
www.allitebooks.com

http://www.allitebooks.org

Mastering Clojure Data Analysis

Leverage the power and flexibility of Clojure through
this practical guide to data analysis

Eric Rochester

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Clojure Data Analysis

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded
in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2014

Production Reference: 1200514

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-413-9

www.packtpub.com

Cover Image by Jarosław Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Eric Rochester

Reviewers
Masato Hagiwara

Bart Kastermans

Nicholas Quirk

Andrew Stine

Commissioning Editor
Edward Gordon

Acquisition Editor
Greg Wild

Content Development Editor
Athira Laji

Technical Editors
Arwa Manasawala

Mrunmayee Patil

Nachiket Vartak

Copy Editors
Aditya Nair

Stuti Srivastava

Project Coordinator
Neha Thakur

Proofreaders
Simran Bhogal

Ameesha Green

Clyde Jenkins

Indexers
Tejal Soni

Priya Subramani

Graphics
Ronak Dhruv

Yuvraj Mannari

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Eric Rochester enjoys reading, writing, and spending time with his wife and
kids. When he's not doing these things, he likes to work on programs in a variety
of languages and platforms. Currently, he is exploring functional programming
languages, including Clojure and Haskell. He has also written Clojure Data Analysis
Cookbook, Packt Publishing. He works at the Scholars' Lab library at the University
of Virginia, helping the professors and graduate students of humanities realize
their digitally informed research agendas.

I'd like to thank almost everyone. My technical reviewers proved
invaluable. Also, thank you to the editorial staff at Packt Publishing.
This book is much stronger for all of their feedback, and any
remaining deficiencies are mine alone.
Thank you to Bethany Nowviskie and Wayne Graham. They've
made the Scholars' Lab a great place to work at; they have interesting
projects and give us space to explore our own interests as well.
A special thank you to Jackie, Melina, and Micah. They've been
exceptionally patient and supportive while I worked on this project.
Without them, it wouldn't be worth it.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Masato Hagiwara works as a lead scientist at the Rakuten Institute of Technology,
New York. He received his PhD in Information Science from Nagoya University
in 2009. Before joining Rakuten, he worked at Google and Microsoft Research as
an intern, and at Baidu, Japan as a full-time R&D engineer, focusing on Japanese
language processing related to search engines. His research interests include Japanese
and Chinese word segmentation, knowledge acquisition, transliteration, and language
education. He received several awards from Japanese domestic conferences for his
work on knowledge acquisition and transliteration. He extensively uses Clojure
for his research projects.

To Lynn and Daphne, thank you for filling my life with smiles
and happiness.

Bart Kastermans is an academician turned software developer. He has worked
in set and computability theory, before giving in to his long-standing interest in
information technology. Currently, he is working as a data scientist at AdGoji,
a mobile marketing start-up in Amsterdam.

www.allitebooks.com

http://www.allitebooks.org

Nicholas Quirk has been a lifelong resident of Massachusetts. He currently
works as one of the few in-house programmers for a billion-dollar manufacturing
company. Working there for only three years, he was the sole designer and
programmer responsible for the rewriting of some legacy applications, most notably,
the production scheduling and order entry software. He has a continuous drive
for self improvement. His interests tend to sit in two realms; arts and technology,
which he likes to meld when the opportunity presents itself. His art interests
include watercolors, drawing (traditional and digital), digital photography, learning
languages, and playing the piano. His technical interests include learning about
functional programming (Clojure, Haskell, or just about any LISP), language design,
compilers, virtual machines, and game design. He also has an unending curiosity in
typography, sequential art, text editor color schemes, and knowing how to trick the
brain into learning.

You can find more information about him at www.nicholas-quirk.com.

I'd like to thank my partner Caitlin. She has a great set of ears and
did a fantastic job editing my biography.

Andrew Stine is a software developer from Northern Virginia. He loves
coding and has used a wider variety of technologies than he would care to
recall. His favorite language is Clojure.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Network Analysis – The Six Degrees of Kevin Bacon	 7

Analyzing social networks	 8
Getting the data	 9
Understanding graphs	 9
Implementing the graphs	 10

Loading the data	 15
Measuring social network graphs	 16

Density	 16
Degrees	 17
Paths	 18
Average path length	 19
Network diameter	 20
Clustering coefficient	 20
Centrality	 21
Degrees of separation	 22

Visualizing the graph	 25
Setting up ClojureScript	 25
A force-directed layout	 26
A hive plot	 31
A pie chart	 34

Summary	 37
Chapter 2: GIS Analysis – Mapping Climate Change	 39

Understanding GIS	 39
Mapping the climate change	 40

Downloading and extracting the data	 42
Downloading the files	 43
Extracting the files	 44

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Transforming the data – filtering	 45
Rolling averages	 47

Reading the data	 48
Interpolating sample points and generating heat maps using inverse
distance weighting (IDW)	 51

Working with map projections	 55
Finding a base map	 57

Working with ArcGIS	 57
Summary	 61

Chapter 3: Topic Modeling – Changing Concerns in the State
of the Union Addresses	 63

Understanding data in the State of the Union addresses	 64
Understanding topic modeling	 65
Preparing for visualizations	 67
Setting up the project	 67
Getting the data	 68

Loading the data into MALLET	 71
Visualizing with D3 and ClojureScript	 77
Exploring the topics	 82

Exploring topic 43	 83
Exploring topic 26	 86
Exploring topic 42	 89

Summary	 92
Chapter 4: Classifying UFO Sightings	 93

Getting the data	 94
Extracting the data	 95
Dealing with messy data	 97
Visualizing UFO data	 99
Description	 104
Topic modeling descriptions	 107
Hoaxes	 110

Preparing the data	 111
Reading the data into a sequence of data records	 112
Splitting the NUFORC comments	 114
Categorizing the documents based on the comments	 115
Partitioning the documents into directories based on the categories	 116
Dividing them into training and test sets	 117

Classifying the data	 118
Coding the classifier interface	 119
Running the classifier and examining the results	 123

Summary	 124

Table of Contents

[iii]

Chapter 5: Benford's Law – Detecting Natural
Progressions of Numbers	 125

Learning about Benford's Law	 125
Applying Benford's law to compound interest	 128
Looking at the world population data	 131

Failing Benford's Law	 134
Case studies	 137
Summary	 138

Chapter 6: Sentiment Analysis – Categorizing Hotel Reviews	 139
Understanding sentiment analysis	 140
Getting hotel review data	 141
Exploring the data	 141
Preparing the data	 142

Tokenizing	 142
Creating feature vectors	 143
Creating feature vector functions and POS tagging	 146

Cross-validating the results	 148
Calculating error rates	 151
Using the Weka machine learning library	 153

Connecting Weka and cross-validation	 155
Understanding maximum entropy classifiers	 156
Understanding naive Bayesian classifiers	 157

Running the experiment	 158
Examining the results	 160

Combining the error rates	 162
Improving the results	 163
Summary	 163

Chapter 7: Null Hypothesis Tests – Analyzing Crime Data	 165
Introducing confirmatory data analysis	 166
Understanding null hypothesis testing	 166

Understanding the process	 167
Formulating an initial hypothesis	 167
Stating the null and alternative hypotheses	 167
Determining appropriate tests	 170
Selecting the significance level	 171
Determining the critical region	 172
Calculating the test statistics and its probability	 173
Deciding whether to reject the null hypothesis or not	 173

Flipping coins	 173
Formulating an initial hypothesis	 174
Stating the null and alternative hypotheses	 174
Identifying the statistical assumptions in the sample	 175

Table of Contents

[iv]

Determining appropriate tests	 175
Understanding burglary rates	 178

Getting the data	 178
Parsing the Excel files	 181
Pulling out raw data	 182

Growing a data tree	 185
Cutting down the data tree	 187
Putting it all together	 188
Transforming the data	 189
Joining the data sources	 190
Pivoting the data	 191
Filtering the missing data	 192
Putting it all together	 192

Exploring the data	 193
Generating summary statistics	 193

Summarizing UNODC crime data	 193
Summarizing World Bank land area and GNI data	 195

Generating more charts and graphs	 197
Conducting the experiment	 200

Formulating an initial hypothesis	 200
Stating the null and alternative hypotheses	 201
Identifying the statistical assumptions in the sample	 201
Determining appropriate tests	 202

Understanding Spearman's rank correlation coefficient	 202
Selecting the significance level	 203
Determining the critical region	 203
Calculating the test statistic and its probability	 204
Deciding whether to reject the null hypothesis or not	 205

Interpreting the results	 205
Summary	 205

Chapter 8: A/B Testing – Statistical Experiments for the Web	 207
Defining A/B testing	 207
Conducting an A/B test	 210

Planning the experiment	 210
Framing the statistics	 211
Building the experiment	 212

Looking at options to build the site	 213
Implementing A/B testing on the server	 214

Understanding the scaffolded site	 215
Building the test site	 216
Implementing A/B testing	 217
Viewing the results	 223

Looking at A/B testing as a user	 224

Table of Contents

[v]

Analyzing the results	 225
Understanding the t-test	 228

Testing the results	 232
Summary	 233

Chapter 9: Analyzing Social Data Participation	 235
Setting up the project	 236

Understanding the analyses	 236
Understanding social network data	 237
Understanding knowledge-based social networks	 237
Introducing the 80/20 rule	 239

Getting the data	 239
Looking at the amount of data	 240
Defining and loading the data	 242
Counting frequencies	 244
Sorting and ranking	 245
Finding the patterns of participation	 246

Matching the 80/20 rule	 248
Looking for the 20 percent of questioners	 249
Looking for the 20 percent of respondents	 250
Combining ranks	 252

Looking at those who only post questions	 254
Looking at those who only post answers	 255
Looking at those who post both questions and answers	 256

Finding the up-voted answers	 259
Processing the answers	 259

Predicting the accepted answer	 261
Setting up	 261

Creating the InstanceList object	 262
Training sets and Test sets	 264

Training	 265
Testing	 265

Evaluating the outcome	 265
Summary	 268

Chapter 10: Modeling Stock Data	 269
Learning about financial data analysis	 270
Setting up the basics	 270

Setting up the library	 270
Getting the data	 271

Getting prepared with data	 273
Working with news articles	 273
Working with stock data	 278

Analyzing the text	 280
Analyzing vocabulary	 280

Table of Contents

[vi]

Stop lists	 282
Hapax and Dis Legomena	 284
TF-IDF	 290

Inspecting the stock prices	 294
Merging text and stock features	 294
Analyzing both text and stock features together with neural nets	 298

Understanding neural nets	 298
Setting up the neural net	 300
Training the neural net	 301
Running the neural net	 302
Validating the neural net	 303
Finding the best parameters	 304

Predicting the future	 306
Loading stock prices	 307
Loading news articles	 307
Creating training and test sets	 308
Finding the best parameters for the neural network	 308
Training and validating the neural network	 309
Running the network on new data	 309

Taking it with a grain of salt	 311
Related to this project	 311
Related to machine learning and market modeling in general	 311

Summary	 312
Index	 313

Preface
Data has become increasingly important almost everywhere. It's been said that
software is eating the world, but that seems even truer of data. Sometimes, it seems
that the focus has shifted: companies no long seem to want more users in order
to show them advertisements. Now they want more users to gather data on them.
Having more data is seen as a tremendous business advantage.

However, data by itself isn't really useful. It has to be analyzed, interrogated,
and interpreted. Data scientists are settling on a number of great tools to do this,
from R and Python to Hadoop and the web browser.

This book looks at 10 data analysis tasks. Unlike Clojure Data Analysis Cookbook,
Packt Publishing, this book examines fewer problems and tries to go into more depth.
It's more of a case study approach.

Why use Clojure? Clojure was first released in 2007 by Rich Hickey. It's a member
of the lisp family of languages, and it has the strengths and flexibility that they
provide. It's also functional, so Clojure programs are easy for reasoning. Also, it has
amazing features to work concurrently and in parallel. All of these can help us as
we analyze data, while keeping things simple and fast.

Moreover, Clojure runs on Java Virtual Machine (JVM), so any libraries written
for Java are available as well. Throughout this book, we'll see many examples of
leveraging Java libraries for machine learning and other tasks. This gives Clojure
an incredible amount of breadth and power.

I hope that this book will help you analyze your data further and in a better
manner and also make the process more fun and enjoyable.

Preface

[2]

What this book covers
Chapter 1, Network Analysis – The Six Degrees of Kevin Bacon, will discuss how people
are socially organized into networks. These networks are reified in interesting ways
in online social networks. We'll take the opportunity to get a small dataset from an
online social network and analyze and look at how people are related in it.

Chapter 2, GIS Analysis – Mapping Climate Change, will explore how we can work
with geographical data. It also walks us through getting the weather data and tying
it to a geographical location. It then involves analyzing nearby points together to
generate a graphic of a simplified and somewhat naive notion of how climate has
changed over the period the weather has been tracked.

Chapter 3, Topic Modeling – Changing Concerns in the State of the Union Addresses,
will address how we can scrape free text information off the Internet. It then uses
topic modeling to look at the problems that presidents have faced and the themes
that they've addressed over the years.

Chapter 4, Classifying UFO Sightings, will take a look at UFO sightings and talk
about different ways to explore and get a grasp of what's in the dataset. It will
then classify the UFO sightings based on various attributes related to the sightings
as well as their descriptions.

Chapter 5, Benford's Law – Detecting Natural Progressions of Numbers, will take a look at
the world population data from the World Bank data site. It will discuss Benford's
Law and how it can be used to determine whether a set of numbers is naturally
generated or artificially or randomly constructed.

Chapter 6, Sentiment Analysis – Categorizing Hotel Reviews, will take a look at the
problems and possibilities related to sentiment analysis tasks. These are typically
difficult and fraught categorizations of documents based on a notion of positive or
negative. In this chapter, we'll also take a look at categorizing, both manually and
automatically, a dataset of hotel reviews.

Chapter 7, Null Hypothesis Tests – Analyzing Crime Data, will take a look at planning,
constructing, and performing null-hypothesis tests for statistical significance. It will
use international crime data to look at the relationship between economic indicators
and some types of crime.

Chapter 8, A/B Testing – Statistical Experiments for the Web, will take a look at how
to determine which version of a website engages with the users in a better way.
Although conceptually simple, this task does have a few pitfalls and danger
points to be aware of.

Preface

[3]

Chapter 9, Analyzing Social Data Participation, will take a look at how people participate
in online social networks. We will discuss and demonstrate some ways to analyze this
data with an eye toward encouraging more interaction, contributions, and participation.

Chapter 10, Modeling Stock Data, will take a look at how to work with time-series
data, stock data, natural language, and neural networks in order to find
relationships between news articles and fluctuations in stock prices.

What you need for this book
One piece of software required for this book is JDK, which you can get from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.
JDK is necessary to run and develop on the Java platform.

The other major piece of software that you'll need is Leiningen 2, which you can
download and install from https://github.com/technomancy/leiningen.
Leiningen 2 is a tool that is used to manage Clojure projects and their dependencies.
It's quickly becoming the de facto standard project tool in the Clojure community.

Throughout this book, we'll use a number of other Clojure and Java libraries,
including Clojure itself. Leiningen will take care of downloading these for us as
and when we need them.

You'll also need a text editor or Integrated Development Environment (IDE).
If you already have a text editor that you like, you can probably use it. Refer to
http://dev.clojure.org/display/doc/Getting+Started for tips and plugins
to use your particular favorite environment. If you don't have a preference, I'd
suggest that you look at using Eclipse with Counterclockwise. There are
instructions to get this setup at http://dev.clojure.org/display/doc/
Getting+Started+with+Eclipse+and+Counterclockwise.

Who this book is for
If you are a programmer or data scientist who is familiar with Clojure and wants
to use it in your data analysis processes, this book is for you. This isn't a tutorial on
Clojure—there are already a number of excellent introductory books out there—so
you'll need to be familiar with the language; however, you don't need to be an
expert at it.

Likewise, you don't need to be an expert on data analysis, although you should
probably be familiar with its tasks, processes, and techniques. While you might
be able to gain enough from these case studies to get started, you'll want to get a
more thorough introduction to this field to be truly effective.

http://dev.clojure.org/display/doc/Getting+Started+with+Eclipse+and+Counterclockwise
http://dev.clojure.org/display/doc/Getting+Started+with+Eclipse+and+Counterclockwise

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"However, before we start looking at the code, let's check out the Leiningen 2
project.clj file."

A block of code is set as follows:

(ns network-six.graph
 (:require [clojure.set :as set]
 [clojure.core.reducers :as r]
 [clojure.data.json :as json]
 [clojure.java.io :as io]
 [clojure.set :as set]
 [network-six.util :as u]))

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

 clojure.lang.PersistentStructMap
 (extract-text [x]
 (concat
 (extract-text (:content x))
 (when (contains? #{:span :p} (:tag x))
 ["\n\n"])))

Any command-line input or output is written as follows:

$ cd www

$ python -m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 …

Preface

[5]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Right-click on the new layer and select Properties."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/4139OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/sites/default/files/downloads/4139OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/4139OS_ColoredImages.pdf

Network Analysis – The Six
Degrees of Kevin Bacon

With the popularity of Facebook, Twitter, LinkedIn, and other social networks,
we're increasingly defined by who we know and who's in our network. These
websites help us manage who we know—whether personally, professionally,
or in some other way—and our interactions with those groups and individuals.
In exchange, we tell these sites who we are in the network.

These companies, and many others, spend a lot of time on and pay attention to
our social networks. What do they say about us, and how can we sell things to
these groups?

In this chapter, we'll walk through learning about and analyzing social networks:

•	 Analyzing social networks
•	 Getting the data
•	 Understanding graphs
•	 Implementing the graphs
•	 Measuring social network graphs
•	 Visualizing social network graphs

Network Analysis – The Six Degrees of Kevin Bacon

[8]

Analyzing social networks
Although the Internet and popular games such as Six Degrees of Kevin Bacon have
popularized the concept, social network analysis has been around for a long time.
It has deep roots in sociology. Although the sociologist John A. Barnes may have
been the first person to use the term in 1954 in the article Class and communities in a
Norwegian island parish (http://garfield.library.upenn.edu/classics1987/
A1987H444300001.pdf), he was building on a tradition from the 1930s, and before
that, he was looking at social groups and interactions relationally. Researchers
contended that the phenomenon arose from social interactions and not individuals.

Slightly more recently, starting in the 1960s, Stanley Milgram has been working
on a small world experiment. He would mail a letter to a volunteer somewhere in
the mid-western United States and ask him or her to get it to a target individual in
Boston. If the volunteer knew the target on a first-name basis, he or she could mail
it to him. Otherwise, they would need to pass it to someone they knew who might
know the target. At each step, the participants were to mail a postcard to Milgram
so that he could track the progress of the letter.

This experiment (and other experiments based on it) has been criticized. For one
thing, the participants may decide to just throw the letter away and miss huge
swathes of the network. However, the results are evocative. Milgram found that
the few letters that made it to the target, did so with an average of six steps.
Similar results have been born out by later, similar experiments.

Milgram himself did not use the popular phrase six degrees of separation. This was
probably taken from John Guare's play and film Six Degrees of Separation (1990 and
1993). He said he got the concept from Guglielmo Marconi, who discussed it in his
1909 Nobel Prize address.

The phrase "six degrees" is synonymous with social networks in the popular
imagination, and a large part of this is due to the pop culture game Six Degrees
of Kevin Bacon. In this game, people would try to find a link between Kevin Bacon
and some other actor by tracing the films in which they've worked together.

In this chapter, we'll take a look at this game more critically. We'll use it to explore
a network of Facebook (https://www.facebook.com/) users. We'll visualize this
network and look at some of its characteristics.

Specifically, we're going to look at a network that has been gathered from Facebook.
We'll find data for Facebook users and their friends, and we'll use that data to
construct a social network graph. We'll analyze that information to see whether
the observation about the six degrees of separation applies to this network. More
broadly, we'll see what we can learn about the relationships represented in the
network and consider some possible directions for future research.

Chapter 1

[9]

Getting the data
A couple of small datasets of the Facebook network data are available on the
Internet. None of them are particularly large or complete, but they do give us a
reasonable snapshot of part of Facebook's network. As the Facebook graph is a
private data source, this partial view is probably the best that we can hope for.

We'll get the data from the Stanford Large Network Dataset Collection
(http://snap.stanford.edu/data/). This contains a number of network datasets,
from Facebook and Twitter, to road networks and citation networks. To do this,
we'll download the facebook.tar.gz file from http://snap.stanford.edu/data/
egonets-Facebook.html. Once it's on your computer, you can extract it. When
I put it into the folder with my source code, it created a directory named facebook.

The directory contains 10 sets of files. Each group is based on one primary vertex
(user), and each contains five files. For vertex 0, these files would be as follows:

•	 0.edges: This contains the vertices that the primary one links to.
•	 0.circles: This contains the groupings that the user has created for his or

her friends.
•	 0.feat: This contains the features of the vertices that the user is adjacent to

and ones that are listed in 0.edges.
•	 0.egofeat: This contains the primary user's features.
•	 0.featnames: This contains the names of the features described in 0.feat

and 0.egofeat. For Facebook, these values have been anonymized.

For these purposes, we'll just use the *.edges files.

Now let's turn our attention to the data in the files and what they represent.

Understanding graphs
Graphs are the Swiss army knife of computer science data structures. Theoretically,
any other data structure can be represented as a graph, although usually, it won't
perform as well.

For example, binary trees can be seen as a graph in which each node has two
outgoing edges at most. These edges link it to the node's children. Or, an array can
be seen as a graph in which each item in the array has edges that link it to the items
adjacent to it.

http://snap.stanford.edu/data/egonets-Facebook.html
http://snap.stanford.edu/data/egonets-Facebook.html

Network Analysis – The Six Degrees of Kevin Bacon

[10]

However, in this case, the data that we're working with is naturally represented by a
graph. The people in the network are the nodes, and their relationships are the edges.

Graphs come in several flavors, but they all have some things in common. First,
they are a series of nodes that are connected by edges. Edges can be unidirectional,
in which case, the relationship they represent goes only one way (for example,
followers on Twitter), or it goes bidirectional, in which the relationship is two-way
(for example, friends on Facebook).

Graphs generally don't have any hierarchy or structure like trees or lists do.
However, the data they represent may have a structure. For example, Twitter has
a number of users (vertices) who have a lot of followers (inbound edges). However,
most users only have a few followers. This dichotomy creates a structure to the
graph, where a lot of data flows through a few vertices.

Graphs' data structures typically support a number of operations, including adding
edges, removing edges, and traversing the graph. We'll implement a graph data
structure later. At that point, we'll also look at these operations. This may not be
the best performing graph, especially for very large datasets, but it should help
make clear what graphs are all about.

Implementing the graphs
As the graph data structure is so central to this chapter, we'll take a look at it in more
detail before we move on.

There are a number of ways to implement graphs. In this case, we'll use a variation
of an adjacency list, which maps each node to a list of its neighbors. We'll store
the nodes in a hash map and keep separate hash maps for each node's data. This
representation is especially good for sparse graphs, because we only need to store
existing links. If the graph is very dense, then representing the set of neighboring
nodes as a matrix instead of a hash table will take less memory.

However, before we start looking at the code, let's check out the Leiningen 2
project.clj file. Apart from the Clojure library, this makes use of the Clojure JSON
library, the me.raynes file utility library (https://github.com/Raynes/fs), and
the Simple Logging Facade for Java library (http://www.slf4j.org/):

(defproject network-six "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}

Chapter 1

[11]

 :plugins [[lein-cljsbuild "0.3.2"]]
 :dependencies [[org.slf4j/slf4j-simple "1.7.5"]
 [org.clojure/clojure "1.5.1"]
 [org.clojure/data.json "0.2.2"]
 [me.raynes/fs "1.4.4"]
 [org.clojure/clojurescript "0.0-2202"]]
 :cljsbuild {:builds [{:source-paths ["src-cljs"],
 :compiler {:pretty-printer true,
 :output-to "www/js/main.js",
 :optimizations :whitespace}}]})

If you're keeping track, there are several sections related to ClojureScript
(https://github.com/clojure/clojurescript) as well. We'll talk about them
later in the chapter.

For the first file that we'll work in, open up src/network_six/graph.clj. Use this
for the namespace declaration:

(ns network-six.graph
 (:require [clojure.set :as set]
 [clojure.core.reducers :as r]
 [clojure.data.json :as json]
 [clojure.java.io :as io]
 [clojure.set :as set]
 [network-six.util :as u]))

In this namespace, we'll create a Graph record that contains two slots. One is for the
map between vertex numbers and sets of neighbors. The second is for the data maps.
We'll define an empty graph that we can use anywhere, as follows:

(defrecord Graph
 [neighbors data])
(def empty-graph (Graph. {} {}))

The primary operations that we'll use for this chapter are functions that modify the
graph by adding or removing edges or by merging two graphs. The add and delete
operations both take an optional flag to treat the edge as bidirectional. In that case,
both functions just call themselves with the ends of the edges swapped so that they
operate on the edge that goes in the other direction:

(defn update-conj [s x]
 (conj (if (nil? s) #{} s) x))
(defn add
 ([g x y] (add g x y false))
 ([g x y bidirectional?]

Network Analysis – The Six Degrees of Kevin Bacon

[12]

 ((if bidirectional? #(add % y x false) identity)
 (update-in g [:neighbors x] #(update-conj % y)))))
(defn delete
 ([g x y] (delete g x y false))
 ([g x y bidirectional?]
 ((if bidirectional? #(delete % y x false) identity)
 (update-in g [:neighbors x] #(disj % y)))))
(defn merge-graphs [a b]
 (Graph. (merge-with set/union (:neighbors a) (:neighbors b))
 (merge (:data a) (:data b))))

The final low-level functions to work with graphs are two functions that are used to
set or retrieve data associated with the vertices. Sometimes, it's also useful to be able
to store data of the edges, but we won't use that for this implementation. However,
we will associate some information with the vertices themselves later on, and when
we do that, we'll use these functions.

All of these functions are overloaded. Passed in a graph, a vertex number, and a key,
they set or retrieve a value on a hash map that is that vertex's value. Passed in just a
graph and a vertex number, they set or retrieve the vertex's value—either the hash
map or another value that is there in its place:

(defn get-value
 ([g x] ((:data g) x))
 ([g x k] ((get-value g x) k)))
(defn set-value
 ([g x v] (assoc-in g [:data x] v))
 ([g x k v] (set-value g x (assoc (get-value g x) k v))))
(defn update-value
 ([g x f] (set-value g x (f (get-value g x))))
 ([g x k f] (set-value g x k (f (get-value g x k)))))

We will also want to get the vertices and the edges for the graph. The vertices are
the union of the set of all the nodes with outbound edges and the set of nodes with
inbound edges. There should be some, or even a lot, of overlap between these two
groups. If the graph is bidirectional, then get-edges will return each edge twice—
one going from a to b and the other going from b to a:

(defn get-vertices [graph]
 (reduce set/union (set (keys (:neighbors graph)))
 (vals (:neighbors graph))))
(defn get-edges [graph]
 (let [pair-edges (fn [[v neighbors]]
 (map #(vector v %) neighbors))]
 (mapcat pair-edges (:neighbors graph))))

Chapter 1

[13]

We'll write some more basic utilities later, but right now, let's take a look at a
function that is a slightly higher-level function, but still a fundamental operation on
graphs: a breadth-first walk over the graph and a search based on that.

A breadth-first walk traverses the graph by first looking at all the neighbors of the
current node. It then looks at the neighbors of those nodes. It continues broadening
the search one layer at a time.

This is in opposition to a depth-first walk, which goes deep down one path until
there are no outgoing edges to be tried. Then, it backs out to look down other paths.

Which walk is more efficient really depends on the nature of the individual graph
and what is being searched for. However, in our case, we're using a breadth-first
walk because it ensures that the shortest path between the two nodes will be found
first. A depth-first search can't guarantee that.

The backbone of the breadth-first function is a First In, First Out (FIFO) queue.
To keep track of the vertices in the paths that we're trying, we use a vector with the
index of those vertices. The queue holds all of the active paths. We also keep a set of
vertices that we've reached before. This prevents us from getting caught in loops.

We wrap everything in a lazy sequence so that the caller can control how much work
is done and what happens to it.

At each step in the loop, the algorithm is pretty standard:

1.	 If the queue is empty, then we've exhausted the part of the graph that's
accessible from the start node. We're done, and we return null to indicate that
we didn't find the node.

2.	 Otherwise, we pop a path vector off the queue. The current vertex is the last
one.

3.	 We get the current vertex's neighbors.
4.	 We remove any vertices that we've already considered.
5.	 For each neighbor, we append it to the current path vector, creating that

many new path vectors. For example, if the current path vector is [0, 171,
4] and the new neighbors are 7, 42 and 532, then we'll create three new
vectors: [0, 171, 4, 7], [0, 171, 4, 42], and [0, 171, 4, 532].

6.	 We push each of the new path vectors onto the queue.
7.	 We add each of the neighbors onto the list of vertices that we've seen.
8.	 We output the current path to the lazy sequence.
9.	 Finally, we loop back to step one for the rest of the output sequence.

Network Analysis – The Six Degrees of Kevin Bacon

[14]

The following code is the implementation of this. Most of it takes place in bf-seq,
which sets up the processing in the first clause (two parameters) and constructs the
sequence in the second clause (three parameters). The other function, breadth-first,
is the public interface to the function:

(defn bf-seq
 ([get-neighbors a]
 (bf-seq
 get-neighbors
 (conj clojure.lang.PersistentQueue/EMPTY [a])
 #{a}))
 ([get-neighbors q seen]
 (lazy-seq
 (when-not (empty? q)
 (let [current (first q)
 nbors (remove seen (get-neighbors (last current)))]
 (cons current
 (bf-seq get-neighbors
 (into (pop q)
 (map #(conj current %) nbors))
 (into seen nbors))))))))
(defn breadth-first [graph a]
 (bf-seq (:neighbors graph) a))

Notice that what makes this a breadth-first search is that we use a FIFO queue. If we
used a LIFO (Last In, First Out) queue (a Clojure list works well for this), then this
would be a depth-first search. Instead of going broadly and simultaneously trying a
number of paths, it would dive deep into the graph along one path and not backtrack
to try a new one until it had exhausted the first path.

This is a flexible base on which one can build a number of functionalities. For
example, a breadth-first search is now a two-line function:

(defn bfs [graph a b]
 (first (filter #(= (last %) b) (breadth-first graph a))))

These are just filters that find all paths that start from a and end at b and then return
the first of those.

Chapter 1

[15]

Loading the data
Now that we have the fundamental data structure that we're going to use, we can
read the data files that we downloaded into a graph.

For the purposes of analyzing the network itself, we're only interested in the *.edges
files. This lists the edges in the graph, one edge per line. Each edge is defined by the
node numbers that it connects. As Facebook relationships are two-way, the edges
represented here are bidirectional. For example, the first few lines of 0.edges are
shown as follows:

236 186
122 285
24 346
271 304
176 9

We'll first define a function that reads one edge file into a Graph, and then we'll
define another function that walks a directory, reads each edge file, and merges
the graphs into one. I'm keeping these in a new namespace, network-six.ego.
This is defined in the src/network_six/ego.clj file. It uses the following
namespace declaration:

(ns network-six.ego
 (:require [clojure.java.io :as io]
 [clojure.set :as set]
 [clojure.string :as string]
 [clojure.data.json :as json]
 [clojure.core.reducers :as r]
 [network-six.graph :as g]
 [network-six.util :as u]
 [me.raynes.fs :as fs])
 (:import [java.io File]))

Now we'll define the function that reads the *.edges files from a data directory:

(defn read-edge-file [filename]
 (with-open [f (io/reader filename)]
 (->>
 f
 line-seq
 (r/map #(string/split % #"\s+"))
 (r/map #(mapv (fn [x] (Long/parseLong x)) %))
 (r/reduce #(g/add %1 (first %2) (second %2))

www.allitebooks.com

http://www.allitebooks.org

Network Analysis – The Six Degrees of Kevin Bacon

[16]

 g/empty-graph))))
(defn read-edge-files [ego-dir]
 (r/reduce g/merge-graphs {}
 (r/map read-edge-file
 (fs/find-files ego-dir #".*\.edges$"))))

We can use these from read-eval-print loop (REPL) to load the data into a graph that
we can work with. We can get some basic information about the data at this point,
and the following how we'll go about doing that:

User=> (require '[network-six.graph :as g]
 '[network-six.ego :as ego])
user=> (def graph (ego/read-edge-files "facebook/"))
#'user/graph
user=> (count (g/get-vertices graph))
3959
user=> (count (g/get-edges graph))
168486

Now let's dive deeper into the graph and get some other metrics.

Measuring social network graphs
There are a variety of metrics that we can use to describe graph data structures in
particular and social network graphs in general. We'll look at a few of them and
think about both, what they can teach us, and how we can implement them.

Density
Recall that a network's density is the number of actual edges versus the number of
possible edges. A completely dense network is one that has an edge between each
vertex and every other vertex. For example, in the following figure, the graph on the
upper-right section is completely dense. The graph in the lower-left section has a
density factor of 0.5333.

Chapter 1

[17]

The number of possible edges is given as N(N-1). We'll define the density
formula as follows:

(defn density [graph]
 (let [n (count (get-vertices graph))
 e (count (get-edges graph))]
 (/ (* 2.0 e) (* n (dec n)))))

We can use this to get some information about the number of edges in the graph:

user=> (g/density graph)
0.021504657198130255

Looking at this, it appears that this graph is not very dense. Maybe some other
metrics will help explain why.

Degrees
A vertex's degree is the number of other vertexes connected to it, and another
summary statistic for social networks is the average degree. This is computed by the
formula 2E/N. The Clojure to implement this is straightforward:

(defn avg-degree [graph]
 (/ (* 2.0 (count (get-edges graph)))
 (count (get-vertices graph))))

Network Analysis – The Six Degrees of Kevin Bacon

[18]

Similarly, it is easy to use it:

user=> (g/avg-degree graph)
85.11543319019954

So, the typical number of edges is around 85. Given that there are almost 4,000
vertices, it is understandable why the density is so low (0.022).

Paths
We can get a number of interesting metrics based on all of the paths between two
elements. For example, we'll need those paths to get the centrality of nodes later in
this chapter. The average path length is also an important metric. To calculate any of
these, we'll need to compute all of the paths between any two vertices.

For weighted graphs that have a weight or cost assigned to each edge, there are a
number of algorithms to find the shortest path. Dijkstra's algorithm and Johnson's
algorithm are two common ones that perform well in a range of circumstances.

However, for non-weighted graphs, any of these search algorithms evolve into a
breadth-first search. We just implemented this.

We can find the paths that use the breadth-first function that we walked
through earlier. We simply take each vertex as a starting point and get all the paths
from there. To make access easier later, we convert each path returned into a hash
map as follows:

(defn find-all-paths [graph]
 (->> graph
 get-vertices
 (mapcat #(breadth-first graph %))
 (map #(hash-map :start (first %) :dest (last %) :path %))))

Unfortunately, there's an added complication; the output will probably take more
memory than available. Because of this, we'll also define a couple of functions to write
the paths out to a file and iterate over them again. We'll name them network-six.
graph/write-paths and network-six.graph/iter-paths, and you can find them in
the code download provided for this chapter on the Packt Publishing website. I saved
it to the file path.json, as each line of the file is a separate JSON document.

Chapter 1

[19]

Average path length
The first metric that we can get from the paths is the average path length. We can
find this easily by walking over the paths. We'll use a slightly different definition of
mean that doesn't require all the data to be kept in the memory. You can find this in
the network-six.util namespace:

user=> (double
 (u/mean
 (map count (map :path (g/iter-paths "path.json")))))
6.525055748717483

This is interesting! Strictly speaking, the concept of six degrees of separation says
that all paths in the network should be six or smaller However, experiments often
look at the paths in terms of the average path length. In this case, the average
distance between any two connected nodes in this graph is just over six. So, the six
degrees of separation do appear to hold in this graph.

We can see the distribution of path lengths more clearly by looking at a histogram
of them:

So, the distribution of path lengths appears to be more or less normal, centered on 6.

Network Analysis – The Six Degrees of Kevin Bacon

[20]

Network diameter
The network diameter is the longest of the shortest paths between any two nodes in
the graph. This is simple to get:

user=> (reduce
 max Integer/MIN_VALUE
 (map count (map :path (g/iter-paths "path.json"))))
18

So the network diameter is approximately three times larger than the average.

Clustering coefficient
Clustering coefficient is a measure of how many densely linked clusters there are in
the graph. This is one measure of the small world effect, and it's sometimes referred
to as the "all my friends know each other" property. To find the clustering coefficient
for one vertex, this basically cuts all of its neighbors out of the network and tries to
find the density of the subgraph. In looking at the whole graph, a high clustering
coefficient indicates a small world effect in the graph.

The following is how to find the clustering coefficient for a single vertex:

(defn clustering-coeff [graph n]
 (let [cluster ((:neighbors graph) n)
 edges (filter cluster (mapcat (:neighbors graph) cluster))
 e (count edges)
 k (count cluster)]
 (if (= k 1)
 0
 (/ (* 2.0 e) (* k (dec k))))))

The function to find the average clustering coefficient for the graph is straightforward,
and you can find it in the code download. The following is how it looks when applied
to this graph:

user=> (g/avg-cluster-coeff graph)
1.0874536731229358

So it's not overly large. Chances are, there are a few nodes that are highly connected
throughout the graph and most others are less connected.

Chapter 1

[21]

Centrality
There are several ways to measure how central a vertex is to the graph. One is
closeness centrality. This is the distance of any particular vertex from all other
vertices. We can easily get this information with the breadth-first function that
we created earlier. Unfortunately, this only applies to complete networks, that is, to
networks in which every vertex is reachable from every other vertex. This is not the
case in the graph we're working with right now. There are some small pockets that
are completely isolated from the rest of the network.

However, there are other measures of centrality that we can use instead.
Betweenness centrality counts the number of shortest paths that a vertex is found in.
Betweenness finds the vertices that act as a bridge. The original intent of this metric
was to identify people who control the communication in the network.

To get this done efficiently, we can rely on the paths returned by the breadth-first
function again. We'll get the paths from each vertex and call reduce over each. At
every step, we'll calculate the total number of paths plus the number of times each
vertex appears in a path:

(defn accum-betweenness
 [{:keys [paths betweenness reachable]} [v v-paths]]
 (let [v-paths (filter #(> (count %) 1) v-paths)]
 {:paths (+ paths (count v-paths)),
 :betweenness (merge-with +
 betweenness
 (frequencies (flatten v-paths))),
 :reachable (assoc reachable v (count v-paths))}))

Next, once we reach the end, we'll take the total number of paths and convert the
betweenness and reachable totals for each vertex to a ratio, as follows:

(defn ->ratio [total [k c]]
 [k (double (/ c total))])
(defn finish-betweenness
 [{:keys [paths betweenness reachable] :as metrics}]
 (assoc metrics
 :betweenness (->> betweenness
 (map #(->ratio paths %))
 (into {}))
 :reachable (->> reachable
 (map #(->ratio paths %))
 (into {}))))

Network Analysis – The Six Degrees of Kevin Bacon

[22]

While these two functions do all the work, they aren't the public interface. The
function metrics tie these two together in something we'd want to actually call:

(defn metrics [graph]
 (let [mzero {:paths 0, :betweenness {}, :reachable {}}]
 (->> graph
 get-vertices
 (pmap #(vector % (breadth-first graph %)))
 (reduce accum-betweenness mzero)
 finish-betweenness)))

We can now use this to find the betweenness centrality of any vertex as follows:

user=> (def m (g/metrics graph))
user=> ((:betweenness m) 0)
5.092923145895773E-4

Or, we can sort the vertices on the centrality measure to get those vertices that have
the highest values. The first number in each pair of values that are returned is the
node, and the second number is the betweenness centrality of that node. So, the first
result says that the betweenness centrality for node 1085 is 0.254:

user=> (take 5 (reverse (sort-by second (seq (:betweenness m)))))
([1085 0.2541568423150047] [1718 0.1508391907570839] [1577
 0.1228894724115601] [698 0.09236806137867479]
 [1505 0.08172539570689669])

This has all been interesting, but what about Kevin Bacon?

Degrees of separation
We started this chapter talking about the Six Degrees of Kevin Bacon, a pop culture
phenomenon and how this captures a fundamental nature of many social networks.
Let's analyze our Facebook network for this.

First, we'll create a function called degrees-between. This will take an origin
vertex and a degree of separation to go out, and it will return a list of each level
of separation and the vertices at that distance from the origin vertex. The degrees
-between function will do this by accumulating a list of vertices at each level and a
set of vertices that we've seen. At each step, it will take the last level and find all of
those vertices' neighbors, without the ones we've already visited. The following is
what this will look like:

(defn degrees-between [graph n from]
 (let [neighbors (:neighbors graph)]
 (loop [d [{:degree 0, :neighbors #{from}}],

Chapter 1

[23]

 seen #{from}]
 (let [{:keys [degree neighbors]} (last d)]
 (if (= degree n)
 d
 (let [next-neighbors (->> neighbors
 (mapcat (:neighbors graph))
 (remove seen)
 set)]
 (recur (conj d {:degree (inc degree)
 :neighbors next-neighbors})
 (into seen next-neighbors))))))))

Earlier, we included a way to associate data with a vertex, but we haven't used this
yet. Let's exercise that feature to store the degrees of separation from the origin
vertex in the graph. We can either call this function with the output of degrees-
between or with the parameters to degrees-between:

(defn store-degrees-between
 ([graph degrees]
 (let [store (fn [g {:keys [degree neighbors]}]
 (reduce #(set-value %1 %2 degree) g neighbors))]
 (reduce store graph degrees)))
 ([graph n from]
 (store-degrees-between graph (degrees-between graph n from))))

Finally, the full graph is a little large, especially for many visualizations. So, let's
include a function that will let us zoom in on the graph identified by the degrees-
between function. It will return both the original graph, with the vertex data fields
populated and the subgraph of vertices within the n levels of separation from the
origin vertex:

(defn degrees-between-subgraph [graph n from]
 (let [marked (store-degrees-between graph n from)
 v-set (set (map first (filter second (:data marked))))
 sub (subgraph marked v-set)]
 {:graph marked, :subgraph sub}))

With these defined, we can learn some more interesting things about the network
that we're studying. Let's see how much of the network with different vertices can
reach within six hops. Let's look at how we'd do this with vertex 0, and then we can
see a table that presents these values for several vertices:

user=> (def v-count (count (g/get-vertices g)))
#'user/v-count
user=> (double

Network Analysis – The Six Degrees of Kevin Bacon

[24]

 (/ (count
 (g/get-vertices
 (:subgraph (g/degrees-between-subgraph g 6 0))))
 v-count))
0.8949229603435211

Now, it's interesting to see how the betweenness values for these track the amount
of the graph that they can access quickly:

Vertex Betweenness Percent accessible
0 0.0005093 89.5000
256 0.0000001 0.0005
1354 0.0005182 75.9500
1085 0.2541568 96.1859

These are some interesting data points. What does this look like for the network
as a whole?

This makes it clear that there's probably little correlation between these two
variables. Most vertices have a very low betweenness, although they range between
0 and 100 in the percent of the network that they can access.

At this point, we have some interesting facts about the network, but it would be
helpful to get a more intuitive overview of it, like we just did for the betweenness
centrality. Visualizations can help here.

Chapter 1

[25]

Visualizing the graph
At this point, it would be really useful to visualize this graph. There are a number
of different ways to visualize graphs. We'll use the JavaScript library D3 (data-
driven documents, http://d3js.org/) to generate several graph visualizations on
subgraphs of the Facebook network data, and we'll look at the pros and cons of each.
Finally, we'll use a simple pie chart to visualize how much of the graph is affected as
we move outward from a node through its degrees of separation.

Setting up ClojureScript
As I just mentioned, D3 is a JavaScript library. JavaScripts are not bad, but this is a
book about Clojure. There's an implementation of the Clojure compiler that takes
Clojure and generates JavaScript. So, we'll use that to keep our focus on Clojure
while we call JavaScript libraries and deploy them on a browser.

Before we can do that, however, we need to set up our system to use ClojureScript.
The first thing we'll need to do is to add the configuration to our project.clj file for
this project. This is fairly simple. We just need to declare lein-cljsbuild as a plugin
for this project and then configure the ClojureScript compiler. Our project.clj file
from earlier is shown as follows, with the relevant lines highlighted as follows:

(defproject network-six "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :plugins [[lein-cljsbuild "0.3.2"]]
 :dependencies [[org.slf4j/slf4j-simple "1.7.5"]
 [org.clojure/clojure "1.5.1"]
 [org.clojure/data.json "0.2.2"]
 [me.raynes/fs "1.4.4"]
 [org.clojure/clojurescript "0.0-2202"]]
 :cljsbuild {:builds
 [{:source-paths ["src-cljs"],
 :compiler {:pretty-printer true,
 :output-to "www/js/main.js",
 :optimizations :whitespace}}]})

The first line adds the lein-cljsbuild plugin to the project. The second block of
lines tell Leiningen to watch the src-cljs directory for ClojureScript files. All of
these files are then compiled into the www/js/main.js file.

www.allitebooks.com

http://www.allitebooks.org

Network Analysis – The Six Degrees of Kevin Bacon

[26]

We'll need an HTML file to frame the compiled JavaScript. In the code download,
I've included a basic page that's modified from an HTML5 Boilerplate template
(http://html5boilerplate.com/). The biggest change is that I've taken out
everything that's in the div content.

Also, I added some script tags to load D3 and a D3 plugin for one of the types
of graphs that we'll use later. After the tag that loads bootstrap.min.js,
I added these:

<script src="http://d3js.org/d3.v3.min.js"></script>
<script src="http://d3js.org/d3.hive.v0.min.js"></script>

Finally, to load the data files asynchronously with AJAX, the www directory will need
to be accessible from a web server. There are a number of different options, but if you
have Python installed, the easiest option is to probably navigate to the www directory
and execute the following command:

$ cd www

$ python -m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 ...

Now we're ready to proceed. Let's make some charts!

A force-directed layout
One of the standard chart types to visualize graphs is a force-directed layout. These
charts use a dynamic-layout algorithm to generate charts that are more clear and
look nice. They're modeled on springs. Each vertex repels all the other vertices, but
the edges draw the vertices closer.

To have this graph compiled to JavaScript, we start by creating a file named src-
cljs/network-six/force.cljs. We'll have a standard namespace declaration at
the top of the file:

(ns network-six.force)

Generally, when we use D3, we first set up part of the graph. Then, we get the data.
When the data is returned, we continue setting up the graph. In D3, this generally
means selecting one or more elements currently in the tree and then selecting some
of their children using selectAll. The elements in this new selection may or may
not exist at this point. We join the selectAll elements with the data. From this point,
we use the enter method most of the time to enter the data items and the nonexistent
elements that we selected earlier. If we're updating the data, assuming that the
elements already exist, then the process is slightly different. However, the process
that uses the enter method, which I described, is the normal workflow that uses D3.

Chapter 1

[27]

So, we'll start with a little setup for the graph by creating the color palette.
In the graph that we're creating, colors will represent the node's distance from
a central node. We'll take some time to understand this, because it illustrates
some of the differences between Clojure and ClojureScript, and it shows us how
to call JavaScript:

(defn make-color []
 (.. js/d3
 -scale
 category10
 (domain (array 0 1 2 3 4 5 6))))

Let's take this bit by bit so that we can understand it all. I'll list a line and then point
out what's interesting about it:

 (.. js/d3

There are a couple of things that we need to notice about this line. First,.. is the
standard member access macro that we use for Java's interoperability with the main
Clojure implementation. In this case, we're using it to construct a series of access calls
against a JavaScript object. In this case, the ClojureScript that the macro expands to
would be (.domain (.category10 (.-scale js/d3)) (array 0 1 2 3 4 5 6)).

In this case, that object is the main D3 object. The js/ namespace is available by
default. It's just an escape hatch to the main JavaScript scope. In this case, it would be
the same as accessing a property on the JavaScript window object. You can use this to
access anything from JavaScript without having to declare it. I regularly use it with
js/console for debugging, for example:

 -scale

This resolves into the JavaScript d3.scale call. The minus sign before scale just
means that the call is a property and not a function that takes no arguments. As
Clojure doesn't have properties and everything here would look like a function call,
ClojureScript needs some way to know that this should not generate a function call.
The dash does that as follows:

 category10

This line, combined with the preceding lines, generates JavaScript that looks like
d3.scale.category10(). In this case, the call doesn't have a minus sign before it, so
the ClojureScript compiler knows that it should generate a function call in this case:

 (domain (array 0 1 2 3 4 5 6))))

Network Analysis – The Six Degrees of Kevin Bacon

[28]

Finally, this makes a call to the scale's domain method with an array that sets the
domain to the integers between 0 and 6, inclusive of both. These are the values
for the distances that we'll look at. The JavaScript for this would be d3.scale.
category10().domain([0, 1, 2, 3, 4, 5, 6]).

This function creates and returns a color object. This object is callable, and when it
acts as a function that takes a value and returns a color, this will consistently return
the same color whenever it's called with a given value from the domain. For example,
this way, the distance 1 will also be associated with the same color in the visualization.

This gives us an introduction to the rules for interoperability in ClojureScript.
Before we make the call to get the data file, we'll also create the object that takes
care of managing the force-directed layout and the D3 object for the svg element.
However, you can check the code download provided on the Packt Publishing
website for the functions that create these objects.

Next, we need to access the data. We'll see that in a minute, though. First, we need
to define some more functions to work with the data once we have it.For the first
function, we need to take the force-layout object and associate the data with it.

The data for all of the visualizations has the same format. Each visualization is
a JSON object with three keys. The first one, nodes, is an array of JSON objects,
each representing one vertex in the graph. The main property of these objects that
we're interested in is the data property. This contains the distance of the current
vertex from the origin vertex. Next, the links property is a list of JSON objects that
represent the edges of the graph. Each link contains the index of a source vertex and
a target vertex. Third, the graph property contains the entire graph using the same
data structures as we did in Clojure.

The force-directed layout object expects to work with the data from the nodes and
the links properties. We set this up and start the animation with the setup-force
-layout function:

(defn setup-force-layout [force-layout graph]
 (.. force-layout
 (nodes (.-nodes graph))
 (links (.-links graph))
 start))

As the animation continues, the force-layout object will assign each node and link
the object with one or more coordinates. We'll need to update the circles and paths
with those values.

Chapter 1

[29]

We'll do this with a handler for a tick event that the layout object will emit:

(defn on-tick [link node]
 (fn []
 (.. link
 (attr "x1" #(.. % -source -x))
 (attr "y1" #(.. % -source -y))
 (attr "x2" #(.. % -target -x))
 (attr "y2" #(.. % -target -y)))
 (.. node
 (attr "cx" #(.-x %))
 (attr "cy" #(.-y %)))))

Also, at this stage, we create the circle and path elements that represent the
vertices and edges. We won't list these functions here.

Finally, we tie everything together. First, we set up the initial objects, then we ask the
server for the data, and finally, we create the HTML/SVG elements that represent
the data. This is all tied together with the main function:

(defn ^:export main [json-file]
 (let [width 960, height 600
 color (make-color)
 force-layout (make-force-layout width height)
 svg (make-svg width height)]
 (.json js/d3 json-file
 (fn [err graph]
 (.. graph
 -links
 (forEach #(do (aset %1 "weight" 1.0)
 (aset %1 "index" %2))))
 (setup-force-layout force-layout graph)
 (let [link (make-links svg graph color)
 node (make-nodes svg graph color force-layout)]
 (.on force-layout "tick"
 (on-tick link node)))))))

There are a couple of things that we need to notice about this function, and they're
both highlighted in the preceding snippet. The first is that the function name has an
:export metadata flag attached to it. This just signals that the ClojureScript compiler
should make this function accessible from JavaScript outside this namespace. The
second is the call to d3.json. This function takes a URL for a JSON data file and a
function to handle the results. We'll see more of this function later.

Network Analysis – The Six Degrees of Kevin Bacon

[30]

Before we can use this, we need to call it from the HTML page. After the script tag
that loads js/main.js, I added this script tag:

<script>
network_six.force.main('facebook-49.json');
</script>

This loads the data file for vertex number 49. This vertex had a betweenness factor
of 0.0015, and it could reach four percent of the larger network within six hops.
This is small enough to create a meaningful, comprehensible graphic, as seen in the
following figure:

The origin vertex (49) is the blue vertex on the lower-right section, almost the
farthest-right node of the graph. All the nodes at each hop away from that node will
be of a different color. The origin vertex branches to three orange vertices, which link
to some green ones. One of the green vertices is in the middle of the larger cluster on
the right.

Some aspects of this graph are very helpful. It makes it relatively easy to trace
the nodes as they get farther from the origin. This is even easier when interacting
with the node in the browser, because it's easy to grab a node and pull it away from
its neighbors.

Chapter 1

[31]

However, it distorts some other information. The graph that we're working with
today is not weighted. Theoretically, the links in the graph should be the same
length because all the edges have the same weight. In practice, however, it's
impossible to display a graph in two dimensions. Force-directed layouts help
you display the graph, but the cost is that it's hard to tell exactly what the line
lengths and the several clear clusters of various sizes mean on this graph.

Also, the graphs themselves cannot be compared. If we then pulled out a subgraph
around a different vertex and charted it, we wouldn't be able to tell much by
comparing the two.

So what other options do we have?

A hive plot
The first option is a hive plot. This is a chart type developed by Martin Krzywinski
(http://egweb.bcgsc.ca/). These charts are a little different, and reading them
can take some time to get used to, but they pack in more meaningful information
than force-directed layout or other similar chart types do.

In hive plots, the nodes are positioned along a number of radial axes, often three.
Their positions on the axis and which axis they fall on are often meaningful,
although the meanings may change between different charts in different domains.

For this, we'll have vertices with a higher degree (with more edges attached to them)
be positioned farther out from the center. Vertices closer in will have fewer edges
and fewer neighbors. Again, the color of the lines represent the distance of that
node from the central node. In this case, we won't make the selection of the
axis meaningful.

To create this plot, we'll open a new file, src-cljs/network-six/hive.cljs.
At the top, we'll use this namespace declaration:

(ns network-six.hive)

The axis on which a node falls on is an example of a D3 scale; its color from the force
layout plot is another scale. Scales are functions that also have properties attached
and are accessible via getter or setter functions. However, primarily, when they are
passed a data object and a key function, they know how to assign that data object a
position on the scale.

Network Analysis – The Six Degrees of Kevin Bacon

[32]

In this case, the make-angle function will be used to assign nodes to an axis:

(defn make-angle []
 (.. js/d3
 -scale
 ordinal
 (domain (.range js/d3 4))
 (rangePoints (array 0 (* 2.0 pi)))))

We'll position the nodes along each axis with the get-radius function. This is
another scale that takes a vertex and positions it in a range between 40 and 400
according to the number of edges that are connected to it:

(defn get-radius [nodes]
 (.. js/d3
 -scale
 linear
 (range (array 40 400))
 (domain (array (.min js/d3 nodes #(.-count %))
 (.max js/d3 nodes #(.-count %))))))

We use these scales, along with a scale for color, to position and style the nodes:

(defn make-circles [svg nodes color angle radius]
 (.. svg
 (selectAll ".node")
 (data nodes)
 (enter)
 (append "circle")
 (attr "stroke" #(color (.-data %)))
 (attr "transform"
 #(str "rotate(" (degrees (angle (mod (.-n %) 3))) \)))
 (attr "cx" #(radius (.-count %)))
 (attr "r" 5)
 (attr "class" #(get-classes %))))

I've highlighted the scales that we use in the preceding code snippet. The circle's
stroke property comes from the color, which represents the distance of the vertex
from the origin for this graph.

The angle is used to assign the circle to an axis using the circle's transform
attribute. This is done more or less at random, based on the vertex's index in the
data collection.

Chapter 1

[33]

Finally, the radius scale positions the circle along the axis. This sets the circle's
position on the x axis, which is then rotated using the transform attribute and
the angle scale.

Again, everything is brought together in the main function. This sets up the scales,
requests the data, and then creates and positions the nodes and edges:

(defn ^:export main [json-file]
 (let [width 750, height 750
 angle (make-angle), color (make-color)
 svg (make-svg width height)]
 (.json js/d3 json-file
 (fn [err data]
 (let [nodes (.-nodes data)
 radius (get-radius nodes)]
 (make-axes svg angle radius)
 (let [df (get-degreed nodes data)]
 (make-arcs svg nodes df color angle radius)
 (make-circles svg nodes color angle radius)))))))

Let's see what this graph looks like:

Again, the color represents the distance of the node from the central node.
The distance from the center on each axis is the degree of the node.

Network Analysis – The Six Degrees of Kevin Bacon

[34]

It's clear from the predominance of the purple-pink color and the bands that the
majority of the vertices are six hops from the origin vertex. From the vertices'
position on the axes, we can also see that most nodes have a moderate number of
edges attached to them. One has quite a few, but most are much closer to the center.

This graph is denser. Although the force-layout graph may have been problematic,
it seemed more intuitive and easier to understand, whether it was meaningful or not.
Hive plots are more meaningful, but they also take a bit more work to learn to read
and to decipher.

A pie chart
Our needs today are simpler than the complex graph we just created; however,
we're primarily interested in how much of the network is covered within six hops
from a vertex. Neither of the two graphs that we've looked at so far conveyed that
well, although they have presented other information and they're commonly used
with graphs. We want to know proportions, and the go-to chart for proportions is
the pie chart. Maybe it's a little boring, and it's does not strictly speak of a graph
visualization per se, but it's clear, and we know what we're dealing with in it.

Generating a pie chart will look very similar to creating a force-directed layout
graph or a hive plot. We'll go through the same steps, overall, even though some
of the details will be different.

One of the first differences is the function to create an arc. This is similar to a
scale, but its output is used to create the d (path description) attribute of the pie
chart's wedges:

(defn make-arc [radius]
 (.. js/d3 -svg arc
 (outerRadius (- radius 10))
 (innerRadius 0)))

The pie layout controls the overall process and design of the chart. In this case,
we say that we want no sorting, and we need to use the amount property of the
data objects:

(defn make-pie []
 (.. js/d3 -layout pie
 (sort nil)
 (value #(.-amount %))))

Chapter 1

[35]

The other difference in this chart is that we'll need to preprocess the data before it's
ready to be fed to the pie layout. Instead of a list of nodes and links, we'll need to
give it categories and counts. To make this easier, we'll create a record type for
these frequencies:

(defrecord Freq [degree amount])

Also, we'll need a function that takes the same data as the other charts, counts it by
distance from the origin vertex, and creates Freq instances to contain that data:

(defn get-freqs [data]
 (->> data
 .-nodes
 (map #(.-data %))
 frequencies
 (map #(Freq. (first %) (second %)))
 into-array))

Again, we pull all these together in the main function, and we do things in the
usual way. First, we set up the graph, then we retrieve the data, and finally,
we put the two together to create the graph.

In this case, this should give us an idea of how much of the graph this vertex can
easily touch. The graph for vertex 49 is shown as follows. We can see that it really
doesn't touch much of the network at all. 3799 vertices, more than 95 percent of
the network, aren't within six hops of vertex 49.

www.allitebooks.com

http://www.allitebooks.org

Network Analysis – The Six Degrees of Kevin Bacon

[36]

However, if we compare this with the pie chart for vertex 1085, which was the vertex
with the highest betweenness factor, we see a very different picture. For that vertex,
more than 95 percent of the network is reachable within 6 hops.

It's also interesting that most of the vertices are four edges away from the origin.
For smaller networks, most vertices are further away. However, in this case,
it's almost as if it had started running out of vertices in the network.

Chapter 1

[37]

Summary
So, we discovered that this dataset does conform to a loose definition of the small
world or a six-degree hypothesis. The average distance between any two nodes is
about six. Also, as we're working with a sample, it's possible that working with
a complete graph may fill in some links and bring the nodes closer together.

We also had an interesting time looking at some visualizations. One of the important
lessons that we learned was that more complicated isn't always better. Simple,
perhaps even a little boring, graphs can sometimes answer the questions we have
in a better manner.

However, we've barely scratched the surface of what we can do with social graphs.
We've primarily been looking at the network as a very basic, featureless graph,
looking at the existence of people and their relationships without digging into the
details. However, there are several directions we could go in to make our analysis
more social. For one, we could look at the different types of relationships. Facebook
and other social platforms allow you to specify spouses, for example, it might be
interesting to look at an overlap between spouses' networks. Facebook also tracks
interests and affiliations using their well-known Like feature. We could also look
at how well people with similar interests find each other and form cliques.

In the end, we've managed to learn a lot about networks and how they work. Many
real-world social networks share very similar characteristics, and there's a lot to be
learned from sociology as well. These structures have always defined us but never
more so than now. Being able to effectively analyze social networks, and the insights
we can get from them, can be a useful and effective part of our toolkit.

In the next chapter, we'll look at using geographical analysis and applying that to
weather data.

GIS Analysis – Mapping
Climate Change

One area of data analysis that's gotten a lot of attention is Geographic Information
Systems (GIS). GIS is a system that is designed to store, manage, manipulate,
and analyze geographic data. As such, GIS sits at the intersection of cartography,
computers, statistics, and information science.

GIS is applied to fields as diverse as military planning, epidemiology, architecture,
urban planning, archaeology, and many other fields. Basically, any domain or
problem that involves location or topology can use GIS techniques or methods.

As you can imagine from this very brief description, we won't even scratch the
surface of GIS in this chapter. However, we'll apply it to a small problem to see
how it can help us understand the way climate change affects the continental
United States in a better manner.

Understanding GIS
While the preceding description is accurate, it doesn't really help us much. As befits
a field concerned with the lay of the land, GIS really begins in the field. Data is
gathered using aerial and satellite photography, and it is also gathered from people
on the ground using GPS, laser range finders, and surveying tools. GIS can also make
use of existing maps, especially for historical research and to compare time periods.
For example, this may involve studying how a city has evolved over time or national
boundaries have changed. A lot of time and energy in GIS goes into gathering this
data and entering it into the computer.

GIS Analysis – Mapping Climate Change

[40]

Once the data is in the computer, GIS can perform a wide range and variety of
analyses on the data, depending on the questions being asked and the task at hand.
For example, the following are some of the many things you can do with GIS:

•	 View-shed analysis: This attempts to answer the question, "What can
someone standing right here at this elevation (and perhaps at a second
story window) see?". This takes into account the elevation and slope of
the terrain around the viewer.

•	 Topological modeling: This combines the GIS data with other data in
the data mining and modeling to add a geospatial component to more
mainstream data mining and modeling. This allows the models to
account for the geographical proximity.

•	 Hydrological modeling: This models the way in which water interacts
with the environment through rainfall, watershed, runoff, and catchment.

•	 Geocoding: This involves associating human-readable addresses with their
geospatial coordinates. When you click on a Google Map or Bing Map and
get the business or address of a location, it's because it's been geocoded for
the coordinates you tapped on.

The primary tool for most GIS specialists is ArcGIS by ESRI (http://www.esri.
com/). This is a powerful, full-featured GIS workbench. It interoperates with most
data sources and performs most of the analyses. It also has an API for Python and
APIs in Java and .NET to interact with ArcGIS servers. We'll use ArcGIS at the end
of this chapter to generate the visualization.

However, there are other options as well. Most databases have some GIS capabilities,
and Quantum GIS (http://www.qgis.org/) is an open source alternative to ArcGIS.
It isn't as polished or as fully featured, but it's still powerful in its own right and is
freely available. GeoServer (http://geoserver.org/) is an enterprise-level server
and management system for the GIS data. There are also libraries in a number of
programming languages; Geospatial Data Abstraction Layer, also known as GDAL,
(http://www.gdal.org/) deserves special mention here, both in its own right and
because it serves as the foundation for libraries in a number of other programming
languages. One of the libraries for Java is GeoTools (http://www.geotools.org/),
and part of it calls GDAL under the table.

Mapping the climate change
So, let's roll up our sleeves and perform some geospatially informed data analysis.

Chapter 2

[41]

For our problem, we'll look at how the climate change affects the continental
United States over the last century or so. Specifically, we'll look at how the average
maximum temperature for July has changed. For North America, this should give
us a good snapshot of the hottest temperatures.

One nice thing about working with the weather data is that there's a lot of it, and it's
easily available. US National Oceanic and Atmospheric Administration (NOAA)
collects it and maintains archives of it.

For this project, we'll use the Global Summary of the Day (http://www.ncdc.noaa.
gov/cgi-bin/res40.pl). This includes daily summaries from each active weather
station. We'll filter out any weather stations that aren't in the US, and we'll filter out
any data that is not in use for the month of July.

Climate is typically defined on thirty-year periods. For example, the climate for a
location would be the average temperature of thirty years, not the temperature for
the year. However, there won't be that many thirty-year periods for the time span
that we're covering, so instead, we'll look at the maximum temperature for July
from each weather station in ten-year rolling averages.

To find out how much the maximum temperature has changed, we'll find the rolling
average for these ten-year periods. Then, for each station, we'll find the difference
between the first ten year period's average and the last one's.

Unfortunately, the stations aren't evenly or closely spaced; as we'll see, they
also open and close over the years. So we'll do the best we can with this data,
and we'll fill in the geospatial gaps in the data.

Finally, we'll graph this data over a map of the US. This will make it easy to see
how temperatures have changed in different places. What will this process look
like? Let's outline the steps for the rest of this chapter:

1.	 Download the data from NOAA's FTP servers. Extract it from the files.
2.	 Filter out the data that we won't need for this analysis. We'll only hang

onto places and the month that we're interested in (the US for July).
3.	 Average the maximum temperatures for each month.
4.	 Calculate the ten-year rolling averages of the averages from step three.
5.	 Get the difference between the first and last ten-year averages for each

weather station.
6.	 Interpolate the temperature differences for the areas between the stations.
7.	 Create a heat map of the differences.
8.	 Review the results.

GIS Analysis – Mapping Climate Change

[42]

Downloading and extracting the data
As mentioned above, NOAA maintains an archive of GSOD. For each weather
station around the world, these daily summaries track a wide variety of weather
data for all active weather stations around the globe. We'll use the data from here
as the basis of our analysis.

The data is available at ftp://ftp.ncdc.noaa.gov/pub/data/gsod/. Let's look
at how this data is stored and structured:

So, the main directory on the FTP site (/pub/data/gsod/) has a directory for each
year that has the weather data. There's also a file called ish-history.csv. This
contains information about the weather stations, when they were operational, and
where they were located. (Also, the text files and README files are always important
for more specific, detailed information about what's in each file.)

Now let's check out one of the data directories; this is for 2013.

The data directories contain a large number of data files. Each of the files that ends
in .op.gz has three components for its file name. The first two parts are identifiers
for the weather station and the third is the year.

Each data directory also has a tarball that contains all of the *.op.gz data files.
That file will be the easiest to download, and then we can extract the *.op.gz files
from it. Afterwards, we'll need to decompress these files to get the *.op data files.
Let's do that, and then we can look at the data that we have.

Chapter 2

[43]

Downloading the files
Before we actually get into any of the code to do this, let's take a look at the
dependencies that we'll need.

Before we get started, let's set up our project. For this chapter, our Leiningen 2
(http://leiningen.org/) project.clj file should look something like the
following code:

(defproject clj-gis "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.5.1"]
 [me.raynes/fs "1.4.4"]
 [com.velisco/clj-ftp "0.3.0"]
 [org.clojure/data.csv "0.1.2"]
 [clj-time "0.5.1"]
 [incanter/incanter-charts "1.5.1"]]
 :jvm-opts ["-Xmx4096m"])

Now for this section of code, let's open the src/clj_gis/download.clj file.
We'll use this namespace declaration for this code as follows:

(ns clj-gis.download
 (:require [clojure.java.io :as io]
 [me.raynes.fs.compression :as compression]
 [me.raynes.fs :as fs]
 [miner.ftp :as ftp]
 [clj-gis.locations :as loc]
 [clj-gis.util :as u])
 (:import [org.apache.commons.net.ftp FTP]
 [java.util.zip GZIPInputStream]
 [java.io BufferedInputStream]))

Now, the next two functions together download the GSOD data files. The main
function is download-data. It walks the directory tree on the FTP server, and
whenever it identifies a file to be downloaded, it hands it off to download-file.
This function figures out where to put the file and downloads it to that location.
I've left out the source code for some of the utilities and secondary functions listed
here, such as download-src, so that we can focus on the larger issues. You can
find these functions in the file in this chapter's code download. The following
code snippet is part of the code that is available for download:

(defn download-file
 "Download a single file from FTP into a download directory."
 [client download-dir dirname]
 (let [src (download-src dirname)
 dest (download-dest download-dir dirname)]

GIS Analysis – Mapping Climate Change

[44]

 (ftp/client-get client src dest)))

(defn download-data
 "Connect to an FTP server and download the GSOD data files."
 [uri download-dir data-dir]
 (let [download-dir (io/file download-dir)
 data-dir (io/file data-dir)]
 (ensure-dir download-dir)
 (ensure-dir data-dir)
 (ftp/with-ftp [client uri]
 (.setFileType client FTP/BINARY_FILE_TYPE)
 (doseq [dirname
 (filter get-year
 (ftp/client-directory-names client))]
 (download-file client download-dir dirname)))))

Extracting the files
Now, we've downloaded the files from the NOAA FTP server onto the local
hard drive. However, we still need to use the tar utility to extract the files we've
downloaded and then decompress them.

We'll use the FS library to extract the downloaded files. Currently, the individual
data files are in a common Unix file format called tar, which collects multiple files
into one larger file. These files are also compressed using the utility gzip. We'll use
Java's GZIPOutputStream to decompress gz. Let's see how this works:

(defn untar
 "Untar the file into the destination directory."
 [input-file dest-dir]
 (compression/untar input-file dest-dir))

(defn gunzip
 "Gunzip the input file and delete the original."
 [input-file]
 (let [input-file (fs/file input-file)
 parts (fs/split input-file)
 dest (fs/file (reduce fs/file (butlast parts))
 (first (fs/split-ext (last parts))))]
 (with-open [f-in (BufferedInputStream.
 (GZIPInputStream.
 (io/input-stream input-file)))]
 (with-open [f-out (io/output-stream dest)]
 (io/copy f-in f-out)))))

Chapter 2

[45]

We can put these functions together with the download functions that we just looked
at. This function, download-all, will download all the data and then decompress all
of the data files into a directory specified by clj-gis.locations/*data-dir*:

(defn download-all []
 (let [tar-dir (fs/file loc/*download-dir*)
 data-dir (fs/file loc/*data-dir*)]
 (download-data tar-dir data-dir)
 (doseq [tar-file (fs/list-dir tar-dir)]
 (untar (fs/file tar-dir tar-file) data-dir))
 (doseq [gz-file (fs/list-dir data-dir)]
 (gunzip (fs/file data-dir gz-file)))))

Now, what do these files look like? The header line of one of them is as follows:

STN--- WBAN YEARMODA TEMP DEWP SLP STP
 VISIB WDSP MXSPD GUST MAX MIN PRCP SNDP
 FRSHTT

The following is one of the data rows:

007032 99999 20130126 80.1 12 65.5 12 9999.9 0 9999.9 0
 999.9 0 2.5 12 6.0 999.9 91.4* 71.6* 0.00I
 999.9 000000

So, there are some identification fields, some for temperature, dew point, wind,
and other weather data. Next, let's see how to winnow the data down to just the
information that we plan to use.

Transforming the data – filtering
As we just noticed, there's a lot of data in the GSOD files that we don't plan to use.
This includes the following:

•	 Too many files with data for places that we aren't interested in
•	 Too many rows with data for months that we aren't interested in
•	 Too many columns with weather data that we aren't interested in (dew

points, for instance)

At this point, we'll only worry about the first problem. Just filtering out the places
we're not looking at will dramatically reduce the amount of data that we're dealing
with from approximately 20 GB of data to just 3 GB.

www.allitebooks.com

http://www.allitebooks.org

GIS Analysis – Mapping Climate Change

[46]

The code for this section will be in the src/clj_gis/filter_data.clj file. Give it
the following namespace declaration:

(ns clj-gis.filter-data
 (:require
 [clojure.string :as str]
 [clojure.data.csv :as csv]
 [clojure.java.io :as io]
 [me.raynes.fs :as fs]
 [clj-gis.locations :as loc]
 [clj-gis.util :refer (ensure-dir)]))

Now it's time for the code that is to be put in the rest of the file.

To filter out the data that we won't use, we'll copy files for stations in the United States
into their own directory. We can create a set of these stations from the ish-history.
csv file that we noticed earlier, so our first task will be parsing that file. This code will
read the CSV file and put the data from each line into a new data record, IshHistory.
Having its own data type for this information isn't necessary, but it makes the rest of
the code much more readable. For example, we can reference the country field using
(:country h) instead of (nth h 3) later. This type can also reflect the column order
from the input file, which makes reading the data easier:

(defrecord IshHistory
 [usaf wban station_name country fips state call
 lat lon elevation begin end])
(defn read-history
 "Read the station history file."
 [filename]
 (with-open [f (io/reader filename)]
 (doall
 (->> (csv/read-csv f)
 (drop 1)
 (map #(apply ->IshHistory %))))))

The stations are identified by the combination of the USAF and WBAN fields.
Some stations use USAF, some use WBAN, and some use both. So we'll need to
track both to uniquely identify the stations. This function will create a set of the
stations in a given country:

(defn get-station-set
 "Create a set of all stations in a country."
 [country histories]
 (set (map #(vector (:usaf %) (:wban %))
 (filter #(= (:country %) country)
 histories))))

Chapter 2

[47]

Finally, we need to tie these functions together. This function, filter-data-files,
reads the history and creates the set of stations that we want to keep. Then, it walks
through the data directory and parses the file names to get the station identifiers
for each file. Files from the stations in the set are then copied to a directory with
the same name as the country code, as follows:

(defn filter-data-files
 "Read the history file and copy data files matching the
 country code into a new directory."
 [ish-history-file data-dir country-code]
 (let [history (read-history ish-history-file)
 stations (get-station-set country-code history)]
 (ensure-dir (fs/file country-code))
 (doseq [filename (fs/glob (str data-dir "*.op"))]
 (let [base (fs/base-name filename)
 station (vec (take 2 (str/split base #"-")))]
 (when (contains? stations station)
 (fs/copy filename (fs/file country-code base)))))))

This set of functions will filter out most of the data and leave us with only the
observations from the stations we're interested in.

Rolling averages
We aren't plotting the raw data. Instead, we want to filter it further and summarize
it. This transformation can be described in the following steps:

1.	 Process only the observations for the month of July.
2.	 Find the mean temperature for the observations for the month of July

for each year, so we'll have an average for July 2013, July 2012, July 2011,
and so on.

3.	 Group these monthly averages into rolling ten-year windows. For example,
one window will have the observations for 1950 to 1960, another window
will have observations for 1951 to 1961, and so on.

4.	 Find the mean temperature for each of these windows for a climatic average
temperature for July for that period.

5.	 Calculate the change in the maximum temperature by subtracting the
climatic average for the last window for a station from the average of its
first window.

This breaks down the rest of the transformation process pretty well. We can use this
to help us structure and write the functions that we'll need to implement the process.
However, before we can get into that, we need to read the data.

GIS Analysis – Mapping Climate Change

[48]

Reading the data
We'll read the data from the space-delimited data files and store the rows in a new
record type. For this section, let's create the src/clj_gis/rolling_avg.clj file.
It will begin with the following namespace declaration:

(ns clj-gis.rolling-avg
 (:require
 [clojure.java.io :as io]
 [clojure.string :as str]
 [clojure.core.reducers :as r]
 [clj-time.core :as clj-time]
 [clj-time.format :refer (formatter parse)]
 [clojure.data.csv :as csv]
 [me.raynes.fs :as fs]
 [clj-gis.filter-data :as fd]
 [clj-gis.locations :as loc]
 [clj-gis.types :refer :all]
 [clj-gis.util :as u]))

Now, we can define a data type for the weather data. We'll read the data into an
instance of WeatherRow, and then we'll need to normalize the data to make sure
that the values are ones that we can use. This will involve converting strings to
numbers and dates, for instance:

(defrecord WeatherRow
 [station wban date temp temp-count dewp dewp-count slp
 slp-count stp stp-count visibility vis-count wdsp
 wdsp-count max-wind-spd max-gust max-temp min-temp
 precipitation snow-depth rfshtt])
(defn read-weather
 [filename]
 (with-open [f (io/reader filename)]
 (doall
 (->> (line-seq f)
 (r/drop 1)
 (r/map #(str/split % #"\s+"))
 (r/map #(apply ->WeatherRow %))
 (r/map normalize)
 (r/remove nil?)
 (into [])))))

Chapter 2

[49]

Now that we have the weather data, we can work it through the pipeline as
outlined in the preceding code snippet. This series of functions will construct
a sequence of reducers.

Reducers, introduced in Clojure 1.5, are a relatively new addition to the language.
They refine traditional functional-style programming. Instead of map taking a
function and a sequence and constructing a new sequence, the reducers' version
of map takes a function and a sequence or folder (the core reducer data type) and
constructs a new folder that will apply the function to the elements of the input
when required. So, instead of constructing a series of sequences, it composes the
functions into a larger function that performs the same processing, but only produces
the final output. This saves on allocating the memory, and if the input data types are
structured correctly, the processing can also be automatically parallelized as follows:

1.	 For the first step, we want to return only the rows that fall in the month
we're interested in. This looks almost exactly like a regular call to filter,
but instead of returning a new, lazy sequence, it returns a folder that has
the same effect; it produces a sequence with only the data rows we want.
Or, we can compose this with other folders to further modify the output.
This is what we will do in the next few steps:
(defn only-month
 "1. Process only the observations for the month of July."
 [month coll]
 (r/filter #(= (clj-time/month (:date %)) month) coll))

2.	 This function takes the reducer from the first step and passes it through a
few more steps. The group-by function finally reifies the sequence into a
hash map. However, it's immediately fed into another reducer chain that
averages the accumulated temperatures for each month:
(defn mean [coll]
 (/ (sum coll) (double (count coll))))
(defn get-monthly-avgs
 "2. Average the observations for each year's July, so
 we'll have an average for July 2013, one for July 2012,
 one for July 2011, and so on."
 [weather-rows]
 (->> weather-rows
 (group-by #(clj-time/year (:date %)))
 (r/map (fn [[year group]]
 [year (mean (map :max-temp group))]))))

GIS Analysis – Mapping Climate Change

[50]

3.	 For step three, we create a series of moving windows across the monthly
averages. If there aren't enough averages to create a full window, or if
there are only enough to create one window, then we throw those extra
observations out:
(defn get-windows
 "3. Group these monthly averages into a rolling ten-year
 window. For example, one window will have the
 observations for 1950–1960. Another window will have
 observations for 1951–1961. And so on."
 [period month-avgs]
 (->>
 month-avgs
 (into [])
 (sort-by first)
 (partition period 1)
 (r/filter #(> (count %) 1))
 (r/map #(vector (ffirst %) (map second %))))))

4.	 This step uses a utility function, mean, to get the average temperature
for each window. We saw this defined in step two. This keeps hold of
the starting year for that window so they can be properly ordered:
(defn average-window
 "4. Average each of these windows for a climatic average
 temperature for July for that period."
 [windows]
 (r/map (fn [[start-year ws]] [start-year (mean ws)])
 windows))

5.	 After this, we do a little more filtering to only pass the averages through,
and then we replace the list of averages with the difference between the
initial and the final averages:

(defn avg-diff
 "5. Calculate the change in maximum temperature by
 subtracting the climatic average for the last window for
 a station from the average of its first window."
 [avgs]
 (- (last avgs) (first avgs)))

There's more to this, of course. We have to get a list of the files to be processed,
and we need to do something with the output; either send it to a vector or to a file.

Now that we've made it this far, we're done transforming our data, and we're ready
to start our analysis.

Chapter 2

[51]

Interpolating sample points and generating
heat maps using inverse distance weighting
(IDW)
In the end, we're going to feed the data we've just created to ArcGIS in order to
create the heat map, but before we do that, let's try to understand what will happen
under the covers.

For this code, let's open up the src/clj_gis/idw.clj file. The namespace for this
should be like the following code:

(ns clj-gis.idw
 (:require [clojure.core.reducers :as r]
 [clj-gis.types :refer :all]))

To generate a heat map, we first start with a sample of points for the space we're
looking at. Often, this space is geographical, but it doesn't have to be. Values for a
complex, computationally-expensive, two-dimensional function are another example
where a heat map would be useful. It would take too long to completely cover the
input domain, and inverse distance weighting could be used to fill in the gaps.

The sample data points each have a value, often labeled z to imply a third dimension.
We want a way to interpolate the z value from the sample points onto the spaces
between them. The heat map visualization is just the result of assigning colors to
ranges of z and plotting these values.

One common technique to interpolate the value of z to points between the sample
points is called inverse distance weighting (IDW). To find the interpolated value
of z for a point x, y, IDW sees how much the value of each sample point influences
that location, given each sample's distance away and a value p that determines how
far each sample point's influence carries. Low values of p don't project much beyond
their immediate vicinity. High values of p can be projected too far. We'll see some
examples of this in a minute.

There are a variety of ways to calculate the IDW. One general form is to sum the
weighted difference between the data point in question and all others, and divide
it by the non-weighted sum.

()
()

()
()

()
1

1

1
,

N

i i
i

iN P
i

i
i

w x u
u x w x

d x xw x

=

=

= =
∑

∑

GIS Analysis – Mapping Climate Change

[52]

There are several variations of IDW, but here, we'll just describe the base version,
as outlined by Donald Shepard in 1968. First, we have to determine the inverse
distance function. It's given here as w. Also, x_i is the sample point, and x is the
point to estimate the interpolation for, just as given in the preceding formula:

(defn w
 "Finds the weighted inverse distance between the points x and
 x_i. "
 ([p dist-fn x] (partial w p dist-fn x))
 ([p dist-fn x x_i]
 (/ 1.0 (Math/pow (dist-fn x x_i) p))))

With this in place, IDW is the sum of w for each point in the sample, multiplied
by that sample point's value and divided by the sum of w for all the samples.
It's probably easier to parse the code than it is to describe it verbosely:

(defn sum-over [f coll] (reduce + (map f coll)))
(defn idw
 ([sample-points data-key p dist-fn]
 (partial idw sample-points data-key p dist-fn))
 ([sample-points data-key p dist-fn point]
 (float
 (/ (sum-over #(* (w p dist-fn point %) (data-key %))
 sample-points)
 (sum-over (w p dist-fn point) sample-points))))
 ([sample-points data-key p dist-fn lat lon]
 (idw sample-points data-key p dist-fn
 (->DataPoint lat lon nil))))

The highlighted part of the function is the part to pay attention to. The rest makes
it easier to call idw in different contexts. I precompute the denominator in the let
form, as it won't change for each sample point that is considered. Then, the distances
of each sample point and the target point are multiplied by the value of each sample
point and divided by the denominator, and this is summed together.

This function is easy to call with the charting library that Incanter provides, which
has a very nice heat map function. Incanter is a library used to perform data analysis
and visualization in Clojure by interfacing with high-performance Java libraries.
This function first gets the bounding box around the data and pads it a little. It then
uses Incanter's heat-map function to generate the heat map. To make it more useful,
however, we then make the heat map transparent and plot the points from the
sample onto the chart. This is found in src/clj_gis/heatmap.clj:

(defn generate-hm
 [sample p border]

Chapter 2

[53]

 (let [{:keys [min-lat max-lat min-lon max-lon]}
 (min-max-lat-lon sample)]
 (->
 (c/heat-map (idw sample :value p euclidean-dist)
 (- min-lon border) (+ max-lon border)
 (- min-lat border) (+ max-lat border))
 (c/set-alpha 0.5)
 (c/add-points (map :lon sample) (map :lat sample)))))

Let's take a random data sample and use it to see what different values of p do.

For the first experiment, let's look at p=1:

(i/view (hm/generate-hm sample 1.0 5.0))

The graph it produces looks like the following figure:

GIS Analysis – Mapping Climate Change

[54]

We can see that the influence for each sample point is tightly bound to its immediate
neighborhood. More moderate values, around 4 and 5, dominate.

For p=8, the picture is a bit different, as shown in the following screenshot:

In the preceding figure, each interpolated point is more heavily influenced by
the data points closest to it, and further points are less influential. More extreme
regions have great influence over larger distances, except around sample points
with moderate values.

Finally, we'll look at an interpolated point that's more balanced. The following is
the chart for when p=3:

Chapter 2

[55]

This seems much more balanced. Each sample point clearly exerts its influence
across its own neighborhood. However, no point, and no range of values, appears to
dominate. A more meaningful graph with real data would probably look quite good.

So far, we've been playing with the toy data. Before we can apply this to the
climate data that we prepared earlier, there are several things we need to take
into consideration.

Working with map projections
Have you looked at a world wall map and noticed how big Greenland is? It's huge.
It's larger than China, the United States, and Australia, and is about as big as Africa.
Too bad it's so cold, or we could fit a lot of people up there. Or could we?

Actually, Australia is about three and a half times as big as Greenland, China is
almost four and a half times as big, and Africa is almost fourteen times as large!

www.allitebooks.com

http://www.allitebooks.org

GIS Analysis – Mapping Climate Change

[56]

What's going on? The Mercator projection is what's going on. It was developed by
the Flemish cartographer Gerardus Mercator in 1569. Over time, it's become very
popular, at least partially so because it fits nicely onto a rectangular page without
wasting a lot of space around the edges, the way some projections do.

A map projection is a transformation of locations on a sphere or ellipsoid onto
locations on a plane. You can think of it as a function that transforms latitudes and
longitudes of the earth into the x and y coordinates on a sheet of paper. This allows
us to take a point on a map and find it on the earth, take a point on the earth and
find it on the map, or take a point on one map and find it on another.

Mercator is a common projection. It's created by wrapping a cylindrical sheet of
paper around the globe, only touching along the equator. Then, the shapes on the
globe are cast out onto the paper roll like beams of light spreading out. This was
developed for navigation, and if you chart a course with a constant bearing, it plots
on a Mercator map as a straight line. However, its major problem is that it distorts
shapes around the edges, for example, Greenland or Antarctica.

There are a number of other common projections, such as the following:

•	 The Gall-Peters projection accurately shows the area but distorts the shape.
•	 The Eckert IV projection distorts the outer shape of the map onto an ovoid

to minimize the area distortions of the Mercator projection, although it still
distorts the shapes of things near the poles.

•	 The Goode homolosine projection attempts to accurately portray both the
area and shape by cutting the skin off the globe into some awkward shapes.
It's sometimes called the orange peel map because the outlines of the map
look like you peeled an orange by hand and flattened it on the table top.

So how does this apply to our project?

On the one hand, we need some way to accurately measure the distances between
points in the real world. For example, as we're working in the northern hemisphere,
the points near the top of the map, to the north, will be closer together than the points
near the bottom. We need to know the projection in order to measure these distances
correctly and correctly calculate the interpolations.

Chapter 2

[57]

To put it another way, the distance between two points that are a degree of longitude
apart would be different, depending on their latitude. In Grand Forks, North Dakota,
the distance between longitude -97 and -96 is approximately 46 miles (74.5 km). On the
other hand, the distance between longitudes -97 and -96, just west of Houston, Texas,
is almost 60 miles (96.52 km). Think of the way in which two lines that are parallel on
the equator have to curve towards each other as they converge at the poles.

On the other hand, we also need to then be able to know which pixel a set of latitude
and longitude correspond to. In order to actually plot the heat map on the screen,
we have to be able to determine which pixel gets which color, depending on the
interpolated points on the map.

Finding a base map
Related to the projections, we also need to have a base layer to display the heat
map on top of it. Without being able to see the context of the underlying geography,
a heat map is more confusing than it is illuminating.

There are maps available that have their locations encoded in their metadata.
GeoTIFF is one such format. GIS packages can layer the data and information on top
of these base maps to provide more complex, interesting, and useful visualizations
and analyses.

Working with ArcGIS
Working with projections and base maps can be fiddly and prone to errors. While
there are Java libraries that can help us with this, let's use the major software package
in this domain, ArcGIS, for the purposes of this demonstration. While it's awesome to
be able to program solutions in a powerful, flexible language like Clojure, sometimes,
it's nicer to get pretty pictures quickly.

We're going to start this by getting the base layer. ESRI maintains a set of topological
maps, and this map of the United States is perfect for this:

1.	 Navigate to http://www.arcgis.com/home/item.html?id=99cd5fbd98934
028802b4f797c4b1732 to view ESRI's page on the US Topo Maps.

2.	 Click on the Open dropdown.

http://www.arcgis.com/home/item.html?id=99cd5fbd98934028802b4f797c4b1732
http://www.arcgis.com/home/item.html?id=99cd5fbd98934028802b4f797c4b1732

GIS Analysis – Mapping Climate Change

[58]

3.	 Select the option that allows you to get ArcGIS Desktop to open the layer.

Now we'll add our data. This was created using the functions that we defined
earlier as well as a few more that are available in this chapter's code download:

1.	 The data is available at http://www.ericrochester.com/clj-data-
master/temp-diffs.csv. Point your web browser there and download
the file. Don't forget where you put it!

2.	 In ArcGIS, navigate to File | Add Data | Add XY Data.
3.	 Select the temp-diffs.csv file, and specify z for the z field.
4.	 We'll also need to change the projection of the input data. To do this,

click on Edit... to edit the projection.
5.	 In the new dialog box, Select a predefined coordinate system. Navigate to

Coordinate Systems | Geographic Coordinate Systems | North America |
NAD 1983.

Chapter 2

[59]

6.	 When the file is ready to load, the dialog should look like what is shown in
the following screenshot:

7.	 Once the data is in place, we need to set the color scheme for the z field.
Right-click on the new layer and select Properties. Select the Symbology
tab and get the graduated colors the way you like them.

GIS Analysis – Mapping Climate Change

[60]

8.	 After I was done playing, the dialog box looked like what is shown in the
following screenshot:

9.	 Now we get to the good part. Open up Catalog and select IDW tool.
It is done by navigating to System Toolboxes | Geostatistical Analyst
Tools | Interpolation. Generate the heat map into a new layer.

10.	 Once ArcGIS is done, the heat map will be too opaque to see the underlying
geography. Right-click on the heat map layer and select Properties. In the
Display tab, change the opacity to something reasonable. I used 0.40.

Chapter 2

[61]

The final results are shown as follows:

We can see that for a large part of the nation, things have heated up. The west
part of the great lakes have cooled a bit, but the Rocky Mountains have especially
gotten warmer.

Summary
This has been a fun little experiment. Looking at the data, however, suggests
caution. Some of the stations have been in operation long enough to have only
a few of the sliding windows defined. Others have been operational for much
longer. This makes it difficult to compare the aggregated numbers from the
different different stations, which is what we're doing by creating the heat map.

Nevertheless, this does point to some interesting areas of future enquiry, and it
provides a brief glimpse of what geographical information systems can provide
and how to use them. They can add a geospatially informed edge to the modeling
and analysis, which isn't possible with the data, tools, and techniques they bring
to the table.

In this next chapter, we'll turn our attention to sifting through free-form textual
data using topic modeling.

Topic Modeling – Changing
Concerns in the State of the

Union Addresses
A huge source of data right now is the volumes of unstructured, natural-language
data that's everywhere on the Internet. Think of all the news articles, blog posts,
Twitter posts, and YouTube comments as well as the thousands of other ways that
people can create and share textual content online. What they're saying may be
important to you, and being able to track what subjects they are talking about is
incredibly useful to become aware of the trends and conversations.

A tool to explore the information a group of text documents discusses is called topic
modeling. This is a technique to identify the "topics" discussed in a collection of
documents, although as we'll see, "topics" is defined a little differently here than it is in
informal conversation. The strength of these models is that they don't assume that each
document talks only about one thing. Instead, they model documents as collections of
topics. This is incredibly powerful in that it allows more complex conceptions of what
a document is as well as more complex patterns between documents.

In this chapter, we will cover the following topics:

•	 Understanding data in State of the Union addresses
•	 Understanding topic modeling
•	 Preparing for visualizations
•	 Setting up the project
•	 Getting the data
•	 Visualizing data with D3 and ClojureScript
•	 Exploring the topics

Topic Modeling – Changing Concerns in the State of the Union Addresses

[64]

Understanding data in the State of Union
addresses
In this chapter, we'll apply topic modeling to the (SOTU) State of the Union addresses
presented by the presidents of the United States of America. Each January or February,
the President addresses the US Senate and the House of Representatives either in
person or in writing, and talks about how the country is doing as well as outlining his
agenda for the coming year. The speeches can be fairly short, but the written reports
can be much longer. George Washington's first State of the Union address from 1790
had less than 500 words. Barack Obama's latest SOTU (at the time of this writing in
2013) had over 3,000 words. Jimmy Carter had the longest SOTU address, which he
delivered in writing in 1981. It is almost 14,000 words long.

The gradual increase in the length of the SOTU address, which climaxed around
1910, was because starting from Thomas Jefferson's 1801 address up until William H.
Taft's 1912 address, the SOTU address was a written report delivered before Congress.
The following graph represents the increase in the word counts of SOTU addresses:

Chapter 3

[65]

Of course, as the situation has changed both domestically and internationally,
so have the topics that the President discusses in the SOTU addresses. You wouldn't
expect John Adams' 1800 address to talk about the same things as Bill Clinton's 2000
address. This immediately raises the question: what topics have the Presidents talked
about in their SOTU addresses and how have those topics changed over time?

This isn't a new question, even for topic modeling. Xuerui Wang and Andrew
McCallum covered it as one of several examples in their 2006 paper, Topics over
time: A non-Markov continuous-time model of topical trends (2006) (http://citeseer.
ist.psu.edu/viewdoc/summary?doi=10.1.1.152.2460). In this paper, they
present a way of analyzing a series of time-stamped documents in order to get an
improved understanding of how the topics interact over time. In fact, this is an area
of considerable further research, and there are a number of other extensions to topic
modeling that take time into account.

In this chapter, we're only going to cover the most widely used topic modeling
algorithm today: LDA (Latent Dirichlet Allocation). With an understanding of
this procedure and the underlying thought behind it, you can understand Wang's
and McCallum's Topics over Time algorithm without too much difficulty.

Understanding topic modeling
A topic model is a statistical model of the topics in a document. The assumption
is that if 10 percent of a document talks about the military and 40 percent of it talks
about the economy (and 50 percent talks about other things), then there should be
roughly four times as many words about economics as about the military.

An early form of topic modeling was described by Christos Papadimitriou and others
in their 1998 paper, Latent Semantic Indexing: A probabilistic analysis (http://www.
cs.berkeley.edu/~christos/ir.ps). This was refined by Thomas Hofmann in 1999
with Probabilistic Latent Semantic Indexing (http://www.cs.brown.edu/~th/papers/
Hofmann-SIGIR99.pdf).

In 2003, David Blei, Andrew Ng, and Michael I. Jordan published their paper,
Latent Dirichlet Allocation (http://jmlr.csail.mit.edu/papers/v3/blei03a.
html). Currently, this is the most common type of topic modeling. It's simple,
easy to get started, and widely available. Most work in the field since then has
been developing extensions to the original LDA topic modeling method. This
is the procedure that we'll learn about and use in this chapter.

Topic Modeling – Changing Concerns in the State of the Union Addresses

[66]

In LDA, each document is modeled as a bag of words, each word drawn from
a number of topics. So each word in the document is the result of one of those
topics. The model takes the following steps to create each document:

1.	 Select a distribution for the topic in the document.
2.	 Select a distribution for the words from the topic.
3.	 Select a topic and then a word from that topic from those distributions

for each word in the document.

The distributions for the topics and words use a Dirichlet distribution for their
prior probability, which is the assumed uncertainty about the distribution of topics
and words before considering any evidence or documents. However, as they are
trained on a set of input documents, these distributions more accurately reflect
the data they've seen so far, and so they are able to more accurately categorize
future documents.

A short example may be helpful. Initially the distributions are picked randomly.
Afterwards, we'll train on one document. Say we have a document with the following
words: budget, spending, army, navy, plane, soldier, and dollars. The model knows
from previous training that the words budget, spending, and dollars all relate to a topic
on finance, while army, navy, plane, and soldier relate to a topic on the military, and
plane relates to one on travel. This may suggest that the document is 35 percent about
finance, 50 percent about the military, and 10 percent about travel. Military would be
the dominant topic, but other topics would be represented as well.

If the LDA is in its training phase, then the presence of those words would slightly
strengthen the association between all of the words listed, between those words
and the other words in the document, and between those words and the topics
that represent the relationship between them.

One twist to this is that the topics aren't named. In the previous example, I said that
there were topics about finance, the military, and travel. However, LDA would
see those as topics 1, 2, and 3. The labels are interpretations I would give based on
the terms in those topics and the documents that scored high in them. One of the
tasks when using LDA is investigating and interpreting the topics. We'll see several
examples of this at the end of the chapter when we explore the results of our analysis.

Chapter 3

[67]

Preparing for visualizations
One of the basic tools of data analysis is visualization. Good, flexible visualizations
make it easier to explore and understand the data, and this is useful at all stages of
the data analysis process. At the beginning, visualizations make it easier to find
errors and inconsistencies and to get to know your data and developing an intuition
for it. It continues to drive insights throughout the process. In the end, visualizations
make great supporting evidence and explanations in reports and presentations.

Visualizations will be an important part of this chapter and in understanding the
results of topic modeling. To create and interact with the graphs, we're going to
use some software that's recently become an important part of many data scientists'
toolkits: the Web browser.

As we did in Chapter 1, Network Analysis – The Six Degrees of Kevin Bacon, we'll
use D3 (http://d3js.org/) and ClojureScript (https://github.com/clojure/
clojurescript/).

The graph of the word counts earlier in this chapter as well as the ones that will come
later are examples of this system. They're part of a static website. That is, the resources
that load in the browser are read from the filesystem, not generated dynamically by
a server-side web application. The data is read from CSV (comma-separated values)
files that we'll create from the topic model data. Finally, the ClojureScript is compiled
into a JavaScript file that's loaded by the browser.

We'll see later how to set up this site with ClojureScript as well as how to create
the graphs. As usual, for the full code, refer to the source code download from the
Packt Publishing website.

Setting up the project
Before we dive in further, however, we'll need to set up our project for this chapter.
So with all of that in mind, let's tackle the solution. The first thing we'll need is the
following Leiningen 2 project.clj file:

(defproject tm-sotu "0.1.0-SNAPSHOT"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :plugins [[lein-cljsbuild "0.3.2"]]

Topic Modeling – Changing Concerns in the State of the Union Addresses

[68]

 :dependencies [[org.clojure/clojure "1.5.1"]
 [enlive "1.1.1"]
 [org.clojure/data.csv "0.1.2"]
 [cc.mallet/mallet "2.0.7"]]
 :cljsbuild {:builds [{:source-paths ["src-cljs"],
 :compiler {:pretty-printer true,
 :output-to "www/js/main.js",
 :optimizations :whitespace}}]})

We use a couple of dependencies for this: Enlive to download the text of the SOTU
addresses and MALLET for topic modeling. We'll talk more about both of these in
the forthcoming sections.

Getting the data
To get a copy of the SOTU addresses, we'll visit the website for the American
Presidency Project at the University of California, Santa Barbara (http://www.
presidency.ucsb.edu/). This site has the text for the SOTU addresses as well
as an archive of many messages, letters, public papers, and other documents for
various presidents. It's a great resource for looking at political rhetoric.

In this case, we'll write some code to visit the index page for the SOTU addresses.
From there, we'll visit each of the pages that contain an address; remove the
menus, headers, and footers; and strip out the HTML. We'll save this in a file
in the data directory.

We won't see all of the code for this. To see the rest, look at the download.clj file
in the src/tm_sotu/ directory in the downloaded code.

To handle downloading and parsing the files, we'll use the Enlive library (https://
github.com/cgrand/enlive/wiki). This library provides a DSL to navigate and
pull data from HTML pages. The syntax and concepts are similar to CSS selectors, so
if you're familiar with those, using Enlive will seem very natural.

We'll tackle this problem piece by piece. First, we need to set up the namespace
and imports for this module with the following code:

(ns tm-sotu.download
 (:require [net.cgrand.enlive-html :as enlive]
 [clojure.java.io :as io])
 (:import [java.net URL]
 [java.io File]))

Chapter 3

[69]

Now, we can define a function that downloads the index page for the SOTU
addresses as shown in the following code (http://www.presidency.ucsb.edu/
sou.php). It will take this URL as a parameter, download the resource, pull out
the list of links, and remove any text that isn't a year:

(defn get-index-links [index-url]
 (->
 index-url	
 enlive/html-resource
 (enlive/select [:.doclist :a])
 filter-year-content?))

Let's walk through these lines step by step:

1.	 First, index-url is just the URL of the index page that needs to be
downloaded. This line just kicks off the processing pipeline.

2.	 The enlive/html-resource function downloads and parses the web
page. Most processing that uses Enlive will start with this function.

3.	 Now, (enlive/select [:.doclist :a]) only pulls out certain anchor
tags. The vector that specifies the tags to return is similar to a CSS selector.
In this case, it would be equivalent to the .doclist :a selector. I found
which classes and tags to look for by examining the source code for the
HTML file and experimenting with it for a few minutes.

4.	 Finally, I called filter-year-content? on the sequence of tags. This looks
at the text within the anchor tag and throws out any text that is not a
four-digit year.

The get-index-links function returns a sequence of anchor tags that need to be
downloaded. Between the tag's href attribute and its content, we have the URL
for the address and the year it was delivered, and we'll use both of them.

The next step of the process is the process-speech-page function. It takes an output
directory and a tag, and it downloads the page the tag points to, gets the text of the
address, strips out the HTML tags from it, and saves the plain text to a file, as shown
in the following code:

(defn process-speech-page [outputdir a-tag]
 (->> a-tag
 :attrs
 :href
 URL.
 enlive/html-resource

Topic Modeling – Changing Concerns in the State of the Union Addresses

[70]

 get-text-tags
 extract-text
 (save-text-seq
 (unique-filename
 (str outputdir \/ (first (:content a-tag)))))))

This strings together a number of functions. We'll walk through these a little
more quickly, and then dive into one of the functions this calls in more detail.

First, the sequence of keywords :attrs and :href gets the URL from the anchor
tag. We pass this to enlive/html-resource to download and parse the web page.
Finally, we identify the text (get-text-tags), strip out the HTML (extract-text),
and save it (save-text-seq). Most of these operations are fairly straightforward,
but let's dig into extract-text.

This procedure is actually the sole method from a protocol of types that we can
pull text from, stripping out HTML tags in the process. The following code gives
the definition of this protocol. It's also defined over all the data structures that
Enlive uses to return data: Strings for text blocks, hash maps for tags, lazy
sequences for lists of content, and nil to handle all the possible input values,
as shown in the following code:

(defprotocol Textful
 (extract-text [x]
 "This pulls the text from an element.
 Returns a seq of String."))

(extend-protocol Textful
 java.lang.String
 (extract-text [x] (list x))

 clojure.lang.PersistentStructMap
 (extract-text [x]
 (concat
 (extract-text (:content x))
 (when (contains? #{:span :p} (:tag x))
 ["\n\n"])))

 clojure.lang.LazySeq
 (extract-text [x] (mapcat extract-text x))

 nil
 (extract-text [x] nil))

Chapter 3

[71]

The preceding code allows us to find the parent elements for each address, pass
those elements to this protocol, and get the HTML tags stripped out. Of all of these
methods, the most interesting implementation is hash map's, which is highlighted
in the preceding code.

First, it recursively calls the extract-text method to process the tag's content.
Then, if the tag is p or span, the method adds a couple of new lines to format the
tag as a paragraph. Having a span tag trigger a new paragraph is a bit odd, but the
introduction to the address is in a span tag. Like any screen-scraping task, this is
very specialized to the SOTU. Getting data from other sites will require a different
set of rules and functions to get the data back out.

I've tied this process together in a function that first downloads the index page
and then processes the address links one by one as shown in the following code:

(defn download-corpus [datadir index-url]
 (doseq [link (get-index-links (URL. index-url))]
 (println (first (:content link)))
 (process-speech-page datadir link)))

After this function executes, there will be a data/ directory that contains one
text file for each SOTU address. Now we just need to see how to run LDA topic
modeling on them.

Loading the data into MALLET
To actually perform topic modeling, we'll use the MALLET Java library (http://
mallet.cs.umass.edu/). MALLET (MAchine Learning for LanguagE Toolkit)
contains a number of algorithms for various statistical and machine learning
algorithms for natural-language processing, including document classification,
sequence tagging, and numerical optimization. However, it's commonly also used
for topic modeling, and its support for that is very robust and flexible. We'll interact
with it using Clojure's Java interop functions.

Each document is stored in a MALLET cc.mallet.types.Instance class. So to
begin with, we'll need to create a processing pipeline that reads the files from disk
and processes them and loads them into MALLET.

The next group of code will go into the src/tm_sotu/topic_model.clj file. The
following code is the namespace declaration with the list of dependencies for this
module. Be patient; the following list isn't short:

(ns tm-sotu.topic-model
 (:require [clojure.java.io :as io]
 [clojure.data.csv :as csv]

Topic Modeling – Changing Concerns in the State of the Union Addresses

[72]

 [clojure.string :as str])
 (:import [cc.mallet.util.*]
 [cc.mallet.types InstanceList]
 [cc.mallet.pipe
 Input2CharSequence TokenSequenceLowercase
 CharSequence2TokenSequence SerialPipes
 TokenSequenceRemoveStopwords
 TokenSequence2FeatureSequence]
 [cc.mallet.pipe.iterator FileListIterator]
 [cc.mallet.topics ParallelTopicModel]
 [java.io FileFilter]
 [java.util Formatter Locale]))

Now we can write a function that creates the processing pipeline and the list of
instances based on it, as shown in the following code:

(defn make-pipe-list []
 (InstanceList.
 (SerialPipes.
 [(Input2CharSequence. "UTF-8")
 (CharSequence2TokenSequence.
 #"\p{L}[\p{L}\p{P}]+\p{L}")
 (TokenSequenceLowercase.)
 (TokenSequenceRemoveStopwords. false false)
 (TokenSequence2FeatureSequence.)])))

This function creates a pipeline of classes that process the input. Each stage in the
process makes a small, select modification to its input, and then it passes the data
down the pipeline.

The first step takes the input file's name and reads it as a sequence of characters.
It tokenizes the character sequence using the regular expression given, which
matches the sequence of letters with embedded punctuation.

Next, it normalizes the case of the tokens and removes stop words. Stop words are
very common words. Most of these function grammatically in the sentence, but do
not really add to the semantics (that is, to the content) of the sentence. Examples of
stop words in English are the, of, and, and are.

Finally, it converts the token sequence to a sequence of features. A feature is a
word, a token, or some metadata from a document that you want to include in
the training. For example, the presence or absence of the word president might be
a feature in this corpus. Features are often assembled into vectors; one vector for
each document. The position of each feature in the vectors must be consistent.
For example, the feature president must always be found at the seventh position
in all documents' feature vectors.

Chapter 3

[73]

Feature sequences are sequences of numbers along with mappings from words
to indices, so the rest of the algorithm will deal with numbers instead of words.

For instance, the first SOTU address by George Washington (1790) begins with,
"I embrace with great satisfaction the opportunity which now presents itself."
The following are some of the steps that the processing pipeline would take for
this input:

1.	 CharSequence2TokenSequence: After tokenization, it would be a sequence
of individual strings such as I, embrace, with, great, and satisfaction.

2.	 TokenSequenceLowercase: Normalizing the case would convert the first
word to i.

3.	 TokenSequenceRemoveStopwords: Removing stop words would leave just
content words: embrace, great, satisfaction, opportunity, now, presents, and itself.

4.	 TokenSequence2FeatureSequence: This changes input into a sequence of
numbers. Internally, it also maintains a mapping between the indexes and
the words, so 0 would be associated with embrace. The next time it finds a
word that it has encountered before, it will reuse the feature index, so from
here on, now will always be replaced by 4.

We can also visually represent this process as shown in the following chart:

CharSequence2TokenSequence

TokenSequenceLowercase

TokenSequenceRemoveStopwords

TokenSequence2FeatureSequence

I embrace with great satisfaction...

i embrace with great satisfaction...

embrace great satisfaction...

[0, 0, 1, 0, 1,]

We still haven't specified which files to process or connected them to the processing
pipeline. We do that using the instance list's addThruPipe method. To make this step
easier, we'll define a function that takes a list of files and plugs them into the pipeline
as shown in the following code:

(defn add-directory-files
 "Adds the files from a directory to the instance list."
 [instance-list data-dir]
 (.addThruPipe

Topic Modeling – Changing Concerns in the State of the Union Addresses

[74]

 instance-list
 (FileListIterator.
 (.listFiles (io/file data-dir))
 (reify FileFilter
 (accept [this pathname] true))
 #"/([^/]*).txt$"
 true)))

The FileListIterator function wraps the array of files. It can also filter the array,
which is more than we need. The regular expression, #"/([^/]*).txt$", is used to
separate the filename from the directory. This will be used to identify the instance
for the rest of the processing.

That's it. Now we're ready to write a function to train the model. This process
has a number of options, including how many threads to use, how many iterations
to perform, how many topics to find, and a couple of hyper parameters to the
algorithm itself: the α sum and β. The α parameter is the sum over the topics and β
is the parameter for one dimension of the Dirichlet prior distributions that are behind
topic modeling. In the following code, I've hardcoded them to 1.0 and 0.01, and
I've provided defaults for the number of topics (100), threads (4), and iterations (50):

(defn train-model
 ([instances] (train-model 100 4 50 instances))
 ([num-topics num-threads num-iterations instances]
 (doto (ParallelTopicModel. num-topics 1.0 0.01)
 (.addInstances instances)
 (.setNumThreads num-threads)
 (.setNumIterations num-iterations)
 (.estimate))))

Finding the right number of topics is a bit of an art. The value is an interaction between
the size of your collection, the type of documents it contains, and how finely grained
you wish the topics to be. The number could range from the tens to the hundreds.

One way to get a grasp on this is to see how many instances have a given topic
with the top weighting. In other words, if there are a lot of topics with only one
or two documents strongly associated with them, then maybe those topics are too
specific, and we can run the training again with fewer documents. If none do,
or only a few do, then maybe we need to use fewer topics.

However, ultimately, the number of topics depends on how fine-grained and precise
you want the topic categories to be, and that will depend upon exactly what questions
you're attempting to answer. If you need to find topics that are only important for a
year or two, then you'll want more topics; however, if you're looking for broader,
more general trends and movements, then fewer topics will be more helpful.

Chapter 3

[75]

For example, the following graph shows the weightings for each topic in each SOTU
address when ten topics are used:

We can see that the lines describe large arcs. Some lines begin strong and then taper
off. Others have a hump in the middle and fall away to both sides. Others aren't
mentioned much at the beginning but finish strong at the end of the graph.

One line that peaks around 1890 is a good example of one of these trends. Its top
ten keywords are year, government, states, congress, united, secretary, report, department,
people, and fiscal. Initially, it's difficult to say what this topic would be about. In fact,
it is less about the addresses' subject matter per se, and more about the way that the
Presidents went into the details of the topics, reporting amounts for taxation,
mining, and agriculture. They tended to use a lot of phrases, such as "fiscal year".
The following paragraph on sugar production from Grover Cleveland's 1894
address is typical:

The total bounty paid upon the production of sugar in the United States for
the fiscal year was $12,100,208.89, being an increase of $2,725,078.01 over the
payments made during the preceding year. The amount of bounty paid from July
1, 1894, to August 28, 1894, the time when further payments ceased by operation
of law, was $966,185.84. The total expenses incurred in the payment of the bounty
upon sugar during the fiscal year was $130,140.85.

Exciting stuff.

Topic Modeling – Changing Concerns in the State of the Union Addresses

[76]

This also illustrates how topics aren't always about the documents' subject matter,
but also about rhetoric, ways of talking, and clusters of vocabulary that tend to be
used together for a variety of reasons.

The topics represented in the following graph clearly describe large trends in the
concerns that SOTU addresses dealt with. However, if we increase the number of
topics to 200, the graph is very different, and not just because it has more lines on it:

Once you start looking at the topics in more detail, in general, the topics are only
relevant for a smaller period of time, like for a twenty- or forty-year period, and
most of the time, the documents' weightings for a given topic aren't as high. There are
exceptions to this of course; however, most of the topics are more narrowly relevant
and narrowly defined. For example, the third topic is largely focused on events related
to the Civil War, especially those that occurred around 1862. The top ten keywords for
that topic are emancipation, insurgents, kentucky, laborers, adopted, north, hired, maryland,
disloyal, and buy. The following graph represents the topic of the Civil War:

Chapter 3

[77]

The previous three graphs illustrate the role that the number of topics plays in our
topic modeling. However, for the rest of this chapter, we're going to look at a run
with 75 models. This graph provides a more balanced set of topics than either of
the last two examples. In general, the subjects are neither too broad nor too narrow.

Visualizing with D3 and ClojureScript
Before we look at D3 or ClojureScript, we should take some time to examine how
the visualizations are put together since they're such an integral part of our work.
The graphs will be on a static web page, meaning that there will be no need to for
any server-side component to help create them. All changes on the graph will be
created through JavaScript.

The first component of this will be a standard web page that has a couple of pieces
(the entire site is in the code download in the www/ directory). It needs a div tag
for the JavaScript to hang the visualization on the static web page, as shown in
the following code:

<div class="container"></div>

Topic Modeling – Changing Concerns in the State of the Union Addresses

[78]

Then, it needs a few JavaScript libraries. We'll load jQuery (https://jquery.org/)
from Google's content distribution network (CDN). We'll load D3 (http://d3js.
org/) from its website, as they suggest and then we'll load our own script. Then,
we'll call an entrance function in it as shown in the following code:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.10.1/jquery.min.
js"></script>
<script src="http://d3js.org/d3.v3.min.js"
 charset="utf-8"></script>
<script src="js/main.js"></script>
<script type="application/javascript">
 tm_sotu.topic_plot.plot_topics();
</script>

The js/main.js file will be the output of the compiled ClojureScript. We've already
set up the configuration for this in the project.clj file, but let's look at that again
in the following code:

 :cljsbuild {:builds [{:source-paths ["src-cljs"],
 :compiler {:pretty-printer true,
 :output-to "www/js/main.js",
 :optimizations :whitespace}}]})

The preceding code specifies that ClojureScript will compile anything in the src-
cljs/ directory into the www/js/main.js file. We'll need to create the source
directory and the directories for the namespace structure.

In ClojureScript, the files look almost exactly like regular Clojure scripts. There are
slight wrinkles in importing and using macros from other libraries, but we won't
need to do that today. There is also a js namespace always available. This is used
to reference a name directly from JavaScript without requiring it to be declared.

Speaking of which, the following is the namespace declaration we'll use for the
graph. You can find the tm-sotu.utils file along with the code that I haven't
listed here in the source code for the chapter:

(ns tm-sotu.topic-plot
 (:require [tm-sotu.utils :as utils]
 [clojure.browser.dom :as dom]
 [clojure.string :as str]))

Another difference with regular JavaScript is that some functions must be exported
using metadata on the function's name. This allows them to be called from regular
JavaScript. The entrance function plot-topics is an example of this and is described
in the following code:

Chapter 3

[79]

(defn ^:export plot-topics []
 (let [{:keys [x y]} (utils/get-scales)
 {:keys [x-axis y-axis]} (utils/axes x y)
 color (.. js/d3 -scale category20)
 line (utils/get-line #(x (get-year %))
 #(y (get-distribution %)))
 svg (utils/get-svg)]
 (.csv js/d3 "topic-dists.csv"
 (partial load-topic-weights
 svg line color x x-axis y y-axis))))

Most of this function is concerned with calling some functions from the tm-sotu.
utils namespace that set up boilerplate for the graphic. It's all standard D3, if you're
familiar with that. The more interesting part—actually dealing with the data—we'll
look at in more detail.

Before we move on, though, I'd like to pay a little more attention to the highlighted
line in the previous code. This is an example of calling JavaScript directly and it
illustrates a couple of things to be aware of, as follows:

•	 As we saw in Chapter 1, Network Analysis – The Six Degrees of Kevin Bacon,
we can access JavaScript's global scope with the js/ prefix, that is, js/d3.

•	 Also, we distinguish JavaScript parameters by prefixing the name with a
hyphen: (.-scale js/d3).

•	 Finally, we also see a call to a JavaScript function that takes no parameters.
We've also used Clojure's standard .. macro to make the series of calls
easier to type and clearer to read: (.. js/d3 -scale category20).

The last line in the preceding code is a call to another D3 function—d3.csv or
(.csv js/d3 …)—as it is expressed in ClojureScript. This function makes an AJAX
call back to the server for the data file "topic-dists.csv". The result, along with
several other pieces of data from this function, is passed to load-topic-weights.
You may have caught that I said "back to the server." This system doesn't need any
code running on the server, but it does require a web server running in order to
handle the AJAX calls that load the data. If you have Python installed on your
system, it comes packaged with a zero-configuration web server that is simple to
use. From the command line, just change into the directory that contains the website
and execute the following command:

$ cd www

$ python -m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 …

Topic Modeling – Changing Concerns in the State of the Union Addresses

[80]

At this point, we've set the stage for the chart and loaded the data. Now we need to
figure out what to do with it. The load-topic-dists function takes the pieces of
the chart that we've created and the data, and populates the chart, as follows:

(defn load-topic-weights [svg line color x x-axis y y-axis data]
 (let [data (into-array (map parse-datum data))]
 (.domain color (into-array (set (map get-topic data))))
 (let [topics (into-array
 (map #(make-topic data %) (.domain color)))
 wghts (map get-weighting data)]
 (.domain x (.extent js/d3 data get-instance))
 (.domain y (array (apply min wghts) (apply max wghts)))
 (utils/setup-x-axis svg x-axis)
 (utils/setup-y-axis svg y-axis "Weightings")
 (let [topic-svg (make-topic-svg svg topics)]
 (add-topic-lines line color topic-svg)
 (add-topic-labels topic-svg x y)
 (utils/caption
 (str "Topic Weightings over Time (topic count = "
 (count topics) \))
 650)))))

The lines in the preceding function fall into three broad categories:

•	 Transforming and filtering the data
•	 Setting the domains for the x axis, the y axis, and the color scheme
•	 Adding the transformed data to the chart

The transformation and filtering of data is handled in a number of different places.
Let's see what they all are. I've highlighted them in the previous code; let's break
them apart in more detail as follows:

•	 The (into-array (map parse-datum data)) form converts the data into
its JavaScript-native types. The call to d3.csv returns an array of JavaScript
objects, and all of the values are strings. This parses the instance string (for
example, "1790-0" or "1984-1") into a decimal (1790.0 or 1984.5). This allows
the years with more than one SOTU address to be sorted and displayed
more naturally.

•	 The (map #(make-topic data %) (.domain color)) form creates a
record with a topic number and the instances for that color.

•	 Finally, the (map get-weighting data) form pulls all the weightings
from the data. This is used to set the domain for the y axis.

Chapter 3

[81]

This data is used to set the domains for both axes and for the color scale. All of these
tasks happen in the three calls to the domain method.

Finally, in the following code, we insert the data into the chart and create the SVG
elements from it. This takes place in three other functions. The first, make-topic-
svg, selects the elements with the topic class and inserts data into them. It then
creates a g element for each datum:

(defn make-topic-svg [svg topics]
 (.. svg
 (selectAll ".topic")
 (data topics)
 (enter)
 (append "g")
 (attr "class" "topic")))

The next function appends path elements for each line and populates it with attributes
for the points on the line and for the color, as shown in the following code:

(defn add-topic-lines [line color topic-svg]
 (.. topic-svg
 (append "path")
 (attr "class" "line")
 (attr "id" #(str "line" (.-topic %)))
 (attr "d" #(line (.-values %)))
 (style "stroke" #(color (.-topic %)))))

Finally, the last function in the following code adds a label for the line to the right-hand
side of the graph. The label just displays the topic number for that line. Most of these
topics get layered on top of each other and are illegible, but a few of the lines that are
labelled at a higher level are distinguishable, and it's useful to be able to see them:

(defn add-topic-labels [topic-svg x y]
 (.. topic-svg
 (append "text")
 (datum make-text)
 (attr "transform" #(str "translate(" (x (.-year (.-value %)))
 \, (y (.-weighting (.-value %))) \)))
 (attr "x" 3)
 (attr "dy" ".35em")
 (text get-name)))

Put together, these functions create the graphs we've seen so far. With a few added
bells and whistles (refer to the source code), they'll also create the graphs that we'll
see in the rest of this chapter.

Now, let's use these graphs to explore the topics that the LDA identified.

Topic Modeling – Changing Concerns in the State of the Union Addresses

[82]

Exploring the topics
The following is a complete set of topic weightings that we'll dig into in this chapter.
This is from a run of 75 topics. This should provide a relatively focused set of topics,
but not so narrow that it will not apply to more than one year:

The MALLET library makes it easy to get a lot of information about each topic.
This includes the words that are associated with each topic, ranked by how
important each word is to that topic. The following table lists some of the topics
from this run along with the top five words for each:

Topic number Top words
0 states government subject united citizens good
1 world free nations united democracy life
2 people work tonight Americans year jobs
3 years national support education rights water
4 congress government made country report united
5 present national tax great cent country
6 government congress made American foreign conditions
7 America great nation freedom free hope
8 congress president years today future ago
9 congress employment executive people measures relief

Chapter 3

[83]

The word lists help us get an understanding of the topics and what they contain. For
instance, the seventh topic seems clearly about American freedom rhetoric. However,
there are still a lot of questions left unanswered. The eighth and ninth topics both
have congress as their most important word, and some of the words listed for many
topics don't have a clear relationship among each other. We'll need to dig deeper.

A better graph would help. It could make each topic's dynamics and changes
through time more clear, and it would make evident the trace of each topic's relation
to history, wars, expansions, and economics.

Unfortunately, as presented here, the graph is pretty confusing and difficult to read.
To make it easier to pull out the weightings for a single topic, I added a feature to the
graph so I could select one topic and make the others fade into the background. We'll
use the graph to look at a few topics. However, we'll still need to go further and look
at some of the addresses for which these topics play an important part.

Exploring topic 43
The first topic that we'll look at in more depth is number 43. The following are the
top ten words for this topic and their corresponding weightings:

Word Weighting
Great 243
War 165
Commerce 143
Powers 123
National 115
Made 113
British 103
Militia 80
Part 74
Effect 73

Topic Modeling – Changing Concerns in the State of the Union Addresses

[84]

The following graph for topic 43 shows that this topic was primarily a concern
between 1800 and 1825:

The dominant theme of this topic is foreign policy and setting up the military,
with a particular emphasis on the War of 1812 and Great Britain. To get an idea of
the arc of this topic, we'll take a look at several SOTU addresses: one from before
that War, one from the time of the War, and one from after the War.

The first address we'll look at in more depth is James Madison's 1810 address. The
topic model gave the probability for this topic in the document as 11 percent. One of
its concerns is trade relations with other countries and how other countries' warships
are disrupting them. The following is a quote where Madison rather verbosely talks
about the ongoing talks with Britain and France over blockades that were impeding
the new republic's trade (I've highlighted the words in the quote that are most
applicable to the topic):

From the British Government, no communication on the subject of the act has
been received. To a communication from our minister at London of a revocation
by the French Government of its Berlin and Milan decrees it was answered that
the British system would be relinquished as soon as the repeal of the French
decrees should have actually taken effect and the commerce of neutral nations
have been restored to the condition in which it stood previously to the
promulgation of those decrees.

Chapter 3

[85]

This pledge, although it does not necessarily import, does not exclude the intention
of relinquishing, along with the others in council, the practice of those novel
blockades which have a like effect of interrupting our neutral commerce, and this
further justice to the United States is the rather to be looked for, in as much as the
blockades in question, being not more contrary to the established law of nations
than inconsistent with the rules of blockade formally recognized by Great Britain
herself, could have no alleged basis other than the plea of retaliation alleged as the
basis of the orders in council.

Later, as part of a larger discussion about enabling the state militias, Madison talks
about the requirements for establishing schools of military science, even during
peacetime, in the following part of the address:

Even among nations whose large standing armies and frequent wars afford every
other opportunity of instruction these establishments are found to be indispensable for
the due attainment of the branches of military science which require a regular course
of study and experiment. In a government happily without the other opportunities
seminaries where the elementary principles of the art of war can be taught without
actual war, and without the expense of extensive and standing armies, have the
precious advantage of uniting an essential preparation against external danger with
a scrupulous regard to internal safety. In no other way, probably, can a provision of
equal efficacy for the public defense be made at so little expense or more consistently
with the public liberty.

Next, we'll look at Madison's 1813 address. The probability of topic 43 in this
address was almost 21 percent. The War of 1812 had been going on for a year at that
point, and his concerns reflect that. In the following address, Madison is concerned
with the role of prisoners of war and Native Americans in the war (they sided with
the British); however, there's only one mention of commerce, which had almost ceased
because of interference by the war.

The following is a sample paragraph where Madison complains about the British
trying some political prisoners in court:

The British commander in that Province, nevertheless, with the sanction, as appears,
of his Government, thought proper to select from American prisoners of war and
send to Great Britain for trial as criminals a # of individuals who had emigrated
from the British dominions long prior to the state of war between the two nations,
who had incorporated themselves into our political society in the modes recognized
by the law and the practice of Great Britain, and who were made prisoners of war
under the banners of their adopted country, fighting for its rights and its safety.

Topic Modeling – Changing Concerns in the State of the Union Addresses

[86]

Finally, for topic 43, we'll take a look at James Monroe's 1820 SOTU address.
The probability of topic 43 in this address was 20 percent. In this case, Monroe's
looking at the United States' trade relations with the European powers. He goes
through each of the major trading partners and talks about the latest happenings
with them and discusses the country's military preparedness on a number of fronts.

The following is the paragraph where he talks about the trading relationship
with Great Britain; he doesn't appear entirely satisfied:

The commercial relations between the United States and the British colonies
in the West Indies and on this continent have undergone no change, the British
Government still preferring to leave that commerce under the restriction heretofore
imposed on it on each side. It is satisfactory to recollect that the restraints resorted
to by the United States were defensive only, intended to prevent a monopoly under
British regulations in favor of Great Britain, as it likewise is to know that the
experiment is advancing in a spirit of amity between the parties.

In this topic, there's a clear trend of conversations around a series of events. In this
case, topic modeling has pointed out an interesting dynamic in the US government's
early years.

Exploring topic 26
We'll look at a very different type of topic next. This one focuses on one event: the
Japanese bombing of Pearl Harbor, which brought the United States actively and
openly into World War II.

The following are the top ten words that contributed to this topic along with their
weightings; as it is more narrowly focused, the subject of this topic is clear:

Word Weighting
Production 66
Victory 48
Japanese 44
Enemy 41
United 39
Fighting 37
Attack 37
Japan 31

Chapter 3

[87]

Word Weighting
Pacific 28
Day 27

The narrow focus of the topic is evident in the graph as well. The spike at 1942
and 1943 in the following graph—the two years after the bombing of Pearl Harbor
—lends weight to the evidence that this topic is about this particular event:

For the first SOTU address that we'll examine, we'll look at the one immediately
after the Pearl Harbor bombing, presented by Franklin D. Roosevelt on January 6,
1942. This topic's probability of application is 22.7 percent. This was less than one
month after the attack, so its memory was still pretty raw in the minds of American
citizens, and this emotion is evident in the speech.

The text of the speech itself is predictable, especially given the words listed earlier.
To paraphrase: After the attack; they're our enemy; bent on world conquest; along with
the Nazis; we must have victory to maintain the cause of freedom and democracy. Beyond
this, he's also making the point that we need to enter the European theater to fight
alongside the British and other ally partners, and furthermore, to do that effectively,
the U.S. must increase production of military weapons, vehicles, boats, airplanes,
and supplies across the board.

Topic Modeling – Changing Concerns in the State of the Union Addresses

[88]

The following is a short paragraph in which Roosevelt outlines the steps that are
already underway to work with the allied powers:

Plans have been laid here and in the other capitals for coordinated and cooperative
action by all the United Nations—military action and economic action. Already we
have established, as you know, unified command of land, sea, and air forces in the
southwestern Pacific theater of war. There will be a continuation of conferences and
consultations among military staffs, so that the plans and operations of each will fit
into the general strategy designed to crush the enemy. We shall not fight isolated
wars—each Nation going its own way. These 26 Nations are united—not in spirit
and determination alone, but in the broad conduct of the war in all its phases.

Although this particular SOTU address clearly dominates this topic, there are other
addresses that have some small probability of applying. It might be interesting to
see what else was categorized in this topic, even the words with a low probability
percentage. One such address is James Madison's 1814 address, which has a
probability of 3.7 percent for this topic.

In the following part of the address, Madison spends a lot of time talking about
"the enemy," who in this case, is Great Britain. This short paragraph is typical:

In another recent attack by a powerful force on our troops at Plattsburg, of which
regulars made a part only, the enemy, after a perseverance for many hours, was
finally compelled to seek safety in a hasty retreat, with our gallant bands pressing
upon them.

This address has a number of other short descriptions of battles like this one.

Finally, a more recent SOTU address also had a relatively high probability for this
topic (2 percent): George W. Bush's 2003 address. In this address, most of the mentions
of words that apply to this topic are spread out and there are few quotable clusters.
He spends some time referring to the United Nations, which helps this document
rate more highly for this topic. He also talks quite a bit about war as he is trying to
build a case for invading Iraq, which he did less than two months later.

This document is clearly weaker than the other two on this topic. However,
it does contain some shared vocabulary and some discourse, so its relationship
to the topic, albeit weak, is clear. It's also interesting that in both of these cases,
the President is trying to make a case for war.

Chapter 3

[89]

Exploring topic 42
Finally, we'll look at a more domestically oriented topic. The words in the following
table suggest that this topic will be about childcare, schools, and healthcare:

Word Weighting
Children 270
Health 203
Care 182
Support 164
Schools 159
School 139
Community 131
Century 130
Parents 124
Make 121

Looking at the following graph on this topic, it's clearly a late twentieth-century
subject, and it really doesn't take off until after 1980. Somewhat predictably, this
topic sees its zenith in the Clinton administration. We'll look at one of Clinton's
speeches on this topic later in this section:

Topic Modeling – Changing Concerns in the State of the Union Addresses

[90]

Let's first look at one of the SOTU addresses from the first, smaller cluster of addresses
that prove this topic. For that, we'll pick Lyndon B. Johnson's 1964 SOTU address,
which shows a probability of 4.4 percent for this topic.

In this speech, Johnson lays out a proposal that includes what would become the
Civil Rights Act of 1964, which outlawed major forms of racial, ethnic, religious,
and gender discrimination as well as the medicare and medicaid programs, which
would be created in 1965. He's obviously laying the groundwork for the "Great
Society" program he would announce in May of that year at Ohio University in
Athens, Ohio.

His main topic in this is combating poverty—after all, this is the speech that gave
us the phrase "war on poverty"—but he saw education and healthcare as being a
big part of that:

Our chief weapons in a more pinpointed attack will be better schools, and better
health, and better homes, and better training, and better job opportunities to help
more Americans, especially young Americans, escape from squalor and misery and
unemployment rolls where other citizens help to carry them.

He also saw education and healthcare as being integral to the goals of the program
and the American dream itself:

This budget, and this year's legislative program, are designed to help each and
every American citizen fulfill his basic hopes—his hopes for a fair chance to make
good; his hopes for fair play from the law; his hopes for a full-time job on full-time
pay; his hopes for a decent home for his family in a decent community; his hopes
for a good school for his children with good teachers; and his hopes for security
when faced with sickness or unemployment or old age.

So although this particular speech has only a low probability for this topic, it clearly
raises issues that will be more directly addressed later.

One of the SOTU addresses with the highest probability for this topic is Bill Clinton's
2000 address, which had a probability of 22.1 percent. This is his last SOTU address
before leaving office, and although he still had one year left in his term, realistically,
not much was going to happen in it.

Additionally, because it was his last chance, Clinton spends a lot of time looking
back at what he's accomplished. Children, education, and healthcare were major
focuses of his administration, whatever actually was passed through Congress,
and this was reflected in his retrospective:

Chapter 3

[91]

We ended welfare as we knew it, requiring work while protecting health care
and nutrition for children and investing more in child care, transportation, and
housing to help their parents go to work. We've helped parents to succeed at home
and at work with family leave, which 20 million Americans have now used to care
for a newborn child or a sick loved one. We've engaged 150,000 young Americans
in citizen service through AmeriCorps, while helping them earn money for college.

Clinton also spent time laying out what he saw as the major tasks ahead of the
nation, and education and healthcare played a big part of them as well:

To 21st century America, let us pledge these things: Every child will begin
school ready to learn and graduate ready to succeed. Every family will be able to
succeed at home and at work, and no child will be raised in poverty. We will meet
the challenge of the aging of America. We will assure quality, affordable health
care, at last, for all Americans. We will make America the safest big country on
Earth. We will pay off our national debt for the first time since 1835. We will bring
prosperity to every American community. We will reverse the course of climate
change and leave a safer, cleaner planet. America will lead the world toward shared
peace and prosperity and the far frontiers of science and technology. And we will
become at last what our Founders pledged us to be so long ago: One Nation, under
God, indivisible, with liberty and justice for all.

In fact, even beyond these broad strokes, Clinton spends a lot of time talking
specifically about education, what needs to be done to improve schools, and
what works to make better schools. All of this contributes to this address's high
probability for topic 42.

He also spent more time talking about healthcare, what he's done on that front,
and what is still left to accomplish:

We also need a 21st century revolution to reward work and strengthen families by
giving every parent the tools to succeed at work and at the most important work of
all, raising children. That means making sure every family has health care and
the support to care for aging parents, the tools to bring their children up right,
and that no child grows up in poverty.

So looking at these addresses, we may wish that there was a separate topic for
education and healthcare. However, it is interesting to note the ways in which the
two topics are related. Not only are they often discussed together and simultaneously
in two parts of a President's agenda for a year, but also have related rhetoric. Children
are directly related to education, but they are also often invoked while talking about
healthcare, and many laws about health insurance and healthcare try to ensure that
children are still insured, even if their parents are not.

Topic Modeling – Changing Concerns in the State of the Union Addresses

[92]

Summary
This has been an interesting dive into natural-language processing and topic modeling,
and hopefully we've learned a little US history at the same time. I know I have.

However, it seems that the larger takeaway is something that we all know, but likely
forget: Freeform, unstructured, text data is messy, messy, messy. In fact, what we
have been working with here is exceptionally clean, as these things go. Topics don't
often stand out clearly, and the relationships between subjects as opposed to the
topics identified by LDA are often complex and difficult to tease apart.

However, we've also seen some interesting technologies and algorithms to help us
deal with the messiness. Topic modeling doesn't—and possibly shouldn't—completely
sweep the ambiguities and messiness of texts under the rug, but it does help us get
a handle on what's inside large collections of documents.

In the next chapter, we'll head in a different direction and apply Bayesian classification
to reports of UFO sightings.

Classifying UFO Sightings
In this chapter, we're going to look at a dataset of UFO sightings. Sometimes, data
analysis begins with a specific question or problem. Sometimes, however, it's more
nebulous and vague. We'll engage with this UFO sighting dataset, and along the
way, we'll learn more about data exploration, data visualization, and topic modeling
before we dive into Naïve Bayesian classification.

This dataset was collected by the National UFO Reporting Center (NUFORC), and
is available at http://www.nuforc.org/. They have included dates, rough locations,
shapes, and descriptions of the sightings. We'll download and pull in this dataset.
We'll see how to extract more structured data from messy, free-form text. And from
there, we'll see how to visualize, analyze, and gain insights into our data.

In the process, we'll discover when is the best time to look for UFOs. We'll also learn
what their important characteristics are. And we'll learn how to tell a description of
a possible hoax sighting from one that may be real. In the end, hopefully, we'll be
better prepared for seeing one of these ourselves. After all, we'll know when to
look and for what to look.

Classifying UFO Sightings

[94]

Getting the data
For this chapter, actually acquiring the data will be relatively easy. In other chapters,
this step involves screen scraping, SPARQL, or other data extraction, munging,
and cleaning techniques. For this dataset, we'll just download it from Infochimps
(http://www.infochimps.com/). Infochimps is a company (and their website)
devoted to Big Data and doing more with data analysis. They provide a collection
of datasets that are online and freely available. To download this specific dataset,
browse to http://www.infochimps.com/datasets/60000-documented-ufo-
sightings-with-text-descriptions-and-metada and download the data from
the link there, as shown in the following screenshot:

The data is in a ZIP-compressed file. This expands the files into the chim
ps_16154-2010-10-20_14-33-35 directory. This contains a file that lists metadata
for the dataset as well as the data itself in several different formats. For the purposes
of this chapter, we'll use the tab separated values (TSV) file. It's similar to a comma
separated values (CSV) file, but it uses the tab character as a delimiter instead of a
comma. This works nicely, because the tab character is used less often in text files
in general, so it's often possible to use this data format without escaping many, if
any, fields.

If we open the 16154.yaml file, we'll see metadata and other information
about the dataset. And we learn that the fields in the dataset are as follows:

•	 sighted_at: The date (as YYYYMMDD) the sighting happened
•	 reported_at: The date the sighting was reported to NUFORC
•	 location: The city and state the event happened in
•	 shape: The shape of the object
•	 duration: The duration the event lasted
•	 description: A longer description of the sighting as a raw text string

Chapter 4

[95]

We can get a better feel for this data by examining a row from the downloaded file.
The following table represents what the fields contain for that record:

Field Value
sighted_at 19950202
reported_at 19950203
location Denmark, WI
shape Cone
duration 75 min
description Caller, and apparently several other people, witnessed multiple strange

craft streaking through the night sky in the vicinity of Denmark
and Mirabel, WI. Craft were seen to streak overhead, as well as to
descend vertically, as fast as a meteorite, then stop suddenly just
above the ground. During the last 30 minutes of the sighting, aircraft,
which appeared to be US military craft, were seen either pursuing, or
chaperoning, the strange craft. The objects were cone shaped, with a
red nose and a green tail (sic).

Browsing through other rows, you will observe that some important fields—shape and
duration—may be missing data. The description has XML entities and abbreviations
such as w/ and repts.

Let's see what we can do with that.

Extracting the data
Before we go further, let's look at the following Leiningen 2 (http://leiningen.
org/) project.clj file that we'll use for this chapter:

(defproject ufo-data "0.1.0-SNAPSHOT"
 :plugins [[lein-cljsbuild "0.3.2"]]
 :profiles {:dev {:plugins [[com.cemerick/austin "0.1.0"]]}}
 :dependencies [[org.clojure/clojure "1.5.1"]
 [org.clojure/data.json "0.2.2"]
 [org.clojure/data.csv "0.1.2"]
 [clj-time "0.5.1"]
 [incanter "1.5.2"]
 [cc.mallet/mallet "2.0.7"]
 [me.raynes/fs "1.4.4"]]
 :cljsbuild
 {:builds [{:source-paths ["src-cljs"],
 :compiler {:pretty-printer true,
 :output-to "www/js/main.js",
 :optimizations :whitespace}}]})

Classifying UFO Sightings

[96]

The preceding code shows that over the course of this chapter, we'll parse time with
the clj-time library (https://github.com/clj-time/clj-time). This provides
a rich, robust date and time library. We'll also use ClojureScript (https://github.
com/clojure/clojurescript) for the visualizations.

Our first step in working with this data is to load it from the data file. To facilitate this,
we'll read it into a record type that we'll define just to store the UFO sightings. We'll
work with the model.clj file placed at src/ufo_data/. The following is a namespace
declaration with the imports and requirements that we'll use in this module:

(ns ufo-data.model
 (:require [clojure.java.io :as io]
 [clojure.core.reducers :as r]
 [clojure.string :as str]
 [clojure.data.json :as json]
 [clj-time.format :as tf]
 [ufo-data.text :as t]
 [ufo-data.util :refer :all]
 [me.raynes.fs :as fs])
 (:import [java.lang StringBuffer]))

Now we'll define the record. It simply lists the same fields that we walked through
earlier. We also include a few new fields. We'll use these to parse the year, month,
and season from the reported_at field as follows:

(defrecord UfoSighting
 [sighted-at reported-at location shape duration description
 year month season])

Now, when we take a row from the TSV file, we'll need to parse it into one of these
structures. Because each line of input only has six fields, we'll make sure that it's
padded out to nine fields. We'll also verify that there are exactly six input fields.
If there are more or less, we'll take steps to either further pad the fields or to join
some of the fields, as shown in the following code:

(defn ->ufo [row]
 (let [row (cond
 (> (count row) 6)
 (concat (take 5 row)
 [(str/join \t (drop 5 row))])
 (< (count row) 6)
 (concat row (repeat (- 6 (count row)) nil))
 :else row)]
 (apply ->UfoSighting (concat row [nil nil nil]))))

Chapter 4

[97]

Some of the fields (the most important ones, actually) are dates, and we'll want to
parse them into valid date objects. To do this, we'll use the excellent clj-time library
(https://github.com/clj-time/clj-time). This provides a more "Clojuresque"
interface for the Joda time library (http://joda-time.sourceforge.net/).
The code that does this takes a custom date format and attempts to parse the dates.
If any fail, we just fall back on using nil. Look at the following code:

(def date-formatter (tf/formatter "yyyyMMdd"))
(defn read-date [date-str]
 (try
 (tf/parse date-formatter date-str)
 (catch Exception ex
 nil)))

We use the following function to coerce the raw string date fields into the more
useful date objects that Joda time provides:

(defn coerce-fields [ufo]
 (assoc ufo
 :sighted-at (read-date (:sighted-at ufo))
 :reported-at (read-date (:reported-at ufo))))

That's all that we need to load the data. Now we can write the function that will
actually take care of reading the data from the file on disk into a sequence of records,
as follows:

(defn read-data
 [filename]
 (with-open [f (io/reader filename)]
 (->> (csv/read-csv f :separator \tab)
 vec
 (r/map ->ufo)
 (r/map coerce-fields)
 (into []))))

Now that we can read in the data, we can start picking it apart and learn about the
data that we have.

Dealing with messy data
The first thing that we need to deal with is qualitative data from the shape and
description fields.

Classifying UFO Sightings

[98]

The shape field seems like a likely place to start. Let's see how many items have
good data for it:

user=> (def data (m/read-data "data/ufo_awesome.tsv"))

user=> (count (remove (comp str/blank? :shape) data))

58870

user=> (count (filter (comp str/blank? :shape) data))

2523

user=> (count data)

61393

user=> (float 2506/61137)

0.04098991

So 4 percent of the data does not have the shape field set to meaningful data.
Let's see what the most popular values for that field are:

user=> (def shape-freqs

 (frequencies

 (map str/trim

 (map :shape

 (remove (comp str/blank? :shape) data)))))

#'user/shape-freqs

user=> (pprint (take 10 (reverse (sort-by second shape-freqs))))

(["light" 12202]

 ["triangle" 6082]

 ["circle" 5271]

 ["disk" 4825]

 ["other" 4593]

 ["unknown" 4490]

 ["sphere" 3637]

 ["fireball" 3452]

 ["oval" 2869]

 ["formation" 1788])

Interesting! The most frequent shape isn't a shape at all. The values other and
unknown also rank pretty high. We can use the shape field, but we need to keep
these things in mind.

Chapter 4

[99]

Visualizing UFO data
We'll spend a good bit of time visualizing the data, and we'll use the same system
that we have in the previous chapters: a bit of HTML, a splash of CSS, and a lot of
JavaScript, which we'll generate from ClojureScript.

We've already taken care of the configuration for using ClojureScript in the project.
clj file that I mentioned earlier. The rest of it involves a couple of more parts:

•	 The code to generate the JSON data for the graph. This will be in the src/
ufo_data/analysis.clj file. We'll write this code first.

•	 An HTML page that loads the JavaScript libraries that we'll use—jQuery
(https://jquery.org/) and D3 (http://d3js.org/)—and creates a div
container in which to put the graph itself.

•	 The source code for the graph. This will include a namespace for utilities in
src-cljs/ufo-data/utils.cljs and the main namespace at src-cljs/
ufo-data/viz.cljs.

With these prerequisites in place, we can start creating the graph of the frequencies
of the different shapes.

First, we need to make sure we have what we need for this namespace. This will
be in the src/ufo_data/analysis.clj file. The following code gives the ns
declaration. Most of these dependencies won't be needed immediately, but we
will use them at some point in this chapter:

(ns ufo-data.analysis
 (:require [ufo-data.text :as t]
 [clj-time.core :as time]
 [clj-time.coerce :as coerce]
 [clojure.string :as str]
 [incanter.core :as i]
 [incanter.stats :as s]))

Now, we'll define a rather long function that takes the input data. It will pull out the
shape field, remove blanks, break it into words, and count their frequencies. A few
of the functions that this function uses aren't listed here, but they're available in the
code download for this chapter. Then, the following function will remove any shapes
that don't occur at least once, reverse-sort them by their frequencies, and finally turn
them into map structures in a vector:

(defn get-shape-freqs
 "This computes the :shape field's frequencies. This also

http://d3js.org/

Classifying UFO Sightings

[100]

 removes any items with a frequency less than min-freq."
 [coll min-freq]
 (->> coll
 (map :shape)
 (remove str/blank?)
 (map normalize)
 (mapcat tokenize)
 frequencies
 (remove #(< (second %) min-freq))
 (sort-by second)
 reverse
 (map #(zipmap [:shape :count] %))
 (into [])))

We can then use the clojure.data.json package (https://github.com/clojure/
data.json) to save it to disk. I saved it to www/term-freqs.json. The following is a
small sample of the first two records:

[{"count":12202,"shape":"light"},
 {"count":6082,"shape":"triangle"},
 …]

Now we need a web page in which to draw the graph. I downloaded a template
from the HTML 5 Boilerplate project (http://html5boilerplate.com/) and saved
it as www/term-freqs.html. I removed almost everything inside the body tag. I left
only the following div tag and a string of script tags:

<div class="container"></div>

This takes care of the HTML page, so we can move on to the ClojureScript that will
create the graph.

All of the ClojureScript files for this chapter will be in the src-cljs directory.
Under this directory is a tree of Clojure namespaces, similar to how the code in src
is organized for Clojure. Most of the ClojureScript for this chapter will be in the
src-cljs/ufo-data/viz.cljs file. There are a number of utility functions in
another namespace, but those are primarily boilerplate, and you can find them in
the code download for this chapter. The following function loads the data and
creates the graph. We'll walk through it step-by-step.

(defn ^:export term-freqs []
 (let [{:keys [x y]} (u/get-bar-scales)
 {:keys [x-axis y-axis]} (u/axes x y)
 svg (u/get-svg)]

Chapter 4

[101]

 (u/caption "Frequencies of Shapes" 300)
 (.json js/d3 "term-freqs.json"
 (fn [err json-data]
 (u/set-domains json-data [x get-shape] [y get-count])
 (u/setup-x-axis svg x-axis)
 (u/setup-y-axis svg y-axis "")
 (.. svg
 (selectAll ".bar") (data json-data)
 (enter)
 (append "rect")
 (attr "id" #(str "id" (get-shape %)))
 (attr "class" "bar")
 (attr "x" (comp x get-shape))
 (attr "width" (.rangeBand x))
 (attr "y" (comp y get-count))
 (attr "height"
 #(- u/height (y (get-count %))))))))))

The part of the function before the highlighting sets up the axes, the scales, and the
parent SVG element. Then, we load the data from the server. Once it's loaded, we set
the domains on the axes and draw the axes themselves.

The main part of the function is highlighted. This creates the bars in the SVG
element. All these tasks take place in the following manner:

•	 (selectAll ".bar") (data data): This command selects all elements
with the bar class. Currently, there aren't any elements to select because we
haven't created any, but that's all right. Then it joins those elements with
the data.

•	 (enter): This command starts processing any data rows that don't have
previously created .bar elements.

•	 (append "rect"): For each row of data with no .bar elements, this
command appends a rect tag to the element.

•	 (attr "id" #(str "id" (get-shape %))) (attr "class" "bar"):
This line of code adds the ID and class attributes to the rectangle.

•	 (attr "x" (comp x get-shape)) (attr "y" (comp y get-count)):
This line of code populates the x and y attributes with values from each data
row, projected onto the graph's pixel grid.

•	 (attr "width" (.rangeBand x)) (attr "height" #(- u/height (y
(get-count %))))): This line of code finally sets the height and width for
each rectangle.

Classifying UFO Sightings

[102]

These commands together create the graph. There's a little bit of CSS involved,
also. Refer to the code download for all the details. But in the end, the graph looks
as follows:

This set of files acts as a framework for all of the visualizations and charts that we'll
see in this chapter. Although bar charts are simple, once in place, this framework can
be used for much more complex and sophisticated types of graphs.

This graph shows us more clearly what the quick frequency dump at the REPL also
showed us: most of the people listed the shape as light. More than twice as many
people listed the shape of light as listed the runner-up, triangle. In fact, almost one
in five observations listed that as the shape.

Now let's try to get a feel for some other facts about this data.

First, when have UFOs been observed? To find this out, we have to group the
observations by the year from the sighted-at field. We group the items under each
year, and then we save that to graph it. The following are the functions in ufo-data.
analysis that will take care of getting the right data for us:

(defn group-by-year [coll]
 (group-by #(timestamp->year (:sighted-at %)) coll))

Chapter 4

[103]

(defn get-year-counts [by-year]
 (map #(zipmap [:year :count] %)
 (map (on-second count)
 by-year)))

Once we've created the graph from this data, the following is the output:

This graph suggests that the number of observations in the dataset increased
dramatically in the mid-1990s, and that they have continued to increase. NUFORC,
the organization that collects the data, was established in 1974. I was unable to
discover when they began collecting data online, but the increased widespread use
of the Internet could also be a factor in the increase in reported sightings. Also, wider
cultural trends, such as the popularity of X-Files, may have contributed to a greater
awareness of UFOs during this time period.

Classifying UFO Sightings

[104]

As we continue to get to know our data, another interesting distribution is looking at
the number of sightings each month. The process for getting this data is very similar
to the process for getting the number of sightings by year, so we won't go into
that now.

The preceding graph shows that the summer, starting in June, is a good time to see
a UFO. One explanation for this is that during these months, people are outside
more in the evenings.

Description
While the shape field is important, the description has more information. Let's see
what we can do with it.

Chapter 4

[105]

First, let's examine a few and see what some of them look like. The following
example is one that I selected randomly:

Large boomerang shaped invisible object blocked starlight while flying across
sky. I have a sketch and noted the year was 1999, but did not write down the day.
The sighting took place in the late evening when it was completely dark and the
sky was clear and full of stars. Out of the corner of my eye, I noticed movement
in the sky from the north moving to the south. When I looked closer, however, it
wasn’t an object that I was seeing move, rather it was the disappearance and
reappearance of stars behind an object. The object itself was black or invisible with
no lights. Given the area of stars that were blocked out, I would say the object was
five times larger than a jet. It was completely silent. It was shaped like a boomerang
only a little more rounded in front rather than triangle and a slightly sharper
points on the “wing” tips. Since the object was invisible, I can only
suggest the shape based on the black area absent of stars like a silhouette as it
moved across the sky. If the object was indeed five times the size of a jet and flying
at about the attitude of a jet, then it was moving much faster than a jet. I blinked a
couple times, looked away and looked back, and then followed the object across the
remainder of the horizon until it was out of sight. In all it took about 8-10 seconds
to span the sky and flew at the same altitude the whole time. Given the triangular
shape, I suppose it could have been a low-flying Stealth Bomber that just appeared
much larger if flying low. But is a Stealth completely silent? Also, Stealth Bombers
have three triangles pointing backwards from the mid section. The object I saw did
not seem to have any mid section as such.((NUFORC Note: Witness indicates that
date of incident is approximate. PD))

So we can see that some examples are fairly long, and they may have characters
encoded as HTML/XML entities (“ and ” in this example). And this
quote is relatively clean: some have two or more words jammed together with just
punctuation—often several periods—stuck between the words.

Classifying UFO Sightings

[106]

In order to deal with this data, we'll need to clean it up some and break the words out,
or tokenize it. You can see the details of this in the code download, most of which is
just pasting together a lot of string manipulation methods, but it's helpful to remind
ourselves with what we're working and how we need to deal with it. I also filtered
on a standard English stop-words list, which I augmented by adding a few words
that are specific to the description fields, such as PD and NUFORC.

Let's see what the most frequent words are in the description fields:

user=> (def descr-counts (a/get-descr-counts data 50))

#'user/descr-counts

user=> (take 10 descr-counts)

({:count 85428, :descr "object"}

 {:count 82526, :descr "light"}

 {:count 73182, :descr "lights"}

 {:count 72011, :descr "sky"}

 {:count 58016, :descr "like"}

 {:count 47193, :descr "one"}

 {:count 40690, :descr "bright"}

 {:count 38225, :descr "time"}

 {:count 37065, :descr "could"}

 {:count 35953, :descr "looked"})

This seems more like what we'd expect. The most frequent word is object, which
seems appropriate for a corpus made up of people talking about things that they
can't identify. The next two words are light and lights, which would be expected,
especially since light is the most common item in the shape field.

Let's graph these terms too. We won't be able to see the details of the words'
frequencies but it will give us a better feel for their distribution. There are enough
tokens; however, we'll only look at the 75 most frequent ones in the following graph:

Chapter 4

[107]

The distribution of these words seems very similar. In fact, it very roughly conforms
to Zipf's law, which predicts the power-law distribution of many types of physical
and social data, including language frequencies.

Topic modeling descriptions
Another way to gain a better understanding of the descriptions is to use topic
modeling. We learned about this text mining and machine learning algorithm in
Chapter 3, Topic Modeling – Changing Concerns in the State of the Union Addresses.
In this case, we'll see if we can use it to create topics over these descriptions and
to pull out the differences, trends, and patterns from this set of texts.

First, we'll create a new namespace to handle our topic modeling. We'll use the
src/ufo_data/tm.clj file. The following is the namespace declaration for it:

(ns ufo-data.tm
 (:require [clojure.java.io :as io]
 [clojure.string :as str]
 [clojure.pprint :as pp])

Classifying UFO Sightings

[108]

 (:import [cc.mallet.util.*]
 [cc.mallet.types InstanceList]
 [cc.mallet.pipe
 Input2CharSequence TokenSequenceLowercase
 CharSequence2TokenSequence SerialPipes
 TokenSequenceRemoveStopwords
 TokenSequence2FeatureSequence]
 [cc.mallet.pipe.iterator ArrayIterator]
 [cc.mallet.topics ParallelTopicModel]
 [java.io FileFilter]
 [java.util Formatter Locale]))

The process for generating the topic model is very similar to the process that
we used in Chapter 3, Topic Modeling – Changing Concerns in the State of the Union
Addresses. The first change that we need to make is that we'll load the instances
from the in-memory data that we read earlier in this chapter. We'll create a function
that pushes an input collection into an array and uses ArrayIterator to then feed
that array into the processing pipeline. The function to train the data is the same as
it was in the previous chapter.

In this chapter, we'll look at more functions that help us introspect on the trained
model, the instances, and the probabilities and keywords that are important to each
topic. The first function returns the words that apply to a topic and their weights.
We get the feature vectors from the model, and the words themselves from the
instance list as follows:

(defn get-topic-words [model instances topic-n]
 (let [topic-words (.getSortedWords model)
 data-alpha (.getDataAlphabet instances)]
 (map #(vector (.lookupObject data-alpha (.getID %))
 (.getWeight %))
 (iterator-seq (.. topic-words (get topic-n)
 iterator)))))

The other reporting function that we'll use ranks the instances by their probabilities
for each topic. We can use this to look at the documents that are most likely to apply
to any particular topic:

(defn rank-instances [model data topic-id]
 (let [get-p (fn [n]
 [(aget (.getTopicProbabilities model n) topic-id)
 (nth data n)])]
 (->> data count range (map get-p) (sort-by first) reverse)))

We can use these functions—as well as a few others based on these—from the REPL
to explore our data.

Chapter 4

[109]

Generally, when deciding how many topics to use, we'll want to use some kind of
objective metric to find a good definition of the sets. However, for exploring in an
off-the-cuff way, we'll use something more subjective. First, after playing around
with the number of topics, I chose to use a topic count of twelve. Since all of these
are really about just one thing, UFO sightings, I didn't expect there to be too many
meaningful topics, even at a fairly detailed, narrow level. At twelve topics, there still
seemed to be some vague, less helpful topics, but the more interesting topics that I'd
seen before were still there. When I attempted fewer topics, some of those interesting
topics disappeared.

So to get started, let's see the topics and the top 10 words for each. Remember
that the topic descriptions here aren't generated by the computer. I came up with
them after looking at the top words and the top few descriptions for those topics.
Some of these are not obvious, given the small sample of terms included here.
However, diving further into the topic terms, the documents themselves gave these
categorizations. In some cases, I've included notes in parentheses as follows:

•	 Remembering childhood experiences: back time house craft car looked
years remember road home

•	 Lots of NUFORC notes, thanks to other organizations or local chapters:
report witness nuforc note ufo sighting pd date reported object

•	 Bright, silent objects in the sky: light sky bright lights white star object red
moving looked

•	 Visual descriptions: lights sky light time night red minutes objects back
bright (this one doesn't have a clear topic as it's commonly defined)

•	 White, red, and reddish-orange lights: light sky lights looked bright moving
object back red white

•	 Very fast, bright objects in the sky, compared to airplanes and meteors:
lights sky object aircraft light west north appeared flying south

•	 NUFORC notes. "Witness elects to remain totally anonymous": nuforc
note pd witness date sky light anonymous remain approximate

•	 Vague: ufo camera air object picture time pictures photo photos day
(again, the subject of this topic isn't clear)

•	 Objects in the sky, no lights, or not mentioned: object driving road car
lights shaped craft looked side feet

•	 Abductions, visitations, fear. Close encounters of the fourth kind: time
night back looked light house thing window lights sound

•	 Sightings. Moving in different directions: lights object craft light flying
white north south east moving

Classifying UFO Sightings

[110]

•	 Technical descriptions: object sky light moving objects appeared bright
time high north

Several of these topics, for instance, the third, fifth, sixth, and ninth bullet, seem to
be pretty generic descriptions of sightings. They describe lots of moving lights in
the sky.

Other topics are more interesting. Topic one contained a number of descriptions
written by people looking back at their childhood or college years. For instance, in
the following paragraph, someone describes having a close encounter when they
were about six years old. There are a number of spelling mistakes, and part of the
reason I've kept it in is to illustrate just how messy this data can be:

Blus light, isolated road, possible missing timeI was six years old at the time, and
even now, if I concentrate, I can recall what happened. My mother, her best friend,
and myself were driving on a section of road called "Grange Road." Today, there
are a lot of houses, but at the time, it was all farmland with maybe one or two
houses. It was just after midnight, and I remember waking up. I was alseep in
the back seat, and I woke up feeling very frightened. I sat up, and my mother and
her friend were obviously worried. The car we were in was cutting in-and-out,
and finally died. As soon as the car stopped, we all saw a blue light directly ahead,
maybe about 20 feet off of the ground, and about a football field legnth away. It
glided towards us, made no noise, and as it got to within 15 feet, it stopped in
midair, hoovering. My mom grabbed me from the backseat and held on, and her
friend was crying. I was crying, too, because whatever it was, it was making us all
upset. After about five minutes, I don't recall what happened, because for whatever
reason, I fell alseep. Weird, I know, but I swear it happened. I woke up sometime
later, and we three were sitting there, shocked, and the light was gone. My mom
and her friend - to this day - swear they had missing time, about 10 minutes worth.
I hope this helps...((NUFORC Note: Witness indicates that date of sighting is
approximate. PD))

And some topics are puzzling, number eight, for instance. The top 10 documents for
it had nothing obvious that appeared to make them a coherent subject. There may be
something about some of the subtler vocabulary selection that was getting identified,
but it wasn't readily apparent.

Hoaxes
One of the most interesting finds in this was topic seven. This topic was focused
on annotations added to the descriptions for which the witnesses wished to remain
anonymous. But its most likely document was the following:

Chapter 4

[111]

Round, lighted object over Shelby, NC, hovered then zoomed away. It was my
birthday party and me and my friends were walking around the block about
21:30. I just happened to look up and I saw a circular object with white and bright
blue lights all over the bottom of it. It hovered in place for about 8 seconds then
shot off faster than anything I have ever seen.((NUFORC Note: Witness elects
to remain totally anonymous; provides no contact information. Possible hoax??
PD))((NUFORC Note: Source of report indicates that the date of the sighting is
approximate. PD))

What caught my attention was the note "Possible hoax??" Several other descriptions
in this topic had similar notes, often including the word hoax.

Finding this raised an interesting possibility: could we train a classifier to recognize
possible hoaxes? My initial reaction was to be skeptical. But I still thought it would
be an interesting experiment.

Eventually, we'll want to load this data and process it with MALLET (http://
mallet.cs.umass.edu/). MALLET works a little easier with data that's kept in a
particular directory format. The template for this is base-directory/tag/data-
file.txt. In fact, we'll include a directory above these, and for base-directory,
we'll define a directory for training data and one for test data.

The training group is used to train the classifier, and the test group is used to
evaluate the classifier after it's been trained in order to determine how successful it
is. Having two different groups for these tasks helps to find whether the classifier is
over-fitting, that is, whether it has learned the training group so well that it performs
poorly on new data.

Preparing the data
So before we get started, we'll preprocess the data to put it into a directory structure
such as src/ufo_data/. All the code for this will go into the model.clj file.
The namespace declaration for this is as follows:

(ns ufo-data.model
 (:require [clojure.java.io :as io]
 [clojure.core.reducers :as r]
 [clojure.string :as str]
 [clojure.data.json :as json]
 [clj-time.format :as tf]
 [ufo-data.text :as t]
 [ufo-data.util :refer :all]
 [me.raynes.fs :as fs])
 (:import [java.lang StringBuffer]))

Classifying UFO Sightings

[112]

Now, to process this dataset into a form that MALLET can deal with easily, we're
going to put it through the following steps:

1.	 Read the data into a sequence of data records.
2.	 Split out the NUFORC comments.
3.	 Categorize the documents based on the comments.
4.	 Partition them into directories based on the categories.
5.	 Divide them into training and test sets.

Let's see how we'll put these together.

Reading the data into a sequence of data records
The data in the downloaded file has a number of problems with values that can't
be escaped properly. I've cleaned this up and made a new data file, available at
http://www.ericrochester.com/clj-data-master/data/ufo.json. I've saved
this into my data directory and bound that path to the name *data-file*. You can
find this and a few other definitions in the code download for this chapter.

But primarily, I'd like to focus on the data record for a minute. This just contains the
fields from the JSON objects being read in. The following definition will serve as
documentation of our data and make working with the rows a little easier:

(defrecord UfoSighting
 [sighted-at reported-at location shape duration description
 year month season])

The data as we read it in from the JSON file won't be quite right, however. We'll still
need to convert date strings into data objects. We'll do that with read-date, which
parses a single date string, and with coerce-fields, which coordinates the calling of
read-date on the appropriate fields in UfoSighting, as shown in the following code:

(def date-formatter (tf/formatter "yyyyMMdd"))
(defn read-date [date-str]
 (try
 (tf/parse date-formatter date-str)
 (catch Exception ex
 nil)))
(defn coerce-fields [ufo]
 (assoc ufo
 :sighted-at (read-date (:sighted-at ufo))
 :reported-at (read-date (:reported-at ufo))))

Chapter 4

[113]

Now we can use these functions to read and parse each line of the input data file.
As shown in the following code, each line is a separate JSON object:

(defn read-data
 ([] (read-data *data-file*))
 ([filename]
 (with-open [f (io/reader filename)]
 (->> f
 line-seq
 vec
 (r/map #(json/read-str % :key-fn keyword))
 (r/map map->UfoSighting)
 (r/map coerce-fields)
 (into [])))))

Now we can use these on the REPL to load the data file. As shown in the following
code, in this session, model is bound to ufo-data.model:

user=> (def data (model/read-data))

user=> (count data)

61067

user=> (first data)

{:sighted-at nil,

 :reported-at nil,

 :location " Iowa City, IA",

 :shape "",

 :duration "",

 :description

 "Man repts. witnessing "flash, followed by a classic UFO, w/
a tailfin at back." Red color on top half of tailfin. Became
triangular.",

 :year nil,

 :month nil,

 :season nil,

 :reported_at "19951009",

 :sighted_at "19951009"}

Looks good. We're ready to start processing the descriptions further.

Classifying UFO Sightings

[114]

Splitting the NUFORC comments
Many of the descriptions contain comments by NUFORC (http://www.nuforc.
org/). These contain editorial remarks – some of them about the authenticity of
the report. The following is a sample description with NUFORC commentary:

Telephoned Report:Husband and wife were awakened by a very bright light outside
their house in Rio Vista area of McCall. It was so bright, it was "like being
inside a football stadium." No sound. Ground was covered with snow at the
time. It lasted for 10 seconds.((NUFORC Note: We spoke with the husband and
wife, and found them to be quite credible and convincing in their description of
what they allegedly had seen. Both have responsible jobs. PD))

This is a standard format for these comments: They're enclosed in double
parentheses and begin with "NUFORC." We can leverage this information,
and a regular expression, to pull all the notes out of the document.

To do this, we'll go a little deeper into the Java regular expression API than Clojure
has utility functions defined to do. Let's see what we need to do, and then we can
take it apart after the following code listing:

(defn split-nuforc [text]
 (let [m (.matcher #"\(\(.*?\)\)" text), sb (StringBuffer.)]
 (loop [accum []]
 (if (.find m)
 (let [nuforc (.substring text (.start m) (.end m))]
 (.appendReplacement m sb "")
 (recur (conj accum nuforc)))
 (do
 (.appendTail m sb)
 [(str sb) (str/join " " accum)])))))

So first we create a regular expression that picks out text enclosed in double
parentheses. We also create java.lang.StringBuffer. We'll use this to accumulate
the description of the UFO sighting, with the NUFORC comments stripped out.

The body of the function is a loop that has a single parameter, a vector named
accum. This will accumulate the NUFORC comments.

Inside the loop, every time the regular expression finds a match, we extract the
NUFORC comment out of the original string and replace the match with an empty
string in StringBuffer. Finally, when there are no more matches on the regular
expression, we append the rest of the string onto StringBuffer, and we can
retrieve its contents and the comments, joined together.

Chapter 4

[115]

Let's see what happens when we strip the NUFORC comments from the description
quoted earlier:

user=> (def split-descr (model/split-nuforc description))

user=> (first split-descr)

"Telephoned Report:Husband and wife were awakened by a very bright light
outside their house in Rio Vista area of McCall. It was so bright, it
was "like being inside a football stadium." No sound. Ground
was covered with snow at the time. It lasted for 10 seconds."

user=> (second split-descr)

"((NUFORC Note: We spoke with the husband and wife, and found them to be
quite credible and convincing in their description of what they allegedly
had seen. Both have responsible jobs. PD))"

So we can see that the first item in the pair returned by split-nuforc contains the
description by itself, and the second item is the comments.

Now we can use the comments to categorize the descriptions in the first part.
And we'll use that to figure out where to save the cleaned-up descriptions.

Categorizing the documents based on the comments
Categorizing the documents is relatively easy. We'll use a tokenize function, which
can be found in the code download for this chapter, in the namespace ufo-data.
text (which is aliased to t in the code). We can convert the words in the comment
to a set of tokens and then look for the word "hoax". If found, we'll categorize it
as follows:

(defn get-category [tokens]
 (if (contains? (set tokens) "hoax")
 :hoax
 :non-hoax))

When called with the tokens of a comment, it returns the category of the description
as follows:

user=> (model/get-category

 (map t/normalize (t/tokenize (second split-descr))))

:non-hoax

Of course, this is very rough, but it should be all right for this experiment.

Classifying UFO Sightings

[116]

Partitioning the documents into directories based
on the categories
Now that they're in categories, we can use those categories to save the descriptions
into files. Each description will be in its own file.

Initially, we'll put all of the files into one pair of directories. In the next step, we'll
divide them further into test and training sets.

The first function for this section will take a base directory, a number, and the
document pair, as returned by ufo-data.model/split-nuforc. From there, it will
save the text to a file and return the file's category and filename, as shown in the
following code:

(defn save-document [basedir n doc]
 (let [[text category] doc
 filename (str basedir \/ (name category) \/ n ".txt")]
 (spit filename text)
 {:category category, :filename filename}))

The next function, make-dirtree-sighting, will do a lot of the work. It will take an
instance of UfoSighting and will split out the NUFORC commentary, tokenize both
parts, get the category, and use it to save the filename, as shown in the following code:

(defn make-dirtree-sighting
 ([basedir]
 (fn [sighting n]
 (make-dirtree-sighting basedir sighting n)))
 ([basedir sighting n]
 (->> sighting
 :description
 split-nuforc
 (on-both #(map t/normalize (t/tokenize %)))
 (on-second get-category)
 (on-first #(str/join " " %))
 (save-document basedir n))))

This will handle saving each file individually into one pair of directories: one for
hoaxes and one for non-hoaxes. We'll want to process all of the UFO sightings,
however, and we'll want to divide the two sets of documents into a test set and
a training set. We'll do all of this in the next section.

Chapter 4

[117]

Dividing them into training and test sets
Now, we can divide the data that we have into a training set and a test set.
We'll need the following two utility functions to do this:

1.	 We'll need to create subdirectories for the categories several times.
Let's put that into the following function:
(defn mk-cat-dirs [base]
 (doseq [cat ["hoax" "non-hoax"]]
 (fs/mkdirs (fs/file base cat))))

2.	 We'll also need to divide a collection into two groups by ratio, as shown in
the following code. That is, one subgroup will be 80 percent of the original
and the other subgroup will be 20 percent of the original.
(defn into-sets [ratio coll]
 (split-at (int (* (count coll) ratio)) coll))

Now, the function to move a collection of files into a stage's subdirectory (testing or
training) will be mv-stage. The collection of files is generated by save-document,
so it's a collection of maps, each containing the category and filename of the file, as
shown in the following code:

(defn mv-stage [basedir stage coll]
 (let [stage-dir (fs/file basedir stage)]
 (doseq [{:keys [category filename]} coll]
 (fs/copy filename
 (fs/file stage-dir (name category)
 (fs/base-name filename))))))

To control this whole process, we'll use make-dirtree. This will take a collection of
instances of UfoSighting and process them into separate text files. All of the files
will be in the basedir directory, and then they'll be divided into a training set and
a test set. These will be put into sibling directories under basedir as shown in the
following code:

(defn make-dirtree [basedir training-ratio sightings]
 (doseq [dir [basedir (fs/file basedir "train")
 (fs/file basedir "test")]]
 (mk-cat-dirs dir))
 (let [outputs (map (make-dirtree-sighting basedir)
 sightings (range))
 {:keys [hoax non-hoax]} (group-by :category
 (shuffle outputs))

Classifying UFO Sightings

[118]

 [hoax-train hoax-test] (into-sets training-ratio hoax)
 [nhoax-train nhoax-test] (into-sets
 training-ratio non-hoax)]
 (mv-stage basedir "train" (concat hoax-train nhoax-train))
 (mv-stage basedir "test" (concat hoax-test nhoax-test))))

Now, let's use this to divide out sightings data into groups and save them into the
bayes-data directory as follows:

user=> (model/make-dirtree "bayes-data" 0.8 data)

We have the data now, and it's in a shape that MALLET can use. Let's look at how
we're going to leverage that library for Naïve Bayesian classification.

Classifying the data
Bayesian inference can seem off-putting at first, but at its most basic level, it's how
we tend to deal with the world. We start out with an idea of how likely something
is, and then we update that expectation as we receive more information. In this case,
depending on our background, training, history, and tendencies, we may think that
all UFO reports are hoaxes or that most of them are. We may think that few UFO
reports are hoaxes, or we may be completely undecided and assume that about half
of them are hoaxes and half are true. But as we hear reports that we know the truth
of, we change our opinions and expectations of the other reports. We may notice
patterns, too. Hoaxes may talk about green men, while true reports may talk about
grays. So you may also further refine your intuition based on that. Now, when you
see a report that talks about little green men, you're more likely to think it's a hoax
than when you see a report that talks about little gray men.

You may also notice that triangular UFOs are considered hoaxes, while circular
UFOs are not. Now, when you read another document, this observation then further
influences your beliefs about whether that document is a hoax or not.

In Bayesian terms, our original expectation that a document is a hoax or not is called
the prior or assumed probability, and its notation is P(H), where H is the probability
that the document is considered a hoax. The updated expectation after seeing the
color of the aliens in the description, C, is called the conditional probability, and its
notation is P(C|H), which is read as the probability of C given H. In this case, it's the
probability distribution over the alien's color, given that the document is a hoax.

Bayes' theorem is a way of swapping the conditions for a set of conditional
probabilities. That is, we can now find P(H|C), or the probability distribution
over the document's being a hoax, given that the alien is green or gray.

Chapter 4

[119]

The formula to do this is pretty simple. To compute the probability that the
document is a hoax, given the aliens' color, consider the following conditions:

•	 The probability of the aliens' color, given that the document is a hoax or not
•	 The probability that the document is a hoax
•	 The probability of the aliens' color.

For Naïve Bayesian classification, we make an important assumption: we assume
that the features in a document are independent. This means that the probability that
whether aliens are green or gray in a document is independent of whether the UFO
is a disk or a triangle.

In spite of this assumption, Naïve Bayesian classifiers often work well in the real
world. We can train them easily and quickly, and they classify new data quickly
and often perform well enough to be useful.

So with that understanding, let's look at how MALLET handles Naïve Bayesian
classification.

Coding the classifier interface
Before we begin the next part of this chapter, it's probably a good time to start a
new namespace for the following code to live in. Let's put it into the src/ufo_data/
bayes.clj file. The ns declaration is as follows:

(ns ufo-data.bayes
 (:require [clojure.java.io :as io])
 (:import [cc.mallet.util.*]
 [cc.mallet.types InstanceList]
 [cc.mallet.pipe Input2CharSequence
 TokenSequenceLowercase
 TokenSequenceRemoveStoplist
 CharSequence2TokenSequence SerialPipes
 SaveDataInSource Target2Label
 TokenSequence2FeatureSequence
 FeatureSequence2AugmentableFeatureVector]
 [cc.mallet.pipe.iterator FileIterator]
 [cc.mallet.classify NaiveBayesTrainer]
 [java.io ObjectInputStream ObjectOutputStream]))

With the preceding code in place, let's see what we need to do.

Classifying UFO Sightings

[120]

Setting up the Pipe and InstanceList
MALLET processes all input through Pipe. Pipes represent a series of transformations
over the text. When you're working with a classifier, the data that's used for training,
testing, and later for classifying new documents, all need to be put through the same
pipe of processes. Also, all of them must use the same set of features and labels.
MALLET calls these alphabets.

Each data document, at whatever stage of processing, is stored in an Instance
object, and corpora of these are kept in InstanceList. Pipe objects are associated
with InstanceList objects. This makes sure that all Instance objects in a collection
are processed consistently.

In order to keep things straight, we'll define make-pipe-list. This will create the
Pipe object as shown in the following code:

(defn make-pipe-list []
 (SerialPipes.
 [(Target2Label.)
 (SaveDataInSource.)
 (Input2CharSequence. "UTF-8")
 (CharSequence2TokenSequence. #"\p{L}[\p{L}\p{P}]+\p{L}")
 (TokenSequenceLowercase.)
 (TokenSequenceRemoveStoplist.)
 (TokenSequence2FeatureSequence.)
 (FeatureSequence2AugmentableFeatureVector. false)]))

This processing pipeline performs the following steps:

1.	 Target2Label takes the category from the directory path and assigns it
to the Instance object's label. Labels are the categories or classes used for
classification.

2.	 SaveDataInSource takes the path name, which is currently in the data
property, and puts it into the Instance object's source property.

3.	 Input2CharSequence reads the data from the filename and replaces it with
the file's contents.

4.	 CharSequence2TokenSequence tokenizes the file's contents.
5.	 TokenSequenceLowercase converts all uppercase characters in the tokens

to lowercase.
6.	 TokenSequenceRemoveStoplist removes common English words so that

the classifier can focus on content words.
7.	 TokenSequence2FeatureSequence categorizes the tokens as sequences.

Each unique word is assigned a unique integer identifier.

Chapter 4

[121]

8.	 FeatureSequence2AugmentableFeatureVector converts the sequence
of tokens into a vector. The token's feature identifier is that token's index
in the feature vector.

MALLET's classifier expects feature vectors as input, so this is the appropriate
pipeline to use.

Now we need to take an input directory, generate Instance objects from it,
and associate their processing with a pipeline. In the following code, we'll use
the add-input-directory function to do all of that:

(defn add-input-directory [dir-name pipe]
 (doto (InstanceList. pipe)
 (.addThruPipe
 (FileIterator. (io/file dir-name)
 #".*/([^/]*?)/\d+.txt$"))))

The regular expression in the last line takes the name of the file's directory and uses
that as the Instance object's classification. We can use these two functions to handle
the loading and processing of the inputs.

Training
Training is pretty simple. We create an instance of NaiveBayesTrainer. Its train
method returns an instance of NaiveBayes, which is the classifier. We'll wrap this
in the following function to make it slightly easier to use:

(defn train [instance-list]
 (.train (NaiveBayesTrainer.) instance-list))

Wrapping it in this way provides a Clojure-native way of dealing with this library.
It also keeps users of our module from needing to import NaiveBayesTrainer and
the other classes from MALLET directly.

Classifying
Just like training, classifying is also easy. The classifier returned by the train
function just defers to the classify method as follows:

(defn classify [bayes instance-list]
 (.classify bayes instance-list))

The preceding code will return an instance of type cc.mallet.classify.
Classification. This returns not only the best label and the probabilities associated
with it, but also the probabilities of the other labels and the classifier and document
instance involved.

Classifying UFO Sightings

[122]

Validating
We can now train a classifier and run it on new documents. We'd like to be able to
test it as well, by comparing our expectations from preclassified documents with
how the classifier actually performs.

At the lowest level, we'll want to compare the expected classification with the actual
classification and keep a count of each pairing of these values. We can do that with
validate1. This gets the expected and actual labels, and it creates a vector pair of
them. The confusion-matrix function then gets the frequency of those pairs as
follows:

(defn validate1 [bayes instance]
 (let [c (.classify bayes instance)
 expected (.. c getInstance getTarget toString)
 actual (.. c getLabeling getBestLabel toString)]
 [expected actual]))
(defn confusion-matrix [classifier instances labels]
 (frequencies (map #(validate1 classifier %) instances)))

A confusion matrix is a table with the counts of the correctly classified instances
(expected and actual match), the false positives (expected is to not classify, but the
actual is to classify it), and the false negatives (expected is to classify the instance, but
the actual is to not classify it). This provides an easy-to-comprehend overview of the
performance of a classifier.

Tying it all together
In the following code, we'll create a bayes function that creates, trains, and tests a
classifier on a directory of data. It will take the hash map of information returned
by validate and add the classifier and the Pipe object to it. Having the pipe object
available later will be necessary to run the classifier on more data in the future.

(defn bayes [training-dir testing-dir]
 (let [pipe (make-pipe-list)
 training (add-input-directory training-dir pipe)
 testing (add-input-directory testing-dir pipe)
 classifier (train training)
 labels (iterator-seq
 (.iterator (.getLabelAlphabet classifier)))
 c-matrix (confusion-matrix classifier testing labels)]
 {:bayes classifier
 :pipe pipe
 :confusion c-matrix}))

Now that we have all the pieces in place, let's see how to run the classifier.

Chapter 4

[123]

Running the classifier and examining the results
For this section, I've loaded the ufo-data.bayes namespace into the REPL and
aliased it with the name bayes.

We can pass to the bayes function the test and training directories that we created
from the sightings as shown in the following code:

user=> (def bayes-out

 (bayes/bayes "bayes-data/train" "bayes-data/test"))

user=> (:confusion bayes-out)

{["hoax" "non-hoax"] 83, ["non-hoax" "non-hoax"] 12102,

["non-hoax" "hoax"] 29}

Let's put this into a more traditional form for this information. The expected values
have their labels across the top of the table. The actual values have theirs down the
side. Look at the following table:

Hoax Non-hoax
Hoax 0 31
Non-hoax 83 12100

Well, that seems pretty useless. Evidently, my previous skepticism was warranted.
The classifier managed to identify no hoaxes correctly, and it incorrectly identified
31 non-hoaxes as hoaxes (false positives).

But that's not all that we can learn about this. Instances of NaiveBayes also include a
way to print out the top-weighted words for each category. Let's see what the top 10
words for each classification are:

user=> (.printWords (:bayes bayes-out) 10)

Feature probabilities hoax

apos 0.002311333180377461

lights 0.0022688454380911096

light 0.00217537240506114

object 0.0020988944689457082

sky 0.002081899372031169

quot 0.0015295587223086145

looked 0.0014360856892786434

craft 0.0011556665901887302

Classifying UFO Sightings

[124]

red 0.0011301739448169206

back 0.0010961837509878402

Feature probabilities non-hoax

object 0.016553223428401043

light 0.016198059821948316

apos 0.015460989114397925

lights 0.014296272431730976

sky 0.014028337606877127

quot 0.010350232305991571

bright 0.007963812802535785

time 0.007237239541481537

moving 0.007063281856688359

looked 0.007037538118852588

So the terms are in slightly different order, but the vocabulary describing hoaxes
and non-hoaxes is almost identical. Both mention object, light, lights, sky, and looked.
So, based on the features we've selected here (single-word tokens), it's not surprising
that we didn't get good results.

However, the primary thing that we can learn is that hoaxes are considered to be
extremely rare, and the decision that a sighting is a hoax or not is often based on
external data. Consider the sighting quoted earlier. To support the judgment that
the sighting is not a hoax, the commenter mentions that they have a stable job,
even though that's not mentioned in the description itself.

Summary
This has been a wandering and hopefully fun trip through the UFO sightings dataset.
We've learned something about the language used in describing close encounters,
and we've learned about how to use visualizations, exploratory data analysis, and
Naïve Bayesian classification to learn more about the data.

But the primary impression I have of this is the feedback analysis, visualization,
and exploration. The visualization led us to topic modeling, and something we
discovered there led us to Bayesian classification. This is typical of data analysis,
where one thing we learn informs and motivates the next stage in the analysis.
Each answer can raise further questions and drive us back into the data.

Benford's Law – Detecting
Natural Progressions of

Numbers
In this chapter, we'll look at Benford's Law; an interesting set of properties that
are inherent in many naturally occurring sequences of numbers. For these sets of
numbers, this observation predicts the distribution of initial digits.

The odd rule captures an interesting observation about the way numbers are
distributed, and it's useful too. Benford's Law has been used as an evidence of fraud.
If a sequence of numbers should be naturally occurring but Benford's Law indicates
that they are not, then the sequence is likely to be fraudulent. For example, the daily
balances in your bank account should follow Benford's Law, but if they don't, that
may be evidence that someone is cooking the books.

Learning about Benford's Law
Originally, Benford's Law was observed by the astronomer Simon Newcomb in
1881. He was referencing the logarithm tables, which were tomes listing the values
for logarithms of different numbers. He noticed that the pages of the books were
more worn out and discolored at the beginning than they were at the end. In fact,
the pages that deal with numbers that begin with 1 were significantly more worn
out than pages that begin with 9. As the initial digits climbed, the pages were less
and less worn.

This phenomenon was noticed again in 1938 by the physicist Frank Benford. He tested
this against data in a number of domains, and the principle now bears his name.

Benford's Law – Detecting Natural Progressions of Numbers

[126]

In practical terms, this means that about one-third of the numbers in the sequence
begin with the digit 1, a little more than 15 percent begin with 2, about 12 percent
begin with 3, and the rest until the digit 9 are all below 10 percent. Five percent of the
numbers begin with 9. The following is a graphical representation of Benford's law:

So what's the logic behind this? Although the observation itself is surprising,
understanding it is really not that difficult. Let's walk through an example to see
what we can learn.

First, we'll take the example of putting a 100 dollars in the bank and earning an
unheard-of 10 percent interest per year, compounded monthly, where the annual
interest rate is divided evenly by the number of times it is compounded (in this
case, 12), and that is the effective interest rate used each for compounding period.
This behavior is evident in more typical interest rates too, but it takes a longer
span of time. Let's look at a table of the end-of-year reports for this account:

Year Amount in dollars
0 100.00
1 110.47
2 122.04
3 134.82
4 148.94
5 164.53
6 181.76
7 200.79

Chapter 5

[127]

Year Amount in dollars
8 221.82
9 245.04
10 270.70
11 299.05
12 330.36
13 364.96
14 403.17
15 445.39
16 492.03
17 543.55
18 600.47
19 663.35
20 732.81
21 809.54
22 894.31
23 987.96
24 1,091.41

When the money in a bank account is compounded, the amount of money increases
nonlinearly. That is, as the 0.30 dollars of interest that I accrued last month is now
earning interest, this month, I'll earn 0.32 dollars. As each month's interest is rolled
back into the balance, the amount increases faster and faster.

Benford's Law – Detecting Natural Progressions of Numbers

[128]

Looking at the balances, we can see that the amount stays in the 100s longer than it
does in any other number (seven years). It only stays five years in the 200s. Finally,
it stays in the 900s for only one year, at which point it rolls over, and the process
starts all over again. Because there is less to work with and grow on, the lower the
number (that is, in the 100s), the longer the graph will take to grow out of that range.

This pattern is common in any geometrically increasing amounts. Populations
increase in this way, as do many other sequences.

However, concrete examples are always good. In this chapter, we'll work through
several concrete examples. Then, we'll see what a failure of Benford's Law looks
like, and finally, we'll look at an example of its use in life.

Applying Benford's law to compound interest
For the first illustration, let's keep working with the example we just started with.

There are good implementations of analyses using Benford's Law already in a
number of libraries—we'll use Incanter (http://incanter.org/) for the examples
later in the chapter—but to better understand what's going on, we'll write our own
implementation first. To get started, the project.clj file for this chapter is as follows:

(defproject benford "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.5.1"]
 [org.clojure/data.csv "0.1.2"]
 [incanter "1.5.2"]])

The namespace declaration is as follows:

(ns benford.core
 (:require [clojure.string :as str]
 [clojure.java.io :as io]
 [clojure.pprint :as pp]
 [clojure.data.csv :as csv]
 [incanter.stats :as s]))

First, we need a way to take a sequence of numbers and pull the first digit out of
each. There are a couple of ways to do this. We could do this mathematically by
repeatedly dividing by ten until the value is less than ten. At that point, we take
the integer portion of the result.

Chapter 5

[129]

However, we'll do something simpler for this. We'll convert the number to a string
and use a simple regular expression to skip over any signs or prefixes and just take
the first digit. We'll convert that single digit back into an integer as follows:

(defn first-digit [n]
 (Integer/parseInt (re-find #"\d" (str n))))

Now, extracting the first digits for each item in a sequence of numbers becomes simple:

(defn first-digit-freq [coll]
 (frequencies (map first-digit coll)))

Let's use these to pull the first digit from the yearly balances of the compound interest
data, and we can graph them against the expected probabilities for Benford's Law.

The graph that is the result of this analysis is shown as follows. It looks at 25
years of accumulated interest, which is enough to go from 100 dollars to more
than 1,000 dollars.

This gives us an idea of just how close the number sequence is. However, while
the bars appear to match the line, they don't quite match. Are they close enough?
We need to apply a simple statistical test to find out the answer.

First, we'll need a function that computes the expected value for sequences that
conform to Benford's Law. This will take a digit and return the expected proportion
for the number of times that digit starts the sequence:

(defn benford [d]
 (Math/log10 (+ 1.0 (/ 1.0 (float d)))))

Benford's Law – Detecting Natural Progressions of Numbers

[130]

We can use this to produce the full sequence of ratios for Benford's Law. We can
see that the blue line in the preceding graph tracks the following values:

user=> (map benford (range 1 10))
(0.3010299956639812 0.17609125905568124 0.12493873660829993
 0.09691001300805642 0.07918124604762482 0.06694678963061322
 0.05799194697768673 0.05115252244738129 0.04575749056067514)

Next, we'll need a statistical function to test whether the frequencies of digits in
a sequence match these values or not. As this is categorical data, Pearson's Χ2
(chi-squared) test is commonly used to test for conformance with Benford's Law.

The formula for the Χ2 test is simple. This uses O for the observed data and E for the
expected data. N is the number of the categories of data. For example, numbers that
begin with 1 are one category. In the case of testing against Benford's law, N will
always be 9.

The formula for an Χ2 test looks like what is shown in the following figure:

This translates directly into Clojure. The only wrinkle here is that we need to
compare the same quantities. This uses ratios for the expected values but raw
frequencies for the observed data. So we take the total number of observations
and scale the expected ratios to match it:

(defn x-sqr [expected-ratios observed]
 (let [total (sum observed)
 f (fn [e o]
 (let [n (- o e)]
 (/ (* n n) e)))]
 (sum (map f (map #(* % total) expected-ratios) observed))))

We can tie together the Χ2 function to the expected values from Benford's Law:

(defn benford-test [coll]
 (let [freqs (first-digit-freq coll)
 digits (range 1 10)]
 (x-sqr (map benford digits) (map freqs digits))))

Chapter 5

[131]

Let's see what kind of results it gives out:

user=> (benford-test data)
1.7653767101950812

What does this number mean? The way this test is set up, values close to zero
indicate that the sequence conforms to Benford's Law.

The value we obtained here, 1.8, is fairly close to zero, given the range of this
function, so this looks good. However, we still need to know whether it's statistically
significant or not. To find that, we need to find the p-value for this Χ2. There is the
probability that this would happen by chance.

However, before we can find that information for an Χ2 test, we have to know the
degrees of freedom in our experiment. This is the number of variables that are free
to vary. Generally, for Χ2, the degree of freedom is one less than the number of cells
in the test, so for Benford's Law, the degrees of freedom will be eight.

We use this information to find the value's probability of occurring in a Χ2
cumulative distribution. A cumulative distribution is the probability that a value
or lesser value would occur. While a probability distribution gives the probability
of x having a given value, a cumulative distribution gives the probability that x is
less than or equal to that value. Incanter has a CDF for Χ2 in incanter.stats/
cdf-chisq. We can use this to find p for any output of the Χ2 test:

user=> (s/cdf-chisq 1.7653 :df 8 :lower-tail? false)
0.9873810658453659

This is a very high p-value. We'd like it to be above 0.05; any value below that
would indicate that this data did not follow Benford's law. (We'll get into the reasons
for this in Chapter 7, Null Hypothesis Tests – Analyzing Crime Data when we discuss the
null-hypothesis testing.) As it's higher, it's clear that this sequence of numbers tracks
the predications of Benford's Law. There is no evidence of tampering here.

Looking at the world population data
For the next example, let's look at the world population data. I downloaded this
from World DataBank (http://databank.worldbank.org/). To download it
to your computer, use the following steps:

1.	 Navigate to the World Development Indicators database.
2.	 Select all countries.
3.	 Select Population (Total).

Benford's Law – Detecting Natural Progressions of Numbers

[132]

4.	 Select all years.
5.	 Click on Download and download the data as a CSV file.
6.	 To make it easier to reference later, I moved and renamed this file data/

population.csv.

Now, let's read in this data. To make this easier, we'll write a function that reads in
a CSV file, and from each row, create a map that uses the values from the header row
as keys. The data for this looks like the following code snippet, which lists the header
row and one data row:

Country Name,Country Code,Indicator Name,Indicator Code,1960
[YR1960],1961 [YR1961],1962 [YR1962],1963 [YR1963],1964 [YR1964],1965
[YR1965],1966 [YR1966],1967 [YR1967],1968 [YR1968],1969 [YR1969],1970
[YR1970],1971 [YR1971],1972 [YR1972],1973 [YR1973],1974 [YR1974],1975
[YR1975],1976 [YR1976],1977 [YR1977],1978 [YR1978],1979 [YR1979],1980
[YR1980],1981 [YR1981],1982 [YR1982],1983 [YR1983],1984 [YR1984],1985
[YR1985],1986 [YR1986],1987 [YR1987],1988 [YR1988],1989 [YR1989],1990
[YR1990],1991 [YR1991],1992 [YR1992],1993 [YR1993],1994 [YR1994],1995
[YR1995],1996 [YR1996],1997 [YR1997],1998 [YR1998],1999 [YR1999],2000
[YR2000],2001 [YR2001],2002 [YR2002],2003 [YR2003],2004 [YR2004],2005
[YR2005],2006 [YR2006],2007 [YR2007],2008 [YR2008],2009 [YR2009],2010
[YR2010],2011 [YR2011],2012 [YR2012],2013 [YR2013]

Afghanistan,AFG,Population (Total),SP.POP.TOTL,8774440,8953544,9141783
,9339507,9547131,9765015,9990125,10221902,10465770,10729191,11015621,1
1323446,11644377,11966352,12273589,12551790,12806810,13034460,13199597
,13257128,13180431,12963788,12634494,12241928,11854205,11528977,112624
39,11063107,11013345,11215323,11731193,12612043,13811876,15175325,1648
5018,17586073,18415307,19021226,19496836,19987071,20595360,21347782,22
202806,23116142,24018682,24860855,25631282,26349243,27032197,27708187,
28397812,29105480,29824536,..

Chapter 5

[133]

The first function for this is read-csv:

(defn read-csv [filename]
 (with-open [f (io/reader filename)]
 (let [[row & reader] (csv/read-csv f)
 header (map keyword
 (map #(str/replace % \space \-) row))]
 (doall
 (map #(zipmap header %) reader)))))

From this, we can create another function that reads in the population file and pulls
out all the year columns and returns all the populations for all countries for all years
in one long sequence:

(defn read-databank [filename]
 (let [year-keys (map keyword (map str (range 1960 2013)))]
 (->> filename
 read-csv
 (mapcat #(map (fn [f] (f %)) year-keys))
 (remove empty?)
 (map #(Double/parseDouble %))
 (remove zero?))))

One of the problems with the Χ2 test is that it is very sensitive to the sample size.
Small samples (less than 50) will almost always have a high p-value. Likewise,
large samples incline toward low p-values. In general, samples between 100
and 2,500 observations are a good range, but even in this range, we can see some
variance. It's easy to create a function that returns a random subset of a collection.
The only problem with using it is that the value of the statistical tests is dependent
on the nature of the sample returned. However, that is always the problem
with samples:

(defn sample [coll k]
 (if (<= (count coll) k)
 coll
 (let [coll-size (count coll)]
 (loop [seen #{}]
 (if (>= (count seen) k)
 (map #(nth coll %) (sort seen))
 (recur (conj seen (rand-int coll-size))))))))

Benford's Law – Detecting Natural Progressions of Numbers

[134]

Now we can put all of this together. For the last example, we used our own functions
to perform the Benford's test and the Χ2 on the output. This time, we'll use Incanter's
function for this purpose from incanter.stats. This also looks up the p-value from
the Χ2 distribution, so it's a bit handier than doing it in two steps:

user=> (def population (b/read-databank "data/population.csv"))
#'user/population
user=> (def pop-test (s/benford-test (b/sample population 100)))
#'user/pop-test
user=> (:X-sq pop-test)
7.926272852944953
user=> (:p-value pop-test)
0.4407050181730324

As the value of p is greater than 0.05, this appears to conform to Benford's Law.
Graphing this makes the p-Benford's Law relationship clearer. If anything, this
seems a better fit than the preceding compounding interest data:

Again, it appears that this data also conforms to Benford's Law.

Failing Benford's Law
So far, we've seen several datasets, all of which conform to Benford's Law, most
of them quite strongly. We haven't yet seen a dataset that does not conform to
this distribution of initial digits. What would a failing dataset look like?

Chapter 5

[135]

There are many ways in which we could get data that doesn't conform. Any linear
data, for example, would have a more uniform distribution of the initial digits.
However, we can also simulate fraudulent data easily, and in the process, we can
learn just how much noise a dataset can handle before Benford's Law begins to
have trouble with it.

We'll start this experiment with the population data that we looked at earlier.
We'll progressively introduce more and more junk into the dataset. We'll randomly
replace items in the dataset with a random value and re-run incanter.stats/
benford-test on it. When it finally fails, we can note how many items we've
replaced and how far off the new distribution is.

The primary function is shown as follows. There are a few utilities, and you can look
into the code download for their definitions:

(defn make-fraudulent
 ([data] (make-fraudulent data 1 0.05 1000))
 ([data block sig-level k]
 (let [get-rand (make-rand-range-fn data)]
 (loop [v (vec (sample data k)), benford (s/benford-test v),
 n 0, ps [], swapped #{}]
 (println n \. (:p-value benford))
 (if (< (:p-value benford) sig-level)
 {:n n, :benford benford, :data v, :p-history ps,
 :swapped swapped}
 (let [[new-v new-swapped]
 (swap-random
 v swapped #(rand-int k) get-rand block)
 benford (s/benford-test new-v)]
 (recur new-v benford (inc n)
 (conj ps (:p-value benford))
 new-swapped)))))))

This function is primarily a loop. At each step, it checks whether the p-value is low
enough to declare the job as finished. If so, it returns the information it has collected
so far.

If this isn't done, it swaps out block indexes, recomputes a new p-value, and stores
the information it tracks.

Benford's Law – Detecting Natural Progressions of Numbers

[136]

This isn't a particularly efficient process. It is essentially a random walk over the
data space. Sometimes, it actually improves the sequence's fit. However, because
there's more space that isn't close to the probabilities that Benford's Law predicates
for the digits, the values eventually wander off into areas with worse fit and lower
p-values. The following is a graph from one run that began with a p-value around
0.05. Instead of immediately dropping below 0.05, it goes up to about 0.17 before
finally and gradually, dropping below 0.05 around the iteration number 160.

Looking at the final data from this process is also interesting. It's really not as different
from the regular Benford's curve as you might expect it to be. It appears that the
problem has too few twos and too many eights and nines.

Chapter 5

[137]

Case studies
This has all been very interesting but not exactly useful. So, can Benford's Law be
useful? The answer is yes. In fact, analyses using Benford's Law is admissible in the
United States courts. To get an idea for some uses of this analysis, let's take a look
at a moderately well-publicized case where Benford's law was used.

The 2009 Iranian presidential election committee gathered analyses into whether the
elections were fraudulent or not. Some of these used Benford's Law. One major article
on this was A first-digit anomaly in the 2009 Iranian presidential election by Boudewijn F.
Roukema (http://arxiv.org/abs/0906.2789). In this study, the author analyzes
the first digit of vote counts in the election results publicized by the Iranian Ministry
of the Interior on June 14, 2009. First, he analyzed first-round results for elections in
immediately preceding years in other countries. This established a baseline or control
to compare with. He also took into account the pre-election polls. This allowed him to
establish the immediate political landscape in which the election was conducted.

Roukema then used a bootstrap to obtain a sample of the votes. In applying an analysis
of the votes using Benford's Law, he found that there was a significant number of more
vote counts beginning with the digit 7 than could be predicated by Benford's Law.
In fact, the frequency of 7 was more in line with the frequency of the digit 3.

In another study of the 2009 Iranian elections, Walter R. Mebane, a forensics expert,
used Benford's Law to analyze the first and second digits of the vote counts. Based
particularly on the second digits, he also found evidence of fraud, especially in the
counts of two of the candidates.

This seems like it should be clear-cut. However, several other people looked at this
situation with varying degrees of thoroughness and failed to find anything. Several
people wrote blog posts about doing cursory inspections of the data using Benford's
Law, without finding evidence of any problems.

The Carter Center also questioned whether Benford's Law applied to election
data at all, and in The Irrelevance of Benford's Law for Detecting Fraud in Elections,
Joseph Deckert, Mikhail Myagkov, and Peter C. Ordenshook looked at election
data from Ohio, Massachusetts, and Ukraine as well as at simulations of elections
and concluded that Benford's Law does not, in fact, indicate election fraud well.
Deviations in the frequencies of first and second digits do not reliably indicate
fraud, and actual fraud may push the distributions into more compliance with
Benford's Law. Thus, for a number of reasons, Benford's Law may not work
well with the election data.

Benford's Law – Detecting Natural Progressions of Numbers

[138]

Summary
In many ways, Benford's Law seems like the perfect test for fraud and other
misdeeds. It's intriguing, simple, and computationally cheap. However, as we've
seen, it's not always reliable; Χ2 tests can be finicky, and as evidence, it doesn't stand
on its own. It really needs to be buttressed by other data and helps to support cases
of fraud.

However, it is a piece of evidence. It provides a distribution that is difficult to mimic,
and it describes a wide class of number sequences accurately. In combination with
other information and evidences, it can provide support in the cases of misdeed.

We've also learned about Χ2 tests, a very useful statistical procedure. Although
they are sensitive to the sample size, these tests still have a lot to offer and are highly
recommended. They're cheap to perform., and they work well with the categorical
data or data that counts a limited, fixed number possibilities, such as sex or color.
When used with appropriate sample sizes, they're straightforward to interpret.

In the end, we're again reminded that working with data is messy. Having a wide
range of tools and techniques that we can apply to our researches and questions is
critical to being able to successfully track down the information and analyses that
we need.

In the next chapter, we'll look at using sentiment analysis to find positive and
negative hotel reviews automatically. This turns out to be a more problematic
and a more interesting problem than you might suspect at first.

Sentiment Analysis –
Categorizing Hotel Reviews

People talk about a lot of things online. There are forums and communities for almost
everything under the sun, and some of them may be about your product or service.
People may complain, or they may praise, and you would want to know which of
the two they're doing.

This is where sentiment analysis helps. It can automatically track whether the reviews
and discussions are positive or negative overall, and it can pull out items from either
category to make them easier to respond to or draw attention to.

Over the course of this chapter, we'll cover a lot of ground. Some of it will be a little
hazy, but in general, here's what we'll cover:

•	 Exploring and preparing the data
•	 Understanding the classifiers
•	 Running the experiment
•	 Examining the error rates

Before we go any further, let's learn what sentiment analysis is.

Sentiment Analysis – Categorizing Hotel Reviews

[140]

Understanding sentiment analysis
Sentiment analysis is a form of text categorization that works on opinions instead
of topics. Often, texts are categorized according to the subject they discuss. For
example, sentiment analysis attempts to categorize texts according to the opinions
or emotions of the writers, whether the text is about cars or pets. Often, these are cast
in binary terms: good or bad, like or dislike, positive or negative, and so on. Does this
person love Toyotas or hate them? Are Pugs the best or German Shepherds? Would
they go back to this restaurant? Questions like these have proven to be an important
area of research, simply because so many companies want to know what people say
about their goods and services online. This provides a way for companies' marketing
departments to monitor people's opinions about their products or services as they
talk on Twitter and other online public forums. They can reach out to unhappy
customers to provide better, more proactive customer service or reach out to
satisfied ones to strengthen their relationships and opinions.

As you can imagine, categorizing based on opinion than on topics is much more
difficult. Even basic words tend to take on multiple meanings that are very dependent
on their contexts.

For example, take the word good. In a review, I can say that something is good. I can
also say that it's not good, no good, or so far from good that It can almost see it on a
clear day. On the other hand, I can say that something's bad. Or can I say that it's not
bad. Or, if I'm stuck in the '80s, I can say that "I love it, it's so bad."

This is a very important and interesting problem, so people have been working
on it for a number of years. An early paper on this topic came in 2002, Thumbs up?
Sentiment classification using machine learning techniques, published by Bo Pang, Lillian
Lee, and Shivakumar Vaithyanathan. In this paper, they compared movie reviews using
naive Bayes' maximum entropy and support vector machines to categorize movie
reviews into positive and negative. They also compared a variety of feature types
such as unigrams, bigrams, and other combinations. In general, they found that
support vector machines with single tokens performed best, although the
difference wasn't usually huge.

Together and separately, Bo Pang, Lillian Lee, and many others have extended
sentiment analysis in interesting ways. They've attempted to go beyond simple
binary classifications toward predicting finer-grained sentiments. For example,
they've worked on systems to predict from a document the number of stars the
author of the review would give the reviewed service or object on a four-star or
five-star rating system.

Chapter 6

[141]

Part of what makes this interesting is that the baseline is how well the system explicitly
agrees with the judgment of the human raters. However, in research, human raters
only agree about 79 percent of the time, so a system that agrees with human raters
60 or 70 percent of the time is doing pretty well.

Getting hotel review data
For this chapter, we'll look at the OpinRank Review dataset (http://archive.ics.
uci.edu/ml/datasets/OpinRank+Review+Dataset). This is a dataset that contains
almost 260,000 reviews for hotels (http://tripadvisor.com/) from around the world
on TripAdvisor as well as more than 42,000 car reviews (http://edmunds.com/) from
2007, 2008, and 2009 on Edmunds.

Exploring the data
If we look at some of these reviews, we can see just how difficult categorizing the
reviews as positive or negative is, even for humans.

For instance, some words are used in ways that aren't associated with their
straightforward meaning. For example, look at the use of the term greatest
in the following quote from a review for a Beijing hotel:

"Not the greatest area but no problems, even at 3:00 AM."

Also, many reviews recount both good and bad aspects of the hotel that they're
discussing, even if the final review decidedly comes down one way or the other.
This review of a London hotel starts off listing the positives, but then it pivots:

"… These are the only real positives. Everything else was either average or below
average...."

Another reason why reviews are difficult to classify is that many reviews just don't
wholeheartedly endorse whatever it is they're reviewing. Instead, the review will be
tepid, or the reviewers qualify their conclusions as they did in this review for a Las
Vegas hotel:

"It's faded, but it's fine. If you're on a budget and want to stay on the Strip, this is
the place. But for a really great inexpensive experience, try the Main Street Station
downtown."

All of these factors contribute toward making this task more difficult than standard
document classification problems.

Sentiment Analysis – Categorizing Hotel Reviews

[142]

Preparing the data
For this experiment, I've randomly selected 500 hotel reviews and classified them
manually. A better option might be to use Amazon's Mechanical Turk (https://
www.mturk.com/mturk/) to get more reviews classified than any one person might
be able to do easily. Really, a few hundred is about the minimum that we'd like to
use as both the training and test sets need to come from this. I made sure that the
sample contained an equal number of positive and negative reviews. (You can find
the sample in the data directory of the code download.)

The data files are tab-separated values (TSV). After being manually classified,
each line had four fields: the classification as a + or - sign, the date of the review,
the title of the review, and the review itself. Some of the reviews are quite long.

After tagging the files, we'll take those files and create feature vectors from the
vocabulary of the title and create a review for each one. For this chapter, we'll see
what works best: unigrams (single tokens), bigrams, trigrams, or part-of-speech
annotated unigrams. These features comprise several common ways to extract
features from the text:

•	 Unigrams are single tokens, for example, features from the
preceding sentence

•	 Bigrams are two tokens next to each other, for example, features comprise
•	 Trigrams are three tokens next to each other, for example, features

comprise several
•	 Part-of-speech annotated unigrams would look something like features_N,

which just means that the unigram features is a noun.

We'll also use these features to train a variety of classifiers on the reviews. Just like
Bo Pang and Lillian Lee did, we'll try experiments with naive Bayes maximum entropy
classifiers. To compare how well each of these does, we'll use cross validation to train
and test our classifier multiple times.

Tokenizing
Before we get started on the code for this chapter, note that the Leiningen 2 project.
clj file looks like the following code:

(defproject sentiment "0.1.0-SNAPSHOT"
:plugins [[lein-cljsbuild "0.3.2"]]
:dependencies [[org.clojure/clojure "1.5.1"]
 [org.clojure/data.csv "0.1.2"]
 [org.clojure/data.json "0.2.3"]
 [org.apache.opennlp/opennlp-tools "1.5.3"]

Chapter 6

[143]

 [nz.ac.waikato.cms.weka/weka-dev "3.7.7"]]
:jvm-opts ["-Xmx4096m"])

First, let's create some functions to handle tokenization. Under the cover's, we'll use
methods from the OpenNLP library (http://opennlp.apache.org/) to process the
next methods from the Weka machine learning library (http://www.cs.waikato.
ac.nz/ml/weka/) to perform the sentiment analysis. However, we'll wrap these to
provide a more natural, Clojure-like interface.

Let's start in the src/sentiment/tokens.clj file, which will begin in the
following way:

(ns sentiment.tokens
 (:require [clojure.string :as str]
 [clojure.java.io :as io])
 (:import [opennlp.tools.tokenizeSimpleTokenizer]
 [opennlp.tools.postagPOSModelPOSTaggerME]))

Our tokenizer will use SimpleTokenizer from the OpenNLP library and normalize
all characters to lowercase:

(defn tokenize [s]
 (map (memfn toLowerCase)
 (seq
 (.tokenize SimpleTokenizer/INSTANCE s))))

I've aliased the sentiment.tokens namespace to t in the REPL. This function is
used to break an input string into a sequence of token substrings:

user=> (t/tokenize "How would this be TOKENIZED?")

("how" "would" "this" "be" "tokenized" "?")

Next, we'll take the token streams and create feature vectors from them.

Creating feature vectors
A feature vector is a vector that summarizes an observation or document. Each
vector contains the values associated with each variable or feature. The values
may be boolean, indicating the presence or absence with 0 or 1, they may be raw
counts, or they may be proportions scaled by the size of the overall document.
As much of machine learning is based on linear algebra, vectors and matrices
are very convenient data structures.

In order to maintain consistent indexes for each feature, we have to maintain a
mapping from feature to indexes. Whenever we encounter a new feature, we need
to assign it to a new index.

Sentiment Analysis – Categorizing Hotel Reviews

[144]

For example, the following table traces the steps to create a feature vector based on
token frequencies from the phrase the cat in the hat.

Step Feature Index Feature Vector
1 the 0 [1]
2 cat 1 [1, 1]
3 in 2 [1, 1, 1]
4 the 0 [2, 1, 1]
5 hat 3 [2, 1, 1, 1]

So, the final feature vector for the cat in the hat would be [2, 1, 1, 1]. In this case,
we're counting the features. In other applications, we might use a bag-of-words
approach that only tests the presence of the features. In that case, the feature vector
would be [1, 1, 1, 1].

We'll include the code to do this in the sentiment.tokens namespace. First, we'll
create a function that increments the value of a feature in the feature vector. It looks
up the index of the feature in the vector from the feature index (f-index). If the
feature hasn't been seen yet, this function also allocates an index for it:

(defn inc-feature [f-index f-vec feature]
 (if-let [i (f-index feature)]
 [f-index, (assoc f-veci (inc (nth f-veci)))]
 (let [i (count f-index)]
 [(assoc f-index feature i), (assoc f-veci 1)])))

We can use this function to convert a feature sequence into a feature vector. This
function initially creates a vector of zeroes for the feature sequence, and then it
reduces over the features, updating the feature index and vector as necessary:

(defn ->feature-vec [f-index features]
 (reduce #(inc-feature (first %1) (second %1) %2)
 [f-index (vec (repeat (count f-index) 0))]
features))

Finally, for this task, we have several functions that we'll look at together. The first
function, accum-features, builds the index and the list of feature vectors. Each time
it's called, it takes the sequence of features passed to it and creates a feature vector.
It appends this to the collection of feature vectors also passed into it. The next function,
pad-to, makes sure that the feature vector has the same number of elements as the
feature index. This makes it slightly easier to work with the feature vectors later on.
The final function takes a list of feature vectors and returns the feature index and
vectors for this data:

Chapter 6

[145]

(defnaccum-features [state features]
 (let [[index accum] state
 [new-index feature] (->feature-vec index features)]
 [new-index (conj accum feature)]))

(defn pad-to [f-index f-vec]
(vec (take (count f-index) (concat f-vec (repeat 0)))))

(defn ->features [feature-seq]
 (let [[f-index f-vecs]
 (reduce accum-features [{} []] feature-seq)]
 [f-index (map #(pad-to f-index %) f-vecs)]))

We can use these functions to build up a matrix of feature vectors from a set of
input sentences. Let's see how this works in the first few sentences of an Emily
Dickinson poem:

user=> (def f-out

 (t/->features

 (map set

 (map t/tokenize ["I'm nobody."

 "Who are you?"

 "Are you nobody too?"]))))

#'user/f-out

user=> (first f-out)

{"nobody" 0, "'" 1, "i" 2, "m" 3, "." 4, "too" 9, "are" 5,

 "who" 6, "you" 7, "?" 8}

user=> (print (second f-out))

([1 1 111 0 0000] [0 0 000 1 111 0]

 [1 0 000 1 0 1 11])

Notice that after tokenizing each document, we created a set of the tokens. This
changes the system here to use a bag-of-words approach. We're only looking at the
presence or absence of a feature, not its frequency. This does put the tokens out of
order, nobody was evidently the first token indexed, but this doesn't matter.

Now, by inverting the feature index, we can look up the words in a document from the
features that it contains. This allows us to recreate a frequency map for each document
as well as to recreate the tokens in each document. In this case, we'll look up the words
from the first feature vector, I'm nobody:

user=> (def index (map first (sort-by second (first f-out))))

#'user/index

Sentiment Analysis – Categorizing Hotel Reviews

[146]

user=> index

("nobody" "'" "i" "m" "." "are" "who" "you" "?" "too")

user=> (->> f-out

second

first

 (map-indexed vector)

 (remove #(zero? (second %)))

 (map first)

 (map #(nth index %)))

("nobody" "'" "i" "m" ".")

This block of code gets the indexes for each position in the feature vector, removes
the features that didn't occur, and then looks up the index in the inverted feature index.
This provides us with the sequence of features that occurred in that document. Notice
that they're out of order. This is to be expected because neither the input sequence of
features (in this case a set) nor the feature vector itself preserves the
order of the features.

Creating feature vector functions and POS
tagging
We'll also include some functions to turn a list of tokens into a list of features.
By wrapping these into functions, we make it easier to compose pipelines of
processing functions and experiment with different feature sets.

The simplest and probably the most common type of feature is the unigram or
a single token. As the tokenize function already outputs single functions, the
unigram function is very simple to implement:

(def unigrams identity)

Another way to construct features is to use a number of consecutive tokens. In the
abstract, these are called n-grams. Bigrams (two tokens) and trigrams (three tokens)
are common instances of this type of function. We'll define all of these as functions:

(defn n-grams [n coll]
 (map #(str/join " " %) (partition n 1 coll)))
(defn bigrams [coll] (n-grams 2 coll))
(defn trigrams [coll] (n-grams 3 coll))

Chapter 6

[147]

There are a number of different features we could create and experiment with, but
we won't show them all here. However, before we move on, here's one more common
type of feature: the token tagged with its part of speech (POS). POS is the category
for words, which determines their range of uses in sentences. You probably remember
these from elementary school. Nouns are people, places, and things. Verbs are actions.

To get this information, we'll use OpenNLP's trained POS tagger. This takes a word
and associates it with a part of speech. In order to use this, we need to download
the training model file. You can find it at http://opennlp.sourceforge.net/
models-1.5/. Download en POS tagger (English) with a description of Maxent
model with tag dictionary. The file itself is named en-pos-maxent.bin, and I put
it into the data directory of my project.

This tagger uses the POS tags defined by the Penn Treebank (http://www.cis.
upenn.edu/~treebank/). It uses a trained, probabilistic tagger to associate tags
with each token from a sentence. For example, it might associate the token things
with the NNS tag, which is the abbreviation for plural nouns. We'll create the string
for this feature by putting these two together so that this feature would look like
things_NNS.

Once we have the data file, we need to load it into a POS model. We'll write a
function to do this and return the tagger object:

(defn read-me-tagger [filename]
 (->>filename
io/input-stream
POSModel.
POSTaggerME.))

Using the tagger is pretty easy. We just call its tag method as follows:

(defn with-pos [model coll]
 (map #(str/join "_" [%1 %2])
coll
 (.tag model (into-array coll))))

Now that we have these functions ready, let's take a short sentence and generate the
features for it. For this set of examples, we'll use the clauses, Time flies like an
arrow; fruit flies like a banana. To begin with, we'll define the input data
and load the POS tagger.

user=> (def data

 "Time flies like an arrow; fruit flies like a banana.")

http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/

Sentiment Analysis – Categorizing Hotel Reviews

[148]

user=> (def tagger (t/read-me-tagger "data/en-pos-maxent.bin"))

user=> (def tokens (t/tokenize data))

user=> (t/unigrams tokens)

("time" "flies" "like" "an" "arrow" ";" "fruit" "flies" "like" "a"

 "banana" ".")

user=> (t/bigrams tokens)

("time flies" "flies like" "like an" "an arrow" "arrow ;"

 "; fruit" "fruit flies" "flies like" "like a" "a banana"

 "banana .")

user=> (t/trigrams tokens)

("time flies like" "flies like an" "like an arrow" "an arrow ;"

 "arrow ; fruit" "; fruit flies" "fruit flies like" "flies like a"

 "like a banana" "a banana .")

user=> (t/with-pos tagger tokens)

("time_NN" "flies_VBZ" "like_IN" "an_DT" "arrow_NN" ";_:"

 "fruit_NN" "flies_NNS" "like_IN" "a_DT" "banana_NN" "._.")

In the last output, the words are associated with part-of-speech tags. This output
uses the tags from the Penn Treebank (http://www.cis.upenn.edu/~treebank/).
You can look at it for more information, but briefly, here are the tags used in the
preceding code snippet:

•	 NN means noun;
•	 VBZ means the present tense verb, third person, singular;
•	 IN means and, the preposition or subordinating conjunction
•	 DT means the determiner.

So we can see that the POS-tagged features provide the most data on the single tokens;
however, the n-grams (bigrams and trigrams) provide more information about the
context around each word. Later on, we'll see which one gets better results.

Now that we have the preprocessing out of way, let's turn our attention to the
documents and how we want to structure the rest of the experiment.

Cross-validating the results
As I've already mentioned, the dataset for this chapter is a manually coded group of
500 hotel reviews taken from the OpinRank dataset. For this experiment, we'll break
these into 10 chunks of 50 reviews each.

Chapter 6

[149]

These chunks will allow us to use K-fold cross validation to test how our system
is doing. Cross validation is a way of checking your algorithm and procedures by
splitting your data up into equally sized chunks. You then train your data on all of
the chunks but one; that is the training set. You calculate the error after running the
trained system on the validation set. Then, you use the next chunk as a validation
set and start over again. Finally, we can average the error for all of the trials.

For example, the validation procedure uses four folds, A, B, C, and D. For the first
run, A, B, and C would be the training set, and D would be the test set. Next, A, B,
and D would be the training set, and C would be the test set. This would continue
until every fold is used as the test set once.

This may seem like a lot of work, but it helps us makes sure that we didn't just
get lucky with our choice of training or validation data. It provides a much more
robust way of estimating the error rates and accuracy of our classifier.

The main trick in implementing cross validation is that Clojure's native partitioning
functions (partition and partition-all) don't handle extra items exactly the
way we'd like. The partition function just throws the extras away, and partition
-all sticks all of the extras to the end in a smaller group. What we'd like is to include
the extras in the previous chunks. Each chunk should have one extra until all of the
remainders are exhausted. To handle this, we'll define a function named partition
-spread. It will partition the first part of the collection into larger chunks and the
second part into smaller chunks.

Unfortunately, we'll need to know the size of the input collection. To do this, we
must hold the entire collection in the memory at once, so this algorithm isn't good
for very large sequences:

(defn partition-spread [k coll]
 (let [get-mod (fn [i x]
 [(mod i k) x])
map-second #(map second (second %))]
 (->>coll
 (map-indexed get-mod)
 (group-by first)
 (map map-second))))

We can now see how these partitioning functions differ:

user=> (partition 4 (range 10))

((0 1 2 3) (4 5 6 7))

user=> (partition-all 4 (range 10))

((0 1 2 3) (4 5 6 7) (8 9))

Sentiment Analysis – Categorizing Hotel Reviews

[150]

user=> (xv/partition-spread 4 (range 10))

((0 4 8) (1 5 9) (2 6) (3 7))

user=> (xv/partition-spread 3 (range 10))

((0 3 6 9) (1 4 7) (2 5 8))

We can also see that the semantics of the first parameter have changed. Instead of
indicating the size of the partitions, it specifies the number of partitions. Now the
partitions are all of a roughly equal size.

Next, we'll create a couple of functions that pull out each chunk to use as the
validation set and concatenates all the other chunks.

(defn step-folds-seq [folds steps]
 (lazy-seq
 (when-let [[s &ss] (seq steps)]
 (let [[prefix [validation & suffix]] (split-at s folds)
training (flatten (concat prefix suffix))
current [validation training]]
 (cons current (step-folds-seq folds ss))))))
(defn step-folds [folds]
 (step-folds-seq folds (range (count folds))))

Now, by partitioning into chunks with one element each, we can clearly see just
how the K-fold partitioning works. Each time, a new chunk is selected as the
validation set (the first item), and the rest of the chunks are concatenated into
the training set (the second item):

user=> (xv/step-folds (xv/partition-spread 10 (range 10)))

([(0) (1 2 3 4 5 6 7 8 9)] [(1) (0 2 3 4 5 6 7 8 9)]

 [(2) (0 1 3 4 5 6 7 8 9)] [(3) (0 1 2 4 5 6 7 8 9)]

 [(4) (0 1 2 3 5 6 7 8 9)] [(5) (0 1 2 3 4 6 7 8 9)]

 [(6) (0 1 2 3 4 5 7 8 9)] [(7) (0 1 2 3 4 5 6 8 9)]

 [(8) (0 1 2 3 4 5 6 7 9)] [(9) (0 1 2 3 4 5 6 7 8)])

Now we can define a function that controls the K-fold validation process. It takes
the training and error steps as function parameters, and it just handles partitioning
the data into groups, calling the training and error functions, and combining their
output into one result:

(defn k-fold
 ([train error combine data]
 (k-fold train error combine 10 data))
 ([train error combine k input-data]

Chapter 6

[151]

 (->> input-data
shuffle
 (partition-spread k)
step-folds
 (map (fn [[v t]] [v (train t)]))
 (map (fn [[v t]] [err (error t v)]
 (println :error err)
err)))
 (reduce combine (combine)))))

Now we need to decide what constitutes an error and how we'll compute it.

Calculating error rates
To calculate the error rates on classification algorithms, we'll keep count of several
things. We'll track how many positives are correctly and incorrectly identified as well
as how many negatives are correctly and incorrectly identified. These values
are usually called true positives, false positives, true negatives, and false negatives.
The relationship of these values to the expected values and the classifier's outputs
and to each other can be seen in the following diagram:

From these numbers, we'll first calculate the precision of the algorithm. This is the
ratio of true positives to the number of all identified positives (both true and false
positives). This tells us how many of the items that it identified as positives actually
are positives.

We'll then calculate the recall. This is the ratio of true positives to all actual positives
(true positives and false negatives). This gives us an idea of how many positives
it's missing.

Sentiment Analysis – Categorizing Hotel Reviews

[152]

To calculate this, we'll use a standard reduce loop. First, we'll write the accumulator
function for it. This will take a mapping of the counts that we need to tally and a pair
of ratings, the expected and the actual. Depending on what they are and whether
they match, we'll increment one of the counts as follows:

(defnaccum-error [error-counts pair]
 (let [get-key {["+" "+"] :true-pos
 ["-" "-"] :true-neg
 ["+" "-"] :false-neg
 ["-" "+"] :false-pos}
k (get-key pair)]
 (assoc error-counts k (inc (error-counts k)))))

Once we have the counts for a test set, we'll need to summarize these counts into
the figure for precision and recall:

(defn summarize-error [error-counts]
 (let [{:keys [true-pos false-pos true-neg false-neg]}
error-counts]
 {:precision (float (/ true-pos (+ true-pos false-pos))),
:recall (float (/ true-pos (+ true-pos false-neg)))}))

With these two defined, the function to actually calculate the error is standard Clojure:

(defn compute-error [expecteds actuals]
 (let [start {:true-neg 0, :false-neg 0, :true-pos 0,
:false-pos 0}]
 (summarize-error
 (reduceaccum-error start (map vector expecteds actuals)))))

We can do something similar to determine the mean error of a collection of
precision/recall mappings. We could simply figure the value for each key separately,
but rather than walking over the collection multiple times, we will do something
more complicated and walk over it once while calculating the sums for each key:

(defn mean-error [coll]
 (let [start {:precision 0, :recall 0}
accum (fn [a b]
 {:precision (+ (:precision a) (:precision b))
:recall (+ (:recall a) (:recall b))})
summarize (fn [n a]
 {:precision (/ (:precision a) n)
:recall (/ (:recall a) n)})]
 (summarize (count coll) (reduce accum start coll))))

These functions will give us a good grasp of the performance of our classifiers and
how well they do at identifying the sentiments expressed in the data.

Chapter 6

[153]

Using the Weka machine learning library
We're going to test a couple of machine learning algorithms that are commonly
used for sentiment analysis. Some of them are implemented in the OpenNLP library.
However, they do not have anything for others algorithms. So instead, we'll use
the Weka machine learning library (http://www.cs.waikato.ac.nz/ml/weka/).
This doesn't have the classes to tokenize or segment the data that an application
in a natural language processing requires, but it does have a more complete palette
of machine learning algorithms.

All of the classes in the Weka library also have a standard, consistent interface.
These classes are really designed to be used from the command line, so each takes
its options as an array of strings with a command-line-like syntax. For example,
the array for a naive Bayesian classifier may have a flag to indicate that it should
use the kernel density estimator rather than the normal distribution. This would
be indicated by the -K flag being included in the option array. Other options may
include a parameter that would follow the option in the array. For example, the
logistic regression classifier can take a parameter to indicate the maximum number
of iterations it should run. This would include the items -M and 1000 (say) in the
options array.

The Clojure interface functions for these classes are very regular. In fact, they're
almost boilerplate. Unfortunately, they're also a little redundant. Option names
are repeated in the functions' parameter list, the default values for those parameters,
and where the parameters are fed into the options array. It would be better to have
one place for a specification of each option, its name, its flag, its semantics, and its
default value.

This is a perfect application of Clojure's macro system. The data to create the
functions can be transformed into the function definition, which is then compiled
into the interface function.

The final product of this is the defanalysis macro, which takes the name of the
function, the class, the method it's based on, and the options it accepts. We'll see
several uses of it later in this chapter.

Unfortunately, at almost 40 lines, this system is a little long and disruptive to include
here, however interesting it may be. You can find this in the src/sentiment/weka.
clj file in the code download, and I have discussed it in a bit more length in Clojure
Data Analysis Cookbook, Packt Publishing.

We do still need to convert the HotelReview records that we loaded earlier into a
WekaInstances collection. We'll need to do this several times as we train and test
the classifiers, and this will provide us with a somewhat shorter example of
interacting with Weka.

Sentiment Analysis – Categorizing Hotel Reviews

[154]

To store a data matrix, Weka uses an Instances object. This implements a number
of standard Java collection interfaces, and it holds objects that implement the
Instance interface, such as DenseInstance or SparseInstance.

Instances also keep track of which fields each item has in its collection of Attribute
objects. To create these, we'll populate ArrayList with all of the features that we
accumulated in the feature index. We'll also create a feature for the ratings and add
it to ArrayList. We'll return both the full collection of the attributes and the single
attribute for the review's rating:

(defn instances-attributes [f-index]
 (let [attrs (->> f-index
 (sort-by second)
 (map #(Attribute. (first %)))
ArrayList.)
review (Attribute. "review-rating"
 (ArrayList. ["+" "-"]))]
 (.add attrs review)
 [attrs review]))

(At this point, we're hardcoding the markers for the sentiments as a plus sign and
a negative sign. However, these could easily be made into parameters for a more
flexible system.)

Each hotel review itself can be converted separately. As most documents will only
have a fraction of the full number of features, we'll use SparseInstance. Sparse
vectors are more memory efficient if most of the values in the instance are zero. If the
feature is nonzero in the feature vector, we'll set it in Instance. Finally, we'll also set
the rating attribute as follows:

(defn review->instance [attrs review]
 (let [i (SparseInstance. (.size attrs))]
 (doseq [[attr value] (map vector attrs (:feature-vec review))]
 (when-not (zero? value)
 (.setValueiattr (double value))))
 (.setValuei (last attrs) (:rating review))
i))

With these, we can populate Instances with the data from the HotelReview records:

(defn ->instances
 ([f-index review-coll]
 (->instances f-index review-coll "hotel-reviews"))
 ([f-index review-coll name]
 (let [[attrs review] (instances-attributes f-index)

Chapter 6

[155]

instances (Instances. name attrs (count review-coll))]
 (doseq [review review-coll]
 (let [i (review->instance attrs review)]
 (.add instances i)))
 (.setClass instances review)
instances)))

Now we can define some functions to sit between the cross-validation functions we
defined earlier and the Weka interface functions.

Connecting Weka and cross-validation
The first of these functions will classify an instance and determine which rating symbol
it is classified by (+ or -), given the distribution of probabilities for each category. This
function is used to run the classifier on all data in an Instances object:

(defn run-instance [classifier instances instance]
 (let [dist (.distributionForInstance classifier instance)
i (first (apply max-key second
 (map vector (range) dist)))]
 (.. instances classAttribute (value i))))
(defn run-classifier [classifier instances]
 (map #(run-instance classifier instances %) instances))

The next function defines the cross-validation procedure for a group of HotelReview
records. This function actually takes a training function and returns a function that
takes the feature index and collection of HotelReview records and actually performs
the cross validation. This will allow us to create some wrapper functions for each
type of classifier:

(defn run-k-fold [trainer]
 (fn [f-index coll]
 (let [do-train (fn [xs]
 (let [is (w/->instances f-index xs)]
 (trainer is)))
do-test (fn [classifier xs]
 (->>xs
 (w/->instances f-index)
w/filter-class-index
 (run-classifier classifier)
 (xv/compute-error (map :rating xs))
vector))]
 (xv/k-fold do-train do-test concat 10 coll))))

Sentiment Analysis – Categorizing Hotel Reviews

[156]

When executed, this function will return a list of ten of whatever the do-test function
returns. In this case, that means a list of ten precision and recall mappings. We can
average the output of this to get a summary of each classifier's performance.

Now we can start actually defining and testing classifiers.

Understanding maximum entropy classifiers
Maximum entropy (maxent) classifiers are, in a sense, very conservative classifiers.
They assume nothing about hidden variables and base their classifications strictly
upon the evidence they've been trained on. They are consistent with the facts that
they've seen, but all other distributions are assumed to be completely uniform
otherwise. What does this mean?

Let's say that we have a set of reviews and positive or negative ratings, and we wish
to be able to predict the value of ratings when the ratings are unavailable, given the
tokens or other features in the reviews. The probability that a rating is positive would
be p(+). Initially, before we see any actual evidence, we may intuit that this probability
would be uniform across all possible features. So, for a set of five features, before
training, we might expect the probability function to return these values:

p(+) ½
p(-) ½

This is perfectly uniform but not very useful. We have to make observations from
the data in order to train the classifier.

The process of training involves observing the features in each document and
its rating and determining the probability of any given feature that is found in
a document with a given rating. We'll denote this as p(x, y) or the probability
as feature x and rating y.

These features impose constraints on our model. As we gather more and more
constraints, figuring a consistent and uniform distribution for the non-constrained
probabilities in the model becomes increasingly difficult.

Essentially, this is the maxent algorithm's job. It takes into account all of the
constraints imposed by the probabilities found in the training data, but it maintains
a uniform distribution on everything that's unconstrained. This provides a more
consistent, stronger algorithm overall, and it still performs very well, usually.
Also, cross validation can help us evaluate its performance.

Chapter 6

[157]

Another benefit is that maxent doesn't make any assumptions about the relationships
between different features. In a bit, we'll look at a naive Bayesian classifier, and it
does make an assumption about the relationships between the features, an often
unrealistic assumption. Because maxent does not make that assumption, it can
better match the data involved.

For this chapter, we'll use the maxent classifier found in the Weka class, weka.
classifiers.functions.Logistic (maxent is equivalent to the logistic regression,
which attempts to classify data based on a binary categorical label, which is based on
one or more features). We'll use the defanalysis macro to define a utility function
that cross validates a logistic regression classifier as follows:

(w/defanalysis train-logistic Logistic buildClassifier
 [["-D" debugging false :flag-true]
 ["-R" ridge nil :not-nil]
 ["-M" max-iterations -1]])
(def k-fold-logistic (run-k-fold train-logistic))

Now let's define something similar for a naive Bayesian classifier.

Understanding naive Bayesian classifiers
A common, generally well-performing classifier is the naive Bayesian classifier. It's
naive because it makes an assumption about that data and the features; it assumes
that the features are independent of each other. That is, the probability of, say, good
occurring in a document is not influenced at all by the probability of any other token
or feature, such as, say, not. Unfortunately, language doesn't work this way, and there
are dependencies all through the features of any linguistic dataset.

Fortunately, even when the data and features are not completely independent, this
classifier often still performs quite well in practice. For example, in An analysis of
data characteristics that affect naive Bayes performance by Irina Rish, Joseph Hellerstein,
and Jayram Thathachar, it was found that Bayesian classifiers perform best with
features that are completely independent or functionally dependent.

This classifier works by knowing several probabilities and then using Bayes' theorem
to turn them around to predict the classification of the document. The following are
the probabilities that it needs to know:

•	 It needs to know the probability for each feature in the training set. We'll call
this p(F). Say the word good occurs in 40 percent of the documents. This is the
evidence of the classification.

Sentiment Analysis – Categorizing Hotel Reviews

[158]

•	 It needs to know the probability that a document will be part of a
classification. We'll call this p(C). Say that the rate of positive ratings
in the corpus of reviews is 80 percent. This is the prior distribution.

•	 Now it needs to know the probability that the good feature is in the
document if the document is rated positively. This is p(F|C). For this
hypothetical example, say that good appears in 40 percent of the positive
reviews. This is the likelihood.

Bayes theorem allows us to turn this around and compute the probability that
a document is positively rated, if it contains the feature good.

() (C) (F | C)|
()

p pp C F
p F

=

For this example, this turns out to be (0.8)(0.4) / 0.4, or 0.8 (80 percent). So,
if the document contains the feature good, it is very likely to be positively rated.

Of course, things begin to get more and more interesting as we start to track more
and more features. If the document contains both not and good, for instance, the
probability that the review is positive may change drastically.

The Weka implementation of a naive Bayesian classifier is found in weka.
classifiers.bayes.NaiveBayes, and we'll wrap it in a manner that is similar
to the one we used for the maxent classifier:

(w/defanalysis train-naive-bayesNaiveBayesbuildClassifier
 [["-K" kernel-density false :flag-true]
 ["-D" discretization false :flag-true]])
(def k-fold-naive-bayes (run-k-fold train-naive-bayes))

Now that we have both the classifiers in place, let's look again at the features we'll
use and how we'll compare everything.

Running the experiment
Remember, earlier we defined functions to break a sequence of tokens into features
of various sorts: unigrams, bigrams, trigrams, and POS-tagged unigrams. We can
take these and automatically test both the classifiers against all of these types of
features. Let's see how.

Chapter 6

[159]

First, we'll define some top-level variables that associate label keywords with the
functions that we want to test at that point in the process (that is, classifiers or
feature-generators):

(def classifiers
 {:naive-bayes a/k-fold-naive-bayes
:maxent a/k-fold-logistic})
(def feature-factories
 {:unigram t/unigrams
:bigram t/bigrams
:trigram t/trigrams
:pos (let [pos-model
 (t/read-me-tagger "data/en-pos-maxent.bin")]
 (fn [ts] (t/with-pos pos-model ts)))})

We can now iterate over both of these hash maps and cross-validate these classifiers
on these features. We'll average the error information (the precision and recall) for
all of them and return the averages. Once we've executed that, we can spend some
time looking at the results.

For the inner-most loop of this process, we'll take a collection of features and a
classifier and cross validate them. This is pretty straightforward; it simply constructs
an identifying key out of the keywords for the feature generator and the classifier,
runs the cross validation, and averages the output error information as follows:

(defn do-class [f-key f-index features c-info]
 (let [[c-key c] c-info, k [c-key f-key]]
 (println k)
 [k (x/mean-error (c f-index features))]))

Now, given a set of features, we'll call do-class on each classifier one loop up.
Constructing the loop this way by generating the features and then looping on the
classifiers keeps us from needing to regenerate the same set of features multiple times:

(defn do-features [docs classifiers f-info]
 (let [[f-key f] f-info
 [f-index features] (d/add-features f docs)]
 (map #(do-class f-key f-index features %) classifiers)))

The controlling function for this process simply calls do-features on each set of
feature-generating functions and stores all the outputs into a hash map:

(defn test-suite [docs]
 (into {} (mapcat #(do-features docs classifiers %)
feature-factories)))

Sentiment Analysis – Categorizing Hotel Reviews

[160]

This takes a while to execute:

user=> (def reviews (->> "data/hotels-sample" d/read-data
d/sample vals flatten))
#'user/reviews
user=> (c/test-suite reviews)
[:naive-bayes :unigram]
:error [{:precision 0.5185185, :recall 0.5}]
:error [{:precision 0.6, :recall 0.5769231}]
:error [{:precision 0.5185185, :recall 0.6666667}]

Now we can start looking at the data in more detail.

Examining the results
First, let's examine the precision of the classifiers. Remember that the precision
is how well the classifiers do at only returning positive reviews. This indicates the
percentage of reviews that each classifier has identified as being positive is actually
positive in the test set:

We need to remember a couple of things while looking at this graph. First, sentiment
analysis is difficult, compared to other categorization tasks. Most importantly, human
raters only agree about 80 percent of the time. So, the bar seen in the preceding figure
that almost reaches 65 percent is actually decent, if not great. Still, we can see that
the naive Bayesian classifier generally outperforms the maxent one for this dataset,
especially when using unigram features. It performed less well for the bigram and
trigram features, and slightly lesser for the POS-tagged unigrams.

Chapter 6

[161]

We didn't try tagging the bigram and trigrams with POS information, but that might
have been an interesting experiment. Based on what we can see here, these feature
generators would not get better results than what we've already tested, but it would
be good to know that more definitively.

It's interesting to see that maxent performed best with trigrams. Generally, compared
to unigrams, trigrams pack more information into each feature, as they encode some
implicit syntactical information into each feature. However, each feature also occurs
fewer times, which makes performing some statistical processes on it more difficult.
Remember that recall is the percentage of positives in the test set that were correctly
identified by each classifier. Now let's look at the recall of these classifiers:

First, while the naive Bayesian classifier still outperforms the maxent classifier,
this time the bigram and trigram get much better results than the unigram or
POS-tagged features.

Also, the recall numbers on these two tests are better than any of the values for
the precision. The best part is that the naive Bayes bigram test had a recall of just
over 90 percent.

In fact, just looking at the results, there appeared to be an inverse relationship
between the precision and the recall, as there typically is. Tests with high precision
tended to have lower recall numbers and vice versa. This makes intuitive sense.
A classifier can get a high recall number by marking more reviews as positive,
but that negatively impacts its precision. Or, a classifier can have better precision
by being more selective in what it marks as positive but also noting that will drag
down its recall.

Sentiment Analysis – Categorizing Hotel Reviews

[162]

Combining the error rates
We can combine these two into a single metric using the harmonic mean of the
precision and recall, also known as the F-measure. We'll compute this with the
following function:

(defn f-score [error]
 (let [{:keys [precision recall]} error]
 (* 2 (/ (* precision recall) (+ precision recall)))))

This gives us a way to combine the precision and recall in a rational, meaningful
manner. Let's see what values it gives for the F-measure:

So, as we've already noticed, the naive Bayesian classifier performed better than
the maxent classifier in general, and on balance, the bigram features worked best
for this classifier.

While this gives us a good starting point, we'll also want to consider why we're
looking for this information, how we'll use it, and what penalties are involved.
If it's vitally important that we get all the positive reviews, then we will definitely
want to use the naive Bayesian classifier with the bigram features. However, if the
cost of missing some isn't so high but the cost of having to sort through too many
false results is high, then we'll probably want to use unigram features, which would
minimize the number of false results we have to manually sort through later.

Chapter 6

[163]

Improving the results
What could we do to improve these results?

First, we should improve the test and training sets. It would be good to have multiple
raters, say, have each review independently reviewed three times and use the rating
that was chosen two or three times.

Most importantly, we'd like to have a larger and better test set and training set.
For this type of problem, having 500 observations is really on the low end of what
you can do anything useful with, and you can expect the results to improve with
more observations. However, I do need to stress on the fact that more training data
doesn't necessarily imply better results. It could help, but there are no guarantees.

We could also look at improving the features. We could select them more carefully,
because having too many useless or unneeded features can make the classifier perform
poorly. We could also select different features such as dates or information about the
informants; if we had any data on them, it might be useful.

There has also been more recent work in moving beyond polarity classification, such
as looking at emotional classification. Another way of being more fine grained than
binary categorization is to classify the documents on a scale. For instance, instead of
positive or negative, these classifiers could try to predict how the user would rate the
product on a five-star scale, such as what has become popular on Amazon and many
websites that include user ratings and reviews.

Once we have identified the positive or negative reviews, we can apply other analyses
separately to those reviews, whether its topic modeling, named entity recognition, or
something else.

Summary
In the end, sentiment analysis is a simple tool to analyze documents according to
two complex, possibly ill-defined categories. Although language is used in complex
ways, modern sentiment analysis techniques can do almost as well as humans,
which, admittedly, isn't particularly efficient.

What's most powerful about these techniques is that they can provide answers
to questions that cannot be answered in other ways. As such, they're an important
part of the data analyst's toolbox.

In the next chapter, we'll look at null hypothesis testing, which is a standard and
foundational technique of traditional statistics. This informs how we approach many
experiments and how we frame the questions that we're asking. By following these
guides, we can make sure that our results are more valid and generalizable.

Null Hypothesis Tests –
Analyzing Crime Data

Getting started with data analysis can be so easy. We just plug numbers into a function
or library and retrieve the results. But sometimes, it's easy to forget that we have to pay
attention to how the data and experiments are constructed and how the questions are
framed. Much of the reliability of statistics comes from following good practices and
developed processes for framing and executing the tests and experiments.

Of course, there's a lot to setting up statistical experiments and following best
practices in gathering data and applying statistical tests. We won't be able to do
more than cursorily glance at this topic. Hopefully, either it will serve as a reminder
of things you already know or it will outline what you need to know and point you
in the right direction to learn more.

Over the course of this chapter, we'll move back and forth between looking at the
problem we're tackling and seeing what null hypothesis testing is, how it can help
us, and how we can apply it.

In this chapter, we will cover the following topics:

•	 Introducing confirmatory data analysis
•	 Understanding null hypothesis testing
•	 Understanding crime
•	 Getting the data
•	 Transforming the data
•	 Conducting the experiment
•	 Interpreting the results

So without any further delay, let's learn about the techniques and the problems we'll
address with these methods in this chapter.

Null Hypothesis Tests – Analyzing Crime Data

[166]

Introducing confirmatory data analysis
Oftentimes, data analysis seems like a menu of analyses applied to problems, but
lacking an overall structure. Of course, this isn't the case, but it seems that way to
programmers without a strong background in statistics.

Frameworks such as confirmatory data analysis and null hypothesis testing
provide the structure that may be missing. Generally, when you begin working
with data, you start by generating some summary statistics that highlight some of
the basic characteristics of the data. Afterwards, you probably generate some graphs
that further elucidate the essential qualities of the data. This all falls into the realm
of exploratory data analysis.

However, as the exploration wraps up, you'll probably start to think of some
theories about the data that you'd like to test. You'll generate some hypotheses,
and you'll need to test whether they're true or not. And based on those tests,
you'll further refine your knowledge of the data, what's in it, and what it means.

This more formal stage of data analysis represents confirmatory data analysis.
At this stage, you're concerned with using reliable tests that match your data, and
you're trying to determine how representative your sample is. You are minimizing
error and trying to get a pvalue—the probability that a result so extreme could
have happened by chance—that means that the results are statistically significant.

But what does all this mean, exactly? How do we go about conceptualizing, planning,
and executing these tests?

Understanding null hypothesis testing
One common way of structuring and processing these tests is to use null hypothesis
testing. This represents a frequentist approach to statistical inference. This draws
inferences based upon the frequencies or proportions in the data, paying attention
to confidence intervals and error rates. Another approach is Bayesian inference,
which focuses on degrees of belief, but we won't go into that in this chapter.

Frequentist inference has been very successful. Its use is assumed in many fields,
such as the social sciences and biology. Its techniques are widely implemented in
many libraries and software packages, and it's relatively easy to start using it. It's
the approach we'll use in this chapter.

Chapter 7

[167]

Understanding the process
To use the null hypothesis process, we should understand what we'll be doing at
each step of the way. The following is the basic process that we'll work through in
this chapter:

1.	 Formulate an initial hypothesis.
2.	 State the null (H0) and alternative (H1) hypotheses.
3.	 Identify the statistical assumptions in the sample.
4.	 Determine which tests (T) are appropriate.
5.	 Select the significance level (a), such as p<0.05 or p<0.01.
6.	 Determine the critical region, that is, the region of the distribution in

which the null hypothesis will be rejected.
7.	 Calculate the test statistic and the probability of the observation under

the null hypothesis (p).
8.	 Either reject the null hypothesis or fail to reject it.

We'll go into these step-by-step, and we'll walk through this process twice to get
a good feel for how it works. Most of this is pretty simple, really.

Formulating an initial hypothesis
Before we can start testing a theory about our data, we need to have something
to test. This is generally something that might be true or false, and we want to
determine which of the two it is. Some examples of initial hypotheses might be
height correlating to diet, speed limit correlating to accident mortality, or a Super
Bowl win for an old American Football League team (AFC division) correlating
to a declining stock market (the so-called Super Bowl indicator).

Stating the null and alternative hypotheses
Now we have to reformulate the initial hypothesis into the statistical phrases that
we'll use more directly the rest of the time. This is a useful point that helps to clarify
the rest of the process.

In this case, the null hypothesis is the control, or what we're trying to disprove.
It's the opposite of the alternative hypothesis, which is what we want to prove.

Null Hypothesis Tests – Analyzing Crime Data

[168]

For example, in the last example from the previous section, the Super Bowl
indicator, the re-cast hypotheses might be as follows:

•	 Null hypothesis: Who wins the Super Bowl has no effect upon the
stock market.

•	 Alternative hypothesis: When an AFC division team wins the Super
Bowl, the stock market will decline; when an NFC division team wins
the Super Bowl, the stock market will be up.

For the rest of the process, we will concern ourselves with rejecting the null
hypothesis. That can only happen when we've determined two things: first, that
the data we have supports the alternative hypothesis, and second, that this is very
unlikely to be a mistake; that is, the results we see probably are not a sample that
misrepresents the underlying population.

This is going to keep coming up, so let's unpack it a little.

You're interested in making an observation about a population—all men; all women;
all people; all statisticians; or past, present, and future stock market trends—but
obviously you can't make an observation for every person or aspect in the population.
So instead, you select a sample. It should be random. The question then becomes:
does the sample accurately represent the population? Say you're interested in people's
heights. How close is the sample's average height to the population's average height?

Let's assume that what we're interested in falls on a normal distribution, as height
generally does. What would this look like? For the following chart, I generated
some random height data. The blue bars (appearing as dark gray in physical books)
represent the histogram for the population, and the red bars (appearing as light
gray in physical books) are the histogram for the sample.

Chapter 7

[169]

We can see from the preceding graph that the distributions are similar, but certainly
not the same. And in fact, the mean for the population is 6.01, while the mean for
the sample is 5.94. They're not too far apart in this case, but some samples would
be much further off.

It has been proven theoretically that the difference between the population mean
and the possible sample means will fall on a normal distribution. The following is
the plot for the difference in the means from 500 sets of samples drawn from the
same population:

This histogram makes it clear that large differences between the population mean
and the sample mean are unlikely, and the larger the difference, the more improbable
it is. This is important for several reasons. First, if we know the distribution of the
differences of means, it allows us to set constraints on results. If we are working
with sample data, we know that the same values for the population will fall within
a set bound.

Also, if we know the distribution of differences, then we know if our results are
significant. This means that we can reject the null hypothesis that the averages are
the same. Any two sample means should fall within the same boundaries. Large
differences between any two sets of sample means are similarly improbable.

Null Hypothesis Tests – Analyzing Crime Data

[170]

For example, one sample would be the control data, and one would be the test
data. If the difference between the two samples is large enough to be improbable,
then we can infer that the test behavior produced a significant difference (assuming
the rest of the experiment is well designed and other things aren't complicating the
experiment). If it's unlikely enough, then we say that it's significant, and we reject the
null hypothesis.

Depending on what we're testing, we may be interested in results that are on the
left-hand side of the graph, the right-hand side, or either. That is, the test statistic for
the alternative hypothesis may be significantly less than, significantly greater than,
or equal to the null hypothesis. We express this in notation using one of the following
three forms. (These use the character mu, μ, using the sample mean as the test statistic.)
In each of these notations, the first line states the null hypothesis, and the second states
the alternative hypothesis. For instance, the first pair in the following notation says that
the null hypothesis is that the test sample's mean should be greater than or equal to the
control sample's mean, and the alternative hypothesis is that the test sample's mean
should be less than the control sample's mean:

0 0

0

0 0

0

0 0

0

:
:

:
:

:
:

a

a

a

H
H

H
H

H
H

µ µ
µ µ

µ µ
µ µ

µ µ
µ µ

≥
<

≤
>

=
≠

We've taken our time to understand this more thoroughly because it's fundamental
to the rest of the process. However, if you don't understand it at this point, throughout
the rest of the chapter, we'll keep going over this. By the end, you should have a good
understanding of this graph of sample mean differences and what it implies.

Determining appropriate tests
Another aspect of your data that you'll need to pay attention to is the shape of the
data. This can often be easily visualized using a histogram. For example, the following
screenshot shows a normal distribution and two distributions that are skewed:

Chapter 7

[171]

The red curve is skewed left (appearing as dark gray), and the yellow curve is skewed
right (appearing as white). The blue curve (appearing as light gray) is a normal
distribution with no skew.

Many statistical tests are designed for normal data, and they won't give good results
for skewed data. For example, t-test and regression analysis both give good results
only for normally distributed data.

Selecting the significance level
Next, we need to select the significance level that we want to achieve for our test.
This is the level of certainty that we'll need to have before we can reject the null
hypothesis. More to the point, this is the maximum chance that the results could
be an outlying sample from the population, which would cause you to incorrectly
reject the null hypothesis.

Often, the significance level, usually given as the p-value, is given as p<0.05 or
p<0.01. This means that the results have a less than 5 percent or 1 percent chance
of being caused by a sample with an outlying mean.

If we look at the graph of sample mean differences given earlier, we can see that
we're looking at differences of about 2.4 inches to be significant. In other words,
based on this population, the average difference in height would need to be more
than 2 inches for it to be considered statistically significant.

Say we wanted to see if men and women were on average, of different heights.
If the average height difference were only 1 inch, that could likely be the result of
the samples that we picked. However, if the average height difference were 2.4
inches or more, that would be unlikely to have come from the sample.

Null Hypothesis Tests – Analyzing Crime Data

[172]

Determining the critical region
Now we have determined two important pieces of information: we've expressed
our null and alternative hypotheses, and we've decided on a needed level of
significance. We can use these two to determine the critical region for the test
results, that is, the region for which we can reject the null hypothesis.

Remember that our hypotheses can take one of three forms. The following
conditions determine where our critical region is:

•	 For the alternative hypothesis that the two samples' means are not equal,
we'll perform a two-tailed test.

•	 For the alternative hypothesis that the test sample's mean is less than the
control sample's, we'll perform a one-tailed test with the critical region on
the left-hand side of the graph.

•	 And for the alternative hypothesis that the test sample's mean is greater
than the control sample's, we'll perform a one-tailed test with the critical
region on the right-hand side of the graph.

The following hypothetical graph highlights the part of the curve in which the
critical regions occur. The curve represents the distribution of the test statistic for
the sample, and the shaded parts will be the areas that the critical region(s) might
come from.

Chapter 7

[173]

The exact size of the critical regions is determined by the p value that we decided
upon. In all cases, the area of the critical regions is the p percentage of the entire
curve. That is, if we've decided that we're trying for p<0.05, and the area under
the whole curve is 100, the area in the critical region will be 5.

If we are performing a two-tailed test, then that area will be divided into two, so in the
example we just outlined, each side will have an area of 2.5. However, for one-tailed
tests, the entire critical region will fall on one side.

Calculating the test statistics and its probability
Now we have to calculate the test statistic. Depending on the nature of the data, the
sample, and on what you're trying to answer, this could involve comparing means,
a student's t-test, X2 test, or any number of other tests.

These tests will give you a number, but interpreting it directly is often not helpful.
Instead, you then need to calculate the value of p for that test's distribution. If
you're doing things by hand, this can involve either looking up the value in tables
or if you're using a software program, this is often done for you and returned as a
part of the results.

We'll use Incanter in several sections later in this chapter, starting with calculating
the test statistic and its probability. Its functions generally return both the test value
and the p value.

Deciding whether to reject the null hypothesis or not
Now we can find the value of p in relation to the critical regions and determine
whether we can reject the null hypothesis or not.

For instance, say that we've decided that the level of significance that we want to
achieve is p<0.05 and the actual value of p is 0.001. This will allow us to reject the
null hypothesis.

However, if the value of p is 0.055, we would fail to reject the null hypothesis.
We would have to assume that the alternative hypothesis is incorrect, at least
until more information is available.

Flipping coins
Now that we've been over the process of null hypothesis testing, let's walk
through the process one more time with an example. This should be simple and
straightforward enough that we can focus on the process, and not on the test itself.

Null Hypothesis Tests – Analyzing Crime Data

[174]

For that purpose, we'll test whether a dice is loaded or not. If it is balanced, then the
expected probability of any given side should be 1/6, or about 16 percent. However,
if the die is loaded, then the probability for rolling one side should be greater than 16
percent, and the probabilities for rolling the other sides would be less than 16 percent.

Of course, generally this isn't something that you would worry about. But before
you agree to play craps with the dice that your friend 3D printed, you may want
to test them.

For this test, I've rolled one die 1,000 times. The following is the table of how many
times each side came up:

Side Frequency
1 157
2 151
3 175
4 187
5 143
6 187

So we can see that the frequencies are relatively close, within a range of 44, but they
aren't exactly the same. This is what we'd expect. The question is whether they're
different enough that we can say with some certainty that the die is loaded.

Formulating an initial hypothesis
So we suspect that our test die is fair, but we don't know that. We'll frame our
hypothesis this way: on any roll, all sides have an equal chance of appearing.

Stating the null and alternative hypotheses
Our initial hypothesis can act as our null hypothesis. And in this case, we expect
to fail to reject it. Let's state both hypotheses explicitly:

•	 H0: All sides have an equal chance of appearing on any roll.
•	 H1: One side has a greater chance of appearing on any roll.

Chapter 7

[175]

In this case, we let H0 be such that the two sides are equal because we want there
to be more latitude in what counts as fair, and we want to enforce a high burden
of proof before we declare a die loaded.

Identifying the statistical assumptions in the
sample
For our sample, we'll roll the die in question 1,000 times. We'll assume that each
roll is identical: that it's being done with approximately the same arm and hand
movements, and that the die is landing on a flat surface. We'll also assume that
before being thrown, the die is being shaken enough to be appropriately random.

This way, no biases are introduced because of the mechanics of how the die is
being thrown.

Determining appropriate tests
For this, we'll use a Pearson's Χ2 goodness-of-fit test. This is used to test whether
an observed frequency distribution matches a theoretical distribution. It works by
calculating a normalized sum of squared deviations. We're trying to test whether
some observations match an expected distribution, so this test is a great fit.

We'll see exactly how to apply this test in a minute.

Selecting the significance level
Proving that a die is loaded does require a higher burden of proof than assuming
that it's fair, but we don't want the bar to be too high. Because of that, we'll use
p<0.05 for this.

Determining the critical region
The output of the Χ2 test fits an Χ2 distribution, not a normal distribution, so the graph
won't look the same. Also, Χ2 tests are intrinsically one sided. When the number is too
far out on the right, then it indicates that the data fits the theoretical values poorly.
A value to the left on the Χ2 distribution just indicates that the fit is very good, which
isn't really a problem.

Null Hypothesis Tests – Analyzing Crime Data

[176]

The following is a graph comparing the normal distribution, centered on 50, with the
X2 distribution, with 3 degrees of freedom:

Either way, the statistics library that we're going to use (Incanter) will take care of
this for us.

Calculating the test statistic and its probability
So let's fire up the Leiningen REPL and see what we can do. For this project, we're
going to use the following project.clj file:

(defproject nullh "0.1.0-snapshot"
 :dependencies [[org.clojure/clojure "1.5.1"]
 [enlive "1.1.4"]
 [http.async.client "0.5.2"]
 [org.clojure/data.csv "0.1.2"]
 [org.clojure/data.json "0.2.3"]
 [me.raynes/fs "1.4.5"]

Chapter 7

[177]

 [incanter "1.5.4"]
 [geocoder-clj "0.2.2"]
 [geo-clj "0.3.5"]
 [congomongo "0.4.1"]
 [org.apache.poi/poi-ooxml "3.9"]]
 :profiles {:dev {:dependencies
 [[org.clojure/tools.namespace "0.2.4"]]
 :source-paths ["dev"]}})

First, we'll load Incanter, then we'll create a matrix containing our data, and finally
we'll run an Χ2 test over it with the following code:

user=> (require '[incanter.core :as i] '[incanter.stats :as s])

nil

user=> (def table (i/matrix [157 151 175 187 143 187]))

#'user/table

user=> (def r (s/chisq-test :table table))

#'user/r

user=> (pprint (select-keys r [:p-value :df :X-sq]))

{:X-sq 10.771999999999998, :df 5, :p-value 0.05609271590058857}

Let's look at this code in more detail:

•	 The function incanter.stats/chisq-test returns a lot of information,
including its own input. So, before displaying it at the end, I filtered out most
of the data and only returned the three keys that we're particularly interested
in. The following are those keys and the values that they returned.

°° :X-sq: This is the Χ2 statistic. Higher values of this indicate that
the data does not fit their expected values.

°° :df: This is the degrees of freedom. This represents the number of
parameters that are free to vary. For nominal data (data without
natural ordering), such as rolls of dice, this is the number of values
that the data can take, minus one. In this case, since it's a six-sided
die, the degree of freedom is five.

°° :p-value: This is the value of p that we've been talking about.
This is the probability that we'd see these results from the Χ2 test
if the null hypothesis were true.

Now that we have these numbers, how do we apply them to our hypotheses?

Null Hypothesis Tests – Analyzing Crime Data

[178]

Deciding whether to reject the null hypothesis or not
In this case, since p>0.05, we fail to reject the null hypothesis. We can't really rule
it out, but we don't have enough evidence to support it either. In this case, we can
assume that the die is fair.

Hopefully, this example gives you a better understanding of the null hypothesis
testing process and how it works. With that under our belts, let's turn our attention
to a bigger, more meaningful problem than the fairness of imaginary dice.

Understanding burglary rates
Understanding crime seems like a universal problem. Earlier, societies grappled with
the problem of evil in the universe from a theological perspective; today, sociologists
and criminologists construct theories and study society using a variety of tools and
techniques. However the problem is cast, the aim is to better understand why some
people violate social norms in ways that are often violent and harmful to those around
them and even themselves. By better understanding this problem, ultimately we'd like
to be able to create social programs and government policies that minimize the damage
and create a safer and hopefully more just society for all involved.

Of course, as data scientists and programmers engaging in data analysis, we're
inclined to approach this problem as a data problem. That's what we'll do in the
rest of this chapter. We'll gather some crime and economic data and look for a tie
between the two. In the course of our analysis, we'll explore the data, tentatively
suggest a hypothesis, and test it against the data.

We'll look at crime data from the United Nations and see what relationships it has
with data from the World Bank data site.

Getting the data
In order to get the data, perform the following steps:

1.	 First, we need to download the data.
2.	 For the crime data, we'll go to the website of the United Nations Office

on Drugs and Crime (http://www.unodc.org/). It publishes crime data
for countries around the world over a number of years. Their data page,
http://www.unodc.org/unodc/en/data-and-analysis/statistics/
data.html, has links to Excel files for a number of different categories of
crime in the section of the page labeled Statistics on crime.

http://www.unodc.org/unodc/en/data-and-analysis/statistics/data.html
http://www.unodc.org/unodc/en/data-and-analysis/statistics/data.html

Chapter 7

[179]

3.	 You should download each of these and save them to the directory unodc
-data. You can extract the data from these in a minute. First, you can get
the data that we want to correlate to the crime data.

4.	 We'll get this data from the World Bank's data site (http://data.
worldbank.org/). Navigating the site is a little complicated, and in my
experience it changes regularly. For the moment, at least, this seems to be
the easiest way to get the data:

1.	 Visit the Indicators page at http://data.worldbank.org/
indicator.

2.	 In the search box, enter land area and select Land area (sq. km),
as shown in the following screenshot:

5.	 Then hit the Go button.
6.	 On the next page, you'll be given the option to download the dataset in

a number of formats. Choose CSV.

http://data.worldbank.org/indicator
http://data.worldbank.org/indicator

Null Hypothesis Tests – Analyzing Crime Data

[180]

7.	 Download the data and unzip it into a directory named ag.lnd, based
on the indicator codes that the World Bank uses. (You can use a different
directory name, but you'll need to modify the directions that follow.)

We'll also want some economic data. To get that, perform the following steps:

1.	 Go back to the Indicators page.
2.	 Search for GNI per capita (it's the default selection for the search box).
3.	 From the filtered results, select GNI per capita, Atlas method (current US$).
4.	 Click on Go.
5.	 Download the data as CSV again.
6.	 Unzip the data into a directory named ny.gnp.

At this point, you should have a directory with several subdirectories containing
data files. The structure should look something like the following screenshot:

Some of the data is ready to go, but before we use it, we need to extract the data from
the Excel files. Let's turn our attention there.

Chapter 7

[181]

Parsing the Excel files
Before we can extract the data from the Excel files, we need to find out what our
input for this will be. If we open up one of the Excel files, in this case CTS_Assault.
xls, we'll see something similar to the following screenshot:

Let's list out some of the features of the sheets that we'll need to take into account:

•	 There are about thirteen rows of headers, most of which are hidden in the
preceding screenshot.

•	 Again, not shown in the preceding screenshot, but some of the files have
more than one tab of data.

•	 There are some hidden columns between columns A and D.
•	 The subregion isn't listed on each row, so we'll need some way to carry

this over.
•	 All the years for each crime and country combination are listed on one

row. We'll probably want to pivot that so that there's a column for the
crime, one for the country, one for the year, and one for the data value.

•	 There is a lot of missing data. We can filter that out.

To get into the Excel files, we'll use the Apache POI project (http://poi.apache.
org/). This library provides access to file formats of Microsoft Office's suites.

We'll use this library to extract the data from the Excel files in several stages,
as follows:

1.	 Pull raw data rows out of the Excel files
2.	 Populate a tree of data that groups the data hierarchically by region,

subregion, and country

Null Hypothesis Tests – Analyzing Crime Data

[182]

3.	 Flatten the hierarchically arranged data back into a sequence of maps
containing all the data for each row

4.	 Wrap all of this in one easy-to-use function

Let's follow the preceding steps for the rest of this section, and in the end we'll add
a controller function that pulls it all together.

We'll keep all of this code in a single module. The following namespace declaration
for this will include all the dependencies that we'll need. For the fully specified
project.clj file that includes all of these, refer to the code download for this
chapter. I named the project nullh, so the file that I'm working with here is named
src/nullh/unodc.clj.

(ns nullh.unodc
 (:require [clojure.java.io :as io]
 [clojure.string :as str]
 [me.raynes.fs :as fs]
 [clojure.data.json :as json]
 [nullh.utils :as u])
 (:import
 [java.io FileInputStream]
 [org.apache.poi.ss.usermodel
 Cell CellStyle DataFormat Font RichTextString Row Sheet]
 [org.apache.poi.hssf.usermodel HSSFWorkbook]))

Now we can start populating this namespace.

Pulling out raw data
For the first stage of the process, in which we read the data into a series of raw
data rows, we'll use a couple of record types, as shown in the following code.
The first, sheet-data, associates the title of the worksheet with the data in it.
The second, xl-row, simply stores the data in each row's cells into named fields.

(defrecord sheet-data [sheet-name sheet-rows])
(defrecord xl-row
 [sheet region sub-region country
 count-2003 count-2004 count-2005 count-2006 count-2007
 count-2008 count-2009 count-2010 count-2011
 rate-2003 rate-2004 rate-2005 rate-2006 rate-2007
 rate-2008 rate-2009 rate-2010 rate-2011])

Chapter 7

[183]

As we interact with the worksheet's data and API, we'll use a number of utilities that
makes access to the worksheet objects more like working with native Clojure objects.
The following are some of those utilities:

(defn sheets [workbook]
 (->> workbook
 (.getNumberOfSheets)
 (range)
 (map #(.getSheetAt workbook %))))
(defn rows [sheet]
 (->> sheet
 (.getPhysicalNumberOfRows)
 (range)
 (map #(.getRow sheet %))
 (remove nil?)))
(defn cells [row]
 (->> row
 (.getPhysicalNumberOfRows)
 (range)
 (map #(.getCell row %))))

We'll spend a lot of time accessing cells' values. We'll want to make a simpler,
more Clojure-like wrapper around the Java library's API for accessing them. How
we do this will depend on the cell's type, and we can use multimethods to handle
dispatching for it, as shown in the following code:

(defn cell-type [cell]
 (if (nil? cell)
 nil
 (let [cell-types {Cell/CELL_TYPE_BLANK :blank
 Cell/CELL_TYPE_BOOLEAN :boolean
 Cell/CELL_TYPE_ERROR :error
 Cell/CELL_TYPE_FORMULA :formula
 Cell/CELL_TYPE_NUMERIC :numeric
 Cell/CELL_TYPE_STRING :string}]
 (cell-types (.getCellType cell)))))
(defmulti cell-value cell-type)
(defmethod cell-value :blank [_] nil)
(defmethod cell-value :boolean [c] (.getBooleanCellValue c))
(defmethod cell-value :error [c] (.getErrorCellValue c))
(defmethod cell-value :formula [c] (.getErrorCellValue c))
(defmethod cell-value :numeric [c] (.getNumericCellValue c))
(defmethod cell-value :string [c] (.getStringCellValue c))
(defmethod cell-value :default [c] nil)

Null Hypothesis Tests – Analyzing Crime Data

[184]

Now, with these methods in place, we can easily read the data into a sequence of
data rows. First, we'll need to open the workbook file with the following code:

(defn open-file [filename]
 (with-open [s (io/input-stream filename)]
 (HSSFWorkbook. s)))

And we can take each sheet and read it into a sheet-data record with the
following code:

(defn get-sheet-data [sheet]
 (->sheet-data (.getSheetName sheet) (rows sheet)))

The rows themselves will need to go through a number of transformations,
all without touching the sheet name field. To facilitate this, we'll define a
higher order function that maps a function over the rows field, as follows:

(defn on-rows [sheet f]
 (assoc sheet :sheet-rows (f (:sheet-rows sheet))))

The first row transformation will involve skipping the header rows for each sheet,
as shown in the following code:

(defn first-cell-empty? [cells]
 (empty? (cell-value (first cells))))
(defn skip-headers [sheet]
 (on-rows sheet (fn [r]
 (->> r
 (drop-while #(first-cell-empty? (cells %)))
 (drop 1)
 (take-while #(not (first-cell-empty? %)))))))

Now we can take the sequence of sheet-data records and flatten them by adding
the sheet name onto the row data as follows:

(defn row-values [sheet-name row]
 (conj (mapv cell-value (cells row)) sheet-name))
(defn sheet-data->seq [sheet]
 (map #(row-values (:sheet-name sheet) %) (:sheet-rows sheet)))

We do need to take each row and clean it up by rearranging the field order, making
sure it has exactly the right number of fields with the help of the following code:

(defn clean-row [row]
 (u/pad-vec 22
 (concat (list (last row) (first row))
 (take 11 (drop 3 row))
 (drop 15 row))))

Chapter 7

[185]

Now that we've hardened our data a little, we can take the Clojure vectors and
populate the xl-row records with them as follows:

(defn seq->xl-row [coll] (apply ->xl-row coll))

Finally, we have a fairly clean sequence of row data.

Growing a data tree
Unfortunately, we haven't yet dealt with some problems, such as the subregion
not being populated in every row. Let's take care of that now.

We'll tackle that problem by changing the sequence of records into a hierarchical
tree of data. The tree is represented by a number of record types as shown in the
following code:

(defrecord region [region-name sub-regions])
(defrecord sub-region [sub-region-name countries])
(defrecord country [country-name counts rates sheet])
(defrecord yearly-data
 [year-2003 year-2004 year-2005 year-2006 year-2007 year-2008
 year-2009 year-2010 year-2011])

To build the tree, we'll have a number of functions. Each takes a group of data that
will go into one tree or subtree. It populates that part of the tree and returns it.

The first of these functions is xl-rows->regions. It takes a sequence of xl-rows,
groups them by region, and constructs a tree of region records for it as shown in
the following code:

(defn xl-rows->regions [coll]
 (->> coll
 (group-by :region)
 (map #(->region
 (first %) (xl-rows->sub-regions (second %))))))

The most complicated part of building this tree is dealing with the missing
subregions. We'll use three functions to deal with that. The first, conj-into,
conjugates onto a value in a map, or adds a new vector containing the data if
there's no data for that key. The second, fold-sub-region, folds each row into
a map based on either the subregion referred to in the row, or the last specified
subregion. Finally, xl-rows->sub-regions takes a sequence of rows from one
region, divides them into subregions, and creates the sub-region records for
them, as shown in the following code:

(defn conj-into [m k v]

Null Hypothesis Tests – Analyzing Crime Data

[186]

 (if (contains? m k)
 (assoc m k (conj (get m k) v))
 (assoc m k [v])))
(defn fold-sub-region [state row]
 (let [[current accum] state]
 (if (str/blank? (:sub-region row))
 [current
 (conj-into accum current (assoc row :sub-region current))]
 (let [new-sub-region (:sub-region row)]
 [new-sub-region
 (conj-into accum new-sub-region row)]))))
(defn xl-rows->sub-regions [coll]
 (->> coll
 (reduce fold-sub-region [nil {}])
 second
 (map #(->sub-region
 (first %) (xl-rows->countries (second %))))))

Now that we have the subregions identified, we can build a tree for each country.
For that, we'll pull the count data and the rate data into their own structures and
put it all together into a country record with the following code:

(defn xl-rows->countries [coll]
 (->> coll
 (group-by :country)
 (map #(let [[country-name [row & _]] %]
 (->country country-name
 (xl-row->counts row)
 (xl-row->rates row)
 (:sheet row))))))

The counts and rates are represented by the same record type, so we'll use a shared
function to pull the fields from the row that populate the fields in the type as shown
in the following code:

(defn xl-row->yearly [coll fields]
 (apply ->yearly-data (map #(get coll %) fields)))
(defn xl-row->counts [coll]
 (xl-row->yearly
 coll
 [:count-2003 :count-2004 :count-2005 :count-2006 :count-2007
 :count-2008 :count-2009 :count-2010 :count-2011]))
(defn xl-row->rates [coll]
 (xl-row->yearly

Chapter 7

[187]

 coll
 [:rate-2003 :rate-2004 :rate-2005 :rate-2006 :rate-2007
 :rate-2008 :rate-2009 :rate-2010 :rate-2011]))

These functions all build the hierarchy of data that's stored in the worksheets.

Cutting down the data tree
We reverse the process to flatten the data again. In the process, this implicitly
populates the missing subregions into all of the rows. Let's see how this works.

To begin with, we take a sequence of regions and convert each one into a sequence
of xl-row records, as shown in the following code:

(defn region->xl-rows [tree nil-row]
 (let [region-row (assoc nil-row :region (:region-name tree))]
 (mapcat #(sub-regions->xl-rows % region-row)
 (:sub-regions tree))))
(defn regions->xl-rows [region-coll]
 (let [nil-row (seq->xl-row (repeat 22 nil))]
 (mapcat #(region->xl-rows % nil-row) region-coll)))

Just as before, this work will be delegated to other functions; in this case, sub-
regions->xl-rows, which again delegates to country->xl-rows. The second
function in the following code is a little long (and so I've omitted some lines from
it), but both are conceptually simple:

(defn country->xl-rows [tree sub-region-row]
 (let [counts (:counts tree), rates (:rates tree)]
 (assoc sub-region-row
 :sheet (:sheet tree)
 :country (:country-name tree)
 :count-2003 (:year-2003 counts)
 :count-2004 (:year-2004 counts)
 ;; ...
 :rate-2003 (:year-2003 rates)
 :rate-2004 (:year-2004 rates)
 ;; ...
)))
(defn sub-regions->xl-rows [tree region-row]
 (let [sub-region-row (assoc region-row :sub-region
 (:sub-region-name tree))]
 (map #(country->xl-rows % sub-region-row) (:countries tree))))

At this point, we have a sequence of data rows with the missing subregions supplied.
But we're still not done.

Null Hypothesis Tests – Analyzing Crime Data

[188]

Putting it all together
We'll provide several levels of function to make this easier. First, one that ties together
everything that we've seen so far. It takes a filename and returns a sequence of xl-row
records as follows:

(defn read-sheets [filename]
 (->> filename
 (open-file)
 (sheets)
 (map get-sheet-data)
 (map skip-headers)
 (map (fn [s] (on-rows s #(remove empty? %))))
 (mapcat sheet-data->seq)
 (map clean-row)
 (map seq->xl-row)
 (xl-rows->regions)
 (regions->xl-rows)))

That's it. We have our data read in. It's been processed a little, but it's still pretty raw.
The following is an example row:

{:sheet "CTS 2012 Domestic Burglary",
 :region "Africa",
 :sub-region "Middle Africa",
 :country "Sao Tome and Principe",
 :count-2003 nil,
 :count-2004 nil,
 :count-2005 nil,
 :count-2006 2.0,
 :count-2007 0.0,
 :count-2008 2.0,
 :count-2009 5.0,
 :count-2010 16.0,
 :count-2011 20.0,
 :rate-2003 nil,
 :rate-2004 nil,
 :rate-2005 nil,
 :rate-2006 1.290572368845583,
 :rate-2007 0.0,
 :rate-2008 1.2511573205214825,
 :rate-2009 3.0766390794695875,

Chapter 7

[189]

 :rate-2010 9.673694202434143,
 :rate-2011 11.867604998635224}

We still need to clean it up a little and pivot the data to put each data value into its
own row. Instead of having one row with :count-2003, :count-2004, and so on,
we'll have many rows, each with :count and :year.

Let's turn our attention there next.

Transforming the data
So far, we've only lightly cleaned part of our data. We haven't even looked at the
data that we want to correlate the crime data with. Also, the shape of the data is
awkward for the analyses that we want to conduct, so we'll need to pivot it the
way we described earlier. We'll see more about this in a minute.

For this stage of processing, we want to put all of the code into a new file. We'll name
this file src/nullh/data.clj, and the namespace declaration for it looks as follows:

(ns nullh.data
 (:require [incanter.core :as i]
 [incanter.io :as iio]
 [clojure.set :as set]
 [clojure.string :as str]
 [clojure.data.csv :as csv]
 [clojure.data.json :as json]
 [clojure.java.io :as io]
 [me.raynes.fs :as fs]
 [nullh.unodc :as unodc]
 [nullh.utils :as u]))

We'll now start working with Incanter datasets. We haven't used Incanter much so far
in this book, and that's a little unusual, because Incanter is one of the go-to libraries for
working with numbers and statistics in Clojure. It's powerful and flexible, and it makes
working with data easy.

Let's take the data that we read from the Excel files and import it into an Incanter
dataset. We need to read the data into one long sequence, pull out the keys for
the data fields, and then create the dataset as follows:

(defn read-cts-data [dirname]
 (let [input (mapcat unodc/read-sheets (u/ls dirname))
 cols (keys (first input))]
 (i/dataset cols (doall (map #(map second %) input)))))

Null Hypothesis Tests – Analyzing Crime Data

[190]

Now we can read the data that we downloaded from the World Bank into another
dataset. Both data files have roughly the same fields, so we can use the same function
for both. Unfortunately, we need to load the CSV ourselves, because Incanter's
introspection doesn't quite give us the results that we want. Because of this, we'll
also include a few functions for converting the data into doubles as we read it in,
and we'll define those columns that the data contains, as follows:

(def headers [:country-name :country-code :indicator-name
 :indicator-code :1961 :1962 :1963 :1964 :1965 :1966
 :1967 :1968 :1969 :1970 :1971 :1972 :1973 :1974
 :1975 :1976 :1977 :1978 :1979 :1980 :1981 :1982
 :1983 :1984 :1985 :1986 :1987 :1988 :1989 :1990
 :1991 :1992 :1993 :1994 :1995 :1996 :1997 :1998
 :1999 :2000 :2001 :2002 :2003 :2004 :2005 :2006
 :2007 :2008 :2009 :2010 :2011 :2012 :2013])
(defn ->double [x] (if (str/blank? x) nil (Double/parseDouble x)))
(defn coerce-row [row]
 (let [[x y] (split-at 4 row)]
 (concat x (map ->double y))))
(defn read-indicator-data [filename]
 (with-open [f (io/reader filename)]
 (->> f
 csv/read-csv
 (drop 3)
 (map coerce-row)
 doall
 (i/dataset headers))))

We can use the read-indicator-data function to load data from the two World
Bank indicators that we downloaded earlier.

Now we want to put all the data from UNODC together with either of the World
Bank datasets. As we do that, we'll also pivot the data tables so that instead of one
column for each year, there's one column containing the year and one containing
the value for that year. At the same time, we'll remove rows with missing data and
aggregate the counts for all of the crimes for a country for each year.

Joining the data sources
Bringing the two data sources together is relatively simple and can be done with the
following code:

(defn join-all [indicator cts]
 (i/$join [:country-name :country] indicator cts))

Chapter 7

[191]

Basically, we just let Incanter join the two data structures on the fields by matching
the World Bank data's :country-name field with the UNODC data's :country field.

Pivoting the data
Now that the data has been joined, we can pivot it. In the end, we want to have the
following fields on every row:

•	 region

•	 subregion

•	 country

•	 country-code

•	 indicator

•	 indicator-code

•	 crime

•	 year

•	 count

•	 rate

•	 indicator-value

As you can see, some of these fields are from the UNODC data and some are from
the World Bank data.

We'll do this translation on a sequence of maps instead of the dataset. We'll get
started with the following code:

(defn pivot-map [m]
 (let [years [2003 2004 2005 2006 2007 2008 2009 2010 2011]]
 (map #(pivot-year m %) years)))
(defn pivot-data [map-seq] (mapcat pivot-map map-seq))

First, we use ->maps to convert the dataset to a sequence of maps. Then, pass the
processing off to pivot-map. This function pivots the data for each year.

We pivot the data for each year separately. We do this by repeatedly transforming
the data map for a row. This is a great example of how Clojure's immutability
makes things easier. We don't have to worry about copying the map or clobbering
any data. We can just modify the original data multiple times, saving the result of
each transformation process as a separate, new data row.

Null Hypothesis Tests – Analyzing Crime Data

[192]

The process itself is fairly simple. First, we use the year to create keywords for the
fields that we are interested in. Next, we select the rows that we want to keep from
the original data map. Then we rename a few to make them clearer. And finally,
we add the year to the output map as follows:

(defn pivot-year [m year]
 (let [count-key (keyword (str "count-" year))
 rate-key (keyword (str "rate-" year))
 year-key (keyword (str year))]
 (-> m
 (select-keys [:region :sub-region :country :country-code
 :indicator :indicator-code
 :sheet count-key rate-key year-key])
 (set/rename-keys {:sheet :crime,
 count-key :count,
 rate-key :rate,
 year-key :indicator-value})
 (assoc :year year))))

That's it. This should make the data easier to work with. We can do some more
transformations on the data and clean it up a bit further.

Filtering the missing data
First, there are a lot of holes in the data, and we don't want to have to worry
about that. So if a row is missing any of the three data fields (:count, :rate,
 or :indicator-value), let's get rid of it with the following code:

(defn remove-missing [coll]
 (let [fields [:count :rate :indicator-value]
 has-missing (fn [r] (some nil? (map r fields)))]
 (remove has-missing coll)))

We just check whether any of these fields has a nil value. If any of them do,
we remove that row.

Putting it all together
Let's make a wrapper function around this process. That'll help us stay consistent
and make the library easier to use. This loads the data from UNODC and one of the
World Bank datasets. It joins, pivots, and removes the missing rows before returning
an Incanter dataset, as shown in the following code:

(defn ->maps [dset]
 (let [col-names (i/col-names dset)]

Chapter 7

[193]

 (map #(zipmap col-names %) (i/to-list dset))))
(defn load-join-pivot [cts-dir data-file]
 (let [cts (read-cts-data cts-dir)
 indicator-data (read-indicator-data data-file)]
 (->> (join-all indicator-data cts)
 ->maps
 pivot-data
 remove-missing
 i/to-dataset)))

Let's use these functions to load up one of the datasets as follows:

(def d (d/load-join-pivot
 "unodc-data"
 "ag.lnd/ag.lnd.totl.k2_Indicator_en_csv_v2.csv"))

At this point, the data is in decent shape—actually, as good as this data is probably
going to get (more about that near the end of this chapter). So let's see what's in the
data and what it has to tell us.

Exploring the data
Let's explore a little and try to get a feel for the data. First, let's try to get some
summary statistics for the various datasets. Afterward, we'll generate some graphs
to get a more intuitive sense for what's in the data and how they're related.

Generating summary statistics
Incanter makes generating summary statistics easy. You can pass a dataset to the
incanter.stats/summary function. It returns a sequence of maps. Each map
represents the summary data for each column in the original dataset. This includes
whether the data is numeric or not. For nominal data, it returns some sample items and
their counts. For numeric data, it returns the mean, median, minimum, and maximum.

Summarizing UNODC crime data
If we load the data and filter it for the crime of "burglary", we can get the summary
statistics for those fields as follows:

(s/summary
 (i/$where {:crime {:$eq "CTS 2012 Burglary"}} by-ag-lnd))

Null Hypothesis Tests – Analyzing Crime Data

[194]

And if we pick apart the data structures that it outputs, the following are the
summary statistics for the primary data fields:

Column Minimum Maximum Mean Median
Rate 0.1 1939.23 376.4 292.67
Count 11 443010 60380 17184

So, from the preceding table, we see that both fields have wide variance and are
skewed somewhat, based on the differences between the means and the medians.
These two having similar distributions is to be expected, since the rate is derived
from the count.

Charts and graphs can also help to understand our data better. Incanter makes
generating charts quite simple. Let's see how to do that.

First, we'll load the data and pivot it, since that will make it easier to pull the data out
of the graph. For this example, we'll load the UNODC crime data joined to the World
Bank land area data as follows:

(def by-ag-lnd
 (d/load-join-pivot
 "unodc-data"
 "ag.lnd/ag.lnd.totl.k2_Indicator_en_csv_v2.csv"))

Next, we'll filter the dataset to contain only the burglary data as shown in the
following code:

(def burglary
 (i/$where {:crime {:$eq "CTS 2012 Burglary"}} by-ag-lnd))

Finally, we use the incanter.charts/histogram function to create the graph, and
the incanter.core/view function to display it to the screen with the following code:

(def h
 (c/histogram (i/sel burglary :cols :count)
 :nbins 30
 :title "Burglary Counts"
 :x-label "Burglaries"))
(i/view h)

Chapter 7

[195]

The following is the histogram of the :count field:

From this graph, we can see that this data does not follow a normal distribution.
How does the other data correspond?

Summarizing World Bank land area and GNI data
We can use the same function, incanter.stats/summary, to generate the same
statistics for the land area data that is given in the following table:

Column Minimum Maximum Mean Median
Land area 300 16381390 822324 100250
GNI 240 88500 17170 8140

Null Hypothesis Tests – Analyzing Crime Data

[196]

The World Bank land area data has a distribution that is similar to the crime data.
Smaller, less wealthy countries are, of course, more numerous. The distribution of
the land area values is given as follows:

The following is the distribution of the GNI values:

Chapter 7

[197]

This gives us some feel for the data. All of these follow an exponential distribution,
as we can see in the next graph:

This makes it clear that all graphs with exponential distribution start with a steep
drop and quickly flatten out into a near-flat line.

Generating more charts and graphs
Some more charts can help us begin to understand the relationship between some
of these variables. We'll write a function to plot any crime against the World Bank
indicator data joined into the current dataset.

First, however, we'll need a utility function to filter the data rows by the crime.
This is a data-oriented function, so we'll store it in nullh.data, as shown in the
following code:

(defn by-crime [dset crime-label]
 (i/$where {:crime {:$eq crime-label}} dset))

The next function, plot-crime, pulls out the data points and then passes everything
to the incanter.charts/scatter-plot function to generate the graph:

(defn plot-crime [dset indicator-label crime-label]
 (let [x (i/sel dset :cols :indicator-value)
 y (i/sel dset :cols :rate)
 title (str indicator-label " and " crime-label)]
 (c/scatter-plot x y
 :title title
 :x-label indicator-label
 :y-label crime-label)))

Null Hypothesis Tests – Analyzing Crime Data

[198]

This makes it easy to get a quick, visual comparison of data about different types
of crimes and how they relate to the World Bank indicator data.

For example, the following code shows us how the burglary ("CTS 2012 Burglary")
relates to the land area data (the plot-crime function is in the nullh.charts
namespace, which is aliased as n-ch):

(def by-ag-lnd
 (d/load-join-pivot
 "unodc-data"
 "ag.lnd/ag.lnd.totl.k2_Indicator_en_csv_v2.csv"))
(def ag-plot
 (n-ch/plot-crime (d/by-crime by-ag-lnd "CTS 2012 Burglary")
 "Land Area" "Burglary"))
(i/view ag-plot)

The preceding code produces the following graph:

This data appears to have some strange artifacts. Look at the line of data points
where the land area is around 9,000,000, stretching from about 500 burglaries per
year to almost 1,000 burglaries. What is that about?

Chapter 7

[199]

Well, when we think about it, the land area of a country rarely changes, but if a
country has burglary data for several years, we'll have the land area represented
those many times. We could simplify the data by getting the average of the data.

In order to do this, we aggregate all of the year data for each country. To do that,
we'll use the following function:

(defn aggregate-years-by-country
 ([dset] (aggregate-years-by-country dset :mean))
 ([dset by]
 (let [data-cols [:count :rate :indicator-value]]
 (->> [:count :rate :indicator-value]
 (map #(i/$rollup by % :country dset))
 (reduce #(i/$join [:country :country] %1 %2))))))

The preceding code uses the incanter.core/$rollup function to get each country's
average for each data column. It then uses reduce and incanter.core/$join to
fold the data back into one dataset.

When we graph aggregated data, we get the following graph:

This makes it clearer that there is probably no relationship between these
two variables.

Null Hypothesis Tests – Analyzing Crime Data

[200]

The following graph compares the burglary data to the GNI per capita. Since that
indicator doesn't typically vary much over the time span represented in the data
(China and a few other countries not withstanding), we have again aggregated each
country's data.

This data appears to possibly have a correlation between these two variables,
although it may not be very strong. This is something we can test.

Conducting the experiment
Now we're ready to frame and perform the experiment. Let's walk through the
steps to do that one more time.

Formulating an initial hypothesis
In this case, our hypothesis is that there is a relationship between the per capita gross
national income and the rate of burglaries. We could go further and make the hypothesis
stronger by specifying that higher GNI correlates to a higher burglary rate, somewhat
counter-intuitively.

Chapter 7

[201]

Stating the null and alternative hypotheses
Given that statement of our working hypothesis, we can now formulate the null
and alternative hypotheses.

•	 H0: There is no relationship between the per capita gross national income and
a country's burglary rate.

•	 H1: There is a relationship between the per capita gross national income
and the country's burglary rate.

These statements will now guide us through the rest of the process.

Identifying the statistical assumptions in the
sample
There are a number of assumptions in this data that we need to be aware of. First,
since the crime data comes from multiple sources, there's going to be very little
consistency in it.

To start with, the very definitions of these crimes may vary widely between different
countries. Also, data collection procedures and practices will make the reliability of
those numbers difficult.

The World Bank data is perhaps more consistent—things like land area can be
measured and validated externally—but GNI can be reliant upon the own country's
reporting, and that may often be inflated, as countries attempt to make themselves
look more important and influential.

Moreover, there are also a lot of holes in the data. Because we haven't normalized
the country names, there are no observations for the United States. It's listed as
"United States" in one dataset and as "United States of America" in the other.
And while this single instance would be simple to correct, we really have to do
a more thorough audit of the country names.

So while there's nothing systematic that we need to take into account, there are
several problems with the data that we need to keep in mind. We'll revisit these
closer to the end of this chapter.

Null Hypothesis Tests – Analyzing Crime Data

[202]

Determining which tests are appropriate
Now we have to determine which tests to run. Some tests are appropriate to
different types of data and to different distributions of data. For example,
nominal and numeric data require very different analyses.

If the relationship were known to be linear, we could use Pearson's correlation
coefficient. Unfortunately, the relationship in our data appears to be more
complicated than that.

In this case, our data is continuous numeric data. And we're interested in the
relationship between two variables, but neither is truly independent, because we're
not really sure exactly how the sampling was done, based on the description of the
assumptions given earlier.

Because of all these factors, we'll use Spearman's rank correlation.

How did I pick this? It's fairly simple, but just complicated enough that we will not
go into the details here.

The main point is that which statistical test you use is highly dependent on the nature
of your data. Much of this knowledge comes from learning and experience, but once
you've determined your data, a good statistical textbook or any of a number of online
flowcharts can help you pick the right test.

But what is Spearman's rank correlation? Let's take a minute and find out.

Understanding Spearman's rank correlation
coefficient
Spearman's rank correlation coefficient measures the association between two
variables. It is particularly useful when only the rank of the data is known, but it
can also be useful in other situations. For instance, it isn't thrown off by outliers,
because it only looks at the rank.

The formula for this statistic is as follows:

()
2

2

6
1

1
i

x

d
r

n n
= −

−
∑

Chapter 7

[203]

The value of n is the size of the sample. The value of d is each observation's difference
in rank for the two variables. For example, in the data we've been looking at, Denmark
ranks first for burglary (interesting), but third for per capita GNI. So Spearman's rank
correlation would look at 3 – 1 = 2.

A coefficient of 0 means there is no relationship between the two variables, and a
coefficient of -1 or +1 means that the two variables are perfectly related. That is,
the data can be perfectly described using a monotonic function: a function from
one variable to the other that preserves the order of the items. The function doesn't
have to be linear. In fact, it could easily describe a curve. But it does capture the data.

The coefficient doesn't give us statistical significance (the p value), however.
To get that, we just need to know that the Spearman's rank correlation coefficient
is distributed approximately normally, when n ≥ 10. It has a mean of 0 and a
standard deviation given as follows:

()
1
1n −

With these formulae, we can compute the z score of coefficient for our test. The z
score is the distance of a data point from the mean, measured in standard deviations.
The p value is closely related to the z score. So if we know the z score, we also know
the p value.

Selecting the significance level
Now we need to select how high of a bar we need the significance to rise to.
The target p value is known as the α value. In general, α = 0.05 is commonly
used, although if you want to be extra careful, α = 0.01 is also normal.

For this test, we'll just use α = 0.05.

Determining the critical region
We'll accept any kind of relationship for rejecting the null hypothesis, so this will
be a two-tailed test. That means that the critical region will come from both sides
of the curve, with their areas being 0.05 divided equally for 0.025 on each side.

This corresponds to a z score of z < -1.96 or z > 1.96.

Null Hypothesis Tests – Analyzing Crime Data

[204]

Calculating the test statistic and its
probability
We can use Incanter's function, incanter.stats/spearmans-rho, to calculate the
Spearman's coefficient. However, it doesn't only calculate the z score. We can easily
create the following function that wraps all of these calculations. We'll put this into
src/nullh/stats.clj. We'll name the function spearmans.

(defn spearmans
 ([col-a col-b] (spearmans col-a col-b i/$data))
 ([col-a col-b dataset]
 (let [rho (s/spearmans-rho
 (i/sel dataset :cols col-a)
 (i/sel dataset :cols col-b))
 n (i/nrow dataset)
 mu 0.0
 sigma (Math/sqrt (/ 1.0 (- n 1.0)))
 z (/ (- rho mu) sigma)]
 {:rho rho, :n n, :mu mu, :sigma sigma, :z z})))

Now, we can run this on the dataset. Let's start from the beginning and load the
datasets from the disk with the following commands:

user=> (def by-ny-gnp

 (d/load-join-pivot

 "unodc-data"

 "ny.gnp/ny.gnp.pcap.cd_Indicator_en_csv_v2.csv"))

#'user/by-ny-gnp

user=> (def burglary (d/by-crime by-ny-gnp "CTS 2012 Burglary"))

#'user/burglary

user=> (pprint (n-stat/spearmans :indicator-value :rate burglary))

{:rho 0.6938241467993876,

 :n 537,

 :mu 0.0,

 :sigma 0.04319342127906801,

 :z 16.063190325134588}

The preceding commands allowed us to see the process from front to back, and we
can take the output and consider how the test went.

Chapter 7

[205]

Deciding whether to reject the null hypothesis
or not
The final z-score was 16.03. Going by the book, a z-score this high is usually not even
included on the charts. This would be a significant result, which would allow us to
reject the null hypothesis. So, from this we can conclude that there is a relationship
between the per capita GNI and the burglary rate.

Interpreting the results
Of course, the results don't tell us a whole lot. For one, we have to remember that
just because there's a relationship, that doesn't imply causality. Moreover, because
the result is so significant, we should probably be skeptical about the results and
whether they're caused by some artifact in the data or the procedures.

We've already talked about the problems in the data, and some of them may be
at fault. Particularly, some of the data is missing because of normalization problems,
which may change the results. Another possibility is that industrialized nations keep
better records, so they would appear to have more burglaries.

Summary
So, in this chapter, we learned how null hypothesis testing can help us structure
our analyses. Having a well thought out and standard procedure also ensures that
we are thorough in our analysis. For example, in this chapter, we were forced to
confront the ugly truths about the data we were working with, and that gave us
insights into the results that we achieved later.

In the next chapter, we'll actually get a chance to use these techniques again,
when we look at conducting A/B testing on websites.

A/B Testing – Statistical
Experiments for the Web

One of the most common uses of statistics on the Internet right now is A/B testing.
This acts as an aid to design and increase interactions with users in a data-driven
way. It's used all over the Web, and there have been some high-profile instances
of these techniques being written about in blogs and articles online. For instance,
there were several descriptions of how Baraka Obama's 2012 US Presidential
campaign used A/B testing to increase both donations and how many people
signed up for the e-mail updates.

Over the course of this chapter, we'll look at the following topics:

•	 Defining A/B testing
•	 Conducting an A/B test
•	 Analyzing the results

By the end, we'll have simulated a small A/B test to measure a click-through
on two different versions of text for a button.

Defining A/B testing
At its most fundamental level, A/B testing just involves creating two different
versions of a web page. Sometimes, the changes are major redesigns of the site
or the user experience, but usually, the changes are as simple as changing the text
on a button. Then, for a short period of time, new visitors are randomly shown one
of the two versions of the page. The site tracks their behavior, and the experiment
determines whether one version or the other increases the users' interaction with
the site. This may mean more click-through, more purchases, or any other
measurable behavior.

A/B Testing – Statistical Experiments for the Web

[208]

This is similar to other methods in other domains that use different names. The basic
framework randomly tests two or more groups simultaneously and is sometimes
called random-controlled experiments or online-controlled experiments. It's also
sometimes referred to as split testing, as the participants are split into two groups.

These are all examples of between-subjects experiment design. Experiments that use
these designs all split the participants into two groups. One group, the control group,
gets the original environment. The other group, the test group, gets the modified
environment that those conducting the experiment are interested in testing.

Experiments of this sort can be single-blind or double-blind. In single-blind
experiments, the subjects don't know which group they belong to. In double-blind
experiments, those conducting the experiments also don't know which group the
subjects they're interacting with belong to. This safeguards the experiments against
biases that can be introduced by participants being aware of which group they
belong to. For example, participants could get more engaged if they believe they're in
the test group because this is newer in some way. Or, an experimenter could treat
a subject differently in a subtle way because of the group that they belong to.

As the computer is the one that directly conducts the experiment, and because those
visiting your website aren't aware of which group they belong to, website A/B testing
is generally an example of double-blind experiments.

Of course, this is an argument for only conducting the test on new visitors.
Otherwise, the user might recognize that the design has changed and throw the
experiment away. For example, the users may be more likely to click on a new
button when they recognize that the button is, in fact, new. However, if they are
new to the site as a whole, then the button itself may not stand out enough to
warrant extra attention.

In some cases, these subjects can test more variant sites. This divides the test
subjects into more groups. There needs to be more subjects available in order
to compensate for this. Otherwise, the experiment's statistical validity might be
in jeopardy. If each group doesn't have enough subjects, and therefore observations,
then there is a larger error rate for the test, and results will need to be more extreme
to be significant.

In general, though, you'll want to have as many subjects as you reasonably can.
Of course, this is always a trade-off. Getting 500 or 1000 subjects may take a while,
given the typical traffic of many websites, but you still need to take action within a
reasonable amount of time and put the results of the experiment into effect. So we'll
talk later about how to determine the number of subjects that you actually need to
get a certain level of significance.

Chapter 8

[209]

Another wrinkle that is you'll want to know as soon as possible is whether one option
is clearly better or not so that you can begin to profit from it early. In the multi-armed
bandit problem, this is a problem of exploration versus exploitation. This refers to the
tension in the experiment design (and other domain) between exploring the problem
space and exploiting the resources you've found in the experiment so far. We won't
get into this further, but it is a factor to stay aware of as you perform A/B tests in
the future.

Because of the power and simplicity of A/B testing, it's being widely used in a variety
of domains. For example, marketing and advertising make extensive use of it. Also, it
has become a powerful way to test and improve measurable interactions between your
website and those who visit it online.

The primary requirement is that the interaction be somewhat limited and very
measurable. Interesting would not make a good metric; the click-through rate or pages
visited, however, would. Because of this, A/B tests validate changes in the placement
or in the text of buttons that call for action from the users. For example, a test might
compare the performance of Click for more! against Learn more now!. Another test
may check whether a button placed in the upper-right section increases sales versus
one in the center of the page.

These changes are all incremental, and you probably don't want to break a large site
redesign into pieces and test all of them individually. In a larger redesign, several
changes may work together and reinforce each other. Testing them incrementally
and only applying the ones that increase some metric can result in a design that's
not aesthetically pleasing, is difficult to maintain, and costs you users in the long
run. In these cases, A/B testing is not recommended.

Some other things that are regularly tested in A/B tests include the following
parts of a web page:

•	 The wording, size, and placement of a call-to-action button
•	 The headline and product description
•	 The length, layout, and fields in a form
•	 The overall layout and style of the website as a larger test, which is

not broken down
•	 The pricing and promotional offers of products
•	 The images on the landing page
•	 The amount of text on a page

Now that we have an understanding of what A/B testing is and what it can do
for us, let's see what it will take to set up and perform an A/B test.

A/B Testing – Statistical Experiments for the Web

[210]

Conducting an A/B test
In creating an A/B test, we need to decide several things, and then we need to put
our plan into action. We'll walk through those decisions here and create a simple set
of web pages that will test the aspects of design that we are interested in changing,
based upon the behavior of the user.

Before we start building stuff, though, we need to think through our experiment
and what we'll need to build.

Planning the experiment
For this chapter, we're going to pretend that we have a website to sell widgets
(or rather, looking at the Widgets! website).

The web page in this screenshot is the control page. Currently, we're getting 24
percent click-through on it from the Learn more! button.

We're interested in the text of the button. If it read Order now! instead of Learn
more!, it might generate more click-through. (Of course, actually explaining what
the product is and what problems it solves might be more effective, but one can't
have everything.) This will be the test page, and we're hoping that we can increase
the click-through rate to 29 percent (a five percent absolute increase).

Now that we have two versions of the page to experiment with, we can frame
the experiment statistically and figure out how many subjects we'll need for each
version of the page in order to achieve a statistically meaningful increase in the
click-through rate on that button.

Chapter 8

[211]

Framing the statistics
First, we need to frame our experiment in terms of the null-hypothesis test. In this
case, the null hypothesis would look something like this:

Changing the button copy from Learn more! to Order now! Would not improve
the click-through rate.

Remember, this is the statement that we're hoping to disprove (or fail to disprove)
in the course of this experiment.

Now we need to think about the sample size. This needs to be fixed in advance.
To find the sample size, we'll use the standard error formula, which will be solved
to get the number of observations to make for about a 95 percent confidence interval
in order to get us in the ballpark of how large our sample should be:

2

216n σ
δ

=

In this, δ is the minimum effect to detect and σ² is the sample variance. If we are
testing for something like a percent increase in the click-through, the variance is
σ² = p(1 – p), where p is the initial click-through rate with the control page.

So for this experiment, the variance will be 0.24(1-0.24) or 0.1824. This would make
the sample size for each variable 16(0.1824 / 0.05²) or almost 1170.

The code to compute this in Clojure is fairly simple:

(defn get-target-sample [rate min-effect]
 (let [v (* rate (- 1.0 rate))]
 (* 16.0 (/ v (* min-effect min-effect)))))

Running the code from the prompt gives us the response that we expect:

user=> (get-target-sample 0.24 0.05)

1167.36

Part of the reason to calculate the number of participants needed is that monitoring
the progress of the experiment and stopping it prematurely can invalidate the results
of the test because it increases the risk of false positives where the experiment says
it has disproved the null hypothesis when it really hasn't.

This seems counterintuitive, doesn't it? Once we have significant results, we should
be able to stop the test. Let's work through it.

A/B Testing – Statistical Experiments for the Web

[212]

Let's say that in actuality, there's no difference between the control page and the
test page. That is, both sets of copy for the button get approximately the same click
-through rate. If we're attempting to get p ≤ 0.05, then it means that the test will return
a false positive five percent of the time. It will incorrectly say that there is a significant
difference between the click-through rates of the two buttons five percent of the time.

Let's say that we're running the test and planning to get 3,000 subjects. We end up
checking the results of every 1,000 participants. Let's break down what might happen:

Run A B C D E F G H
1000 No No No No Yes Yes Yes Yes
2000 No No Yes Yes No Yes No Yes
3000 No Yes No Yes No No Yes Yes
Final No Yes No Yes No No Yes Yes
Stopped No Yes Yes Yes Yes Yes Yes Yes

Let's read this table. Each lettered column represents a scenario for how the
significance of the results may change over the run of the test. The rows represent
the number of observations that have been made. The row labeled Final represents
the experiment's true finishing result, and the row labeled Stopped represents the
result if the experiment is stopped as soon as a significant result is seen.

The final results show us that out of eight different scenarios, the final result would
be significant in four cases (B, D, G, and H). However, if the experiment is stopped
prematurely, then it will be significant in seven cases (all but A). The test could
drastically over-generate false positives.

In fact, most statistical tests assume that the sample size is fixed before the test is run.

It's exciting to get good results, so we'll design our system so that we can't easily stop
it prematurely. We'll just take that temptation away.

With this in mind, let's consider how we can implement this test.

Building the experiment
There are several options to actually implement the A/B test. We'll consider several
of them and weigh their pros and cons. Ultimately, the option that works best for
you really depends on your circumstances. However, we'll pick one for this chapter
and use it to implement the test for it.

Chapter 8

[213]

Looking at options to build the site
The first way to implement A/B testing is to use a server-side implementation.
In this case, all of the processing and tracking is handled on the server, and visitors'
actions would be tracked using GET or POST parameters on the URL for the resource
that the experiment is attempting to drive traffic towards.

The steps for this process would go something like the following ones:

1.	 A new user visits the site and requests for the page that contains the
button or copy that is being tested.

2.	 The server recognizes that this is a new user and assigns the user a
tracking number.

3.	 It assigns the user to one of the test groups.
4.	 It adds a row in a database that contains the tracking number and the

test group that the user is part of.
5.	 It returns the page to the user with the copy, image, or design that is

reflective of the control or test group.
6.	 The user views the returned page and decides whether to click on the

button or link or not.
7.	 If the server receives a request for the button's or link's target, it updates the

user's row in the tracking table to show us that the interaction was a success,
that is, that the user did a click-through or made a purchase.

This way of handling it keeps everything on the server, so it allows more control and
configuration over exactly how you want to conduct your experiment.

A second way of implementing this would be to do everything using JavaScript
(or ClojureScript, https://github.com/clojure/clojurescript). In this scenario,
the code on the page itself would randomly decide whether the user belonged to the
control or the test group, and it would notify the server that a new observation in
the experiment was beginning. It would then update the page with the appropriate
copy or image. Most of the rest of this interaction is the same as the one in previous
scenario. However, the complete steps are as follows:

1.	 A new user visits the site and requests for the page that contains the button
or copy being tested.

2.	 The server inserts some JavaScript to handle the A/B test into the page.
3.	 As the page is being rendered, the JavaScript library generates a new

tracking number for the user.

A/B Testing – Statistical Experiments for the Web

[214]

4.	 It assigns the user to one of the test groups.
5.	 It renders that page for the group that the user belongs to, which is either

the control group or the test group.
6.	 It notifies the server of the user's tracking number and the group.
7.	 The server takes this notification and adds a row for the observation in

the database.
8.	 The JavaScript in the browser tracks the user's next move either by directly

notifying the server using an AJAX call or indirectly using a GET parameter
in the URL for the next page.

9.	 The server receives the notification whichever way it's sent and updates
the row in the database.

The downside of this is that having JavaScript take care of rendering the experiment
might take slightly longer and may throw off the experiment. It's also slightly more
complicated, because there are more parts that have to communicate. However, the
benefit is that you can create a JavaScript library, easily throw a small script tag into
the page, and immediately have a new A/B experiment running.

In reality, though, you'll probably just use a service that handles this and more for you.
However, it still makes sense to understand what they're providing for you, and that's
what this chapter tries to do by helping you understand how to perform an A/B test
so that you can be make better use of these A/B testing vendors and services.

Implementing A/B testing on the server
For the purposes of this chapter, we'll implement the A/B test on the server.

First, we'll create a new project using Leiningen 2 (http://leiningen.org/) and
the Luminus web framework (http://www.luminusweb.net/). We'll include some
options to include the H2 embedded database (http://www.h2database.com/) and
ClojureScript support (https://github.com/clojure/clojurescript). We do
this with the following command line:

lein new luminus web-ab +h2 +cljs

This command creates the scaffolding for a website. We'll first get familiar with
what the scaffolding provides, and then we'll fill in the parts of the site with the
core site. Next, we'll add the A/B testing, and finally, we'll add a couple of pages
to view the results.

Chapter 8

[215]

Understanding the scaffolded site
Luminus is a web framework that is built by combining other libraries and tying
them together. For database access and models, it uses Korma (http://sqlkorma.
com/). For HTML templates, it uses Selmer (https://github.com/yogthos/Selmer),
which is a port of Django-style templates. For routing, controllers, sessions, and
everything else, it uses lib-noir (http://yogthos.github.io/lib-noir/)
and Compojure (https://github.com/weavejester/compojure/).

Everything in the directory that contains a Luminus project will be a consistent
set of subdirectories named after the project. For instance, in the project that we
just created for this (web-ab), the primary directories would be as follows:

•	 resources is the directory of static resources. It contains the CSS,
JavaScript, and image files for the site.

•	 src is the directory of Clojure files. Several of the subdirectories in this
directory tree are important too, so I'll list them separately.

•	 src/web_ab/models/ is the directory that contain the Clojure files that
define the model and interact with the database.

•	 src/web_ab/routes/ is the directory that lists the routes in a web
application. Each module under this defines the routes and handlers for
a particular subsection of the site.

•	 src/web_ab/views/templates/ is the directory that contains the Selmer
templates.

•	 test/web_ab/test/ is the directory that contains the clojure.test tests
for the site's handlers.

We'll primarily deal with the directories under src/web-ab/. We'll define the
models, define the routes and handlers, and fill in the templates.

As we work, we can view the site as we're developing it by using the development
server. You can start this using the following Leiningen command:

lein ring server

Once this server is executed, we can view the site by pointing our browser to
http://localhost:3000/.

A/B Testing – Statistical Experiments for the Web

[216]

Building the test site
First, we need to add in the content for the main page. The file that we'll want to
change will be in src/web_ab/views/templates/home.html. We'll add the following
HTML content to that page. (There are a lot more CSS and images involved in creating
the site that we saw in the screenshot earlier. All this is listed in the code download for
this chapter.) Take a look at the following code:

{% extends "web_ab/views/templates/base.html" %}
{% block content %}
<header id="banner" class="row">
 <div class="col-md-12">
 <h1 style="width: 4.5em;" class="center-block">Widgets!</h1>
 </div>
</header>
<div id="content" class="row">
 <div id="left-panel" class="col-md-6 jumbotron">
 <h1>Fix everything!</h1>
 <p>These amazing widgets! will fix
 everything.</p>
 <p>Let widgets! work for you.</p>
 </div>
 <div id="right-panel" class="col-md-6 jumbotron">
 <a href="/purchase/" id="btn-more"
 class="btn btn-primary btn-lg center-block">
 Learn more!

 </div>
</div>
{% endblock %}

When the time comes to add in the A/B testing features, we'll change this a little,
but most of this is good as it is.

We'll also need a page to direct the users to if they want to buy a widget. We'll first
define a route for this page in the src/web_ab/routes/home.clj file. The following
is the route and the controller:

(defn purchase-page []
 (layout/render "purchase.html" {}))
(defroutes home-routes
 (GET "/" [] (home-page))
 (GET "/purchase/" [] (purchase-page)))

Chapter 8

[217]

The view is defined in the src/web_ab/views/templates/purchase.html file. This
file is very similar to the preceding template file, except that it's considerably simpler.
It just contains a thank you message for the left panel, and there's no button or link on
the right-hand side. For more details about this page, see the code download.

In fact, this is enough to define the base, control site in this project. Now let's look
at what we need to do to define the A/B testing features.

Implementing A/B testing
Adding A/B testing into the site that we have so far will be pretty straightforward
web development. We'll need to define a model and functions that implement the
test framework's basic functionality. We can then incorporate them into the site's
existing controllers and views:

1.	 The code that defines the data and the database settings will go into the
src/web_ab/models/schema.clj file. It will start with the following
namespace declaration:
(ns web-ab.models.schema
 (:require [clojure.java.jdbc :as sql]
 [noir.io :as io]))

2.	 The first facet of this section of the site that we'll define is the model.
We'll add a table to the database schema that defines a table to track
the A/B participants:
(defn create-abtracking-table []
 (sql/with-connection db-spec
 (sql/create-table :abtracking
 [:id "INTEGER IDENTITY"]
 [:testgroup "INT NOT NULL"]
 [:startat "TIMESTAMP NOT NULL DEFAULT NOW()"]
 [:succeed "TIMESTAMP DEFAULT NULL"])))

A/B Testing – Statistical Experiments for the Web

[218]

3.	 Now, in the src/web_ab/models/db.clj file, we'll define some low-level
functions to work with the rows in this table. For this file, we'll use the
following namespace declaration:
(ns web-ab.models.db
 (:use korma.core
 [korma.db :only (defdb)])
 (:require [web-ab.models.schema :as schema]
 [taoensso.timbre :as timbre]))

4.	 The first function in this namespace will take a group keyword (:control
or :test) and insert a row into the database with a code that represents that
group and the default values for the starting time (the current time) and the
time in which the interaction succeeds (NULL):
(defn create-abtracking [group]
 (get (insert abtracking
 (values [{:testgroup (group-code group)}]))
 (keyword "scope_identity()")))

5.	 Next, we'll create a function that sets an abtracking object's succeed field
to the current time. This will mark the interaction as a success:

(defn mark-succeed [id]
 (update abtracking
 (set-fields {:succeed (sqlfn :now)})
 (where {:id id})))

These, along with a few other functions that you can find in the code download for
this chapter, will form a low-level interface with this data table. Most of the time,
however, we'll deal with A/B testing using a slightly higher-level interface.

This interface will live in the src/web_ab/ab_testing.clj file. It will contain the
following namespace declaration:

(ns web-ab.ab-testing
 (:require [noir.cookies :as c]
 [taoensso.timbre :as timbre]
 [web-ab.models.db :as db]
 [incanter.stats :as s]
 [clojure.set :as set]
 [web-ab.util :as util])
 (:import [java.lang Math]))

Chapter 8

[219]

To understand the code in this module, we need to first talk about how the A/B
testing system will work. We have the following number of requirements that we
need to make sure are implemented:

•	 If the users have visited the site before the A/B test, they should see the
control version of the site. We assume that there's a tracking cookie already
being used for this. In this case, the cookie will be named visits, and it will
simply track the number of times a user has visited the home page of the site.

•	 If this is the users' first visit to the site, they will be randomly assigned to the
control group or the test group, and they'll be shown the appropriate page
for that group. Also, they'll receive a tracking cookie for the observation that
they are, and we'll insert the tracking information for them into the database.

•	 If the users have visited the site earlier and are participants in the A/B test,
they should see the same version of the site that they saw previously.

•	 Finally, when a user who is a participant in the experiment visits the purchase
page, that observation in the experiment will be marked as a success.

We'll write functions for most of these cases as well as a function to route the user
to the right branch whenever one visits the front page. We'll write another function
to handle item number four.

For the first function, we'll implement what's necessary to start a new observation
in the experiment. We'll enter the functions into the database and insert the tracking
cookie into the session:

(defn new-test [test-cases]
 (let [[group text] (rand-nth (seq test-cases))
 ab-tracking (db/get-abtracking
 (db/create-abtracking group))]
 (c/put! :abcode (:id ab-tracking))
 text))

The functions in the db namespace (aliased from web-ab.models.db) are from
the low-level model interface that we just defined. In fact, the implementation
for create-abtracking is listed on the preceding page.

The c/put! function is from the noir.cookies namespace. It inserts the cookie
value into the session. In this case, it inserts the tracking instance's database ID
under the abcode key.

Finally, new-test returns the text that should be used on the page.

A/B Testing – Statistical Experiments for the Web

[220]

The next function for this level of abstraction is get-previous-copy. This is used
whenever a user who is already a participant in the experiment visits the page again.
It takes a database ID and the different versions of the site that are being used in the
current test, and it retrieves the row from the database and looks up the right copy
text to be used on the page, given whether the observation is in the control group
or the test group:

(defn get-previous-copy [ab-code test-cases]
 (-> ab-code
 db/get-abtracking
 :testgroup
 db/code->group
 test-cases))

This function simply runs the input through a number of conversions. First, this
function converts it to a full data row tuple based on the database ID. Next, it selects
the testgroup field, and it translates it into a group keyword. This is finally translated
into the appropriate text for the page, based on the group keyword.

The next function that we're going to look at ties the two previous functions together
with item number one from the preceding list (where the returning visitors are shown
the control page without being entered into the experiment):

(defn start-test [counter default test-cases]
 (let [c (Long/parseLong (c/get counter "0"))
 ab-code (get-abcode-cookie)]
 (c/put! counter (inc c))
 (cond
 (and (>= ab-code 0) (> c 0))
 (get-previous-copy ab-code test-cases)

 (and (< ab-code 0) (> c 0)) default

 :else (new-test test-cases))))

First, this function expects three parameters: the cookie name for the counter, the
default text for the control page, and a map from the group keywords to page text.
This function looks at the value of the counter cookie and the abtest cookie, both of
which will be -1 or 0 if they're not set, and it decides what should be displayed for
the user as well as inserts whatever needs to be inserted into the database.

Chapter 8

[221]

In the preceding code snippet, we can see that the calls to the two functions that
we've just looked at are highlighted in the code listing.

Also, here we define a function that looks for the abtest cookie and, if it's found,
we mark it as having succeeded, shown as follows:

(defn mark-succeed []
 (let [ab-code (get-abcode-cookie)]
 (when (> ab-code -1)
 (db/mark-succeed ab-code))))

Finally, once the experiment is over, we need to perform the analysis that determines
whether the control page performed better or the test page:

(defn perform-test
 ([ab-testing] (perform-test ab-testing 0.05))
 ([ab-testing p]
 (let [groups (group-by-group ab-testing)
 t (-> (s/t-test (to-flags (:test groups))
 :y (to-flags (:control groups))
 :alternative :less)
 (select-keys [:p-value :t-stat
 :x-mean :y-mean :n1 :n2])
 (set/rename-keys {:x-mean :test-p,
 :y-mean :control-p,
 :n1 :test-n,
 :n2 :control-n}))]
 (assoc t
 :p-target p
 :significant (<= (:p-value t) p)))))

To perform the actual analysis, we use the t-test function from incanter.stats in
the Incanter library (http://incanter.org/). We'll get into this analysis in more
detail later in the chapter. For now, let's just pay attention to how the data flows
through this function. The t-test function returns a map that contains a lot of
numbers. For the output, we need to select some of this information and rename
the keys for some of the data that we will use. We use the core select-keys function
to select only the information that we need, and we use clojure.set/rename-keys
to give the rest of the names that will fit our current domain in a better manner.

To the results of the analysis, we'll also add a couple of other pieces of data. One will
be the alpha value, that is, the target value for p that we're trying to improve upon.
The other depends on whether the results are significant or not. This is found by
testing the value of p against the significance level that we're trying for.

A/B Testing – Statistical Experiments for the Web

[222]

With the low-level and high-level interfaces to the A/B testing process in place,
we can turn our attention to actually using it. First, we need to update the view
template for the home page from what we listed in the preceding snippet.

Remember, the file is in src/web_ab/views/templates/home.html. We want
to simply change the name of the link to go to the purchase page. It needs to be
a parameter that we can use to insert a value into the template. For instance, the
following snippet contains the updated version of the right-hand panel, including
the highlighted line that we can use to insert the text into the page:

 <div id="right-panel" class="col-md-6 jumbotron">
 <a href="/purchase/" id="btn-more"
 class="btn btn-primary btn-lg center-block">
 {{button}}

 </div>

The controllers will also need to change. They need to trigger the appropriate
stages in the test participant's lifecycle, and they need to pass the button text into
the template.

The controller for the home page does this as part of one form. It calls start-test,
and builds the template parameters using its output directly. This addition to the
controller is highlighted as follows:

(defn home-page []
 (layout/render
 "home.html"
 {:button (ab/start-test :visits default-button test-cases)}))

The controller for the purchase page just incorporates a call to mark-succeed in its
normal flow:

(defn purchase-page []
 (ab/mark-succeed)
 (layout/render "purchase.html" {}))

At this point, everything is in place to actually conduct the test; however, we cannot
tell when it's over or look at the results. We can add this section of the website in the
next stage.

Chapter 8

[223]

Viewing the results
We'll add the A/B test result's views as separate pages in a separate section of the
site. It will use the same abtracking model as the rest of the A/B testing, but we'll
define more controllers and views.

One of the primary features of this part of the site is that we don't want to display
some information before the test is complete. In order to decide this, we'll first define
a map that specifies how many observations from each group we need:

(def target-counts {:control 1200, :test 1200})

We can use these values to define a predicate that tests whether enough participants
have been registered in order to call the experiment complete. It reads the
participants from the database and categorizes them by the experiment group. It
compares the counts of these groups to the target counts:

(defn is-over?
 ([] (is-over? (ab/get-ab-tracking)))
 ([ab-tracking]
 (let [{:keys [control test]} (ab/group-by-group ab-tracking)]
 (and (>= (count control) (:control target-counts))
 (>= (count test) (:test target-counts))))))

We can use this to go a step further. We'll define a function that takes the list of
rows from the abtracking table and a function that renders a page. It tests whether
the experiment has been performed. If it is complete, it passes the on processing to
that function. If it's not, it displays a standard page that informs the user that the
experiment has not been completed yet:

(defn when-is-over [ab-tracking f]
 (if (is-over? ab-tracking)
 (f ab-tracking)
 (let [{:keys [control test]} (ab/group-by-group ab-tracking)]
 (layout/render
 "ab-testing-not-done.html"
 {:counts {:control (count control)
 :test (count test)}
 :targets target-counts
 :complete {:control (ab/pct (count control)
 (:control target-counts))
 :test (ab/pct (count test)
 (:test target-counts))}}))))

A/B Testing – Statistical Experiments for the Web

[224]

Now, with these utilities in place, we can define a couple of pages. The first one will
list the participants from the abtracking table. You can find the controller function
and the view template in the code download. Both are relatively straightforward.

The other is slightly more interesting for a couple of reasons. First, it uses the
when-is-over function that we just saw, and second, it performs the statistical
test to determine whether the control page performed better or the test page:

(defn grid []
 (when-is-over
 (ab/get-ab-tracking)
 (fn [ab-tracking]
 (let [by-group-outcome (ab/assoc-grid-totals
 (ab/get-results-grid ab-tracking))
 stats (ab/perform-test ab-tracking 0.05)]
 (layout/render "ab-testing-grid.html"
 {:grid by-group-outcome,
 :stats (sort (seq stats))
 :significant (:significant stats)})))))

As mentioned, this function uses the when-is-over function that we just defined
in order to bypass this page and display a standard page that just says that the
experiment has not been finished yet.

The statistical test, which is highlighted, calls the perform-test function that we
talked about earlier.

The template for these primarily displays the results in a grid. It also has a colored
alert at the top of the page, which indicates whether the control performed better
or the test groups.

Looking at A/B testing as a user
Now that all the parts are together, let's walk through the user's interaction with the
site. Most people who visit your site won't know that there are two different versions
of the site, so they should interact with your site as they normally would.

When they first visit your site, users should see the following screen. The text on the
button in the lower-right section might be different, but the rest should be the same
for everyone.

Chapter 8

[225]

Once the user clicks on Learn more! (in this case), they complete the purchase, and all
the users should see the following page:

However, the more interesting part of this isn't what happens with the user but
what happens afterwards when we can look at and analyze the results. We'll see
some details about this in the next section.

Analyzing the results
Obviously, we're not going to be able to get a few thousand people to visit our
website and purchase the widgets. In place of actual participants, I've populated
the database with random data. This should allow us to see how the analysis
section of the website works and what it means.

A/B Testing – Statistical Experiments for the Web

[226]

Throughout the experiment, we can get a list of the participants by visiting http://
localhost:3000/ab-testing/ on the local development server. This allows us to
track the experiment's progress without really getting into the results and without
having direct access to the counts.

While the experiment is running, we don't really want to get more information than
this page displays. This is where the when-is-over function, which we previously
saw, comes into play. When we visited the page earlier, we had sufficient participants
in the experiment, and then we got a page that explained that the experiment was not
done and gave some indication as to how much longer it has to go on for.

For example, the following screenshot has about all the information we want to
provide at this point in the experiment:

Of course, once the experiment is complete, we'd like to be able to see the final
results, including whether the results allow us to reject the null hypothesis, that is,
whether the test group performed better than the control group in a statistically
significant way or not.

Chapter 8

[227]

So when the experiment is complete, we get the following page:

There's more information included on this page. The following is a table that contains
the rest of the data and a short explanation of what they are. We'll go into more detail
on them in the next section, where we talk about the t-test.

Name Value Explanation
:control-mean 252 The average of the control group.
:control-n 1226 The number of observations in the

control group.
:control-p 0.20555 The conversion rate of the control

group.
:control-variance 200.20228 The variance for the control group.
:df 2401.10865 The degrees of freedom.
:p-target 0.05 The alpha value for the test: the

maximum p-value for the test.
:p-value 0.00000 The actual p value for the t-test.
:se 0.59806 The standard error.
:significant TRUE Checking whether the results

statistically significant
:t-value 108.68414 The results of the t-test.
:test-mean 317.00000 The mean of the test group.
:test-n 1200 The number of observations in the test

group.
:test-p 0.26417 The conversion rate of the test group.
:test-variance 233.25917 The variance for the test group.

These values are given in another table further down the page in the preceding
screenshot. To understand the statistical values in a better manner, let's dig more into
exactly what test we used.

A/B Testing – Statistical Experiments for the Web

[228]

Understanding the t-test
First, we need to understand the statistical nature of the test that we're performing.

Fundamentally, the experiment is pretty simple; each observation has one of two
outcomes. In many ways, this is a series of coin flips. Each flip can be heads or tails.
Each site interaction can succeed or fail.

This kind of value is known as a binomial random variable. It can take one of two
values, which vary according to a set probability. Binomial random variables have
a number of assumptions that must be met:

•	 There are a fixed number of observations (n).
•	 Each observation will have one of the two possible outcomes.
•	 The n observations are independent, that is, the outcome of one observation

does not in any way influence the probability of any other observation.
•	 The probability of the outcomes stays constant over time, that is, the

probability of the outcome X (P(X)) will always be, say, 0.5. You can easily
violate that in the design of the experiment by running the control page
and the test page consecutively instead of running them simultaneously.
If they're not run together, one page could be used during a busier time
to get better results.

A common example of a binomial random variable is testing coin tosses. Let's use
this as a first example, and then we'll apply what we've learned to our A/B test.

Testing coin tosses
Specifically, we'll have a coin that we know is fair and we'll test another coin that
we suspect is biased against it. The null hypothesis is that there is no difference
between the two coins and that both are true.

The following steps show us how this experiment will fulfill the assumptions of
a binomial test:

1.	 We'll flip each coin 100 times.
2.	 Each coin toss (each observation) can be heads or tails.
3.	 Each coin toss is independent. Its probability isn't influenced by the

probability of any other coin toss.
4.	 The probability of heads or tails won't change over time. The probability

of heads (P(heads)) and the probability of tails (P(tails)) will be 0.5 during
the entire test, or for the true coin, at least.

Chapter 8

[229]

First, let's think about what will happen when we flip the true coin. We know that
P(heads) = 0.5. Theoretically, every time we flip the coin for 100 times, we expect to
get 50 heads and 50 tails. Of course, that isn't what happens in real life. Sometimes,
we'll get 57 heads and 43 tails. Sometimes, we may get 44 heads and 56 tails. In
extremely rare cases, we may get 100 heads and no tails. The distribution of coin
tosses will form a binomial distribution, which is the number of successes in a series
of yes/no experiments; however, as the number of coin tosses approaches infinity,
the probability of all of these cases can be approximated by a normal distribution
around the theoretical, expected probability of 50 heads and 50 tails.

For this experiment, let's say that we flipped a true coin 100 times, and we get
heads 53 times.

Now, let's think about what will happen when we flip the other coin. It may be
true, or it may be biased. If it is biased, we don't know it's biased by how much.
So, when we flip it 100 times, and we get heads 58 times, we don't know if it's
because P(heads) = 0.58 or because P(heads) = 0.5, P(heads) = 0.6, or something
else, and we're slightly off this result on a normal distribution.

So we're interested in two things here. Primarily, we're interested in the difference
between the two probabilities. Or, to express it in terms of the experiment, we're
interested in the difference of means. We want to know whether the difference
between 0.53 and 0.58 (0.05) is significant. The following graph illustrates the
relationship that we're looking at in a continuous form. The actual data here is
discrete, of course, but the continuous graph makes the relationship a little
more clear.

The expected number of successes of a binomial random variable is given by the
following formula:

npµ =

A/B Testing – Statistical Experiments for the Web

[230]

The Clojure code for the sample mean of a binomial variable is similarly
straightforward:

(defn binomial-mean [coll] (reduce + 0.0 coll))

So, for the control group (the known true coins), the mean is 53, and for the test
group (the possibly biased coins), it's 58.

In order to answer whether the difference is significant, we also have to be interested
in something else: the possibility that we're wrong. We can assume that the actual
means are somewhat different than the actual numbers we're dealing with, but how
far off are they?

To answer this, we need to be able to calculate the standard error for our figures.
Given a normal distribution, what's the probability that the figures are so far off
that they'd give us the wrong result? To be able to answer this, we need to know
something about how much variance the distribution has, that is, how wide the
curve of the distribution's graph is.

Like the mean, the variance for a binomial random variable is pretty simple.

()1np p−

The Clojure function for this is a little more complicated, but it's still clear:

(defn binomial-variance [coll]
 (let [n (count coll),
 p (/ (count (remove zero? coll)) n)]
 (* n p (- 1.0 p))))

This gives us variances of 24.91 and 24.36.

With the variance, we can calculate the standard error of the difference. This is an
estimate of the standard deviation of all sample means, and it gives us some idea
of how far off our means might be, given how variable the data is and how much
data we're looking at. The following is the formula for that:

() t c
t c

t c

var varSE X X
n n

− = +

Chapter 8

[231]

The standard error function in Clojure is as follows:

(defn binomial-se [coll-t coll-c]
 (Math/sqrt (+ (/ (binomial-variance coll-t) (count coll-t))
 (/ (binomial-variance coll-c) (count coll-c)))))

For the coin flipping experiment, our standard error is 0.702.

We finally get to the t-value. This measures the difference between the means,
scaled by how variable the groups are.

t cX Xt
SE
−

=

Like the formula, the Clojure function for this builds upon all of the functions that
we've just defined:

(defn binomial-t-test [coll-t coll-c]
 (/ (- (binomial-mean coll-t) (binomial-mean coll-c))
 (binomial-se coll-t coll-c)))

So the t-value of our coin flipping experiment is 7.123.

The output values of this formula follow a t distribution. This is very similar to a
normal distribution, but the peak is smaller and the tails are heavier. However, as
the degrees of freedom grow, it comes closer to a normal distribution. You can use
the cumulative density function for the t-distribution or look in a table for the p
value of this number.

We'll use Incanter's cumulative distribution functions to look up the probabilities
of the particular t-values. In order to calculate this, we need to calculate the degrees
of freedom for the test. When the variances of both the groups are equal, the formula
is simple. However, for this, that will rarely be the case. For unequal variances, we'll
use the Welch-Satterthwaite equation. It's a bit complicated, but it's what we have to
work with.

22 2

4 4

2 2

t c

t c

t c

t t c c

s s
N N

v
s s
N v N v

 
+ 

 ≈
+

A/B Testing – Statistical Experiments for the Web

[232]

In this equation, s² is the variation, N is the sample size, and v is N-1.

The Clojure code for this is only slightly less complicated:

(defn degrees-of-freedom [coll-t coll-c]
 (let [var-t (binomial-variance coll-t), n-t (count coll-t),
 var-c (binomial-variance coll-c), n-c (count coll-c)]
 (/ (Math/pow (+ (/ var-t n-t) (/ var-c n-c)) 2)
 (+ (/ (* var-t var-t) (* n-t n-t (dec n-t)))
 (/ (* var-c var-c) (* n-c n-c (dec n-c)))))))

Now, from REPL, we can test to see whether the coin toss test can reject the null
hypothesis, that is, whether the second coin is biased:

user=> (require '[web-ab.ab-testing :as ab])

nil

user=> (require '[incanter.stats :as s])

nil

user=> (def group-c (take 100 (concat (repeat 53 1) (repeat 0))))

#'user/group-c

user=> (def group-t (take 100 (concat (repeat 58 1) (repeat 0))))

#'user/group-t

user=> (s/cdf-t (ab/binomial-t-test group-t group-c)

 :df (ab/degrees-of-freedom t c))

9.553337936305223E-12

So we can see that in the case of the coin flips, the coin is in fact biased and
significantly so.

Testing the results
Let's take this same process and apply it again to the A/B test that we just conducted.
This will help us see where the statistics in the preceding table came from:

1.	 First, we'll create the data sets by taking the number of observations and
successes from each group:
user=> (def c (take 1226 (concat (repeat 252 1.0)

 (repeat 0.0))))

#'user/c

user=> (def t (take 1200 (concat (repeat 317 1.0)

 (repeat 0.0))))

#'user/t

Chapter 8

[233]

2.	 Now, we can compute the mean and variance for each group:
user=> (ab/binomial-mean t)

317.0

user=> (ab/binomial-variance t)

233.25916666666666

user=> (ab/binomial-mean c)

252.0

user=> (ab/binomial-variance c)

200.20228384991844

3.	 This allows us to find the standard error:
user=> (ab/binomial-se t c)

0.5980633502426848

4.	 Finally, we can get the t-value, degrees of freedom, and the p-value.
user=> (ab/binomial-t-test t c)

108.68413851747313

user=> (ab/degrees-of-freedom t c)

2401.108650831878

user=> (s/cdf-t *2 :df *1)

1.0

This gives us the probability that the test results did not occur randomly.
We're looking for them to be over 0.95, and they clearly are.

If this data occurred naturally, the very high p value makes us suspect that we
may have a type one error or a false positive. However, in this case, the data wasn't
generated completely randomly. In the code download, I've combined all of these
into one function that gets called to perform the statistical test. This is what is used
to generate the data for the table on the results page.

Summary
Over the course of this chapter, we've seen how to conceive of, create, and analyze
the results of an A/B test.

The statistics themselves are really a continuation of the null-hypothesis testing that
we saw in Chapter 7, Null Hypothesis Tests – Analyzing Crime Data. A/B testing provides
a nice, complete, useful example of the workflow involved in using null-hypothesis
testing and of the power and the help in the decision-making that it provides.

A/B Testing – Statistical Experiments for the Web

[234]

This allows us to use a standard and widely used way of testing exactly what
variations on a website drive more interactions and allow us to identify and serve
the site's users in a better manner. It allows us to decide on changes to the site in
structured, testable ways.

Of course, in actuality, we'll probably want to use an existing service. There are several
services out there, from bare bones but free services such as Google Analytics Content
Experiments to full-featured for-pay services that cover all aspects of A/B testing, such
as Optimizely, Visual Website Optimizer, or Maxymiser. However, knowing what's
involved in A/B testing and what the best practices are means that we can evaluate
and use these services and get the most from them in a better manner.

In the next chapter, we'll look at applying the data analysis to another part of the
Web; we'll analyze how people participate in social sites by looking at patterns of
participation in the Stackoverflow (http://stackoverflow.com/) data dumps.

Analyzing Social Data
Participation

Social networks and websites have revolutionized the Internet. Most people online
participate in some social network, either it's Facebook, Twitter, Pinterest, GitHub,
StackOverflow, or any of the zillion other social networking websites that have
sprung up. They're an important way for people to connect and stay in contact,
but they're also a major source of data about people's relationships and activities.

Analyzing this data is important for a number of reasons. Of course, advertisers
and marketers want to squeeze as much information out of the data as they can.
But if you're running the social network, you'll want to analyze the data to figure
out what's working and what's falling flat. You want to ask yourself constantly
what you can do to engage users better and to make your social network a more
compelling, enjoyable, or useful experience for your users.

Over the course of this chapter, we'll get an open data dump from the StackExchange
(http://stackexchange.com) website. This includes StackOverflow (http://
stackoverflow.com/) and a host of other question-and-answer sites. We'll analyze
this in a number of different ways and try to learn both about how people interact
and generate content on those sites and about what makes a good answer.

The following are the topics we are going to cover in this chapter:

•	 Understanding the analyses we can perform
•	 Getting the data
•	 Finding patterns of participation
•	 Comparing askers and answerers
•	 Finding participation patterns over time

Analyzing Social Data Participation

[236]

•	 Finding up-voted answers
•	 Tagging questions automatically

Setting up the project
Before we get started, let's set up the project. I've done this using Leiningen 2
(http://leiningen.org/) and Stuart Sierra's reloaded project template (https://
github.com/stuartsierra/reloaded). I named the project social-so by running
the following code:

$ lein new reloaded social-so

Of course, we'll need more dependencies. The following is the project.clj file
for this chapter:

(defproject social-so "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.5.1"]
 [org.clojure/data.xml "0.0.7"]
 [org.codehaus.jsr166-mirror/jsr166y "1.7.0"]
 [org.clojure/data.json "0.2.4"]
 [cc.mallet/mallet "2.0.7"]
 [org.jsoup/jsoup "1.7.3"]]
 :profiles {:dev {:dependencies
 [[org.clojure/tools.namespace "0.2.4"]]
 :source-paths ["dev"]}}
 :jvm-opts ["-Xmx2048m"])

The highlights here are that we'll use org.clojure/data.xml to read XML
files, org.clojure/data.json to read JSON, and org.jsoup/jsoup to clean
up HTML. If you're still using Java 6, you'll need jsr166y to provide concurrency
with the reducers library. And we'll use cc.mallet/mallet to handle some Naïve
Bayesian classification.

Understanding the analyses
Now that we have the infrastructure out of the way, let's step back and think about
what kind of data we have and what we can do with it.

Chapter 9

[237]

Understanding social network data
Social networks come in two broad kinds:

1.	 There are networking-oriented social networks. These include the usual
subjects, such as Facebook (http://facebook.com), LinkedIn (http://
linkedin.com), Twitter (http://twitter.com/), or Sina Weibo (http://
weibo.com). These focus on allowing people to connect with each other,
build relationships, and post updates about themselves.

2.	 There are knowledge-sharing-oriented social networks. These include the
StackExchange (http://stackexchange.com) family of social networks,
including StackOverflow (http://stackoverflow.com) or Quora (https://
www.quora.com/). These focus on allowing people to exchange information
and knowledge. Usually, they are more structured and focused on questions
and answers than web forums or wikis.

Obviously, these networks enable entirely different kinds of interactions and have
different features and produce different kinds of data. Different kinds of analyses
are appropriate.

Understanding knowledge-based social
networks
In knowledge-based social networks, people come together to share information.
Often, these are question-and-answer forums, such as the StackExchange network
of sites, but also on Quora (https://www.quora.com/), Yahoo Answers (http://
answers.yahoo.com/), and so on.

Generally, in this genre of social network, some users post questions. Others answer
them. There's usually some kind of in-site economy, whether it's represented by
badges, points, or some combination. This encourages people to keep both questions
and answers on topic, to answer questions, and to set and maintain the community's
tone. Sometimes, there are moderators, sometimes the communities are self-
moderated, and sometimes there's a combination of the two.

Analyzing Social Data Participation

[238]

Looking at the front page of StackOverflow, we can see the basic elements of the
social network. Look at the following screenshot:

The preceding screenshot depicts a very interesting layout. You can easily notice the
following two things:

•	 There's a button labeled Ask Question at the upper right-hand side for
posting a question. This isn't as large as you might expect, since those asking
questions are presumably motivated to find the button and are willing to
click through into another page to do it. This is different than the posting
boxes found on sites such as Facebook or Twitter, where they try to reduce
the friction for posting new statuses in order to encourage people to do it.

•	 There is also a list of recently posted questions. This can be filtered to display
tags that you're interested in. For example, you can use this to find either
questions that you are qualified to answer or those you are interested in
learning about yourself.

Chapter 9

[239]

So we can see immediately that the primary interactions of the site are accessible
from the front page. Also, the site's design makes it easier to do the more difficult
interaction (answering questions).

We can already guess that most users will join to post only one or two questions
and never participate on the site again. This group may potentially be quite large.
Who those users are and how to motivate them to answer questions may be one
critical question that StackExchange has.

There may also be a similar dynamic among the users who do answer questions.
There are probably a small number of users who answer most of the questions.
StackExchange may be interested in how to get contributions more evenly from
all users, not just from a few power users.

Introducing the 80/20 rule
In fact, both of these observations are examples of the general principle of social
networks. This has been called the 80/20 rule. This simply states that approximately
80 percent of the content will be created by 20 percent of the users. It's also known as
the Pareto Principle, which states more generally that 80 percent of the effects come
from 20 percent of the causes. Although in different social networks, the details may
be off—for example, 15 percent of the users may create 95 percent of the content—in
general this observation is surprisingly robust. One of the things that we'll look at in
this chapter is exactly how the 80/20 rule applies to the StackOverflow data.

With this in mind, let's get the data so we can start looking at it.

Getting the data
In this chapter, we're going to focus on knowledge-based social networks, and in
particular, we'll work with the StackExchange sites. For some time, StackExchange
has made public a periodic data dump of their sites (http://blog.stackexchange.
com/category/cc-wiki-dump/). This will provide a great test bed for working with
a social network site's data.

Analyzing Social Data Participation

[240]

The data dump is made available through the Internet Archive (https://
archive.org/). The webpage for that is currently at https://archive.org/
details/stackexchange. You can download the entire dump using a BitTorrent
client (http://www.bittorrent.com/) such as μTorrent (http://www.utorrent.
com/). However, we're only interested in the StackOverflow posts and comments,
so if you'd like, you can just download those two archives. Of course, combined
they're about 6 GB, so the torrent may make the most sense, anyway.

The archived files are compressed using the 7z format. Windows users can get a
utility for extracting this from the 7-zip site (http://www.7-zip.org/). That site's
download page also has links to some unofficial binaries for Mac OS X and Linux
(http://www.7-zip.org/download.html). Both of these platforms also have
command-line binaries available. For example, Homebrew (http://brew.sh/)
has a recipe for this named p7zip.

Extract this data into your project directory, into a subdirectory named data,
using the following lines of code:

cd data
7z x ~/torrents/stackexchange/stackoverflow.com-Posts.7z

Now we're ready to start digging into the data and see what surprises it has for us.

Looking at the amount of data
First, we need to see how much data there will be. The raw archive for this part
of the data is about 6 GB. Not insignificant, but it's not petabytes, either.

So the compressed file is almost 5 GB, and the expanded file is 23 GB! We have a
lot of data to look at.

Chapter 9

[241]

Looking at the data format
All of the files are in XML format. The file labeled Posts contains both the questions
and the answers.

The format of the data is fairly simple (but for a full description, see the README.txt
file). The following is the first entry:

<row Id="4"
 PostTypeId="1"
 AcceptedAnswerId="7"
 CreationDate="2008-07-31T21:42:52.667"
 Score="251"
 ViewCount="15207"
 Body="<p>I want to use a track-bar to change a form's
 opacity.</p>

<p>This is my code
 :</p>

<pre><code>decimal trans =
 trackBar1.Value / 5000;
this.Opacity = trans;

</code></pre>

<p>When I try
 to build it, I get this error:</p>

 <blockquote>
 <p>Cannot implicitly convert
 type 'decimal' to 'double'.</p>
<
 /blockquote>

<p>I tried making
 trans to
 double, but then the control doesn't work.
 This code has worked fine for me in VB.NET in the past.
 </p>
"
 OwnerUserId="8"
 LastEditorUserId="2648239"
 LastEditorDisplayName="Rich B"
 LastEditDate="2014-01-03T02:42:54.963"
 LastActivityDate="2014-01-03T02:42:54.963"
 Title="When setting a form's opacity should I use a decimal
 or double?"
 Tags="<c#><winforms><forms><type-
 conversion><opacity>"
 AnswerCount="13"
 CommentCount="25"
 FavoriteCount="23"
 CommunityOwnedDate="2012-10-31T16:42:47.213" />

As we can see from README.txt, this post represents a question (the PostTypeId
field is 1). We can see its body, its tags, and its accepted answer, as well as a lot of
the metadata about this post. This should give us plenty to go on.

Analyzing Social Data Participation

[242]

If we look at the third entry, we'll see one of the accepted answers for this post,
as follows:

<row Id="7"
 PostTypeId="2"
 ParentId="4"
 CreationDate="2008-07-31T22:17:57.883"
 Score="193"
 Body="<p>An explicit cast to double isn't
 necessary.</p>

<pre><code>double
 trans = (double)trackBar1.Value / 5000.0;
<
 /code></pre>

<p>Identifying the
 constant as <code>5000.0</code> (or as
 <code>5000d</code>) is sufficient:<
 /p>

<pre><code>double trans =
 trackBar1.Value / 5000.0;
double trans = trackBar1
 .Value / 5000d;
</code></pre>
"
 OwnerUserId="9"
 LastEditorUserId="967315"
 LastEditDate="2012-10-14T11:50:16.703"
 LastActivityDate="2012-10-14T11:50:16.703"
 CommentCount="0" />

So, for answers (the PostTypeId field is 2), we can get their parents, their body texts,
and their scores. Their parents indicate which child was accepted. This should be
enough to help us analyze their content.

In both cases, we also have OwnerUserId, and this will help us understand how
people interact with the site and with each other.

The text-field attributes allow rich content (Body and Title), and these are handled
by encoding HTML into the fields. We'll need to escape those and probably scrub
out the tags. That won't be a problem, but we'll need to keep it in mind.

Defining and loading the data
We can trace out some of the data that we'll need to use throughout this chapter.
We can put these into the src/social_so/data.clj file.

We'll use two record types. The CountRank type will hold together a raw count and
its rank in the list of frequencies, and the UserInfo type will store the user and the
frequencies and ranks for the different types of posts that they've made. Look at the
following code:

(defrecord CountRank [count rank])
(defrecord UserInfo [user post q a])

Chapter 9

[243]

The post, q, and a fields will keep track of the frequencies and rank by all posts,
by question posts, and by answer posts.

Together, these record structures should help us get a start in understanding this
data and some of the patterns of participation.

For loading the data, let's move to a new file, named src/social_so/xml.clj,
and let's give it the following namespace declaration:

(ns social-so.xml
 (:require [clojure.data.xml :as xml]
 [clojure.java.io :as io]
 [clojure.string :as str]
 [social-so.data :as d]
 [social-so.utils :as u])
 (:import [org.jsoup Jsoup]
 [org.jsoup.safety Whitelist]))

We'll use the functions in this namespace to read the XML file and build the records
containing the data.

At the most basic level, we need to be able to read the post elements from the XML
file. Look at the following code:

(defn read-posts [stream] (:content (xml/parse stream)))

We'll also need to access a little bit of data from each element. The following are
some getter functions for an identifier for the user and for the post type code:

(defn get-user [el]
 (let [{:keys [attrs]} el]
 (or (u/->long (:OwnerUserId attrs))
 (u/to-lower (:OwnerDisplayName attrs)))))
(defn get-post-type [el]
 (u/->long (:PostTypeId (:attrs el))))

In this snippet, el represents the XML element being processed, and we're using a
custom function to lowercase the string (social-so.utils/to-lower) to be a little
defensive about being passed null values.

Loading the data from the XML files will take place in two stages. First, we'll get the
raw frequencies, and then we'll sort the data several different ways and assign ranks
to the data.

Analyzing Social Data Participation

[244]

Counting frequencies
The way that we'll count the frequencies is to walk over the posts in the XML file.
We'll maintain an index of the users with their UserInfo records. The first time each
user is found, they will get a new UserInfo object. Subsequently, their UserInfo
record will be updated with new counts.

Let's see how this works in practice.

The first function, update-user-info, operates on the level of a single record.
It takes a UserInfo record and updates it based on the type of post currently
being processed. If the record is nil, then a new one is created follows:

(defn update-user-info [user-id post-el user-info]
 (let [incrs {:question [1 0], :answer [0 1]}
 [q-inc a-inc] (incrs (get-post-type post-el))]
 (cond
 (nil? q-inc) user-info
 (nil? user-info) (d/->UserInfo user-id 1 q-inc a-inc)
 :else
 (assoc user-info
 :post (inc (:post user-info))
 :q (+ (:q user-info) q-inc)
 :a (+ (:a user-info) a-inc)))))

The next function operates at the level of the index from user-id to UserInfo
records. It takes an XML post, and it gets the user's information from it. It tries to
retrieve the UserInfo record for that user from the index, and it uses update-user
-info to increment the counts in that record. Look at the following code:

(defn update-user-index [user-index post-el]
 (let [user (get-user post-el)]
 (->> user
 (get user-index)
 (update-user-info user post-el)
 (assoc user-index user))))

Finally, load-user-infos opens the XML file, reads in the posts, and counts the
raw frequencies of the posts for each user. Finally, it forces the result with doall,
because we're working inside of a with-open block, so we'll want to have the
results fully realized before we close the file. Look at the following code:

(defn load-user-infos [filename]
 (with-open [s (io/input-stream filename)]
 (->> s
 read-posts

Chapter 9

[245]

 (reduce update-user-index {})
 vals
 (remove nil?)
 doall)))

Now we're ready to walk over these, multiple times, and assign ranks based on the
various counts.

Sorting and ranking
Currently, we're storing the raw frequency under the UserInfo records' fields.
However, we want to move the frequencies into a CountRank record and store
the rank alongside it. We will achieve this by performing the following steps:

1.	 We'll find the rank using the rank-on function. This sorts by one of the
properties of the UserInfo records (:post, :q, or :a) and then associates
each instance with a rank by containing both within a vector pair. Look at
the following code:
(defn rank-on [user-property coll]
 (->> coll
 (sort-by user-property)
 reverse
 (map vector (range))))

2.	 The function update-rank will then take the rank-and-user pair from
rank-on and associate it with the appropriate property, as follows:
(defn update-rank [user-property rank-info]
 (let [[rank user-info] rank-info]
 (assoc user-info user-property
 (d/->CountRank (get user-info user-property)
 rank))))

3.	 The next function, add-rank-data, coordinates this process by calling
these functions on all users. And the function controlling this process,
add-all-ranks, does this on each user as follows:
(defn add-rank-data [user-property users]
 (map #(update-rank user-property %)
 (rank-on user-property users)))
(defn add-all-ranks [users]
 (->> users
 (add-rank-data :post)
 (add-rank-data :q)
 (add-rank-data :a)))

Analyzing Social Data Participation

[246]

4.	 We can combine reading the XML file and counting the posts with sorting
and ranking the users. Look at the following code:

(defn load-xml [filename]
 (add-all-ranks (load-user-infos filename)))

All of these functions make it simple to load the XML file and to assign the ranks.
Look at the following code:

user=> (def users (x/load-xml

 "data/stackoverflow.com-Posts"))

user=> (count users)

1594450

user=> (first users)

{:user 22656,

 :post {:count 28166, :rank 0},

 :q {:count 29, :rank 37889},

 :a {:count 28137, :rank 0}}

Now we have the information that we'll need to perform the first round of analyses.

Finding the patterns of participation
Now that we have some data loaded, let's roll up our sleeves and see what we
can learn from it.

Before we do, however, it would be nice to have some way to generate reports of
which users are the most active for each type of post. Look at the following code:

(defn print-top-rank [col-name key-fn n users]
 (let [fmt "%4s %6s %14s\n"
 sort-fn #(:rank (key-fn %))]
 (printf fmt "Rank" "User" col-name)
 (printf fmt "----" "------" "--------------")
 (doseq [user (take n (sort-by sort-fn users))]
 (let [freq (key-fn user)]
 (printf fmt (:rank freq) (:user user) (:count freq))))))

Chapter 9

[247]

This allows us to create tables listing the top 10 (or so) users for each post type.

Rank User All Posts
0 22656 28166
1 29407 20342
2 157882 15444
3 17034 13287
4 34397 13209
5 23354 12312
6 115145 11806
7 20862 10455
8 57695 9730
9 19068 9560

Based on this table, we can see that some users are very active. The top user has almost
8,000 more posts than the second most active user, who is still very, very active.

The following graph, of the post counts of the top 1,000 users, shows how quickly
the activity falls off and how much the top users dominate the conversation:

We can break this down further, however. I would expect the people who post
questions to behave differently than the people who post answers.

Analyzing Social Data Participation

[248]

Matching the 80/20 rule
Previously, we talked about the 80/20 rule: that 80 percent of the content is created
by 20 percent of the users. That's obviously a rough estimate, but it does provide a
good intuition for the dynamics of these networks.

To find the break-down, we need to perform the following steps:

1.	 Sort the users in descending order by the count that we're interested in.
2.	 Partition them into quintiles, that is, five equally sized buckets.
3.	 Sum the counts for each bucket.

To implement this, we can use a function named quantile-on, which sorts
a collection and breaks it into the buckets. Look at the following code:

(defn quantile-on [n key-fn coll]
 (let [len (count coll)
 part-size (+ (quot len n)
 (if (zero? (mod len n)) 0 1))]
 (partition-all part-size (sort-by key-fn coll))))

Now we just need to pull out the appropriate fields and sum their values, as follows:

(defn sum-count
 ([key-fn] (partial sum-count key-fn))
 ([key-fn coll]
 (->> coll
 (map #(:count (key-fn %)))
 (remove nil?)
 (reduce + 0))))We can use these functions to find the percentage
of users in each quintile:
user=> (def p-counts
 (map (d/sum-count :post)
 (d/quantile-on 5 #(:rank (:post %)) users)))
user=> p-counts
(15587701 1282402 507654 318890 318828)
user=> (def total (reduce + 0 p-counts))
user=> (map #(float (/ % total)) p-counts)
(0.8652395 0.07118336 0.028178774 0.017700894 0.017697452)

So the top 20 percent of users actually produce more than 85 percent of the content.
The quintiles drop off rapidly from there.

Chapter 9

[249]

And we can pull these into a graph to be able to see the distribution of contributors
more easily.

Looking for the 20 percent of questioners
While finding those who post questions, we can also see who are most active in
asking questions.

Rank User Question Posts
0 39677 1858
1 4653 1605
2 34537 1604
3 179736 1327
4 117700 1327
5 149080 1261
6 84201 1177
7 434051 1107
8 325418 1074
9 146780 1055

When we run this, it gives us a very different set of frequencies. These are more
than an order of magnitude less than the frequencies for all posts.

Analyzing Social Data Participation

[250]

We can also get the numbers for the distribution of questioners.

If we use quantile-on and sum-count again, we can also see the break-down
by quintile. Look at the following code:

user=> (def q-counts (map (d/sum-count :q)

 (d/quantile-on 5 #(:rank (:q %)) users)))

user=> (def total (reduce + 0 q-counts))

user=> q-counts

(5182709 711037 318890 262051 0)

user=> (map #(float (/ % total)) q-counts)

(0.80045706 0.109817974 0.049251802 0.040473152 0.0)

And the following is the graph for this group:

Interesting. So the lowest quintile doesn't contribute anything. Presumably,
those are the users who answer questions. We'll look at this group more in a
minute. But overall, the distribution of those asking questions follows what
we'd expect from the 80/20 rule.

Looking for the 20 percent of respondents
Because most of the posts are answers, we can expect that these frequencies will
be closer to the aggregate frequencies. We'll find this similarly to how we found
the frequencies of those asking questions.

Chapter 9

[251]

Look at the following table:

Rank User Answer Posts
0 22656 28137
1 29407 20310
2 157882 15431
3 17034 13285
4 34397 13157
5 23354 12270
6 115145 11784
7 20862 10447
8 57695 9711
9 19068 9557

We can see that there is a lot of similarity between this set of numbers and the
first one. And in fact there is a lot of similarity between the distribution of this
set of posters and the last set, as we can see in the following screenshot:

Looking at the distribution overall, however, we can see that the question answerers
are even more lopsided than the question askers.

Analyzing Social Data Participation

[252]

Let us try to break down the contributors who answer the questions:

user=> (def a-counts (map (d/sum-count :a)

 (d/quantile-on 5 #(:rank (:a %)) users)))

user=> (def total (reduce + 0 a-counts))

user=> a-counts

(10950972 413668 176148 0 0)

user=> (map #(float (/ % total)) a-counts)

(0.9488929 0.035844 0.015263082 0.0 0.0)

And the following is the graph for this data:

So almost half of the users never post an answer! However, the top 20 percent of users
post 95 percent of the answers. So answering questions appears to be dominated by a
few users, while question asking is (marginally) more widespread.

Combining ranks
We can see even more similarity if we compare the ranks. This table shows the rank
for each category of post for all of the top 10 users in any category. (Note that the
ranks begin at 0, not 1.)

Chapter 9

[253]

User ID All Post Rank Question Post Rank Answer Post Rank
4653 423 1 21342
17034 3 602037 3
19068 9 420772 9
20862 7 169469 7
22656 0 37889 0
23354 5 22760 5
29407 1 33177 1
34397 4 16478 4
34537 358 2 8024
39677 345 0 151684
57695 8 65071 8
84201 631 6 10521
115145 6 54339 6
117700 595 4 29654
146780 923 9 123737
149080 682 5 56862
157882 2 101282 2
179736 605 3 36463
325418 523 8 3502
434051 858 7 164416

The data in this table makes certain points clear:

•	 The top-ranked users asking questions are a very different set than the top
-ranked users answering questions. The top questioner was ranked 141,674th
as an answerer, and the top answerer was ranked 37,887th as a questioner.

•	 Once we're beyond the top posters, neither subgroup correlates well with
the aggregate of all posts. All of these users rank within the top 1,000 for
all types of posts. This just indicates that the question answerers don't
completely dominate the questioners.

These observations confirm what we found looking at the quintiles and the graphs.
Both of these groups look very different from each other, and from the aggregate
of the two.

Let's break down the groups into those who only post questions, those who only
post answers, and those who do both. That should give us more insight into the
types of participation.

Analyzing Social Data Participation

[254]

Looking at those who only post questions
We can get the users who only post answers fairly easily, and then running the
previous analyses on that subset is also not difficult. Let's see how this will work.
Look at the following code:

user=> (def qs (filter #(zero? (:count (:a %))) users))

user=> (def q-counts

 (map (d/sum-count :q)

 (d/quantile-on 5 #(:rank (:q %)) qs)))

user=> (def total (reduce + 0 q-counts))

user=> (count qs)

780460

user=> q-counts

(969148 272085 156092 156092 156092)

user=> (map #(float (/ % total)) q-counts)

(0.566916 0.15915973 0.09130809 0.09130809 0.09130809)

So first we filtered for only users who post no answers. This leaves us with 49
percent of the total number of users, so this is really an extremely large group
of StackOverflow users.

However, the interesting part is that their distribution is more uniform. The most
active quintile has posted less than two-thirds of the questions. The following graph
makes that clear:

Chapter 9

[255]

The ratios for these are much different than we've seen so far. This group is much
less driven by a few users. But when you think about it, this makes sense. Many
people who come to StackOverflow only post one question, and that's the extent
of their interaction. In fact, the bottom three quintiles only post one question and
no answers. That's almost 33 percent of the total number of users.

Let's see how this compares to those who post only answers.

Looking at those who only post answers
Getting the users who only post answers will be almost exactly like the process
we just went through. However, this time we'll switch questions and answers,
of course. Look at the following code:

user=> (def as (filter #(zero? (:count (:q %))) users))

user=> (def a-counts (map (d/sum-count :a)

 (d/quantile-on 5 #(:rank (:a %)) as)))

user=> (def total (reduce + 0 a-counts))

user=> (count as)

375667

user=> (float (/ (count as) (count users)))

0.23561831

user=> a-counts

(1413820 116198 75134 75134 75131)

user=> (map #(float (/ % total)) a-counts)

(0.80540407 0.06619396 0.042801227 0.042801227 0.042799518)

This time, we're working with a group roughly half the size of those who post
only questions, roughly a quarter of the entire group of users. And the distribution
of the top quintile is much closer to what we'd expect from the 80/20 rule.

Again, notice that the last few quintiles appear to have users who have only posted
one answer. In fact, about 16 percent of the total number of users have posted no
questions and only one answer. This seems to be one of the most curious groups,
and trying to get more interaction out of them would be a priority (as I'm sure it
has been for StackExchange).

Analyzing Social Data Participation

[256]

The graph for this, shown following this paragraph, is somewhat between the last
graph (for those who ask only questions) and the first few graphs. The first quintile
is about 80 percent, but the rest don't taper off as much as they sometimes do.

Now let's look at the breakdown for the rest of the users, those who've posted both
questions and answers.

Looking at those who post both questions and
answers
The predicate needed to select those users who have posted both questions and
answers will be slightly different than what we've seen in the last two sections.
However, once we have those users, the analysis will be the same. The only
wrinkle will be that we'll get the distribution for both questions and answers.

We'll get the users who answer both using a slightly more complicated predicate,
which we will page to remove. Look at the following code:

user=> (def both (remove #(or (zero? (:count (:q %)))

 (zero? (:count (:a %))))

 users))

user=> (count both)

438261

Now we'll also need to compute the values for both the questions and the answers.
First, let's see what the questions look like:

Chapter 9

[257]

user=> (def bq-counts

 (map (d/sum-count :q)

 (d/quantile-on 5 #(:rank (:q %)) both)))

user=> (def total (reduce + 0 bq-counts))

user=> bq-counts

(3450712 730467 335892 160458 87649)

user=> (map #(float (/ % total)) bq-counts)

(0.72415173 0.1532927 0.07048887 0.033673033 0.018393647)

The graph that follows makes clear that the ratios on this are more like the
distribution that we'd expect:

Looking at the numbers for the answers from this group, we again seem to be
following a very rough approximation of the 80/20 rule. Look at the following code:

user=> (def ba-counts

 (map (d/sum-count :a)

 (d/quantile-on 5 #(:rank (:a %)) both)))

user=> (def total (reduce + 0 ba-counts))

user=> ba-counts

(8564601 740590 270367 122164 87649)

user=> (map #(float (/ % total)) ba-counts)

(0.8752454 0.075683385 0.027629714 0.01248435 0.008957147)

Analyzing Social Data Participation

[258]

And the following is the graph for this data:

So the group who has posted both questions and answers seem to be more balanced
and have a more typical interaction with the website.

Another way of looking at this data is to look at how the number of questions each
user posts by the number of answers each posts. This gives us an indication of how
active users are in each type of activity. Look at the following graph:

Chapter 9

[259]

This graph makes clear that typically users engage in one type of activity or another,
and there's not as much cross-over as you might have expected. Also, the scales of
the axes are a bit deceiving: the y axis is over 16 times larger than the x axis.

Now that we have a better understanding of the way that users are interacting with
StackOverflow and the ways that they're generating content, let's look at that content
and see if we can figure out what makes a good answer and what doesn't.

Finding the up-voted answers
Answers can be rated in a couple of different ways. The community can vote an
answer up or down, and the original poster can accept an answer. For the purposes
of this demonstration, we'll look at accepted answers; however, both metrics might
be useful and interesting to explore.

We'll look at how we might automatically recognize answers that will be accepted.

On the one hand, this would be very useful to do. If the original poster forgets
to accept an answer, the website could prompt them with a possible solution.
Also, the site could send the poster an e-mail when someone posts an answer
that should be considered.

But on the other hand, acceptable answers probably don't share common linguistic
features that any kind of algorithm could latch on to in order to identify potential
solutions. I'm doubtful that we'll be able to train an algorithm to identify
acceptable answers.

Still, let's try and see how well we can actually do.

Processing the answers
There are over 18 million posts at this point. We can always work on the full data set
eventually, but to get started, let's pull out a sample of the data. To make things easier,
I've uploaded a random sample of 100,000 answers on http://www.ericrochester.
com/mastering-clj-data/data/post-sample-100000.json.gz. These have been
transformed into the data structure that we'll use everywhere.

You can download these with curl and decompress it with gzip as follows:

$ curl -O http://www.ericrochester.com/mastering-clj-data/data/
post-sample-100000.json.gz
$ gunzip post-sample-100000.json.gz

http://www.ericrochester.com/mastering-clj-data/data/post-sample-100000.json.gz
http://www.ericrochester.com/mastering-clj-data/data/post-sample-100000.json.gz

Analyzing Social Data Participation

[260]

We'll put the code for this section into the src/social_so/post.clj file, and at
the top we'll add the following namespace declaration:

(ns social-so.post
 (:require [clojure.java.io :as io]
 [clojure.data.json :as json]
 [social-so.data :as d]
 [social-so.utils :as u]
 [social-so.xml :as x]))

To represent the data that we'll work with, we'll use the PostInfo record type.
Look at the following code:

(defrecord PostInfo
 [id post-type body-text score accepted-for])

The interesting fields here are body-text, which contains the answer's text, stripped
of HTML, and accepted-for, which is nil if the post isn't accepted or contains the
question's ID, if the post was accepted for its question.

This is a flat data record, so it's easy to load the JSON data into these structures.
Look at the following code:

(defn load-post-infos [filename]
 (with-open [r (io/reader filename)]
 (doall
 (->> (json/read r :key-fn keyword)
 (map map->PostInfo)
 (map #(assoc % :post-type (keyword (:post-type %))))))))

And now we can read the data on the REPL, assuming we've aliased this namespace
to p. Look at the following code:

user=> (def s (p/load-post-infos "post-sample-100000.json"))

user=> (count s)

100000

user=> (count (filter :accepted-for s))

21250

user=> (count (remove :accepted-for s))

78750

user=> (pprint (first s))

{:id 1146880,

 :post-type :a,

 :body-text

Chapter 9

[261]

 "But while processing i cancelled the transaction. WP - Basically,
 if it was a transaction, and you canceled it before it finished,
 then whatever had started would have been undone. What your
 database looks like now should be the same as it looked before the
 UPDATE.",

 :score 0,

 :accepted-for nil}

Looking at these briefly, we can see that just over 20 percent of the posts in the
sample were accepted.

Predicting the accepted answer
Now that the data is in a usable form, let's turn our attention to categorizing the
posts. To do this, we'll use MALLET (http://mallet.cs.umass.edu/). We saw
MALLET before in Chapter 3, Topic Modeling – Changing Concerns in the State of the
Union Addresses, on topic modeling. That's usually the task that this library is used
for. However, it also provides an implementation of a number of classification
algorithms, and we'll use one of those now.

Over the course of this chapter, we'll categorize the posts as what MALLET calls
instances. This will divide them into categories based on features, or clues within
each instance. We'll use MALLET to take each post, create an instance from it, identify
its features and categories, and finally use those to train a classifier. We can later use
this classifier on new posts.

Setting up
We'll use a new namespace for this code. Open the file src/social_so/nlp.clj
and add the following namespace declaration to the top of the file:

(ns social-so.nlp
 (:import [cc.mallet.types Instance InstanceList]
 [cc.mallet.pipe
 Input2CharSequence TokenSequenceLowercase
 CharSequence2TokenSequence SerialPipes
 Target2Label FeatureSequence2FeatureVector
 TokenSequenceRemoveStopwords
 TokenSequence2FeatureSequence]
 [cc.mallet.pipe.iterator ArrayDataAndTargetIterator]
 [cc.mallet.classify NaiveBayes NaiveBayesTrainer Trial]
 [cc.mallet.classify.evaluate ConfusionMatrix]))

That's a lot of imports. But really, that's the most complicated that this code will be.
MALLET does a lot of the heavy lifting for us.

Analyzing Social Data Participation

[262]

In the code to come, we'll refer to this in the REPL with the n prefix. To make
this available, execute the following line (after the user=> prompt) in your
REPL environment:

user=> (require '[social-so.nlp :as n])

Now we're ready to start filling in the blanks.

Creating the InstanceList object
MALLET represents each input as an Instance object. Instance objects contain
their data, a target label, name, and other metadata.

MALLET works on collections of Instance objects as an InstanceList, which is
just a collection of Instance objects. All the instances in the list are processed using
the same pipe of transformations.

Each step in the pipe changes one property of each Instance object in the list.
For example, one pipe (CharSequence2TokenSequence) tokenizes the input,
and another (Target2Label) creates an index of the target labels.

The following figure illustrates this process:

For the features in the documents and their labels, the InstanceList also maintains
alphabets. These are indexes from the input strings to integers. The integers serve
to distinguish the inputs and also act as indexes in arrays. This allows MALLET
to work with frequencies as an array, which saves both space and processing time.
The trick is that all of the Instance objects being processed must share the same
alphabet. The InstanceList makes sure that they do.

For our processing, to make clear what transformations we'll use, we'll define them
all in a function named make-pipe. The following is that function:

(defn make-pipe []
 (SerialPipes.
 [(Target2Label.)
 (Input2CharSequence. "UTF-8")
 (CharSequence2TokenSequence.

Chapter 9

[263]

 #"\p{L}[\p{L}\p{P}]+\p{L}")
 (TokenSequenceLowercase.)
 (TokenSequenceRemoveStopwords. false false)
 (TokenSequence2FeatureSequence.)
 (FeatureSequence2FeatureVector.)]))

What's happening here? Let's take the steps apart.

1.	 Target2Label builds the alphabet for the Instance objects' target property.
2.	 Input2CharSequence reads the input from a string, file, or URL named in

the data property and replaces it with the resource's content.
3.	 CharSequence2TokenSequence tokenizes the string in the data property.
4.	 TokenSequenceLowercase lowercases the tokens in the data property.
5.	 TokenSequenceRemoveStopwords filters out stop words (common words)

from the tokens in the data.
6.	 TokenSequence2FeatureSequence creates the alphabet of tokens and

convert the sequence of tokens to a sequence of feature indexes.
7.	 FeatureSequence2FeatureVector converts the sequence of feature indexes

to a vector for a bag-of-words approach.

So, at the end of this pipeline, each document will be represented by a vector
indicating how many times each feature appears in that document. Features can
be almost anything, but usually they are words that appear in the document or
metadata (author, date, tags) associated with that document. This is the format
that the classifiers—as well as many other machine learning and natural language
algorithms—expect.

This handles the processing of the Instance objects, but before we can do that,
we'll need to convert the PostInfo objects into Instance objects.

MALLET has a number of classes that do this from more primitive data types.
They take some kind of collection of primitive inputs and iterate over the Instance
objects they represent. In our case, we'll use ArrayDataAndTargetIterator.
This iterates over two string arrays. One contains each input's data, and the other
contains each input's target.

We'll wrap creating this with the function post-info-iterator. This uses the
accepted-tag function to decide whether the post was accepted or not and tag
it appropriately. Look at the following code:

(defn accepted-tag [post-info]
 (if (:accepted-for post-info) "accepted" "not"))
(defn post-info-iterator [post-infos]

Analyzing Social Data Participation

[264]

 (ArrayDataAndTargetIterator.
 (into-array (map :body-text post-infos))
 (into-array (map accepted-tag post-infos))))

Once we have these functions, we can use them to populate an InstanceList
that will run all the documents through the transformation pipeline that we
defined earlier. Look at the following code:

(defn post-info-instances [post-infos]
 (doto (InstanceList. (make-pipe))
 (.addThruPipe (post-info-iterator post-infos))))

Now we're ready. Let's pick up with the PostInfo sample that we extracted
earlier and bound to s in the Processing the answers section. This contains a sequence
of PostInfo instances. In the REPL, we can create an InstanceList using the
functions that we just defined as follows:

user=> (def ilist (n/post-info-instances s))

Now we can think about how we're going to use these documents to train and test
a classifier.

Training sets and Test sets
Now that we've processed our data into a format that MALLET can use, we'll divide
the input corpus into a test set and a training set. We can use different relative sizes
for each, but often we'll train on more documents than we'll test on.

MALLET's InstanceList class has a split method, but we'll define a thin wrapper
over it to make it easier to use. MALLET's split method takes an array listing the
proportions of the total for each group. Since we only want two groups that completely
divide the input, we can pass in the proportion for one group and compute the value
of the other group's proportion. We'll also return a hash-map indicating which of the
output lists is for testing and which is for training.

The following is the split-sets function that acts as the wrapper:

(defn split-sets [test-ratio ilist]
 (let [split-on (double-array [test-ratio (- 1.0 test-ratio)])
 [test-set training-set] (.split ilist split-on)]
 {:test test-set, :training training-set}))

And we can use the following on the command line to divide the input:

user=> (def tt-sets (n/split-sets 0.2 ilist))

Now we're ready to use these for training and testing.

Chapter 9

[265]

Training
Before we can use a classifier, we have to train it on the training set that we
just created.

For this example, we'll create a Naive Bayesian classifier. Again, we'll just create
a thin wrapper function. In this case, it's not that significantly simpler than creating
the Bayesian trainer and calling it on the data. However, it will allow us to use the
trainer without having to tease out which MALLET packages we have to import.
This allows us to require our social-so.nlp namespace into the REPL and
execute the entire process.

The following is the wrapper:

(defn bayes-train [ilist] (.train (NaiveBayesTrainer.) ilist))

And we can use the following in the REPL to get a trained Bayesian classifier:

user=> (def bayes (n/bayes-train (:training tt-sets)))

That's it. We've trained our classifier. Now let's see how to use it.

Testing
To test the classifier, MALLET provides a Trial class that encapsulates running
a classifier over some inputs that are already tagged. It provides counts over how
accurate the classifier is and calculates statistics to show how well it does.

To make it easier to load the development environment and to use this class, we'll
create a factory function for it as follows:

(defn trial [classifier ilist] (Trial. classifier ilist))

And now let's use this function at the REPL as follows:

user=> (def trial (n/trial bayes (:test tt-sets)))

Well, great. Now what can we do with this?

Evaluating the outcome
There are several factors to consider when evaluating a classifier's ability to identify
inputs as belonging to category X. Let's consider what they are and see how we can
get them from the Trial object.

Analyzing Social Data Participation

[266]

First, we need to think about the classifier's precision or positive predictive value
(PPV). This takes into account how many items the classifier incorrectly included
in category X, and it's given by the ratio of the true positives with all labeled
positive. In our case, that means the number of items that were correctly identified
as accepted divided by all of those identified as accepted. You can get this using
the getPrecision method, as follows:

user=> (.getPrecision trial "accepted")

0.2837067983289024

So we can see that it correctly identified the accepted rows rather poorly.

The next number that we need to consider is the classifier's recall. This is sometimes
referred to as its sensitivity or true positive rate (TPR). This is the percentage of
all positives that it found, and it's found by dividing the true positives by the true
positives and the false negatives. MALLET exposes this with the getRecall method
as follows:

user=> (.getRecall trial "accepted")

0.1808716707021792

In this case, the recall is actually worse than the precision, which is saying something.

Next, we'll consider the accuracy (ACC) of the classifier. This is the ratio of true
classifications, both positive and negative, to the total number of items. This is
rendered from the getAccuracy method. Look at the following code:

user=> (.getAccuracy trial)

0.73655

Presumably, this classifier's precision and recall are better when identifying
not-accepted answers. Let's test that as follows:

user=> (.getPrecision trial "not")

0.8052052743709334

user=> (.getRecall trial "not")

0.881159420289855

These results aren't great. A simple baseline that classifies everything as not accepted
would actually score slightly better than this (80 percent). The criteria involved in
accepting an answer don't appear to be captured by the simple token features that
we've used here.

Chapter 9

[267]

The performance here is likely because not accepted is the default state for an
answer, and the status of most answers.

There's one final number that we want to pay attention to. The F1 score is a measure
of the classifier's accuracy. This combines the precision and recall into a single number
ranging from 0 (poor) to 1 (perfect). Look at the following code:

user=> (.getF1 trial "accepted")

0.22090788111784712

Again, we can see that the classifier doesn't do a good job.

We can get more detailed information about how well the classifier did by looking
at its confusion matrix. This is a matrix that breaks down how many items are
predicated to be in both categories, and how many actually are.

MALLET has a ConfusionMatrix class for displaying these charts. We'll again wrap
that class in a function to make it easier to call. Look at the following code:

(defn confusion-matrix [trial] (str (ConfusionMatrix. trial)))

This generates the confusion matrix and returns it as a string. Let's call this and print
the matrix out as follows:

user=> (println (n/confusion-matrix trial))

Confusion Matrix, row=true, column=predicted accuracy=0.73655

 label 0 1 |total

 0 not 13984 1886 |15870

 1 accepted 3383 747 |4130

Now we can see where the numbers came from. Rows are the actual classes, and
columns are how the classifier predicted the classes. The true positives in the lower
right-hand side are much smaller than the total number of positives in the bottom
row. On the other hand, the true negatives in the upper left-hand side are the
majority of the total number of negatives in the top row.

Naive Bayesian classifiers don't perform well here, but it's possible (although
unlikely) that other classifiers might. It's also possible that adding more metadata
as features might help. For example, the length of time between when the question
was posted and when the answer was posted might be fruitful. Other features that
might help are the length of the answer or the answerer's reputation. Reputation
is the points awarded for accepted answers, though, so including them introduces
circularity – we'd be training directly on what we're attempting to classify.

Analyzing Social Data Participation

[268]

Summary
However the results of the last experiment, we can see that there's a lot of information
embedded in social networks. Depending on the nature of the network, we can have
different kinds of interactions and different kinds of data in the network.

In the final chapter, which is next, we'll look at whether analyzing financial data
and using machine learning to examine news documents help predict the future
of stock prices.

Modeling Stock Data
Automated stock analysis has gotten a lot of press recently. High-frequency trading
firms are a flashpoint. People either believe that they're great for the markets and
increasing liquidity, or that they're precursors to the apocalypse. Smaller traders
have also gotten into the mix in a slower fashion. Some sites, such as Quantopian
(https://www.quantopian.com/) and AlgoTrader (http://www.algotrader.ch/)
provide services that allow you to create models for automated trading. Many others
allow you to use automated analysis to inform your trading decisions.

Whatever your view of this phenomena, it's an area with a lot of data begging
to be analyzed. It's also a nice domain in which to experiment with some analysis
and machine learning techniques.

For this chapter, we're going to look for relationships between news articles and
stock prices in the future.

In the course of this chapter, we will cover the following topics:

•	 Learn about financial data analysis
•	 Set up our project and acquire our data
•	 Prepare the data
•	 Analyze the text
•	 Analyze the stock prices
•	 Learn patterns in both text and stock prices with neural networks
•	 Use this system to predict the future
•	 Talk about the limitations of these systems

Modeling Stock Data

[270]

Learning about financial data analysis
Finance has always relied heavily on data. Earnings statements, forecasting, and
portfolio management are just some of the areas that make use of data to quantify
their decisions. Because of this, financial data analysis and its related field, financial
engineering, are extremely broad fields that are difficult to summarize in a short
amount of space.

However, lately, quantitative finance, high-frequency trading, and similar fields have
gotten a lot of press and really come into their own. As I mentioned, some people hate
them and the added volatility that the markets seem to have. Others maintain that they
bring the necessary liquidity that helps the market function better.

All of these fields apply statistical or machine learning methods to financial data.
Some of these techniques can be quite simple. Others are more sophisticated. Some
of these analyses are used to inform a human analyst or manager to make better
financial decisions. Others are used as inputs to automated algorithmic processes
that operate with varying degrees of human oversight, but perhaps with little to
no intervention.

For this chapter, we'll focus on adding information to the human analyst's repertoire.
We'll develop a simple machine learning system to look at past, current, and future
stock prices, alongside the text of news articles, in order to identify potentially
interesting articles that may indicate future fluctuations in stock price. These articles,
with the possible future price vector, could provide important information to an
investor or analyst attempting to decide how to shuffle his/her money around.
We'll talk more about the purpose and limitations of this system toward the end
of the chapter.

Setting up the basics
Before we really dig into the project and the data, we need to prepare. We'll set
up the code and the library, and then we'll download the data.

Setting up the library
First, we'll need to initialize the library. We can do this using Leiningen 2
(http://leiningen.org/) and Stuart Sierra's reloaded plugin for it (https:
//github.com/stuartsierra/reloaded). This will initialize the development
environment and project.

Chapter 10

[271]

To do this, just execute the following command at the prompt (I've named the
project financial in this case):

lein new reloaded financial

Now, we can specify the libraries that we'll need to use. We can do this in the
project.clj file. Open it and replace its current contents with the following lines:

(defproject financial "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.5.1"]
 [org.clojure/data.xml "0.0.7"]
 [org.clojure/data.csv "0.1.2"]
 [clj-time "0.6.0"]
 [me.raynes/fs "1.4.4"]
 [org.encog/encog-core "3.1.0"]
 [enclog "0.6.3"]]
 :profiles
 {:dev {:dependencies [[org.clojure/tools.namespace "0.2.4"]]
 :source-paths ["dev"]}})

The primary library that we'll use is Enclog (https://github.com/jimpil/
enclog). This is a Clojure wrapper around the Java library Encog (http://www.
heatonresearch.com/encog), which is a machine learning library, including
classes for artificial neural networks.

We now have the basics in place. We can get the data at this point.

Getting the data
We'll need data from two different sources. To begin with, we'll focus on getting
the stock data.

In this case, we're going to use the historical stock data for Dominion Resources,
Inc. They're a power company that operates in the eastern United States. Their
New York Stock Exchange symbol is D. Focusing on one stock like this will reduce
possible noise and allow us to focus on the simple system that we'll be working on
in this chapter.

To download the stock data, I went to Google Finance (https://finance.google.
com/). In the search box, I entered NYSE:D. On the left-hand side menu bar, there is
an option to download Historical prices. Click on it.

Modeling Stock Data

[272]

In the table header, set the date range to be from Sept 1, 1995 to Jan 1, 2001.
Refer to the following screenshot as an example:

If you look at the lower-right corner of the screenshot, there's a link that reads
Download to spreadsheet. Click on this link to download the data. By default,
the filename is d.csv. I moved it into a directory named d inside my project folder
and renamed it to d-1995-2001.csv.

We'll also need some news article data to correlate with the stock data. Freely
available news articles are difficult to come by. There are good corpora available
for modest fees (several hundred dollars). However, in order to make this exercise
as accessible as possible, I've limited the data to what's freely available.

At the moment, the best collection appears to be the journalism segment of the Open
American National Corpus (http://www.anc.org/data/oanc/). The American
National Corpus (ANC) is a collection of texts from a variety of registers and genres
that are assembled for linguistic research. The Open ANC (OANC) is the subset
of the ANC that is available for open access downloading. The journalism genre is
represented by articles from Slate (http://www.slate.com/). This has some benefits
and introduces some problems. The primary benefit is that the data will be quite
manageable. It means that we won't have a lot of documents to use for training and
testing, and we'll need to be pickier about what features we pull from the documents.
We'll see how we need to handle this later.

To download the dataset, visit the download page at http://www.anc.org/data/
oanc/download/ and get the data in your preferred format, either a TAR ball or a
ZIP file. I decompressed that data into the d directory. It created a directory named
OANC-GrAF that contained the data.

http://www.anc.org/data/oanc/download/
http://www.anc.org/data/oanc/download/

Chapter 10

[273]

Your d directory should now look something as follows:

Getting prepared with data
As usual, now we need to clean up the data and put it into a shape that we can work
with. The news article dataset particularly will require some attention, so let's turn
our attention to it first.

Working with news articles
The OANC is published in an XML format that includes a lot of information and
annotations about the data. Specifically, this marks off:

•	 Sections and chapters
•	 Sentences
•	 Words with part-of-speech lemma
•	 Noun chunks
•	 Verb chunks
•	 Named entities

However, we want the option to use raw text later when the system is actually being
used. Because of that, we will ignore the annotations and just extract the raw tokens.
In fact, all we're really interested in is each document's text—either as a raw string
or a feature vector—and the date it was published. Let's create a record type for this.

We'll put this into the types.clj file in src/financial/. Put this simple namespace
header into the file:

(ns financial.types)

This data record will be similarly simple. It can be defined as follows:

(defrecord NewsArticle [title pub-date text])

Modeling Stock Data

[274]

So let's see what the XML looks like and what we need to do to get it to work with
the data structures we just defined.

The Slate data is in the OANC-GrAF/data/written_1/journal/slate/ directory.
The data files are spread through 55 subdirectories as follows:

$ ls d/OANC-GrAF/data/written_1/journal/slate/

. .. 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 27 28 29 3 30
31 32

33 34 35 36 37 38 39 4 40 41 42 43 44 45 46 47 48 49 5 50 51 52 53 54 55
6 7 8

9

Digging in deeper, each document is represented by a number of files. From the
slate directory, we can see the following details:

$ ls 1/Article247_99*

1/Article247_99-hepple.xml 1/Article247_99-s.xml

1/Article247_99.txt

1/Article247_99-logical.xml 1/Article247_99-vp.xml

1/Article247_99-np.xml 1/Article247_99.anc

So we can see the different annotations files are the files with the xml extension.
The ANC file contains metadata about the file. We'll need to access that file for the
date and other information. But most importantly, there's also a .txt file containing
the raw text of the document. That will make working with this dataset much easier!

But let's take a minute to write some functions that will help us work with each
document's text and its metadata as an entity. These will represent the knowledge
we've just gained about the directory and file structure of the OANC corpus.

We'll call this file src/financial/oanc.clj, and its namespace header should look
as follows:

(ns financial.oanc
 (:require [clojure.data.xml :as xml]
 [clojure.java.io :as io]
 [clojure.string :as str]
 [me.raynes.fs :as fs]
 [clj-time.core :as clj-time]
 [clj-time.format :as time-format])
 (:use [financial types utils]))

Chapter 10

[275]

If we examine the directory structure that the OANC uses, we can see that it's divided
into a clear hierarchy. Let's trace that structure in the slate directory that we discussed
earlier, OANC-GrAF/data/written_1/journal/slate/. In this example, written_1
represents a category, journal is a genre, and slate is a source. We can leverage this
information as we walk the directory structure to get to the data files.

Our first bit of code contains four functions. Let's list them first, and then we can talk
about them:

(defn list-category-genres [category-dir]
 (map #(hash-map :genre % :dirname (io/file category-dir %))
 (fs/list-dir category-dir)))
(defn list-genres [oanc-dir]
 (mapcat list-category-genres (ls (io/file oanc-dir "data"))))
(defn find-genre-dir [genre oanc-dir]
 (->> oanc-dir
 list-genres
 (filter #(= (:genre %) genre))
 first
 :dirname))
(defn find-source-data [genre source oanc-dir]
 (-> (find-genre-dir genre oanc-dir)
 (io/file source)
 (fs/find-files #".*\.anc")))

The functions used in the preceding code are described as follows:

•	 The first of these functions, list-category-genre, takes a category
directory (OANC-GrAF/data/written_1/) and returns the genres that it
contains. This could be journal, as in our example here, or fiction, letters,
or a number of other options. Each item returned is a hash map of the full
directory and the name of the genre.

•	 The second function is list-genres. It lists all of the genres within the
OANC data directory.

•	 The third function is find-genre-dir. It looks for one particular genre
and returns the full directory for it.

•	 Finally, we have find-source-data. This takes a genre and source and
lists all of the files with an anc extension.

Modeling Stock Data

[276]

Using these functions, we can iterate over the documents for a source. We can see
how to do that in the next function, find-slate-files, which returns a sequence
of maps pointing to each document's metadata ANC file and to its raw text file,
as shown in the following code:

(defn find-slate-files [oanc-dir]
 (map #(hash-map :anc % :txt (chext % ".txt"))
 (find-source-data "journal" "slate" oanc-dir)))

Now we can get at the metadata in the ANC file. We'll use the clojure.data.
xml library to parse the file, and we'll define a couple of utility functions to make
descending into the file easier. Look at the following code:

(defn find-all [xml tag-name]
 (lazy-seq
 (if (= (:tag xml) tag-name)
 (cons xml (mapcat #(find-all % tag-name) (:content xml)))
 (mapcat #(find-all % tag-name) (:content xml)))))
(defn content-str [xml]
 (apply str (filter string? (:content xml))))

The first utility function, find-all, lazily walks the XML document and returns all
elements with a given tag name. The second function, content-str, returns all the
text children of a tag.

Also, we'll need to parse the date from the pubDate elements. Some of these have a
value attribute, but this isn't consistent. Instead, we'll parse the elements' content
directly using the clj-time library (https://github.com/clj-time/clj-time),
which is a wrapper over the Joda time library for Java (http://joda-time.
sourceforge.net/). From our end, we'll use a few functions.

Before we do, though, we'll need to define a date format string. The dates inside the
pubDate functions look like 2/13/97 4:30:00 PM. The formatting string, then, should
look as follows:

(def date-time-format
 (time-format/formatter "M/d/yyyy h:mm:ss a"))

We can use this formatter to pull data out of a pubDate element and parse it into an
org.joda.time.DateTime object as follows:

(defn parse-pub-date [pub-date-el]
 (time-format/parse date-time-format (content-str pub-date-el)))

Unfortunately, some of these dates are about 2000 years off. We can normalize the
dates and correct these errors fairly quickly, as shown in the following code:

Chapter 10

[277]

(defn norm-date [date]
 (cond
 (= (clj-time/year date) 0)
 (clj-time/plus date (clj-time/years 2000))
 (< (clj-time/year date) 100)
 (clj-time/plus date (clj-time/years 1900))
 :else date))

With all of these parts in place, we can write a function that takes the XML from an
ANC file and returns date and time for the publication date as follows:

(defn find-pub-date [anc-xml]
 (-> anc-xml
 (find-all :pubDate)
 first
 parse-pub-date
 norm-date))

The other piece of data that we'll load from the ANC metadata XML is the title.
We get that from the title element, of course, as follows:

(defn find-title [anc-xml]
 (content-str (first (find-all anc-xml :title))))

Now, loading a NewsArticle object is straightforward. In fact, it's so simple that
we'll also include a version of this that reads in the text from a plain file. Look at
the following code:

(defn load-article [data-info]
 (let [{:keys [anc txt]} data-info
 anc-xml (xml/parse (io/reader anc))]
 (->NewsArticle (find-title anc-xml)
 (find-pub-date anc-xml)
 (slurp txt))))
(defn load-text-file [data filename]
 (->NewsArticle filename date (slurp filename)))

And using these functions to load all of the Slate articles just involves repeating the
earlier steps, as shown in the following commands:

user=> (def articles (doall (map oanc/load-article

 (oanc/find-slate-files

 (io/file "d/OANC-GrAF")))))

user=> (count articles)

4531

Modeling Stock Data

[278]

user=> (let [a (first articles)]

 [(:title a) (:pub-date a) (count (:text a))])

["Article247_4" #<DateTime 1999-03-09T07:47:21.000Z> 3662]

The last command in the preceding code just prints the title, publication date,
and the length of the text in the document.

With these functions in place, we now have access to the article dataset.

Working with stock data
Loading the news articles was complicated. Fortunately, the stock price data is in
comma-separated values (CSV) format. Although not the richest data format, it is
very popular, and clojure.data.csv (https://github.com/clojure/data.csv/)
is an excellent library for loading it.

As I just mentioned, though, CSV isn't the richest data format. We will want to
convert this data into a richer format, so we'll still create a record type and some
wrapper functions to make it easier to work with the data as we read it in.

The data in this will closely follow the columns in the CSV file that we downloaded
from Google Finance earlier. Open src/financial/types.clj again and add the
following line to represent the data type for the stock data:

(defrecord StockData [date open high low close volume])

For the rest of the code in this section, we'll use a new namespace. Open the src/
financial/cvs_data.clj file and add the following namespace declaration:

(ns financial.csv-data
 (:require [clojure.data.csv :as csv]
 [clojure.java.io :as io]
 [clj-time.core :as clj-time]
 [clj-time.format :as time-format])
 (:use [financial types utils]))

Just like the Slate news article data, this data also has a field with a date, which we'll
need to parse. Unlike the Slate data, this value is formatted differently. Glancing at
the first few lines of the file gives us all the information that we need, as follows:

Date,Open,High,Low,Close,Volume
29-Dec-00,33.47,33.56,33.09,33.50,857800
28-Dec-00,33.62,33.62,32.94,33.47,961200
27-Dec-00,33.50,33.97,33.19,33.56,992400
26-Dec-00,32.88,33.69,32.88,33.62,660600

Chapter 10

[279]

To parse dates in this format (29-Dec-00), we can use the following format
specification:

(def date-format (time-format/formatter "d-MMM-YY"))

Now, we build on this and a few other function—which you can find in the code
download in the file src/financial/utils.clj—to create a StockData instance
from a row of data, as shown in the following code:

(defn row->StockData [row]
 (let [[date open high low close vol] row]
 (->StockData (time-format/parse date-format date)
 (->double open)
 (->double high)
 (->double low)
 (->double close)
 (->long vol))))

This is all straightforward. Basically, every value in the row must be converted
to a native Clojure/Java type, and then all of those values are used to create the
StockData instance.

To read in an entire file, we just do this for every row returned by the CSV library
as follows:

(defn read-stock-prices [filename]
 (with-open [f (io/reader filename)]
 (doall (map row->StockData (drop 1 (csv/read-csv f))))))

The only wrinkle is that we have to drop the first row, since it's the header.

And now, to load the data, we just call the following function (we've aliased the
financial.csv-data namespace to csvd):

user=> (def sp (csvd/read-stock-prices "d/d-1995-2001.csv"))

user=> (first sp)

#financial.types.StockData{:date #<DateTime 2000-12-29T00:00:00.000Z>,

 :open 33.47, :high 33.56, :low 33.09, :close 33.5, :volume 857800}

user=> (count sp)

1263

Everything appears to be working correctly. Let's turn our attention back to the
news article dataset and begin analyzing it.

Modeling Stock Data

[280]

Analyzing the text
Our goal for analyzing the news articles is to generate a vector space model of the
collection of documents. This attempts to pull the salient features for the documents
into a vector of floating-point numbers. Features can be words or information from
the documents' metadata encoded for the vector. The feature values can be 0 or 1
for presence, an integer for raw frequency, or the frequency scaled in some form.

In our case, we'll use the feature vector to represent a selection of the tokens in a
document. Often, we can use all the tokens, or all the tokens that occur more than
once or twice. However, in this case, we don't have a lot of data, so we'll need to
be more selective in the features that we include. We'll consider how we select these
in a few sections.

For the feature values, we'll use a scaled version of the token frequency called term
frequency-inverse document frequency (tf-idf). There are good libraries for this,
but this is a basic metric in working with free text data, so we'll take this algorithm
apart and implement it ourselves for this chapter. That way, we'll understand it better.

For the rest of this section, we'll put the code into src/financial/nlp.clj.
Open this file and add the following for the namespace header:

(ns financial.nlp
 (:require [clojure.string :as str]
 [clojure.set :as set])
 (:use [financial types utils]))

With this in place, we can now start to pick the documents apart.

Analyzing vocabulary
The first step for analyzing a document, of course, is tokenizing. We'll use a simple
tokenize function that just pulls out sequences of letters or numbers, including any
single punctuation marks.

Now, we can use this function to see what words are present in the text and how
frequent they are. The core Clojure function, frequencies, makes this especially
easy, but we do still need to pull out the data that we'll use.

For each step, we'll first work on raw input, and then we'll write an additional
utility function that modifies the :text property of the input NewsArticle.

Chapter 10

[281]

To tokenize the text, we'll search for the matches for a regular expression and
convert the output to lowercase. This won't work well for a lot of cases—contractions,
abbreviations, and hyphenations in English, for example—but it will take care of
simple needs. Look at the following code:

(defn tokenize [string]
 (map str/lower-case (re-seq #"[\p{L}\p{M}]+" string)))
(defn tokenize-text [m] (update-in m [:text] tokenize))

The actual tokenization is handled by the tokenize function. The tokenize-text
function takes a NewsArticle instance and replaces its raw text property with the
sequence of tokens generated from the text.

The function token-freqs replaces the sequence of tokens with a mapping of
their frequencies. It uses the Clojure core function frequencies as shown in the
following code:

(defn token-freqs [m] (update-in m [:text] frequencies))

We can then take a sequence of NewsArticle instances that contain the token
frequencies and generate the frequencies for the entire corpus. The function
corpus-freqs takes care of that. Look at the following code:

(defn corpus-freqs [coll]
 (reduce #(merge-with + %1 %2) {} (map :text coll)))

Let's use the following functions to get the frequencies:

•	 We'll get the tokens for each article. Then we'll print out the first ten tokens
from the first article, as follows:
user=> (def tokens (map nlp/tokenize-text articles))

user=> (take 10 (:text (first tokens)))

("harmonic" "convergences" "you" "re" "right" "maxim" "s" "strong"
"point" "is")

•	 Now, we'll get the frequencies of the tokens in each document and print out
ten of the token-frequency pairs from the first document, as follows:
user=> (def freqs (map nlp/token-freqs tokens))

user=> (take 10 (:text (first freqs)))

(["sillier" 1] ["partly" 2] ["mags" 4] ["new" 1] ["advisor" 1]
["a" 13] ["worry" 1] ["unsentimental" 1] ["method" 1] ["pampering"
1])

Modeling Stock Data

[282]

•	 Finally, we can reduce those down into one set of frequencies over the entire
collection. I've pretty-printed out the top ten most frequent tokens. Look at
the following code:

user=> (def c-freqs (nlp/corpus-freqs freqs))

user=> (take 10 (reverse (sort-by second c-freqs)))

(["the" 266011]

 ["of" 115973]

 ["to" 107951]

 ["a" 101017]

 ["and" 96375]

 ["in" 74558]

 ["s" 66349]

 ["that" 64447]

 ["is" 49311]

 ["it" 38175])

We can see that the most frequent words are common words with little semantic
value. In the next section, we'll see what we need to do with them.

Stop lists
The words identified as the most common words in the code in the previous section
are often referred to as function words, because they're performing functions in
the sentence, but not really carrying meaning. For some kinds of analyses, such as
grammatical and stylistic analyses, these are vitally important. However, for this
particular chapter, we're more interested in the documents' content words, or the
words that carry semantic meaning.

To filter these out, the typical technique is to use a stop word list. This is a list of
common words to remove from the list of tokens.

If you type english stop list into Google, you'll get a lot of workable stop
lists. I've downloaded one from http://jmlr.org/papers/volume5/lewis04a/
a11-smart-stop-list/english.stop. Download this file too, and place it into
the d directory along with the data files.

To load the stop words, we'll use the following function. It simply takes the
filename and returns a set of the tokens in it.

http://jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list/english.stop

Chapter 10

[283]

(defn load-stop-words [filename]
 (set (tokenize (slurp filename))))

Using this set directly is easy enough on raw strings. However, we'll want a function
to make calling it on NewsArticle instances easier. Look at the following code:

(defn remove-stop-words [stop-words m]
 (update-in m [:text] #(remove stop-words %)))

Now, we can load those words and remove them from the lists of tokens. We'll start
with the definition of tokens that we just created. Look at the following code:

user=> (def stop-words (nlp/load-stop-words "d/english.stop"))

user=> (def filtered

 (map #(nlp/remove-stop-words stop-words %) tokens))

user=> (take 10 (:text (first filtered)))

("harmonic" "convergences" "maxim" "strong" "point" "totally"
"unsentimental" "ungenteel" "sendup" "model")

First, we can tell that we've removed a number of tokens that weren't really adding
much. You, re, and s were all taken out, along with others.

Now let's regenerate the corpus frequencies with the following code:

user=> (def freqs (map nlp/token-freqs filtered))

user=> (def c-freqs (nlp/corpus-freqs freqs))

user=> (pprint (take 10 (reverse (sort-by second c-freqs))))

(["clinton" 8567]

 ["times" 6528]

 ["people" 6351]

 ["time" 6091]

 ["story" 5645]

 ["president" 5223]

 ["year" 4539]

 ["york" 4516]

 ["world" 4256]

 ["years" 4144])

This list seems much more reasonable. It focuses on Bill Clinton, who was the US
President during this period.

Modeling Stock Data

[284]

Another way of dealing with this is to use a white list. This would be a set of words
or features that represent the entire collection of those that we want to deal with.
We could implement this as a simple function, keep-white-list, as shown in the
following code:

(defn keep-white-list [white-list-set m]
 (over :text #(filter white-list-set %) m))

This function seems academic now, but we'll need it before we're done.

Hapax and Dis Legomena
Now, let's look at a graph of the frequencies:

That's a lot of words that don't occur very much. This is actually expected. A few
words occur a lot, but most just don't.

We can get another view of the data by looking at the log-log plot of the frequencies
and ranks. Functions that represent a value raised to a power should be linear in
these line charts. We can see that the relationship isn't quite on a line in this plot,
but it's very close. Look at the following graph:

Chapter 10

[285]

In fact, let's turn the frequency mapping around in the following code to look at how
often different frequencies occur:

user=> (def ffreqs (frequencies (vals c-freqs)))

user=> (pprint (take 10 (reverse (sort-by second ffreqs))))

([1 23342]

 [2 8814]

 [3 5310]

 [4 3749]

 [5 2809]

 [6 2320]

 [7 1870]

 [8 1593]

 [9 1352]

 [10 1183])

Modeling Stock Data

[286]

So there are more than 23,000 words that only occur once and more than 8,000 words
that only occur twice. Words like these are very interesting for authorship studies.
The words that are found only once are referred to as hapax legomena, from Greek
for "said once", and words that occur only twice are dis legomena.

Looking at a random 10 hapax legomena gives us a good indication of the types of
words these are. The 10 words are: shanties, merrifield, cyberguru, alighting, roomfor,
sciaretto, borisyeltsin, vermes, fugs, and gandhian. Some of these appear to be unusual
or rare words. Others are mistakes or two words that were joined together for some
reason, possibly by a dash.

Unfortunately, they do not contribute much to our study, since they don't occur
often enough to contribute to the results statistically. In fact, we'll just get rid of any
words that occur less than 10 times. This will form a second stop list, this time of
rare words. Let's generate this list. Another, probably better performing, option is to
create a whitelist of the words that aren't rare, but we can easily integrate this with
our existing stop-list infrastructure, so we'll do it by just creating another list here.

To create it from the frequencies, we'll define a make-rare-word-list function.
It takes a frequency mapping and returns the items with fewer than n occurrences,
as follows:

(defn make-rare-word-list [freqs n]
 (map first (filter #(< (second %) n) freqs)))

We can now use this function to generate the d/english.rare file. We can use this
file just like we used the stop list to remove items that aren't common and to further
clean up the tokens that we'll have to deal with (you can also find this file in the code
download for this chapter):

(with-open [f (io/writer "d/english.rare")]
 (binding [*out* f]
 (doseq [t (sort (nlp/make-rare-word-list c-freqs 8))]
 (println t))))

Now, we have a list of more than 48,000 tokens that will get removed. For perspective,
after removing the common stop words, there were more than 71,000 token types.

Chapter 10

[287]

We can now use that just like we did for the previous stop word list. Starting from
filtered, which we defined in the earlier code after removing the common stop
words, we'll now define filtered2 and recalculate the frequencies as follows:

user=> (def rare (nlp/load-stop-words "d/english.rare"))

user=> (def filtered2

 (map #(nlp/remove-stop-words rare %) filtered))

user=> (take 10 (:text (first filtered2)))

("maxim" "strong" "point" "totally" "unsentimental" "sendup" "model"
"hustler" "difference" "surprise")

So we can see that the process has removed some uncommon words, such as harmonic
and convergences.

This process is pretty piecemeal so far, but it's one that we would need to do multiple
times, probably. Many natural language processing and text analysis tasks begin by
taking a text, converting it to a sequence of features (tokenization, normalization, and
filtering), and then counting them. Let's package that into one function as follows:

(defn process-articles
 ([articles]
 (process-articles
 articles ["d/english.stop" "d/english.rare"]))
 ([articles stop-files]
 (let [stop-words (reduce set/union #{}
 (map load-stop-words stop-files))
 process (fn [text]
 (frequencies
 (remove stop-words (tokenize text))))]
 (map #(over :text process %) articles))))

The preceding function allows us to call it with just a list of articles. We can also
specify a list of stop word files. The entries in all the lists are added together to create
a master list of stop words. Then the articles' text is tokenized, filtered by the stop
words, and counted. Doing it this way should save on creating and possibly hanging
on to multiple lists of intermediate processing stages that we won't ever use later.

Modeling Stock Data

[288]

Now we can skip to the document-level frequencies with the following command:

user=> (def freqs (nlp/process-articles articles))

Now that we've filtered these out, let's look at the graph of token frequencies again:

The distribution stayed the same, as we would expect, but the number of words
should be more manageable.

Again, we can see from the following log-log plot that the previous power
relationship—almost, but not quite, linear—holds for this frequency distribution
as well:

Chapter 10

[289]

Another way to approach this would be to use a whitelist, as we mentioned earlier.
We could load files and keep only the tokens that we've seen before by using the
following function:

(defn load-articles [white-list-set articles]
 (let [process (fn [text]
 (frequencies
 (filter white-list-set (tokenize text))))]
 (map #(over :text process %) articles)))

Again, this will come up later. We'll find this necessary when we need to load unseen
documents to analyze.

Modeling Stock Data

[290]

TF-IDF
The frequencies as we currently have them will present a couple of difficulties.
For one thing, if we have a document with 100 words and one with 500 words,
we can't really compare the frequencies. For another thing, if a word occurs three
times in every document, say in a header, it's not as interesting as one that occurs
in only a few documents three times and nowhere else.

In order to work around both of these, we'll use a metric called term frequency
-inverse document frequency (TF-IDF). This combines some kind of document
-term frequency with the log of the percentage of documents that contain that term.

For the first part, term frequency, we could use a number of metrics. We could use
a boolean 0 or 1 to show absence or presence. We could use the raw frequency or
the raw frequency scaled. In this case, we're going to use an augmented frequency
that scales the raw frequency by the maximum frequency of any word in the
document. Look at the following code:

(defn tf [term-freq max-freq]
 (+ 0.5 (/ (* 0.5 term-freq) max-freq)))
(defn tf-article [article term]
 (let [freqs (:text article)]
 (tf (freqs term 0) (reduce max 0 (vals freqs)))))

The first function in the preceding code, tf, is a basic augmented frequency equation
and takes the raw values as parameters. The second function, tf-article, wraps tf
but takes a NewsArticle instance and a word and generates the TF value for that pair.

For the second part of this equation, the inverse document frequency, we'll use
the log of the total number of documents divided by the number of documents
containing that term. We'll also add one to the last number to protect against
division-by-zero errors.

The idf function calculates the inverse document frequency for a term over the
given corpus, as shown in the following code:

(defn has-term?
 ([term] (fn [a] (has-term? term a)))
 ([term a] (not (nil? (get (:text a) term)))))
(defn idf [corpus term]
 (Math/log
 (/ (count corpus)
 (inc (count (filter (has-term? term) corpus))))))

Chapter 10

[291]

The IDF for a word won't change between different documents. Because of this,
we can calculate all of the IDF values for all the words represented in the corpus
once and cache them. The following two functions take care of this scenario:

(defn get-vocabulary [corpus]
 (reduce set/union #{} (map #(set (keys (:text %))) corpus)))
(defn get-idf-cache [corpus]
 (reduce #(assoc %1 %2 (idf corpus %2)) {}
 (get-vocabulary corpus)))

The first function in the preceding code, get-vocabulary, returns a set of all the
words used in the corpus. The next function, get-idf-cache, iterates over the
vocabulary set to construct a mapping of the cached IDF values. We'll use this
cache to generate the TF-IDF values for each document.

The tf-idf function combines the output of tf and idf (via get-idf-cache) to
calculate the TF-IDF value. In this case, we simply take the raw frequencies and
the IDF value and multiply them together as shown in the following code:

(defn tf-idf [idf-value freq max-freq]
 (* (tf freq max-freq) idf-value))

This works at the most basic level; however, we'll want some adapters to work
with NewsArticle instances and higher-level Clojure data structures.

The first level up will take the IDF cache and a map of frequencies and return a new
map of TF-IDF values based off of those frequencies. To do this, we have to find the
maximum frequency represented in the mapping. Then we can calculate the TF-IDF
for each token type in the frequency map as follows:

(defn tf-idf-freqs [idf-cache freqs]
 (let [max-freq (reduce max 0 (vals freqs))]
 (into {}
 (map #(vector (first %)
 (tf-idf
 (idf-cache (first %))
 (second %)
 max-freq))
 freqs))))

Modeling Stock Data

[292]

The tf-idf-freqs function does most of the work for us. Now we can build on
it further. First, we'll write tf-idf-over to calculate the TF-IDF values for all the
tokens in a NewsArticle instance. Then we'll write tf-idf-cached, which takes
a cache of IDF values for each word in a corpus. It returns those documents with
their frequencies converted if TF-IDF. Finally, tf-idf-all will call this function
on a collection of NewsArticle instances as shown in the following code:

(defn tf-idf-over [idf-cache article]
 (over :text (fn [f] (tf-idf-freqs idf-cache f)) article))
(defn tf-idf-cached [idf-cache corpus]
 (map #(tf-idf-over idf-cache %) corpus))
(defn tf-idf-all [corpus]
 (tf-idf-cached (get-idf-cache corpus) corpus))

We've implemented TF-IDF, but now we should play with it some more to get a
feel for how it works in practice.

We'll start with the definition of filtered2 that we implemented in the Hapax and
Dis Legomena section. This section contained the corpus of NewsArticles instances,
and the :text property is the frequency of tokens without the tokens from the stop
word lists of both rare and common words.

Now we can generate the scaled TF-IDF frequencies for these articles by calling
tf-idf-all on them. Once we have that, we can compare the frequencies for
one article. Look at the following code:

(def tf-idfs (nlp/tf-idf-all filtered2))
(doseq [[t f] (sort-by second (:text (first filtered2)))]
 (println t \tab f \tab (get (:text (first tf-idfs)) t)))

The table's too long to reproduce here (176 tokens). Instead, I'll just pick 10
interesting terms to look at more closely. The following table includes not only
each term's raw frequencies and TF-IDF scores, but also the number of documents
that they are found in:

Token Raw frequency Document frequency TF-IDF
sillier 1 8 3.35002
politics 1 749 0.96849
british 1 594 1.09315
reason 2 851 0.96410
make 2 2,350 0.37852
military 3 700 1.14842
time 3 2,810 0.29378

Chapter 10

[293]

Token Raw frequency Document frequency TF-IDF
mags 4 18 3.57932
women 11 930 1.46071
men 13 856 1.66526

The tokens in the preceding table are ordered by their raw frequencies. However,
notice how badly that correlates with the TF-IDF.

•	 First, notice the numbers for "sillier" and "politics". Both are found once
in this document. But "sillier" probably doesn't occur much in the entire
collection, and it has a TF-IDF score of more than 3. However, "politics"
is common, so it scores slightly less than 1.

•	 Next, notice the numbers for "time" (raw frequency of 3) and "mags" (4).
"Time" is a very common word that kind of straddles the categories of
function words and content words. On the one hand, you can be using
expressions like "time after time", but you can also talk about "time" as an
abstract concept. "Mags" is a slangy version of "magazines", and it occurs
roughly the same number of times as "time". However, since "mags" is rarely
found in the entire corpus (only 18 times), it has the highest TF-IDF score
of any word in this document.

•	 Finally, look at "women" and "men". These are the two most common words
in this article. However, because they're found in so many documents,
both are given TF-IDF scores of around 1.5.

What we wind up with is a measure of how important a term is in that document.
Words that are more common have to appear more to be considered significant.
Words that are found in only a few documents can be important with just one
mention.

As a final step before we move on, we can also write a utility function that loads
a set of articles, given a token whitelist and an IDF cache. This will be important }
after we've trained the neural network when we're actually using it. That's because
we will need to keep the same features, in the same order, and to scale between
the two runs. Thus, it's important to scale by the same IDF values. Look at the
following code:

(defn load-text-files [token-white-list idf-cache articles]
 (tf-idf-cached idf-cache
 (load-articles token-white-list articles)))

The preceding code will allow us to analyze documents and actually use our neural
network after we've trained it.

Modeling Stock Data

[294]

Inspecting the stock prices
Now that we have some hold on the textual data, let's turn our attention to the stock
prices. Previously, we loaded it from the CSV file using the financial.csv-data/
read-stock-prices function. Let's reload that data with the following commands:

user=> (def stock (csvd/read-stock-prices "d/d-1995-2001.csv"))

user=> (count stock)

1263

Let's start with a graph that shows how the closing price has changed over the years:

So the price started in the low 30s, fluctuated a bit, and finished in the low 20s.
During that time, there were some periods where it climbed rapidly. Hopefully,
we'll be able to capture and predict those changes.

Merging text and stock features
Before we can start to train the neural network, however, we'll need to figure out
how we need to represent the data and what information the neural network needs
to have.

Chapter 10

[295]

The code for this section will be present in the src/financial/nn.clj file. Open it
up and add the following namespace header:

(ns financial.nn
 (:require [clj-time.core :as time]
 [clj-time.coerce :as time-coerce]
 [clojure.java.io :as io]
 [enclog.nnets :as nnets]
 [enclog.training :as training]
 [financial.utils :as u]
 [financial.validate :as v])
 (:import [org.encog.neural.networks PersistBasicNetwork]))

However, we first need to be clear about what we're trying to do. That will allow
us to properly format and present the data.

Let's break it down like this: for each document, based on the previous stock prices
and the tokens in a document, can we predict the direction of future stock prices.

So one set of features will be the tokens in the document. We already have those
identified earlier. Other features can represent the stock prices. Since we're actually
interested in the direction of the future prices, we can actually use the difference
between the stock prices of a point in the past and of the day the article was published.
Offhand, we're not sure what time frames will be helpful, so we can select several and
include them all.

The output is another difference in stock prices. Again, we don't know at what
difference in time we'll be able to get good results (if any!), so we'll try to look out
into the future at various distances.

For the ranges of time, we'll use some standard time periods, gradually getting further
and further out: a day, two days, three days, four days, five days, two weeks, three
weeks, one month, two months, six months, and one year. Days that fall on a weekend
have the value of the previous business day. Months will be 30 days, and a year is 365
days. This way, the time periods will be more or less regular.

We can represent those periods in Clojure using the clj-time library (https://
github.com/clj-time/clj-time) as follows:

(def periods [(time/days 1)
 (time/days 2)
 (time/days 3)
 (time/days 4)
 (time/days 5)
 (time/days (* 7 2))

Modeling Stock Data

[296]

 (time/days (* 7 3))
 (time/days 30)
 (time/days (* 30 2))
 (time/days (* 30 6))
 (time/days 365)])

For the features, we'll use the difference in price over those periods. The easiest way
to get at that information would be to index the stock prices by date and then access
the prices from there using some utility functions. Let's see what that would look like:

(defn index-by [key-fn coll]
 (into {} (map #(vector (key-fn %) %) coll)))
(defn get-stock-date [stock-index date]
 (if-let [price (stock-index date)]
 price
 (if (<= (time/year date) 1990)
 nil
 (get-stock-date
 stock-index (time/minus date (time/days 1))))))

We can use index-by to index a collection of anything into a map. The other
function, get-stock-date, then attempts to get the StockData instance from
the index. If it doesn't find one, it tries the previous day. If it ever works its way
before 1990, it just returns nil.

Now let's get the input feature vector from a NewsArticle instance and the
stock index.

The easy part of this will be getting the token vector. Getting the price vector will
be more complicated, and we'll be doing almost the same thing twice: once looking
backward from the article for the input vector, and once looking forward from the
article for the output vector. Since generating these two vectors will be mostly the
same, we'll write a function that does it and accepts function parameters for the
differences, as shown in the following code:

(defn make-price-vector [stock-index article date-op]
 (let [pub-date (:pub-date article)
 base-price (:close (get-stock-date stock-index pub-date))
 price-feature
 (fn [period]
 (let [date-key (date-op pub-date period)]
 (if-let [stock (get-stock-date stock-index date-key)]
 (/ (price-diff base-price (:close stock))
 base-price)
 0.0)))]
 (vec (remove nil? (map price-feature periods)))))

Chapter 10

[297]

The make-price-vector function gets the base price from the day the article was
published. It then gets the day offsets that we outlined previously and finds the closing
stock price for each of those days. It finds the difference between the two prices.

The parameter for this function is date-op, which gets the second day to find the
stock price for. It will either add the period to the article's publish date or subtract
it, depending on whether we're looking in the future or the past.

We can build on this to make the input vector, which will contain the token vector
and the price vector, as shown in the following code:

(defn make-feature-vector [stock-index vocab article]
 (let [freqs (:text article)
 token-features (map #(freqs % 0.0) (sort vocab))
 price-features (make-price-vector
 stock-index article time/minus)]
 (vec (concat token-features price-features))))

For the token vector, we get the frequencies from the NewsArticle instance in the
order given by the vocab collection. This should be the same across all NewsArticle
instances. We call make-price-vector to get the prices for the offset days. Then we
concatenate all of them into one (Clojure) vector.

The following code gives us the input vector. However, we'll also want to have
future prices as the output vector.

(defn make-training-vector [stock-index article]
 (vec (make-price-vector stock-index article time/plus)))

The preceding code is just a thin wrapper over make-price-vector. It calls this
function with the appropriate arguments to get the future stock price.

Finally, we'll write a function that takes a stock index, a vocabulary, and a collection
of articles. It will generate both the input vector and the expected output vector, and
it will return both stored in a hash map. The code for this function is given as follows:

(defn make-training-set [stock-index vocab articles]
 (let [make-pair
 (fn [article]
 {:input (make-feature-vector stock-index vocab article)
 :outputs (zipmap periods
 (make-training-vector
 stock-index article))})]
 (map make-pair articles)))

This code will make it easy to generate a training set from the data that we've been
working with.

Modeling Stock Data

[298]

Analyzing both text and stock features
together with neural nets
We now have everything ready to perform the analysis, except for the engine that
will actually attempt to learn the training data.

In this instance, we're going to try to train an artificial neural network to learn the
direction of change of the future prices of the input data. In other words, we'll try
to train it to tell whether the price will go up or down in the near future. We want to
create a simple binary classifier from the past price changes and the text of an article.

Understanding neural nets
As the name implies, artificial neural networks are machine learning structures
modeled on the architecture and behavior of neurons, such as the ones found
in the human brain. Artificial neural networks come in many forms, but today
we're going to use one of the oldest and most common forms: the three-layer
feed-forward network.

We can see the structure of a unit outlined in the following figure:

Activation Function

Y1 Y2 Y3 Y4

X1 X2 X3 X4

W1 W2 W3 W4

Each unit is able to realize linearly separable functions. That is, functions that divide
their n-dimensional output space along a hyperplane. To emulate more complex
functions, however, we have to go beyond a single unit and create a network of them.

Chapter 10

[299]

These networks have three layers: an input layer, a hidden layer, and an output
layer. Each layer is made up of one or more neurons. Each neuron takes one or more
inputs and produces an output, which is broadcast to one or more outputs. The inputs
are weighted, and each input is weighted individually. All of the inputs are added
together, and the sum is passed through an activation function that normalizes and
scales the input. The inputs are x, the weights are w, and the outputs are y.

A simple schematic of this structure is shown as follows:

The network operates in a fairly simple manner, following the process called feed
forward activation. It is described as follows:

1.	 The input vector is fed to the input layer of the network. Depending on how
the network is set up, these may be passed through the activation function
for each neuron. This determines the activation of each neuron, or the
amount of signal coming into it from that channel and how excited it is.

2.	 The weighted connections between the input and hidden layers are then
activated and used to excite the nodes in the hidden layer. This is done by
getting the dot product of the input neurons with the weights going into
each hidden node. These values are then passed through the activation
function for the hidden neurons.

Modeling Stock Data

[300]

3.	 The forward propagation process is repeated again between the hidden
layer and the output layer.

4.	 The activation of the neurons in the output layer is the output of the network.

Initially, the weights are usually randomly selected. Then the weights are trained using
a variety of techniques. A common one is called backward propagation. This involves
computing the error between the output neurons and the desired outputs. This error
is then fed backward into the network. This is used to dampen some weights and
increase others. The net effect is to nudge the output of the network slightly closer
to the target.

Other training methods work differently, but attempt to do the same thing: each
tries to modify the weights so that the outputs are close to the targets for each
input in the training set.

Note that I said close to the targets. When training a neural network, you don't
want the outputs to align exactly. When this happens, the network is said to have
memorized the training set. This means that the network will perform great for
inputs that it has seen previously. But when it encounters new inputs, it is brittle
and won't perform well. It has learned the training set too well, but it won't be
able to generalize that information to new inputs.

Setting up the neural net
Implementing neural networks isn't difficult—and doing so is a useful exercise
—but there are good libraries for neural networks available for Java and Clojure,
and we'll choose one of those here. For our case, we'll use the Encog Machine Learning
Framework (http://www.heatonresearch.com/encog), which specializes in neural
networks. But we'll primarily be using it through the Clojure wrapper library Enclog
(https://github.com/jimpil/enclog/). We'll build on these to write some facade
functions over Enclog to customize this library for our processes.

The first step is to create the neural network. The make-network function takes the
vocabulary size and the number of hidden nodes (the variables for our purposes),
but it defines the rest of the parameters internally, as follows:

(defn make-network [vocab-size hidden-nodes]
 (nnets/network (nnets/neural-pattern :feed-forward)
 :activation :sigmoid
 :input (+ vocab-size (count periods))
 :hidden [hidden-nodes]
 :output 1))

Chapter 10

[301]

The number of input nodes is a function of the size of the vocabulary in addition to
the number of periods. (Periods is a non-dynamic, namespace-level binding. We may
want to rethink that and make it dynamic to provide a little more flexibility, but for
our needs right now this is sufficient.) And since from the output node, we just want a
single value indicating whether the stock went up or down, we hardcoded the number
of output nodes to one. However, the number of hidden nodes that will perform best
is an open question. We'll include that as a parameter so we can experiment with it.

For the output, we'll need a way to take our expected output and run it through the
same activation function as that output. That way, we can directly compare the two
as follows:

(defn activated [act-fn output]
 (let [a (double-array 1 [output]))]
 (.activationFunction act-fn a 0 1)
 a)

The activated function takes an object that implements org.encog.engine.
network.activation.ActivationFunction. We can get these from the neural
network. It then puts the output for a period into a double array. The activation
function scales this and then returns the array.

We will also need to prepare the data and insert it into a data structure that Encog
can work with. The primary transformation in the following code is pulling out the
output prices for the period that we're training for:

(defn build-data [nnet period training-set]
 (let [act (.getActivation nnet (dec (.getLayerCount nnet)))
 output (mapv #(activated act (get (:outputs %) period))
 training-set)]
 (training/data :basic-dataset
 (mapv :input training-set)
 output)))

There's nothing particularly exciting here. We pull the inputs and the outputs for
one time period out into two separate vectors and create a dataset with them.

Training the neural net
Now we have a neural network, but it's been initialized to random weights, so it
will perform very, very poorly. We'll need to train it immediately.

Modeling Stock Data

[302]

To do this, we will put the training set together with the network in the following code.
Like the previous functions, train-for accepts the parameters that we're interested in
being able to change, uses reasonable defaults for ones that we'll probably leave alone,
but hardcodes parameters that we won't touch. The function creates a trainer object
and calls its train method. Finally, we return the neural network, which was modified
in place.

(defn train-for
 ([nnet period training-set]
 (train-for nnet period training-set 0.01 500 []))
 ([nnet period training-set error-tolerance
 iterations strategies]
 (let [data (build-data nnet period training-set)
 trainer (training/trainer :back-prop
 :network nnet
 :training-set data)]
 (training/train
 trainer error-tolerance iterations strategies)
 nnet)))

When it is time to validate a network, it will be a little easier to combine creating a
network with training it into one function. We'll do that with make-train as follows:

(defn make-train [vocab-size hidden-count period coll]
 (let [nn (make-network vocab-size hidden-count)]
 (train-for nn period coll 0.01 100 [])
 nn))

This allows us to train a new neural network in one call.

Running the neural net
Once we've trained the network, we'll want to run it on new inputs, ones for which
we don't know the expected output. We can do that with the run-network function.
This takes a trained network and an input collection and returns an array of the
network's output as follows:

(defn run-network [nnet input]
 (let [input (double-array (count input) input)
 output (double-array (.getOutputCount nnet))]
 (.compute nnet input output)
 output))

Chapter 10

[303]

We can use this function in one of two ways:

•	 We can pass it data that we don't know the output for to see how
the network classifies it.

•	 We can pass it input data that we do know the output for in order
to evaluate how well this network performs against data it hasn't
previously encountered.

We'll see an example of the latter in the next section.

Validating the neural net
We can build on all of these functions to validate the neural network, train it, test it
against new data, and evaluate how it does.

The test-on utility gets the sum of squared errors (SSE) for running the network
on a test set for a given period. This trains and runs a neural network on the training
set for a given period. It then returns the SSE for that run as follows:

(defn test-on [nnet period test-set]
 "Runs the net on the test set and calculates the SSE."
 (let [act (.getActivation nnet (dec (.getLayerCount nnet)))
 sqr (fn [x] (* x x))
 error (fn [{:keys [input outputs]}]
 (- (first (activated act (get outputs period)))
 (first (run-network nnet input))))]
 (reduce + 0.0 (map sqr (map error test-set)))))

Running this train-test combination once gives us a very rough idea of how the
network will perform with those parameters. However, if we want a better idea,
we can use K-fold cross-validation. This divides the data into K equally sized
groups. It then runs the train-test combination K times. Each time, it holds out a
different partition as a test group. It trains the network on the rest of the partitions
and evaluates it on the test group. The errors returned by test-on can be averaged
to get a better idea of how the network will perform with those parameters.

For example, say we use K=4. We'll divide the training input into four groups:
A, B, C, and D. This means that we'll train the following four different classifiers:

•	 We'll use A as the test set and train on B, C, and D combined
•	 We'll use B as the test set and train on A, C, and D
•	 We'll use C as the test set and train on A, B, and D
•	 We'll use D as the test set and train on A, B, and C

Modeling Stock Data

[304]

For each classifier, we'll compute the SSE, and we'll take the mean of these to see
how well the classification should perform with those parameters, on average.

I've defined the K-fold function in the validate.clj file at src/
financial/. You can see how it's implemented in the source code
download. I've also aliased that namespace to v in the current namespace.

The x-validate function will perform the cross validation on the inputs. The other
function, accum, is simply a small utility that accumulates the error values into
a vector. The v/k-fold function expects the accumulator to return the base case
(an empty vector) when called with no arguments, as shown in the following code:

(defn accum
 ([] [])
 ([v x] (conj v x)))
(defn x-validate [vocab-size hidden-count period coll]
 (v/k-fold #(make-train vocab-size hidden-count period %)
 #(test-on %1 period %2)
 accum
 10
 coll))

The x-validate function uses make-train to create a new network and train it.
It tests that network using test-on, and it gathers the resulting error rates together
with accum.

Finding the best parameters
We've defined this system to let us play with a couple of parameters. First, we can
set the number of neurons in the hidden layer. Also, we can set the time period that
we are to predict for into the future (one day, two days, three days, a month, a year,
and so on).

These parameters create a large space of possible solutions, some of which may
perform better than others. We can make some educated guesses about some of
the parameters—that it will predict the movement of the stock prices one day in
the future better than it will the movement a year in the future—but we don't
know that, and we should perhaps try it out.

These parameters present a search space. It would take too much time to try all
the combinations, but we can try a number of them, just to see how they perform.
This lets us tune the neural network to get the best results.

Chapter 10

[305]

To explore this search space, let's first define what happens when we test one point,
one combination of time period in the future, and a number of hidden nodes.
The explore-point function will take care of this in the following code:

(defn explore-point [vocab-count period hidden-count training]
 (println period hidden-count)
 (let [error (x-validate
 vocab-count hidden-count period training)]
 (println period hidden-count
 '=> \tab (u/mean error) \tab error)
 (println)
 error))

The preceding code basically just takes the information and passes it to x-validate.
It returns that function's return value (error) too. Along the way, it prints out a
number of status messages. Then we need something that walks over the search
space, calls explore-point, and collects the error rates returned for the output.

We'll define a dynamic global called *hidden-counts* that defines the range of
hidden neuron counts that we're interested in exploring. The periods value that
we bound earlier will define the search space for how far to look into the future.

To make sure that we don't train the networks too specifically on the data that we're
using to find the best parameters, we'll first break the data into a development set
and a test set. We'll use the development set to try out the different parameters, further
breaking it up into a training set and a development-test set. At the end, we'll take the
best set of parameters and test those against the test set that we originally held out.
This will give us a better idea of how the neural network performs. The final-eval
function will perform this last set and return the information that it creates.

The following function walks over these values and is named explore-params:

(def ^:dynamic *hidden-counts* [5 10 25 50 75])
(defn final-eval [vocab-size period hidden-count
 training-set test-set]
 (let [nnet (make-train
 vocab-size hidden-count period training-set)
 error (test-on nnet period test-set)]
 {:period period
 :hidden-count hidden-count
 :nnet nnet
 :error error}))

(defn explore-params
 ([error-ref vocab-count training]

Modeling Stock Data

[306]

 (explore-params
 error-ref vocab-count training *hidden-counts* 0.2))
 ([error-ref vocab-count training hidden-counts test-ratio]
 (let [[test-set dev-set] (u/rand-split training test-ratio)
 search-space (for [p periods, h hidden-counts] [p h])]
 (doseq [pair search-space]
 (let [[p h] pair,
 error (explore-point vocab-count p h dev-set)]
 (dosync
 (commute error-ref assoc pair error))))
 (println "Final evaluation against the test set.")
 (let [[period hidden-count]
 (first (min-key #(u/mean (second %)) @error-ref))
 final (final-eval
 vocab-count period hidden-count
 dev-set test-set)]
 (dosync
 (commute error-ref assoc :final final))))
 @error-ref))

I've made a slightly unusual design decision in writing explore-params. Instead of
initializing a hash map to contain the period-hidden count pairs and their associated
error rates, I need the caller to pass in a reference containing a hash map. During the
course of the processing, explore-params fills the hash map and finally returns it.

I've done this for one reason: exploring this search space still takes a long time. Over
the course of writing this chapter, I needed to stop the validation, tweak the possible
parameter values, and start it again. Setting up the function this way allowed me to
be able to stop the processing, but still have access to what's happened thus far. I can
look at the values, play around with them, and allow a more thorough examination
of them to influence my decisions about what direction to take.

Predicting the future
Now is the time to bring together everything that we've assembled over the course
of this chapter, so it seems appropriate to start over from scratch, just using the
Clojure source code that we've written over the course of the chapter.

We'll take this one block at a time, loading and processing the data, creating training
and test sets, training and validating the neural network, and finally viewing and
analyzing its results.

Chapter 10

[307]

Before we do any of this, we'll need to load the proper namespaces into the REPL.
We can do that with the following require statement:

user=> (require

 [me.raynes.fs :as fs]

 [financial]

 [financial.types :as t]

 [financial.nlp :as nlp]

 [financial.nn :as nn]

 [financial.oanc :as oanc]

 [financial.csv-data :as csvd]

 [financial.utils :as u])

This will give us access to everything that we've implemented so far.

Loading stock prices
First, we'll load the stock prices with the following commands:

user=> (def stocks (csvd/read-stock-prices "d/d-1996-2001.csv"))

user=> (def stock-index (nn/index-by :date stocks))

The preceding code loads the stock prices from the CSV file and indexes them
by date. This will make it easy to integrate them with the new article data in a
few steps.

Loading news articles
Now we can load the news articles. We'll need two pieces of data from them: the
TF-IDF scaled frequencies and the vocabulary list. Look at the following commands:

user=> (def slate (doall

 (map oanc/load-article

 (oanc/find-slate-files

 (io/file "d/OANC-GrAF")))))

user=> (def corpus (nlp/process-articles slate))

user=> (def freqs (nlp/tf-idf-all corpus))

user=> (def vocab (nlp/get-vocabulary corpus))

This code binds the frequencies as freqs and the vocabulary as vocab.

Modeling Stock Data

[308]

Creating training and test sets
Since we bundled the entire process into one function, merging our two data sources
together into one training set is simple, as shown in the following command:

user=> (def training

 (nn/make-training-set stock-index vocab freqs))

Now, for each article, we have an input vector and a series of output for different
stock prices related to the data.

Finding the best parameters for the neural
network
The training data and the parameters' value ranges are the input for exploring
the network parameter space. Look at the following commands:

user=> (def error-rates (ref {}))

user=> (nn/explore-params error-rates (count vocab) training)

This takes a very long time to run. Actually, I looked at the output it was producing
and realized that it wouldn't be able to predict well beyond a day or two, so I stopped
it after that. Thanks to my decision to pass in a reference, I was able to stop it and still
have access to the results generated by that point.

The output is a mapping from the period and number of hidden nodes to a list of
SSE values generated from each partition in the K-fold cross-validation. A more
meaningful metric would be the average of the errors. We can generate that here
and print out the results as follows:

user=> (def error-means

 (into {}

 (map #(vector (first %) (u/mean (second %)))

 @error-rates)))

user=> (pprint (sort-by second error-means))

([[#<Days P1D> 10] 1.0435393]

 [[#<Days P1D> 5] 1.5253379]

 [[#<Days P1D> 25] 5.0099998]

 [[#<Days P1D> 50] 32.00977]

 [[#<Days P1D> 100] 34.264244]

 [[#<Days P1D> 200] 60.73007]

 [[#<Days P1D> 300] 100.29568])

Chapter 10

[309]

So the squared sum of errors for predicting one day ahead go from about 1 for 10
hidden units to 100 for 300 hidden units. So, based on that, we'll only train a network
to predict one day into the future and to use 10 hidden nodes.

Training and validating the neural network
Actually, training the neural network is pretty easy from our end, but it does take
a while. The following commands should somewhat produce better results than we
saw before, but at the cost of some time. Remember that the training process may not
take this long, but we should probably be prepared.

user=> (def nn (nn/make-network (count vocab) 10))

user=> (def day1 (first nn/periods))

user=> (nn/train-for nn day1 training)

Iteration # 1 Error: 22.025400% Target-Error: 1.000000%

Iteration # 2 Error: 19.332094% Target-Error: 1.000000%

Iteration # 3 Error: 14.241920% Target-Error: 1.000000%

Iteration # 4 Error: 6.283643% Target-Error: 1.000000%

Iteration # 5 Error: 0.766110% Target-Error: 1.000000%

Well, that was quick.

This gives us a trained, ready-to-use neural network bound to the name nn.

Running the network on new data
We can now run our trained network on some new data. Just to have something
to look at, I downloaded 10 articles off the Slate website and saved them to files
in the directory d/slate/. I also downloaded the stock prices for Dominion, Inc.

Now, how would I analyze this data?

Before we really start, we'll need to pull some data from the processes we've
been using, and we'll need to set up some reference values, such as the date of
the documents. Look at the following code:

(def idf-cache (nlp/get-idf-cache corpus))
(def sample-day (time/date-time 2014 3 20 0 0 0))
(def used-vocab (set (map first idf-cache)))

So we get the IDF cache, the date the articles were downloaded on, and the
vocabulary that we used in training. That vocabulary set will serve as the token
whitelist for loading the news articles.

Modeling Stock Data

[310]

Let's see how to get the documents ready to analyze. Look at the following code:

(def articles (doall
 (->> "d/slate/"
 fs/list-dir
 (map #(str "d/slate/" %))
 (map #(oanc/load-text-file sample-day %))
 (nlp/load-text-files used-vocab idf-cache))))

This is a little more complicated than it was when we loaded them earlier. Basically,
we just read the directory list and load the text from each one. Then we tokenize and
filter it before determining the TF-IDF value for each token.

On the other hand, reading the stocks is very similar to what we just did. Look at the
following code:

(def recent-stocks (csvd/read-stock-prices "d/d-2013-2014.csv"))
(def recent-index (nn/index-by :date recent-stocks))

With these in hand, we can put both together to make the input vectors as shown
in the following code:

(def inputs
 (map #(nn/make-feature-vector recent-index used-vocab %)
 articles))

Now let's see how to run the network and see what happens. Look at the following:

user=> (pprint

 (flatten

 (map vec

 (map #(nn/run-network nn %) inputs))))

(0.5046613110846201

 0.5046613110846201

 0.5046613135395166

 0.5046613110846201

 0.5046613110846201

 0.5046613110846201

 0.5046613110846201

 0.5046613110846201

 0.5046613112651592

 0.5046613110846201)

Chapter 10

[311]

These items are very consistent. To quite a few decimal places, they're all
clustered right around 0.5. From the sigmoid function, this means that it
doesn't really anticipate a stock change over the next day.

In fact, this tracks what actually happened fairly well. On March 20, the stock
closed at $69.77, and on March 21, it closed at $70.06. This was a gain of $0.29.

Taking it with a grain of salt
Any analysis like the one presented in this chapter has a number of things that we
need to question. This chapter is no exception.

Related to this project
The main weakness of this project was that it was carried out on far too little data.
This cuts in several ways:

•	 We need articles from a number of data sources
•	 We need articles from a wider range of time
•	 We need more density of articles in the time period

For all of these, there are reasons we didn't address the issues in this chapter.
However, if you plan to take this further, you'd need to figure out some way
around these.

There are several ways to look at the results too. The day we looked at, the results
all clustered close to zero. In fact, this stock if relatively stable, so if it always
indicated little change, then it would always have a fairly low SSE. Large changes
seem to happen occasionally, and the error from not predicting them has a low
impact on the SSE.

Related to machine learning and market
modeling in general
Second, and more importantly, simply putting some stock data into a jar with some
machine learning and shaking it is a risky endeavor. This isn't a get-rich-quick scheme,
and by approaching it so naively, you're asking for trouble. In this case, that means
losing money.

Modeling Stock Data

[312]

For one thing, there's not much noise in news articles, and the relationship between
their content and stock prices is tenuous enough that in general, stock prices may
not be predictable from news reports in the first place, whatever results we achieve
is this study, particularly given how small it is.

Really, to do this well, you need to understand at least two things:

•	 Financial modeling: You need to understand how to model financial
transactions and dynamics mathematically

•	 Machine learning: You need to understand how machine learning works
and how it models things

With this knowledge, you should be able to formulate a better model of how the
stock prices change and which prices you should pay attention to.

But keep in mind, André Christoffer Andersen and Stian Mikelsen have published
a master's thesis in 2012 showing that it's very, very difficult to do better than
buying and holding index funds (http://blog.andersen.im/wp-content/
uploads/2012/12/ANovelAlgorithmicTradingFramework.pdf). So, if you
do try this route, you have a hard, hard task in front of you.

Summary
Over the course of this chapter, we've gotten a hold of some news articles and some
stock prices, and we've managed to train a neural network that projects just a little
into the future. This is a risky thing to put into production, but we've also outlined
what we'd need to learn to do this correctly.

And this is also the end of this book. Thank you for staying with me this far. You've
been a great reader. I hope that you've learned something as we've looked at the 10
data analysis projects that we've covered. If programming and data are both eating
this world, hopefully you've seen how to have fun with both.

Index
Symbols
0.circles 9
0.edges 9
0.egofeat 9
0.feat 9
0.featnames 9
7-zip site

URL 240
80/20 rule

about 239
data, defining 242, 243
data, loading 242, 243
data, obtaining 239
data, ranking 245
data, sorting 245, 246
frequencies, counting 244
looking, at data amount 240
looking, at data format 241, 242
matching 248, 249
patterns, finding of participation 246, 247

μTorrent
URL 240

A
A/B test

conducting 210
experiment, building 212
experiment, planning 210
parameters, of web page 209
results, analyzing 225-227
results, testing 232, 233
results, viewing 223, 224
results, viewing as user 224, 225
statistics, framing 211, 212

test site, building 216, 217
A/B testing

about 207
defining 207-209
implementing 217-221
implementing, on server 214

adjacency list 10
AlgoTrader

URL 269
alternative hypothesis

stating 168-170
Amazon 163
American National Corpus (ANC) 272
answers

accepted answer, predicting 261
processing 259, 260

Apache POI project
URL 181

ArcGIS
about 40
working with 57-61

automated stock analysis 269
average path length metric, social network

graphs 19

B
base map

finding 57
basics, stock data modeling project

data, obtaining 271, 272
library, setting up 270, 271

Bayesian inference 166
Benford's Law

about 125-128
applying, to compound interest 128-131

[314]

case studies 137
failing 134-136

betweenness centrality 21
between-subjects experiment design 208
Big Data 94
bigrams 142
Bing Map 40
BitTorrent

URL 240
breadth-first function 13, 18
breadth-first walk 13
burglary rates

about 178
data, exploring 193
data, obtaining 178-180
Excel files, parsing 181, 182
experiment, conducting 200
raw data, pulling out 182-185
results, interpreting 205
summary statistics, generating 193

C
case studies, Benford's Law 137
centrality metric, social network

graphs 21, 22
CharSequence2TokenSequence 73
Class and communities in a Norwegian

island parish article
URL 8

classification algorithms
error rates, calculating on 151, 152

classifier interface
coding 119

classifier interface, coding
classifying 121
training 121
validating 122

climate change, mapping
about 40
averages, rolling 47
data, downloading 42
data, extracting 42
data, reading 48-50
data, transforming 45, 47
files, downloading 43

files, extracting 44, 45
heat maps, generating with inverse

distance weighting (IDW) 51-55
sample points, interpolating 51-55

Clojure library 10
ClojureScript

data, visualizing with 77-81
setting up 25
URL 11

ClojureScript support
URL 214

closeness centrality 21
clustering coefficient metric, social network

graphs 20
coin tosses

testing 228-232
CSV format 278
comma separated values file. See CSV file
Compojure

about 215
URL 215

compound interest
Benford's Law, applying to 128-131

conditional probability 118
confirmatory data analysis 166
confusion matrix 267
content distribution network (CDN) 78
control page 210
CSV file 67, 94
cumulative distribution 131

D
D3

about 25
data, visualizing with 77-81
URL 25, 78, 99

data
loading, into MALLET 71-77
obtaining 9, 69-71
understanding, in SOTU addresses 64, 65
visualizing, with ClojureScript 77-81
visualizing, with D3 77-81

data analysis 166
data, burglary rates

charts, generating 197-200

[315]

exploring 193
graphs, generating 197-200
obtaining 178-180

data classification, hoaxes
about 118
classifier interface, coding 119
classifier, running 123, 124
results, examining 123, 124

data-driven documents. See D3
data preparation, hoaxes

about 111
data, dividing into test set 117
data, dividing into training set 117
data, reading into sequence of data

records 112, 113
documents, categorizing based on

comments 115
documents, partitioning into directories

based on categories 116
NUFORC comments, splitting out 114, 115

degrees-between function 22
degrees metric, social network graphs 17
degrees of separation metric, social network

graphs 22-24
density metric, social network graphs 16, 17
depth-first walk 13
description 104-107
Dijkstra's algorithm 18
dis legomena 286
double-blind experiments 208

E
Eckert IV projection 56
Edmunds

URL 141
Enclog

URL 271
enlive/html-resource function 69
Enlive library

URL 68
error rates
calculating, on classification

algorithms 151, 152
ESRI 40
experiment, A/B test

building 212

options, for building site 213, 214
planning 210

experiment, burglary rates
alternative hypothesis, stating 201
conducting 200
critical region, determining 203
initial hypothesis, formulating 200
null hypothesis, stating 201
probability, calculating 204
rejection, deciding for null hypothesis 205
significance level, selecting 203
statistical assumptions, identifying in

sample 201
tests appropriateness, determining 202
test statistic, calculating 204

exploration versus exploitation problem 209
exploratory data analysis 166
extract-text method 71

F
Facebook

about 7, 235
URL 8, 237

facebook.tar.gz file 9
features, GIS

geocoding 40
hydrological modeling 40
topological modeling 40
view-shed analysis 40

feature vector functions
creating 146-148

feature vectors
about 143
creating 143-146

FileListIterator function 74
financial data analysis 270
financial modeling 312
First In, First Out (FIFO) queue 13
flipping coins, null hypothesis testing

about 173, 174
alternative hypothesis, stating 174
initial hypothesis, formulating 174
null hypothesis, stating 174
statistical assumptions, identifying in

sample 175
tests appropriateness, determining 175

[316]

force-directed layout 26-30
frequentist approach 166
frequentist inference 166
FS library 44
function words 282
future prediction, stock data modeling

project
about 306
best parameter, finding of neural

network 308
network, running on new data 309-311
neural network, training 309
neural network, validating 309
news articles, loading 307
stock prices, loading 307
test sets, creating 308
training sets, creating 308

G
Gall-Peters projection 56
GDAL

URL 40
geocoding 40
Geographical Information Systems. See GIS
GeoServer

about 40
URL 40

Geospatial Data Abstraction Layer. See
GDAL

GeoTIFF 57
GeoTools

URL 40
get-edges function 12
get-index-links function 69
GIS

overview 39
GitHub 235
Global Summary of the Day

URL 41
GNI data

summarizing 195-197
Goode homolosine projection 56
Google Finance

URL 271

Google Map 40
GPS 39
graph

implementing 10-14
overview 9, 10
visualizing 25

graph implementation
data, loading 15

graph visualization
about 25
ClojureScript, setting up 25
force-directed layout 26-30
hive plot 31-34
pie chart 34-36

gzip utility 44

H
H2 embedded database

URL 214
hapax legomena 286
heat map

generating, inverse distance weighting
(IDW) used 51-55

hive plot 31-34
hoaxes

about 110, 111
data, classifying 118
data, preparing 111, 112

Homebrew
URL 240

hotel review data
experiment, running 158, 159
exploring 141
feature vector functions, creating 146-148
feature vectors, creating 143-146
obtaining 141
POS tagging 146-148
preparing 142
results, cross validating 148-150
results, examining 160, 161
results, improving 163
tokenizing 142, 143

HTML5 Boilerplate template
URL 26

hydrological modeling 40

[317]

I
Incanter

about 52
URL 128

Incanter library
URL 221

Infochimps
about 94
URL 94
URL, for dataset 94

InstanceList object
creating 262-264

Internet Archive
URL 240

inverse distance weighting (IDW)
about 51
used, for generating heat maps 51-55

J
Johnson's algorithm 18
jQuery

URL 78, 99

K
K-fold cross validation 149
knowledge-based social networks

about 237
Quora 237
StackExchange 237
StackOverflow 237

Korma
about 215
URL 215

L
Latent Dirichlet Allocation (LDA) 65, 66
lein-cljsbuild plugin 25
Leiningen 2

URL 43, 214, 236, 270
Leiningen 2 project.clj file 10
LIFO (Last In, First Out) queue 14
LinkedIn

about 7

URL 237
load-topic-dists function 80
Luminus 215
Luminus web framework

URL 214

M
machine learning 312
MAchine Learning for LanguagE Toolkit

(MALLET)
about 111, 261
data, loading into 71-77

map projections
working with 55-57

maximum entropy (maxent) classifiers 156
Mechanical Turk

URL 142
me.raynes file utility library 10
Mercator projection 56
messy data

dealing with 97, 98
metrics, social network graphs

average path length 19
centrality 21, 22
clustering coefficient 20
degrees 17
degrees of separation 22-24
density 16, 17
network diameter 20
paths 18

monotonic function 203

N
naive Bayesian classifiers 157, 158
National UFO Reporting Center.

See NUFORC
network 7
network diameter metric, social network

graphs 20
networking-oriented social networks

about 237
Facebook 237
LinkedIn 237
Sina Weibo 237
Twitter 237

[318]

neural nets
about 298-300
best parameters, finding 304-306
running 302
setting up 300, 301
stock features, analyzing 298
text, analyzing 298
training 301, 302
validating 303, 304

news articles
loading 307
working with 273-277

noir
about 215
URL 215

NUFORC
URL 93, 114

NUFORC comments
splitting out 114, 115

null hypothesis
stating 167-170

null hypothesis process
critical region, determining 172, 173
initial hypothesis, formulating 167
probability, calculating 173
rejection, deciding 173
significance level, selecting 171
tests appropriateness, determining 170, 171
test statistic, calculating 173
using 167

null-hypothesis test 211
null hypothesis testing

about 166
flipping coins 173, 174

O
online-controlled experiments 208
Open ANC (OANC)

about 272
URL 272

OpenNLP library
URL 143

OpinRank Review dataset
URL 141

P
Pareto Principle 239
partition-all function 149
partition function 149
partition-spread function 149
part of speech. See POS
POS annotated unigrams 142
paths metric, social network graphs 18
perform-test function 224
pie chart 34-36
Pinterest 235
POS 147
POS tagging 146-148
prior or assumed probability 118
process-speech-page function 69
project

setting up, for topic modeling 67
p-value 166

Q
Quantopian

URL 269
Quantum GIS

about 40
URL 40

quintiles 248
Quora

URL 237

R
random-controlled experiments 208
ranks, combining

about 252, 253
looking at those who only post answers

255, 256
looking at those who only post questions

254, 255
looking at those who post both questions

and answers 256-259
raw data, burglary rates

about 182-185
data, pivoting 191, 192
data sources, joining 190

[319]

data, transforming 189, 190
data tree, building 185-187
data tree, cutting down 187
implementing 188
missing data, filtering 192
wrapper function, creating 192

read-eval-print loop (REPL) 16
reducers 49
results, A/B test

analyzing 225-227
testing 232, 233
viewing 223, 224
viewing, as user 224, 225

results, burglary rates
interpreting 205

results, hotel review data
cross validating 148-150
error rates, combining 162
examining 160, 161
improving 163

S
scaffolded site 215
select-keys function 221
Selmer

about 215
URL 215

sentiment analysis
overview 140

server
A/B testing, implementing on 214

Simple Logging Facade for Java library
about 10
URL 10

Sina Weibo
URL 237

single-blind experiments 208
Six Degrees of Kevin Bacon game 8
Slate

URL 272
social data participation analysis project

80/20 rule, introducing 239
80/20 rule, matching 248, 249
about 236
analyses, understanding 236
answers, processing 259, 260

InstanceList object, creating 262-264
knowledge-based social networks,

understanding 237-239
looking, for 20 percent of

questioners 249, 250
looking, for 20 percent who answer

questions 250-252
outcome, evaluating 265-267
ranks, combining 252, 253
setting up 261
social network data, understanding 237
test sets 264, 265
training sets 264, 265
up-voted answers, finding 259

social network graphs
measuring 16

social networks
analyzing 8

SOTU 64
SOTU address

about 64
data, understanding 64, 65
graph, for increase in word count 64

Spearman's rank correlation
coefficient 202, 203

StackExchange
URL 235, 237
URL, for periodic data dump 239

StackOverflow
about 235
front page 238
URL 235, 237

Stanford Large Network Dataset Collection
about 9
URL 9

State of the Union. See SOTU
statistics, A/B test

framing 211, 212
stock data

working with 278, 279
stock data modeling project

basics, setting up 270
data, preparing 273
future, predicting 306
stock features analyzing with neutral

nets 298
stock prices, inspecting 294

[320]

text, analyzing 280
text, analyzing with neutral nets 298
text, and stock features merging 294-297
weakness 311
working, with news articles 273-277

stock features
analyzing, with neural nets 298

stock prices
inspecting 294
loading 307

stop lists 282, 283
subdirectories, Luminus project

resources 215
src 215
src/web_ab/models/ 215
src/web_ab/routes/ 215
src/web_ab/views/templates/ 215
test/web_ab/test/ 215

sum of squared errors (SSE) 303

T
tab separated values file. See TSV file
term frequency-inverse document

frequency. See TF-IDF
test-on utility 303
test page 210
tests appropriateness, flipping coins

critical region, determining 175, 176
probability, calculating 176, 177
rejection, deciding for null hypothesis 178
significance level, selecting 175
test statistic, calculating 176, 177

test site, A/B test
building 216, 217

text
analyzing, with neural nets 298

text analysis, stock data modeling project
about 280
dis legomena 286
graph, viewing of frequencies 284-289
hapax legomena 286
stop lists 282, 283
TF-IDF 290-293
vocabulary, analyzing 280, 281

text, and stock features
merging 294-297

text, stock data modeling project
graph, viewing of frequencies 286

TF-IDF 280, 290-293
tf-idf-freqs function 292
tokenizing 142, 143, 280
TokenSequence2FeatureSequence 73
TokenSequenceLowercase 73
TokenSequenceRemoveStopwords 73
tools, for GIS specialists

ArcGIS 40
GDAL 40
GeoServer 40
GeoTools 40
Quantum GIS 40

topic 26
exploring 86-88

topic 42
exploring 89-91

topic 43
exploring 83-86

topic model 65
topic modeling

about 63
overview 65, 66
project, setting up for 67
URLs, for articles 65

topic modeling descriptions 107-110
topics

about 63
exploring 82, 83

topological modeling 40
trigrams 142
TripAdvisor

URL 141
TSV file 94, 142
t-test

coin tosses, testing 228-232
overview 228

t-test function 221
Twitter

about 7, 235
URL 237

type one error 233

[321]

U
UFO data

visualizing 99-104
UFO sightings

data, extracting 95, 96
data, obtaining 94, 95
dealing, with messy data 97, 98

unigrams 142
United Nations Office on Drugs and Crime

URL 178
UNODC crime data

summarizing 193, 195
up-voted answers

finding 259
US National Oceanic and Atmospheric

Administration (NOAA) 41
US Topo Maps 57

V
view-shed analysis 40
visualizations

preparing for 67
vocabulary

analyzing 280, 281
vSphere Replication Management Server.

See VRMS

W
Weka, and cross validation

connecting 155
Weka machine learning library

URL 143, 153
using 153, 154

when-is-over function 224
World Bank land area

summarizing 195, 196
World DataBank

downloading 131, 132
URL 131

world population data
viewing 131-134

Y
Yahoo Answers

URL 237

Thank you for buying
Mastering Clojure Data Analysis

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Clojure Data Analysis Cookbook
ISBN: 978-1-78216-264-3 Paperback: 342 pages

Over 110 recipes to help you dive into the world of
practical data analysis using Clojure

1.	 Get a handle on the torrent of data the
modern Internet has created.

2.	 Recipes for every stage from collection
to analysis.

3.	 A practical approach to analyzing data to
help you make informed decisions.

Clojure for Domain-specific
Languages
ISBN: 978-1-78216-650-4 Paperback: 268 pages

Learn how to use Clojure language with examples
and develop domain-specific languages on the go

1.	 Explore DSL concepts from existing Clojure
DSLs and libraries.

2.	 Bring Clojure into your Java applications as
Clojure can be hosted on a Java platform.

3.	 A tutorial-based guide to develop custom
domain-specific languages.

Please check www.PacktPub.com for information on our titles

Java EE 7 Developer Handbook
ISBN: 978-1-84968-794-2 Paperback: 634 pages

Develop professional applications in Java EE 7
with this essential reference guide

1.	 Learn about local and remote service endpoints,
containers, architecture, synchronous and
asynchronous invocations, and remote
communications in a concise reference.

2.	 Understand the architecture of the Java
EE platform and then apply the new Java
EE 7 enhancements to benefit your own
business-critical applications.

3.	 Learn about integration test development
on Java EE with Arquillian Framework and
the Gradle build system.

Object-Oriented JavaScript
Second Edition
ISBN: 978-1-84969-312-7 Paperback: 382 pages

Learn everything you need to know about OOJS
in this comprehensive guide

1.	 Think in JavaScript.

2.	 Make object-oriented programming accessible
and understandable to web developers.

3.	 Apply design patterns to solve JavaScript
coding problems.

4.	 Learn coding patterns that unleash the unique
power of the language.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Network Analysis – The Six Degrees of Kevin Bacon
	Analyzing social networks
	Getting the data
	Understanding graphs
	Implementing the graph
	Loading the data

	Measuring social network graphs
	Density
	Degrees
	Paths
	The average path length
	Network diameter
	Clustering coefficient
	Centrality
	Degrees of separation

	Visualizing the graph
	Setting up ClojureScript
	A force-directed layout
	A hive plot
	A pie chart

	Summary

	Chapter 2: GIS Analysis – Mapping Climate Change
	Understanding GIS
	Mapping the climate change
	Downloading and extracting the data
	Downloading the files
	Extracting the files

	Transforming the data – filtering
	Rolling averages
	Reading the data

	Interpolating sample points and generating heat maps using inverse distance weighting (IDW)

	Working with map projections
	Finding a base map

	Working with ArcGIS
	Summary

	Chapter 3: Topic Modeling – Changing Concerns in State of the Union Addresses
	Understanding data in State of the Union addresses
	Understanding topic modeling
	Preparing for visualizations
	Setting up the project
	Getting the data
	Loading the data into MALLET
	Visualizing with D3 and ClojureScript
	Exploring the topics
	Exploring topic 43
	Exploring topic 26
	Exploring topic 42

	Summary

	Chapter 4: Classifying UFO Sightings
	Getting the data
	Extracting the data
	Dealing with messy data
	Visualizing UFO data
	Description
	Topic modeling descriptions
	Hoaxes
	Preparing the data
	Reading the data into a sequence of data records
	Splitting out the NUFORC comments
	Categorizing the documents based on the comments
	Partitioning the documents into directories based on the categories
	Dividing them into training and test sets

	Classifying the data
	Coding the classifier interface
	Running the classifier and examining the results

	Summary

	Chapter 5: Benford's Law – Detecting Natural Progressions of Numbers
	Learning about Benford's Law
	Applying Benford's law to compound interest
	Looking at the world population data

	Failing Benford's Law
	Case studies
	Summary

	Chapter 6: Sentiment Analysis – Categorizing Hotel Reviews
	Understanding sentiment analysis
	Getting hotel review data
	Exploring the data
	Preparing the data
	Tokenizing
	Creating feature vectors
	Creating feature vector functions and POS tagging

	Cross validating the results
	Calculating error rates
	Using the Weka machine learning library
	Connecting Weka and cross validation
	Understanding maximum entropy classifiers
	Understanding naive Bayesian classifiers

	Running the experiment
	Examining the results
	Combining the error rates

	Improving the results
	Summary

	Chapter 7: Null Hypothesis Tests – Analyzing Crime Data
	Introducing confirmatory data analysis
	Understanding null hypothesis testing
	Understanding the process
	Formulating an initial hypothesis
	Stating the null and alternative hypotheses
	Determining which tests are appropriate
	Selecting the significance level
	Determining the critical region
	Calculating the test statistic and its probability
	Deciding whether to reject the null hypothesis or not

	Flipping coins
	Formulating an initial hypothesis
	Stating the null and alternative hypotheses
	Identifying the statistical assumptions in the sample
	Determining which tests are appropriate

	Understanding burglary rates
	Getting the data
	Parsing the Excel files
	Pulling out raw data
	Growing a tree of data
	Cutting down the data tree
	Putting it all together
	Transforming the data
	Joining the data sources
	Pivoting the data
	Filtering the missing data
	Putting it all together

	Exploring the data
	Generating summary statistics
	Summarizing UNODC crime data
	Summarizing World Bank land area and GNI data

	Generating more charts and graphs

	Conducting the experiment
	Formulating an initial hypothesis
	Stating the null and alternative hypotheses
	Identifying the statistical assumptions in the sample
	Determining which tests are appropriate
	Understanding Spearman's rank correlation coefficient

	Selecting the significance level
	Determining the critical region
	Calculating the test statistic and its probability
	Deciding whether to reject the null hypothesis or not

	Interpreting the results
	Summary

	Chapter 8: A/B Testing – Statistical Experiments for the Web
	Defining A/B testing
	Conducting an A/B test
	Planning the experiment
	Framing the statistics
	Building the experiment
	Looking at options to build the site

	Implementing A/B testing on the server
	Understanding the scaffolded site

	Building the test site
	Implementing A/B testing
	Viewing the results
	Looking at A/B testing as a user

	Analyzing the results
	Understanding the t-test

	Testing the results

	Summary

	Chapter 9: Analyzing Social Data Participation
	Setting up the project
	Understanding the analyses
	Understanding social network data
	Understanding knowledge-based social networks
	Introducing the 80/20 rule
	Getting the data
	Looking at the amount of data
	Defining and loading the data
	Counting frequencies
	Sorting and ranking
	Finding patterns of participation

	Matching the 80/20 rule
	Looking for the 20 percent of questioners
	Looking for the 20 percent who answer questions
	Combining ranks
	Looking at those who only post questions
	Looking at those who only post answers
	Looking at those who post both questions and answers

	Finding the up-voted answers
	Processing the answers
	Predicting the accepted answer

	Setting up
	Creating the InstanceList object

	Training sets and Test sets
	Training
	Testing

	Evaluating the outcome

	Summary

	Chapter 10: Modeling Stock Data
	Learning about financial data analysis
	Setting up the basics
	Setting up the library
	Getting the data

	Getting prepared with data
	Working with news articles
	Working with stock data

	Analyzing the text
	Analyzing vocabulary
	Stop lists
	Hapax and Dis Legomena
	TF-IDF

	Inspecting the stock prices
	Merging text and stock features
	Analyzing both text and stock features together with neural nets
	Understanding neural nets
	Setting up the neural net
	Training the neural net
	Running the neural net
	Validating the neural net
	Finding the best parameters

	Predicting the future
	Loading stock prices
	Loading news articles
	Creating training and test sets
	Finding the best parameters for the neural network
	Training and validating the neural network
	Running the network on new data

	Taking it with a grain of salt
	Related to this project
	Related to machine learning and market modeling in general

	Summary

	Index

