget	methods.

Setting	up	default	options
For	this	example,	we	have	defined	two	options,	characterLength	and	searchLabel,	and
set	the	values	to	3	and	Enter	characters	:,	respectively.

The	value	of	the	characterLength	option	is	the	minimum	number	of	characters	the	user
has	to	type	before	we	search	the	table	for	input	value.	The	value	3	means	the	widget	will
search	the	table	only	when	user	has	typed	at	least	three	characters.

The	searchLabel	option	will	have	the	text	that	will	appear	towards	the	left	of	the	textbox.
Users	will	be	able	to	set	both	these	options	when	they	initialize	the	widget.

Initializing	the	widget	and	attaching	event	handlers
After	setting	up	the	options,	we	will	now	implement	the	widget	constructor	_create,
where	we	will	create	the	DOM	and	attach	the	event	handler	for	searching.

Go	to	the	_create	method	in	the	searchable.js	file	and	write	this	code:

if(!this.element.is('table'))

		{

				console.log('not	a	table');

				return;

		}

		this.element.addClass('mywidget-searchable-table');

		var	colspan	=	(this.element).find('tr:first').children().length;

		this.searchInput	=	$("<input	type='text'	class='mywidget-textbox	ui-

state-highlight	ui-corner-all'>")	

.insertBefore((this.element).find('tr:first'))

		.wrap('<tr	class="mywidget-searchBoxContainer"><td	colspan="'+colspan+'">

</td></tr>');

		$("<label	class='mywidget-label-search'>"+	this.options.searchLabel+"

</label>").insertBefore(this.searchInput);

		this._on(this.searchInput,	

		{

				keyup:	"_filterTable"

		}

);

Note
The	this.element	and	this.options	will	be	available	inside	all	methods.	The
this.element	refers	to	the	element	on	which	the	widget	was	called	and	the	this.options
allows	you	to	access	any	option	of	the	widget.

Since	we	want	this	widget	exclusively	for	tables,	the	first	thing	we	check	inside	the
_create	method	is	that	this.element	must	be	a	table	element.	If	it	is	not,	we	log	an	error
in	the	console	and	exit	from	the	method.

Next,	we	added	a	CSS	class	mywidget-searchable-table	to	the	table.	You	can	write	any
CSS	for	this	class	to	customize	the	look	of	the	widget.	Then,	we	find	the	number	of	cells
in	a	particular	row.	This	will	be	used	to	set	the	colspan	value	of	the	row	we	are	going	to
append	to	the	table.

Following	the	code	is	very	important,	as	we	will	create	the	HTML	and	append	it	to	DOM.
First,	we	created	an	input	box	with	the	class	mywidget-textbox.	Then,	we	inserted	the
input	box	before	the	first	tr	element	of	the	table.	Finally,	we	created	a	new	tr	element
with	a	td	element	inside	it	and	wrapped	the	newly	created	element	inside	this	new	row.
The	colspan	value	of	the	td	is	set	to	the	variable	colspan	we	calculated	earlier.	Also,	note
that	the	tr	has	been	assigned	a	CSS	class	mywidget-searchBoxContainer.	The	newly
created	element	will	be	available	via	this.searchInput	object	to	rest	of	the	widget
methods.

We	also	need	to	place	a	label	towards	the	left	of	the	input	box.	Therefore,	we	create	a	label
element,	assign	the	CSS	class	mywidget-label-search	to	it	and	insert	it	before	the	newly
created	search	box	that	is	accessible	using	this.searchInput.	Inside	the	label,	we	set	its
text	to	the	value	of	searchLabel	option.

In	order	for	the	textbox	to	be	functional,	we	need	to	add	an	event	handler.	We	will	attach	a
keyup	event	handler.	This	is	done	using	the	_on	method	of	the	widget	factory.	On	the,
keyup	event,	a	method	named	_filterTable	will	be	called	where	we	will	filter	the	table
rows.

Filtering	the	table
Inside	the	searchable.js	file,	we	will	have	to	add	a	new	method	named	_filterTable
first	and	then	implement	the	required	code.	The	following	code	defines	the	_filterTable
method	and	the	code	to	search	all	the	cells	of	table:

_filterTable:	function	(event)	

{

		var	inputVal	=	$.trim(this.searchInput.val());

		if(inputVal.length	<	this.options.characterLength)

		{

				this.element.find('tr').show();

				return;

		}

		this.element.find('tr:gt(0)').each(function(index,row)

		{

				var	found=false;

				$(row).find('td,th').each(function(index,td)

				{

						var	regExp=new	RegExp(inputVal,'i');

						if(regExp.test($(td).text()))

						{

								found	=	true;

						}

				});

				if(found)

				{

						$(row).show();

				}

				else	

				{

						$(row).hide();

				}

		});

}

Note
If	you	are	adding	this	method	after	any	of	the	other	methods	in	the	searchable.js	file,
make	sure	that	you	add	a	comma	(,)	to	separate	different	methods.

We	begin	by	storing	the	value	of	the	input	box	in	a	local	variable	inputVal.	Then,	we
check	the	length	of	input	against	the	characterLength	option.	If	the	provided	text	input	is
less	than	the	characterLength	option,	we	simply	display	all	the	tr	elements	and	exit.	We
proceed	only	if	the	input	length	is	more	than	the	value	of	the	characterLength	option.

Next	is	a	loop	using	jQuery's	$.each	to	iterate	in	all	rows.	Note	that	the	tr:gt(0)
selector	used	for	the	tr	elements.	Since	the	first	tr	element	is	the	search	widget	itself,	we
collected	rows	starting	from	the	index	‘1’.	For	each	tr	element	in	the	loop,	we	receive	the
index	of	that	row	and	the	row	element	itself.

For	each	row,	we	set	a	flag	named	found	to	false.	Then,	we	loop	again	in	the	td	and	th
elements	of	that	particular	row.	For	each	row,	we	test	the	input	value	against	a	regular
expression.	If	the	input	value	matches	the	text	in	any	td	element	of	that	row,	we	set	the
found	flag	to	true.

Once	looping	over	td	and	th	elements	is	complete,	we	show	or	hide	the	rows	based	on	the
value	of	flag	found.

With	this	implementation,	we	are	halfway	through	creating	the	widget.	Let’s	implement
the	remaining	methods	now.

Making	changes	when	the	option	value	is	changed
Once	the	widget	has	been	initialized,	users	should	be	able	to	change	the	characterLength
and	searchLabel	options	using	the	option	method.	In	case	of	the	searchLabel	option,	we

will	have	to	display	the	new	text	in	the	page	as	well.	The	following	code	will	take	care	of
both	options:

_setOption:	function	(key,	value)	

{

		switch	(key)	

		{

				case	"searchLabel":

						this.searchInput.prev('label').text(value);

						break;

				default:

						break;

		}

		this.options[key]	=	value;

		this._super("_setOption",	key,	value);

}

Since	_setOption	is	called	for	each	option,	we	need	to	identify	the	keys	and	take	actions
accordingly.	For	this	purpose,	we	have	placed	a	switch	block	with	each	option	name	as	a
case	condition.

The	first	case	is	for	the	option	searchLabel.	If	this	option	is	set,	we	change	the	text	of
label	to	the	new	value.	Also,	we	set	the	new	value	for	each	option	using	the	following
code:

this.options[key]	=	value;.

Lastly,	the	_super	method	is	called	for	_setOption.	This	method	is	a	jQuery	UI	method
that	updates	the	state	of	the	widget	internally.

Destroying	the	widget
The	last	task	is	to	destroy	the	widget	and	clean	the	DOM	elements	we	have	created.	The
following	code	will	remove	the	widget	HTML	and	revert	the	table	to	its	original	state:

_destroy:	function	()	

{

		this.element.removeClass('mywidget-searchable-table');

		$('.mywidget-searchBoxContainer').remove();

}

The	first	line	removes	the	theming	class	mywidget-searchable-table	from	the	table,	and
the	second	line	removes	the	tr	element	from	the	table.

Remember	that	after	calling	the	destroy	method	for	the	widget,	jQuery	UI	will	call	its
internal	destroy	method,	which	will	unbind	all	event	handlers	as	well.

Calling	the	widget	from	the	page
Now	that	we	have	implemented	all	methods,	our	searchable	widget	is	complete	and	we
are	now	ready	to	use	it:

1.	 Open	the	search.html	file.
2.	 Go	to	the	bottom	where	you	have	included	the	searchable.js	file.	After

searchable.js	is	included,	insert	the	following	code	to	bind	event	handlers	for	the
Enable	Searchable	and	Destroy	Searchable	buttons:

<script	type="text/javascript">

		$(document).ready(function()

		{

				$('#btnEnable').on('click',	function()

				{

						$('#tblData').searchable(

						{

								characterLength	:	2,

								searchLabel	:	'Type	at	least	2	characters	to	search	:	'

						});

				});

				$('#btnDestroy').on('click',	function()

				{

						$('#tblData').searchable('destroy');

				});

		$('button').button();

		});

</script>

The	code	here	is	pretty	self-explanatory.	We	have	bound	the	click	event	handlers	for
buttons	with	id	values	btnEnable	and	btnDestroy.	On	a	click	of	btnEnable,	we
initialize	the	searchable	widget	with	the	options	characterLength	and
searchLabel.	We	have	set	the	characterLength	option	to	2	here.	For	btnDisable,
we	call	the	destroy	method	that	will	remove	the	widget	completely.

3.	 Then,	we	will	call	the	button	widget	on	the	buttons	present	in	the	page.
4.	 Open	the	search.html	file	in	a	browser	now	and	click	on	the	Enable	Searchable

button.	The	widget	will	appear	on	the	page:

5.	 Now	type	a	few	characters	in	the	search	box.	We	have	initialized	the	widget	with
characterLength	option	set	to	2.	As	soon	as	you	type	the	second	character,	filtering
of	rows	will	start	with	each	keystroke.	Here	is	how	the	page	will	look	after	filtering:

Improving	the	searchable	widget
The	searchable	widget	we	made	is	a	basic	one	but	you	must	have	got	the	idea	of
providing	options	and	adding	events.	You	can	try	the	following	suggestions	to	enhance
this	widget:

Option	to	append	the	widget	at	either	top	or	bottom
Case-sensitive	search
Excluding	specific	text	from	the	search

Creating	a	widget	to	display	a	slideshow
In	the	previous	widget,	we	did	not	make	use	of	callbacks.	Most	of	the	widgets	require
some	type	of	custom	callbacks.	They	provide	more	control	to	users	and	allow	users	to
interact	with	the	widget;	for	example,	the	built-in	dialog.	It	provides	options	such	as	open,
close,	create,	drag,	and	so	on,	which	can	be	used	to	add	dynamic	behavior	to	the	widget.
Therefore,	for	our	second	widget,	we	will	create	the	widget	options	as	well	as	a	callback.
This	will	help	you	to	understand	widgets	more	thoroughly.

We	will	address	this	problem	in	our	second	widget,	where	we	will	convert	a	list	of
elements	into	slideshow.	We	will	allow	users	to	customize	the	widget	by	providing	options
to	set	the	duration	of	a	slide,	the	effect	which	will	be	used	to	show	and	hide	the	slides,	the
speed	of	slides,	and	so	on.	We	will	also	provide	a	callback	method.	This	callback	will	be
called	just	before	a	slide	is	displayed.

Writing	markup	for	slides
Let’s	start	by	writing	the	markup	for	the	page.	For	the	markup,	we	will	create	a	div
element	that	will	act	as	a	parent	container,	and	the	child	elements	of	this	div	will	act	as
individual	slides.	For	our	example,	we	will	keep	an	image	and	some	text	in	each	slide.

To	write	the	markup,	open	the	slides.html	file	and	write	the	following	code	to	create	the
structure:

<html>

		<head>

				<title>Slideshow</title>

				<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

		</head>

		<body>

		<p>

				<button	id="btnEnable">Start	Slideshow</button>

				<button	id="btnDestroy">Stop	Slideshow</button>

		</p>

				<div	id="slideContainer">

						<div	class="slide	ui-state-highlight">

								

								<p>Cras	congue	nisl	in	tellus	placerat	luctus.	Mauris	tempus	ante	

erat,	non	tempus	enim	posuere	vel.	In	condimentum	orci	sem,	a	vestibulum	

leo	elementum	eu.	</p>

						</div>

						<div	class="slide	ui-state-highlight	special">

								

								<p>Ut	interdum,	massa	quis	feugiat	consectetur,	enim	ligula	varius	

mi,	vitae	varius	massa	elit	quis	velit.	In	posuere	egestas	velit	ac	

molestie.	Vestibulum	nec	dapibus	justo.	</p>

						</div>

						<div	class="slide	ui-state-highlight">

								

								<p>Morbi	posuere	molestie	mauris	a	ornare.	Integer	at	ipsum	vel	

metus	rutrum	suscipit	at	nec	ante.	Nullam	malesuada	tempor	elementum.	Nam	

nec	sollicitudin	massa.	Pellentesque	maximus	diam	at	libero	faucibus	

porttitor.	</p>

						</div>

						<div	class="slide	ui-state-highlight">

								

								<p>In	commodo	laoreet	mi,	congue	placerat	purus.	Cras	a	feugiat	

velit.	Nunc	facilisis	ac	tortor	a	consequat.	Integer	congue	purus	et	

hendrerit	volutpat.	Duis	dictum	malesuada	placerat.	</p>

						</div>

				</div>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

				<script	src="js/slides.js"></script>

		</body>

</html>

We	started	off	by	including	the	jQuery	UI	CSS	file	in	the	page.	Inside	the	body	section,
we	created	two	buttons	with	id	values	btnEnable	and	btnDestroy,	just	like	the	previous
widget.	These	buttons	will	enable	and	disable	the	slideshow	on	clicking.

After	buttons,	there	is	a	div	with	the	id	value	slideContainer.	Inside	this	div,	we	have
created	four	more	div	elements.	Each	of	these	will	be	a	slide.	Each	of	these	div	elements
has	been	given	the	classes	slide	and	ui-state-highlight.	Every	slide	also	has	an	image
and	some	text	inside	it.	All	the	images	have	been	referenced	from	the	images	directory
inside	the	Chapter9	directory.

Note	that	the	second	div	has	another	CSS	class	named	special	assigned	to	it.	We	will	use
it	later	with	the	callback	method.

Finally,	just	before	the	closing	of	the	body	tag,	we	include	jQuery,	jQuery	UI	files,	and	the
slides.js	file	that	is	empty	at	the	moment.

Styling	the	content
Before	we	check	the	page	in	browser,	let’s	beautify	it	a	bit.	We	will	define	some	CSS
properties	for	div#slideContainer,	div.slide,	and	the	p	and	img	elements	inside	it.	Go
to	the	head	section	of	slides.html	and	write	the	following	CSS	rules	after	the	jQuery	UI
CSS	file	is	included:

<style	type="text/css">

		body{

				color:#025c7f;

				font-family:verdana,arial;

				width:700px;

				margin:0	auto;

		}

		#slideContainer{

				margin:0	auto;

				font-size:20px;

				position:relative;

				width:700px;

				text-align:justify;

		}

		.slide{

				float:left;

				padding:10px;

		}

		.slide	img{

				height:	200px;	width:	300px;	float:	left;

		}

		.slide	p{

				display:	inline-block;	width:	360px;	margin-left:	15px;color:#5f5f5f;

		}

		a{

				color:#000;

				font-size:15px;

		}

		/*	styles	specific	to	banner	rotator	*/

		.mywidget-banner{

		}

		.mywidget-banner-item{

		}

</style>

The	last	two	CSS	rules	are	for	the	class	names	that	will	be	generated	by	the	widget.	You
can	specify	the	CSS	properties	here	and	they	will	be	applied	when	the	widget	is	activated.

Now	we	can	see	what	the	page	looks	like.	Open	up	your	browser	and	load	the
slides.html	file.	You	will	see	the	slides	in	a	column:

Looks	like	our	HTML	is	ready	and	we	are	prepared	to	spice	it	up	with	some	jQuery
goodness.	Let’s	start	by	implementing	the	widget	now.

Implementing	the	widget
Like	the	previous	widget,	we	will	begin	by	defining	the	structure	of	the	widget	first.	Since
we	have	already	covered	the	various	methods	in	previous	widgets	in	detail,	we	will	not	go
through	them	here.

Defining	the	widget	structure
Open	the	js/slides.js	file	and	create	the	structure	of	the	widget,	as	shown	in	the
following	code:

(function	($)	{

		$.widget("mywidget.slideshow"	,

		{

				options:

				{

						duration:	3000,

						effect	:	'bounce',

						easingDuration	:	'slow',

						beforeShow	:	null

				},

				_create:	function	()	

				{

				},

				_destroy:	function	()	

				{

				},

				_setOption:	function	(key,	value)	

				{

				}

		});

})(jQuery);

We	defined	the	four	basic	properties	required	to	create	a	widget:	the	options	object,	the
constructors	_create	and	_destroy,	and	the	option-setter	method	_setOption.

Setting	up	default	options
We	have	provided	four	options	that	could	be	customized	by	users:

duration:	This	is	the	time	in	milliseconds	for	which	a	slide	will	be	displayed.	The
default	value	is	3000.
effect:	This	is	the	effect	that	will	be	used	to	show	and	hide	the	slides.	The	default
value	is	bounce.	Any	of	the	jQuery	easing	names	can	be	used	here.
easingDuration:	This	is	the	duration	of	effect	in	milliseconds.
beforeShow:	This	is	the	callback	method	that	users	will	be	able	to	override.
Currently,	it	has	been	set	to	null.

Users	will	be	able	to	override	any	of	these	options	while	initializing	the	widget.	If	any
option	value	is	not	provided	during	initialization,	jQuery	UI	will	use	the	default	value	as
defined	in	widget	options.

Initializing	the	widget	and	displaying	the	first	slide
We	can	now	start	defining	the	constructor	method	_create,	where	we	will	initialize	the
widget.	This	means	we	can	add	CSS	classes	to	elements	and	display	the	first	slide.

Write	the	following	code	for	the	_create	method	in	the	js/slides.js	file:

_create:	function	()	

{

		this.element.addClass('mywidget-banner');

		this.element.children().addClass('mywidget-banner-item');

		$('.mywidget-banner-item').hide();

		this._trigger("beforeShow",	null	,	{	element	:	$('.mywidget-banner-

item:first')});

		$('.mywidget-banner-item:first')

		.addClass('current')

		.show(this.options.effect,	this.options.easingDuration);

		this._setRotation();

}

As	you	now	know,	this.element	refers	to	the	element	that	was	passed	while	initializing
the	widget,	which	will	be	div#	slideContainer	in	this	case.	In	the	first	line,	we	attach	a
CSS	class	mywidget-banner	to	to	that	element.

The	next	line	attaches	the	CSS	class	mywidget-banner-item	to	each	of	the	slide	divs.
Then,	we	hid	all	slides	using	the	jQuery	hide	method.

Now	we	can	display	the	first	slide	with	animation.	However,	first	we	will	have	to	invoke
the	beforeShow	callback	that	has	to	be	fired	just	before	a	slide	is	displayed.	This	is	done
with	the	help	of	_trigger,	a	method	provided	by	the	widget	factory.

As	the	name	suggests,	_trigger	triggers	the	callback	that	is	passed	to	it.	It	takes	three
parameters:	the	event	name,	then	the	event	that	triggered	this	event,	and	the	data	that	we
want	to	pass	to	the	event.	In	our	case,	we	have	passed	the	element	that	will	be	available	in
the	form	of	the	element	property	inside	the	callback.

After	the	callback	event	has	been	triggered,	we	can	now	display	the	first	slide.	We	do	this
by	selecting	the	first	slide	using	the	.mywidget-banner-item:first	selector.	Then,	we
add	a	current	class	to	it.	This	is	necessary	to	find	out	which	element	is	currently	being
displayed.

Note
Instead	of	the	current	class,	we	can	also	use	a	variable	internally	and	update	it	each	time
a	slide	is	displayed.

After	adding	the	class,	we	use	the	show	method	to	display	the	first	slide.	Note	that	we	have
passed	the	widget	options	effect	and	easingDuration	to	show	the	method.

Our	task	is	only	half	done	yet.	We	also	need	a	way	to	go	through	all	the	slides	one	by	one.
For	this	purpose,	we	need	to	set	up	a	timer	which	will	execute	repeatedly	at	the	specified
duration.	The	code	in	the	last	line	is	used	for	the	same	purpose.	We	have	also	called	a

_setRotation	method,	which	we	will	explore	in	the	next	section.

Displaying	slides	one	by	one
After	the	first	slide	is	displayed,	a	call	was	made	to	_setRotation	in	order	to	set	the	time.
We	will	use	the	JavaScript	method	setInterval,	which	will	execute	a	callback	function	at
fixed	intervals.	Here	is	the	definition	of	the	_setRotation	method	that	we	will	create
inside	the	widget:

_setRotation	:	function()

{

		var	that	=	this;

		this.interval	=	setInterval(function()

		{

				that.textRotate();

		},that.options.duration);

}

Inside	_setRotation,	we	stored	the	reference	to	local	scope	in	a	local	variable	named
that.	Then,	we	called	the	JavaScript	method	setInterval.	As	you	can	see	in	the
preceding	code,	setInterval	will	call	another	method	textRotate	(which	we	will	define
next).	We	also	defined	the	duration	after	which	textRotate	will	be	called	by	reading	the
duration	value	from	the	options	object.

Note
Note	the	variable	this.interval.	This	will	be	used	again	when	user	changes	the
duration	option.

Now,	we	need	to	define	the	textRotate	method	that	will	take	care	of	going	through	the
slides.	Once	we	reach	the	last	slide,	we	will	restart	from	first	slide.	In	the	following	code,
we	will	define	the	textRotate	method	after	the	_setRotation	method:

textRotate	:	function()

{

		var	$that	=	this;

		var	current	=	$that.element.find('.current');

		var	next	=	current.next();

		if(next.length==0)

		{

				current.removeClass('current').hide($that.options.effect,	

$that.options.easingDuration,	function()

				{

						$('.mywidget-banner-

item:first').addClass('current').show($that.options.effect,	

$that.options.easingDuration);

				});

		}

		else

		{

				current.removeClass('current').hide($that.options.effect,	

$that.options.easingDuration,	function()

				{

						$that._trigger("beforeShow",	null,	{	element	:	next});

						next.addClass('current').show($that.options.effect,	

$that.options.easingDuration);

				});

		}

}

Have	patience	if	the	preceding	code	looks	a	bit	cryptic.	Let’s	understand	it	line	by	line:

First,	we	create	a	local	variable	$that	and	store	the	reference	to	current	scope
variable	this	in	it.	After	this,	we	store	the	reference	to	the	element	currently	being
displayed	in	the	variable	current.

Note
The	CSS	class	current	is	applied	on	the	slide	which	is	currently	visible.

Then,	we	find	the	elements	next	to	the	element	with	CSS	class	current.	If	the
current	class	is	on	the	last	slide,	the	value	of	next	will	be	0;	otherwise,	it	will	be
greater	than	0.
The	if	condition	in	the	following	line	checks	the	value	of	the	variable	next.	If	the
value	is	0,	it	means	that	currently	the	last	slide	is	being	displayed	and	we	need	to
show	the	first	slide	after	this.	In	this	case,	we	remove	the	CSS	class	current	from	the
current	slide	and	hide	it.	Three	parameters	are	passed	to	the	hide	method:	first	is	the
effect	used	to	hide	the	slide,	second	is	the	duration	of	hiding	effect	animation,	and	the
third	parameter	is	the	callback	function	that	will	be	called	once	hide	method
completes	the	animation.
The	third	parameter	is	used	to	display	the	next	slide	(in	this	case,	the	first	slide).	To
select	the	first	slide,	we	simply	use	the	selector	.mywidget-banner-item:first,	add
the	class	current	to	it,	and	use	the	show	method	with	the	effect	and
easingDuration	values.
For	slides	other	than	the	last	one,	the	else	block	will	be	executed.	Here	as	well,	we
remove	the	current	class	from	the	currently	visible	slide	and	hide	it	with	the	effect
and	easingDuration	options.	In	the	callback	of	the	hide	method,	we	trigger	the
beforeShow	callback	so	that	the	user	may	introduce	any	custom	behavior.	Then,	we
add	the	current	class	to	the	next	element	which	is	stored	in	the	next	variable,	and
call	the	show	method.	Now,	we	will	pass	the	effect	and	the	duration	of	effect	from	the
options	object.

That	is	all	we	need	to	make	the	slides	functional.	You	might	be	tempted	to	check	the
progress	so	far,	but	we	have	a	couple	of	things	to	do	before	that.	Handling	the	change	in
any	of	the	option	values,	and	cleaning	up	after	the	destroy	method	is	called.

Making	changes	when	the	option	value	is	changed
The	option	method	can	be	used	on	any	widget	to	get	or	set	the	value	of	widgets.	If	a	user
sets	a	new	value	for	an	option,	there	should	be	a	way	for	the	widget	to	know	it	and	change
the	widget	state	accordingly.

We	will	use	the	_setOption	method	in	the	same	way	we	did	in	the	previous	widget.	A
switch	case	will	be	applied	for	all	the	options.	Write	the	following	code	for	_setOption,

which	will	help	maintain	the	state	of	the	widget:

_setOption:	function	(key,	value)	

{

		switch	(key)	

		{

				case	"duration":

						clearInterval(this.interval);

						this.options[key]	=	value;

						this._setRotation();

						break;

				default:

						this.options[key]	=	value;

						break;

		}

		this._super("_setOption",	key,	value);

}

For	options	such	as	effect	and	easingDuration,	there	is	no	behavioral	change	in	the
widget.	We	just	need	to	update	the	values	and	the	widget	will	pick	up	the	latest	values.
However,	it	is	different	for	the	duration	option.	In	this	case,	we	cleared	the	previous
interval	using	the	JavaScript	method	clearInterval.	Then,	we	will	reset	the	value	for	the
duration	option	and	finally	call	the	_setRotation	method	again,	so	that	the	setInterval
method	will	be	called	using	the	new	duration	value.

So,	now	at	any	point	the	user	can	change	the	duration	of	slide	using	duration	option.

Destroying	the	widget
To	destroy	the	widget,	we	will	have	to	stop	the	repeated	calls	to	the	textRotate	method
and	remove	all	the	CSS	classes	that	we	attached	earlier	in	the	_create	method.	Here	is	the
code:

_destroy:	function	()	

{

		clearInterval(this.interval);

		this.element.removeClass('mywidget-banner');

		this.element.children().removeClass('current	mywidget-banner-

item').show();

}

We	start	by	removing	the	repeated	call	to	textRotate	by	removing	the	interval	using	the
clearInterval	method.

Then,	we	remove	the	mywidget-banner	class	that	was	applied	to	the	slider	container.
Then,	we	remove	the	mywidget-banner-item	class	from	all	the	items	and	the	current
class	as	well.	The	show	method	in	the	end	ensures	that	all	the	slides	are	visible,	as	they
were	prior	to	calling	the	widget.

This	finishes	our	slideshow	widget	and	we	are	now	ready	to	see	it	in	action.

Calling	the	widget	from	the	page
To	call	the	widget,	we	will	have	to	initialize	it	in	the	slides.html	file.	Hence,	go	to	this
file	and	write	the	following	code	to	enable	and	disable	slideshow	on	clicking	Start
Slideshow	and	Stop	Slideshow	buttons,	respectively:

<script	type="text/javascript">

$(document).ready(function()

{

		$('#btnEnable').on('click',	function()

		{

				$('#slideContainer').slideshow(

				{

						duration	:	4000,

						effect	:	'clip',

						easingDuration	:	400,

						beforeShow	:	function(event,	ui)

						{

								if(ui.element.hasClass('special'))

								{

										ui.element.css({	'background'	:	'#ffffff'	});

								}

						}

				});

		});

		$('#btnDestroy').on('click',	function()

		{

				$(slideContainer).slideshow('destroy');

		});

		$('button').button();		

});

</script>

Firstly,	we	attach	an	event	handler	on	click	of	first	button	with	id	value	btnEnable.	Inside
the	event	handler,	we	initialize	the	slideshow	widget	with	three	options	and	a	callback.	We
have	provided	the	duration	as	4000	milliseconds,	effect	as	clip,	and	easingDuration	as
400	milliseconds.

We	can	also	use	the	callback	beforeShow	now.	If	you	recall,	we	placed	a	CSS	class
special	in	the	second	slide.	Since	this	callback	is	triggered	every	time	just	before	a	slide
is	displayed,	we	are	checking	if	the	slide	div	has	a	class	special	attached	to	it.	For	such
an	element,	we	set	the	background	to	white.

Next,	we	attach	the	event	handler	for	the	destroy	event.	In	the	event	handler,	we	just	call
the	slideshow	widget	with	destroy	options.

Finally,	we	convert	the	enable	and	disable	slideshow	buttons	to	jQuery	UI	buttons.

We	can	now	check	the	widget	in	action.	Browse	the	slides.html	file	in	the	browser	and
you	will	see	all	slides	in	a	column.	Clicking	the	Start	Slideshow	button	will	begin	the

slideshow	and	the	first	slide	will	be	displayed	with	the	provided	effect:

On	the	second	slide,	you	will	also	see	the	effect	as	the	background	will	change	to	white
due	to	the	beforeShow	callback:

Clicking	on	the	Stop	Slideshow	button	will	reset	the	page	to	its	initial	state	and	remove
the	widget	behavior	completely.

Improving	the	banner	widget
Here	are	a	few	suggestions	to	help	you	add	new	features	to	the	slideshow	widget:

Add	different	effects	to	show	and	hide	a	slide
Implement	another	callback	afterHide	that	will	be	called	after	a	slide	is	hidden
Disable	the	slideshow	after	a	certain	number	of	iterations	of	all	slides

Summary
We	created	two	different	widgets	in	this	chapter,	where	you	learned	to	customize	the
widget	with	the	help	of	options.	You	also	learned	to	implement	custom	callbacks	for	the
widget	as	well.	All	in	all,	we	covered	the	full	life	cycle	of	a	widget.	With	the	help	of	this
chapter,	you	will	be	able	to	create	your	own	widgets	with	ease.

Moving	forward,	in	the	next	chapter,	you	will	learn	to	create	a	“colorpicker”	tool	and	you
will	also	allow	users	to	convert	RGB	values	of	colors	to	Hex	and	vice	versa.

Chapter	10.	Building	a	Color	Picker	with
Hex	RGB	Conversion
Chapter	9,	Creating	Widgets	Using	the	Widget	Factory,	was	a	complex	one	where	we
created	two	widgets	using	jQuery	UI’s	widget	factory.	In	this	chapter,	we	will	relax	a	bit
and	build	something	simple.

We	are	going	to	create	a	color	selector,	or	color	picker,	that	will	allow	the	users	to	change
the	text	and	background	color	of	a	page	using	the	slider	widget.	We	will	also	use	the
spinner	widget	to	represent	individual	colors.	Any	change	in	colors	using	the	slider	will
update	the	spinner	and	vice	versa.	The	hex	value	of	both	text	and	background	colors	will
also	be	displayed	dynamically	on	the	page.

This	is	how	our	page	will	look	after	we	have	finished	building	it:

Setting	up	the	folder	structure
To	set	up	the	folder	structure,	follow	this	simple	procedure:

1.	 Create	a	folder	named	Chapter10	inside	the	MasteringjQueryUI	folder.
2.	 Directly	inside	this	folder,	create	an	HTML	file	and	name	it	index.html.
3.	 Copy	the	js	and	css	folder	inside	the	Chapter10	folder	as	well.
4.	 Now	go	inside	the	js	folder	and	create	a	JavaScript	file	named	colorpicker.js.

With	the	folder	setup	complete,	let’s	start	to	build	the	project.

Writing	markup	for	the	page
The	index.html	page	will	consist	of	two	sections.	The	first	section	will	be	a	text	block
with	some	text	written	inside	it,	and	the	second	section	will	have	our	color	picker	controls.
We	will	create	separate	controls	for	text	color	and	background	color.	Inside	the
index.html	file	write	the	following	HTML	code	to	build	the	page	skeleton:

<html>

		<head>

				<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

		</head>

		<body>

				<div	class="container">

						<div	class="ui-state-highlight"	id="textBlock">

								<p>

										Lorem	ipsum	dolor	sit	amet,	consectetur	adipisicing	elit,	sed	do	

eiusmod

										tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	enim	ad	

minim	veniam,

										quis	nostrud	exercitation	ullamco	laboris	nisi	ut	aliquip	ex	ea	

commodo

										consequat.	Duis	aute	irure	dolor	in	reprehenderit	in	voluptate	

velit	esse

										cillum	dolore	eu	fugiat	nulla	pariatur.	Excepteur	sint	occaecat	

cupidatat	non

										proident,	sunt	in	culpa	qui	officia	deserunt	mollit	anim	id	est	

laborum.	

								</p>

								<p>

										Lorem	ipsum	dolor	sit	amet,	consectetur	adipisicing	elit,	sed	do	

eiusmod

										tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	enim	ad	

minim	veniam,

										quis	nostrud	exercitation	ullamco	laboris	nisi	ut	aliquip	ex	ea	

commodo

										consequat.	Duis	aute	irure	dolor	in	reprehenderit	in	voluptate	

velit	esse

										cillum	dolore	eu	fugiat	nulla	pariatur.	Excepteur	sint	occaecat	

cupidatat	non

										proident,	sunt	in	culpa	qui	officia	deserunt	mollit	anim	id	est	

laborum.	

								</p>

								<p>

										Lorem	ipsum	dolor	sit	amet,	consectetur	adipisicing	elit,	sed	do	

eiusmod

										tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	enim	ad	

minim	veniam,

										quis	nostrud	exercitation	ullamco	laboris	nisi	ut	aliquip	ex	ea	

commodo

										consequat.	Duis	aute	irure	dolor	in	reprehenderit	in	voluptate	

velit	esse

										cillum	dolore	eu	fugiat	nulla	pariatur.	Excepteur	sint	occaecat	

cupidatat	non

										proident,	sunt	in	culpa	qui	officia	deserunt	mollit	anim	id	est	

laborum.	

								</p>

						</div>

						<div	class="clear"> </div>

						<ul	class="controlsContainer">

								<li	class="left">

										<div	id="txtRed"	class="red	slider"	data-spinner="sptxtRed"	data-

type="text"></div><input	type="text"	value="0"	id="sptxtRed"	data-

slider="txtRed"	readonly="readonly"	/>

										<div	id="txtGreen"	class="green	slider"	data-spinner="sptxtGreen"	

data-type="text"></div><input	type="text"	value="0"	id="sptxtGreen"	data-

slider="txtGreen"	readonly="readonly"		/>

										<div	id="txtBlue"	class="blue	slider"	data-spinner="sptxtBlue"	

data-type="text"></div><input	type="text"	value="0"	id="sptxtBlue"	data-

slider="txtBlue"	readonly="readonly"		/>

										<div	class="clear"> </div>

										Text	Color	:	#000000

								

								<li	class="right">

										<div	id="bgRed"	class="red	slider"	data-spinner="spBgRed"	data-

type="bg"	></div><input	type="text"		value="255"	id="spBgRed"	data-

slider="bgRed"	readonly="readonly"		/>

										<div	id="bgGreen"	class="green	slider"	data-spinner="spBgGreen"	

data-type="bg"	></div><input	type="text"	value="255"	id="spBgGreen"	data-

slider="bgGreen"	readonly="readonly"			/>

										<div	id="bgBlue"	class="blue	slider"	data-spinner="spBgBlue"	

data-type="bg"	></div><input	type="text"	value="255"	id="spBgBlue"	data-

slider="bgBlue"	readonly="readonly"	/>

										<div	class="clear"> </div>

										Background	Color	:	#ffffff

								

						

				</div>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

				<script	src="js/colorpicker.js"></script>

		</body>

</html>

We	started	by	including	the	jQuery	UI	CSS	file	inside	the	head	section.	Proceeding	to	the
body	section,	we	created	a	div	with	the	container	class,	which	will	act	as	parent	div	for
all	the	page	elements.	Inside	this	div,	we	created	another	div	with	id	value	textBlock	and
a	ui-state-highlight	class.	We	then	put	some	text	content	inside	this	div.	For	this
example,	we	have	made	three	paragraph	elements,	each	having	some	random	text	inside	it.

After	div#textBlock,	there	is	an	unordered	list	with	the	controlsContainer	class.	This
ul	element	has	two	list	items	inside	it.	First	list	item	has	the	CSS	class	left	applied	to	it
and	the	second	has	CSS	class	right	applied	to	it.

Inside	li.left,	we	created	three	div	elements.	Each	of	these	three	div	elements	will	be

converted	to	a	jQuery	slider	and	will	represent	the	red	(R),	green	(G),	and	blue	(B)	color
code,	respectively.	Next	to	each	of	these	divs	is	an	input	element	where	the	current	color
code	will	be	displayed.	This	input	will	be	converted	to	a	spinner	as	well.

Let’s	look	at	the	first	slider	div	and	the	input	element	next	to	it.	The	div	has	id	txtRed
and	two	CSS	classes	red	and	slider	applied	to	it.	The	red	class	will	be	used	to	style	the
slider	and	the	slider	class	will	be	used	in	our	colorpicker.js	file.	Note	that	this	div	also
has	two	data	attributes	attached	to	it,	the	first	is	data-spinner,	whose	value	is	the	id	of
the	input	element	next	to	the	slider	div	we	have	provided	as	sptxtRed,	the	second
attribute	is	data-type,	whose	value	is	text.	The	purpose	of	the	data-type	attribute	is	to
let	us	know	whether	this	slider	will	be	used	for	changing	the	text	color	or	the	background
color.

Moving	on	to	the	input	element	next	to	the	slider	now,	we	have	set	its	id	as	sptxtRed,
which	should	match	the	value	of	the	data-spinner	attribute	on	the	slider	div.	It	has
another	attribute	named	data-slider,	which	contains	the	id	of	the	slider,	which	it	is
related	to.	Hence,	its	value	is	txtRed.

Similarly,	all	the	slider	elements	have	been	created	inside	div.left	and	each	slider	has	an
input	next	to	id.	The	data-type	attribute	will	have	the	text	value	for	all	sliders	inside
div.left.	All	input	elements	have	also	been	assigned	a	value	of	0	as	the	initial	text	color
will	be	black.

The	same	pattern	that	has	been	followed	for	elements	inside	div.left	is	also	followed	for
elements	inside	div.right.	The	only	difference	is	that	the	data-type	value	will	be	bg	for
slider	divs.	For	all	input	elements,	a	value	of	255	is	set	as	the	background	color	is	white	in
the	beginning.

In	this	manner,	all	the	six	sliders	and	the	six	input	elements	have	been	defined.	Note	that
each	element	has	a	unique	ID.

Finally,	there	is	a	span	element	inside	both	div.left	and	div.right.	The	hex	color	code
will	be	displayed	inside	it.	We	have	placed	#000000	as	the	default	value	for	the	text	color
inside	the	span	for	the	text	color	and	#ffffff	as	the	default	value	for	the	background	color
inside	the	span	for	background	color.

Lastly,	we	have	included	the	jQuery	source	file,	the	jQuery	UI	source	file,	and	the
colorpicker.js	file.

With	the	markup	ready,	we	can	now	write	the	properties	for	the	CSS	classes	that	we	used
here.

Styling	the	content
To	make	the	page	presentable	and	structured,	we	need	to	add	CSS	properties	for	different
elements.	We	will	do	this	inside	the	head	section.	Go	to	the	head	section	in	the
index.html	file	and	write	these	CSS	properties	for	different	elements:

<style	type="text/css">

		body{

				color:#025c7f;

				font-family:Georgia,arial,verdana;

				width:700px;

				margin:0	auto;

		}

		.container{

				margin:0	auto;

				font-size:14px;

				position:relative;

				width:700px;

				text-align:justify;		

		}

#textBlock{

				color:#000000;

				background-color:	#ffffff;

		}

		.ui-state-highlight{

				padding:	10px;

				background:	none;

		}

		.controlsContainer{

						border:	1px	solid;

						margin:	0;

						padding:	0;

						width:	100%;

						float:	left;

		}

		.controlsContainer	li{

						display:	inline-block;

						float:	left;

						padding:	0	0	0	50px;

						width:	299px;

		}

		.controlsContainer	div.ui-slider{

						margin:	15px	0	0;

						width:	200px;

						float:left;

		}

		.left{

				border-right:	1px	solid;

		}

		.clear{

				clear:	both;

		}

		.red	.ui-slider-range{

background:	#ff0000;	

}

		.green	.ui-slider-range{

background:	#00ff00;

}

		.blue	.ui-slider-range{

background:	#0000ff;

}

		.ui-spinner{

						height:	20px;

						line-height:	1px;

						margin:	11px	0	0	15px;

				}

		input[type=text]{

				margin-top:	0;

				width:	30px;

		}

</style>

First,	we	defined	some	general	rules	for	page	body	and	div	.container.	Then,	we	defined
the	initial	text	color	and	background	color	for	the	div	with	id	textBlock.

Next,	we	defined	the	CSS	properties	for	the	unordered	list	ul	.controlsContainer	and	its
list	items.	We	have	provided	some	padding	and	width	to	each	list	item.

We	have	also	specified	the	width	and	other	properties	for	the	slider	as	well.	Since	the	class
ui-slider	is	added	by	jQuery	UI	to	a	slider	element	after	it	is	initialized,	we	have	added
our	properties	in	the	.controlsContainer	div	.ui-slider	rule.

To	make	the	sliders	attractive,	we	then	defined	the	background	colors	for	each	of	the	slider
bars	by	defining	color	codes	for	red,	green,	and	blue	classes.

Lastly,	CSS	rules	have	been	defined	for	the	spinner	and	the	input	box.

We	can	now	check	our	progress	by	opening	the	index.html	page	in	our	browser.	Loading
it	will	display	a	page	that	resembles	the	following	screenshot:

It	is	obvious	that	sliders	and	spinners	will	not	be	displayed	here.	This	is	because	we	have
not	written	the	JavaScript	code	required	to	initialize	those	widgets.	Our	next	section	will
take	care	of	them.

Implementing	the	color	picker
In	order	to	implement	the	required	functionality,	we	first	need	to	initialize	the	sliders	and
spinners.	Whenever	a	slider	is	changed,	we	need	to	update	its	corresponding	spinner	as
well,	and	conversely	if	someone	changes	the	value	of	the	spinner,	we	need	to	update	the
slider	to	the	correct	value.	In	case	any	of	the	value	changes,	we	will	then	recalculate	the
current	color	and	update	the	text	or	background	color	depending	on	the	context.

Defining	the	object	structure
We	will	organize	our	code	using	the	object	literal	pattern	as	we	have	done	in	earlier
chapters.	We	will	define	an	init	method,	which	will	be	the	entry	point.	All	event	handlers
will	also	be	applied	inside	this	method.

To	begin	with,	go	to	the	js	folder	and	open	the	colorpicker.js	file	for	editing.	In	this
file,	write	the	code	that	will	define	the	object	structure	and	a	call	to	it:

var	colorPicker	=	{

		init	:	function	()

		{

				

		},

		setColor	:	function(slider,	value)	

		{

		},

		getHexColor	:	function(sliderType)

		{

		},

		convertToHex	:	function	(val)	

		{

		}

}

$(function()	{

		colorPicker.init();

});

An	object	named	colorPicker	has	been	defined	with	four	methods.	Let’s	see	what	all
these	methods	will	do:

init:	This	method	will	be	the	entry	point	where	we	will	initialize	all	components	and
add	any	event	handlers	that	are	required.
setColor:	This	method	will	be	the	main	method	that	will	take	care	of	updating	the
text	and	background	colors.	It	will	also	update	the	value	of	the	spinner	whenever	the
slider	moves.	This	method	has	two	parameters;	the	slider	that	was	moved	and	its
current	value.
getHexColor:	This	method	will	be	called	from	within	setColor	and	it	will	return	the
hex	code	based	on	the	RGB	values	in	the	spinners.	It	takes	a	sliderType	parameter
based	on	which	we	will	decide	which	color	has	to	be	changed;	that	is,	text	color	or
background	color.	The	actual	hex	code	will	be	calculated	by	the	next	method.
convertToHex:	This	method	will	convert	an	RGB	value	for	color	into	its
corresponding	hex	value	and	return	it	to	get	a	HexColor	method.

This	was	an	overview	of	the	methods	we	are	going	to	use.	Now	we	will	implement	these
methods	one	by	one,	and	you	will	understand	them	in	detail.

After	the	object	definition,	there	is	the	jQuery’s	$(document).ready()	event	handler	that
will	call	the	init	method	of	our	object.

The	init	method
In	the	init	method,	we	will	initialize	the	sliders	and	the	spinners	and	set	the	default
values	for	them	as	well.	Write	the	following	code	for	the	init	method	in	the
colorpicker.js	file:

		init	:	function	()

{

		var	t	=	this;

		$(".slider").slider(

		{

				range:	"min",

				max:	255,

				slide	:	function	(event,	ui)	

				{

						t.setColor($(this),	ui.value);

				},

				change	:	function	(event,	ui)	

				{

						t.setColor($(this),	ui.value);

				}

		});

		$('input').spinner(

		{

				min	:0,

				max	:	255,

				spin	:	function	(event,	ui)	

				{

						var	sliderRef	=	$(this).data('slider');

						$('#'	+	sliderRef).slider("value",	ui.value);

				}

		});

		$("#txtRed,	#txtGreen,	#txtBlue").slider('value',	0);

		$("#bgRed,	#bgGreen,	#bgBlue").slider('value',	255);

}

In	the	first	line,	we	stored	the	current	scope	value,	this,	in	a	local	variable	named	t.

Next,	we	will	initialize	the	sliders.	Since	we	have	used	the	CSS	class	slider	on	each	slider,
we	can	simply	use	the	.slider	selector	to	select	all	of	them.	During	initialization,	we
provide	four	options	for	sliders:	range,	max,	slide,	and	change.	Note	the	value	for	max,
which	has	been	set	to	255.	Since	the	value	for	R,	G,	or	B	can	be	only	between	0	and	255,
we	have	set	max	as	255.	We	do	not	need	to	specify	min	as	it	is	0	by	default.

The	slide	method	has	also	been	defined,	which	is	invoked	every	time	the	slider	handle
moves.	The	call	back	for	slide	is	calling	the	setColor	method	with	an	instance	of	the
current	slider	and	the	value	of	the	current	slider.	The	setColor	method	will	be	explained
in	the	next	section.

Besides	slide,	the	change	method	is	also	defined,	which	also	calls	the	setColor	method

with	an	instance	of	the	current	slider	and	its	value.

Note
We	use	both	the	slide	and	change	methods.	This	is	because	a	change	is	called	once	the
user	has	stopped	sliding	the	slider	handle	and	the	slider	value	has	changed.	Contrary	to
this,	the	slide	method	is	called	each	time	the	user	drags	the	slider	handle.	Since	we	want
to	change	colors	while	sliding	as	well,	we	have	defined	the	slide	as	well	as	change
methods.

It	is	time	to	initialize	the	spinners	now.	The	spinner	widget	is	initialized	with	three
properties.	These	are	min	and	max,	and	the	spin.	min	and	max	method	has	been	set	to	0	and
255,	respectively.	Every	time	the	up/down	button	on	the	spinner	is	clicked	or	the	up/down
arrow	key	is	used,	the	spin	method	will	be	called.	Inside	this	method,	$(this)	refers	to
the	current	spinner.	We	find	our	related	slider	to	this	spinner	by	reading	the	data-slider
attribute	of	this	spinner.	Once	we	get	the	exact	slider,	we	set	its	value	using	the	value
method	on	the	slider	widget.

Note
Note	that	calling	the	value	method	will	invoke	the	change	method	of	the	slider	as	well.
This	is	the	primary	reason	we	have	defined	a	callback	for	the	change	event	while
initializing	the	sliders.

Lastly,	we	will	set	the	default	values	for	the	sliders.	For	sliders	inside	div.left,	we	have
set	the	value	as	0	and	for	sliders	inside	div.right,	the	value	is	set	to	255.

You	can	now	check	the	page	on	your	browser.	You	will	find	that	the	slider	and	the	spinner
elements	are	initialized	now,	with	the	values	we	specified:

You	can	also	see	that	changing	the	spinner	value	using	either	the	mouse	or	the	keyboard
will	update	the	value	of	the	slider	as	well.	However,	changing	the	slider	value	will	not
update	the	spinner.	We	will	handle	this	in	the	next	section	where	we	will	change	colors	as
well.

Changing	colors	and	updating	the	spinner
The	setColor	method	is	called	each	time	the	slider	or	the	spinner	value	changes.	We	will
now	define	this	method	to	change	the	color	based	on	whether	the	slider’s	or	spinner’s
value	was	changed.	Go	to	the	setColor	method	declaration	and	write	the	following	code:

setColor	:	function(slider,	value)	

{

		var	t	=	this;

		var	spinnerRef	=	slider.data('spinner');

		$('#'	+	spinnerRef).spinner("value",	value);

		var	sliderType	=	slider.data('type')

		var	hexColor	=	t.getHexColor(sliderType);

		if(sliderType	==	'text')

		{

						$('#textBlock').css({'color'	:	hexColor});

						$('.left	span:last').text(hexColor);																

		}

		else	

		{

						$('#textBlock').css({'background-color'	:	hexColor});

						$('.right	span:last').text(hexColor);																

		}

}

In	the	preceding	code,	we	receive	the	current	slider	and	its	value	as	a	parameter.	First	we
get	the	related	spinner	to	this	slider	using	the	data	attribute	spinner.	Then	we	set	the	value
of	the	spinner	to	the	current	value	of	the	slider.

Now	we	find	out	the	type	of	slider	for	which	setColor	is	being	called	and	store	it	in	the
sliderType	variable.	The	value	for	sliderType	will	either	be	text,	in	case	of	sliders
inside	div.left,	or	bg,	in	case	of	sliders	inside	div.right.	In	the	next	line,	we	will	call
the	getHexColor	method	and	pass	the	sliderType	variable	as	its	argument.	The
getHexColor	method	will	return	the	hex	color	code	for	the	selected	color.

Next,	based	on	the	sliderType	value,	we	set	the	color	of	div#textBlock.	If	the
sliderType	is	text,	we	set	the	color	CSS	property	of	div#textBlock	and	display	the
selected	hex	code	in	the	span	inside	div.left.	If	the	sliderType	value	is	bg,	we	set	the
background	color	for	div#textBlock	and	display	the	hex	code	for	the	background	color	in
the	span	inside	div.right.

The	getHexColor	method
In	the	preceding	section,	we	called	the	getHexColor	method	with	the	sliderType
argument.	Let’s	define	it	first,	and	then	we	will	go	through	it	in	detail.	Write	the	following
code	to	define	the	getHexColor	method:

getHexColor	:	function(sliderType)

{

		var	t	=	this;

		var	allInputs;

		var	hexCode	=	'#';

		if(sliderType	==	'text')

		{

				//text	color

				allInputs	=	$('.left').find('input[type=text]');

		}

		else

		{

				//background	color

				allInputs	=	$('.right').find('input[type=text]');

		}

		allInputs.each(function	(index,	element)	{

				hexCode+=	t.convertToHex($(element).val());

		});

		return	hexCode;

}

The	local	variable	t	has	stored	this	to	point	to	the	current	scope.	Another	variable
allInputs	is	declared,	and	lastly	a	variable	to	store	the	hex	code	has	been	declared,	whose
value	has	been	set	to	#	initially.

Next	comes	the	if	condition,	which	checks	the	value	of	parameter	sliderType.	If	the
value	of	sliderType	is	text,	it	means	we	need	to	get	all	the	spinner	values	to	change	the
text	color.	Hence,	we	use	jQuery’s	find	selector	to	retrieve	all	input	boxes	inside
div.left.	If	the	value	of	sliderType	is	bg,	it	means	we	need	to	change	the	background
color.	Therefore,	the	else	block	will	be	executed	and	all	input	boxes	inside	div.right
will	be	retrieved.

To	convert	the	color	to	hex,	individual	values	for	red,	green,	and	blue	will	have	to	be
converted	to	hex	and	then	concatenated	to	get	the	full	color	code.	Therefore,	we	iterate	in
inputs	using	the	.each	method.	Another	method	convertToHex	is	called,	which	converts
the	value	of	a	single	input	to	hex.	Inside	the	each	method,	we	keep	concatenating	the	hex
value	of	the	R,	G,	and	B	components	to	a	variable	hexCode.	Once	all	iterations	are	done,
we	return	the	hexCode	to	the	parent	function	where	it	is	used.

Converting	to	hex
convertToHex	is	a	small	method	that	accepts	a	value	and	converts	it	to	the	hex	equivalent.
Here	is	the	definition	of	the	convertToHex	method:

convertToHex	:	function	(val)

{

		var	x		=	parseInt(val,	10).toString(16);

		return	x.length	==	1	?	"0"	+	x	:	x;

}

Inside	the	method,	firstly	we	will	convert	the	received	value	to	an	integer	using	the
parseInt	method	and	then	we’ll	use	JavaScript’s	toString	method	to	convert	it	to	hex,
which	has	base	16.	In	the	next	line,	we	will	check	the	length	of	the	converted	hex	value.
Since	we	want	the	6-character	dash	notation	for	color	(such	as	#ff00ff),	we	need	two
characters	each	for	red,	green,	and	blue.	Hence,	we	check	the	length	of	the	created	hex

value.	If	it	is	only	one	character,	we	append	a	0	to	the	beginning	to	make	it	two	characters.
The	hex	value	is	then	returned	to	the	parent	function.

With	this,	our	implementation	is	complete	and	we	can	check	it	on	a	browser.	Load	the
page	in	your	browser	and	play	with	the	sliders	and	spinners.	You	will	see	the	text	or
background	color	changing,	based	on	their	value:

You	will	also	see	the	hex	code	displayed	below	the	sliders.	Also	note	that	changing	the
sliders	will	change	the	value	of	the	corresponding	spinner	and	vice	versa.

Improving	the	Colorpicker
This	was	a	very	basic	tool	that	we	built.	You	can	add	many	more	features	to	it	and	enhance
its	functionality.	Here	are	some	ideas	to	get	you	started:

Convert	it	into	a	widget	where	all	the	required	DOM	for	sliders	and	spinners	is
created	dynamically
Instead	of	two	sliders,	incorporate	the	text	and	background	changing	ability	into	a
single	slider	with	two	handles,	but	keep	two	spinners	as	usual

Summary
In	our	penultimate	chapter,	we	created	a	basic	color	picker/changer	using	sliders	and
spinners.	You	can	use	it	to	view	and	change	the	colors	of	your	pages	dynamically.

In	the	last	and	final	chapter,	we	will	create	a	dashboard	where	we	will	use	the	knowledge
of	jQuery	UI	that	we’ve	covered	so	far.	We	will	use	multiple	jQuery	UI	widgets	and	create
our	own	as	well.

Chapter	11.	Creating	a	Fully	Functional
Dashboard
We	have	come	a	long	way	since	the	start	of	this	book	and	this	is	the	final	step	of	our
journey.	We	have	covered	almost	all	the	jQuery	UI	components	in	previous	chapters.	In
this	chapter,	we	will	relax	and	create	a	simple	dashboard	with	five	portlets.	Each	of	these
portlets	will	have	a	widget	inside	them	and	we	will	use	different	APIs	to	display	content
inside	each	of	them.	The	five	portlets	will	be	sortable	as	well,	and	you	will	be	able	to
change	their	positions	by	dragging	them.

The	portlets	that	we	will	create	are	as	follows:

Share	buttons:	We	will	place	sharing	buttons	for	various	social	media	sites.	Clicking
any	of	these	buttons	will	share	the	page	on	that	social	media	site.
Displaying	pictures	using	the	Flickr	API:	We	will	search	the	Flickr	API	using	a	tag
name	and	display	image	thumbnails	and	their	titles.	Clicking	on	a	thumbnail	will
show	the	image	in	a	dialog	box.
Weather	widget:	This	is	a	widget	where	we	will	display	a	dropdown	of	places
around	the	world	and	use	the	Openweathermap	API	to	get	temperature,	sunrise,
sunset,	and	coordinates	of	that	place.	Clicking	on	the	coordinates	will	open	the
locations	on	Google	Maps.
Reddit:	This	widget	displays	latest	posts	from	the	reddit	front	page.	We	will	show
the	post	score	and	number	of	comments	and	link	it	to	reddit.
Images:	The	last	widget	will	have	a	dropdown	with	some	image	names.	Selecting	a
name	from	dropdown	will	display	the	image	thumbnail	inline.	Clicking	on	the
thumbnail	will	display	the	full	size	image	in	a	modal	dialog.

After	we	are	done,	the	page	will	look	like	the	following:

Setting	up	the	stage
The	first	step	is	to	create	the	required	folder	structure:

1.	 As	we	have	in	previous	chapters,	create	a	folder	named	Chapter11	inside	the
MasteringjQueryUI	folder.

2.	 Directly	inside	this	folder,	create	the	HTML	file	named	index.html	which	will
contain	our	HTML	markup.

3.	 Also,	copy	the	js	and	css	folders	inside	the	Chapter11	folder.
4.	 Now	go	inside	the	js	folder	and	create	a	new	file	and	name	it	dashboard.js.	This

file	will	contain	all	the	code	required	to	create	our	news	reader.

Once	this	setup	is	complete,	we	can	move	to	the	next	step,	which	is	designing	the	page.

Designing	the	page
For	the	page	design,	we	will	take	inspiration	from	the	portlet	script	on	the	jQuery	UI
website.	This	script	is	a	jQuery	UI	sortable	example	from	the	jQuery	UI	demo	site.	The
original	script	can	be	found	at	http://jqueryui.com/resources/demos/sortable/portlets.html.
It	uses	a	three-column	layout	but	we	will	modify	it	to	make	two	columns	with	two	widgets
in	each	column	and	then	create	a	widget	in	each	of	the	columns.

Let	us	begin	by	writing	the	markup	that	we	require.	Open	the	index.html	file	in	your
favorite	editor	and	write	the	following	markup	to	create	the	page	skeleton:

<!doctype	html>

<html	lang="en">

		<head>

				<meta	charset="utf-8">

				<title>Dashboard</title>

				<link	href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-

awesome.min.css"	rel="stylesheet">

				<link	rel="stylesheet"	href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

		</head>

		<body>

				<div	class="column">

<div	class="portlet">

								<div	class="portlet-header">Share	this	page</div>

								<div	class="shareBox	portlet-content">

										

												<i	class="fa	fa-facebook"></i>

										

										

												<i	class="fa	fa-twitter"></i>

										

										

												<i	class="fa	fa-reddit"></i>

										

										

												<i	class="fa	fa-google-plus"></i>

										

								</div>

						</div>

						<div	class="portlet">

								<div	class="portlet-header">Recent	photos	titled	cats	</div>

								<div	class="portlet-content	flickrPics">

										<ul	id="pics">

								</div>

						</div>

						<div	class="portlet">

								<div	class="portlet-header">Today's	Weather</div>

								<div	class="portlet-content">

										<select	id="selCity"></select>

										<p	id="loadingWeather">Loading…</p>

										<div	id="weatherInfo">

												

http://jqueryui.com/resources/demos/sortable/portlets.html

														

																<label>	Temp:	</label>	

																

														

														

																<label>	Temp	min:	</label>

																

														

														

																<label>	Temp	max:	</label>

																

														

														

																<label>	Cloudiness:	</label>

																

														

														

																<label>	Location:	</label>

																

														

												

										</div>

								</div>

						</div>

				</div>

				<div	class="column">

						<div	class="portlet">

								<div	class="portlet-header">reddit	:	top	items</div>

								<div	class="portlet-content"	id="reddit">

								</div>

						</div>

						<div	class="portlet">

								<div	class="portlet-header">Just	some	images</div>

								<div	class="portlet-content">

										Select	image	:	<select	id="imageSelector"></select>

										<div	id="thumbnail"></div>

								</div>

						</div>

				</div>

				

				<div	id="dialog"></div>

				<script	src="js/jquery-1.10.2.js"></script>

				<script	src="js/jquery-ui-1.10.4.custom.min.js"></script>

				<script	src="js/dashboard.js"></script>

		</body>

</html>

Let	us	look	at	this	HTML	in	detail.	Inside	the	head	section,	we	provided	the	page	title	first.
After	that	we	loaded	a	CSS	file	from	the	font-awesome	CDN.	If	you	are	not	familiar,	font-
awesome	is	a	great	utility	to	display	scalable	vector	icons	on	your	web	pages.	Currently,	it
boasts	of	more	than	470	different	icons.	We	are	using	it	to	display	the	social	media	icons.

Next	we	proceed	by	linking	the	jQuery	UI	CSS	file	inside	the	head	section.	Inside	the

body	tag,	we	have	two	divs	with	the	CSS	class	column	applied	to	them.	Among	these,	the
first	has	three	divs	inside	it	and	second	has	two	more	divs	inside	it.	Each	of	the	inner	divs
had	class	portlet	applied	to	them.	This	makes	a	total	of	four	divs	with	class	portlet.

Now	each	of	these	portlet	divs	has	two	more	divs	inside	them.	One	is	for	portlet	header
and	the	other	is	to	display	the	content	of	the	portlet.	The	first	div	has	the	portlet-header
class	and	the	second	div	has	the	portlet-content	class	applied	to	it.

The	first	portlet	has	the	Share	this	page	title.	Its	content	div	has	another	CSS	class	named
shareBox	applied	to	it.	Inside	the	shareBox	div,	we	placed	four	hyperlinks	and	each	one
has	an	attribute	called	type	so	that	we	may	identify	them	later	using	jQuery.	The	value	for
type	attribute	assigned	to	these	hyperlinks	is	fb,	tweet,	reddit	and	gplus	respectively.

Note
Note	that	we	could	have	created	the	sharing	links	in	HTML	itself.	But	since	we	want	to
keep	it	generic,	we	will	use	JavaScript	to	make	it	dynamic	so	that	the	page	link	will	be
picked	automatically.

Each	hyperlink	also	has	an	icon	inside	it.	These	are	font-awesome	icons	which	are	placed
using	the	<i>	tag	and	specific	icons	are	displayed	by	applying	the	icon-related	CSS	class
to	it.	Note	that	all	icons	must	have	a	common	class	fa.	For	the	icons	that	we	are	using,	the
class	names	that	are	required	are	fa-facebook,	fa-twitter,	fa-reddit,	and	fa-google-
plus	respectively.

Note
The	full	list	of	all	the	icons	is	available	at	http://fortawesome.github.io/Font-
Awesome/icons/	where	new	icons	are	added	periodically.

The	second	portlet	has	the	title	Recent	photos	tagged	“cat”	and	its	content	div	has	a	ul
with	id	pics	inside	it.	We	will	create	the	DOM	inside	it	using	the	Flickr	API.

The	third	portlet	is	for	displaying	weather.	Its	title	is	Today’s	Weather.	Inside	this	portlet,
there	is	a	select	box	where	we	will	display	the	list	of	cities	for	which	weather	will	be
displayed.	Next	to	it	is	a	loading	placeholder	element,	which	we	will	display	while	data	is
being	fetched	from	the	open	weather	map	API.	Lastly,	there	is	another	list	where	we
created	different	placeholders	to	display	temperature,	minimum	and	maximum
temperature,	sunrise,	sunset,	and	the	location	coordinates.

The	fourth	portlet	(or	first	portlet	in	second	column)	is	for	displaying	reddit	front	page
posts.	Its	title	is	reddit:	top	items	and	the	portlet	content	div	has	the	id	reddit.	This	is
where	we	will	insert	the	DOM	for	reddit	posts.

The	fifth	and	last	portlet	has	the	title	Just	some	images.	Its	content	div	has	a	select	box
inside	it	and	another	div.	The	select	box	will	be	populated	with	some	image	names	and	the
div	will	display	the	thumbnail	for	the	selected	image.

After	the	columns,	we	have	another	div	with	id	dialog.	It	will	be	converted	to	the	jQuery
UI	dialog	box	and	the	images	for	the	first	and	last	portlet	will	be	displayed	in	it.

http://fortawesome.github.io/Font-Awesome/icons/

Finally,	just	before	the	body	tag	closes,	refer	to	the	jQuery	source	file,	the	jQuery	UI
source	file,	and	the	currently	empty	dashboard.js	file.

This	prepares	our	page	skeleton	that	we	now	need	to	stylize	using	CSS	properties	for
different	elements.

Styling	the	content
We	will	need	some	generic	CSS	rules	for	columns	and	portlets,	such	as	their	width	and
height.	Besides	this,	we	will	need	some	other	rules	for	the	content	inside	different	portlets.
In	the	head	section	of	index.html,	after	jQuery	UI	CSS	file	is	referred,	let’s	write	the
following	rules	now	for	different	page	elements	inside	style	tag:

body

{

		font-family:arial,verdana;

		font-size:12px;

		margin:	0px	auto;	

		width:	800px;

}

.column	

{

		width:	400px;

		float:	left;

		padding-bottom:	100px;

}

.portlet	

{

		margin:	0	1em	1em	0;

		padding:	0.3em;

}

.portlet-header	

{

		padding:	0.2em	0.3em;

		margin-bottom:	0.5em;

		position:	relative;

}

.portlet-toggle	

{

		position:	absolute;

		top:	50%;

		right:	0;

		margin-top:	-8px;

		cursor:pointer;

}

.portlet-content	

{

		height:	250px;

		overflow-y:	scroll;

		padding:	0.4em;

}

.portlet-placeholder

{

		border:	1px	dotted	black;

		margin:	0	1em	1em	0;

		height:	250px;

}

.shareBox

{

		text-align:center;

		overflow:hidden	!important;

		height:auto	!important;

}

.shareBox	a	

{

		background:	none	repeat	scroll	0	0	#f6a828;

		border-radius:	35px;

		color:	#fff;

		display:	inline-block;

		font-size:	25px;

		font-weight:	bold;

		padding:	5px;

		text-align:	center;

		width:	35px;

		height:35px;

}

ul	

{

		list-style:	outside	none	none;

		margin:	0;

		padding:	0;

}

.flickrPics	li	

{

		height:	100px;

		overflow:	hidden;

		padding:	5px	0;

}

.flickrPics	li	img

{

		float:	left;

		margin-right:	5px;

		max-height:	100px;

}

#reddit	ul

{

		list-style:	outside	none	none;

		margin:	0;

		padding:	0;

}

#reddit	li	,	#weatherInfo	li

{

		padding:	5px	0;

		min-height:20px;

}

#reddit	li	span

{

		text-decoration:underline;

}

#reddit	a	

{

		text-decoration:none;

}

#reddit	a.comments

{

		text-decoration:underline;

}

#weatherInfo	label	

{

		font-weight:bold;

		width:100px;

		display:block;

		float:left;

}

#weatherInfo	span	

{

		float:left;

}

#thumbnail	

{

		cursor:pointer;

		text-align:center;

}

The	CSS	properties	above	define	the	look	and	feel	of	elements	inside	various	portlets.
First	of	all,	we	defined	the	rules	common	for	all	portlets	by	declaring	the	properties	for	the
classes	column,	portlet,	portlet-header,	portlet-toggle,	portlet-content,	and
portlet-placeholder.

After	the	common	CSS	rules,	properties	specific	to	contents	of	a	portlet	have	been	written.

Do	not	bother	checking	the	page	in	the	browser	yet.	We	still	have	to	add	some	more
classes	to	the	portlet	header	and	portlet	content,	which	we	will	do	with	jQuery.	Let	us
move	to	the	next	section	where	we	start	coding	the	page.

Getting	the	code	structure	ready
Let’s	begin	by	defining	the	structure	of	the	JavaScript	object	that	we	will	need	to	perform
various	tasks.	Open	the	js/dashboard.js	file	and	write	the	following	code:

$(document).ready(function()

{

		var	dashboard	=	

		{

				imageArr	:	[],

				init	:	function()

				{

						this.initPortlets();

						this.initSharing();

						this.initFlickr();

						this.initReddit();

						this.setupWeather();

						this.setupImageSelector();

				},

				initPortlets	:	function()

				{

				},

				initSharing	:	function()

				{

				},

				initFlickr	:	function()

				{

				},

				initReddit	:	function()

				{

				},

				setupWeather	:	function()

				{

				},

				setupImageSelector	:	function()

				{

				}

		}

		dashboard.init();

});

We	start	off	by	creating	a	dashboard	object	and	defining	an	array	named	imageArr	and	six
methods.	The	imageArr	array	will	be	populated	when	we	create	the	fourth	portlet	and
display	images.

Among	the	methods,	the	first	method	is	init,	which	acts	as	an	entry	method	to	the	whole
object.	Inside	init,	we	call	the	initPortlets	method,	which	will	style	the	portlets	and
add	the	sortable	behavior.	It	will	also	make	portlets	toggleable.

The	second	method	is	initSharing,	where	we	will	bind	event	handlers	for	click	event	on
any	of	the	social	media	sharing	links.	On	clicking	any	such	link,	a	new	browser	window
will	be	opened	to	share	the	link	on	that	particular	platform.	Next	are	init	methods	for	the
four	portlets:	initFlickr,	which	will	create	the	first	portlet,	that	is,	Flickr	pictures;

initReddit	for	reddit	portlet;	setUpWeather,	which	will	populate	the	third	portlet	for
weather;	and	lastly,	setupImageSelector,	which	will	display	the	images	dropdown	in	the
last	portlet	and	add	events	to	display	selected	images.

After	the	definition	on	the	dashboard	object,	we	call	the	dashboard.init()	method	to
initialize	the	application.	This	will	be	the	first	method	that	will	be	fired	after	the	page	has
loaded.

Now	that	we	are	clear	with	all	the	methods	and	their	functionalities,	we	can	proceed	to
implement	them.	We	will	start	by	initializing	the	portlets	first.

Initializing	the	portlets
To	initialize	the	portlets,	we	will	turn	the	column	div	into	jQuery	UI’s	sortable
components.	Since	there	are	two	columns,	we	will	make	the	connection	as	well	so	that
portlets	of	a	column	could	be	dragged	into	another	column.	We	will	also	add	a	toggle
button	to	portlet	header.

Write	the	following	code	inside	the	initPortlets	method	to	initialize	them:

$(".column").sortable(

{

		connectWith:	".column",

		handle:	".portlet-header",

		cancel:	".portlet-toggle",

		placeholder:	"portlet-placeholder	ui-corner-all"

});

$(".portlet")

		.addClass("ui-widget	ui-widget-content	ui-helper-clearfix	ui-corner-all")

		.find(".portlet-header")

		.addClass("ui-widget-header	ui-corner-all")

		.prepend("

");

$(".portlet-toggle").click(function()	

{

		var	icon	=	$(this);

		icon.toggleClass("ui-icon-minusthick	ui-icon-plusthick");

		icon.closest(".portlet").find(".portlet-content").toggle('fast');

});

$('#loadingWeather').hide();

$('#weatherInfo').hide();

First	we	convert	the	column	div	to	sortable,	which	will	make	the	column	div	inside,	the
sortable	component.	We	also	specified	four	options	for	sortables,	which	are	described
here:

connectWith:	Since	we	have	two	columns	and	we	want	the	column	div	inside	to	be
able	to	move	between	those,	we	need	to	set	the	connectWith	option.	This	is	why	we
set	its	value	to	.column
handle:	This	is	the	element	that	will	be	used	to	drag	the	portlet.	We	specified	its
value	as	.portlet-header.
cancel:	This	is	the	selector	which	will	not	allow	dragging	of	portlet.	Since	the	toggle
button	is	also	in	the	portlet	header,	we	allowed	its	CSS	class	the	cancel	value.
placeholder:	This	is	the	class	name	that	is	applied	to	the	empty	space	created	due	to
dragging	an	original	element.	We	will	display	a	dotted	border	for	visual	effects.

Now	for	each	portlet,	we	add	jQuery	UI	themeroller	classes	to	the	portlet	div	as	well	as
to	the	.portlet-header	div	inside	it.	After	this,	we	create	a	span	element	and	prepend	it
to	the	portlet-header	div.	This	span	element	has	CSS	classes	ui-icon	and	ui-icon-
minusthick	from	jQuery	UI’s	theme,	which	will	display	a	toggle	icon	in	the	portlet-

header	div.

Next	is	the	event	handler	for	the	click	event	of	the	portlet-toggle	span	that	toggles	the
icon	in	the	portlet	header.	It	uses	jQuery’s	toggleClass	method	to	alternate	between	the
ui-icon-minusthick	and	ui-icon-plusthick	classes	to	change	icons.	Last	line	toggles
the	visibility	of	the	portlet-content	div	for	that	portlet.

Last	two	lines	hide	the	weather	loading	indicator	in	second	portlet	as	well	as	the	template
for	weather	information.

Now	we	can	check	what	our	hard	work	has	produced	so	far.	Browse	to	the	index.html
file	using	your	web	server	in	the	browser	and	you	will	see	the	portlets	in	two	columns,	as
displayed	in	the	following	screenshot:

The	portlets	are	now	ready	to	display	data.	We	will	begin	by	creating	the	first	portlet,	that
is,	implementing	the	social	media	sharing	buttons.

Implementing	sharing	buttons
We	have	four	sharing	buttons	and	each	of	these	needs	to	be	configured	differently	to	share.
When	the	user	will	click	an	icon,	we	will	open	a	new	window	and	based	on	the	icon	that
was	clicked,	redirect	the	user	to	the	appropriate	page.	Write	the	following	code	inside	the
initSharing	method	that	will	add	the	event	handler	for	the	click	event	of	sharing	links:

$('.shareBox	a').on('click',	function()

{

		var	type	=	$(this).prop('type');

		dashboard.sharePage(type);

});

Content	for	the	first	portlet	has	the	shareBox	class	assigned	to	it	and	it	has	sharing	links
inside	it.	In	the	above	code,	we	added	the	click	event	handler	for	all	the	links	inside	the
.shareBox	div.	The	callback	method	for	the	event	handler	first	gets	the	value	of	type
attribute	for	the	clicked	link.	We	then	call	the	sharePage	method	and	pass	the	value	of	the
type	property	to	it.	This	method	will	send	users	to	the	relevant	social	media	page.

To	implement	this	method	go	to	the	dashboard.js	file	again	and	add	the	following	code
for	the	method	after	the	initSharing	method	definition:

sharePage	:	function(shareType)

{

		var	pageUrl	=	encodeURIComponent(document.location);

		var	shareUrl;

		switch(shareType)

		{

				case	'fb':

						shareUrl	=	'https://www.facebook.com/sharer/sharer.php?u='	+	pageUrl;

				break;

				case	'tweet':

						shareUrl	=	'https://twitter.com/intent/tweet?text=Check	out	my	

page&url='+	pageUrl	+'&via=v08i';

				break;

				case	'reddit':

						shareUrl	=	'http://www.reddit.com/submit?url='	+	pageUrl;

				break;

				case	'gplus':

						shareUrl	=	'https://plus.google.com/share?url='	+	pageUrl;

				break;

				

				default	:

				return	false;

		}

		window.open(shareUrl	,	'',	'width=600,height=500');

},

The	sharePage	method	receives	shareType	as	a	parameter,	that	is,	it	can	be	either	fb,
reddit,	tweet	or	gplus.	In	the	first	line	inside	the	method,	we	take	the	page	URL	using

JavaScript’s	document.location	and	then	encode	it	using	the	encodeURIComponent
function.	The	next	line	has	declared	a	variable	which	will	store	the	value	of	sharing	URL.

Now	based	on	the	value	of	the	shareType	parameter,	we	implemented	a	switch	case	that
will	create	the	sharing	URL.	Facbook,	Twitter,	reddit,	and	Google	Plus	each	have	specific
URL	formats	to	share	data.	Described	here	are	the	URL	formats	of	each	of	these	sites:

Facebook:	To	share	a	URL	on	Facebook,	the	required	format	is
https://www.facebook.com/sharer/sharer.php?u=,	where	the	value	of	u	in	the	query
string	is	the	URL	you	want	to	share.
Twitter:	The	sharing	URL	for	Twitter	is	https://twitter.com/intent/tweet?
text=&url=&via=.	Here	text	is	the	tweet	text,	URL	is	the	URL	you	want	to	share,	and
value	of	via	could	be	a	twitter	handle.	via	is	not	a	mandatory	field	so	you	can	skip	it
if	not	required.
Reddit:	To	submit	a	URL	to	reddit,	the	required	URL	format	is
http://www.reddit.com/submit?url=,	where	the	value	of	URL	must	be	the	the	URL	we
are	sharing.
Google	Plus:	The	URL	format	of	Google	Plus	is	similar	to	reddit.	It	has	the	format
https://plus.google.com/share?url=.

For	each	of	the	sites	in	the	switch	statement,	we	created	the	URLs.	Once	the	URL	is
ready,	we	use	JavaScript’s	window.open	method	to	open	the	URL	in	a	new	window.	We
pass	three	parameters	to	window.open;	the	first	is	the	URL	we	just	created,	second	is	an
empty	string	(the	second	parameter	is	the	window	name	but	we	do	not	need	it),	and	third
is	the	width	and	height	of	the	new	window	that	will	be	opened.	If	you	do	not	provide	the
third	parameter,	the	new	window	will	be	opened	in	a	new	browser	tab	instead	of	new	a
pop-up	window.

Note
Make	sure	you	have	popups	enabled	in	the	browser,	otherwise	the	new	window	will	not	be
visible.

We	can	now	check	our	sharing	feature	on	the	page.	Load	the	index.html	file	in	your
browser	and	click	on	any	of	the	sharing	links.	Here	is	a	screenshot	after	the	Twitter
sharing	icon	is	clicked	on:

https://www.facebook.com/sharer/sharer.php?u=
https://twitter.com/intent/tweet?text=&url=&via=
http://www.reddit.com/submit?url=
https://plus.google.com/share?url=

Note	that	it	contains	the	localhost	URL,	which	is	no	good	for	anyone	else.	But	you	get	the
idea.	It	is	obvious	that	any	other	URL	can	be	shared.

Displaying	Flickr	photos
To	search	photos	from	Flickr,	we	will	use	the	Flickr	tags	search	API.	The	API	is	very
simple	to	implement	and	provides	the	JSON	format	in	response	apart	from	XML.	Since
we	will	have	to	make	a	cross-domain	request	in	order	to	contact	the	API,	we	will	use
JSONP	to	fetch	the	data.	The	Flickr	API	allows	a	callback	parameter	in	the	URL	for
JSONP	requests.	To	implement	the	Flickr	API,	go	to	the	initFlickr	method	in	your	file
and	write	the	following	code	inside	it:

$.getJSON('https://api.flickr.com/services/feeds/photos_public.gne?

jsoncallback=?',

{

			tags:	'cat',

			format:	'json'

},

function(data)	

{

		var	str	=	'';

		$.each(data.items,	function(i,item)

		{

				str+=	'';

				str+=	'<a	class="media"	href="javascript:;"	data-img="'	+	item.media.m	

+	'">';

				str+=	'';

				str+=	'';

				var	permaLink	=	'link';

				str+=	''+item.title+'('	+	permaLink	+	')

tags	

:	'	+	item.tags;

				str+=	'';

		});

		$('#pics').html(str);

});

$('#pics').on('click',	'a.media',	function()

{

		var	img	=	$(this).data('img');

		$('#dialog').html('').dialog({modal	:	true});

});

The	first	line	uses	jQuery’s	getJSON	method	to	make	a	call	to	the	Flickr	API.	We	set	the
value	of	format	as	json	in	the	request.	The	value	of	the	tags	parameter	is	set	to	cat,
which	means	it	will	search	for	pictures	tagged	as	“cat”.	The	tags	property	can	be	any
string	that	you	want	to	search	on	Flickr.

Note
The	URL	that	is	created	will	be	https://api.flickr.com/services/feeds/photos_public.gne?
jsoncallback=&tags=cat&format=json	in	this	case.

Once	data	is	fetched	from	the	service,	the	callback	method	will	be	invoked	and	it	will
receive	data	as	a	parameter.	Following	is	the	JSON	response	format	that	is	received	from
Flickr.	It	will	be	required	in	order	to	create	DOM	with	this	response:

https://api.flickr.com/services/feeds/photos_public.gne?jsoncallback=&tags=cat&format=json

As	you	can	see,	in	the	figure	above,	the	images	are	inside	the	items	array.	Using	jQuery’s
$.each	method	we	loop	in	this	array	and	create	the	DOM.	There	are	many	properties	for
each	image	but	we	are	interested	in	its	title,	image,	and	permalink.

We	create	a	li	element	for	each	of	the	images.	Inside	the	li,	we	create	an	img,	set	its	src,
and	wrap	it	in	an	anchor.	We	also	set	a	data	attribute	data-img	for	image.	Next	to	the
image	we	create	permalink	for	the	image	and	then	place	it	along	with	the	title	of	the	image
and	its	tags	from	Flickr.

Once	the	loop	is	complete,	we	push	the	newly	created	HTML	inside	the	ul	list	having	the
id	#pics.

Next,	we	added	an	event	handler	for	the	click	event	of	anchor,	which	contains	the	image.
Note	the	CSS	class	media.	Inside	the	event	handler,	we	get	the	value	of	the	data	attribute
img.	Then	we	insert	this	image	into	the	#dialog	div	and	display	the	jQuery	UI	dialog.

This	completes	our	Flickr	widget	and	we	can	now	check	it	in	action.	Reload	the
index.html	page	and	the	Flickr	pictures	will	be	displayed.	Click	on	a	thumbnail	and	it
will	be	displayed	in	the	dialog.

Here	is	how	the	page	will	look	now:

Creating	a	weather	widget
For	the	weather	widget,	first	we	will	create	the	dropdown	with	names	of	cities,	then	we
will	add	the	event	handler	for	its	change	event.	Write	the	following	code	inside	the
setupWeather	method	to	create	a	dropdown	and	binding	event	handler:

var	cities	=	['Delhi,	India',	'London,UK',	'New	York,USA',	'Tokyo,Japan'];

var	strCity	=	'<option	value="0">select	a	city</option>';

$(cities).each(function(i,	item)

{

		strCity+=	'<option	value="'	+	item	+	'">'	+	item	+	'</option>';

});

$('#selCity').html(strCity);

$('#selCity').change(function()

{

		var	selection	=	$(this).val();

		if(selection	==	0)

		{

				return;

		}

		dashboard.displayWeather(selection);

		

});

To	create	a	cities	dropdown,	we	created	an	array	called	cities	that	contains	some	city
names	around	the	world.	Then	we	iterate	in	this	array	and	create	dropdown	options	with
each	city	name	and	insert	it	into	the	dropdown	with	id	selCity.

Next	we	bind	the	event	handler	for	change	event	on	the	dropdown.	In	case	a	valid	value	is
selected	in	dropdown,	we	call	a	method	named	displayWeather	with	the	current
dropdown	value.	We	now	need	to	implement	the	displayWeather	method,	which	will
fetch	data	from	the	API	and	display	it.

Visit	the	dashboard	object	and	add	a	new	method	next	to	the	setupWeather	method,	as
shown	in	code	below:

displayWeather	:	function(city)

{

		$('#loadingWeather').show();

		$('#weatherInfo').hide();

		var	apiURL	=	'http://api.openweathermap.org/data/2.5/weather?q='	+	city;

		$.ajax(

		{

				url:	apiURL,

				dataType:	"jsonp",

				jsonp:	'callback',

				success:	function(weatherData)

				{

				var	x	=	{a	:	weatherData};

				console.log(x);

				$('#temp').html((weatherData.main.temp	-	273.15).toFixed(2)	+	'	degree	

celcius');

				$('#tempMin').html((weatherData.main.temp_min	-	273.15).toFixed(2)	+	'	

degree	celcius');

				$('#tempMax').html((weatherData.main.temp_max	-	273.15).toFixed(2)	+	'	

degree	celcius');

				$('#cloudiness').html((weatherData.clouds.all)	+	'	%	cloudy');

				var	googleUrl	=	'https://www.google.com/maps?

q='+weatherData.coord.lat+','	+	weatherData.coord.lon;

				var	googleLink	=	'	View	on	

Google	maps';

				$('#location').html(weatherData.coord.lat	+	',	'+	weatherData.coord.lon	

+	googleLink);

				

				$('#weatherInfo').show();

				$('#loadingWeather').hide();

				

				},

				error:	function	(a,b,c)

				{

				console.log('Error	getting	weather.');

				}

		});

},

The	displayWeather	method	receives	the	selected	city	value	in	the	city	parameter.	Inside
this	method,	we	first	show	you	the	element	with	ID	loadingWeather	and	hide	the
#weatherInfo	div.

Next	we	create	the	URL	for	API.	The	URL	has	format
http://api.openweathermap.org/data/2.5/weather?q=,	where	the	value	of	q	is	the	selected
city	name.	After	creating	the	URL,	we	make	an	AJAX	request	with	dataType	set	as	jsonp
and	a	callback	value	specified.	In	the	success	callback,	The	API	response	will	be	collected
in	the	weatherData	parameter,	which	we	can	now	use	to	display	different	values.	The
response	format	of	JSON	is	as	follows:

http://api.openweathermap.org/data/2.5/weather?q=

The	temperature	data	is	available	in	the	weatherData.main	object,	the	cloudiness	data	is
available	in	weatherData.clouds	and	the	coordinates	of	the	city	are	available	in	the
weatherData.coord	object.	Using	these	objects,	we	display	the	four	elements	temp,
tempMin,	tempMax,	and	cloudiness	with	values	temp,	temp_min,	temp_max,	and
clouds.all	respectively.	Note	that	the	temperature	information	from	the	API	is	received
in	Kelvin.	To	convert	it	to	Celsius,	we	subtracted	273.15	from	the	values.

Next	we	create	a	link	to	Google	Maps	for	the	city	coordinates	available	in	the	coord
object.	To	display	the	latitude	and	longitudes	in	Google	Maps,	the	URL	must	have	the
format	https://www.google.com/maps?q=latitude,longitude.	We	fill	the	latitude	and
longitude	values	from	the	API	response	as	well	as	display	the	values	and	the	link	inside
the	span	#location.

The	weather	widget	is	ready	now	and	you	can	check	it	on	the	page.	Reload	the
index.html	page	and	select	a	city	name	from	dropdown.	You	will	see	the	response	as
displayed	in	the	following	picture:

https://www.google.com/maps?q=latitude,longitude

Clicking	on	the	View	on	Google	maps	link	will	open	a	new	tab	focused	on	the	city.

Displaying	posts	from	the	reddit	front
page
We	already	created	an	example	using	the	reddit	API	in	Chapter	4,	Creating	a	Tabbed	News
Reader.	If	you	have	gone	through	it,	you	can	directly	skip	the	theory	section	and	directly
use	the	code	and	implement	it.

Unlike	Chapter	4,	Creating	a	Tabbed	News	Reader,	in	this	widget	we	will	display	the
posts	from	the	reddit	front	page.	Like	earlier	widgets,	we	will	call	the	reddit	API	for	JSON
of	front	page	posts.	Once	data	is	received,	we	will	iterate	in	response	items	and	create	the
DOM.	Write	the	following	code	inside	initReddit	method	to	call	the	API:

var	apiURL	=	'http://www.reddit.com/r/all.json';

$.ajax(

{

		url:	apiURL,

		dataType:	"jsonp",

		jsonp:	'jsonp',

		success:	function(data)

		{

		var	x	=	{a	:	data};

		console.log(x);

		$('#reddit').html(dashboard.getRedditThreadList(data.data.children));

		},

		error:	function	(a,b,c)

		{

		alert('Error	getting	data');

		}

});

You	can	get	the	JSON	for	any	subreddit	by	adding	.json	at	the	end	of	its	name.	Since	we
want	to	get	all	front	page	posts,	we	have	used	all.json.	Hence	the	URL	becomes
http://www.reddit.com/r/all.json.	Since	it	is	a	cross	domain	request	we	need	to	make	it
jsonp.	Reddit	supports	jsonp	and	expects	a	callback	parameter	in	case	of	jsonp	requests,
which	we	have	provided	as	well	as	jsonp.

Once	the	request	succeeds,	the	response	is	received	in	variable	data.	The	response	has
another	object	named	data	inside	it	which	had	yet	another	array	named	children.	This
array	is	the	actual	list	of	posts.	We	pass	the	children	array	to	another	method
getRedditThreadList	which	is	responsible	for	creating	the	DOM.

Let	us	define	the	getRedditThreadList	method	now	to	create	the	DOM.	Inside	the
dashboard	object,	write	the	following	code	to	create	the	method	and	the	DOM	creation
code	inside	it:

getRedditThreadList	:	function(postListing)

{

		var	strHtml	=	'';

		for(var	i	=	0;	i	<	postListing.length;	i++)

		{

				var	aPost	=	postListing[i].data;

http://www.reddit.com/r/all.json

				var	permalink	=	'http://reddit.com'	+	aPost.permalink;

				strHtml+=	'';

				strHtml+=	(i+1)	+	'	-	['	+	aPost.subreddit	+	']	'	+	aPost.title	+	'	(score	:	'	+	

aPost.score	+	'|	<a	class="comments"	href="'	+	permalink	+	'"	

target="_blank">	comments	:	'	+	aPost.num_comments	+	')';

				strHtml+=	'';

		}

		strHtml+=	'';

		return	strHtml;

},

The	method	getRedditThreadList	receives	the	reddit	response	in	the	postListing
parameter.	Before	creating	DOM,	let’s	look	at	the	format	of	an	individual	children	node:

There	are	a	lot	of	properties	for	each	children	node	here.	But	for	our	example	we	need
only	six,	which	are	permalink,	subreddit,	url,	title,	score,	and	num_comments.	These
properties	represent	the	permanent	link	on	reddit	for	that	post,	the	subreddit	name	to
which	the	post	belongs,	title	of	the	submitted	post,	overall	score	of	the	post,	and	the
number	of	comments.

We	simply	iterate	in	the	children	array	and	the	data	for	each	post	is	present	inside	the
data	object	of	the	element.	We	then	create	a	list	item	for	each	post	where	we	display	the

subreddit	to	which	it	belongs	along	with	the	title	of	post	to	its	next.	Clicking	on	the	title
will	open	the	linked	content	which	may	be	a	reddit	page	or	some	external	content.	Next	to
the	title	we	display	the	score	of	the	post	and	number	of	comments.	The	comments	text	is	a
link	which	when	clicked	on	opens	the	comments	page	on	reddit	in	a	new	tab.

Once	the	whole	DOM	is	created,	we	return	it	to	the	initReddit	method	where	it	is
inserted	in	the	div	#reddit.

Now	reload	the	index.html	page	in	the	browser	and	you	will	see	the	posts	from	reddit’s
front	page:

Creating	an	image	display	widget
This	is	our	last	widget	for	this	page	and	is	very	simple	to	implement.	No	AJAX	is
involved	in	it	as	well.

Before	coding,	we	need	to	set	up	images	that	we	will	use	in	this	widget.	Create	a	folder
named	images	inside	the	Chapter11	folder.	Inside	the	images	folder,	keep	five	images	of
your	choice.	For	this	example,	I	named	them	1.jpg,	2.jpg,	and	so	on.	Create	another
folder	named	thumb	inside	the	images	folder.	Now	create	small	versions	(preferably
around	300	px	wide)	of	these	five	images	and	place	them	in	the	thumb	folder.	With	this	we
are	good	to	proceed	to	the	code.

We	will	create	an	array	of	images	and	their	names,	which	we	will	display	in	a	dropdown.
Selecting	an	image	will	display	its	thumbnail.	Clicking	on	the	thumbnail	will	display	its
larger	version	in	the	jQuery	UI	dialog	box.

Go	to	the	setupImageSelector	method	of	the	dashboard	object	and	write	the	following
code	that	will	set	up	the	images	array,	display	images	names	in	dropdown,	and	bind	the
event	handler	to	display	images:

this.imageArr	=	[

		{	id:	1,		name	:	'Temple',	path	:		'images/1.jpg',	thumb	:	

'images/thumb/1.jpg'	},

		{	id:	2,	name	:	'Colors',	path	:		'images/2.jpg',	thumb	:	

'images/thumb/2.jpg'	},

		{	id:	3,	name	:	'Directions',	path	:		'images/3.jpg',	thumb	:	

'images/thumb/3.jpg'	},

		{	id:	4,	name	:	'Flag',	path	:		'images/4.jpg',	thumb	:	

'images/thumb/4.jpg'	},

		{	id:	5,	name	:	'A	bit	snow',	path	:		'images/5.jpg',	thumb	:	

'images/thumb/5.jpg'	}

];

var	str	=	'<option	value="0">select	image</option>';

$.each(dashboard.imageArr,	function(i,	item)

{

		str+=	'<option	value="'+item.id+'">'+	item.name	+'</option>'

});

$('#imageSelector').html(str);

$("#imageSelector").on('change',	function()

{

		dashboard.changeImage($(this));

});

$("#thumbnail").on('click',	function()

{

		var	imgPath	=	$(this).data('large');

		$('#dialog').html('').dialog({modal	:	true,	

width:	'auto',	top	:	0});

});

We	begin	by	defining	the	imageArr	array.	Each	element	in	this	array	is	an	object
containing	image	information.	Each	object	has	four	properties:	the	id	property	that

uniquely	identifies	an	image,	the	name	property	of	the	image	that	will	display	the	name	of
the	image	in	a	dropdown,	the	path	property	is	the	path	of	large	images	that	can	be	a
relative	or	absolute	path,	and	lastly,	the	thumb	property	is	the	path	to	the	thumbnail	of	the
said	image.	Here	we	set	the	paths	and	names	of	images	that	we	placed	in	the	images
folder.

Next,	we	loop	in	the	images	array	and	create	options	for	dropdowns	with	value	of	each
option	as	image	ID.	These	options	are	then	inserted	into	select	box	with	id
imageSelector	of	the	last	portlet.

After	this,	there	are	two	event	handlers.	The	first	image	handler	is	for	the	change	event	of
dropdown.	On	the	change	event,	it	calls	a	changeImage	method	with	selected	options.	To
implement	this	method,	add	the	following	code	to	dashboard	object:

changeImage	:	function(selectedPic)

{

		if(parseInt(selectedPic.val(),	10)	==	0)

		{

				$('#thumbnail').empty();

				return;

		}

		$.each(dashboard.imageArr,	function(i,	item)

		{

				if(parseInt(selectedPic.val(),	10)	===	item.id)

				{

						$('#thumbnail').data('large',	item.path).html('<img	src="'	+	

item.thumb	+'">');

						return;

				}

		});

}

In	the	first	line,	we	check	the	selected	value.	If	it	is	0,	we	empty	the	div	#thumbnail	and
exit	from	the	method.

Next	we	iterate	in	imageArr	and	check	the	value	of	selected	options	against	the	id	of	each
element	in	imageArr.	Once	a	match	is	found,	we	add	a	data	attribute	large	to	the	div
#thumbnail,	which	contains	paths	for	large	images.	Then	we	create	an	image	element	and
set	its	src	attribute	to	the	thumbnail	path	thumb.	Finally,	this	image	is	inserted	inside	div
#thumbnail.

The	second	event	handler	inside	setupImageSelector	is	to	display	the	larger	version	of
the	image	in	a	dialog.	On	clicking	div	#thumbnail,	we	first	get	the	value	of	the	data
attribute	large,	which	we	defined	in	the	preceding	code.	Then	we	create	an	image	with
src	set	to	the	image	path	and	insert	it	inside	the	#dialog	div.	After	this	the	jQuery	UI’s
dialog	method	is	called	to	display	the	dialog.

Check	the	index.html	page	in	your	browser	now.	Select	an	image	from	the	dropdown	and
the	thumbnail	will	be	displayed.	Clicking	it	will	display	the	large	version	in	a	dialog:

Improving	the	portlets
There	is	vast	scope	for	improving	all	of	the	portlets.	Here	are	some	of	the	ideas	to	get	you
started:

Use	cookies	to	maintain	the	state	of	portlet	positions	so	that	positions	of	portlets
remain	intact	even	after	the	page	loads
Implement	other	sharing	buttons	like	Pinterest,	StumbleUpon,	and	so	on
Put	a	text	box	in	the	Flickr	portlet	and	search	for	the	API	using	user-entered	tags
In	reddit	portlet,	display	thumbnails	of	images	in	dialog
Display	the	comments	of	a	reddit	post	in	a	dialog
In	the	weather	portlet,	allow	users	to	enter	cities
Open	Google	Maps	in-place	in	the	weather	portlet
In	the	images	portlet,	instead	of	using	a	hardcoded	images,	pull	the	information	from
the	database

Summary
In	our	last	chapter	of	this	book,	we	created	some	fun	widgets	using	different	APIs.	I	am
sure	you	must	have	learned	about	integrating	jQuery	and	jQuery	UI	components	with
different	APIs.

As	a	bonus,	there	is	an	appendix	following	this	chapter	where	you	will	learn	about	the
powerful	themeroller	feature	of	jQuery	UI	using	which	you	can	create	your	own	themes.
We	will	also	look	at	using	different	themeroller	classes	and	using	them	in	our	projects.

I	hope	you	had	fun	learning	jQuery	UI	and	creating	different	things	in	the	11	chapters	of
this	book.	Always	keep	learning	new	things;	experimenting	is	the	best	way	to	do	it.

Appendix	A.	Best	Practices	for	Developing
with	jQuery	UI
Congratulations	for	making	it	this	far!	We’ve	had	a	great	journey	together	in	the	11
chapters	of	this	book	and	I	hope	that	you	enjoyed	reading	and	learning	jQuery	UI.	In	this
final	part	of	the	book,	we	will	discuss	the	best	practices	for	using	jQuery	UI.	Some
techniques	are	applicable	to	jQuery	UI	in	particular,	while	others	apply	to	JavaScript	and
jQuery	performance	in	general.

We	will	further	divide	this	chapter	into	two	sections.	The	first	contains	the	general
guidelines	you	should	keep	in	mind	while	using	jQuery	UI,	jQuery,	and	JavaScript	in
general.	The	second	section	contains	the	very	useful	jQuery	UI	themeroller.	You	will	learn
how	we	can	create	a	new	theme	by	customizing	the	look	and	feel	of	jQuery	UI	using
themeroller.

General	Guidelines
This	section	has	some	guidelines	related	to	jQuery	UI,	jQuery,	and	JavaScript	in	general	.
Let’s	go	through	them	one	by	one.

Using	a	CDN
Instead	of	serving	the	jQuery	UI	library	.js	file	and	its	theme’s	CSS	file	from	your	web
server,	it	is	better	to	use	a	Content	Delivery	Network	(CDN).	Using	a	CDN	makes
loading	of	web	pages	faster.	This	is	because	browsers	cache	.js	files.	Hence,	if	you	have
referenced	a	jQuery	UI	file	from	CDN,	if	it	is	found	in	the	browser’s	cache	from	some
earlier	visit	to	a	website,	the	browser	will	not	load	the	file	again.	If	you	are	using	multiple
libraries	on	a	page,	it	can	have	a	significant	effect	on	reducing	page-load	time.	Another
advantage	is	that	since	these	files	are	referenced	from	external	domains,	the	browser	will
be	able	to	make	multiple	requests	to	load	the	files.

Here	are	the	three	popular	and	commonly	used	CDNs’	for	loading	jQuery	and	jQuery	UI
files,	along	with	their	different	versions:

jQuery	CDN:	https://code.jquery.com/ui/
CDN	hosted	by	Google:	https://developers.google.com/speed/libraries/devguide.
Apart	from	jQuery	and	jQuery	UI,	Google	CDN	hosts	several
Microsoft	CDN:	http://www.asp.net/ajax/cdn

https://code.jquery.com/ui/
https://developers.google.com/speed/libraries/devguide
http://www.asp.net/ajax/cdn

Use	a	customized	build	of	jQuery	UI
If	you	only	want	a	tab	widget	or,	say,	a	slider,	it	does	not	make	sense	to	download	the
whole	jQuery	UI	library	just	for	this.	The	jQuery	UI	website	has	an	option	to	create	a
customized	build	with	only	the	required	components.

Go	to	http://jqueryui.com/download/	in	your	browser,	this	will	open	a	download	builder
page.	Here	you	have	two	options,	either	download	the	complete	build,	or	create	a
customized	build:

http://jqueryui.com/download/

For	a	customized	build,	first	you	have	to	select	the	version	of	jQuery	UI	you	want	to
download.	Next	to	it	are	listed	all	components,	which	are	grouped	in	four	sections.	Each

component	has	a	checkbox	next	to	it.	Checking	a	component’s	checkbox	automatically
selects	other	components	that	it	depends	on.

The	first	section	is	UI	Core.	You	will	probably	want	to	retain	all	components	as	UI	Core.
It	is	the	base	on	top	of	which	all	other	components	are	built.	Next	are	the	interaction
components:	draggable,	droppable,	resizable,	selectable,	and	sortable.	All	the	components
in	this	section	require	the	Core,	Widget,	and	Mouse	components.	You	can	verify	this	by
unchecking	all	checkboxes	first,	and	then	checking	any	of	the	interaction	components.	The
third	section	contains	the	widgets	and	the	fourth	and	final	section	has	the	effects	API.

Once	you	are	done	with	the	selections,	proceed	to	the	bottom	of	the	page	and	you’ll	see
another	option	presented	there	to	select	a	theme.	At	the	time	of	writing,	there	are	2	dozen
themes	available.	Select	any	one	of	these	and	click	on	Download.	You	will	be	prompted	to
download	a	customized	build	that	will	only	contain	your	selected	jQuery	UI	components.

Using	the	jQuery	UI	icons
jQuery	UI	also	provides	a	large	number	of	icons.	Displaying	an	icon	is	also	very	easy.	To
display	an	icon	you	just	have	to	give	two	CSS	class	names	to	an	HTML	element.	For	a
particular	icon,	“ui-icon”	is	followed	by	the	class	name	of	that	icon.	The	ui-icon	is	the
base	class	which	must	be	included	for	each	icon	to	be	displayed.

Go	to	the	page	http://api.jqueryui.com/theming/icons/	to	see	all	available	icons.

http://api.jqueryui.com/theming/icons/

Be	specific	about	elements	as	much	as	possible
Element	IDs	are	the	fastest	to	search	for	in	DOM	compared	to	class	names	and	element
names,	since	they	are	unique.	You	will	not	notice	any	difference	in	speed	while	using	any
of	the	methods	in	small	pages.	But	say	you	have	a	large	page	with	hundreds	of	table	rows
that	are	dynamically	created.	you	will	start	seeing	lags	if	your	selectors	are	not	efficient.

For	example	let’s	have	a	look	at	the	following	HTML	code:

<div	class="outerDiv">

		<div	class="innerDiv">

				<p>A	paragraph</p>

				<ul	id="myList">

						first	item

						second	item

						third	item

				

		</div>

</div>

Now	suppose	you	want	to	hide	the	ul	element.	We	can	use	any	of	the	two	ways	as	written
below:

//Method	1	

$('#myList').hide();

//Method	2

$('.outerDiv').find('ul#myList').hide();

For	a	page	with	a	large	number	of	elements,	Method	1	in	the	preceding	code	will	be	fastest
as	opposed	to	Method	2.

The	point	here	is	to	be	as	precise	as	you	can.	If	you	have	a	choice	between	using	multiple
parent	selectors	and	a	find	selector	method,	always	go	for	find.

Chain,	chain,	and	chain
Chaining	is	a	great	feature	in	jQuery,	and	we	have	used	it	in	past	chapters	as	well.	Almost
all	jQuery	methods	return	the	element	itself,	when	a	method	is	called.	This	can	be	used	to
call	multiple	methods	on	an	element.	The	advantages	here	are	performance,	avoiding
repetition,	readability,	and	significant	reduction	in	the	number	of	lines.

Suppose	you	have	an	HTML	element	and	you	want	to	remove	an	existing	class	from	it,
add	a	new	class,	and	then	toggle	it.	First	let	us	do	it	without	chaining,	as	shown	in	the
following	code	snippet:

$('#element').removeClass('oldClass');

$('#element').addClass('newClass');

$('#element').slideToggle('slow');

Those	are	three	lines	and	a	lot	of	repetition.	Now	let’s	use	chaining	and	do	the	same	again:

$('#reset').removeClass('oldClass')

		.addClass('newClass')

		.slideToggle('slow');

Now	this	is	a	single	statement.	You	will	encounter	these	types	of	situations	regularly	in
your	applications,	where	chaining	can	save	you	a	lot	of	typing	as	well	as	improve
performance.

Cache	selectors
Whenever	a	selector	is	used,	DOM	is	searched	for	that	element	and	then	the	element	is
fetched.	As	a	rule	of	thumb,	you	should	avoid	touching	the	DOM	as	much	as	possible.
Caching	selectors	can	help	in	this	situation;	once	a	selector	is	retrieved	from	DOM,	it	can
be	stored	in	a	JavaScript	variable	and	any	jQuery	or	jQuery	UI	methods	can	be	used	on	it.
Here	is	an	example:

$('#dialog').dialog();

$('#dialog').on('dialogopen',	function(event,ui)	

{

		//do	something	here

});

Instead	of	searching	for	an	element	with	ID	dialog	again,	you	can	cache	it	and	use	it	again
like	this:

var	dialog	=	$('#dialog');

dialog.dialog();

dialog.on('dialogopen',	function(event,ui)	

{

		//do	something	here

});

The	preceding	code	retrieves	the	element	from	DOM	only	once	and	then	acts	on	it	as
many	times	as	needed.

Cache	your	loop	variables
Similarly	to	that	mentioned	previously,	when	you	are	running	for	loops,	you	can	cache
those	as	well:

Var	myArray;//an	array	of	1000	items

for(var	i=0;	i<myArray.length;	i++)

{

		//do	something	here

}

What	happens	is	that	the	length	of	myArray	is	calculated	in	each	iteration,	which	is
obviously	not	good.	The	solution	is	simple,	calculate	length	beforehand	and	use	that	value:

Var	myArray;

for(var	i=0,	len	=	myArray.length;	i	<	len;	i++)

{

		//do	something	here

}

While	the	loop	is	initializing,	we	store	the	array	length	in	a	variable	len	and	this	variable	is
used	for	all	iterations.

Note

Small	arrays	may	not	have	a	visible	effect	on	this	but	this	is	a	recommended	practice	for
larger	arrays.

DOM	manipulation	is	costly
Each	time	an	element	is	removed	from	DOM,	added	to	it,	or	any	change	is	made	to	an
existing	element,	the	whole	DOM	is	affected.	This	is	called	reflow.	While	using	jQuery
we	do	not	think	of	it	often	but	each	addClass,	css,	html,	text,	and	append	method	causes
the	DOM	to	reflow.

A	simple	example	is	iterating	in	an	array	and	creating	an	unordered	list:

//assuming	you	have	a	ul	with	id	myList	in	DOM

var	fruits	=	['Apple',	'Orange',	'Banana',	'Guava',	'Mango'];

for(var	i	=0;	i<	fruits.length;	i++)

{

				$('#myList').append(''	+	fruits[i]	+	'');

}

The	preceding	code	looks	completely	harmless	but	it’s	reflowing	the	DOM	five	times.
With	some	simple	changes,	we	can	reduce	this	number	to	one.	Here’s	how:

//assuming	you	have	a	ul	with	id	myList	in	DOM

var	fruits	=	['Apple',	'Orange',	'Banana',	'Guava',	'Mango'];

var	listElement	=	$('#myList');

var	strDOM	=	'';

for(var	i	=0;	i<	fruits.length;	i++)

{

		strDOM+=	''	+	fruits[i]	+	'';

}

listElement.html(strDOM);

We	created	the	DOM	and	stored	it	in	a	local	variable.	Once	the	loop	is	over	we	pushed	it
back	to	the	DOM.

Using	jQuery	UI	Themeroller	to
customize	a	theme
jQuery	UI	themeroller	is	a	great	utility	to	design	your	own	jQuery	UI	theme.	It	allows	you
to	customize	the	look	and	feel	of	the	theme	completely.	The	themeroller	page	can	be
found	at	http://jqueryui.com/themeroller/.	On	opening	this	page,	you	will	find	a	box	on	the
left-hand	side	with	three	tabs.	The	first	tab	is	called	Roll	Your	Own,	the	second	tab	is
Gallery,	which	has	24	prebuilt	themes	available,	and	the	third	tab	is	Help.	We	are	going
to	look	at	the	first	tab	and	its	different	options	to	customize	the	theme.	Here	is	how	the
first	tab	looks:

http://jqueryui.com/themeroller/

Changing	any	value	in	this	left-hand	side	box	instantly	changes	the	look	of	the	elements
on	the	page,	so	you	can	see	how	the	theme	is	going	to	look.

Let’s	look	at	the	different	options	available	to	customize	the	theme:

Global	styles:	The	following	are	the	global	styles	that	can	be	applied:

Font	settings:	These	settings	specify	the	global	font	name	and	the	font	size.	If
you	are	planning	to	use	a	custom	font	(for	example,	the	Google	font),	just	type
the	name	here	and	load	the	font	separately.
Corner	radius:	This	is	the	border	radius	width	for	all	elements.	Its	default	value
is	4	px.

Generic:	The	Header/Toolbar,	Content,	various	Clickable	states,	Highlight,	and
Error	have	common	fields	that	are	as	follows:

Background	color	and	texture:	You	can	specify	a	hex	code	for	a	color	or	select
a	color	from	the	palette.	The	texture	value	is	provided	as	a	percentage.
Border,	text,	and	icon	colors:	As	the	name	suggests,	you	have	to	provide	color
codes	for	the	border	color,	text	color,	and	the	color	of	the	icon.

Others:	We	have	a	few	more	options	to	customize	our	theme:

Modal	screens:	For	modal	overlays,	you	can	specify	the	background	color	and
texture.	For	the	overlay,	you	can	also	specify	its	opacity.
Shadows:	For	drop	shadows	on	overlays,	you	can	specify	the	background	color
and	texture.	Besides	this,	there	are	also	options	to	specify	the	shadow	thickness
and	offset.

Once	you	are	done	with	setting	all	the	options	and	are	satisfied	with	the	live	preview	of
the	theme,	just	click	the	Download	Theme	button	at	the	top	and	your	customized	theme
will	be	ready	to	download	to	your	machine.

Index
A

accept	option	/	Handling	events	for	puzzle	pieces
accordion	component,	properties

collapsible	/	Displaying	hotels	in	accordion
active	/	Displaying	hotels	in	accordion
heightStyle	/	Displaying	hotels	in	accordion

ajaxAlbum.php	file,	parameters
action	/	Editing	a	picture	name
albumId	/	Editing	a	picture	name
pictureId	/	Editing	a	picture	name
newImageName	/	Editing	a	picture	name

album	names,	photo	album	manager
filling	/	Filling	album	names
albums,	displaying	/	Displaying	the	albums
sortable	pictures,	creating	/	Making	the	pictures	sortable
dialogs,	initializing	for	edit	/	Initializing	dialogs	for	edit,	delete,	and	zoom
dialogs,	initializing	for	delete	/	Initializing	dialogs	for	edit,	delete,	and	zoom
dialogs,	initializing	for	zoom	/	Initializing	dialogs	for	edit,	delete,	and	zoom
click	events,	handling	for	delete	icon	/	Handling	click	events	for	edit,	delete
icons,	and	zooming	pictures
click	events,	handling	for	edit	/	Handling	click	events	for	edit,	delete	icons,	and
zooming	pictures
click	events,	handling	for	image	zoom	/	Handling	click	events	for	edit,	delete
icons,	and	zooming	pictures

albums	object,	properties
jsonAlbums	/	Getting	code	structure	ready
currentAlbum	/	Getting	code	structure	ready
currentPictureId	/	Getting	code	structure	ready
initialize	/	Getting	code	structure	ready
fillAlbumNames	/	Getting	code	structure	ready
addEventHandlers	/	Getting	code	structure	ready
displayAlbum	/	Getting	code	structure	ready
editImage	/	Getting	code	structure	ready
deleteImage	/	Getting	code	structure	ready
saveNewSequence	/	Getting	code	structure	ready

API	key,	Google	Maps
obtaining	/	Getting	a	Google	Maps	API	key
URL	/	Getting	a	Google	Maps	API	key

C
CAPTCHA

folder	structure,	creating	/	Creating	the	folder	structure
CDN

about	/	Using	jQuery/jQuery	UI	libraries	with	a	CDN,	Using	a	CDN
using	/	Using	a	CDN

CDNJS
URL	/	Using	jQuery/jQuery	UI	libraries	with	a	CDN

chaining
about	/	Chain,	chain,	and	chain

Chrome	DevTools
URL	/	The	CSS	background-position	property

code	structure,	dashboard
defining	/	Getting	the	code	structure	ready

color	picker
folder	structure,	setting	up	/	Setting	up	the	folder	structure
markup,	writing	for	page	/	Writing	markup	for	the	page
content,	styling	/	Styling	the	content
implementing	/	Implementing	the	color	picker
object	structure,	defining	/	Defining	the	object	structure
init	method,	initializing	/	The	init	method
colors,	modifying	/	Changing	colors	and	updating	the	spinner
spinner,	updating	/	Changing	colors	and	updating	the	spinner
getHexColor	method,	defining	/	The	getHexColor	method
convertToHex	method,	defining	/	Converting	to	hex
improving	/	Improving	the	Colorpicker

colorPicker	object
init	method	/	Defining	the	object	structure
setColor	method	/	Defining	the	object	structure
getHexColor	method	/	Defining	the	object	structure
convertToHex	method	/	Defining	the	object	structure

createSlices	function	/	Creating	slices	of	the	image
CSS	background-position	property

about	/	The	CSS	background-position	property
CSS	rule	declarations,	properties

body	/	Styling	the	content
.container	/	Styling	the	content
#timeline	/	Styling	the	content
.year	/	Styling	the	content
.year	div	/	Styling	the	content
#window	/	Styling	the	content
.close	/	Styling	the	content
.overlay	/	Styling	the	content

#leftOverlay	/	Styling	the	content
#rightOverlay	/	Styling	the	content
#yearEvents	ul	li	/	Styling	the	content
#slider	/	Styling	the	content
#sliderVal	/	Styling	the	content
.clear	/	Styling	the	content

customized	build,	jQuery	UI
using	/	Use	a	customized	build	of	jQuery	UI
URL	/	Use	a	customized	build	of	jQuery	UI

D
dashboard

stage,	setting	up	/	Setting	up	the	stage
page,	designing	/	Designing	the	page
code	structure,	defining	/	Getting	the	code	structure	ready
portlets,	initializing	/	Initializing	the	portlets
sharing	buttons,	implementing	/	Implementing	sharing	buttons
Flickr	photos,	displaying	/	Displaying	Flickr	photos
weather	widget,	creating	/	Creating	a	weather	widget
posts,	displaying	from	reddit	front	page	/	Displaying	posts	from	the	reddit	front
page
image	display	widget,	creating	/	Creating	an	image	display	widget
portlets,	improving	/	Improving	the	portlets

DOM
about	/	Displaying	data	on	the	page

drag	and	drop	CAPTCHA
implementing	/	Implementing	the	drag	and	drop	CAPTCHA
random	color,	setting	/	Setting	a	random	color
displaying	/	Displaying	the	CAPTCHA
making	functional	/	Making	the	drag	and	drop	functional
server,	validating	/	Validating	on	the	server
color	CAPTCHA,	improving	/	Improving	the	color	CAPTCHA

draggable	method,	options
revert	/	Draggable	country	names
revertDuration	/	Draggable	country	names
cursor	/	Draggable	country	names

drop	option	/	Handling	events	for	puzzle	pieces
droppable	capital	names,	quiz	application

creating	/	Droppable	capital	names	and	scoring
draggable	element,	accepting	/	Accepting	a	draggable	element
drop	event,	using	/	The	drop	event

E
event	timeline

folder	structure,	creating	/	Creating	the	folder	structure
HTML	markup,	writing	/	Designing	the	page
content,	styling	/	Styling	the	content
code	structure	/	Getting	the	code	structure	ready
markup,	creating	from	data	/	Creating	the	timeline	markup	from	data
functionality,	implementing	/	Implementing	the	timeline	functionality
improving	/	Improving	the	timeline

F
Firebug

URL	/	The	CSS	background-position	property
Flickr	photos,	dashboard

displaying	/	Displaying	Flickr	photos
folder	structure

setting	up	/	Setting	up	the	folder	structure	for	the	JavaScript	and	CSS	files
functionality,	event	timeline

slider,	implementing	/	Making	the	slider	work
slider,	implementing	with	if	block	/	The	if	block
slider,	implementing	with	else	block	/	The	else	block
year	window,	dragging	/	Dragging	the	year	window
event	details,	displaying	on	year	window	click	/	Displaying	event	details	when	a
year	window	is	clicked	on
event	details	window,	closing	/	Closing	the	event	details	window

functional	puzzle,	jigsaw	puzzle	game
creating	/	Making	the	puzzle	functional
image	slices,	creating	/	Creating	slices	of	the	image
CSS	background-position	property	/	The	CSS	background-position	property
events,	handling	for	puzzle	pieces	/	Handling	events	for	puzzle	pieces
puzzle	completion,	checking	for	/	Checking	for	puzzle	completion
resetting	/	Resetting	the	puzzle

G
Google	CDN

URL	/	Using	jQuery/jQuery	UI	libraries	with	a	CDN,	Using	a	CDN
guidelines,	jQuery	UI

about	/	General	Guidelines
CDN,	using	/	Using	a	CDN
icons,	using	/	Using	the	jQuery	UI	icons
elements,	specifying	/	Be	specific	about	elements	as	much	as	possible
chaining	/	Chain,	chain,	and	chain
selectors,	caching	/	Cache	selectors
variables,	caching	/	Cache	your	loop	variables
DOM	manipulation	/	DOM	manipulation	is	costly

H
home	page,	tabbed	news	reader

designing	/	Designing	the	page
markup,	writing	for	tabs	/	Writing	markup	for	tabs
content,	styling	/	Styling	the	content

home	page,	website	tour
designing	/	Designing	the	home	page
markup,	writing	/	Writing	markup	for	the	page
elements,	styling	/	Styling	elements

hoverClass	option	/	Handling	events	for	puzzle	pieces

I
icons

URL	/	Designing	the	page
icons,	jQuery	UI

using	/	Using	the	jQuery	UI	icons
URL	/	Using	the	jQuery	UI	icons

image	display	widget,	dashboard
creating	/	Creating	an	image	display	widget

J
jigsaw	puzzle	game

building	/	Getting	ready
layout,	creating	/	Creating	the	layout
functional	puzzle,	creating	/	Making	the	puzzle	functional
Start	button,	implementing	/	Starting	the	game
puzzle,	improving	/	Improving	the	puzzle

jQuery
URL,	for	downloading	/	Downloading	the	required	files
downloading	/	Downloading	the	required	files

jQuery/jQuery	UI	libraries
using,	with	CDN	/	Using	jQuery/jQuery	UI	libraries	with	a	CDN

jQuery	CDN
URL	/	Using	a	CDN

jQuery	UI
setting	up	/	Setting	up	jQuery	UI
URL,	for	downloading	/	Downloading	the	required	files
downloading	/	Downloading	the	required	files
folder	structure,	setting	up	/	Setting	up	the	folder	structure	for	the	JavaScript	and
CSS	files
guidelines	/	General	Guidelines
customized	build,	using	/	Use	a	customized	build	of	jQuery	UI

jQuery	UI	sortable	example
URL	/	Designing	the	page

L
layout,	jigsaw	puzzle	game

creating	/	Creating	the	layout
markup,	creating	/	Creating	the	markup	for	the	puzzle
elements,	styling	/	Styling	elements

M
mapOptions	object,	properties

center	/	Displaying	the	map
zoom	/	Displaying	the	map
disableDefaultUI	/	Displaying	the	map
mapTypeId	/	Displaying	the	map
scrollwheel	/	Displaying	the	map

maps	mashup
folder	structure,	creating	/	Creating	the	folder	structure
Google	Maps	API	key,	obtaining	/	Getting	a	Google	Maps	API	key
page,	designing	/	Designing	the	page
content,	styling	/	Styling	the	content
code	structure	/	Getting	the	code	structure	ready
minimum	and	maximum	prices,	setting	/	Setting	minimum	and	maximum	prices
hotels,	displaying	in	accordion	/	Displaying	hotels	in	accordion
spinner,	setting	up	/	Setting	up	the	spinner
map,	displaying	/	Displaying	the	map
markers,	setting	in	map	/	Setting	markers	and	infowindows	in	the	map
infowindows,	setting	in	map	/	Setting	markers	and	infowindows	in	the	map
slider,	implementing	/	Implementing	the	slider
improving	/	Improving	the	functionality

Microsoft	CDN
URL	/	Using	jQuery/jQuery	UI	libraries	with	a	CDN,	Using	a	CDN

myMap	object,	properties
map	/	Getting	the	code	structure	ready
markers	/	Getting	the	code	structure	ready
infowindow	/	Getting	the	code	structure	ready
minPrice	/	Getting	the	code	structure	ready
maxPrice	/	Getting	the	code	structure	ready
hotelsList	/	Getting	the	code	structure	ready
initialize	/	Getting	the	code	structure	ready
setMinMaxPrices	/	Getting	the	code	structure	ready
displayHotels	/	Getting	the	code	structure	ready
setSpinner	/	Getting	the	code	structure	ready
createMap	/	Getting	the	code	structure	ready
setMarkersAndInfoWindow	/	Getting	the	code	structure	ready
setSlider	/	Getting	the	code	structure	ready

N
number	CAPTCHA

creating	/	Creating	the	number	CAPTCHA
five-digit	number,	generating	/	Generating	the	five-digit	number
displaying,	on	page	/	Displaying	CAPTCHA	on	the	page
sortable	functionality,	adding	/	Adding	the	sortable	functionality
number,	validating	on	server	/	Validating	the	number	on	the	server

O
object	literal

about	/	Initializing	the	tour
objTimeline	object,	properties

itemsToDisplay	/	Getting	the	code	structure	ready
minYear	/	Getting	the	code	structure	ready
maxYear	/	Getting	the	code	structure	ready
currentYear	/	Getting	the	code	structure	ready
timelineWindowStartYear	/	Getting	the	code	structure	ready
windowLeft	/	Getting	the	code	structure	ready
isWindowOpen	/	Getting	the	code	structure	ready
timelineData	/	Getting	the	code	structure	ready
init	/	Getting	the	code	structure	ready
createMarkup	/	Getting	the	code	structure	ready
createTimeline	/	Getting	the	code	structure	ready
closeWindow	/	Getting	the	code	structure	ready

P
page,	dashboard

designing	/	Designing	the	page
content,	styling	/	Styling	the	content

page,	photo	album	manager
designing	/	Designing	the	page
placeholders,	creating	for	albums	/	Creating	placeholders	for	albums	and
pictures
placeholders,	creating	for	pictures	/	Creating	placeholders	for	albums	and
pictures
markup,	writing	for	dialog	boxes	/	Writing	markup	for	dialog	boxes
content,	styling	/	Styling	the	content

photo	album	manager
folder	structure,	creating	/	Creating	the	folder	structure
page,	designing	/	Designing	the	page
JSON	file,	creating	for	albums	/	Creating	the	JSON	file	for	albums
code	structure	/	Getting	code	structure	ready
initialize	method,	implementing	/	Implementing	the	initialize	method
album	names,	filling	/	Filling	album	names
improving	/	Improving	album	manager

pictures,	photo	album	manager
editing	/	Editing,	deleting,	and	rearranging	pictures
deleting	/	Editing,	deleting,	and	rearranging	pictures,	Deleting	a	picture
rearranging	/	Editing,	deleting,	and	rearranging	pictures,	Rearranging	pictures	of
an	album
picture	name,	editing	/	Editing	a	picture	name
ajaxAlbum.php	file	/	The	ajaxAlbum.php	file

pictures	array,	properties
id	/	Creating	the	JSON	file	for	albums
sequence	/	Creating	the	JSON	file	for	albums
imageTitle	/	Creating	the	JSON	file	for	albums
imageThumb	/	Creating	the	JSON	file	for	albums
imageLarge	/	Creating	the	JSON	file	for	albums

portlets,	dashboard
initializing	/	Initializing	the	portlets

posts,	dashboard
displaying,	from	reddit	front	page	/	Displaying	posts	from	the	reddit	front	page

posts,	tabbed	news	reader
displaying,	of	subreddit	/	Displaying	posts	of	a	subreddit
tab	structure,	creating	/	Creating	the	tab	structure
DOM,	building	/	Building	the	DOM	for	posts
comments,	obtaining	/	Getting	comments	for	a	post

Q
quiz	application

layout,	creating	/	Creating	the	layout
index.html	file,	editing	/	Markup	for	the	quiz	page
elements,	styling	/	Styling	elements
making	functional	/	Making	the	quiz	functional
data,	displaying	/	Displaying	data	on	the	page
draggable	country	names,	creating	/	Draggable	country	names
droppable	capital	names,	creating	/	Droppable	capital	names	and	scoring
scores,	adding	/	Droppable	capital	names	and	scoring
resetting	/	Resetting	the	quiz
enhancing	/	Improving	the	quiz

R
range	slider,	properties

min	/	Implementing	the	slider
max	/	Implementing	the	slider
range	/	Implementing	the	slider
values	/	Implementing	the	slider
step	/	Implementing	the	slider
slide	/	Implementing	the	slider
stop	/	Implementing	the	slider

reflow
about	/	DOM	manipulation	is	costly

S
searchable	widget

folder	structure	/	The	folder	structure
creating	/	Creating	a	widget	to	search	data	in	a	table
markup,	writing	for	table	/	Writing	markup	for	the	table
content,	styling	/	Styling	the	content
implementing	/	Implementing	the	widget
widget	structure,	defining	/	Defining	the	widget	structure
default	options,	setting	up	/	Setting	up	default	options
initializing	/	Initializing	the	widget	and	attaching	event	handlers
event	handlers,	attaching	/	Initializing	the	widget	and	attaching	event	handlers
table,	filtering	/	Filtering	the	table
option	value,	setting	/	Making	changes	when	the	option	value	is	changed
destroying	/	Destroying	the	widget
calling	/	Calling	the	widget	from	the	page
improving	/	Improving	the	searchable	widget

sharing	buttons	implementation,	dashboard
about	/	Implementing	sharing	buttons
Facebook	/	Implementing	sharing	buttons
Twitter	/	Implementing	sharing	buttons
Reddit	/	Implementing	sharing	buttons
Google	Plus	/	Implementing	sharing	buttons

shuffle	function
URL	/	Displaying	data	on	the	page

slider	CAPTCHA
creating	/	Creating	the	slider	CAPTCHA
minimum	value,	generating	/	Generating	minimum	and	maximum	values	for	the
slider
maximum	value,	generating	/	Generating	minimum	and	maximum	values	for	the
slider
making	functional	/	Making	the	slider	functional
slider	values,	validating	/	Validating	the	slider	values
improving	/	Improving	the	slider	CAPTCHA

slide	widget
folder	structure	/	The	folder	structure
creating	/	Creating	a	widget	to	display	a	slideshow
markup,	writing	/	Writing	markup	for	slides
content,	styling	/	Styling	the	content
implementing	/	Implementing	the	widget
widget	structure,	defining	/	Defining	the	widget	structure
default	options,	setting	up	/	Setting	up	default	options
initializing	/	Initializing	the	widget	and	displaying	the	first	slide
first	slide,	displaying	/	Initializing	the	widget	and	displaying	the	first	slide

slides,	displaying	one	by	one	/	Displaying	slides	one	by	one
option	value,	setting	/	Making	changes	when	the	option	value	is	changed
destroying	/	Destroying	the	widget
calling	/	Calling	the	widget	from	the	page
improving	/	Improving	the	banner	widget

slide	widget,	options
duration	/	Setting	up	default	options
effect	/	Setting	up	default	options
easingDuration	/	Setting	up	default	options
beforeShow	/	Setting	up	default	options

sortable	component
connectWith	option	/	Initializing	the	portlets
handle	option	/	Initializing	the	portlets
cancel	option	/	Initializing	the	portlets
placeholder	option	/	Initializing	the	portlets

sortable	components,	properties
handle	/	Making	the	pictures	sortable
placeholder	/	Making	the	pictures	sortable
cursor	/	Making	the	pictures	sortable

stage,	dashboard
setting	up	/	Setting	up	the	stage

T
tabbed	news	reader

folder	structure,	creating	/	Creating	the	folder	structure
home	page,	designing	/	Designing	the	page
code	structure	/	Getting	the	code	structure	ready
event	handlers,	adding	in	init	method	/	Adding	event	handlers	in	the	init	method
posts,	displaying	of	subreddit	/	Displaying	posts	of	a	subreddit
improving	/	Improving	MyjqReddit

themeroller
about	/	Using	jQuery	UI	Themeroller	to	customize	a	theme
used,	for	customizing	theme	/	Using	jQuery	UI	Themeroller	to	customize	a
theme
URL	/	Using	jQuery	UI	Themeroller	to	customize	a	theme
options	/	Using	jQuery	UI	Themeroller	to	customize	a	theme

W
$.widget()	function,	properties

options	/	Defining	the	widget	structure
_create	/	Defining	the	widget	structure
_destroy	/	Defining	the	widget	structure
_setOption	/	Defining	the	widget	structure

weather	widget,	dashboard
creating	/	Creating	a	weather	widget
URL	/	Creating	a	weather	widget

website	tour
folder	structure,	creating	/	Getting	ready
home	page,	designing	/	Designing	the	home	page
functionality,	implementing	/	Making	the	tour	functional
improving	/	Improving	the	tour

website	tour,	functionality
implementing	/	Making	the	tour	functional
accordion,	initializing	/	Initializing	accordion	and	tooltips
tooltips,	initializing	/	Initializing	accordion	and	tooltips
dialog	box,	initializing	/	Defining	the	dialog
tour	steps,	defining	/	Defining	the	tour	steps
initializing	/	Initializing	the	tour
tour	step,	displaying	/	Displaying	a	tour	step
Next	button,	defining	/	Making	the	Previous	and	Next	buttons	functional
Previous	button,	defining	/	Making	the	Previous	and	Next	buttons	functional
ending	/	Ending	the	tour

	Mastering jQuery UI
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Designing a Simple Quiz Application
	Setting up jQuery UI
	Downloading the required files
	Using jQuery/jQuery UI libraries with a CDN
	Setting up the folder structure for the JavaScript and CSS files
	Creating the layout
	Markup for the quiz page
	Styling elements
	Making the quiz functional
	Displaying data on the page
	Draggable country names
	Droppable capital names and scoring
	Accepting a draggable element
	The drop event
	Resetting the quiz
	Improving the quiz
	Summary
	2. Building a Jigsaw Puzzle Game
	Getting ready
	Creating the layout
	Creating the markup for the puzzle
	Styling elements
	Making the puzzle functional
	Creating slices of the image
	The CSS background-position property
	Starting the game
	Handling events for puzzle pieces
	Checking for puzzle completion
	Resetting the puzzle
	Improving the puzzle
	Summary
	3. Creating a Website Tour
	Getting ready
	Designing the home page
	Writing markup for the page
	Styling elements
	Making the tour functional
	Initializing accordion and tooltips
	Defining the dialog
	Defining the tour steps
	Initializing the tour
	Displaying a tour step
	Making the Previous and Next buttons functional
	Ending the tour
	Improving the tour
	Summary
	4. Creating a Tabbed News Reader
	Creating the folder structure
	Designing the page
	Writing markup for tabs
	Styling the content
	Getting the code structure ready
	Adding event handlers in the init method
	Displaying posts of a subreddit
	Creating the tab structure
	Building the DOM for posts
	Getting comments for a post
	Improving MyjqReddit
	Summary
	5. Implementing CAPTCHA using Draggable and Droppable
	Creating the folder structure
	Implementing the drag and drop CAPTCHA
	Setting a random color
	Displaying the CAPTCHA
	Making the drag and drop functional
	Validating on the server
	Improving the color CAPTCHA
	Creating the slider CAPTCHA
	Generating minimum and maximum values for the slider
	Making the slider functional
	Validating the slider values
	Improving the slider CAPTCHA
	Creating the number CAPTCHA
	Generating the five-digit number
	Displaying CAPTCHA on the page
	Adding the sortable functionality
	Validating the number on the server
	Summary
	6. Creating an Event Timeline Using a Slider
	Creating the folder structure
	Designing the page
	Styling the content
	Getting the code structure ready
	Creating the timeline markup from data
	Implementing the timeline functionality
	Making the slider work
	The if block
	The else block
	Dragging the year window
	Displaying event details when a year window is clicked on
	Closing the event details window
	Improving the timeline
	Summary
	7. Using jQuery UI with Google Maps API
	Creating the folder structure
	Getting a Google Maps API key
	Designing the page
	Styling the content
	Getting the code structure ready
	Setting minimum and maximum prices
	Displaying hotels in accordion
	Setting up the spinner
	Displaying the map
	Setting markers and infowindows in the map
	Implementing the slider
	Improving the functionality
	Summary
	8. Creating a Photo Album Manager
	Creating the folder structure
	Designing the page
	Creating placeholders for albums and pictures
	Writing markup for dialog boxes
	Styling the content
	Creating the JSON file for albums
	Getting code structure ready
	Implementing the initialize method
	Filling album names
	Displaying the albums
	Making the pictures sortable
	Initializing dialogs for edit, delete, and zoom
	Handling click events for edit, delete icons, and zooming pictures
	Editing, deleting, and rearranging pictures
	Editing a picture name
	Deleting a picture
	Rearranging pictures of an album
	The ajaxAlbum.php file
	Improving album manager
	Summary
	9. Creating Widgets Using the Widget Factory
	The folder structure
	Creating a widget to search data in a table
	Writing markup for the table
	Styling the content
	Implementing the widget
	Defining the widget structure
	Setting up default options
	Initializing the widget and attaching event handlers
	Filtering the table
	Making changes when the option value is changed
	Destroying the widget
	Calling the widget from the page
	Improving the searchable widget
	Creating a widget to display a slideshow
	Writing markup for slides
	Styling the content
	Implementing the widget
	Defining the widget structure
	Setting up default options
	Initializing the widget and displaying the first slide
	Displaying slides one by one
	Making changes when the option value is changed
	Destroying the widget
	Calling the widget from the page
	Improving the banner widget
	Summary
	10. Building a Color Picker with Hex RGB Conversion
	Setting up the folder structure
	Writing markup for the page
	Styling the content
	Implementing the color picker
	Defining the object structure
	The init method
	Changing colors and updating the spinner
	The getHexColor method
	Converting to hex
	Improving the Colorpicker
	Summary
	11. Creating a Fully Functional Dashboard
	Setting up the stage
	Designing the page
	Styling the content
	Getting the code structure ready
	Initializing the portlets
	Implementing sharing buttons
	Displaying Flickr photos
	Creating a weather widget
	Displaying posts from the reddit front page
	Creating an image display widget
	Improving the portlets
	Summary
	A. Best Practices for Developing with jQuery UI
	General Guidelines
	Using a CDN
	Use a customized build of jQuery UI
	Using the jQuery UI icons
	Be specific about elements as much as possible
	Chain, chain, and chain
	Cache selectors
	Cache your loop variables
	DOM manipulation is costly
	Using jQuery UI Themeroller to customize a theme
	Index

