
www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: i

®

Mastering JavaFX® 8
Controls

Hendrik Ebbers

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

00-FM.indd 1 5/21/14 11:17 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of Publisher, with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-183378-3

MHID: 0-07-183378-1

e-Book conversion by Cenveo® Publisher Services

Version 1.0

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-183377-6,
MHID: 0-07-183377-3.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. To contact a representative, please visit the Contact Us
pages at www.mhprofessional.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention
of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. All other trademarks are the
property of their respective owners, and McGraw-Hill Education makes no claim of ownership by the mention of
products that contain these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle
Corporation and/or its affiliates.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy,
or completeness of any information included in this work and is not responsible for any errors or omissions or the results
obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of
any information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store
and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions
contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither
McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any
information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the
work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to
any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

eBook 377-3 CR_pg.indd 1 6/5/14 5:31 PM

www.allitebooks.com

http://www.mhprofessional.com
http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

For Silke—Because you helped me every day writing this book. I wrote this
book in my free time, so there were weeks where I completely

disappeared from normal home life. You managed everything alone,
and in addition you backed me when I became frustrated

about this project. Without you, I couldn’t have managed this.

For the JavaFX community—Because without the awesome community,
I would have never been in the position to write this book.

For my father—Because you taught me that you can create everything you
imagine if you have enough courage to take hold of it.

For all of my friends and family—Because you heard me talking about this
book too many times but still listened to me.

00-FM.indd 3 5/21/14 11:17 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

About the Author
Hendrik Ebbers is senior Java architect at Materna GmbH in Dortmund, Germany.
His main focus besides research and development is primarily in the areas of
JavaFX, middleware, and DevOps. Additionally, Hendrik is founder and leader of
the Java User Group Dortmund and gives talks and presentations in user groups
and international conferences. He blogs about UI-related topics at www.guigarage
.com (or on Twitter @hendrikEbbers) and contributes to some open source projects
such as DataFX, BoxFX, AquaFX, and Vagrant-Binding.

About the Technical Editor
Simon Ritter works as a Java technology evangelist for Oracle Corporation and
Sun Microsystems before that. He has been developing Java code since JDK 1.0
and has been involved in JavaFX since its launch as a scripting language.

00-FM.indd 4 5/21/14 11:17 AM

www.allitebooks.com

http://www.guigarage.com
http://www.guigarage.com
http://www.allitebooks.org

Contents

Introduction . ix

 1 The History of Java UI Toolkits . 1
Java SE UI Toolkits . 2

AWT . 2
Java Foundation Classes and the Emergence of Swing . 3
Swing . 3

Additional UI Toolkits . 5
SWT . 5
Apache Flex . 5

The Way to JavaFX . 5
From F3 to JavaFX 8 . 6

JavaFX Compared to HTML5
and Web-Based Technologies . 7

Java-Based Web Frameworks . 8
Summary . 8

 2 JavaFX Basics . 9
Your First JavaFX Application . 10

JavaFX Application Life Cycle . 12
Defining the Main Window by Using the Stage Class . 12
The Scene Graph . 18

Technical Design of the JavaFX Toolkit . 19
The Native Layer . 19
Private API Layer . 20
Public API Layer . 20

JavaFX Public APIs . 20
Application and Life Cycle . 20
Stage API . 20
Scene Graph and Controls . 20

v

00-FM.indd 5 5/21/14 11:17 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

vi Mastering JavaFX 8 Controls

Event Handling . 21
Property API . 22
Collections . 23
Concurrent API . 24
Animations . 24
FXML . 25
CSS Support . 25
Printing . 26
Interoperability with Swing . 26

Tools . 26
Scene Builder . 27
Scenic View . 27
FX Experience Tools . 28

Deployment/Native Builds . 29
JavaFX Goes Polyglott . 30

GroovyFX . 30
ScalaFX . 31
JavaFX and Nashorn . 32

Summary . 33

 3 The Scene Graph . 35
Using and Integrating the Scene Graph in a JavaFX Application 36
The Scene Class . 37
Event Handling . 44
Node Types . 46

Primitive Nodes . 46
LayoutPanes . 48
Complex Nodes . 49

Node Basics . 50
FXML . 56
Summary . 60

 4 Laying Out and Transforming Nodes in the Scene Graph 61
Adding Some Transformations . 62

Adding a Third Dimension . 66
Extended Transformation APIs . 66

Laying Out Nodes . 70
Creating a Custom Pane . 71
The Visual Structure of a Region . 74
Extended Internal Layout Mechanisms . 81
Additional Layout Mechanisms . 85
The javafx.geometry Package . 85
Working with Constraints . 85

Combining Transforms and Layout . 86
Accessing the Bounds of a Node . 88

Summary . 88

00-FM.indd 6 5/21/14 11:17 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Contents viivi Mastering JavaFX 8 Controls

 5 JavaFX Basic Controls . 89
The Control Class . 90
Basic Controls . 91

Labeled Controls . 95
Controls for Text Input . 101
Slider . 106
ProgressIndicator and ProgressBar . 110

Tooltip of a Control . 112
Using Menus in JavaFX . 114

Using Separators . 117
Creating an Application with Basic Controls . 119
Summary . 126

 6 Additional JavaFX Controls . 127
Controls with a Data Model . 128

ComboBox . 128
ListView . 134
TableView . 150
TreeView . 165
TreeTableView . 171
Sorting and Filtering Data . 173

Controls That Act as Containers . 176
Additional Controls . 181
HTMLEditor . 181

DatePicker . 183
ColorPicker . 185

An Interview with Jonathan Giles, Engineer on the JavaFX Team, Oracle 186
Summary . 190

 7 Additional JavaFX Nodes . 191
Charts . 192
WebView . 195

Canvas . 202
ImageView . 206
MediaView . 210
Summary . 211

 8 Integrating JavaFX, Swing, and SWT . 213
Combining JavaFX and Swing . 214
Using the JFXPanel . 214

Using the SwingNode . 219
Using the Experimental Single-Thread Mode . 221
Pros and Cons of the Integration . 222

Combining JavaFX and SWT . 223
Using the FXCanvas . 223

Summary . 226

00-FM.indd 7 5/21/14 11:17 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

viii Mastering JavaFX 8 Controls

 9 Styling a Control . 227
Using Themes to Style an Application . 228
CSS Basics . 230
CSS in JavaFX . 232

Using Selectors . 237
Summary of the Cascading Feature . 247
Styling a Chart . 248
Best Practices for Styling Applications and Controls . 250

An Interview with Claudine Zillmann, software developer at maredit GmbH 254
Summary . 257

 10 Custom Controls . 259
The Structure of a Control . 260

The Skin . 261
The SkinBase Class . 262

Creating a Custom Control . 264
Adding Event Handling . 270
Styling the Control . 272

An Interview with Gerrit Grunwald, Canoo Engineering . 300
Summary . 303

 A JavaFX Resources and Where to Go from Here . 305
Make Your UI Shine . 306
JavaFX-Related Middleware and Application Frameworks . 306

DataFX . 307
OpenDolphin . 308

Best of Open Source Projects . 308
Important JavaFX Links . 309
JavaFX Books . 309
JavaFX Application . 310
Summary . 310

 Index . 311

00-FM.indd 8 5/21/14 11:17 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Introduction

JavaFX from a Developer’s Point of View
My background is in a lot of Swing development and web application creation. For web
applications, I mostly used plain HTML or JSF to create the views, and I did some little
applications with most of the other technologies (Adobe Flex, Flash, Android, Wicket,
GWT, and so on) to learn more about these UI toolkits over the years.

For me, JavaFX is a perfect combination of most of the best practices that have come out
of these technologies. For a Swing developer, most of the basic JavaFX APIs are easy to learn
because the main concepts seem to be similar when looking at the framework. Under the
hood, most of the technologies are different, but you can structure an application in a
better way by using FXML and CSS, for example. Compared to HTML applications, JavaFX
development is much easier for me because theoretically, you can do whatever you want
and don’t need to think about cross-browser behavior and all that stuff. You can create the
complete view by using What You See Is What You Get (WYSIWYG) editors like Scene
Builder and use your favorite Java IDE for development.

JavaFX offers a small learning curve, so you’ll be able to create your first applications
quickly. In addition, because of the good documentation and structure of the APIs, you
probably won’t make as many mistakes as you might have when learning Swing or HTML,
for example. But, there are some places where you need to know the underlying technology
well, and some parts are hard when you experiment the first time with them. When creating
my first custom JavaFX control, I needed a lot of help to understand all the concepts and
APIs involved. That was before JavaFX 8, though, and most of the documentation that is
available today didn’t exist. For me, as a Java developer, JavaFX is the best choice to develop
applications that don’t need to be captured in a browser.

With the release of Java 8, JavaFX is the default UI toolkit for Java. In this book, you
will learn how to master JavaFX, especially the control API, to create applications based
on these technologies. You can get all the scripts and programs featured in this book online
(see the section “Retrieving the Examples” for details).

ix

00-FM.indd 9 5/21/14 11:17 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

x Mastering JavaFX 8 Controls

With this book, you will perform the following tasks:

 ■ Create a structure for JavaFX applications

 ■ Understand the general APIs of JavaFX

 ■ Define layouts for all the views of an application

 ■ Use the JavaFX bindings and property APIs to bind controls and a custom data model

 ■ Understand the basic APIs and technologies of the scene graph

 ■ Explore all the basic control types that are part of JavaFX

 ■ Use FXML to separate the view layer

 ■ Style specific controls or a complete application by using CSS

 ■ Create custom controls the right way

This book contains 10 chapters and one appendix.

Chapter 1: The History of Java UI Toolkits This chapter gives a short overview of Java UI
toolkits and how UI toolkits and their features have evolved over the past few years.

Chapter 2: JavaFX Basics In this chapter, you will find short descriptions of the JavaFX core
APIs and useful tools.

Chapter 3: The Scene Graph This chapter covers the core concepts of the scene graph and the
associated APIs.

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph This chapter starts with
an overview of the transformation types that can be used in JavaFX. The second part describes the
layout algorithms of JavaFX and how to define custom layouts.

Chapter 5: JavaFX Basic Controls After describing the core concepts of the Control class,
this chapter gives an overview of all the basic control types that are part of JavaFX and shows how
to use the controls and their features.

Chapter 6: Additional JavaFX Controls This chapter discusses more complex controls such as
the TableView and DatePicker. The chapter ends with an interview with Jonathan Giles.

Chapter 7: Additional JavaFX Nodes In addition to the already described controls, JavaFX
contains some useful node types such as charts and the WebView. This chapter covers these
special node types.

Chapter 8: Integrating JavaFX, Swing, and SWT This chapter covers some best-practice
workflows for integrating JavaFX in Swing or SWT. This can be useful when migrating a Swing or
SWT application to JavaFX.

Chapter 9: Styling a Control This chapter describes the CSS support of JavaFX. After a short
general introduction of CSS, this chapter covers different use cases for styling controls and
applications in JavaFX. In addition, the chapter concludes with an interview with Claudine Zillmann.

00-FM.indd 10 5/21/14 11:17 AM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Introduction xix Mastering JavaFX 8 Controls

Chapter 10: Custom Controls This chapter shows how you can create custom JavaFX controls.
In a hands-on example, you’ll use all the APIs and techniques discussed in the earlier chapters.
The chapter ends with an interview with Gerrit Grunwald.

Appendix: JavaFX Resources and Where to Go from Here The appendix gives you a general
overview of other useful resources for JavaFX.

Intended Audience
This book is suitable for the following readers:

 ■ Developers who need to write JavaFX applications

 ■ Developers who want to know more about the differences between Swing and JavaFX

 ■ Developers who want to create a desktop application and are searching for the right
technologies

Retrieving the Examples
You can download all the samples shown in this book from the Oracle Press web site at
www.OraclePressBooks.com. The files are contained in a ZIP file. Once you’ve downloaded the
ZIP file, you need to extract its contents. In addition, all the samples are provided at GitHub:
https://github.com/guigarage/mastering-javafx-controls.

I created a general web page about the book that you can find at www.guigarage.com/
javafx-book/.

I hope you enjoy this book and JavaFX!

Acknowledgments
When writing this book, I stumbled over some topics where I couldn’t offer enough expert
knowledge to provide the solutions and descriptions in the right way. Thanks to the JavaFX
community, a lot of experts helped me out, and I want to thank each of them:

Jonathan Giles: I had a lot of questions about specific APIs, and you always had the perfect
answer.

Simon Ritter: You did a great review of the whole book and often moved the topics in the right
direction.

Claudine Zillmann: You are my CSS guru.

Gerrit Grunwald: You were the perfect person to discuss the general structure of the topics.

Thank you also to Johan Vos for many productive discussions, Tom Schindl for showing me
how to combine JavaFX and SWT, Arnd Kleinbeck and Simon Skoczylas for reviewing some of my
chapters, and Alexander Casall, Mark Heckler, Dierk König, and Carl Dea for your contribution of
several cool tips and tricks.

In addition, I want to thank Amanda Russell and Brandi Shailer at McGraw-Hill Professional.
You both managed the whole development process of this book, reviewed my chapters, and always
offered useful tips and tricks.

00-FM.indd 11 5/21/14 11:17 AM

http://www.OraclePressBooks.com
https://github.com/guigarage/mastering-javafx-controls
http://www.guigarage.com/javafx-book/
http://www.guigarage.com/javafx-book/

All-In-One / CEH™ Certified Ethical Hacker All-in-One Exam Guide / Matt Walker / 648-9/ FM

00-FM.indd 6 24/03/14 6:07 PM3/8/14 2:08 PM

This page has been intentionally left blank

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: 1

CHAPTER
1

The History of
Java UI Toolkits

01-ch01.indd 1 5/22/14 3:53 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

2 Mastering JavaFX 8 Controls

Almost 20 years have passed since Java was first released in 1995; the eighth major version
was released in 2014. During these two decades, the IT world has rapidly evolved. The
 size, speed, and requirements of computer hardware have changed dramatically, as have

the user interfaces of software. In 1995, computers were mainly used in offices, making a
decorative user interface (UI) unimportant for most applications. Most dialogs consisted only of
labels, text fields, and buttons. More complex graphical user interface (GUI) elements such as
tables or tab panes were not supported by most of the UI toolkits. But as computing has evolved
from a specialized niche to part of everyday life for millions of people worldwide, the importance
of a polished, practical, and purposeful UI has become paramount. It is now normal to have a
computer or tablet-based device at home to manage music, photos, or other private documents,
and most people using applications today do not have technical backgrounds, which is why
applications have to be intuitive and easy to use. A good layout and modern UI controls and
effects can help generate a better user experience. By using up-to-date technologies and
frameworks, developers can create outstanding web, desktop, and mobile applications, and that’s
why UI toolkits, including the Java UI toolkits available with the Java Development Kit (JDK), have
evolved over the last 20 years.

This chapter will give you an overview of the important Java-based UI toolkits and some rising
trends. Today, most applications have their own style, and the views are laid out in a pixel-perfect
way. You’ll find out how that came to be.

Java SE UI Toolkits
Several generations of UI toolkits have been introduced in the JDK over the years to allow
developers to create state-of-the-art applications with Java. JavaFX is the newest framework to
provide the ability to create and design desktop applications with Java. Before I discuss the
controls of JavaFX in depth, it is important to take a short look at the history of Java-based UI
toolkits that are part of Java Standard Edition (Java SE). By doing so, you will get an overview of
the fundamental differences and similarities between several generations of UI toolkits,
specifically in relation to the JavaFX controls.

AWT
The first version of the Java Abstract Window Toolkit (AWT) was introduced in 1996; AWT is an
abstraction of the underlying native user interfaces. Since Java runs on various platforms, AWT
supports only the least common denominator of these platforms, so it has only a small number of
supported components. Standard controls such as buttons and text fields are available, but more
complex components such as tables are not part of the toolkit. By using AWT, developers create
GUI components in Java code. Simultaneously, a native graphical component is created as a
counterpart by the operating system, and a peer class is used as the link between these two
instances. (These kinds of components are called heavyweight components.) Developers can
define the attributes of a component, such as the visible text of a button, by using the Java class.
However, the Java application has no influence on the graphical representation of the components
because the operating system (OS) is responsible for rendering the controls.

AWT was improved with Java 1.1; it included new features such as event listeners and new
components such as the scroll pane. However, the great advantage of AWT is also its worst
weakness: By using the toolkit, each Java-based application takes on the native look and feel of
the operating system automatically. On Windows, the typical Windows buttons and combo boxes

01-ch01.indd 2 5/22/14 3:53 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 1: The History of Java UI Toolkits 3

will be shown if you create an app by using the framework, for example. On Mac OS, all
components are rendered by using the Aqua look (Apple’s default UI definition). It’s almost
impossible to create new components or modify the look of a control to deliver an application
with a unique appearance.

Java Foundation Classes and the Emergence of Swing
In parallel with Java 1.1, Netscape developed the Internet Foundation Classes (IFC) library that
represents a completely platform-independent UI toolkit for Java. Unlike AWT, IFC does not
create a wrapper around native components; it provides controls that are completely managed
and rendered by pure Java. This technology was originally designed to display applets in the
Netscape browser, and the main objective of IFC was to create browser-independent applications
that have the same appearance on any OS. In 1997, Sun Microsystems and Netscape announced
the intention to merge IFC into Java.

The Java Foundation Classes (JFC) framework is the result of integrating IFC into Java. The
classes in the framework include AWT, Java2D, Swing, and some additional APIs. JFC has been
part of Java SE since 1998, which means Swing has been part of Java SE since version 1.2 (Java 2)
and has become the main UI toolkit of Java.

Swing
Unlike the base development of IFC, which was written from scratch as a new API, Swing’s
control classes are based on AWT; however, the internal architecture of the framework is
completely different from AWT. This approach was chosen for compatibility purposes. Swing
offers a set of so-called lightweight components that are completely managed and rendered by
Java. Because of this, you can achieve the same graphical representation of components across
operation systems. From a technical point of view, the graphical output of Swing is based on
Java2D, an API for rendering two-dimensional objects that is also part of JFC. Although the
features of Java2D and Swing are not “state of the art” anymore, these were modern APIs with
many incredible options when JFC was released. Even today, you can create astonishingly good
results by using Swing.

All UI controls in Swing are based on the JComponent class, which extends the AWT
Component class. This ensures that the main concepts for using Swing components are already
known by AWT developers, and AWT layout managers, for example, can be used to lay out
Swing-based applications without any learning curve. Figure 1-1 shows a general overview of the
class hierarchy of AWT and Swing components.

By using the Java2D API, you can change the appearance of Swing-based components at any
time or even create new components from scratch. Swing uses a Model-View-Controller (MVC)
approach internally, in which the graphical representation of components is separated from the
model in a special UI class. The base skin of a Swing button is defined by the ButtonUI class, for
example. Since the operating system doesn’t draw the components in Swing, the controls will
have the same look across OSs. To achieve this, Swing includes the LookAndFeel API. By using
LookAndFeel (LAF), you can define your own style for the complete Swing component set. In fact,
Swing comprises a set of cross-platform LAFs and system-dependent LAFs. If you want to develop
an application that always looks like the underlying operating system, you set the OS-specific
look and feel for Swing. A Java version for Mac OS includes the Aqua LAF, for example. This will
render all components so that they look like native Mac OS controls. If your application is
running on a Windows system, it can use the Windows LAF that is part of Java on every Windows-
based PC. New versions of these LAFs have native support for creating controls that you can’t

01-ch01.indd 3 5/22/14 3:53 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

4 Mastering JavaFX 8 Controls

distinguish from native ones. The framework offers some helper methods as well. By using them,
you can configure Swing to always use the provided system look and feel depending on which
platform the application is running.

Another advantage Swing has over AWT is the rich set of components it includes. For
example, in Swing, you can find tables, lists, and tree-based controls to represent the application
data in the way that best fits your application view. These controls can handle lists of data by
using renderers to support large amounts of data and show or process them in the interface
without any problems. Above all, these new and flexible components are the reason why Swing is
used to develop business applications. With Swing’s ability to manage and render controls that
support LAFs and its internal use of Java2D, along with the many open source libraries and
frameworks that can be used to extend functionality, Swing deposed AWT and remained for
several years the standard UI toolkit for creating graphical desktop applications in Java.

From today’s point of view, Swing also has some weaknesses. One weakness is that many
graphical effects that are standard in today’s modern applications cannot be implemented by
using Swing (or they need a lot of hacks and workarounds). Examples include reflections and blur
effects. Animations are also missing from Swing’s API, and a Swing-based dialog needs a lot of
boilerplate code. Although creating special skins for controls or creating new components from
scratch is possible in Swing, it is difficult to do. It requires a lot of training, and there are many
pitfalls you can trip over before being ready to develop usable components for Swing. These are
crucial reasons why Swing needed to be replaced by a new UI toolkit. Hence, JavaFX emerged
and has been the recommended UI toolkit since Java 8.

Before diving into the history and features of JavaFX, I’ll briefly cover a few other UI toolkits
and place them in the historical context of the default Java SE toolkits.

FIGURE 1-1. Class hierarchy for AWT and Swing

[javax.swing]
JComponent

[java.lang]
Object

[java.awt]
Component

[java.awt]
Container

AWT Components

AWT Containers

Swing Components

01-ch01.indd 4 5/22/14 3:53 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 1: The History of Java UI Toolkits 5

Additional UI Toolkits
In addition to the default toolkits that are part of Java SE, some other UI-based frameworks have
been developed over the years. SWT and Apache Flex are two examples of toolkits developed
during the reign of Swing. SWT is based on Java, but Apache Flex has nothing to do with Java and
even offers some concepts that JavaFX has picked up.

SWT
Parallel to the release of Java 2 in 1998, IBM decided to implement its next generation of
development tools in Java. The first generation of IBM’s development environment, VisualAge for
Java, was based on Smalltalk and used the common widget (CW) framework to create the surface.
This API was a thin layer on top of the native components of the operating system and therefore
resembled AWT. For the developers at IBM, it was important that the new development environment,
which today is known as Eclipse, would be based on a native look and feel. Since Swing could not
provide these requirements by supporting platform-specific LAFs, the developers decided to create a
separate UI toolkit with the same features as CW. The result was the Standard Widget Toolkit (SWT).

Like AWT, SWT provides wrappers on top of native controls. The native controls are provided
via the Java Native Interface (JNI), but SWT includes an API to write your own GUI components.
Additionally, SWT provides a larger set of default controls than AWT does. All components that
are not supported by an underlying OS are emulated in Java. Tables, for example, are supported
by the Microsoft Windows platform, and SWT can depend on native components by using JNI.
On an OS that doesn’t support tables, SWT will use a fallback and manage and render a table
control completely in Java. With this functionality, developers can create an application with a
native appearance and add controls or change the skin of controls to define a unique look for the
app. Compared to Swing, SWT requires fewer system resources because most of the controls are
managed by the OS and not by Java. Today, SWT is still the default UI toolkit of Eclipse and is also
used in many projects that are based on the Eclipse rich client platform (RCP).

Apache Flex
In recent years, other languages have breathed new life into the field of UI toolkits. Apache Flex is
an example of a toolkit developed in the last few years, and it was clearly designed for creating
rich clients. It is based on Adobe Flex, which was passed to the Apache Foundation in 2012.
Internally, Flex is based on Flash for rendering and offers its own programming language called
ActionScript.

Flex offers some interesting techniques and concepts that have been sought after in Java UI
toolkits. For example, with its MXML library, Flex provides an XML-based file format to define user
interfaces and their layout. In these files, the structure of a view with all embedded controls and
their attributes can be defined. Version 4 of Flex introduced Spark as a new architecture to skin and
create controls in Flex. In Spark, all controls are split in two files: a skin file that is written in MXML
and that defines the look of the component and an ActionScript class that defines the model and
the controller. In addition, Flex provides support for effects and transformations.

The Way to JavaFX
As you can see, there are plenty of UI toolkits on the market, both based on Java and other
languages. But no toolkit is perfect. Sometimes a cool feature is incompatible to the main
architecture of a toolkit and can’t be added. Additionally, sometimes different UI toolkits have

01-ch01.indd 5 5/22/14 3:53 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

6 Mastering JavaFX 8 Controls

different philosophies. Some rely on native controls, while others have extended support for
skinning. Another feature that has become more important over the years is the way the metadata
of controls, such as the background or border and the layout of views, is described. Most modern
toolkits remove this information from the source and add file types such as MXML in Flex or the
XML layout in Android to define this information. Old Java-based UI toolkits like Swing can’t
handle these needed features.

From F3 to JavaFX 8
The JavaFX story started with the F3 API developed by Chris Oliver at SeeBeyond. The company
required a modern UI toolkit to create new desktop applications that looked superior to the
competition, so Oliver started developing the F3 framework, and it was acquired by Sun Microsystems
as part of the SeeBeyond acquisition during the API’s development. Oliver continued on at Sun to
lead the development of F3, which was renamed and introduced as JavaFX at JavaOne in 2007.
The first version of JavaFX was published one year later. However, version 1 of JavaFX (JavaFX
Script) has very little to do with the current version; it was a script-based language for the Java
platform that could interoperate with Java code.

After Oracle’s acquisition of Sun Microsystems, version 2 was announced that would be
based completely on the Java API, which would allow any Java developer to use it with any IDE.
By doing this, the barrier of entry to using JavaFX was reduced, and the competition for a great UI
toolkit was leveled. JavaFX Script was also discontinued with this release. JavaFX supports a lot of
effects, transformations, and animations, all of which will be covered in the following chapters.

What Kinds of Applications Can Be Built with JavaFX?
So, what kinds of applications can you build with JavaFX? As an initial answer, I would say
every kind of application. For sure, some types of applications are a better match to a
JavaFX-based technology stack than others, such as business applications that use databases
or servers as the back end. All the needed components are part of the JDK and the JavaFX
library, so you can create an application mostly the same way as you would have with Swing.

But JavaFX can do so much more. I have seen some 2D games that were created by
using JavaFX with the great performance and features of the JavaFX scene graph API or the
JavaFX canvas API. Additionally, JavaFX offers 3D support to create 3D landscapes. By
adding embedded support to Java, JavaFX allows you to create the UI and user interaction
for smart embedded devices. Using JavaFX in this way is as easy as developing a desktop
application. You can even develop a media center because the API to play media files is
part of JavaFX. As you can see, there is a lot of potential when using JavaFX as the UI toolkit
to develop applications.

In reality, most of the applications that will be developed with JavaFX will be business
applications, so this book will concentrate on the APIs and knowledge that you need to know
to develop these kinds of applications. But even when developing data-centric applications,
you can use the creative power of JavaFX. By using the JavaFX effects, animations, or
multitouch input, you can create an application with an outstanding user experience.

01-ch01.indd 6 5/22/14 3:53 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 1: The History of Java UI Toolkits 7

JavaFX Compared to HTML5
and Web-Based Technologies
Today, a lot of applications that are created are web applications or rich Internet applications
(RIAs), also called plain HTML apps, that run in a browser such as Firefox or Chrome. Most of
these applications are written in HTML5, CSS, and JavaScript. Other technologies can also be
used to create RIAs: Technologies such as Adobe Flash/Flex and Silverlight can be used to create
applications that are running inside a browser with a browser plug-in.

These rich Internet applications could also be created with JavaFX. (Although you can integrate
a JavaFX application as an applet in a web page, this workflow isn’t best practice anymore, as it
will create some problems; therefore, it won’t be discussed in this book.) I discussed the non-
HTML technologies earlier in the chapter, so now it’s time to take a deeper look at plain HTML
RIAs and how they compare to applications created with JavaFX.

First, it’s hard to compare HTML with JavaFX because of some big differences: HTML runs
inside a browser, and JavaFX applications are desktop applications running directly in the OS.
Additionally, HTML is only a markup language, and you can’t define application logic with
HTML. A developer needs to use a combination of HTML, JavaScript, and CSS to create an
interactive application.

Here is the default structure of an HTML-based RIA: By using HTML, you define all
components that appear on a web page and structure them. If you need application logic, you can
use JavaScript to add the logic to your application. Additionally, in most applications, CSS is used
to define special skins for the app and all components that are part of the application. This is a
technology stack that is unusual for a desktop application; however, JavaFX provides a comparable
set of technologies. Specifically, the layout of all views can be done by using FXML, which is an
XML-based markup language for defining JavaFX views. For the skinning of an application, JavaFX
supports CSS; it doesn’t use the same attributes that are used in HTML web applications, but the
CSS syntax is the same. Instead of JavaScript, you can use Java to define the logic and interaction of
a JavaFX application.

JavaFX offers all the benefits that a developer might know from HTML application development.
For example, the structure of the views isn’t created in code; the markup language FXML is used
to define the layout of all application dialogs. As a result, the layout of an application can be
done by a designer who doesn’t need to understand Java code. Additionally, CSS is used to
define custom skins of controls. By using CSS, it is easy to change the font of all buttons that are
used in a JavaFX application, for example. There is another big benefit in JavaFX too: The APIs
are ready for extensions. In HTML, you can’t use other tags than the defined ones, and CSS
provides some default attributes and a set of additional ones that are browser-specific. With
FXML, you can easily integrate any custom control, and you can define new CSS attributes with
a Java API. As a result, you can easily add components to an application that are not part of the
default framework.

HTML applications do have some advantages over JavaFX ones, however. HTML is always
running in a browser, and a normal user doesn’t need to install anything to run web applications.
By contrast, JavaFX applications mostly run on the desktop, and if they are not packaged as native
applications, the user will need the Java runtime on the OS. And if a JavaFX application is running
in a browser, the user will need the applet plug-in. JavaFX 8 fixes this issue by offering a tool that
can package JavaFX applications as native ones and add the needed Java runtime to the package
automatically. As a result, no additional software is needed on a client computer. Still, HTML

01-ch01.indd 7 5/22/14 3:53 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

8 Mastering JavaFX 8 Controls

applications are easier to administer because most users have a browser, but often cross-browser
development is a necessity.

You could say that there is no final rule which of these two technologies should be used for
application development. Both have benefits and are stronger in some areas. But JavaFX has
learned a lot from HTML and has taken some of the best parts of it to offer a great infrastructure
and ecosystem for application developers.

Java-Based Web Frameworks
In addition to creating plain HTML web applications, developers can use Java to develop web
applications with frameworks such as JSF, Wicket, Play, or GWT. All these frameworks will create
applications with views that are rendered as HTML views in a browser. Normally, the Java code is
running on a server, and HTML views are created that will be sent to the client. In all these
frameworks, Java can be used to define the application logic, and sometimes even the views can
be created in Java. In the end, all the frameworks will create HTML and JavaScript. Because of
this, it is often more complicated to create pixel-perfect applications with these frameworks.
Comparing all these frameworks to JavaFX is beyond the scope of this book.

Summary
UI-related technology has become more important in the past few years because developers are
creating more impressive UIs than ever before. JavaFX is the newest in a series of UI toolkits, and
it supports all modern UI methods and patterns. Without a doubt, JavaFX will become the most
important UI toolkit for Java applications in the next few years and will be used on various
platforms. Therefore, it is important for every Java application developer to know and understand
the core concepts of JavaFX. One of the most important parts of the framework is the controller
API, a core focus of this book.

01-ch01.indd 8 5/22/14 3:53 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: 9

CHAPTER
2

JavaFX Basics

02-ch02.indd 9 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

10 Mastering JavaFX 8 Controls

JavaFX is a toolkit specifically used for creating graphical user interfaces, and therefore it
includes much more than just a collection of controls. This chapter briefly introduces the
various components, APIs, and tools of JavaFX. You’ll need this basic knowledge in later

chapters because the control APIs either interface to the other JavaFX APIs or use them internally.
Developers who want to create a JavaFX-based application need to know the basics covered in
this chapter. However, since you don’t need to know all features in depth to be able to customize
the JavaFX controls, this chapter will serve only as an overview of them. To acquire deeper
knowledge on any of these topics, consult Quick Start Guide to JavaFX (McGraw-Hill, 2014),
JavaFX 8: Introduction by Example (Apress, 2014), or Pro JavaFX 8 (Apress, 2014).

NOTE
In the Appendix of this book you will find some more starting points
for these topics.

Your First JavaFX Application
Almost every book starts with a “HelloWorld” example when teaching a new programming
language or framework. Even though this is not a book for learning JavaFX from the ground up,
let’s follow that trend and start with a basic HelloWorld application, shown here:

package com.guigarage.masteringcontrols;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class HelloWorld extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 Button button = new Button("Hello World");

 StackPane myPane = new StackPane();
 myPane.getChildren().add(button);

 Scene myScene = new Scene(myPane);

 primaryStage.setScene(myScene);
 primaryStage.setWidth(800);
 primaryStage.setHeight(600);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

02-ch02.indd 10 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 2: JavaFX Basics 11

When you start the program, a dialog will appear onscreen. Figure 2-1 shows how this dialog
looks on Mac OS X. This example is one of the easiest graphical applications that can be created;
however, even in its simplicity, this application uses a number of JavaFX APIs. When looking at
the import statements of the Java file, for example, you can see that classes from the following
three JavaFX packages are loaded for this simple program:

 ■ javafx.application

 ■ javafx.stage

 ■ javafx.scene

In the following sections, I will discuss the classes and APIs used in this program so you can
gain a better understanding of how JavaFX is working.

FIGURE 2-1. Your first JavaFX application: HelloWorld

02-ch02.indd 11 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

12 Mastering JavaFX 8 Controls

NOTE
As mentioned in Chapter 1, JavaFX has been bundled with the JDK
and JRE since Java SE 8. Therefore, to compile and run a JavaFX
application, no additional software is needed. You can develop the
HelloWorld class shown previously with any Java IDE or even with a
simple text editor.

JavaFX Application Life Cycle
As you can see in the HelloWorld example program, each JavaFX application needs to extend the
javafx.application.Application class, which defines the life cycle of an application. This is
covered by the following methods that are called automatically by the JavaFX Framework:

 ■ Application.init() can be used to define and prepare everything before the
application starts. This method is called in a special thread, the JavaFX launcher thread.

 ■ Application.start(Stage stage) is called to start the application. This method
should be used to define the complete application and its view by adding a scene
that defines the main window of the application. This method is called in the JavaFX
application thread. I’ll provide more information about the threading model of JavaFX
later in the chapter.

 ■ Application.stop() is called once the application is closed. This can happen for
different reasons; one example is if a user clicks the exit icon of the main frame. This
method is called in the JavaFX application thread.

 ■ Each of these methods can be overridden in a JavaFX application. In most cases, you
need only to define the start(…) method because that’s where you define the
complete user interface. In the HelloWorld example, the UI is defined by a button that
is wrapped in a StackPane control, and the main method is part of the Application
class. You will find this behavior in most JavaFX examples and tutorials. In a large
application, you could extract the main method to any other classes that will manage
your application, of course. The main(…) method calls the static launch(…) method of
the Application class. This method internally starts the JavaFX environment by creating
all the needed threads, the life cycle, and so on.

Defining the Main Window by Using the Stage Class
As you can see in the HelloWorld example, the Application.start(Stage stage) method
is used to define the UI of the application. The stage parameter of the method is provided by the
JavaFX application life cycle, and it defines the main window of the application. The Stage is
a wrapper class around a window that is offered by the underlying operating system and is used
by JavaFX to render the application onscreen. As in AWT, a peer entity is used in Java to access
the native window. (The same technique is used for pop-ups, too.) Figure 2-2 shows a short UML
diagram that defines the class hierarchy of all the basic JavaFX Window classes.

As you can see, a stage is a special window. It provides some additional information and
methods to define and skin the main window of the JavaFX application. Table 2-1 describes all
the properties that are part of a stage.

All mentioned properties are implemented by using the JavaFX property API, which is used a
lot in JavaFX and will be used in most of the examples in this book. Don’t worry if you haven’t

02-ch02.indd 12 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 2: JavaFX Basics 13

FIGURE 2-2. JavaFX Window class hierarchy

[javafx.stage]
Stage

[javafx.stage]
EmbeddedWindow

[javafx.stage]
PopupWindow

[javafx.stage]
Window

Property Type Description

fullScreen ReadOnlyBooleanProperty If true, the application is shown
as an undecorated full-screen
window.

fullScreenExitKey ObjectProperty<KeyCombination> This specifies a key combination
that allows the user to exit
full-screen mode.

fullScreenExitHint ObjectProperty<String> This defines informational text
that will be shown when the
application enters full-screen
mode.

iconified ReadOnlyBooleanProperty This defines whether the stage is
iconified.

maxHeight DoubleProperty This defines the maximum height
of the stage.

maximized ReadOnlyBooleanProperty This defines whether the stage is
maximized.

maxWidth DoubleProperty This defines the maximum width
of the stage.

minHeight DoubleProperty This defines the minimum height
of the stage.

minWidth DoubleProperty This defines the minimum width
of the stage.

resizable BooleanProperty If this property is set to false,
a user can’t resize the stage.

title StringProperty This defines the title of the stage.
If the stage is decorated with a title
bar, the string will be shown in it.

TABLE 2-1. Properties of the Stage Class

02-ch02.indd 13 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

14 Mastering JavaFX 8 Controls

heard about the property API until now. All properties of the Stage class have normal getter and
setter methods like you know from other JavaBean implementations; however, by using the
property API internally, the implementation of these getter and setter methods is different from the
one you know from plain old Java objects (POJOs). The API will be shown in more depth later in
this chapter.

In addition to the properties of the Stage class, its parent class, Window, defines a set of
properties, as described in Table 2-2.

Property Type Description

eventDispatcher ObjectProperty<EventDispatcher> Specifies the event
dispatcher for this node. The
default EventDispatcher
will receive all input events
and send these events to
event handlers and filters.

focused ReadOnlyBooleanProperty Defines whether the window
can get the input focus.

height ReadOnlyDoubleProperty Defines the height of the
stage.

onCloseRequest ObjectProperty<EventHandler<WindowEvent>> Specifies a handler that is
called when an external
request to close the window
is received. This can happen
when a user tries to close
the window.

onHidden ObjectProperty<EventHandler<WindowEvent>> Defines a handler that is
called when the window
has been hidden.

onHiding ObjectProperty<EventHandler<WindowEvent>> Defines an event handler
that is called just before the
window will be hidden.

onShowing ObjectProperty<EventHandler<WindowEvent>> Defines an event handler
that is called just before the
window will be shown.

onShown ObjectProperty<EventHandler<WindowEvent>> Defines a handler that is
called just after the window
is shown.

opacity DoubleProperty Defines the opacity of the
stage as a value between
0.0 and 1.0.

TABLE 2-2. Properties of the Window Class

02-ch02.indd 14 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 2: JavaFX Basics 15

In addition to the properties, the Stage class and the Window class contain some useful
methods to interact with instances from Java code. Tables 2-3 and 2-4 contain an overview of
these methods.

Property Type Description

scene ReadOnlyObjectProperty<Scene> Specifies the scene of this
stage.

showing ReadOnlyBooleanProperty Defines whether the stage is
shown onscreen.

width ReadOnlyDoubleProperty Specifies the current width
of this stage.

x ReadOnlyDoubleProperty Specifies the x-location of
the stage on the screen.

y ReadOnlyDoubleProperty Specifies the y-location of
the stage on the screen.

TABLE 2-2. Properties of the Window Class (continued)

Method Description
void close() Closes the stage.
observableList<Image> getIcons() Returns a list of icons that will be used to decorate the

window. The visualization depends on the OS.
modality getModality() Returns the modality for this stage.
window getOwner() Returns the owner window for this stage if it’s not a

top-level window.
stageStyle getStyle() Retrieves the style attribute for this stage.
void initModality(Modality modality) Specifies the modality for this stage. This must be called

before the stage will be shown. Otherwise, an Exception
will be thrown.

void initOwner(Window owner) Specifies the owner window for this stage. This must be
called before the stage will be shown. Otherwise, an
Exception will be thrown.

void initStyle(StageStyle style) Specifies the style for this stage. This must be called
before the stage will be shown. Otherwise, an Exception
will be thrown.

void showAndWait() Shows this stage and waits until it will be closed. This
method must be called on the JavaFX application thread.

void toBack() Sets the window to the background.
void toFront() Brings the window to the foreground.

TABLE 2-3. Methods of the Stage Class

02-ch02.indd 15 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

16 Mastering JavaFX 8 Controls

NOTE
The shown methods and properties contain some classes and
functionality that weren't described until now. The defined classes
like EventHandler are part of the JavaFX framework and will be
described later in the book in more detail.

As shown in Table 2-5, the style of a stage can be defined. By using a style, you can simply
change the decoration and behavior of a Stage instance. Table 2-5 provides an overview of all
supported types.

By setting some of these properties in the Start(…) method of an application, you can
specify the look of the main window. Here is an example of a decorated frame:

@Override
public void start(Stage primaryStage) throws Exception {
 ...
 primaryStage.setScene(myScene);
 primaryStage.initStyle(StageStyle.UTILITY);
 primaryStage.setTitle("Utility App");
 primaryStage.getIcons().add(new Image("http://www.guigarage.com/
 demo_icon_16.png"));
 primaryStage.getIcons().add(new Image("http://www.guigarage.com/
 demo_icon_32.png"));
 primaryStage.getIcons().add(new Image("http://www.guigarage.com/
 demo_icon_64.png"));
 primaryStage.getIcons().add(new Image("http://www.guigarage.com/
 demo_icon_128.png"));
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
}

Method Description
void centerOnScreen() Sets the x and y properties on this window so that it is

centered on the screen
void fireEvent(Event event) Fires a specified event

void hide() Attempts to hide the window
void requestFocus() Requests that the window gets the focus
void sizeToScene() Sets the width and height properties of this window to

match the size of its defined scene

TABLE 2-4. Methods of the Window Class

02-ch02.indd 16 5/22/14 3:52 PM

http://www.guigarage.com/demo_icon_16.png
http://www.guigarage.com/demo_icon_16.png
http://www.guigarage.com/demo_icon_32.png
http://www.guigarage.com/demo_icon_32.png
http://www.guigarage.com/demo_icon_64.png
http://www.guigarage.com/demo_icon_64.png
http://www.guigarage.com/demo_icon_128.png
http://www.guigarage.com/demo_icon_128.png

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 2: JavaFX Basics 17

Type Variant Description

StageStyle
 .DECORATED

Default type of a stage. This is a typical
application frame.

StageStyle
 .UNDECORATED

The undecorated style has no title bar but
has a shadow.

StageStyle
 .TRANSPARENT

The transparent style just has the color that
is defined as background color.

StageStyle
 .UNIFIED

The unified style has a title bar as decorated
but with no border. This makes it possible to
create dialogs with typical toolbars. This is
a conditional feature. To check whether it is
supported, you can use the following call:
javafx.application.Platform
 .isSupported(javafx
 .application
 .ConditionalFeature.UNIFIED_
 WINDOW);

If the feature is not supported by the
platform, this style downgrades to
StageStyle.DECORATED.

StageStyle
 .UTILITY

The utility style has a smaller title bar and
can’t be maximized. It is ideal for utility
dialogs.

TABLE 2-5. Stage Styles

02-ch02.indd 17 5/22/14 3:52 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

18 Mastering JavaFX 8 Controls

Figure 2-3 shows the application running on Mac OS and Windows 7. Now that the application
is created and the window is specified, controls can be added to the surface.

The Scene Graph
Another API used in the HelloWorld application is the scene graph. In JavaFX, each window
contains a so-called scene graph, which is an acyclic-directed graph that can be accessed by the
Scene class in JavaFX. A scene graph manages all the items that will be rendered on the screen.
None of these items can have more than one parent, and each element that is part of the scene
graph is called a node. Examples for nodes include a rectangle, a button, or a panel that holds
other nodes. Because the scene graph manages all of these nodes in an internal model, it knows
which nodes should be displayed at what location onscreen and which components and areas
need to be repainted. Each scene graph has a root node that, by default, is a group that holds all
the other nodes in any hierarchy. The StackPane control is the root node of the HelloWorld
application, and it holds only one node: the Hello World button.

Button button = new Button("Hello World");

StackPane myPane = new StackPane();
myPane.getChildren().add(button);

Scene myScene = new Scene(myPane);

The actual layout of the buttons is taken from StackPane. Unlike Swing, in which a JPanel class
is the default container and different layout managers such as BorderLayout and FlowLayout are
used for positioning elements, JavaFX provides different panes that are responsible for grouping and
laying out the child nodes.

By using the JavaFX scene graph, developers can use significantly more features than in Swing.
The scene graph supports transformations such as scaling or rotation, and you can add and display
3D objects in it. Since the scene graph is the global administrative body of all controls in JavaFX,
its structure and API will be described in more detail in Chapter 3. (The application life cycle and
the stage API will not be covered further.)

Now that I’ve discussed three of the JavaFX APIs that were used in the HelloWorld
application (application, stage, and scene graph), I’ll present the entire structure of JavaFX
and its various APIs.

FIGURE 2-3. Application on different operating systems

02-ch02.indd 18 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 2: JavaFX Basics 19

Technical Design of the JavaFX Toolkit
As you already know from many other frameworks, the JavaFX toolkit is composed of different APIs.
JavaFX can be roughly divided internally into three layers:

 ■ Native layer

 ■ Private layer

 ■ Public layer

For a better overview, Figure 2-4 shows a graph in which the different layers and their
components are shown schematically.

JavaFX developers should only ever work with the public APIs. As with all other components
of the JDK, it is not recommended to use private APIs to program, even with JavaFX. These classes
may change at any time, and any Java update can create an incompatibility for your application.
For this reason, the components of the native and private layers are presented here only briefly.

The Native Layer
The native part of JavaFX is not written in Java. Instead, these components are native libraries that
grant access to the native OS layer. A big part of the native libraries of JavaFX are the Prism
implementations. Prism is a technology-independent layer to render the JavaFX views. Because
high-performance graphics are one of the most important issues for UI toolkits like JavaFX, there
are several operating system or hardware-oriented implementations of Prism. On Windows, this
works normally with a Direct3D version, while on other systems, an OpenGL-based implementation
of Prism is used. In addition to these implementations, the native layer still contains implementations
of the media and web engines. With these implementations, it is possible in a JavaFX application to
show media content, such as movies and music, or embed web pages directly in an application. By
using native interfaces, JavaFX has achieved very good performance in these areas. As mentioned,
the native parts are not developed in Java. This is also the reason why JavaFX can’t simply be
delivered as a one-JAR framework: The native components are specific to operating systems and need
to be delivered as compiled libraries. Although most parts of JavaFX are open source, a few fonts and
the VP6 codec are not, which creates license issues.

FIGURE 2-4. JavaFX library stack

Java Virtual Machine

OpenGL D3D

Prism

Media Engine Web EngineGlass Window Toolkit

Quantum Toolkit

JavaFX Public APIs and Scene Graph

Native
Layer

Private
Layer

Public
Layer

02-ch02.indd 19 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

20 Mastering JavaFX 8 Controls

NOTE
JavaFX has some optional APIs and features. The media support
is an example of an optional feature. You can check for the
availability of these optional features in code by using the Platform
.isSupported(…) method. All optional features are defined by the
enumeration javafx.application.ConditionalFeature.

Private API Layer
The private APIs contain internal classes that are part of the JRE. These classes are defined in
special packages (com.sun.*). The definition of the Prism API is, for example, part of the private
APIs. All these APIs are closed under the com.sun package, and a developer should never use
them because these APIs can change in each new Java version.

Public API Layer
The most important part for each developer is the public part of the architecture stack. This part
contains all the JavaFX classes that can and should be used when developing an application.
Because of this, the next section will introduce all the main public APIs of JavaFX.

JavaFX Public APIs
JavaFX has a lot of different classes packed into its public framework. All of these classes are
allocated in different APIs. By taking a look at the package structure of JavaFX (see Table 2-6),
you can learn about the core APIs.

The following sections contain overviews of all the different APIs. Most of them will be
covered again later in the book when their interoperability with specific controls is shown. Here,
I’ll primarily show some special features of the APIs because developers should know the basic
purpose and usage of them to understand all the examples in this book.

Application and Life Cycle
The application API was discussed earlier in reference to the HelloWorld application.

Stage API
All the important classes that are part of javafx.stage.* were discussed when explaining the
HelloWorld application.

Scene Graph and Controls
The scene graph API is one of the biggest parts of JavaFX. It contains the definition of the scene graph
and all kinds of nodes. To simplify, you can group all the nodes in four categories, as shown here:

 ■ Simple nodes, such as lines or rectangles

 ■ Groups and panes, such as the FlowPane

 ■ Controls, such as buttons and text fields

 ■ Complex nodes, such as rendered video, images, and web pages

The main focus of this book is on the APIs that are part of the javafx.scene package and its
subpackages.

02-ch02.indd 20 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 2: JavaFX Basics 21

Event Handling
JavaFX offers event handling for different types of input. For this reason, there are different event
types in JavaFX, such as MouseEvent, KeyEvent, and TouchEvent. Event handlers can be easily
registered for the different input events. The following code snippet shows how to register an
event handler to a button that will fire with every touch on the screen:

button.setOnTouchPressed(new EventHandler<TouchEvent>() {

 @Override public void handle(TouchEvent event) {
 touchx = event.getTouchPoint().getSceneX();
 touchy = event.getTouchPoint().getSceneY();
 }
});

Package Description
javafx.application This contains general application classes and utilities (as described

for the HelloWorld application).
javafx.stage The stage API contains all classes to create and manage windows

such as frames or pop-ups.
javafx.scene This is the biggest part of JavaFX that contains the scene graph and

all nodes. Layout panes and controls are part of this package too.
javafx.event The event API specifies how general events are defined in JavaFX.

An example for an event is a mouse click that is fired as a JavaFX
event to defined listeners.

javafx.beans This package includes the property API. This API adds new syntax to
JavaFX beans by defining bindable properties.

javafx.collections A set of collections is part of JavaFX. This special collection offers
listener support so that changes of the collection content can be
observed.

javafx.concurrent JavaFX offers some helper classes for asynchronous handling.
javafx.animation This package defines an animation API to create smooth animations.
javafx.fxml With FXML, JavaFX offers an XML-based language to separate the

definition of the user interface from the application logic of your code.
javafx.css Nodes can be styled by using CSS. This package provides a set of

helper classes if you want to access the CSS support in JavaFX.
javafx.print The JavaFX printing API is the content of this package.
javafx.embed This package contains APIs for interoperability with Swing and SWT.
javafx.geometry This includes some general geometrical classes such as rectangles

or direction enums.
javafx.util This is a bundle of general helper classes.

TABLE 2-6. JavaFX Public Packages

02-ch02.indd 21 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

22 Mastering JavaFX 8 Controls

The event handlers define how a user can interact with a JavaFX application. Mostly, the event
handlers are registered to single controls like a Button instance. When covering different controls
later in this book, I’ll explain the specific event types that are supported by these controls in
addition to the input events. An example of this kind of action event is the one that occurs when
the pop-up list of a combo box will be shown or hidden.

Property API
JavaFX includes the Property interface, which extends property handling and binding with
some great features and a simple but powerful API. Most of the JavaFX beans use the property
API to grant access to their fields. Normally, next to the getter and setter methods, there is a new
method to access the property. Here is an example for a DoubleProperty instance:

private DoubleProperty cellWidth;

public final DoubleProperty cellWidthProperty() {
 if (cellWidth == null) {
 cellWidth = new SimpleDoubleProperty(64);
 }
 return cellWidth;
}

public void setCellWidth(double value) {
 cellWidthProperty().set(value);
}

public double getCellWidth() {
 return cellWidth == null ? 64.0 : cellWidth.get();
}

As you can see, there is no double cellWidth field in the code. Instead, the attribute is
wrapped in a property instance. The getter and setter methods work directly with the property
instance and set or request the current value from the property. JavaFX offers a set of basic
property classes for primitive data types like String or double. All these basic implementations
are part of the package javafx.beans.property.* Next to all these Simple**Property
classes, there are some special implementations, such as read-only implementations, that can be
used if you want to close your field to external changes. In this case, only removing the setter
method is not enough because you can still access the property instance. It’s recommend you use
ReadOnly**Property classes, like ReadOnlyDoubleProperty in this case.

By using this design for properties in JavaFX, you will get a lot of benefits in your code. First,
JavaFX properties offer support for javafx.beans.value.ChangeListener. So, you can add
listeners to every property, as shown here:

SimpleStringProperty textProp = new SimpleStringProperty();
textProp.addListener(new ChangeListener<String>() {

 @Override
 public void changed(ObservableValue<? extends String> observableValue,
 String oldValue, String newValue) {
 System.out.println("Value changed: " + oldValue + " -> " + newValue);
 }
});

02-ch02.indd 22 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 2: JavaFX Basics 23

Second, JavaFX properties have support for binding. For this, the Property interface offers
the following methods:

 ■ void bind(javafx.beans.value.ObservableValue other);

 ■ void unbind();

 ■ boolean isBound();

 ■ void bindBidirectional(javafx.beans.property.Property other);

 ■ void unbindBidirectional(javafx.beans.property.Property other);

By using these methods, you can create bindings between JavaFX properties easily. For instance,
you can use a binding to express a direct relationship between variables. Changes made to an
object will be automatically reflected to any bound object. In the following example, the value of
a slider will be bound to another one. Now whatever slider is changed, the other one will adopt
its value.

Slider mySlider1 = …;
Slider mySlider2 = …;
mySlider1.valueProperty().bindBidirectional(mySlider2.valueProperty());

JavaFX provides two types of binding: bidirectional and unidirectional. The slider example
uses a bidirectional binding. With this binding, you can change any of the two sliders, and the
other one will change. With the use of the bind(…) method, you can create a unidirectional
binding. Here, only one property is bound to the other one: Changing the first slider will affect
the second one, but if you change the second slider, this will have no effect on the first one.

With the shown methods, you can easily bind two or more properties with the same value
type, but sometimes you need a more complex binding. Suppose you need to bind a slider value
to the visible property of a label. The label should appear once the slider value reaches a
maximum. The JavaFX property API offers some conversion methods for these needs. Most
property types provide specific methods that create a new binding. Here is a sample that uses
some of these methods:

Slider mySlider1 = new Slider();
Label myLabel = LabelBuilder.create().text("ALERT!").visible(false).build();
myLabel.visibleProperty().bind(mySlider1.valueProperty().multiply(2).greaterThan(100));

In line 3, the valueProperty is converted to a new double binding that is always double the
size of the wrapped property. Now by calling the greaterThan(…) method, you create a
Boolean binding that is wrapped around the double binding. This binding’s value is true while
the wrapped value is > 100. So if the value of the slider is greater than 50 (50 * 2 > 100), the label
will be visible. In addition to these functions, there is the utility class javafx.beans.binding
.Bindings that provides a lot of additional functions and support.

Collections
JavaFX offers some new collection types by extending the List, Map, and Set interfaces. All of
these can be found in the javafx.collections package. All the new collections are
observable and offer support for change listeners. By using the ObservableList, for example,

02-ch02.indd 23 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

24 Mastering JavaFX 8 Controls

you can easily register a ListChangeListener to receive events for each change that is made to
the content of the list. Here is a code snippet that shows how you can use this API:

ObservableList list = FXCollections.observableArrayList();
list.addListener(new ListChangeListener() {
@Override
public void onChanged(ListChangeListener.Change change) {
 System.out.println("OnChange event:");
 while (change.next()) {
 if(change.wasAdded()) {System.out.println("Elements added. Range:"
 + change.getFrom() + "-" + change.getTo())};
 if(change.wasRemoved()) {System.out.println("Elements removed.
 Range:" + change.getFrom() + "-" + change.getTo())};
 if(change.wasReplaced()) {System.out.println("Elements replaced.
 Range:" + change.getFrom() + "-" + change.getTo())};
 if(change.wasPermutated()) {System.out.println("Elements
 permutated. Range:" + change.getFrom() + "-"
 + change.getTo())};
 }
 }
});

As you can see in the code of the ListChangeListener, you can analyze the change that
was done on the list content and check what ranges have changed and what kind of change it
was. Additionally, there is a utility class called FXCollections. If you know the java.util
.Collections class, you will be familiar with this new utility class. By using the class, you can
simply create new instances of the JavaFX collection types or execute special operations such as
shuffling the content of a list. In the previous code snippet, the FXCollections class is used to
create the ObservableList instance.

Concurrent API
As previously stated, JavaFX is a single-threaded system. All rendering and interaction happen
on the JavaFX application thread. Much of the time, you need more than one thread in your
application. If you want to access a database, for example, you shouldn’t do this on the application
thread. The action can block the thread for a long time, and the result will be a frozen application
because the thread can’t be used for rendering and user interaction. To help the developer in
these cases, JavaFX contains some helper classes to create asynchronous activities. The javafx
.concurrent package contains the Worker interface that provides APIs that are useful for creating
background workers that will communicate with the UI. The two classes Task and Service
implement the Worker interface.

In addition to these classes, the Platform.runLater(…) method is useful. With the help of
this method, a runnable can be executed on the JavaFX application thread. (Swing developers
may know the equivalent method SwingUtilities.invokeLater(…).)

Animations
As a modern UI toolkit, JavaFX offers a great API to create animations. JavaFX supports two
different types of methods to create animation: transitions and timeline animations. A transition is
the easiest way to create an animation. By using a specific transition class, you only need to define

02-ch02.indd 24 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 2: JavaFX Basics 25

the values that should be reached by the animation and the duration. Additionally, you can define
more properties that will influence the behavior of the transition. Here is a short example of a
transition that fades a rectangle out and in when it’s running:

FadeTransition ft = new FadeTransition(Duration.millis(360), rectangle);
ft.setFromValue(1.0);
ft.setToValue(0.1);
ft.setCycleCount(Timeline.INDEFINITE);
ft.setAutoReverse(true);
ft.play();

Timeline animations are more complex than transitions. These animations provide the ability
to change properties along the progression of time. Unlike transitions, you can add keyframes to
timeline animations and define values at certain times.

FXML
To separate the view definition and the application logic, you can use FXML to define the view.
FXML is an XML-based language that defines the structure of a user interface. By using FXML,
designers can define the complete user interface of an application without mastering any Java
code. The FXML files can be loaded at runtime and don’t need to be compiled. A basic view
structure that is defined in an FXML file looks like the following code:

<?xml version="1.0" encoding="UTF-8"?>
<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.image.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.paint.*?>
<AnchorPane id="AnchorPane" prefHeight="720.0" prefWidth="1280.0"
xmlns:fx="http://javafx.com/fxml/1" xmlns="http://javafx.com/javafx/2.2">
 <children>
 <ImageView fitHeight="720.0" fitWidth="1280.0" AnchorPane.
 bottomAnchor="0.0" AnchorPane.leftAnchor="0.0"
 AnchorPane.rightAnchor="0.0" AnchorPane.topAnchor="0.0">
 
 </ImageView>
 </children>
</AnchorPane>

FXML is the preferred way to define the views of applications in JavaFX. FXML supports all the
default JavaFX controls, and you can use FXML to lay out reusable components such as a login form.
FXML supports custom controls, too. Because of this, it will be used in later chapters of this book.

CSS Support
All JavaFX controls can be skinned by CSS. Each control has a set of properties, such as foreground
color or font size, that are related to its appearance onscreen, and these properties can be defined
by CSS. A perfect example that shows what you can do with CSS in JavaFX is the AquaFX library

02-ch02.indd 25 5/22/14 3:52 PM

http://javafx.com/fxml/1
http://javafx.com/javafx/2.2
mailto:url="@wallpaper/wp3.png

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

26 Mastering JavaFX 8 Controls

that provides skins to all the default JavaFX controls to make them look like native Mac OS
controls. You can find the open source library and documentation at http://aquafx-project.com.

By using CSS, you can define a new look for a control type or a single instance. The following
code snippet shows some CSS code that skins a single button:

.custom-button {
 -fx-padding: 10;
 -fx-background-color: #FFAA99;
 -fx-font: 24px "Serif";
}

When working with controls or creating custom ones, you will normally work a lot with CSS
and its internal JavaFX APIs. JavaFX’s support for CSS will be covered later in this book.

Printing
With version 8, APIs for printing support were added to JavaFX. By using these APIs, you can
easily print nodes or a complete scene graph from a JavaFX application. This book will not cover
printing in detail. To take a short look at the API and its methods, the following code snippet
contains a method that can be used to print a JavaFX node:

public void print(final Node node) {
 Printer printer = Printer.getDefaultPrinter();
 PageLayout pageLayout = printer.createPageLayout(Paper.A4,
 PageOrientation.PORTRAIT, Printer.MarginType.DEFAULT);
 double scaleX = pageLayout.getPrintableWidth() / node.getBoundsInParent().
 getWidth();
 double scaleY = pageLayout.getPrintableHeight() / node.
 getBoundsInParent().getHeight();
 node.getTransforms().add(new Scale(scaleX, scaleY));

 PrinterJob job = PrinterJob.createPrinterJob();
 if (job != null) {
 boolean success = job.printPage(node);
 if (success) {
 job.endJob();
 }
 }
}

Interoperability with Swing
JavaFX offers support to include JavaFX in Swing, and vice versa. As a result, the migration from
Swing to JavaFX can be much easier for a Swing-based application. The complete APIs that are
provided by JavaFX in this context will be shown later in the book.

Tools
In addition to the general support in the most popular IDEs, there are already some visual tools to
help developers create applications with JavaFX. The three most prominent tools are covered here.

02-ch02.indd 26 5/22/14 3:52 PM

http://aquafx-project.com

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 2: JavaFX Basics 27

All three tools should be known to JavaFX application developers and are also used in some of
the examples in this book.

Scene Builder
By using Scene Builder, developers can quickly create attractive graphical interfaces. Developers
can easily add graphical components via drag and drop to the working view and lay out all
controls of a dialog by using a WYSIWYG editor. In addition, new styles and style sheets can
be configured and stored. The created views will be stored as FXML files. These FXML files can be
embedded in any JavaFX application and used to represent the view of the application. Scene
Builder is much more than a simple layout tool for dialogs. Thanks to its direct support of CSS
transformations, effects, and other JavaFX technologies, you can create complex graphical views
using Scene Builder. Figure 2-5 shows Scene Builder.

Scenic View
Three of the JavaFX chief developers (Jasper Potts, Jonathan Giles, and Richard Bair) run a blog where
they introduce interesting JavaFX features and news; see http://fxexperience.com. Additionally, they
offer the Scenic View tool for download on this blog (http://fxexperience.com/scenic-view/). With the

FIGURE 2-5. Scene Builder workspace

02-ch02.indd 27 5/22/14 3:52 PM

www.allitebooks.com

http://fxexperience.com
http://fxexperience.com/scenic-view/
http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

28 Mastering JavaFX 8 Controls

help of this tool, it is possible to analyze the scene graph. You can look at the layout and the
transformation of individual nodes or even directly edit their properties. You should use the Scenic
View application primarily to find bugs and check a view for pixel perfection. Figure 2-6 shows
Scenic View.

FX Experience Tools
In addition to the tool Scenic View, the FX Experience blog offers another tool named FX Experience
Tools. You can download the code and the application at GitHub. You will find more information
about the tool here: http://fxexperience.com/2012/03/announcing-fx-experience-tools/.

FIGURE 2-6. Scenic View

02-ch02.indd 28 5/22/14 3:52 PM

http://fxexperience.com/2012/03/announcing-fx-experience-tools/

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 2: JavaFX Basics 29

You can use the tool to customize the skin of an application. Although you may not create
completely self-created skins, you can easily configure the basic colors of a graphical interface
and create a blue skin, for example. Figure 2-7 shows FX Experience Tools.

Deployment/Native Builds
Java provides different ways to deploy a JavaFX application. An application can be packed in a JAR
that can be started by a double-click, for example. This way is well known to most developers and
is not anything special. Since Java 8, the javafxpackager tool allows you to create self-contained,
native applications. By using this tool, you can create an app that is more user friendly than a
simple JAR. These applications include all application resources, the Java and JavaFX runtimes,
and a launcher. By using them, the user will have the same experience as when installing or
launching a native application. By using the javafxpackager tool, an application can be distributed as
one of the following formats:

 ■ ZIP file

 ■ EXE or MSI for Windows

FIGURE 2-7. FX Experience Tools

02-ch02.indd 29 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

30 Mastering JavaFX 8 Controls

 ■ DMG for Mac OS

 ■ RPM or DEB for Linux

To create a native self-contained application by using the javafxpackager tool, you should
read the documentation of the tool, available at the command line. Most important for this goal
are the -deploy and -native flags. Here is a short example for a shell command that will create
a native installer of a demo application:

javafxpackager -deploy -native -outdir packages -outfile DemoApp
 -srcdir dist -srcfiles DemoApp.jar -appclass de.guigarage.demo.Main
 -name "Demo" -title "Demo Application"

All of JavaFX’s functionality can be used in ANT, too. JavaFX contains a JAR with some specific
ANT tasks. The <fx:deploy> task needs to be used in an ANT script to create a self-contained app.

JavaFX Goes Polyglott
Thanks to JSR-223, Scripting for the Java Platform, several scripting languages are available on the
JVM. You can simply use JavaFX classes in these scripting languages, and there are frameworks
that integrate JavaFX with these script languages in a more natural way. It is not part of this book
to teach you how to program in these script languages, but because some of them are currently
very popular, some projects may depend on them. The following is a brief overview of the three
most important script languages.

GroovyFX
With GroovyFX, you can use JavaFX in Groovy in a much simpler and more natural way. By using
the Groovy Builder patterns, you can eliminate boilerplate code and create code that is easier to
write and read, and then simply use JavaFX in Groovy without this framework. GroovyFX is open
source and can be downloaded here: http://groovyfx.org. You can see the convenience of the
code by creating a HelloWorld application. To create a JavaFX application, you need only to pass
a closure to the GroovyFX.start(…) method. Inside the closure, you can define the complete
UI. The following code shows a simple HelloWorld Groovy application that uses GroovyFX.
Figure 2-8 shows the running application.

import static groovyx.javafx.GroovyFX.start
start {
 stage(title: 'GroovyFX Hello World', visible: true) {
 scene(fill: BLACK, width: 500, height: 250) {
 hbox(padding: 60) {
 text(text: 'Groovy', font: '80pt sanserif') {
 fill linearGradient(endX: 0, stops: [PALEGREEN, SEAGREEN])
 }
 text(text: 'FX', font: '80pt sanserif') {
 fill linearGradient(endX: 0, stops: [CYAN, DODGERBLUE])
 effect dropShadow(color: DODGERBLUE, radius: 25, spread: 0.25)
 }
 }
 }
 }
}

02-ch02.indd 30 5/22/14 3:52 PM

http://groovyfx.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 2: JavaFX Basics 31

ScalaFX
Next to Groovy, Scala is the most successful programming language that can run on top of the
JVM. You can find a good introduction to Scala at the Typesafe website (http://typesafe.com/
platform/tools/scala), which was founded by the creators of Scala in 2011 and which provides
support for Scala. If you want to write a Scala-based JavaFX application, you should take a look at
ScalaFX, which is a domain-specific language (DSL) written within Scala that sits on top of JavaFX.
Thanks to this, you can use a simple pattern to define the scene graph of your application. Here is
a short example of a Scala application that defines a JavaFX view by using ScalaFX:

package hello
import scalafx.application.JFXApp
import scalafx.application.JFXApp.PrimaryStage
import scalafx.geometry.Insets
import scalafx.scene.Scene
import scalafx.scene.control.Label
import scalafx.scene.layout.BorderPane
import scalafx.scene.text.Font
object ScalaFXHelloWorld extends JFXApp {
 stage = new PrimaryStage {
 scene = new Scene {
 title = "ScalaFX"
 root = new BorderPane {
 padding = Insets(20)
 center = new Label("Hello World!!!") {

FIGURE 2-8. GroovyFX application

02-ch02.indd 31 5/22/14 3:52 PM

http://typesafe.com/platform/tools/scala
http://typesafe.com/platform/tools/scala

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

32 Mastering JavaFX 8 Controls

 font = new Font("Verdana", 24)
 style = "-fx-font-weight:bold"
 }
 }
 }
 }
}

ScalaFX is open source software. You can find the download and some documentation on the
ScalaFX website: https://code.google.com/p/scalafx/.

JavaFX and Nashorn
The Nashorn engine is a new part of Java SE 8 and provides a lightweight, high-performance
JavaScript runtime on the JVM. It enables Java developers to embed JavaScript in Java applications
or develop free-standing JavaScript applications that can be on top of the JVM by using the jjs
command-line tool. You can easily interpret a JavaFX application that is written in JavaScript with
Nashorn by only adding the -fx flag. For example, the following command starts Nashorn to run
the javaFX.js file:

 jjs -fx JavaFXscript.js

Nashorn provides some additional features to make developing JavaFX applications with
JavaScript even easier. Most of the JavaFX classes are wrapped in scripts. By loading them, the
imports of JavaFX are easily managed. Here are some examples:

Script Managed Imports
fx:base.js javafx.stage.Stage

javafx.scene.Scene
javafx.scene.Group
javafx.beans.*
javafx.collections.*
javafx.events.*
javafx.util-*

fx:fxml.js javafx.fxml.*

Additionally, the primary stage of a JavaFX application is available in Nashorn as the global
property $STAGE. By using this property, you can directly define your application view without
using the Application class. Here is a JavaScript example that will run in Nashorn and that
creates a simple JavaFX application:

load("fx:base.js");
load("fx:controls.js");
load("fx:graphics.js");
$STAGE.title = "Hello World!";
var button = new Button();
button.text = "Say 'Hello World'";

02-ch02.indd 32 5/22/14 3:52 PM

https://code.google.com/p/scalafx/

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 2: JavaFX Basics 33

button.onAction = function() print("Hello World!");
var root = new StackPane();
root.children.add(button);
$STAGE.scene = new Scene(root, 300, 250);
$STAGE.show();

Summary
In this chapter, I covered the basics of JavaFX, including its APIs, tools, and JVM support. You
quickly saw that even in the case of a simple HelloWorld example, JavaFX calls on a number
of different APIs. All these APIs will be elaborated on in the following chapters.

02-ch02.indd 33 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3
Blind folio: 34

02-ch02.indd 34 5/22/14 3:52 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: 35

CHAPTER
3

The Scene Graph

03-ch03.indd 35 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

36 Mastering JavaFX 8 Controls

This chapter will provide a general overview of the scene graph and its functionality. The
chapter will introduce the important public classes and their core functionalities, and it
will show you how to create a scene graph and define a UI in it by using visual nodes such

as buttons. In addition, you will learn how these elements can be laid out onscreen. Additionally,
you’ll learn about interacting with the scene graph and different ways to define the layout of the
scene graph.

Using and Integrating the Scene Graph
in a JavaFX Application
In a JavaFX application, each stage has its own scene graph instance. Within this scene graph, you
define a hierarchy of components, called nodes. All nodes that are part of a scene graph will be
organized in a tree structure. For a more detailed look, let’s review the scene graph in the
following JavaFX application:

package com.guigarage.masteringcontrols;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class SceneGraphApp extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 HBox hBox = new HBox();
 hBox.setAlignment(Pos.CENTER);
 hBox.getChildren().add(new Button("Button 1"));
 hBox.getChildren().add(new Button("Button 2"));
 hBox.getChildren().add(new Button("Button 3"));

 VBox vBox = new VBox();
 vBox.getChildren().add(new Button("Button 4"));
 vBox.getChildren().add(new Button("Button 5"));

 hBox.getChildren().add(vBox);

 Scene mySceneGraph = new Scene(hBox);
 primaryStage.setScene(mySceneGraph);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

03-ch03.indd 36 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 3: The Scene Graph 37

This example shows a scene graph with several components displayed in the stage of an
application, as shown in Figure 3-1. As you can see in the source code, you add different nodes
within a defined hierarchy to the scene graph; all components added to the scene graph need to
extend the class javafx.scene.Node. When using these nodes, you create a tree structure of
components; for instance, nodes can hold other nodes that are children, as needed. A node that
has children is a parent node. The javafx.scene.Parent class inherits from the Node class and
allows you to manage the child nodes. The VBox and HBox classes used in the example inherit
from the Parent class, and the hierarchy of the application is created by using these two classes
and the Button control. As with the HBox and VBox classes, every control is a node. You may
notice that, like the Component class in Swing, the inheritance hierarchy of the Node class is a bit
more complicated. This will be described in more detail later in this chapter (see the “Node
Types” section).

The HBox and VBox classes manage the layout of child nodes by considering the preferred
bounds of the child nodes. To display a component, you just need to add it to a visible scene
graph. Each scene must have a root node, which is the main node of the scene graph and which
contains all other nodes. Therefore, you need a Parent type. As you saw in the previous
chapter’s example, you can add a scene graph to a stage. By showing the stage on the screen
when launching the application, the scene graph and all its visible nodes will be rendered on the
surface. Figure 3-2 outlines a simplified structure of a JavaFX application.

The Scene Class
So far, you’ve seen that the Scene class that defines the scene graph holds the root node and its
children. The Scene class also provides a number of features and an inheritance hierarchy. Before
looking at those topics, let’s first review the rest of the basic properties and functions of the Scene
class. Table 3-1 provides an overview of the most important properties of the Scene class.

NOTE
You can access most properties either by using the JavaFX property
API or (the POJO way) by using getter and setter methods. Table 3-1
and all following tables in this book will cover the JavaFX properties.
Sometimes, only the properties that are specific to the current topic or
that are used in common use cases will be shown in these tables. For
additional information, refer to the JavaDoc or the JavaFX source code.

FIGURE 3-1. An application with a simple scene graph

03-ch03.indd 37 5/22/14 3:55 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

38 Mastering JavaFX 8 Controls

FIGURE 3-2. Structure of a JavaFX application

[javafx.stage]
Stage

[javafx.scene]
Scene

[javafx.scene]
Node

[javafx.scene]
Parent

[javafx.scene]
Parent

Property Type Description

Camera ObjectProperty<Camera> Defines the camera of the
scene graph. Each scene
has a camera, which maps
the scene coordinates to the
window of the application. In
most cases (and the default), a
parallel camera is used, which
renders an application from
a default perspective. So the
application will look like a 2D
application by default. By setting
a PerspectiveCamera, the
application can be rendered
from another angle.

TABLE 3-1. Properties of the Scene Class

03-ch03.indd 38 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 3: The Scene Graph 39

Property Type Description

Cursor ObjectProperty<Cursor> Defines the mouse cursor
within the scene graph. Once
the mouse enters the area of
the scene graph, the cursor will
change to the one specified
by this property. The Cursor
class provides a huge set of
predefined cursors, such as
a wait cursor. Additionally,
developers can define custom
cursors.

eventDispatcher ObjectProperty<EventDispatcher> Specifies the event dispatcher
that handles the user events. In
most cases, the default dispatcher
should be used, and developers
don’t need to change it.

fill ObjectProperty<Paint> Specifies the background
representation of the scene.
For example, a color can be
passed because javafx
.scene.paint.Color
inherits from javafx.scene
.paint.Paint.

focusOwner ReadOnlyObjectProperty<Node> Specifies the currently focused
component within the scene
graph.

height ReadOnlyDoubleProperty Specifies the height of the scene.

nodeOrientation ObjectProperty<NodeOrientation> Defines the alignment of the
nodes in the scene graph.

on… ObjectProperty<EventHandler
 <? extends Event>>

Defines event handling
properties. Event handling in
the scene graph is implemented
by using event handlers defined
by the javafx.event
.EventHandler class. The
scene graph has different
properties for supporting
each input type. All of these
event handler properties
begin with on*; examples
are onMouseClicked and
onTouchPressed.

TABLE 3-1. Properties of the Scene Class (continued)

03-ch03.indd 39 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

40 Mastering JavaFX 8 Controls

The following code extends the sample application and uses properties such as the cursor and
fill properties of the Scene class. The code shows two different ways to set a property: by calling the
appropriate setter method, which is setFill() in this case, and by retrieving the property object
using the appropriate method. The method mySceneGraph.nodeOrientationProperty() is
used in this case, and it returns the property instance of type ObjectProperty<NodeOrienta
tion>. The value of the property can be set by calling setValue(…). When looking at the source
code of the Scene class, you can see that the setter method does the same thing. These properties
provide better styling and give the application its first functionalities.

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.NodeOrientation;
import javafx.geometry.Pos;
import javafx.scene.Camera;
import javafx.scene.Cursor;
import javafx.scene.PerspectiveCamera;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

Property Type Description

root ObjectProperty<Parent> Defines the main nodes in
the scene graph. All nodes in the
scene graph are arranged in the
hierarchy under this node.

width ReadOnlyDoubleProperty Defines the width of the scene
graph.

window ReadOnlyObjectProperty<Window> Defines the window in which
the scene graph is displayed. In
the examples in this book, the
window is always the main stage
of the application.

x ReadOnlyDoubleProperty Defines the x-position of the
scene graph within the current
window.

y ReadOnlyDoubleProperty Defines the y-position of the
scene graph within the current
window.

TABLE 3-1. Properties of the Scene Class (continued)

03-ch03.indd 40 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 3: The Scene Graph 41

public class SceneGraphApp extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 HBox hBox = new HBox();
 hBox.setBackground(null);
 hBox.setAlignment(Pos.CENTER);
 hBox.getChildren().add(new Button("Button 1"));
 hBox.getChildren().add(new Button("Button 2"));
 hBox.getChildren().add(new Button("Button 3"));
 VBox vBox = new VBox();
 vBox.setBackground(null);
 vBox.setAlignment(Pos.CENTER);
 vBox.getChildren().add(new Button("Button 4"));
 vBox.getChildren().add(new Button("Button 5"));

 Scene mySceneGraph = new Scene(hBox, 800, 600);

 mySceneGraph.setOnMouseClicked(e -> mySceneGraph.setRoot(vBox));
 mySceneGraph.setOnKeyTyped(e -> mySceneGraph.setRoot(hBox));
 mySceneGraph.setCursor(Cursor.HAND);
 mySceneGraph.nodeOrientationProperty().setValue(NodeOrientation.RIGHT_TO_LEFT);
 mySceneGraph.setFill(Color.BLACK);
 primaryStage.setScene(mySceneGraph);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

This code uses various properties of the Scene class. A different background color and a mouse
cursor are set for the scene graph, and the nodes’ orientation is changed. To see the background
color of the scene graph, the background of the HBox and VBox is set to null since these nodes
have their own background color by default and their layout is always maximized in the scene
graph. Button 1 is now on the right side of the window instead of the left side, and so on.

In addition, the hierarchy of the nodes in the sample application has changed. The VBox is no
longer part of the hierarchy and is therefore not displayed. However, two of the EventHandler
properties have been set. The event handlers that are defined here will always execute when a key
or a mouse button is pressed in the scene graph; when that happens, the root node of the scene
graph will change. You can see this behavior in action by clicking the black background of the demo
application. Now Button 4 and Button 5 should appear. By pressing any key on the keyboard, the
HBox with the corresponding button will appear again.

NOTE
Lambda expressions are used to define the EventHandler properties in
the source code of the demo application. Lambdas are a new language
feature introduced in version 8 of Java, so some developers may not have
used them yet. JavaFX is well designed for the use of lambda expressions,
which are simply source code. For this reason, I use them in this book
as often as possible. In theory, all examples shown in the book can be
refactored to a version that doesn’t use lambda expressions. However,
refactoring the previous example makes the two lines of code increase
to 12 lines (as shown in the following listing) by using internal classes.

03-ch03.indd 41 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

42 Mastering JavaFX 8 Controls

mySceneGraph.setOnMouseClicked(new EventHandler<MouseEvent>() {
 @Override
 public void handle(MouseEvent event) {
 mySceneGraph.setRoot(vBox)
 }
});
 mySceneGraph.setOnKeyTyped(new EventHandler<KeyEvent>() {
 @Override
 public void handle(KeyEvent event) {
 mySceneGraph.setRoot(hBox);
 }
});

Additionally, this structure creates code that is more complicated to read.

In addition to the properties described earlier, there are some useful methods defined in the
Scene class, as described in Table 3-2.

Method Description
public <T extends Event> void
 addEventFilter(EventType<T>
 eventType,
 EventHandler<? super T> eventFilter)

This method adds an event filter to the
scene graph. The event handler that is
set as an event filter will be handled
before an event is passed to the normal
life cycle of the event dispatcher. As
a result, global event handlers can be
created that have a higher priority than
event handlers on child nodes.

public Node lookup(String selector) This method can be used to search for
a specific node in the scene graph.
The selector string is defined as a CSS
selector. An example of this method
follows this table.

public final <T extends Event> void
 removeEventFilter(EventType<T>
 eventType,
 EventHandler<? super T> eventFilter)

By using this method, you can remove
an event filter.

public WritableImage
 snapshot(WritableImage image)

This method creates a snapshot of the
scene graph and renders it into the
given image.

public void snapshot(Callback<
 SnapshotResult, Void> callback,
 WritableImage image)

This method creates a snapshot of the
scene graph and renders it into the
given image. Additionally, a callback is
supported to react once the snapshot
handling is finished.

TABLE 3-2. Methods of the Scene Class

03-ch03.indd 42 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 3: The Scene Graph 43

The following example uses the event filter and snapshot features:

package com.guigarage.masteringcontrols;

import javafx.application.Application;
import javafx.embed.swing.SwingFXUtils;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.image.WritableImage;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
import javax.imageio.ImageIO;
import java.io.File;
public class SceneGraphApp extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 HBox hBox = new HBox();
 hBox.setBackground(null);
 hBox.setAlignment(Pos.CENTER);
 hBox.getChildren().add(new Button("Button 1"));
 Scene mySceneGraph = new Scene(hBox, 800, 600);
 mySceneGraph.addEventFilter(MouseEvent.MOUSE_CLICKED, e ->
 mySceneGraph.setFill(Color.GREEN));
 mySceneGraph.setOnKeyTyped(e -> saveSnapshotOnDisc(mySceneGraph));
 primaryStage.setScene(mySceneGraph);
 primaryStage.show();
 }
 public void saveSnapshotOnDisc(Scene sceneGraph) {
 WritableImage i = new WritableImage((int) sceneGraph.getWidth(), (int)
 sceneGraph.getHeight());
 sceneGraph.snapshot(i);
 try {
 ImageIO.write(SwingFXUtils.fromFXImage(i, null), "png", new
 File("image.png"));
 } catch (Exception s) {
 }
 }
 public static void main(String[] args) {
 launch(args);
 }
}

This code adds an event filter for all mouse click events to the scene graph. As mentioned in
the previous table, the defined event handler will be called before the events can be passed to the
normal life cycle of the event dispatcher. The event handler will be called even if a button was
clicked in the scene graph, for example. All click events will be handled directly and passed only
to child components. In the application, you can simply click any point in the application window.
Even if you click an empty area of the scene graph or the button, the background of the scene
graph will change its color.

03-ch03.indd 43 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

44 Mastering JavaFX 8 Controls

The second method of the scene graph that is used here is the snapshot(…) method to
create a screenshot of the current scene graph. In the example, this method is called inside the
saveSnapshotOnDisc(…) method. The snapshot is created and saved as a PNG file on the hard
drive. By pressing any key, the KeyEventHandler creates the snapshot.

Event Handling
JavaFX knows several types of input events on which an application can react to user input. Event
handlers for these event types can be used in the scene graph to create an interaction between the
user and the application. All supported input events are defined in JavaFX as a derivation of the
class javafx.scene.input.InputEvent. JavaFX can deal with considerably more input types
than Swing. Additionally, all modern input types such as gestures and touch input are supported.
By using these features, developers can define a better user experience than with any other Java
UI framework. Figure 3-3 contains an overview of the supported event types and their
inheritance.

In addition to the classic mouse and key events that already exist in AWT or Swing, touch and
gesture events have been added to JavaFX, so you can use JavaFX on a multitouch environment
such as a tablet and have your application respond to finger input by the user. For example, a
pinch, shown in Figure 3-4, will be passed directly as a zoom event to the JavaFX scene graph.

NOTE
All modern MacBooks embed a multitouchpad that can interpret
gestures. Most of them are supported in the Mac OS, and if a
JavaFX program is running on such a system, the gesture events
will be passed to the program. If you don’t have a tablet but own
a MacBook, you can easily test the gesture events by using the
touchpad of your device.

FIGURE 3-3. Class hierarchy of JavaFX events

TouchEventc

MouseDragEventc

ZoomEventc

SwipeEventc

RotateEventc

ScrollEventc

c ContextMenuEvent

c MouseEvent GestureEventc

InputEventc

c DragEvent

c InputMethodEvent

c KeyEvent

03-ch03.indd 44 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 3: The Scene Graph 45

Many examples in this book will use input events to create some interaction, so there is no
special example that contains all the different event types. The following code snippet shows how
an EventHandler can be set to react after a special button is clicked:

…

Button myButton = new Button("Button 1");
myButton.setOnMouseClicked(e -> System.out.println("Mousebutton " +
 e.getButton() + " was clicked " + e.getClickCount() + " times. (" +
 e.getX() + "/" + e.getY() + ")"));
…

Each event that occurs on the scene graph will be handled by the event dispatcher of the
scene graph. An event dispatch sends all received events to the registered event handlers and
filters. Whenever an event occurs, four steps will take place:

 1. Target selection

 2. Route construction

 3. Event capturing

 4. Event bubbling

First, the target of the event will be determined. This step depends on the event type. If a
mouse click occurs, the event target will be the topmost node at the position of the mouse cursor
that has not set the mouseTransparent property to true. The target of a key event is the currently
focused node. Touch and gesture events have some special rules for how the target node will be
selected too. After the target node is defined, a route through the scene graph will be defined. This
route contains all nodes between the root node of the scene graph and the target node. This route
is called the event dispatch chain. In the event-capturing phase, the event will be passed through
the chain. This dispatch starts with the scene graph instance and goes down the complete route to
the target node. If any of these nodes has registered an event filter for the given event type, the
event handler that is defined as the filter will be called. Each event has a consumed flag.
Whenever any event handler consumes an event by setting this flag, the processing of the event

FIGURE 3-4. Pinch events

Pinch Open Pinch Close

03-ch03.indd 45 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

46 Mastering JavaFX 8 Controls

will stop. If no registered filter consumes the event, the target node will be reached. At this
moment, the last phase will start. In the event-bubbling phase, the event will return along the
dispatch chain from the target to the root node of the scene graph. Here, each event handler
that is registered for the given event type will be called. As long as no handler consumes the
event, it will return to the next node up the chain until the root node is reached, and the event
dispatching will stop.

Node Types
As mentioned earlier, any component that can be added to a scene graph has to extend the Node
class. The inheritance of the Node class is a little more complicated than you might know from
other cases such as Swing, for example. Figure 3-5 shows a diagram with the most important parts
of the class hierarchy.

The diagram may be overwhelming at first, but all the classes in the diagram can split into
three different main types: primitive nodes, LayoutPanes, and complex nodes such as controls.

Primitive Nodes
Among the primitive nodes are different shape types such as circles, rectangles, and lines. There
are, thanks to the 3D support of JavaFX, still primitive three-dimensional shapes like a box. All

FIGURE 3-5. Node class hierarchy

[javafx.scene.shape]
Shape

Primitives

[javafx.scene.layout]
Pane

[javafx.scene.layout]
BorderPane

[javafx.scene.layout]
FLowPane

Panes

[javafx.scene]
Node

[javafx.scene]
Parent

[javafx.scene.layout]
Region

[javafx.scene.control]
Control

[javafx.scene.control]
Button

[javafx.scene.control]
ComboBox

[javafx.scene.web]
WebView

[javafx.scene.canvas]
Canvas

[javafx.scene.shape]
Line

[javafx.scene.shape]
Rectangle

[javafx.scene.shape]
Box

[javafx.scene.image]
ImageView

[javafx.scene.chart]
Chart

[javafx.scene.media]
MediaView

[javafx.scene.shape]
Shape3D

03-ch03.indd 46 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 3: The Scene Graph 47

these nodes can be easily added to a scene graph. In the following example code, a rectangle is
added to the scene graph:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class SceneGraphApp extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 HBox hBox = new HBox();
 hBox.setAlignment(Pos.CENTER);
 hBox.getChildren().add(new Rectangle(50, 50, Color.YELLOW));
 Scene mySceneGraph = new Scene(hBox, 800, 600);
 primaryStage.setScene(mySceneGraph);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

As you can see, the shapes in the code are treated exactly as other nodes, in other words, like
controls. The use of these elements is not different from other examples such as buttons in the scene
graph. All the other elements that extend the Node class can be added in this way in the scene graph.

Using the scene graph even with primitives such as lines is one of the advantages of JavaFX
over other UI toolkits like Swing. All visual elements are real nodes in the scene graph, and
internally more complex components like buttons are composed by using a set of primitive shapes.

As you can see in Figure 3-6, a RadioButton control is internally composed from different
nodes. To display the text information on the radio button, a LabeledText object is used. This is

FIGURE 3-6. Composition of a RadioButton

StackPane RadioButton control

StackPane LabeledText

03-ch03.indd 47 5/22/14 3:55 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

48 Mastering JavaFX 8 Controls

a derivative of the javafx.scene.shape.Text class and mainly used in the skin of controls.
The selection circle of the radio button is created by two nested StackPanes. These StackPanes are
styled by CSS to get the specific look shown here. The individual nodes will be styled and laid out
by the radio button skin. This special functionality will be explained in Chapters 9 and 10. In Swing,
an inner canvas is used in which pixel graphics are painted to define the visual representation of a
component. You won’t find this technology in JavaFX nodes.

NOTE
JavaFX contains a special node type called Canvas. This node
provides paint functionality like you may know from Swing and
Java2D, but the Canvas class is never used internally in JavaFX nodes.
Here, CSS and other node types such as shapes are always used. The
Canvas class will be described in Chapter 7.

LayoutPanes
The LayoutPanes category of nodes contains all panes. These classes are responsible for the
layouts and therefore the positioning of child components. I’ll briefly describe the class hierarchy
of the panes: Each node that needs to encapsulate a set of child nodes needs to extend the
javafx.scene.Parent class. This class provides only the ability to wrap any type of node. As a
next step, the javafx.scene.layout.Region class defines the Region type that is a resizable
Parent class that can be styled using CSS. The Parent and Region classes can both contain
a set of children. The children of a parent are defined as an ObservableList<Node>.
Neither the Parent nor Region class provide public methods to change its children. The
javafx.scene.layout.Pane class adds this feature. While the Parent class defines
the getChildrenUnmodifiable() method that returns a read-only list of all children, the Pane
class defines a getChildren() method that returns a modifiable list of children. Therefore, all
default layout containers in JavaFX, such as HBox or VBox, extend the Pane class, and developers
can add child nodes to them by calling pane.getChildren().add(myButton), for example.
All controls such as Button controls inherit from the Region class because they need to hold
and lay out some primitive shapes that are needed to visualize the button. But developers can
never easily add new nodes to a button. By using the descried class hierarchy, it will be more
difficult for developers to use some of the node types in a wrong way.

All the nodes that implement different layouts to align its children extend the Pane class.
Instances of these classes should be used when all the controls inside a scene graph need to be
laid out. In the previous examples, you already saw two pane types: HBox and VBox. Table 3-3
describes the various layout panes.

Some panes, such as the HBox or FlowPane, can be easily used in code. Others, such as the
AnchorPane, are flexible, and therefore they need more configuration in code to create a special
layout. As a best practice, you should create these layouts in Scene Builder. When using Scene
Builder, you create an FXML file that describes the layout. (FXML will be discussed in the “FXML”
section, and an example with a complex layout that is created in Scene Builder will be shown.) To
achieve the desired layout structure, you can nest different containers within a JavaFX application.
The first demo application in this chapter wrapped a VBox inside an HBox to create a special
screen layout, for example. As you will see later, it is easy to create your own LayoutPanes, too,
but doing so requires knowledge about the internal layout mechanism of JavaFX.

03-ch03.indd 48 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 3: The Scene Graph 49

Complex Nodes
All other classes that extend the Node class are components that fall into the complex node
category. The largest part of this group includes the controls such as buttons, labels, and tables.
These all extend the Control class. Controls have a lot of features; you can simply change their
style and behavior or add a tooltip, for example. I will discuss the different features of controls in
more depth in the following chapters. In addition to them, there are some other special nodes
such as WebView, Canvas, and Chart. Table 3-4 describes these components.

Class Description
AnchorPane By using this pane, developers can define anchors to the top, bottom, left

side, or center of the layout for each child node.
BorderPane This pane arranges its child components in top, bottom, right, left, and

center regions.
FlowPane All child nodes will be placed in a horizontal or vertical sequence that

wraps at the edge of the pane.
GridPane This pane uses a layout that is based on rows and columns that can be

defined in a flexible way.
HBox All child components will be placed horizontally in a single row.
StackPane This pane places its content nodes in a back-to-front single stack where

all children will overlap each other.
TextFlow This is a special pane to create rich text by placing all child nodes in a

flow that has the same behavior as a text flow.
TilePane All content nodes will be placed in uniformly sized layout cells or tiles.
VBox All child components will be placed vertically in a single column.

TABLE 3-3. Overview of Pane Classes

Node Description
MediaView This is a component that shows multimedia content such as videos.
ImageView This is a component that renders an image onscreen.
Canvas This is a canvas component that provides a canvas API that matches the

HTML5 canvas API. An application can paint directly into the canvas.
SwingNode By using this node, you can add Swing components to the scene graph.
WebView This node can show HTML content onscreen. Internally, WebKit is used to

render the HTML view. By using WebKit, JavaScript and CSS are supported too.
Chart JavaFX provides different chart types to visualize business data. The Chart

class is the superclass of all these chart types. Some examples are pie and bar
chart diagrams.

TABLE 3-4. Special Components in JavaFX

03-ch03.indd 49 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

50 Mastering JavaFX 8 Controls

Node Basics
As mentioned, all components that can be added to a scene graph extend the Node class. This
class offers a set of properties and methods. Table 3-5 contains an overview of the class properties
that can be useful while working with the scene graph.

Property Type Description

blendMode ObjectProperty<BlendMode> The blend mode that defines
how a node will be blended
into the scene behind it. By
default, the SRC_OVER mode
will be used. Figure 3-7 (at
the end of this table) shows a
rendered outcome for some
different blend modes.

boundsInLocal ReadOnlyObjectProperty<Bounds> Defines the bounds of the
node in its untransformed
local coordinate space.
The layout of nodes and all
specific properties will be
discussed in Chapter 4.

boundsInParent ReadOnlyObjectProperty<Bounds> Defines the bounds of
the node that includes its
transformation.

cache BooleanProperty Defines whether bitmap
caching should be used for
the node.

cacheHint ObjectProperty<CacheHint> Defines a hint that
can be used to set the
bitmap-caching mechanism
of a node.

cursor ObjectProperty<Cursor> Defines the mouse cursor of
the node.

depthTest ObjectProperty<DepthTest> Defines whether depth testing
is used. This is used for 3D
rendering.

disable BooleanProperty Defines whether the node
is disabled. Other than the
disabled property, this one
will contain only the state of
this concrete node without its
parent disabled state.

TABLE 3-5. Properties of the Node Class

03-ch03.indd 50 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 3: The Scene Graph 51

TABLE 3-5. Properties of the Node Class (continued)

Property Type Description

disabled ReadOnlyBooleanProperty Defines whether the node is
disabled. A disabled node
will normally be rendered
in a different way and does
not receive mouse or key
events. A node is disabled if
its disabled property is set to
true or if its parent node in
the hierarchy is disabled.

eventDispatcher ObjectProperty<EventDispatcher> Specifies the event dispatcher
of this node.

focused ReadOnlyBooleanProperty Is true if the node is the
focused node inside the
scene.

focusTraversable BooleanProperty Defines whether the node
is part of the focus traversal
cycle. If this property is true,
the focus can be moved to
the node by using the default
key combinations.

hover ReadOnlyBooleanProperty Specifies a read-only flag that
defines whether the node
is in hover mode. This will
normally happen if the mouse
cursor is over the node. This
flag will normally be used for
skinning issues.

id StringProperty Specifies the ID of the node.
The ID can be used to find
the node inside the scene
graph and should be unique.

layoutBounds ReadOnlyObjectProperty<Bounds> Specifies the rectangular
bounds of the node. The
layout of nodes and all
specific properties will be
discussed in Chapter 4.

layoutX DoubleProperty Defines the x-coordinate of
the node’s translation for the
purpose of layout.

03-ch03.indd 51 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

52 Mastering JavaFX 8 Controls

Property Type Description

layoutY DoubleProperty Defines the y-coordinate of
the node’s translation for the
purpose of layout.

localToParentTransform ReadOnlyObjectProperty<Transform> Defines the affine transform
that holds the computed
local-to-parent transform.
Transformations will be
discussed in Chapter 4.

managed BooleanProperty Defines whether the layout of
the node will be managed by
its parent.

mouseTransparent BooleanProperty Defines whether the node is
transparent to mouse events.

nodeOrientation ObjectProperty<NodeOrientation> Defines the orientation of the
visual output. In an Arabic or
Hebrew world, visual data
flows from right to left, for
example.

opacity DoubleProperty Defines the transparency
of a node. If the property is
set to 0, the node will be
transparent.

parent ReadOnlyObjectProperty<Parent> Defines the parent of this
node. If a node is in a scene
graph, this property defines
the parent node.

pickOnBounds BooleanProperty Defines how the picking
computation is done. If
set to true, picking will be
computed by intersecting
with the bounds of the
node. Otherwise, it will be
computed by intersecting
with its geometric shape.

pressed ReadOnlyBooleanProperty Specifies the read-only flag
that defines whether the
node is in pressed mode. This
will normally happen if this
node is clicked. This flag will
normally be used for skinning
issues.

TABLE 3-5. Properties of the Node Class (continued)

03-ch03.indd 52 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 3: The Scene Graph 53

TABLE 3-5. Properties of the Node Class (continued)

Property Type Description

rotate DoubleProperty Defines the angle of rotation
about the center of the
node. This is part of the
transformation of a node
and will be discussed in
Chapter 4.

rotationAxis ObjectProperty<Point3D> Defines the axis of rotation
of this node (described in
Chapter 4).

scaleX DoubleProperty Defines the factor by which
the node is scaled along
the x-axis (described in
Chapter 4).

scaleY DoubleProperty Defines the factor by which
the node is scaled along
the y-axis (described in
Chapter 4).

scaleZ DoubleProperty Defines the factor by which
the node is scaled along
the z-axis (described in
Chapter 4).

scene ReadOnlyObjectProperty<Scene> Defines the scene that the
node is part of. This property
has read-only access.

Style StringProperty Defines a string
representation of the used
CSS style.

translateX DoubleProperty Defines the x-value of the
translation that is added to
the node transform (described
in Chapter 4).

translateY DoubleProperty Defines the y-value of the
translation that is added to
the node transform (described
in Chapter 4).

translateZ DoubleProperty Defines the z-value of the
translation that is added to
the node transform (described
in Chapter 4).

03-ch03.indd 53 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

54 Mastering JavaFX 8 Controls

Property Type Description

visible BooleanProperty Defines whether the node
is visible. If set to false, the
node won’t be rendered on
the screen.

clip ObjectProperty<Node> Defines the clipping shape of
the node. This special node
is used to define the clipping
region that is applied to the
node.

effect ObjectProperty<Effect> Applies an effect on the node.

TABLE 3-5. Properties of the Node Class (continued)

FIGURE 3-7. Examples for the blendMode property

SRC_OVER MULTIPLY

ADD EXCLUSION

In addition to these properties, the Node class provides some helpful methods that can be
used to manage some basic tasks when working with nodes. Some of these methods are related
to the ones that are part of the Scene class. All the different methods of the Node class won’t be
shown here. For a complete overview, please refer to the JavaDoc or the source of the Node class.

03-ch03.indd 54 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 3: The Scene Graph 55

You can use the properties and methods in code to specify the characteristics of the used
nodes. As an example, the following application uses several of the mentioned properties to offer
some special functionality:

package com.guigarage.masteringcontrols;

import javafx.application.Application;
import javafx.geometry.NodeOrientation;
import javafx.geometry.Pos;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.CheckBox;
import javafx.scene.effect.Reflection;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class SceneGraphApp extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 HBox hBox = new HBox();
 hBox.setAlignment(Pos.CENTER);
 hBox.setSpacing(12);
 Button myButton = new Button("press me!");
 myButton.setId("myButton");
 myButton.setNodeOrientation(NodeOrientation.RIGHT_TO_LEFT);
 myButton.setOnAction(e -> changeNodeVisibility(myButton.getScene(),
 "myCheckbox"));
 CheckBox myCheckbox = new CheckBox("Hello!");
 myCheckbox.setId("myCheckbox");
 myCheckbox.setOpacity(0.7d);
 myCheckbox.setEffect(new Reflection());
 hBox.getChildren().addAll(myButton, myCheckbox);
 Scene mySceneGraph = new Scene(hBox, 800, 600);
 primaryStage.setScene(mySceneGraph);
 primaryStage.show();
 }

 private void changeNodeVisibility(Scene scene, String id) {
 Node node = scene.lookup("#" + id);
 if(node != null) {
 node.setVisible(!node.isVisible());
 }
 }

 public static void main(String[] args) {
 launch(args);
 }
}

03-ch03.indd 55 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

56 Mastering JavaFX 8 Controls

When running the application shown in Figure 3-8, a button and a check box will be part of
the scene graph. Compared to the previous applications, this one is a bit different. The check box
that is used has a reflection effect. Additionally, it is not completely opaque. The exclamation
point of the button text is on the left side. This is the result of the different node orientation
that is set on the node. In addition, both controls have a unique ID. By clicking the button, the
changeNodeVisibility(…) method is called. This method uses the lookup(…) method to
find the node with the given ID inside the scene graph. Because the lookup(…) method uses
CSS ID specification, a hash tag must be added as a prefix to the ID. (You can read more about
the specification at www.w3.org/TR/CSS21/syndata.html#value-def-identifier.) Clicking the button
changes the visibility of the check box.

NOTE
This example application has some new features that weren’t
mentioned until now. By calling the setOnAction(…) method on
the Button instance, a special event handler is set on the button. This
handler will be called whenever the button is clicked or, rather, used.
This can be triggered by different input events, such as a mouse click,
a pressed key, or a touch event, for example. Most of the controls that
are provided by JavaFX support event handlers for common use cases.
A ComboBox supports event handler instances to react to the behavior
of the selection pop-up, for example.

FXML
In this chapter, most of the example applications create a scene graph with some controls. In all the
examples, the layout of the application is simple and couldn’t be used in a business application. In
professional applications, you usually have complex layouts that need to interleave different panes
and would use, for example, the AnchorPane, which is considerably more complex than the
BorderPane or FlowPane. In the following code block, an AnchorPane is used to lay out two
buttons. The AnchorPane class offers some static methods to affect the layout behavior of child
components in an AnchorPane. Figure 3-9 shows the application view.

package com.guigarage.masteringcontrols;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;

FIGURE 3-8. The example application

03-ch03.indd 56 5/22/14 3:55 PM

http://www.w3.org/TR/CSS21/syndata.html#value-def-identifier

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 3: The Scene Graph 57

import javafx.scene.layout.AnchorPane;
import javafx.stage.Stage;

public class SceneGraphApp extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 AnchorPane anchorpane = new AnchorPane();
 Button buttonSave = new Button("Save");
 Button buttonCancel = new Button("Cancel");

 anchorpane.getChildren().addAll(buttonSave,buttonCancel);
 AnchorPane.setBottomAnchor(buttonCancel, 6.0);
 AnchorPane.setRightAnchor(buttonCancel, 6.0);
 AnchorPane.setTopAnchor(buttonCancel, 6.0);
 AnchorPane.setBottomAnchor(buttonSave, 6.0);
 AnchorPane.setLeftAnchor(buttonSave, 6.0);
 AnchorPane.setTopAnchor(buttonSave, 6.0);

 Scene mySceneGraph = new Scene(anchorpane, 800, 600);
 primaryStage.setScene(mySceneGraph);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

As you can see in the code, you need to add a number of lines to define a specific layout. The
more controls and panes you need in your application, the more complex the code becomes. In
Swing, this was a common problem too. By using WYSIWYG editors, developers often created
source code that defined the layout of Swing applications, but this produced additional problems,
including that the source code couldn’t be edited by hand or the editor couldn’t parse special
source code.

To combat these problems, JavaFX provides FXML. As mentioned in earlier chapters, FXML is
an XML-based language that can be used to provide the structure of user interfaces. You use it to
define the UI layout separate from the application logic of your code. It is highly recommended

FIGURE 3-9. The example application

03-ch03.indd 57 5/22/14 3:55 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

58 Mastering JavaFX 8 Controls

that you use FXML as often as possible. Using FXML and then using Scene Builder as a WYSIWYG
editor is a best practice when developing views for a JavaFX application. Even when you want to
create some modern and skinned views, you can use these tools. The following code shows the
FXML that defines an AnchorPane with the layout that was developed in Java source earlier:

<?xml version="1.0" encoding="UTF-8"?>
<?import java.lang.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<AnchorPane xmlns="http://javafx.com/javafx/8" xmlns:fx="http://javafx.com/fxml/1">
<children>
<Button text="Save" AnchorPane.bottomAnchor="6.0" AnchorPane.leftAnchor="6.0"
 AnchorPane.topAnchor="6.0" />
<Button text="Cancel" AnchorPane.bottomAnchor="6.0" AnchorPane.rightAnchor="6.0"
 AnchorPane.topAnchor="6.0" />
</children></AnchorPane>

I won’t discuss the definition and structure of FXML in depth, but you can see in this example
that you can define the layout parameters directly in FXML. Additionally, you can define
properties such as the text of buttons in FXML.

Once you create an FXML file, you need to load the file at runtime. This can be easily done
by using the FXMLLoader class:

package com.guigarage.masteringcontrols;

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.stage.Stage;

public class SceneGraphApp extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 Pane myPane = (Pane) FXMLLoader.load(getClass().getResource("layout.fxml"));
 Scene mySceneGraph = new Scene(myPane, 800, 600);
 primaryStage.setScene(mySceneGraph);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

In the code, note that getClass().getResource(…) is used to load the FXML file. This is a
best practice to load resources in Java. To do this, you need to place the layout.fxml file in the
same package as the class file, SceneGraphApp.class in this case. Incidentally, most modern Java
applications use a setup that was defined by Maven some years ago where all Java code is placed
in an src/main/java subfolder. It is recommend that you use this structure and don’t put
any resource files such as images, XML, or CSS files in this folder. For those resources, create an
src/main/resources folder. The getResource(…) method will still work if the resource is

03-ch03.indd 58 5/22/14 3:55 PM

http://javafx.com/javafx/8
http://javafx.com/fxml/1

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 3: The Scene Graph 59

located in the same package as the class but in a resources folder. Here is a working folder tree
for the given example:

project/
 src/
 main/
 java/
 com/
 guigarage/
 masteringcontrols/
 SceneGraphApp.java
 resources/
 com/
 guigarage/
 masteringcontrols/
 layout.fxml

Once this structure is created, most modern IDEs will identity the setup and add src/main/
java and src/main/resources automatically to the classpath. Sometimes, you need to set
up your environment by hand and add these folders to the classpath.

In addition to these features, FXML provides a way to interact with the UI and bind a
controller to the view. When defining an FXML file, you can define a controller class. The
following snippet shows how a controller can be specified in FXML:

…
<AnchorPane fx:controller="com.guigarage.masteringcontrols.ViewController"
 xmlns="http://javafx.com/javafx/8" xmlns:fx="http://javafx.com/fxml/1">
<children>
<Button fx:id="saveButton" onAction="#save" text="Save" AnchorPane.bottomAnchor="6.0"
 AnchorPane.leftAnchor="6.0" AnchorPane.topAnchor="6.0" />
<Button fx:id="cancelButton" text="Cancel" AnchorPane.bottomAnchor="6.0" AnchorPane.
 rightAnchor="6.0" AnchorPane.topAnchor="6.0" />
</children></AnchorPane>

In addition to the controller class that was added as a parameter to the AnchorPane, new
parameters are defined for the buttons in the FXML. The fx:id parameters define unique IDs
for the two buttons. By using these IDs, the buttons can be accessed in the controller class. This
can be done by using special annotations. Event handlers can be defined in FXML too. In the
definition of the save button, for example, an additional parameter is added. This onAction
parameter links to a method that is part of the controller. When the button is clicked, the
save method will be triggered. Furthermore, each controller class can define an initialize()
method. This method will be called when the controller is created and all annotated values are
injected. The following code shows how a controller that matches the FXML file may look:

package com.guigarage.masteringcontrols;

import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.scene.control.Button;

03-ch03.indd 59 5/22/14 3:55 PM

http://javafx.com/javafx/8
http://javafx.com/fxml/1

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

60 Mastering JavaFX 8 Controls

public class ViewController {

 @FXML
 private Button saveButton;

 @FXML
 private Button cancelButton;

 @FXML protected void save(ActionEvent event) {
 //TODO...
 }
 public void initialize() {
 //TODO...
 }

}

When the FXML file is loaded, a new instance of the controller class will be created
automatically, and all fields that have the @FXML annotation will be filled by injection.
Additionally, the save(…) method will be bound to the onAction event of the save button.

Summary
This chapter showed all the basic functionality of the scene graph. It covered the different types of
nodes and the basic usage of event handling, and it introduced FXML. Some of the basic features
of JavaFX were only briefly mentioned. For further information on the basics of JavaFX, review a
beginner’s guide to learning JavaFX, such as Quick Start Guide to JavaFX (McGraw-Hill, 2014).

After reading the chapter, you should now understand all the basic technologies and methods
for creating a simple JavaFX application with a default layout. The next chapters will define
special features such as the internal layout mechanism of JavaFX, which will help you create
special layout panes for applications.

03-ch03.indd 60 5/22/14 3:55 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: 61

CHAPTER
4

Laying Out and
Transforming Nodes
in the Scene Graph

04-ch04.indd 61 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

62 Mastering JavaFX 8 Controls

As shown in the previous chapter, the UI of a JavaFX application is based on a hierarchy of
nodes laid out and rendered in the scene graph. By using different interleaved panes, you
 can create a custom layout. In this chapter, you will take a deeper look at how panes, such

as the FlowPane control, work internally. Additionally, you will learn about the different
transformation possibilities of JavaFX.

Adding Some Transformations
The scene graph API offers the ability to transform a node or a group of nodes in a user interface.
JavaFX supports a set of transformations that can manipulate the position of node pixels in the
internal coordination system. For example, scaling a node will not change the defined location of
the node, but all the pixels will be transformed to the new position. If the scaling enlarges, node
pixels will be added. Internal algorithms are used to calculate the transformed pixels. JavaFX
supports five transformations, as listed here:

 ■ Scaling

 ■ Rotation

 ■ Translation

 ■ Shearing

 ■ Affine

Figure 4-1 shows samples of the first four transformation types. The Affine transformation is a
more general type that can be used to define any transformation between two affine spaces. The
Node class has some methods that can be used to define a transformation on it, and you can
combine transformations to rotate and scale a node, for example. Table 4-1 contains an overview
of the methods that can be used to define transformations on a node.

FIGURE 4-1. Transformation types

Rotation Scaling Translation Shearing

04-ch04.indd 62 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph 63

The following example, a pane wrapping two buttons, uses gesture events to apply different
transformations to an HBox. Because in the scene graph a transformation affects all nodes under
the transformed one, the buttons in this application will be transformed as well.

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class SceneGraphApp extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 HBox hBox = new HBox();
 hBox.setAlignment(Pos.CENTER);

Method Description

ObservableList<Transform>
 transformsProperty()

Defines a list of transform objects that will be
applied to the node

DoubleProperty translateXProperty() Defines the x-coordinate of the translation that is
added to the node transform

DoubleProperty translateYProperty() Defines the y-coordinate of the translation that is
added to the node transform

DoubleProperty translateZProperty() Defines the z-coordinate of the translation that is
added to the node transform

DoubleProperty scaleXProperty() Defines the factor by which the node and its content
is scaled about the center along the x-axis

DoubleProperty scaleYProperty() Defines the factor by which the node and its content
is scaled about the center along the y-axis

DoubleProperty scaleZProperty() Defines the factor by which the node and its content
is scaled about the center along the z-axis

DoubleProperty rotateProperty() Defines the angle of rotation around the node’s
center in degrees

ObjectProperty<Point3D>
 rotationAxisProperty()

Defines the axis of rotation of the node

ReadOnlyObjectProperty<Transform>
 localToParentTransformProperty()

A concatenation of all transforms in this node

ReadOnlyObjectProperty<Transform>
 localToSceneTransformProperty()

A concatenation of all transforms in this node’s
parents and in the node

TABLE 4-1. Overview of Methods of the Node Class to Handle Transformations

04-ch04.indd 63 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

64 Mastering JavaFX 8 Controls

 hBox.getChildren().add(new Button("Button 1"));
 hBox.getChildren().add(new Button("Button 2"));

 hBox.setOnZoom(e -> {hBox.setScaleX(hBox.getScaleX() * e.getZoomFactor());
 hBox.setScaleY(hBox.getScaleY() * e.getZoomFactor());});
 hBox.setOnRotate(e -> hBox.setRotate(hBox.getRotate() + e.getAngle()));

 Scene mySceneGraph = new Scene(hBox, 800, 600);
 primaryStage.setScene(mySceneGraph);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

Once you start the demo, you can transform the objects onscreen by simply using your
fingers. Most people will be familiar with this behavior from mobile devices. iOS, for example,
heavily uses this same behavior. Figure 4-2 shows an application after a gesture has occurred.

By zooming in on the buttons, you can see that the resolution of the controls won’t become
pixelated. All controls are composed of a set of primitives such as shapes and CSS information,
and since all these primitives are vector based, a control in JavaFX is scalable without any loss
of quality.

FIGURE 4-2. Transformed nodes

04-ch04.indd 64 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph 65

Running the Sample Without Gesture Support
The demo should be run on a device that supports gesture events. At the time of writing this
book, the Microsoft Surface tablet and MacBook will successfully run the demo. If you
don’t have a device that supports gestures and can run JavaFX, simply change the demo to
create a transformation experience that can be handled by using only the mouse. To do so,
add two sliders to the scene that will change the transformation values. (A slider is a default
JavaFX control that will be covered later in the book.) The following code snippet contains a
refactored application without gesture events:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Slider;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
public class TransformApp extends Application {
 public static void main(String[] args) {
 launch(args);
 }
 @Override
 public void start(Stage primaryStage) throws Exception {
 Button button = new Button("Hello World");
 BorderPane myPane = new BorderPane();
 myPane.setCenter(button);
 VBox menu = new VBox();
 Slider zoomSlider = new Slider(0.2, 4, 1);
 zoomSlider.valueProperty().addListener(e -> {button.setScaleX(zoomSlider.
 getValue());
 button.setScaleY(zoomSlider.getValue());});
 Slider rotateSlider = new Slider(-180, 180, 0);
 rotateSlider.valueProperty().addListener(e -> {
 button.setRotate(rotateSlider.getValue());
 });
 menu.getChildren().addAll(zoomSlider, rotateSlider);
 myPane.setBottom(menu);
 myPane.setBackground(null);
 Scene myScene = new Scene(myPane);
 myScene.setFill(Color.DARKORANGE);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("App");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
}

Once the application is running, you can change the value of the sliders to create the
transformations that will affect the location of the HBox and the buttons in the scene graph.

04-ch04.indd 65 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

66 Mastering JavaFX 8 Controls

Adding a Third Dimension
The first demo shown earlier in the chapter transforms the components along the x-axis and y-axis of
the scene graph. You might be familiar with this behavior from some other toolkits; even with Swing,
you can create this effect by using some special Java2D classes. But JavaFX supports the z-axis too. If
you have never worked with a 3D system, you can think about this axis as a third dimension that
adds depth to the surface. JavaFX’s Shape3D class is the base class for three-dimensional nodes.
By using these nodes, you can create a three-dimensional view, as shown in Figure 4-3.

The 3D support of JavaFX won’t be part of this book. For more information about the different
3D features of JavaFX (2D shapes, lights, textures) you should read the JavaDoc.

Extended Transformation APIs
As you have already seen, it’s easy to define some transformations for a node. As a next step,
you’ll look at the classes in the javafx.scene.transform package. These classes define the
different transformation types that can be applied to a node. As a base class, the abstract class
Transform defines the complete logic and mathematical material that is needed to render a

FIGURE 4-3. An application with three-dimensional elements

04-ch04.indd 66 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph 67

transformation. You’ll also find a set of classes that derive the Transform class in the javafx
.scene.transform package. These classes define different transformation types. Figure 4-4
shows an overview of the class hierarchy.

The Translate, Shear, Rotate, and Scale classes should be used when a simple
transformation will be executed. These classes are designed for the special requirements of the
different transformation types. If you want to create a general affine transformation, you can use
the Affine class. This class defines a general affine transformation, and all the other mentioned
transformations are special types of an affine transformation. An affine transformation can be
generally described as a transformation between two affine spaces that preserves points, straight
lines, and planes. Matrix operations can be performed on instances of the Affine class, allowing
this class to provide a better fit for complex transformations.

You can apply a transformation that is defined by the given classes to any node. The following
demo application shows the classes you can use:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.StackPane;
import javafx.scene.shape.Rectangle;
import javafx.scene.transform.Rotate;
import javafx.scene.transform.Shear;
import javafx.scene.transform.Transform;
import javafx.scene.transform.Translate;
import javafx.stage.Stage;
import java.util.List;
public class TransformDemo extends Application {
 private StackPane myPane;
 @Override

FIGURE 4-4. Class hierarchy of all transformation classes

EventTargetl Cloneablel

Transformc

Translatec Shearc Af�nec Rotatec Scalec ImmutableTransformc

04-ch04.indd 67 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

68 Mastering JavaFX 8 Controls

 public void start(Stage primaryStage) throws Exception {
 myPane = new StackPane();
 Transform rotation = new Rotate(45);
 Transform translate = new Translate(24, 24);
 Transform shearing = new Shear(0, 1);
 Button button1 = new Button("Alternative 1");
 button1.setOnAction(e -> useTransforms(rotation, translate));
 Button button2 = new Button("Alternative 2");
 button2.setOnAction(e -> useTransforms(translate, rotation));
 Button button3 = new Button("Alternative 3");
 button3.setOnAction(e -> useTransforms(rotation, shearing, translate));
 HBox menu = new HBox(button1, button2, button3);
 menu.setSpacing(6);
 menu.setAlignment(Pos.CENTER);
 menu.setPadding(new Insets(12));
 BorderPane mainPane = new BorderPane();
 mainPane.setCenter(myPane);
 mainPane.setBottom(menu);
 Scene myScene = new Scene(mainPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("App");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }

 public void useTransforms(Transform... transforms) {
 myPane.getChildren().clear();
 Rectangle origin = new Rectangle(40, 40);
 origin.setStyle("-fx-stroke: blue;" +
 "-fx-fill: darkgrey;");
 origin.setOpacity(0.5d);
 myPane.getChildren().addAll(origin);
 List<Transform> usedTransforms = FXCollections.observableArrayList();
 for(Transform transform : transforms) {
 usedTransforms.add(transform);
 Rectangle r = new Rectangle(40, 40);
 r.setStyle("-fx-stroke: blue;" +
 "-fx-fill: transparent;");
 r.setOpacity((double) usedTransforms.size() / (double) transforms.length);
 r.getTransforms().addAll(usedTransforms);
 myPane.getChildren().addAll(r);
 }
 }
 public static void main(String[] args) {
 launch(args);
 }
}

In the given example, three transforms (rotation, translate, and shearing) will be used to transform
a rectangle. The code is a little more complex than the demos shown earlier, so let’s look at it in
further depth.

The application consists of two panes. The first pane is a StackPane control that will be used to
visualize different transforms. The second pane is an HBox called menu. This pane contains buttons
that will handle the action of the application. Whenever one of these buttons is clicked, a list of

04-ch04.indd 68 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph 69

Transform instances will be executed on a rectangle, which will be shown in the StackPane
node. Each button defines a different order of the transforms, and the result of the rectangle will
be completely different. This depends on the order in which the transforms are executed on the
rectangle. To visualize the steps of transformations, the useTransform(…) method is used. This
method adds a rectangle for each transformation step onscreen. Figure 4-5 shows the different
results of the transforms. In the screen on the left, the rectangle is rotated, and after the rotation,
it is translated. The rotation always has the top-left corner of the rectangle as its center. A rotation
of a node affects its complete coordination system. Therefore, the translation in the left screen is
executed on a rotated coordination system. In the screen in the middle, the translation is performed
before the rotation of the rectangle. In both examples, the same transforms are executed on the
rectangle, but the resulting location of the rectangle is different because of the changed order of the
transforms. The rightmost screen adds a shearing to the list of transforms.

NOTE
In JavaFX, each transformation is represented by a matrix. Each point
in the node is multiplied by the matrix to determine its new position.
Matrix multiplication is not associative, so changing the order in which
the transforms are applied will produce different results, as shown in
Figure 4-5.

In most cases, a developer will use the transform methods that the Node class provides
directly. It is important to know that the transforms defined by these methods are executed in a
given order: translate, scale, and rotate. Additionally, it is important that the pivot of the rotation is
not the top-left corner of a node. When using the internal rotation of a node, the pivot point is
computed as the center of the node. Figure 4-6 shows an example of a node that is rotated by
using the setRotate(45) method. As you can see, the rotation pivot is a different one from in the
previous example. All additional transformations that are set on a node by using the transforms
property will be applied before the inner transforms of the node are executed. Whenever both
types of transformation are mixed, developers have to know this order to avoid any unwanted
behavior. It is not necessary to mix the different approaches. As already mentioned, it is a best
practice to use the internal methods of a node to transform it.

FIGURE 4-5. Different transformation orders

04-ch04.indd 69 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

70 Mastering JavaFX 8 Controls

Laying Out Nodes
The earlier examples used panes to lay out groups of nodes in the scene graph. You can also use
the transformation of nodes to lay out nodes; however, as a best practice, you should use panes to
lay out all the nodes of an application. The transform features are best for defining special behavior,
such as that used in animations, for example. Or, an important control can scale or rotate when the
mouse button hovers above it to create a better user experience. Still, all these nodes need to be
laid out in a pane before a transformation affects them.

In the previous chapters, the Pane class and some concrete implementations such as the
StackPane were shown. Figure 4-7 shows a short overview of the class hierarchy. The four

FIGURE 4-6. A simple rotation

FIGURE 4-7. Class hierarchy of panes

Nodec

Panec

Parentc

Regionc

StackPanec BorderPanec AnchorPanec FlowPanec

04-ch04.indd 70 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph 71

pane types (StackPane, BorderPane, AnchorPane, and FlowPane) that are shown in the figure
are only examples.

JavaFX provides a large set of default implementations that can be used to lay out an application.
While these default implementations meet many needs, developers may require a special layout that
can’t be created by using these default implementations. In these situations, you can create a custom
pane. The following examples show how to define a custom layout with JavaFX and how the layout
algorithms of JavaFX behave internally.

Creating a Custom Pane
To create a pane that lays out its children with a special algorithm, you need a new class that is a
subclass of the Pane class. In the following example, a special layout is needed that sorts all child
nodes by the preferred width of the node. It should act like an HBox, but all nodes should appear
in order of their width instead of the default child order. The following code block shows how a
custom pane that implements this feature should look in a first iteration:

package com.guigarage.masteringcontrols;
import javafx.geometry.HPos;
import javafx.geometry.VPos;
import javafx.scene.Node;
import javafx.scene.layout.Pane;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class SortedPane extends Pane {
 @Override
 protected void layoutChildren() {
 List<Node> sortedChildren = new ArrayList<>(getChildren());
 Collections.sort(sortedChildren, (c1, c2) -> new Double(c1.prefWidth(-1)).
 compareTo(new Double(c2.prefWidth(-1))));
 double currentX = 0;
 for(Node c : sortedChildren) {
 double width = c.prefWidth(-1);
 double height = c.prefHeight(-1);
 layoutInArea(c, currentX, 0, width, height, 0,HPos.CENTER, VPos.CENTER);
 currentX = currentX + width;
 }
 }
 @Override
 protected double computePrefHeight(double width) {
 double maxHeight = 0;
 for(Node c : getChildren()) {
 maxHeight = Math.max(c.prefHeight(-1), maxHeight);
 }
 return maxHeight;
 }
 @Override
 protected double computePrefWidth(double height) {
 double width = 0;
 for(Node c : getChildren()) {
 width = width + c.prefWidth(-1);
 }
 return width;
 }

04-ch04.indd 71 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

72 Mastering JavaFX 8 Controls

 @Override
 protected double computeMaxHeight(double width) {
 return computePrefHeight(width);
 }
 @Override
 protected double computeMaxWidth(double height) {
 return computePrefWidth(height);
 }
 @Override
 protected double computeMinHeight(double width) {
 return computePrefHeight(width);
 }
 @Override
 protected double computeMinWidth(double height) {
 return super.computePrefWidth(height);
 }
}

As you can see, there are two kinds of methods that need to be overridden: the
layoutChildren(…) method and all the methods that compute the size of the pane. Let’s take a
look at all the compute …(…) methods first. Most developers who have worked with UI toolkits
know the three different sizes that can be defined for a component: minimum, maximum, and
preferred. In JavaFX, all of these types are supported, and the scene graph API offers methods to
calculate the width and height of these sizes. A great benefit of these methods is that you can
calculate the width depending on the height, and vice versa. I’ll cover this further a bit later, but
let’s first consider the simple calculations that don’t depend on each other. All the nodes that are
wrapped in the pane should fit in its bounds. To do so, you calculate the preferred width and
height of the pane using the methods computePrefHeight(…) and computePrefWidth(…).
Because all child nodes should be ordered in a horizontal direction, the preferred height of the
pane is equal to the height of the highest child node. This is done in the computePrefHeight(…)
method by simply iterating over all the children and finding the maximum height with the help of
Math.max(…). The preferred width of the pane is equal to the sum of all the child nodes’ widths.
By calculating this, the preferred height of the pane is also calculated. These values are needed to
lay out the parent region of the pane once it is added to a scene graph. Each pane in JavaFX should
use the calculated sizes (maximum, minimum, and preferred) to calculate its own size. In the given
example, you want the pane to always be as big as its children. To achieve this, you can simply
override the computeMin …(…) and computeMax…(…) methods by returning the preferred size.
Other pane implementations, such as the StackPane, use Double.MAX_VALUE to define the
maximum size. Here, the pane can be bigger than its children, for example.

Once all these sizes are calculated, you need the layout of the child nodes. This happens in
the layoutChildren() methods that can be overridden by a custom pane. In this example,
you create a sorted list of all child nodes and then define the bounds of them. Here, you use the
preferred size of a child node and calculate only the X position of the nodes. By doing this, all
nodes will appear in a sorted line. To place a node in a pane or region, you can use the
layoutInArea(…) method, which has a default implementation to define the bounds of a child.
You will take a deeper look at this mechanism later in the chapter. First, you need to know only
the first five parameters of this method: the child nodes and its calculated bounds that are defined
by its x-position, y-position, width, and height. For the last three parameters, default values are
used here.

04-ch04.indd 72 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph 73

After you define the SortedPane class, you can simply use it in an application. The following
code defines a demo application that uses the SortedPane class. Figure 4-8 shows how the
example should look onscreen.

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.stage.Stage;
public class LayoutDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 SortedPane myPane = new SortedPane();
 myPane.getChildren().add(new Button("Hello World"));
 myPane.getChildren().add(new Button("Long Text.............."));
 myPane.getChildren().add(new Button("short"));
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

As you can see in Figure 4-8, all child nodes of the SortedPane appear in a sorted order
depending on its visual width. The given example contains a good overview of the basic methods
that need to be known to create a custom Pane class, but the layout API of JavaFX offers many
more possibilities. In a professional application, the shown mechanisms are not enough to define
a pane that fits completely into any JavaFX application. By default, JavaFX provides properties to
define the padding and insets of a pane. Additionally, a border can be set to a pane. This border
should not hide the underlying child nodes. To strictly follow all the given definitions that are part
of the JavaFX layout API, you will need the information in the next section.

FIGURE 4-8. Visual result of the SortedPane demo

04-ch04.indd 73 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

74 Mastering JavaFX 8 Controls

The Visual Structure of a Region
As stated earlier, each pane and control in JavaFX extend the Region class. This class defines some
special properties and behaviors of how it appears onscreen. You need to know these features to lay
out custom controls and panes in the right way. These definitions are not reinvented by JavaFX,
though. The CSS3 specification of the World Wide Web Consortium (W3C) for backgrounds and
borders is used internally. You can find the complete specification at www.w3.org/TR/2012/CR-css3-
background-20120724/.

As defined in the specification, a region contains a border area and a padding area for
decoration, as shown in Figure 4-9. The insets of a region are defined as a union of these two
areas. All child nodes of a region should be laid out inside the content area. The margin that is
shown in Figure 4-9 can be used by panes. The HBox, for example, has the static method
setMargin(…) to define a margin for a child node inside an HBox instance.

All custom panes and controls should use this specification. If you provide custom panes in a
third-party library, for example, developers who use the panes normally will expect the described
behavior. The SortedPane class that was created earlier doesn’t use the given insets when laying

Floating-Point Bounds
Developers who have worked with the Swing or AWT toolkit should notice one big difference
in JavaFX: All properties that define the bounds of a node are defined as double. The methods
of JComponent have their historical background in AWT. At the time of implementation, no
one thought about rectangles that were arranged between pixels and were drawn with
antialiasing. The JavaFX method provides this functionality, and once transformation comes
into play, everyone should understand why this is essential. By using double values, you can
define bounds that don’t fit into the pixel-based grid that is forced by a monitor, for
example. In JavaFX, the size of a component can be defined by using floating-point bounds,
as shown in this illustration.

4

6

4,7
5,105

3

8

A

B24 px2

All the rectangles that are shown in the image have a region of 24 pixels when they are
rendered onscreen without a scaling transform. The first two rectangles could be defined in
Swing too. But the third rectangle is defined with floating-point values. This can be done only
in JavaFX.

When a node is rendered, the bound will snap to pixels. This is handled by the
snapToPixel property that is defined in the Region class. This Boolean property is set
true by default and will adjust the position, spacing, and size of all children of the node to
pixel boundaries. Once this property is set to false, a fractional alignment is used, which
may lead to “fuzzy-looking” borders.

04-ch04.indd 74 5/22/14 3:57 PM

http://www.w3.org/TR/2012/CR-css3-background-20120724/
http://www.w3.org/TR/2012/CR-css3-background-20120724/

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph 75

out all child nodes or computing the size of the pane. To fit in the defined specifications, some
additions are needed. The following code contains a new version of the SortedPane that
internally uses the border and padding insets for calculation:

package com.guigarage.masteringcontrols;
import javafx.beans.property.DoubleProperty;
import javafx.beans.property.SimpleDoubleProperty;
import javafx.geometry.HPos;
import javafx.geometry.VPos;
import javafx.scene.Node;
import javafx.scene.layout.Pane;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class SortedPane extends Pane {

 @Override
 protected void layoutChildren() {
 List<Node> sortedChildren = new ArrayList<>(getChildren());
 Collections.sort(sortedChildren, (c1, c2) -> new Double(c1.prefWidth(-1)).
 compareTo(new Double(c2.prefWidth(-1))));
 double currentX = getInsets().getLeft();
 for(Node c : sortedChildren) {
 double width = c.prefWidth(-1);
 double height = c.prefHeight(-1);
 layoutInArea(c, currentX, getInsets().getTop(), width, height, 0,HPos.
 CENTER, VPos.CENTER);
 currentX = currentX + width;
 }
 }

 @Override
 protected double computePrefHeight(double width) {
 double maxHeight = 0;
 for(Node c : getChildren()) {
 maxHeight = Math.max(c.prefHeight(-1), maxHeight);

FIGURE 4-9. Areas of a region

Margin
Border

Padding

Content

04-ch04.indd 75 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

76 Mastering JavaFX 8 Controls

 }
 return getInsets().getTop() + getInsets().getBottom() + maxHeight;
 }
 @Override
 protected double computePrefWidth(double height) {
 double width = 0;
 for(Node c : getChildren()) {
 width = width + c.prefWidth(-1);
 }
 return getInsets().getLeft() + getInsets().getRight() + width;
 }
 @Override
 protected double computeMaxHeight(double width) {
 return computePrefHeight(width);
 }
 @Override
 protected double computeMaxWidth(double height) {
 return computePrefWidth(height);
 }
 @Override
 protected double computeMinHeight(double width) {
 return computePrefHeight(width);
 }
 @Override
 protected double computeMinWidth(double height) {
 return computePrefWidth(height);
 }
}

As mentioned earlier, the insets property of a region is a union of the border area and the
padding area. Therefore, this property can be used to calculate the content area of the SortedPane.
All child nodes of the pane will now be rendered inside this area. The size of the border and the
custom padding of the pane are added to the calculation. In the computePrefHeight(…) and
computePrefWidth(…) methods, the insets property is used to calculate the preferred size. The
particular values of the property (top/bottom for the height and left/right for the width) are added to
the earlier calculated values. As a result, the pane will be as big is its content in union with the
border and padding. In the layoutChildren() method, the insets property is used too. The
y-position of all components is equal to the height of the insets area, and the x-position of the first
child node is equal to the width of the left insets. In JavaFX, different values can be defined for the
top, bottom, right, and left of the padding or the border. You can have a border that has a thickness
of 3 pixels on the left side and 20 pixels on the right side, for example.

Before you look at the visual result of the SortedPane, you need to implement one
additional feature. In the first demo, all child nodes are rendered without any spacing between
them. This should be variable. To do so, a spacing property is needed. The property API was
mentioned earlier in this book, and some properties have already been used in the examples, but
this is the first point where a custom property is added to a class. The following example shows
the final version of the SortedPane. Here, a DoubleProperty is added to define the spacing
between all child components. The property is defined because it is a best practice in JavaFX. All
internal classes of JavaFX define properties, as shown in this example.

package com.guigarage.masteringcontrols;
import javafx.beans.property.DoubleProperty;
import javafx.beans.property.SimpleDoubleProperty;

04-ch04.indd 76 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph 77

import javafx.geometry.HPos;
import javafx.geometry.VPos;
import javafx.scene.Node;
import javafx.scene.layout.Pane;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class SortedPane extends Pane {
 public SortedPane() {
 super();
 }
 public SortedPane(double spacing) {
 this();
 setSpacing(spacing);
 }
 public final DoubleProperty spacingProperty() {
 if (spacing == null) {
 spacing = new SimpleDoubleProperty(0);
 }
 return spacing;
 }
 private DoubleProperty spacing;
 public final void setSpacing(double value) { spacingProperty().set(value); }
 public final double getSpacing() { return spacing == null ? 0 : spacing.get(); }
 @Override
 protected void layoutChildren() {
 List<Node> sortedChildren = new ArrayList<>(getChildren());
 Collections.sort(sortedChildren, (c1, c2) -> new Double(c1.prefWidth(-1)).
 compareTo(new Double(c2.prefWidth(-1))));
 double currentX = getInsets().getLeft();
 for(Node c : sortedChildren) {
 double width = c.prefWidth(-1);
 double height = c.prefHeight(-1);
 layoutInArea(c, currentX, getInsets().getTop(), width, height, 0,HPos.
 CENTER, VPos.CENTER);
 currentX = currentX + width + getSpacing();
 }
 }
 @Override
 protected double computePrefHeight(double width) {
 double maxHeight = 0;
 for(Node c : getChildren()) {
 maxHeight = Math.max(c.prefHeight(-1), maxHeight);
 }
 return getInsets().getTop() + getInsets().getBottom() + maxHeight;
 }
 @Override
 protected double computePrefWidth(double height) {
 double width = 0;
 for(Node c : getChildren()) {
 width = width + c.prefWidth(-1);
 }
 double cumulatedSpacing = 0;
 if(getChildren().size() > 1) {
 cumulatedSpacing = (getChildren().size() - 1) * getSpacing();

04-ch04.indd 77 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

78 Mastering JavaFX 8 Controls

 }
 return getInsets().getLeft() + getInsets().getRight() + width +
 cumulatedSpacing;
 }
 @Override
 protected double computeMaxHeight(double width) {
 return computePrefHeight(width);
 }
 @Override
 protected double computeMaxWidth(double height) {
 return computePrefWidth(height);
 }
 @Override
 protected double computeMinHeight(double width) {
 return computePrefHeight(width);
 }
 @Override
 protected double computeMinWidth(double height) {
 return computePrefWidth(height);
 }
}

In addition to the property that is defined, getter and setter methods are defined to access the
double value of the property. The spacing value is used in the different methods just as when the
insets were added. The following application uses the final version of the SortedPane and adds
padding and spacing to the pane. Figure 4-10 shows how the application will look onscreen.

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.stage.Stage;
public class LayoutDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 SortedPane myPane = new SortedPane();
 myPane.setPadding(new Insets(24,24,24,24));
 myPane.setSpacing(12);
 myPane.getChildren().add(new Button("Hello World"));

FIGURE 4-10. SortedPane with padding and spacing

04-ch04.indd 78 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph 79

 myPane.getChildren().add(new Button("Long Text.............."));
 myPane.getChildren().add(new Button("short"));
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

Using Default Values for Size Calculation
In the demo, all methods to compute the minimum, maximum, and preferred sizes are overwritten.
However, this doesn’t need to be done in all cases. You can set a default value to all the shown
values by using methods such as setPrefHeight(…) or setMinWidth(…). Once a value
is set, it will be used instead of calculating a value with the help of the shown methods.
In addition, you can use constants to add flexibility: If the preferred width is set by using the
setPrefWidth(…) method, it can be simply unset by using the Region.USE_COMPUTED_SIZE
constant. After calling setPrefWidth(USE_COMPUTED_SIZE), the layout mechanism will
use the computePrefWidth(…) method again. If the minimum or maximum value should be
equal to the preferred one, you can use the Region.USE_PREF_SIZE flag. By passing this
flag to setMinWidth(…), the layout mechanism will never call computeMinWidth(…). Instead,
computePrefWidth(…) will be used. By using these flags, some of the methods of the
SortedPane class don’t need to be overwritten. The constructor of the class should simply include
the following code snippet:

setMaxWidth(USE_PREF_SIZE);
setMinWidth(USE_PREF_SIZE);
setMaxHeight(USE_PREF_SIZE);
setMinHeight(USE_PREF_SIZE);

Once this is done, you no longer need to overwrite the computeMinWith(…),
computeMinHeight(…), computeMaxWidth(…), and computeMaxHeight(…) methods.
As a result, the code will be much smaller. This effect can simply be negated by using the Region
.USE_COMPUTED_SIZE flag.

Using Properties in Custom Classes
In all custom classes, you should use the JavaFX property API. By doing this, developers get the
benefit of all the features, such as binding, that are part of the property API. At first sight, it is a lot
of code that needs to be added to a class, but when CSS or other special APIs come into play,
properties are needed. Also, in other UI toolkits such as Swing, a lot of code is added if
developers want to use values the right way. For example, if property change support is needed
in Swing, a PropertyChangeEvent needs to be fired in each setter. This isn’t needed in JavaFX,
thanks to the property API, which offers a complete set of default properties.

In the example, the SimpleDoubleProperty class is used. This class is the default
implementation for a property that holds a double value. The property instance offers read and
write access to the property. In addition to this class, a complete set of default implementations
is part of the API, such as SimpleStringProperty. JavaFX contains property classes for
all primitive data types. For all value types where no default implementation is defined, the

04-ch04.indd 79 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

80 Mastering JavaFX 8 Controls

SimpleObjectProperty<T> class can be used. This class uses generics to define the type of its
content. If only read access is allowed for a value, developers can use the ReadOnlyProperty
classes such as ReadOnlyStringProperty. To add perfect property support to the SortedPane
class, some additional changes are needed. Whenever the spacing property is set, the pane will
not automatically re-layout its content. To do so, the requestLayout() methods that start
a redo need to be called. This could be done by adding a listener to them, as shown in the
following code:

public SortedPane() {
 super();
 spacingProperty().addListener(e -> requestLayout());
 }

As a first step, this is okay and will work in all cases. But if you want to develop custom panes
and controls that follow all the best practices set by the default classes of JavaFX, you need to do
this in another way. As you can see in the spacingProperty() method, the instance of the
property will be created only when it is needed. As long as only the getSpacing() method is
called, for example, the property instance will never be created. This is done to protect resources.
A property instance contains some fields that will need memory when a new instance is created.
Additionally, a listener is created in the code snippet. This will allocate memory too. This can be
avoided by using the invalidated() method of the SimpleDoubleProperty class. This
method will be called whenever a new value is set to the property. By overwriting this method as
shown in the following code snippet, the requestLayout() method will be called whenever a
new spacing value is set. As a result, the property will be created only when it is needed.

public final DoubleProperty spacingProperty() {
 if (spacing == null) {
 spacing = new SimpleDoubleProperty(0) {
 @Override
 protected void invalidated() {
 super.invalidated();
 requestLayout();
 }
 };
 }
 return spacing;
 }

You can test the new behavior and the automatically reformatted layout with the following
demo. Here a slider control is added to change the spacing of the SortedPane instance at
runtime. Changing the value of the slider will have direct visual feedback because the spacing
between the child nodes of the SortedPane will change onscreen.

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Slider;
import javafx.scene.layout.VBox;

04-ch04.indd 80 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph 81

import javafx.stage.Stage;
public class LayoutDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 SortedPane myPane = new SortedPane();
 myPane.setPadding(new Insets(24,24,24,24));
 myPane.setSpacing(12);
 myPane.getChildren().add(new Button("Hello World"));
 myPane.getChildren().add(new Button("Long Text.............."));
 myPane.getChildren().add(new Button("short"));
 Slider slider = new Slider();
 slider.valueProperty().bindBidirectional(myPane.spacingProperty());
 VBox box = new VBox();
 box.getChildren().addAll(myPane, slider);

 Scene myScene = new Scene(box);
 primaryStage.setScene(myScene);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

Extended Internal Layout Mechanisms
The methods that compute the desired size of a region can handle the width-to-height ratio.
Additionally, the layoutInArea(…) method is used internally in the SortedPane example and
wasn’t described until now. Since I described the basic mechanisms of layout, I’ll discuss these more
specific aspects now. These mechanisms will help to create complex custom layout algorithms
in JavaFX.

Handling the Aspect Ratio of a Region
You will sometimes have a control or pane where the width depends on the height of the node, or
vice versa. This was a sorely missed feature in the Swing UI toolkit; in Swing, it was difficult to
create a dynamic label with line wrap. In a label that supports this behavior, the text will
automatically add a page whenever the maximum width of the label is reached. As a result,
the height of the label depends on its width. All text components in JavaFX support this behavior
because the JavaFX layout can handle the aspect ratio. This can be defined by adding more logic to
the methods that will calculate the minimum, maximum, and preferred sizes of a Region instance.
To do so, a parameter is defined in the method header. The computePrefWidth(double
height) method, for example, adds a height parameter. The method can then be used to
calculate a width that depends on the given height. The size of a region can have only one
dependency, of course. The height will depend on the width, or the width will depend on the
height. Both dependencies can’t logically be handled. To do that, you must define an additional
value in the Node class: content bias. This value defines the node’s resizing bias for layout
purposes. By default, the getContentBias() method returns null. This means there is no
defined ratio; –1 will be used for all parameters of the compute …(…) methods in this case. If the
getContentBias() method returns a vertical or horizontal orientation, a ratio is defined, and
concrete values are passed to the compute…(…) methods.

04-ch04.indd 81 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

82 Mastering JavaFX 8 Controls

Let’s think about a content bias that is defined as a horizontal orientation. In this case, the
height of a node depends on its width. When the node needs to have its layout updated, the
computePrefWidth(…) method will be called first. Here, –1 is passed to the method, and a
default width will be calculated. Based on the maximum, minimum, and preferred widths of the
node, the parent region will set a width that will be used. This calculated width will now be used
to define the height of the node. To do so, the computePrefHeigth(…) method is called with
the calculated width. The implementation of the method can calculate a preferred width that
fits the given height. This described behavior is used in the Label control of JavaFX to add page
layout, for example. To gain a better understanding of the mechanism, the following example will
use aspect ratio.

To show the usage of the content bias value, you will create a custom node. This class extends
the Region class and will always have a surface area of a given value. Because the surface area is
given, the width of the node depends on its height, or vice versa, depending on its content bias.
To show all different variations, the content bias of the node needs to be changeable too. The
following class implements the Region class that supports all the necessary features:

package com.guigarage.masteringcontrols;
import javafx.beans.property.DoubleProperty;
import javafx.beans.property.ObjectProperty;
import javafx.beans.property.SimpleDoubleProperty;
import javafx.beans.property.SimpleObjectProperty;
import javafx.geometry.Orientation;
import javafx.scene.layout.Region;

public class AreaRegion extends Region {

 private ObjectProperty<Orientation> contentBias;

 public final ObjectProperty<Orientation> contentBiasProperty() {
 if (contentBias == null) {
 contentBias = new SimpleObjectProperty<Orientation>(null) {
 @Override
 protected void invalidated() {
 super.invalidated();
 requestParentLayout();
 }
 };
 }
 return contentBias;
 }

 public final void setContentBias(Orientation value) { contentBiasProperty().
 set(value); }
 @Override
 public Orientation getContentBias() {
 return contentBias == null ? null : contentBias.get();
 }

 private DoubleProperty surfaceArea;

 public final DoubleProperty surfaceAreaProperty() {
 if (surfaceArea == null) {
 surfaceArea = new SimpleDoubleProperty(64000.0) {
 @Override

04-ch04.indd 82 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph 83

 protected void invalidated() {
 super.invalidated();
 requestLayout();
 }
 };
 }
 return surfaceArea;
 }
 public final void setSurfaceArea(double value) { surfaceAreaProperty().set(value);
}
 public final double getSurfaceArea() { return surfaceArea == null ? 64000.0 :
surfaceArea.get(); }
 @Override
 protected double computeMaxHeight(double width) {
 if (width < 0) {
 return Double.MAX_VALUE;
 } else {
 return getSurfaceArea() / width;
 }
 }
 @Override
 protected double computeMaxWidth(double height) {
 if (height < 0) {
 return Double.MAX_VALUE;
 } else {
 return getSurfaceArea() / height;
 }
 }
 @Override
 protected double computeMinHeight(double width) {
 if (width < 0) {
 return Double.MIN_VALUE;
 } else {
 return getSurfaceArea() / width;
 }
 }
 @Override
 protected double computeMinWidth(double height) {
 if (height < 0) {
 return Double.MIN_VALUE;
 } else {
 return getSurfaceArea() / height;
 }
 }
 @Override
 protected double computePrefHeight(double width) {
 if (width < 0) {
 return Math.sqrt(getSurfaceArea());
 } else {
 return getSurfaceArea() / width;
 }
 }
 @Override
 protected double computePrefWidth(double height) {
 if (height < 0) {
 return Math.sqrt(getSurfaceArea());

04-ch04.indd 83 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

84 Mastering JavaFX 8 Controls

 } else {
 return getSurfaceArea() / height;
 }
 }
}

With contentBias and surfaceArea, two additional properties are added to the class by
using the property API. The AreaRegion class overrides the getContentBias() methods and
returns the content bias that is defined by the included property. All compute…(…) methods that
are needed to calculate the size of the node are overridden. In this method, the aspect ratio is
defined. This can be easily done by adding an if-else statement to the code. When the internal
content bias is set to Orientation.VERTICAL, all methods that compute a width will be called
with a given height. Otherwise, the height is –1, and a default value can be used. Whenever the
content bias or the surface area is set, the parent region of the instance needs to be laid out. To do
this, the requestLayout() method is called in the invalidated() method of the properties.

The following application uses the AreaRegion class and adds some controls to change its
behavior:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.geometry.Orientation;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Slider;
import javafx.scene.layout.HBox;
import javafx.scene.layout.StackPane;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
public class AspectRatioDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 AreaRegion region = new AreaRegion();
 region.setContentBias(Orientation.VERTICAL);
 region.setStyle("-fx-border-width: 3;" +
 "-fx-border-color: black;" +
 "-fx-background-color: lightblue;");
 StackPane myPane = new StackPane();
 myPane.setPadding(new Insets(24));
 myPane.getChildren().add(region);
 Button verticalButton = new Button("Vertical");
 verticalButton.setOnAction(e -> region.setContentBias(Orientation.VERTICAL));
 Button horizontalButton = new Button("Horizontal");
 horizontalButton.setOnAction(e -> region.setContentBias(Orientation.
 HORIZONTAL));
 HBox buttonPane = new HBox(verticalButton, horizontalButton);
 buttonPane.setSpacing(12);
 Slider surfaceAreaSlider = new Slider(0, 640000.0, 64000.0);
 region.surfaceAreaProperty().bind(surfaceAreaSlider.valueProperty());
 VBox mainPane = new VBox(myPane, buttonPane, surfaceAreaSlider);
 Scene myScene = new Scene(mainPane);
 primaryStage.setScene(myScene);
 primaryStage.setWidth(800);

04-ch04.indd 84 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph 85

 primaryStage.setHeight(600);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

CSS is used in this example to define attributes that specify the way the AreaRegion is displayed.
The CSS string defines a black border and a blue background for the node. This is done here only to
render the AreaRegion onscreen in a special color. CSS will be explained later in the book.

When the application is started, the content bias of the AreaRegion can be changed by
two buttons. Additionally, the surface area can be set by a slider. Here, the application takes
advantage of the property API’s benefits by simply binding the surface area to the value of the
slider. Because this is a dynamic example, no screenshot is shown here. When running the demo
and changing some of its input values, you can see how the different content bias will affect the
layout of the AreaRegion inside the StackPane. By simply changing the size of the application
window, the bounds of the AreaRegion will change by always fitting the given surface area.

Additional Layout Mechanisms
All the mechanisms that decide which compute method will be used and how the content bias
will be interpreted are hidden by the layoutInArea(…) method. By using the method inside the
layoutChildren() method, developers can simply define an area in which a defined child
component should be laid out. Internally, the method will set the bounds of the child node by
calling Node.resize(double width, double height) and Node.relocate(double x,
double y). In most cases, a developer should use either the layoutInArea(…) or
positionInArea(…) method of the Region class. The difference between these two
methods is simple: positionInArea(…) never changes the size of a child node; it only sets
the location. In most cases, layoutInArea(…) will be used. To prevent the resizing of a
node, the Node.isResizable() method can be overwritten. As a result, a node can control
this behavior by itself. A button returns true here because the size of a button can change. A
rectangle returns false here. If a rectangle is defined with a given size, such as is done with
new Rectangle(40,40), it should not change its size.

The javafx.geometry Package
In older Java-based UI toolkits, geometrical definitions such as alignments or orientations were
defined by static constants in the code. Often, integer values were used. All these toolkits were
created before enumerations were added to the Java language. In JavaFX, all these definitions are
defined by enums in the javafx.geometry package. Some of them, such as the Orientation
enum, have already been used in the demo applications in this chapter. Table 4-2 describes the
enums that are part of this package.

In addition to the enums, this package defines some helper classes such as Dimension2D or
Point3D. Whenever it makes sense, these classes should be used in code.

Working with Constraints
When creating a more complex custom Pane class, as shown in the previous example, constraints
can be useful. Constraints describe the layout properties of a child node inside a specific pane
in order to define a more specialized layout of the node’s children. More complex panes such
as the GridPane make extensive use of this feature. A simpler example is the margin inside an

04-ch04.indd 85 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

86 Mastering JavaFX 8 Controls

HBox. To apply a custom margin on a child node of an HBox, you can call the static method
setMargin(Node child, Insets value) and define the child node and its special margin. An
instance of HBox will use this margin whenever the child node is laid out. Custom constraints can be
easily added to a pane by using the two static methods: Pane.setConstraint(Node node,
Object key, Object value) and Pane.getConstraint(Node node, Object key).

Combining Transforms and Layout
This chapter has shown two different JavaFX APIs to render nodes in the defined bounds on the
screen. Usually, the complete layout of nodes inside the scene graph is done by using the Region
and Pane classes. Additionally, transforms can be applied to a node. Furthermore, you can mix
these two APIs without any problems. The following example shows how a child of the
SortedPane can be transformed:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;

Enum Description States

HorizontalDirection Represents a horizontal
direction

LEFT, RIGHT

HPos Represents horizontal
positioning and alignment

LEFT, CENTER, RIGHT

NodeOrientation Represents the flow of
visual data

LEFT_TO_RIGHT, RIGHT_TO_LEFT,
INHERIT

Orientation Represents an orientation HORIZONTAL, VERTICAL

Pos Represents vertical and
horizontal positioning
and alignment

TOP_LEFT, TOP_CENTER, TOP_RIGHT,
CENTER_LEFT, CENTER, CENTER_RIGHT,
BOTTOM_LEFT, BOTTOM_CENTER, BOTTOM_
RIGHT, BASELINE_LEFT, BASELINE_
CENTER, BASELINE_RIGHT

Side Represents a side of a
rectangle

TOP, BOTTOM, LEFT, RIGHT

VerticalDirection Represents a vertical
direction

UP, DOWN

VPos Represents a vertical
positioning and alignment

TOP, CENTER, BASELINE, BOTTOM

TABLE 4-2. Geometrical Enums

04-ch04.indd 86 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 4: Laying Out and Transforming Nodes in the Scene Graph 87

import javafx.stage.Stage;
public class LayoutDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 SortedPane myPane = new SortedPane();
 myPane.setPadding(new Insets(12,12,12,12));
 myPane.setSpacing(8);
 myPane.setStyle("-fx-border-width: 3;" +
 "-fx-border-color: black;" +
 "-fx-background-color: lightblue;");
 Button transformedButton = new Button("Hello World");
 transformedButton.setTranslateX(24);
 transformedButton.setTranslateY(24);
 transformedButton.setRotate(12);
 myPane.getChildren().add(transformedButton);
 myPane.getChildren().add(new Button("Long Text.............."));
 myPane.getChildren().add(new Button("short"));
 StackPane pane = new StackPane();
 pane.getChildren().add(myPane);
 Scene myScene = new Scene(pane);
 primaryStage.setScene(myScene);
 primaryStage.setWidth(400);
 primaryStage.setHeight(140);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

In this application, a translation and rotation transform is defined for one of the buttons that is
wrapped in the SortedPane. Figure 4-11 shows how the application will be rendered onscreen.
As you can see, the Hello World button is transformed after the layout of the SortedPane is
done. Additionally, another feature of the scene graph is shown here: A child node can be
rendered outside the bounds of its parent. This isn’t possible in older UI toolkits such as Swing
where each container has a defined canvas and can’t render any content outside this canvas.

FIGURE 4-11. Mixing layout and transformations

04-ch04.indd 87 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

88 Mastering JavaFX 8 Controls

Because a container renders all its child components in Swing, any content that is not inside the
area of the canvas will be cut off on the screen because it is never rendered on it.

Accessing the Bounds of a Node
The bounds of a node are normally set by its parent. You can easily access these bounds by using
the getBoundsInLocal() method. Once a transform is applied on the node, the bounds
onscreen will change, but sometimes you want to access the bounds of a transformed node, so
you can use the getBoundsInParent() method. Figure 4-12 shows an example of a rectangle
that is transformed and the different results of the two methods.

Summary
Earlier chapters described the basic mechanism of node hierarchies in the scene graph, as well as
how simple applications can be created by using Scene Builder and default Pane classes. This
chapter went one step further and showed how you can create custom transformations and
layout. Most of the time, developers don’t need to create custom panes to lay out controls
onscreen, but it is important to know at least the basic mechanism of layout and how padding
and the border area can affect the bounds of nodes. Additionally, transformations can be helpful
when you need a special user experience or better feedback. Combined with animations,
transformations will help you create awesome applications with modern interactions. In addition,
the chapter described the internal mechanism of layout in JavaFX that you will need whenever
you create a custom pane or control. When custom controls are discussed later in this book, all
the content of this chapter will be important to understand.

FIGURE 4-12. Difference between getBoundsInParent() and getBoundsInLocal()

getBoundsInParent()

Control with
Transformation

(Translation and Scaling)

Laid-Out Control
Without

Transformation

getB
oundsInParent()

getBoundsInLocal()

getB
oundsInLocal()

04-ch04.indd 88 5/22/14 3:57 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: 89

CHAPTER
5

JavaFX Basic Controls

05-ch05.indd 89 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

90 Mastering JavaFX 8 Controls

JavaFX 8 provides a huge set of default controls that you can use to create modern desktop
applications. Because there are so many, it will take two chapters to cover all of them. This
chapter will cover the Control class and the basic controls that are part of JavaFX 8. In

addition, the chapter will demonstrate how the controls can be used and combined to create an
application. Lastly, the chapter will look at how to start changing the UI and behavior of these
controls. In Chapter 6, I’ll cover the more advanced controls.

The Control Class
All controls in JavaFX extend the abstract Control class. This class provides some default
features that are part of each control. For example, each control is a node, so each control can be
part of the scene graph. Figure 5-1 shows the dependency hierarchy of the Control class. The
diagram is not a comprehensive list of all the controls that extend the Control class; in addition
to the Button class shown here, several abstract classes extend the Control class and provide
basic functionality for special types of controls. The ButtonBase class is one example; it defines
basic functionality for a button-based control.

As you can see in Figure 5-1, the Control class extends the Region class. Because of the
class hierarchy, the Control class can control all the properties, such as the padding, of the
Region class. Each JavaFX control is composed of a set of nodes, so each control internally holds
a set of child nodes. When using default controls, developers don’t need to be aware of this
behavior, but a custom control often uses a set of shapes or other nodes. You will look at this in
more detail when I discuss custom controls in Chapter 10.

The Control class offers some properties that you can use to configure each control. Table 5-1
contains an overview of these properties. Some of them, like the skin property, are useful only
when you need a custom control or a special behavior. I will discuss these properties in more
detail later in the following chapters, but take a minute to review them now.

FIGURE 5-1. Simplified dependency hierarchy of controls

Nodec

Parentc

Regionc

Control

ScrollBarc Sliderc Buttonc CheckBoxc

c

TableViewc

05-ch05.indd 90 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 91

Controls in JavaFX are classified in two types: basic controls (for example, a button or a text
field) and complex controls (for example, a table or a tree). For now, it’s important to understand
basic controls before moving on to more complex commands in the next chapter.

Basic Controls
Most developers will be familiar with basic controls because most UI toolkits rely on these
controls. The basic controls in JavaFX include the following:

 ■ Button

 ■ CheckBox

 ■ Hyperlink

 ■ ToggleButton

 ■ RadioButton

 ■ Label

 ■ TextField

 ■ PasswordField

 ■ TextArea

 ■ ProgressIndicator

 ■ ProgressBar

 ■ Slider

Figure 5-2 shows a window that includes a sample of each of these Control classes. The
controls in JavaFX offer much greater potential than most other available toolkits such as Swing.
All Control classes contain properties that can be used to create individual forms of these
controls, and by setting these properties, you can easily change the font of a button or its text
alignment, for example. In addition, you can style the controls using CSS. These features allow
you to create a modern and interactive application with a custom look.

Property Type Description
contextMenu ObjectProperty<ContextMenu> Defines the context menu of the

control.
skin ObjectProperty<Skin<?>> Defines the skin of the control. This is

needed to create custom controls and
will be discussed in Chapter 6.

tooltip ObjectProperty<Tooltip> Defines the tooltip for this control.

TABLE 5-1. Properties of the Control Class

05-ch05.indd 91 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

92 Mastering JavaFX 8 Controls

Let’s first look at the interaction between controls by creating a demo application. The
following class defines the complete application:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.HPos;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.PasswordField;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

FIGURE 5-2. Basic controls

05-ch05.indd 92 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 93

public class SimpleControls extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 Label userLabel = new Label("User:");
 Label passwordLabel = new Label("Password:");
 TextField userNameField = new TextField();
 userNameField.setPromptText("username");
 PasswordField passwordField = new PasswordField();
 passwordField.setPromptText("password");
 Button button = new Button("Login");
 GridPane gridPane = new GridPane();
 gridPane.setHgap(6);
 gridPane.setVgap(6);
 gridPane.setPadding(new Insets(6));
 gridPane.add(userLabel, 0, 0);
 gridPane.add(userNameField, 1, 0);
 gridPane.add(passwordLabel, 0, 1);
 gridPane.add(passwordField, 1, 1);
 gridPane.add(button, 0, 2, 2, 1);
 GridPane.setHalignment(button, HPos.CENTER);
 Scene myScene = new Scene(gridPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("Login");
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

Most of the functions used in this application were covered in earlier chapters, but let’s take
a more detailed look at what is happening here: A GridPane is created as the root node of the
scene graph. This pane contains all the controls that are used in the application as child nodes.
To define a more professional look and give you a better understanding of the application, I used
a special property for the TextField instances, shown in Figure 5-3. Specifically, by using the
promptText property, I added a text hint to the text fields. This text will be shown when the fields
contain no custom text.

FIGURE 5-3. Login dialog created by basic controls

05-ch05.indd 93 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

94 Mastering JavaFX 8 Controls

With JavaFX, you can use the property API to add interactions to this application using a few
simple lines of code. Most attributes of the different Control classes are implemented as
properties, and therefore, you can create bindings between these properties. Let’s apply three
behaviors to this application: I’ll show how to disable the PasswordField until a username is
entered, disable the Login button until text is entered in both text fields, and display a short login
message after the Login button is clicked. The following code snippet implements the complete
behavior in only three lines of code:

passwordField.disableProperty().bind(userNameField.textProperty().isEmpty());

button.disableProperty().bind(userNameField.textProperty().isEmpty().
 or(passwordField.textProperty().isEmpty()));

button.setOnAction(event -> System.out.println("Login: " + userNameField.
 getText() + " / " + passwordField.getText()));

In the first line, the disable property of the PasswordField is bound to a Boolean
property that defines whether the TextField for the username is empty. Here, I use the
isEmpty() method of the StringProperty class. Most of the property classes in JavaFX
provide helpful methods like this one. The method creates a Boolean property that wraps the
empty state of the StringProperty. Whenever the internal string of the property is null or
empty, the created BooleanProperty will contain the Boolean value true. Otherwise, it will
contain false. The second line shows another feature of the property API. With the internal fluent
API, you can create a concatenation of two different Boolean properties by using the or(…)
method. This method is part of the BooleanProperty and can be used to combine different
Boolean properties. Additionally, the class offers functions such as not() or and(…). You can
find comparable methods in all property types in JavaFX. In the last line, I add an event handler to
the Button control. Once text is entered in both fields, the button can be clicked. With each
click, the event handler will handle the event and print the entered login information on the
console. The handler is defined as a lambda expression, so it can be written in one line of code.

NOTE
The helpful methods used in the code snippet to concatenate
Boolean properties or define properties that wrap the empty state
of a StringProperty are defined in the expression classes. JavaFX
contains these abstract classes for the data types Boolean, Double,
Float, Integer, List, Long, Map, Number, Object, Set, and
String. The specific property classes such as StringProperty
extend the corresponding expression class to provide these
functionalities. You can find all the expression classes in the javafx
.beans.binding package. In addition to these classes, the When
class and a set of binding classes for all given data types are part of
this package. With the use of these classes, JavaFX provides a fluent
API that can be used to create really complex and flexible bindings
with only a few lines of code.

The following sections explain the specific properties and characteristics of the controls I
identified as basic controls. The examples are intended to provide a general understanding of the
power of JavaFX controls. An exhaustive list of properties and methods is beyond our scope, but
can be found in the complete documentation available in the JavaDoc of JavaFX.

05-ch05.indd 94 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 95

Labeled Controls
All control types that can render labeled text on their surface extend the Labeled class. This class
defines properties that can be used to influence the rendering of text onscreen. The basic controls
that extend the Labeled class include the following:

 ■ CheckBox

 ■ Hyperlink

 ■ ToggleButton

 ■ RadioButton

 ■ Button

 ■ Label

Figure 5-4 shows the class hierarchy of these classes. Controls such as menu items and table
cells also extend the Labeled class, but are considered advanced controls. I’ll discuss these
further in Chapter 6.

You may have noticed that Labeled controls have been used in many of the examples so far.
Whenever I created a button or a label, I defined text for these controls. The String that was
passed to the controls as the visible text is used for the text property internally. In most cases,
the String was passed as a parameter of the constructor of these controls, but it can be easily
changed at any time by calling setText(…) or textProperty().set(…). Besides the text
property, the Labeled class defines a lot of properties to style the look of the text and the
complete control. Table 5-2 describes the properties that are part of the Labeled class.

FIGURE 5-4. Class hierarchy of labeled controls

Controlc

Labeledc

ButtonBasec Labelc

ToggleButtonc

RadioButtonc

ButtoncCheckBoxc Hyperlinkc

05-ch05.indd 95 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

96 Mastering JavaFX 8 Controls

Property Type Description
contentDisplay ObjectProperty<ContentDisplay> Defines the positioning of the

graphic node relative to the text.
A Labeled control can contain a
graphic node to render, such as an
icon next to the text.

alignment ObjectProperty<Pos> Specifies how the text and graphic
node should be aligned.

ellipsisString StringProperty Specifies the String that is displayed
for the ellipsis when text is truncated.
(… is the default value.)

font ObjectProperty Specifies the font to use for the text
in the control.

graphic ObjectProperty<Node> Specifies a node that is wrapped
in the control. This can be used
to show an icon or image, for
example.

graphicTextGap DoubleProperty Specifies the space between the
graphic and text.

labelPadding ReadOnlyObjectProperty<Insets> Specifies the padding around the
Labeled class’s text and graphic
content. This property can be set
only with CSS.

lineSpacing DoubleProperty Specifies the space in pixels
between the lines of the text if
wrapping is activated.

mnemonicParsing BooleanProperty Activates text parsing for a
mnemonic character and
determines a key combination.

text StringProperty Specifies the text that is displayed
in the control.

textAlignment ObjectProperty<TextAlignment> Specifies the behavior for lines of a
multiline text.

textFill ObjectProperty<Paint> Specifies the paint object that is
used to fill the rendered text.

textOverrun ObjectProperty<OverrunStyle> Specifies the behavior to use if the
text exceeds the available space.

underline BooleanProperty Defines whether the text is
underlined.

wrapText BooleanProperty Defines whether a text that exceeds
the width of the control will be
wrapped in another line.

TABLE 5-2. Properties of the Labeled Class

05-ch05.indd 96 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 97

The following code snippet uses a handful of these properties to define a custom button:

 Button button = new Button("This is a long text");
 button.setAlignment(Pos.BOTTOM_LEFT);
 button.setWrapText(true);
 button.setUnderline(true);
 button.setLineSpacing(12);
 button.setFont(new Font(24));
 button.setTextFill(Color.GREEN);

Rectangle rect = new Rectangle(24,24);
 rect.setFill(Color.BROWN);
 button.setGraphic(rect);
 button.setGraphicTextGap(42);
 button.setContentDisplay(ContentDisplay.RIGHT);

The button that is defined by the snippet can be used in any scene graph as shown in earlier
examples. As you can see in Figure 5-5, the button looks different from any buttons shown
previously. Both the font and the position of the text in the control have changed. I used the
wrapText property to split the text into two lines dynamically, showing the complete text within a
given width. The lineSpacing property defines the space between the lines, and the textFill
property defines a color to render the text onscreen. In Table 5-2, notice that the textFill
property is defined as ObjectProperty<Paint>. The Paint class is the superclass for colors,
gradients, or patterns that can be used in JavaFX to fill or draw a section.

Besides custom alignment and text style, the graphic property is used as an easy way to
define an icon or a custom visual representation of any state or data in a control. The graphic
property can hold any Node object. This node will be added to the Labeled control and rendered
in it. You can define the position of the graphic node with a set of properties, as already mentioned
in Table 5-2. In the example, I use a simple static rectangle as the graphic node of the button, but
thanks to JavaFX, there no limits here; each class that extends the Node class can be used for the
graphic property. For example, you could instead choose a custom image or even an MP4 movie
as the graphic object onscreen.

FIGURE 5-5. Customized button control

05-ch05.indd 97 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

98 Mastering JavaFX 8 Controls

NOTE
Most of the nodes in JavaFX are resolution independent and can be
scaled without a loss of information or pixelation. Whenever a pixel-
based image is used in JavaFX, though, this benefit is destroyed. Think
about an icon that has a size of 32×32 pixels, for example. When this
icon is defined as an image for the graphic property of a button, it
will be shown onscreen. When the button is scaled up by a transform,
the icon can look pixelated. Therefore, to avoid this behavior, you
need to use a vector-based icon. You could use the SVGPath class,
which is a node that extends the Shape class and renders a Scalable
Vector Graphic (SVG) path onscreen. (SVG is a standard specification
to define vector-based graphics.) With the help of this class, you can
create an icon as an SVG path that can easily be used in JavaFX.

Label
The Label class encapsulates text and shows it onscreen. Most of the functionality of the Label
control is implemented in the Labeled class, which is the superclass of the Label control. Thus,
the Label contains only one additional property: labelFor. The labelFor property is an
ObjectProperty<Node>, where the node can utilize the label to show its mnemonics.

ButtonBase and Button
The ButtonBase class provides basic functionality for all controls that act like buttons. This
means that a control can be in an “armed,” (or ”pressed”) state and fire an event. A button will be
armed when the mouse is pressed on it and will fire when the mouse is released. This abstract
class includes two properties: armed, which is a ReadOnlyBooleanProperty that indicates the
button has been armed, and onAction, which is an ObjectProperty<EventHandler<Action
Event>> that invokes the event handler when the button is fired. The following are the most
important methods:

 ■ void arm() Arms the button

 ■ void disarm() Disarms the button

 ■ void fire() Fires the button

Because the ButtonBase class extends Labeled, the text that is part of each control that extends
this class can be styled as mentioned earlier.

The most common implementation of the ButtonBase class is the Button control. This
control behaves exactly as you would expect and is well known to most developers. The button
is armed by pressing a mouse or a key, and it will fire an action whenever the mouse or key is
released. All this functionality is already implemented in the ButtonBase class, and the Button
class offers two additional Boolean properties:

 ■ cancelButton If cancelButton is set to true, the Button class will handle a
keyboard VK_ESC press if no other node in the scene consumes it. In this case, the
onAction event handler will be called.

 ■ defaultButton If defaultButton is set to true, the Button class will handle a
keyboard VK_ENTER press if no other node in the scene consumes it. In this case, the
onAction event handler will be called.

05-ch05.indd 98 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 99

CheckBox In most UI toolkits, a CheckBox control has a checked state and can be checked or
unchecked. Normally, this is shown with a tick mark. In JavaFX, a CheckBox control can have
two or three different states. The class provides a selected property that behaves exactly as in
other UI toolkits, but also contains an indeterminate property, which is the property that can
be used to define a third state of the CheckBox control. Table 5-3 shows the impact on the visual
representation of the control.

The CheckBox class extends the ButtonBase class, and therefore, an event handler for
action events can be added to it. This handler will be called whenever the state of the CheckBox
changes. The CheckBox class provides three Boolean properties to define its behavior and state,
shown here:

 ■ selected Indicates whether this CheckBox is checked

 ■ indeterminate Determines whether the CheckBox is in the indeterminate state

 ■ allowIndeterminate Defines whether indeterminate is used

Hyperlink The Hyperlink control is like a Label control that adds action support. Everyone
knows hyperlinks on the Web link one page to another. In JavaFX, the Hyperlink control looks
like an HTML hyperlink. It appears like a label that can be pressed and will become underlined
whenever the mouse is over it. Likewise, the JavaFX Hyperlink control changes its color after it is
pressed the first time. To do so, the control offers the visited property. This is the only property
that is implemented by the class. The Hyperlink control extends the ButtonBase class.

RadioButton and ToggleButton Besides the RadioButton control that most developers should
know from other UI toolkits, such as Swing, the ToggleButton is an alternative control in JavaFX
that can be used to define toggleable controls in an application. The RadioButton class extends
the ToggleButton class that inherits from the Control class. Both controls should be used
when a series of items is needed where only one item can be selected. Instances of ToggleButton
and RadioButton can be placed in groups. A group is represented by the ToggleGroup class and
needs to be created; by default, the controls are not in a group. You can define a toggleable

selected indeterminate Visual Representation

true false

false false

false true

true true

TABLE 5-3. States of a CheckBox

05-ch05.indd 99 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

100 Mastering JavaFX 8 Controls

control to a group by calling the setToggleGroup(…) method on the ToggleButton or
RadioButton. Whenever one control in a group is selected, all other controls will be automatically
deselected. Each of these two control types can hold custom user data. The user data of the
selected control can be received by the group. Here is a small example that shows how to create a
group with a RadioButton and a ToggleButton:

ToggleButton toggleButton = new ToggleButton("big value");
toggleButton.setUserData(1000.0d);

RadioButton radioButton = new RadioButton("small value");
radioButton.setUserData(0.1d);

ToggleGroup group = new ToggleGroup();
toggleButton.setToggleGroup(group);
radioButton.setToggleGroup(group);

Because both controls are part of the same group, only one of them can be selected. The
Control classes and the ToggleGroup provide properties to check the selection state and to
receive the user data of the selected control. The following code snippet shows how this can be
done in different ways:

System.out.println("ToggleButton selected: " + toggleButton.isSelected());
System.out.println("RadioButton selected: " + radioButton.selectedProperty().get());
System.out.println("Selected data: " + group.getSelectedToggle().getUserData());

NOTE
The ToggleGroup uses internally the javafx.scene.control
.Toggle interface. This interface defines all methods that are needed
to use a toggleable control in a ToggleGroup. ToggleButton and
RadioButton implement this interface. Besides these two controls,
some special controls for menus such as the RadioMenuItem class
implement this interface, too. If a custom control should be used
inside a ToggleGroup, the Control class needs to implement this
interface. By doing so, the control can be combined with any other
toggleable control in a ToggleGroup.

The RadioButton and ToggleButton have some differences in look and behavior. You
can see both controls in Figure 5-2 shown earlier. Unlike the RadioButton, the ToggleButton
is rendered like a button, but it’s not a command button like the Button control. When a
ToggleButton is selected, it is rendered like an armed button. The next difference between
these two controls is that a ToggleButton can be deselected. Unlike the RadioButton, a
ToggleButton can be unselected, which allows you to create a ToggleGroup where no item
needs to be selected. There are two properties implemented by the ToggleButton class:
selectedProperty, which is a Boolean property that indicates whether the toggle button is
selected, and toggleGroupProperty, which is an ObjectProperty<ToggleGroup> that
defines the ToggleGroup to which the ToggleButton belongs.

05-ch05.indd 100 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 101

Controls for Text Input
JavaFX contains a set of controls that can be used to enter text on the screen. These controls
extend the abstract class TextInputControl, which is the class that defines the basic properties
and functionalities for all controls that offer text input. All these controls support the possibility of
text selection, editing, and a caret. A caret is an indicator that is used to show the current position
within the text. Normally, a caret will be shown when the text input control is the one in focus,
and the position of the caret can usually be changed by the mouse or the arrow keys. Table 5-4
shows the properties that are offered by the TextInputControl class.

Using the caret allows you to position text within the containing text. To set the position of
the caret, the TextInputControl offers a number of methods. In addition, the basic class
includes methods for editing the contained text or selecting a sequence of the text. Table 5-5 gives
an overview of these methods.

The most common implementation of the TextInputControl class is the TextField class.
This control can wrap one line of text. The TextField control was used in earlier examples,
including the login sample at the beginning of this chapter (shown in Figure 5-2). The control
adds some properties to the basic ones that are defined in its superclass. Table 5-6 describes
these properties.

The PasswordField class extends TextField. A PasswordField masks the entered input
and can be used for login dialogs, among other things. In addition, cut and copy can’t be used in
a PasswordField. The PasswordField introduces no additional properties or methods.

Property Type Description
anchor ReadOnlyIntegerProperty This specifies the anchor position of the

text selection.
caretPosition ReadOnlyIntegerProperty This specifies the current position of

the caret.
editable BooleanProperty If this is false, the TextInputControl

cannot be edited by a user.
font ObjectProperty This specifies the font of the

TextInputControl.
length ReadOnlyIntegerProperty This specifies the length in characters

of the text.
promptText StringProperty This specifies the prompt text to display

if no text is defined.
selectedText ReadOnlyStringProperty This defines the characters in the

TextInputControl that are selected.
selection ReadOnlyObjectProperty

 <IndexRange>
This specifies the current selection.

text StringProperty This specifies the textual content of this
TextInputControl.

TABLE 5-4. Properties of the TextInputControl Class

05-ch05.indd 101 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

102 Mastering JavaFX 8 Controls

Method Description
void appendText(String text) Appends a sequence of characters to the content.
void backward() Moves the caret position backward.
void clear() Clears the text.
void copy() Copies the selected text to the system clipboard.
void cut() Cuts the selected text and copies it to the system

clipboard.
boolean deleteNextChar() Deletes the character that follows the current caret

position.
boolean deletePreviousChar() Deletes the character that precedes the current caret

position.
void deleteText(IndexRange
 range)

Removes a range of characters from the content.

void deleteText(int start,
 int end)

Removes a range of characters from the content.

void deselect() Clears the selection.
void end() Moves the caret to after the last character of the text.
void endOfNextWord() Moves the caret to the end of the next word.
void extendSelection(int
 pos)

Extends the selection to include the specified
position.

void forward() Moves the caret one position forward.
void home() Moves the caret to the beginning of the text.
void insertText(int index,
 String text)

Inserts a sequence of characters into the content.

void nextWord() Moves the caret to the beginning of the next word.
void paste() Copies the content of the system clipboard at the

caret position or replaces the selected text.
void positionCaret(int pos) Positions the caret to a specific position.
void previousWord() Moves the caret to the beginning of the previous word.
void replaceSelection(String
 replacement)

Replaces the selection with the given String. If
there is no selection, the text is inserted at the caret
position.

void replaceText(IndexRange
 range, String text)

Replaces a range of characters with the given text.

void replaceText(int start,
 int end, String text)

Replaces a range of characters with the given text.

void selectAll() Selects all text in the text input.

TABLE 5-5. Methods of the TextInputControl Class

05-ch05.indd 102 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 103

The next text input control is the TextArea. This control can be used to enter multiple lines
of plain text; it is specially designed to render long text that can be wrapped in multiple lines. If
the text is too long to fit in the TextArea, a scroll bar will be added automatically to the control
so users can scroll through the whole text. In addition, you can define the preferred count of
characters in a line and the preferred number of lines. This will internally be used to define the
preferred size of the TextArea. By default, the text wrap is not active in a TextArea. If the
entered text will exceed the width of the TextArea, a horizontal scroll bar will be shown. Once
wrapping is activated, the text will wrap in multiple lines. In this case, a vertical scroll bar will be
shown when the text extends the TextArea. Table 5-7 describes all the properties defined in the
TextArea class.

Method Description
void selectBackward() Moves the selection backward one character in

the text.
void selectEnd() Moves the caret to after the last character of text.
void selectEndOfNextWord() Moves the caret to the end of the next word.
void selectForward() Moves the selection forward one character in the text.
void selectHome() Moves the caret to before the first character of text.
void selectNextWord() Moves the caret to the beginning of the next word.
void selectPositionCaret(int
 pos)

Sets the caret to the given position.

void selectPreviousWord() Moves the caret to the beginning of the previous
word.

void selectRange(int anchor,
 int caretPosition)

Positions the anchor and caret.

TABLE 5-5. Methods of the TextInputControl Class (continued)

Property Type Description
alignment ObjectProperty<Pos> Specifies how the text should

be aligned.
onAction ObjectProperty<EventHandler

 <ActionEvent>>
Specifies the handler that will
receive event action events.
This will normally happen
when the enter key is pressed.

prefColumnCount IntegerProperty Specifies the preferred number
of text columns.

TABLE 5-6. Properties of the TextField Class

05-ch05.indd 103 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

104 Mastering JavaFX 8 Controls

The following application uses some of the features of text input controls. In the example, you
can use a menu to change the caret position of the TextField.

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.stage.Stage;
public class TextInputDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 TextArea textArea = new TextArea("You've never heard of the Millennium Falcon?
 … It's the ship that made the Kessel
 run in less than 12 parsecs.");
 textArea.setPrefColumnCount(60);
 textArea.setWrapText(true);
 textArea.setFont(new Font(32));

 Label caretLeftLabel = new Label("<");
 caretLeftLabel.setFont(new Font(24));
 caretLeftLabel.setTextFill(Color.BLUE);
 caretLeftLabel.setOnMouseEntered((e) -> caretLeftLabel.
 setTextFill(Color.ORANGE));
 caretLeftLabel.setOnMouseExited((e) -> caretLeftLabel.setTextFill(Color.BLUE));
 caretLeftLabel.setOnMouseClicked((e) -> textArea.backward());

 Label caretRightLabel = new Label(">");
 caretRightLabel.setFont(new Font(24));
 caretRightLabel.setTextFill(Color.BLUE);
 caretRightLabel.setOnMouseEntered((e) -> caretRightLabel.
 setTextFill(Color.ORANGE));

Property Type Description
prefColumnCount IntegerProperty Defines the preferred number of text columns.
prefRowCount IntegerProperty Defines the preferred number of text rows.
scrollLeft DoubleProperty Defines the pixel count by which the text is

horizontally scrolled.
scrollTop DoubleProperty Defines the pixel count by which the text is

vertically scrolled.
wrapText BooleanProperty Defines whether the text will wrap to another

line if it exceeds the width of the TextArea.

TABLE 5-7. Properties of the TextArea Class

05-ch05.indd 104 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 105

 caretRightLabel.setOnMouseExited((e) -> caretRightLabel.
 setTextFill(Color.BLUE));
 caretRightLabel.setOnMouseClicked((e) -> textArea.forward());

 Label caretStartLabel = new Label("<<");
 caretStartLabel.setFont(new Font(24));
 caretStartLabel.setTextFill(Color.BLUE);
 caretStartLabel.setOnMouseEntered((e) -> caretStartLabel.
 setTextFill(Color.ORANGE));
 caretStartLabel.setOnMouseExited((e) -> caretStartLabel.
 setTextFill(Color.BLUE));
 caretStartLabel.setOnMouseClicked((e) -> textArea.home());

 Label caretEndLabel = new Label(">>");
 caretEndLabel.setFont(new Font(24));
 caretEndLabel.setTextFill(Color.BLUE);
 caretEndLabel.setOnMouseEntered((e) -> caretEndLabel.setTextFill(Color.ORANGE));
 caretEndLabel.setOnMouseExited((e) -> caretEndLabel.setTextFill(Color.BLUE));
 caretEndLabel.setOnMouseClicked((e) -> textArea.end());

 Label wrapLabel = new Label("w");
 wrapLabel.setFont(new Font(24));
 wrapLabel.setTextFill(Color.BLUE);
 wrapLabel.setOnMouseEntered((e) -> wrapLabel.setTextFill(Color.ORANGE));
 wrapLabel.setOnMouseExited((e) -> wrapLabel.setTextFill(Color.BLUE));
 wrapLabel.setOnMouseClicked((e) -> textArea.
 setWrapText(!textArea.isWrapText()));

 HBox menu = new HBox(caretStartLabel, caretLeftLabel, wrapLabel,
 caretRightLabel, caretEndLabel);
 menu.setSpacing(12);
 menu.setAlignment(Pos.CENTER);
 VBox box = new VBox(menu, textArea);
 Scene myScene = new Scene(box);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("App");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

In the application, I define a TextArea with some sample text and create some labels. These
labels have EventHandler instances that handle mouse events to interact with the TextArea.
I’m not using buttons here because the click of a button will request the focus of the application.
Once this happens, the button will be in focus, and the TextArea loses the focus. A TextArea
that is not focused won’t render the caret, so I use customized labels here for a user interaction
since labels are not focusable by default. By clicking the labels, the caret position in the
TextArea will change, and the text wrap can be activated or disabled. In addition, I have
customized the style and behavior of the controls. All controls have a big font size to render their
content, and the labels will change their text color whenever the mouse hovers over them.
Figure 5-6 shows the example application.

05-ch05.indd 105 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

106 Mastering JavaFX 8 Controls

The demo application can be created with buttons in the menu, too. To do so, you need a
special type of button that doesn’t request the focus when it is clicked. You do this by extending
the Button class. In this case, the requestFocus() method should do nothing:

 Button b = new Button() {
 @Override
 public void requestFocus() {}
 };

The button that is defined is rendered like a normal button. It can be clicked to fire an action
event, but the button will never request the focus of the current window. The label instances in the
previous sample can be changed to this special button to provide a more typical user experience.

Slider
The Slider class in JavaFX directly extends the Control class. The Slider control can be used
to visualize a numeric value in a defined range and let the user define a value in the given range.
To do so, a so-called thumb is displayed in the slider. This thumb defines the selected value; the
user can drag it to change the value. The class contains a large set of properties that can be used
to change the visual representation of the slider, the range, and its selectable steps in that range.
The most fundamental properties of the Slider are min, max, and value. The min and max
properties define the range. The value property is a number within this range. Table 5-8 describes
all properties of the Slider class.

In addition to properties, the Slider class provides some methods to change the value
programmatically, including decrement() and increment(). These methods behave as you
would imagine, with decrement() reducing the value and increment() increasing the value
by the counts defined by the blockIncrement property.

FIGURE 5-6. Demo of a TextArea control

05-ch05.indd 106 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 107

By using properties, you can customize instances of the Slider class in many ways. The
following sample creates two Slider controls that are rendered differently and defines custom
ranges to select a value, each customized using properties from the Slider class:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Insets;

Property Type Description
blockIncrement DoubleProperty This defines the amount by

which the value of the slider will
change when the slider is used by
keyboard or the snapToTicks
property is true.

labelFormatter ObjectProperty<StringConverter
<Double>>

This defines how the labels
of the major ticks should be
formatted.

majorTickUnit DoubleProperty This defines the unit distance
between major tick marks.

max DoubleProperty This defines the maximum value
represented by this slider.

min DoubleProperty This defines the minimum value
represented by this slider.

minorTickCount IntegerProperty This defines the number of minor
ticks to place between two major
ticks.

orientation ObjectProperty<Orientation> This defines the orientation of
the Slider control.

showTickLabels BooleanProperty This defines whether labels for
tick marks should be shown.

showTickMarks BooleanProperty This defines whether tick marks
should be shown.

snapToTicks BooleanProperty If true, the value of the Slider
will always be aligned with the
defined tick marks.

value DoubleProperty This defines the current value
represented by this Slider
control.

valueChanging BooleanProperty When this is true, it indicates
that the current value of this
Slider control is changing.

TABLE 5-8. Properties of the Slider Class

05-ch05.indd 107 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

108 Mastering JavaFX 8 Controls

import javafx.geometry.Orientation;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Slider;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority;
import javafx.stage.Stage;
import javafx.util.StringConverter;
public class SliderDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 Slider slider1 = new Slider(-200, 200, 23);
 slider1.setMajorTickUnit(25);
 slider1.setShowTickLabels(true);
 slider1.setShowTickMarks(true);
 slider1.setBlockIncrement(25);
 slider1.setSnapToTicks(true);
 slider1.setMinorTickCount(25);
 slider1.setOrientation(Orientation.VERTICAL);
 slider1.setLabelFormatter(new StringConverter<Double>(){
 @Override
 public String toString(Double object) {
 return object + " °C";
 }
 @Override
 public Double fromString(String string) {
 return new Double(string.substring(0, string.length() - 3));
 }
 });
 slider1.valueProperty().addListener((e) -> System.out.println(slider1.
 getValue() + " °C selected"));
 Slider slider2 = new Slider(-1.0, 1.0, 0.5);
 slider2.setMajorTickUnit(0.05);
 slider2.setShowTickLabels(false);
 slider2.setShowTickMarks(true);
 HBox box = new HBox(slider1, slider2);
 box.setAlignment(Pos.CENTER);
 box.setPadding(new Insets(12));
 HBox.setHgrow(slider2, Priority.ALWAYS);
 Scene myScene = new Scene(box);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("Sliders");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

As you can see in Figure 5-7, the two sliders look different: The orientation is varied, the tick
marks are customized, and the slider ranges are completely different. The first slider has only a
few tick marks that are labeled with custom text showing the values of the marks in degrees

05-ch05.indd 108 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 109

Celsius. This was accomplished using a StringConverter instance. The second slider shows
many unlabeled tick marks.

NOTE
As you saw in the previous example, JavaFX controls provide
numerous properties that you can use to change the visual
representation of the controls. Using these properties is the simplest
way to change the view of a control. This is a great benefit compared
to other UI toolkits such as Swing. The UI components in Swing
provide attributes to change the visualization of controls but often lack
the depth of manipulation possible in JavaFX. If the properties used so
far aren’t enough, you can also use a custom skin. I will discuss this
more with custom controls in Chapter 10.

FIGURE 5-7. Two visual representations of the Slider control

05-ch05.indd 109 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

110 Mastering JavaFX 8 Controls

ProgressIndicator and ProgressBar
You can use the ProgressIndicator and ProgressBar controls to indicate an infinite or
finite progress. These controls are most often used to show the state of a task. If data is loaded
in the background, for example, a ProgressBar control can be used to show the progress of
this task. The ProgressIndicator class extends the Control class and is the superclass of the
ProgressBar. The ProgressIndicator contains two special properties to define the type and
the progress value of the control. The indeterminate property, a ReadOnlyBoolean property,
defines whether the ProgressIndicator shows indeterminate progress, while the progress
property, a DoubleProperty, is used to show the actual progress. If the value is negative, the
ProgressIndicator shows indeterminate progress.

The following application defines a background task by using the javafx.concurrent API
and uses a ProgressIndicator and a ProgressBar to visualize the state of the task:

 package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.concurrent.Task;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.ProgressBar;
import javafx.scene.control.ProgressIndicator;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
import java.util.concurrent.Executors;
public class ProgressDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 Task task = new Task<Void>() {
 @Override public Void call() {
 for (int i=1; i<=10000; i++) {
 updateProgress(i, 10000);
 try {
 Thread.sleep(1);
 } catch (InterruptedException e) {}
 }
 return null;
 }
 };
 ProgressIndicator progressIndicator = new ProgressIndicator();
 progressIndicator.progressProperty().bind(task.progressProperty());
 ProgressBar progressBar = new ProgressBar();
 progressBar.progressProperty().bind(task.progressProperty());
 Button button = new Button("Start");
 button.setOnAction((e) -> Executors.newSingleThreadExecutor().execute(task));
 VBox box = new VBox(progressIndicator, progressBar, button);
 box.setSpacing(12);
 box.setPadding(new Insets(12));
 box.setAlignment(Pos.CENTER);
 Scene myScene = new Scene(box);
 primaryStage.setScene(myScene);

05-ch05.indd 110 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 111

 primaryStage.setTitle("Progress");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

When the application starts, the two progress indicators are shown with infinite progress because
the default value of progress property is –1. Once the button is clicked, the Task instance starts in
a background thread. The Task class provides a progress property, which can be bound to the
property of the ProgressIndicator and ProgressBar. Then, both controls will visualize the
progress of the background task. Figure 5-8 shows the application in infinite and finite progress states.

NOTE
The Task class that is used in this application is part of the
concurrency API of JavaFX. I won’t cover concurrency in depth
in this book, but all related classes can be found in the javafx
.concurrency package, including properties for messaging and
exceptions. Normally, the classes in this package can be used to create
background tasks that can retrieve or upload data. A major benefit
of the javafx.concurrency classes is the use of the property API.
As shown in the example application, the Task class provides a
progressProperty that can be easily bound to other properties.

FIGURE 5-8. States of the ProgressIndicator and ProgressBar

05-ch05.indd 111 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

112 Mastering JavaFX 8 Controls

Tooltip of a Control
Each control in JavaFX offers a tooltip property to show a tooltip whenever a mouse hovers
over the control. A tooltip can be used to show the user helpful information about a control’s
usage. A tooltip in JavaFX is defined by the Tooltip class and is always shown as a pop-up over
the control. Usually, a tooltip will contain plain text that describes the control and its use, but in
JavaFX, a tooltip can also contain rich graphics or nodes by using the graphic property. You can
use the graphic property like described for the Labeled control earlier. In addition to this
property, the class contains some other properties to define the layout of the tooltip and the
rendering of the text. Table 5-9 describes the defined properties.

Property Type Description
activated ReadOnlyBooleanProperty If the mouse enters the control

of this tooltip, the activated
property is true.

graphic ObjectProperty<Node> This specifies an optional node
(maybe an icon) for the tooltip.

text StringProperty This specifies the text of the
tooltip.

contentDisplay ObjectProperty<ContentDisplay> This specifies the positioning of
the graphic relative to the text.

font ObjectProperty This specifies the font.
graphicTextGap DoubleProperty This specifies the space

between the graphic and text.
textAlignment ObjectProperty<TextAlignment> This specifies the behavior for

lines of multiline text.
textOverrun ObjectProperty<OverrunStyle> This defines the behavior to use

if the text exceeds the available
space for rendering.

wrapText BooleanProperty This defines whether the text
will wrap to another line if it
exceeds the width of the tooltip.

TABLE 5-9. Methods of the Tooltip Class

The following application demonstrates how the Tooltip class can be used in JavaFX to offer
rich tooltips to the user. Here, I am adding a shape to the tooltip instead of simple plain text.

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Label;

05-ch05.indd 112 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 113

import javafx.scene.control.Tooltip;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.*;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class TooltipDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 Label rectLabel = new Label("Rectangle");
 Tooltip rectTooltip = new Tooltip();
 rectTooltip.setGraphic(new Rectangle(50, 50, Color.ORANGE));
 rectLabel.setTooltip(rectTooltip);
 Label circleLabel = new Label("Circle");
 Tooltip circleTooltip = new Tooltip();
 circleTooltip.setGraphic(new Circle(20, 20, 40, Color.ORANGE));
 circleLabel.setTooltip(circleTooltip);
 VBox myPane = new VBox();
 myPane.setPadding(new Insets(12));
 myPane.setSpacing(12);
 myPane.setAlignment(Pos.CENTER);
 myPane.getChildren().addAll(rectLabel, circleLabel);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

Figure 5-9 shows the result of this code. Here, the tooltip pop-up of the Circle label instance
is shown. The size of the tooltip is calculated by the preferred size of its content. As you can see,

FIGURE 5-9. A custom tooltip

05-ch05.indd 113 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

114 Mastering JavaFX 8 Controls

the tooltip contains a Circle shape instead of plain text. This is accomplished by setting a shape as
the graphics object of the tooltip within the code. Although the tooltip currently contains no text,
custom text can be added in addition to the shape.

NOTE
The graphic property of the Tooltip class can contain any node
instance. Because panes and controls extend the Node class, a control
or a complete layouted pane could be used in a tooltip. This might
make sense if you develop a GUI editor, for example, but it doesn’t
make sense to add interaction to controls that are part of a tooltip.
A tooltip will be closed whenever the mouse leaves the control that
provides the tooltip, so the mouse can never enter the tooltip by
default.

Using Menus in JavaFX
In addition to the Control classes reviewed so far, there are some special controls that can be
used to create menus in JavaFX applications. There are several different ways a menu can be
shown and used in an application, including the following:

 ■ A MenuBar that is integrated in a window

 ■ A ContextMenu that is shown as a pop-up for a control

 ■ A system menu bar like in Mac OS

JavaFX provides two Control classes that can be used as containers for a menu: the MenuBar
and the ContextMenu. This chapter will cover both types.

A ContextMenu can be used to show a pop-up on another Control instance. This pop-up can
be used to provide specific actions or configurations that can be handled by the user. Some
controls in JavaFX already use a ContextMenu by default. If you right-click in a TextArea, for
example, a pop-up menu will appear that contains some basic operations, such as Copy and Paste.
This functionality is implemented by a ContextMenu. As mentioned earlier in this chapter, the
Control class contains a contextMenu property that can define a ContextMenu for a control.
By simply setting a specific menu to this property, a pop-up with the content of the menu will be
shown whenever the user right-clicks the control. On some operating systems, this behavior will
change in the future, but by default, the right mouse button is the action trigger for this functionality.

A ContextMenu can contain different menu items, which I’ll review in more detail after
showing a basic sample. In the following application code, a simple ContextMenu is added to a
Button instance:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.*;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
public class ContextMenuDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {

05-ch05.indd 114 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 115

 Button button = new Button("Click me");
 ContextMenu menu = new ContextMenu();
 MenuItem rotateItem = new MenuItem("Rotate");
 rotateItem.setOnAction((e) -> button.setRotate(button.getRotate() + 45));
 CheckMenuItem underlineItem = new CheckMenuItem("Underline");
 button.underlineProperty().bindBidirectional(underlineItem.selectedProperty());
 menu.getItems().addAll(rotateItem, underlineItem);

 button.setContextMenu(menu);

 StackPane myPane = new StackPane();
 myPane.getChildren().add(button);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("App");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

As you can see in the code, I added two different items to the ContextMenu: a MenuItem and
a CheckMenuItem. Only MenuItem instances or instances of classes that extend this superclass
can be added to a ContextMenu. The MenuItem is a simple menu entry that can be clicked, and
whenever an item is clicked, an action event will be handled. As shown in many samples, an
event handler can be set to the onAction property of the control. This is done in this example
application, too. The CheckMenuItem behaves like a CheckBox. It contains a selected property
that will change with each click on the item. In the sample, the underline property of the
Button instance is bound to this property. Each time this menu item is activated, the text of the
Button instance will appear underlined. Figure 5-10 shows an example of this behavior.

FIGURE 5-10. A context menu

05-ch05.indd 115 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

116 Mastering JavaFX 8 Controls

As already shown in the example application, the ContextMenu class contains an onAction
property. Like in all other classes that support action events, this property is defined as ObjectPro
perty<EventHandler<ActionEvent>> and will handle all action events. This will happen
for each action that occurs on a menu item in the ContextMenu. So, whenever the Rotate
menu item in the previous example is clicked, the event handler of the item itself and of the
ContextMenu will be triggered. In addition, the ContextMenu provides some helpful methods,
described in Table 5-10.

JavaFX contains the following item types that can be added to a menu:

 ■ MenuItem

 ■ RadioMenuItem

 ■ TabMenuItem

 ■ CheckMenuItem

 ■ CustomMenuItem

 ■ SeparatorMenuItem

 ■ Menu

The Menu class is a special item because instances can contain additional menu items. By
using the Menu class, you can create a menu hierarchy. The following application shows how to
achieve this in code. As already mentioned, besides a ContextMenu, a MenuBar can be used to
display menus onscreen. In the following example, a MenuBar with several menu items is added
to the screen:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.*;
import javafx.scene.layout.BorderPane;
import javafx.stage.Stage;
public class MenuBarDemo extends Application {

Method Description
ObservableList<MenuItem> getItems() Contains the menu items on the context menu
public void hide() Hides the ContextMenu and any visible

submenus
void show(Node anchor, double
 screenX, double screenY)

Shows the ContextMenu at the specified
screen coordinates

void show(Node anchor, Side side,
 double dx, double dy)

Shows the ContextMenu relative to the
given anchor node

TABLE 5-10. Methods of the ContextMenu

05-ch05.indd 116 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 117

 @Override
 public void start(Stage primaryStage) throws Exception {
 MenuBar menuBar = new MenuBar();
 Menu mainMenu = new Menu("Main");
 MenuItem rotateItem = new MenuItem("Load");
 CheckMenuItem underlineItem = new CheckMenuItem("Underline");
 mainMenu.getItems().addAll(rotateItem, underlineItem);
 Menu editMenu = new Menu("Edit");
 Menu convertMenu = new Menu("Convert");
 convertMenu.getItems().addAll(new MenuItem("PDF"), new MenuItem("PNG"));
 editMenu.getItems().addAll(convertMenu, new MenuItem("Rotate"));
 menuBar.getMenus().addAll(mainMenu, editMenu);
 BorderPane pane = new BorderPane();
 pane.setTop(menuBar);
 Scene myScene = new Scene(pane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("App");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

When running the application, the window will contain a menu bar that holds all the defined
menu items.

NOTE
Some operating systems such as Mac OS define a global menu bar,
and not each application has its own bar that is wrapped in the
application window. Instead, the OS contains a bar that is usually
displayed at the top of the screen, and its content changes whenever
another application receives the focus. You can use this kind of
menu bar in JavaFX, too. To do so, the MenuBar class contains the
useSystemMenuBar property. By setting the Boolean value of this
property to true, the content of the MenuBar won’t be displayed in the
window. Instead, all items of the MenuBar are displayed in the global
one of the operating system.

Using Separators
The Separator control defines a horizontal or vertical line that can be used as a visual separation
in a view or a menu. The following sample adds a separator to a list of CheckBox instances. By
doing so, a division of the elements is shown onscreen. Figure 5-11 shows the result.

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;

05-ch05.indd 117 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

118 Mastering JavaFX 8 Controls

import javafx.scene.control.CheckBox;
import javafx.scene.control.Separator;
import javafx.scene.layout.Background;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
public class SeperatorDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 String[] names = new String[]{"Dog", "Horse", "Cat",
 "Tiger", "Shark", "Bear"};
 CheckBox[] cbs = new CheckBox[names.];
 for (int i = 0; i < names.length; i++) {
 cbs[i] = new CheckBox(names[i]);
 }
 VBox vbox = new VBox(cbs);
 vbox.setSpacing(5);
 vbox.setPadding(new Insets(24));
 vbox.setBackground(Background.EMPTY);
 Separator separator = new Separator();
 vbox.getChildren().add(3, separator);
 Scene myScene = new Scene(vbox);
 primaryStage.setScene(myScene);
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

The Separator control in the previous example is displayed as a horizontal line, but a
separator can be vertical, too, by using the orientation property. In some special cases, like in a

FIGURE 5-11. Using a separator

05-ch05.indd 118 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 119

toolbar, the separator will automatically appear vertically based on internal CSS definitions. In the
following example, the Separator instance is created like before and no properties are set:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Separator;
import javafx.scene.control.TextArea;
import javafx.scene.control.ToolBar;
import javafx.scene.layout.BorderPane;
import javafx.stage.Stage;
public class SeperatorInToolbarDemo extends Application {
 @Override
 public void start(Stage primaryStage) {
 ToolBar toolBar = new ToolBar(
 new Button("New"),
 new Button("Open"),
 new Button("Save"),
 new Separator(),
 new Button("Run"),
 new Button("Debug"),
 new Separator(),
 new Button("Help")
);
 BorderPane pane = new BorderPane();
 pane.setTop(toolBar);
 pane.setCenter(new TextArea());
 Scene myScene = new Scene(pane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("My little IDE");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

Creating an Application with Basic Controls
Now that I have covered most of the basic controls in JavaFX, I’ll show how to create a more
complex application that utilizes the features discussed, as well as introducing new features,
like FXML.

As you recall, it is best practice to define the views of a more complex application in FXML.
By using Scene Builder, I created the following application in only a few minutes. Scene Builder
is a WYSIWYG editor for FXML, and because an FXML file contains all the information about the

05-ch05.indd 119 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

120 Mastering JavaFX 8 Controls

alignment and layout of nodes in a view, it can become quite huge. In fact, the FXML for the
application shown here is too large to print in full. I will rely on code snippets here, but you can
access the complete code by following the instructions in the Introduction of this book. Thanks to
Scene Builder, it’s not necessary that developers know how an FXML file has to be defined, but
you should know how to read an FXML file and understand its syntax and content. This will be
helpful for finding bugs or tracking down layout issues in an application. The following code
shows a basic FXML file. It defines the content of the FXML file that creates the login dialog that
was shown at the beginning of the chapter.

<?xml version="1.0" encoding="UTF-8"?>
<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.geometry.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.paint.*?>
<GridPane hgap="6.0" vgap="6.0" xmlns:fx="http://javafx.com/fxml/1" xmlns="http://
javafx.com/javafx/2.2">
 <children>
 <Label text="User:" GridPane.columnIndex="0" GridPane.rowIndex="0" />
 <Label text="Password:" GridPane.columnIndex="0" GridPane.rowIndex="1" />
 <TextField prefWidth="200.0" promptText="username" GridPane.columnIndex="1"
 GridPane.rowIndex="0" />
 <PasswordField prefWidth="200.0" promptText="password" GridPane.columnIndex="1"
 GridPane.rowIndex="1" />
 <Button mnemonicParsing="false" text="Login" GridPane.columnIndex="0" GridPane.
 columnSpan="2" GridPane.halignment="CENTER" GridPane.rowIndex="2" />
 </children>
 <columnConstraints>
 <ColumnConstraints hgrow="NEVER" minWidth="10.0" prefWidth="100.0" />
 <ColumnConstraints hgrow="ALWAYS" minWidth="10.0" prefWidth="100.0" />
 </columnConstraints>
 <padding>
 <Insets bottom="6.0" left="6.0" right="6.0" top="6.0" />
 </padding>
 <rowConstraints>
 <RowConstraints minHeight="10.0" prefHeight="30.0" vgrow="SOMETIMES" />
 <RowConstraints minHeight="10.0" prefHeight="30.0" vgrow="SOMETIMES" />
 <RowConstraints minHeight="10.0" prefHeight="30.0" vgrow="SOMETIMES" />
 </rowConstraints>
</GridPane>

As you can see in the XML, all nodes of the view and its hierarchy are defined as XML tags. In
addition, the initial values of properties are defined as XML attributes in these tags.

Figure 5-12 shows the application that was completely designed with Scene Builder. It is a
demo application that can be used to change the visual nature of a simple shape. With the use of
the controls discussed in this chapter, the user can customize the shape and some of its properties.

When creating a JavaFX application with the help of Scene Builder and FXML, it is best to use
the Model-View-Control (MVC) pattern. This pattern separates the model, the controller, and the

05-ch05.indd 120 5/22/14 4:02 PM

http://javafx.com/fxml/1
http://javafx.com/javafx/2.2
http://javafx.com/javafx/2.2

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 121

view of an application. In JavaFX, the view will usually be created in FXML. This is done for the
demo application, too. In the FXML file, all needed properties of the shown controls are defined
with initial values. As an example, the definitions of the three labels that name the color sliders
are shown here:

 <Label text="Red:" GridPane.columnIndex="0" GridPane.rowIndex="0" />
 <Label text="Green:" GridPane.columnIndex="0" GridPane.rowIndex="1" />
 <Label text="Blue:" GridPane.columnIndex="0" GridPane.rowIndex="2" />

For each of the three labels, an initial value for the text property is set in FXML. In addition,
some layout properties are defined to position the labels in its parent pane. In the application,
the labels and sliders are wrapped in a GridPane. The three labels are just static content of the
application view. Some other controls, like Slider, need to define some interaction with the
user. This interaction will be added in Java code later. To create a link between the FXML file and

FIGURE 5-12. An application created with basic controls

05-ch05.indd 121 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

122 Mastering JavaFX 8 Controls

the Java code, all these controls contain a unique ID. The following code snippet shows the FXML
definition of the sliders:

<Slider fx:id="redSlider" max="255.0" showTickLabels="true"
 showTickMarks="true" snapToTicks="true" value="100.0" GridPane.
 columnIndex="1" GridPane.rowIndex="0" />
<Slider fx:id="greenSlider" max="255.0" showTickLabels="true"
 showTickMarks="true" snapToTicks="true" value="100.0" GridPane.
 columnIndex="1" GridPane.rowIndex="1" />
<Slider fx:id="blueSlider" blockIncrement="10.0" max="255.0"
 showTickLabels="true" showTickMarks="true" snapToTicks="true" value="100.0"
 GridPane.columnIndex="1" GridPane.rowIndex="2" />

The FXML tags that define the three sliders contain one new attribute. In addition to the initial
values for all the properties and the layout information, the fx:id attribute defines a unique ID.
You can use any text as the ID, and by doing so, you can create a link from the Java code to the
FXML code by injecting the FXML-defined Node instance in your Java code. The following code
defines a simplified version of the controller class that will be used for the FXML file:

package com.guigarage.masteringcontrols;

import javafx.fxml.FXML;
import javafx.scene.control.*;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;
import javafx.scene.shape.Shape;
import javafx.scene.text.Text;

public class ViewController {

 @FXML
 private Slider redSlider;

 @FXML
 private Slider greenSlider;

 @FXML
 private Slider blueSlider;

 ...
}

The Java class contains all three sliders as private fields. These fields are annotated with
the @FXML annotation, which is used to create the link between Java and FXML. When the
ViewController is instantiated by an FXMLLoader, all fields that are marked by the @FXML
annotation will be injected with the created nodes that are defined in the FXML. It is important to
know that the name of the fields must be the same as the previously defined fx:id value.

05-ch05.indd 122 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 123

In JavaFX and FXML, the view defines its specific controller class. This is done in the FXML
file as an attribute of the topmost node. In the example, a BorderPane is used as the rootNode,
and the ViewController class is defined in its fx:controller attribute:

<?xml version="1.0" encoding="UTF-8"?>
<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.geometry.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.paint.*?>
<BorderPane fx:controller="com.guigarage.masteringcontrols.ViewController">
// content of the view
</BorderPane>

Once this is done, JavaFX can easily load the combination of view and controller. You just
need to create a main class for the application that loads the FXML with an FXMLLoader instance
and adds its root node to the scene, as shown here:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Scene;
import javafx.stage.Stage;
public class FirstBigApp extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 FXMLLoader loader = new FXMLLoader(getClass().getResource("bigApp.fxml"));
 Scene myScene = new Scene(loader.load());
 primaryStage.setScene(myScene);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

Because the controller class is currently named in the FXML file, you don‘t need to define
the controller in the Java code. If you place the bigApp.fxml file in the same package
as the FirstBigApp class, you can use the getClass().getResource(…) method to
receive the URL of the FXML file.

NOTE
The FXMLLoader class provides more functionality than discussed
here. The controller instance can be accessed by the class or can
define a resource bundle, for example. Here, FXML should be used to
exclude the layout of an application from the Java code. In a bigger
application, it would be useful to create links between controllers in
order to switch between different views. For additional information,
review the FXML API and the flow API of DataFX (www.javafxdata
.org). The flow API provides functionality to switch between different
views and share data models between them.

05-ch05.indd 123 5/22/14 4:02 PM

http://www.javafxdata.org
http://www.javafxdata.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

124 Mastering JavaFX 8 Controls

The complete logic and interaction of the application is defined in the controller. The
following shows the complete code of the ViewController class:

package com.guigarage.masteringcontrols;
import javafx.fxml.FXML;
import javafx.scene.control.*;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;
import javafx.scene.shape.Shape;
import javafx.scene.text.Text;
public class ViewController {
 @FXML
 private Slider redSlider;
 @FXML
 private Slider greenSlider;
 @FXML
 private Slider blueSlider;
 @FXML
 private TextField redField;
 @FXML
 private TextField greenField;
 @FXML
 private TextField blueField;
 @FXML
 private CheckBox invertCheckbox;
 @FXML
 private CheckBox saturateCheckbox;
 @FXML
 private Slider rotationSlider;
 @FXML
 private Slider scaleSlider;
 @FXML
 private RadioButton rectangleToggle;
 @FXML
 private RadioButton circleToggle;
 @FXML
 private RadioButton textToggle;
 @FXML
 private StackPane canvas;

 private ToggleGroup group;

 public void initialize() {

 rectangleToggle.setUserData(new Rectangle(50, 50));
 circleToggle.setUserData(new Circle(50));
 textToggle.setUserData(new Text("TEXT"));
 group = new ToggleGroup();
 rectangleToggle.setToggleGroup(group);
 circleToggle.setToggleGroup(group);
 textToggle.setToggleGroup(group);
 group.selectToggle(rectangleToggle);

 group.selectedToggleProperty().addListener(event -> updateShape());

05-ch05.indd 124 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 5: JavaFX Basic Controls 125

 redField.textProperty().bind(redSlider.valueProperty().asString());
 greenField.textProperty().bind(greenSlider.valueProperty().asString());
 blueField.textProperty().bind(blueSlider.valueProperty().asString());

 canvas.rotateProperty().bind(rotationSlider.valueProperty());
 canvas.scaleXProperty().bindBidirectional(scaleSlider.valueProperty());
 canvas.scaleYProperty().bindBidirectional(scaleSlider.valueProperty());
 redSlider.valueProperty().addListener(event -> updateShape());
 greenSlider.valueProperty().addListener(event -> updateShape());
 blueSlider.valueProperty().addListener(event -> updateShape());
 invertCheckbox.selectedProperty().addListener(event -> updateShape());
 saturateCheckbox.selectedProperty().addListener(event -> updateShape());

 updateShape();
 }

 private void updateShape() {
 canvas.getChildren().clear();
 Shape shape = (Shape) group.getSelectedToggle().getUserData();
 Color color = Color.rgb((int) redSlider.getValue(),
 (int) greenSlider.getValue(), (int) blueSlider.getValue());
 if(invertCheckbox.isSelected()) {
 color = color.invert();
 }
 if(saturateCheckbox.isSelected()) {
 color = color.saturate();
 }
 shape.setFill(color);
 canvas.getChildren().add(shape);
 }
}

When the application starts, you can use the controls in the menus to change the look of the
shape that is shown in the top part of the application. Let’s take a look at how this is done in the
controller class. The first thing that is new is the initialize() method. This method is defined
in the FXML API and will be called whenever a controller is created by an FXMLLoader. Because
all fields that are annotated with @FXML will be injected after the constructor of the controller is
called, this method needs to be used to access the injected fields.

The user can change the shape shown in the top of the application. To do this, I added three
RadioButton instances to the application. When talking about RadioButton controls, I introduced
the ToggleGroup class. This is the class used in this application to group the RadioButton
controls. Each of the radio buttons defines a custom shape as its userData: One holds a Rectangle
instance, one holds a Circle instance, and one holds a Text instance. All three radio buttons are
part of the same ToggleGroup. Whenever the selection of the group changes, the updateShape()
method will be called. This is done with a ChangeListener that is added to the selectedToggle
property of the group. In this method, the shape that is defined as the user data of the selected radio
button will be added to the screen.

The next lines of the initialize() method define some binding between properties of
controls. I placed a TextField next to each of the slides in order to define the RGB value of the
shape’s fill color. The text of these fields is bound to the current value of the slider. Whenever a
user changes the slider, the text value of the text field will update automatically. In addition, the
shape can be transformed by wrapping it in a pane that is defined by the private StackPane

05-ch05.indd 125 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

126 Mastering JavaFX 8 Controls

canvas field. The rotate and scale properties of this pane are bound to the values of sliders.
The user can change these sliders to change the transform of the shape.

In addition, I added ChangeListener instances to the value property of each slider in order
to change the color of the shape. I did this for the two CheckBox instances (invert color and
saturation) too. The listeners are defined as lambda expressions and call the updateShape()
method whenever the value of the property is changed. This method creates the displayed shape
and sets its fill to the defined color.

Even if this example contains only two Java classes and an FXML file, it is the most complex
application I have shown until now. In the code, you can see how easily you can separate the view
and controller in Java. The application is created with only panes and a set of basic controls. For
the interaction of the application, you define bindings and listeners. In other UI toolkits, coding the
same application would have presented a number of problems, including workarounds or special
APIs to define bindings; in addition, the complete layout of the application would need to be done
in Java code. Using functional interfaces in JavaFX allows you to drastically reduce the amount of
boilerplate code.

Summary
This chapter showed you how to use basic controls in JavaFX. I covered the elementary concepts of
the Control class and general controls and showed sample illustrations for all the basic JavaFX
controls and their features. I explained the most important properties and methods of each control so
you have insight into the endless possibilities these controls offer. As a more complex example, you
saw an application that uses a lot of these features internally. JavaFX offers a huge set of additional
nodes and controls beyond these basics that can be used to create modern applications that handle
and visualize huge sets of data. You will look at these additional controls in the following chapter.

05-ch05.indd 126 5/22/14 4:02 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: 127

CHAPTER
6

Additional JavaFX Controls

06-ch06.indd 127 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

128 Mastering JavaFX 8 Controls

In the previous chapter, you looked at the basic controls available for JavaFX. JavaFX also
contains more complex controls that are usually used to display data in an application.
These controls, such as tables and lists, are especially useful when you have a huge amount

of data. In addition, JavaFX contains some control types that have specific uses. For example, a
ColorPicker provides a user interface that lets the user choose a color. In this chapter, I’ll cover
all the advanced controls and the possibilities they offer.

Controls with a Data Model
In many applications, developers will need to display lists of data and custom data models so the
user can understand the data. JavaFX contains a number of controls that can be used to render
lists of data or hierarchical data onscreen. By default, JavaFX provides the following controls in
this category:

 ■ ComboBox<T>

 ■ ListView<T>

 ■ TableView<T>

 ■ TreeView<T>

 ■ TreeTableView<T>

These controls are subclasses of the Control class, but the APIs and alternatives of how these
controls can be used in an application are more flexible than what you saw in the previous chapter
with the basic controls.

ComboBox
The ComboBox<T> control is the most common control that can be used to display a data selection
from a list of data. If a list contains only five or six elements, this could be easily done with the
use of a RadioButton and a ToggleGroup. But what if the list has 100 or more elements? What if
the list is dynamic? In these cases, RadioButtons are not much help. Furthermore, sometimes it’s
not clear during development how many entries a data list will have at run time. These situations
require a flexible selection, which is exactly what a ComboBox offers. The ComboBox provides a
way to create a selection interface for any kind of data list. In addition, it provides much more
useful features, such as custom cells that can be used to render the data of the list.

The easiest use case for a ComboBox is for a selection from a list of String instances. The
following application shows how a ComboBox control can be created that uses a list with String
instances as a data model:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.control.ComboBox;
import javafx.scene.layout.StackPane;

06-ch06.indd 128 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 129

import javafx.stage.Stage;
public class SimpleComboboxDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 ComboBox<String> comboBox = new ComboBox<>();
 ObservableList<String> data = FXCollections.observableArrayList();
 data.addAll("Darth Vader", "Luke Skywalker", "Yoda");
 comboBox.itemsProperty().setValue(data);
 StackPane myPane = new StackPane();
 myPane.getChildren().add(comboBox);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

As you can see in the code, the data model of the ComboBox is created as an
ObservableList<String>. The list can hold any number of different Strings. In the sample,
only three Strings were added to the list, but you could easily add thousands of items to the list.
Once the given list of data is too large to be rendered directly in the selection pop-up, the ComboBox
will offer a scroll bar so the user can scroll through the list and select a value. (While you could add
thousands of elements to a ComboBox, this control wouldn’t be the most appropriate selection
method in that case. As I will show later, a ListView will match this use case much better.)

The ComboBox provides the item property, which defines the data model of the ComboBox.
You simply set the defined list as the item property of the given ComboBox. Figure 6-1 shows
how this example will look.

The data list of the ComboBox is defined as an ObservableList<String>, so it can be easily
extended at run time. Once the list is set as the item property of the ComboBox, the ComboBox
API internally registers a ChangeListener to the list. After that, the ComboBox will be notified of
each change in the list. Thanks to this feature, the ComboBox can dynamically react to selection
changes by adding new items to or removing items from the onscreen list. All the JavaFX control

FIGURE 6-1. A ComboBox

06-ch06.indd 129 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

130 Mastering JavaFX 8 Controls

classes that can display any data type use Generics to define this data type. The next example
shows how you can test this with the help of a TextField instance:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.ComboBox;
import javafx.scene.control.TextField;
import javafx.scene.layout.HBox;
import javafx.scene.layout.StackPane;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
public class SimpleComboboxDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 ComboBox<String> comboBox = new ComboBox<>();
 ObservableList<String> data = FXCollections.observableArrayList();
 data.addAll("Darth Vader", "Luke Skywalker", "Yoda");
 comboBox.itemsProperty().setValue(data);
 TextField inputField = new TextField();
 inputField.setPromptText("insert new data type");
 inputField.setOnAction(e -> data.add(inputField.getText()));
 VBox box = new VBox(6, inputField, comboBox);
 box.setAlignment(Pos.CENTER);
 Scene myScene = new Scene(box);
 primaryStage.setScene(myScene);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

In this code, I’ve added a TextField to the application and defined an event handler for it.
Whenever ENTER is pressed in the TextField, the event handler will add the current text
content of the TextField to the ObservableList. Because this list is used as the data model of
the ComboBox, the new value will appear in the selection pop-up, as shown in Figure 6-2.

NOTE
As you can see in the sample applications, it is easy to define a
dynamic model for a ComboBox. Later, you will see that the same
functionality is implemented in all other controls discussed in this
chapter. This workflow will be new to developers who have used
Swing as a UI toolkit where a special data model was needed to
provide these features. Thanks to observable collections and the
property API, this is no longer necessary in JavaFX.

06-ch06.indd 130 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 131

The ComboBox class extends the ComboBoxBase class, which is a subclass of Control. This
is done because other special controls such as DatePicker and ColorPicker share a lot of
functionality and extend the ComboBoxBase too. The ComboBoxBase class provides a basic
set of properties that can be used to define the behavior of a ComboBox or define interaction.
Internally, the ComboBoxBase class is used as a superclass for all controls that provide a pop-up
to select a value. Table 6-1 describes the properties of the ComboBoxBase class.

NOTE
In most cases, a subclass of ComboBoxBase will show a pop-up
to select a value, but this isn’t mandatory. Developers can create a
subclass that uses, for example, a separate pane to show the selection.
In addition, the item property is not specified in the ComboBoxBase.
Some implementations of this abstract class don’t have a list of values
defined. The DatePicker, for example, has no defined list of values
that could be selected. Here, any data can be set by a user. To provide
for all these possibilities, the ComboBoxBase class provides only the
value property to define the selected value and event handlers. These
handlers can be used to implement the life cycle of a selection pop-
up, as done for the ComboBox control.

The ComboBox class provides the properties described in Table 6-2. Some of them won’t be
discussed in this chapter. Properties such as the cellFactory property are also defined for other
controls such as the ListView or TableView and will be handled in the following chapters.
How custom cells can be created will be described when talking about the ListView, for
example.

Beyond the example use case, the ComboBox provides the functionality to define a custom
selection. Here a user can select a value from the selection pop-up or type any value directly in
the ComboBox. Most users will know this behavior from the URL field of most web browsers,

FIGURE 6-2. Adding values to a ComboBox

06-ch06.indd 131 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

132 Mastering JavaFX 8 Controls

where you can type any URL by hand or open a selection pop-up that contains your last-visited
sites or your favorites. You can create this behavior with the JavaFX ComboBox, too. In addition,
you can use a ComboBox to provide a selection for any data type. In the previous examples, only
a list with Strings was shown, but it is easy to create a ComboBox that can be used for a list of
numbers or images. The ComboBox class uses a generic type parameter to define the type of data that
should be used. To show the data as plain text in the selection, you can use a StringConverter.
This is, in most cases, easier than writing a custom cell type to render the data onscreen. The

Property Type Description

armed BooleanProperty This indicates that the
ComboBox has been
“armed.” This defines
the same behavior as the
ButtonBase class.

editable BooleanProperty This defines whether the
control allows user input.

onAction ObjectProperty<EventHandler<ActionEvent>> This defines the event
handler for action events
that are fired when the
value property value is
changed, such as when a
user selects an item.

onHidden ObjectProperty<EventHandler<Event>> The handler will be invoked
after the pop-up has been
hidden.

onHiding ObjectProperty<EventHandler<Event>> The handler will be invoked
before the pop-up is
hidden.

onShowing ObjectProperty<EventHandler<Event>> The handler will be invoked
before the pop-up is shown.

onShown ObjectProperty<EventHandler<Event>> The handler will be invoked
after the pop-up has been
shown.

promptText StringProperty This specifies the prompt
text to display.

showing ReadOnlyBooleanProperty This defines whether the
ComboBox pop-up is
visible.

value ObjectProperty<T> This is the selected value.

TABLE 6-1. Properties of the ComboBoxBase

06-ch06.indd 132 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 133

following example defines a ComboBox that can be used to select an Integer. Since this ComboBox
is editable, the user can enter a custom number.

ComboBox<Integer> comboBox = new ComboBox<>();
comboBox.itemsProperty().setValue(data);
comboBox.setEditable(true);
comboBox.converterProperty().setValue(new StringConverter<Integer>() {
 @Override
 public String toString(Integer date) {
 if(date == null) {
 return null;
 }

Property Type Description

buttonCell ObjectProperty<ListCell<T>> The defined cell is used
to render the content
of the ComboBox. To
render the content of
the selection pop-up,
the cellFactory
property is used.

cellFactory ObjectProperty<Callback<ListView<T>,
ListCell<T>>>

This defines a cell
factory to provide
custom cells for the
selection pop-up.

converter ObjectProperty<StringConverter<T>> This converts the
user-typed input of an
editable ComboBox to
an instance of T.

editor ReadOnlyObjectProperty<TextField> This is the editor for the
ComboBox.

items ObjectProperty<ObservableList<T>> This is the list of items
of the ComboBox.

selectionModel ObjectProperty<SingleSelectionModel<T>> This is the selection
model for the
ComboBox.

visibleRowCount IntegerProperty This is the maximum
number of rows that
are visible in the pop-
up. All other rows can
be accessed via scroll
bars.

TABLE 6-2. Properties of the ComboBox

06-ch06.indd 133 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

134 Mastering JavaFX 8 Controls

 return date.toString();
 }
 @Override
 public Integer fromString(String string) {
 try {
 return new Integer(string);
 } catch (NumberFormatException e) {
 //TODO:
 }
 }
 });
 comboBox.valueProperty().addListener(e -> System.out.
 println("New Value: " + comboBox.getValue()));

Figure 6-3 shows how an editable ComboBox in the previous code will be shown onscreen.
By using a generic type parameter, you define the ComboBox as ComboBox<Integer>, so only
an ObservableList<Integer> can be used for the item property. To define an editable
ComboBox, you set the editable property to true. Once this is done, a user could type values in
the ComboBox, but these values need to be converted to String values. To do that, you need a
StringConverter. In the previous code, you can see how a simple converter can look. In the
sample, the exception handling is left out, but in a real application, you would add logic here to
handle any String that can’t convert to an Integer. The previous code can be easily converted
to any value type.

ListView
You can also use the ListView<T> to render a list of data onscreen. In fact, the previous
application already showed the ListView control; the ComboBox uses the ListView internally to
render the content of the selection pop-up. I won’t discuss how this is done internally in the

FIGURE 6-3. An editable ComboBox

06-ch06.indd 134 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 135

JavaFX APIs, but the next example will show how many parallels appear between the ListView
and the ComboBox. The following application defines a ListView and a ComboBox that will
share a list as the data model:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.ComboBox;
import javafx.scene.control.ListView;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
public class SimpleListDataDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 ObservableList<String> data = FXCollections.observableArrayList();
 ComboBox<String> comboBox = new ComboBox<>();
 comboBox.itemsProperty().setValue(data);

 ListView<String> listView = new ListView<>();
 listView.itemsProperty().setValue(data);
 TextField inputField = new TextField();
 inputField.setPromptText("insert new data type");
 inputField.setOnAction(e -> data.add(inputField.getText()));
 VBox box = new VBox(6, inputField, comboBox, listView);
 box.setAlignment(Pos.CENTER);
 Scene myScene = new Scene(box);
 primaryStage.setScene(myScene);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

This application looks a lot like the previous one, but it adds a ListView to the scene graph.
The ListView control uses the defined ObservableList as its data model by setting it to the
item property. As a result, the list will be used as the data model for the ComboBox and the
ListView. In addition, you can use the TextField control to add items to the list. Figure 6-4
shows how the sample might look after some items are added to the list. As you can see, the
ListView behaves like the select list of the ComboBox. For the ComboBox, though, a customized
version of the ListView is used, and the ListView provides a lot of properties and methods to
change its behavior or view. As you can see in Figure 6-4, the ListView will use a striped effect
to show its content, and a user can simply select a value in the ListView.

06-ch06.indd 135 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

136 Mastering JavaFX 8 Controls

As with the ComboBox, the ListView can contain a list of data that is defined by its Generic
type. This is defined by the item property too, but the ListView provides a lot of additional
properties, as described in Table 6-3. In the next samples, you will see how to provide custom
cells and look at the editing functionality of the ListView. An additional feature of the
ListView is the ability to define a selection of multiple items. By default, the ListView provides
a SelectionModel that allows only a single selection, but you can change this. How a multiple
selection can be defined will be discussed later in this chapter when I talk about the TableView.

Custom Cells
In each of the previous applications, strings were rendered to show the content of the ListView
or ComboBox. Sometimes, a completely different visualization is needed. JavaFX provides this
functionality with the Cell class. The samples and functionality that are shown here for the
ListView can easily be transferred to a ComboBox, TableView, or TreeView. All these
controls provide a cellFactory property that can be used to create custom cell instances that
are used to render the data of the given controls.

In JavaFX, a cell factory is defined as a callback. As a Java class, a cell factory must be an
instance of Callback<ListView<T>, ListCell<T>>. This callback provides ListCell
instances for a ListView to render data of type T. In most cases, where a ListView will contain
one type of data and one custom Cell class, the definition of the factory will look like the
following code snippet:

 listView.setCellFactory(c -> new CustomListCell());

As you can see, the Callback instance provides a new instance of the CustomListCell
class any time it is called. The CustomListCell class is the special cell implementation that
will render the data onscreen. The cell API in JavaFX contains a lot of defined cell types. The
superclass for all cells is the class Cell, and Figure 6-5 shows the inheritance hierarchy for
the ListCell class that is the basic class for all cells that can be used in a ListView.

FIGURE 6-4. A ComboBox and ListView with shared data model

06-ch06.indd 136 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 137

Property Type Description
cellFactory ObjectProperty<Callback<ListView<T>,

 ListCell<T>>>
Defines a cell factory to
provide custom cells.

editable BooleanProperty Defines whether the
ListView is editable.

editingIndex ReadOnlyIntegerProperty Defines the index of the
currently edited item or –1 if
no item is being edited.

fixedCellSize DoubleProperty Defines whether all cells have
a defined height. If set to a
value less than or equal to
zero, all cells will define its
individual height.

focusModel ObjectProperty<FocusModel<T>> Defines the FocusModel to
get or set the focus on a single
item in the ListView.

items ObjectProperty<ObservableList<T>> Defines the items that are
rendered in the ListView.
This is the data model.

onEditCancel ObjectProperty<EventHandler
 <ListView.EditEvent<T>>>

Defines an event handler that
handles all events when the
editing of an item in a cell is
canceled.

onEditCommit ObjectProperty<EventHandler
 <ListView.EditEvent<T>>>

Defines an event handler that
handles all events when the
editing of an item in a cell is
commited.

onEditStart ObjectProperty<EventHandler
 <ListView.EditEvent<T>>>

Defines an event handler that
handles all events when the
editing of an item in a cell
starts.

onScrollTo ObjectProperty<EventHandler
 <ScrollToEvent<Integer>>>

Defines an event handler
that will be fired when the
ListView should be scrolled
to show a specific index.

orientation ObjectProperty<Orientation> Defines the orientation of the
ListView.

placeholder ObjectProperty<Node> Defines a placeholder that is
used when the ListView has
no content to show.

selectionModel ObjectProperty
 <MultipleSelectionModel<T>>

Defines the SelectionModel
of the ListView.

TABLE 6-3. Properties of the ListView

06-ch06.indd 137 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

138 Mastering JavaFX 8 Controls

Since, in most cases, a Cell class will be used to render plain text, it extends the abstract
Labeled class that was described earlier in this book. The Cell class provides basic functionality
and workflows to render an item. Each control that contains an indexed list of data that should be
rendered in a specific order should use IndexedCell internally. This class maps the index of the
defined item to its position in the data list. By doing so, instances of IndexedCell can handle
information about the index of its internal value. The ListCell class also adds some special
functionality that is needed when working with the ListView.

As a next step, a custom ListCell class should be created to handle and render lists of colors.
The following code snippet shows a ListView that contains a list of colors:

ObservableList<Color> data = FXCollections.observableArrayList();
data.addAll(Color.ALICEBLUE, Color.ORANGE, Color.YELLOW, Color.INDIGO, Color.KHAKI);

ListView<Color> listView = new ListView<>();
listView.setItems(data);

But when this code is used in an application, the ListView will contain some cryptic text
onscreen because it can’t render the Color class. In this situation, a Cell class will call the
toString() method and show its return value onscreen. Figure 6-6 shows how this may look
onscreen.

To create a better output, you need a custom cell, and to create a custom cell, you must
extend the ListCell class. Here is the code of a custom cell class that can render defined
colors:

package com.guigarage.masteringcontrols;
import javafx.scene.control.ListCell;
import javafx.scene.paint.Color;

FIGURE 6-5. Class hierarchy of cells

Controlc

Labeledc

Cellc

ListCellc

IndexedCellc

06-ch06.indd 138 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 139

import javafx.scene.shape.Circle;
public class ColorListCell extends ListCell<Color> {
 @Override
 protected void updateItem(Color item, boolean empty) {
 super.updateItem(item, empty);
 setGraphic(null);
 setText(null);
 if (item != null) {
 setGraphic(new Circle(10, 10, 20, item));
 setText("Red: " + (int)(item.getRed() * 255.0) + ", Green: " +
 (int)(item.getGreen() * 255.0) + ", Blue: " +
 (int)(item.getBlue() * 255.0));
 }
 }
}

As you can see in the code, you use generic type parameters to specify the type of data that
should be shown by this cell. The code shows the simplest way to create a custom cell. Here only
the updateItem(…) method needs to be overridden. The method offers the item that should be
shown by this cell. In addition, the boolean empty parameter is defined, which is necessary to
define a difference between empty and null items. Let’s suppose the list that is used as a data
model of a ListView contains null as a value. In this case, null and false are passed as parameters
to the method. Whenever the empty parameter is true, the cell is used to render a truly empty cell
that doesn’t represent an item of the data model.

Because the Cell class extends the Labeled class, you can use the graphic property here.
As mentioned earlier, this property can add any node to a labeled control. In this sample, a circle

FIGURE 6-6. Bad rendering of data in a ListView

06-ch06.indd 139 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

140 Mastering JavaFX 8 Controls

shape is added to the cell. The circle contains the color represented by the cell as its fill color.
Additionally, the content of the text property is set to plain text with some RGB information
about the color. The updateItem(…) method will be called in different situations. Suppose
the color has changed or the cell is used to render a completely different color out of the data
list. This is allowed through the JavaFX cell recycling mechanism. Because of this, the
updateItem(…) method must handle these workflows. The easiest way to do this is shown in
the example: With every call of the method, the properties that are used will be reset to default
values. As a result, the cell can be recycled and used for other renderings. Whenever a user
scrolls in a very big ListView and cells disappear at the top or bottom of the list, recycling can
be used to provide the new cells that scroll into the screen. Once the given Cell implementation
is used by a ListView that has some Color instances in its data model, the result onscreen might
look like Figure 6-7.

The following code shows an application with a ListView instance that uses the defined
Cell class:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.ListView;
import javafx.scene.layout.StackPane;

FIGURE 6-7. A ListView with a custom Cell class

06-ch06.indd 140 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 141

import javafx.scene.paint.Color;
import javafx.stage.Stage;
public class ColorListCellDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 ObservableList<Color> data = FXCollections.observableArrayList();
 data.addAll(Color.ALICEBLUE, Color.ORANGE, Color.YELLOW, Color.INDIGO,
 Color.KHAKI, Color.FORESTGREEN, Color.LIGHTPINK, Color.CRIMSON,
 Color.SEASHELL);

 ListView<Color> listView = new ListView<>();
 listView.setItems(data);
 listView.setCellFactory(c -> new ColorListCell());

 StackPane myPane = new StackPane();
 myPane.getChildren().add(listView);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

As shown earlier, here you define a cell factory to use the ColorListCell class for the given
ListView.

Note that JavaFX uses a completely different functionality to create a custom cell than Swing,
and any developer who used custom cell rendering in Swing will find the process much improved
in JavaFX. In Swing, a list or table contains only one instance of a renderer, and this renderer was
used to paint all cells. In JavaFX, each Cell instance is a node and part of the scene graph.
Internally, controls such as ListView or TableView use complex mechanisms to create new
cells, add them to the scene graph, and remove them once they are no longer needed. As a result,
only the cells that are visible on the screen are part of the scene graph. If a ListView contains a
data model with 10,000 items but only 10 cells are shown in parallel on the screen, for instance,
the scene graph will contain only 10 cells. As mentioned earlier, the cells could be recycled, in
which case Java doesn’t need to create new instances for each cell and the controls can handle a
big data model without a loss of performance. Later in the chapter, I’ll cover the improvements to
editing the content of a cell.

Before describing how the content of a ListView can be edited by the user, let’s look at an
overview of the properties and methods of the cell classes. Some of these methods are needed to
allow a user to edit a value. Table 6-4 describes all the necessary methods of the Cell class, and
Table 6-5 describes all the properties that are defined by the class.

In addition to these properties, the IndexedCell class contains the index property,
which can be used to receive the index of the defined item. The property is defined as
ReadOnlyIntegerProperty. Finally, the ListCell contains the listView property. This
property is defined as ReadOnlyObjectProperty<ListView<T>> and can be used to receive
the ListView instance in which the cell is used.

06-ch06.indd 141 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

142 Mastering JavaFX 8 Controls

Editing the Content of a ListView
The ListView provides the functionality to edit items of the data model through the cells in the
ListView. To set a ListView to editable, only the value of the editable property needs to be
set to true:

listView.setEditable(true);

Now the ListView will handle user input, such as a mouse double-click, to start editing
mode. The default cell implementation that is used by the ListView doesn’t support editing, but
you can check the editing support of a Cell instance by looking at its editable property. So,
if a ListView is needed so that a value of the data model can be changed by the user, the
ListView and the Cell instance that renders the item need to be editable. JavaFX provides
some basic Cell implementations that can be used directly to support editing. The simplest

Method Description
void updateItem(T item,
 boolean empty)

This method will be called whenever the item of the cell
has changed. You will normally not call this method but
you will need it when implementing custom cell types. In
this case you can override the method to handle the new
data and visualize it.

void startEdit() When this method is called, the cell will go into the editing
state.

void commitEdit(T
 newValue)

When this method is called, the cell will leave the editing
state, and the new value will be committed.

void cancelEdit() When this method is called, the cell will leave the editing
state. All changes will be canceled.

TABLE 6-4. Methods of the Cell Class

Property Type Description
editing ReadOnlyBooleanProperty This defines whether the cell is in editing

mode.
editable BooleanProperty This defines whether the cell is editable.
empty ReadOnlyBooleanProperty If this property is true, the cell has no

content.
item ObjectProperty<T> This defines the data that should be rendered

by the cell.
selected ReadOnlyBooleanProperty This defines whether the cell is selected.

TABLE 6-5. Properties of the Cell Class

06-ch06.indd 142 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 143

way is to use the TextFieldListCell, which provides a TextField in editing mode. This
TextField will be shown in the cell whenever editing is starts. Once editing stops, the cell
will return to the default representation shown earlier. Here is a simple example that uses the
TextFieldListCell class to provide editing:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.control.ListView;
import javafx.scene.control.cell.TextFieldListCell;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
public class EditableListDemo extends Application {
 public static void main(String[] args) {
 launch(args);
 }
 @Override
 public void start(Stage primaryStage) throws Exception {
 ObservableList<String> data = FXCollections.observableArrayList();
 data.addAll("Franky", "Private", "Steve", "Murphy", "Junior");
 ListView<String> listView = new ListView<>();
 listView.setItems(data);
 listView.setCellFactory(TextFieldListCell.forListView());
 listView.setEditable(true);
 StackPane myPane = new StackPane();
 myPane.getChildren().add(listView);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
}

Whenever a user double-clicks a cell in the ListView, a TextField appears, and the user
can change the String item. This is shown in Figure 6-8. As you can see in the code, most of the
Cell implementations that are part of JavaFX provide static methods that can be used to define a
cell factory. These methods return a Callback instance. A TextFieldListCell can also be
used for any other data type in addition to String instances. In this case, you need the definition
of a StringConverter, which I discussed in the earlier review of the ComboBox.

Besides the TextFieldListCell, JavaFX provides three additional cell types that can be
used to edit the content of a cell, shown here:

 ■ ChoiceBoxListCell

 ■ CheckBoxListCell

 ■ ComboBoxListCell

06-ch06.indd 143 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

144 Mastering JavaFX 8 Controls

I’ll use the CheckBoxListCell in an example. The ChoiceBoxListCell and
ComboBoxListCell behave similarly. These different types of cells are also provided for the
TreeView and TableView in JavaFX and won’t be discussed in detail in this book; just remember
that you can use them in the same way as shown here for a ListView. The following source code
shows how to use a CheckBoxListCell:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.beans.property.SimpleBooleanProperty;
import javafx.beans.value.ObservableValue;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.control.ListView;
import javafx.scene.control.cell.CheckBoxListCell;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
import javafx.util.Callback;
public class EditableListDemo extends Application {
 public static void main(String[] args) {
 launch(args);
 }
 @Override
 public void start(Stage primaryStage) throws Exception {
 ObservableList<String> data = FXCollections.observableArrayList();
 data.addAll("Boot", "Bootie", "Kitten Heel", "Mary Jane", "Peep toe", "Pump",
 "Stiletto");
 ListView<String> listView = new ListView<>();
 listView.setItems(data);
 listView.setCellFactory(c -> new CheckBoxListCell<>
 (createSelectionCallback()));
 listView.setEditable(true);
 StackPane myPane = new StackPane();
 myPane.getChildren().add(listView);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);

FIGURE 6-8. Editing a value in a ListView

06-ch06.indd 144 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 145

 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.setTitle("Silkes shoe list");
 primaryStage.show();
 }
 private Callback<String, ObservableValue<Boolean>> createSelectionCallback() {
 SimpleBooleanProperty selectionProperty = new SimpleBooleanProperty(false);
 return (param) -> {
 selectionProperty.addListener((e) -> {
 if (selectionProperty.get()) {
 System.out.println("Shoe " + param + " is added to selection");
 } else {
 System.out.println("Shoe " + param + "is removed from selection");
 }
 });
 return selectionProperty;
 };
 }
}

Figure 6-9 shows the output of this source code. The CheckBoxListCell needs an additional
Callback instance to bind the items of the cell to Boolean values. The callback is defined by the
selectedStateCallback property. This callback is needed to bind Boolean properties to the item
that is rendered in the cell. The cell renders a CheckBox for each item, and whenever the selection of
the CheckBox is changed, the ObservableValue<Boolean> that is created by the callback will
change its value. In the sample, the callback is created by the createSelectionCallback()
method. The callback implementation registers a ChangeListener to the ObservableValue, and
each change will be printed to the console.

The item that is represented by the cell won’t change here. Only the bound Boolean value
will change. So, the CheckBoxListCell doesn’t use the default editing mode of the Cell class.
Table 6-6 describes the properties that are defined by the CheckBoxListCell class.

FIGURE 6-9. Usage of CheckBoxListCell

06-ch06.indd 145 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

146 Mastering JavaFX 8 Controls

In addition to all the default implementations that are part of JavaFX, it is possible to create
custom editable cells. To see how cell editing is done internally, you must extend the custom
ColorListCell to provide for editing colors. The following code shows how an editable cell
might look:

package com.guigarage.masteringcontrols;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.ListCell;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
public class ColorListCell extends ListCell<Color> {
 @Override
 protected void updateItem(Color item, boolean empty) {
 super.updateItem(item, empty);
 updateViewMode();
 }
 private void updateViewMode() {
 setGraphic(null);
 setText(null);
 if (isEditing()) {
 VBox box = new VBox();
 Label redLabel = new Label("Red:");
 Label greenLabel = new Label("Green:");
 Label blueLabel = new Label("Blue:");
 TextField redTextField = new TextField();
 TextField greenTextField = new TextField();
 TextField blueTextField = new TextField();
 if (getItem() != null) {
 redTextField.setText((int) (getItem().getRed() * 255) + "");

Property Type Description

converter ObjectProperty<StringConverter<T>> Defines a
StringConverter
to convert any
object to a String
that can be rendered
in the cell

selectedStateCallback ObjectProperty<Callback<T,
 ObservableValue<Boolean>>>

Defines the callback
that is used to
handle the Boolean
selection state of the
CheckBox

TABLE 6-6. Properties of the CheckBoxListCell

06-ch06.indd 146 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 147

 greenTextField.setText((int) (getItem().getGreen() * 255) + "");
 blueTextField.setText((int) (getItem().getBlue() * 255) + "");
 }
 Button setColorButton = new Button("SET");
 setColorButton.setOnAction((e) -> commitEdit(Color.rgb(new
 Integer(redTextField.getText()),
 new Integer(greenTextField.getText()),
 new Integer(blueTextField.getText()))));
 box.getChildren().addAll(redLabel, redTextField, greenLabel,
 greenTextField, blueLabel, blueTextField, setColorButton);
 setGraphic(box);
 } else {
 if (getItem() != null) {
 setGraphic(new Circle(10, 10, 20, getItem()));
 setText("Red: " + (int) (getItem().getRed() * 255.0) + ", Green: "
 + (int) (getItem().getGreen() * 255.0) + ", Blue: " + (int)
 (getItem().getBlue() * 255.0));
 }
 }
 }
 @Override
 public void startEdit() {
 super.startEdit();
 updateViewMode();
 }
}

The code of the class is now much bigger; it adds the new method updateViewMode(). The
ColorListCell as described in this code defines two different views: One view shows
a color item as it was defined earlier, and whenever the cell is in editing mode, the user is
presented with a completely different view. Figure 6-10 shows how the cell will look in editing
and nonediting modes.

The updateViewMode() method checks whether the cell is currently in editing mode and
adds the needed nodes to the cell. In editing mode, three TextFields are used. A user can
change the RGB information of the color items with the help of these three TextFields. In
addition, a Button control is added. Whenever a user clicks this button, the changes that are
made in the TextFields will be committed, and a new color is set as the item of the cell.
When doing this, the underlying data model that is an ObservableList<Color> instance in
this case will contain the edited item. To commit the changes that are made while editing, the
commitEdit(T newValue) method needs to be called. If all changes should be canceled, the
cancelEdit() method should be called. In the given demo, only the commitEdit(…) method
is used. In addition to the Set button, a Cancel button should be used that calls cancelEdit()
on an action event. To make the demo more user-friendly, you could add an event handler to the
TextFields too. Here is a code snippet that defines an additional handler:

blueTextField.setOnAction((e) -> commitEdit(Color.rgb(new
Integer(redTextField.getText()),
 new Integer(greenTextField.getText()),
 new Integer(blueTextField.getText()))));

One last change that is made in the ColorListCell class is the special implementation of
the startEdit() method. As mentioned earlier, this method will be called whenever the editing

06-ch06.indd 147 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

148 Mastering JavaFX 8 Controls

mode of the cell starts. This method simply calls the new updateViewMode() method to show the
editing view of the cell. The commitEdit(T newValue) and cancelEdit() methods do not
need to be overridden because they result in a call of updateItem(Color item, boolean
empty), and all changes will be handled by this method.

As you can see, JavaFX and the cell API provide all the functionality that is needed to create
custom and editable cells. As a benefit, all the workflows and functionalities that are used here
can be reused for the TableView, TreeView, and TreeTableView, so I won’t show
additional examples in those respective sections.

Using the Selection Model of a ListView
A selection model is used to handle the selection of a ListView. A selection model for a
ListView is defined by the MultipleSelectionModel<T> class and can be accessed by the
selectionModel property of the ListView. A MultipleSelectionModel contains the
selected indexes of a ListView. By default, only one entry can be selected in a ListView. The
index of the selected cell and the data that is defined for the selected entry can be accessed by

FIGURE 6-10. Editing values in a custom Cell implementation

06-ch06.indd 148 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 149

the selection model. Here, the selectedIndex property of type ReadOnlyIntegerProperty
and the selectedItem property of type ReadOnlyObjectProperty<T> are defined. By using
these properties, you can bind the selection of a ListView to the content of a TextField, for
example. The following code defines a ListView and a TextField and creates a binding:

ObservableList<String> data = FXCollections.observableArrayList();
 data.addAll("The Bones", "Emil Bulls", "Story of the Year", "Trust Company",
 "The Used");

ListView<String> list = new ListView<>(data);

TextField textField = new TextField();
textField.setEditable(false);

textField.textProperty().bind(list.getSelectionModel().selectedItemProperty());

Whenever the user changes the selection in the ListView, the text in the TextField will
automatically be updated to the selected entry.

NOTE
Both of the properties that are described here are part of the abstract
SelectionModel<T> class. All selection models that are used in the
JavaFX controls APIs extend this class. As mentioned, the ListView
uses MultipleSelectionModel<T>, which extends the abstract
class too.

As shown, the ListView supports the selection of only one entry by default. This can be
changed by setting the selectionMode property of the MultipleSelectionModel instance. To
define the different selection types, you use the SelectionMode enum. A ListView can handle
single or multiple selections. You can activate multiple selections in a TableView by using the
following code:

listView.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

Once you define multiple selection, a user can select more than one entry in the ListView.
The selection is stored in the MultipleSelectionModel instance. The class provides two
ObservableList instances that can be accessed to the selected indices and the corresponding
values of the underlying data model, as shown here:

ObservableList<String> data = FXCollections.observableArrayList();
data.addAll("Wood", "Iron", "Water", "Fire");

ListView<String> list = new ListView<>(data);
list.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

ListView<String> boundedList = new ListView<>(list.getSelectionModel().
 getSelectedItems());

06-ch06.indd 149 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

150 Mastering JavaFX 8 Controls

In the code snippet, the ObservableList that contains the selected entries of a ListView is
used as the data model of a second ListView. When trying this code at run time, the content of
the second list will change whenever the selection in the first list changes.

Because the selection model of a ListView is defined as an instance of the
MultipleSelectionModel in the ListView instance and it can be accessed and set
by the selectionModel property, it can be shared between different Control instances.
The following sample defines two ListView controls that internally use the same selection
model. A selection in one of the lists will automatically update the selection in the second list.

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.ListView;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ListSelectionDemo extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 ObservableList<String> data = FXCollections.observableArrayList();
 data.addAll("Wood", "Iron", "Water", "Fire");
 ListView<String> list = new ListView<>(data);
 ListView<String> secondList = new ListView<>(data);
 secondList.setSelectionModel(list.getSelectionModel());
 VBox myPane = new VBox();
 myPane.setAlignment(Pos.CENTER);
 myPane.setPadding(new Insets(12));
 myPane.setSpacing(12);
 myPane.getChildren().addAll(list, secondList);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

TableView
Like ListView, the TableView<T> control can represent lists of data. To understand the
workflow of a TableView, refer to the previous ListView description; most of the basic
workflows are the same in both controls and not described here again.

06-ch06.indd 150 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 151

Defining Columns
The TableView provides columns that can show the underlying data in more detail. You define
columns using the TableColumn class and add them to a TableView, as shown here:

TableView table = new TableView();

TableColumn firstNameCol = new TableColumn("First Name");
TableColumn lastNameCol = new TableColumn("Last Name");
TableColumn jobColumn = new TableColumn("Job");

table.getColumns().addAll(firstNameCol, lastNameCol, jobColumn);

The TableColumn class extends the TableColumnBase class that contains basic methods that
are shared between the TableView and the TreeTableView.

In addition, JavaFX supports nested columns, which can be useful to group related data.
Therefore, a TableColumn instance can hold internal columns. This is shown in the following
code snippet:

TableColumn firstNameColumn = new TableColumn("First Name");
TableColumn lastNameColumn = new TableColumn("Last Name");

TableColumn nameColumn = new TableColumn("Name");
nameColumn.getColumns().addAll(firstNameColumn, lastNameColumn);

TableColumn jobColumn = new TableColumn("Job");

table.getColumns().addAll(nameColumn, jobColumn);

In this example, the Name column contains two subcolumns. Figure 6-11 shows how a
TableView that is created with these columns will look.

Filling a TableView with Custom Data
Like the ListView, the TableView defines an items property of type ObjectProperty<Obser
vableList<S>>. This property will hold the data that is shown in the table. The next example
shows a Java class that is created to define the data model:

public class Person {
 private String firstName;
 private String lastName;
 private String job;

 public Person(String firstName, String lastName, String job) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.job = job;
 }

06-ch06.indd 151 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

152 Mastering JavaFX 8 Controls

 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 public String getJob() {
 return job;
 }
 public void setJob(String job) {
 this.job = job;
 }
}

As you can see in the code, the Person class defines fields that map to the columns of the
TableView. As a next step, these bean properties of the class need to link to the columns of the
table. The TableColumn class provides the cellValueFactory property. This property is defined
as ObjectProperty<Callback<CellDataFeatures<S,T>, ObservableValue<T>>> and
must be used to create a mapping between the column and the data. JavaFX contains the
PropertyValueFactory class that can be used here. The following code shows how the
firstName bean property of the Person class can link to a column of a table:

firstNameColumn.setCellValueFactory(
 new PropertyValueFactory<Person,String>("firstName")
);

FIGURE 6-11. A TableView

06-ch06.indd 152 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 153

Internally, the Java reflection API is used to show the underlying data onscreen. You create the
PropertyValueFactory by passing the firstName String to the constructor, and this String
defines a bean property in the class of the data model, which is Person in this case. The class must
provide a getter method for the bean property to access the data that should be shown in the cell.

NOTE
The cell value factory uses the CellDataFeatures internally. This
class is a helper class that wraps all information that is needed for the
callback. A CellDataFeatures instance contains the TableView
instance, the TableColumn instance, and the data that is represented
by the current row.

You can create a simple application that uses all the described functionalities with just a few
lines of code. The next code uses the features I just covered and creates a simple table with tree
columns and some lines of data:

import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
import javafx.scene.control.cell.PropertyValueFactory;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class TableDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 ObservableList<Person> data = FXCollections.observableArrayList(
 new Person("Claudine", "Zillmann", "Design"),
 new Person("Joel", "Ferreira", "Pro Gamer"),
 new Person("Alexander", "Jorde", "Junior Developer"),
 new Person("Holger", "Merk", "Senior Architect")
);
 TableView<Person> table = new TableView<>();
 table.itemsProperty().setValue(data);
 TableColumn<Person, String> firstNameColumn = new TableColumn<>("First Name");
 TableColumn<Person, String> lastNameColumn = new TableColumn<>("Last Name");
 TableColumn<Person, String> jobColumn = new TableColumn<>("Job");
 firstNameColumn.setCellValueFactory(
 new PropertyValueFactory<Person,String>("firstName")
);
 lastNameColumn.setCellValueFactory(
 new PropertyValueFactory<Person,String>("lastName")
);
 jobColumn.setCellValueFactory(
 new PropertyValueFactory<Person,String>("job")
);
 table.getColumns().addAll(firstNameColumn, lastNameColumn, jobColumn);
 StackPane myPane = new StackPane();
 myPane.getChildren().add(table);
 Scene myScene = new Scene(myPane);

06-ch06.indd 153 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

154 Mastering JavaFX 8 Controls

 primaryStage.setScene(myScene);
 primaryStage.setTitle("App");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

The PropertyValueFactory class is the fastest way to show specific data in a
TableColumn. But internally the class uses reflection, and the name of a bean property has
to be defined as a String. This creates code that can’t be refactored by an IDE. Once the field in the
Person class is renamed, the firstName has to be changed manually. In addition, using reflection
will result in a loss of performance. Thanks to the JavaFX property API and lambda support, you can
create the binding in a better way. The following code snippet shows how a cellValueFactory
property can be defined without using reflection:

firstNameColumn.setCellValueFactory((e) -> new SimpleStringProperty(e.
 getValue().getFirstName()));

Here, you create a SimpleStringProperty that acts as a wrapper for the current
firstName value of the underlying data. If you use this approach, you do not need reflection.
Sadly, this code has another problem. Whenever the underlying firstName bean property is
changed, the TableColumn won’t be updated. Therefore, it is best to use the JavaFX property API
directly in the data model. So, the Person class needs to be refactored, as shown here:

public class Person {
 private SimpleStringProperty firstName;
 private SimpleStringProperty lastName;
 private SimpleStringProperty job;
 public Person(String firstName, String lastName, String job) {
 this.firstName = new SimpleStringProperty(firstName);
 this.lastName = new SimpleStringProperty(lastName);
 this.job = new SimpleStringProperty(job);

 this.firstName.addListener((e) -> System.out.println("First Name
 changed to " + this.firstName.get()));
 this.lastName.addListener((e) -> System.out.println("Last Name changed
 to " + this.lastName.get()));
 this.job.addListener((e) -> System.out.println("Job changed to " +
 this.job.get()));
 }
 public StringProperty firstNameProperty() {
 return firstName;
 }
 public StringProperty lastNameProperty() {
 return lastName;
 }
 public StringProperty jobProperty() {
 return job;
 }

06-ch06.indd 154 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 155

 public String getFirstName() {
 return firstName.get();
 }
 public void setFirstName(String firstName) {
 this.firstName.set(firstName);
 }
 public String getJob() {
 return job.get();
 }
 public void setJob(String job) {
 this.job.set(job);
 }
 public String getLastName() {
 return lastName.get();
 }
 public void setLastName(String lastName) {
 this.lastName.set(lastName);
 }
}

NOTE
In the constructor of the class, some listeners are registered to the
internal properties. This is done for debugging reasons. When running
the following demos, the editing of the content in a TableView will
be shown. Here the data in the Person instances will be changed. To
check this behavior, some logging output will be printed to the console
by these listeners.

Now the cellValueFactory property of the firstNameColumn can be defined, as shown
in the following code snippet:

firstNameColumn.setCellValueFactory((e) -> e.getValue().firstNameProperty());

By creating a data model of this and using the properties of the data model directly for the
cellValueFactory, the properties are bound to the TableColumn, and changes will be shown
directly onscreen.

Adding Different Cell Types to a TableView
The content of a TableColumn is rendered by a cell, as was described for the ListView. When
using a TableView, all cell instances need to extend the TableCell class. Instead of defining a
cell factory for the complete control, each TableColumn can reference its own factory. To see
this functionality, you add a new property to the Person class:

public class Person {

 ...

 private SimpleBooleanProperty employeeOfTheMonth;

06-ch06.indd 155 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

156 Mastering JavaFX 8 Controls

 public Person(String firstName, String lastName, String job, boolean
 employeeOfTheMonth) {
 this.firstName = new SimpleStringProperty(firstName);
 this.lastName = new SimpleStringProperty(lastName);
 this.job = new SimpleStringProperty(job);
 this.employeeOfTheMonth = new SimpleBooleanProperty(employeeOfTheMonth);}
 public SimpleBooleanProperty employeeOfTheMonthProperty() {
 return employeeOfTheMonth;
 }
}

In the sample, a TableColumn is added to the TableView too. The following code snippet
contains the needed new lines in the class:

TableColumn<ExtendedPerson, Boolean> employeeOfTheMonthColumn = new
TableColumn<>("Employee of the month");
employeeOfTheMonthColumn.setCellValueFactory((e) -> e.getValue().
 employeeOfTheMonthProperty());

table.getColumns().add(employeeOfTheMonthColumn);

Once the application is running, “true” and “false” are shown as data in the new column. To
represent these data entries in a better way, though, you need another cell type. Specifically,
JavaFX contains a CheckBox-based cell for the TableView: the CheckBoxTableCell class. The
class provides some static methods that can be used to create the needed instance. The following
code snippet defines a CheckBoxTableCell instance for the new cell:

employeeOfTheMonthColumn.setCellFactory(CheckBoxTableCell.forTableColumn((i)
 -> data.get(i).employeeOfTheMonthProperty()));

Because the CheckBoxTableCell class is designed in a general way and can be used in different
ways, a custom callback is needed that returns the BooleanProperty that should be shown in
the cell.

NOTE
In addition to the TableColumn class, the TableView uses the
TableRow class internally. A TableRow instance defines a row in the
table and can be created by the Callback instance that is defined
by the rowFactory property of the TableView class. Usually, you
don’t need to work with this class because often a TableView can be
customized by using the TableColumn class and custom cells. Only
experts should work with the TableRow class.

Editing the Content of a Cell
Like the ListView, a TableView can be used to edit data; you just need to define the TableView
as editable, and the used columns and cells must support the editing of its values. For the example,
you need a different cell type for all columns that show String data because the default cell type
doesn’t support editing.

06-ch06.indd 156 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 157

To support editing, the following properties must define a true Boolean value:

 ■ editable property of the TableView

 ■ editable property of the TableColumn

 ■ editable property of the TableCell

The TableColumn instance is editable by default. So, you need to set only the TableView
property. But, as mentioned, you need another Cell class too. JavaFX provides editing with the
TextFieldTableCell class. This can be used to edit String content in a table. Here are the
additional lines of code that must be added to the example to provide edit functionality for the
TableView:

firstNameColumn.setCellFactory(TextFieldTableCell.forTableColumn());
lastNameColumn.setCellFactory(TextFieldTableCell.forTableColumn());
jobColumn.setCellFactory(TextFieldTableCell.forTableColumn());

table.setEditable(true);

The cell factory that is used for the employeeOfTheMonthColumn already supports editing
and doesn’t need to change. Once this is done, all data in the TableView can be edited. Because
all columns are bound to the properties of the Person instances, the data model will be changed.
So, if you share the ObservableList<Person> data in this sample in different controls, you
can see the changes on the fly.

To show the support of custom cells, I will add a column to the TableView. This column will
be special because it won’t render additional data. Instead, it will contain a Button control that
can be clicked to delete the complete data entry. To do this, I need a custom cell class that
extends the TableCell class, as shown here:

package com.guigarage.masteringcontrols;
import javafx.scene.control.Button;
import javafx.scene.control.TableCell;
import java.util.function.Consumer;

public class ActionTableCell<S> extends TableCell<S, Void> {

 private Button button;

 public ActionTableCell(String text, Consumer<Integer> action) {
 button = new Button(text);
 button.setOnAction((e) -> action.accept(getIndex()));
 setAlignment(Pos.CENTER);
 }

 @Override
 protected void updateItem(Void item, boolean empty) {
 setGraphic(null);
 if(!empty) {

06-ch06.indd 157 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

158 Mastering JavaFX 8 Controls

 setGraphic(button);
 }
 }
}

Internally, the cell will contain a button that shows the text that is passed to the constructor of
the ActionTableCell class. Whenever the button is clicked, a custom action will be handled.
This action will call a custom Consumer, which needs to be defined in the constructor too. The
current index of the table row will be passed as input value to the Consumer. With the help of
this general class, a cell can be created that deletes a row of the data model by clicking the
internal button. Here is the code snippet that adds the cell to the table:

TableColumn<Person, Void> deleteColumn = new TableColumn<>("Delete");
deleteColumn.setCellFactory((c) -> new ActionTableCell<ExtendedPerson>("X",
 (i) -> data.remove(i.intValue())));
table.getColumns().add(deleteColumn);

The new TableColumn doesn’t need a cellValueFactory because no data is shown in the
cells. The Consumer that is passed to the ActionTableCell removes the correct instance
from the underlying data.

After some changes, the sample defines some columns with different cell types. In addition,
the data in the table can be edited and rows can be deleted. The following code shows the
complete application with all the features:

package com.guigarage.masteringcontrols;

import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
import javafx.scene.control.cell.CheckBoxTableCell;
import javafx.scene.control.cell.TextFieldTableCell;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class TableDemo2 extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 ObservableList<Person> data = FXCollections.observableArrayList(
 new Person("Claudine", "Zillmann", "Design", true),
 new Person("Joel", "Ferreira", "Pro Gamer", false),
 new Person("Alexander", "Jorde", "Junior Developer", false),
 new Person("Holger", "Merk", "Senior Architect", false)
);
 TableView<Person> table = new TableView<>();
 table.itemsProperty().setValue(data);

06-ch06.indd 158 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 159

 TableColumn<Person, String> firstNameColumn = new TableColumn<>("First Name");
 TableColumn<Person, String> lastNameColumn = new TableColumn<>("Last Name");
 TableColumn<Person, String> jobColumn = new TableColumn<>("Job");
 TableColumn<Person, Boolean> employeeOfTheMonthColumn = new
 TableColumn<>("Employee of the month");
 TableColumn<Person, Void> deleteColumn = new TableColumn<>("Delete");

 firstNameColumn.setCellValueFactory((e) -> e.getValue().firstNameProperty());
 lastNameColumn.setCellValueFactory((e) -> e.getValue().lastNameProperty());
 jobColumn.setCellValueFactory((e) -> e.getValue().jobProperty());
 employeeOfTheMonthColumn.setCellValueFactory((e) -> e.getValue().
 employeeOfTheMonthProperty());

 firstNameColumn.setCellFactory(TextFieldTableCell.forTableColumn());
 lastNameColumn.setCellFactory(TextFieldTableCell.forTableColumn());
 jobColumn.setCellFactory(TextFieldTableCell.forTableColumn());
 employeeOfTheMonthColumn.setCellFactory(CheckBoxTableCell.forTableColumn((i)
 -> data.get(i).employeeOfTheMonthProperty()));
 deleteColumn.setCellFactory((c) -> new ActionTableCell<Person>("X", (i) ->
 data.remove(i.intValue())));

 table.setEditable(true);
 table.getColumns().addAll(firstNameColumn, lastNameColumn, jobColumn,
 employeeOfTheMonthColumn, deleteColumn);

 StackPane myPane = new StackPane();
 myPane.getChildren().add(table);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

Figure 6-12 displays the application.

Sorting Data
The TableView provides the functionality to sort its underlying data. Usually, the data will be
sorted when a user clicks a column header. In this case, the data of a TableView will be sorted
by the functionality that is defined for the column. With a second click on the column header, the
sorting order will be changed from ascending to descending. A third click will disable the sorting.
By pressing the shift key while clicking the headers, the user can sort the data of a TableView by
multiple columns. Here the priority of each column in the sort operation will be specified by the
order in which the columns are clicked. The TableColumnBase class provides the sortable
property that can be used to deactivate the sorting functionality for a column.

You can use the basic sorting functionality of a TableView for all data that is comparable.
This means the data class must implement the java.lang.Comparable interface. Sometimes
you may have defined a custom data type in a table column and want to sort it too. In those

06-ch06.indd 159 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

160 Mastering JavaFX 8 Controls

cases, you can use the comparator property of a column. Let’s use the following enum in a
table and sort it:

public enum Priority {
 MEDIUM, HIGH, LOW;
}

To do this, you must define a custom Comparator. You can set this Comparator to the
comparator property of the table cell, as shown here:

TableColumn<Data, Priority> priorityColumn = new TableColumn<>("Priority");
priorityColumn.setComparator((Priority p1, Priority p2) -> {
 if(p1.equals(p2)) {return 0;}
 if(p1.equals(Priority.HIGH)) {return 1;}
 if(p1.equals(Priority.MEDIUM) && p2.equals(Priority.LOW)) {return 1;}
 return -1;
});

Whenever a user clicks the header of the Priority column, the defined Comparator instance
will be used to sort the data of the table. To change the default sort order, you can use the
sortType property of the TableColumn class. Therefore, JavaFX contains the SortType enum
that defines the ascending and descending sort order:

priorityColumn.setSortType(TableColumn.SortType.DESCENDING);

Note that to change the complete sort behavior of a table, you can use the sortPolicy
property of the TableView. The sortPolicy property defines a Callback that internally executes
the sorting of a table. By default, a Callback is used here that just calls FXCollections
.sort(tableView.getItems()). The priority order of the columns can be accessed by using
the getSortOrder() method of the TableView too.

FIGURE 6-12. The TableView as defined in the sample

06-ch06.indd 160 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 161

NOTE
The sorting of a table won’t affect the underlying data model. The
indices of the items in the ObservableList that is defined as the
model of the TableView won’t change when a user sorts the content
of a TableView. The sorting will affect only the visual representation
of the content.

How the Selection Model Works
The TableViewSelectionModel<S> class that is used to define the selection model of a
TableView extends the MultipleSelectionModel<T> class that was discussed when talking
about the selection in a ListView and adds some features. The basic features can be used like it
was shown for the ListView. A single row or multiple rows can be selected in a table by the
user. In addition, the TableViewSelectionModel provides the selection of single cells. To do
this, you must set the cellSelectionEnabled property to true. Once this is done, a user can
select a single cell or multiple cells. Furthermore, the selection model of the TableView contains
some useful methods that can be used to select ranges of cells or to move the selection to the top,
bottom, left, or right cell of the currently selected one.

To access the selected data when cell selection is active, the TableViewSelectionModel
provides the getSelectedCells() method that returns a ObservableList<TablePosition>.
The TablePosition class defines the row and column of the selected cell. It is important to know
that the indices that are used here define the row indices as shown onscreen. When a table is
sorted, these values don’t match the indices of the underlying data model. Instead, an index
is always defined as it is shown onscreen. Converter methods such as those provided in Swing to
convert a view index to a model index are currently not part of JavaFX. There is a workaround for
this topic that I will show later in this chapter when I discuss the SortedList class.

NOTE
The TableViewSelectionModel class extends the
TableSelectionModel class that contains basic functionality.
This class extends the MultipleSelectionModelBase class. The
MultipleSelectionModel that is used as the selection model in the
ListView is the superclass of the MultipleSelectionModelBase
class. As you can see, there is a complex class hierarchy defined for
the selection models of different control types. You can see the benefit
of this when developing custom controls that need a selection model.
You use the base class that matches the needed functionality.

Additional Table API Properties
The classes of the TableView API that are used in the samples provide properties that have not
been covered in this chapter, so the following tables contain an overview of these properties.
Table 6-7 describes all properties of the TableView class, and Table 6-8 and Table 6-9
describe the properties of the abstract TableColumnBase and TableColumn classes. In
addition, Table 6-10 contains the properties of the TableCell.

06-ch06.indd 161 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

162 Mastering JavaFX 8 Controls

Property Type Description

columnResizePolicy ObjectProperty<Callback
 <ResizeFeatures, Boolean>>

The Callback is called
when the user completes
a column resize.

comparator ReadOnlyObjectProperty
 <Comparator<S>>

This property represents
the current state of the sort
order list.

editable BooleanProperty This defines whether the
TableView is editable.

editingCell ReadOnlyObjectProperty
 <TablePosition<S,?>>

This defines the cell that is
currently being edited.

fixedCellSize DoubleProperty This defines the height of
all cells. If this value is
less than or equal to zero,
all cells are individually
sized.

focusModel ObjectProperty
 <TableViewFocusModel<S>>

This defines the
TableViewFocusModel
for the TableView.

items ObjectProperty<ObservableList<S>> This defines the data model
for the TableView.

onScrollTo ObjectProperty<EventHandler
 <ScrollToEvent<Integer>>>

The event handler is
called for each request to
scroll the viewport of the
TableView to a specific
row.

onScrollToColumnProperty ObjectProperty<EventHandler
 <ScrollToEvent<TableColumn<S,
 ?>>>>

The event handler is
called for each request to
scroll the viewport of the
TableView to a specific
column.

onSortProperty ObjectProperty<EventHandler
 <SortEvent<TableView<S>>>>

This is called when there’s
a request to sort the
control.

placeholderProperty ObjectProperty<Node> This defines a node
that is shown when the
TableView has no
content to show.

rowFactoryProperty ObjectProperty<Callback
 <TableView<S>, TableRow<S>>>

This defines a Callback
that creates the TableRow
instances. This should be
used only by experts.

TABLE 6-7. Properties of TableView Class

06-ch06.indd 162 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 163

Property Type Description

selectionModel ObjectProperty<TableViewSelection
 Model<S>>

This defines the
SelectionModel
of the TableView.

sortPolicy ObjectProperty<Callback
 <TableView<S>, Boolean>>

This defines how sorting
in this TableView should
be performed.

tableMenuButtonVisible BooleanProperty This defines a menu
button that shows and
hides all TableColumns
of the TableView.

TABLE 6-7. Properties of TableView Class (continued)

Property Type Description

comparator ObjectProperty<Comparator<T>> This defines the Comparator that is
used when sorting this table column.

contextMenu ObjectProperty<ContextMenu> This defines the menu that will be
shown when a user right-clicks within
the header of the column.

editable BooleanProperty This defines whether the column is
editable.

graphic ObjectProperty<Node> This defines a graphic that is shown in
the column header.

id StringProperty This defines the ID of this column.

maxWidth DoubleProperty This defines the maximum width of the
column.

minWidth DoubleProperty This defines the minimum width of the
column.

parentColumn ReadOnlyObjectProperty
 <TableColumnBase<S,?>>

This contains the parent of this column
if nested columns are being used.

prefWidth DoubleProperty This defines the preferred width of the
column.

resizable BooleanProperty This defines whether the width of this
column can be changed.

sortable BooleanProperty This defines whether the column is
sortable.

 (continued)

TABLE 6-8. Properties of the TableColumnBase Class

06-ch06.indd 163 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

164 Mastering JavaFX 8 Controls

Property Type Description

sortNode ObjectProperty<Node> This defines the node that is used as the
“sort arrow” in the column header.

style StringProperty This defines a string representation
of the CSS style associated with the
column.

text StringProperty This defines the text that is shown in
the header.

visible BooleanProperty This defines whether the column is
visible.

width ReadOnlyDoubleProperty This defines the current width of this
column.

TABLE 6-8. Properties of the TableColumnBase Class (continued)

Property Type Description

cellFactory ObjectProperty<Callback<Table
 Column<S,T>, TableCell<S,T>>>

This defines the cell factory
for all cells in this column.

cellValueFactory ObjectProperty<Callback
 <CellDataFeatures<S,T>,
 ObservableValue<T>>>

The cell value factory
defines a Callback that
produces the values that are
used internally in the cells
of the column as the cell
data.

onEditCancel ObjectProperty<EventHandler
 <CellEditEvent<S,T>>>

The defined event handler
will be fired when the user
cancels editing.

onEditCommit ObjectProperty<EventHandler
 <CellEditEvent<S,T>>>

The defined event handler
will be fired when the user
commits editing.

onEditStart ObjectProperty<EventHandler
 <CellEditEvent<S,T>>>

This defined event handler
will be fired when the user
initiates editing.

TABLE 6-9. Properties of the TableColumn Class

06-ch06.indd 164 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 165

TreeView
You can use the TreeView<T> control to display data that has a hierarchical structure. Most
people will know this visualization from file explorers. File systems can contain directories that
hold files or other directories, and this structure can be represented by a tree.

To create a tree structure, you use the TreeItem<T> class. This class provides the functionality
to create a data model that contains a hierarchy of values, and each TreeItem instance can have
other TreeItem instances as children. In addition, a TreeItem can hold a value that represents the
data of the item. Here is a short sample that creates a tree of TreeItems:

TreeItem<Person> cto = new TreeItem<>(new Person("S. Gocha"));
TreeItem<Person> manager1 = new TreeItem<>(new Person("S. Trockel"));
TreeItem<Person> manager2 = new TreeItem<>(new Person("M. Kirschner"));
TreeItem<Person> employee1 = new TreeItem<>(new Person("J. Schmale"));
TreeItem<Person> employee2 = new TreeItem<>(new Person("M. Eil"));
TreeItem<Person> employee3 = new TreeItem<>(new Person("M. Bennemann"));
TreeItem<Person> employee4 = new TreeItem<>(new Person("H. Barth"));
TreeItem<Person> employee5 = new TreeItem<>(new Person("T. Reker"));

cto.getChildren().addAll(manager1, manager2);
manager1.getChildren().addAll(employee1, employee2, employee3);
manager2.getChildren().addAll(employee4, employee5);

Property Type Description

sortType ObjectProperty<SortType> This defines whether the
column should be sorted
in ascending or descending
order.

tableView ReadOnlyObjectProperty
<TableView<S>>

This defines the TableView
that this TableColumn
belongs to.

TABLE 6-9. Properties of the TableColumn Class (continued)

Property Type Description
tableColumn ReadOnlyObjectProperty

 <TableColumn<S,T>>
This defines the TableColumn instance
that backs this TableCell.

tableRow ReadOnlyObjectProperty
 <TableRow>

This defines the TableRow that this
TableCell currently finds itself placed
within.

tableView ReadOnlyObjectProperty
 <TableView<S>>

This defines the TableView associated
with this TableCell.

TABLE 6-10. Properties of TableCell Class

06-ch06.indd 165 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

166 Mastering JavaFX 8 Controls

The code creates a tree of people that reflects the employment of the defined people.
Each TreeItem instance can be expanded or collapsed. In the TreeView, all the children of an
expanded TreeItem will be shown. If the item is collapsed, no children will be shown. All items
that are rendered in a TreeView can be expanded by the user with a mouse click. In addition, the
state can be changed by using the expanded property in code. In addition to this property,
the TreeItem class provides some additional ones, as described in Table 6-11.

To set a hierarchy of TreeItem instances to a TreeView, you must set the root of the
hierarchy, and the TreeView provides the root property. The following example creates a
TreeView with some data and shows it onscreen:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.TreeItem;
import javafx.scene.control.TreeView;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class TreeViewDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 TreeView<String> treeView = new TreeView<>();
 TreeItem<String> item = new TreeItem<>("javafx");

Property Type Description
expanded BooleanProperty This defines whether

the item is expanded or
collapsed.

graphic ObjectProperty<Node> This defines a node that
is normally shown in the
visual representation of
the item in the TreeView.

leaf ReadOnlyBooleanProperty This defines whether the
TreeItem is a leaf, which
is true if the item has no
children.

parent ReadOnlyObjectProperty<TreeItem<T>> This defines the parent in
the tree hierarchy. This will
be null for the root of a tree.

value ObjectProperty<T> This property can be
used to hold application-
specific data.

TABLE 6-11. Properties of the TreeItem Class

06-ch06.indd 166 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 167

 TreeItem<String> item2 = new TreeItem<>("scene");
 item.getChildren().add(item2);
 TreeItem<String> item3 = new TreeItem<>("control");
 item2.getChildren().add(item3);
 item3.getChildren().add(new TreeItem<>("Button"));
 item3.getChildren().add(new TreeItem<>("TreeView"));
 item2.getChildren().add(new TreeItem<>("Scene"));
 TreeItem<String> item4 = new TreeItem<>("stage");
 item.getChildren().add(item4);
 item4.getChildren().add(new TreeItem<>("Stage"));
 treeView.setRoot(item);
 StackPane myPane = new StackPane();
 myPane.getChildren().add(treeView);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

In this example, only the root property of the TreeView is used. The class provides some
additional properties to change the behavior and visualization of the rendered tree. Table 6-12
describes all the properties of the TreeView class.

As you can see in Table 6-12, a lot of properties are the same as the ones defined in the
ListView or TableView. That is a great benefit of JavaFX. Once you understand the concept of
the ListView, you can transform most of the functionalities to the TableView and TreeView
classes. Because of that, I won’t show here how editing is working or how the selection model
can be used. You can deduce all the functionality from the ListView or TableView sections.

The following example contains a more complex data model and uses custom cells.
Specifically, you’ll create a tree of the file system, so as a first step, you create a hierarchy of
TreeItem instances. The following method creates the needed structure for a given folder in the
local file system:

private TreeItem<File> createTree(File file) {
 TreeItem<File> item = new TreeItem<>(file);
 File[] childs = file.listFiles();
 if (childs != null) {
 for (File child : childs) {
 item.getChildren().add(createTree(child));
 }
 item.setGraphic(new ImageView(getClass().getResource("folder.png").
 toExternalForm()));
 } else {
 item.setGraphic(new ImageView(getClass().getResource("text-x-generic.png").
 toExternalForm()));
 }
 return item;
 }

06-ch06.indd 167 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

168 Mastering JavaFX 8 Controls

Property Type Description

editable BooleanProperty This defines whether the
TreeView is editable.

editingItem ReadOnlyObjectProperty
 <TreeItem<T>>

This defines the item that is
currently being edited or null
if no item will be edited.

expandedItemCount ReadOnlyIntegerProperty This defines the count of all
expanded tree items and
their children.

fixedCellSize DoubleProperty This defines a fixed height
that will be used for all cells.
If the value is less than or
equal to zero, each cell can
have its individual height.

focusModel ObjectProperty<FocusModel
 <TreeItem<T>>>

This defines the
FocusModel of the
TreeView.

onEditCancel ObjectProperty<EventHandler
 <EditEvent<T>>>

The EventHandler instance
will be fired when the user
cancels editing a cell.

onEditCommit ObjectProperty<EventHandler
 <EditEvent<T>>>

The EventHandler
instance will be fired when
the user commits an edit.

onEditStart ObjectProperty<EventHandler
 <EditEvent<T>>>

The EventHandler instance
will be fired when the user
begins an edit.

onScrollTo ObjectProperty<EventHandler
 <ScrollToEvent<Integer>>>

The EventHandler
instance will be fired when
there’s a request to scroll an
index into the view.

root ObjectProperty<TreeItem<T>> This defines the root item of
the underlying TreeItem
hierarchy.

selectionModel ObjectProperty<MultipleSelectionModel
 <TreeItem<T>>>

This defines the
SelectionModel of the
TreeView.

showRoot BooleanProperty This defines whether the
root TreeItem should be
shown in the TreeView.

TABLE 6-12. Properties of the TreeView

06-ch06.indd 168 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 169

For each file or directory, you create a TreeItem that holds the file as its data value. In
addition, in this code you set an image for each TreeItem. If the file is a directory, a folder icon
should be rendered for the item. Otherwise, a file icon should be shown. The class creates the
hierarchy of all files in the given directory by using recursion.

NOTE
The code snippet uses the ImageView class. That is a special node
type in JavaFX that can be used to render images onscreen. I’ll discuss
this class in Chapter 7 in more detail.

Once you’ve done this, you create a TreeView that uses the given data structure and renders
the file system as a tree on the screen. The default cell type that is used in the TreeView would
call the toString() method on each file instance to receive the text that should be shown
onscreen for each item in the tree. Because you want a better output here, you need a custom
cell. The following code defines a JavaFX application that renders the tree to the screen:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.TreeCell;
import javafx.scene.control.TreeItem;
import javafx.scene.control.TreeView;
import javafx.scene.image.ImageView;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
import java.io.File;

public class FileTree extends Application {
 public static void main(String[] args) {
 launch(args);
 }
 @Override
 public void start(Stage primaryStage) throws Exception {
 TreeView<File> tree = new TreeView<>();
 tree.setRoot(createTree(new File(".")));
 tree.setCellFactory((e) -> new TreeCell<File>(){
 @Override
 protected void updateItem(File item, boolean empty) {
 super.updateItem(item, empty);
 if(item != null) {
 setText(item.getName());
 setGraphic(getTreeItem().getGraphic());
 } else {
 setText("");
 setGraphic(null);
 }
 }
 });
 StackPane myPane = new StackPane();
 myPane.getChildren().add(tree);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("File Tree");
 primaryStage.show();
 }

06-ch06.indd 169 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

170 Mastering JavaFX 8 Controls

 private TreeItem<File> createTree(File file) {
 TreeItem<File> item = new TreeItem<>(file);
 File[] childs = file.listFiles();
 if (childs != null) {
 for (File child : childs) {
 item.getChildren().add(createTree(child));
 }
 item.setGraphic(new ImageView(getClass().getResource("folder.png").
 toExternalForm()));
 } else {
 item.setGraphic(new ImageView(getClass().getResource("text-x-generic.png").
 toExternalForm()));
 }
 return item;
 }
}

Figure 6-13 shows the view of the application. Here you can see that the rendered tree looks
like the file explorer that comes with most operating systems. The custom cell that is used here is

FIGURE 6-13. A TreeView that shows the structure of a directory

06-ch06.indd 170 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 171

quite simple: The text of the cell is set to the name of the given file that is wrapped in the
TreeItem. In addition, the graphic node that is defined in the TreeItem is set to the graphic
property of the cell.

NOTE
The content of the graphic property that is defined for a TreeItem
will automatically be used for the graphic property of the TreeCell
instance that displays the item. In addition, the result of the toString()
method of the value that is defined in the TreeItem instance will be
used for the text of the cell.

The TreeCell class extends the IndexedCell class and adds some TreeView-specific
properties, as described in Table 6-13.

TreeTableView
The TreeTableView<T> control has the same benefits of a TableView and a TreeView. By
using this control, you can display hierarchical data that is defined by the TreeItem class like
you do in a TreeView. In addition, table columns are shown for each TreeItem instance to
provide additional information on the data object.

The following example extends the simple file explorer example that was created as a sample
for the TreeView and shows additional information for the files that are part of the data model:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.beans.property.SimpleObjectProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.scene.Scene;
import javafx.scene.control.TreeItem;
import javafx.scene.control.TreeTableColumn;
import javafx.scene.control.TreeTableView;
import javafx.scene.image.ImageView;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

Property Type Description
disclosureNode ObjectProperty<Node> Defines the visual representation of

the TreeItem state. By default, this
is a triangle that indicates whether the
TreeItem is expanded or collapsed.

treeItem ReadOnlyObjectProperty
 <TreeItem<T>>

Defines the TreeItem instance that is
represented by the TreeCell.

treeView ReadOnlyObjectProperty
 <TreeView<T>>

Defines the TreeView in which the
TreeCell is shown.

TABLE 6-13. Properties of the TreeCell Class

06-ch06.indd 171 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

172 Mastering JavaFX 8 Controls

import java.io.File;
import java.util.Date;
public class TreeTableDemo extends Application {
 @Override

 public void start(Stage primaryStage) throws Exception {
 TreeTableView<File> treeTable = new TreeTableView<>();

 TreeTableColumn<File, String> nameColumn = new TreeTableColumn<>("Name");
 TreeTableColumn<File, Long> sizeColumn = new TreeTableColumn<>("Size");
 TreeTableColumn<File, Date> modifiedColumn = new TreeTableColumn<>("Last
 Modified");

 nameColumn.setCellValueFactory((f) -> new SimpleStringProperty(f.getValue().
 getValue().getName()));
 sizeColumn.setCellValueFactory((f) -> new SimpleObjectProperty<>(f.getValue().
 getValue().length()));
 modifiedColumn.setCellValueFactory((f) -> new SimpleObjectProperty<>(new
 Date(f.getValue().getValue().lastModified())));
 treeTable.setRoot(createTree(new File(".")));
 treeTable.getColumns().addAll(nameColumn, sizeColumn, modifiedColumn);
 VBox vbox = new VBox();
 vbox.getChildren().addAll(treeTable);
 primaryStage.setScene(new Scene(vbox));
 primaryStage.show();
 }

 private TreeItem<File> createTree(File file) {
 TreeItem<File> item = new TreeItem<>(file);
 File[] childs = file.listFiles();
 if (childs != null) {
 for (File child : childs) {
 item.getChildren().add(createTree(child));
 }
 item.setGraphic(new ImageView(getClass().getResource("folder.png").
 toExternalForm()));
 } else {
 item.setGraphic(new ImageView(getClass().getResource("text-x-generic.png").
 toExternalForm()));
 }
 return item;
 }

 public static void main(String[] args) {
 launch(args);
 }
}

As you can see in the code, the TreeItem structure is created as in the previous sample.
But instead of adding the root item to a TreeView, you add it to a TreeTableView. For this
TreeTableView, columns are defined as with a normal TableView. For each column, a cell value
factory is defined to extract the information that should be shown in the column. Figure 6-14
shows the running application. As you can see, the first column of the control is rendered as
a tree.

06-ch06.indd 172 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 173

With the TreeTableColumn and TreeTableCell, there are special column and cell classes
that are part of JavaFX. These classes must be used when working with the TreeTableView; they
contain most of the properties as described for the TreeView and TableView, so I won’t discuss
them again here. Developers who have worked with the TableView and the TreeView will find
that they will become familiar with the API of the TreeTableView in a short amount of time.

The TreeTableView class contains one additional property that is not part of the TreeView
or TableView: The treeColumn property that is of type ObjectProperty<TreeTableColumn<S,
?>> defines which of the given columns will be rendered as a tree and provides the functionality
to collapse or expand items. By default, the first column will be used as this column (this was
shown in Figure 6-14 for the demo application). You can simply define another column by setting
it to the treeColumn property of the TreeTableView.

Sorting and Filtering Data
Most of the controls that are shown in this chapter use lists of objects for the data model.
As you know now, you must use an ObservableList<E> for this. In addition to the default
implementations of this interface, JavaFX contains some more collection types that
extend the collections that are known from the Java collections API. JavaFX contains the
TransformationList<E> class. This abstract class is a base class for all lists that wraps
other lists and can be used to change the content or order of a list. The class implements the

FIGURE 6-14. The TreeTableView control

06-ch06.indd 173 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

174 Mastering JavaFX 8 Controls

ObservableList<E> interface, and JavaFX contains two concrete implementations of
the class: FilteredList<E> and SortedList<E>. You can use FilteredList to filter the
content of a list, and you can use SortedList to directly sort its content. Internally, another
ObservableList is used that contains the complete unmodified list and acts as a base for all
the transformations.

With FilteredList, you can create a simple search UI. The following sample defines a
ListView with some data, and I’ve added a TextField to the view that can be used to filter the
content of the ListView:

package com.guigarage.masteringcontrols;

import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.collections.transformation.FilteredList;
import javafx.scene.Scene;
import javafx.scene.control.ListView;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class FilteredListDemo extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 ObservableList<String> list = FXCollections.
 observableArrayList("Angelo", "Steffi", "Jan", "Silke");
 FilteredList<String> filteredList = new FilteredList<String>(list);
 filteredList.setPredicate((e) -> true);
 ListView<String> listView = new ListView<>(filteredList);
 TextField textField = new TextField();
 textField.textProperty().addListener((e) -> filteredList.
 setPredicate((v) -> (textField.getText() == null || textField.
 getText().length() == 0 || v.startsWith(textField.getText()))));
 VBox myPane = new VBox(textField, listView);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

As you can see in the code, a Predicate is defined for the FilteredList<E> instance. This
Predicate defines whether an item of the underlying ObservableList should be part of the
FilteredList. By default, the Predicate will always return true, and therefore each element
of the ObservableList is part of the FilteredList. But when a user enters text in the
TextField, a custom Predicate will be set to the FilteredList. In this case, only items of
the list that match the Predicate, and therefore the entered text, will be shown in the ListView.

06-ch06.indd 174 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 175

The next example uses a SortedList<E> in a TableView. As mentioned when discussing
how to sort the TableView control, the underlying ObservableList that defines the data model
of the table won’t be sorted. If you use a SortedList as the data model of a TableView, though,
you can change this default behavior.

package com.guigarage.masteringcontrols;

import javafx.application.Application;
import javafx.beans.property.SimpleStringProperty;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.collections.transformation.SortedList;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class SelectionModelDemo extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 ObservableList<String> data = FXCollections.observableArrayList(
 "Z", "B", "A", "X", "W", "C", "F"
);
 SortedList sortedList = new SortedList(data);
 TableView<String> table = new TableView<>();
 table.itemsProperty().setValue(sortedList);
 sortedList.comparatorProperty().bind(table.comparatorProperty());
 TableColumn<String, String> column = new TableColumn<>("Data");
 column.setCellValueFactory((e) -> new SimpleStringProperty(e.
 getValue()));
 table.getColumns().add(column);
 VBox myPane = new VBox();
 myPane.setAlignment(Pos.CENTER);
 myPane.setPadding(new Insets(12));
 myPane.setSpacing(12);
 myPane.getChildren().add(table);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

06-ch06.indd 175 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

176 Mastering JavaFX 8 Controls

The SortedList<E> class defines a comparator property that is used to sort the content of
the underlying ObservableList instance. In the sample, the property of the SortedList is
bound to the comparator property of the table. Whenever a user changes the sorting of the
TableView, the Comparator that is used to sort the data onscreen will be used to sort the
underlying data. Therefore, the order of the items onscreen and in the data model is in sync.

As you can see, you can use TransformationList and its concrete implementations to
easily extend the functionality of JavaFX controls.

Controls That Act as Containers
JavaFX contains some control types that can be used as containers to wrap other node instances.
The following node types will be shown here:

 ■ Pagination

 ■ SplitPane

 ■ Accordion

 ■ TabPane

 ■ TitledPane

All these nodes can contain other nodes. Normally, these types are used to switch between
different views. You should know most of these controls from other UI toolkits, and they are used
often in applications. For example, all modern browsers use a TabPane to show several web sites
in different tabs. Figure 6-15 contains an overview of all the controls and how they will appear
onscreen.

You’ll see each of the different control types in the following examples. These short examples
are meant to demonstrate the basics of each control and are not comprehensive of all their features.
Reference the JavaDoc of the Control class for additional use and customization scenarios.

Let’s first look at the SplitPane class, which can be used to split a view into several
subviews by using dividers. In other UI toolkits such as Swing, a SplitPane can contain only one
divider and hold two different views. In JavaFX, a SplitPane can hold any number of subviews. A
subview is defined as a node here, so each node can be added to a SplitPane. The following
sample adds three buttons to a SplitPane, as shown in Figure 6-15:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.SplitPane;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
public class SplitPaneDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 SplitPane splitPane = new SplitPane();
 splitPane.getItems().add(new StackPane(new Button("Button 1")));

06-ch06.indd 176 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 177

 splitPane.getItems().add(new StackPane(new Button("Button 2")));
 splitPane.getItems().add(new StackPane(new Button("Button 3")));
 StackPane myPane = new StackPane();
 myPane.getChildren().add(splitPane);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("SplitPane");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

As you can see in the code, the SplitPane provides an item list. This ObservableList<Node>
and custom nodes can easily be added to the list. Each node in the list is a subview of the
SplitPane. The width of the views can be changed by moving the dividers with the mouse.

FIGURE 6-15. Visualization of Pagination, SplitPane, Accordion, TitledPane, and TabPane

06-ch06.indd 177 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

178 Mastering JavaFX 8 Controls

The SplitPane provides an orientation property of type ObjectProperty<Orientation>
that can be used to change the orientation of the dividers, and the SplitPane can split the
containing views horizontally or vertically.

NOTE
You may ask yourself why each of the buttons in the sample is
wrapped in a StackPane. As described in Chapter 3, each node
defines minimum, maximum, and preferred sizes. A SplitPane uses
these properties to calculate the range of the size that one of its
regions can have. So, the dividers of the SplitPane can be changed
in a way that violates this size. The maximum size of a button is equal
to its preferred one, and therefore a child region in a SplitPane
couldn’t become bigger than the size of the internal button. But the
maximum width and height of a StackPane don’t depend on its
children, and therefore a StackPane can be bigger than its children.

The next control is the TabPane, which can be used to wrap views in tabs. In a TabPane,
only the content of one tab is visible at once. The TabPane contains a header to show all tabs,
each with its own title. The following application defines a TabPane with two tabs, as shown
in Figure 6-15:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.CheckBox;
import javafx.scene.control.Tab;
import javafx.scene.control.TabPane;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class TabPaneDemo extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 TabPane tabPane = new TabPane();
 Tab tab1 = new Tab("Button");
 tab1.setContent(new StackPane(new Button("Button")));
 Tab tab2 = new Tab("CheckBox");
 tab2.setContent(new StackPane(new CheckBox("CheckBox")));
 tabPane.getTabs().addAll(tab1, tab2);
 StackPane myPane = new StackPane();
 myPane.getChildren().add(tabPane);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("App");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();

06-ch06.indd 178 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 179

 }
 public static void main(String[] args) {
 launch(args);
 }
}

Each tab in a TabPane is defined by the Tab class. Only Tab instances can be added to a
TabPane, as shown in the example. The content of a tab is defined in its content property. Any
node can be used as the content of a tab. In addition, each tab can define text that is used as its
name or header. In the sample, the Tab instances are created by using a constructor that defines
the name of the tab. Internally, the Tab class provides a text property that holds the header
of the tab. The TabPane will render the text onscreen, as you can see in Figure 6-15. In addition
to the text property, the Tab class provides a lot more properties. By using the closeable property
that is defined as BooleanProperty, the tab can be defined as closeable or not. If a tab can be
closed, an X is shown in its header as a link. When the user clicks the link, the Tab instance will
be removed. In addition to properties that can be used to change the view and behavior of the tab,
the class provides some event handler properties. These can be used to react to specific events, as
shown in earlier samples. One example for these properties is the onCloseRequest property. The
event handler that is defined by this property will be called whenever an external request to close
the tab occurs. This can be used to prevent the closing of the tab by consuming the received event,
for example.

NOTE
At first glance, the control types that are shown here may look like more
than pane types, but are defined as controls by JavaFX. This is because
of the following reasons: A pane normally doesn’t define a custom-
rendered view with visual elements. The controls such as the SplitPane
have a visual representation. For the SplitPane, the dividers need to
be rendered, and how a divider looks is defined in its visual skin. Each
control in JavaFX has a defined skin that specifies how an instance will
be rendered onscreen, but the skin of a control can change to create
a custom rendering. I will discuss this when talking about themes and
CSS. In addition, all the control types shown here define a behavior
for interaction. In the TabPane, the selected tab can be changed, for
example. All pane types in JavaFX don’t have a skin that is needed to
render the pane in a special way, and they don’t have any behavior.

The Accordion control can hold a list of nodes. All these nodes can be expanded or
collapsed. This is useful if you need a complex menu structure in an application, for example. The
different menu entries can be grouped in logical groups, and the user can open or close the
individual groups to see only the wanted menus onscreen. The following code shows the
Accordion control and defines an application, as shown in Figure 6-15:

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Accordion;
import javafx.scene.control.Button;

06-ch06.indd 179 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

180 Mastering JavaFX 8 Controls

import javafx.scene.control.TitledPane;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
public class AccordionDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 Accordion accordion = new Accordion();
 TitledPane pane1 = new TitledPane("Edit", new Button("Edit"));
 TitledPane pane2 = new TitledPane("Save", new Button("Save"));
 TitledPane pane3 = new TitledPane("Close", new Button("Close"));
 accordion.getPanes().addAll(pane1, pane2, pane3);
 StackPane myPane = new StackPane();
 myPane.getChildren().add(accordion);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("Accordion");
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

Each node that can be added to an Accordion must be wrapped in a TitledPane instance.
The name of this class may be misleading because the TitledPane doesn’t extend the Pane
class. Instead, it extends the Labeled class. As a result, the class contains all properties that are
needed to render the text onscreen. This text is shown in the header of the TitledPane. As
mentioned, a TitledPane wraps a custom node. This node is internally stored in the content
property that is defined as ObjectProperty<Node>. The node is shown in the main area of
the TitledPane whenever it is expanded in the Accordion.

The last control type that is shown in Figure 6-15 is the Pagination control, which can
be used to create navigation between pages of content. This type of control is often used in
applications or web sites to create a so-called carousel that navigates between a list of images.
Let’s take a look at the code of a sample that uses the Pagination control:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.Pagination;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
public class PaginationDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 Pagination pagination = new Pagination();
 pagination.setPageCount(3);
 pagination.setPageFactory((i) -> new Label("This is the page with index " + i));
 StackPane myPane = new StackPane();
 myPane.getChildren().add(pagination);
 Scene myScene = new Scene(myPane);

06-ch06.indd 180 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 181

 primaryStage.setScene(myScene);
 primaryStage.setTitle("Pagination");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

To provide the content of a Pagination control, you need a factory. This so-called page
factory is defined by the pageFactory property of type ObjectProperty<Callback<Integer,
Node>>. The callback that is used here creates the content of a single page in the Pagination
control. The input parameter of the callback method is an integer that defines the current page
index for which the callback should provide the page content. The content can be any node. In the
example, a Label is returned that contains the page index in its text. The page count is defined by
the pageCount property of type IntegerProperty. If Pagination.INDETERMINATE is used
here, the Pagination instance will use an indeterminate page count. The control provides items
to navigate between the pages, as shown in Figure 6-15.

Additional Controls
JavaFX contains some useful control classes that do not align neatly with the categories discussed
so far. These additional controls include an HTMLEditor, DatePicker, and ColorPicker.
These three controls allow the developer to provide user interfaces for these specific use cases:

 ■ Working with rich text

 ■ Selecting data

 ■ Selecting a color

These functionalities are often needed in applications; in fact, the DatePicker is especially
useful when developing forms. Instead of using just plain TextField instances, a user can pick a
date with the mouse.

HTMLEditor
With the use of the HTMLEditor control, you can show and edit HTML text. The control contains
a toolbar with several functions such as changing the font or the alignment of the text. Figure 6-16
shows the HTMLEditor. The control can be used like a What You See Is What You Get (WYSIWYG)
editor, and the styled text is created in HTML syntax. In addition, HTML syntax can be shown in
the HTMLEditor. The control can be used in applications such as a rich editor for text input and
rendering.

The following sample shows how the HTMLEditor control can be used in code:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;

06-ch06.indd 181 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

182 Mastering JavaFX 8 Controls

import javafx.scene.layout.StackPane;
import javafx.scene.web.HTMLEditor;
import javafx.stage.Stage;
public class HTMLEditorDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 HTMLEditor htmlEditor = new HTMLEditor();
 StackPane myPane = new StackPane();
 myPane.getChildren().add(htmlEditor);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("App");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

The HTMLEditor class defines some methods, as described in Table 6-14.

FIGURE 6-16. The HTMLEditor control

06-ch06.indd 182 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 183

DatePicker
The DatePicker control is one of the new controls in JavaFX 8. It lets the user select or enter a
date. The class extends the ComboBoxBase class and provides a pop-up that can be used to
select a date. The following example shows how a DatePicker can be used:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.DatePicker;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
public class DatePickerDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 DatePicker datePicker = new DatePicker();
 StackPane myPane = new StackPane();
 myPane.getChildren().add(datePicker);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("App");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

Figure 6-17 shows how the DatePicker control is rendered onscreen. The figure shows
the pop-up of the control where the user can select a date. The year and month can be
selected in the top of the pop-up, and all days of the selected month are shown in the main
area of the pop-up.

The DatePicker class also contains some useful properties that can be used to define the
view and behavior of the control, as shown in Table 6-15.

Method Description
String getHtmlText() Returns the HTML content of the editor
void setHtmlText(String htmlText) Sets the HTML content of the editor
void print(PrinterJob job) Prints the content

TABLE 6-14. Methods of the HTMLEditor

06-ch06.indd 183 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

184 Mastering JavaFX 8 Controls

Property Type Description
chronology ObjectProperty<Chronology> Defines the internal

calendar system that
is used for parsing,
displaying, and
choosing dates

converter ObjectProperty<StringConverter
<LocalDate>>

Defines a converter to
convert the input text
to a LocalDate, and
vice versa

dayCellFactory ObjectProperty<Callback
<DatePicker, DateCell>>

Defines a cell factory
that provides the
day cells in the
DatePicker pop-up

editor ReadOnlyObjectProperty
<TextField>

Defines the input field
for the DatePicker

showWeekNumbers BooleanProperty Defines whether the
DatePicker pop-up
displays week numbers

TABLE 6-15. Properties of the DatePicker

FIGURE 6-17. The DatePicker control

06-ch06.indd 184 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 185

ColorPicker
The ColorPicker control extends the BaseComboBox class. It offers the functionality for the user
to select a custom color via a pop-up palette. By default, this palette contains a set of basic colors.
The user isn’t limited to the palette and may utilize an additional dialog that contains controls to
define or select a custom color. This dialog can be opened by clicking the Custom Color link on
the pop-up. As with any other control, you can easily add the ColorPicker to an application.
The following code shows a basic example:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.ColorPicker;
import javafx.scene.control.Label;
import javafx.scene.layout.VBox;
import javafx.scene.text.Font;
import javafx.stage.Stage;
public class ColorPickerDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 Label label = new Label("Demo Label");
 label.setFont(new Font(24));
 ColorPicker colorPicker = new ColorPicker();
 colorPicker.setOnAction((e) -> label.setTextFill(colorPicker.getValue()));
 VBox box = new VBox(label, colorPicker);
 box.setAlignment(Pos.CENTER);
 box.setPadding(new Insets(24));
 box.setSpacing(24);
 Scene myScene = new Scene(box);
 primaryStage.setScene(myScene);
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

In Figure 6-18 you can see a ColorPicker with a pop-up. In addition, the Custom Colors
dialog is shown here. As you can see, a user can pick a color with a mouse click. The color also
can be defined by using sliders. Here, HSB, RGB, and Web modes are supported. The
ColorPicker class contains an ObservableList<Color> customColors that can be used to
define the colors that are part of the color palette.

06-ch06.indd 185 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

186 Mastering JavaFX 8 Controls

An Interview with Jonathan Giles, Engineer on the JavaFX Team, Oracle
Oracle engineer Jonathan Giles has implemented parts of the JavaFX control API. I had the
chance to interview Jonathan in February 2014; he offers an inside perspective on these
APIs and discusses the internal API design and the future of JavaFX controls.

Hi, Jonathan! Please introduce yourself and your role in regard to JavaFX controls.
Hi, Hendrik. My name is Jonathan Giles, and I’m an engineer on the JavaFX team

at Oracle. Specifically, my focus is on the UI controls area of the toolkit, which means I
care about their API and implementation and, to a lesser degree, their visuals and user
interactions (but fortunately we also have others who are talented in user experience and
design that help out).

I’ve been working on JavaFX UI controls since mid-2009, so it’s coming up on five years
this year, which is a long time! I’ve been involved with probably every control to varying
degrees, but I spend a large bulk of my time focused on the virtualized controls such as
ListView, TreeView, TableView, and, in JavaFX 8.0, TreeTableView.

Perfect. This means that you are an expert about the topics discussed in this chapter. When
talking about the JavaFX controls, what do you think is the biggest benefit over other UI
toolkits?

FIGURE 6-18. A ColorPicker

06-ch06.indd 186 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 187

I think there are at least four benefits that JavaFX UI controls have:

■ Consistent and modern API design We have spent a huge amount of time
considering and designing the JavaFX UI controls API. This is based on a lot of research
of previous UI toolkits such as Swing, as well as our contemporaries, such as what is
available in the HTML world.

Designing an API is really, really hard, and from an outsider’s perspective, it can be
difficult to appreciate this. Once an API is released, it is set in stone and cannot be
changed without breaking end users, so it is important to get it right (or as close as
can be) the first time around. I am really quite proud of our APIs, and, of course,
whilst I wish we could fix a few mistakes, by and large, it is the best we could do
considering we can’t release a final product in one release, and often our crystal
ball doesn’t quite allow us to see what requirements are needed in the future.
On top of this, we can, of course, leverage features of the Java 7 and 8 world, such
as generics, enumerations, annotations, lambdas, and default methods, to make a
far more powerful and succinct experience. This is a particular pain point that
Swing has—it feels so antiquated now to pass in ints rather than enums, for
example!

■ Integration with JavaFX binding and collections A major selling point of JavaFX
has always been its concept of binding and observable properties/collections. Our
UI controls are designed from the ground up to support these and integrate with
other aspects of the JavaFX toolkit. For example, it is trivial to bind the state of a
progress bar to the progress of something else such as a WebView loading, or for a
ListView to automatically update its display based on a change to the underlying
ObservableList. Our goal has been to enable as much power and convenience
by default, without ever resorting to magic or confusing API. Again, I’m incredibly
pleased with how everything just plays together nicely.

■ Powerful CSS styling Styling our user interfaces has never been as simple or
powerful as it is in JavaFX. CSS allows you to reach every node in the user interface
and to completely change the style of what is shown to the user. Already we have
developed two separate looks for JavaFX (named Caspian and Modena), and the
community has contributed additional looks that replicate Apple’s Aqua, Microsoft’s
Metro, and web styles such as Bootstrap.

■ A great visual style (in JavaFX 8.0, it is on by default) As mentioned, we have two
UI styles in JavaFX. Modena is new in JavaFX 8.0, and it is incredibly well polished.
The nice thing it does is that it has a lot of rules for when containers are placed
inside containers to get rid of unsightly borders (which was a bane of my life when
I used to do a lot of Swing!).

The last two topics that you mentioned will be shown in the following chapters, but the
first two benefits are already discussed here. Let’s take a deeper look at the API design that
is, in my eyes, really great. The JavaFX controls API contains mainly no interfaces but a lot
of abstract classes. Why have you chosen this structure, and what are the benefits of this
approach?

(Continued)

06-ch06.indd 187 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

188 Mastering JavaFX 8 Controls

When we were developing the JavaFX APIs, we were very conscious of a few
things that were gaining in importance in the technical landscape:

■ Embedded devices were on the rise. These devices often have limited memory and
lower CPU performance. Every class or interface included in JavaFX is an additional
static footprint and CPU time to class load, so we really wanted to keep classes (be
they interfaces, abstract classes, or concrete classes) to a minimum.

■ Lambdas were coming down the pipeline in Java 8, and we wanted to be able to
make use of them because they help to cut down on the boilerplate noise that is
often present in GUI code. The big design decision here is that we designed our APIs
so that the callback methods (e.g., Callback, EventHandler, ChangeListener,
InvalidationListener, etc.) were all functional interfaces. A functional interface
is simply an interface with a single method defined in it and, therefore, can be
directly used as a lambda in Java 8. In other words, rather than write code like this:

button.setOnAction(new EventHandler<ActionEvent>() {
@Override public void handle(ActionEvent e) {
System.out.println("Event: " + e);
}
});

we can now write the following:

button.setOnAction(e -> System.out.println("Event: " + e));

which is functionally equivalent, but without all the cruft. I think you’ll agree it
helps to cut down on the noise and makes the code far more readable.

In terms of how this impacted our API design, we had to switch forms from how
API was designed back before functional interfaces were important. For example, in
Swing, you would call button.addMouseListener(…) and pass in a
MouseListener implementation. The MouseListener interface defines five
methods (clicked, entered, exited, pressed, and released). There is no way
this interface would work in the Java 8 lambda world, so we turned the API around
in JavaFX, instead having multiple methods on the Button class (actually, it’s
Node, but that is unimportant) for setOnMouseClicked, setOnMouseEntered,
and so on. Then, for each of these methods, we can pass in an event handler,
which, as shown earlier, is a functional interface and therefore can be made into a
lambda expression.

■ With a few useful generic interfaces/abstract classes, there really is no need
to create custom interfaces for everything. This links back to the point about
embedded devices but stands on its own, too—there is actually little need to create
custom interfaces for every case, and conceptually, it makes sense to reuse existing
interfaces if they are applicable. In fact, during JavaFX 2.0 development, I even
took this to the extreme and introduced RunnableX interfaces, which were just like
the Runnable interface that Java has had forever, but the X counted from 1 to 9 and
represented the number of arguments going into the run() method. Fortunately,
this never shipped!

06-ch06.indd 188 5/22/14 4:04 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 6: Additional JavaFX Controls 189

Going back to your question, the other part was why have we preferred abstract classes
over interfaces. I’m not entirely sure that is true; my own gut feeling is that we are roughly
50/50 interfaces and abstract classes. In any case, the reason is simple: API design is really,
really hard, and you never get it totally right the first time. In conjunction with this, up until
Java 8 (with its support for “default methods” in interfaces), interfaces are far more rigid
than abstract classes—you can’t add new methods like you can in abstract classes. This, of
course, is a lifesaver when you want to grow your API over time, and this is the primary
reason for choosing abstract classes over interfaces. The other reason is simply that abstract
classes allow for a default implementation, which can often prove useful.

In JavaFX 2.x, fluent builder APIs were provided for all control types. Why are these
builder classes marked as deprecated in JavaFX 8?

We made a mistake in defining the API and depended on a bug in the Java 7 compiler
that wasn’t available in the Java 8 compiler. This meant that we could not ship the fluent
builder APIs without breaking the API, so we decided to take the opportunity to simply
deprecate them in Java 8 and to remove them in Java 9. You can read more at the following
URL: http://mail.openjdk.java.net/pipermail/openjfx-dev/2013-March/006725.html.

Thanks for these detailed insights in the development of the JavaFX framework and the
controls API. Let’s talk about one last topic. Are there any functions or controls that you
currently miss in the controls API?

Of course—there is always a long list of things to do to improve the framework, but
fortunately, there are plenty of open source projects that can be far more agile than the
JavaFX project can be, and they’re doing a great job filling in the gaps in the meantime.

At the same time, whenever you add features, you risk introducing new bugs and
performance regressions, and, of course, there is always a backlog of bugs and performance
issues to deal with. Because of this, I actually spend a lot of my time (especially now with
JavaFX 8.0 complete and my focus switched to Java 8u20) focused purely on my bug
backlog and getting the most critical issues fixed. It takes a lot of discipline to not go off and
implement new features, but as long as you can mentally reward yourself for bug fixes, it
can be rewarding in its own right.

Off the top of my head, some areas that need more research and development in JavaFX
include the following:

■ A dialogs API

■ A docking framework control

■ Rich text editing

■ Full accessibility support

■ Improved focus traversal support

■ Improved performance (especially
on embedded devices)

I should note that this is primarily related to my specific area of JavaFX—UI controls—
and not necessarily what the priorities are of the wider JavaFX team. Also, I should add that a
number of these areas are covered in third-party projects such as JFXtras (http://jfxtras.org)
and ControlsFX (www.controlsfx.org).

(Continued)

06-ch06.indd 189 5/22/14 4:04 PM

http://mail.openjdk.java.net/pipermail/openjfx-dev/2013-March/006725.html
http://jfxtras.org
http://www.controlsfx.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

190 Mastering JavaFX 8 Controls

I think your statements will underline the great work that has been done by your team in
the past few years. I think you all created a modern framework that will help developers
build awesome applications. Is there any additional information or tips that you want to
share with the readers of this book?

Sure, just briefly I better call out the excellent work being done by the community. I try
my best to highlight this on a weekly basis on my web site at www.jonathangiles.net and
www.fxexperience.com. The community is doing a great job testing, using, experimenting, and
reporting bugs. If you are new to JavaFX and want to join the community but don’t know where
to begin, I highly recommend you just reach out to someone such as myself or Hendrik, and
we’ll happily give you guidance. I can be reached at jonathan.giles@oracle.com.

We’re about to release JavaFX 8.0 in the coming weeks, and it is going to be an excellent
release, but we never stand still, and already Java 8u20 is in the works, which will be even
better. My point is—if at all possible, I highly encourage you to work with the bleeding edge
of JavaFX to ensure you have the best experience and to help me and the rest of the JavaFX
team squash bugs.

Thank you for the great interview.

Summary
This chapter discussed several advanced JavaFX controls. As you can see, the framework provides
a huge set of special control types that can be used in custom applications. The ListView,
TableView, and TreeView APIs especially provide a lot of functionality that I can’t entirely
cover here. The most important parts and functionalities of all controls were covered, and you can
find more special use cases in the JavaDoc of the controls.

06-ch06.indd 190 5/22/14 4:04 PM

http://www.jonathangiles.net
http://www.fxexperience.com
mailto:jonathan.giles@oracle.com

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: 191

CHAPTER
7

Additional JavaFX Nodes

07-ch07.indd 191 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

192 Mastering JavaFX 8 Controls

JavaFX contains a set of extra node classes that you can use to represent specific data and
content onscreen. These nodes do not extend the Control class, so I will discuss them
separately in this chapter because of their special functions and behavior. This chapter will

introduce these special nodes and show how to use them by illustrating the following node types:

 ■ Charts

 ■ WebView

 ■ Canvas

 ■ ImageView

 ■ MediaView

Most of these components provide a huge set of functionality, but I will focus on the core features
and common use cases.

Charts
JavaFX contains an API to create modern charts. All chart types in JavaFX extend the Chart class,
which extends Node. Here are the types of charts that JavaFX supports:

 ■ PieChart

 ■ BubbleChart

 ■ StackedAreaChart

 ■ ScatterChart

 ■ BarChart

 ■ AreaChart

 ■ LineChart

 ■ StackedBarChart

With the exception of the PieChart, all chart types are defined as x-y charts. This means that
all values in these charts are shown in x-y coordinate systems, and often the x-axis defines
different types or categories instead of a range of values. Except for the PieChart class, all charts
extend the basic class XYChart<X,Y>. As you can see, the type of the x- and y-axis is defined by
generics. Figure 7-1 shows an overview of all the chart types.

Let’s first look at the PieChart. Like the other charts, the PieChart class extends the Node
class and can be added to a scene graph like any other node. The following code snippet shows
how to create a PieChart:

private PieChart getPieChart() {
 ObservableList<PieChart.Data> pieChartData =
 FXCollections.observableArrayList(
 new PieChart.Data("SWT", 13),
 new PieChart.Data("AWT", 10),
 new PieChart.Data("Swing", 22),
 new PieChart.Data("JavaFX", 30));

07-ch07.indd 192 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 7: Additional JavaFX Nodes 193

 final PieChart chart = new PieChart(pieChartData);
 chart.setTitle("Ui Toolkits");
 return chart;
 }

As you can see, the chart needs an ObservableList<PieChart.Data> as its data model.
The PieChart.Data class defines a tuple where a value is mapped to a numeric value. From this
list, the control renders the top-left chart in Figure 7-1. All chart types define properties that you
can use to change the rendering and behavior of the chart. Although all the properties of the chart
nodes won’t be shown here, you can find a comprehensive list in the JavaDoc of the chart classes.

FIGURE 7-1. Chart types in JavaFX

07-ch07.indd 193 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

194 Mastering JavaFX 8 Controls

NOTE
For all chart types, the ObservableList is used to define the data
of the chart so the chart can observe its data and react dynamically
whenever the data changes. In other words, all charts will update
its view whenever the data changes via an animation. You use the
animated property of the Chart class to toggle this functionality. In
an XYChart, you can even access the axis and define animations for
both the axis and its range.

As mentioned earlier, all other chart classes extend the XYChart. Given this similarity, I’ll
show one example here. The following code snippet creates the AreaChart that is shown at the
bottom-left corner of Figure 7-1:

private AreaChart<Number,Number> getAreaChart() {
 final NumberAxis xAxis = new NumberAxis(1, 9, 1);
 final NumberAxis yAxis = new NumberAxis();
 final AreaChart<Number,Number> ac =
 new AreaChart<>(xAxis,yAxis);
 ac.setTitle("Bug Monitoring");
 XYChart.Series<Number,Number> seriesApril= new XYChart.Series<>();
 seriesApril.setName("April");
 seriesApril.getData().add(new XYChart.Data(1, 3));
 seriesApril.getData().add(new XYChart.Data(3, 12));
 seriesApril.getData().add(new XYChart.Data(6, 17));
 seriesApril.getData().add(new XYChart.Data(9, 4));
 XYChart.Series<Number,Number> seriesMay = new XYChart.Series<>();
 seriesMay.setName("May");
 seriesMay.getData().add(new XYChart.Data(1, 19));
 seriesMay.getData().add(new XYChart.Data(3, 6));
 seriesMay.getData().add(new XYChart.Data(6, 20));
 seriesMay.getData().add(new XYChart.Data(9, 7));
 ac.setData(FXCollections.observableArrayList(seriesApril, seriesMay));
 return ac;
 }

Data can be defined for all two-axis chart series, and these series are defined by the
XYChart.Series<X,Y> class. In the example, both axes are numeric, so the example uses
XYChart.Series<Number,Number>. Each series can be defined by a name, and each series
can contain data tuples that map an x-value to a y-value. These tuples are defined by the
XYChart.Data<X,Y> class. In the example code, you can see how to add data to a series.
The Series class contains a name property of type StringProperty that will hold the name of
the series. Also, as shown in the example, a chart can contain several series of data. The XYChart
class defines the data property of type ObjectProperty<ObservableList<Series<X,Y>>>
that will hold all the data series. You can use this workflow for all the chart types.

In addition to the data rendering, each chart contains a legend with an overview of the different
data series that are rendered in the chart. The visual appearance of the legend and the chart can be

07-ch07.indd 194 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 7: Additional JavaFX Nodes 195

configured by properties or by CSS. (Chapter 9 shows an example of how a chart can be styled by
CSS.) Here are some examples of settings that can be changed in code or CSS:

 ■ The label of the axis

 ■ Minimum and maximum tick marks

 ■ The gap between tick marks

 ■ The position of the legend

NOTE
Like most of the other more complex node types in JavaFX, the charts
internally are constructed by several nodes. In a BarChart, each bar
in the diagram is a node in the scene graph. You can access these
nodes using the node property of the XYChart.Data<X,Y> class.
In fact, more advanced developers can apply visual effects to these
nodes or transform them whenever a mouse hovers over a bar in a
BarChart, for example.

WebView
JavaFX supports the rendering of HTML content with the help of the WebView. A WebView is a
node that renders a web page into the scene graph. Unlike in older UI toolkits, WebView supports
dynamic as well as static HTML pages. The node uses WebKit internally to render the defined page.
WebKit is an HTML rendering engine that is used in browsers such as Apple Safari. Therefore,
the WebView supports all the HTML, CSS, and JavaScript features that are supported by WebKit.
Additionally, the WebView contains a WebEngine that can be used to interact with the defined
page or to execute JavaScript, for example. The following application uses a WebView and loads
any web page:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.ProgressBar;
import javafx.scene.control.TextField;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority;
import javafx.scene.layout.StackPane;
import javafx.scene.layout.VBox;
import javafx.scene.web.WebView;
import javafx.stage.Stage;
public class WebViewApplication extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 WebView webView = new WebView();
 TextField urlField = new TextField();
 urlField.setOnAction(e -> webView.getEngine().load(urlField.getText()));
 ProgressBar progressBar = new ProgressBar();
 progressBar.setMaxWidth(Double.MAX_VALUE);
 progressBar.progressProperty().bind(webView.getEngine().getLoadWorker().
 progressProperty());

07-ch07.indd 195 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

196 Mastering JavaFX 8 Controls

 VBox myPane = new VBox();
 myPane.getChildren().addAll(urlField, webView, progressBar);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("Guigarage Viewer");
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

When starting the application, you can enter a custom URL in the text field. After pressing
enter, the web page will be loaded and rendered in the WebView. Figure 7-2 shows an example
of a loaded page. As you can see in the code, all interaction with the HTML content of the

FIGURE 7-2. WebView that renders a web page

07-ch07.indd 196 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 7: Additional JavaFX Nodes 197

WebView is performed on the WebEngine. You access the engine by using the getEngine()
method of the WebView. To load a custom page, the engine offers a load(…) method. In the
sample, this method is invoked whenever the enter key is pressed in the text field. In addition to
the TextField and the WebView, the example application uses a ProgressBar control, and
the progress property of this progress bar is bound to the load progress of the current site. In
Figure 7-2, most of the data of the defined web site has loaded, and like in all modern web
browsers, the loaded parts of the page are shown on the screen. But as you can see in the figure,
some content has not loaded because the progress bar is not completely filled.

The WebView node offers some properties that can be used to define the visual rendering of a
web page. This can be done in a JavaFX application too. Table 7-1 contains the properties of the
WebView class.

All interaction with the web page and the JavaScript support is wrapped in the WebEngine
class, which offers a set of properties to define the behavior of the web page and the handling of

Property Type Description
contextMenuEnabled BooleanProperty Defines whether the context

menu is enabled.
fontScale DoubleProperty Defines a scale factor that is

applied to the font size in a
rendered HTML content.

fontSmoothingType ObjectProperty
 <FontSmoothingType>

Specifies a requested font-
smoothing type.

Zoom DoubleProperty Defines the zoom factor applied
to the whole HTML content.

Height ReadOnlyDoubleProperty Defines the height of the
WebView.

Width ReadOnlyDoubleProperty Defines the width of the
WebView.

maxHeight ReadOnlyDoubleProperty Defines the maximum height of
the WebView.

maxWidth ReadOnlyDoubleProperty Defines the maximum width of
the WebView.

minHeight ReadOnlyDoubleProperty Defines the minimum height of
the WebView.

minWidth ReadOnlyDoubleProperty Defines the minimum width of
the WebView.

prefHeight ReadOnlyDoubleProperty Defines the preferred height of
the WebView.

prefWidth ReadOnlyDoubleProperty Defines the preferred width of
the WebView.

TABLE 7-1. Properties of the WebView

07-ch07.indd 197 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

198 Mastering JavaFX 8 Controls

JavaScript. To understand some of these properties, you need a basic knowledge of JavaScript and
web development. I won’t discuss these properties in depth here, but you can see an overview of
them in Table 7-2.

In addition to these properties, the WebEngine class offers several useful methods, including
the one that is shown in the demo application, which loads and renders new content in WebView
by calling the load(String url) method of the engine. In addition to the load(…) method,
the content of a WebView can be reloaded or a custom script can be executed in the context of
the current web page. Table 7-3 shows the public methods of the WebEngine class.

The following example uses some of the properties that are part of the WebView. These
properties will affect the rendering of the web page. In the example, the font scale and zoom are

Property Type Description

confirmHandler ObjectProperty
 <Callback<String, Boolean>>

Defines the handler that
is invoked when the
JavaScript confirm(…)
function is called
internally.

createPopupHandler ObjectProperty<Callback
 <PopupFeatures, WebEngine>>

Defines the handler that
is invoked when a script
on the web page creates a
pop-up.

document ReadOnlyObjectProperty
 <Document>

Defines the current
document object for the
current web page.

location ReadOnlyStringProperty Defines the URL of the
current page.

onAlert ObjectProperty<EventHandler
 <WebEvent<String>>>

Defines the handler that
is invoked when the
JavaScript alert(…)
function is called internally.

onError ObjectProperty<EventHandler
 <WebErrorEvent>>

Defines the event handler
called when an error
occurs.

onResized ObjectProperty<EventHandler
 <WebEvent<Rectangle2D>>>

Defines the handler that is
invoked when JavaScript
wants to resize the window
object of the page.

onStatusChanged ObjectProperty<EventHandler
 <WebEvent<String>>>

Defines the handler that
is invoked when the
window.status is set by
JavaScript.

TABLE 7-2. Properties of the WebEngine

07-ch07.indd 198 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 7: Additional JavaFX Nodes 199

Property Type Description

onVisibilityChanged ObjectProperty<EventHandler
 <WebEvent<Boolean>>>

Handler that is invoked
when a JavaScript wants to
change the visibility of the
window object.

promptHandler ObjectProperty<Callback
 <PromptData, String>>

Defines the handler that
is invoked when the
JavaScript prompt(…)
function is called
internally.

title ReadOnlyStringProperty Defines the title of the
shown page.

userAgent StringProperty Defines the value of the
User-Agent HTTP header.

userDataDirectory ObjectProperty<File> Defines a directory that is
used by the engine to store
user data.

userStyleSheetLocation StringProperty Defines the URL of the
user style sheet.

javaScriptEnabled BooleanProperty Defines whether JavaScript
is enabled.

TABLE 7-2. Properties of the WebEngine (continued)

Method Description
Object executeScript(String script) Executes a script in the context of the current

page and returns the result.
WebHistory getHistory() Returns the history of the session.
Worker<Void> getLoadWorker() Returns a worker that can be used to track

the loading progress of a web site.
void load(String url) Loads the web page that is defined by the URL.
void loadContent(String content) Loads the given HTML content directly.
void print(PrinterJob job) Prints the current web page using the given

printer job.
reload() Reloads the current content.

TABLE 7-3. Methods of the WebEngine

07-ch07.indd 199 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

200 Mastering JavaFX 8 Controls

defined. For both of these properties, 1.0 is the default value. By setting the two properties to 1.5,
all fonts on the rendered page will appear in a bigger size and the page will be zoomed in.
Figure 7-3 shows the same web site as before that is now rendered by a WebView with the
changed properties.

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.StackPane;
import javafx.scene.web.WebView;
import javafx.stage.Stage;
public class WebViewApplication extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {

FIGURE 7-3. A customized WebEngine

07-ch07.indd 200 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 7: Additional JavaFX Nodes 201

 WebView webView = new WebView();
 webView.setFontScale(1.5);
 webView.setZoom(1.5);
 webView.getEngine().load("http://www.guigarage.com");
 StackPane myPane = new StackPane();
 myPane.getChildren().add(webView);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("Guigarage Viewer");
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

NOTE
Because the WebView and all other components that are shown in this
chapter are nodes in a scene graph, they can be easily transformed
like any other node object. To do that, you define a rotation for the
WebView, as shown in Chapter 3. The following code snippet shows
how this can be done:

webView.setRotate(45.0);

The zoom property of the WebView is used by the WebKit internally,
and the page is rendered in the defined zoom. If you scale the WebKit
as described in Chapter 3, it can end in blurry pixels because JavaFX
will scale the rendered result that is pixel based and not vector based.

As mentioned, WebView and the WebKit-based engine support JavaScript. The following
example shows how JavaScript can be used to create interaction between web content and
JavaFX. The demo is a simple HTML page containing a small JavaScript section. In the script, the
alert(…) function will be called. This function is a JavaScript default function that normally will
create a pop-up that is shown onscreen. The script will be executed when a hyperlink on the page
is clicked.

<html><head><title>Alert Demo</title>
</head><body>
show alert
</body></html>

The HTML file can be opened with a web browser like Chrome or Safari. Once the hyperlink
is clicked, an alert dialog will be shown. The dialog contains the alert message. In JavaFX you
can define a handler for the alert(…). The following application loads the HTML file in a
WebView and defines a special handler for JavaScript alert(…) executions:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;

07-ch07.indd 201 5/22/14 4:05 PM

http://www.guigarage.com

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

202 Mastering JavaFX 8 Controls

import javafx.scene.layout.StackPane;
import javafx.scene.web.WebView;
import javafx.stage.Stage;
public class WebViewApplication extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 WebView webView = new WebView();
 webView.getEngine().setOnAlert(e -> System.out.println("JS Alert: " +
 e.getData()));
 webView.getEngine().load("file:///path/to/alertDemo.html");
 StackPane myPane = new StackPane();
 myPane.getChildren().addAll(webView);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.titleProperty().bind(webView.getEngine().titleProperty());
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

Whenever the hyperlink is clicked in the WebView, the alert handler will fire an event, and a
message will be printed on the console. As shown in Table 7-2, the WebEngine class provides the
ability to define different handlers for default JavaScript functions in addition to the alert one. The
application uses an additional property of the engine too. The title property of the WebEngine
is bound to the title of the JavaFX stage. As you can see in the HTML file, the title of the web page
is defined as Alert Demo. Once the page is loaded in the application, the title of the window will
change to the one defined in the web page.

Beyond this simple example, the WebEngine provides everything needed to create complete
interaction between HTML content and JavaFX. Anyone familiar with JavaScript can integrate a
web application in a JavaFX application and use the best features from both worlds.

Canvas
The Canvas node in JavaFX is comparable to the HTML5 canvas or the Graphics2D class from
Java2D. The Canvas can be used to draw any figure, image, or collage onscreen. Like the Canvas
objects in other programming languages, the Canvas node provides a graphics context that has
all the needed methods to draw lines, splines, shapes, or images in the canvas. In JavaFX, the
graphics context is defined by the GraphicsContext class, and you can retrieve the context by
calling the canvas.getGraphicsContext2D() method. The class provides a set of graphics
commands, and if you have used a canvas-based API before, you will be familiar with these
methods. This book won’t cover all of these methods, but a good overview is available in the
JavaDoc of the GraphicsContext class.

The following example uses a Canvas node and draws some figures on it:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.layout.StackPane;

07-ch07.indd 202 5/22/14 4:05 PM

file:///path/to/alertDemo.html

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 7: Additional JavaFX Nodes 203

import javafx.scene.paint.Color;
import javafx.scene.shape.ArcType;
import javafx.stage.Stage;
public class CanvasDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 Canvas canvas = new Canvas(220, 220);
 GraphicsContext gc = canvas.getGraphicsContext2D();
 gc.setFill(Color.AQUA);
 gc.setStroke(Color.MAGENTA);
 gc.setLineWidth(2);
 gc.strokeLine(10, 10, 100, 100);
 gc.fillRoundRect(10, 120, 80, 80, 10, 10);
 gc.strokeRoundRect(120, 10, 80, 80, 10, 10);
 gc.setStroke(Color.GREEN);
 gc.strokeArc(120, 120, 80, 80, 16, 290, ArcType.ROUND);
 StackPane myPane = new StackPane();
 myPane.getChildren().add(canvas);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("Canvas Demo");
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

As you can see, the Canvas object isn’t created with an empty constructor. Here, the width
and height of the node are defined. Because a canvas can contain any drawing, it can’t know
its own size, so you need to specify the size of a canvas. In the example code, some figures are
drawn by using the GraphicsContext of the Canvas. Figure 7-4 shows the result of this drawing.

The Canvas and the GraphicsContext won’t clear the drawing in the canvas. Unlike in
Swing where the internal API clears the complete canvas with each repaint, you need to do this
by hand in JavaFX. As a result, the JavaFX Canvas API is more flexible. The following sample
defines an interactive canvas. Rectangles can be drawn in the canvas by mouse clicks. In
addition, the canvas can be cleared.

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
import java.util.Random;

07-ch07.indd 203 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

204 Mastering JavaFX 8 Controls

public class CanvasDemo extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 Canvas canvas = new Canvas(800, 600);
 GraphicsContext gc = canvas.getGraphicsContext2D();
 canvas.setOnMouseClicked(e -> stamp(gc, e.getX(), e.getY()));
 Button fillButton = new Button("fill");
 fillButton.setOnAction(e -> fill(gc));
 Button clearButton = new Button("clear");
 clearButton.setOnAction(e -> clear(gc));
 HBox box = new HBox(fillButton, clearButton);
 box.setSpacing(6);
 box.setAlignment(Pos.CENTER);
 box.setPadding(new Insets(6));
 VBox myPane = new VBox();
 myPane.getChildren().addAll(canvas, box);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("Canvas Demo");
 primaryStage.show();
 }

 private void fill(GraphicsContext gc) {
 Random random = new Random(System.currentTimeMillis());
 Color color = Color.color(random.nextDouble(), random.nextDouble(),
 random.nextDouble());
 gc.setFill(color);
 gc.fillRect(0, 0, gc.getCanvas().getWidth(), gc.getCanvas().getHeight());
 }

 private void clear(GraphicsContext gc) {
 gc.clearRect(0, 0, gc.getCanvas().getWidth(), gc.getCanvas().getHeight());
 }

 private void stamp(GraphicsContext gc, double x, double y) {
 Random random = new Random(System.currentTimeMillis());
 Color color = Color.color(random.nextDouble(), random.nextDouble(),
 random.nextDouble());

FIGURE 7-4. The Canvas node

07-ch07.indd 204 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 7: Additional JavaFX Nodes 205

 gc.setFill(color);
 double size = random.nextDouble() * 300;
 gc.fillRect(x - size / 2, y - size / 2, size, size);
 }
 public static void main(String[] args) {
 launch(args);
 }
}

The class defines three methods that will draw in the canvas: The fill(…) method will fill
the complete canvas with a custom color, the clear(…) method will clear the canvas, and the
stamp(…) method will add a rectangle to the canvas. By adding an event handler for mouse
events to the Canvas, you can add rectangles to the Canvas, as shown in Figure 7-5.

FIGURE 7-5. An interactive Canvas

07-ch07.indd 205 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

206 Mastering JavaFX 8 Controls

Some drawing features of the Canvas are not shown in the demo applications. For example,
the GraphicsContext provides a great path API that can be used to draw a path with Bézier
curves on the screen. Furthermore, images can be drawn.

NOTE
JavaFX provides a lot of basic shapes, such as rectangles and lines, as
nodes that can be used directly in the scene graph. Some developers
may ask themselves why the Canvas node is needed in addition to
these shapes. Each node in JavaFX contains basic functionalities such
as CSS support, skinning, and a lot of properties. Sometimes, this is
not needed, and when drawing in a Canvas, this “overhead” doesn’t
apply. All the nodes need to be added to the scene graph, and panes
must provide the layout for them. In a Canvas, a developer can
draw shapes by simply defining x-y coordinates. In addition, shapes
that are drawn to a Canvas don’t exist as object instances and can’t
be changed in the future. In some special cases, using the Canvas
is much faster and provides more performance than defining all
drawings in the scene graph.

ImageView
The ImageView is the default component to show any image in a defined size in a scene graph.
To do so, you need an image as defined by the Image class in JavaFX. The following example
shows how to use the ImageView node:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
public class ImageViewDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 StackPane myPane = new StackPane();
 Image image = new Image(getClass().getResource("pic.jpg").toString());
 ImageView imageView = new ImageView(image);
 imageView.setPreserveRatio(true);
 imageView.fitWidthProperty().bind(myPane.widthProperty());
 imageView.fitHeightProperty().bind(myPane.heightProperty());
 myPane.getChildren().add(imageView);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("Image Viewer");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }

07-ch07.indd 206 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 7: Additional JavaFX Nodes 207

 public static void main(String[] args) {
 launch(args);
 }
}

The code loads an image that is part of the classpath and is stored in the same package as
the Application class. The loaded image will be shown in an ImageView and is defined by
an instance of the Image class. Because the ImageView is always maximized in the sample
application window and the image might be smaller or bigger than the ImageView, a binding
is used in the example. The width and the height of the StackPane that is the parent of the
ImageView are bound to the size of the image. By doing it this way, the window can be resized,
and the image will always fit perfectly into it. Additionally, the preserveRatio property of the
ImageView node is set. As a result, the ImageView will always preserve the aspect ratio of the
image when resizing it. Figure 7-6 shows the application.

The ImageView class defines a set of properties that can be used to change the rendering of
the defined image. Some of them, such as the preserveRatio property, are used in the example.
Table 7-4 contains all properties of the ImageView class.

FIGURE 7-6. An ImageView

07-ch07.indd 207 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

208 Mastering JavaFX 8 Controls

The ImageView always needs an Image object to render anything onscreen. An Image object
is always defined by the Image class, whose properties are shown in Table 7-5.

The Image class also provides some constructors that can be used to load an image. These
constructors support different sources and options; Table 7-6 gives an overview of the parameters
that can be found in the constructors of the Image class. As you can see, an image can be loaded
by an URL or a stream. Currently, JavaFX supports JPEG, PNG, GIF, and BMP images. The API to
add image types is still private in JDK 8. If a custom image is needed or if the visual content
of an image needs to be changed, you should use the WriteableImage. This class extends the
Image class and offers a PixelWriter to set the RGB value of specific pixels. You can access
the writer by using the getPixelWriter() method. In addition, the Image class contains the
getPixelReader() method that offers a PixelReader that provides access to the pixels of an
image. With the help of these two methods, images can be easily changed. As a result, you can
create custom filters that change the saturation or brightness of an image, for example.

Property Type Description
fitHeight DoubleProperty Defines the height of a bounding

box. The image will be scaled to
fit in it.

fitWidth DoubleProperty Defines the width of a bounding
box. The image will be scaled to
fit in it.

image ObjectProperty<Image> Defines the image that is
rendered in the ImageView.

viewport ObjectProperty<Rectangle2D> Defines the area of the image that
is shown in the ImageView.

preserveRatio BooleanProperty Defines whether the aspect ratio
of the image should be preserved
when a fitHeight or fitWidth
is defined.

smooth BooleanProperty Defines whether the image
should be rendered by a better-
quality filtering algorithm or a
faster one.

x DoubleProperty Defines the x-coordinate of the
ImageView origin.

y DoubleProperty Defines the y-coordinate of the
ImageView origin.

TABLE 7-4. Properties of the ImageView Class

07-ch07.indd 208 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 7: Additional JavaFX Nodes 209

NOTE
JavaFX supports animated images too. A GIF, for example, can be
animated. This image can be loaded by the Image class like any other
image. You can use the isAnimation() method of the Image class
to check whether an image is animated. If an image is animated, a
PixelReader can’t be used. In this case, the pixelsReadable()
method of the image instance will return false.

Property Type Description
error ReadOnlyBooleanProperty Indicates whether an error was

detected while loading an image
exception ReadOnlyObjectProperty<Exception> Defines the exception that

caused image loading to fail
height ReadOnlyDoubleProperty Defines the image height
progress ReadOnlyDoubleProperty Defines the progress while the

image is loaded
width ReadOnlyDoubleProperty Defines the image width

TABLE 7-5. Properties of the Image Class

Parameter Type Description
url String Defines the URL of the image. To define an

image, an URL or an InputStream is needed.
InputStream InputStream Defines the data of the image as a stream. To

define an image, an URL or an InputStream is
needed.

requestedWidth double Defines the width of a bounding box. The image
will be scaled to fit in it.

requestedHeight double Defines the height of a bounding box. The image
will be scaled to fit in it.

preserveRatio boolean Defines whether the aspect ratio of the image
should be preserved when a requestedWidth or
requestedHeight is defined.

Smooth boolean Defines whether the image should be resized by a
better-quality filtering algorithm or a faster one.

backgroundLoading boolean Defines whether the image should be loaded in
the background.

TABLE 7-6. Constructor Parameters of the Image Class

07-ch07.indd 209 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

210 Mastering JavaFX 8 Controls

MediaView
The MediaView is a JavaFX control that can render video playback onscreen. The MediaView
internally uses the JavaFX media API, and this API is defined in the javafx.scene.media
package. The API can be used to play audio too. Because the MediaView is shown here, the
following description is limited to video support.

The following video formats are currently supported by JavaFX:

 ■ FLV containing VP6 video and MP3 audio

 ■ MPEG-4 multimedia container with H.264/Advanced Video Coding (AVC) video
compression

NOTE
On some older Windows versions and Linux systems, additional software
packages may be needed to support specific video codecs. Information
about these topics can be found in the JavaFX system requirements:
http://docs.oracle.com/javafx/release-documentation.html.

The following example shows how to display a video in a JavaFX application:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.StackPane;
import javafx.scene.media.Media;
import javafx.scene.media.MediaPlayer;
import javafx.scene.media.MediaView;
import javafx.stage.Stage;
public class MediaViewDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 Media media = new Media("http://download.oracle.com/otndocs/
 products/javafx/oow2010-2.flv");
 MediaPlayer player = new MediaPlayer(media);
 MediaView mediaView = new MediaView(player);
 player.play();
 StackPane myPane = new StackPane();
 myPane.getChildren().add(mediaView);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

07-ch07.indd 210 5/22/14 4:05 PM

http://docs.oracle.com/javafx/release-documentation.html
http://download.oracle.com/otndocs/products/javafx/oow2010-2.flv
http://download.oracle.com/otndocs/products/javafx/oow2010-2.flv

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 7: Additional JavaFX Nodes 211

As you can see in the code, the video is defined as a Media instance. Here, the path to the
video data is assigned as a URL to the Media constructor. To play any media in JavaFX, you need
a MediaPlayer instance. A player contains one Media instance that can be played, and the
MediaPlayer defines different methods to handle the playback of the media. In the sample, the
play() method is used. This method starts the playback. To render the video onscreen, you need
a MediaView. When starting the sample, the video will be directly shown on the screen.

The MediaPlayer class provides a lot of useful methods and properties that can be used to
handle the playback of the video, the audio volume, and other useful functionalities. By using
these methods, the media playback can become interactive. It is easy to create “play” and
“pause” buttons, for example. The following code shows how to define these methods:

Button playButton = new Button("play");
playButton.setOnAction((e) -> player.play());

Button pauseButton = new Button("pause");
pauseButton.setOnAction((e) -> player.pause());

Summary
All the node types covered in this chapter are great benefits of JavaFX because the nodes provide
the ability to render different data types on the screen. Developers can add movies with the help
of the MediaView to an application or render business data by using the chart API. Thanks to
native dependencies such as WebKit and different video codecs, JavaFX provides state-of-the-art
rendering for the mentioned data types. You won’t find these visual components and their features
in the basic APIs of older Java UI toolkits. With the use of the JavaFX APIs, it is easy to enrich an
application, and I think that this will happen in a lot of desktop applications in the next years.

07-ch07.indd 211 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 /
Blind folio: 212

07-ch07.indd 212 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: 213

CHAPTER
8

Integrating JavaFX,
Swing, and SWT

08-ch08.indd 213 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

214 Mastering JavaFX 8 Controls

In previous chapters, I used small JavaFX samples and applications to demonstrate JavaFX
APIs and controls and showed how to create JavaFX applications by applying various
functionalities and classes. Using these APIs, you’ll master the basics necessary to create

applications, and these APIs will enable larger-scale tasks for your work with JavaFX, such as
creating business applications that use background tasks and that communicate with a server
application or a database. In some cases, you may already have a desktop application that was
created with Swing or SWT. If you want to migrate these applications to JavaFX or add some
JavaFX features, you will find helpful classes and methods in JavaFX that enable interoperability
between JavaFX and Swing/SWT. This chapter will show these parts of the JavaFX framework
along with some best practices and use cases.

Combining JavaFX and Swing
JavaFX provides two classes that can be used to create an application that mixes JavaFX and
Swing:

 ■ javafx.embed.swing.JFXPanel

 ■ javafx.embed.swing.SwingNode

The JFXPanel is a Swing JComponent that can be used to add a JavaFX scene graph to a
Swing component hierarchy. The SwingNode is a JavaFX node that can be used to add Swing
components to a JavaFX scene graph. These two classes allow integration between Swing and
JavaFX in either direction: Swing can be integrated in JavaFX, and vice versa. Let’s take a look at
both uses.

Using the JFXPanel
With the help of the JFXPanel, you can enrich an existing Swing application with JavaFX. Therefore,
the JFXPanel class provides the ability to add a JavaFX scene graph to a Swing application. The
JFXPanel extends the javax.swing.JComponent class and is, therefore, a default Swing
JComponent. Because of this, it can be added to any Swing component hierarchy, as shown in the
following code snippet:

JFrame swingFrame = new JFrame("Integrate JavaFX in Swing");
swingFrame.getContentPane().setLayout(new BorderLayout());

swingFrame.getContentPane().add(BorderLayout.NORTH, new JButton("I'm a Swing button"));

JFXPanel jfxPanel = new JFXPanel();
swingFrame.getContentPane().add(BorderLayout.CENTER, jfxPanel);

swingFrame.setVisible(true);

This code defines a Swing JFrame that is shown on the screen. The frame contains a Swing-
based button that is defined by the JButton class and an instance of the JFXPanel class. I won’t

08-ch08.indd 214 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 8: Integrating JavaFX, Swing, and SWT 215

discuss all the Swing internal mechanisms and how the Swing framework should be used; the
important part is the JFXPanel instance that is added to the Swing frame. This instance is
currently empty, and when running the sample, only the Swing button will be shown in the
application window. For the next step, you can use the JFXPanel to add JavaFX controls to the
Swing application, as shown here:

Button jfxButton = new Button("I'm a JavaFX button");
StackPane jfxPane = new StackPane(jfxButton);
Scene jfxScene = new Scene(jfxPane);
jfxPanel.setScene(jfxScene);

This code creates a JavaFX scene graph, which contains a JavaFX button that is wrapped in
a StackPane. The last line of the snippet sets the scene graph to the JFXPanel. While this
seems easy, there is a big problem: The code snippets shown cannot be mixed in a single
thread. Swing operations need to be executed on the event dispatch thread (EDT), and all
JavaFX operations need to be executed on the JavaFX application thread. Both Swing and
JavaFX provide helpful methods to execute code on the needed thread. In Swing, you can use
the SwingUtilites.invokeLater(Runnable doRun) method to execute a runnable on
the EDT.

JavaFX’s comparable method is Platform.runLater(Runnable doRun).
With the help of these methods, the code snippets shown can be wrapped in Runnable

instances and executed on the right application threads. Let’s start with the Swing part and create
a simple sample application that uses the code snippet that was shown previously:

package com.guigarage.masteringcontrols;

import javafx.embed.swing.JFXPanel;

import javax.swing.*;
import java.awt.*;

public class JFXPanelDemo1 {
 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 JFrame swingFrame = new JFrame("Integrate JavaFX in Swing");
 swingFrame.getContentPane().setLayout(new BorderLayout());
 swingFrame.getContentPane().add(BorderLayout.NORTH, new
 JButton("I'm a Swing button"));
 JFXPanel jfxPanel = new JFXPanel();
 swingFrame.getContentPane().add(BorderLayout.CENTER, jfxPanel);
 swingFrame.setVisible(true);
 }
);
 }
}

08-ch08.indd 215 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

216 Mastering JavaFX 8 Controls

In the sample, the complete code that is Swing specific is wrapped in a Runnable lambda
expression and executed on the EDT. To add the JavaFX scene graph to the sample, the JavaFX code
must be executed on a different thread. The following code demonstrates how to achieve this:

package com.guigarage.masteringcontrols;

import javafx.application.Platform;
import javafx.embed.swing.JFXPanel;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javax.swing.*;
import java.awt.*;

public class JFXPanelDemo1 {

 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 JFrame swingFrame = new JFrame("Integrate JavaFX in Swing");
 swingFrame.getContentPane().setLayout(new BorderLayout());
 swingFrame.getContentPane().add(BorderLayout.NORTH, new
 JButton("I'm a Swing button"));
 JFXPanel jfxPanel = new JFXPanel();
 swingFrame.getContentPane().add(BorderLayout.CENTER, jfxPanel);
 Platform.runLater(() -> {
 Button jfxButton = new Button("I'm a JavaFX button");
 StackPane jfxPane = new StackPane(jfxButton);
 Scene jfxScene = new Scene(jfxPane);
 jfxPanel.setScene(jfxScene);
 });

 swingFrame.setVisible(true);
 }
);
 }
}

The sample creates a Swing frame that contains a Swing-based button and a JavaFX button, as
shown in Figure 8-1.

As you can see in the sample code, you now have a block that is wrapped in a Runnable and
executed on the EDT. In this code block, the Platform.runLater(…) method is used to
execute a Runnable on the JavaFX application thread. Here, the JavaFX button is defined. This
approach greatly increases the complexity of the code but is necessary because both UI toolkits
are defined as single-threaded toolkits, and therefore all the code that uses or modifies controls of
the specific toolkit must be executed on the right thread. If you don’t do this, an exception will be
thrown at run time because the JavaFX scene wasn’t initialized in the JavaFX application thread.

Exception in thread "AWT-EventQueue-0" java.lang.IllegalStateException: Not on
FX application thread; currentThread = AWT-EventQueue-0

08-ch08.indd 216 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 8: Integrating JavaFX, Swing, and SWT 217

Handling both UI threads will become even more complex when interaction between the two
UI toolkits is needed. In the following example, an action listener is added to the Swing button
that will influence the JavaFX button, and an action handler is defined for the JavaFX button that
will modify the Swing one:

package com.guigarage.masteringcontrols;
import javafx.application.Platform;
import javafx.embed.swing.JFXPanel;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javax.swing.*;
import java.awt.*;
public class JFXPanelDemo2 {

 private static JButton swingButton;
 private static Button jfxButton;

 public static void main(String[] args) {

 SwingUtilities.invokeLater(() -> {
 JFrame swingFrame = new JFrame("Integrate JavaFX in Swing");
 swingFrame.getContentPane().setLayout(new BorderLayout());
 swingButton = new JButton("I'm a Swing button");
 swingFrame.getContentPane().add(BorderLayout.NORTH, swingButton);
 swingButton.addActionListener((e) ->{
 Platform.runLater(() -> {
 jfxButton.setDisable(!jfxButton.isDisable());
 });
 });

 JFXPanel jfxPanel = new JFXPanel();
 swingFrame.getContentPane().add(BorderLayout.CENTER, jfxPanel);
 Platform.runLater(() -> {

FIGURE 8-1. Mixing Swing and JavaFX

08-ch08.indd 217 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

218 Mastering JavaFX 8 Controls

 jfxButton = new Button("I'm a JavaFX button");
 StackPane jfxPane = new StackPane(jfxButton);
 Scene jfxScene = new Scene(jfxPane);
 jfxPanel.setScene(jfxScene);
 jfxButton.setOnAction((e) -> {
 SwingUtilities.invokeLater(() -> {
 swingButton.setEnabled(!swingButton.isEnabled());
 });
 });
 });

 swingFrame.setVisible(true);
 }
);
 }
}

The JavaFX and Swing toolkits both define that the code of a handler or listener will always
be executed on the correct UI thread. Therefore, the lambda expression that is added as an
ActionListener instance to the Swing button will be executed in the EDT, but the code will affect
the JavaFX button and change its disable property. Therefore, the Platform.runLater(…)
method must be used here again. Now the code block will be executed in the JavaFX application
thread and change the disable property. A similar course of action is needed in the action handler
of the JavaFX button. Here, SwingUtilities.invokeLater(…) is used to change the enabled
bean property of the Swing button.

NOTE
In the previous sample, the button instances are defined as static
fields of the class. This is normally not a good architecture, but it is
used here to create a simple demo application in only a few lines
of code. Normally, an instance of a custom class should be created,
and this class can then contain the UI and the controller logic of the
application.

As you can see, mixing both UI toolkits isn’t trivial. So, why would you use this approach? You
would do this if a given Swing application can’t be migrated to JavaFX in only one step. By using the
JFXPanel, individual parts of an application can be migrated one by one from Swing to JavaFX. This
approach would also benefit you if you needed a special JavaFX control, such as the WebView,
the graph API, or the MediaView, in a Swing application. Swing, for example, doesn’t contain
components such as the WebView or the MediaView that are defined as basic nodes in JavaFX.
The graph API is another part of JavaFX that has no complement in the Swing basic components.
Integrating JavaFX in a Swing application would allow you to add a WebView instance to a Swing
application and show special HTML content onscreen. So, HTML5 and CSS3 can be rendered in
an existing Swing app; only a few Platform.runLater(…) calls are needed, and it won’t add to
the complexity of the code too much.

08-ch08.indd 218 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 8: Integrating JavaFX, Swing, and SWT 219

NOTE
As you will see later, there is an experimental JavaFX feature that can
be used to remove all the threading issues and make the EDT the same
thread as the JavaFX application thread. Because this feature is still
experimental and a developer should still know about handling the
two threads, the first approach is discussed here.

The JFXPanel class extends the JComponent class, and therefore all the default methods
that are known from Swing can be found and used here. In addition, the class provides only the
two methods getScene() and setScene(…), which can be used to define and access the
internal scene graph of the component.

NOTE
In addition to the mentioned classes, JavaFX provides the javafx
.embed.swing.SwingFXUtils class that contains a set of helpful
methods when using Swing and JavaFX APIs in one application.
Methods to convert BufferedImage instances to JavaFX Images,
for example, can be found here.

Using the SwingNode
The SwingNode is a JavaFX node that can be used to integrate Swing components in a JavaFX
application. As mentioned in the previous section, it is important to know about the different
toolkit threads when working with the SwingNode. The following example defines a JavaFX
sample and adds a Swing button to the application:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.application.Platform;
import javafx.embed.swing.SwingNode;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
import javax.swing.*;
public class SwingNodeDemo extends Application {
 private Button jfxButton;

 private JButton swingButton;

 @Override
 public void start(Stage primaryStage) throws Exception {
 jfxButton = new Button("JavaFX Button");
 jfxButton.setOnAction((e) -> {
 SwingUtilities.invokeLater(() -> {
 swingButton.setEnabled(!swingButton.isEnabled());
 });

08-ch08.indd 219 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

220 Mastering JavaFX 8 Controls

 });
 SwingNode swingNode = new SwingNode();
 SwingUtilities.invokeLater(() -> {
 swingButton = new JButton("Swing Button");
 swingButton.addActionListener((e) -> {
 Platform.runLater(() -> {
 jfxButton.setDisable(!jfxButton.isDisabled());
 });
 });
 swingNode.setContent(swingButton);
 });
 VBox myPane = new VBox();
 myPane.setPadding(new Insets(12));
 myPane.setAlignment(Pos.CENTER);
 myPane.setSpacing(12);
 myPane.getChildren().addAll(jfxButton, swingNode);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

In the example, a JavaFX application is created like in most other examples in this book,
but this sample uses the SwingNode and integrates a Swing button. Therefore, a JButton
instance is created and defined as the content of the SwingNode. The JButton instance must
be created on the EDT, and because of that, the creation is wrapped in a SwingUtilities
.invokeLater(…) method. Like in the demo of the JFXPanel, both buttons can be used to
modify the other one. Therefore, SwingUtilities.invokeLater(…) and Platform
.runLater(…) calls are needed. Using these methods is equal to the functionalities covered
with the JFXPanel, so I won’t discuss that again here. As in the JFXPanel example, the
complete event handling of Swing and JavaFX is supported by the use of the SwingNode.

It is important to use only lightweight Swing components in a SwingNode. Swing extends the
old AWT UI toolkit, and therefore, heavyweight AWT components can be added to a Swing
component hierarchy. If the hierarchy of Swing components that is defined as the content of a
SwingNode contains heavyweight components, the SwingNode may fail to paint them.

NOTE
As mentioned earlier in the book, only components that extend
the Node class can be part of a JavaFX scene graph, but a Swing
component doesn’t extend this class. So, how can a Swing component
be added to an application with the help of the SwingNode? The
SwingNode uses a BufferedImage internally to paint the Swing
component into it. This BufferedImage will be shown in the JavaFX
scene graph. As a result, the Swing JButton instance isn’t a real part
of the scene graph.

08-ch08.indd 220 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 8: Integrating JavaFX, Swing, and SWT 221

Using the Experimental Single-Thread Mode
JavaFX provides an experimental mode to sync the EDT and JavaFX application thread. In this
mode, both UI toolkits will share a single thread, and all events of both toolkits that normally will
be handled on the specific UI thread will be on a single thread. To activate the experimental
mode, you must set an environment property when starting the application:

-Djavafx.embed.singleThread=true

Once an application is started with this property, Swing and JavaFX will use just one thread,
making the EDT the same thread as the JavaFX application thread. Doing this decreases the
complexity of the examples shown so far. Let’s take a look at the JFXPanel demo and refactor it
to a version that can be used once the singleThread flag is set:

package com.guigarage.masteringcontrols;
import javafx.embed.swing.JFXPanel;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javax.swing.*;
import java.awt.*;

public class JFXPanelDemo1 {

 private static JButton swingButton;
 private static Button jfxButton;

 public static void main(String[] args) {
 final JFXPanel jfxPanel = new JFXPanel();
 SwingUtilities.invokeLater(() -> {
 JFrame swingFrame = new JFrame("Integrate JavaFX in Swing");
 swingFrame.getContentPane().setLayout(new BorderLayout());
 swingButton = new JButton("I'm a Swing button");
 swingFrame.getContentPane().add(BorderLayout.NORTH, swingButton);
 swingButton.addActionListener((e) -> {
 jfxButton.setDisable(!jfxButton.isDisable());
 });
 swingFrame.getContentPane().add(BorderLayout.CENTER, jfxPanel);
 jfxButton = new Button("I'm a JavaFX button");
 StackPane jfxPane = new StackPane(jfxButton);
 Scene jfxScene = new Scene(jfxPane);
 jfxPanel.setScene(jfxScene);
 jfxButton.setOnAction((e) -> {
 swingButton.setEnabled(!swingButton.isEnabled());
 });
 swingFrame.setVisible(true);
 });
 }
}

08-ch08.indd 221 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

222 Mastering JavaFX 8 Controls

As you can see in the code, all the Platform.runLater(…) calls are removed. Because
Swing and JavaFX share a single thread, only one SwingUtilities.invokeLater(…) call is
needed here. In the sample, the creation of the JFXPanel instance is extracted to the main
method and isn’t part of the lambda expression that is passed to the invokeLater(…) method.
By calling the constructor of the JFXPanel, JavaFX will set up the single-threaded event-
dispatching mechanism.

Pros and Cons of the Integration
Mixing JavaFX and Swing brings both benefits and also potential issues. Let’s start with the
positive effects. By using the SwingNode or the JFXPanel, you can mix Swing components and
JavaFX controls. This is useful if a company needs to migrate a Swing application to JavaFX. For
applications where custom Swing components were specifically developed for that application, a
developer wouldn’t need to reimplement these custom components once migrated to JavaFX. The
components could be still used in a JavaFX porting by using SwingNode, or you could migrate
and refactor the application so only a few views and dialogs will be re-created in JavaFX. Here,
the JFXPanel would be helpful because the new JavaFX views can be integrated in the given
Swing application.

You should also be aware of potential problems that must be managed when doing such a
migration. As mentioned, the complexity of the code will rise when two different UI toolkits are
used. The main concepts of these toolkits are different, and therefore a developer must be an expert
in both of them to manage the migration and its issues. In addition, the visual representation of
JavaFX and Swing is completely different. JavaFX uses the so-called Modena theme to render its
controls onscreen. Modena is a cross-platform theme that is used on every OS. Swing contains
cross-platform themes like Metal or Nimbus, but these themes define a completely different look
than Modena does. A user will always notice this break in the UI because the application will look
inconsistent. In addition to Modena, JavaFX can use the Caspian theme that was already defined
in JavaFX 2. Swing provides a platform-specific look and feel that can define the visualization of all
Swing-based components as they would be rendered by the underlying OS. Often, this look and
feel includes native code to render the skin of the Swing components directly by the operating
system, but there is no match in any of them. Figure 8-2 shows how a button is rendered by the
different JavaFX themes and Swing look and feel.

Additionally, mixing both UI toolkits can result in lags in performance. As mentioned,
BufferedImages are used here to store the rendering of one toolkit and render it in the other one.

FIGURE 8-2. Different representations of JavaFX and Swing

Caspian Theme Modena Theme

Nimbus L and F Metal L and F

Aqua L and FCDE/Motif L and F

JavaFX Theme Swing Look and Feel

08-ch08.indd 222 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 8: Integrating JavaFX, Swing, and SWT 223

NOTE
Some other third-party JavaFX themes have been released. AquaFX
is one of them, and it can be used to imitate the look of native Mac
OS controls. The platform-specific look and feel on Mac OS does the
same in Swing, so on a Mac, these two themes can be used to create a
more consistent look. Ideally, other JavaFX themes that do the same for
other operating systems will follow.

Combining JavaFX and SWT
SWT is the default UI toolkit of the Eclipse IDE. It uses the native OS controls, so it cannot easily
be configured to use custom UI features like you can do with JavaFX controls. Therefore, JavaFX
provides a set of helpful classes that can be used to integrate JavaFX in SWT-based applications.

Because SWT is not part of the JDK or JRE, the integration is not as easy as it is with Swing.
First, the SWT JAR must be added to the Java classpath. Since developers typically want to
integrate JavaFX into an existing SWT application, this would already be arranged. If you still need
the SWT JAR file, you can download it from the SWT release page (www.eclipse.org/swt/), or
you can find it as part of an Eclipse installation at eclipse/plugins/org.eclipse.swt**.jar.
Because SWT depends on the OS, you will need different JARs depending on the operating system
where the application will be running. For Mac OS, you can use the org.eclipse.swt.cocoa
.macosx.x86_64_3.100.1.v4236b.jar file that is defined in Eclipse Juno, for example.

In addition to the SWT JAR, specific JavaFX classes are needed. Because SWT is not part of
the JDK, the complete SWT support of JavaFX is defined in a special JAR that is not part of the
default Java class path. In a JDK 8 installation, the JAR can be found under JAVA_HOME/jre/lib/
jfxswt.jar. This JAR must be added to the classpath too. Once this is done, you will find the
following class: javafx.embed.swt.FXCanvas.

Using the FXCanvas
All you need to integrate JavaFX with SWT is the FXCanvas class. This class extends the SWT
Canvas class and can be used anywhere that an SWT canvas can appear. I won’t take a deep dive
into how SWT is internally working or what an SWT Canvas does. Instead, let’s focus on the basic
features of the FXCanvas class that are useful for SWT developers.

The FXCanvas class can be used to integrate a scene graph into your SWT application; the
class provides two methods: getScene() and setScene(Scene scene). The class can be used
like the JFXPanel that was shown earlier. The following example defines an SWT application that
contains an SWT button and a JavaFX button that can interact with each other:

package com.guigarage.masteringcontrols;
import javafx.embed.swt.FXCanvas;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import org.eclipse.swt.SWT;
import org.eclipse.swt.graphics.Point;
import org.eclipse.swt.layout.RowLayout;

08-ch08.indd 223 5/22/14 4:05 PM

http://www.eclipse.org/swt/

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

224 Mastering JavaFX 8 Controls

import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Event;
import org.eclipse.swt.widgets.Listener;
import org.eclipse.swt.widgets.Shell;
public class SwtDemo {
 public static void main(String[] args) {
 final Display display = new Display();
 final Shell shell = new Shell(display);
 shell.setText("SWT meets JavaFX");
 final RowLayout layout = new RowLayout();
 shell.setLayout(layout);
 final org.eclipse.swt.widgets.Button swtButton =
 new org.eclipse.swt.widgets.Button(shell, SWT.PUSH);
 swtButton.setText("SWT Button");
 final FXCanvas fxCanvas = new FXCanvas(shell, SWT.NONE) {
 public Point computeSize(int wHint, int hHint, boolean changed) {
 getScene().getWindow().sizeToScene();
 int width = (int) getScene().getWidth();
 int height = (int) getScene().getHeight();
 return new Point(width, height);
 }
 };
 final Button jfxButton = new Button("JavaFX Button");
 Scene scene = new Scene(new StackPane(jfxButton));
 fxCanvas.setScene(scene);
 swtButton.addListener(SWT.Selection, new Listener() {
 public void handleEvent(Event event) {
 jfxButton.setDisable(!jfxButton.isDisable());
 shell.layout();
 }
 });
 jfxButton.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent event) {
 swtButton.setEnabled(!swtButton.isEnabled());
 shell.layout();
 }
 });
 shell.open();
 while (!shell.isDisposed()) {
 if (!display.readAndDispatch()) {
 display.sleep();
 }
 }
 display.dispose();
 }
}

08-ch08.indd 224 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 8: Integrating JavaFX, Swing, and SWT 225

This code uses some SWT-specific classes such as the Shell and Display classes. These
classes are used to create an SWT application that contains one frame. The frame contains an
SWT button and an FXCanvas instance that is used as a wrapper around the JavaFX scene graph
that holds the JavaFX button. Both buttons have an action listener defined that will handle their
action events. Whenever the SWT button is clicked, the JavaFX button will change its disabled
property. When the user clicks the JavaFX button, the enabled bean property of the SWT button
will change. Figure 8-3 shows how the application will look at run time.

NOTE
To start the sample on a Mac, the special VM option
-XstartOnFirstThread must be specified.

When looking at the example, you will see a great benefit compared to the interoperability
with Swing. When mixing SWT and JavaFX, the SWT event dispatch thread and the JavaFX
application thread are automatically the same, so you will not need to handle two different
threads like with Swing and JavaFX.

NOTE
The jfxswt.jar file that contains the FXCanvas class provides some
additional classes. One of them, the SWTFXUtils class, can be used
to convert between org.eclipse.swt.graphics.ImageData
instances and JavaFX Image instances.

Because SWT uses the native OS to render the GUI components, these components will
almost always look like native controls. Therefore, you will have the same problems with this
approach as when mixing Swing and JavaFX: The controls will look different. As you can see in
Figure 8-3, an SWT button doesn’t look like a JavaFX button. So, it is a best practice to use this
mix only for custom controls or controls that can’t be created using SWT.

FIGURE 8-3. AN SWT application with an internal JavaFX button

08-ch08.indd 225 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

226 Mastering JavaFX 8 Controls

Summary
JavaFX provides some helpful classes to create interoperability with Swing or SWT. These classes
can be used to migrate big applications, but it’s important to remain aware of the potential issues
raised when mixing two different toolkits. If a mix is needed, choose wisely, and always consider
how users will be impacted by visual inconsistencies in the UI.

I recommend using these techniques sparingly. The complexity of an application will always
increase when you add a second UI toolkit. While it’s fine to create some intermediate results in a
migration that contains Swing and JavaFX controls, for example, the final goal of an application is
to target only one UI toolkit. Issues aside, having JavaFX offer these classes is a great option when
you need to mix JavaFX with other UI toolkits.

08-ch08.indd 226 5/22/14 4:05 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: 227

CHAPTER
9

Styling a Control

09-ch09.indd 227 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

228 Mastering JavaFX 8 Controls

A s shown in Chapter 5, you can style a control in Java code, setting different properties
such as the text color of a button. If you need to style a complete application with several
different controls, however, this workflow creates a lot of code. JavaFX supports CSS,

though, allowing you to style a complete application or control. In this chapter, you’ll learn how
to apply CSS styling in JavaFX.

Using Themes to Style an Application
The fastest way to style a complete application in JavaFX is to use a custom theme. By default, all
JavaFX applications use the Modena theme to style content (which is the theme applied to all the
samples shown in this book). Prior to JavaFX 8, the default theme was Caspian, which is still available
as an alternative theme in JavaFX 8. Both themes are considered cross-platform, ensuring a consistent
look across all operating systems.

NOTE
A theme in JavaFX is defined by a CSS style sheet. Even Modena is
defined by a CSS file; the Modena CSS file is part of JavaFX and can be
found in the jfxrt.jar file at com/sun/javafx/scene/control/
skin/modena/modena.css.

You can change the theme of an application with just one line of code, shown here:

setUserAgentStylesheet(Application.STYLESHEET_CASPIAN);

This code snippet sets the application’s theme to Caspian. JavaFX contains static fields for
Modena and Caspian, so you can easily change an application back to Modena, like so:

setUserAgentStylesheet(Application.STYLESHEET_MODENA);

The method setUserAgentStylesheet(…) is part of the Application class.
Figure 9-1 shows the sample application created in Chapter 5. This time, the application is

styled with Caspian.
As you can see in Figure 9-1, Caspian isn’t as modern as Modena. In addition to the visual

appeal, Modena offers a number of benefits that I will cover later in the chapter. It is definitely a
best practice to use Modena instead of Caspian, but an application that was developed with
JavaFX 2.x and migrated to JavaFX 8 could use Caspian to retain its look, for example.

09-ch09.indd 228 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 229

In addition to Caspian and Modena, the JavaFX community has developed a number of third-
party themes. The most popular one is AquaFX (http://aquafx-project.com/). Unlike Modena or
Caspian, AquaFX was designed as a native theme, so the theme aims to mimic the look of a
specific operating system. In this case, AquaFX styles all default JavaFX controls in the Mac OS
Aqua style, so you would use AquaFX for applications that run on a Mac. Figure 9-2 shows the
sample application styled by AquaFX.

As mentioned, each JavaFX theme is defined by a CSS style sheet that contains the styling
information for JavaFX controls. To understand how this works, you will now take a deeper look
at using CSS in JavaFX.

FIGURE 9-1. The Caspian theme

09-ch09.indd 229 5/22/14 4:06 PM

http://aquafx-project.com/

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

230 Mastering JavaFX 8 Controls

CSS Basics
Some developers may not have experience using CSS, so I’ll quickly review the basics. Cascading
Style Sheets (CSS) is a style sheet language that can be used to define the look and format of
documents. It is the default language for styling web pages, and the CSS specification is maintained
by the World Wide Web Consortium (W3C). The main goal of CSS is to separate the content from
the presentation of documents. Think about a simple static web page; all the content such as
tables, text, and hyperlinks can be defined by HTML. To style and format all the containing
components, though, you should use CSS. While this is the main use case, CSS can be used in
other ways, such as styling text documents or print layouts. In general, CSS describes different style
and layout attributes of components, and in JavaFX, it is used to style controls.

Here is a simple CSS definition:

#headline {
 background-color: blue;
}

FIGURE 9-2. The AquaFX theme

09-ch09.indd 230 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 231

The CSS snippet defines the font color for an element called headline, and the background-
color property is set to the value blue. To bind this definition to the defined element, you use a
selector. The selector in the example is #headline, which defines the component that is affected
by the given rule. Here are some definitions of CSS terms:

 ■ CSS has rules that define how a component should be styled.

 ■ A style sheet contains a set of CSS rules. Usually, this is a CSS file.

 ■ Each rule has a selector that defines what components should be styled by the rule.

 ■ Each rule contains a set of properties.

 ■ For each property, a value is defined.

The given example is a CSS rule that can be used for web development. In JavaFX, the CSS
properties have other names than in the CSS definitions for HTML. Each JavaFX property starts
with the -fx- prefix. To style a JavaFX control like the previous HTML example, you would use
the following rule:

#headline {
 -fx-background-color: blue;
}

Note that JavaFX supports the CSS 2.1 specification. That means most of the functionalities in
CSS 2.1 can be used in JavaFX. The biggest difference between how the specification is used for
web design versus in JavaFX is the -fx- prefix, but there are other minor changes in JavaFX,
including the following:

 ■ There is no @ keyword.

 ■ Some CSS pseudoclasses and elements such as :first-line, :first-letter,
:before, and :after aren’t supported.

 ■ :active and :focus are replaced by :pressed and :focused.

 ■ :link and :visited are not supported in general (the Hyperlink control supports
:visited).

 ■ No comma-separated series of font family names in the -fx-font-family property are
allowed.

 ■ The HSB color model is used instead of the HSL model.

An important feature of CSS is its cascading functionality. CSS defines a priority hierarchy for
the properties that affect the style of a component. This functionality is useful when you are
styling a complete application or view instead of a single control. The CSS rule shown previously
defines the background color of an element with the given ID headline. Let’s assume that this
element is a JavaFX label in a custom application, and in this application all labels should have
gray text. In addition, the headline of the application should have a blue background. Without the
cascading functionality, developers must define CSS rules for all Label instances that are used in
the application. Here is a short abstract of a CSS style sheet that would do it this way:

#headline {
 -fx-background-color: blue;
 -fx-text-fill: gray;

09-ch09.indd 231 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

232 Mastering JavaFX 8 Controls

}
#label1 {
 -fx-text-fill: gray;
}
#label2 {
 -fx-text-fill: gray;
}

Styling an application this way would be hard because you would need to write a lot of CSS rules,
and every time a change request appears, it would be a big problem to change several aspects of
the design. If the customer decides to change all labels to a light gray color, for example, you
would need to change this in all the CSS rules for all the labels.

To avoid these problems, you can use the cascading functionality of CSS where property
declarations are inherited. The following code defines a solution that solves the given problems
with only two CSS rules:

.label {
 -fx-text-fill: gray;
}
#headline {
 -fx-background-color: blue;
}

In this code, you define a global rule for all Label instances by using a different selector
syntax. The # prefix defines that a selector specifies an ID of a component and affects only those
components with the given ID. A dot defines an element type that is a control type in JavaFX. This
rule sets the text color of all labels to gray, which includes the headline label. The second rule
adds a property to the definition of the headline label. In this rule, the -fx-text-fill property
could be overridden to change the text color of this specific label. Later in the chapter, I’ll show
different selector types and properties that are supported for JavaFX controls, as well as some best
practices in terms of inheritance and cascading.

CSS in JavaFX
JavaFX provides a couple of ways to apply CSS to the nodes of a scene graph. In Chapter 5, you
created a simple login dialog. As an example, let’s style this dialog. To do this, let’s change the
source code of the application and define some unique IDs for all the components that should be
styled, as shown here:

...
gridPane.setId("login-pane");
userLabel.setId("login-user-label");
passwordLabel.setId("login-password-label");
button.setId("login-button");
userNameField.setId("login-user-textfield");
passwordField.setId("login-password-textfield");

Scene myScene = new Scene(gridPane);

09-ch09.indd 232 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 233

As a next step, you need a CSS style sheet that defines rules for all the nodes. I won’t describe
all the possible properties that can be used in the CSS rules for JavaFX because this is a really
huge list, as you might know from web development. You can find a complete overview of all
possibilities and the syntax of how CSS can be used in JavaFX in the JavaFX CSS Reference Guide
(http://download.java.net/jdk8/jfxdocs/javafx/scene/doc-files/cssref.html). The following code
defines a sample style sheet for the login dialog:

#login-pane {
 -fx-background-color: #000000;
}
#login-button {
 -fx-background-color: #008000;
 -fx-text-fill: #f5f5f5;
}
#login-user-label {
 -fx-text-fill: #f5f5f5;
}
#login-password-label {
 -fx-text-fill: #f5f5f5;
}
#login-user-textfield {
 -fx-background-color: #191970;
 -fx-background-radius: 10.0;
 -fx-text-fill: #f5f5f5;
 -fx-prompt-text-fill: #5ecbea;
}
#login-user-textfield {
 -fx-background-color: #191970;
 -fx-background-radius: 10.0;
 -fx-text-fill: #f5f5f5;
 -fx-prompt-text-fill: #5ecbea;
}

In the style sheet, all the rules are defined by a selector. Each selector starts with the # prefix
that defines an ID. Each node that has been defined with the given ID will be styled by the rule,
and all the different JavaFX node types can be styled by specified CSS properties.

NOTE
All color information in the CSS file is defined by hex values. As you will
see later, that is one of many ways that a color can be defined in CSS.

Before looking more closely at the properties and values used, let’s look at the result of the
example. Just add the defined style sheet to the JavaFX application using the following code
snippet:

String stylesheet = getClass().getResource("custom.css").toExternalForm();
myScene.getStylesheets().add(stylesheet);

In this line of Java code, the CSS style sheet that is saved in the custom.css file is applied to
the scene graph of the application. Figure 9-3 shows the styled login dialog.

09-ch09.indd 233 5/22/14 4:06 PM

http://download.java.net/jdk8/jfxdocs/javafx/scene/doc-files/cssref.html

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

234 Mastering JavaFX 8 Controls

As already mentioned, I don’t have room for a complete overview of all these properties, but
here are the ones that can be used to style a node:

FIGURE 9-3. The styled login dialog

 ■ -fx-blend-mode

 ■ -fx-cursor

 ■ -fx-effect

 ■ -fx-focus-traversable

 ■ -fx-opacity

 ■ -fx-rotate

 ■ -fx-scale-x

 ■ -fx-scale-y

 ■ -fx-scale-z

 ■ -fx-translate-x

 ■ -fx-translate-y

 ■ -fx-translate-z

 ■ visibility

Because all node and control types in JavaFX extend the Node class, all possible controls will
support the shown CSS properties by default. As you can see, the Node class defines a lot of CSS
properties. These properties can be used in all nodes in JavaFX, and the CSS properties will be
inherited. All the properties can hold a value of a given type, and each has a default value.
Sometimes, an enumeration is defined for a CSS property, and its value must be a value of the
enumeration. An example of this property type is the -fx-alignment property, which is defined
by the TextField class. This property can hold one of the following values:

 ■ top-left

 ■ top-center

 ■ top-right

 ■ center-left

 ■ center

 ■ center-right

 ■ bottom-left

 ■ bottom-center

 ■ bottom-right

 ■ baseline-left

 ■ baseline-center

 ■ baseline-right

Other property types that can be used are boolean or number, for example. In addition to the
raw values, CSS supports units. Some value types, such as length, define a set of units that can be
used as additional information. To define a unit, you must add the keyword of the unit to the
value of a property; in these cases, no whitespace is allowed between the number and its unit.
The following example defines the font size of a control by using the points unit:

#my-action-button {
 -fx-font-size: 16pt;
}

09-ch09.indd 234 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 235

Table 9-1 defines the units that can be used by the length type. Other value types define units
too. You can find all the allowed units in the CSS documentation of JavaFX.

Let’s also look at the paint type, which will mostly be used when defining the fill or the border
color of a control. This type can define a color, a linear gradient, or a radial gradient. You can find
an example for a linear gradient in the following rule:

#my-control {
 -fx-fill: linear-gradient(from 0% 0% to 100% 100%, red 0%, black 100%);
}

The value for the -fx-fill property defines a linear gradient that goes from red to black. The
colors of the gradient are specified by red and black values, and CSS contains a huge set of
predefined colors that can be used directly in the CSS rules. Figure 9-4 contains an abstract of the
list. You can find the complete list in the JavaFX documentation.

Unit Description

px Pixels; relative to the viewing device

em The font size of the relevant font

ex The x-height of the relevant font

in Inches; 1 inch is equal to 2.54 centimeters

cm Centimeters

mm Millimeters

pt Points; the points used by CSS 2.1 are equal to 1/72 of an inch

pc Picas; 1 pica is equal to 12 points

TABLE 9-1. Units of the Length Type

FIGURE 9-4. Abstract of CSS colors

09-ch09.indd 235 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

236 Mastering JavaFX 8 Controls

NOTE
You can also define color information by its RGB values. In this case,
the alpha of the color can be specified too. An example for this case is
rgba(255,0,0,1).

As mentioned, a property of the paint type can hold a color. Therefore, the following rules
would also be correct:

#my-control {
 -fx-fill: linear-gradient(from 0% 0% to 100% 100%, #ff0000 0%, #000000
100%);
}

#my-control2 {
 -fx-fill: cyan;
}

#my-control3 {
 -fx-fill: #56c8f2;
}

After looking at the basics of styling with CSS in JavaFX, let’s refactor the CSS style sheet of the
first example in this chapter. Here, only ID-based selectors were used, and all colors were
specified by hex values. You can refactor the CSS by using class-based selectors and more
readable color information, as shown here:

#login-button {
 -fx-background-color: green;
 -fx-text-fill: whitesmoke;
}
.label {
 -fx-text-fill: whitesmoke;
}
.text-field {
 -fx-background-color: rgb(25.0, 25.0, 112.0);
 -fx-background-radius: 10.0;
 -fx-text-fill: whitesmoke;
 -fx-prompt-text-fill: rgb(94.0, 203.0, 234.0);
}

As you can see in the example, the selector that is defined to style the button is referenced
using the ID of the button. Because this rule is needed for only one specific button in this example,
it is a best practice to use this kind of selector. Because the sample has more than one Label and
TextField that needs styling, you use the class-based selector to define a rule. By doing this, only
one rule is needed to style all Label instances instead of one rule for each Label. In addition,
keywords are used for most color information. If no keyword is needed, I change the color
definition to an RGB value because this format is normally more readable than a hex value.

Another feature of JavaFX is that you can define CSS properties directly in Java code. Because
this feature isn’t a best practice, though, developers should usually not use it; I’m only showing it

09-ch09.indd 236 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 237

as a reference. You can use the following code snippet in the demo instead of a CSS file. In this
case, no CSS file is needed, and the complete styling is done in the Java class.

gridPane.setStyle("-fx-background-color: black");
userLabel.setStyle("-fx-text-fill: whitesmoke");
passwordLabel.setStyle("-fx-text-fill: whitesmoke");
button.setStyle("-fx-background-color: green;" +
 " -fx-text-fill: whitesmoke;");
userNameField.setStyle("-fx-background-color: #191970;" +
 " -fx-background-radius: 10.0;" +
 " -fx-text-fill: whitesmoke;" +
 "-fx-prompt-text-fill: rgb(94.0, 203.0, 234.0);");
passwordField.setStyle("-fx-background-color: #191970;" +
 " -fx-background-radius: 10.0;" +
 " -fx-text-fill: whitesmoke;" +
 "-fx-prompt-text-fill: rgb(94.0, 203.0, 234.0);");

Note that because of the cascading functionality of CSS, you can mix all of the approaches
shown so far. If you do that, though, you should know the different priorities in the cascade and
what rules will overwrite other ones. If you need a lot of custom CSS styling in an application,
make sure to plan the CSS structure accurately. If you mix CSS styling in Java code and in CSS
files, it can be hard to change a special property later.

NOTE
All Node classes in JavaFX can be styled by CSS. The CSS styling
functionality is defined in the Styleable interface that is
implemented by the Node class.

Using Selectors
In the previous examples, you saw two different CSS selector types. CSS provides a complex
syntax to create complex selectors that can be used to define style rules for sets of controls in a
JavaFX application. The following examples define different selectors that can be used in JavaFX:

#id {
 ...
}

This defines a rule for a node with the given ID. The Node class provides the id property that must
be defined to use the ID-based selector.

The next selector type is the class selector. Here, the dot prefix will be used:

.label {
 ...
}

Most node types in JavaFX already have one defined class. You can find the style classes that
are defined by default for different Node classes in the JavaDoc. In addition, you can add a style

09-ch09.indd 237 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

238 Mastering JavaFX 8 Controls

class to each control. A style class is defined by its name and can be accessed in CSS like the
default style classes, as shown here:

.my-class {
 ...
}

To use the given CSS rule for a node, you must set the style class to the Node instance. Therefore,
the Node class contains the getStyleClass() method that returns an ObservableList<String>
of all style classes that are defined for the node. An additional style class can be easily added to
the list:

myButton.getStyleClass().add("my-class");

By using style classes, different controls can share a rule. In the following snippet, a CSS rule
is defined for a custom class:

.orange-bordered {
 -fx-stroke: orange;
 -fx-stroke-width: 8;
}

.blue-filled {
 -fx-fill: blue;
}

.green-filled {
 -fx-fill: blue;
}

The first rule says that all nodes that have defined the orange-bordered style class and support
the -fx-stroke and -fx-stroke-width properties will have an orange border with a line
width of 8. The other rule defines a fill color. In Java, you can create some Shape instances that
will get styled by the CSS, as shown here:

Rectangle r = new Rectangle(100, 100);
r.getStyleClass().add("orange-bordered");
r.getStyleClass().add("blue-filled");

Circle c = Circle(50);
c.getStyleClass().add("orange-bordered");
c.getStyleClass().add("green-filled");

Rendering these shapes will result in a blue circle with an orange border and a green circle
with an orange border. In this sample, the style classes of both Node instances contain the
orange-bordered style class. Therefore, both of them will be rendered with an orange border.

NOTE
By convention, style class names that consist of more than one word
use a hyphen (-) between words. If a developer creates new style
classes for a custom control, the style classes should correspond to
class names. For example, the default style class for the ToolBar
control is named tool-bar.

09-ch09.indd 238 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 239

If you use a lot of style classes, it is useful to define some rules for a set of style classes. This
can be done using the CSS selector syntax too. The following example defines a rule for all nodes
that have the dark-control and the big-button class defined:

.dark-control.big-button {
 -fx-font-size: 24;
 -fx-background-color: black;
 -fx-text-fill: gray;
}

NOTE
As you will see, it is important not to add a space between the two
pseudoclass names in the selector.

In addition to style classes, CSS supports pseudoclasses, which can be used to define a special
state of a component. A pseudoclass selector is defined by a colon prefix, as shown in the
following sample:

.button :hover {
 -fx-scale-x: 2;
 -fx-scale-y: 2;
 -fx-scale-z: 2;
}

The defined rule will be used for all Button instances once the hover variable is true. This
will happen whenever the mouse cursor enters the node. The node types that are part of JavaFX
define a huge set of pseudoclasses. Table 9-2 gives an overview of all pseudoclasses that are
defined for the Node class. These pseudoclasses can be used for each node.

In addition to these pseudoclasses, each control type defines its specific ones. Table 9-3
describes the pseudoclasses of the IndexedCell class. All cells that are part of a TableView or
ListView can be styled by using these pseudoclasses.

CSS Pseudoclass Comments
disabled Applies when the disabled variable is true
focused Applies when the focused variable is true
hover Applies when the hover variable is true
pressed Applies when the pressed variable is true
show-mnemonic Applies when the mnemonic affordance should be shown

TABLE 9-2. Pseudoclasses for the Node Class

09-ch09.indd 239 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

240 Mastering JavaFX 8 Controls

By using the shown pseudoclasses, it is simple to define a striped “zebra” effect for all rows of
a ListView:

.list-cell:even {
 -fx-background-color: yellow;
}
.list-cell:odd {
 -fx-background-color: lightyellow;
}

Once the style sheet that contains the given rules is applied to a JavaFX application that
contains TreeView or TableView instances, the rows of these controls will be styled. Figure 9-5
shows an example at run time.

In addition to the shown selector definitions, you can use the CSS selector syntax to define
more complex selectors. For example, maybe you want to change the border of all buttons that
are on a toolbar. By using the previously described selectors, you can add a style class to all the
Button instances inside the Toolbar instance. With CSS, you can define selectors that look up

CSS Pseudoclass Comments
even Applies if this cell’s index is even
odd Applies if this cell’s index is odd

TABLE 9-3. Pseudoclasses for the IndexedCell Class

FIGURE 9-5. Styled cells

09-ch09.indd 240 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 241

all Button instances in a Toolbar instance. Here is an example of a CSS rule with the described
selector:

#my-toolbar .button {
 ...
}

By using the selector, all Node instances that contain the button style class and that are part
of the Node hierarchy in the Toolbar with the given ID of my-toolbar will be styled by the rule.
Here, a Button instance doesn’t have to be a direct child node of the Toolbar instance. If you
want to look up only direct children of the Toolbar, you can use the > sign. By adding this
between the two parts of the selector, only direct children will be affected:

#my-toolbar > .button {
 ...
}

NOTE
Using the > sign in a CSS selector will improve performance somewhat.
By using it, the complete child hierarchy under the Toolbar control
will not need to be scanned. Matching nodes will be searched only in
the first hierarchy of children.

You can mix all the shown selector types. Here’s an example:

.list-view .text:disabled {
 -fx-fill: yellow;
}

By using this rule, all Text nodes that are children of all ListView instances of the application
will be rendered with yellow text.

NOTE
Most control types in JavaFX include Node instances that can have their
own style definition. An example of this is the text of a Button control.
The text is internally defined as a Text shape. These inner nodes can
be styled by using descendant classes too, as shown in the previous
examples. Some examples of these descendant classes are .check-
box .label, .check-box .box, or .radio-button .dot.

If you have a basic CSS rule that defines some general styling, you can combine several of
the selector types by using a comma. Here is an example that defines the color for the top and
bottom arrows in a scroll bar:

.scroll-bar > .increment-button > .increment-arrow,

.scroll-bar > .decrement-button > .decrement-arrow {
 -fx-background-color: white;
}

09-ch09.indd 241 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

242 Mastering JavaFX 8 Controls

As you can see, the selector of the rule is more complex than the selectors that were shown
here. The first line defines all nodes that have defined the increment-arrow class and are direct
children of a node that has defined the increment-button CSS class. This node must be a direct
child of a node that has defined the scroll-bar CSS class. The second line is similar to the first
one and defines the selector for nodes that have defined the decrement-arrow class. The shown
CSS classes in this example are defined by JavaFX. The up and down icons of a default JavaFX
ScrollBar can be styled like the shown selectors of the code snippet. As stated earlier, a control
in JavaFX contains several subnodes that can be styled too. In this example, the ScrollBar of
JavaFX contains a node that has the defined CSS class increment-button. When getting started
with CSS styling in JavaFX, it’s not easy to find all these internal CSS classes and inner nodes of
controls. A good tool to analyze the controls and its inner nodes is the CSS Analyzer, shown in
Figure 9-6, that is part of Scene Builder. You can select parts of JavaFX controls with the mouse,
and the tool will analyze each one’s pseudoclasses and CSS values.

To see how all these different selector types can be used and how the cascading feature of
CSS is working, let’s look at an example application. This application contains several buttons that
will be styled by CSS. Here is the Java source code of the application:

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Insets;

FIGURE 9-6. CSS Analyzer of Scene Builder

09-ch09.indd 242 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 243

import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.ToolBar;
import javafx.scene.layout.Priority;
import javafx.scene.layout.StackPane;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
public class CssStylingDemo extends Application {
 public static void main(String[] args) {
 launch(args);
 }
 @Override
 public void start(Stage primaryStage) throws Exception {
 Button bottomButton = new Button("Click");
 bottomButton.setId("bottomButton");

 Button toolbarButton1 = new Button("Click");
 toolbarButton1.setId("button-custom");

 Button toolbarButton2 = new Button("Click");
 toolbarButton2.setId("my-action-button");

 Button centerButton = new Button("Click");
 centerButton.setId("centerButton");

 ToolBar toolbar = new ToolBar(toolbarButton1, toolbarButton2);
 StackPane centerPane = new StackPane(centerButton);
 VBox myPane = new VBox(toolbar, centerPane, bottomButton);
 VBox.setVgrow(centerPane, Priority.ALWAYS);
 myPane.setAlignment(Pos.CENTER);
 myPane.setSpacing(12);
 myPane.setPadding(new Insets(0, 0, 6, 0));

 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("App");
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
}

The example contains four Button instances that are placed in different parts of the scene
graph hierarchy. In addition, all instances have custom IDs defined. In this first step, no CSS and
styling are defined. Therefore, the application will be rendered by using the default styling defined
by Modena. Figure 9-7 contains all the steps of styling this application that will be discussed in
the following text. Without any additional CSS information, the application will appear as in the
first dialog of Figure 9-7.

09-ch09.indd 243 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

244 Mastering JavaFX 8 Controls

As a first step, you need a CSS file. Name it customstyle.css and place it in the same
package as the application. You can then apply the CSS file as the style sheet for the application
using the following code:

String stylesheet = getClass().getResource("customstyle.css").toExternalForm();
myScene.getStylesheets().addAll(stylesheet);

Let’s define the first rule in the CSS file. This rule should affect all buttons that are part of the
application, so you can use a class selector, as mentioned earlier. The following code snippet
defines the rule:

.button {
 -fx-border-width: 4;
 -fx-border-color: blue;
 -fx-background-color: yellow;
}

When running the application, all buttons will look the same. As defined in the CSS rule, they
have a yellow background and a thick blue border. You can see the result in the second dialog of
Figure 9-7.

FIGURE 9-7. Styling a JavaFX application, step by step

09-ch09.indd 244 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 245

As a next step, all Button instances that are part of the VBox should be in a different style.
Therefore, you need to define an additional rule:

.vbox .button {
 -fx-border-width: 8;
}

Because the VBox class in JavaFX doesn’t define a default style class, you need to add a class
in JavaFX, as shown by the following code snippet:

myPane.getStyleClass().add("vbox");

You can see the result in the third dialog of Figure 9-7. As shown, all Button instances in the
application are part of the children of the VBox, so they have changed slightly. The defined
rule doesn’t handle buttons that are direct children of the VBox only; recursively, all children will
be found. The defined rule has a higher priority than the first one, and therefore the defined -fx-
border-width of the last rule will be used when styling is applied to the control instances.

With the next rule, you want to change only the Button instances that are direct children of
the VBox. As shown earlier, you can do this by defining a rule with the > sign:

.vbox > .button {
 -fx-border-width: 1;
}

By using this rule, you create the first difference in the style of the buttons. Because only the
bottomButton is a direct child of the VBox, its border width will be changed. As you can see,
this rule has again a higher priority than all the other ones. You can see the result in the fourth
dialog in Figure 9-7.

As a next step, you want to change the style of all the Button instances in the toolbar. The
ToolBar class in JavaFX already defines a CSS class called tool-bar. You can use this class for
the next rule:

.tool-bar .button {
 -fx-background-color: lightskyblue;
 -fx-border-width: 1;
 -fx-border-color: darkgrey;
 -fx-font-size: 6pt;
}

As expected, the style of all buttons in the toolbar has changed after the rule is added.
Dialog 5 in Figure 9-7 represents the current state.

Next, all Button instances that are not part of the toolbar should be changed. Therefore, create a
new style class called dialog-button. By using this class, you can define a CSS selector. Because
you want to change the style of all buttons that are not part of the toolbar, the centerButton and
bottomButton instances need this new CSS class. You can apply the class in Java as shown:

centerButton.getStyleClass().add("dialog-button");
bottomButton.getStyleClass().add("dialog-button");

09-ch09.indd 245 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

246 Mastering JavaFX 8 Controls

Here is the additional CSS rule:

.dialog-button {
 -fx-background-color: khaki;
 -fx-border-width: 20;
 -fx-border-color: red;
}

You can see the result in the sixth dialog of Figure 9-7. At first, you might think an error has
occurred. In the new rule, the -fx-border-width property is defined with a value of 20 that
defines very thick borders, but when looking at Figure 9-7, you will notice that the border width
hasn’t changed. This isn’t an error. As already mentioned, the cascading feature of CSS is
defined by priorities of the CSS rules. The new rule has a lower priority than the two with the
.tool-bar.button and .vbox > .button selectors. Because of that, the values of the -fx-
border-width property that are defined by these two rules will be used when styling the
buttons. These rules don’t define an additional background color or border color, so these values
will be extracted from the last rule that is defined by the .dialog-button selector.

NOTE
The priority level of CSS rules is defined by the weight of the selector.
The weight defines how specific a style is. The more specific style will
be used over the less specific one, meaning it has a higher priority. To
calculate the weight of a selector, you can use the following formula:

(number of IDs in the selector) × 100 + (number of classes in the
selector) × 10 + (pseudoclasses in the selector)

When comparing two rules, the one with the bigger weight of its
selector has the higher priority.

As a next step, you want to define a rule that affects only one button. So, you need a selector
that defines the Button instance by its ID:

#my-action-button {
 -fx-background-color: darkorange;
 -fx-font-size: 16pt;
 -fx-font-family: "Courier New";
}

Because an ID is used in the selector, this CSS rule will have a higher priority than all the other
ones, and all properties of the rule will be used for styling. Dialog 7 in Figure 9-7 shows the current
state of the dialog.

As a last step, you want to add a CSS property inline in Java code. As already mentioned, this
is bad practice, and it is done here only to show how the cascade feature is working and how
the priority of inline styling is defined. Therefore, you add the following code snippet to the
application:

toolbarButton2.setStyle("-fx-background-color: green;");

09-ch09.indd 246 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 247

As you can see in dialog 8 of Figure 9-7, the button has changed its color. So, this rule that is
defined directly in Java has a higher priority than the rules that are defined by CSS. A CSS rule that
is defined in Java code always has a higher priority than a rule that is part of a CSS style sheet file.
In addition, CSS supports two types of style sheets. The user agent style sheet is the global basic
style sheet. In JavaFX, Modena is defined as the default user agent style sheet. All other style
sheets, like the one being used in this application, are normal style sheets. These have a higher
priority than the user agent style sheet, so the rules in the custom CSS file can override the
definitions that are part of Modena. The inline CSS that is part of the Java code always has the
highest priority.

NOTE
The example shown here was created solely to show the different
selector possibilities and priority of rules. This code should not be used
for a real application. The cascade of the CSS rules is complex, and
many properties are defined several times.

Summary of the Cascading Feature
In the previous section, I discussed a lot of information about the priority of styles and the
cascading functionality of CSS. Now, let’s turn to a complete overview.

As you saw in this chapter, you can define styles in style sheets or as inline styles in the Java
class. With style sheets, you can set one user agent style sheet for the application by using the
setUserAgentStylesheet(…) method of the Application class and add several style sheets
to the scene graph by using the getStylesheets() method of the Scene class. In addition, the
Parent class provides the getStylesheets() method, so a style sheet can be defined for a
subtree of nodes in a scene graph. In addition to the style defined in CSS, you can set a JavaFX
property for a node, for instance, setting the text color by using the textFill property of a
Button instance. For these types of style definitions, the following rules are valid:

 ■ A style from a user agent style sheet has a lower priority than setting a JavaFX property.

 ■ The value of a JavaFX property has a lower priority than a style sheet that is defined for
the scene graph.

 ■ A scene graph style sheet has a lower priority than a style sheet of a parent node.

 ■ An inline style sheet has the highest priority.

Additionally, several CSS rules defined in one style sheet can affect the same JavaFX node.
Here, the following rules are valid:

 ■ The priority of a rule can be calculated by its selector’s weight.

 ■ The following formula should be used: (number of IDs in the selector) × 100 + (number
of classes in the selector) × 10 + (pseudoclasses in the selector).

 ■ The rule with the bigger weight has the higher priority.

09-ch09.indd 247 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

248 Mastering JavaFX 8 Controls

There is one additional flag that can be used to modify the priority of a CSS property. By
adding the !important flag to a value of a CSS property, this value will get the highest priority, as
shown here:

.my-button-class {
 -fx-background-color: blue !important;
}

Styling a Chart
In the previous sample, mostly JavaFX control types were styled by CSS. But as mentioned, each
node type could be styled with CSS. Therefore, the following example will show how a chart can
be styled with CSS. In the demo application, a pie chart is created and shown onscreen.

package com.guigarage.masteringcontrols;

import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.chart.PieChart;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class PieChartExample extends Application {

 @Override
 public void start(Stage primaryStage) throws Exception {
 ObservableList<PieChart.Data> pieChartData =
 FXCollections.observableArrayList();
 pieChartData.addAll(
 new PieChart.Data("Christopher Eccleston", 1),
 new PieChart.Data("David Tennant", 5),
 new PieChart.Data("Matt Smith", 3));
 PieChart chart = new PieChart(pieChartData);
 chart.setTitle("Tenure of Doctor Who");

 StackPane myPane = new StackPane();
 myPane.getChildren().add(chart);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setTitle("Pie Chart");
 primaryStage.setWidth(800);
 primaryStage.setHeight(600);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

Figure 9-8 shows this chart on the top.

09-ch09.indd 248 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 249

FIGURE 9-8. A styled PieChart

09-ch09.indd 249 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

250 Mastering JavaFX 8 Controls

As a next step, say you want to style the PieChart with CSS. You create a new style sheet
and apply it to the scene graph, as shown here:

.default-color0.chart-pie { -fx-pie-color: blue; }

.default-color1.chart-pie { -fx-pie-color: lightblue; }

.default-color2.chart-pie { -fx-pie-color: darkblue; }

.chart-pie-label-line {
 -fx-stroke: black;
}
.chart-pie-label {
 -fx-fill: black;
 -fx-font-size: 0.7em;
}
.chart-legend {
 -fx-background-color: lightyellow;
}

Figure 9-8 shows the result on the bottom. In the style sheet, you will find an additional feature
of the CSS support in JavaFX. When styling charts, JavaFX will automatically create CSS classes for
all the data parts of the chart. In the example, the classes default-color0, default-color1,
and default-color3 can be used to style each of the data sections of the pie chart.

Best Practices for Styling Applications and Controls
When styling an application, it is important not to mix too many CSS style sheets. In most cases, a
single CSS file will fit all the needs of an application. Because Modena is defined as the default user
agent style sheet in JavaFX, a style sheet for an application must contain only the changes to Modena.

First, apply all global rules. Let’s assume the application must use a special skin for buttons.
In this case, a rule that uses the .button pseudoclass should be defined. Here, it is important that
all the different states of the control will be tested. For the button type, for example, developers
will often need to change the style for states, such as hover, pressed, and focused, so CSS
pseudoclasses should be used. If this isn’t done, a user gets no visual feedback when clicking a
button. The following example defines how the needed rules for a new button style may look:

.toggle-button, .button{
 -fx-background-color: red;
 -fx-background-insets: 0.0;
 -fx-background-radius: 2.0;
 -fx-border-width: 0.0;
 -fx-padding: 6;
 -fx-text-fill: black;
 -fx-alignment: CENTER;
 -fx-content-display: LEFT;
}

.toggle-button:focused,
.button:focused,
.button:default:focused {
 -fx-background-color: lightcoral;
}

09-ch09.indd 250 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 251

.toggle-button:focused:selected {
 -fx-background-color: lightcoral, lightcyan;
 -fx-background-insets: 0.0, 0.2em;
}

.toggle-button:armed,
.toggle-button:selected,
.button:armed,
.button:default:armed {
 -fx-background-color: darkred;
}

As you can see, the selectors of the rules contain comma-separated lists. By doing this, only
a few rules are needed to specify all the needed styling information for a Button and a
ToggleButton in the different states.

As a next step, define special types of the controls. In this case, it is best to define custom CSS
classes. Let’s say all buttons in menus should have a smaller font. Here, an app-menu-button
CSS class is defined that contains a value for the -fx-font-size property:

.app-menu-button {
 -fx-font-size: 8pt;
}

If the application contains some special buttons that are used in only one view, you can
define these controls with a unique ID. In this case, the ID selector of CSS should be used:

#shut-down-button {
 -fx-font-size: 16pt;
}

Doing this for all the needed control types defines a clear hierarchy of styling.
To create an even better overview of the CSS styling and create a more refactorable style

sheet, you should use the root style class. The root class is applied to the root node of the
scene graph, and properties that are defined in the root style can be used in any other CSS rule.
If, for example, you define a style for an application that has blue as its main color, you can
define the root style class as shown in the following snippet:

.root {
 -fx-color-base: blue;
}

Here, the property -fx-color-base is defined in the root. The big benefit of this is that the
property can be reused in each CSS rule of the style sheet. The following code shows another
abstract of the application CSS:

.button{
 -fx-background-color: -fx-color-base;
}

.context-menu .label {
 -fx-text-fill: -fx-color-base;
}

09-ch09.indd 251 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

252 Mastering JavaFX 8 Controls

The -fx-color-base property is reused in two rules here. Once you have extracted all the basic
values as global properties to the root rule of a style sheet, it is easy to refactor the styling by
changing only one value. Another benefit is that you automatically provide more consistency in
the UI because the same values will be used in a lot of control types.

When looking at the Modena CSS file, you will see that a lot of properties are defined in the
root section of the style sheet. You can reuse these properties in custom application style sheets
or define new values for them. By doing this, you can change the complete style of an application
with only a few lines of CSS, as shown here:

.root{
 -fx-font-size: 14pt;
 -fx-font-family: "Verdana";
 -fx-base: orange;
 -fx-background: yellow;
}

A custom style sheet that contains only these lines will change the complete look of an
application. Figure 9-9 shows the sample application that is styled by this style sheet.

NOTE
In theory, an application can be styled by multiple style sheets.
A style sheet will be added to a scene graph by calling myScene
.getStylesheets().add(…). The getStylesheets() method
returns a List, and therefore it can hold and manage several style
sheets. Suppose you have a default style for all your applications that
is wrapped in one default style sheet. If one application needs some
additional styles for specific components or the customer needs a
special color for all button backgrounds, these features could be
implemented in a separate style sheet. In this case, the order of the
CSS style sheets in the list defines its priority. When possible, though, it
is a best practice to define the styling of an application in a single style
sheet.

FIGURE 9-9. A styled application

09-ch09.indd 252 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 253

A final best practice for developers creating huge CSS style sheets is the proper use of the
derive(…) and ladder(…) functions. These two functions can be used to define color values in
CSS. When thinking about a style for a complete application, you will mostly use some basic colors
that specify the color theme of the application. In general, these colors will be used in several
modifications in the UI of the application. For instance, maybe the basic color for an application is a
light blue. In this case, the background of all buttons will be defined as lightblue, and the border
of all buttons should appear in a darker blue. In this case, the derive(…) function can be used to
derive the border color from the base color. To do this, the derive(…) function takes a color and
computes a brighter or darker version of that color. The second parameter of the derive(…)
function is the brightness offset that can be defined in a range from –100% to 100%. You can use
the derive(…) function as a value for a CSS property, as shown in the following snippet:

.root{
 -fx-base: lightblue;
 -fx-border-base: derive(-fx-base, -50%);
 -fx-focus-base: derive(-fx-base, 50%);
}

In this case, only the value of the -fx-base property needs to be changed to affect all
defined colors. In addition to the derive(…) function, the ladder(…) function can be used to
interpolate between colors. Here, a gradient must be specified, and the brightness of the provided
color parameter is used to look up a color value within that gradient. The calculated color
depends on the brightness of the passed color. At 0 percent brightness, the returned color will be
the start color of the gradient. At 100 percent brightness, the color at the 1.0 end of the gradient is
used. Here’s an example:

 #dark-button{
 -fx-background-color: darkred;
 -fx-text-fill: ladder(darkred, white 0%, black 100%);
}
#light-button{
 -fx-background-color: lightyellow;
 -fx-text-fill: ladder(lightyellow, white 0%, black 100%);
}

In the CSS style sheet, the ladder(…) function is used to define the text color for two
buttons. You create these buttons in a JavaFX application without defining any additional
parameters next to their IDs:

..
Button darkButton = new Button("Dark");
darkButton.textFId("dark-button");
Button lightButton = new Button("Light");
lightButton.setId("light-button");
...

When running the application, the two buttons will have different text colors. The color of the
text fits perfectly to the light and dark backgrounds of the buttons, as shown in Figure 9-10.

09-ch09.indd 253 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

254 Mastering JavaFX 8 Controls

By using the brightness of the background color, the ladder(…) function calculates the
perfect color for the text.

With the two methods shown here, it is easy to define global base colors in CSS and use
derived colors in specific rules.

FIGURE 9-10. Result of the ladder() function

An Interview with Claudine Zillmann, software developer at maredit GmbH

Hi, Claudine. Many JavaFX developers know you as a CSS expert for JavaFX styling and the
maintainer of AquaFX. Therefore, I think you can add some useful information and tips
about styling to the more general information about CSS mentioned in this book. But
before we start, can you please introduce yourself and how you came to JavaFX and CSS?

Hello, Hendrik, it’s a pleasure to contribute to your work with an interview and share
tips and knowledge on this topic.

Right now, I work at maredit GmbH as one of three lead developers for e-commerce
projects and specialize in developing controls with our recently created web framework.

But to introduce myself, I take a step further back in time.
I will start with my first steps in styling and HTML. At the beginning, I tried some things

just for fun, using 1x1-pixel images or marquee tags. Soon, school projects made me
concentrate on using CSS and what it stands for. You find out a lot of benefits and concepts,
such as the box model and separation of markup and styling in general. But I realized that
those components were not comfortable. Especially proper usage of positioning made me
mad at times.

During my studies at university, I concentrated on Java development and started to work
in a company with a client-server application, specializing on development of the Swing
client for seven years. In that time, JavaFX came up and became a successor of Swing.
Soon, the idea of AquaFX was born at the completion of my degree. It was like, “Hey, I
think JavaFX really rocks, and I want a deep dive in that technology. JavaFX is young and
could need contributions. Let’s create a skin!” Since that time, JavaFX has been my hobby
and my favorite UI framework.

It sounds to me as you played with most of the different layout solutions that appeared
over the last few years, beginning with a 1-pixel blank.gif to the CSS styling that we have
today with Bootstrap and JavaFX CSS styling. Can you tell me what are the biggest
differences between CSS styling for web content and JavaFX content?

09-ch09.indd 254 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 255

The differences are not really that big, on the one hand. On the other hand, they are
immense (but control-based web design comes up more and more). In an exaggerated way,
I think I was lucky by not getting too serious in web design, so I do not miss a lot of stuff
that might be possible with web CSS. JavaFX adapted the CSS standard and adjusted it for
its UI controls. So, you have nodes (a box model), which can be styled with colors,
borders, padding, effects, and so on, and which also can inherit styles by parent nodes, as
known from conventional web design. If you know those concepts and the possibilities
that CSS offers, it is not hard to style JavaFX applications. You just have to be aware of
some tiny things:

 ■ The naming is different: not background-color but -fx-background-color.

 ■ You are within a control, especially when it’s about positioning. This is the
part where you should not forget about the concept of layout managers in UI
frameworks.

 ■ Not everything is possible with JavaFX CSS, but almost. Just stick to the reference
guide before you start. That will help.

 ■ Things that might seem impossible are not really impossible because you also
might realize them in a programmatic way.

All in all, it is pretty similar. Like in web-based design, all those possibilities can be used in
a good and a “less good” way. This could cause ugly code, unwanted visual results, or
performance issues.

In conclusion, JavaFX combines the strength of UI frameworks with web design, so cool
results can be achieved straightforwardly, even if you do not know CSS very well or at all.

Let me ask a last general CSS question before we talk about CSS for JavaFX and your AquaFX
project. There are different ways you can apply CSS: by using several style sheets, defining all
CSS rules in one big style sheet, or adding all styles inline, for example. Do you have any tips
or a best-practice workflow for how developers should organize their CSS styles?

There is no general best-practice workflow that fits every need. I think the answer is, “It
depends.” You have to ask yourself a couple of questions to find the proper organization of
styles for your project. For example:

 ■ Do I want to reuse styles?

 ■ Can some characteristics be generalized?

 ■ Should colors/sizes vary? Or are there other variations?

So, define the individual requirements of your own project, and then you can decide how
to realize it.

Generally, if you just want to try something or modify some tiny things, inline styles
might be enough. I’m not a friend of that technique at all, though.

If you create a set of your own controls, try to put all general definitions in one style
sheet and add individual styles for each control. For a complete skin, I used one style sheet
because you touch every single control.

(Continued)

09-ch09.indd 255 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

256 Mastering JavaFX 8 Controls

Thanks for this hint. Let’s change the focus and talk about JavaFX in combination with
CSS. Why do you think each JavaFX developer should know CSS and use it when
developing JavaFX applications?

This answer is pretty simple: because it makes development so much easier. The times
of programmatic styling and drawing each component are over. Formatting, colors, and
style information shouldn’t live within your code. Why not use proven concepts of web
development and apply them? Your application gets much more flexible as well. On top of
that, CSS is no mystery and not that hard to learn. Does it need more reasons?

The CSS support in JavaFX is based on CSS 2.1 and adds some useful functions like
derive(…) and ladder(…). These functions are normally not part of CSS and help a
developer to create flexible and more readable CSS definitions. Do you have some other
hints how a developer can create readable and flexible CSS rules?

There are several hints to achieve readable and flexible CSS definitions. I think the five
most important tips are

 ■ Get to know all possibilities JavaFX already ships with by default. Take more than
one look at the JavaFX CSS Reference Guide. It tells you about all those cool
functions JavaFX offers for CSS.

 ■ The other important thing to address is the source of the Modena skin. When
you look at the CSS shipped with JavaFX, there are no more mysteries about the
usage of CSS.

 ■ Make your CSS flexible by learning how to use selectors properly. The smarter your
selection is, the more efficient the parsing of the scene graph is.

 ■ When it comes to colors, use looked-up colors. Looked-up colors enable a global
definition of colors in some sort of variable. This then can be used in the whole
CSS and, for example, altered by the functions derive(…) and ladder(…) you
mentioned. With that approach, you can use a few color definitions that are held
centrally and avoid a complete revision of all CSS definitions when changing the
whole color scheme. This concept could even be widened by implementing your
own functions. As I mentioned, almost everything is possible with JavaFX.

Many web developers started to use a dynamic style sheet language like LESS to optimize
their CSS style sheets. Do you know whether workflows like this can be used in JavaFX,
too?

Oh, well, actually Tom Schindl has already experimented with LESS and JavaFX. He
published a little blog post about his thoughts and experiments in this promising area. If you
want to know more, read it at http://tomsondev.bestsolution.at/2013/08/07/using-less-in-
javafx/. This trend is really noteworthy.

Let’s talk about AquaFX. With this project, you created a complete skin for all the basic
JavaFX controls. Can you share some of the pitfalls with that you were confronted with
and experiences that you earned while developing the theme?

Sure, I can. But where to start? I think, with the concept. One of the first questions I asked
myself was, do I base the skin on an existing JavaFX skin, or shall I create it independently?
Since AquaFX will explicitly be the look and feel of OS X for JavaFX, it couldn’t be dependent

09-ch09.indd 256 5/22/14 4:06 PM

http://tomsondev.bestsolution.at/2013/08/07/using-less-in-javafx/
http://tomsondev.bestsolution.at/2013/08/07/using-less-in-javafx/

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 9: Styling a Control 257

on future changes in the base skin. So, adjusting the base skin was no option, which means
that every control had to be styled from scratch.

When it comes to styling controls, this is pure work and good eyes. One pitfall can be
the vertical alignment of text. If you work a lot with padding, check your new controls next
to each other. Some other tips for all kinds of questions can be found on my slides, loaded
up on SlideShare: http://de.slideshare.net/ClaudineZillmann/lets-get-wetbestpracticesforskin
ningjavafxcontrols.

Thank you very much for this interview. Let me ask one last question: Are you planning to
create some other JavaFX themes in the future?

Thank you very much for conducting this interview. It is always a pleasure. To your last
question: Well, yes, the next skin, FlatterFX, is still in progress and will be published when it is
finished. I guess the next steps are maybe some experiments with LESS and some optimization
of AquaFX. After that, we will see what the community might ask for.

Summary
As you saw in this chapter, the CSS support in JavaFX is detailed and could therefore warrant a
book of its own. This chapter covered the basics, so you should be able to create style sheets
based on these practices and features. It is also important to take a deeper look at the CSS
documentation of JavaFX as you begin working with CSS; all the classes, pseudoclasses, and
properties are described in the documentation.

By using CSS to style a JavaFX application, you can create a perfect separation between the
styling and the logic of an application. By using CSS and FXML in combination, only the business
and controller logic of an application must be implemented in Java. All the layout and styling
topics can be defined in languages that fit your needs. If you’ve already used CSS for web
development, you should have no trouble becoming familiar with the functions covered in this
chapter. However, the benefits of using CSS are so important that everyone should use it. Your
application will be more structured, and changes in the style of an application can be defined
quickly if the CSS style sheet of the application is well structured.

09-ch09.indd 257 5/22/14 4:06 PM

http://de.slideshare.net/ClaudineZillmann/lets-get-wetbestpracticesforskinningjavafxcontrols
http://de.slideshare.net/ClaudineZillmann/lets-get-wetbestpracticesforskinningjavafxcontrols

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 /
Blind folio: 258

09-ch09.indd 258 5/22/14 4:06 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: 259

CHAPTER
10

Custom Controls

10-ch10.indd 259 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

260 Mastering JavaFX 8 Controls

In this chapter, I show how the internal layout and rendering mechanisms of a control work
and how you can create custom JavaFX controls or extend the basic controls with new cool
features. To do either of these things, you will need to create a skin, because in JavaFX, the

layout and behavior of a control are defined in its skin. In this chapter, you will learn how to
define the skin and how its interaction with the Control class works. In addition, you’ll create
your first custom control, which will use some exciting JavaFX features.

The Structure of a Control
It is important to know how a JavaFX control works internally. In the previous chapters, I showed
most of the internals of the Control class and classes that inherit from it, like Button and
CheckBox. All these classes define the model of a control in JavaFX, which means all properties
of a control are encapsulated in the Control class (Chapters 5 and 6 described the architecture
and properties of Control). To render a Control instance on the screen, you’re missing some
important information, though. Specifically, how are all the different components of the control
laid out in its bounds?

This functionality is one of the main features of a JavaFX skin. In JavaFX, a skin is defined for
each Control instance, and the skin defines the look and feel of the control. As mentioned
in Chapter 3 (see Figure 3-6 for an example for the CheckBox), all controls are defined as a
composition of basic JavaFX Node instances. Each basic control is created by using JavaFX Shape
objects such as Text, Rectangle, or Line. All these basic nodes are managed in the skin of a
control. This part defines the look and layout of a control. In addition, the skin manages the “feel,”
or behavior, of a control; in other words, the skin defines the events and actions that will be
called and handled when the user does some input action. If a user presses ctrl-a in a TextField
instance, the complete text in the TextField will be selected, for example. Figure 10-1 shows
the structure of a JavaFX control.

As you can see in the figure, the internal architecture of JavaFX controls is based on the Model-
View-Controller (MVC) pattern. Since the other parts of a control were already described in earlier
chapters, let’s take a look at the skin definition in JavaFX so you understand the complete architecture
of JavaFX controls.

FIGURE 10-1. Internal structure of a control

Model

View Controller

The control
holds all
properties

The skin
handles the
look and feel

Encapsulates all user
interaction

De�nes the visual nature and
the bounds of the control

Control class

Skin class

10-ch10.indd 260 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 261

The Skin
The skin of a control is defined by the Skin<C extends Skinnable> interface. The interface
defines the visual representation of user interface controls and defines three methods, as
described in Table 10-1.
As defined in the interface, a skin needs an object of type Skinnable. The Skinnable instance
will be returned by the getSkinnable() method. Skinnable is an interface that defines the
basic methods for an object that can hold a Skin instance. The Control class in JavaFX
implements the Skinnable interface, and therefore each control can hold a skin. Almost all skins
in JavaFX extend the SkinBase<C extends Control> class that implements the Skin interface.
Figure 10-2 shows the inheritance of all the named classes and interfaces in an UML diagram.

As you can see, a custom control implementation will extend the Control class, and its skin
implementation will normally extend the SkinBase class. The two classes will look like the
following code snippet:

//Control
public class CustomControl extends Control {

 @Override
 protected Skin<?> createDefaultSkin() {
 return new CustomControlSkin(this);
 }

}

//Skin
public class CustomControlSkin extends SkinBase<CustomControl> {
 public CustomControlSkin(CustomControl control) {
 super(control);
 }
}

All basic controls that are part of JavaFX and mentioned in this book are structured like this
example. The skin and control are defined as a one-to-one relationship. The skin is defined by the
skin property of the Control class, and the control can be referenced in a skin by calling the
getSkinnable() method. The skin is designed as a black box from the perspective of the control.
Normally, it will listen only to changes in the state of the control and handle them.

Method Description
C getSkinnable() Returns the Skinnable instance to which this skin is assigned. In

most cases, this will be the Control class.
Node getNode() Returns the node that represents this skin. In most cases, this will be

the Control class.
void dispose() Called by the Skinnable when the skin is replaced. The method can

be overridden to clean up the skin.

TABLE 10-1. Methods of the Skin Interface

10-ch10.indd 261 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

262 Mastering JavaFX 8 Controls

NOTE
The Skin classes of the basic JavaFX controls don’t extend SkinBase
directly. All these skins are part of the private API and extend the
com.sun.javafx.scene.control.skin.BehaviorSkinBase
class. As you can see in the package, this class is part of the private
API, too. So, you shouldn’t extend this class for custom controls.
Instead, the SkinBase class should be extended directly. The
BehaviorSkinBase class is used internally to separate the behavior
and the look of a control. If you want this architecture for custom
controls, an additional custom basic Skin class is needed. Maybe the
BehaviorSkinBase class will become part of the public API in a
future version of JavaFX. Until then, it shouldn’t be used.

As mentioned, all skins that are defined for custom controls should extend the SkinBase
class, so you will now take a deeper look at this class.

The SkinBase Class
The abstract SkinBase class defines a basic implementation of a skin for a JavaFX control. As
described earlier, the Skin interface can be used for each Skinnable instance. The SkinBase
class directly works with the Control class that implements the Skinnable interface, and
therefore SkinBase contains some useful basic implementations and methods when skinning a
Control instance. Therefore, each skin that is used to skin a control should extend this class.

The SkinBase class defines a set of methods containing some basic implementation; it can
be simply overridden in concrete implementations to define a custom look and behavior of a
control. Table 10-2 contains the methods of the SkinBase class.

To get a better understanding of these methods and how they can be used or must be
overridden when creating custom skins, let’s first create a custom control that uses a skin that
extends the SkinBase class and defines a set of special features for the control. In the following
section, you will create a custom button-like control and extend its skin with new features.

FIGURE 10-2. UML diagram of Control and Skin

Controlc

Styleablel

CustomControlc

SkinBasec

Skinl

CustomControlSkinc

10-ch10.indd 262 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 263

Method Description
public final ObservableList<Node>
 getChildren()

This returns the children of the control.

public static List<CssMetaData<? extends
 Styleable, ?>> getClassCssMetaData()

This is a static helper method that
returns the CssMetaData instances
that are associated with the skin.

public List<CssMetaData<? extends
 Styleable, ?>> getCssMetaData()

This returns the CssMetaData instances
that are associated with the skin. In most
cases, this will call the static helper class
mentioned in the previous row.

public final void
 pseudoClassStateChanged(PseudoClass
 pseudoClass, boolean active)

This is used to specify that a
pseudoclass has changed.

protected double compute...(…) The SkinBase class defines a set of
methods that compute the minimum,
maximum, and preferred sizes of the
control. Examples are protected
double computeMaxWidth(…)
and protected double
computePrefHeight(…).

protected final void
 consumeMouseEvents(boolean value)

This determines if all mouse events of
the control should be automatically
consumed.

protected void layoutChildren(final
 double contentX, final double
 contentY,final double contentWidth,
 final double contentHeight)

This method is called during the layout
process of the JavaFX scene graph and
will lay out all children of the control.

protected void layoutInArea(Node child,
 ...)

This is a utility method that lays out
the given child within an area of the
control. These methods will change the
size and position of the child.

protected positionInArea(Node child,
 )

This is a utility method that positions
the given child within an area of the
control. This method won’t change the
size of the child.

(continued)

TABLE 10-2. Methods of the SkinBase Class

10-ch10.indd 263 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

264 Mastering JavaFX 8 Controls

Method Description
protected double snapped...Inset() This is a utility method that returns

an inset that includes padding and
the border inset of the control. If
getSkinnable().isSnapToPixel()
is true, the value will be rounded up.
Here are two examples: protected
double snappedBottomInset()
and protected double
snappedRightInset().

protected double snapPosition(double
 value)

If getSkinnable()
.isSnapToPixel() is true, the utility
method will return a value rounded to
the nearest pixel.

protected double snapSize(double value) If getSkinnable()
.isSnapToPixel() is true, the utility
method will return a value rounded to
the nearest pixel.

protected double snapSpace(double value) If getSkinnable()
.isSnapToPixel() is true, the utility
method will return a value rounded to
the nearest pixel.

TABLE 10-2. Methods of the SkinBase Class (continued)

Creating a Custom Control
To create your first control in JavaFX, you need a specification of the control and its features. For
this example, you will create a button-like control that is a triangle. Figure 10-3 shows how the
control will look in its basic version.

Later you will add action handling and different visual states for when the control is clicked,
but first you will focus on the basic layout and rendering of the control. In its initial version, the
control should have a property that defines its background color, so you need the model of the
control. As mentioned, the model will be defined in the class that extends the Control class.
Here’s the source code of the class:

package com.guigarage.masteringcontrols;

import javafx.beans.property.ObjectProperty;
import javafx.beans.property.SimpleObjectProperty;
import javafx.scene.control.Control;
import javafx.scene.control.Skin;
import javafx.scene.paint.Color;

public class TriangleButton extends Control {

10-ch10.indd 264 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 265

 private ObjectProperty<Color> backgroundFill;
 public TriangleButton() {
 backgroundFill = new SimpleObjectProperty<>(Color.DARKORCHID);
 }

 public Color getBackgroundFill() {
 return backgroundFill.get();
 }

 public ObjectProperty<Color> backgroundFillProperty() {
 return backgroundFill;
 }

 public void setBackgroundFill(Color backgroundFill) {
 this.backgroundFill.set(backgroundFill);
 }
}

This class contains only a property that will be used to define the background color of the
control. As mentioned, a skin is needed for this custom control. A Control instance must hold its
skin, and to define the default skin of a Control instance, the Control class defines the Skin<?>
createDefaultSkin() method. To define a default skin for the TriangleButton control,
you override only this method, as shown here:

@Override
protected Skin<?> createDefaultSkin() {
 return new TriangleButtonSkin(this);
}

FIGURE 10-3. The TriangleButton control onscreen

10-ch10.indd 265 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

266 Mastering JavaFX 8 Controls

The method returns a new skin instance that is used as a skin for an instance of the
TriangleButton control. The method will be called whenever a new instance
of the TriangleButton is created and defines a TriangleButtonSkin instance as the
skin of the control. The TriangleButtonSkin class defines the skin of the custom control. So,
let’s take a look at this class. You create the class without defining or overriding any methods,
as shown here:

package com.guigarage.masteringcontrols;
import javafx.scene.control.SkinBase;

public class TriangleButtonSkin extends SkinBase<TriangleButton> {
 protected TriangleButtonSkin(TriangleButton control) {
 super(control);
 }
}

Once this is done, you define the look and feel of the control. In the TriangleButtonSkin
class, you can access the TriangleButton instance that is managed by the skin by calling the
getSkinnable() method. Thanks to Generics, no class cast is needed here. Let’s start with the size
of the control. The SkinBase class defines some methods that will be used to calculate the control’s
size. To define a specific size for the custom control, you override all these methods, as shown in
the following code snippet:

 @Override
 protected double computePrefHeight(double width, double topInset,
 double rightInset, double bottomInset, double leftInset) {
 return topInset + bottomInset + 200;
 }

 @Override
 protected double computePrefWidth(double height, double topInset,
 double rightInset, double bottomInset, double leftInset) {
 return rightInset + leftInset + 200;
 }

 @Override
 protected double computeMinHeight(double width, double topInset,
 double rightInset, double bottomInset, double leftInset) {
 return 20 + topInset + bottomInset;
 }

 @Override
 protected double computeMinWidth(double height, double topInset,
 double rightInset, double bottomInset, double leftInset) {
 return 20 + rightInset + leftInset;
 }

 @Override
 protected double computeMaxWidth(double height, double topInset,
 double rightInset, double bottomInset, double leftInset) {
 return computePrefWidth(height, topInset, rightInset, bottomInset, leftInset);
 }

10-ch10.indd 266 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 267

 @Override
 protected double computeMaxHeight(double width, double topInset,
 double rightInset, double bottomInset, double leftInset) {
 return computePrefHeight(width, topInset, rightInset, bottomInset, leftInset);
 }

By adding these methods, the skin defines preferred, maximum, and minimum sizes for the
TriangleButton control:

 ■ The control has a minimum size (width and height) that is equal to its insets + 20.

 ■ The control has a preferred size (width and height) that is equal to its insets + 200.

 ■ The control has a maximum size (width and height) that is equal to its preferred size.

So, if you add a TriangleButton control to a huge StackPane instance and don’t define any
insets (padding or border) for it, the control will have a size of 200 × 200 pixels.

NOTE
There are some other ways to define the size of the control.
Because the maximum width is always equal to the preferred one,
getSkinnable().setMaxWidth(Region.USE_PREF_SIZE) could
be called in the constructor of the skin. For more information about
the size calculation, refer to Chapter 4.

The shown methods are not abstract methods in the SkinBase class, and therefore they don’t
need to be overridden. Its default implementation calculates the needed sizes by using the
managed children of the control when they are positioned at their current positions at their
preferred size. You should look at the source of these methods as they are defined in the
SkinBase class to decide when they should be overridden or not.

After you define the size of the control, it needs a visualization. So, define a shape that is used
as the visual representation of the control. To create a triangle, you will use the Path class, which
extends the Shape class and defines a simple shape with its geometric path. (You can find a
complete feature overview of the Path class in the JavaDoc.) The path that is needed to visualize
the TriangleButton is defined as shown in the following code snippet:

Path triangle = new Path();
triangle.getElements().add(new MoveTo(width / 2, 0));
triangle.getElements().add(new LineTo(width, height));
triangle.getElements().add(new LineTo(0, height));
triangle.getElements().addAll(new ClosePath());

The path is created by three lines that span a triangle. In the last line of the snippet, the
path is closed. A closed path can be filled by a color, and that is exactly what you need for
the TriangleButton. The following code defines the first version of a skin that defines a triangle
as the visual representation of the TriangleButton:

package com.guigarage.masteringcontrols;
import javafx.geometry.HPos;
import javafx.geometry.VPos;
import javafx.scene.control.SkinBase;
import javafx.scene.paint.Color;

10-ch10.indd 267 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

268 Mastering JavaFX 8 Controls

import javafx.scene.shape.ClosePath;
import javafx.scene.shape.LineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;

public class TriangleButtonSkin extends SkinBase<TriangleButton> {
 private Path triangle;

 private boolean invalidTriangle = true;

 protected TriangleButtonSkin(TriangleButton control) {
 super(control);
 control.widthProperty().addListener(observable ->
 invalidTriangle = true);
 control.heightProperty().addListener(observable ->
 invalidTriangle = true);
 control.backgroundFillProperty().addListener(observable ->
 updateTriangleColor());
 }

 public void updateTriangleColor() {
 if(triangle != null) {
 triangle.setFill(getSkinnable().getBackgroundFill());
 getSkinnable().requestLayout();
 }
 }

 public void updateTriangle(double width, double height) {
 if(triangle != null) {
 getChildren().remove(triangle);
 }
 triangle = new Path();
 triangle.getElements().add(new MoveTo(width / 2, 0));
 triangle.getElements().add(new LineTo(width, height));
 triangle.getElements().add(new LineTo(0, height));
 triangle.getElements().addAll(new ClosePath());
 triangle.setStroke(Color.BLACK);
 triangle.setFill(getSkinnable().getBackgroundFill());
 getChildren().add(triangle);
 }

 @Override
 protected void layoutChildren(double contentX, double contentY,
 double contentWidth, double contentHeight) {
 if(invalidTriangle) {
 updateTriangle(contentWidth, contentHeight);
 invalidTriangle = false;
 }
 layoutInArea(triangle, contentX, contentY, contentWidth,
 contentHeight, -1, HPos.CENTER, VPos.CENTER);
 }

10-ch10.indd 268 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 269

 //ComputeSizeMethods
 //...

}

NOTE
In the code, I’ve omitted all the methods to compute the size of the
control to give you a better overview of the code. Because the demo
classes in this chapter are huge, I will do this in most of the code
snippets in this chapter.

Let’s take a look at the new methods and how they work. The updateTriangle(…)
method creates a new triangle and adds it as a child to the control. So, the triangle shape will be
rendered onscreen whenever the TriangleButton control is rendered. The method changes
the internal node hierarchy of the control, and therefore it should be called on every rendering
loop. This would result in poor performance; therefore, the invalidTriangle flag is introduced.
Whenever the size of the control changes, you set the flag to true. You do this in the constructor
of the skin by adding listeners to the width and height property of the control. Whenever the flag
is true, the control changes its size. Because the triangle is defined by a static size, it must be
re-created in this case. The re-creation is triggered in the layoutChildren(…) method of
the skin. This method is called whenever the layout of the control needs to be recalculated
by the JavaFX rendering loop. If invalidTriangle is true, the layout method will trigger the
updateTriangle(…) method to create a new version of the triangle that matches the current size
of the control. In addition to this, the updateTriangleColor() method is introduced.
This method changes the fill color of the triangle shape to the color that is defined by the
backgroundFill property of the TriangleButton class. Whenever the value of this property
changes, the method is called.

NOTE
You might wonder why the triangle isn’t created directly when the
size of the control changes. This is done because of a performance
issue. Maybe the size changes but the control isn’t visible onscreen. In
this case, the triangle mustn’t be re-created until the control appears
onscreen. As you will see later in this chapter, there are a lot of
performance tricks that can be used to create a reusable control. Most
of these tricks are reproduced by analyzing the basic Control and
Skin classes that are part of JavaFX.

Once all this is done, you can use the TriangleButton in JavaFX and add it to a scene graph.
The following code shows an example that adds an instance of the custom control to a scene. The
result was shown in Figure 10-3.

package com.guigarage.masteringcontrols;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
import java.util.Random;

10-ch10.indd 269 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

270 Mastering JavaFX 8 Controls

public class TriangleButtonDemo extends Application {
 @Override
 public void start(Stage primaryStage) throws Exception {
 TriangleButton button = new TriangleButton();
 button.setId("my_triangle_button");
 button.setPadding(new Insets(20));
 button.setOnMouseClicked((e) -> {
 Random random = new Random(System.currentTimeMillis());
 button.setBackgroundFill(Color.color(random.nextDouble(),
 random.nextDouble(),random.nextDouble()));
 });
 StackPane myPane = new StackPane();
 myPane.getChildren().add(button);
 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

Adding Event Handling
As a next step, you should add event handling to the control. Like the event handling that is
defined in the basic controls of JavaFX, the EventHandler class should be used here. The
TriangleButton should fire action events whenever the button is clicked, so you can reuse the
ActionEvent class that is a specific event implementation and used by the JavaFX Button
control. To do this, you introduce a new property in the TriangleButton class called onAction:

public class TriangleButton extends Control {

 //…

 public final ObjectProperty<EventHandler<ActionEvent>> onActionProperty() { return
 onAction; }

 public final void setOnAction(EventHandler<ActionEvent> value) {
 onActionProperty().set(value); }

 public final EventHandler<ActionEvent> getOnAction() { return onActionProperty().
 get(); }

 private ObjectProperty<EventHandler<ActionEvent>> onAction =
 new ObjectPropertyBase<EventHandler<ActionEvent>>() {
 @Override protected void invalidated() {
 setEventHandler(ActionEvent.ACTION, get());
 }
 @Override
 public Object getBean() {

10-ch10.indd 270 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 271

 return TriangleButton.this;
 }
 @Override
 public String getName() {
 return "onAction";
 }
 };
}

As you can see in the code, the onAction property is defined as ObjectProperty<Event
Handler<ActionEvent>>, and it can be used like all the other properties that are mentioned in
earlier examples in this book. In the following code snippet, a custom event handler is defined to
handle the action events of the TriangleButton instance. Once this is done, the background
color of the TriangleButton will change whenever the action event is fired:

TriangleButton button = new TriangleButton();
button.setOnAction((e) -> {
 Random random = new Random(System.currentTimeMillis());
 button.setBackgroundFill(Color.color(random.nextDouble(),
 random.nextDouble(),random.nextDouble()));
});

Once this is done, a developer can programmatically react to action events. But until now,
these events will never be fired. Because the skin of a class should handle its behavior, the event
should be fired in the TriangleButtonSkin. As mentioned, new ActionEvent instances should
be fired whenever the user clicks the triangle button. To do this, a mouse handler will be defined
for the triangle shape. Therefore, the updateTriangle(…) method in the skin will be extended:

public class TriangleButtonSkin extends SkinBase<TriangleButton> {

 //…

 public void updateTriangle(double width, double height) {
 if(triangle != null) {
 getChildren().remove(triangle);
 }
 triangle = new Path();
 …
 triangle.setOnMouseClicked((e) -> getSkinnable().fireEvent(new ActionEvent()));
 getChildren().add(triangle);
 }

 //…
}

The fireEvent(…) method that is defined in the Node class is used here. You should
always use this method instead of dealing directly with the event handlers when firing events.
Whenever this method is called, the created event will travel through the hierarchy from the stage
to the TriangleButton node. Any event filter encountered will be notified and can consume
the event. If the event is not consumed by the filters, the event handlers on the TriangleButton
are notified. This workflow can be guaranteed only when using the fireEvent(…) method.
Once this is done, an ActionEvent will be fired whenever the user clicks the triangle. In the
sample, the RectangleButton will change its background color once the user clicks it.

10-ch10.indd 271 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

272 Mastering JavaFX 8 Controls

NOTE
In the example, an ActionEvent will be fired only when the
visible triangle is clicked. As with each node, the bounds of the
TriangleButtons are defined as a rectangle. This is specified in the basic
functionality of the scene graph. But whenever a user clicks an empty
area of the control, nothing will happen. If the mouse-click event
handler were registered on the control, the events would be fired
whenever a user clicks any area inside the bounds of the control. By
using the demonstrated approach, a developer can specify the event
handling behavior in a much better way.

Styling the Control
Next, you should style the TriangleButton with CSS, so you’ll need some additional classes
and interfaces. Before the TriangleButton classes are refactored, I will introduce the needed
classes. Until now, the TriangleButton class contained an ObjectProperty that defined
the background color. To make this property stylable by CSS, you need a property of type
StyleableProperty<T>. This interface defines a JavaFX property that can be styled by CSS.
The interface defines three methods, as described in Table 10-3.

Normally, you don’t need to implement these methods and implement the
StyleableProperty<T> by yourself. JavaFX provides a set of default implementations
that can be used in almost all use cases. When refactoring the TriangleButton later, you’ll
use a default implementation. When taking a look at the methods of the interface, you’ll see two
new types are mentioned: StyleOrigin and CssMetaData. StyleOrigin is an enumeration
that defines the origin of a CSS style such as a user-agent style sheet or inline style. (You can find
more information about different CSS origins in Chapter 9.)

The abstract CssMetaData<? extends Styleable, T> class defines information about
the CSS property that can be used to style the JavaFX property. In addition, the class defines the
hooks that allow CSS to set a property value. So, for an additional CSS property definition that
should be used to style the JavaFX property of a control, you need a CssMetaData instance.

You can find examples that show how the CssMetaData class and stylable properties should
be used in the source of the default JavaFX Control classes. As a first step, you will define this
structure in the TriangleButton class. Because the CssMetaData instance and the stylable

Method Description
void applyStyle(StyleOrigin
 origin, T value)

This method is called from JavaFX’s CSS
mechanism to set the value of the property.

StyleOrigin getStyleOrigin() This defines the origin of the current value.
CssMetaData<? extends Styleable,
 T> getCssMetaData()

This returns the CssMetaData that corresponds
to the property.

TABLE 10-3. Methods of the StyleableProperty Interface

10-ch10.indd 272 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 273

property depend on each other, the code is complex at first sight. So, let’s take a deeper look at
the source code:

public class TriangleButton extends Control {

private StyleableObjectProperty<Paint> backgroundFill;

public Paint getBackgroundFill() {
 return backgroundFill == null ? Color.DARKGRAY : backgroundFill.get();
 }
 public void setBackgroundFill(Paint backgroundFill) {
 this.backgroundFill.set(backgroundFill);
 }
 public StyleableObjectProperty<Paint> backgroundFillProperty() {
 if (backgroundFill == null) {
 backgroundFill = new SimpleStyleableObjectProperty<Paint>(
 StyleableProperties.BACKGROUND_FILL, TriangleButton.this,
 "backgroundFill", Color.DARKGRAY);
 }
 return backgroundFill;
 }

 //…

 private static class StyleableProperties {
 private static final CssMetaData<TriangleButton, Paint> BACKGROUND_FILL =
 new CssMetaData<TriangleButton, Paint>("-fx-triangle-fill",
 PaintConverter.getInstance(), Color.BLACK) {
 @Override
 public boolean isSettable(TriangleButton control) {
 return control.backgroundFill == null || !control.
 backgroundFill.isBound();
 }
 @Override
 public StyleableProperty<Paint> getStyleableProperty
 (TriangleButton control) {
 return control.backgroundFillProperty();
 }
 };
 private static final List<CssMetaData<? extends Styleable, ?>> STYLEABLES;
 static {
 final List<CssMetaData<? extends Styleable, ?>> styleables =
 new ArrayList<CssMetaData<? extends Styleable, ?>>(Control.
 getClassCssMetaData());
 Collections.addAll(styleables,
 BACKGROUND_FILL
);
 STYLEABLES = Collections.unmodifiableList(styleables);
 }
 }
 @Override
 public List<CssMetaData<? extends Styleable, ?>> getControlCssMetaData() {
 return getClassCssMetaData();
 }

10-ch10.indd 273 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

274 Mastering JavaFX 8 Controls

 public static List<CssMetaData<? extends Styleable, ?>> getClassCssMetaData() {
 return StyleableProperties.STYLEABLES;
 }

}

As mentioned, there is a lot of new code in the TriangleButton class, but I’ve removed all
unchanged methods in the code example to give you a better overview. The complete source of
the class will follow after this example.

The class type of the backgroundFill property has changed. It is now defined as a Simple
StyleableObjectProperty<Paint>. This class is one of the default implementations
of the StyleableProperty interface. But the biggest change is the new internal class
StyleableProperties. This class contains all the static information needed for CSS styling. In
this class, the CssMetaData instances that define the link between the JavaFX properties and the
CSS properties are defined. This is done in a static inner class because of some performance
issues. All the information defined here is the same for all instances of the custom Skin class.
Therefore, the defined instances mustn’t be created for each new Skin instance. The private
class contains the CssMetaData instance that defines the CSS property that is linked to the
backgroundFill property of the control. The CSS property name -fx-triangle-fill and
its default value are passed to the constructor of the CssMetaData class. In addition, the two
methods isSettable(…) and getStyleableProperty(…) of the CssMetaData class are
overridden. As a result, the static CssMetaData instance can work with the backgroundFill
property of a given Control instance. This is achieved by passing the static CssMetaData
instance as a parameter to the constructor of the StyleableProperty. So, the property of a
specific Control instance will use the static CssMetaData instance that describes the link to
the CSS styling internally.

In addition to the CssMetaData instance, the static class StyleableProperties defines a
list of all CssMetaData instances that can be used to style the control. This list contains the
CssMetaData instances that are defined by the control and all instances that are added by the
skin. In addition, the method getControlCssMetaData() has been overridden. This method
returns a list of all CssMetaData instances. Because you defined this list in the inner static private
class, it can be returned here. Instead of returning the static list directly, a static utility method
called getClassCssMetaData() is defined and called. In this first example, the static method
theoretically isn’t needed, but as you will see later, this structure is useful.

NOTE
The shown structure looks complex at first, but it is a best practice
when defining custom controls. JavaFX uses the same approaches
internally, which results in great performance: All global objects are
defined in a static class and therefore need to be created only one
time. In addition, no listener instances are needed. When working with
controls, especially on mobile or embedded devices, memory usage and
performance are important topics. Therefore, custom controls should be
designed as shown here and done in the default JavaFX controls. Even
if internal classes and anonymous inner classes are not a best practice
when talking about design, they should be used in this case.

10-ch10.indd 274 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 275

After all these changes, the TriangleButton class will look like this:

package com.guigarage.masteringcontrols;
import com.sun.javafx.css.converters.PaintConverter;
import javafx.beans.property.ObjectProperty;
import javafx.beans.property.ObjectPropertyBase;
import javafx.css.*;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.control.Control;
import javafx.scene.control.Skin;
import javafx.scene.paint.Color;
import javafx.scene.paint.Paint;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class TriangleButton extends Control {

 private StyleableObjectProperty<Paint> backgroundFill;
 private ObjectProperty<EventHandler<ActionEvent>> onAction =
 new ObjectPropertyBase<EventHandler<ActionEvent>>() {
 @Override
 protected void invalidated() {
 setEventHandler(ActionEvent.ACTION, get());
 }
 @Override
 public Object getBean() {
 return TriangleButton.this;
 }
 @Override
 public String getName() {
 return "onAction";
 }
 };
 @Override
 protected Skin<?> createDefaultSkin() {
 return new TriangleButtonSkin(this);
 }
 public Paint getBackgroundFill() {
 return backgroundFill == null ? Color.DARKGRAY : backgroundFill.get();
 }

 public void setBackgroundFill(Paint backgroundFill) {
 this.backgroundFill.set(backgroundFill);
 }

 public StyleableObjectProperty<Paint> backgroundFillProperty() {
 if (backgroundFill == null) {
 backgroundFill = new SimpleStyleableObjectProperty<Paint>(
 StyleableProperties.BACKGROUND_FILL, TriangleButton.this,
 "backgroundFill", Color.DARKGRAY);
 }
 return backgroundFill;
 }

10-ch10.indd 275 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

276 Mastering JavaFX 8 Controls

 public final ObjectProperty<EventHandler<ActionEvent>> onActionProperty() {
 return onAction;
 }

 public final EventHandler<ActionEvent> getOnAction() {
 return onActionProperty().get();
 }

 public final void setOnAction(EventHandler<ActionEvent> value) {
 onActionProperty().set(value);
 }

 private static class StyleableProperties {
 private static final CssMetaData<TriangleButton, Paint> BACKGROUND_FILL =
 new CssMetaData<TriangleButton, Paint>("-fx-triangle-fill",
 PaintConverter.getInstance(), Color.BLACK) {
 @Override
 public boolean isSettable(TriangleButton control) {
 return control.backgroundFill == null || !control.
 backgroundFill.isBound();
 }
 @Override
 public StyleableProperty<Paint> getStyleableProperty(
 TriangleButton control) {
 return control.backgroundFillProperty();
 }
 };
 private static final List<CssMetaData<? extends Styleable, ?>> STYLEABLES;
 static {
 final List<CssMetaData<? extends Styleable, ?>> styleables =
 new ArrayList<CssMetaData<? extends Styleable, ?>>(
 Control.getClassCssMetaData());
 Collections.addAll(styleables,
 BACKGROUND_FILL
);
 STYLEABLES = Collections.unmodifiableList(styleables);
 }
 }

 @Override
 public List<CssMetaData<? extends Styleable, ?>> getControlCssMetaData() {
 return getClassCssMetaData();
 }

 public static List<CssMetaData<? extends Styleable, ?>> getClassCssMetaData() {
 return StyleableProperties.STYLEABLES;
 }
}

Once this is done, you can style instances of the TriangleButton with CSS. Here is an
example of a CSS rule that can be used to style a TriangleButton:

#my_triangle_button {
 -fx-triangle-fill: yellow;
}

10-ch10.indd 276 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 277

Using a CssHelper for Styling
As you saw in the previous sample, a lot of code is needed to make a JavaFX control stylable. Most
of the code must be defined again for each stylable property of a control. By doing this, you’ll create
a lot of boilerplate code. Therefore, you can use helper classes to simplify the definition of stylable
controls. One API that can be used is the CssHelper class that is provided at www.guigarage.com.
You can find a description of the API here: http://www.guigarage.com/2014/03/javafx-css-utilities/.
By using the CssHelper class, you can define the stylable properties and the needed CssMetaData
instances in only a few lines of code; the following code block is an example. Here, a second
styleable property is added to the TriangleButton.

package com.guigarage.masteringcontrols;
import com.sun.javafx.css.converters.PaintConverter;
import javafx.beans.property.ObjectProperty;
import javafx.beans.property.ObjectPropertyBase;
import javafx.css.CssMetaData;
import javafx.css.Styleable;
import javafx.css.StyleableObjectProperty;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.control.Control;
import javafx.scene.control.Skin;
import javafx.scene.paint.Color;
import javafx.scene.paint.Paint;
import java.util.List;

public class TriangleButton extends Control {
 private StyleableObjectProperty<Paint> backgroundFill;

 private StyleableObjectProperty<Paint> strokeFill;

 public Paint getBackgroundFill() {
 return backgroundFill == null ? Color.DARKGRAY : backgroundFill.get();
 }

 public void setBackgroundFill(Paint backgroundFill) {
 this.backgroundFill.set(backgroundFill);
 }

 public StyleableObjectProperty<Paint> backgroundFillProperty() {
 if (backgroundFill == null) {
 backgroundFill = CssHelper.createProperty(StyleableProperties.
 BACKGROUND_FILL, TriangleButton.this);
 }
 return backgroundFill;
 }

 public Paint getStrokeFill() {
 return strokeFill == null ? Color.DARKGRAY : strokeFill.get();
 }

 public void setStrokeFill(Paint strokeFill) {
 this.strokeFill.set(strokeFill);
 }

10-ch10.indd 277 5/22/14 4:08 PM

http://www.guigarage.com
http://www.guigarage.com/2014/03/javafx-css-utilities/

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

278 Mastering JavaFX 8 Controls

 public StyleableObjectProperty<Paint> strokeFillProperty() {
 if (strokeFill == null) {
 strokeFill = CssHelper.createProperty(StyleableProperties.STROKE_FILL,
 TriangleButton.this);
 }
 return strokeFill;
 }

 ...

 private static class StyleableProperties {
 private static final CssHelper.PropertyBasedCssMetaData<TriangleButton,
 Paint> BACKGROUND_FILL = CssHelper.createMetaData("-fx-triangle-fill",
 PaintConverter.getInstance(), "backgroundFill", Color.LIGHTGREEN);
 private static final CssHelper.PropertyBasedCssMetaData<TriangleButton,
 Paint> STROKE_FILL = CssHelper.createMetaData("-fx-triangle-stroke",
 PaintConverter.getInstance(), "strokeFill", Color.BLUE);
 private static final List<CssMetaData<? extends Styleable, ?>> STYLEABLES
 = CssHelper.createCssMetaDataList(Control.getClassCssMetaData(),
 BACKGROUND_FILL, STROKE_FILL);
 }

 @Override
 public List<CssMetaData<? extends Styleable, ?>> getControlCssMetaData() {
 return getClassCssMetaData();
 }

 public static List<CssMetaData<? extends Styleable, ?>> getClassCssMetaData() {
 return StyleableProperties.STYLEABLES;
 }
}

As you can see in the example, the CssHelper class provides static methods to generate
stylable properties and CssMetaData instances.

For the second StyleableProperty, some changes in the TriangleButtonSkin are
needed, as shown here:

public class TriangleButtonSkin extends SkinBase<TriangleButton> {

 public TriangleButtonSkin(TriangleButton control) {
 super(control);
 control.widthProperty().addListener(observable ->
 invalidTriangle = true);
 control.heightProperty().addListener(observable ->
 invalidTriangle = true);
 control.backgroundFillProperty().addListener(observable ->
 updateTriangleColor());
 control.strokeFillProperty().addListener(observable ->
 updateTriangleColor());
 }

 public void updateTriangleColor() {
 if(triangle != null) {

10-ch10.indd 278 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 279

 triangle.setFill(getSkinnable().getBackgroundFill());
 triangle.setStroke(getSkinnable().getStrokeFill());
 getSkinnable().requestLayout();
 }
 }

 public void updateTriangle(double width, double height) {
 if(triangle != null) {
 getChildren().remove(triangle);
 }
 triangle = new Path();
 triangle.getElements().add(new MoveTo(width / 2, 0));
 triangle.getElements().add(new LineTo(width, height));
 triangle.getElements().add(new LineTo(0, height));
 triangle.getElements().addAll(new ClosePath());
 triangle.setStroke(getSkinnable().getStrokeFill());
 triangle.setStrokeWidth(4);
 triangle.setFill(getSkinnable().getBackgroundFill());
 triangle.setOnMouseClicked((e) -> getSkinnable().fireEvent(
 new ActionEvent()));
 getChildren().add(triangle);
 }

 //…
}

The TriangleButton control can now be styled in CSS by using all the properties that are
defined for the basic Control class and the new CSS properties that are added to the
TriangleButton class. Normally, a control inherits the stylable property of its parent class for
CSS styling. If you want to eliminate a stylable property from a parent class, don’t add the
CSSMetaData from the parent class to the CSSMetaData list of the control. You can use the
CssHelper class like in the following code snippet:

private static final List<CssMetaData<? extends Styleable, ?>> STYLEABLES =
 CssHelper.createCssMetaDataList(null, BACKGROUND_FILL, STROKE_FILL);

Here, null is used for the first parameter of the createCssMetaDataList(…) method. This
parameter defines the basic list of CssMetaData instances. The complete list of all CssMetaData
instances that are used for the class are defined by this list and all additional instances that are
committed as parameters to the method. Normally, the static getClassCssMetaData() method
of the parent class will be used here.

Defining Custom CSS Value Types
As mentioned in this and the previous chapter, CSS supports a lot of different types, such as String,
color, and number, in JavaFX. In addition to this, you can define custom value types in JavaFX.
As a next step, let’s add some animation to the TriangleButton; aspects of the animation will
be changeable by CSS.

Because the JavaFX animation API wasn’t mentioned until now in this book, it’s time to take a
short look at it.

10-ch10.indd 279 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

280 Mastering JavaFX 8 Controls

JavaFX contains an API that can be used to easily create animations. The basic class is the
Animation class, and all animations should extend this class. JavaFX already contains a set of
specific animations. One of them will be shown in the next example. An animation can run either
only one time or in a loop, and in addition, it can run forward and backward while looping. The
Animation class provides methods such as play() and pause() to handle the state of an
animation. In most use cases, the animation API will be used to animate JavaFX properties such as
the rotation property of a control. For some property types, JavaFX contains default classes that
can be used to define an animation for a property instance. An example is the ScaleTransition
class. This class can be easily used to define an animation for the scale properties (scaleX,
scaleY, scaleZ) of a control.

NOTE
If you need an animation for a property type that isn’t supported
directly by a concrete Animation class in JavaFX, you can use
a more general Animation class. This class can be found at
www.guigarage.com/2012/12/bindabletransition/.

To provide better feedback for the user, the TriangleButton should zoom in and out once
the user enters the mouse over the control. Because this feature is part of the behavior and look of
the control, it should be defined in the Skin class. Therefore, the TriangleButtonSkin class
will be extended, as shown here:

package com.guigarage.masteringcontrols;
import javafx.animation.ScaleTransition;
import javafx.event.ActionEvent;
import javafx.geometry.HPos;
import javafx.geometry.VPos;
import javafx.scene.control.SkinBase;
import javafx.scene.shape.ClosePath;
import javafx.scene.shape.LineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;
import javafx.util.Duration;
public class TriangleButtonSkin extends SkinBase<TriangleButton> {

 private ScaleTransition scaleTransition;

 protected TriangleButtonSkin(TriangleButton control) {
 super(control);
 control.widthProperty().addListener(observable -> invalidTriangle =
 true);
 control.heightProperty().addListener(observable -> invalidTriangle =
 true);
 control.backgroundFillProperty().addListener(observable ->
 updateTriangleColor());
 control.strokeFillProperty().addListener(observable ->
 updateTriangleColor());
 }

10-ch10.indd 280 5/22/14 4:08 PM

http://www.guigarage.com/2012/12/bindabletransition/

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 281

 public void updateTriangle(double width, double height) {
 if(triangle != null) {
 getChildren().remove(triangle);
 }
 triangle = new Path();
 //...
 triangle.setOnMouseEntered((e) -> zoomIn());
 triangle.setOnMouseExited((e) -> zoomOut());
 getChildren().add(triangle);
 }

 private void zoomIn() {
 if(scaleTransition != null) {
 scaleTransition.pause();
 }
 scaleTransition = new ScaleTransition(Duration.millis(250), triangle);
 scaleTransition.setFromX(triangle.getScaleX());
 scaleTransition.setFromY(triangle.getScaleY());
 scaleTransition.setToX(1.5);
 scaleTransition.setToY(1.5);
 scaleTransition.play();
 }
 private void zoomOut() {
 if(scaleTransition != null) {
 scaleTransition.pause();
 }
 scaleTransition = new ScaleTransition(Duration.millis(250), triangle);
 scaleTransition.setFromX(triangle.getScaleX());
 scaleTransition.setFromY(triangle.getScaleY());
 scaleTransition.setToX(1.0);
 scaleTransition.setToY(1.0);
 scaleTransition.play();
 }

 @Override
 public void dispose() {
 if(scaleTransition != null) {
 scaleTransition.stop();
 scaleTransition = null;
 }
 super.dispose();
 }
 //...
}

Two new methods were added to the class: zoomIn() and zoomOut(). These methods will be
called whenever the mouse cursor enters or exits the triangle and starts an animation. The animation
automatically changes the values of the scaleX and scaleY properties of the control. As a result,
the triangle will zoom in or out as a reaction to a mouse hover. In addition, the dispose()
method of the SkinBase class has been overridden. In JavaFX, the skin of a control can change at
run time. Therefore, the animation must stop whenever the skin is disposed. Figure 10-4 shows an
example of the current state.

10-ch10.indd 281 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

282 Mastering JavaFX 8 Controls

At the moment, a hard-coded duration of 250 ms is defined for the animation. As a next step,
this duration should be changeable by CSS. It would be easy to define a CSS property that could
handle any number value and use this as the duration in milliseconds. But sometimes you need
an animation that will take 20 seconds, for example. In this case, it would be better to write 20s
instead of 20000 for the CSS value. Therefore, you will define a new CSS converter that can be
used to define duration values in CSS.

To create a special converter, JavaFX provides the StyleConverter<F, T> class, which can
be extended to define new converters for special data types. Therefore, you must override the
convert(…) method that is defined by the StyleConverter class. The following code
defines a StyleConverter that will create Duration instances from CSS values:

package com.guigarage.masteringcontrols;
import javafx.css.ParsedValue;
import javafx.css.StyleConverter;
import javafx.scene.text.Font;
import javafx.util.Duration;

public class DurationStyleConverter extends StyleConverter<String, Duration> {

 @Override
 public Duration convert(ParsedValue<String, Duration> value, Font font) {
 String cssProperty = value.getValue();
 if(cssProperty.endsWith("ms")) {
 return Duration.millis(Long.parseLong(cssProperty.substring(0,
 cssProperty.length() - 2)));
 } else if(cssProperty.endsWith("s")) {
 return Duration.seconds(Long.parseLong(cssProperty.substring(0,
 cssProperty.length() - 1)));
 }
 return Duration.millis(Long.parseLong(cssProperty));
 }
}

FIGURE 10-4. Animation of the control

10-ch10.indd 282 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 283

The converter currently supports seconds and milliseconds, and values can be specified like
3s or 250ms. This converter can be used in CssMetaData instances to convert the value that is
defined in a CSS rule and set it to a stylable property.

NOTE
The Font parameter of the convert(…) method normally isn’t
needed. But sometimes you will specify CSS types that are defined as
relative values. These values specify a length relative to another length.
Normally, the font size will be taken as a reference in this case. You
can find more information about relative values at www.w3.org/TR/
css3-values/#relative-lengths.

Once the converter class is defined, it can be used by any CssMetaData instance. Let’s make
the duration of the example animation in the TriangleButtonSkin stylable. You define the
CssMetaData instance as shown in the following code snippet:

private static final CssHelper.SkinPropertyBasedCssMetaData<TriangleButton, Duration>
 SCALE_TRANSITION_TIME = CssHelper.createSkinMetaData("-fx-animation-duration",
 DurationStyleConverter.getInstance(), "scaleTransitionTime", Duration.millis(250));

After all these changes, the TriangleButtonSkin should look like this:

package com.guigarage.masteringcontrols;
import javafx.animation.ScaleTransition;
import javafx.css.CssMetaData;
import javafx.css.Styleable;
import javafx.css.StyleableObjectProperty;
import javafx.event.ActionEvent;
import javafx.geometry.HPos;
import javafx.geometry.VPos;
import javafx.scene.control.SkinBase;
import javafx.scene.shape.ClosePath;
import javafx.scene.shape.LineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;
import javafx.util.Duration;
import java.util.List;
public class TriangleButtonSkin extends SkinBase<TriangleButton> {

 private Path triangle;
 private boolean invalidTriangle = true;
 private ScaleTransition scaleTransition;
 private StyleableObjectProperty<Duration> scaleTransitionTime;

 protected TriangleButtonSkin(TriangleButton control) {
 super(control);
 control.widthProperty().addListener(observable -> invalidTriangle = true);
 control.heightProperty().addListener(observable -> invalidTriangle = true);
 control.backgroundFillProperty().addListener(observable ->
 updateTriangleColor());
 control.strokeFillProperty().addListener(observable -> updateTriangleColor());
 }
 public Duration getScaleTransitionTime() {

10-ch10.indd 283 5/22/14 4:08 PM

http://www.w3.org/TR/css3-values/#relative-lengths
http://www.w3.org/TR/css3-values/#relative-lengths

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

284 Mastering JavaFX 8 Controls

 return scaleTransitionTime.get();
 }

 public StyleableObjectProperty<Duration> scaleTransitionTimeProperty() {
 if (scaleTransitionTime == null) {
 scaleTransitionTime = CssHelper.createSkinProperty(StyleableProperties.
 SCALE_TRANSITION_TIME, TriangleButtonSkin.this);
 }
 return scaleTransitionTime;
 }

 public void setScaleTransitionTime(Duration scaleTransitionTime) {
 this.scaleTransitionTime.set(scaleTransitionTime);
 }

 private static class StyleableProperties {
 private static final CssHelper.SkinPropertyBasedCssMetaData<TriangleButt
 on, Duration> SCALE_TRANSITION_TIME = CssHelper.createSkinMetaData("-fx-
 animation-duration", DurationStyleConverter.getInstance(),
 "scaleTransitionTime", Duration.millis(250));
 private static final List<CssMetaData<? extends Styleable, ?>> STYLEABLES =
 CssHelper.createCssMetaDataList(SCALE_TRANSITION_TIME);
 }

 public List<CssMetaData<? extends Styleable, ?>> getCssMetaData() {
 return StyleableProperties.STYLEABLES;
 }

 public void updateTriangleColor() {
 if(triangle != null) {
 triangle.setFill(getSkinnable().getBackgroundFill());
 triangle.setStroke(getSkinnable().getStrokeFill());
 getSkinnable().requestLayout();
 }
 }
 public void updateTriangle(double width, double height) {
 if(triangle != null) {
 getChildren().remove(triangle);
 }
 triangle = new Path();
 triangle.getElements().add(new MoveTo(width / 2, 0));
 triangle.getElements().add(new LineTo(width, height));
 triangle.getElements().add(new LineTo(0, height));
 triangle.getElements().addAll(new ClosePath());
 updateTriangleColor();
 triangle.setOnMouseEntered((e) -> zoomIn());
 triangle.setOnMouseExited((e) -> zoomOut());
 triangle.setOnMouseClicked((e) -> getSkinnable().fireEvent(new
 ActionEvent()));
 getChildren().add(triangle);
 }
 private void zoomIn() {
 if(scaleTransition != null) {
 scaleTransition.pause();
 }

10-ch10.indd 284 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 285

 scaleTransition = new ScaleTransition(scaleTransitionTime.get(), triangle);
 scaleTransition.setFromX(triangle.getScaleX());
 scaleTransition.setFromY(triangle.getScaleY());
 scaleTransition.setToX(1.5);
 scaleTransition.setToY(1.5);
 scaleTransition.play();
 }
 private void zoomOut() {
 if(scaleTransition != null) {
 scaleTransition.pause();
 }
 scaleTransition = new ScaleTransition(scaleTransitionTime.get(), triangle);
 scaleTransition.setFromX(triangle.getScaleX());
 scaleTransition.setFromY(triangle.getScaleY());
 scaleTransition.setToX(1.0);
 scaleTransition.setToY(1.0);
 scaleTransition.play();
 }
 @Override
 protected double computePrefHeight(double width, double topInset, double
 rightInset, double bottomInset, double leftInset) {
 return topInset + bottomInset + 200;
 }

 @Override
 protected double computePrefWidth(double height, double topInset, double
 rightInset, double bottomInset, double leftInset) {
 return rightInset + leftInset + 200;
 }

 @Override
 protected double computeMinHeight(double width, double topInset, double
 rightInset, double bottomInset, double leftInset) {
 return 20 + topInset + bottomInset;
 }

 @Override
 protected double computeMinWidth(double height, double topInset, double
 rightInset, double bottomInset, double leftInset) {
 return 20 + rightInset + leftInset;
 }

 @Override
 protected double computeMaxWidth(double height, double topInset, double
 rightInset, double bottomInset, double leftInset) {
 return computePrefWidth(height, topInset, rightInset, bottomInset, leftInset);
 }

 @Override
 protected double computeMaxHeight(double width, double topInset, double
 rightInset, double bottomInset, double leftInset) {
 return computePrefHeight(width, topInset, rightInset, bottomInset, leftInset);
 }

10-ch10.indd 285 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

286 Mastering JavaFX 8 Controls

 @Override
 protected void layoutChildren(double contentX, double contentY, double
 contentWidth, double contentHeight) {
 if(invalidTriangle) {
 updateTriangle(contentWidth, contentHeight);
 invalidTriangle = false;
 }
 layoutInArea(triangle, contentX, contentY, contentWidth, contentHeight, -1,
 HPos.CENTER, VPos.CENTER);
 }

 @Override
 public void dispose() {
 if(scaleTransition != null) {
 scaleTransition.stop();
 scaleTransition = null;
 }
 super.dispose();
 }
}

As you can see in the code, the getCssMetaData() method has been overridden. In
addition, a static section was added to define the CssMetaData of the class. Why this has been
done and how the CssMetaData objects that are defined in the skin are bound to a CSS style
sheet will be discussed in a moment. But before this, it’s time to change the style sheet of the
control and test all the changes.

.triangle {
 -fx-animation-duration: '2s';
 -fx-triangle-fill: orange;
 -fx-triangle-stroke: black;
}

Once you change the style sheet, the triangle will be shown in orange with a black border.
Whenever the mouse enters or leaves the triangle, the animation will start. This will now look
very slow because the complete animation will take 2s instead of 250ms.

NOTE
Whenever a control is styled with CSS, JavaFX will fetch the list
of CssMetaData objects by the skin of the control. By default,
the List<CssMetaData<? extends Styleable, ?>>
getCssMetaData() method that is defined in the Region class will
be called to fetch all CssMetaData instances. Therefore, each class
that extends the Region class can define its own CSS properties. This
method is overridden by the Control class that merges the metadata
of the Control instance and its skin. So, you can specify stylable
properties in custom Control and Skin classes.

Adding a CSS Pseudoclass
As a next step, a CSS pseudoclass will be added for the TriangleButton; you can define a CSS
pseudoclass in JavaFX by using the PseudoClass class. Each CSS pseudoclass is defined with a

10-ch10.indd 286 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 287

unique name and can be used to style different states of a control. Chapter 9 shows how this can
be done with CSS.

You create a new PseudoClass instance as shown in this code snippet:

private static final PseudoClass ARMED_PSEUDO_CLASS = PseudoClass.
 getPseudoClass("armed");

This creates the new pseudoclass armed. The Node class in JavaFX provides the
pseudoClassStateChanged(…) method that should be used to activate a pseudoclass. The
method getPseudoClassStates() returns a set with all currently active pseudoclasses. The
following sample shows how pseudoclasses can be used and combined:

PseudoClass ARMED_PSEUDO_CLASS = PseudoClass.getPseudoClass("armed");
PseudoClass HIGHLIGHTED_PSEUDO_CLASS = PseudoClass.
 getPseudoClass("highlighted");

getPseudoClassStates(); // returns an empty set

pseudoClassStateChanged(ARMED_PSEUDO_CLASS, true);
getPseudoClassStates(); // set contains "armed"

pseudoClassStateChanged(HIGHLIGHTED_PSEUDO_CLASS, true);
getPseudoClassStates(); // set contains "armed" and "highlighted"

pseudoClassStateChanged(HIGHLIGHTED_PSEUDO_CLASS, false);
getPseudoClassStates(); // set contains "armed"

For the TriangleButton control, you need to define an armed pseudoclass, and the CSS
pseudoclass should be active whenever the button is armed by a mouse click. This means that
whenever the mouse is pressed on the triangle, the custom control should have an active armed
pseudoclass. The same behavior is defined for the default JavaFX button.

To implement this feature, you add a new BooleanProperty instance called armed to the
TriangleButton. Whenever the value of this property is true, the pseudoclass should be active.
The following code shows the new version of the TriangleButton class:

package com.guigarage.masteringcontrols;

import com.sun.javafx.css.converters.PaintConverter;
import javafx.beans.property.BooleanProperty;
import javafx.beans.property.BooleanPropertyBase;
import javafx.beans.property.ObjectProperty;
import javafx.beans.property.ObjectPropertyBase;
import javafx.css.CssMetaData;
import javafx.css.PseudoClass;
import javafx.css.Styleable;
import javafx.css.StyleableObjectProperty;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.control.Control;
import javafx.scene.control.Skin;
import javafx.scene.paint.Color;
import javafx.scene.paint.Paint;
import java.util.List;

10-ch10.indd 287 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

288 Mastering JavaFX 8 Controls

public class TriangleButton extends Control {

 //...

 private static final PseudoClass ARMED_PSEUDO_CLASS = PseudoClass.
 getPseudoClass("armed");

 private BooleanProperty armed;

 public final void setArmed(boolean armed) {
 armedProperty().set(armed);
 }

 public final boolean isArmed() {
 return armed == null ? false : armed.get();
 }

 public final BooleanProperty armedProperty() {
 if (armed == null) {
 armed = new BooleanPropertyBase(false) {
 @Override protected void invalidated() {
 pseudoClassStateChanged(ARMED_PSEUDO_CLASS, get());
 }
 @Override
 public Object getBean() {
 return TriangleButton.this;
 }
 @Override
 public String getName() {
 return "armed";
 }
 };
 }
 return armed;
 }

 //...
}

You set the definition and implementation of the armed property like how pseudoclasses are
defined in the JavaFX basic controls. Whenever you create custom controls that should be used
heavily in applications or released as open source controls, this is the most performant way to do
this. The invalidated() method of the property class is overridden to directly change the
pseudoclass. The same behavior can be defined by the following code:

package com.guigarage.masteringcontrols;

//imports

public class TriangleButton extends Control {

 private static final PseudoClass ARMED_PSEUDO_CLASS = PseudoClass.
 getPseudoClass("armed");

 private BooleanProperty armed;

10-ch10.indd 288 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 289

 public TriangleButton() {
 armedProperty().addListener((observable, oldValue, newValue) ->
 pseudoClassStateChanged(ARMED_PSEUDO_CLASS, newValue));
 }

 public final BooleanProperty armedProperty() {
 if (armed == null) {
 armed = new SimpleBooleanProperty(false);
 }
 return armed;
 }

 //...

}

This code looks much cleaner than the first version: The armed property is defined as a
SimpleBooleanProperty like in some of the earlier examples. In the constructor of the
TriangleButton, you add a ChangeListener<Boolean> instance to the property, and
whenever its value changes, the armed pseudoclass is activated or deactivated. In addition, no
anonymous classes are used in the code. But the code has some performance drawbacks in
comparison to the first approach: In the second code snippet, the armed property will be
instantiated directly in the constructor of the class. So, memory will be used for the property object
even if it’s never used. In addition, a ChangeListener instance is created. When taking a look at
the internal JavaFX classes, you will learn that a lot more objects will be generated when the
ChangeListener is registered. So, the second approach uses a lot more objects and therefore
more memory. Thus, you should always use the first approach when developing reusable controls.

Once the armed property and the pseudoclass are defined in the Control class, the behavior
of the control will be adapted in the Skin class. Therefore, you add two mouse handlers to the
updateTriangle(…) method, as shown here:

public void updateTriangle(double width, double height) {
 if (triangle != null) {
 getChildren().remove(triangle);
 }
 triangle = new Path();
 //...
 triangle.setOnMousePressed((e) -> getSkinnable().setArmed(true));
 triangle.setOnMouseReleased((e) -> getSkinnable().setArmed(false));
 getChildren().add(triangle);
 }

Once this is done, the control will handle its armed state and automatically activate and deactivate
the armed pseudoclass. You can now use the pseudoclass in a CSS style sheet, as shown here:

.triangle {
 -fx-border-color: black;
 -fx-triangle-fill: yellow;
 -fx-triangle-stroke: black;
 -fx-animation-duration: '250ms';
}

10-ch10.indd 289 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

290 Mastering JavaFX 8 Controls

.triangle:armed {
 -fx-triangle-fill: orange;
}

By defining these CSS rules, the background color of the TriangleButton will change whenever
the mouse is pressed on it.

Adding an Effect
To create even better visual feedback whenever the TriangleButton is armed, let’s add an effect
to it. JavaFX provides an effect API with several effect types. You can find the API in the javafx
.scene.effect package. The following sample shows how to assign effects to any JavaFX node:

package com.guigarage.masteringcontrols;

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.effect.*;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class EffectsDemo extends Application {

 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage) throws Exception {
 Button reflectionButton = new Button("Reflection");
 reflectionButton.setEffect(new Reflection());
 Button dropShadowButton = new Button("DropShadow");
 dropShadowButton.setEffect(new DropShadow());
 Button boxBlurButton = new Button("BoxBlur");
 boxBlurButton.setEffect(new BoxBlur());
 Button sepiaToneButton = new Button("SepiaTone");
 sepiaToneButton.setEffect(new SepiaTone());
 Button multipleEffectsButton = new Button("Mixed");
 SepiaTone effect = new SepiaTone();
 effect.setInput(new Reflection());
 multipleEffectsButton.setEffect(effect);

 VBox myPane = new VBox();
 myPane.setPadding(new Insets(24));
 myPane.setAlignment(Pos.CENTER);
 myPane.setSpacing(42);
 myPane.getChildren().addAll(reflectionButton, dropShadowButton,
 boxBlurButton, sepiaToneButton, multipleEffectsButton);

10-ch10.indd 290 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 291

 Scene myScene = new Scene(myPane);
 primaryStage.setScene(myScene);
 primaryStage.setWidth(300);
 primaryStage.setHeight(200);
 primaryStage.show();
 }
}

The demo defines some JavaFX buttons and applies different effects on the Button instances.
Figure 10-5 shows the result. As you can see in the code, an effect can simply be applied to a
node by using its effect property. Effects will transform the visualization of the node by adding
shadows and reflections, or will render the node by using a blur filter, for example. As shown with
the last button of Figure 10-5, most JavaFX effects can be stacked on top of one another by using
its input property. All effect types that are defined by JavaFX can be configured. To see all the
different effect types and how they can be configured and used, refer to the JavaDoc of the
javafx.scene.effect package.

NOTE
The Node class defines the -fx-effect CSS property, and therefore
you can define an effect for each JavaFX node using CSS. At the
moment, JavaFX CSS supports only the DropShadow and InnerShadow
effects. You can learn how these effects can be applied in CSS in the
JavaFX CSS documentation: http://download.java.net/jdk8/jfxdocs/
javafx/scene/doc-files/cssref.html#typeeffect.

FIGURE 10-5. Effect example that can be created with JavaFX

10-ch10.indd 291 5/22/14 4:08 PM

http://download.java.net/jdk8/jfxdocs/javafx/scene/doc-files/cssref.html#typeeffect
http://download.java.net/jdk8/jfxdocs/javafx/scene/doc-files/cssref.html#typeeffect

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

292 Mastering JavaFX 8 Controls

As mentioned, the TriangleButton should be rendered with an effect whenever it is armed.
To do this, you add the method updateEffect()to the Skin class. The method will be triggered
whenever the armed state of the TriangleButton changes. Whenever the control is armed, an
inner shadow will be applied as an effect on the triangle. Figure 10-6 shows how the control will
now look in the armed state.

Because the TriangleButtonSkin won’t be changed anymore, here is the final code of
the class:

package com.guigarage.masteringcontrols;

import javafx.animation.ScaleTransition;
import javafx.css.CssMetaData;
import javafx.css.Styleable;
import javafx.css.StyleableObjectProperty;
import javafx.event.ActionEvent;
import javafx.geometry.HPos;
import javafx.geometry.VPos;
import javafx.scene.control.SkinBase;
import javafx.scene.effect.InnerShadow;
import javafx.scene.shape.ClosePath;
import javafx.scene.shape.LineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;
import javafx.util.Duration;
import java.util.List;

public class TriangleButtonSkin extends SkinBase<TriangleButton> {

 private Path triangle;
 private boolean invalidTriangle = true;
 private ScaleTransition scaleTransition;
 private StyleableObjectProperty<Duration> scaleTransitionTime;

FIGURE 10-6. An inner shadow effect

10-ch10.indd 292 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 293

 protected TriangleButtonSkin(TriangleButton control) {
 super(control);
 control.widthProperty().addListener(observable -> invalidTriangle = true);
 control.heightProperty().addListener(observable -> invalidTriangle = true);
 control.backgroundFillProperty().addListener(observable ->
 updateTriangleColor());
 control.strokeFillProperty().addListener(observable -> updateTriangleColor());
 control.armedProperty().addListener(observable -> updateEffect());
 }

 protected void updateEffect() {
 if (getSkinnable().isArmed()) {
 if (triangle != null) {
 InnerShadow innerShadow = new InnerShadow();
 innerShadow.setOffsetX(1.0f);
 innerShadow.setOffsetY(1.0f);
 triangle.setEffect(innerShadow);
 }
 } else {
 if (triangle != null) {
 triangle.setEffect(null);
 }
 }
 }

 public Duration getScaleTransitionTime() {
 return scaleTransitionTime.get();
 }

 public void setScaleTransitionTime(Duration scaleTransitionTime) {
 this.scaleTransitionTime.set(scaleTransitionTime);
 }

 public StyleableObjectProperty<Duration> scaleTransitionTimeProperty() {
 if (scaleTransitionTime == null) {
 scaleTransitionTime = CssHelper.createSkinProperty(StyleableProperties.
 SCALE_TRANSITION_TIME, TriangleButtonSkin.this);
 }
 return scaleTransitionTime;
 }

 public List<CssMetaData<? extends Styleable, ?>> getCssMetaData() {
 return StyleableProperties.STYLEABLES;
 }

 public void updateTriangleColor() {
 if (triangle != null) {
 triangle.setFill(getSkinnable().getBackgroundFill());
 triangle.setStroke(getSkinnable().getStrokeFill());
 getSkinnable().requestLayout();
 }
 }

 public void updateTriangle(double width, double height) {
 if (triangle != null) {
 getChildren().remove(triangle);

10-ch10.indd 293 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

294 Mastering JavaFX 8 Controls

 }
 triangle = new Path();
 triangle.getElements().add(new MoveTo(width / 2, 0));
 triangle.getElements().add(new LineTo(width, height));
 triangle.getElements().add(new LineTo(0, height));
 triangle.getElements().addAll(new ClosePath());
 updateTriangleColor();
 updateEffect();
 triangle.setOnMouseEntered((e) -> zoomIn());
 triangle.setOnMouseExited((e) -> zoomOut());
 triangle.setOnMouseClicked((e) -> getSkinnable().fireEvent(new
 ActionEvent()));
 triangle.setOnMousePressed((e) -> getSkinnable().setArmed(true));
 triangle.setOnMouseReleased((e) -> getSkinnable().setArmed(false));
 getChildren().add(triangle);
 }

 private void zoomIn() {
 if (scaleTransition != null) {
 scaleTransition.pause();
 }
 scaleTransition = new ScaleTransition(scaleTransitionTime.get(), triangle);
 scaleTransition.setFromX(triangle.getScaleX());
 scaleTransition.setFromY(triangle.getScaleY());
 scaleTransition.setToX(1.5);
 scaleTransition.setToY(1.5);
 scaleTransition.play();
 }

 private void zoomOut() {
 if (scaleTransition != null) {
 scaleTransition.pause();
 }
 scaleTransition = new ScaleTransition(scaleTransitionTime.get(), triangle);
 scaleTransition.setFromX(triangle.getScaleX());
 scaleTransition.setFromY(triangle.getScaleY());
 scaleTransition.setToX(1.0);
 scaleTransition.setToY(1.0);
 scaleTransition.play();
 }

 @Override
 protected double computePrefHeight(double width, double topInset, double
 rightInset, double bottomInset, double leftInset) {
 return topInset + bottomInset + 200;
 }

 @Override
 protected double computePrefWidth(double height, double topInset, double
 rightInset, double bottomInset, double leftInset) {
 return rightInset + leftInset + 200;
 }

10-ch10.indd 294 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 295

 @Override
 protected double computeMinHeight(double width, double topInset, double
 rightInset, double bottomInset, double leftInset) {
 return 20 + topInset + bottomInset;
 }

 @Override
 protected double computeMinWidth(double height, double topInset, double
 rightInset, double bottomInset, double leftInset) {
 return 20 + rightInset + leftInset;
 }

 @Override
 protected double computeMaxWidth(double height, double topInset, double
 rightInset, double bottomInset, double leftInset) {
 return computePrefWidth(height, topInset, rightInset, bottomInset, leftInset);
 }

 @Override
 protected double computeMaxHeight(double width, double topInset, double
 rightInset, double bottomInset, double leftInset) {
 return computePrefHeight(width, topInset, rightInset, bottomInset, leftInset);
 }

 @Override
 protected void layoutChildren(double contentX, double contentY, double
 contentWidth, double contentHeight) {
 if (invalidTriangle) {
 updateTriangle(contentWidth, contentHeight);
 invalidTriangle = false;
 }
 layoutInArea(triangle, contentX, contentY, contentWidth, contentHeight, -1,
 HPos.CENTER, VPos.CENTER);
 }
 private static class StyleableProperties {
 private static final CssHelper.SkinPropertyBasedCssMetaData<TriangleButton,
 Duration> SCALE_TRANSITION_TIME = CssHelper.createSkinMetaData
 ("-fx-animation-duration", DurationStyleConverter.getInstance(),
 "scaleTransitionTime", Duration.millis(250));
 private static final List<CssMetaData<? extends Styleable, ?>> STYLEABLES
 = CssHelper.createCssMetaDataList(TriangleButton.getClassCssMetaData(),
 SCALE_TRANSITION_TIME);
 }

 @Override
 public void dispose() {
 if(scaleTransition != null) {
 scaleTransition.stop();
 scaleTransition = null;
 }
 super.dispose();
 }
}

10-ch10.indd 295 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

296 Mastering JavaFX 8 Controls

Adding a Second Skin
You have seen how to develop a custom control and its skin, but the most important benefit of
this structure wasn’t mentioned until now. By splitting a JavaFX control into a Control class and
a Skin class, you can easily change the skin. This can be done even at run time or with CSS. To
see this feature, you need another skin; it should render a triangle button with a triangle that has
one of its apexes on the bottom instead of on the top. Figure 10-7 shows an example of how this
will look.

To do this, you need an additional Skin class. For this example, the Skin class will look
mostly like the current one. Only the definition of the triangle in the updateTriangle(…)
method has changed. Here is the code of the second skin:

package com.guigarage.masteringcontrols;

import javafx.event.ActionEvent;
import javafx.geometry.HPos;
import javafx.geometry.VPos;
import javafx.scene.control.SkinBase;
import javafx.scene.layout.Region;
import javafx.scene.shape.ClosePath;
import javafx.scene.shape.LineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;

public class AlternativeTriangleButtonSkin extends SkinBase<TriangleButton> {

 private Path triangle;
 private boolean invalidTriangle = true;

 public AlternativeTriangleButtonSkin(TriangleButton control) {
 super(control);
 control.widthProperty().addListener(observable -> invalidTriangle =
 true);

FIGURE 10-7. The TriangleButton with an alternative skin

10-ch10.indd 296 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 297

 control.heightProperty().addListener(observable -> invalidTriangle =
 true);
 control.backgroundFillProperty().addListener(observable ->
 updateTriangleColor());
 control.strokeFillProperty().addListener(observable ->
 updateTriangleColor());
 getSkinnable().setMaxWidth(Region.USE_PREF_SIZE);
 getSkinnable().setMaxHeight(Region.USE_PREF_SIZE);
 getSkinnable().setMinWidth(Region.USE_PREF_SIZE);
 getSkinnable().setMinHeight(Region.USE_PREF_SIZE);
 }

 public void updateTriangleColor() {
 if (triangle != null) {
 triangle.setFill(getSkinnable().getBackgroundFill());
 triangle.setStroke(getSkinnable().getStrokeFill());
 getSkinnable().requestLayout();
 }
 }

 public void updateTriangle(double width, double height) {
 if (triangle != null) {
 getChildren().remove(triangle);
 }
 triangle = new Path();
 triangle.getElements().add(new MoveTo(width / 2, height));
 triangle.getElements().add(new LineTo(width, 0));
 triangle.getElements().add(new LineTo(0, 0));
 triangle.getElements().addAll(new ClosePath());
 updateTriangleColor();
 triangle.setOnMouseClicked((e) -> getSkinnable().fireEvent(new
 ActionEvent()));
 triangle.setOnMousePressed((e) -> getSkinnable().setArmed(true));
 triangle.setOnMouseReleased((e) -> getSkinnable().setArmed(false));
 getChildren().add(triangle);
 }

 @Override
 protected double computePrefHeight(double width, double topInset,
 double rightInset, double bottomInset, double leftInset) {
 return topInset + bottomInset + 120;
 }

 @Override
 protected double computePrefWidth(double height, double topInset,
 double rightInset, double bottomInset, double leftInset) {
 return rightInset + leftInset + 120;
 }

10-ch10.indd 297 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

298 Mastering JavaFX 8 Controls

 @Override
 protected void layoutChildren(double contentX, double contentY,
 double contentWidth, double contentHeight) {
 if (invalidTriangle) {
 updateTriangle(contentWidth, contentHeight);
 invalidTriangle = false;
 }
 layoutInArea(triangle, contentX, contentY, contentWidth,
 contentHeight, -1, HPos.CENTER, VPos.CENTER);
 }
}

Once you define the second skin, you can use it for the example. There are several different
ways to apply the skin to the control. As mentioned earlier, the Control class defines the
createDefaultSkin(…) method that can be overridden. If the new skin should be the default
skin of the TriangleButton, you do it like this:

@Override
protected Skin<?> createDefaultSkin() {
 return new AlternativeTriangleButtonSkin(this);
}

But, as mentioned, there are other ways to change the skin of a control. One way is to set a
new skin to the skin property of the control. The following code snippet shows how to do this:

TriangleButton button = new TriangleButton();
button.setSkin(new AlternativeTriangleButtonSkin(button));

This code snippet can easily be wrapped in an action handler. As a result, the skin of a control
can theoretically be changed by clicking a button.

In addition to this, the Control class provides the CSS property -fx-skin. By using this
property, the Skin class of a control can be defined in CSS. Therefore, the class of the skin must
be defined as its CSS value in a style sheet, as shown here:

.triangle {
 -fx-skin: 'com.guigarage.masteringcontrols.AlternativeTriangleButtonSkin';
 -fx-triangle-fill: orange;
 -fx-triangle-stroke: black;
}

NOTE
CSS properties can be defined in the Control class and the Skin
class. In the TriangleButtonSkin, you defined the CSS property
-fx-animation-duration, for example. Once the skin changed,
this property isn’t used anymore because it is not defined in the current
skin. Frameworks such as AquaFX use this approach to add custom CSS
properties to the default JavaFX control types by providing custom Skin
classes for these controls and adding new CSS metadata to these skins.

10-ch10.indd 298 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 299

Dispose a Skin
Whenever the skin of a control changes, the old instance should be removed by Java’s garbage
collection. To do this, all references of the old skin should be removed. Additionally, it is
important that for all listeners the old skin registered to properties of the control are removed too.
If this doesn’t happen, the old skin will still be alive and could change the behavior of the control.
To avoid this, the SkinBase class defines the dispose() method. As already mentioned, this
method will be called each time the skin of a control changes. The method will be called on the
old skin instance of the control.

In our example, the skin implementations register some listeners to properties of the control.
These listeners should be removed whenever the skin instance is changed. To do so, and to
provide a fully useable skin implementation, we need to change one last thing in our Skin class.
In the following code, the listeners that are registered to the properties of the control are extracted
as fields of the Skin class. As a result, they can easily be registered in the constructor of the skin
and deregistered in the dispose() method:

public class TriangleButtonSkin extends SkinBase<TriangleButton> {

private InvalidationListener invalidTriangleListener =
 observable -> invalidTriangle = true;

private InvalidationListener updateTriangleColorListener =
 observable -> updateTriangleColor();

private InvalidationListener updateEffectListener =
 observable -> updateEffect();

protected TriangleButtonSkin(TriangleButton control) {
 super(control);
 control.widthProperty().addListener(
 invalidTriangleListener);
 control.heightProperty().addListener(
 invalidTriangleListener);
 control.backgroundFillProperty().addListener(
 updateTriangleColorListener);
 control.strokeFillProperty().addListener(
 updateTriangleColorListener);
 control.armedProperty().addListener(
 updateEffectListener);
 }

 @Override
 public void dispose() {
 if(scaleTransition != null) {
 scaleTransition.stop();
 scaleTransition = null;
 }
 getSkinnable().widthProperty().
 removeListener(invalidTriangleListener);
 getSkinnable().heightProperty().
 removeListener(invalidTriangleListener);

10-ch10.indd 299 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

300 Mastering JavaFX 8 Controls

 getSkinnable().backgroundFillProperty().
 removeListener(updateTriangleColorListener);
 getSkinnable().strokeFillProperty().
 removeListener(updateTriangleColorListener);
 getSkinnable().armedProperty().
 removeListener(updateEffectListener);
 getChildren().clear();
 super.dispose();
 }
}

NOTE
For default control implementations that are part of JavaFX, there is
a special mechanism that registers and deregisters all these listeners
automatically. But, sadly, this is defined in the BehaviorSkinBase
class that is part of the private API of JavaFX and, therefore, shouldn’t
be used. If you want to develop a lot of custom controls, you should
have a look at this class and define your own basic class for skin
implementations, that provides comparable functionality.

An Interview with Gerrit Grunwald, Canoo Engineering

Hi, Gerrit. Most JavaFX developers know you as @hansolo_ and have seen your awesome
custom controls that you have created for JavaFX in the last two years. But before we talk
about this cool stuff, can you please introduce yourself?

Hi, Hendrik. My name is Gerrit Grunwald, and I’m working for Canoo Engineering in
Switzerland. I started coding Java around 10 years ago when I was working as an engineer
in the nanotechnology and semiconductor industry. I’m mainly doing front-end-related
stuff, and I’m also very interested in IoT and embedded technologies that run Java and
JavaFX. But the thing I like most are still custom controls, preferably in JavaFX.

So, as I understand it, the development of custom controls is one of your hobbies. I know
that you already did this with the help of different UI toolkits before you started to create
controls with JavaFX. Maybe you can give a short overview of the different languages and
frameworks you have already used to create and design controls.

Yes, creating custom controls is something that drives me. For me, trying to transfer a
real object into a custom control is a challenge that I simply can’t withstand. So, I started to
create my own components around eight years ago in Java Swing and was fascinated by the
possibilities of that technology. It was always nice to figure out how to create certain visual
effects in Swing manually (which was needed due to the lack of built-in visual effects). Then
I tried Microsoft .NET with C#. I created a couple of C#-based controls, but the way that
worked in .NET was not that nice, so when HTML5 came along, I saw the canvas element
and was thrilled. Now I had a technology that made it possible to create components that
ran also on my iOS and Android devices. The only thing with HTML5 that I did not like was
JavaScript; it somehow didn’t work for me. So when JavaFX 2 was born in 2011, I gave it a
try, and now I’m addicted. It’s powerful, it has lots of nice features, and it’s Java…I love it.

10-ch10.indd 300 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 301

So you tried a lot of different technologies to create custom control, and in the end, you
decided to use JavaFX. What are the biggest benefits of JavaFX in this case?

First, and most important for me, is the fact that JavaFX is just Java, so you don’t have to
learn a new language, but only a new API. The second important thing is the availability of
JavaFX on all major platforms with the same feature set plus the ARM port, which makes it
also available to embedded devices. So with this technology, I can create controls that I can
reuse wherever I need them. In addition, the JavaFX API is really nice to code with, and the
features you get with JavaFX are powerful. Because I’ve tried the other platforms, I know
how much time one can save if you don’t have to create everything by yourself.

Let’s talk about custom controls in JavaFX. What is your best-practice workflow when
developing a new control?

Usually, I start with drawing a prototype of the control in a vector drawing program.
With this approach, I can easily modify the shapes and colors of the control with direct
visual feedback. When this is done, I transfer the shapes and colors into code by using SVG
for the shapes. In my IDE I’ve created some templates for different kinds of controls, for
example, those that are based on extending a Region node, and so on. If possible, I stick
with the Region-based control because it’s stylable by CSS and only one file. But when I
create controls for a library, I usually use the approach where you create a Control class
and a Skin class in combination with a CSS file.

In your workflow description, you mention two steps that are different from the basic
practices that are described in this book: SVG as a base for the UI and the usage of the
Region class as the base class for custom controls instead of using the Control class. Let’s
discuss these two topics in more detail. How do you convert an SVG file to a Java-based UI?

One of the many great things in JavaFX is the SVG support in CSS, which means that
one can define an SVG path in CSS by defining something like this:

-fx-shape: "M 0 0, H 50 0, V 50 50, L 0 50, Z";

Now you simply could apply the CSS class that contains the definition to a Region node
and the node will be filled with the shape that is defined in -fx-shape. If you would like to
scale that shape automatically, you simply have to set -fx-scale-shape: true;, and
the SVG path will always be scaled to the size of the Region node. So what you need to
create an SVG shape is a vector-drawing program like Inkscape, Illustrator, or others that are
capable of handling SVG. With such a program, you can draw the shapes in the program,
export them as an SVG file, and use the paths in the CSS file of your JavaFX application.

That’s a cool tip that wasn’t mentioned in the book until now. So, thank you for that. The
next topic I want to talk about is your basic control structure. You said that some of your
custom controls extend the Region class instead of the Control class. Can you explain
this decision?

The Region node is a lightweight container that is stylable via CSS. That makes it a
perfect component to extend and use as a custom control. If you would like to create a
not-too-complex control, the Region is a perfect choice because it’s only one class and a
CSS file. That means you combine the logic with visualization code within one class. Like I
said, that’s fine for simple controls, but if it gets more complex, it’s a good idea to split the
logic from the visualization by extending the Control class for the logic and creating a
skin for the visualization.

(Continued)

10-ch10.indd 301 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

302 Mastering JavaFX 8 Controls

So, you have two different ways how you create controls. Some people have tried to use
FXML or the Canvas class to create custom controls. Have you tested these approaches
too? If so, can you explain in a few words the problems in these approaches and why a
developer should use the architecture that is described here?

Yes, I’ve also created controls based on the Canvas node. This approach is useful if you
have to draw very complex things in your control. Because the Canvas node is more like
an image you can draw on, you can reduce the number of nodes on the scene graph. The
disadvantage of using the Canvas node for a control is the fact that you can’t easily attach
event listeners to subareas of your control but only to the Canvas node alone. This means
controls based on the Canvas node are great for controls that only visualize something and
don’t offer any user interaction. I’ve never really tried the FXML-based approach because in
my eyes, FXML is not meant to be for creating controls but more to be read/written by a
computer and not for manual editing.

Have you seen any differences in the performance of the discussed approaches?
My experience (especially on embedded devices) is that it really depends on the control

itself. Because with JavaFX we get hardware-accelerated graphics (also on embedded), the
drawing performance most times is not the problem. One of the reasons for bad
performance might be the fact that paths will be calculated by the CPU before they will be
rendered by the GPU. That means if you use a lot if complex paths in your control, it might
slow down the performance of your control. One thing that also is true is that nothing is
faster than code, which means if you overuse CSS, it might also be slower than a pure-code
approach. But keep in mind that you might lose flexibility in styling when using code only.

Your answer leads perfectly to the last topic of this interview. You already mentioned
embedded devices, and I know that you developed a lot of custom controls for different
devices like desktop, mobile, and embedded. Can you share some pitfalls or best practices
when developing controls for different devices?

Well, on the desktop, you simply can do everything you like.
With embedded, it’s a bit different; first of all, it depends on the hardware you use.

When using a Pi, you have to keep in mind that it has a really good GPU but a really slow
CPU. This means every path you use in your controls will be calculated by the relatively
slow CPU before it will be rendered by the fast GPU. So, the CPU is the main bottleneck on
the Pi. Using an i.MX6-based device with a Vivante GPU might be completely different. Here,
you have a fast CPU in combination with a good GPU. So, there is no general rule, but
everything depends on the target platform and its capabilities.

As a last tip, let me tell you that on iOS and Android devices you might want to use
Regions for your controls. Somehow, the control approach doesn’t work on these
platforms at the moment. This might change in the future, but at the moment you are bound
to JDK 7 and JavaFX 2 on these platforms, and only Region-based custom controls work.

Do you have any experience with controls that are made for all the different devices?
I think a big problem might be the significant difference in the screen resolution of these
devices. How can that be handled?

If you want your controls to run on all devices, you should extend Region and make
sure that the controls resize correctly. With this approach, the controls will run on JavaFX 2

10-ch10.indd 302 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 10: Custom Controls 303

Summary
The chapter described how to develop custom controls in JavaFX and showed a lot of best
practices used in the default JavaFX control classes. Theoretically, all the functionality shown here
could be developed more easily: If you need a special control that is used one time and will
never change, you could extend the Region class instead of the Control class and develop all the
features in only one class. However, in that case, you won’t get all the benefits of the Skin class
and the performance tricks shown in this chapter. Therefore, usually you should invest the time to
design a custom control as shown in this chapter. The workflows that are shown here were used
to develop the default controls of JavaFX and were used in some other important open source
libraries such as ControlsFX.

and JavaFX 8 and also on all devices. The screen resolution really could be a problem,
especially if you use fonts. You have to make sure that the control also renders nicely when
it is very small or very big. So, getting that right is the hardest part, and unfortunately, there
is only one way to figure it out...you have to try it on the device.

Most developers don’t have all these devices. Can emulators be used to test the behavior
and performance of custom controls?

Unfortunately not. I’ve tested the same control on the Raspberry Pi, an i.MX6 quadcore,
an iPad, and Android, and performance-wise it behaves completely differently on all of
these platforms. If you use the iPad emulator on the Mac to test your JavaFX application,
you will figure out that it is really slow, and if you put it on an iPad mini retina, it will show
good performance. But if you put the same code on an iPhone 5 (which is not that old), it
will be slow again. Again, it all depends on the target platform.

Thank you for all these important tips. Do you want to mention any other helpful notes
about developing custom controls to all the JavaFX developers out there?

I know developers are not designers, but believe me that everyone can learn at least
some things related to design, so my advice is...learn how to use a vector-drawing program!
Thanks for the interview.

Thanks for your time. I hope to see a lot of cool custom controls designed by you in
the future!

10-ch10.indd 303 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: 304

10-ch10.indd 304 5/22/14 4:08 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: 305

APPENDIX

JavaFX Resources and
Where to Go from Here

11-App.indd 305 5/22/14 4:10 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

306 Mastering JavaFX 8 Controls

In this book I have described all the JavaFX APIs that you need to know to work with JavaFX
controls. After reading the book, you should be prepared to create the front end of an
application with JavaFX. But when developing complete JavaFX applications, you’ll need

to know more than this book can contain. Thankfully, the JavaFX community is growing every
day, and more information about JavaFX is available than ever before. In this appendix, I introduce
additional topics that will be important for developers who are learning JavaFX and provide
additional resources where you can learn more. I have also included some statements,
knowledge, and approaches from the JavaFX community.

Make Your UI Shine
User experience (UX) is about so much more than a user interface (UI). Whatever you develop
should be clean, as intuitive as possible to use, and work in expected ways.

—Mark Heckler (@MkHeck)

Make use of effects and animation. They are cool and can make a big difference. Keep them small
and targeted to a specific purpose.

—Dierk König (@mittie)

Most of the samples in this book aren’t very spectacular when you start thinking about all the
fancy UI stuff you could add like animations and effects. For a regular business application, these
additions aren’t the most important part, and besides, thanks to the Modena theme, all the basic
JavaFX controls look good and their skins match each other. But it is still important to choose a good
layout, place and use all the controls in the right way, and design an understandable flow through
your application. For example, when developing an application such as a music player, all these
effects and animations will become more important. Figure A-1 shows a JavaFX demo created by
Gerrit Grunwald. As you can see, the UI is completely different from a regular, data-driven JavaFX
business application.

JavaFX-Related Middleware
and Application Frameworks
JavaFX offers new possibilities to implement UI Architectures. That‘s why we created a framework
which supports the developer to follow the MVVM approach by using the JavaFX Properties API.

—Alexander Casall (@sialcasa)

As soon as you start writing real-life enterprise applications with JavaFX, you have to consider
questions that go beyond widgets and their APIs. You need to set up structures for organizing
your code and rules for how to expose functionality to your user. In other words, you need an
application architecture. Here I introduce two projects that allow you to implement architecture:
DataFX and OpenDolphin.

11-App.indd 306 5/22/14 4:10 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Appendix: JavaFX Resources and Where to Go from Here 307

DataFX
DataFX is an application framework for JavaFX. Its main goal is to provide useful architecture and
utilities when developing business and enterprise applications. DataFX contains many modules
that cover a lot of use cases and technologies that are needed when developing a JavaFX
enterprise application.

The DataSource API of DataFX lets you read and write different data sources. This data can
be stored in a database or accessed by a REST service on a server. By using the DataSource API,
you don’t have to handle all the multithreading issues that are important when working with
background tasks or long-running requests. This API is based on the Core module of DataFX and
provides a lot of useful functionality to handle concurrent tasks in JavaFX.

Another important part of the DataFX framework is the Flow module. With the help of this
module, you can define view-based flows for an application and, therefore, structure the views by
using the Model-View-Controller (MVC) pattern. With the Flow API, you can then combine these
MVC-based views to create a large flow and links or internal actions. Figure A-2 shows the schematic
flow of a master-detail application that can be easily created with DataFX.

All DataFX modules can be combined by using dependency injection. With the Flow API,
DataFX even supports context dependency injection (CDI) by providing different scopes.

FIGURE A-1. An embedded JavaFX application

11-App.indd 307 5/22/14 4:10 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

308 Mastering JavaFX 8 Controls

Currently, DataFX is the best choice for creating a JavaFX enterprise application that will
communicate with a server that provides access by middleware standards such as REST or
WebSocket. See www.javafxdata.org for more information about DataFX.

OpenDolphin
OpenDolphin makes prolific use of the Presentation Model pattern. You bind your JavaFX views
to a presentation model, while your application code and your tests operate solely by working on
this model.

Models are automatically kept in sync between the client and the server such that your
controllers can reside on the enterprise server (where enterprise applications are supposed to live
and where they can share information).

With the clean separation of concerns that OpenDolphin enforces (controllers managing
“what” to display and views knowing “how” to display) comes a long list of benefits: The system
becomes easier to modify and extend. It can be easily tested. The UI specifics are kept separate
and are thus easier to adapt to new versions and even entirely new UI toolkits. When the UI
changes, the server-side logic remains untouched, so all your investment in application logic is
protected.

There is even the option to create a totally new class of applications that run on many devices,
follow you wherever you go, and foster teamwork by allowing all team members to work on a
shared presentation state.

But since seeing is believing, you can head over to http://open-dolphin.org and take a look at
the demos.

Best of Open Source Projects
Know your tools: Scene Builder, ScenicView, Gerrit’s converter, your favorite painting program,
color picker, gradient editor, and 3D modeling tool in case you do 3D.

—Dierk König (@mittie)

FIGURE A-2. A design flow that can be implemented with the help of DataFX

11-App.indd 308 5/22/14 4:10 PM

http://www.javafxdata.org
http://open-dolphin.org

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Appendix: JavaFX Resources and Where to Go from Here 309

When developing a JavaFX application, you don’t have to do everything on your own. A lot
of APIs and frameworks based on JavaFX have been developed in the past few months. Here is a
quick overview of some of the most important open source projects:

 ■ ControlsFX, http://fxexperience.com/controlsfx/ An open source project that provides
high-quality UI controls

 ■ JFXtras, http://jfxtras.org A general library that provides those pieces developers often
need in their day-to-day work but that are currently missing from JavaFX

 ■ AquaFX, http://aquafx-project.com A Mac OS theme for JavaFX

 ■ DataFX, www.javafxdata.org An application framework for JavaFX

 ■ TestFX, https://github.com/SmartBear/TestFX An easy-to-use library for testing JavaFX

 ■ ReactFX, https://github.com/TomasMikula/ReactFX An exploration of reactive
programming techniques for JavaFX

Projects are constantly popping up, and I will add an up-to-date list on my web site at
www.guigarage.com/javafx-book/.

Important JavaFX Links
Maintain a list of resources for cool designs, tutorials, code snippets, and so on. Prefer “stealing”
good work over being original.

—Dierk König (@mittie)

In the past few years, a lot of great JavaFX web sites and blogs have sprung up. The following
are the most important ones and will give you a great entry point to the JavaFX community:

 ■ http://fxexperience.com This JavaFX blog was created by some of the JavaFX experts
and architects at Oracle: Jasper Potts, Jonathan Giles, and Richard Bair. The blog releases
a weekly update of JavaFX news.

 ■ http://harmoniccode.blogspot.de This is Gerrit Grunwalds’ JavaFX blog. Here you
can find a lot of interesting articles about JavaFX on embedded devices. (See the end of
Chapter 10 for an interview with Gerrit.)

 ■ www.guigarage.com Okay, this is more of an ad because this is my blog! Here you can
find general articles about JavaFX architecture.

 ■ http://docs.oracle.com/javase/8/javase-clienttechnologies.htm This is the official
JavaFX tutorial site by Oracle.

 ■ https://www.java.net/community/javafx This is the JavaFX community web site. Here
you can find some interesting news about JavaFX.

JavaFX Books
Learn the many JavaFX 8 ways to be productive when building UIs.

—Carl Dea (@carldea)

11-App.indd 309 5/22/14 4:10 PM

http://fxexperience.com/controlsfx/
http://jfxtras.org
http://aquafx-project.com
http://www.javafxdata.org
https://github.com/SmartBear/TestFX
https://github.com/TomasMikula/ReactFX
http://www.guigarage.com/javafx-book/
http://fxexperience.com
http://harmoniccode.blogspot.de
http://www.guigarage.com
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm
https://www.java.net/community/javafx

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

310 Mastering JavaFX 8 Controls

In addition to this book, a few other JavaFX books have been released. Most of these books
are general JavaFX books that try to describe the complete JavaFX framework without going too
deep into the specific elements. Here are the other books that I recommend:

 ■ DiMarzio, J.F. Quick Start Guide to JavaFX. McGraw-Hill Professional, 2014.

 ■ Dea, C, et al. JavaFX 8: Introduction by Example, Second Edition. Apress, 2014.

 ■ Johan Vos, et al. Pro JavaFX 8. Apress, 2014.

JavaFX Application
One last thing I want to mention is that if you ask yourself whether there are any productive JavaFX
applications out there, you’ll find that the answer is yes. For example, at www.eteoboard.de/de/,
you can find a scrum board application that was written completely in JavaFX and is used by a lot
of companies. The application looks really great, has a cool UI, and is completely touch-based (see
Figure A-3). This is a perfect example of what can be done with JavaFX.

Summary
As you can see, the JavaFX community is really big and growing every day. I think JavaFX has a lot
of potential and will be used in a lot of cool applications in the next few years. I can’t wait to see
all this, and I hope you feel the same after reading this book.

FIGURE A-3. The eteoBoard in action

11-App.indd 310 5/22/14 4:10 PM

http://www.eteoboard.de/de/

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

2D games, 6
2D objects, 3
3D objects, 18
3D support, 6, 66
3D systems, 66

A
abstract classes, 188, 189
Abstract Window Toolkit. See AWT
Accordion control, 179–180
ActionEvent class, 270–272
ActionScript class, 5
Affine transformation, 62, 67
alert() function, 201
alert handlers, 201–202
AnchorPane class, 49, 56
AnchorPane pane, 49, 58–59
Android devices, 303
animated images, 209
animation

adding to buttons, 279–286
considerations, 306
creating via transitions, 24–25
duration, 282
overview, 24–25
timeline animations, 24, 25
zooming in/out, 281–282

animation API, 24–25, 279–286
Animation class, 280
Apache Flex toolkit, 5
API design, 187
APIs

animation, 24–25, 279–286
Canvas, 49, 203

concurrent, 24
DataSource, 307
extended transformation, 66–70
F3, 6
flow, 123, 307
FXML, 123
Java2D, 3
printing, 26
private, 19, 20
property, 22–23, 37, 79, 94
public, 19, 20–26
scene graph, 20

Application class, 12
application frameworks, 306–308
Application.init() method, 12
applications

basic controls, 119–126
creating, 119–126
defining main window, 12–18
defining views of, 25
deployment, 29–30
developed with JavaFX, 6
on different operating systems, 18
displaying video in, 210–211
examples of, 310
HelloWorld example, 10–18
hierarchy, 37
HTML, 7–8
JavaFX vs. HTML, 7–8
life cycle, 12
native, 29–30
self-contained, 29–30
starting/stopping, 12
structure of, 37–38
styling. See styles
types of, 6

Index

311

12-Index.indd 311 5/22/14 2:47 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

312 Mastering JavaFX 8 Controls

Application.start() method, 12
Application.stop() method, 12
AquaFX project, 255,

256–257, 309
AquaFX theme, 223, 229, 230
AreaRegion class, 84–85
armed property, 289–290
armed pseudoclass, 287–290
aspect ratio, 81–85, 207
audience, book, xi
AWT (Abstract Window Toolkit)

components, 3–4
considerations, 74
floating points and, 74
vs. IFC, 3
overview, 2–3
Swing and, 3–4, 220
vs. SWT, 5

B
background color, 41
Bair, Richard, 27
bar charts, 195
basic controls, 91–111

demo apps, 92–94, 119–126
example, 91, 92
Labeled, 95–100
overview, 91–94
ProgressBar, 110–111
ProgressIndicator, 110–111
Slider, 106–109
text input, 101–106

BehaviorSkinBase class, 262, 300
bind() method, 23
binding, 23, 187
blendMode property, 50
BMP format, 208
Boolean properties, 94
BorderPane class, 49
borders, panes, 73, 74–76
boundsInLocal property, 50
boundsInParent property, 50
browsers, 7, 201
BufferedImage, 220
Button control, 98
ButtonBase class, 98
buttons

adding animation to, 279–286
custom, 97
demo, 290–291
functions, 98
labeled text, 95–100
layout of, 18
radio, 47–48, 99–100
scaling and, 98

in scene graph, 55, 56
TextAreas and, 105–106
ToggleButton, 99–100

C
cache property, 50
cacheHint property, 50
callback, 136
Camera property, 38
cancelEdit() method, 147
Canvas API, 49, 203
Canvas class, 48
Canvas node, 48, 49, 202–206, 302
Cascading Style Sheets. See CSS
Caspian style, 187
Caspian theme, 228, 229
CDI (context dependency injection), 307
Cell class, 136–142
cell factory, 136
CellDataFeatures, 153
cells. See also tables

adding to tables, 155–156
color, 139, 140, 146–148
custom, 136–142
editing content of, 156–159
empty, 139
shape of, 139–140
types of, 155–156

ChangeListener instance, 129, 289
Chart class, 192–195
chart nodes, 49, 192–195
charts, 192–195

bar, 195
defining data in, 193, 194
legends, 194–195
pie, 192–193
styles, 195, 248–250
types of, 49, 192
x-y, 192, 194–195

CheckBox class, 99
Checkbox control, 99
checkboxes, 55, 99, 144–146
CheckBoxListCell, 144–146
child nodes, 2, 37, 71, 74–75
click events, 43
clip property, 54
codecs, video, 210
collections, 23–24
color

background, 41
canvas, 205
cells, 139, 140, 146–148
controls, 185–186, 269
in CSS, 233, 235–236, 253
custom, 185–186

12-Index.indd 312 5/22/14 2:47 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Index 313
fills, 205
lists, 139, 140, 146–148
selecting, 185–186

ColorListCell class, 146–148
ColorPicker control, 185–186
columns, defining, 151
ComboBox class, 131–133
ComboBox control, 128–134
ComboBoxBase class, 131, 132
common widget (CW) framework, 5
Comparator, 160
component sizes, 72
compute() methods, 72
concurrent API, 24
constraints, 85–86
containers, control types used as,

176–181
content bias, 82–85
context dependency injection (CDI), 307
ContextMenu, 114–116
Control classes, 90–91, 114–117
controls. See also nodes; specific controls

adding effects to, 290–295
adding event handling to, 270–272
adding to scene graph, 269–270
animation in. See animation
basic. See basic controls
color, 185–186, 269
considerations, 189
creating, 264–300
custom. See custom controls
for data display, 128–176
data model, 128–176
defining size for, 266–267
on different devices, 302–303
hierarchy of, 90
HTMLEditor, 181–183
properties, 90, 91
shapes, 267–269
skin. See skin
structure, 260–264
styles. See styles
tool tips, 112–114
used as containers, 176–181
visual representation, 267–269
workflow, 301
zooming in/out, 281–282

ControlsFX project, 309
converter class, 283–284
converters, 282–284
CPU speed, 302
CSS (Cascading Style Sheets), 230–257.

See also styles
adding efects, 290–295
advantages of, 7
analyzing controls/nodes, 242
animated buttons, 279–286
basics, 230–232

cascading functionality, 231–232, 237,
247–248

changing style sheets, 286
charts, 195, 248–250
color in, 233, 235–236, 253
considerations, 7, 231–232
in custom controls, 272–300
custom CSS value types, 279–286
defining information about, 272–274
fills, 235–237
goal of, 230
in JavaFX, 231, 232–257
measurement units, 234–235
nodes and, 237–242
origin, 272
properties, 231
pseudoclasses and, 239
refactoring, 236
relative values, 283
selector/rules example, 242–247
support for, 25–26
themes, 228–230
tips for, 256
types of style sheets, 247
types of styles, 187
using selectors, 237–247
values, 231
web vs. JavaFX content, 254–255

CSS 2.1 specification, 231
CSS Analyzer, 242
CSS documentation, 291
CSS files, 58, 237
CSS ID specification, 55
CSS pseudoclasses, 239–240, 286–290
CSS rules, 231, 232, 233, 247
CSS selectors, 237–247
CSS3 specification, 74
CssHelper class, 277–279
CssMetaData instances, 272–274, 286
CssMetaData objects, 286
Cursor property, 39, 50
custom classes, 79–81
custom controls, 259–303. See also controls

adding button animation, 279–286
adding effects to, 290–295
adding event handling to, 270–272
adding to scene graph, 269–270
color, 269
control structure, 260–264
creating, 264–300
defining size for, 266–267
Grunwald on, 300–303
JavaFX and, 300–301
shapes, 267–269
skin. See skin
styling, 272–300
visual representation, 267–269
workflow, 301

12-Index.indd 313 5/22/14 2:47 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

314 Mastering JavaFX 8 Controls

custom interfaces, 188, 189
custom panes, 71–73
CW (common widget) framework, 5

D
data

displaying. See data display
filtering, 173–176
hierarchical, 165–171
sorting, 159–161, 173–176

data display, 128–176
ComboBox control, 128–134
ListView control, 134–150
sorting/filtering data, 173–176
TableView control, 150–165
TreeTableView control,

171–173
TreeView control, 165–171

data models, 128–176, 165–171
data types, 282–284
DataFX framework, 123, 307–308
DataFX project, 309
DataSource API, 307
date selection, 183–184
DatePicker control, 183–184
depthTest property, 50
derive() function, 253
devices

different platforms, 303
different types of, 302–303
embedded, 188
emulators, 303
gestures, 44, 45, 62, 64, 65

disable property, 50, 218
disabled property, 51
dispose() method, 299–300
domain-specific language (DSL), 31
DoubleProperty property, 76–77
DSL (domain-specific language), 31

E
EDT (event dispatch thread), 215,

221–222
effect property, 54, 291
effects

adding to controls, 290–295
considerations, 306
examples of, 291–292
types of, 291–292
use of, 306

embedded devices, 188
emulators, 303
enums, 85, 86
event dispatch chain, 45

event dispatch thread (EDT), 215,
221–222

event filters, 43
event handling

adding to controls, 270–272
alert handlers, 201–202
mouse handler, 271, 272
overview, 21–22
scene graph, 41, 44–46

eventDispatcher property, 39, 51
EventHandler class, 270–272
EventHandler properties, 41
events, 43–45, 65
examples, in book, xi
expression classes, 94
extended transformation APIs,

66–70

F
F3 API, 6
F3 framework, 6
file systems, 165, 167
files

CSS, 58, 237
FXML, 25, 27, 58, 119–120
hierarchy, 169
HTML, 201
image, 208
media, 6
resources, 58
SVG, 98, 301
XML-based, 5

fill() method, 205
fill property, 39
fills, 205, 235–237
FilteredList, 174
filtering data, 173–176
fireEvent() method, 271–272
floating-point bounds, 74
flow API, 123, 307
FlowPane class, 49
focused property, 51
focusOwner property, 39
focusTraversable property, 51
FX Experience blog, 27–29
FX Experience Tools, 28–29
FXCanvas class, 223–225
-fx-effect CSS property, 291
FXML

considerations, 25, 57–58
described, 25, 57
example code, 58–60
using with scene graph, 56–60

FXML API, 123
FXML files, 25, 27, 58, 119–120
FXMLLoader class, 58, 123

12-Index.indd 314 5/22/14 2:47 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Index 315

G
geometrical enums, 85, 86
gesture events, 44, 65
gestures, 44, 45, 62, 64, 65
getBoundsInLocal() method, 88
getBoundsInParent() method, 88
getChildren() method, 48
getContentBias() method, 80–81
getCssMetaData() method, 286
getPixelReader() method, 208, 209
getPixelWriter() method, 208
getSkinnable() method, 261, 266
getStyleClass() method, 238
getStylesheets() method, 247, 252
getter method, 37
GIF format, 208, 209
Giles, Jonathan, 27, 186–190
global menu bar, 114, 117
global objects, 274
GPU, 302
graphic property, 112, 114, 171
graphical interfaces, 27
graphical user interface (GUI) elements, 2
graphics. See also images

animated, 209
Canvas node, 202–206
size of, 206–209

Graphics2D class, 202
GraphicsContext class, 202–206
GridPane class, 49, 93
GroovyFX, 30–31
Grunwald, Gerrit, 300–303
GUI (graphical user interface) elements, 2

H
HBox class, 36–37, 49
heavyweight components, 2
height property, 39
HelloWorld application, 10–18
helper classes, 277–279
HorizontalDirection enum, 86
hover property, 51
HPos enum, 86
HTML

editing, 181–183
vs. JavaFX, ix, 7–8
showing on screen, 49, 195–202

HTML applications, 7–8
HTML files, 201
HTML rendering, 195–202
HTML5, 7–8
HTML5 canvas, 202
HTMLEditor control, 181–183
Hyperlink control, 99
hyperlinks, 99

I
IBM, 5
id property, 51
IFC (Internet Foundation Classes) library, 3
Image class, 208–209
image files, 208
images. See also graphics

animated, 209
formats, 208
loading/rendering onscreen, 49, 206–209
size of, 206–209

ImageView class, 207–208
ImageView node, 49, 206–209
!important flag, 248
i.MX6 quadcore, 303
IndexedCell class, 239, 240
initialize() method, 125–126
inline style sheet, 247
insets, 74–78
interactive Canvas, 205–206
interfaces, 188–189
Internet Foundation Classes (IFC) library, 3
iPad, 303
item property, 129

J
Java Abstract Window Toolkit. See AWT
Java Foundation Classes (JFC) framework, 3
Java language, 2
Java Native Interface (JNI), 5
Java SE (Java Standard Edition), 2
Java SE UI toolkits, 2–4
Java Standard Edition. See Java SE
Java2D API, 3
Java2D classes, 66, 202
Java-based UI toolkits, 1–8
Java-based web frameworks, 8
JavaFX

basics, 9–33
considerations, ix
HelloWorld example, 10–18
history, 6
vs. HTML, ix
vs. HTML5, 7
integrating with Swing, 214–223
integrating with SWT, 223–225
learning curve, ix
native layer, 19
private layer, 19, 20
public layer, 19, 20–26
resources, 305–310
retrieving examples, xi
script language integration, 30–33
themes, 223, 228–230, 257
tool tips, 112–114
visual tools, 26–29

12-Index.indd 315 5/22/14 2:47 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

316 Mastering JavaFX 8 Controls

JavaFX 8 controls. See controls
JavaFX applications. See applications
JavaFX binding, 187
JavaFX blogs, 309
JavaFX books, 309–310
JavaFX community, 306, 309
JavaFX community web site, 309
JavaFX controls. See controls
JavaFX CSS documentation, 291
JavaFX CSS Reference Guide, 233
JavaFX demo, 306, 307
JavaFX library stack, 19
JavaFX links, 309
JavaFX nodes. See nodes
JavaFX Public Packages, 20, 21
JavaFX Script, 6
JavaFX skin. See skin
JavaFX toolkit, 19–20
JavaFX web sites, 309
javafx.beans.binding package, 94
javafx.geometry package, 85, 86
javafxpackager tool, 29–30
javafx.scene package, 20
javafx.scene.transform package, 66
JavaScript, 7, 32
JComponent class, 3
JFC (Java Foundation Classes) framework, 3
JFXPanel, 214–219
JFXtras project, 309
JNI (Java Native Interface), 5
JPEG format, 208
JVM support, 31, 32

L
Label class, 98
Labeled class, 95–100
labeled controls, 95–100
ladder() function, 253–254
LAF (LookAndFeel), 3
Lambda expressions, 41
lambdas, 41, 188
launch() method, 12
layout mechanisms, 81–85
layoutBounds property, 51
layoutChildren() method, 72, 76, 85
layoutInArea() method, 72, 85
LayoutPanes nodes, 48–49
layouts, 81–88
layoutX property, 51
legends, chart, 194
LESS language, 256
lightweight components, 3
lists, 134–150

color, 139, 140, 146–148
custom cells in, 136–142

editing content of, 142–148
properties of, 136, 137
selecting items in, 135–136
selection model, 148
sorting data in, 173–176

ListView control, 134–150
localToParentTransform property, 52
login dialog example, 93–94,

232–237
LookAndFeel (LAF), 3
lookup method, 55

M
MacBook, 65
main method, 12
managed property, 52
matrix, 69
matrix multiplication, 69
matrix operations, 67
media files, 6
Media instance, 211
media playback, 210–211
MediaPlayer class, 211
MediaView node, 49, 210–211
menu bars

global, 114, 117
MenuBar, 114, 116–117
system, 114, 117

Menu class, 116–117
MenuBar class, 114, 116–117
menus, 114–119

context, 114–116
menubars, 114, 116–117
separators, 117–119

metadata, 6
Microsoft Surface tablet, 65
middleware, 306–308
Model-View-Controller (MVC) pattern, 3,

120–121, 260, 307
Modena style, 187
Modena theme, 228
mouse

armed pseudoclass, 287–290
click events, 43
tooltips, 112–114

mouse cursor, 41, 281–282
mouse handler, 271, 272
mouseTransparent property, 52
multimedia content, 49, 210–211
MultipleSelectionModel class,

148–150
MultipleSelectionModelBase class, 161
MVC (Model-View-Controller) pattern, 3,

120–121, 206, 307
MXML library, 5

12-Index.indd 316 5/22/14 2:47 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Index 317

N
Nashorn engine, 32–33
native layer, 19
native libraries, 19
Netscape, 3
Node class

CSS and, 237–242
hierarchy, 46
properties, 50–54
transformations, 62–69

node types, 46–56
NodeOrientation enum, 86
nodeOrientation property, 39, 52
nodes, 191–211. See also controls

3D systems, 66
accessing bounds of, 88
adding transforms, 62–70
basics, 50–56
Canvas, 48, 49, 202–206, 302
Chart, 49, 192–195
child, 37, 71, 72, 74–75
combining transforms/layouts, 86–88
complex, 49
constraints, 85–86
custom panes, 71–73
described, 18
examples of, 18
floating-point bounds, 74
hierarchy, 37, 41
ImageView, 49, 206–209
laying out in scene graph, 70–86
layout mechanisms, 81–85
managing, 18
MediaView, 49, 210–211
parent, 37
placing in panes/regions, 72–73
primitive, 46–48
root, 18, 37
rotating, 62–70
scaling, 62, 98
in scene graph, 36, 37, 46–56, 61–88
shearing, 62, 67–69
size of, 72–73
SwingNode, 49, 214, 219–220
transforming. See transformations
translation, 62, 63–69
types of, 46–49
WebView, 49, 195–202

normal style sheets, 247
numeric values, 106–109

O
objects. See also shapes

2D, 3
3D, 18

ChangeListener and, 289
CssMetaData, 286
global, 274
transforming. See transformations

ObservableList, 129, 174, 175, 193, 194
Oliver, Chris, 6
on property, 39
onAction event handler, 98
onAction property, 271
opacity property, 52
open source projects, 308–309
OpenDolphin, 308
Oracle, 6
Oracle Press web site, xi
Orientation enum, 86

P
padding, 73–78
Pagination control, 180–181
paint functionality, 48
Pane classes, 48–49, 71
panes. See also specific panes

borders, 73, 74–76
class hierarchy, 70–71
constraints, 85–86
creating custom pane, 71–73
custom, 71–74
layout, 48–49
padding, 73–78
placing nodes in, 72–73
size, 72, 79
sort order, 73
spacing, 76–79

parent nodes, 37
parent property, 52
PasswordField control, 101
passwords, 101
performance, 303
pickOnBounds property, 52
pie charts, 192–193
pinch events, 44, 45
pivot point, 69
pixel-based images, 98
PixelReader, 208, 209
PixelWriter, 208
play() method, 211
playback, media/video, 210–211
PNG format, 208
Pos enum, 86
Potts, Jasper, 27
presentation model, 308
preserveRatio property, 207
pressed property, 52
primitive nodes, 46–48
primitives, 64

12-Index.indd 317 5/22/14 2:47 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

318 Mastering JavaFX 8 Controls

printing APIs, 26
printing support, 26
Prism, 19
private APIs, 19, 20
private layer, 19, 20
progress indicators, 110–111
progress property, 111
ProgressBar control, 110–111
ProgressIndicator control, 110–111
promptText property, 93
properties

bindings, 23
in custom classes, 79–81
setting, 40–41

property API, 22–23, 37, 79, 94
Property interface, 22
PropertyValueFactory class, 154
PseudoClass class, 286–290
pseudoclass selector, 239
pseudoclasses, 239–240, 286–290
public APIs, 19, 20–26
public layer, 19, 20–26
public methods, 42

R
radio buttons, 47–48, 99–100
RadioButton control, 99–100
Raspberry Pi, 303
RCP (rich client platform), 5
ReactFX project, 309
rectangles, 205–206
Region class, 48, 74–81, 90
Region node, 301
regions

aspect ratio, 81–85
child nodes, 74
content bias, 82–85
insets, 74–78
margins, 74
placing nodes in, 72–73
size, 79
visual structure of, 74–81

Region.USE_COMPUTED_SIZE flag, 79
Region.USE_PREF_SIZE flag, 79
relative values, 283
requestLayout() method, 84
resolution, screen, 302–303
resources, 305–310
resources files, 58
RIAs (rich Internet applications), 7
rich client platform (RCP), 5
rich Internet applications (RIAs), 7
rich text, 181–183
root node, 18, 37
root property, 40
root style class, 251

rotate property, 53
rotation, nodes, 62–70
rotation pivot, 69
rotationAxis property, 53
Runnable instances, 215

S
Scalable Vector graphic (SVG), 98, 301
ScalaFX, 31–32
scaleX property, 53, 281
scaleY property, 53, 281
scaleZ property, 53
scaling nodes, 62, 98
Scene Builder, 27, 119–126
Scene class, 18, 37–44
scene graph, 35–60

3D systems, 66
adding controls to, 269–270
buttons in, 55, 56
checkboxes in, 55
combining transforms/layouts,

86–88
described, 18
event filter, 42, 43, 44
event handling and, 41, 44–46
image size and, 206–209
laying out nodes in, 70–86
layout mechanisms, 81–85
nodes in, 36, 37, 46–56, 61–88
Scene class, 37–44
shapes, 46–48
snapshot feature, 42, 43, 44
transforming nodes on, 62–70
using, 18, 36–37
using FXML with, 56–60

scene graph API, 20, 62
scene graph style sheet, 247
scene property, 53
Scenic View application, 27–28
screen resolution, 302–303
screenshots, 44
scroll bars, 103
SeeBeyond, 6
selection model

lists, 148
tables, 161

Separator control, 117–119
separators, menu, 117–119
Series class, 194
setRotate() method, 69
setter method, 37, 40
shadow effects, 291–292
shapes

controls, 267–269
provided by JavaFX, 205–206
rectangles, 205–206

12-Index.indd 318 5/22/14 2:47 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Index 319
scene graph, 46–48
SVG, 301

shearing nodes, 62, 67–69
Side enum, 86
SimpleDoubleProperty class, 79–80
singleThread flag, 221–222
single-thread mode, 221–222
skin

adding alternative skin, 296–298
behavior, 262
defining default skin, 265–266
disposing of, 299–300
overview, 260, 261–264
UML diagram, 261, 262
updating, 292

Skin class, 262, 292–298, 301, 303
skin instances, 265–267
Skin interface, 261–264
SkinBase class, 261, 262–264, 267, 299
skinnable instance, 262
Skinnable interface, 261
Slider class, 106–109
Slider controls, 80, 106–109
snapshot method, 42, 43, 44
SortedPane class, 73–81
sorting data

in lists, 173–176
in tables, 159–161

sortPolicy property, 160
Spark, 5
SplitPane class, 176–178, 179
SplitPane control, 176–178, 179
StackPane class, 49
StackPane control, 48, 49, 68, 178
Stage class

defining main window, 12–18
methods, 15
properties, 12–14

Standard Widget Toolkit. See SWT
startEdit() method, 147–148
String instances, 128–129
StringProperty, 94
style classes, 237–239
Style property, 53
style sheets, 231, 247, 252. See also CSS
StyleableProperty interface, 272–278
StyleConverter class, 282–284
StyleOrigin type, 272
styles, 227–257. See also CSS

best practices, 250–254
charts, 195, 248–250
considerations, 228
login dialog example, 232–237
stage, 16–17
styling custom controls, 272–300
themes, 228–230

subviews, 176
Sun Microsystems, 3, 6

SVG (Scalable Vector graphic), 98, 301
SVG files, 98, 301
SVG shapes, 301
Swing, 3–4

AWT and, 3–4, 220
components, 3–4
integrating with JavaFX, 214–223
interoperability with, 26

SwingNode, 49, 214, 219–220
SWT (Standard Widget Toolkit), 5, 223–225
SWT JAR file, 223

T
table API properties, 161–165
TableCell class, 165
TableColumn class, 151, 156, 164–165
TableColumnBase class, 163–164
TableRow class, 156
tables, 150–165

adding columns to, 157–158
adding different cell types to, 155–156
cells. See cells
custom actions, 157–158
defining columns, 151
filling with data, 151–155
selection model, 161
sorting data in, 159–161

TableSelectionModel class, 161
TableView class, 161, 162–163
TableView control, 150–165
TableViewSelectionModel class, 161
TabPane control, 178–179
tabs, 178–179
Task class, 111
task progress, 110–111
TestFX project, 309
text

entering on screen, 101–106
HTML. See HTML
labeled, 95–100
positioning, 101
rich, 181–183
scroll bars, 103
wrapping, 103

text hint, 93
text input controls, 101–106
TextArea class, 103, 104
TextArea control, 103–106
TextField class, 101, 103, 104–105
TextField control, 101, 104–105
TextFieldListCell class, 142–143
TextFieldTableCell class, 157
TextFlow class, 49
TextInputControl class, 101–106
themes, 223, 228–230, 257
thread, single, 221–222

12-Index.indd 319 5/22/14 2:47 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

320 Mastering JavaFX 8 Controls

TilePane class, 49
timeline animations, 24–25
ToggleButton control, 99–100
toolkits

Apache Flex, 5
AWT. See AWT
JavaFX, 19–20
SWT, 5, 223–225
UI, 1–8

Tooltip class, 112–114
tooltip property, 112–114
tooltips, 112–114
touchpad, 44
Transform class, 66–67
Transform instances, 68–69
transformations, 62–70

Affine, 62, 67
class hierarchy, 67
combining transforms/layouts, 86–88
extended transformation APIs, 66–70
translation, 63–69

transitions, 24–25
translateX property, 53
translateY property, 53
translateZ property, 53
translation, 62, 63–69
tree structure, 165–171
TreeCell class, 171
TreeItem class, 166
TreeTableView control, 171–173
TreeView control, 165–171
Typesafe website, 31

U
UI (user interface), 2, 306
UI styles, 187
UI toolkits, 1–8
updateEffect() method, 292
updateViewMode() mode, 147
user agent style sheet, 247
user experience (UX), 306
user interface. See UI
useSystemMenuBar property, 117
useTransform() method, 69
UX (user experience), 306

V
VBox class, 37, 49
vector-based graphics, 98
VerticalDirection enum, 86
video, 210–211

video codecs, 210
video formats, 210
video playback, 210–211
views, 176–178
visible property, 54
visual tools, 26–29
VisualAge for Java, 5
VPos enum, 86

W
W3C (World Wide Web Consortium),

74, 230
web applications, 7
web browsers, 7, 201
web pages, loading, 195–202
WebEngine class, 195–202
WebKit, 49, 195, 201, 211
WebKit-based engine, 201
WebView node, 49, 195–202
width property, 40
Window classes

hierarchy, 12, 13
methods, 15, 16
properties, 14–15

window property, 40
World Wide Web Consortium (W3C), 74, 230

X
x axis, 66
X position, 72, 76
x property, 40
XML attributes, 120
XML tags, 120
XML-based files, 5
x-y charts, 192, 194–195

Y
y axis, 66
Y position, 72, 76
y property, 40

Z
z axis, 66
Zillmann, Claudine, 254–257
zoomIn() method, 281
zooming in/out, 281–282
zoomOut() method, 281

12-Index.indd 320 5/22/14 2:47 PM

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Join the Largest
Tech Community

in the World
 Download the latest software, tools,
and developer templates

Get exclusive access to hands-on
trainings and workshops

Grow your professional network through
the Oracle ACE Program

Publish your technical articles – and
get paid to share your expertise

Join the Oracle Technology Network
Membership is free. Visit oracle.com/technetwork

@OracleOTN facebook.com/OracleTechnologyNetwork

12-Index.indd 321 5/22/14 2:47 PM

http://www.oracle.com/technetwork
http://www.facebook.com/OracleTechnologyNetwork

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

START TODAY

cert i f ication.oracle.com

Your Future.
Fast-track your career with an Oracle Certification.

Over 1.5 million
certifications testify to

the importance of these
top industry-recognized
credentials as one of the
best ways to get ahead.

Our Technology.

AND STAY THERE.

12-Index.indd 322 5/22/14 2:47 PM

http://www.certification.oracle.com

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 123022

You Need an Oracle ACE
Oracle partners, developers, and customers look to
Oracle ACEs and Oracle ACE Directors for focused
product expertise, systems and solutions discussion,
and informed opinions on a wide range of data center
implementations.

Their credentials are strong as Oracle product and
technology experts, community enthusiasts, and
solutions advocates.

And now is a great time to learn more about this
elite group—or nominate a worthy colleague.

For more information about the
Oracle ACE program, go to:
oracle.com/technetwork/oracleace

Need help? Need consultation?
Need an informed opinion?

Stay Connected

oracle.com/technetwork/oracleace

 oracleaces

 @oracleace

 blogs.oracle.com/oracleace B

12-Index.indd 323 5/22/14 2:47 PM

http://www.oracle.com/technetwork/oracleace
http://www.oracle.com/technetwork/oracleace
http://www.blogs.oracle.com/oracleace

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3 Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Reach More than 700,000 Oracle Customers
with Oracle Publishing Group

Connect with the Audience
that Matters Most to Your Business

Oracle Magazine
The Largest IT Publication in the World
Circulation: 550,000
Audience: IT Managers, DBAs, Programmers, and Developers

Profit
Business Insight for Enterprise-Class Business Leaders to
Help Them Build a Better Business Using Oracle Technology
Circulation: 100,000
Audience: Top Executives and Line of Business Managers

Java Magazine
The Essential Source on Java Technology, the Java
Programming Language, and Java-Based Applications
Circulation: 125,000 and Growing Steady
Audience: Corporate and Independent Java Developers,
Programmers, and Architects

For more information
or to sign up for a FREE
subscription:
Scan the QR code to visit
Oracle Publishing online.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 113940

12-Index.indd 324 5/22/14 2:47 PM

Join the Oracle Press Community at

OraclePressBooks.com
Find the latest information on Oracle products and

technologies. Get exclusive discounts on Oracle

Press books. Interact with expert Oracle Press

authors and other Oracle Press Community members.

Read blog posts, download content and multimedia,

and so much more. Join today!

Join the Oracle Press Community today

and get these benefits:

• Exclusive members-only discounts and offers

• Full access to all the features on the site: sample

chapters, free code and downloads, author blogs,

podcasts, videos, and more

• Interact with authors and Oracle enthusiasts

• Follow your favorite authors and topics and

receive updates

• Newsletter packed with exclusive offers and

discounts, sneak previews, and author podcasts

and interviews

@OraclePress

	Cover
	Title Page
	Copyright Page
	About the Author
	About the Technical Editor

	Contents
	Introduction
	Chapter 1: The History of Java UI Toolkits
	Java SE UI Toolkits
	AWT
	Java Foundation Classes and the Emergence of Swing
	Swing

	Additional UI Toolkits
	SWT
	Apache Flex

	The Way to JavaFX
	From F3 to JavaFX 8

	JavaFX Compared to HTML5 and Web-Based Technologies
	Java-Based Web Frameworks

	Summary

	Chapter 2: JavaFX Basics
	Your First JavaFX Application
	JavaFX Application Life Cycle
	Defining the Main Window by Using the Stage Class
	The Scene Graph

	Technical Design of the JavaFX Toolkit
	The Native Layer
	Private API Layer
	Public API Layer

	JavaFX Public APIs
	Application and Life Cycle
	Stage API
	Scene Graph and Controls
	Event Handling
	Property API
	Collections
	Concurrent API
	Animations
	FXML
	CSS Support
	Printing
	Interoperability with Swing

	Tools
	Scene Builder
	Scenic View
	FX Experience Tools

	Deployment/Native Builds
	JavaFX Goes Polyglott
	GroovyFX
	ScalaFX
	JavaFX and Nashorn

	Summary

	Chapter 3: The Scene Graph
	Using and Integrating the Scene Graph in a JavaFX Application
	The Scene Class
	Event Handling
	Node Types
	Primitive Nodes
	LayoutPanes
	Complex Nodes

	Node Basics
	FXML
	Summary

	Chapter 4: Laying Out and Transforming Nodes in the Scene Graph
	Adding Some Transformations
	Adding a Third Dimension
	Extended Transformation APIs

	Laying Out Nodes
	Creating a Custom Pane
	The Visual Structure of a Region
	Extended Internal Layout Mechanisms
	Additional Layout Mechanisms
	The javafx.geometry Package
	Working with Constraints

	Combining Transforms and Layout
	Accessing the Bounds of a Node

	Summary

	Chapter 5: JavaFX Basic Controls
	The Control Class
	Basic Controls
	Labeled Controls
	Controls for Text Input
	Slider
	ProgressIndicator and ProgressBar

	Tooltip of a Control
	Using Menus in JavaFX
	Using Separators

	Creating an Application with Basic Controls
	Summary

	Chapter 6: Additional JavaFX Controls
	Controls with a Data Model
	ComboBox
	ListView
	TableView
	TreeView
	TreeTableView
	Sorting and Filtering Data

	Controls That Act as Containers
	Additional Controls
	HTMLEditor
	DatePicker
	ColorPicker

	Summary

	Chapter 7: Additional JavaFX Nodes
	Charts
	WebView
	Canvas

	ImageView
	MediaView
	Summary

	Chapter 8: Integrating JavaFX, Swing, and SWT
	Combining JavaFX and Swing
	Using the JFXPanel
	Using the SwingNode
	Using the Experimental Single-Thread Mode
	Pros and Cons of the Integration

	Combining JavaFX and SWT
	Using the FXCanvas

	Summary

	Chapter 9: Styling a Control
	Using Themes to Style an Application
	CSS Basics
	CSS in JavaFX
	Using Selectors
	Summary of the Cascading Feature
	Styling a Chart
	Best Practices for Styling Applications and Controls

	Summary

	Chapter 10: Custom Controls
	The Structure of a Control
	The Skin
	The SkinBase Class

	Creating a Custom Control
	Adding Event Handling
	Styling the Control

	Summary

	Appendix: JavaFX Resources and Where to Go from Here
	Make Your UI Shine
	JavaFX-Related Middleware and Application Frameworks
	DataFX
	OpenDolphin

	Best of Open Source Projects
	Important JavaFX Links
	JavaFX Books
	JavaFX Application
	Summary

	Index

