
M A N N I N G

David Wood
Marsha Zaidman
Luke Ruth
WITH Michael Hausenblas

FOREWORD BY Tim Berners-Lee

Structured data on the Web

www.allitebooks.com

http://www.allitebooks.org

Linked Data

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Linked Data
STRUCTURED DATA ON THE WEB

DAVID WOOD
MARSHA ZAIDMAN

AND LUKE RUTH
WITH MICHAEL HAUSENBLAS

M A N N I N G
Shelter Island
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Jeff Bleiel
20 Baldwin Road Copyeditor: Linda Recktenwald
PO Box 261 Proofreader: Elizabeth Martin
Shelter Island, NY 11964 Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617290398
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13
www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
PART 1 THE LINKED DATA WEB . ..1

1 ■ Introducing Linked Data 3

2 ■ RDF: the data model for Linked Data 27

3 ■ Consuming Linked Data 60

PART 2 TAMING LINKED DATA ..77

4 ■ Creating Linked Data with FOAF 79

5 ■ SPARQL—querying the Linked Data Web 99

PART 3 LINKED DATA IN THE WILD. ..123

6 ■ Enhancing results from search engines 125

7 ■ RDF database fundamentals 158

8 ■ Datasets 178

PART 4 PULLING IT ALL TOGETHER207

9 ■ Callimachus: a Linked Data management system 209

10 ■ Publishing Linked Data—a recap 233

11 ■ The evolving Web 239
v

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix
about the cover illustration xxiii

PART 1 THE LINKED DATA WEB..1

1 Introducing Linked Data 3
1.1 Linked Data defined 4
1.2 What Linked Data won’t do for you 6
1.3 Linked Data in action 7

Freeing data 7 ■ Linked Data with Google rich snippets and
Facebook likes 8 ■ Linked Data to the rescue at the BBC 9

1.4 The Linked Data principles 11
Principle 1: Use URIs as names for things 11 ■ Principle 2: Use
HTTP URIs so people can look up those names 12 ■ Principle 3:
When someone looks up a URI, provide useful information 12
Principle 4: Include links to other URIs 13

1.5 The Linking Open Data project 14
1.6 Describing data 15
vii

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
1.7 RDF: a data model for Linked Data 18
1.8 Anatomy of a Linked Data application 20

Accessing a facility’s Linked Data 22 ■ Creating the user interface
from Linked Data 24

1.9 Summary 26

2 RDF: the data model for Linked Data 27
2.1 The Linked Data principles extend RDF 28
2.2 The RDF data model 33

Triples 33 ■ Blank nodes 35 ■ Classes 36 ■ Typed literals 37

2.3 RDF vocabularies 38
Commonly used vocabularies 39 ■ Making your own
vocabularies 42

2.4 RDF formats for Linked Data 43
Turtle—human-readable RDF 44 ■ RDF/XML—RDF for
enterprises 46 ■ RDFa—RDF in HTML 49 ■ JSON-LD—RDF
for JavaScript Developers 52

2.5 Issues related to web servers and published Linked Data 54
2.6 File types and web servers 56

When you can configure Apache 57

2.7 When you have limited control over Apache 57
2.8 Linked Data platforms 58
2.9 Summary 58

3 Consuming Linked Data 60
3.1 Thinking like the Web 61
3.2 How to consume Linked Data 62
3.3 Tools for finding distributed Linked Data 64

Sindice 64 ■ SameAs.org 65 ■ Data Hub 65

3.4 Aggregating Linked Data 66
Aggregating some Linked Data from known datasets 66 ■ Getting
Linked Data and RDF from web pages using browser plug-ins 70

3.5 Crawling the Linked Data Web and aggregating data 73
Using Python to crawl the Linked Data Web 73 ■ Creating HTML
output from your aggregated RDF 75

3.6 Summary 76
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
PART 2 TAMING LINKED DATA ..77

4 Creating Linked Data with FOAF 79
4.1 Creating a personal FOAF profile 80

Introducing the FOAF vocabulary 81 ■ Method I: manual creation of
a basic FOAF profile 82 ■ Enhancing a basic FOAF profile 83
Method II: automated generation of a FOAF profile 85

4.2 Adding more content to a FOAF profile 88
4.3 Publishing your FOAF profile 90
4.4 Visualization of a FOAF profile 91
4.5 Application: linking RDF documents using a custom

vocabulary 93
Creating a wish list vocabulary 93 ■ Creating, publishing, and
linking the wish list document 94 ■ Adding wish list items to our
wish list document 95 ■ Explanation of our bookmarklet tool 97

4.6 Summary 98

5 SPARQL—querying the Linked Data Web 99
5.1 An overview of a typical SPARQL query 100
5.2 Querying flat RDF files with SPARQL 101

Querying a single RDF data file 102 ■ Querying multiple RDF
files 104 ■ Querying an RDF file on the Web 106

5.3 Querying SPARQL endpoints 107
5.4 Types of SPARQL queries 109

The SELECT query 109 ■ The ASK query 111 ■ The
DESCRIBE query 111 ■ The CONSTRUCT query 112
SPARQL 1.1 Update 113

5.5 SPARQL result formats (XML, JSON) 113
5.6 Creating web pages from SPARQL queries 115

Creating the SPARQL query 116 ■ Creating the HTML
page 117 ■ Creating the JavaScript for the table 118
Creating JavaScript for the map 119

5.7 Summary 122
www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
PART 3 LINKED DATA IN THE WILD123

6 Enhancing results from search engines 125
6.1 Enhancing HTML by embedding RDFa 126

RDFa markup using FOAF vocabulary 129 ■ Using the HTML
span attribute with RDFa 132 ■ Extracting Linked Data from a
FOAF-enhanced HTML document 133

6.2 Embedding RDFa using the GoodRelations vocabulary 134
An overview of the GoodRelations vocabulary 134 ■ Enhancing
HTML with RDFa using GoodRelations 137 ■ A closer look at
selections of RDFa GoodRelations 143 ■ Extracting Linked Data
from GoodRelations-enhanced HTML document 145

6.3 Embedding RDFa using the schema.org vocabulary 148
An overview of schema.org 148 ■ Enhancing HTML with RDFa
Lite using schema.org 150 ■ A closer look at selections of RDFa
Lite using schema.org 152 ■ Extracting Linked Data from a
schema.org enhanced HTML document 154

6.4 How do you choose between using schema.org or
GoodRelations? 155

6.5 Extracting RDFa from HTML and applying SPARQL 155
6.6 Summary 156

7 RDF database fundamentals 158
7.1 Classifying RDF databases 158

Selecting an RDF database systems 160 ■ RDF databases versus
RDBMS 161 ■ Benefits of RDF database systems 166

7.2 Transforming spreadsheet data to RDF 167
A basic RDF conversion of MS Excel 167 ■ Transforming MS
Excel to Linked Data 169 ■ Finding RDF converter tools 171

7.3 Application: collecting Linked Data in an RDF database 171
Outlining the process 171 ■ Using Python to aggregate our data
sources 172 ■ Understanding the output 175

7.4 Summary 177

8 Datasets 178
8.1 Description of a Project 179

Creating a DOAP profile 180 ■ Using the DOAP
vocabulary 182

CONTENTS xi
8.2 Documenting your datasets using VoID 186
The Vocabulary of Interlinked Datasets 186 ■ Preparing a VoID
file 187

8.3 Sitemaps 190
Non-semantic sitemaps 190 ■ Semantic sitemaps 192
Enabling discovery of your site 194

8.4 Linking to other people’s data 195
8.5 Examples of using owl:sameAs to interlink datasets 200
8.6 Joining Data Hub 203
8.7 Requesting outgoing links from DBpedia to your dataset 204
8.8 Summary 206

PART 4 PULLING IT ALL TOGETHER207

9 Callimachus: a Linked Data management system 209
9.1 Getting started with Callimachus 211
9.2 Creating web pages using RDF classes 212

Adding data to Callimachus 212 ■ Telling Callimachus about
your OWL class 213 ■ Associating a Callimachus view template to
your class 214

9.3 Creating and editing class instances 216
Creating a new note 218 ■ Creating a view template for a
note 219 ■ Creating an edit template for notes 220

9.4 Application: creating a web page from multiple data
sources 222
Making and querying Linked Data from NOAA and EPA 222
Creating a web page to contain the application 224 ■ Creating
JavaScript to retrieve and display Linked Data 226 ■ Bringing it
all together 229

9.5 Summary 232

10 Publishing Linked Data—a recap 233
10.1 Preparing your data 234
10.2 Minting URIs 235
10.3 Selecting vocabularies 236
10.4 Customizing vocabulary 237
10.5 Interlinking your data to other datasets 237

CONTENTSxii
10.6 Publishing your data 238
10.7 Summary 238

11 The evolving Web 239
11.1 The relationship between Linked Data and the Semantic

Web 239
Demonstrated successes 243

11.2 What’s coming 245
Google extended rich snippets 245 ■ Digital accountability and
transparency legislation 245 ■ Impact of advertising 246
Enhanced searches 246 ■ Participation by the big guys 246

11.3 Conclusion 247

appendix A Development environments 249
appendix B SPARQL results formats 252

glossary 258
index 265

foreword
Linked Data: Structured data on the Web the book is just what Linked Data the technology
has needed. It is a friendly introduction to the use and publication of structured data
on the World Wide Web.

 Linked Data was part of my initial vision for the Web and is an important part of
the Web’s future. The Web took off as a web of hyperlinked documents which were
exciting to read, but which could not effectively be used as data.

 And, yes, in fact, much of the Web is data-driven, and the data has been hidden on
files inside the server. In slides from my wrap-up talk at the very first WWW conference
in 1994, I pointed out that while documents talk about people and things, such as a
title deed saying who owns a house, the system was not capturing the data—the actual
ownership fact—in a way that could be processed. As the Web evolved, and became
more driven by data, there has been frustration that changing, hidden data is not
exposed to the reader. Linked Data standards allow you to publish data in a way that
can be read by people and processed by machines so that previously hidden flows of
data become evident.

 Linked Data may not be as exciting as a hypertext Web to read, but it is more excit-
ing in terms of making everything work more effectively, from business to scientific
research. Machines can read, follow, and combine Linked Data much more effectively
than they can perform those actions using other forms of data currently on the Web.

 The role of machines has previously been subservient to the role of people in the
technology used to allow people to communicate. Now machines are beginning to
xiii

FOREWORDxiv
become active participants in the communication. Linked Data allows machines to
become more useful partners in our daily lives.

 Linked Data has come of age in the last couple of years. In the last two years we
have seen Google announce its Knowledge Graph and adopt the JSON-LD serialization
format for Gmail, and produce a large set of terms for general use at schema.org; IBM
announce that the DB2 database will become a Linked Data server; and Facebook
expose Linked Data via its Graph API. Other large companies and government organi-
zations have followed suit. We have needed a book like this one to introduce Linked
Data development to a new and wider group of programmers. Linked Data will provide
you with the questions to ask, even if it doesn’t answer them all. It is a great place to
begin your study and kick-start your development.

 I have known Dave Wood for just about a decade. We met when he started his
work with the World Wide Web Consortium. We later worked on a Web research proj-
ect together. Dave has worked tirelessly to develop Semantic Web and Linked Data
frameworks since the late 1990s. As a developer, he is well-placed to show others how
it is done.

 The building blocks of Linked Data are not particularly new. The original proposal
for the World Wide Web that I wrote in 1989 for my bosses at CERN included hyper-
links with semantics. The proposal read, in part, “The system we need is like a diagram
of circles and arrows, where circles and arrows can stand for anything.” In fact, the
Enquire program I had written in 1980 captured the relationships between things in a
graph. That was the vision. Now Linked Data is delivering on this vision, by adding
meaning that computers can process.

 As we all know, in the basic hypertext Web, the arrows we ended up with all stood
for the same thing: “There is some interesting information over here!” Linked Data
extends the “document Web” by allowing arrows to stand for anything we can name
with a URI. Hyperlinks gain the semantics they need, and, in the process become
much more useful.

 The Web of hypertext-linked documents is complemented by the very powerful
Linked Web of Data. Why linked? Well, think of how the value of a Web page is very much
a function of what it links to, as well as the inherent value of the information within the
Web page. So it is—in a way even more so—also in the Semantic Web of Linked Data.
The data itself is valuable, but the links to other data make it much more so.

 I believe that the Web should evolve to serve all of us, regardless of our nationality,
language, economic motivation, or interests. Linked Data is just one part of that evo-
lution. It is not the end—it is just another part of the beginning. There is still plenty to
do, so come join us in building the next generation of the Web!

 TIM BERNERS-LEE

 DIRECTOR OF THE WORLD WIDE WEB CONSORTIUM (W3C)
 3COM FOUNDERS PROFESSOR OF ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 PROFESSOR IN THE ELECTRONICS AND COMPUTER SCIENCE DEPARTMENT, UNIVERSITY OF

SOUTHAMPTON UK

preface
We love the Web and we love the way it’s evolving from the rather simple web of linked
documents of the early 1990s into the framework for the world’s information. Repre-
senting data on the Web is an obvious, but slightly harder, next step.

 We each came to the Web in our own ways but came to Linked Data nearly
together. David found the Web as a programmer and later as an entrepreneur, Marsha
as an educator, and Luke as a student. Marsha and David are old enough to have
started computing with punch cards and paper tape. The Web was a very welcome
degree of abstraction from ones and zeros.

 David was introduced to the Web at Digital Equipment Corporation’s fabled West-
ern Research Lab in California in 1993. It was an eye-opener. One of the first large
websites showed photos of thousands of pieces of artwork held by the Vatican.
Another showed a list of projects that Digital researchers were working on and linked
to each of their own individual web servers for detailed documents. David was hooked.
Tellingly, it was the project website that he found most interesting. If only you could
link into databases and spreadsheets the way you could link to documents.

 Marsha also found the Web in the early days, when Gopher was the primary search
tool and Web browsers worked in a terminal, and she kept up to date with its rapid
changes in order to teach new generations of computer scientists. Her career has
lasted long enough for her to see the incredible changes wrought by the invention of
spreadsheets and databases on decision making, and this fostered an interest in mov-
ing data to the Web.
xv

PREFACExvi
 Marsha gave David the chance to teach at the University of Mary Washington just
as the Linking Open Data project was starting. Luke took the first class offered to
U.S. undergraduates on Linked Data in 2011, followed by an independent study and
an internship, all with David. He was eventually hired by David to work on Linked
Data projects.

 Luke and David contribute to the Callimachus Project, an open source Linked
Data platform described in this book. We’ve used it to build applications for a variety
of organizations, from U.S. government agencies and pharmaceutical companies to
publishers and health-care companies. Each of those projects is based on the creation,
manipulation, and use of Linked Data.

 We decided to write a Linked Data book for Web developers because there simply
wasn’t one. We all had to learn Linked Data from the specifications or by readying aca-
demic papers. There are some other books on Linked Data (David edited two of
them), but none are aimed specifically at developers. We thought that our combina-
tion of real-world development experience and experience teaching technology
would result in a useful book. We hope you agree.

 It’s our privilege to work with a loosely affiliated international group of people
working to bring data to the Web. We hope that you’ll read this book and then join us.
We can’t wait to see what the Web will become next.

acknowledgments
We would like to extend our gratitude to the original members of the Linking Open
Data project, many of whom are quoted in this book. We would like to thank Michael
Stephens, Jeff Bleiel, Ozren Harlovic, Maureen Spencer, Mary Piergies, Linda Reck-
tenwald, Elizabeth Martin, and Janet Vail, and the rest of the team at Manning Publi-
cations for working so hard to make this book a success.

 We also owe thanks to the following reviewers who read and commented on our
book through its many iterations and multiple review phases: Alain Buferne, Artur
Nowak, Craig Taverner, Cristofer Weber, Curt Tilmes, Daniel Ayers, Gary Ewan Park,
Glenn McDonald, Innes Fisher, Luka Raljević, M. Edward Borasky, Michael Brunn-
bauer, Michael Pendleton, Michael Piscatello, Mike Westaway, Owen Stephens, Paulo
Schreiner, Philip Poots, Robert Crowther, Ron Sher, Thomas Baker, Thomas Gängler,
and Thomas Horton.

 Special thanks to Zachary Whitley, our technical proofreader, for his careful review
of the final manuscript shortly before it went into production, and to Tim Berners-Lee
for contributing the foreword.

 The book was greatly improved by those who contributed to the Author Online
Forum, the Public LOD mailing list, and the W3C RDF Working Group. Sincere thanks
to the readers who participated in the Manning Early Access Program (MEAP) and left
feedback in the Author Online forum. Their comments had a strong impact on the
quality of the final manuscript. Lastly, we would like to thank the organizers of the
Cambridge, New York City, Washington D.C., Northern Virginia, and Central Mary-
land SemWeb meet-ups for letting us make presentations on the book.
xvii

ACKNOWLEDGMENTSxviii
 Dave would like to thank Bernadette, who is always there for him when he starts
some silly project, as well as his coauthors for making the creation of this book much
less of a silly project.

 Marsha would like to extend her gratitude to her husband, Steven, who believed in
her and encouraged her to pursue this new venture. A special thanks to her coauthor,
David, who solicited her participation and had faith that she could extend her previ-
ous teaching experiences into written communications. Thanks to both Luke and
David for making writing this book a rewarding experience.

 Luke would like to thank Dave and Marsha for including him in this process and
teaching him so much about technology—and about the world. He would also like to
thank his parents, Rick and Tania, for instilling in him the importance of education
and trying new things, and his wife Laura for her constant support.

about this book
Linked Data is a set of techniques to represent and connect structured data on the
Web. This book shows you how to access, create, and use Linked Data. Linked Data
has one amazing property: it can be easily combined with other Linked Data to form
new knowledge.

 Linked Data makes the World Wide Web into a global database that we call the
Web of Data. Developers can query Linked Data using a query language called
SPARQL from multiple sources at once and combine those results dynamically, some-
thing difficult or impossible to do with traditional data-management technologies.
The examples in this book are intentionally drawn from public sources, but the tech-
niques illustrated can just as easily be used with private data. You may be unfamiliar
with some of the resources that we use, but they’re readily accessible on the Web, and
we encourage you to check them out as you encounter them. We apologize in advance
for any inconsistencies between the screen shots and URLs referenced in the text and
the actual content when you visit those sites on the Web. The Web is a rapidly chang-
ing entity, and no printed matter can absolutely represent that. We do promise that all
the screen shots and URLs were correct as we entered production.

 The techniques of Linked Data enable us to more easily share our knowledge with
others. Literally anything can be described by Linked Data. Linked Data on the World
Wide Web may be found, shared, and combined with other people’s data. Unlike tra-
ditional data-management systems, Linked Data frees information from proprietary
containers so anyone can use it. As with any data, the consumer is responsible for eval-
uating its quality and utility. We use sources whose data we trust.
xix

www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOKxx
Intended audience
Linked Data: Structured data on the Web should be read by application developers who
want to appreciate, consume, and publish Linked Data. This book assumes that you
have a basic familiarity with fundamental web technologies such as HTML, URIs, and
HTTP. We introduce you to Linked Data, place it in context, outline its principles, and
show you how to use it by walking you through the process of finding, consuming, and
publishing Linked Data on the Web. We illustrate this process with real-world applica-
tions of gradually increasing complexity.

Roadmap
This book has eleven chapters, divided into four parts, a glossary, and two appendixes.

 Part 1 “The Linked Data Web” provides an introduction to the fundamentals of
Linked Data, the Resource Description Framework (RDF) data model, and the com-
mon standard serializations used in representing this data. It guides the reader in
identifying and consuming Linked Data on the Web.

■ Chapter 1, an introduction to Linked Data, places it in context, outlines its
principles, and shows you how to use it by walking you through a Linked Data
application.

■ Chapter 2 introduces the Resource Description Framework and its relationship
to Linked Data. We describe the RDF data model along with the key concepts
that you’re likely to use in your own Linked Data. In closing this chapter, we
address common issues of file types and web servers and provide techniques for
resolving those issues.

■ Chapter 3 acquaints you with the distributed nature of the Web and how data
and documents are interlinked. You become aware of the relationship between
the Web of Documents and the Web of Data. You learn how to find and con-
sume Linked Data on the Web.

Part 2 “Taming Linked Data” emphasizes techniques for developing and publishing
your own Linked Data and enhanced searching techniques for aggregating such data.
You learn how to use the SPARQL query language to search for relevant Linked Data
datasets and aggregate the results.

■ Chapter 4 covers methods of creating, linking, and publishing Linked Data on
the Web using the Friend of a Friend (FOAF) and Relationship vocabularies.

■ Chapter 5 introduces the SPARQL query language for RDF. SPARQL enables you
to query the Web of Data as if it were a database, albeit a very large one with
many distributed datasets.

Part 3 “Linked Data in the wild” illustrates how to use RDFa to achieve search engine
optimization of your web pages. It introduces you to RDF databases and illustrates the
differences between these and the traditional RDBMS. We illustrate how you can best

ABOUT THIS BOOK xxi
share your datasets and projects on the Web and optimize the inclusion of your proj-
ects and datasets in Semantic Web search results.

■ Chapter 6 illustrates how to use Resource Description Framework in Attributes
(RDFa) to enhance your HTML web pages to achieve enhanced results from
search engines. You’re introduced to the GoodRelations business-oriented
vocabulary and similar techniques using schema.org.

■ Chapter 7 introduces RDF databases and the differences and benefits of such
data stores over RDBMS. In general, integrating information already in RDF for-
mat is painless. But data that you need and would like to use is often stored in
non-RDF sources. This chapter illustrates how non-RDF data can be transformed
into RDF for ease of integration into other applications.

■ Chapter 8 provides an introduction to all the ways that new Linked Data should
be described and linked into the larger Linked Data world. It describes and
applies the Description of a Project (DOAP) vocabulary to describe projects, the
Vocabulary of Interlinked Datasets (VoID) to describe datasets, and semantic
sitemaps to describe the Linked Data offerings on a site. This chapter also pres-
ents guidelines to publishing your data on the LOD cloud.

Part 4 “Putting it all together” pulls all the concepts covered in parts 1, 2, and 3
together. We develop a complex, real-world application using an open source applica-
tion server for Linked Data and help you summarize the process of preparation to
publication of Linked Data.

■ Chapter 9 introduces the Callimachus Project, an open source application
server for Linked Data. We show you how to get started with Callimachus, how
to generate web pages from RDF data, and how to build applications using it.

■ Chapter 10 summarizes the process of publishing Linked Data from prepara-
tion to publication. We identify and clarify easily overlooked steps, like minting
URIs and customizing vocabularies.

■ Chapter 11 surveys the current state of the Semantic Web and the role of
Linked Data. We identify some interesting applications of Linked Data and
attempt to predict the future direction of the Semantic Web and Linked Data.

The appendixes provide supplementary information.

■ Appendix A is a quick reference to the development environment setups of the
tools used in the book.

■ Appendix B is a guide to interpreting SPARQL query results formats.
■ A glossary lists and defines terms used in this book.

How to use this book
We expect you to get the most from this material by reading the chapters in sequence,
downloading and executing the sample applications, and then trying modifications of
the applications to increase your understanding of the concepts. In those applications

ABOUT THIS BOOKxxii
where you need particular software tools, we guide you in locating and obtaining
those resources. We expect this book to provide you with a foundation to appreciate,
consume, and publish Linked Data on the Web.

Code conventions and downloads
All source code in this book is in a fixed-width font like this, which sets it off from
the surrounding text. In many listings, the code is annotated to point out the key con-
cepts. In some cases, source code is in bold fixed-width font for emphasis. We have
tried to format the code so that it fits within the available page space in the book by
adding line breaks and using indentation carefully. Sometimes, however, very long
lines include line-continuation markers.

 Source code for all the working examples in the book is available from http://
LinkedDataDeveloper.com or from the publisher’s website at www.manning.com/
LinkedData.

 A Readme.txt file is provided in the root folder and also in each chapter folder;
the files provide details on how to install and run the code. Code examples appear
throughout this book. Longer listings appear under clear listing headers, shorter list-
ings appear between lines of text.

Author Online
Purchase of Linked Data includes free access to a private Web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and sub-
scribe to it, point your browser to www.manning.com/LinkedData. This page provides
information on how to get on the forum once you’re registered, what kind of help is
available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you ask the authors challenging questions lest their interest stray!

http://LinkedDataDeveloper.com
http://LinkedDataDeveloper.com
http://www.manning.com/LinkedData
www.manning.com/LinkedData
www.manning.com/LinkedData

about the cover illustration
The caption for the illustration on the cover of Linked Data is “Grand Vizier,” or prime
minister to the king or sultan. The illustration is taken from a collection of costumes
of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond
Street, London. The title page is missing from the collection and we have been unable
to track it down to date. The book’s table of contents identifies the figures in both
English and French, and each illustration bears the names of two artists who worked
on it, both of whom would no doubt be surprised to find their art gracing the front
cover of a computer programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor didn’t have on his person the substantial amount of cash
that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening, the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.
xxiii

ABOUT THE COVER ILLUSTRATIONxxiv
 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.

Part 1

The Linked Data Web

What is Linked Data? What is the Resource Description Framework (RDF)?
What is the relationship between RDF and Linked Data? How is data expressed
using RDF? Why is publishing 5-Star Linked Data beneficial? Where do you find
Linked Data, and how can you use it in your own applications?

 In these first three chapters, we’ll explore these questions and others. We’ll
introduce you to Linked Data, place it in context, outline its principles, and
show you how to use it by walking you through your first Linked Data applica-
tion. We’ll expose you to the multiple facets of consuming Linked Data from the
Web. We’ll find Linked Data on the Web both manually and through the use of
special tools. We’ll illustrate how you develop programs that retrieve Linked
Data from one source and use those results to retrieve additional data from a dif-
ferent data source.

Introducing Linked Data
What would you do if your boss told you to produce web pages for 1,500 television
and radio programs each day, in multiple languages and character sets, with a staff
of a handful of people? What if you needed to publish web content for every band
and the songs they record, updated each day? How about web pages for each ani-
mal species and its habitat, inclusive of its endangerment status, when your organi-
zation doesn’t have that information?

 The development team at the British Broadcasting Corporation (BBC) faced all
three challenges at once during a period of budget cuts. Very soon we’ll show you
how they solved all three using Linked Data.

 Linked Data makes the World Wide Web into a global database that we call the
Web of Data. Developers can query Linked Data from multiple sources at once and
combine it on the fly, something difficult or impossible to do with traditional data-
management technologies. Imagine being able to gather any data you require in a

This chapter covers
■ An introduction to Linked Data
■ The Linked Data principles
■ Linked Data foundations
■ Anatomy of a Linked Data application
3

4 CHAPTER 1 Introducing Linked Data
single step! Linked Data can get you there. We know this may seem impossible, and it
is with traditional techniques, but we’ll demonstrate how it works.

 In this chapter, assuming that you have a basic familiarity with fundamental web
technologies such as HTML, URIs, and HTTP, we introduce you to Linked Data, place
it in context, outline its principles, and show you how to use it by walking you through
your first Linked Data application.

 We may reference resources that you don’t instantly recognize, such as
MusicBrainz—the open music encyclopedia. Don’t worry. We provide URLs to help
you gather the context you’ll need to be productive.

1.1 Linked Data defined
The World Wide Web is full of data. Data is published in formats such as PDF, TIFF,
CSV, Excel spreadsheets, embedded tables in Word documents, and many forms of
plain text. These files are linked to and from HTML and other documents. They are,
in a sense, data that you can link to. But this kind of data has a limitation: it’s format-
ted for human consumption. It often requires a specialized utility to read it. It’s not
easy for automated processes to access, search, or reuse this data. Further processing
by people is generally required for this data to be incorporated into new projects or
allow someone to base decisions on it.

 We’d rather have a universal way for anyone to read and reuse data on the Web.
You don’t want to just link to the files that data comes in; you want data that you can
link into. You want your data to link to related data. You want to foster reuse between
people who may never meet.

 This book will introduce you to a new way to consume, reuse, and publish data on
the Web so that it may be reused by automated processes on either side of enterprise
firewalls. The way to do this is called Linked Data. The term Linked Data refers to a set
of best practices for publishing and connecting structured data on the Web using
international standards of the World Wide Web Consortium.

 You already know some of the techniques we use for Linked Data because you
understand HTTP, URIs, and hyperlinks. You want to publish data on the Web, and you
use URIs to identify data elements and the relationships between them. You can use
those URIs to hyperlink between data elements the way web pages are hyperlinked.
Linked Data is just data but it’s on the Web and structured the way the Web is struc-
tured. These ideas are collected into the Linked Data principles, described in more
detail in section 1.4.

 The more principles you adhere to, the better your Linked Data. The 5-Star scor-
ing system of Linked Data is:

★ Data is available on the Web, in whatever format (for example, a
scanned image).

★★ Data is available as machine-readable structured data (for example, an
Excel spreadsheet).

http://sindice.com
http://sindice.com
http://sindice.com
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://w3.org/
http://w3.org/
http://dbpedia.org/page/Bonobo
http://dbpedia.org/page/Bonobo

5Linked Data defined
The 5-Star system is cumulative. Each additional star presumes that your data meets
the criteria for the previous steps. Linked Data developers pride themselves on creat-
ing 5-Star Linked Data. Anything less gives you more work to do, perhaps in convert-
ing data into 5-Star format, creating additional links, or trying to convince your data
sources to create better data. By creating 5-Star Linked Data, you’re making the world
a nicer place.

 The World Wide Web Consortium (W3C) defines standards for the Web, including
an open data model and several formats for that model. This chapter will introduce
you to the Resource Description Framework (RDF), which is used for the best quality
Linked Data.

 A paraphrasing of the 5-Star system is
given on the W3C coffee mug shown in fig-
ure 1.1.

 Linked Data (pardon the repeated defi-
nition) is a set of techniques for the publica-
tion of data on the Web using standard
formats and interfaces. We also call data that
conforms to those techniques Linked Data.

 For example, much of the content in Wiki-
pedia can be thought of as structured data. A
Wikipedia article may have a box in the upper
right of the page with information like names,
dates, places, and links to other content. The
DBpedia project (http://dbpedia.org)
extracts this structured data from Wikipedia
articles and puts it on the Web. Once the data
is published in accordance with the Linked
Data principles, it is Linked Data and may be
used by others who have access to the data.

 Linked Data has one amazing property: it may be easily combined with other
Linked Data to form new knowledge. That is the best reason to explore and use
Linked Data. Traditional data-management techniques have resulted in separation of
most of our data into silos that can’t be readily recombined. We need to write pro-
grams to find, access, convert, and combine data from silos before we can get on with
any particular job. Linked Data makes that sort of work much easier because it’s easy
to combine Linked Data from multiple sources.

★★★ Data is available in a non-proprietary format (for example, CSV).

★★★★ Data is published using open data standards from the World Wide Web
Consortium.

★★★★★ All of the above apply, plus links to other people’s data.

Figure 1.1 The 5-Star Linked Data mug, avail-
able from cafepress.com. The mug may be or-
dered either with the “Open” and “Open
license” labels or without them; Linked Open
Data uses both, Linked Data uses neither.
Sales of the mugs benefit the W3C.
www.allitebooks.com

http://dbpedia.org
http://dbpedia.org/page/Love
http://dbpedia.org/page/Love
http://dbpedia.org/page/Love
http://dbpedia.org/page/War
http://www.allitebooks.org

6 CHAPTER 1 Introducing Linked Data
 Another useful feature of Linked Data is that it’s self-documenting. You can imme-
diately figure out what a term means by resolving it on the Web. This makes Linked
Data a wonderful new technique for data sharing.

 So, imagine that you’re gathering data from a variety of sources to perform an
analysis or make a mash-up. You could grab data from DBpedia and other Linked Data
from elsewhere on the Web and throw it all together to make the data set you want.

 The rest of this chapter presents programming ideas from the public Web, but
don’t let that convince you that all Linked Data needs to be public. Linked Data tech-
niques are also widely deployed behind enterprise firewalls on private networks.
Everything you learn in this book can be deployed with public or private data or a mix
of the two.

1.2 What Linked Data won’t do for you
You might be wondering whether Linked Data is too good to be true. It’s not. Linked
Data is built on the Web and has the same benefits and problems that the Web does.

 Linked Data is no silver bullet. It won’t protect you from issues of data quality or
from service failures. Nothing inherent to Linked Data improves the efficiency of dis-
tributed queries. The same goes for changing definitions of schema terms. If the
meaning of your terms changes in time, your data might be more difficult to under-
stand in the context in which it was developed.

 But Linked Data does provide you with new ways to manage these existing data-
management challenges.

 Data quality is a problem in every data-management system. Dirty data in a rela-
tional database or on a website can very rapidly be turned into dirty Linked Data.
You’ll find that Linked Data is most often published in ways that aren’t specific to a
particular application. That can expose data cleanliness issues that weren’t previously
transparent and at the same time make them easier to spot. Many sites structure their
reuse of Linked Data so that it may be reviewed and even curated before it’s used, as
you’ll see with the BBC example later in this chapter. Others don’t and put up with
dirty data as a consequence. As always, the choice is yours.

 What will you do if you’re using Linked Data from a service on the Web and that
service shuts down or becomes temporarily unavailable? Most people won’t build pro-
duction services that query distributed data in real time, for issues of both reliability
and efficiency. You can treat your local copy of some remote data as a sort of cache.
The failure of a remote service just means that your data may not be up to date until
the service returns to operation or a replacement is found.

 What about changing schema terms? Linked Data schema terms are identified
using HTTP URIs, so it’s relatively easy to migrate to another URI if the meaning of a
term changes. Even if you don’t change a URI for a term, you can (and should) gener-
ally record some information about where and when the definition of terms was valid.
There are even ways to check for equivalent terms. Linked Data offers several layers of
flexibility to help you with changing schemas.

http://dbpedia.org/resource/Galway_Airport
http://en.wikipedia.org/wiki/Galway_Airport

7Linked Data in action
 You might think about these challenges in the context of the Web. Early hypertext
systems were implemented on single machines and could therefore ensure that each
link resolved to a valid resource. A resource that was being linked to, that was aware it
was being linked to, could count those links and automatically link back. Hypertext
researchers were nearly unanimous in their dislike for the early Web precisely because
it didn’t have those handy features. Instead, the Web had frequent 404 error messages
when links failed to resolve. But the Web had some important features that other
hypertext systems didn’t have, especially scalability and distributed authorship. Those
features turned out to be much more important to us than link management.

 Linked Data is analogous because it doesn’t resolve long-standing problems with
distributed data management. Worse, it even introduces new problems, such as
requiring that at least some data elements be named with complex-looking web
addresses that make data formats harder to read and write. As with the Web, we’re
going to make the case in this book that the benefits strongly outweigh the detri-
ments. Specifically, we’re going to show you how Linked Data can be used to maintain
the context that’s so often lost when you publish data via other mechanisms. You can
even layer that context back onto your data after the fact, which in turn allows new
ways for your data to be used by people you may never meet. As with the Web, we
think you’ll come to love it once you understand it.

1.3 Linked Data in action
The techniques of Linked Data give us a new answer to an age-old question: how can
we share our knowledge with others? Linked Data is a general-purpose concept. Liter-
ally anything can be described by Linked Data.

 Linked Data places structured data on the World Wide Web so that it may be
found, shared, and combined with other people’s data. Linked Data frees structured
data from proprietary containers so anyone may use it.

1.3.1 Freeing data

For most of history we confused information with the containers it came in. Even
though all we really cared about was the information inside the containers, we built
institutions dedicated to the preservation of the form, not the information. The earli-
est libraries protected scrolls, rolls, and books, not the words inside. Librarians limited
access to the containers so they would last longer.

 Eventually, we freed content by turning it into bits of information that could be
shipped around the internet. That has many advantages, but we recognize that libraries
and bookstores will never be the same. This book was being written during the year that
Borders, one of the largest bookstore chains in the United States, declared bankruptcy
and shuttered hundreds of stores. Local libraries have drastically changed their offerings,
now providing, in addition to books, internet access, as well as music and videos and audio
books for checking out. Libraries hold classes, rent space to clubs, and desperately try to
maintain relevance to constituents in the face of Google, Apple, and Amazon.

http://www.w3.org/wiki/SweoIG

8 CHAPTER 1 Introducing Linked Data
 Music has undergone the same transition, from selling containers to selling bits of
information that may be played on a variety of devices, from iPods to computers to
home stereos. All of these things happened because of the World Wide Web.

 Where is your data in the age of the Web? Your data, like the books and music of a
few years ago, is mostly stuck in proprietary containers, such as relational databases
and spreadsheets. Your data is generally read via the containers in which it was cre-
ated, whether relational databases or spreadsheet programs. Your data is hierarchical,
and so are the systems that support it. The BBC worked around this problem in a novel
way by both pulling information from the Web and curating it to ensure its accuracy.

 Yet, because hierarchical data doesn’t combine easily, you have information silos.
Artificially separating information into containers means you have to combine the
information in your head when you want to use data from more than one source. If
you try to combine information from various sources, you generally lose track of
where the components came from.

 Sometimes you want your data to be in proprietary containers and protected from
prying eyes. Your personal financial information is a good example. But you still want
to perform financial transactions via the Web, and it would be easier if your bank used
common formats to move your data, just as they already use HTTP to serve web pages.
Other times you want your data to be open and free, such as when you wish to determine
which factories near your house are polluting or which artist produced a new hit song.

 How can you free your data like you freed your books and music? One answer is to
move data to the World Wide Web. Just as the Web enables you to link related docu-
ments, it allows you to link related data, especially if everyone shares a common data
format and means of accessing it.

1.3.2 Linked Data with Google rich snippets and Facebook likes

You have almost assuredly seen the benefits of Linked Data, although you may not
have realized that Linked Data was behind them. Facebook’s Like button,1 Google’s
enhanced search results, and the BBC’s beautiful wildlife and music pages are all
examples of Linked Data in action.

 For instance, Google introduced rich snippets2 (figure 1.2) in 2009, which provide
enhanced search results.

1 Facebook developers, Like button plugin, https://developers.facebook.com/docs/reference/plugins/like/.
2 Google webmaster tools, “About rich snippets and structured data,” June 5, 2013, https://support.google.com/

Webmasters/bin/answer.py?hl=en&answer=99170.

Figure 1.2 Google’s rich snippets provide nicely formatted search results that increase
user click-through rates by 15–30%.

https://support.google.com/webmasters/bin/answer.py?hl=en&answer=99170
https://support.google.com/webmasters/bin/answer.py?hl=en&answer=99170
http://openstreetmap.org/
http://openstreetmap.org/
https://developers.facebook.com/docs/reference/plugins/like/

9Linked Data in action
The rich snippets program is powered by a form of Linked Data known as the Resource
Description Framework in Attributes (RDFa). RDFa is a way of encoding meaning in web
pages and will be covered later at length. It’s one format for Linked Data. For example,
a telephone number on a web page is readable by people, but by marking up the num-
ber with HTML attributes that are hidden in a browser’s display, Google’s search engine
can also determine that it is a telephone number. Google can use that information to
construct more targeted search results. Best Buy, the large consumer electronics
retailer, has reported that the use of RDFa resulted in the a 15%–30% increase in click-
through rate for its Google results.

 Facebook introduced its Like button in April 2010. When a user clicks a Like button
on a web page, that user’s Facebook profile is updated to show that they liked the thing
that page talks about—be it an
article, a movie, or a restaurant.
The Like button (figure 1.3) is
powered by RDFa.

RDFa is part of a family of stan-
dards for describing structured
data known as the Resource
Description Framework (RDF). RDF is not a data format; RDF defines a simple way of
expressing relationships between arbitrary data elements that may be serialized in a
variety of standard formats. RDF provides a common data model for Linked Data and
is particularly suited for representing data on the Web. Linked Data uses RDF as its
data model and represents it in one of several syntaxes. There is also a standard query
language called SPARQL. The RDF data model will be described later in this chapter
and more fully in chapter 2. Later chapters will show you how to use both the data for-
mats and the query language in your Linked Data projects.

1.3.3 Linked Data to the rescue at the BBC

Now let’s turn our attention to the BBC and how its development team used Linked
Data to gather information from the Web, ensure its accuracy, and reuse it to automat-
ically create deep and complex websites.

 The data needed by the BBC already existed on public services scattered around
the Web. The BBC realized that it could collect and repurpose some of this data to
more rapidly build its new sites.

 The BBC uses Linked Data to generate web presences for three of its web properties:
BBC Programmes (http://www.bbc.co.uk/programmes), BBC Music (http://
www.bbc.co.uk/music), and Wildlife Finder (http://www.bbc.co.uk/nature/wildlife).
Web presences for more than 1,500 daily television and radio broadcasts are created in
BBC Programmes alone. To make such a tall order practical, the development team uses
public data that already exists on the Web.

 The BBC collects, filters, and reuses Linked Data from various sources, including
the World Wildlife Fund, MusicBrainz (http://musicbrainz.org/), and the DBpedia
project. For example, DBpedia extracts structured data from Wikipedia (the parts of a

Figure 1.3 The Facebook Like button can be placed on any
page on the Web. Facebook uses this to connect pages out-
side Facebook to the Facebook social graph.

http://www.bbc.co.uk/programmes
http://www.bbc.co.uk/music
http://www.bbc.co.uk/music
http://www.bbc.co.uk/nature/wildlife
http://musicbrainz.org/

10 CHAPTER 1 Introducing Linked Data
Wikipedia page you see in the upper-right corner of their pages) and converts it into
Linked Data, as shown in figure 1.4. The BBC then uses DBpedia’s Linked Data to
enhance information presented about musical artists and wildlife species discussed in
its broadcasts. Linked Data gathered from other sites is managed in a similar way.
Because Linked Data shares a common data model (discussed in chapter 2), the data
from those sites may be immediately combined.

 In using Linked Data, the BBC has turned traditional content-management con-
cepts on their heads. If BBC editors find an error or need to make a change, instead of
making the change on their own site, they often make the change on someone else’s
website. BBC editors curate third-party Web content to make their own site more factu-
ally correct, while improving our common knowledge resources. Of course, the BBC
editors can do this only because they are allowed to write into sites like Wikipedia.

The BBC’s use of the Web of Data is both innovative and immensely useful to its
audience. Before BBC Programmes started using Linked Data, only a few of the net-
work’s most popular broadcasts had a Web presence.

 Developers outside the BBC also benefit from the organization’s approach by
being able to access and reuse Linked Data published by the BBC. Have you ever
wanted to make a new web page from information you found on multiple web pages?
Linked Data gives you a standard way to do just that.

 The self-descriptive nature of Linked Data has many positive side effects. A not-so-
obvious one is that of serendipitous reuse. A Linked Data publisher might expose

<http://rs.tdwg.org/dwc/terms/class>
<http://en.wikipedia.org/wiki/Bonobo>

Figure 1.4 DBpedia converts structured information from Wikipedia’s info boxes into
Linked Data. The BBC uses content from DBpedia and other Linked Data sources to
create three of its web properties (BBC Wildlife Finder is shown).

11The Linked Data principles
their data with a certain goal or purpose in mind, but it’s up to you to determine how
and in which way you want to use the data.

 The Wikimedia Foundation, which operates Wikipedia, didn’t know that the BBC
wanted to use their data. The volunteer editors of Wikipedia didn’t think about the
BBC when they created an article about bonobos. The BBC didn’t coordinate with
DBpedia in order to use their data, nor did the academics who created DBpedia coor-
dinate with Wikipedia when they created DBpedia. We say that Linked Data enables
cooperation without coordination.

 The BBC found the data they wanted to use on the Web, probably via a traditional
full-text search engine like Google or perhaps using a Linked Data search engine like
Sindice (http://sindice.com). Linked Data made their job relatively easy once they
found the information they needed.

 The remainder of this book will show you how organizations large and small can
use Linked Data to enhance their content, integrate data from other sites, and allow
their data to be reused by others.

1.4 The Linked Data principles
Linked Data uses the Resource Description Framework data model and other stan-
dards related to RDF, just as it uses HTTP. Linked Data is built upon RDF but is not the
same as RDF. Linked Data is separated from RDF by the four Linked Data principles:

■ Use URIs as names for things.
■ Use HTTP URIs so that people can look up those names.
■ When someone looks up a URI, provide useful information, using the standards

(RDF*, SPARQL).3

■ Include links to other URIs, so people can discover more things.

NOTE Tim Berners-Lee, the inventor of the Web and the progenitor of the
Linked Open Data project, proposed the four Linked Data principles. You
can read more about his thoughts at http://www.w3.org/DesignIssues/
LinkedData.html.

Let’s look at each of the four rules in order.

1.4.1 Principle 1: Use URIs as names for things

The first Linked Data principle deals with identifying things. If you can’t identify a
thing, you can’t talk about it. The underlying technology we’ll use to identify things is
probably already familiar to you. You may know it by its full name: Universal Resource
Identifiers (URIs). URIs used to name things in Linked Data are a generalized version of
the URLs used to locate web pages in the browser. In other words, all URLs are URIs
but not the other way around. A URI is a universally unique name; a URL is a special
type of URI that resolves on the Web.

3 The term RDF* is sometimes used to refer to the entire family of RDF standards.

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

12 CHAPTER 1 Introducing Linked Data
 You’re already familiar with HTTP URLs. They’re the type of URLs most commonly
found on the Web. You type one into your browser’s address bar, and you get a web
page back. Your browser can also handle other types of URLs, such as those for the File
Transfer Protocol (FTP), whose URLs start with ftp://. You might also have seen the
file: URL used for accessing files on your local disk.

 Just as URLs unambiguously locate web pages so that everyone arrives at the same
document when typing in a certain URL, Linked Data’s use of URIs provides the
means to name things unambiguously.

NOTE When you look at the URI specification (RFC 3986, available via
http://tools.ietf.org/html/rfc3986), you might wonder why it’s called Uni-
form Resource Identifier there rather than Universal Resources Identifier.
This has historical reasons, and if you’re interested in the details, read Tim
Berners-Lee’s design document, “Web Architecture from 50,000 feet,”
www.w3.org/DesignIssues/Architecture.html.

To sum up, in order to be able to talk about things, you must be able to identify them.
You use URIs to identify things in Linked Data. A thing can be virtually anything: con-
crete things like a book, a person, or a gene, but also more abstract things like love or
war, or even other data representations such as a certain row in a CSV file or a table in
a relational database.

 You can actually find a URI for the concepts love and war. The DBpedia project has
modified URLs from the Wikipedia entries to create http://dbpedia.org/page/Love
and http://dbpedia.org/page/War. Linked Data describing those concepts can be
found via links at the bottom of those pages.

1.4.2 Principle 2: Use HTTP URIs so people can look up those names

It’s good to be able to talk about things on a worldwide scale and unambiguously. But
you could be tempted to use other identification schemes to name things. For exam-
ple, books are commonly identified by International Standard Book Numbers (ISBN).
The ISBN for Charles Dickens’ The Old Curiosity Shop is 0140437428. You could make a
URI out of that like isbn:0140437428. Now, try to paste this URI into your browser and
see what happens. The browser will complain that it doesn’t know how to handle it,
because it isn’t a type of URI that it implements. This is what the second Linked Data
principle is all about. If you use HTTP URIs, you can choose to make them resolvable
on the Web.

1.4.3 Principle 3: When someone looks up a URI, provide useful information

Any HTTP URI can be typed into a web browser, and the browser will know what to
do with it. It parses the URI to find the host and port number to use and then
attempts to establish an HTTP connection. It requests the resource identified by the
path portion of the URI. If the remote server responds affirmatively by returning a
resource representation such as a web page, then that particular URI is also a URL.
It’s resolvable on the Web. The third rule recommends that your identifiers resolve

http://tools.ietf.org/html/rfc3986

13The Linked Data principles

-

de

yo
by
on the Web often, if not all the time. When you create a URI to name a thing, you
should either refer to an existing web resource or make up your own. In either case,
you want your URIs to resolve to useful descriptions about the thing you’ve named.

 For example, consider Galway Airport. Listing 1.1 gives the URI for the Galway Air-
port as http://dbpedia.org/resource/Galway_Airport. Try putting that into a web
browser, and you’ll get redirected to a human-readable version of an RDF document
that describes the airport. If you’d like a much friendlier version of the same informa-
tion, scroll to the bottom of the page and you’ll see a link to Wikipedia: http://
en.wikipedia.org/wiki/Galway_Airport.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix loc: <http://www.daml.org/2001/10/html/airport-ont#> .
@prefix eg: <http://example.com/> .
@prefix qb: <http://purl.org/linked-data/cube#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix sdmxa: <http://purl.org/linked-data/sdmx/2009/attribute#> .
@prefix sdmx-measure: <http://purl.org/linked-data/sdmx/2009/measure#> .

<http://example.com/my_temperature_data>
 rdfs:label "Temperature observations";
 rdfs:comment "Temperature observations at Galway Airport";
 loc:location <http://dbpedia.org/resource/Galway_Airport>;
 dc:creator "Michael Hausenblas".

eg:day a rdf:Property, qb:MeasureProperty;
 rdfs:label "day"@en;
 rdfs:subPropertyOf sdmx-measure:obsValue;
 sdmxa:unitMeasure <http://dbpedia.org/resource/Day> ;
 rdfs:range xsd:date .

eg:temperature a rdf:Property, qb:MeasureProperty;
 rdfs:label "temperature"@en;
 rdfs:subPropertyOf sdmx-measure:obsValue;
 sdmxa:unitMeasure <http://dbpedia.org/resource/Celsius> ;
 rdfs:range xsd:decimal .

The DBpedia project turns structured data in Wikipedia into RDF. Later we’ll show you
how to access the RDF. For now, notice that we used a URI to name the airport, that we
used an HTTP URI, and that it resolves to a readable description of the place in question.

1.4.4 Principle 4: Include links to other URIs

What makes Linked Data “linked”? Just as web pages are more useful if they contain
hyperlinks to related information, data is more useful if it links to related data,
documents, and descriptions. The fourth rule makes this idea explicit: Your data
becomes Linked Data when it links to related resources. Because you used resolv-
able HTTP URIs to publish your data (you did, right?), other people can link to your

Listing 1.1 Example schema for the figure 1.6 spreadsheet in Turtle format

Prefix information
(to abbreviate the

way you write long
URIs)

The spreadsheet’s URL A short human
readable label

A longer human-
readable comment
describing the
resource

The
location
(Galway
Airport)

The author’s, or
creator’s, nameThe

precise
finition
of what
u mean
 “day”

The precise
definition of what
you mean by
“temperature”

http://en.wikipedia.org/wiki/Galway_Airport
http://en.wikipedia.org/wiki/Galway_Airport

14 CHAPTER 1 Introducing Linked Data
data. The ability to follow these links allows people to surf the Web of Data just as
they can surf the Web of Documents.

 An example of this principle at work can be seen in listing 1.1. That listing includes
links to the DBpedia description of Galway Airport and the unit of measure for days.

1.5 The Linking Open Data project
Most of the data that we’ll use in this book is freely available on the Web. It’s rather
amazing to think that open-content projects as diverse as encyclopedias and dictionar-
ies, government statistics, information regarding chemical and biological collections
and endangered species, bibliographic data, music artists and information about their
songs, and academic research papers are all available using the same data format and
reachable using the same API! This is all due to the Linking Open Data (LOD) project.

 The LOD project4 is a community activity started in 2007 by the W3C’s Semantic
Web Education and Outreach (SWEO) Interest Group (www.w3.org/wiki/SweoIG).
The project’s stated goal is to “make data freely available to everyone.”

 The collection of Linked Data published on the Web is referred to as the LOD
cloud. A recent attempt at visualizing the LOD cloud is shown in figure 1.5.

NOTE LOD is typically pronounced by saying each letter, like “ell oh dee.”

Here are some quick facts regarding the LOD cloud.

■ The LOD cloud has doubled in size every 10 months since 2007 and currently con-
sists of more than 300 datasets from various domains (http://lod-cloud.net/
state/). All of this data is available for use by developers!

■ As of late 2011, the LOD cloud contained over 295 datasets from various
domains, including geography, media, government, and life sciences. In total
the LOD cloud contained over 31 billion data items and some 500 million links
between them.

■ The LOD cloud has grown so large that no attempt was made to visualize it in 2012.
■ More than 40% of the Linked Data in the LOD cloud is contributed by govern-

ments (mainly from the United Kingdom and the United States), followed by
geographical data (22%) and data from the life sciences domain (almost 10%).

■ Life sciences (including some large pharmaceutical companies) contribute
over 50% of the links between datasets. Publication data (from books, journals,
and the like) comes in second with 19%, and the media domain (the BBC, the
New York Times, and others) provides another 12%.

■ The original data owners themselves publish one-third of the data contained in
the LOD cloud, whereas third parties publish 67%. For example, many universi-
ties republish data from their respective governments in Linked Data formats,
often cleaning and enhancing data descriptions in the process.

4 “Linked Data—Connect Distributed Data across the Web,” http://linkeddata.org/.

http://lod-cloud.net/state/
http://lod-cloud.net/state/
http://linkeddata.org/

15Describing data
1.6 Describing data
The LOD cloud is not just a collection of data silos. Linked Data offers something not
found in systems like relational databases or content management systems: discover-
ability. Imagine your client provides you with a spreadsheet that contains certain data.
In order to use this data in your application, you’d need to know what the columns

Music
Brainz

(zitgist)

P20

Turismo
de

Zaragoza

yovisto

Yahoo!
Geo

Planet

YAGO

World
Fact-
book

El
Viajero
Tourism

WordNet
(W3C)

WordNet
(VUA)

VIVO UF

VIVO
Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UniRef

UniProt

UMBEL

UK Post-
codes

legislation
data.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov.

uk

Traffic
Scotland

theses.
fr

Thesau-
rus W

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

Open
Library
(Talis)

tags2con
delicious

t4gm
info

Swedish
Open

Cultural
Heritage

Surge
Radio

Sudoc

STW

RAMEAU
SH

statistics
data.gov.

uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

SSW
Thesaur

us

Smart
Link

Slideshare
2RDF

semantic
web.org

Semantic
Tweet

Semantic
XBRL

SW
Dog
Food

Source Code
Ecosystem
Linked Data

US SEC
(rdfabout)

Sears

Scotland
Geo-

graphy

Scotland
Pupils &
Exams

Scholaro-
meter

WordNet
(RKB

Explorer)

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS
KISTI

JISC

IRIT

IEEE

IBM

ERA

ePrints dotAC

DEPLOY

DBLP
(RKB

Explorer)

Crime
Reports

UK

Course-
ware

CORDIS
(RKB

Explorer)
CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov.

ukRen.
Energy
Genera-

tors

reference
data.gov.

uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

PSH

Product
Types

Ontology

Product
DB

PBAC

patents
data.go

v.uk

Ox
Points

Ord-
nance
Survey

Openly
Local

Open
Library

Open
Cyc

Open
Corpo-
rates

Open
Calais

OpenEI

Open
Election

Data
Project

Open
Data

Thesau-
rus

Ontos
News
Portal

OGOLOD

Janus
AMP

Ocean
Drilling
Codices

New
York

Times

NVD

ntnusc

NTU
Resource

Lists

Norwe-
gian

MeSH

NDL
subjects

ndlna

my
Experi-
ment

Italian
Museums

medu-
cator

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

Weather
Stations

London
Gazette

LOIUS

Linked
Open
Colors

lobid
Resources

lobid
Organi-
sations

LEM

Linked
MDB

LinkedL
CCN

Linked
GeoData

LinkedCT

Linked
User

Feedback

LOV

Linked
Open

Numbers

LODE

Eurostat
(Ontology
Central)

Linked
EDGAR

(Ontology
Central)

Linked
Crunch-

base

lingvoj

Lichfield
Spen-
ding

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Klapp-
stuhl-
club

Good-
win

Family

National
Radio-
activity

JP

Jamendo
(DBtune)

Italian
public

schools

ISTAT
Immi-
gration

iServe

IdRef
Sudoc

NSZL
Catalog

Hellenic
PD

Hellenic
FBD

Piedmont
Accomo-
dations

GovTrack

GovWILD

Google
Art

wrapper

gnoss

GESIS

GeoWord
Net

Geo
Species

Geo
Names

Geo
Linked
Data

GEMET

GTAA

STITCH

SIDER

Project
Guten-
berg

Medi
Care

Euro-
stat

(FUB)

EURES

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

CORDIS
(FUB)

Freebase

flickr
wrappr

Fishes
of Texas

Finnish
Munici-
palities

ChEMBL

FanHubz

Event
Media

EUTC
Produc-

tions

Eurostat

Europeana

EUNIS

EU
Insti-

tutions

ESD
stan-
dards

EARTh

Enipedia

Popula-
tion (En-
AKTing)

NHS
(En-

AKTing) Mortality
(En-

AKTing)

Energy
(En-

AKTing)

Crime
(En-

AKTing)

CO2

Emission
(En-

AKTing)

EEA

SISVU

educatio
n.data.g

ov.uk

ECS
South-
ampton

ECCO-
TCP

GND

Didactal
ia

DDC Deutsche
Bio-

graphie

data
dcs

Music
Brainz

(DBTune)

Magna-
tune

John
Peel

(DBTune)

Classical
(DB

Tune)

Audio
Scrobbler
(DBTune)

Last.FM
artists

(DBTune)

DB
Tropes

Portu-
guese

DBpedia

dbpedia
lite

Greek
DBpedia

DBpedia

data-
open-
ac-uk

SMC
Journals

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Metoffice
Weather
Forecasts

Discogs
(Data

Incubator)

Climbing

data.gov.uk
intervals

Data
Gov.ie

data
bnf.fr

Cornetto

reegle

Chronic-
ling

America

Chem2
Bio2RDF

Calames

business
data.gov.

uk

Bricklink

Brazilian
Poli-

ticians

BNB

UniSTS

UniPath
way

UniParc

Taxono
my

UniProt
(Bio2RDF)

SGD

Reactome

PubMed
Pub

Chem

PRO-
SITE

ProDom

Pfam

PDB

OMIM
MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Com-
pound

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Affy-
metrix

bible
ontology

BibBase

FTS

BBC
Wildlife
Finder

BBC
Program

mes BBC
Music

Alpine
Ski

Austria

LOCAH

Amster-
dam

Museum

AGROV
OC

AEMET

US Census
(rdfabout)

YAGO

World
Fact-
book

URI
Burner

UMBEL

Uberblic

Tele-
graphis

TCM
Gene
DIT

semantic
web.org SW

Dog
Food

OS

Revyu

RDF
Book

Mashup

Open

Open
Calais

New
York

Times

Linked
MDB

lingvoj

iServe

Geo
Species

Geo
Names

Project
Guten-
berg

Drug
Bank

Disea-
some

Daily
Med

Freebase

Fishes
of Texas

Event
Media

Enipedia

data
dcs

Tune)

Portu-
guese

DBpedia

dbpedia
lite

Greek
DBpedia

DBpedia

data-
open-
ac-uk

Chronic-
ling

AmericaBC
life

der

BBC
Music

Country statistics
from the CIA

Encyclopedic
knowledge from

Wikipedia

Information about
marketed drugs

Metadata about
public-domain books

Figure 1.5 The Linked Open Data cloud in late 2011. The circles represent freely available datasets
and the arrows represent links between them.
www.allitebooks.com

http://www.allitebooks.org

16 CHAPTER 1 Introducing Linked Data
represent. Typically, looking at a column header gives you an idea of what’s going on,
as shown in figure 1.6.

 The problem with the data in the figure is that without more information from the
person who created it, you really don’t know what it means.

 You could call your client and ask if the temperature is given in Celsius, or you might
guess it from the range of the values. Too often the information you seek is no longer
available—it was lost or the person who knows is not around. Descriptive column headers
would help but still not give you all the information you’d like to have, such as where
the data was collected and who collected it. You’d rather have the sort of schema infor-
mation shown in figure 1.7.

 Whereas figure 1.6 demonstrates a problem with most spreadsheet data—its lack
of context—figure 1.7 solves that problem with annotations that provide sufficient
context for some new person to understand the author’s intent.

 Linked Data can provide the schema information for your spreadsheet and also
allow you to publish the data itself in an open, extensible format. It also provides you a
way to link to other, related data, anywhere on the Web, in an unambiguous way. Deref-
erenceable identifiers, web addresses, are used for both schema information and data
resources. Web addresses provide you a way to get to schema documentation and to
related data. You simply follow the links, just like on the rest of the Web. This is discov-
erability in action.

 Linked Data places itself in context by following the precepts of the Web: data ele-
ments are named using HTTP URIs, and those URIs can be resolved to discover more
information about them. Importantly, and it bears repeating, Linked Data should con-
tain links to other information on the Web. These Linked Data principles are dis-
cussed in detail in section 1.4.

Figure 1.6 Example web data
found in a spreadsheet, listing
temperatures over a time period

Figure 1.7 Example schema informa-
tion for the data in figure 1.6

17Describing data
The Linked Data principles provide a common API for data on the Web. This is much
more convenient for developers than the many separate (and differently designed)
APIs currently published by major websites such as Flickr, Twitter, or Amazon.

 Listing 1.1 demonstrates how you might use Linked Data to create a schema for
the spreadsheet data shown in figure 1.6. Don’t worry that it looks unfamiliar or even
complicated! It’s actually quite easy, and we’ll show you how it’s created and read.
Once you get used to it, it’s much easier to understand than, say, XML or other peo-
ple’s code. You only need to follow a few simple rules.

 You needn’t go through listing 1.1 character by character quite yet (unless you
want to). We presented it to give you a feel for what Linked Data looks like and how
it’s published (as a file or in a database, either of which may be queried via the
SPARQL query language).

 Let’s dive more deeply into the code. We mentioned that Linked Data uses RDF as
a data model. A single RDF statement describes two things and a relationship between
them. Technically, this is called an Entity-Attribute-Value (EAV) data model, although
Linked Data people often call the three elements in a statement the subject, the predi-
cate, and the object. Those terms correlate directly to an entity, an attribute, and a
value. For example, we might want to say that the title of this book is Linked Data. Fig-
ure 1.8 shows how that can be done in RDF by using the URI for the book, a well-
known relationship defining the title property, and a literal string for the name.

Figure 1.8 Example RDF statement

18 CHAPTER 1 Introducing Linked Data
An entity (or subject) can be anything that we can name by a URI, such as a person, a
book, a car, or a web page. In this case, the subject is the URI that uniquely identifies
this book. An entity’s attribute (or predicate) relates the subject to another entity or
provides information about the entity itself (which we call a property of the subject).
In this case, we’re using a relationship for the book’s title as the predicate and the
book’s title as the object. Relations and properties are the objects of an RDF statement.
Through this standardized data model, an API is created that’s consistent over all
Linked Data sources. In other words, you only have to learn the Linked Data model
once and you can use any kind of data source that complies with it. Anytime you want
to know what a predicate means, you can type its URI into a web browser and look for
information about it.

 This statement excerpted from listing 1.1 shows a simple “triple,” or RDF statement:

<http://example.com/my_temperature_data> rdfs:label "Temperature observations";

<http://example.com/my_temperature_data> is a URI representing and perhaps
pointing to our sample spreadsheet, which forms the entity (subject) of an RDF state-
ment. The two components in rdfs:label "Temperature observations"; are the
attribute (predicate) and the property (object) of the first RDF statement. In this case,
we’re saying that the spreadsheet may be given a human-readable label of "Tempera-
ture observations".

rdfs:comment "Temperature observations at Galway Airport"; provides another
attribute and property for the same subject, which forms another RDF statement. We
can keep adding information about our spreadsheet that way until we’re finished.

 There’s no restriction in RDF about what you can link to or describe. That’s why
RDF is a framework for describing resources. RDF statements tend to create graphs of
metadata. In other words, they needn’t form hierarchical relationships. You’ll often
hear the term RDF graph because of this.

1.7 RDF: a data model for Linked Data
Linked Data is structured data. To be more precise, we’re talking about structured
data based on a certain data model: the Resource Description Framework data model
as defined by the W3C (http://w3.org/). As a convention, we identify things using
HTTP URIs and then provide information about them when an HTTP URI is resolved.

 Just like on the “normal” Web (which we tend to call the Web of Documents to sep-
arate it from the Web of Data), resolving an HTTP URI generally means to perform an
HTTP GET request on it. A GET request is the simplest of the actions that a client can take
using HTTP. A GET request is issued by a client to say to a server, “Please send me back
whatever you know about the URI I’m giving you.” You could use a web browser to do
that or a command-line web client such as the curl utility, which is an abbreviation for
“Client for URLs.”5 You can get the DBpedia page for a bonobo (based on the Wikipedia
page for the same subject) in HTML format at http://dbpedia.org/page/Bonobo.

5 The download wizard for curl, a cross-platform command-line web client, http://curl.haxx.se/dlwiz/.

http://curl.haxx.se/dlwiz/

19RDF: a data model for Linked Data
DBpedia allows you to download the Linked Data about a bonobo by changing “page”
to “data” and appending the appropriate file extension:

$ curl -L http://dbpedia.org/data/Bonobo.n3

In this case, the file extension .n3 is one of several used for Linked Data. The publisher
of a URI has the right to create it however they like, subject only to certain rules in the
HTTP specification regarding legal characters. In the previous code snippet, DBpedia
decided to call its server dbpedia.org. The commonly used style www.dbpedia.org redi-
rects to dbpedia.org. The organization chose to put all its HTML entries under the page/
path and to assign each entry the same identifier used in Wikipedia (in our snippet’s
case, Bonobo). They also chose a convention to construct their Linked Data URLs.

 The curl command means “Resolve the URI and put whatever comes back from
the server onto the standard output (the –L means to follow any HTTP redirects
encountered).” If you execute this command in a console, it will print RDF data
describing a bonobo in a serialization called N3. That’s because the given URI identi-
fies the concept of a bonobo, and you expect to get back a Linked Data description of
a bonobo when you resolve it.

 You’ll see a lot of Linked Data in this book, and almost all of it will be in a format
known as Turtle. Turtle is a minimal syntax for representing the RDF data model and
is meant to be easy to read. Turtle is a subset of N3, so DBpedia chooses to use the .n3
file extension for both formats. Chapter 2 covers more detail on RDF data formats.

 The entire data dump is too big and not interesting enough to show here, but in
the following listing you can see an excerpt that will give you an idea of what it looks
like. Just be aware that if you try the given curl command, the data you will get back
will be larger and you may need to look through it to find the part we extracted for
this example.

@prefix dbpedia: <http://dbpedia.org/resource/> .
@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

dbpedia:Bonobo rdf:type dbpedia-owl:Eukaryote ,
 dbpedia-owl:Mammal ,
 dbpedia-owl:Animal .

dbpedia:Bonobo foaf:name "Bonobo"@en ;
 foaf:depiction <http://upload.wikimedia.org/wikipedia/

commons/a/a6/Bonobo-04.jpg> ;

If you’re familiar with key-value structured data (as you find in configuration files),
then you might already have guessed how it works.

 We deal with a thing in listing 1.2 called dbpedia:Bonobo. That thing has a name of
“bonobo” in the English language. There is a picture (a “depiction”) of it at a URL on
Wikimedia.org, and it’s of several types: It’s an animal, a mammal, and a eukaryote.

 The prefixes at the top of listing 1.2 are just ways to shorten URIs for easier reading.

Listing 1.2 Excerpt of the Linked Data about bonobos in Turtle format

Name of the animal in
English (“A Bonobo has
a name of ‘Bonobo’”)

20 CHAPTER 1 Introducing Linked Data
Another way to represent this RDF data snippet is shown in figure 1.9, this time visual-
ized as a graph. In RDF, you either have literal values, such as the animal’s name, or
you have a link to another thing, such as its picture.

 The take-home message from this section is simple. When looking up an HTTP URI
for a Linked Data resource, you can expect to receive structured data in some RDF
serialization format. We’ll mostly show you data in the RDF serialization format called
Turtle because it’s easiest to read.

1.8 Anatomy of a Linked Data application
Now that you’re equipped with the Linked Data principles and an overview of RDF, it’s
time to peer beneath the covers of a Linked Data application. You’ll look closely at an
existing Linked Data application published on the Web and examine the publicly
accessible information about it, such as its HTTP endpoints, HTML source code, and
associated JavaScript.

 The application you’ll explore is the U.S. Environmental Protection Agency’s Linked
Data service. As of this writing, the EPA publishes data about 2.9 million facilities in the
United States and roughly 100,000 chemical substances as Linked Data. About 1% of the
facilities have reported annual estimates of pollution for more than 25 years, and that

foaf:namedbpedia:Bonobo

http://upload.wikimedia.org/wikipedia/commons/a/a6/Bonobo-04.jpg

foaf:depiction

dbpedia-owl:Eukaryote

dbpedia-owl:Animal

dbpedia-owl:Mammal

rdf:type

rdf:type

rdf:type

"Bonobo"
@en

The name of the animal in
English (“The Bonobo species
has a name of ‘Bonobo’”)

Figure 1.9 Excerpt of the Linked Data about bonobos shown as a graph

21Anatomy of a Linked Data application
information is also available as Linked Data. Figure 1.10 shows a typical facility page.6

This one is for the Browns Ferry nuclear power plant near Decatur, Alabama.

NOTE The Linked Data application described in this section was in quality
control testing at the time this book was printed. A portion of the EPA
Linked Data site has been duplicated at http://linkeddatadeveloper.com so
you can see how it was created.

The first thing to note is that the underlying data comes from several different sys-
tems. The Wikipedia Foundation has collected pictures and abstracts about many of
the larger facilities, including Browns Ferry. The EPA doesn’t hold that information
itself. The page also contains general information about the facility, such as its mailing
address and reports of pollution it generated. Mailing addresses and pollution infor-
mation are held in different EPA databases, and they weren’t designed to work

6 Source of the page reproduced in figure 1.10, http://linkeddatadeveloper.com/facilities/110000589355?view.

Registry
System

Wikipedia

Open Street
Map

Wikimedia
Commons

Registry
System

Release
Inventory

Source Data!

EPA’s Toxics

EPA’s Facilities

EPA’s Facilities

Figure 1.10 A Linked Data application published by the U.S. EPA. The page shown describes
the Browns Ferry nuclear power plant near Decatur, Alabama. Note the different data sources
combined to form the page.

http://usepa.3roundstones.net/facilities/110000589355?view

22 CHAPTER 1 Introducing Linked Data

L
together. Linked Data was used as a common data language, a lingua franca, to facili-
tate combining that information.

1.8.1 Accessing a facility’s Linked Data

Next, you should try clicking the links in the upper-right corner of the page under the
heading Linked Data. All three links will show the data used to create the page, each
one using a different Linked Data format.

 The top link is labeled Describe Data and goes to an HTML view of the raw data
that’s nicely laid out. This view is not a standard Linked Data mechanism, so you can
safely ignore it for now. It comes from a Linked Data server called Callimachus that we
use for our examples in chapter 9. The next two links give you access to the underly-
ing Linked Data in two commonly used standard formats: RDF/XML and Turtle. RDF/
XML is, unsurprisingly, an XML format. Turtle is a much less verbose syntax and is eas-
ier for people to read.

 If you look at the HTML source code for the Browns Ferry page, you’ll see how the
Linked Data is accessed. The following listing shows the relevant HTML and listing 1.4
shows the JavaScript click handlers.

<h3>Linked Data</h3>

 Describe Data
 View Data as RDF/XML
 View Data as Turtle

jQuery(function($) {
 $('#rdfxml').click(function(event) {
 event.preventDefault();
 var request = $.ajax({
 url: '?describe',
 headers: { Accept : "application/rdf+xml" }
 });

 request.done(function() {
 var win = window.open('', document.URL);
 win.document.write('<pre>\n' + request.responseText.replace(/</g,

➥ '<').replace(/>/g, '>') + '\n</pre>');
 });

 request.fail(function() {
 alert("We're sorry, the request could not be completed at this

➥ time. Please try again shortly.");
 });
 });

Listing 1.3 HTML for Linked Data elements shown in figure 1.10

Listing 1.4 JavaScript click function handlers for HTML elements shown in listing 1.3

Link to “Describe
Data” function

Link to RDF/XM
click function
handlerLink to Turtle click

function handler

Set the HTTP
request header for
RDF/XML format

23Anatomy of a Linked Data application

$("#turtle").click(function(event) {
 event.preventDefault();
 var request = $.ajax({
 url: '?describe',
 headers: { Accept : "text/turtle" }
 });

 request.done(function() {
 var win = window.open('', document.URL);
 win.document.write('<pre>\n' + request.responseText.replace(/</g,

➥ '<').replace(/>/g, '>') + '\n</pre>');
 });

 request.fail(function() {
 alert("We're sorry, the request could not be completed at this

➥ time. Please try again shortly.");
 });
});
});

A careful reading of listing 1.4 will show you that the Linked Data for the Browns
Ferry page is accessed using the same URL. The URL was nearly the same as the URL
used for the default HTML rendering of the page (the HTTP query string ?describe
was added), but that’s an implementation detail of the particular server involved. The
details of URL construction aren’t important here and may vary across sites.

 Different HTTP Accept headers were used in the three requests.

■ For HTML, use Accept: text/html
■ For RDF/XML, use Accept: application/rdf+xml
■ For Turtle, use Accept: text/turtle

Accept headers are used to inform a server what type of formats a web client can
accept. This is known as HTTP content negotiation and is often referred to as conneg.
Not all Linked Data sites provide data access via conneg, but many do.

 Conneg allows you to request the data directly instead of relying on a web page
author to make links for you. You can get the Linked Data for the Browns Ferry page
in Turtle format by performing an HTTP GET on the URL and using the Accept header
for Turtle:

$ curl –L -H 'Accept: text/turtle'

➥ http://linkeddatadeveloper.com/facilities/110000589355?describe

The ability to get access to the underlying data used to create a web page is a hallmark
of Linked Data applications. Most Linked Data applications expose their data for fur-
ther reuse. Users of a Linked Data site can decide whether they like the way informa-
tion was presented or grab the data and create their own. They can even build a more
complicated application by combining that data with data from other sites or other
applications. Linked Data frees data from application UIs.

Set the HTTP
request header
for Turtle format

24 CHAPTER 1 Introducing Linked Data
1.8.2 Creating the user interface from Linked Data

We said that the Browns Ferry page was built entirely from Linked Data. Let’s look at
the data to see how the UI was created. A small extract of the Linked Data will be
enough to prove the point. The next listing shows an extract that contains informa-
tion used to create the map, show the picture of the plant, and show a URI used to get
information about the street address. Again, if you try the given curl command, the
data you’ll get back will be larger and you may need to look through it to find the part
we extracted for this example.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix place: <http://purl.org/ontology/places#> .
@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .

<http://linkeddatadeveloper.com/facilities/110000589355> place:point_on_map

➥ "34.710917,-87.112"^^place:latlong ;
foaf:depiction
<http://upload.wikimedia.org/wikipedia/commons/a/ab/Browns_ferry_NPP.jpg> ;
vcard:adr
<http://linkeddatadeveloper.com/addresses/

➥ shawrdatnuclearplantrdathensal35611usa> .

The page uses OpenStreetMap (http://openstreetmap.org/) to draw the map. The
OpenStreetMap API uses a latitude and a longitude to create a map for a point. The
latitude and longitude are available in the data, and that makes it easy to make the call
to the OpenStreetMap API.

 The picture is even easier to include because the URL for the image we want is also
in the data. A simple HTML image tag using that URL in its src attribute is all we need
to include the image.

 Now for the fun part. We want to display the street address and can see on the page
that the address is Shaw Rd. at Nuclear Plant Rd., Athens, AL 35611. But the data only
shows a URL for the street address. How can we get to the details of the information
for the address? By resolving its URL! Try this:

$ curl –L -H 'Accept: text/turtle' http://linkeddatadeveloper.com/addresses/
shawrdatnuclearplantrdathensal35611usa

Resolving the address URL returns all the data for that address, including information
that wasn’t used in the UI. This illustrates another good reason for using Linked Data:
more data is often available than is used in a particular interface. Linked Data allows
you to find and use that additional information much more easily than other struc-
tured data technologies.

 The full street address information is shown in the next listing. Note that it con-
tains a county name (Limestone), a country name (USA), and other information that
we didn’t previously know.

Listing 1.5 Extract from the Browns Ferry nuclear power plant Linked Data

Latitude and longitude
of the facility

URI of the
facility’s

picture on
Wikimedia
Commons

Street
address URI

25Anatomy of a Linked Data application
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .
@prefix frs: <http://linkeddatadeveloper.com/id/us/fed/agency/epa/frs/schema#> .

<http://linkeddatadeveloper.com/addresses/
shawrdatnuclearplantrdathensal35611usa> a vcard:Address ;

 vcard:street-address "Shaw Rd At Nuclear Plant Rd." ;
 vcard:locality "Athens" ;
 vcard:region "Alabama" ;
 frs:county_name "Limestone" ;
 frs:fips_county_code "01083" ;
 frs:state_code "AL" ;
 frs:state <http://linkeddatadeveloper.com/states/AL> ;
 vcard:postal-code "35611" ;
 vcard:country-name "USA" ;
 foaf:based_near <zip:35611> , <zip:35611> .

Next, let’s look at how Linked Data applications can be distributed across multiple
servers. There are lots of ways to segment data and applications. One of the easiest is
by using the humble hyperlink to good advantage.

 The Browns Ferry page contains reports of pollution in the lower right of the page
under the heading Released. Click the link that reads “Lead in 2001.” That’s a report
of lead pollution that was filed by the owners of the facility in 2001. Figure 1.11 shows
the resulting page.

Listing 1.6 Linked Data for the Browns Ferry nuclear power plant street address

The county name

The country name

Registry
System

EPA’s Substance

Figure 1.11 An HTML rendering of the 2001 lead pollution report from Browns Ferry nuclear power plant
www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 1 Introducing Linked Data
Figure 1.11 summarizes the amount of lead pollution released from Browns Ferry dur-
ing 2001. You can see a hyperlink to Lead circled in the upper left of the page. That
link leads to a page describing the chemical properties of lead and synonyms for the
chemical name. Chemical information comes from a completely different dataset and
therefore forms a natural segmentation point for scaling.

 The point here is subtle and intentionally hard to see: the page about the sub-
stance lead could be on any server. The humble web hyperlink allows you to segment
your data and your Linked Data applications in any way you wish. They could all be on
the same server or they could be on hundreds or thousands of servers. All you would
need to do is to link to the appropriate locations. You could use the hyperlinks on
your web pages directly from the Linked Data or redirect them as you wish by building
new links from the Linked Data URIs. All the standard web tools and techniques apply
to the creation of Linked Data applications.

1.9 Summary
Linked Data is a set of techniques for publishing and consuming structured data on
the Web. It uses the Resource Description Framework as a data model and RDF serial-
izations to express data representations. But Linked Data is not just RDF. Links play a
central role in Linked Data. A Linked Dataset should (indeed, must) link to other
Linked Data on the Web.

 Linked Data uses HTTP URIs to identify things and HTTP to send descriptions of the
things from a dataset to a Linked Data consumer, such as a browser or an application.

 Linked Data is a general-purpose concept. Literally anything can be described
using Linked Data. This chapter showed examples of Linked Data being used by large
organizations on the Web and discussed the components of a real-world Linked Data
application. Don’t forget that Linked Data can also be used in private settings.

 Writing applications using Linked Data is no more complicated that using native
JSON or XML data sources, but Linked Data is more flexible and limits how many new
APIs you need to learn.

RDF: the data model
 for Linked Data
Linked Data couldn’t exist without a consistent underlying data model. That data
model is the Resource Description Framework (RDF). Some people have negative
opinions about RDF because they consider it to be overly complicated. Those opin-
ions were generally formed in the early days of RDF and relate to its first, and rather
complicated, serialization format based on XML. We hope to show you that RDF is
quite simple and introduce you to the variety of different serialization formats that
make modern RDF easy to use.

 We briefly introduced RDF in chapter 1 and mentioned that a single RDF state-
ment describes two things and a relationship between them. Multiple RDF statements can
connect to form graphs (not just hierarchies) of information. The only thing that

This chapter covers
■ An introduction to the Resource Description

Framework
■ RDF as a data model for Linked Data
■ RDF formats relevant to Linked Data
■ Linked Data vocabularies
27

http://example.com
http://www.w3.org/2004/OWL/#specs
http://www.w3.org/2004/OWL/#specs

28 CHAPTER 2 RDF: the data model for Linked Data
might make RDF seem complicated is that most things and the relationships use URIs
to name them.1 RDF statements may be hard to read in the raw because URIs can be
long. Fortunately, many RDF serialization formats have ways to write abbreviations for
long URIs.

 This chapter describes the RDF data model and how it relates to Linked Data. We’ll
start by examining the Linked Data principles again, this time as they build on and
restrict what can be done in RDF. We’ll then describe the RDF data model in some
detail, including how to find, use, and create RDF vocabularies. RDF vocabularies pro-
vide schema information for RDF data and are analogous to the schema in a relational
database. Finally, we’ll show the four RDF serialization formats that are most com-
monly used with Linked Data. By the end of this chapter, you’ll be comfortable with
how Linked Data is written and will start to understand how to write your own.

NOTE RDF is fully described in specifications published by the W3C at http://
www.w3.org/standards/techs/rdf.

2.1 The Linked Data principles extend RDF
Let’s revisit the Linked Data principles, described in chapter 1, in more detail so you
can see how the RDF data model is used and how the Linked Data principles restrict
that data model for use on the Web.

 The first Linked Data principle is “Use URIs as names for things.” RDF allows you to
name things with either URIs or literals in the object position, such as <http://
www.manning.com/dwood/> dc:creator “David Wood”, but using URIs is more flexi-
ble in that it encourages linking and extension. Literals (such as strings, numbers, or
dates) can’t be subsequently used as subjects.

 Figure 2.1 shows three RDF statements that share the same subject (http://
www.manning.com/dwood/) and all use the same predicate (dc:creator). Two of the
statements end in literal objects (“David Wood” and “Marsha Zaidman”). The third
statement uses a URI in the object position: http://lukeruth.co/me.ttl#Me. That URI
resolves on the Web to an RDF document describing Luke Ruth and provides a
unique, worldwide, unambiguous web identifier for Luke.

 The predicate dc:creator is shorthand for the fairly long URI http://purl.org/
dc/elements/1.1/creator. You’ll see how each RDF serialization format can abbrevi-
ate URIs in section 2.4 RDF formats for Linked Data. For now, note that you
can abbreviate any URI you wish by splitting it into a prefix (like http://purl.org/
dc/elements/1.1/) and a suffix (creator). You can then assign a short name to the
prefix (dc: in this case), so dc:creator becomes synonymous with http://purl.org/
dc/elements/1.1/creator. We’ll continue to use both long URIs and prefixed URIs
throughout our examples so you get used to seeing them. Similarly, any URI can be

1 RDF 1.1 changed URIs to IRIs (Internationalized Resource Identifiers) in 2013. For our purposes, we gener-
ally mean the same thing when we say URI or IRI; the differences are subtle. When in doubt, remember that
modern RDF and hence Linked Data use IRIs.

http://purl.org/dc/elements/1.1/creator
http://purl.org/dc/elements/1.1/creator
http://www.manning.com/dwood/
http://www.manning.com/dwood/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/creator
http://purl.org/dc/elements/1.1/creator
http://www.w3.org/standards/techs/rdf
http://www.w3.org/standards/techs/rdf
http://www.manning.com/dwood/
http://www.manning.com/dwood/
http://lukeruth.com/me.ttl#Me
http://example.com/2013/03/20/linked-data-book
http://example.com/2013/03/20/linked-data-book
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/creator
http://purl.org/dc/elements/1.1/creator
http://example.com/id/vocabulary#linked_data
https://github.com/specgen/specgen
https://github.com/specgen/specgen
http://example.com/id/vocabulary
http://example.com/some_stuff
http://example.com/some_stuff
http://paulsbakery.example.com/984d6a
http://paulsbakery.example.com/984d6a
http://paulsbakery.example.com/baked_goods/bread/rye-12
http://example.com/index.aspx
http://example.com/index.aspx
http://example.com/index.aspx
http://stats.lod2.eu/vocabularies
http://stats.lod2.eu/vocabularies
http://dbpedia.org/resource/The_Zoo
http://dbpedia.org/resource/The_Zoo
http://dbpedia.org/resource/The_Zoo
http://linkeddatadeveloper.com/ns/odor
http://linkeddatadeveloper.com/ns/odor
http://linkeddatadeveloper.com/ns/odor
http://linkeddatadeveloper.com/ns/odor
http://rdfa.info/tools/
http://rdfa.info/play/
http://rdfa.info/play/

29The Linked Data principles extend RDF
assigned a short prefix. The examples in the remainder of this chapter assume the
prefixes listed in table 2.1.

Figure 2.2 shows why we often prefer to use URIs as names for things. We can make
other statements about Luke because RDF subjects must be URIs, such as his name and
things he’s interested in. We’d need to change David and Marsha’s literals into URIs in
order to make more statements about them in the same graph.

 The second Linked Data principle is “Use HTTP URIs so people can look up those
names.” RDF itself doesn’t specify the type of URIs to use. You could use an FTP: URI,
an ISBN: URI, or even one that you make up yourself. Linked Data specifically requires
the use of HTTP URIs so you can tie data into the Web. Linked Data URIs should be
resolvable and intrinsically part of the Web.

 Try resolving Luke Ruth’s URI, shown in figures 2.1 and 2.2, by typing it into a web
browser’s address field. You’ll find that it resolves to an RDF document in Turtle format
and contains RDF statements about Luke. Even the tiny RDF graph in figure 2.1 is useful

Table 2.1 URI prefixes used in the examples, unless otherwise specified

Prefix Namespace URI

dc: http://purl.org/dc/elements/1.1/

foaf: http://xmlns.com/foaf/0.1/

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

vcard: http://www.w3.org/2006/vcard/ns#

dc:creator

http://www.manning.com/dwood/

dc:creator

"David Wood"

dc:creator

"Marsha
Zaidman"

http://lukeruth.co/
me.ttl#Me

…or a URI.RDF statements
may end in a literal...

Figure 2.1 Objects in RDF statements can be literals or URIs

http://purl.org/dc/elements/1.1/
http://xmlns.com/foaf/0.1/
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2006/vcard/ns
http://sameAs.org
http://richard.cyganiak.de/blog/2011/03/creating-an-rdf-vocabulary/
http://richard.cyganiak.de/blog/2011/03/creating-an-rdf-vocabulary/

30 CHAPTER 2 RDF: the data model for Linked Data
because it points you to more information about Luke. That’s the power of Linked
Data: getting a small amount of Linked Data leads you to more, maybe much more.

 You should make up your own URIs when making your own data. You already know
that they should be HTTP URIs. Here are some other guidelines:

■ Name things with URIs most of the time.
■ Use a DNS domain that you control.
■ Use natural keys.
■ Make your URIs neutral to implementation details.
■ Be cautious with the use of fragment identifiers.

You’ve already seen how to name things with URIs. Let’s look at the remainder of the
guidelines in detail. If you own the DNS domain example.com, you can make URIs like
http://example.com/some_stuff. Of course, you don’t own the domain exam-
ple.com, so you should use a domain you do own. Making URIs (also known colloqui-
ally as “minting” URIs) in someone else’s DNS domain is considered extremely rude.
Although it’s true that RDF allows anyone to say anything about anything (just as the
Web does), it’s also true that you need to be careful about sources of data (the same as
for sources of documents on the Web). Minting URIs that use your own domain and
publishing them on your own domain help people to trust your data. This is part of
the social contract inherent in Linked Data publishing.

 Natural keys are human-readable categories and subidentifiers within a URI that
reflect what the identifier describes. Try to use natural keys when creating your URIs so
people reading your RDF in its source format (mostly developers) will be able to quickly
understand what you’re saying. For example, if you’re trying to make a URI to describe

dc:creator

http://www.manning.com/dwood/

dc:creator

"David Wood"

dc:creator

"Marsha
Zaidman"

"Luke Ruth"

foaf:name

"community
service"

foaf:topic_interest

http://lukeruth.co/
me.ttl#Me

Additional information
may be added to URIs
but not to literals.

Figure 2.2 Using URIs pro-
vides the flexibility to make
subsequent statements.

http://richard.cyganiak.de/blog/2011/03/creating-an-rdf-vocabulary/
http://richard.cyganiak.de/blog/2011/03/creating-an-rdf-vocabulary/
http://www.w3.org/TR/rdfa-primer/
http://rdfa.info/

31The Linked Data principles extend RDF
a particular kind of rye bread loaf in a bakery, you could use a nonnatural key such as a
product number (http://paulsbakery.example.com/984d6a) or natural keys (http://
paulsbakery.example.com/baked_goods/bread/rye-12). Clearly, the URI with the nat-
ural keys is easier on everyone.

 Neutral URIs avoid the exposure of implementation details in the URIs. Many,
many websites use nonneutral URIs. When you see a site with a URI like http://exam-
ple.com/index.aspx, you know that it uses Microsoft.NET’s ActiveX Server Pages. If
the site administrators change the web server infrastructure, all their URIs will change.
That can be a problem for people who have bookmarked pages or who have written
RDF that uses those URIs. Neutral URIs, by contrast, hide implementation details
because exposing them does more harm than good. An example of a neutral URI is
http://example.com/2013/03/20/linked-data-book, which does not expose what
kind of technology is used to serve the content.

 Fragment identifiers are the part of an HTTP URI that follows a hash symbol (#).
Fragment identifiers are not passed to web servers by web clients like browsers. That
means that if you try to resolve a URI such as http://example.com/id/vocabu-
lary#linked_data, your browser will just send http://example.com/id/vocabulary to
the server. The fragment identifier will be processed locally. This is an attempt to pro-
tect your privacy. Fragment identifiers are often used in HTML pages to point to a par-
ticular section, and there’s no reason to tell web server operators which part of a
document you particularly want to read. They have enough information about your
browsing habits already! Fragment identifiers are used by many Linked Data vocabu-
laries because the vocabulary is often served as a document and the fragment is used
to address a particular term within that document.

 But fragment identifiers won’t work well for all data identifiers. What would
happen if you were to ask a web server to see information about a resource named
http://example.com/cars#porsche? The server would never receive the fragment
#porsche and would thus be likely to return information to you about all cars! That’s
why we suggest that you use fragment identifiers with caution to avoid unexpected
consequences. You don’t need to think about what information gets passed to a web
server if you avoid their use.

 There are legitimate use cases for URIs with and without fragment identifiers.
Unless you understand the ramifications inherent in the choice, we recommend that
you avoid fragment identifiers when naming resources, but you can choose to use
them when creating vocabularies. Figure 2.3 summarizes our URI creation guidelines.

 The third Linked Data principle is “When someone looks up a URI, provide useful
information.” This principle relates Linked Data to related documentation and to
anything else that’s relevant to it on the Web. You’ve already seen this in action when
you resolved Luke’s URI from figure 2.1. You did, right? If not, you really should do it
now. We’ll wait. RDF doesn’t require you to make your URIs resolvable, but Linked
Data does because it’s just so handy.

 The fourth Linked Data principle is “Include links to other URIs.” Linked Data
isn’t just data—it’s data with links. Linking is what makes the Linked Data approach

http://paulsbakery.example.com/baked_goods/bread/rye-12
http://paulsbakery.example.com/baked_goods/bread/rye-12
http://example.com/index.aspx
http://example.com/index.aspx
http://example.com/id/vocabulary#linked_data
http://www.w3.org/TR/json-ld-syntax/
http://json-ld.org
http://json-ld.org
http://www.w3.org/2001/sw/wiki/Tools
http://www.w3.org/2001/sw/wiki/Tools

32 CHAPTER 2 RDF: the data model for Linked Data
better (more flexible and extensible) than other structured data approaches. More
links add value, just as with web pages. Figure 2.4 shows how we add more value by

Figure 2.3 How to create your own URIs (credit: Richard Howlett)

dc:creator

http://www.manning.com/dwood/

"Luke Ruth"

dc:creator

"David Wood"

dc:creator

"Marsha
Zaidman"

http://paprika.umw.edu/
~marsha/foaf.ttl#me

http://lukeruth.co/
me.ttl#Me

http://3roundstones.com/
dave/me.ttl#me

foaf:name foaf:namefoaf:name

"Dave"

foaf:nick

"community
service"

foaf:topic_interest

foaf:pastProject

http://3roundstones.com/
linking-enterprise-data/

foaf:knowsfoaf:knows

Adding links adds more
value than adding literals

RDF graphs
do not need to

be hierarchical.
Loops are legal!

Figure 2.4 More links add value—just like with web pages

http://json-ld.org
http://json-ld.org
http://json-ld.org

33The RDF data model
including other resolvable URIs in our sample graph. We can arbitrarily extend the
information a reader of our graph can access by adding new resolvable URIs. For
example, we could add URIs to social media accounts, such as Facebook, LinkedIn,
and Twitter, for each of the authors. We could also link to more Linked Data. The
URIs you add may be to other data or to the general Web. As with the third principle,
RDF doesn’t require you to link to other data, but Linked Data does.

 Do you remember the Linked Data mug shown in the first chapter? Providing links
to other data moves your RDF from 4-Star data to 5-Star data. Creating 5-Star Linked
Data should always be your goal.

 In this section, you’ve seen how the Linked Data principles are implemented using
RDF as the data model and how the Linked Data principles build on top of RDF.
Linked Data encourages you to use HTTP URIs as names, even though RDF allows you
to use string literals. Linked Data encourages you to make your URIs resolvable on the
Web and for those web pages to say something meaningful. Linked Data encourages
you to link to other people’s data. Taken together, the Linked Data principles create a
Web of Data.

2.2 The RDF data model
Now let’s look at RDF in more detail. You’ve already seen how RDF statements, also
called triples, can connect to each other to form graphs and how subjects, predicates,
and some objects are named with URIs. We’ll now discuss additional details of the data
model.

 The RDF data model defines what each component of a triple can be, such as a URI
or a literal. It also defines other key concepts such as how to restrict literals with data
types or in which (human) language they’re written. Some components of the data
model, named with URIs, can be collected into classes so they may be more easily dis-
covered, searched, or queried. This section describes all of the components of the
RDF data model so you become familiar with these terms.

2.2.1 Triples

The RDF triples you’ve seen so far have been pretty short. There’s no restriction in
RDF or Linked Data that suggests that you can’t have very long literals—sometimes
you do. The bonobo example in chapter 1 could easily be extended by pulling in the
remainder of the DBpedia data about bonobos. That data includes an abstract and
comments in a number of languages, some of which are lengthy. Figure 2.5 shows the
addition of an rdfs:comment in English to the example graph.

 There are practical reasons to avoid very long literal objects in RDF. Most RDF data-
bases (and databases in general) aren’t optimized to hold very long objects. In gen-
eral, you should link to a page holding a lot of data instead of shoving it into a literal
object. The definition of “a lot” is up to you.

 The bonobo example data all came from Wikipedia, but it isn’t necessary to
restrict yourself to data from a single source. RDF graphs can be created from many

http://example.com/address/usa/california/san_diego
http://example.com/address/usa/california/san_diego
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://example.com/Zoo
http://www.w3.org/TR/turtle/

34 CHAPTER 2 RDF: the data model for Linked Data
sources. For example, you could add a triple to the bonobo example that tells readers
to look for more information about bonobos at the Encyclopedia of Life. That is done
with the seeAlso relationship from the RDF Schema vocabulary. Figure 2.6 shows you
how. Resolving the URI in the object will bring you a nice page about bonobos.

foaf:namedbpedia:Bonobo

http://upload.wikimedia.org/wikipedia/
commons/a/a6/Bonobo-04.jpg

foaf:depiction

dbpedia-owl:Eukaryote

dbpedia-owl:Animal

dbpedia-owl:Mammal

rdf:type

rdf:type

rdf:type

"Bonobo"
@en

"The bonobo, Pan paniscus, previously called the pygmy
chimpanzee and less often, the dwarf or gracile chimpanzee, is
a great ape and one of the two species making up the genus

Pan; the other is Pan troglodytes, or the common chimpanzee.
Although the name "chimpanzee" is sometimes used to refer to

both species together, it is usually understood as referring to
the common chimpanzee, while Pan paniscus is usually

referred to as the bonobo." @en

rdfs:comment

A long(ish) literal

Figure 2.5 Addition of a long literal to the bonobo example graph

35The RDF data model
2.2.2 Blank nodes

Objects of RDF statements can be one more thing other than URIs and literals: blank
nodes. A blank node is like a URI without a name and is also sometimes called an
anonymous resource. They can be useful when you need to link to a collection of
items but don’t want to bother making up a URI for it.

 You should note that many people avoid using blank nodes. Blank nodes can cause
some difficulty when you get them back in query results because you can’t query them
later. They don’t have a name, so you can’t resolve them. For this reason, many people
just make up URIs whenever they need to and avoid blank nodes altogether. But you
need to know about them because other people do use them and you’ll see them in
data available on the Web.

 Figure 2.7 shows the use of a blank node to represent the address of the San Diego
Zoo. The zoo has a URI, but the address itself does not. An alternative would be to
make up a URI for the address by using the natural keys found in the address informa-
tion, such as http://example.com/address/usa/california/san_diego (using a DNS
domain that you control).

dbpedia:Bonobo http://eol.org/pages/326448/overviewrdfs:seeAlso

A link to an external
web resource

Figure 2.6 Use of rdfs:seeAlso to provide links to external resources

dbpedia:Bonobo

http://semanticweb.org/wiki/Property:Contains

http://dbpedia.org/resource/
San_Diego_Zoo

rdfs:label

"San Diego Zoo"
@en

vcard:adr

vcard:country-name

"USA"

vcard:locality

"San
Diego"

vcard:region

"California"

A blank node

Figure 2.7 Using a blank node to create an address
www.allitebooks.com

http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema
http://www.allitebooks.org

36 CHAPTER 2 RDF: the data model for Linked Data
Some RDF databases and other systems implementing the SPARQL query language for
RDF automatically assign URIs to blank nodes so they may be more easily operated
upon. This process is known as skolemization and is described in RDF 1.1 Concepts and
Abstract Syntax (http://www.w3.org/TR/rdf11-concepts/).

2.2.3 Classes

RDF resources may be divided into groups called classes using the property rdf:type
in the RDF Schema (RDFS) standard. RDFS is a vocabulary definition language for RDF
and helps to create new RDF vocabularies. The members of a class are known as
instances of the class, just as they are in object-oriented programming, although the
two concepts are completely different. RDFS classes are themselves RDF resources and
are of type rdfs:Class. The rdfs:subClassOf property may be used to state that one
class is a subclass of another. Another vocabulary definition language for RDF is the
Web Ontology Language (OWL).2 OWL has a way to define classes, too.

 For example, we could note that bonobos are held in the San Diego Zoo and the
Columbus Zoo and Aquarium in the United States. Figure 2.8 demonstrates how we

2 OWL’s acronym comes from the character Owl in Winnie the Poo, who misspelled his name WOL.

dbpedia:Bonobo

http://semanticweb.org/wiki/Property:Contains

rdfs:label

"San Diego Zoo"
@en

rdfs:label

"Columbus Zoo
and Aquarium"

@en

http://semanticweb.org/wiki/Property:Contains

ex:Zoo

a a

rdfs:Class

a

http://dbpedia.org/resource/
San_Diego_Zoo

http://dbpedia.org/resource/
Columbus_Zoo_and_Aquarium

Classes are of
type rdfs:Class.

The term a is the same
as using rdf:type.

An RDFS class for all
things that are zoos

Figure 2.8 Using classes
to group resources

http://www.w3.org/2006/vcard/ns

37The RDF data model
can say that both zoos are a type of ex:Zoo (short for http://example.com/Zoo, a
made-up URI), which is designated an rdfs:Class. Many RDF databases are capable of
understanding RDFS class relationships, even if they don’t implement more complete
logical formalisms found in systems like OWL.

2.2.4 Typed literals

So far you’ve only seen RDF literals that are simple strings, like names for people, zoos,
and places. Naturally, you sometimes want to describe numbers, dates, or other data
types. RDF allows literals to be marked as being of any data type in the XML Schema
Datatype standard. You can also make your own data types, but that’s not generally
done in Linked Data because it hurts interoperability between existing systems.

 Figure 2.9 shows the use of a data type. The San Diego Zoo has an exhibit called
Pygmy Chimps at Bonobo Road that opened on April 3, 1993 (in San Diego, which is
in the UTC-8 hours time zone). The same figure also shows another use of a blank node.

NOTE The full list of XML Schema data types may be found at http://
www.w3.org/TR/xmlschema11-2/.

dbpedia:Bonobo

http://semanticweb.org/wiki/Property:Contains

http://dbpedia.org/resource/
San_Diego_Zoo

rdfs:label

"San Diego Zoo"
@en

http://dbpedia.org/resource/Exhibit

http://semanticweb.org/wiki/Property:Contains

rdfs:label

"Pygmy Chimps at
Bonobo Road"@en

http://dbpedia.org/property/dateStart

"1993-04-03-08:00"
^^xsd:date

Another use of
a blank node

A date shown with an explicit datatype

Figure 2.9 Using explicit data type properties

http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/

38 CHAPTER 2 RDF: the data model for Linked Data
The RDF data model is the foundation of Linked Data. It’s used to define data ele-
ments, to relate them to one another, and to provide the common framework needed
to combine data from various sources. Understanding the RDF data model is the first
step toward understanding how Linked Data really works.

 You’ve seen how RDF predicates are used to relate one thing to another thing. You
can collect some such predicates into a grouping called a vocabulary. RDF vocabular-
ies serve the same purpose as schemas in a relational database; they describe what the
data represents. Linked Data vocabularies are, as you’d expect by now, named using
HTTP URIs, and their descriptions are resolvable on the Web. The next section
explains how to understand, find, use, and even create your own vocabularies.

2.3 RDF vocabularies
You’ve already seen a number of terms used in Linked Data in the bonobo example,
such as foaf:name, rdfs:label, and vcard:locality. It may or may not have been
obvious that those terms are grouped together to form RDF vocabularies. For exam-
ple, the terms rdfs:label, rdfs:comment, and rdfs:seeAlso are all defined in the
RDF Schema vocabulary, which has the URI associated with the rdfs: prefix; see
http://www.w3.org/2000/01/rdf-schema#. Similarly, the terms vcard:locality,
vcard:region, and vcard:country-name all come from the vCard vocabulary associ-
ated with the vcard: prefix; see http://www.w3.org/2006/vcard/ns#.

RDF vocabularies provide a schema for the Web of Data. Like a relational data-
base’s schema, RDF vocabularies provide definitions of the terms used to make rela-
tionships between data elements. Unlike a relational database’s schema, however, RDF
vocabularies are distributed over the Web, are developed by people all over the world,
and only come into common use in Linked Data if a lot of people choose to use them.

 Anyone can make an RDF vocabulary, and many people do. This would seem to be
a recipe for disaster. How can anyone reuse Linked Data if it contains terms that
you’ve never seen before? There are two ways to make this problem tractable, one
technical and the other social: Make certain that the URIs defining Linked Data
vocabularies themselves follow the Linked Data principles, and reuse existing vocabu-
laries whenever possible.

RDF vocabularies that use resolvable HTTP URIs and present useful information
describing the vocabulary allow anyone to “follow their nose” to the information that’s
required for learning how a new term is being applied.

 Reusing existing vocabularies ensures that for the most common use cases most
people will use the most common vocabularies. This is a social contract that should
probably be added as an additional Linked Data principle.

 Some vocabularies get used over and over in practice. They evolved to become
central to what most people do with Linked Data. We’ll call these core vocabularies. Oth-
ers are used whenever certain information needs to be represented but are less com-
mon than the everyday core vocabularies. We’ll call those authoritative vocabularies.
Both types are described in this section and their URLs are given.

39RDF vocabularies
Figure 2.10 summarizes the best-practice guidance for reusing existing vocabularies.

2.3.1 Commonly used vocabularies

The kinds of objects often described first in Linked Data are people, projects, web
resources, publications, and addresses. You might also want to migrate an existing tax-
onomy or other classification scheme into an RDF vocabulary. The vocabularies that
define these terms are sometimes called the core RDF vocabularies.

 Figure 2.11 shows the core RDF vocabularies and suggests how you might use them
to model the most common types of Linked Data.

Figure 2.10 Reuse vocabularies whenever possible (credit: Richard Howlett).

Figure 2.11 Core vocabularies (credit: Richard Howlett)

40 CHAPTER 2 RDF: the data model for Linked Data
Other vocabularies have become authoritative because they model other common
objects and have been widely adopted. Figure 2.12 shows examples, including prod-
ucts for sale, geographic locations and place names, bibliographic information,
licenses, online communities and social networks, and compound digital objects.

 Taken together, figure 2.11 and figure 2.12 allow you to quickly find the most com-
monly used RDF vocabularies. Look at table 2.2 if you don’t see what you need.

 Table 2.2 lists some of the most commonly used RDF vocabularies used in Linked
Data, along with their preferred short prefix, their namespace URI, and their purpose.
These aren’t the only vocabularies you’ll see, but they’ll be enough to get you going
and to understand much of what you’ll see in Linked Open Data on the public web.

NOTE The LODStats project generates statistics for the most commonly used
vocabularies at http://stats.lod2.eu/vocabularies.

Table 2.2 Core and other commonly used RDF vocabularies

Name Prefix Namespace URI Describes

Airport Ontology air: http://www.daml.org/2001/10/
html/airport-ont#

Nearest airports

BIBO bibo: http://purl.org/ontology/bibo/ Bibliographies

Figure 2.12 Other authoritative vocabularies (credit: Richard Howlett)

http://www.daml.org/2001/10/html/airport-ont
http://www.daml.org/2001/10/html/airport-ont
http://purl.org/ontology/bibo/

41RDF vocabularies
If you still can’t find a vocabulary you need, try searching for relevant terms on
Sindice, a Semantic Web search engine (http://sindice.com). You can use Sindice to
search for terms and then find vocabularies where those terms are defined. (Sindice is
an Italian word and pronounced without a silent e, like “sindee’cheh”.)

 If you still can’t find a vocabulary that suits your needs, read on!

Bio bio: http://purl.org/vocab/bio/0.1/ Biographical informa-
tion

Creative Commons Rights
Expression Language

cc: http://creativecommons.org/ns# Licenses

DOAP doap: http://usefulinc.com/ns/doap# Projects

Dublin Core Elements dc: http://purl.org/dc/elements/1.1/ Publications

Dublin Core Terms dct: http://purl.org/dc/terms/ Publications

FOAF foaf: http://xmlns.com/foaf/0.1/ People

Geo pos: http://www.w3.org/2003/01/geo/
wgs84_pos#

Positions

GeoNames gn: http://www.geonames.org/ontology# Locations

Good Relations gr: http://purl.org/goodrelations/v1# Products

Object Reuse and
Exchange

ore: http://www.openarchives.org/ore/
terms/

Resource maps

RDF rdf: http://www.w3.org/1999/02/22-rdf-
syntax-ns#

Core framework

RDFS rdfs: http://www.w3.org/2000/01/rdf-
schema#

RDF vocabularies

SIOC sioc: http://rdfs.org/sioc/ns# Online communities

SKOS skos: http://www.w3.org/2004/02/skos/
core#

Controlled vocabularies

vCard vcard: http://www.w3.org/2006/vcard/ns# Business cards

VoID void: http://rdfs.org/ns/void# Vocabularies

Web Ontology Language
(OWL)

owl: http://www.w3.org/2002/07/owl# Ontologies

WordNet wn: http://xmlns.com/wordnet/1.6/ English words

XML Schema Datatypes xsd: http://www.w3.org/2001/
XMLSchema#

Data types

Table 2.2 Core and other commonly used RDF vocabularies (continued)

Name Prefix Namespace URI Describes

http://purl.org/vocab/bio/0.1/
http://creativecommons.org/ns
http://usefulinc.com/ns/doap
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://xmlns.com/foaf/0.1/
http://www.w3.org/2003/01/geo/wgs84_pos
http://www.w3.org/2003/01/geo/wgs84_pos
http://www.geonames.org/ontology
http://purl.org/goodrelations/v1
http://www.openarchives.org/ore/terms/
http://www.openarchives.org/ore/terms/
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema
http://rdfs.org/sioc/ns
http://www.w3.org/2004/02/skos/core
http://www.w3.org/2004/02/skos/core
http://www.w3.org/2006/vcard/ns
http://rdfs.org/ns/void
http://www.w3.org/2002/07/owl
http://xmlns.com/wordnet/1.6/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

42 CHAPTER 2 RDF: the data model for Linked Data
2.3.2 Making your own vocabularies

The goal of RDF and Linked Data is to allow anyone to describe anything. The ability
to create your own vocabularies and resolve them on the Web is a critical part of both
RDF and Linked Data. It provides an unlimited number of possible terms in order to
scale RDF descriptions as the Web scales.

 You’ve seen an example of a custom vocabulary term in the bonobo example:
ex:Zoo. The ex: URI, http://example.com, exists solely for the purpose of allowing
people to use it in examples without risking it either going away or, worse, allowing
many people to conflict with one another by defining terms in the same namespace
without coordination. You’re free to use http://example.com in any example but
should never publish a real vocabulary using that URI.

 You could make the ex:Zoo term into a real Linked Data term by searching
Sindice. If you try that, you’ll see that DBpedia (of course) already defines a term for a
zoo: http://dbpedia.org/resource/The_Zoo. You can thus replace all instances of
ex:Zoo with dbpedia:The_Zoo and be done. Putting in placeholders and looking up
terms before publishing your vocabulary is often the best way to deal with what you
don’t immediately have a vocabulary for.

 If we couldn’t find an existing vocabulary term to replace our placeholder term,
we’d need to make a new vocabulary and create the term there. Let’s say that we want
to create an RDF triple that says that bonobos smell like old socks. It’s rather unlikely
that an existing vocabulary defines such subjective terms. The RDF triple that we want
would be something like dbpedia:Bonobo ex:smellsLike ex:OldSocks. Now we need
to create real terms for ex:smellsLike and ex:OldSocks, create a vocabulary docu-
ment to contain them, and publish the document.

 The term ex:OldSocks could become an RDFS class, because we might one day
wish to have other classes of things that animals can smell like. It could just as easily be
an OWL class, and there’s nothing to stop us making it both. The term ex:smellsLike
is used as a predicate and so is probably best as an RDFS property.

 We also need to make up a prefix to replace ex:. Let’s use odor: because our
vocabulary relates to smells.

 As a last step, we need a URI where we’ll publish our new vocabulary. We can call it
whatever we like as long as we have the right to publish it to the place we define. For the
purposes of demonstration only, we’ll use http://linkeddatadeveloper.com/ns/odor#.

 Listing 2.1 shows our final vocabulary. The only thing left to do is to publish that
document at the URI http://linkeddatadeveloper.com/ns/odor#. If you want to pub-
lish it for real, change the DNS domain in the HTTP authority (and the path if you
want to) and change the URI associated with the odor: prefix in the document.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix odor: <http://linkeddatadeveloper.com/ns/odor#> .

Listing 2.1 A custom RDF vocabulary in Turtle format

43RDF formats for Linked Data
Classes
odor:OldSocks a rdfs:Class, owl:Class ;
rdfs:label "Old socks" ;
 rdfs:comment "The odor associated with old socks or bonobos." .

Properties
odor:smellsLike
 rdf:type rdf:Property ;
 rdfs:label "smells like" ;
 rdfs:comment "Relates an arbitrary subject to a class that identifies an

➥ odor." .

NOTE You can generate nice-looking HTML documentation for your vocabu-
laries using SpecGen. See https://github.com/specgen/specgen for details.
Alternatives include OWL-Doc, LODE, and Parrot.

Sometimes after a vocabulary is published you find that someone else created a term
very similar to, or even identical to, one that you created. It might be difficult for you
to change all of your terms, or you might not trust that the other vocabulary publisher
will keep their vocabulary published. What do you do now? Fortunately, there’s an
easy solution: Publish a single RDF triple saying that the two terms mean the same
thing. The predicate to use when associating two terms is owl:sameAs.

 Let’s say that our odor:smellsLike predicate means exactly the same thing as a
term in someone else’s vocabulary called smells:like. You can publish an RDF triple
to the Web that reads odor:smellsLike owl:sameAs smells:like and you’re finished.
Anyone picking up that triple will be able to know that your term means the same
thing as smells:like.

 Many owl:sameAs triples have been collected on a website at http://sameAs.org.
You should get into the habit of checking that site before you make your own vocabu-
lary or publish new owl:sameAs triples.

 You should probably work with others if you want to get really good at creating RDF
vocabularies. Vocabulary creation expert Richard Cyganiak has published guidelines for
working on vocabularies with a group at http://richard.cyganiak.de/blog/2011/03/
creating-an-rdf-vocabulary/.

2.4 RDF formats for Linked Data
RDF is a data model, not a format. Many different formats can serialize RDF data and
therefore Linked Data. We focus on four here because they’re the ones most com-
monly used.

 Why should RDF have different formats at all? Because different systems have dif-
ferent “native” formats you might start from. Also, client systems (for example, phones
and browsers) may wish to minimize computation to get into a native format for fur-
ther processing. For example, web developers often prefer to use JSON because of
good library support in JavaScript, and enterprises that have invested heavily in XML
technologies might want to use an XML format.

http://richard.cyganiak.de/blog/2011/03/creating-an-rdf-vocabulary/
http://richard.cyganiak.de/blog/2011/03/creating-an-rdf-vocabulary/

44 CHAPTER 2 RDF: the data model for Linked Data
 The four formats you will see here are

■ Turtle—A simple, human-readable format
■ RDF/XML—The original RDF format in XML
■ RDFa—RDF embedded in HTML attributes
■ JSON-LD—A newer format aimed at web developers

It’s important to note that all RDF formats represent data in the RDF data model.
They’re interchangeable. Data in any of these formats may be parsed into RDF, and
data from multiple formats may be combined in a single RDF graph. Because of this
flexibility, you can work in whatever format is easiest for you to understand and then
use tools to convert your data into other forms if you need to.

 Let’s take two RDF triples from the bonobo example to demonstrate how they’re pre-
sented in each of the four formats: <http://dbpedia.org/resource/San_Diego_Zoo>
rdfs:label "San Diego Zoo"@en and dbpedia:Bonobo rdf:type dbpedia-owl:Mammal.
These triples mean “The San Diego Zoo is called the San Diego Zoo in English” and “A
bonobo is a mammal.”

 This section introduces the formats at a high level and helps you learn to read them.
 Can you find all the RDF statements from the bonobo example in each of the dif-

ferent formats? Try to find at least a few of them as you read about each format.

2.4.1 Turtle—human-readable RDF

Turtle is the easiest of the RDF formats for most people to read, and it’s the format
most Semantic Web and Linked Data developers choose to use most of the time. The
name Turtle was derived from Terse RDF Triple Language.

 Figure 2.13 shows the two example triples in abstract form and again in Turtle.
The subjects, predicates, and objects are shown so you can see how the format works.

http://dbpedia.org/resource/
San_Diego_Zoo

rdfs:label
"San Diego Zoo"

@en

<http://dbpedia.org/resource/San_Diego_Zoo> rdfs:label "San Diego Zoo"@en .

dbpedia:Bonobo rdf:type dbpedia-owl:Mammal .

dbpedia:Bonobo dbpedia-owl:Mammalrdf:type

terminator

terminator

Object
(a string literal with

a language tag)

Subject (a URI)
Predicate

Figure 2.13
RDF triples
represented in
Turtle format

45RDF formats for Linked Data
You can see that Turtle in its simplest form is a direct mapping of subjects, predicates,
and objects in order of appearance. Each statement is followed by a period or full stop
to mark its end.

 If prefixed URIs are used, the prefixes are typically declared at the top of the file
but may appear anywhere as long as they’re declared before they’re used.

 The following listing shows the entire bonobo example data in Turtle format. Note
the prefix declarations at the top of the listing.

@prefix dbpedia: <http://dbpedia.org/resource/> .
@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.com/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

dbpedia:Bonobo
 rdf:type dbpedia-owl:Eukaryote , dbpedia-owl:Mammal ,
dbpedia-owl:Animal ;
 rdfs:comment "The bonobo, Pan paniscus, previously called the pygmy

chimpanzee and less often, the dwarf or gracile chimpanzee, is a great
ape and one of the two species making up the genus Pan; the other is Pan
troglodytes, or the common chimpanzee. Although the name \"chimpanzee\"
is sometimes used to refer to both species together, it is usually
understood as referring to the common chimpanzee, while Pan paniscus is
usually referred to as the bonobo."@en ;

 foaf:depiction <http://upload.wikimedia.org/wikipedia/commons/a/a6/
Bonobo-04.jpg> ;

 foaf:name "Bonobo"@en ;
 rdfs:seeAlso <http://eol.org/pages/326448/overview>
.

<http://dbpedia.org/resource/San_Diego_Zoo> rdfs:label "San Diego Zoo"@en ;
 <http://semanticweb.org/wiki/Property:Contains> dbpedia:Bonobo ;
 vcard:adr _:1 ;
 dbpedia:Exhibit _:2 ;
 a ex:Zoo
.

<http://dbpedia.org/resource/Columbus_Zoo_and_Aquarium> rdfs:label "Columbus
Zoo and Aquarium"@en ;

 <http://semanticweb.org/wiki/Property:Contains> dbpedia:Bonobo ;
 a ex:Zoo
.

_:1 vcard:locality "San Diego" ;
 vcard:region "California" ;
 vcard:country-name "USA"
.

Listing 2.2 Bonobo example data in Turtle format

Location of the
“Bonobos are
mammals” triple

Location of the “San
Diego Zoo label” triple
www.allitebooks.com

http://www.allitebooks.org

46 CHAPTER 2 RDF: the data model for Linked Data
_:2 rdfs:label "Pygmy Chimps at Bonobo Road"@en ;
 <http://dbpedia.org/property/dateStart> "1993-04-03-08:00"^^xsd:date ;
 <http://semanticweb.org/wiki/Property:Contains> dbpedia:Bonobo
.

ex:Zoo a rdfs:Class .

Turtle also includes shortcuts so you don’t need to list every component of every triple.
The “Bonobos are mammals” triple is dbpedia:Bonobo rdf:type dbpedia-owl:Mammal.
It could appear just that way in a Turtle document. The components are broken up in
listing 2.2 so the subject dbpedia:Bonobo can apply to other triples. Triples that differ
only in the object can separate objects with commas, as in dbpedia:Bonobo rdf:type
dbpedia-owl:Eukaryote, dbpedia-owl:Mammal, dbpedia-owl:Animal, for example.
Triples that share just the same subject may be separated with semicolons. Can you
see where the subject dbpedia:Bonobo is shared by all the triples in the first block
of statements?

 Blank nodes are represented by “temporary” identifiers that start with an under-
score and a colon (the same as _:1 in listing 2.2). These identifiers will be thrown
away by whatever software or system parses a Turtle file and replaced with local blank
identifiers. Look at the listing to find the two blank nodes used in the example RDF.

URIs may be further abbreviated in Turtle by using the @base directive. @base
defines a base URI. All relative URI references in the document will be appended to
that base URI to form complete URIs. For example, you could replace the ex: vocabu-
lary namespace in listing 2.2 (@prefix ex: <http://example.com/> .) with a base URI
(like @base <http://example.com/> .). Then you could use relative URIs to replace
any references to the ex: vocabulary. In that case, ex:Zoo would change to the relative
URI <Zoo>.

NOTE Turtle is fully described at http://www.w3.org/TR/turtle/.

2.4.2 RDF/XML—RDF for enterprises

RDF/XML was the original serialization format for RDF. Unfortunately, it caused sub-
stantial confusion because of the complexities of its formatting and its standardization
prior to XML itself. RDF/XML isn’t used as much as it once was, but it still has value as
an RDF serialization format that works with many XML tools.

 Enterprise users should especially take note of RDF/XML because they’re more
likely to have an XML-based infrastructure.

 Figure 2.14 shows our two example triples in RDF/XML format. The first things
you’ll probably notice are the presence of XML tags (in angle brackets) and the fact
that the components of triples may be split across tags, tag attributes, and content.

 You can make sense of the format if you think about RDF/XML as a series of RDF
triples that are connected head to tail: subject (in a tag) followed by a predicate (in a
tag) followed by an object URI (in a tag) or an object literal (in a tag’s content). The
pattern can repeat each time an object becomes a subject.

47RDF formats for Linked Data
 Take a close look at the “Bonobos are mammals” triple. You’ll see that it violates
the pattern we just described! The subject is given in an XML attribute called
rdf:about. You’ll also see that the predicate is implied and the object URI is given in
the tag itself. This confuses a lot of people. The predicate in this triple is the special
predicate rdf:type, and you’ve already seen it treated specially in earlier examples
when we noted that it could be replaced with just a in the Turtle format.

 Prefixed URIs may be used as long as their prefixes are defined as XML namespaces
in the opening XML tag. Technically, this form of prefixes is called QNames, and you
may hear that term from XML people or read it in the specification. But it serves the
same purpose as the prefix naming scheme used in Turtle to shorten URIs for easier
reading. A restriction on QNames is that the part after the colon must be a valid XML
element (tag) name.

 The second triple in figure 2.14 is more representative of the pattern. It includes
an extra triple. Can you see it? The first tag is <ex:Zoo>, which adds the “extra” triple
that says that the San Diego Zoo is an instance of the ex:Zoo class. We could have
avoided this in the example, but we wanted to make the point more clearly than it
might have been without it. A good way to avoid it would have been to have a tag for
just the subject, dbpedia:San_Diego_Zoo.

 Try to find some more triples from the bonobo examples in the RDF/XML shown
in listing 2.3. Remember that you can look back at the more easily readable Turtle
listing!

<dbpedia-owl:Mammal rdf:about="http://dbpedia.org/resource/Bonobo">
</dbpedia-owl:Mammal>

dbpedia:Bonobo dbpedia-owl:Mammalrdf:type

Subject (a URI)
The predicate is implied.

http://dbpedia.org/resource/
San_Diego_Zoo

rdfs:label
"San Diego Zoo"

@en

Object
(a string literal with

a language tag)

Subject (a URI) Predicate

<ex:Zoo rdf:about="http://dbpedia.org/resource/San_Diego_Zoo">
<rdfs:label xml:lang="en">San Diego Zoo</rdfs:label>

</ex:Zoo>

The “Bonobos are mammals” triple

The “San Diego Zoo label” triple

The extra triple
says “The San

Diego Zoo is an
instance of the
ex:Zoo class.”

Figure 2.14 RDF triples represented in RDF/XML format

48 CHAPTER 2 RDF: the data model for Linked Data
<?xml version="1.0"?>
<rdf:RDF xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:dbpedia="http://dbpedia.org/resource/" xmlns:xsd="http://
www.w3.org/2001/XMLSchema#" xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:ex="http://
example.com/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dbpedia-owl="http://dbpedia.org/ontology/" xmlns:wiki="http://
semanticweb.org/wiki/" xmlns:property="http://dbpedia.org/property/">

 <dbpedia-owl:Eukaryote rdf:about="http://dbpedia.org/resource/Bonobo">
 <rdf:type rdf:resource="http://dbpedia.org/ontology/Mammal" />
 <rdf:type rdf:resource="http://dbpedia.org/ontology/Animal" />
 <rdfs:comment xml:lang="en">The bonobo, Pan paniscus, previously

called the pygmy chimpanzee and less often, the dwarf or gracile
chimpanzee, is a great ape and one of the two species making up the
genus Pan; the other is Pan troglodytes, or the common chimpanzee.
Although the name "chimpanzee" is sometimes used to refer to both
species together, it is usually understood as referring to the common
chimpanzee, while Pan paniscus is usually referred to as the bonobo.</
rdfs:comment>

 <foaf:depiction rdf:resource="http://upload.wikimedia.org/wikipedia/
commons/a/a6/Bonobo-04.jpg" />

 <foaf:name xml:lang="en">Bonobo</foaf:name>
 <rdfs:seeAlso rdf:resource="http://eol.org/pages/326448/overview" />
 </dbpedia-owl:Eukaryote>
 <ex:Zoo rdf:about="http://dbpedia.org/resource/San_Diego_Zoo">
 <rdfs:label xml:lang="en">San Diego Zoo</rdfs:label>
 <wiki:Property:Contains rdf:resource="http://dbpedia.org/resource/

Bonobo" />
 <vcard:adr vcard:locality="San Diego" vcard:region="California"

vcard:country-name="USA" />
 <dbpedia:Exhibit>
 <rdf:Description>
 <rdfs:label xml:lang="en">Pygmy Chimps at Bonobo Road</

rdfs:label>
 <property:dateStart rdf:datatype="http://www.w3.org/2001/

XMLSchema#date">1993-04-03-08:00</property:dateStart>
 <wiki:Property:Contains rdf:resource="http://dbpedia.org/

resource/Bonobo" />
 </rdf:Description>
 </dbpedia:Exhibit>
 </ex:Zoo>
 <ex:Zoo rdf:about="http://dbpedia.org/resource/

Columbus_Zoo_and_Aquarium">
 <rdfs:label xml:lang="en">Columbus Zoo and Aquarium</rdfs:label>
 <wiki:Property:Contains rdf:resource="http://dbpedia.org/resource/

Bonobo" />
 </ex:Zoo>
 <rdfs:Class rdf:about="http://example.com/Zoo" />
</rdf:RDF>

RDF/XML also has a way to abbreviate URIs by defining a base URI. That’s done
using the xml:base directive in the rdf:RDF tag, near the namespace declarations.
To replace the ex: namespace with a base URI, you’d replace the ex: namespace

Listing 2.3 Bonobo example data in RDF/XML format

The
“Bonobos are

mammals”
triple

The “San
Diego Zoo

label” triple

The exhibit description triples

49RDF formats for Linked Data
declaration (xmlns:ex="http://example.com/") with a base declaration (like
xml:base="http://example.com").

NOTE RDF/XML is fully described at http://www.w3.org/TR/rdf-syntax-grammar/.

2.4.3 RDFa—RDF in HTML

Most of the Web consists of documents, not just structured data in their own files. We
tend to include things in unstructured text that are themselves data elements, such as
telephone numbers, addresses, people’s names, and even product descriptions.
Wouldn’t it be nice to be able to mark up those elements in our web pages so they
could be extracted as the structured data they’re supposed to be? Fortunately, there is
a way to do so, and it’s known as RDFa, for “RDF in (HTML) Attributes.”

RDFa documents are simply HTML—with a bit of extra markup. An HTML page’s
DOCTYPE is modified so RDFa parsers can quickly determine that the page is worth
parsing, and HTML attributes are used to provide just enough information to create
RDF triples when the page is parsed. Table 2.3 provides the DOCTYPE declarations used
by web pages that can include RDFa.

Figure 2.15 shows our example triples in HTML with RDFa. A web browser that doesn’t
know what RDFa is will simply ignore any HTML attributes it doesn’t understand and so
for the first one would see simply Here are some things we know about Bonobos
. An RDFa-aware system would display exactly the same text but also provide the
RDF triple dbpedia:Bonobo rdf:type dbpedia-owl:Mammal. The resource attribute
provides the subject, and the special typeof attribute provides the rdf:type predicate.
The second triple shows how any predicate can be provided using the property attribute.

RDFa has a way to shorten URIs, as other formats do. RDFa’s way is known as Com-
pact URI Expressions (CURIEs). They are technically an extension to RDF/XML’s
QNames because they allow the part after the colon to have values that aren’t valid
XML element names. CURIEs are a superset of QNames.

RDFa may be used for search engine optimization (SEO) and with the schema.org
scheme that several large search engines now promote. This is because the search
engines use that RDFa to enhance their search results. Have you searched for a movie

Table 2.3 RDFa DOCTYPE headers

Document type HTML DOCTYPE declaration

XHTML1+RDFa 1.0 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">

XHTML1+RDFa 1.1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN"
"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd">

HTML+RDFa 1.1 or
XHTML5+RDFa 1.1

<!DOCTYPE html> or any other DOCTYPE found

50 CHAPTER 2 RDF: the data model for Linked Data
and seen that show times and links to reviews are present in the results? Or seen a
product that lists its prices? That information may have come from RDFa.

 Developers can use http://rdfa.info/tools/ or similar tools to extract RDFa from
HTML. For example, try listing 2.4 in http://rdfa.info/play/ to recover the RDF state-
ments from the bonobos example.

 Can you find the date the bonobo exhibit opened at the San Diego Zoo in the fol-
lowing listing?

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN" "http://www.w3.org/

MarkUp/DTD/xhtml-rdfa-2.dtd">
<html xmlns='http://www.w3.org/1999/xhtml'>
 <head>
 <base href='' />
 <title>
 Stuff we know about bonobos
 </title>
 </head>
 <body>
 <p>

Listing 2.4 Bonobo example data in HTML+RDFa format

http://dbpedia.org/resource/
San_Diego_Zoo

rdfs:label
"San Diego Zoo"

@en

 <span lang='en' property='http://www.w3.org/2000/01/rdf-schema#label'
xml:lang="en">San Diego Zoo

<span resource='http://dbpedia.org/resource/Bonobo'
typeof='http://dbpedia.org/ontology/Mammal'>
Here are some things we know about Bonobos

dbpedia:Bonobo dbpedia-owl:Mammalrdf:type

Object (a URI)

Subject (a URI) The predicate is provided
by the attribute name.

Object
(a string literal with

a language tag)

Subject (a URI) Predicate
(a URI)

Figure 2.15 RDF triples represented in HTML+RDFa format

51RDF formats for Linked Data

“

 <span resource='http://dbpedia.org/resource/Bonobo'
typeof='http://dbpedia.org/ontology/Eukaryote http://dbpedia.org/
ontology/Mammal
http://dbpedia.org/ontology/Animal'>Here are some things we know
about <span lang='en' property='http://xmlns.com/foaf/0.1/name'
xml:lang="en">Bonobos: <span lang='en' property='http://
www.w3.org/2000/01/rdf-schema#comment' xml:lang="en">The bonobo, Pan
paniscus, previously called the pygmy chimpanzee and less often, the
dwarf or gracile chimpanzee, is a great ape and one of the two species
making up the genus Pan; the other is Pan troglodytes, or the common
chimpanzee. Although the name "chimpanzee" is sometimes used to refer to
both species together, it is usually understood as referring to the
common chimpanzee, while Pan paniscus is usually referred to as the
bonobo. Bonobos are mammalian animals and are thus also
eukaryotes. <img src='http://upload.wikimedia.org/
wikipedia/commons/a/a6/Bonobo-04.jpg' property='http://xmlns.com/foaf/
0.1/depiction' /> More information may be found at <a
href='http://eol.org/pages/326448/overview' property='http://www.w3.org/
2000/01/rdf-schema#seeAlso'>the bonobo entry at the Encyclopedia of
Life

 </p>
 <p>
 Some zoos that contain bonobos include:
 </p>

 <span resource='http://dbpedia.org/resource/

Columbus_Zoo_and_Aquarium' typeof='http://example.com/Zoo'><span
lang='en' property='http://www.w3.org/2000/01/rdf-schema#label'
xml:lang="en">Columbus Zoo and Aquarium<span rel='http://
semanticweb.org/wiki/Property:Contains' resource='http://dbpedia.org/
resource/Bonobo'>

 <span resource='http://dbpedia.org/resource/San_Diego_Zoo'

typeof='http://example.com/Zoo'><span lang='en' property='http://
www.w3.org/2000/01/rdf-schema#label' xml:lang="en">
San Diego Zoo <span rel='http://www.w3.org/2006/vcard/ns#adr'
resource='_:1'>which is located in <span property='http://www.w3.org/
2006/vcard/ns#locality'>San Diego, <span property='http://
www.w3.org/2006/vcard/ns#region'>California, <span
property='http://www.w3.org/2006/vcard/ns#country-name'>USA.</
span><span rel='http://semanticweb.org/wiki/Property:Contains'
resource='http://dbpedia.org/resource/Bonobo'> <span
rel='http://dbpedia.org/resource/Exhibit' resource='_:2'>The main bonobo
exhibit is called <span lang='en' property='http://www.w3.org/2000/01/
rdf-schema#label' xml:lang="en">Pygmy Chimps at Bonobo Road. It
has been at the San Diego Zoo since <span content='1993-04-03-08:00'
datatype='http://www.w3.org/2001/XMLSchema#date' property='http://
dbpedia.org/property/dateStart'>Saturday, 03 April 1993.<span
rel='http://semanticweb.org/wiki/Property:Contains' resource='http://
dbpedia.org/resource/Bonobo'>

 </body>
</html>

The
Bonobos are

mammals”
triple

The “San
Diego Zoo

label” triple

52 CHAPTER 2 RDF: the data model for Linked Data
NOTE RDFa is fully described at http://www.w3.org/TR/rdfa-primer/ and
http://rdfa.info/.

2.4.4 JSON-LD—RDF for JavaScript Developers

It seems that every web developer knows JavaScript Object Notation (JSON) and that
every major programming language has multiple libraries that can parse it. One fre-
quent comment heard by the Linked Data community goes something like this: “Why
not just put data into JSON?”

 One answer to date has been that we like RDF because it can so easily be combined
with other RDF data from other sources. That is, if we want to combine data, we need
to use an RDF serialization format. Now there is JSON-LD, JSON for Linking Data, an
RDF serialization format in JSON.

 The Linked Data community is hoping that JSON-LD is both accessible to develop-
ers used to reading and writing JSON and capable of showing those developers how to
combine data on the Web.

 Figure 2.16 shows our example triples in JSON-LD. At the top of the figure is the
@context object, where prefixes are defined. This allows shortened URIs to be used in
the remainder of the document in a manner similar to the other formats.

http://dbpedia.org/resource/
San_Diego_Zoo rdfs:label

"San Diego Zoo"
@en

{
 "@id": "http://dbpedia.org/resource/San_Diego_Zoo",
 "rdfs:label": {
 "@language": "en",
 "@value": "San Diego Zoo"
 }
 }

{
 "@id": "http://dbpedia.org/resource/Bonobo",
 "@type": [
 "http://dbpedia.org/ontology/Mammal"
]
}

dbpedia:Bonobo dbpedia-owl:Mammalrdf:type

Object (a URI)

Object
(a string literal with

a language tag)

Subject (a URI) Predicate

{
 "@context": {
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#"
 },
 "@graph": [

]
}

The predicate is provided
by the attribute name.

Figure 2.16 RDF triples
represented in JSON-LD
format

53RDF formats for Linked Data
The rest of the document contains the RDF triples in the @graph object. @id identifies
RDF subjects and @type identifies the special rdf:type predicate. Other predicates
are simply named as a string in quotes, as with rdfs:label in the figure.

 A potential source of confusion in any form of JSON is the use of square versus
curly brackets. Curly braces ({ and }) surround objects and square brackets ([and])
denote arrays. With that knowledge, you can see that in figure 2.16 @type is an array of
only one class, dbpedia-owl:Mammal, but it could hold more. RDF objects are JSON
objects that may contain a URI, a literal denoted by @value, and, optionally, data type
or language information.

 Can you find the image of a bonobo represented in the following listing? Look for
the URI ending in .jpg if you get stuck.

{
 "@context": {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "vcard": "http://www.w3.org/2006/vcard/ns#",
 "xsd": "http://www.w3.org/2001/XMLSchema#"
 },
 "@graph": [
 {
 "@id": "_:t0",
 "vcard:country-name": "USA",
 "vcard:locality": "San Diego",
 "vcard:region": "California"
 },
 {
 "@id": "_:t1",
 "http://dbpedia.org/property/dateStart": {
 "@type": "xsd:date",
 "@value": "1993-04-03-08:00"
 },
 "http://semanticweb.org/wiki/Property:Contains": {
 "@id": "http://dbpedia.org/resource/Bonobo"
 },
 "rdfs:label": {
 "@language": "en",
 "@value": "Pygmy Chimps at Bonobo Road"
 }
 },
 {
 "@id": "http://dbpedia.org/resource/Bonobo",
 "@type": [
 "http://dbpedia.org/ontology/Eukaryote",
 "http://dbpedia.org/ontology/Mammal",
 "http://dbpedia.org/ontology/Animal"
],
 "foaf:depiction": { "@id": "http://upload.wikimedia.org/wikipedia/

commons/a/a6/Bonobo-04.jpg" },

Listing 2.5 Bonobo example data in JSON-LD format

The “Bonobos are
mammals” triple

54 CHAPTER 2 RDF: the data model for Linked Data
 "foaf:name": {
 "@language": "en",
 "@value": "Bonobos"
 },
 "rdfs:comment": {
 "@language": "en",
 "@value": "The bonobo, Pan paniscus, previously called the pygmy

chimpanzee and less often, the dwarf or gracile chimpanzee, is a great
ape and one of the two species making up the genus Pan; the other is Pan
troglodytes, or the common chimpanzee. Although the name \"chimpanzee\"
is sometimes used to refer to both species together, it is usually
understood as referring to the common chimpanzee, while Pan paniscus is
usually referred to as the bonobo."

 },
 "rdfs:seeAlso": {
 "@id": "http://eol.org/pages/326448/overview"
 }
 },
 {
 "@id": "http://dbpedia.org/resource/Columbus_Zoo_and_Aquarium",
 "@type": "http://example.com/Zoo",
 "http://semanticweb.org/wiki/Property:Contains": {
 "@id": "http://dbpedia.org/resource/Bonobo"
 },
 "rdfs:label": {
 "@language": "en",
 "@value": "Columbus Zoo and Aquarium"
 }
 },
 {
 "@id": "http://dbpedia.org/resource/San_Diego_Zoo",
 "@type": "http://example.com/Zoo",
 "http://dbpedia.org/resource/Exhibit": { "@id": "_:t1" },
 "http://semanticweb.org/wiki/Property:Contains": {
 "@id": "http://dbpedia.org/resource/Bonobo"
 },
 "rdfs:label": {
 "@language": "en",
 "@value": "San Diego Zoo"
 },
 "vcard:adr": { "@id": "_:t0" }
 }
]
}

NOTE JSON-LD is fully described at http://www.w3.org/TR/json-ld-syntax/
and http://json-ld.org

2.5 Issues related to web servers and published Linked Data
Some web browsers need additional support to properly display Linked Data content
because we want Linked Data published on the Web to be reused by others. Develop-
ers and users both need to be aware of these issues. This section addresses techniques
that you would use so web servers can appropriately inform web browsers (or other

The “San Diego
Zoo label” triple

55Issues related to web servers and published Linked Data
types of clients) of the type of Linked Data they are serving and so the clients can
decide how to present it. This is accomplished using the HTTP Content-Type header.

 Figure 2.17 shows how this works in practice. A web browser requests a URL whose
path on the server is /data/dave.ttl. The server finds the file and successfully sends it
back (that’s what the 200 OK status code means). The Content-Type of text/turtle
matches the file extension .ttl by convention; such Content-Types are registered with
the Internet Assigned Numbers Authority (IANA). The content of the file follows the
headers after a blank line.

 The Content-Type header for Linked Data varies with the specific format used.
Most of the examples in this book use the readable Turtle format for RDF, which is
served with the Content-Type text/turtle. Those producing RDF from XML sources,
especially enterprise developers, may use the older RDF/XML format, which is served
with the Content-Type application/rdf+xml.

NOTE HTTP Content-Types are also known as MIME types. MIME stands for
Multipurpose Internet Mail Extensions and is the technique used to encode
multimedia email attachments (such as images, videos, or office documents)
as plain text during email transmission. The Web uses the same mechanism
to encode multimedia during HTTP transmission.

Other formats require more detailed explanations. RDFa is a way of embedding
Linked Data into web pages. As table 2.4 illustrates, RDFa doesn’t have its own Con-
tent-Type because the data is buried inside HTML. Instead, an HTML page is served
with the Content-Type text/html. A web client is responsible for determining the pres-
ence of (or ignoring) any embedded RDFa.

 A new way to publish Linked Data in JSON format is JSON-LD. The preferred Content-
Type for JSON-LD files is application/ld+json, but it’s a form of JSON and thus may also
be served as application/json.

Client Server

GET /data/dave.ttl

200 OK
Content-Type: text/turtle

<http://3roundstones.com/dave/#me>
 a foaf:Person .

Figure 2.17 A simplified HTTP conversation showing a Content-Type header

56 CHAPTER 2 RDF: the data model for Linked Data
OWL is a related standard of the W3C that’s used for knowledge representation. It’s a
more formal way to represent logical relations between bits of information. OWL is
occasionally used on the Linked Data Web and, being written in RDF, plays well with
other Linked Data. OWL files are generally written in XML and served using Content-
Types application/owl+xml or application/rdf+xml. The choice of one over the other
is subtle; serving an OWL file as application/owl+xml suggests a different way of inter-
preting the data such that some information is inferred. We’ll leave it to you to read
the OWL specifications (http://www.w3.org/2004/OWL/#specs) if you care about this
subtlety. This book won’t describe OWL in any detail.

 Finally, we have the lowly N-Triples format. N-Triples is the simplest possible format
for RDF but is rarely used outside of automated tests or bulk data transfers (data
dumps). The new Content-Type for N-Triples is application/N-Triples, although they
have historically been served as plain text (text/plain).

NOTE The preferred Content-Types for JSON-LD and N-Triples haven’t been
formally adopted as of this writing, but we expect them to be shortly. We encour-
age their use so your files will match the way others will use Content-Types by
the time you read this. You may see the (older) alternative Content-Types in use
by many existing services.

2.6 File types and web servers
Web servers should automatically serve the appropriate Content-Type headers, and
generally they do. You don’t need to tell a web server how to serve PNG or JPEG images
or HTML pages because web servers generally ship with support for those file types by
default. Unfortunately, most web servers don’t yet provide default support for RDF
Content-Types. You’ll often need to configure your web server to support Linked Data
Content-Types or ask your systems administrator to do it for you.

 If you don’t configure your web server appropriately, files will be served with what-
ever your web server considers to be its default Content-Type, typically text/plain or
the catchall application/octet-stream. Web clients won’t have the information they
need to determine how to handle your Linked Data content. In the case of text/plain,

Table 2.4 Linked Data Content-Types

RDF Format Preferred Content-Type Alternative Content-Type

RDF Turtle file text/turtle

RDF/XML file application/rdf+xml

RDFa text/html

JSON-LD file application/ld+json application/json

OWL file application/owl+xml application/rdf+xml

N-Triples application/N-Triples text/plain

57When you have limited control over Apache
most browsers will simply display the content as a text file. Content treated as binary
(application/octet-stream) will generally cause a browser to prompt the user to save
the file. In other words, web browsers won’t know what to do with files with an inap-
propriate Content-Type. Configuring your web server to properly handle Linked Data
Content-Types will avoid these problems.

2.6.1 When you can configure Apache

The easiest way to ensure that you serve your Linked Data correctly is to configure
your web server to serve the appropriate Content-Type headers. This isn’t as hard as it
sounds. The directives you need to add are shown in the following listing.

Directives to ensure RDF files are served as the appropriate Content-Type
AddType text/turtle .ttl
AddType application/rdf+xml .rdf
AddType application/ld+json .jsonld
AddType application/N-Triples .nt

The directives may be added to your Apache instance’s httpd.conf file, vhost (virtual
host) configuration files, or .htaccess files.

NOTE The directives map file extensions to Content-Types. This means that
you need to use the file extensions listed in order for the correct Content-Type
to be used. For example, any filename in Turtle format must end in .ttl, and
JSON-LD filenames must end in .jsonld if you use the directives just shown.

You can create multiple file extensions for a given Content-Type if you like, but good
practice suggests that you should use a single one consistently.

NOTE The W3C publishes “Best Practice Recipes for Publishing RDF Vocabu-
laries” at http://www.w3.org/TR/swbp-vocab-pub/. That document contains
detailed recipes for publishing RDF content using Apache HTTP servers that
include advanced considerations, such as how your data URIs are formed,
how to publish RDF documents alongside HTML documents on the same URL,
and how to use PURLs.

2.7 When you have limited control over Apache
What do you do if you can’t configure Apache directly? You might be able to use a
.htaccess file, as described previously, but that will work only if the server administra-
tor has allowed you to override the AddType directive. Fortunately, many bulk web-
hosting providers do allow some level of Apache configuration, frequently via an
administration interface called cpanel. Cpanel is open source software and is used by
many hosting services. If you’re fortunate enough to have access to a cpanel to config-
ure your web server, you’ll probably have the option to associate Apache handlers with
file extensions.

Listing 2.6 Apache directives for Linked Data Content-Types

58 CHAPTER 2 RDF: the data model for Linked Data
 One of the Apache handlers installed by default with Apache is mod_asis, used to
send a file as is. A file sent that way can contain HTTP headers separated by a blank line.
Using that trick, you can force the web server to send any HTTP headers you wish,
including a particular Content-Type. To serve the file /data/dave.ttl with a Content-
Type of text/turtle, just configure mod_asis to serve files with the .ttl extension as is and
add the appropriate HTTP headers to the file itself, as shown in the following listing.

Content-Type: text/turtle

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://3Roundstones.com/dave/#me>
 a foaf:Person .
...

NOTE The blank lines shown in listing 2.7 are intentional. The HTTP headers
given in an as-is file must be separated by a blank line from the document
body, just as they are in an email message. Additionally, a blank line is com-
monly placed in a Turtle file between the prefixes and the remainder of the
document (although that isn’t strictly required; it only aids readability).

The combination of mod_asis and a file (with a mapped extension) containing cus-
tom HTTP headers will result in the remainder of the file being served with the desig-
nated headers. In this case, that means that you can return the appropriate Content-
Types from any URL you wish using a stock web-hosting service.

2.8 Linked Data platforms
Naturally, you aren’t forced to use Apache or any other particular web server. You
could use one of the many Linked Data platforms or Semantic Web products to serve
your data instead. Linked Data and Semantic Web platforms and products already
know about Turtle, RDF/XML, RDFa, JSON-LD, OWL, and N-Triples and serve the cor-
rect Content-Type headers for those types of content.

 Chapter 9 will demonstrate the use of Callimachus, an Open Source Linked Data
management system. Some of the many alternatives may be found at http://seman-
ticweb.org/wiki/Category:Tool and http://www.w3.org/2001/sw/wiki/Tools.

2.9 Summary
This chapter introduced the Resource Description Framework (RDF) and its relation-
ship to Linked Data. We particularly highlighted the areas where the Linked Data
principles further restrict RDF to more closely link data into the World Wide Web. The
RDF data model was described along with the key concepts that you’re likely to use in
your own Linked Data.

 Four RDF serialization formats were described: Turtle is the simplest and most
human-readable serialization format and the one preferred by most Linked Data

Listing 2.7 HTTP headers added to a file served with Apache’s mod_asis

http://semanticweb.org/wiki/Category:Tool
http://semanticweb.org/wiki/Category:Tool

59Summary
professionals. RDF/XML was the first RDF format and is still used widely within enter-
prises and by those with XML tooling at their fingertips. RDFa is the preferred way to
embed RDF data into web pages to describe textual content in HTML. JSON-LD is a
new format aimed at web developers who already know and love working with struc-
tured data in JSON.

 This chapter described how to find and use RDF vocabularies, including how to
note that a term in one vocabulary is the same as in another and how to make your
own vocabularies. The process for determining when you need to find or create a
term was presented.

 In closing this chapter, we addressed some common issues of file types and web
servers and techniques for resolving those issues. Developers and users both need to
be aware of these concerns.

Consuming Linked Data
The World Wide Web that most of us envision is technically a subset better defined
as the Web of Documents (the Classic Web). Another facet of the WWW is the Web
of Data. You should think of the Semantic Web as a web of data that can be pro-
cessed directly and indirectly by machines.

 Just as web documents employ hyperlinks to connect to each other, linked data-
sets establish connections through the use of RDF links between data items in dif-
ferent datasets. Linked Data conforms to a set of principles for publishing
structured data on the World Wide Web.

 This chapter will facilitate your understanding of the Web of Data by demon-
strating how you can be a consumer of its content. We’ll demonstrate how Linked
Data is distributed and utilized. We’ll show how you can use tools to find embedded
Linked Data. We’ll illustrate how you can develop programs that retrieve Linked

This chapter covers
■ Thinking the Web way
■ Finding Linked Data on the Web
■ Retrieving Linked Data from web pages
■ Combining Linked Data from multiple sources
■ Displaying basic Linked Data in HTML
60

61Thinking like the Web
Data from one source and use those results to retrieve additional data from a different
source. We expect that you’ll gain a better understanding of the Web of Data and how
various companies are utilizing Linked Data to better serve their customers.

3.1 Thinking like the Web
Thinking like the Web is important because it enables you to make the best use of this
resource. Thinking like the Web means recognizing that the Web provides a global
information space that flourishes because embedded links establish relationships
among published resources. These resources are stored on different servers in different
physical locations. People and machines can traverse these hyperlinks and uncover new
information. Search engines can index these links and infer relationships between the
documents. By using unambiguous URIs, you facilitate the inferring of relationships.

 In general, people search the Web of Documents and manually aggregate related
information to fulfill their needs. The volume of hits and ambiguity of unstructured data
complicate the task of assembling truly relevant information. For example, how would
you know that the Marsha Zaidman in Facebook is the same as the Marsha Zaidman in
Twitter? After all, names aren’t unique identifiers. If both references to Marsha Zaidman
use the same URI, then the identification is unique and the association is obvious.

 Here’s an example of unstructured data. Imagine an HTML document that con-
tains the following text:

There is a person “Anakin,” known as “Darth Vader” and “Anakin
Skywalker.” Anakin Skywalker has a wife named Padme Amidala.

Here’s similar information presented as structured data using the RDF Turtle format:

 @base <http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#> .
 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 @prefix rel: <http://purl.org/vocab/relationship>.
 @prefix stars: <http://www.starwars.com/explore/encyclopedia/characters/> .
 <me> a foaf:Person;
 foaf:family_name "Skywalker";
 foaf:givenname "Anakin";
 foaf:nick "Darth Vader";
 rel:Spouse_Of <stars:padmeamidala/> .

In this sample of structured data, the URIs are resolvable and hence eliminate ambigu-
ity over the identity of Anakin Skywalker and Padme Amidala, his wife. The format of
the structured data is predictable and lends itself to machine readability and may be
used as input to other applications. Unlike unstructured data, these statements are in
a predictable format, precise, and unambiguous. Historically, data on the Web was pub-
lished as unstructured data in disparate, incompatible formats that impaired machine
readability and automated aggregation of related data. Although multiple RDF formats
are used in Linked Data, they’re compatible because they share a common data model.
Therefore, within the RDF formats, you can select one that works best for your particu-
lar context without sacrificing interoperability with other data.

Resolvable URIs
eliminate ambiguity
over references.

http://paprika.umw.edu/~marsha/starwars/foaf.ttl
http://www.starwars.com/explore/encyclopedia/characters/
http://www.netflix.com/Movie/70003791
http://www.netflix.com/Movie/70003791
http://www.netflix.com/Movie/70003791
http://www.rottentomatoes.com/m/star_wars_episode_i_the_phantom_menace
http://www.rottentomatoes.com/m/star_wars_episode_i_the_phantom_menace
http://www.moodb.net/movie.asp?id=0000217
http://www.moodb.net/movie.asp?id=0000217

62 CHAPTER 3 Consuming Linked Data
 In thinking like the Web, you’re recognizing the distributed and interconnected
highway of information. In using structured data, you’re enabling machine readability
and indexing of this data. In interlinking published data on the Web, you’re enabling
reuse of your information. In short, you’re facilitating the sharing of information on
the Web.

3.2 How to consume Linked Data
In this example of how to consume Linked Data, we’ll raise a single question and
show you how numerous data sources are linked. The ultimate benefit is that you’ll
learn about Linked Data resources and observe how this data is interlinked across the
Web. When these links are traversed manually, you’re employing the follow-your-nose
method of discovery. Suppose you wanted to know: is President Barack Obama a Star
Wars fan? Prior to reading this book, you’d likely try one of the popular search
engines like Google, Yahoo!, or Bing to help you answer this question. But in this sec-
tion, we’re going to attempt to answer this question using Linked Data.

 In general, you can start with any web resource that contains links and then follow
your nose from one link to the next. One possible starting point is http://
data.NYTimes.com, a portal to a Linked Open Data (LOD) site of New York Times
sources. We selected this starting point because it’s a useful and reliable resource. This
page provides an interface that facilitates human browsing of individual records.
Selecting “O” and then searching on “Obama, Barack” brings you to a unique URI
(http://data.nytimes.com/47452218948077706853). Figure 3.1 The New York Times
LOD for Barack Obama, is a sample of the HTML display of the subject “Obama,
Barack.” This page contains a link to a topics page, http://topics.nytimes.com/top/
reference/timestopics/people/o/barack_obama/index.HTML.

Figure 3.1 The New York Times LOD for Barack Obama

http://topics.nytimes.com/top/reference/timestopics/people/o/barack_obama/index.HTML
http://topics.nytimes.com/top/reference/timestopics/people/o/barack_obama/index.HTML
http://data.NYTimes.com
http://data.NYTimes.com
http://data.nytimes.com/47452218948077706853
http://topics.nytimes.com/top/reference/timestopics/people/o/barack_obama/index.html
http://topics.nytimes.com/top/reference/timestopics/people/o/barack_obama/index.html

63How to consume Linked Data
The topics page contains references and links to a broad variety of information about
the subject and other related information. Although this source doesn’t provide the
answer to our question, it does provide links to other resources that could be useful.
Because Obama was a resident of Chicago, perhaps the link to the Chicago Tribune would
yield further information about Obama and his interest in Star Wars. Following these
links takes you to the Barack Obama watch maintained by the Chicago Tribune (http://
www.chicagotribune.com/topic/politics/government/barack-obama-PEPLT007408.topic).

 From the Chicago Tribune page, you can search for articles related to Star Wars and
follow the links to http://latimesblogs.latimes.com/washington/2009/09/obama-
lightsaber-remix.HTML. This page contains links to http://latimesblogs.latimes.com/
washington/2009/09/obi-wan-obama-white-house-olympics.HTML, shown in figure 3.2,
and http://www.geeksofdoom.com/2009/09/17/greek-cred-president-obama-with-
lightsaber/, shown in figure 3.3. Although we’ve not yet totally confirmed that Obama
is an avid Star Wars fan, we’ve demonstrated the interlinked nature of the Web. We’ve
demonstrated the unintentional reuse of information and benefitted from the unam-
biguous connections to the RDF data stored in the New York Times LOD site. Could you
have predicted that you’d navigate from the New York Times LOD stores to the Chicago Tri-
bune, the Los Angeles Times, and the Geeks of Doom website in your quest? Would a
Google search have been easier? Maybe, but you wouldn’t have been able to automate
such a search as you’ll learn to do using Linked Data.

 Data and documents are distributed over many sites. You navigate from site to site
following the links as you might follow the clues in a scavenger hunt. A user or a web
spider can follow these links, amassing related data along the way, much like humans
follow clues in a scavenger hunt. The next section shows additional examples.

Figure 3.3 Obama unveiled as a sci-fi fanFigure 3.2 Obama using a light saber to defend
Chicago as his choice for the Olympics

http://wiki.python.org/moin/BeginnersGuide/Download
http://wiki.python.org/moin/BeginnersGuide/Download
http://www.geeksofdoom.com/2009/09/17/greek-cred-president-obama-with-lightsaber/
http://www.geeksofdoom.com/2009/09/17/greek-cred-president-obama-with-lightsaber/
http://www.chicagotribune.com/topic/politics/government/barack-obama-PEPLT007408.topic
http://www.chicagotribune.com/topic/politics/government/barack-obama-PEPLT007408.topic
http://latimesblogs.latimes.com/washington/2009/09/obama-lightsaber-remix.html
http://latimesblogs.latimes.com/washington/2009/09/obama-lightsaber-remix.html
http://latimesblogs.latimes.com/washington/2009/09/obi-wan-obama-white-house-olympics.html
http://latimesblogs.latimes.com/washington/2009/09/obi-wan-obama-white-house-olympics.html
http://www.geeksofdoom.com/2009/09/17/greek-cred-president-obama-with-lightsaber/
http://www.geeksofdoom.com/2009/09/17/greek-cred-president-obama-with-lightsaber/
http://python.org/download/releases/2.7.3/
http://python.org/download/releases/2.7.3/
http://python.org/download/releases/2.7.3/
https://github.com/RDFLib/rdflib
https://github.com/RDFLib/rdflib
https://github.com/RDFLib/rdflib
http://code.google.com/p/html5lib/downloads/detail?name=html5lib-0.95.tar.gz&can=2&q

64 CHAPTER 3 Consuming Linked Data
3.3 Tools for finding distributed Linked Data
Let’s assume that you need to find Linked Data for an application that you’re develop-
ing. Sometimes you may already be aware of a previously published dataset that you
can use. More often you need to find such data. Most likely this data is distributed
across multiple sources. Numerous tools, such as Sindice, sameas.org, and the Data
Hub, that facilitate finding Linked Data are available. You’ll find other uses for these
tools in chapter 8.

3.3.1 Sindice

One useful technology is Sindice (http://sindice.com/main/about), the Semantic
Web Index. Sindice does for data what Google does for documents. The objective of
Sindice is to provide multiple services: interactive data visualization and validation ser-
vices, discovery and indexing of data, and search and query services. Sindice describes
itself as a platform to build applications on top of semantic data. Sindice collects web
data in many ways following existing web standards and updates its holdings frequently.
A search using “Star Wars Episode I The Phantom Menace” resulted in identifying
more than 2500 documents containing Linked Data that were distributed over 100 sets
of Linked Data. Figure 3.4 is a screen shot of these results.

Figure 3.4 Sindice search outcomes for “Star Wars Episode I The Phantom Menace”

65Tools for finding distributed Linked Data
3.3.2 SameAs.org

Another avenue for discovery of Linked Data is SameAs.org (http://www.sameas.org).
Its objective is to identify equivalent URIs to the Linked Data URI entered and provide
an entry point to perform a Sindice search on a general search term.

 One such search (see figure 3.5) performed using dbpedia.org/resource/
Star_Wars_Episode_I:_The_Phantom_Menace yielded 122 equivalent URIs for http://
dbpedia.org/resource/Star_Wars_Episode_I:_The_Phantom_Menace. In reviewing
those lists of results, you can see that these 122 equivalents are contained in different data-
sets such as dbpedia.org/resource, dbpedialite.org/things, and rdf.freebase.com/ns.

3.3.3 Data Hub

The Data Hub (http://thedatahub.org) is a community-run catalog of useful sets of
Linked Data on the Web. Here you can search and collect links from around the Web.
The Data Hub is an openly editable open data catalog, in the style of Wikipedia. Most
of the data indexed at the Data Hub is openly licensed, so if you find relevant data,
you can use it. Unfortunately, the datasets recovered by our Star Wars example aren’t
relevant. Conducting our search using terms like “Star Wars Episode I” and “Star Wars
The Phantom Menace” yielded no results. Trying a more general term yielded useful
results. As you can see from figure 3.6, the Internet Movie Database (IMDb) is repre-
sented as one of the top three options. Obviously, you’ll want to keep this resource in
mind for future searches.

Figure 3.5 Equivalent URIs for dbpedia.org/resource/Star_Wars_Episode_I:_The_Phantom_Menace

dbpedia.org/resource, dbpedialite.org/things, and rdf.freebase.com/ns
http://dbpedia.org/resource/Star_Wars_Episode_I:_The_Phantom_Menace
http://dbpedia.org/resource/Star_Wars_Episode_I:_The_Phantom_Menace
http://dbpedia.org/resource/Star_Wars_Episode_I:_The_Phantom_Menace
http://dbpedia.org/resource/Star_Wars_Episode_I:_The_Phantom_Menace

66 CHAPTER 3 Consuming Linked Data
3.4 Aggregating Linked Data
In section 3.1, we discussed manually finding Linked Data, and we examined tools to
facilitate this process. In this section, we’ll search published datasets that we’re already
aware of. You’ll become familiar with extracting data from them and learn about the
data they contain. We’ll use these datasets later in the chapter to illustrate automating
the extraction of data that we’ll use in a sample application. For this example, we’ll use
Star Wars: Episode I as a sample movie and demonstrate how to find Linked Data about
it. In particular, we’ll be extracting data from two RDF databases, IMDb and ProductDB.

3.4.1 Aggregating some Linked Data from known datasets

Movies are well represented on the Web and in the Linked Open Data cloud. A good
source for movie data is IMDb (http://www.imdb.com). Figure 3.7 is a screenshot of
the IMDb listing for Star Wars: Episode I.

 The IMDb URL associated with Star Wars: Episode I can be used as a search term in
ProductDB (http://www.productdb.org). You can use this URL as a search key to
obtain Linked Data about Star Wars: Episode I from ProductDB, an open source Linked
Data database about products in general.

 As its developer and maintainer Ian Davis says, “ProductDB aims to be the World’s
most comprehensive and open source of product data.” His goal is “to create a page for
every product in the world and to connect the underlying structured data together into
one huge interlinked dataset.” This data is compiled from open sources including Pro-
ductWiki (www.productwiki.com/), MusicBrainz (http://musicbrainz.org/), DBpedia
(http://dbpedia.org/), Freebase (www.freebase.com/), and OpenLibrary (http://
openlibrary.org/). It also is gathered by search engines’ crawl sites that publish Good-
Relations1 RDFa or Open Graph protocol (http://opengraphprotocol.org/) data in

1 GoodRelations, The Web Vocabulary for E-Commerce, http://www.heppnetz.de/projects/goodrelations/.

Figure 3.6 Results of
searching for datasets
on the Data Hub

http://dbpedia.org/
http://openlibrary.org/
http://openlibrary.org/
http://www.heppnetz.de/projects/goodrelations/
http://www.heppnetz.de/projects/goodrelations/
http://www.heppnetz.de/projects/goodrelations/
http://www.productdb.org

67Aggregating Linked Data
their pages; for example, BestBuy, IMDb, and Spotify, (http://www.spotify.com/). This
aggregated data is gathered, combined, and analyzed to form linkages and correspon-
dences between resources.

 Here’s the sequence of steps needed to manually obtain the ProductDB entry for
Star Wars: Episode I.

 Point your browser at http://www.productdb.org, as shown in figure 3.8.
 ProductDB has numerous terms available via its pull-down menu that you can use

to access the database, including an IMDb URL, as shown in figure 3.9.
 We’re using the selection IMDb URL. After you input a product code, enter the cor-

responding URL in the text box below. See figure 3.10 for the completed screen.

Copy url for use with
ProductDB.org.

Figure 3.7 IMDb entry for Star Wars: Episode I – The Phantom Menace

Click here

Figure 3.8 Homepage for ProductDB

http://www.imdb.com/
http://www.productdb.org

68 CHAPTER 3 Consuming Linked Data
ProductDB accesses its records and dis-
plays all matches, as shown in figure
3.11. In this case, there’s a single match.

 Click the result, and you’ll obtain the
product information page for the asso-
ciated item. Note that ProductDB.org
leads you to Netflix, Rotten Tomatoes,
MOODb, Wikipedia, and other sites.

Use the pull-down menu
to select the IMDb URL.

Figure 3.9 Lookup page for ProductDB

Enter the
corresponding
URL as copied
from IMDb.

Then click here

Figure 3.10 ProductDB lookup page for Star Wars: Episode I – The Phantom Menace

Click here

Figure 3.11 ProductDB Matches (results) page for
Star Wars: Episode I – The Phantom Menace

69Aggregating Linked Data

s.

icOf
nal
You can obtain the raw data in Turtle format, as shown in figure 3.12, by clicking the
Turtle link on the right-hand side. Those results are shown in listing 3.1.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix ns0: <http://dbpedialite.org/things/50793#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ns1: <http://www.rottentomatoes.com/m/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dct: <http://purl.org/dc/terms/> .
<http://productdb.org/groups/421600120915>
owl:sameAs <http://data.linkedmdb.org/resource/film/69> ,
<http://rdf.freebase.com/ns/en.star_wars_episode_i_the_phantom_menace> ,
<http://dbpedia.org/resource/Star_Wars_Episode_I:_The_Phantom_Menace> ,

ns0:thing ;
foaf:isPrimaryTopicOf <http://www.imdb.com/title/tt0120915/> ,
<http://www.netflix.com/Movie/70003791> ,
ns1:star_wars_episode_i_the_phantom_menace ,
<http://en.wikipedia.org/wiki/Star_Wars_Episode_I:_The_Phantom_Menace> ,
<http://en.wikipedia.org/wiki/index.HTML?curid=50793> ,
<http://www.moodb.net/movie.asp?id=0000217> ;
rdfs:label "Star Wars: Episode I - The Phantom Menace" .
<http://productdb.org/gtin/00024543023913> dct:isVersionOf <http://

productdb.org/groups/421600120915> .
<http://productdb.org/gtin/00010232008374> dct:isVersionOf <http://

productdb.org/groups/421600120915> .
<http://productdb.org/gtin/00391772364227> dct:isVersionOf <http://

productdb.org/groups/421600120915> .
<http://productdb.org/gtin/00321337023526> dct:isVersionOf <http://

productdb.org/groups/421600120915> .

Listing 3.1 ProductDB.org data for Star Wars: Episode I in Turtle format

Click here to
view results in
Turtle format.

You are viewing a human-readable
version of the Linked Data. You can
access the raw data in the following
formats: RDF/XML, JSON, Turtle.

Figure 3.12 ProductDB.org entry for Star Wars: Episode I – The Phantom Menace

Note the use
of owl:sameAs
to provide
additional link

Note the use of
foaf:isPrimaryTop
to provide additio
links.

70 CHAPTER 3 Consuming Linked Data
<http://productdb.org/gtin/00039036007375> dct:isVersionOf <http://
productdb.org/groups/421600120915> .

<http://productdb.org/gtin/00024543023937> dct:isVersionOf <http://
productdb.org/groups/421600120915> .

<http://productdb.org/gtin/00712626010272> dct:isVersionOf <http://
productdb.org/groups/421600120915> .

By focusing on the underlying RDFa data compiled by ProductDB, you should see the rela-
tionship between Star Wars: Episode I—The Phantom Menace and content available from other
sources like Netflix (http://www.netflix.com/Movie/70003791), Rotten Tomatoes
(http://www.rottentomatoes.com/m/star_wars_episode_i_the_phantom_menace), and
MOODb (http://www.moodb.net/movie.asp?id=0000217), among others. This shows how
following the data links establishes unanticipated connections. George Lucas would be
unlikely to encourage viewers to seek out the description at Rotten Tomatoes. Here episode
I is described as “Lucas needs to improve on the plot and character development, but there’s
plenty of eye candy to behold.” Lucas may not approve of this information being tied to his
movie, but such data is easily gatherable via Linked Data by referencing the embedded URIs.

3.4.2 Getting Linked Data and RDF from web pages using browser plug-ins

When viewing a web page, the underlying RDFa is generally hidden to the viewer but
could be useful when extracted. As an example, the IMDb page contains RDFa, includ-
ing an image file associated with the movie. One approach to discovering the presence
of RDFa data is to install a browser plug-in. We’ve used a Firefox plug-in called RDFa
Developer, but there are many others. The underlying RDFa as discovered by RDFa
Developer is displayed in figure 3.13. But you can also automate the finding, extraction,
and utilization of RDFa data. We’ll demonstrate this technique later in the chapter.

Triples
<http://www.imdb.com/title/tt0120915/>

<http://www.w3.org/1999/xhtml/vocab#icon

fb:app_id
"115109575169727"

og:image

og:site_name

og:title

og:type

og:url

"http://ia.media-imdb.com/images/M/MV5BMTQ4NjEwNDA2NI58MI5BanBnXkFtZTcwNDUyNDQzNw@@,_V1,

"IMDb"

"Star Wars: Episode I - The Phantom Menace (1999)"

"video.movie"

"http://www.imdb.com/title/tt0120915/"

<http://www.w3.org/1999/xhtml/vocab#stylesheet

RDFa Developer
Data (11) Notices (38) Query

x

Figure 3.13 IMDb entry for Star Wars: Episode I – The Phantom Menace with discovered RDFa displayed

71Aggregating Linked Data
Jay Myers of Best Buy reports that as many as 100 different criteria could affect the
purchase of one product.2 He expects that the use of semantic data can enhance the
Best Buy site, improve the visibility of more than 85% of the products, and help con-
sumers identify more appropriate products. Figure 3.14 demonstrates the semantic
relationships between products. Myers expects that “RDFa can ultimately create rich
relationships between products, which will in turn ‘create a deeper visibility to addi-
tional products’ when a customer is shopping.”3

 Best Buy’s site is a great source of RDFa; see figure 3.15. Myers, lead web develop-
ment engineer, is a proponent of Linked Data. At the 2010 Semantic Technology Con-
ference, he reported that Best Buy had a 30% increase in search traffic after
incorporating RDFa data in its web pages. Myers also reported that the rank of the
pages that incorporated Good Relations (a Semantic Web vocabulary) and RDFa rose
significantly in Google search results. Myers intends to continue to explore other uses
of Linked Data to help consumers discover more relevant products that better meet
their needs.

 Best Buy’s RDFa is linked from ProductDB.org. In addition, you can use
SameAs.org to find more data by following links from Best Buy’s URIs to other data-
sets. SameAs.org has 122 related links for Star Wars: Episode I given the dbpedia.org
URL we retrieved from ProductDB.org. You can use the results from SameAs.org,
shown in figure 3.16, to manually discover additional related data.

2 “Better Retailing through Linked Data. Opportunities, perspectives, and vision on Linked Data in retail,”
http://www.slideshare.net/jaymmyers/better-retailing-through-linked-data.

3 Richard MacManus, interviewing Jay Myers, “How Best Buy Is Using the Semantic Web,” June 30, 2010,
http://www.readwriteWeb.com/archives/how_best_buy_is_using_the_semantic_Web.php.

Figure 3.14 Illustration
of linked relationships of
common products

72 CHAPTER 3 Consuming Linked Data
You can use the outcome of SameAs.org to help identify a canonical URL for a given
item. A canonical URL is the best URL among available choices. For example, you may
consider www.example.com, example.com/, www.example.com/index.HTML, and
example.com/home.asp interchangeable. However similar, each of these URLs may
return different content. A canonical URL is the preferred URL and often refers to an
item’s homepage.

Triples
<http://www.bestbuy.com/site/Star+Wars%3A+Episode+I+-+The+Phant...?id=30545&skuid=4244785&s

fb:app_id

og:image

og:site_name

og:title

og:type

og:url

RDFa Developer

Number of children

Data (19) Notices (15) Query

x

og:description

"http://www.bestbuy.com/site/Star+Wars%3A+Episode+I+-+The+Phant...?id=30545&skuid=4244785&st=star%

og:upc
"024543023920"

"product"

"Star Wars: Episode I - The Phantom Menace - Widescreen - DVD"

"Best Buy"

"http://images.bestbuy.com:80/BestBuy_US/images/products/4244/4244785s.jpg"

"Star Wars: Episode I - The Phantom Menace - Widescreen - DVD"

"125188000891129"

<http://www.w3.org/1999/xhtml/vocab#stylesheet

9

11

1

1

1

1

1

1

1

1

Figure 3.15 Best Buy’s RDFa for Star Wars: Episode I

Figure 3.16 SameAs.org results for Star Wars: Episode I

73Crawling the Linked Data Web and aggregating data
3.5 Crawling the Linked Data Web and aggregating data
In previous sections we’ve illustrated how to manually follow your nose and use tools
to find data on the Web. As a developer, you may be interested in consuming existing
data by combining extracted data and using it in another application. For such pur-
poses, we’d prefer to automate the processing of the aggregation of data. In this sec-
tion, we’ll develop an application that will illustrate such automation. This application
will show you how to use the Python scripting language, RDFLib, and html5lib to
access the RDFa data available from Best Buy for a sample product, the Darth Vader
Alarm Clock Radio. This application also accesses the data stored for the Darth Vader
Alarm Clock Radio from the ProductDB database. All of this RDF data is gathered and
displayed in a three-column table of subject, predicate, and object.

3.5.1 Using Python to crawl the Linked Data Web

We’ve chosen the Python scripting language because it supports gathering and using
aggregated RDF information. The example script (listing 3.2) will gather RDFa Linked
Data about the Darth Vader Alarm Clock Radio, shown in figure 3.17, from Best Buy
web pages and use that data to obtain more linked information from ProductDB.

 In the case of the Darth Vader Alarm Clock Radio, the RDFa Developer plug-in iden-
tified a triple that contained the UPC for this product. This UPC is used to search Pro-
ductDB. The output (output.html) contains the HTML for a web page that displays these
discovered triples as a table of TTL statement components, as shown in figure 3.18.

NOTE The execution of this script requires that a Python interpreter be
installed together with RDFlib and html5lib.

You can download a Python interpreter from Python.org (http://python.org). Follow
the guidelines at http://wiki.python.org/moin/BeginnersGuide/Download to select
the installation package to meet your needs.

Figure 3.17 Best Buy’s Web page for Darth Vader Alarm Clock Radio

74 CHAPTER 3 Consuming Linked Data

.

To run these scripts successfully, the libraries RDFLib and html5lib must be installed. You
can obtain RDFLib from https://github.com/RDFLib/rdflib. This library will allow you
to successfully pull down the Turtle file from ProductDB. Best Buy utilizes HTML5, which
requires html5lib. This library is available from http://code.google.com/p/html5lib/
downloads/detail?name=html5lib-0.95.tar.gz&can=2&q=. These downloads should be
stored in [PYTHON HOME]/lib. Installing these libraries should take no more than a few
minutes and will allow you to run the Python script outlined in the following listing.

#! /usr/bin/python

import rdflib
import html5lib

output = open("output.HTML", "w")

productDBGraph = rdflib.Graph()
productDBResult =

➥ productDBGraph.parse('http://productdb.org/gtin/00681326152002.ttl',
 format='turtle')

bestBuyGraph = rdflib.Graph()
bestBuyResult =

Listing 3.2 A Python script for aggregating RDF data for HTML display

Triples
<http://bestbuy.com/site/Star+Wars+-+Darth+Vader+Alarm+Clock+Radio+-+Black/4711825.p?id=12185

<http://www.w3.org/1999/xhtml/vocab#stylesheet

fb:app_id
"125188000891129"

og:description

og:image

og:site_name

og:title

og:type

og:upc

og:url

"FM presets; displays time, date, radio station and alarm mode; dual alarm; LCD display; snooze; battery backu

"http://images/bestbuy.com:80/BestBuy_US/images/products/4711/4711825_rb.jpg"

"Best Buy"

"Star Wars - Darth Vader Alarm Clock Radio - Black"

"product"

"681326152002"

"http://bestbuy.com/site/Star+Wars+-+Darth+Vader+Alarm+Clock+Radio+-+Black/4711825.p?id=12185"

This triple yields the
UPC for this clock.

Figure 3.18 RDFa data from Best Buy’s web page

Establish the graph
from ProductDB
using RDFLib to
parse it.

Establish the graph
from Best Buy using
RDFLib and html5lib

to parse it

http://code.google.com/p/html5lib/downloads/detail?name=html5lib-0.95.tar.gz&can=2&q=
http://code.google.com/p/html5lib/downloads/detail?name=html5lib-0.95.tar.gz&can=2&q=

75Crawling the Linked Data Web and aggregating data
➥ bestBuyGraph.parse('http://purl.org/net/BestBuyDarthVaderClock',
 format='rdfa')
print >>output, """<HTML>
<head>
 <title>Product Information</title>
</head>
<body>
<table border="1">"""

print >>output,

➥ "<tr><th>Subject</th><th>Predicate</th><th>Object</th></tr>"

for sub, pred, obj in productDBGraph:
 print >>output, "<tr><td>%s</td><td>%s</td><td>%s</td></tr>" % (sub,

➥ pred, obj)

for sub, pred, obj in bestBuyGraph:
 print >>output, "<tr><td>%s</td><td>%s</td><td>%s</td></tr>" % (sub,

➥ pred, obj)

print >>output, """</table>4

</body></HTML>"""

3.5.2 Creating HTML output from your aggregated RDF

In addition to aggregating RDF data from both Best Buy and ProductDB, the Python
script in listing 3.2 creates an HTML output file named output.html. We could have
retained the aggregated data in a file of triples, but we chose to display it in HTML for-
mat so that you could better appreciate the findings. This file should be opened in a
browser. The first screen of the HTML file produced should contain the content
shown in table 3.1. Each row in the table represents a set of Turtle triples.

4 Best Buy URL referenced in listing 3.2, http://www.bestbuy.com/site/Star+Wars+-+Darth+Vader+Alarm+Clock
+Radio+- +Black/4711825.p?id=1218515225401&skuId=4711825&st=Star%20Wars&cp=1&lp=7

Table 3.1 Representative sample output for listing 3.2

Subject Predicate Object

http://productdb.org/
gtin/00681326152002

http://purl.org/goodrelations/
v1#hasGTIN-14

00681326152002

http://productdb.org/
gtin/00681326152002

http://purl.org/goodrelations/
v1#hasManufacturer

http://productdb.org/brands/star-wars

http://productdb.org/
gtin/00681326152002

http://schema.org/manufac-
turer

http://productdb.org/brands/star-wars

http://productdb.org/
gtin/00681326152002

http://schema.org/image http://images.bestbuy.com/BestBuy_US/images/
products/4711/4711825_rc.jpg

A PURL was used
here instead of a

very long Best
Buy URL.4 This is

a redirect so that
the URL is more

readable.

Begin printing
HTML page that
will contain RDF.

Print subject, predicate, and object of all
triples pulled from both ProductDB and Best

Buy and place them into an HTML table.

http://www.bestbuy.com/site/Star+Wars+-+Darth+Vader+Alarm+Clock+Radio+- +Black/4711825.p?id=1218515225401&skuId=4711825&st=Star Wars&cp=1&lp=7
http://www.bestbuy.com/site/Star+Wars+-+Darth+Vader+Alarm+Clock+Radio+- +Black/4711825.p?id=1218515225401&skuId=4711825&st=Star Wars&cp=1&lp=7
http://purl.org/goodrelations/v1#hasGTIN-14
http://purl.org/goodrelations/v1#hasGTIN-14
http://purl.org/goodrelations/v1#hasManufacturer
http://purl.org/goodrelations/v1#hasManufacturer
http://schema.org/manufacturer
http://schema.org/manufacturer
http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://productdb.org/brands/star-wars
http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://productdb.org/brands/star-wars
http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://images.bestbuy.com/BestBuy_US/images/products/4711/4711825_rc.jpg
http://images.bestbuy.com/BestBuy_US/images/products/4711/4711825_rc.jpg

76 CHAPTER 3 Consuming Linked Data
This application aggregated data and demonstrated how Python can be used together
with RDFLib and html5lib to extract RDF data from Best Buy and ProductDB. We then
formatted the aggregated data as HTML so that you can examine the output in a
browser. In chapters 6, 7, and 9, we’ll illustrate how this aggregated data can be
retained or piped and reused in other applications.

3.6 Summary
The purpose of this chapter was to expose you to the multiple facets of consuming
Linked Data from the Web. To this end, we explored what it means to think the Web
way. We explored finding Linked Data on the Web by manually following your nose
and facilitating the process through the use of special tools. Finally, we illustrated how
you could use Python, RDFLib, and html5lib to develop programs that retrieve Linked
Data from one source and use those results to retrieve additional data from a different
data source. In subsequent chapters, we’ll emphasize techniques for developing and
publishing your own Linked Data and enhanced search techniques for aggregating
such data.

http://productdb.org/
gtin/00681326152002

http://schema.org/url http://www.bestbuy.com/site/Star+Wars+-+Darth
+Vader+Alarm+Clock+Radio+-+Black/4711825.p?id
=1218515225401&skuId=4711825&cmp=RMX&ky=
2nBwHqIqwH8HeGDnJH2Cia1DoDKws99jo

http://productdb.org/
gtin/00681326152002

http://schema.org/productID 0681326152002

http://productdb.org/
gtin/00681326152002

http://schema.org/name Star Wars - Darth Vader Alarm Clock Radio – Black

http://productdb.org/
gtin/00681326152002

http://open.vocab.org/terms/
category

http://productdb.org/classifications/bestbuy/
pcmcat263000050000

http://productdb.org/
gtin/00681326152002

http://www.w3.org/1999/02/
22-rdf-syntax-ns#type

http://schema.org/Product

http://productdb.org/
gtin/00681326152002

http://www.w3.org/1999/02/
22-rdf-syntax-ns#type

http://purl.org/goodrelations/v1#ProductOrService-
Model

Table 3.1 Representative sample output for listing 3.2 (continued)

Subject Predicate Object

http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://open.vocab.org/terms/category
http://open.vocab.org/terms/category
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://www.bestbuy.com/site/Star+Wars+-+Darth+Vader+Alarm+Clock+Radio+-+Black/4711825.p?id=1218515225401&skuId=4711825&cmp=RMX&ky=2nBwHqIqwH8HeGDnJH2Cia1DoDKws99jo
http://www.bestbuy.com/site/Star+Wars+-+Darth+Vader+Alarm+Clock+Radio+-+Black/4711825.p?id=1218515225401&skuId=4711825&cmp=RMX&ky=2nBwHqIqwH8HeGDnJH2Cia1DoDKws99jo
http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://productdb.org/gtin/00681326152002
http://productdb.org/classifications/bestbuy/pcmcat263000050000
http://productdb.org/classifications/bestbuy/pcmcat263000050000
http://schema.org/Product
http://purl.org/goodrelations/v1#ProductOrServiceModel
http://purl.org/goodrelations/v1#ProductOrServiceModel

Part 2

Taming Linked Data

What’s the Friend of a Friend (FOAF) vocabulary, and how can you use it
to publish a FOAF profile about yourself? What are some other related vocabular-
ies, and where do you find them? What is SPARQL, and how can you use it to find
desired Linked Data on the Web?

 Part 1 focused on understanding and consuming Linked Data. After com-
pleting part 2, you’ll be able to create and publish your own FOAF profile. You’ll
be able to use SPARQL to query the Web of Data and aggregate those results for
future applications.

Creating Linked
 Data with FOAF
Now that you’ve had experience discovering published Linked Data, this chapter
will guide you in creating and publishing your own data. A simple way to start is by
creating a personal Linked Data profile. Such profiles are based on the Friend of a
Friend vocabulary.

 The FOAF project was started in 2000 to generate a web of machine-readable
pages that describe people, thus supporting the Semantic Web goal of creating a
machine-accessible Web of Data. The project is popular and has exceeded its
expectations. FOAF facilitates a Semantic Web equivalent of a typical HTML

This chapter covers
■ A brief description of the Friend of a Friend

(FOAF) project
■ Creating a personal description of yourself

using FOAF
■ Using your FOAF profile and a gift wish list to

discover relevant product information
■ Updating and extending your FOAF profile
79

http://xmlns.com/foaf/spec/#term_Person

80 CHAPTER 4 Creating Linked Data with FOAF
homepage. This chapter will familiarize you with FOAF, illustrate how you can create
your personal FOAF profile, and show you how to join the FOAF community by pub-
lishing your data publicly.

 The FOAF project began as an “experimental linked information project.” Dan Brick-
ley1 and Libby Miller2 are responsible for its inception, and Edd Dumbill (http://
radar.oreilly.com/edd) and Leigh Dodds (www.ldodds.com/) notably contributed to its
success. FOAF enables you to describe people, their interests, their achievements, their
activities, and their relationship with other people. Because it produces RDF data files,
that information can be easily machine harvested and aggregated. Like all RDF vocab-
ularies, FOAF descriptions can be easily combined with other RDF vocabularies. Hence,
FOAF documents can be linked together. Such aggregations enrich the Web of Data.

 This chapter will guide you in developing such a profile by demonstrating the pro-
cess using Anakin Skywalker and his alter ego, Darth Vader. We’ll demonstrate two
methods for developing a FOAF profile: (1) by manually developing Anakin’s profile
using a simple editor and several verification tools, and (2) by having the user enter
the desired information into an HTML form that automatically produces a FOAF pro-
file. We selected this sequence so that you’d be familiar with the contents of a FOAF
profile and be able to appreciate the ease with which you can create a basic profile
using an online tool we developed.

 Regardless of the method that you choose to follow, you’d publish this profile and
related documents on the Web. We’ll then develop and demonstrate a Python pro-
gram that extracts data from a FOAF profile and a personal gift wish list (RDF/Turtle
format) and discovers other related information. In the process, we’ll demonstrate
how additional vocabularies can be used to expand a basic FOAF profile.

4.1 Creating a personal FOAF profile
This section will introduce the FOAF vocabulary and illustrate how you can use it to
create a personal FOAF profile document, the equivalent of a personal HTML home-
page. Anakin Skywalker (Darth Vader) will be the subject of our FOAF profile. The
schema and descriptions of the FOAF vocabulary are accessible from http://
xmlns.com/foaf/0.1/. FOAF contains the classes and properties listed in table 4.1.

1 Resume of Dan Brickley, http://danbri.org/cv/DanBrickley2012ResumePub.pdf.
2 Resume of Dr. Libby Miller, http://www.bris.ac.uk/ilrt/people/libby-m-miller/overview.html.

Table 4.1 FOAF classes and propertiesa

Classes

Agent OnlineAccount Person

Document OnlineChatAccount PersonalProfileDocument

Group OnlineEcommerceAccount Project

Image OnlineGamingAccount

LabelProperty Organization

http://radar.oreilly.com/edd
http://radar.oreilly.com/edd
http://www.ldodds.com/
Http://xmlns.com/foaf/0.1/
Http://xmlns.com/foaf/0.1/
mailto:darthvader@hotmail.com
mailto:darthvader@hotmail.com
mailto:darthvader@hotmail.com
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://xmlns.com/foaf/spec/#term_mbox_sha1sum
http://www.gnu.org/software/coreutils/manual/html_node/Summarizing-files.html#Summarizing-files
http://www.rdfabout.com/demo/validator/
http://purl.org/net/LinkedData/FoafGenerator
http://purl.org/net/LinkedData/FoafGenerator
http://danbri.org/cv/DanBrickley2012ResumePub.pdf
http://www.bris.ac.uk/ilrt/people/libby-m-miller/overview.html

81Creating a personal FOAF profile
NOTE http://xmlns.com/foaf/0.1/ is a PURL (Persistent URL) for http://
xmlns.com/foaf/spec/. PURLs are web addresses that act as permanent iden-
tifiers.3 If the underlying web address is relocated, then the PURL will ensure
that the proper redirection will automatically occur. Thus, PURLs provide
continuity of references to network resources that may migrate from machine
to machine. In this case, the use of the PURL ensures permanent access to the
FOAF vocabulary.

4.1.1 Introducing the FOAF vocabulary

As table 4.1 illustrates, the FOAF vocabulary has many classes and properties. Rather
than expanding on all of these, we’ll restrict our discussion to the Person class. The
Person class could be viewed as a key component of the FOAF vocabulary and is actu-
ally a subclass of Agent. We’ll illustrate its properties and basic usage in composing

Table 4.1 FOAF classes and propertiesa (continued)

Properties

account homepage pastProject

accountName icqChatID phone

accountServiceHomepage img plan

age interest primaryTopic

aimChatID isPrimaryTopicOf publications

based_near jabbered schoolHomepage

birthday knows sha1

currentProject lastName skypeID

depiction logo status

depicts made surname

dnaChecksum maker theme

familyName mbox thumbnail

family_name mbox_sha1sum tipjar

firstName member title

focus membershipClass topic

fundedby msnchatID topic_interest

geekcode myersBriggs weblog

gender name workInfoHomepage

givenName nick workplaceHomepage

givenname openid yahooChatID

holdsAccount page

a. “FOAF Vocabulary Specification 0.98,” Namespace Document, 9 August 2010, http://xmlns.com/
foaf/spec/#term_Person.

3 Purl administrator interface, http://purl.oclc.org/docs/index.html.

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/#term_Person
http://xmlns.com/foaf/spec/#term_Person
http://purl.org/vocab/relationship
http://www.rdfabout.com/demo/validator/
http://www.rdfabout.com/demo/validator/
http://www.rdfabout.com/demo/validator/
http://www.wasab.dk/morten/en/
http://www.wasab.dk/morten/en/
http://xml.mfd-consult.dk/foaf/explorer/
http://purl.oclc.org/docs/index.html

82 CHAPTER 4 Creating Linked Data with FOAF
our FOAF profile for Anakin Skywalker. The Person class is the core of the FOAF
vocabulary. Its purpose is to describe people. They can be alive, dead, real, or ficti-
tious. The Person class contains the properties listed in table 4.2.

The meanings of most of these terms are easily inferred from their names. You may
also notice that some properties appear redundant, like familyName, family_name,
and Surname. These overlapping terms were included to recognize worldwide cultural
diversity in common usage. A detailed explanation and description of the significance
of each term are available at http://xmlns.com/foaf/spec/#term_Person.

NOTE Keep in mind that a FOAF profile is like a personal homepage and is
meant to be a public profile, so be careful only to say things on the Web that
you want to be public.

4.1.2 Method I: manual creation of a basic FOAF profile

Using our editor and our knowledge of Anakin Skywalker, we’ve drafted a basic FOAF
profile that Anakin might publish. Listing 4.1, the basic FOAF profile for Anakin Sky-
walker, contains statements that apply many of the FOAF classes and properties, espe-
cially from the Person class. Like a personal homepage, this document conveys “My
name is Anakin Skywalker; I’m a Jedi; my nickname is The Chosen One; for more
information see Darth_Vader’s profile.” Once published, FOAF profiles can be linked
to form a Web of Data. The advantage over an HTML homepage description is that the
vocabulary is well defined and unambiguous. This FOAF profile applies 14 of the prop-
erties from the FOAF vocabulary listed in table 4.1 and table 4.2.

@base <http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix stars: <http://www.starwars.com/explore/encyclopedia/characters/>.

 <me> a foaf:Person;
 foaf:family_name "Skywalker";
 foaf:givenname "Anakin";
 foaf:gender "Male";
 foaf:title "Mr.";
 foaf:homepage <http://www.imdb.com/character/ch0000005/bio>;

Table 4.2 Properties of FOAF Person class

myersBriggs familyName publications lastName

family_name plan firstName currentProject

surname knows workInfoHomepage pastProject

geekcode schoolHomepage workplaceHomepage img

Listing 4.1 Sample FOAF profile for Anakin Skywalker, aka Darth Vader

Prefix abbreviations
for web references

http://purl.org/vocab/relationship/friendOf
http://purl.org/vocab/relationship/friendOf
http://purl.org/vocab/relationship/friendOf
http://xml.mfd-consult.dk/foaf/explorer/

83Creating a personal FOAF profile
 foaf:mbox_sha1sum "d37a210cadc241b0f7aeb76069e58843bd8940a0";
 foaf:name "Anakin Skywalker";
 foaf:nick "The Chosen One";
 foaf:phone <tel:8665550100>;
 foaf:title "Jedi";
 foaf:workplaceHomepage <stars:anakinskywalker/> .
 <me> a foaf:PersonalProfileDocument;
 foaf:primaryTopic <me>;
 rdfs:seeAlso <http://live.dbpedia.org/page/Darth_Vader> .4

You’ll notice that the email address (darthvader@example.com) isn’t published as plain
text but is encoded using an algorithm. Discussions and descriptions of the sha1sum
algorithm are accessible from http://xmlns.com/foaf/spec/#term_mbox_sha1sum
and www.gnu.org/software/coreutils/manual/html_node/Summarizing-files.html
#Summarizing-files.

 Publishing a plain-text email address is an invitation to trouble. Another important
point about foaf:mbox_sha1sum is that this property as well as foaf:mbox and
foaf:homepage are inverse functional properties. This means that an aggregator that
finds two resources with the same values for an inverse functional property may safely
merge the descriptions and relations as belonging to the same person. This process is
referred to as smushing. Some controversy about the appropriateness of such smush-
ing exists within the Linked Data community. Some developers prefer that such infer-
ences be drawn by other means. Although some of the properties illustrated are from
the FOAF vocabulary but outside the Person class, these properties were included
because they’re self-explanatory and help us provide a richer description of Anakin
Skywalker, aka Darth Vader.

4.1.3 Enhancing a basic FOAF profile

Now that we’ve illustrated a FOAF profile (listing 4.1) with basic metadata about
Anakin Skywalker, we’ll take this a step further and describe, in listing 4.2, his relation-
ship with another person. The foaf:knows property simply asserts that there is some
relationship between two people. It deliberately doesn’t imply that this relationship is
reciprocal. Other vocabularies and other communities can further define the differ-
ent types of relationships. The URI for one such vocabulary is http://purl.org/vocab/
relationship. When abbreviating terms, the suggested prefix is rel.

 Each class or property in the vocabulary has a URI constructed by appending a
term name to the vocabulary URI, for example, http://purl.org/vocab/relationship/
friendOf.

 @base <http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#>.
 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

4 The tel: URI scheme is defined in RDF 3966, http://tools.ietf.org/html/rfc3966.

Listing 4.2 Enhanced FOAF profile modeling the foaf:knows relationship

Encoded
sha1sum
mailbox
address The tel: notation

isn’t a namespace;
it’s a URI scheme
the same as http:.4

www.gnu.org/software/coreutils/manual/html_node/Summarizing-files.html#Summarizing-files
www.gnu.org/software/coreutils/manual/html_node/Summarizing-files.html#Summarizing-files
http://purl.org/net/WishListSchema
http://purl.org/net/WishListSchema
http://purl.org/vocab/relationship
http://purl.org/vocab/relationship
http://purl.org/vocab/relationship/friendOf
http://purl.org/vocab/relationship/friendOf
http://tools.ietf.org/html/rfc3966
http://rosemary.umw.edu/~marsha/starwars/foaf.ttl
http://purl.org/net/LinkedData/FoafGenerator
http://purl.org/net/WishListSchema
http://purl.org/net/WishListSchema
http://yourDomain/yourFoafProfile.ttl
http://yourDomain/yourFoafProfile.ttl
http://yourDomain/yourFoafProfile.ttl
http://yourDomain/yourWishList.ttl

84 CHAPTER 4 Creating Linked Data with FOAF
 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 @prefix stars:

➥ <http://www.starwars.com/explore/encyclopedia/characters/>.

 <me> a foaf:Person;
 foaf:family_name "Skywalker";
 foaf:givenname "Anakin";
 foaf:gender "Male";
 foaf:title "Mr.";
 foaf:knows [
 a foaf:Person;
 foaf:mbox_sha1sum

➥ "aadfbacb9de289977d85974fda32baff4b60ca86";
 foaf:name "Obi-Wan Kenobi";
 rdfs:seeAlso <http://live.dbpedia.org/page/Obi-

➥ Wan_Kenobi>
];
 foaf:homepage

➥ <http://www.imdb.com/character/ch0000005/bio>;
 foaf:mbox_sha1sum

➥ "d37a210cadc241b0f7aeb76069e58843bd8940a0";
 foaf:name "Anakin Skywalker";
 foaf:nick "The Chosen One";
 foaf:phone <tel:8665550100>;
 foaf:title "Jedi";
 foaf:workplaceHomepage <stars:anakinskywalker/> .
 <me> a foaf:PersonalProfileDocument;
 foaf:primaryTopic <me> .

The next listing illustrates the Relationship vocabulary and smushing. Not only does
Anakin Skywalker “know” Obi-Wan Kenobi, but the rel:enemyOf property implies
that Anakin is unlikely to invite Obi-Wan to dinner. Certainly this is a more precise
relationship than the broader and imprecise foaf:knows.

 @base <http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#>.
 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 @prefix rel: <http://purl.org/vocab/relationship>.
 @prefix stars:

➥ <http://www.starwars.com/explore/encyclopedia/characters/>.
 <me> a foaf:Person;
 foaf:family_name "Skywalker";
 foaf:givenname "Anakin";
 foaf:gender "Male";
 foaf:title "Mr.";

 foaf:knows [
 a foaf:Person;
 foaf:mbox_sha1sum "d37a210cadc241b0f7aeb76069e58843bd8940a0";
 foaf:name "Darth Vader";
 rel:enemyOf <http://live.dbpedia.org/page/Obi-Wan_Kenobi>;

Listing 4.3 An enhanced FOAF profile using additional rdfs and rel properties

Example of
foaf:knows

Examples of
rel:enemyOf

http://rosemary.umw.edu/~marsha/starwars/foafWishList.ttl
http://rosemary.umw.edu/~marsha/starwars/foafWishList.ttl
http://rosemary.umw.edu/~marsha/starwars/foafWishList.ttl
http://purl.org/net/LinkedData/FoafGenerator

85Creating a personal FOAF profile
];

 foaf:knows [
 a foaf:Person;
 foaf:mbox_sha1sum "aadfbacb9de289977d85974fda32baff4b60ca86";
 foaf:name "Obi-Wan Kenobi";
 rdfs:seeAlso <http://live.dbpedia.org/page/Obi-Wan_Kenobi>;
 rel:enemyOf <me>;
];
 foaf:homepage <http://www.imdb.com/character/ch0000005/bio>;
 foaf:mbox_sha1sum "d37a210cadc241b0f7aeb76069e58843bd8940a0";
 foaf:name "Anakin Skywalker";
 foaf:nick "The Chosen One";
 foaf:phone <tel:8665550100>;
 foaf:title "Jedi";
 foaf:workplaceHomepage <stars:anakinskywalker/> .
 <me> a foaf:PersonalProfileDocument;
 foaf:primaryTopic <me> .

You’ll notice that the foaf:mbox_sha1sum properties are identical for Anakin Sky-
walker and Darth Vader. Within the Linked Data community, these two are recognized
as the same person.

 Now that we have a FOAF profile, we need to publish it to the Web and link this
new information into the existing web of FOAF data. To publish a profile on the Web,
store it in a publicly accessible web space.

 In our case, we’ve published Anakin’s FOAF profile at http://rosemary.umw.edu/
~marsha/starwars/foaf.ttl. As we’ve done, you should title your file foaf.ttl. You’re now
in a position to join the FOAF community by publishing your own FOAF profile and
applying one or both of the following methods. Use the HTML link tag to point to
FOAF descriptions. Here’s how it should look:

<link rel="alternate" type="text/turtle" href="http://
yourPublicWebSpace/FOAF.ttl" title="My FOAF" />

■ Include references to the FOAF files of your friends by including links to those
files in your FOAF profile. For example, you can reference Marsha’s FOAF
description by adding

rdfs:seeAlso <http://rosemary.umw.edu/~marsha/foaf.ttl>

■ You could also use seeAlso to provide a link to a Facebook, LinkedIn, or Pinter-
est account of yourself or a friend.

4.1.4 Method II: automated generation of a FOAF profile

The purpose of creating a FOAF profile manually was to acquaint you with the FOAF
vocabulary. But a simpler way to generate a FOAF profile document is to use an appli-
cation like the 3 Round Stones FOAF profile generator we developed, which you can
access from http://purl.org/net/LinkedData/FoafGenerator. This application will
guide you through entering your personal data and will produce a FOAF profile in
Turtle format. Note that none of the information you enter in this page is used or

Examples of
rel:enemyOf

http://rosemary.umw.edu/~marsha/starwars/foaf.ttl
http://rosemary.umw.edu/~marsha/starwars/foaf.ttl
http://ldodds.com/foaf/foaf-a-matic
http://ldodds.com/foaf/foaf-a-matic
http://ldodds.com/foaf/foaf-a-matic
http://ldodds.com/foaf/foaf-a-matic
http://rosemary.umw.edu/~marsha/starwars/wishlist.ttl

86 CHAPTER 4 Creating Linked Data with FOAF
automatically stored in any way. Figure 4.1 is the opening screen for this application.
The user completes the basic information as desired. You may omit any field as
needed. After completing the basic information, you should select each of the tabs at
the bottom of the page and submit the requested information.

 The top section of figure 4.1 refers to personal metadata. When you click the
Friends I Know tab you’ll see data about people you know. Entering links to their
email addresses and/or FOAF profiles will enable your FOAF profile to link to others
on the Web of Data. The Social Networking tab requests data about your links to other
social networking sites and connects your FOAF profile to other related data on the
Web. The Additional Info tab refers to additional personal information like your most
recent publication(s). When you’ve entered all of the desired data, follow the instruc-
tions displayed. Your FOAF profile document in Turtle format will be displayed in the
text box at the center of the screen shown in figure 4.2. You’ll need to save this and
publish it on the Web.

Figure 4.1 FOAF profile generator—opening screen

http://somePublicSpace/foaf.rdf
http://somePublicSpace/foaf.rdf
http://somePublicSpace/foaf.rdf
http://somePublicSpace/foaf.rdf
http://ldodds.com/foaf/foaf-a-matic
http://ldodds.com/foaf/foaf-a-matic
http://foaf.me/
http://foaf.me/
http://foaf.me/

87Creating a personal FOAF profile
Most of the requested data in this section of the generator is self-explanatory. But the
Base URI refers to the URI of where this FOAF profile will ultimately be stored for web
accessibility. The Homepage refers to the URI of your HTML homepage. Although
you’re entering your email address in human-readable form, that address will be
encrypted using a sha1sum algorithm, which we discussed in section 4.1.2, creating a
personal FOAF profile

 You may submit information for as many friends as you’d like; just click Add Friend
for each friend more than the first three. Again, their email addresses will be
encrypted in the final FOAF profile generated. When you finish entering information
for your friends, click another tab (Social Networking or Additional Info). You can go
back to any of the tabbed sections to review and edit your information as needed.

 The Social Networking tab is intended to help establish connections to typical
social media sites. This information is often included on a personal HTML homepage,
and because a FOAF profile is similar to that, you’d expect to see these links included
here as well.

 The FOAF profile in Turtle format is complete and ready to be published. Listing 4.4
is the FOAF profile produced by the 3 Round Stones FOAF profile generator. You can see
many similarities to the FOAF profiles that we generated manually earlier in this chapter.

 The output from the 3 Round Stones FOAF profile generator is formatted a little
differently from listings 4.1, 4.2, and 4.3. In listing 4.4, the semicolons and periods
that terminate Turtle statements are found at the start of subsequent statements
rather than the end of the previous line. This is a preferred style because all the punc-
tuation is vertically aligned. The use of prefixes is limited to common vocabulary pre-
fixes. Logically, the FOAF profile generated automatically is equivalent to those we
wrote manually in this chapter.

@base <http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<Me> a foaf:Person

Listing 4.4 FOAF profile as generated by 3 Round Stones FOAF profile generator

@base <http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#> .

<Me> a foaf:Person
 ; foaf:title "Jedi"
 ; foaf:givenName "Anakin"
 ; foaf:familyName "Skywalker"
 ; foaf:name "Jedi Anakin Skywalker"

Your FOAF profile document will
appear here. You can copy and
paste it into a document (foaf.ttl)
that you publish in a publically
accessible place on the Web.

Click here to clear form and start over. Figure 4.2 FOAF profile
generator—final screen

Common
vocabularies
and their
prefixes

http://purl.org/net/LinkedData/FoafGenerator
http://purl.org/net/LinkedData/FoafGenerator
http://www.w3.org/2003/01/geo/
http://www.w3.org/2003/01/geo/
http://paprika.umw.edu/~marsha/foaf.ttl
http://paprika.umw.edu/~marsha/foaf.ttl
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://vocab.org/relationship/.html

88 CHAPTER 4 Creating Linked Data with FOAF

 the
ublin
ry
 ; foaf:title "Jedi"
 ; foaf:givenName "Anakin"
 ; foaf:familyName "Skywalker"
 ; foaf:name "Jedi Anakin Skywalker"
 ; foaf:nick "The Chosen One"
 ; foaf:mbox_sha1sum "d37a210cadc241b0f7aeb76069e58843bd8940a0"
 ; foaf:homepage <http://www.imdb.com/character/ch0000005/bio>
 ; foaf:account <https://www.facebook.com/pages/Darth-Vader/10959490906484>

 ; foaf:age "100"
 ; foaf:img <http://www.starwars.com/img/explore/encyclopedia/characters/

➥ darthvader_detail.png>
.

<http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#Me>

➥ foaf:knows <d37a210cadc241b0f7aeb76069e58843bd8940a0> .

<d37a210cadc241b0f7aeb76069e58843bd8940a0> a foaf:Person
 ; foaf:name "Darth Vader"
.

<http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#Me>

➥ foaf:knows <548a58890349e5af34cee097c31c8c16591cd58f> .

<548a58890349e5af34cee097c31c8c16591cd58f> a foaf:Person
 ; foaf:name "Obi-Wan Kenobi"
.

This section introduced you to the FOAF vocabulary and demonstrated its use in creat-
ing a personal FOAF profile. The FOAF profile produced in this section closely resem-
bles the content you’d expect in your homepage. You can create this profile manually
using an editor or you can use our automated 3 Round Stones FOAF profile generator,
http://purl.org/net/LinkedData/FoafGenerator. In either case, you can retain and
later optionally edit this profile to include additional data.

4.2 Adding more content to a FOAF profile
You can customize your foaf.ttl document further by adding statements with addi-
tional information about yourself. There are numerous vocabularies in widespread
use that cover common types of data and that should be used wherever possible.
One of these vocabularies, the Basic Geo (WGS84 lat/long) vocabulary at http://
www.w3.org/2003/01/geo/, defines terms such as lat and long for describing geo-
graphically located things. The following listing illustrates the use of the WGS84
vocabulary.

@base <http://rosemary.umw.edu/~marsha/foaf.ttl> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

Listing 4.5 Example of using the WGS84 Basic Geo vocabulary

Defining dc as
prefix to the D
Core vocabula

Defining geo
as the prefix

to the Geo
vocabulary

http://www.w3.org/2003/01/geo/
http://www.w3.org/2003/01/geo/

89Adding more content to a FOAF profile
<me> a foaf:person;
 foaf:based_near [
 geo:lat "38.301304";
 geo:long "-77.47447"];
 foaf:homepage [
 dc:title "Marsha's home page"],
 <http://rosemary.umw.edu/~marsha/index.html>;
foaf:name "Marsha Zaidman" .

You can further enhance your FOAF profile by including statements that utilize addi-
tional properties from the FOAF (http://xmlns.com/foaf/0.1/) and Relationship
vocabularies (http://vocab.org/relationship/.html). Terms from the Relationship
vocabulary created by Eric Vitiello are listed in table 4.3. The following example will apply
the property foaf:img as well as other properties from the Relationship vocabulary.

NOTE foaf:img should have been called foaf:mug_shot because it’s
intended to relate a person to an image. It’s inappropriate to use it in the
context of an image of an animal or other object. This img property doesn’t
have any restrictions on the dimensions or color depth of the image to which
it relates.

The terms in the Relationship vocabulary provide a rich context within which you
could establish contacts and go well beyond foaf:knows in describing these relation-
ships. The next listing is a simple example applying the spouseOf relationship. You’d
use similar statements when you use other terms from table 4.3.

 @base <http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#>.
 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

Table 4.3 Terms from the Relationship vocabulary

acquaintanceOf enemyOf lostContactWith

ambivalentOf engagedTo mentorOf

ancestorOf friendOf neighborOf

antagonistOf grandchildOf parentOf

apprenticeTo grandparentOf Participant

childOf hasMet participantIn

closeFriendOf influencedBy Relationship

collaboratesWith knowsByReputation siblingOf

colleagueOf knowsInpassing spouseOf

descendantOf knowsOf worksWith

employedBy lifePartnerof wouldLikeToKnow

employerOf livesWith

Listing 4.6 Enhanced FOAF profile applying foaf:img and rel:spouseOf

Use of the geo:lat and
geo:long properties

http://xmlns.com/foaf/0.1/

90 CHAPTER 4 Creating Linked Data with FOAF
 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 @prefix rel: <http://purl.org/vocab/relationship>.
 @prefix stars: <http://www.starwars.com/explore/encyclopedia/characters/>.

 <me> a foaf:Person;
 foaf:family_name "Skywalker";
 foaf:givenname "Anakin";
 foaf:gender "Male";
 foaf:title "Mr.";
 foaf:img <stars:anakinskywalker_detail.png>;
 rel:spouseOf <stars:padmeamidala/>;

 foaf:knows [
 a foaf:Person;
 foaf:mbox_sha1sum

"d37a210cadc241b0f7aeb76069e58843bd8940a0";
 foaf:name "Darth Vader";
 foaf:img <stars:darthvader_detail.png>;
 rel:enemyOf <http://live.dbpedia.org/page/Obi-

Wan_Kenobi>;
];

 foaf:knows [
 a foaf:Person;
 foaf:mbox_sha1sum

"aadfbacb9de289977d85974fda32baff4b60ca86";
 foaf:name "Obi-Wan Kenobi";
 rdfs:seeAlso <http://live.dbpedia.org/page/Obi-

Wan_Kenobi>;
 rel:enemyOf <me>;
];
 foaf:homepage <http://www.imdb.com/character/ch0000005/bio>;
 foaf:mbox_sha1sum "d37a210cadc241b0f7aeb76069e58843bd8940a0";
 foaf:name "Anakin Skywalker";
 foaf:nick "The Chosen One";
 foaf:phone <tel:8665550100>;
 foaf:title "Jedi";
 foaf:workplaceHomepage <stars:anakinskywalker/> .
<me> a foaf:PersonalProfileDocument;
 foaf:primaryTopic <me> .

There are many RDF vocabularies, and these standardized vocabularies should be
used as much as possible to facilitate inclusion and expansion of the Web of Data. This
practice is consistent with thinking like the Web and reinforces Tim Berners-Lee’s
four principles of Linked Data. Common choices for vocabularies were presented in
chapter 2; see table 2.2 for that list.

4.3 Publishing your FOAF profile
After you’ve incorporated the desired content into your FOAF profile, verify the cor-
rectness of your document by uploading the statements to an RDF validator. We rec-
ommend Joshua Tauberer’s RDF Validator and Converter, which also covers RDF/XML

Applying
foaf:img

Applying
rel:spouseOf

91Visualization of a FOAF profile
and Turtle, at http://www.rdfabout.com/demo/validator/. Now you can publish your
error-free file (foaf.ttl) in a web space accessible by the public.

 Here’s a summary of the steps you should follow to create and publish a syntacti-
cally correct FOAF profile for yourself:

■ Use a FOAF profile generator to create a basic FOAF profile. We recommend the
one available at http://purl.org/net/LinkedData/FoafGenerator.

■ Enter all of the desired information into the form provided.
■ Click Submit to generate the Turtle version of your FOAF information.
■ Highlight and copy the output from the FOAF profile generator and paste it

into a text editor.
■ Save your file as foaf.ttl.
■ Optionally, enhance your profile by inserting additional statements using addi-

tional FOAF classes and properties (foaf), relationships from the Relationship
vocabulary (rel), or any other appropriate schema.

■ Save your modified file.
■ Verify the syntactic correctness of this modified profile by accessing an RDF

validator such as the one developed by Joshua Tauberer at http://
www.rdfabout.com/demo/validator/.

■ Save the validated file.
■ Publish this validated file in a publically accessible file space on the Web.

Congratulations! You’ve now created Linked Data and published it on the Web of
Data. You’ve also joined the FOAF community. Welcome!

4.4 Visualization of a FOAF profile
You can see an HTML visualization of your FOAF profile using Morten Frederiksen’s
(http://www.wasab.dk/morten/en/) FoaF Explorer. You can access this application
at http://xml.mfd-consult.dk/foaf/explorer/. This tool will generate an HTML view
of FOAF data, complete with referenced images and links to other data. For example,
figure 4.3 is a view of Anakin Skywalker’s FOAF profile, as created in listing 4.3. Tools
like this facilitate your visualization of RDF data.

 In sections 4.2 and 4.3 we discussed two methods for creating a FOAF profile, cus-
tomizing this profile, and publishing a FOAF profile that should contain content simi-
lar to what you’d expect in a personal homepage. Using a validator ensures that your
FOAF profile is syntactically correct. But seeing an HTML visualization of this content
is helpful in ensuring that you’ve entered the content correctly.

http://www.rdfabout.com/demo/validator/
http://www.rdfabout.com/demo/validator/

92 CHAPTER 4 Creating Linked Data with FOAF
Figure 4.3 FoaF Explorer rendition of Darth Vader FOAF profile

93Application: linking RDF documents using a custom vocabulary
4.5 Application: linking RDF documents using a custom vocabulary
You may be wondering if a FOAF profile is useful beyond using it to join the FOAF
community. Actually, a FOAF profile is an RDF document that contains personal infor-
mation. Like any RDF document, it contains links to other RDF data. In this applica-
tion, we’re going to show how you can link two RDF documents to each other. We’re
going to create a customized vocabulary and apply it to our RDF documents. Then
we’ll use data found in these RDF documents to find related data on the Web. The
techniques utilized in this application aren’t limited to FOAF profiles and wish lists but
can be used in general to select content from multiple documents and use that data to
retrieve data from other sources. Chapter 5 contains another application that uses a
FOAF profile.

 This application extends Anakin’s profile by connecting it to a web-based RDF wish
list. This wish list will be linked directly to his FOAF profile and can in turn contain
products from anywhere on the Web. To reinforce the techniques and concepts we’ve
covered, you should try this for yourself and create a personal wish list to link to your
personal FOAF profile.

4.5.1 Creating a wish list vocabulary

Creating the document is as simple as writing another Turtle file. The only thing that
you need to include in this document (prior to adding desired items to the stored
wish list) is the prefix that will be used to connect your FOAF profile to your wish list
and your wish list to your items. But we needed a vocabulary to support our wish list.
This is a perfect example of the process discussed in chapter 2 regarding the creation
of vocabularies and their terms. We wanted to describe the relationship of a person to
a wish list and the wish list to the items on it, but a vocabulary didn’t yet exist for that.
After searching and not finding those relationships, we defined them ourselves and
proceeded to use them in our data. In this case, the appropriate vocabulary and asso-
ciated schema, shown in the following listing, has been created for you and published
at http://purl.org/net/WishListSchema.

Vocabulary for Linked Data wish list App
Luke Ruth (luke @ http://3Roundstones.com)
13 September 2012

@prefix wish: <http://purl.org/net/WishListSchema> .

Properties
wish:wish_list
 rdf:type rdf:Property ;
 rdfs:isDefinedBy <http://purl.org/net/WishListSchema>;
 rdfs:label "has a wish list" ;
rdfs:comment "Indicates the entire wish list a person is related to." .

Listing 4.7 Source code for defining a wish list vocabulary

94 CHAPTER 4 Creating Linked Data with FOAF

wish:wish_list_item
 rdf:type rdf:Property ;
 rdfs:isDefinedBy <http://purl.org/net/WishListSchema>;
 rdfs:label "has an item" ;
rdfs:comment "Indicates a single item that is listed on a wish list." .

4.5.2 Creating, publishing, and linking the wish list document

Using our custom vocabulary, you can complete the creation and publication of the
wish list document. You’ll do the following:

■ Create a wish list document.
■ Publish it to the Web (most likely in the same location as your FOAF profile).
■ Link this wish list document to your FOAF profile.

Using an editor, begin to create a wish list document containing this single line:

@prefix wish: http://purl.org/net/WishListSchema .

This statement establishes the URI of the wish list vocabulary and the use of wish as
the associated prefix. Next, publish this document in the same manner, and in the
same location, as you did your FOAF profile earlier in the chapter. Once you’ve done
this and the document is live on the Web, you can create the link to it from your FOAF
profile by adding a single statement to the end of the FOAF profile file, an example of
which is shown in listing 4.8. That statement is

<http://yourDomain/yourFoafProfile.ttl> wish:wishlist <http://yourDomain/
yourWishList.ttl> .

Obviously, you need to replace the values for yourDomain and yourWishList with the
appropriate URIs, but once you’ve done that, your FOAF profile will be linked to your
wish list.

@base <http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix wish: <http://purl.org/net/WishListSchema> .

<Me> a foaf:Person
 ; foaf:title "Jedi"
 ; foaf:givenName "Anakin"
 ; foaf:familyName "Skywalker"
 ; foaf:name "Jedi Anakin Skywalker"
 ; foaf:nick "The Chosen One"
 ; foaf:mbox_sha1sum "d37a210cadc241b0f7aeb76069e58843bd8940a0"
 ; foaf:homepage <http://www.imdb.com/character/ch0000005/bio>
 ; foaf:account <https://www.facebook.com/pages/Darth-

➥ Vader/10959490906484>

Listing 4.8 FOAF profile with link to wish list

Prefix that
makes the wish
list vocabulary
available

95Application: linking RDF documents using a custom vocabulary

e
h
 ; foaf:age "100"
 ; foaf:img <http://www.starwars.com/img/explore/encyclopedia/characters/

➥ darthvader_detail.png>
.

<http://rosemary.umw.edu/~marsha/starwars/foaf.ttl> wish:wish_list

➥ <http://rosemary.umw.edu/~marsha/starwars/wishList.ttl>
.

<http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#Me>

➥ foaf:knows <d37a210cadc241b0f7aeb76069e58843bd8940a0> .

<d37a210cadc241b0f7aeb76069e58843bd8940a0> a foaf:Person
 ; foaf:name "Darth Vader"
.

<http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#Me>

➥ foaf:knows <548a58890349e5af34cee097c31c8c16591cd58f> .

<548a58890349e5af34cee097c31c8c16591cd58f> a foaf:Person
 ; foaf:name "Obi-Wan Kenobi"
.

Listing 4.8 is an example of a completed FOAF profile containing the link to the wish
list document. We published this document at http://rosemary.umw.edu/~marsha/
starwars/foafWishList.ttl.

4.5.3 Adding wish list items to our wish list document

At the moment, our wish list document doesn’t contain references to any products.
 You can begin adding items to your wish list by using an editor to manually insert

these triples. Each triple contains

<URI of associated wishlist.ttl> wish:wish_list_item <URI of desired item>

You can also generate these triples by locating the desired item with your browser,
then using a tool we’ve developed called the “wish list bookmarklet.” You can obtain
this tool at http://purl.org/net/LinkedData/FoafGenerator and add it to your
browser simply by dragging the link into your Bookmarks toolbar, as illustrated in
figure 4.4.

 Using the bookmarklet is simple. Browse to the item that you want to add to your
wish list. Click the Create Bookmarklet application on your Bookmarks toolbar. The
bookmarklet will generate a wishlistItem triple and display that triple in a pop-up
window. Figure 4.5 shows a screen shot of this bookmarklet in action.

 You need to copy the displayed text and paste it into your wish list document. You
can do this repeatedly for as many items as you desire in your wish list.

Statement that
links FOAF profil
document to wis
list document

http://rosemary.umw.edu/~marsha/starwars/foafWishList.ttl
http://rosemary.umw.edu/~marsha/starwars/foafWishList.ttl

96 CHAPTER 4 Creating Linked Data with FOAF
Listing 4.9 is a representative wish list. We published it at http://rosemary.umw.edu/
~marsha/starwars/wishlist.ttl. You’ll notice the prefix statement at the head of the
document. This document contains two triples that refer to Best Buy items selected by
the user. Each triple has the wish list document as its subject, the wish_list_item
from the Wish List Schema as the predicate, and the URL of the desired object as
found in the URL associated with the product as the object. This wish list contains the
two items.

@prefix wish: <http://purl.org/net/WishListSchema> .
<http://rosemary.umw.edu/~marsha/starwars/wishlist.ttl>

➥ wish:wish_list_item <http://www.bestbuy.com/site/Sony+-+Cyber-

➥ shot+DSC-WX100+18.2-Megapixel+Digital+Camera+-

Listing 4.9 Sample wish list document

3. Drag bookmarklet link to Bookmarks Bar

1. Enter wish list URL

2. Click Return/Enter

Figure 4.4 Obtaining the wish list bookmarklet

1. Browse to desired item

2. Click Create Bookmarklet on toolbar

3. Copy text from pop-up window to wish list

Figure 4.5 Using the wish list bookmarklet

http://rosemary.umw.edu/~marsha/starwars/wishlist.ttl
http://rosemary.umw.edu/~marsha/starwars/wishlist.ttl

97Application: linking RDF documents using a custom vocabulary
➥ +Black/5430135.p?id=1218645197434&skuId=5430135&st=DSCWX100/B&cp=1&lp=

➥ 1> .
<http://rosemary.umw.edu/~marsha/starwars/wishlist.ttl>

➥ wish:wish_list_item <http://www.bestbuy.com/site/Pro-Form+-

➥ +710+E+Elliptical/4876004.p?id=1218562659510&skuId=4876004> .

This application has demonstrated how you link two RDF documents together. We
demonstrated the creation of a custom vocabulary and used that vocabulary to link
the FOAF profile to the wish list and to create the wish list triples. We incorporated
these triples into the wish list document. This application illustrates the interlinking
of RDF data files and the creation of a custom vocabulary. We’ll use our wish list again
in chapter 6.

4.5.4 Explanation of our bookmarklet tool

Here’s a brief explanation of a JavaScript bookmarklet, in case you’re unfamiliar with
it. A bookmarklet is JavaScript embedded in a bookmark so that it can be run indepen-
dently of the page where it was first gathered. Bookmarklets can range in size from
very small snippets of JavaScript to pages of complex and intricate code. Our code is
relatively short, because the goal is straightforward. We want to automate the process
of writing a single triple relating your wish list to the URL of the page you currently
have open in your browser.

 Luckily, JavaScript and jQuery have all the tools you need to do this. If you think
about the problem before writing a single line of code, the design is straightforward.
You need only two pieces of information: the URL for your wish list and the URL for
the product you’re interested in adding to your wish list. After that it’s all about for-
matting and presentation. The following listing is the JavaScript application that
implements our wish list application.

<script type="text/javascript">
 $(document).ready(function() {
 $("#wishForm").submit(function() {

 //Create bookmarklet variable as series of strings to avoid multiline
 //parsing issues
 var bookmarklet = "javascript:(function() {";
 bookmarklet += "var url = self.location.href;"
 bookmarklet += "var myWindow = window.open(\"\",\"Wish List Link\",

➥ \"width=600,height=300,status=1,resizable=1,left=420,top=260,

➥ screenX=420,screenY=260\");";
 bookmarklet += "myWindow.document.write(\"<textarea rows=\'20\'

➥ cols=\'80\' id=\'output\'></textarea>\");";
 bookmarklet += "myWindow.document.getElementById('output').value =

➥ '<WISHLISTLINK> \n wish:wish_list_item \n <' + url + '> .';";
 bookmarklet += "myWindow.focus();";
 bookmarklet += "})();";

 var wishList = $("#userWishListLink").val();

Listing 4.10 JavaScript bookmarklet to construct Turtle wish list items

Get the value of the
wish list URL and place
it into a variable.

98 CHAPTER 4 Creating Linked Data with FOAF

t
 bookmarklet = bookmarklet.replace(/WISHLISTLINK/, wishList);

 $("#results").show();
 $("#bookmarkletLink").attr("href", bookmarklet);
 return false;
 }); // Close wishForm.submit
 }); // Close document.ready
</script>

The first piece of information you need is the URL where you’ve published your wish
list. The best way to accomplish this is by pulling it out of a text field using jQuery, like
this:

var wishList = $("#userWishListLink").val();

The second piece of information you need is the URL of the current page containing
your wish list item. This is obtained using

bookmarklet += "var url = self.location.href;"

The critical part about this process is that you’re building up the bookmarklet as a
string and then assigning the entire string as an href in the line

$("#bookmarkletLink").attr("href", bookmarklet);

In just those few lines you already have all the data you need to create the triple to add
to your wish list. The rest of the JavaScript in listing 4.10 is related to creating another
window, formatting the output, and placing it into that window for you to copy and
paste into your wish list document. As you can see, this bookmarklet could be
extended to include other information or write more complex statements.

4.6 Summary
The purpose of this chapter was to introduce you to methods of creating and publish-
ing Linked Data on the Web. We developed a FOAF profile manually and through the
use of an automated tool. We enhanced this profile using non-FOAF vocabularies. We
published this profile and discussed joining the FOAF community. We demonstrated
how you can link a FOAF profile to other Linked Data documents.

 Now we turn from discovering Linked Data and publishing your own Linked Data
to chapter 5, which will focus on techniques for searching published Linked Data with
SPARQL.

Display
bookmarklet
link and assign
the bookmarkle
link as an href
attribute

Build up the
bookmarklet as a

string, then assign the
entire string as an href

SPARQL—querying
 the Linked Data Web
Every database needs a query language. SPARQL is to RDF data as SQL is to a rela-
tional database. SPARQL is the query language for structured data on the Web, spe-
cifically data accessible in RDF formats or representable as such. SPARQL is
therefore the query language for Linked Data. The primary purpose of SPARQL is
to provide a formal language in which meaningful questions can be phrased.

 This chapter discusses how to query the Web of Data as if it were a database—a
big, highly distributed database on the internet. A query language for the Web of
Data needs to be able to query files containing RDF data, RDF files accessible on the
Web, local databases, and databases exposed to the Web. Further, it needs to be
able to query multiple data sources at once and thus be able to dynamically build a

This chapter covers
■ An introduction to the SPARQL query language

for RDF
■ Sample SPARQL queries
■ An overview of SPARQL query types
■ SPARQL results formats
99

100 CHAPTER 5 SPARQL—querying the Linked Data Web
large, virtual RDF graph from those multiple data sources. SPARQL is best used when
you want to query RDF graphs, as if one or more (possibly distributed) RDF graphs
formed a database. We’re going to show you how you can do just that.

 Because many people are already familiar with SQL, it would be handy for our new
query language to look and act as much like SQL as possible. That’s a good idea for
acceptance, even though the traditional relational data model differs significantly
from the graph data model of RDF. SPARQL has an SQL-like syntax that’s appropriate
for RDF and Linked Data.

 Like SQL, SPARQL is based on a widely implemented standard, but various vendors
have extended the language to suit themselves or show off particular features of their
products. This chapter focuses on the standard language components, which are gen-
erally appropriate in any case: SPARQL implementations haven’t fragmented as much
as SQL implementations.

SPARQL’s name looks like an acronym, but the truth is the acronym was reverse engi-
neered after the fact. The SPARQL Protocol and RDF Query Language is a recursive acro-
nym in the tradition of the GNU (GNU’s Not Unix) Project. SPARQL’s name is nicely
pronounceable and sounds interesting and fresh. SPARQL is interesting and fresh. We
hope this chapter shows you why.

SPARQL is defined by a family of W3C
Recommendations and related Working
Group Notes. The W3C SPARQL logo is
shown in figure 5.1

5.1 An overview of a typical SPARQL query
SPARQL queries can take a number of different forms. The most common is a select
query, which selects information based on constraints. It’s very similar in form to SQL
select queries.

 Listing 5.1 contains a representative SPARQL query. Don’t worry about understand-
ing this query yet; it’s shown here to provide an overview of the organization of a typi-
cal SPARQL SELECT query.

 Each SPARQL SELECT query is organized as follows:

1 PREFIX (Namespace prefixes.)
2 SELECT (Define what you wish to retrieve.)
3 FROM (Specify the dataset from which to draw the results.)
4 WHERE {

(Describe the criteria on which to base the selection. This description is in the
form of a query triple pattern.)

}

5 ORDER BY, LIMIT, and the like (Modifiers that affect the desired result.)

Figure 5.1 W3C’s SPARQL logo

http://www.w3.org/TR/rdf-sparql-protocol/
http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=select+distinct+%3FConcept+where
http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=select+distinct+%3FConcept+where
http://code.google.com/apis/maps/documentation/javascript/
http://code.google.com/apis/maps/documentation/javascript/

101Querying flat RDF files with SPARQL

o
1

prefix foaf: <http://xmlns.com/foaf/0.1/>
prefix pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

select ?name ?latitude ?longitude
from <http://3roundstones.com/dave/me.rdf>1
from <http://semanticweb.org/wiki/Special:ExportRDF/Michael_Hausenblas>
where {
 ?person foaf:name ?name ;
 foaf:based_near ?near .
 ?near pos:lat ?latitude ;
 pos:long ?longitude .
}
LIMIT 10

The query is asking that no more than 10 names and associated locations (latitude
and longitude) be retrieved from the RDF contents stored in the URLs in footnote 1.
The names will be identified as the object of a triple where the predicate is foaf:name.
The latitude and longitude will be identified as the object of pos:lat and pos:long.

 A triple pattern is a description of desired RDF statements that match our criteria.
They’re intentionally similar to RDF statements and are meant to constrain which RDF
statements we’re interested in. Entities that are variable and not an explicit value are
represented by a leading ? such as ?person. Therefore, ?s ?p ?o would be a pattern
that would match every RDF statement.

 The following query

select ?o ?x ?y
from <http://3roundstones.com/dave/me.rdf>
from <http://semanticweb.org/wiki/Special:ExportRDF/Michael_Hausenblas>
where {
 ?s foaf:name ?o ;
 foaf:based_near ?z .
 ?z pos:lat ?x ;
 pos:long ?y .
}
LIMIT 10

would retrieve exactly the same results as the query in listing 5.1, but it’s less readable.
This section provided a brief overview of SPARQL. The remainder of the chapter will
familiarize you with different types of queries and help you better understand how to
form meaningful queries.

5.2 Querying flat RDF files with SPARQL
SPARQL is best used when you want to query RDF graphs, as if one or more (possibly dis-
tributed) RDF graphs formed a database. Note that there are many native RDF databases,

Listing 5.1 SPARQL query to find people’s locations

1 The results will be retrieved from http://3roundstones.com/dave/me.rdf and http://semanticweb.org/
wiki/Special:ExportRDF/Michael_Hausenblas.

Namespace
prefixes.

Requesting three fields be retrieved.
Results
will be
retrieved
from tw
sources.Items preceded

by ? represent
variables in the
results.

Criteria described
in the form of a
triple pattern.

Only the first 10 results
will be returned.

http://www.w3.org/TR/sparql11-query/
http://3roundstones.com/dave/me.rdf
http://semanticweb.org/wiki/Special:ExportRDF/Michael_Hausenblas
http://semanticweb.org/wiki/Special:ExportRDF/Michael_Hausenblas
http://xmlns.com/foaf/0.1/
http://www.w3.org/TR/rdf-sparql-query/

102 CHAPTER 5 SPARQL—querying the Linked Data Web

s

but you don’t need to use one in order to query RDF using SPARQL. This chapter begins
by showing you how to query local flat files of RDF, then moves on to querying RDF files
and databases on the Web. Because we use URIs to identify both, you may not even notice
the difference. We like it that way because RDF and Linked Data are meant to work the
way the Web works.

5.2.1 Querying a single RDF data file

The sample query in the following listing looks for people that the owner of a FOAF
document knows. We can query a real-world FOAF document, like the one created in
chapter 4, to get that information. We’ll build this query to show you how to perform
distributed queries in SPARQL.

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix foaf: <http://xmlns.com/foaf/0.1/>

select ?name ?url
where {
 ?person rdfs:seeAlso ?url ;
 foaf:name ?name .
}

The name space declarations are analogous to those used in the Turtle or RDF/XML
syntaxes. Look at the query in listing 5.2 and the RDF graph diagram in figure 5.2 at
the same time. The query’s WHERE clause defines triple patterns, ways of matching pat-
terns within an RDF graph. We’d like to query the graph in figure 5.2 (which repre-
sents the FOAF document for one of the authors).

Listing 5.2 SPARQL query to find FOAF friends

Namespace
declarationNames information

to return in the
results

Defines patterns to
match and filters to
perform on the data

Triple patterns
used to match

RDF statements

http://
example.com/
foaf/dave#me

foaf:Person

a

Wood

foaf:family_name

David

foaf:givenname

Michael Hausenblas

5268ce5bb6a230b787fec1c9207c4d57694eb134

foaf:name

foaf:mbox_sha1sum

foaf:knows

abe8c5daaf522b41c7550a48360be9379e59db2c

foaf:mbox_sha1sum

David Wood

foaf:name

rdfs:seeAlso

http://
example.com/
foaf/dave.rdf

a

foaf:maker

foaf:primaryTopic

a

http://
semanticweb.org/

wiki/
Special:ExportRDF/
Michael_Hausenblas

foaf:PersonalProfileDocument

Figure 5.2 Sample FOAF data showing the triple patterns matched by the SPARQL query in listing 5.2

103Querying flat RDF files with SPARQL
The use of triple patterns in the WHERE clause is one of the primary syntactic differences
between SPARQL and SQL. Another is the prefixes at the top of the query. Because RDF
and Linked Data sometimes use quite long URIs as universal identifiers, we need a way
to make our queries readable. Prefixes do that by mapping a short placeholder to a long
URI that may then be used interchangeably in the rest of the query.

 In figure 5.2 the triple patterns matched by the query are circled. We wanted to
find any resource (that we called ?person) that has a foaf:name property and an
rdfs:seeAlso property. We expect the query to return the variables listed in the
SELECT clause, which are the two variables ?name and ?url, the objects of the RDF
statements that were identified in the query’s WHERE clause.

 You can see that query in action using the ARQ utility from the Apache Jena Proj-
ect. ARQ is a SPARQL processor that can be used from a command-line interface.

NOTE You’ll really want to download and install ARQ. It’s both handy to have
a local SPARQL query processor and difficult to find public SPARQL endpoints
that will allow you to run arbitrary queries.

ARQ can be downloaded from http://apache.org/dist/jena/. You’ll need to down-
load and install ARQ in order to follow along with the examples. Setting up ARQ is
straightforward. A single environment variable is used to tell ARQ where its installa-
tion directory is located. The next listing shows how that’s done on various OSes.

For Unix-like systems, including Linux and OS X:
$ export ARQROOT='/Applications/ARQ-2.8.8'
$ /Applications/ARQ-2.8.8/bin/arq –h

For Windows:
set ARQROOT=c:\MyProjects\ARQ
c:\MyProjects\ARQ\bat\arq.bat /h

Put the SPARQL query from listing 5.2 into a file called foaf.rq (.rq is the standard file
extension for SPARQL queries). Next, get some real FOAF data from (for example)
http://3roundstones.com/dave/me.rdf and save it to a file called foaf.rdf. You can
query those two files using ARQ. Listing 5.4 shows the relevant command line.

 Executing ARQ as shown will result in the output in figure 5.3. ARQ will output its
own textual representation of query results when run in a terminal. But there are other
result formats. The standard result formats are discussed in section 5.6 and the details
provided in appendix B. ARQ’s other output options can be found in the ARQ help.

$ /Applications/ARQ-2.8.8/bin/arq --query foaf.rq --data foaf.rdf

Listing 5.3 Setting up ARQ

Listing 5.4 Running a SPARQL query from the command line

Setting up the ARQ
environmentGetting help

for ARQ

Make sure foaf.rdf includes your correct file
path, for example, /Home/Desktop/foaf.rdf.

http://apache.org/dist/jena/
http://3roundstones.com/dave/me.rdf

104 CHAPTER 5 SPARQL—querying the Linked Data Web
This query will return some number of people and their URLs. The exact number may
change depending on when you make the query (because the file on the Web may
change). Anyone listed in the FOAF file with an rdfs:seeAlso URL and a foaf:name
will be returned. To see how changes will impact your query results, edit the file
foaf.rdf and either add more people with those parameters or change some of the
existing data; then execute the ARQ again.

 Here SPARQL is acting as a query language for RDF when the RDF data is in files.
Later we’ll show how to use SPARQL to query RDF data on the internet. First, though,
we’ll demonstrate how to query an RDF graph that’s built from multiple data sources.

5.2.2 Querying multiple RDF files

Unlike SQL, SPARQL isn’t limited to querying a single data source. You can use
SPARQL to query multiple files, web resources, databases, or a combination thereof. A
simple example will make it clearer.

 The personal information in a FOAF profile may be extended with, say, address
information. A common way to represent address information in RDF is via the vCard
vocabulary (as briefly discussed in chapter 2). vCard files are like virtual business
cards. A minimal vCard address file that augments the sample FOAF data we’ve been
working with is available at http://3roundstones.com/dave/vcard.ttl in Turtle format.

 Take the vCard data from http://3roundstones.com/dave/vcard.ttl and put it into
a file called vcard.ttl. Now you can run ARQ again with both the FOAF and vCard data
acting as input, as shown in listing 5.5 and figure 5.4. Note the additional --data
parameter. Make sure to have the right path to the ARQ utility and put the contents of
listing 5.6 into a file called foafvcard.rq.

 This shows that RDF files may be combined, just like any other RDF graphs. Graphs
of information combine well (unlike tables and trees). The magic is in the reuse of
identifiers. Both files refer to the same URI identifying a person.

NOTE One of the primary assumptions of Linked Data is that two people
using the same identifier are talking about the same thing. Reusing identifiers
for resources allows data to be combined.

$ arq --query foafvcard.rq --data foaf.rdf --data vcard.ttl

Listing 5.5 Running a SPARQL query from a command line with multiple data files

| "Michael Hausenblas" | <http://semanticweb.org/wiki/Special:ExportRDF/Michael_Hausenblas> |
| name | url |

Figure 5.3 Partial query results for the FOAF query

The vCard example
RDF data is in the
file vcard.ttl.

http://3roundstones.com/dave/vcard.ttl
http://3roundstones.com/dave/vcard.ttl
http://code.google.com/apis/maps/documentation/staticmaps/

105Querying flat RDF files with SPARQL
Figure 5.4 shows a query against the combined FOAF and vCard graph. We wish to find
the names of people and address information associated with each person. The name
comes from the sample FOAF data and the address information comes from the sam-
ple vCard data.

 Referring to listing 5.6, note how the ?address variable is used: the first constraint
in the WHERE clause matches a person with a foaf:name. The next statement
(vcard:adr ?address .) matches the same person (that is, triples with the same sub-
ject) with a vcard:adr address. The address is a blank node. It doesn’t have an identi-
fier. But we can get a handle to it by referring to it as a variable called ?address. The
?address variable can then be used in the next two lines

?address vcard:locality ?city ;
 vcard:region ?state .

to find the city and state associated with that address. We don’t care about the address
per se. We’re just “walking the graph” to ensure that the address we use is the same
one that’s associated with the person’s name.

http://
example.com/
foaf/dave#me

foaf:Person

a

Wood

foaf:family_name

David

foaf:givenname

Michael Hausenblas

5268ce5bb6a230b787fec1c9207c4d57694eb134

foaf:name

foaf:mbox_sha1sum

foaf:knows

Virginia

22408

USA

vcard:region

vcard:postal-code

vcard:country-name

vcard:Worka

Fredericksburg vcard:locality

vcard:adr

abe8c5daaf522b41c7550a48360be9379e59db2c

foaf:mbox_sha1sum

David Wood

foaf:name

rdfs:seeAlso

http://
example.com/
foaf/dave.rdf

a

foaf:maker

foaf:primaryTopic

a

http://
semanticweb.org/

wiki/
Special:ExportRDF/
Michael_Hausenblas

foaf:PersonalProfileDocument

Figure 5.4 Sample combined FOAF/vCard data showing the triple patterns matched by the SPARQL
query in listing 5.6

106 CHAPTER 5 SPARQL—querying the Linked Data Web
prefix foaf: <http://xmlns.com/foaf/0.1/>
prefix vcard: <http://www.w3.org/2006/vcard/ns#>

SELECT ?name ?city ?state
where {
 ?person foaf:name ?name ;
 vcard:adr ?address .
 ?address vcard:locality ?city ;
 vcard:region ?state .
}

The result of running the command in listing 5.5 (with the query in listing 5.6) is
shown in figure 5.5. The name comes from the FOAF data, and the city and state come
from the vCard data.

Developers used to SQL might note that variable names in SPARQL’s SELECT clause
don’t name variables to query from the database; they determine which variables used
in the WHERE clause’s triple patterns get returned in the output. That’s confusing for
some new users, but it makes sense once you wrap your mind around the concept of
matching triple patterns against an RDF graph. The approach works even if the RDF
graph is temporarily created for the purposes of satisfying the query!

5.2.3 Querying an RDF file on the Web

It’s possible to use SPARQL to query RDF on the internet, too. Try modifying the query
in listing 5.2 by adding a FROM clause after the SELECT clause. Add this line after the
select line:

FROM <http://3roundstones.com/dave/me.rdf>

If you save the modified query into a file called livefoaf.rq (.rq is the file extension for
SPARQL queries), you can run the query as shown in the following listing.

$ /Applications/ARQ-2.8.8/bin/arq --query livefoaf.rq

Listing 5.6 A SPARQL query that combines FOAF and vCard data

Listing 5.7 Running a remote SPARQL query from the command line

The SELECT clause, showing
three variable bindings to be
returned in the results

A triple pattern to
find the blank node
representing an addressTriple patterns

mapping the address
to a city and state

--| name | city | state |
==
| "David Wood" | "Fredericksburg" | "Virginia" |
--

Figure 5.5 Query results for the combined FOAF and vCard query

The command to run arq using a remote query with a FROM clause. Note the
lack of a defined data file; the data comes from a URL provided in the query.

http://www.w3.org/TR/sparql11-update/
http://maps.googleapis.com/maps/api/staticmap
http://maps.googleapis.com/maps/api/staticmap

107Querying SPARQL endpoints
The URL in the FROM clause points to David Wood’s live FOAF file on the internet. The query
will return a larger number of people’s names and rdfs:seeAlso URLs than the results
shown in figure 5.3. If you want to see an example of a larger FOAF file, you can resolve
and save David’s or Michael’s FOAF files for further study using the URLs given previously.

 One of the things that makes structured data on the Web interesting is that it’s dis-
tributed, unlike a relational database where the data exists in a single system. SPARQL
allows you to have multiple FROM clauses in a single query. Try it by adding another
FROM clause with a URL to another FOAF file to the previous query (for example,
Michael’s FOAF URL is given in figure 5.3). Now you’ll see a listing of people’s names
and rdfs:seeAlso URLs from both David’s and Michael’s FOAF files. Try that with a
relational database!

5.3 Querying SPARQL endpoints
So far we’ve shown how to query RDF data in local files, both singly and using multiple
files, and how to query RDF data on the internet using SPARQL’s FROM clause. Each time
we’ve used a query stored in a local file. But is there a way to bypass local files altogether
and query the internet more like you would a relational database? Of course!

 Linked Data sites on the Web often expose a SPARQL endpoint. A SPARQL end-
point is a web-accessible query service that accepts the SPARQL query language. An
HTTP GET on a SPARQL endpoint generally returns an HTML query form. The query
form for DBpedia is shown in figure 5.6.

Figure 5.6 DBpedia’s SPARQL endpoint’s query form and default query

108 CHAPTER 5 SPARQL—querying the Linked Data Web
NOTE As is true in Turtle, the syntactical convenience a, when used as a
property, is the same as saying rdf:type, which is used to say that an RDF
resource is an instance of a particular RDF class. The term [] is a blank node
and will therefore match any subject.

The growing convention used by datasets on the Linked Open Data cloud is exposing
SPARQL endpoints on the path /sparql. You can generally determine whether a given
Linked Data site has a SPARQL endpoint by constructing a URL like http://{hostname
here}/sparql. This is just a convention, but it’s a useful one. Of course, you can put a
SPARQL endpoint on any URL.

DBpedia’s default query gives a hint to new users on how they can discover what
information the service holds. You can rewrite DBpedia’s default query with more
whitespace to make it more readable, as shown in the following listing.

select DISTINCT ?Concept
WHERE {
 [] a ?Concept
}

At the time this book was written, DBpedia reported holding information about
20,152,062 unique concepts. That number will change over time, but it’s worth noting
just how much information is available on DBpedia alone. Each “concept” is an RDF
class. RDF classes are often used to categorize information in Linked Data, in much
the same way that data is collected into records in a relational database.

 The WHERE clause in listing 5.8 contains a single triple pattern that matches any
RDF class URIs and places them into the variable ?Concept.

 Linked Data isn’t meant to be used only by humans; automated processes should
also be able to make SPARQL queries. When SPARQL is used over HTTP, we’re using
the P in SPARQL, the SPARQL Protocol. SPARQL endpoints accept a SPARQL query in
the parameters of an HTTP GET or POST request. The query is URL encoded to escape
special characters and then put in the query string as the value of a variable called
query. DBpedia’s default query could just as easily be called, as shown in the following
listing. Note that DBpedia’s SPARQL endpoint also uses a second parameter called
default-graph-uri. The parameters are defined in the SPARQL Protocol specifica-
tion (http://www.w3.org/TR/rdf-sparql-protocol/).

http://dbpedia.org/sparql?default-graph-
uri=http%3A%2F%2Fdbpedia.org&query=select+distinct+%3FConcept+where+

➥ %7B%5B%5D+a+%3FConcept%7D&format=text%2Fhtml&timeout=0

Now that you’ve seen some of SPARQL’s most common use cases, it’s time to look at
more technical details of the query language. SPARQL can perform a number of dif-
ferent types of queries. They’re described in the next section.

Listing 5.8 Query the rdf:types a server holds

Listing 5.9 An example of a URL-encoded SPARQL query

The DISTINCT keyword ensures that
duplicate results are filtered out; only
unique matching results are returned.

109Types of SPARQL queries
5.4 Types of SPARQL queries
There are several types of SPARQL queries. SELECT queries data in the way we’re famil-
iar with in SQL. The DESCRIBE query gives us a quick way to ask, “What is known about
a particular resource?” The ASK query allows us to determine whether a particular
query would return results, and the CONSTRUCT query allows us to construct new RDF
graphs from SPARQL query results. The addition of SPARQL UPDATE in SPARQL 1.1 gives
us the ability to add, remove, or otherwise update data accessible via SPARQL end-
points. The following sections introduce each type of query.

5.4.1 The SELECT query

You’ve already seen the SELECT query in action, which is used much as it is in SQL. The
SELECT query type has a number of other options, including the ability to perform sub-
queries, combine (UNION) graphs, and find the difference between (MINUS) graphs.

 One of the most useful additional features is the OPTIONAL block that extends the
functionality of the WHERE clause. An OPTIONAL block makes any triple patterns within
it optional. That is, they’re not required to match but will be returned if they do. The
OPTIONAL block is equivalent to a left join, whereas the period-separated triple pat-
terns represent conjunctions; all the patterns are joined to create a result.

 Let’s look at the query in listing 5.2 again but modify it so that we can return all the
names and return any rdfs:seeAlso URLs that might also be there. In other words, a
resource that has a foaf:name but not an rdfs:seeAlso URL will still match and still
return the name. The record for such a resource will not have an entry for an
rdfs:seeAlso URL. The next listing shows the modified query. Take care to note that
the order of the WHERE clause constraints has been inverted for readability.

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix foaf: <http://xmlns.com/foaf/0.1/>

select ?name ?url
where {
 ?person foaf:name ?name .
 OPTIONAL { ?person rdfs:seeAlso ?url }
}

The ORDER BY and LIMIT functions work in SPARQL as they do in SQL. If you have a lot
of records, you may wish to order them by a particular variable, either numerically or
alphabetically as appropriate. You may also wish to limit the number of records that
are returned. Execute the query shown in listing 5.11 on DBpedia’s SPARQL endpoint,
and you’ll see a large list of unordered results without the ORDER BY and LIMIT and a
short list of ordered results with them. Try it yourself.

 There are other query modifiers besides ORDER BY and LIMIT. SQL users will imme-
diately recognize GROUP BY, HAVING, and OFFSET. Those and others are covered in the
SPARQL specification.

Listing 5.10 Introducing OPTIONAL

Complete the foaf:name
triple pattern and end it
with a period. (Mandatory)

Wrap the
rdfs:seeAlso triple

pattern with an
OPTIONAL{} block.

110 CHAPTER 5 SPARQL—querying the Linked Data Web
 The COUNT function counts the number of times a variable is matched in a query
result. This handy function may be used to determine how many of something there
are in a dataset.

select ?link
where {
 <http://dbpedia.org/resource/Linked_Data>
 <http://dbpedia.org/ontology/wikiPageExternalLink> ?link .
} ORDER BY ?link LIMIT 10

Listing 5.12 counts the number of abstracts for DBpedia’s Linked_Data resource. Note
that the COUNT function is surrounded by parentheses and a new variable (?count) is
established to hold the resulting number. The result for such a query will have count
as the variable name in the result header (from the ?count variable name).

 Features like COUNT are called aggregate functions (or set functions in the SPARQL
specification) because they aggregate information already present in a query and cal-
culate something new from it. Other aggregate functions include summation (SUM),
average (AVG), minimum (MIN), and maximum (MAX). The GROUP BY and HAVING
clauses familiar from SQL also operate on aggregate information. COUNT and other
aggregates are only available as of SPARQL 1.1.

COUNT in listing 5.12 calculates the number of times the variable ?abstract is
bound and puts that number into ?count. The query would return the number of
abstracts for the Linked_Data resource when executed on DBpedia’s SPARQL end-
point. That number was 6 when this book was written.

select (COUNT(?abstract) as ?count)
where {
 <http://dbpedia.org/resource/Linked_Data> dbpedia-owl:abstract ?abstract .
}

In many cases, you’d like to match data with more granularity. A classic example from
the early days of relational databases is the need to find employees with salaries
greater than a certain amount or those with ages between two numbers. These kinds
of limits are imposed using FILTERs.

FILTERs in SPARQL can take many forms. FILTERs can operate on numbers, strings,
dates, URIs, or other data types. For example, the filter FILTER regex(?name,
"Capadisli") would remove any match from the ?name variable whose value was not
"Capadisli". The term regex is intentional; many features of standard regular expres-
sions may be used in regex filters. Filters may also be negated: FILTER NOT EXISTS {
?person foaf:name ?name } tests for the absence (instead of the presence) of a pattern.

Listing 5.11 Introducing ORDER BY and LIMIT

Listing 5.12 Introducing COUNT

Orders the results by the variable
given. In this case, the URLs will
be ordered alphabetically.

Limits the results
to 10 records.

111Types of SPARQL queries
In this case, the filter ensures that the resource ?person does not have a foaf:name of
the value of ?name.

 The query in the next listing would return a single abstract in English when exe-
cuted on DBpedia’s SPARQL endpoint. Removing the FILTER would return all
abstracts associated with the Linked_Data resource regardless of language.

select ?abstract
where {
 <http://dbpedia.org/resource/Linked_Data> dbpedia-owl:abstract ?abstract .
 FILTER (lang(?abstract) = "en")
}

5.4.2 The ASK query

ASK queries give you a way to find out whether some triple patterns would match an
answer. The result of an ASK query is always a Boolean (true or false). The syntax of an
ASK query uses the same WHERE clause as a SELECT query.

 There’s no point in using any postprocessing actions on an ASK query because the
result is only a Boolean. Therefore, the ORDER BY, LIMIT, and OFFSET operations aren’t
allowed.

 The point of an ASK query is to test whether the triple patterns in the WHERE clause
would return an answer. WHERE clauses can become large and complicated, so testing
large queries may be very useful. It’s often better to test large queries before hammer-
ing a database only to determine that no results are returned. Also, as with SQL, it’s
always possible to construct queries that require a very long time to execute. ASK que-
ries will almost always return faster than the equivalent SELECT query.

 The following listing shows an example ASK query. The ASK query type returns a
Boolean (true or false) indicating whether the query would return results. This query
would return “true” when executed on DBpedia’s SPARQL endpoint, indicating that
the Linked_Data resource does, in fact, have at least one abstract.

ASK
where {
 <http://dbpedia.org/resource/Linked_Data> dbpedia-owl:abstract ?abstract .
}

5.4.3 The DESCRIBE query

It may seem odd that the results of SELECT or ASK queries are not in themselves RDF
statements. This is because SPARQL is intended to be SQL-like in its operations. There
are times, however, when you might want to retain or make an RDF graph from a
SPARQL query. The DESCRIBE and CONSTRUCT query types allow just that.

 The DESCRIBE query requires a single URI as a parameter and returns an RDF
graph that describes the named resource. An optional WHERE clause may be added.

Listing 5.13 Introducing FILTERs

Listing 5.14 An ASK query

The FILTER restricts the
?abstract variable to only those
with an English language tag.

112 CHAPTER 5 SPARQL—querying the Linked Data Web

 The SPARQL specification says that the results of a DESCRIBE query are “deter-
mined by the SPARQL query processor.” In practice, most if not all SPARQL processors
return all RDF triples for which the DESCRIBE’s URI parameter is the subject, as shown
in listing 5.15. This has advantages and disadvantages. An advantage is that the result
is easy to determine and to implement. A disadvantage is that indirect relationships
(those RDF statements for which a blank node or URI is the object and that act as sub-
jects to successive statements) are not returned. A DESCRIBE result can be, and often
is, parsed to form the basis for subsequent queries to gather whatever information is
ultimately desired.

 The following listing shows a DESCRIBE query. It will return the RDF statements
from DBpedia for which the Linked_Data resource is the subject. Unlike SELECT, ASK,
or CONSTRUCT queries, DESCRIBE queries can’t get any more complicated. The word
DESCRIBE and a URI form the entirety of the query.

describe <http://dbpedia.org/resource/Linked_Data>

5.4.4 The CONSTRUCT query

Like the DESCRIBE query type, a CONSTRUCT query returns an RDF graph. Unlike
DESCRIBE, however, CONSTRUCT can make any RDF graph you like, based on the infor-
mation you query in a WHERE clause.

 The CONSTRUCT query in listing 5.16 queries all the information in DBpedia about
the Linked_Data resource and then filters it to just the parts that are explicitly lan-
guage-encoded in English. The CONSTRUCT clause then creates a new RDF graph from
that information. The result is a subset of the DBpedia information on the
Linked_Data resource that’s only in English. Of course, any information that’s not
directly connected to the Linked_Data resource or is not language-encoded in Eng-
lish will be lost. It’s possible to make the WHERE clause more complicated to account
for any other information you may wish to add to your new graph. Any variables listed
in the WHERE clause may be reused in the CONSTRUCT clause, as may literal values that
you write into the CONSTRUCT clause by hand.

CONSTRUCT {
 <http://dbpedia.org/resource/Linked_Data> ?p ?o
}
WHERE {
 <http://dbpedia.org/resource/Linked_Data> ?p ?o .
 filter langMatches(lang(?title), "EN")
}

Listing 5.15 A DESCRIBE query

Listing 5.16 A CONSTRUCT query

The CONSTRUCT
query makes a new
RDF graph using
variables from the
WHERE clause.

CONSTRUCT clause
components use

variables that are
bound in the

WHERE clause.

The WHERE clause determines which variables
may be used in the CONSTRUCT clause.

113SPARQL result formats (XML, JSON)
5.4.5 SPARQL 1.1 Update

For years, the SPARQL standard didn’t specify a way to add or remove data from a
repository, only ways to query it. This odd situation was one of the growing pains of
the Semantic Web standards. That obvious lack has been repaired with SPARQL 1.1.
SPARQL 1.1 Update (http://www.w3.org/TR/sparql11-update/) provides standard
syntax for updating RDF data using SPARQL.

 The next listing shows how SPARQL Update’s INSERT function may be used to
insert RDF triples into a compliant repository.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT DATA
{
 <http://www.linkeddatadeveloper.com/> dc:title "Linked Data" ;
 dc:creator "David Wood" ;
 dc:creator "Marsha Zaidman" ;
 dc:creator "Luke Ruth" ;
 dc:creator "Michael Hausenblas" .

}

Other operations under SPARQL Update include the ability to delete triples from a
graph (DELETE), load the contents of a URL into a graph (LOAD), and remove all the
triples from a graph (CLEAR). Graphs may be created (CREATE) or removed (DROP). All
of the data from one graph may be copied to another (COPY), which will first remove
any existing data from the destination graph. Similarly, a MOVE operation will move all
data from one graph to another, thus emptying the source graph. A variation on COPY
is ADD; the ADD operation copies data from a source graph to a destination graph with-
out removing any existing information from either graph.

NOTE A SPARQL Update request may only be used on a SPARQL 1.1 endpoint
that you have write permission to. You’re unlikely to find many public SPARQL
endpoints that allow strangers to write data to them! You’re more likely to use
SPARQL Update to manipulate RDF databases under your control.

5.5 SPARQL result formats (XML, JSON)
So far you’ve seen SPARQL results in a text format, as created by the ARQ utility. The
SPARQL standard defines an XML format for SPARQL results. There’s also a widely
used JSON syntax for SPARQL results, primarily used by web developers working in
JavaScript. The details of these formats are provided in appendix B, but an overview is
presented here.

 The XML format is, as the name suggests, an XML representation of a SPARQL
result set. It’s a W3C Recommendation and thus implemented by all SPARQL end-
points. Listing 5.18 provides an example of the results for the query in listing 5.2 in
XML format. Note that the <head> tag contains a list of all the variables named in the

Listing 5.17 A SPARQL INSERT

An update such as an INSERT
operation may only be used on
a SPARQL 1.1 endpoint that you
have write permission to.

114 CHAPTER 5 SPARQL—querying the Linked Data Web

t
L
SELECT clause of the query. This facilitates parsing, even though the variable names
may also be found in the <results> tag content. The <results> tag contains zero or
more <result> tags, each of which contains a result.

 A <binding> tag appears for each variable in a result. The name attribute indicates
the variable’s name and the enclosed tag indicates the binding’s data type (for exam-
ple, literal or uri as shown here; other data types are date, integer, and so on).

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="name"/>
 <variable name="url"/>
 </head>
 <results>
 <result>
 <binding name="name">
 <literal>Michael Hausenblas</literal>
 </binding>
 <binding name="url">
 <uri>
http://semanticweb.org/wiki/Special:ExportRDF/Michael_Hausenblas</uri>
 </binding>
 </result>
 </results>
</sparql>

The JSON format is not a W3C Recommendation, but it is a W3C Working Group Note,
which is as good as a standard in the absence of other guidance. Nevertheless, the
JSON format is also widely implemented because of its usefulness to web developers.

 The JSON format is a JSON object and so is wrapped in curly braces, as shown in the
following listing. The header is represented as a key-value member called head with a
value of another object. The inner object contains another member whose name is
vars and whose content is a JSON array. The array contains the variables from the
SELECT clause of the preceding query as strings.

{
 "head": {
 "vars": ["name" , "url"]
 } ,
 "results": {
 "bindings": [
 {
 "name": { "type": "literal" , "value": "Michael Hausenblas" } ,
 "url": { "type": "uri" , "value":

➥ "http://semanticweb.org/wiki/Special:ExportRDF/Michael_Hausenblas" }
 }

Listing 5.18 SPARQL results in XML format for the query in listing 5.2

Listing 5.19 SPARQL results in JSON format for the query in listing 5.2

An XML documen
starts with an XM
header.

A SPARQL results
document. The
<sparql> tag

provides the
SPARQL results

namespace.

The <head> tag contains
a list of variables from the
SELECT clause of the
preceding query.

The <results>
tag contains

zero or more
<result> tags.

A <binding> tag appears for each variable
in a result. The name attribute indicates the

variable’s name and the enclosed tag
indicates the binding’s data type.

A JSON object. The head member contains a vars member
that contains an array of the variables from
the SELECT clause of the preceding query.

The results member contains a bindings
member, which contains zero or more
records, each of which contains a record.

115Creating web pages from SPARQL queries
]
 }
}

The results are held in another member with a name of results and a value of an object.
The inner object contains a member whose name is bindings and whose value is zero
or more objects, each representing a record. There is a record object for each bound
variable with the name as the variable string and the value of an object containing a JSON
array. The record array contains type and value members, as shown in listing 5.2.

5.6 Creating web pages from SPARQL queries
FOAF files often contain approximate locations for people using the foaf:based_near
property. Latitude and longitude of the nearest city or another convenient but
approximate landmark are used to give a general idea of where someone lives without
exposing the exact position of someone’s home on the public internet. We can use
this property to demonstrate how a SPARQL query of Linked Open Data can be used
to dynamically create web pages. You may find the process quite similar to working
with a relational data source.

 We’ll start by creating a SPARQL query for names and foaf:based_near information
from David Wood’s and Michael Hausenblas’s FOAF profiles on the Web. Once we have
that information, we can plot the locations we find on a map and also write the textual
information into an HTML table. Figure 5.7 shows the final result. This is a simple ver-
sion of many real-world applications that draw on data sources to create user interfaces.
The main difference is that our data sources are published Linked Data.

Figure 5.7 Screenshot of the FOAF map example

116 CHAPTER 5 SPARQL—querying the Linked Data Web

.

The process looks like this:

1 Create a SPARQL query to gather the data you want.
2 Execute the SPARQL query and get the results as JSON.
3 Create an HTML page.
4 Write JavaScript that uses the JSON data to display onto the HTML.

5.6.1 Creating the SPARQL query

The query to find someone’s “near” location is shown in the following listing.

prefix foaf: <http://xmlns.com/foaf/0.1/>
prefix pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>2

select ?name ?latitude ?longitude
from <http://3roundstones.com/dave/me.rdf>
from <http://semanticweb.org/wiki/Special:ExportRDF/Michael_Hausenblas>
where {
 ?person foaf:name ?name ;
 foaf:based_near ?near .
 ?near pos:lat ?latitude ;
 pos:long ?longitude .
}

Execute the query and save it as JSON. You can do that with ARQ, as you’ve already
seen. Listing 5.21 shows the command line. In a real application the JSON would prob-
ably be created dynamically in real time via a server-side process. Doing it this way
allows this example to consist of standalone files and avoids the cross-site scripting
constraints of current web browsers.

$ /Applications/ARQ-2.8.8/bin/arq --query foafmap.rq --results JSON
 > foafmap.js

Save the results of the query to a file called foafmap.js and change the first line by add-
ing var results = to the beginning of the line (in front of the opening curly brace).
This will assign the results object to a variable and allow you to use the file immedi-
ately in your HTML page with no more coding. This is a convenience for the purposes
of this example application. In a real application you may choose to handle your JSON
the way you prefer.

 The query results are shown in figure 5.8, modified on the first line to add the vari-
able assignment. Note the subtle differences between the query results in the two FOAF

Listing 5.20 SPARQL query to find people’s locations

2 For “World Geodetic System,” 1984 version.

Listing 5.21 Execute the FOAF map query and save as JSON

pos: prefix
refers to the

WGS84
Position

vocabulary,2
used to
encode

latitudes and
longitudes.

We want each person’s
name and position.

Queries David’s and
Michael’s FOAF files

The foaf:based_near
resource is selected,
which is a blank
node.

The latitude and longitude
are acquired from the
foaf:based_near resource.

Execute the query and request
the results in JSON format.

Save the results
to a file.

117Creating web pages from SPARQL queries

e,
files. One uses explicit language tags for English; the other does not. The aphorism
“Real data is dirty” applies to Linked Data as it does to any other type of data. Variations
in interpretation or formatting or simple typos often can skew query results.

5.6.2 Creating the HTML page

Next, we need to create an HTML page to hold our map and table. A simple HTML
template is shown in the next listing. The page has a title and a heading and only two
divisions in the body. These two divisions are where we will (via JavaScript) place the
map and table.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>FOAF Map</title>
 <link rel="stylesheet" href="main.css">
...
</head>
<body>
 <h1>FOAF Map</h1>
 <div id="resultsmap"></div>
 <div id="resultstable"></div>
</body>
</html>

Listing 5.22 The FOAF map HTML structure

A variable assignment has
been added to the query
results for convenience.

Figure 5.8 Modified JSON query results showing variable assignment

HTML 4.01 Transitional is used her
but any form of HTML will do.

A CSS stylesheet
makes the results
look nicer.The JavaScript

functions will go
into the header.

The division
used to hold
the map.The division used

to hold the table.

118 CHAPTER 5 SPARQL—querying the Linked Data Web

.3

Notice that we’ve included a link to a CSS stylesheet. This is optional but will typically
be present in any real-world application. We can use that stylesheet to make the pre-
sentation look nicer.

5.6.3 Creating the JavaScript for the table

Three JavaScript components are added to the HTML page’s header. They are shown
in listing 5.23. The first is JQuery, a popular library to make writing JavaScript easier.
JQuery is optional, of course, but used by millions of developers.

 The second JavaScript referenced is the file containing the query results, foaf-
map.js. The contents of that file are the same as figure 5.8.

 Finally, we need JavaScript to use the query results to draw the map and table. We
use JQuery’s $(document).ready() function to call the two functions that will do that,
drawTable() and drawMap(). The $(document).ready() function executes when the
HTML page and its dependencies (such as JavaScript libraries) are fully loaded by the
browser. That prevents JavaScript errors from occurring if execution happened before
the dependencies were available.

<script src="jquery-1.7.1.min.js"></script>
<script src="foafmap.js"></script>3
<script type="text/javascript">
<!--
$(document).ready(function(){
 drawTable();
 drawMap();
});
-->
</script>

The drawTable() function shown in listing 5.24 creates an HTML table containing the
name, latitude, and longitude for each person whose FOAF file was queried. Addition-
ally, we want to be able to use the table as a key for the map, so we add a “symbol” column
to the table with the first letter of each person’s name as the symbol. You’ll use these sym-
bols in map markers to identify each person’s position. The symbol is generated by

symbol = name.substring(0,1);

The name, latitude, and longitude for each person are extracted from the JSON
results object via a JavaScript forEach() iterator. When completed, the table is
inserted into the division with id resultstable.

function drawTable() {
 var table = "<table><tr><th>Name</th><th>Symbol</th>” +
 “<th>Latitude</th><th>Longitude</th></tr>";

Listing 5.23 JavaScript libraries for the FOAF map web page

3 In a real application this file could be generated dynamically from a server-side process.

Listing 5.24 JavaScript function to draw the table on the FOAF map web page

The JQuery
library makes

scripting easier
and neater.

The external file
foafmap.js holds the
results of the SPARQL
query from listing 5.20

The custom JavaScript
functions are created

inline on the HTML page.

Calls the
functions that
do the work.

Creates an HTML table
holding data from the
SPARQL query results.

119Creating web pages from SPARQL queries

te a
.

lo

fr
 results.results.bindings.forEach(function(record, idx) {
 name = record.name.value;
 symbol = name.substring(0,1);
 latitude = record.latitude.value;
 longitude = record.longitude.value;
 table += "<tr><td>" + name + "</td><td>" + symbol +
 "</td><td>" + latitude + "</td><td>" + longitude +
 "</td>";
 });
 table += "</table>";
 $("#resultstable").html(table);
}

5.6.4 Creating JavaScript for the map

To draw the map we used the Google Static Maps API 2 which allows developers to
construct a URL that calls the Google service and returns a static image in one of sev-
eral common image formats (PNG, GIF, or JPEG). You can place markers on the map
images, control the same type of map face used as Google Maps (roadmap, satellite,
terrain, or hybrid), and set the zoom levels and centering. The service is very similar
to Google Maps in functionality except that the returned image is static. This allows
developers to embed a simple image in a web page without requiring an end user’s
browser to download, parse, and execute as much JavaScript as the Google Maps API
requires. The Static Maps API is described at http://code.google.com/apis/maps/
documentation/staticmaps/.

 The function drawMap() shown in the next listing does the work of creating a
Google Static Maps URL and placing it within an HTML image tag. The image is then
fetched and displayed by the rendering browser.

function drawMap() {
var image = "<img src='http://maps.googleapis.com/maps/api/

staticmap?center=43.0,-
35&zoom=2&size=600x400&&maptype=satellite&format=png&sensor=false";

 results.results.bindings.forEach(function(record, idx) {
 color = chooseColor();
 sep = "%7C";
 name = record.name.value;
 symbol = name.substring(0,1);
 latitude = record.latitude.value;

Listing 5.25 JavaScript function to draw the map on the FOAF map web page

A JavaScript
forEach
function
iterates

through the
result’s

records.

The name, latitude, and longitude
values are extracted from the

current record.

The first character of each
person’s name used to crea
symbol to use in a map icon

An HTML table row is
created for each record.

The HTML table is inserted into
the division with id resultstable.

The drawMap() function creates
an HTML table holding data from

the SPARQL query results. A JavaScript forEach
function iterates

through the result’s
records.

A color is
randomly
assigned
to each

map
marker.

Map marker’s parameters
are separated by pipe
characters (|), which are
represented as a Hex escape
value %7C.

The name,
latitude, and

ngitude values
are extracted

om the current
record.

The first character of each
person’s name is used to create a

symbol to use in a map icon.

http://code.google.com/apis/maps/documentation/staticmaps/
http://code.google.com/apis/maps/documentation/staticmaps/

120 CHAPTER 5 SPARQL—querying the Linked Data Web
 longitude = record.longitude.value;
 image += "&markers=color:" + color + sep + "label:" + symbol

➥ + sep + latitude + "," + longitude;
 });
 image += "'>";
 $("#resultsmap").html(image);
}

The image URL is based on the Google Static Maps base URL (http://maps.googlea-
pis.com/maps/api/staticmap) with a series of query string parameters. The center,
zoom, size, maptype, format, and sensor parameters are described in detail in the
API’s documentation but are reasonably self-explanatory. The center is the latitude
and longitude at which the map image is centered. The zoom is an integer from 0 to 21
where 0 is the entire Earth and 21 is at the level of individual buildings. We used a
zoom level of 2 centered on the North Atlantic Ocean for this exercise. You’ll want to
change both the zoom level and the center point if you modify the exercise to plot
data on parts of the planet’s surface that are not currently shown (such as China, Aus-
tralia, or Alaska).

 The size parameter provides horizontal and vertical pixel dimensions for the
image size. We chose to use the satellite map face, which is given in the maptype
parameter. The rather arcane sensor parameter controls whether a mobile device’s
GPS sensor is being used to automatically plot the user’s position. That parameter is
set to false for most web pages.

 The bulk of the work in drawMap() goes into the creation of two sets of map mark-
ers. Each marker plots the location of a person found in the SPARQL query. The query
in listing 5.20 uses two FOAF files, so one marker is created for each person. If you
modify the query to use more FOAF files, you’ll want the JavaScript to handle that
without modification. Each set of marker parameters assigns a randomly generated
color to a marker and uses the first letter of each person’s name as a symbol on the
marker. This is the same symbol that was used in the HTML table, so the table can
serve as a key to the map.

 The marker parameters are separated by a pipe symbol (|). URL-encoding a pipe
symbol into its hexadecimal notation gives you %7C, which is used in the JavaScript as
the separation characters.

 The name, latitude, and longitude are extracted from the JSON query results in
exactly the same way as was done for the creation of the HTML table. As a final step,
the image tag is placed within the division with the id resultsmap.

 The color functions are given in listing 5.26. They’re not germane to this example,
per se, but allow the code to adapt to changes in the SPARQL query in a nicer way.
They’re presented for completeness. Modify them if you want to change the way col-
ors are generated. Changing the frequency and randomnumber definitions will gener-
ate colors from different parts of the spectrum and control the granularity of the

A marker parameter
list is built up for
each record to allow
them to use
different colors and
symbols.The image is inserted into the

division with id resultsmap.

http://maps.googleapis.com/maps/api/staticmap
http://maps.googleapis.com/maps/api/staticmap

121Creating web pages from SPARQL queries

en,
ts.
pattern’s variations. If you don’t want the map markers to change colors, replace
color = chooseColor(); in listing 5.25 with a single color assignment.

// Thanks to Jim Bumgardner's color tutorial:
// http://krazydad.com/tutorials/makecolors.php
function chooseColor () {
var frequency = .3;
var randomNumber = Math.floor(Math.random() * 32)
red = Math.sin(frequency * randomNumber + 0) * 127 + 128;
green = Math.sin(frequency * randomNumber + 2) * 127 + 128;
blue = Math.sin(frequency * randomNumber + 4) * 127 + 128;
return RGB2Color(red,green,blue);
}
function RGB2Color (r,g,b) {
return '0x' + byte2Hex(r) + byte2Hex(g) + byte2Hex(b);
}
function byte2Hex (n) {
 var nybHexString = "0123456789ABCDEF";
 return String(nybHexString.substr((n >> 4) & 0x0F,1)) +
 nybHexString.substr(n & 0x0F,1);
}

Figure 5.7 shows the final result. The HTML has some minor styling that comes from
the CSS file referenced in the HTML header. All the files used to create this example
can be found on the book’s companion site.

 The map is a static image, not a live Google Map. The example is easily modifiable
to change the static image to a dynamic map by using the Google Maps JavaScript API 3.
(See http://code.google.com/apis/maps/documentation/javascript/ for instructions
on creating Google Maps using JavaScript.)

 Try extending the example application to include other information from the
FOAF files. Some good candidates are workplaces, schools, or other friends. That
information should probably be OPTIONAL in case it doesn’t exist in all FOAF files you
query. See listing 5.10 to get the OPTIONAL syntax right. You might group friends into
categories and colorize them or use the Google Maps or Google Static Maps APIs to
draw arcs showing which people claim to be friends. You might also add additional
FROM clauses to the SPARQL query to reference other FOAF files on the internet or
even add your own. There’s a lot of data on the Web to pull from, so give it a try.

 The FOAF map is a simple, straightforward example of using a SPARQL query to
dynamically generate a web page from Linked Open Data, but the concepts involved
translate almost directly to real-world situations. The only major difference is the
dynamic generation of SPARQL results in JSON syntax when the data source URL is
requested. That may be accomplished using ARQ, as shown, called from a Java servlet,
CGI script, or other server-side process or using one of the many SPARQL libraries
available for various programming languages.

Listing 5.26 JavaScript to generate random color markers on the FOAF map web page

Returns a random color for
use as a marker parameter
in a Google Static Map.

Assembles a 24-bit
color from red, gre
and blue componen

Returns a hex
string given a byte
representation.

122 CHAPTER 5 SPARQL—querying the Linked Data Web
5.7 Summary
This chapter has introduced the SPARQL query language for RDF. SPARQL allows you
to query the Web of Data as if were a database, albeit a very large one with many dis-
tributed datasets.

 We’ve shown how simple SPARQL queries work and introduced concepts that
should have whetted your appetite. SPARQL’s ability to perform distributed queries,
pull together disparate datasets, dynamically federate data, and then process it using
modern query language constructs gives developers amazing new skills.

SPARQL is much more powerful than has been described in this chapter. It’s a full
query language with many features and extensions. Readers are encouraged to read
the official SPARQL specifications to get a full understanding of the language.

NOTE The SPARQL Query Language for RDF is a rich language and far too
complicated to describe in a single book chapter. We highly recommend Bob
DuCharme’s Learning SPARQL (O’Reilly Media, 2011). All the details may
be found in the W3C Recommendation that describes SPARQL in detail, at
http://www.w3.org/TR/sparql11-query/.

Part 3

Linked Data in the wild

What is RDFa? How can you use it to enhance your HTML web pages and
improve search engine optimization? What’s the Good Relations vocabulary, and
how can you use it to improve click-through rates? What is schema.org, and how
can you use its vocabularies with RDFa to enhance web pages for your business?
What are the benefits of RDF databases? What techniques should you use to opti-
mize sharing your data and projects on the Web? What are sitemaps, and why
should you use them?

 Now that you understand how to consume and publish Linked Data, chap-
ters 6-8 will show you more complex applications of Linked Data. We’ll demon-
strate how to enhance your web pages and improve search engine optimization.
We’ll demonstrate how RDF facilitates the aggregation of diverse data sources in
diverse formats including non-RDF data. We’ll walk you through applications
where we aggregate diverse data including EPA and NOAA sources, store it in an
RDF database, and query that content using SPARQL.

 You’ll be able to optimize the inclusion of your projects and datasets in
Semantic Web search results by publishing DOAP files of your projects and VoID
files for your datasets along with a semantic sitemap. You’ll be able to publish
your qualified datasets on the LOD cloud for others to use.

Enhancing results
 from search engines
Previous chapters covered discovering Linked Data on the Web. This chapter will
guide you in enhancing your own web pages with RDFa. We’ll start with a typical HTML
web page designed for human readability and demonstrate how to embed RDFa con-
tent that will enable your page to be both human- and machine-consumable. The
presence of this Linked Data will improve search engine optimization (SEO) and the
likelihood that your web content will be discovered.

 We’ll then convert a web page designed to showcase a consumer product and
embed RDFa that uses the GoodRelations vocabulary. These improvements will
improve the discovery of this product by common search engines like Google,

This chapter covers
■ Adding Resource Description Framework in

Attributes (RDFa) to HTML
■ Using RDFa and the GoodRelations vocabulary

to enhance HTML
■ Using RDFa with schema.org
■ Applying SPARQL to extracted RDFa
125

http://www.google.com/webmasters/tools/richsnippets
http://www.google.com/webmasters/tools/richsnippets
http://www.google.com/webmasters/tools/richsnippets
http://www.w3.org/2011/rdfa-context/rdfa-1.1.html
http://www.w3.org/2011/rdfa-context/rdfa-1.1.html

126 CHAPTER 6 Enhancing results from search engines
Microsoft, Yandex, and Yahoo!. Finally, we’ll demonstrate a similar outcome with the
schema.org vocabularies. The embedded RDFa can be extracted and we’ll illustrate
searching the extracted RDFa using a SPARQL query.

 Overall, our goal is to provide semantic meaning to your web content and enable
the extraction of Linked Data. We use the FOAF vocabulary because it will be familiar
from chapter 4. We use the GoodRelations vocabulary because of its significance to
e-commerce, and we use schema.org because it’s supported by a collaboration of
three major search engines (Yahoo!, Bing, and Google). By embedding RDFa in your
HTML documents, you enable search engines to provide more relevant search results
and also allow for the incorporation of the content as Linked Data on the Web.

6.1 Enhancing HTML by embedding RDFa
Being digitally accessible isn’t synonymous with being machine comprehendible. For
instance, the cover of a publication may have a digitally accessible photo, but the sig-
nificance of that photo is not machine understandable. But a barcode on that cover is
machine consumable in that it enables a program to identify the object and likely to
access its cost and track its purchase. Using RDFa on a web page serves an equivalent
purpose to the barcode. It enables a search engine to identify the meaning of the dig-
ital data, making it structured data.

RDF provides a mechanism for expressing data and relationships. RDF in Attributes
(RDFa) is a language that allows you to express RDF data within an HTML document.
This enables your website to be both machine- and human-readable. HTML is a means
of describing the desired visual appearance of your content. HTML doesn’t differenti-
ate between a book title and a job title. It can only differentiate the font displayed
according to the author’s direction. The human reader needs to interpret the infor-
mation based on the context of the page and identify a book title as opposed to a job
title. RDFa enables the author to embed structured data that will identify this differen-
tiation. Authors can mark up human-consumable information for interpretation by
browsers, search engines, and other programs. The RDFa-specific attributes don’t
affect the visual display of the HTML content and are ignored by the browser as it
would any other attribute not recognizable as HTML.

Figure 6.1 Machine in-
terpretation of HTML doc-
uments versus human
interpretation

mailto:darthvader@example.com
mailto:darthvader@example.com
mailto:DarthVader@example.com
mailto:DarthVader@example.com
mailto:DarthVader@example.com
http://www.heppnetz.de/projects/goodrelations/
http://www.heppnetz.de/projects/goodrelations/
http://www.heppnetz.de/projects/goodrelations/
http://wiki.goodrelations-vocabulary.org/Documentation/Conceptual_model
http://wiki.goodrelations-vocabulary.org/Documentation/Conceptual_model
http://wiki.goodrelations-vocabulary.org/Quickstart
http://wiki.goodrelations-vocabulary.org/Quickstart
http://www.w3.org/2011/rdfa-context/rdfa-1.1.html
http://www.w3.org/2011/rdfa-context/rdfa-1.1.html
http://www.w3.org/TR/rdfa-lite/
http://www.w3.org/TR/rdfa-lite/
http://schema.org/

127Enhancing HTML by embedding RDFa
 We’ll begin our application with a traditional basic HTML document about Anakin
Skywalker, shown in listing 6.1. We’ll mark up the HTML by embedding RDFa and
explain what we’re doing as we proceed. As an HTML page without RDFa, the browser
interprets the content without regard to its semantic meaning. The page as displayed
could contain any content, and the HTML elements affect its visual appearance.
Hence, the content is simply as illustrated in Document A of figure 6.1.

 As human readers (illustrated as Document B of figure 6.1), we recognize that the
web page in figure 6.2 is about Anakin Skywalker. We recognize that it contains an image
of Anakin, some of his personal information, and brief information about the people
he knows. Our goal is to embed RDFa properties that would enable an automated
interpretation of this page as a human reader would. The following listing contains the
fundamental HTML description without any embedded RDFa.

<html>
<head>
<title>Anakin Skywalker</title>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type"

➥ />
</head>

<body>
<h1> This page is about me, Anakin Skywalker </h1>
<h2>Who am I?</h2>
<img

➥ src="http://www.starwars.com/img/explore/encyclopedia/

Listing 6.1 An HTML description without embedded RDFa

Figure 6.2 Web page produced by listing 6.1

128 CHAPTER 6 Enhancing results from search engines
➥ characters/anakinskywalker_detail.png"

➥ alt="http://www.starwars.com/img/explore/encyclopedia/

➥ characters/anakinskywalker_detail.png">

<h2>
<p>I was born on the planet Tatooine. I like to invent.
I invented my own droid, C-3PO, from salvaged parts.
My mother is Shmi and she says that I do not have a father.
I was trained as a Jedi knight by Obi-Wan Kenobi.
I am an excellent knight but I don't like authority figures.

While I was assigned to guard Padme, I fell in love with her.
She knew that I loved her and that I distrusted the
political process. I wished we had one strong leader. </p>

<p>As a Jedi Knight, I fought many battles for the Republic
and I rescued many captives. However, after a series
of such episodes, I was injured and succumbed to the
Dark Side.</p>
</h2>
<h2>

Some personal data
</h2>

<h3>
Full Name: Anakin Skywalker

Given Name: Anakin

Surname: Skywalker.

Title: Jedi

Nationality: Tatooine

Gender: male

Nickname: The Chosen One

Family: I am married to Padme and have one son, Luke.
</h3>

<h3>

 You can get in touch with me by:

 Phone: 866-555-1212
 Email:

➥

➥ darthvader@example.com

 For more information refer to

➥

129Enhancing HTML by embedding RDFa
➥ http://www.imdb.com/character/ch0000005/bio
 Find me on Facebook:

➥ <a href= "https://www.facebook.com/pages/Darth-

➥ Vader/10959490906484">

➥ https://www.facebook.com/pages/Darth-Vader/10959490906484

</h3>

<h3>
I know a lot of people. Here are two of them.
 Obi-Wan Kenobi

 Email:

➥ Obi-WanKenobi@example.com

 Darth Vader

 Email:

➥ DarthVader@example.com

</h3>
</body>
</html>

6.1.1 RDFa markup using FOAF vocabulary

Now let’s embed some RDFa into the HTML of listing 6.1. Our fully enhanced HTML
document is contained in listing 6.2. Let’s break down the additions to the basic
HTML document from listing 6.1. As you enhance your HTML document with RDFa,
you should periodically validate your efforts. You’ll find an easy-to-use tool at http://
www.w3.org/2012/pyRdfa/.

 At the beginning of listing 6.2, you’ll notice two statements that you need to sup-
port both HTML5 and RDFa:

<!DOCTYPE HTML>
<html version="HTML+RDFa 1.1" lang="en" >

In the remainder of the document, you embed the RDFa elements by applying them
in conjunction with HTML tags. RDFa attributes allowed on all elements in the HTML5
content model are

All other attributes that RDFa may process, like href and src, are only allowed on the
elements defined in the HTML5 specification.1

■ vocab ■ resource ■ about ■ datatype

■ typeof ■ prefix ■ rel ■ inlist

■ property ■ content ■ rev

1 HTML+RDFa 1.1, Support for RDFa in HTML4 and HTML5, W3C working draft, Sept. 11, 2012, http://
www.w3.org/TR/2012/WD-rdfa-in-html-20120911/#extensions-to-the-html5-syntax.

http://www.w3.org/2012/pyRdfa/
http://www.w3.org/2012/pyRdfa/
http://www.w3.org/TR/2012/WD-rdfa-in-html-20120911/#extensions-to-the-html5-syntax
http://www.w3.org/TR/2012/WD-rdfa-in-html-20120911/#extensions-to-the-html5-syntax

130 CHAPTER 6 Enhancing results from search engines

 as
t of
n

 The HTML body tag shown in the following snippet, extracted from listing 6.2, con-
tains a prefix attribute. The prefix attribute serves the same purpose here as it does
in Turtle documents. The various vocabularies listed in the prefix attribute of the
body tag can be conveniently referred to throughout the body of the document using
the associated shorthand prefixes defined.

<body id=me
prefix = "
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
xsd: http://www.w3.org/2001/XMLSchema#
dc: http://purl.org/dc/elements/1.1/
foaf: http://xmlns.com/foaf/0.1/
rel: http://purl.org/vocab/relationship/
stars: http://www.starwars.com/explore/encyclopedia/characters/ "
>

As you further examine listing 6.2, you’ll notice extensive use of the HTML div and
span tags. These tags don’t affect the visual appearance of the document and are pri-
marily used as grouping indicators. The span and div elements are similar to <div>a
contained block</div> that starts on a new line. some text is an
inline separator that identifies the enclosed text as a single entity. The typeof attri-
bute defines the enclosed entity as being an object of type foaf:Person.

<!DOCTYPE html>
<html version="HTML+RDFa 1.1" lang="en">
<head>
<title>Anakin Skywalker</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<base href= "http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#" >

</head>

<body id=me
prefix = "
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
xsd: http://www.w3.org/2001/XMLSchema#
dc: http://purl.org/dc/elements/1.1/
foaf: http://xmlns.com/foaf/0.1/
rel: http://purl.org/vocab/relationship/
stars: http://www.starwars.com/explore/encyclopedia/characters/ "
>
<div id="container"
about="http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#me"
typeof="foaf:Person">
<h1> This page is about me, Anakin Skywalker </h1>

<h2>Who am I?</h2>
<img property="foaf:img" class="flr"

Listing 6.2 HTML sample with RDFa markup from the FOAF vocabulary

Statements alerting
browser to RDFa
and use of HTML5

Prefix
statement

Defines the start of a
block named container

Defines the
enclosed entity
being an objec
type foaf:Perso

Identifies the image to display and
identifies this object as being a
foaf:img property

131Enhancing HTML by embedding RDFa
src="http://www.starwars.com/img/explore/encyclopedia/characters/

➥ anakinskywalker_detail.png" alt="http://www.starwars.com/img/explore/
encyclopedia/characters/anakinskywalker_detail.png">

<h2>
<p>I was born on the planet Tatooine. I like to invent. I invented my own

droid, C-3PO, from salvaged parts. My mother is Shmi and she says that I
do not have a father.

I was trained as a Jedi knight by Obi-Wan Kenobi. I am an excellent knight
but I don't like authority figures.

While I was assigned to guard Padme, I fell in love with her. She knew that I
loved her and that I distrusted the political process. I wished we had
one strong leader. </p>

<p>As a Jedi Knight, I fought many battles for the Republic and I rescued
many captives. However, after a series of such episodes, I was injured
and succumbed to the Dark Side.</p>

</h2>
<h2>

Some personal data
</h2>

<h3>
Full Name: Anakin Skywalker
Given Name: Anakin
Surname: Skywalker
Title: Jedi
Nationality: Tatooine
Gender: male
Nickname: The Chosen One2

Family: I am married to Padme</
span> and have one son, Luke Skywalker</
span>.

</h3>

<h3>

 You can get in touch with me by:

 <div vocab="http://xmlns.com/foaf/0.1/">
 Phone: 866-555-1212
 Email: <span property="mbox_sha1sum"

➥ content="cc77937087f686e222bcf1194fb8c671d8591e00">
 AnakinSkywalker

➥
 </div>

 For more information refer to <a property="foaf:homepage" href= "http://
www.imdb.com/character/ch0000005/bio">http://www.imdb.com/character/
ch0000005/bio

2 “Relationship: A vocabulary for describing relationships between people,” created by Ian Davis and Eric
Vitiello Jr., http://purl.org/vocab/relationship.

Defines Padme as someone known to
Anakin Skywalker and clarifies that
relationship as one of spouse using

the Relationship vocabulary2

http://www.w3.org/TR/rdfa-core/
http://www.w3.org/2012/pyRdfa/#distill_by_upload
http://www.w3.org/2012/pyRdfa/

132 CHAPTER 6 Enhancing results from search engines
 Find me on Facebook: <a typeof="foaf:account" href= "https://
www.facebook.com/pages/Darth-Vader/10959490906484"> https://
www.facebook.com/pages/Darth-Vader/10959490906484

I know a lot of people. Here are two of them.
<div rel="foaf:knows" typeof="foaf:Person">

 <a property="foaf:homepage" href="http://live.dbpedia.org/page/

➥ Obi-Wan_Kenobi" />
 Obi-Wan Kenobi

 Email: <span property="foaf:mbox_sha1sum"

➥ content="aadfbacb9de289977d85974fda32baff4b60ca86">
 Obi-Wan Kenobi

</div>

<div rel="foaf:knows" typeof="foaf:Person">

 <a property="foaf:homepage"

➥ href="http://www.imdb.com/character/ch0000005/bio" />
 Darth Vader

 Email: <span property="foaf:mbox_sha1sum"

➥ content="cc77937087f686e222bcf1194fb8c671d8591e00">
 DarthVader

</div>
</h3>
</div>
</body>
</html>

6.1.2 Using the HTML span attribute with RDFa

The first use of the tag in conjunction with the RDFa property attri-
bute is in the bulleted items excerpted in listing 6.3. The property attribute identifies
which class property is being defined. In the case of

Full Name: Anakin Skywalker

it’s defining Anakin Skywalker as a foaf:name. Hence the characters “Anakin Sky-
walker” are now more than just some text to be displayed but are associated with the
meaning defined by a foaf:name.

http://www.ebusiness-unibw.org/tools/grsnippetgen/
http://www.ebusiness-unibw.org/tools/grsnippetgen/
http://www.ebusiness-unibw.org/tools/grsnippetgen/

133Enhancing HTML by embedding RDFa
Full Name: Anakin Skywalker
Given Name: Anakin
Surname: Skywalker
Title: Jedi
Nationality: Tatooine
Gender: male
Nickname: The Chosen One
Family: I am married to Padme</

span> and have

➥ one son, Luke Skywalker.

NOTE The full RDFa 1.1 specification is at http://www.w3.org/TR/rdfa-core/.

6.1.3 Extracting Linked Data from a FOAF-enhanced HTML document

Entering the HTML document shown in listing 6.2 into the validator and RDFa 1.1 dis-
tiller (http://www.w3.org/2012/pyRdfa/) generates the Turtle content shown in the
next listing. Although this isn’t a necessary step in using RDFa, it illustrates two impor-
tant points:

■ The RDFa enhancements are extractable as Linked Data.
■ The extracted RDF data can be saved in a separate file, published, and used as

input to other applications, as illustrated in section 6.4.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix rel: <http://purl.org/vocab/relationship/> .

<http://rosemary.umw.edu/~marsha/starwars/foaf.ttl> rdfa:usesVocabulary foaf: .

<http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#me> a foaf:Person;
 rel:spouseOf "Padme";
 foaf:family_name "Skywalker";
 foaf:gender "male";
 foaf:givenname "Anakin";
 foaf:homepage <http://www.imdb.com/character/ch0000005/bio>;
 foaf:img <http://www.starwars.com/img/explore/encyclopedia/characters/

➥ anakinskywalker_detail.png>;
 foaf:knows [a foaf:Person;
 foaf:homepage <http://live.dbpedia.org/page/Obi-Wan_Kenobi>;
 foaf:mbox_sha1sum "aadfbacb9de289977d85974fda32baff4b60ca86";
 foaf:name "Obi-Wan Kenobi"],
 "Padme",
 [a foaf:Person;
 foaf:homepage <http://www.imdb.com/character/ch0000005/bio>;
 foaf:mbox_sha1sum "cc77937087f686e222bcf1194fb8c671d8591e00";
 foaf:name "Darth Vader"],
 "Luke Skywalker";
 foaf:mbox_sha1sum "cc77937087f686e222bcf1194fb8c671d8591e00";
 foaf:name "Anakin Skywalker";

Listing 6.3 Bulleted list excerpt

Listing 6.4 Turtle generated from listing 6.2 RDFa-enhanced HTML

http://www.ebusiness-unibw.org/tools/grsnippetgen/

134 CHAPTER 6 Enhancing results from search engines
 foaf:nick "The Chosen One";
 foaf:phone "866-555-1212";
 foaf:title "Jedi" .

<https://www.facebook.com/pages/Darth-Vader/10959490906484> a foaf:account .

You’ll notice that this output in the previous listing bears a close resemblance to the
FOAF profiles that we developed in chapter 4.

 You can use the Google Structured Data Testing Tool (http://www.google.com/
webmasters/tools/richsnippets) to see the result of your efforts. Unfortunately, you’re
limited to 1500 characters.

 This section illustrated how to use RDFa to enhance a typical HTML homepage to
provide meaningful structure to the content that enables machine interpretation of
the content. In general, RDFa enhancements improve SEO. In the following section
we’ll further illustrate how RDFa can be used to enhance business websites.

6.2 Embedding RDFa using the GoodRelations vocabulary
GoodRelations is the most widely used RDF vocabulary for e-commerce. It enables you
to publish details of your products and services in a way that search engines, mobile
applications, and browser extensions can utilize the information and improve your
click-through rates. In this section, we use the GoodRelations vocabulary to enhance a
web page that describes a product, the Sony Cyber-shot DSC-WX100 camera, thus giv-
ing that description more meaning and improving its SEO.

 Search engines like Google and Yahoo! recognize GoodRelations data in web
pages provided by more than 10,000 product vendors like Sears, Kmart, and Best Buy.

 Martin Hepp,3 professor of e-commerce at University of Bundeswehr München
and inventor of the GoodRelations ontology, says that preliminary evidence shows that
enhancing your web pages with RDFa will improve your click-through rate by 30%.
This is consistent with the results reported by Jay Myers, lead web development engi-
neer at bestbuy.com.4

6.2.1 An overview of the GoodRelations vocabulary

The GoodRelations website at http://www.heppnetz.de/projects/goodrelations/ con-
tains complete information on the vocabulary and its use. The goals and an overview of
the conceptual model of this vocabulary are published at http://wiki.goodrelations-
vocabulary.org/Documentation/Conceptual_model. As described there, the purpose
of GoodRelations is to enable you to define an object for e-commerce that’s industry neu-
tral, valid from raw materials through retail to after-sales services, and syntax neutral.

 This is achieved by using just four entities for representing e-commerce scenarios:

■ An agent (for example, a person or an organization)
■ An object (for example, a camera, a house, a bicycle) or service (for example, a

manicure)

3 Personal homepage of Martin Hepp, professor at the chair of General Management and E-Business at Uni-
versität der Bundeswehr Munich, http://www.heppnetz.de/.

4 Paul Miller, “SemTechBiz Keynote: Jay Myers discusses Linked Data at Best Buy,” June 6, 2012, http://
semanticweb.com/semtechbiz-keynote-jay-myers-discusses-linked-data-at-best-buy_b29622

http://www.google.com/webmasters/tools/richsnippets
http://www.google.com/webmasters/tools/richsnippets
http://www.heppnetz.de/
http://semanticweb.com/semtechbiz-keynote-jay-myers-discusses-linked-data-at-best-buy_b29622
http://semanticweb.com/semtechbiz-keynote-jay-myers-discusses-linked-data-at-best-buy_b29622

135Embedding RDFa using the GoodRelations vocabulary
■ A promise (offer) to transfer some rights (ownership, temporary usage, a cer-
tain license) on the object or to provide the service for a certain compensation
(for example, an amount of money), made by the agent and related to the
object or service

■ A location from which this offer is available

This Agent-Promise-Object Principle can be found across most industries and is the
foundation of the generic power of GoodRelations. It allows you to use the same
vocabulary for offering a camera as for a manicure service or for the disposal of used
motorcycles.

 The respective classes in GoodRelations are:

■ gr:BusinessEntity for the agent; that is, the company or individual
■ gr:Offering for an offer to sell, repair, or lease something or to express inter-

est in such an offer
■ gr:ProductOrService for the object or service
■ gr:Location for a store or location from which the offer is available

In table 6.1, the first column lists the characteristics that you’d want to specify about a
product. The second column has the GoodRelations term associated with each char-
acteristic. Some properties are new to GoodRelations and others are reused from
other vocabularies (for example, FOAF and RDF-data vocabularies). You’ll see many of
these applied in the Sony camera HTML page that we enhance with RDFa. We’re
including these tables here for your ready reference and to give you an idea of the
kind of data that we’d want to enhance in support of e-commerce.

Table 6.1 Google-supported GoodRelations properties associated with products or servicesa

a. Google Webmaster Tools, “Produce properties: GoodRelations and hProduct,” May 27, 2013,
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036

Product characteristic GoodRelations property

name gr:name

image foaf:depiction

brand gr:hasManufacturer (for the brand link) and
gr:BusinessEntity for the manufacturer name

description gr:description

review information v:hasReview (from http://rdf.data-vocabulary.org/#)

review format v:Review-aggregate (from http://rdf.data-vocabulary.org/#)

identifier gr:hasStockKeepingUnit
gr:hasEAN_UCC-13
gr:hasMPN
gr:hasGTN

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
http://rdf.data-vocabulary.org/
http://rdf.data-vocabulary.org/

136 CHAPTER 6 Enhancing results from search engines
Table 6.2 lists the characteristics of an offer and the associated terms in the GoodRela-
tions vocabulary that you’d use in modeling these characteristics. The second column
lists the associated term in GoodRelations and offers guidance on how to apply it.
foaf:page is the only term not contained in the GoodRelations vocabulary.

When a single product that has different offers (for example, the same pair of run-
ning shoes is offered by different merchants), an aggregate offer can be used. These
properties and associated GoodRelations terms are listed in table 6.3. As you’d expect,
many of these terms are also associated with an offer.

Table 6.2 Google-supported GoodRelations properties associated with an offera

a. Google Webmaster Tools, “Product properties: GoodRelations and hProduct,” May 27, 2013,
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036.

Offer
characteristic

GoodRelations property

price Price information is enclosed in the gr:hasPriceSpecification tag. Use the
content attribute of the child gr:hasCurrencyValue to specify the actual
price (use only a decimal point as a separator).

priceRangeLow Price information is enclosed in the gr:hasPriceSpecification tag. Use the
content attribute of the child gr:hasMinCurrencyValue to specify the lowest
price of the available range (use only a decimal point as a separator).

priceRangeHigh Price information is enclosed in the gr:hasPriceSpecification tag. Use the
content attribute of the child gr:hasMaxCurrencyValue to specify the high-
est price of the available range (use only a decimal point as a separator).

priceValidUntil gr:validThrough

currency Price information is enclosed in the gr:hasPriceSpecification tag. Use the
child gr:hasCurrency to specify the actual currency.

seller gr:BusinessEntity

condition gr:condition

availability Inventory level is enclosed in the gr:hasInventoryLevel tag. Use the child tag
gr:QuantitativeValue to specify the quantity in stock. For example, an item is
in stock if the value of the content attribute of the enclosed tag gr:hasMinValue
is greater than 0. Listing 6.6 applies this property.

offerURI foaf:page

identifier gr:hasStockKeepingUnit
gr:hasEAN_UCC-13
gr:hasMPN
gr:hasGTN

137Embedding RDFa using the GoodRelations vocabulary
6.2.2 Enhancing HTML with RDFa using GoodRelations

As we did in section 6.1, we’ll start with a basic HTML file, marking it up using RDFa
and the GoodRelations vocabulary. As we mentioned earlier in this chapter, Good-
Relations is an important vocabulary for e-commerce. A basic HTML version of a web
page for the camera was previously added to our wish list in chapter 4. This HTML
document is shown in the next listing. This description will be annotated with many of
the properties described in tables 6.1 and 6.2 shortly.

<html>
<head>
<title>SONY Camera</title>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
</head>

<body>

<h2> Sony - Cyber-shot DSC-WX100

 18.2-Megapixel Digital Camera - Black

Table 6.3 Google-supported GoodRelations properties associated with an offer-aggregatea

Offer-aggregate
characteristics

GoodRelations property

priceRangeLow Price information is enclosed in the gr:hasPriceSpecification tag. Use the
content attribute of the child gr:hasMinCurrencyValue to specify the lowest
price of the available range.

priceRangeHigh Price information is enclosed in the gr:hasPriceSpecification tag. Use the
content attribute of the child gr:hasMaxCurrencyValue to specify the high-
est price of the available range.

currency Price information is enclosed in the gr:hasPriceSpecification tag. Use the
child gr:hasCurrency to specify the actual currency.

seller gr:BusinessEntity

condition gr:condition

availability Inventory level is enclosed in the gr:hasInventoryLevel tag. Use the child tag
gr:QuantitativeValue to specify the quantity in stock. For example, an item is
in stock if the value of the content attribute of the enclosed tag gr:hasMinValue
is greater than 0. See listing 6.6 for more details.

offerURI foaf:page

identifier gr:hasStockKeepingUnit gr:hasEAN_UCC-13
gr:hasMPN gr:hasGTN

a. Google Webmaster Tools, “Product properties: GoodRelations and hProduct,” May 27, 2013,
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036.

Listing 6.5 Basic HTML without GoodRelations markup

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036

138 CHAPTER 6 Enhancing results from search engines
</h2>

<img src="http://images.bestbuy.com/BestBuy_US/images/products/5430/

➥ 5430135_sa.jpg" alt="http://http://images.bestbuy.com/BestBuy_US/images/

➥ products/5430/5430135_sa.jpg">

Model: DSCWX100/B SKU: 5430135

Customer Reviews: 4.9 of 5 Stars(14 reviews)

Best Buy
http://www.bestbuy.com

Sale Price: $199.99

Regular Price: $219.99

In Stock

<h3>
 Product Description

 10x optical/20x clear image zoom
 2.7" Clear Photo LCD display
 1080/60i HD video
 Optical image stabilization

</h3>

Sample Customer Reviews

Impressive - by: ABCD, November 29, 2012

At 4 ounces this is a wonder. With a bright view screen and tons of features,
this camera can't be beat.

5.0/5.0 Stars

Nice Camera, easy to use, panoramic feature by: AbcdE, November 26, 2012

Great for when you don't feel like dragging the SLR around. Panoramic feature

and video quality are very good.

4.75/5.0 Stars

</body>
</html>

Although RDFa supports the entire GoodRelations vocabulary,5 we’re electing to limit
our markup to the Google-supported properties listed in table 6.1. We encourage you
to generate rich snippets for your web page by using the tools provided by GoodRela-
tions.6 You should heed the additional recommendations from the developers of
GoodRelations (http://wiki.goodrelations-vocabulary.org/Quickstart).

5 “GoodRelations Language Reference, V1.0, Release Oct. 1, 2011, http://www.heppnetz.de/ontologies/
goodrelations/v1.html.

6 Google Webmaster Tools, “Product properties: GoodRelations and hProduct,” May 27, 2013, http://sup-
port.google.com/webmasters/bin/answer.py?hl=en&answer=186036.

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
http://www.heppnetz.de/ontologies/goodrelations/v1.html
http://www.heppnetz.de/ontologies/goodrelations/v1.html

139Embedding RDFa using the GoodRelations vocabulary
 The following listing is an annotated version of the basic HTML shown in listing 6.5.
This web page is for the Sony camera from our wish list in chapter 4. We selected the
camera because it’s a product often marketed online, and GoodRelations will enable us
to annotate the sale price, the vendor, the manufacturer, and product reviews.

<!DOCTYPE html>
<html version="HTML+RDFa 1.1" lang="en">
<head>
<title>Illustrating RDFa and GoodRelations</title>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
<base href =
"http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html" />
</head>

<body id="camera"
prefix = "
review: http://purl.org/stuff/rev#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
xsd: http://www.w3.org/2001/XMLSchema#
foaf: http://xmlns.com/foaf/0.1/
rel: http://purl.org/vocab/relationship
v: http://rdf.data-vocabulary.org/# "
>

<!—Company related data—Put this on your main page -->
 <div typeof="gr:BusinessEntity" about="#company">7
 <div property="gr:legalName" content="Linked Data Practitioner's

➥ Guide"></div>
 <div property="vcard:tel" content="540-555-1212"></div>
 <div rel="vcard:adr">
 <div typeof="vcard:Address">
 <div property="vcard:country-name" content="United States"></div>
 <div property="vcard:locality" content="Fredericksburg"></div>
 <div property="vcard:postal-code" content="22401"></div>
 <div property="vcard:street-address" content="1234 Main

➥ Street"></div>
 </div>
 </div>
 <div rel="foaf:page" resource=""></div>
 </div>

 <div typeof="gr:Offering" about="#offering">
 <div rev="gr:offers" resource="http://www.example.com/#company"></div>
 <div property="gr:name" content="Cyber-shot DSC-WX100"

➥ ml:lang="en"></div>
 <div property="gr:description" content="18.2-Megapixel

➥ Digital Camera - Black 10x optical/20x

➥ clear image zoom 2.7" Clear Photo LCD

Listing 6.6 Sample listing 6.5 using GoodRelations

7 Generated using http://www.ebusiness-unibw.org/tools/grsnippetgen/.

Generated using the URL in the
footnote but modified to centralize all

prefix declarations under body tag7

140 CHAPTER 6 Enhancing results from search engines
➥ display 1080/60i HD video<

➥ /li> Optical image stabilization"

➥ xml:lang="en"></div>
 <div property="gr:hasEAN_UCC-13" content="0027242854031"

➥ datatype="xsd:string"></div>
 <div rel="foaf:depiction"

➥ resource="http://images.bestbuy.com/BestBuy_US/images/products

➥ /5430/5430135_sa.jpg"></div>
 <div rel="gr:hasPriceSpecification">
 <div typeof="gr:UnitPriceSpecification">
 <div property="gr:hasCurrency" content="USD"

➥ datatype="xsd:string"></div>
 <div property="gr:hasCurrencyValue" content="199.99"

➥ datatype="xsd:float"></div>
 <div property="gr:hasUnitOfMeasurement" content="C62"

➥ datatype="xsd:string"></div>
 </div>
 </div>

 <div rel="gr:hasBusinessFunction"

➥ resource="http://purl.org/goodrelations/v1#Sell"></div>
 <div rel="foaf:page" resource="http://www.example.com/dscwx100/"></div>
 <div rel="gr:includes">
 <div typeof="gr:SomeItems" about="#product">
 <div property="gr:category" content="ProductOrServiceModel"

➥ xml:lang="en"></div>
 <div property="gr:name" content="Cyber-shot DSC-WX100"

➥ xml:lang="en"></div>
 <div property="gr:description" content="18.2-Megapixel Digital

➥ Camera - Black 10x optical/20x clear image zoom

➥ 2.7" Clear Photo LCD display

➥ 1080/60i HD video Optical image

➥ stabilization" xml:lang="en"></div>
 <div property="gr:hasEAN_UCC-13" content="0027242854031"

➥ datatype="xsd:string"></div>
 <div rel="foaf:depiction"

➥ resource="http://images.bestbuy.com/BestBuy_US/images/products/

➥ 5430/5430135_sa.jpg"></div>
 <div rel="foaf:page"

➥ resource="http://www.example.com/dscwx100/"></div>
 </div>
 </div>
 </div>

<h2> Sony - Cyber-shot DSC-WX100

 18.2-Megapixel Digital Camera - Black </h2>

 <img src="http://images.bestbuy.com/BestBuy_US/images/products/5430/

➥ 5430135_sa.jpg" alt="http://http://images.bestbuy.com/BestBuy_US/images/
products/

➥ 5430/5430135_sa.jpg">

141Embedding RDFa using the GoodRelations vocabulary

Sam
a

agg
Customer Reviews:
 4.9
of 5.0 Stars (<span property="v:count"

datatype="xsd:string">14 reviews)

Best Buy

<div rel="foaf:page" resource="http://www.bestbuy.com"></div>

Sale Price: $<span property="gr:hasCurrencyValue v:lowprice"

datatype="xsd:float">199.99

Regular Price: $<span property="gr:hasCurrencyValue v:highprice"

datatype="xsd:float">219.99

Availability: <div rel="gr:hasInventoryLevel">
 <div typeof="gr:QuantitativeValue">
 <div property="gr:hasMinValue" content="1" datatype="xsd:float">In-

stock</div>
 </div>
 </div>

<h3>
Product Description

10x optical/20x clear image zoom
2.7" Clear Photo LCD display
1080/60i HD video
Optical image stabilization

</h3>

Sample Customer Reviews

Product Reviews:
<div rel="review:hasReview v:hasReview">

Average:
4.5, avg.:
0, max:
5 (count:
<span property="review:totalRatings v:votes"
datatype="xsd:integer">45)

</DIV>

<div rel="review:hasReview v:hasReview" typeof="v:Review">
Impressive - by: ABCD, <span

Additional
properties that
improve the
accessibility of
your data

In RDFa, in the absence of a
resource attribute, the typeof
attribute on the enclosing div

implicitly sets the subject of
the properties marked up

within that div.
ple of

review
regate

142 CHAPTER 6 Enhancing results from search engines
➥ property="v:dtreviewed" content="2012-11-29">November 29, 2012

➥

At 4 ounces this is a wonder. with a bright view

➥ screen and tons of features this camera can't be beat
5.0of
5.0 Stars

</div>

<div rel="review:hasReview v:hasReview" typeof="v:Review">
Nice Camera, easy to use, panoramic feature by:

➥ AbcdE, November

➥ 26, 2012

Great for when you don't feel like dragging the

➥ SLR around. Panoramic feature and video quality are very good.

4.75 of
5.0 Stars

</div>

<div rel="gr:hasBusinessFunction"
resource="htt;://purl.org/goodrelations/v1#Sell"></div>
<div property="gr:hasEAN_UCC-13" content="0027242854031"

➥ datatype="xsd:string"></div>
<div rel="foaf:page" resource=""></div>
<div rev="gr:offers" resource="http://www.bestbuy.com"></div>
</div>
</body>
</html>

As you can glean from examining listing 6.6, the GoodRelations vocabulary fulfilled
its expectations. Every business-related item on the page is associated with its mean-
ing. Martin Hepp recommends that developers follow the original Google patterns8

for marking up their pages with the following additions. These additions will make
your data understood by all RDFa-aware search engines, shopping comparison sites,
and mobile services. The Google recommendations are for Google only. The addi-
tional items are as follows:

■ Add “about” attributes for turning your key data elements into identifiable
resources so you can refer to your offer data.

■ Add “datatype” attributes for all literal values to fulfill valid RDF requirements.
■ Add alt="Product image" to all images for XHTML compatibility.
■ Add foaf:page link. Empty quotation marks are sufficient for this link if it

doesn’t exist.
■ Add gr:hasEAN_UCC-13 for the EAN/ISBN13 code. The UPC code can be easily

translated to this format by appending a leading zero. This is useful for linking
your offer to datasheets provided by their manufacturers.

8 Google Webmaster Tools, “Product properties: GoodRelations and hProduct,” May 27, 2013, http://sup-
port.google.com/webmasters/bin/answer.py?hl=en&answer=186036.

From
GoodRelations
website

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036

143Embedding RDFa using the GoodRelations vocabulary
■ Add the gr:hasBusinessFunction to make clear you’re selling the item.
■ Add gr:offers link to the company via the rev attribute. This can also be

inserted on your main page.

Hence, in compliance with Martin Hepp’s recommendations, listing 6.6 includes the
following code:

<div rel="gr:hasBusinessFunction"
resource="http://purl.org/goodrelations/v1#Sell"></div>
<div property="gr:hasEAN_UCC-13" content="0027242854031"
datatype="xsd:string"></div>
<div rel="foaf:page" resource=""></div>
<div rev="gr:offers" resource="http://www.bestbuy.com"></div>

Notice the data type associated with each of the literal currency values.

Sale Price: $<span property="gr:hasCurrencyValue v:lowprice"
datatype="xsd:float">199.99

Regular Price: $<span property="gr:hasCurrencyValue v:highprice"
datatype="xsd:float">219.99

6.2.3 A closer look at selections of RDFa GoodRelations

Breaking down the document section by section, the start of the document contains
these statements:

<!DOCTYPE html>
<html version="HTML+RDFa 1.1" lang="en">
<head>
<title>Illustrating RDFa and GoodRelations</title>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
<base href = "http://www.example.com/sampleProduct/">
</head>

These statements identify the document type as HTML5 and set the html version attri-
bute to HTML+RDFa1.1. These settings will ensure that most clients extract the RDF and
recognize its existence. The purpose of the <base href…> statement is to provide an
absolute URI for reference, and it should contain the URI of the company web reference.

NOTE Use the actual URI associated with the publication of the product’s
document as the expression within the quotes.

Including the prefix statement in the <body…> statement, shown in the next listing,
establishes access to the schema at each of these locations for the entire body section
of the document and establishes each vocabulary within this namespace.

<body id="camera"
prefix = "
review: http://purl.org/stuff/rev#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#

Listing 6.7 Excerpt showing centralization of prefix information

144 CHAPTER 6 Enhancing results from search engines
xsd: http://www.w3.org/2001/XMLSchema#
foaf: http://xmlns.com/foaf/0.1/
rel: http://purl.org/vocab/relationship
v: http://rdf.data-vocabulary.org/# "
>

Sections of code in listing 6.8 were generated using the GoodRelations snippet gener-
ator at http://www.ebusiness-unibw.org/tools/grsnippetgen/. We modified the out-
put from the snippet generator. The namespace declarations were removed to
simplify the example and replace the xmlns statements with their HTML5 equivalents.
We also consolidated and centralized all the prefix declarations.

 The excerpt highlighted in this listing describes the company web page, the legal
name of the company, and its country, city, ZIP code, and physical address.

 <div typeof="gr:BusinessEntity" about="#company">
 <div property="gr:legalName"

➥ content="Linked Data Practitioner's Guide"></div>
 <div property="vcard:tel" content="540-555-1212"></div>
 <div rel="vcard:adr">
 <div typeof="vcard:Address">
 <div property="vcard:country-name" content="United States"></div>
 <div property="vcard:locality" content="Fredericksburg"></div>
 <div property="vcard:postal-code" content="22401"></div>
 <div property="vcard:street-address"

➥ content="1234 Main Street"></div>
 </div>
 </div>
 <div rel="foaf:page" resource=""></div>
 </div>

The next listing, also generated using the online form at http://www.ebusiness-
unibw.org/tools/grsnippetgen/, was modified to reflect the existing presence of the
prefix declarations. It annotates the individual product information. It includes the
product name, description, digital image of the product, UPC, seller, and cost.

 <div typeof="gr:Offering" about="#offering">
 <div rev="gr:offers" resource="http://www.example.com/#company"></div>
<div property="gr:name" content="Cyber-shot DSC-WX100"

➥ xml:lang="en"></div>
 <div property="gr:description" content="18.2-Megapixel Digital Camera

➥ - Black 10x optical/20x clear image zoom

➥ 2.7" Clear Photo LCD display

➥ 1080/60i HD video Optical image

➥ stabilization" xml:lang="en"></div>
 <div property="gr:hasEAN_UCC-13" content="0027242854031"

➥ datatype="xsd:string"></div>
 <div rel="foaf:depiction"
resource="http://images.bestbuy.com/BestBuy_US/images/products/5430/

Listing 6.8 Excerpt of company information

Listing 6.9 Excerpt of product information

http://www.ebusiness-unibw.org/tools/grsnippetgen/
http://www.ebusiness-unibw.org/tools/grsnippetgen/

145Embedding RDFa using the GoodRelations vocabulary
➥ 5430135_sa.jpg"></div>
 <div rel="gr:hasPriceSpecification">
 <div typeof="gr:UnitPriceSpecification">
 <div property="gr:hasCurrency"

➥ content="USD" datatype="xsd:string"></div>
 <div property="gr:hasCurrencyValue"

➥ content="199.99" datatype="xsd:float"></div>
 <div property="gr:hasUnitOfMeasurement"

➥ content="C62" datatype="xsd:string"></div>
 </div>
 </div>

Listing 6.10 highlights the annotation of an individual product review. You’ll notice
that the entire review is wrapped in a <div rel=…> to establish a relationship between
our Sony camera and this review. Listing 6.6 contains two individual reviews and one
aggregate review. All three are similarly annotated. Because the aggregate review rep-
resents a composite review, you’ll notice that some of the represented properties are
different from those in the next listing.

<div rel="review:hasReview v:hasReview" typeof="v:Review">
Nice Camera, easy to use, panoramic feature by: <span

➥ property="v:reviewer"> AbcdE, <span property="v:dtreviewed"

➥ content="2012-11-26">November 26, 2012

Great for when you don't feel like dragging

➥ the SLR around. Panoramic feature and video quality are very

➥ good.

4.75 of
5.0 Stars

</div>

6.2.4 Extracting Linked Data from GoodRelations-enhanced HTML document

As we illustrated in section 6.1, entering the HTML document shown in listing 6.6 into
the validator and RDF 1.1 distiller (http://www.w3.org/2012/pyRdfa/) generates the
Turtle content shown in the next listing. As we mentioned earlier in this chapter, this
output can be retained and published. It can be used as input to other applications. In
section 6.4, we’ll illustrate mining this Linked Data using SPARQL.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix gr: <http://purl.org/goodrelations/v1#> .
@prefix rev: <http://purl.org/stuff/rev#> .
@prefix v: <http://rdf.data-vocabulary.org/#> .
@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html

➥ #company> a gr:BusinessEntity;
 gr:legalName "Linked Data Practitioner's Guide"@en;

Listing 6.10 Excerpt showing annotation of an individual product review

Listing 6.11 Turtle statements derived from listing 6.6

146 CHAPTER 6 Enhancing results from search engines
 vcard:adr [a vcard:Address;
 vcard:country-name "United States"@en;
 vcard:locality "Fredericksburg"@en;
 vcard:postal-code "22401"@en;
 vcard:street-address "1234 Main Street"@en];
 vcard:tel "540-555-1212"@en;
 foaf:page

➥ <http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html> .

<http://www.example.com/#company> gr:offers

➥ <http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html

➥ #offering> .

<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html

➥ #offering> a gr:Offering;
 gr:description "18.2-Megapixel Digital Camera - Black

➥ 10x optical/20x clear image zoom

➥ 2.7\" Clear Photo LCD display

➥ 1080/60i HD video

➥ Optical image stabilization"@en;
 gr:hasBusinessFunction gr:Sell;
 gr:hasEAN_UCC-13 "0027242854031"^^xsd:string;
 gr:hasPriceSpecification [a gr:UnitPriceSpecification;
 gr:hasCurrency "USD"^^xsd:string;
 gr:hasCurrencyValue "199.99"^^xsd:float;
 gr:hasUnitOfMeasurement "C62"^^xsd:string];
 gr:includes

➥ <http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html

➥ #product>;
 gr:name "Cyber-shot DSC-WX100"@en;
 foaf:depiction

➥ <http://images.bestbuy.com/BestBuy_US/images/products/5430/
5430135_sa.jpg>;

 foaf:page <http://www.example.com/dscwx100/> .

<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html

➥ #product> a gr:SomeItems;
 gr:category "ProductOrServiceModel"@en;
 gr:description "18.2-Megapixel Digital Camera - Black

➥ 10x optical/20x clear image zoom

➥ 2.7\" Clear Photo LCD display

➥ 1080/60i HD video Optical image stabilization"@en;
 gr:hasEAN_UCC-13 "0027242854031"^^xsd:string;
 gr:name "Cyber-shot DSC-WX100"@en;
 foaf:depiction

➥ <http://images.bestbuy.com/BestBuy_US/images/products/5430/
5430135_sa.jpg>;

 foaf:page <http://www.example.com/dscwx100/> .

<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html#

➥ review_data> a v:Review-aggregate;
 v:average " 4.9"^^xsd:string;
 v:best "5.0"@en;
 v:count "14"^^xsd:string .

147Embedding RDFa using the GoodRelations vocabulary

-
nk

-
nk

k
<http://www.bestbuy.com> gr:offers

➥ <http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html> .

<http://rosemary.umw.edu/~marsha/other/

➥ sonyCameraRDFaGRversion3.html> gr:hasBusinessFunction

➥ <http://rosemary.umw.edu/~marsha/other/#Sell>;

➥ gr:hasEAN_UCC-13 "0027242854031"^^xsd:string;
 gr:hasInventoryLevel [a gr:QuantitativeValue;
 gr:hasMinValue "1"^^xsd:float];
 gr:hasPriceSpecification [a gr:UnitPriceSpecification;
 gr:hasCurrencyValue "199.99"^^xsd:float,
 "219.99"^^xsd:float;
 v:highprice "219.99"^^xsd:float;
 v:lowprice "199.99"^^xsd:float];
 rev:hasReview _:_7a58d778-3981-4844-96e6-71b32fe1b439,
 _:_8d4ade4e-7085-4104-9a4e-d6131abe5853,
 _:_c6154cb1-03bf-4ba9-b237-67e0984a7a86;
 v:hasReview _:_7a58d778-3981-4844-96e6-71b32fe1b439,
 _:_8d4ade4e-7085-4104-9a4e-d6131abe5853,
 _:_c6154cb1-03bf-4ba9-b237-67e0984a7a86,
 <http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html

➥ #review_data>;
 foaf:page <http://rosemary.umw.edu/~marsha/other/

sonyCameraRDFaGRversion3.html>,
 <http://www.bestbuy.com> .

_:_7a58d778-3981-4844-96e6-71b32fe1b439 a v:Review;
 v:best "5.0"@en;
 v:dtreviewed "2012-11-26"@en;
 v:reviewer " AbcdE"@en;
 v:summary "Great for when you don't feel like dragging the SLR

➥ around. Panoramic feature and video quality are very good."@en;
 v:value "4.75"@en .

_:_8d4ade4e-7085-4104-9a4e-d6131abe5853 a rev:Review,
 v:Review-aggregate;
 rev:maxRating 5;
 rev:minRating 0;
 rev:rating "4.5"^^xsd:float;
 rev:totalRatings 45;
 v:average "4.5"^^xsd:float;
 v:votes 45 .

_:_c6154cb1-03bf-4ba9-b237-67e0984a7a86 a v:Review;
 v:best "5.0"@en;
 v:dtreviewed "2012-11-29"@en;
 v:reviewer "ABCD"@en;
 v:summary "At 4 ounces this is a wonder. with a bright view screen and
tons of features this camera can't be beat "@en;
 v:value "5.0"@en .

In this section we’ve embedded RDFa using the GoodRelations vocabulary. This spe-
cialized vocabulary will enable you to embed product, service, and company informa-
tion in your web pages. This additional information improves SEO and click-through

_:_7a58d778-3981-4844-96e6
71b32fe1b439 represents a bla
node. Refer to chapter 2 for a
more complete explanation.

_:_8d4ade4e-7085-4104-9a4e
d6131abe5853 represents a bla
node. Refer to chapter 2 for a
more complete explanation.

_:_c6154cb1-03bf-4ba9-b237-
67e0984a7a86 represents a blan
node. Refer to chapter 2 for a
more complete explanation.

148 CHAPTER 6 Enhancing results from search engines
rates. Stay tuned; we understand that GoodRelations is in the process of being inte-
grated into schema.org.

6.3 Embedding RDFa using the schema.org vocabulary
Schema.org is a collaborative initiative by three major search engines: Yahoo!, Bing,
and Google. Its purpose is to create and support a common set of schema for struc-
tured data markup on web pages and to provide a common means for webmasters to
mark up their pages so that the search results are improved and human users have a
more satisfying experience. We’ll follow a progression similar to what we did in sec-
tion 6.2. We’ll take a brief look at the schema.org vocabulary and apply it by embed-
ding RDFa into the same basic HTML page that describes our Sony camera.

6.3.1 An overview of schema.org

The designers of schema.org provided a single common vocabulary and markup syn-
tax (Microdata9) that’s supported by the major search engines. This approach enables
webmasters to use a single syntax and avoid tradeoffs based on which markup type is
supported by which search engine. As you can see in table 6.4, schema.org supports a
broad collection of object types and isn’t limited to e-commerce terminology.

9 Defining the HTML microdata mechanism, HTML Microdata W3C Working Draft May 24, 2011, http://
dev.w3.org/html5/md-LC/.

Table 6.4 Commonly used schema.org object types by category

Parent type Subtypes

Creative works CreativeWork, Article, Blog, Book,
Comment, Diet, ExercisePlan,
ItemList, Map, Movie, MusicPlaylist,
MusicRecording, Painting,
Photograph, Recipe, Review, Sculpture,
SoftwareApplication, TVEpisode, TVSeason,
TVSeries, WebPage, WebPageElement

MediaObject
(Embedded non-text objects)

AudioObject, ImageObject, MusicVideoObject,
VideoObject

Event BusinessEvent, ChildrensEvent, ComedyEvent,
DanceEvent, EducationEvent, Festival, FoodEvent,
LiteraryEvent, MusicEvent, SaleEvent,
SocialEvent, SportsEvent, TheaterEvent,
UserInteraction, VisualArtsEvent

Organization Corporation, EducationalOrganization,
GovernmentOrganization, LocalBusiness, NGO,
PerformingGroup, SportsTeam

Intangible Audience, Enumeration, JobPosting, Language,
Offer, Quantity, Rating, StructuredValue

Person

http://dev.w3.org/html5/md-LC/
http://dev.w3.org/html5/md-LC/

149Embedding RDFa using the schema.org vocabulary
NOTE The schema.org specification is accessible from http://schema.org/
docs/schemas.html.

Unlike RDF, schema.org was not designed to

■ Provide resource description for purposes other than discovery
■ Publish data not displayed on web pages
■ Facilitate machine-to-machine communication
■ Support other ontologies outside of those agreed on by the partners of

schema.org

Subsequent feedback from the web community encouraged the developers of
schema.org to accept and adopt RDFa Lite as an alternative syntax to encode schema.org
terms. Schema.org members are search engines, which really care about scalability, thus
making the use of RDFa Lite strongly preferred. The difference is that RDFa 1.1 is a com-
plete syntax for RDF (and can thus express anything that RDF can). RDFa Lite consists
of only five simple attributes: vocab, typeof, property, resource, and prefix. One of
the convenient features about RDFa 1.1 Lite and RDFa 1.1 is that a number of commonly
used prefixes (http://www.w3.org/2011/rdfa-context/rdfa-1.1.html) are predefined.
Therefore, you can omit declaring them and just use them, but the W3C recommended
style is to include the prefix declarations.

 The full specification for RDFa 1.1 Lite is at http://www.w3.org/TR/rdfa-lite/.
RDFa 1.1 Lite is a subset of RDFa and consists of just five attributes that are used
together with HTML tags to enable web developers to mark up their sites with Linked
Data. We’ll briefly discuss these attributes and then develop an example illustrating
how RDFa 1.1 Lite works with HTML to enable meaningful markup of web pages.

Place LocalBusiness, Restaurant, AdministrativeArea,
CivicStructure, Landform,
LandmarksOrHistoricalBuildings, LocalBusiness,
Residence, TouristAttraction

Product

Primitive Types Boolean, Date, DateTime, Number, Text, Time

Table 6.5 Properties of the schema.org Product class

Property Type Description

aggregateRating AggregateRating Based on a collection of reviews or ratings, this is the
overall rating of the item.

brand Organization The brand of the product, for example, Sony, Minolta.

description Text A brief narrative about the item.

Table 6.4 Commonly used schema.org object types by category (continued)

Parent type Subtypes

http://schema.org/docs/schemas.html
http://schema.org/docs/schemas.html

150 CHAPTER 6 Enhancing results from search engines
As we mentioned in section 6.1, HTML without RDFa annotations to the browser looks
like this:

Adding RDFa markup will add meaning to all this text and enable the search engines
to interpret this content as a human reader would. The search engines will “see” this:

Obviously, this is a more meaningful web page.

6.3.2 Enhancing HTML with RDFa Lite using schema.org

Using schema.org with RDFa 1.1 Lite is similar to annotating a web page with RDFa
except you limit your terms to those defined in the Lite subset. This example was
intentionally restricted to just those terms defined in schema.org. Although doing
so was certainly not required, we thought it the best approach given the purpose of
our illustration.

image URI The URI of an image of the item.

manufacturer Organization The manufacturer of this product.

model Text The model identifier for this product.

name Text The name of the product.

offers Offer An offer to sell this product.

productID Text The product identifier, such as a UPC code.

review Review A review of this product.

URI URI The URI of this product.

Headline

Some image

More text

Bulleted list

More text

Product name

Product image

Product description

Product rating

More product description

Consumer reviews

Table 6.5 Properties of the schema.org Product class (continued)

Property Type Description

151Embedding RDFa using the schema.org vocabulary
 As we illustrated in section 6.1, we’ll start with a plain HTML file designed around
an item from our chapter 4 wish list, shown in listing 6.12, without semantic annota-
tions and then enhance that web document with schema.org using RDFa 1.1 Lite nota-
tion. The enhanced document is in listing 6.13. As we illustrated in section 6.2, the
web page contains product information for the Sony Cyber-shot DSC-WX100 that we
added to our wish list in chapter 4.

 In prior examples, we used multiple vocabularies and specified which ones using
prefix statements. In this case, we need only designate a single vocabulary,
schema.org, which will be our default vocabulary, for example:

<div vocab = "http://schema.org/" typeof= "Product">
Some other text
</div>

We’ve actually defined two attributes: the default vocabulary that we’re going to use
and the type of the object we’ll be describing. We also need to identify the properties
of the object that we’ll be describing. Looking more closely at the schema.org Prod-
uct class summarized in table 6.5, we find that it has a number of properties/attri-
butes that we’ll use to enhance our Sony camera web page.

<html>
<head>
<title>SONY Camera</title>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
</head>

<body>

<h2> Sony - Cyber-shot DSC-WX100

 18.2-Megapixel Digital Camera - Black
</h2>

<img

➥ src="http://images.bestbuy.com/BestBuy_US/images/products/5430/

➥ 5430135_sa.jpg"

➥ alt="http://http://images.bestbuy.com/BestBuy_US/images/

➥ products/5430/5430135_sa.jpg">

Model: DSCWX100/B SKU: 5430135

Customer Reviews: 4.9 of 5 Stars(14 reviews)

Best Buy
http://www.bestbuy.com

Sale Price: $199.99

Regular Price: $219.99

In Stock

<h3>
 Product Description

Listing 6.12 Basic HTML

152 CHAPTER 6 Enhancing results from search engines

 10x optical/20x clear image zoom
 2.7" Clear Photo LCD display
 1080/60i HD video
 Optical image stabilization

</h3>

Sample Customer Reviews

Impressive - by: ABCD, November 29, 2012

At 4 ounces this is a wonder. With a bright view screen and tons of features,
this camera can't be beat

5.0/5.0 Stars

Nice Camera, easy to use, panoramic feature by: AbcdE, November 26, 2012

Great for when you don't feel like dragging the SLR around. Panoramic feature

and video quality are very good.

4.75/5.0 Stars

</body>
</html>

6.3.3 A closer look at selections of RDFa Lite using schema.org

As you examine listing 6.13, you’ll notice extensive use of the and
<div></div> HTML tags with their property attributes. The values associated with
those properties are from table 6.5, the properties of the schema.org Product class.
One difference is the use of the typeof attribute when the property is of a non-basic
type. For example,

<div property="offers" typeof="AggregateOffer">

designates the encapsulated property as type offers and that an item classified as
offers is of typeof AggregateOffer.

<!DOCTYPE html>
<html version="HTML+RDFa 1.1" lang="en">
<head>
<title>Illustrating RDFa 1.1 Lite and schema.org</title>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
<base href = "http://www.example.com/sampleProduct"/>
</head>

<body vocab="http://schema.org/">
<div typeof="Product">
 <h2 > Sony
 Cyber-shot DSC-WX100
 18.2-Megapixel Digital Camera - Black

➥ </h2>

Listing 6.13 HTML sample with RDFa markup from the schema.org vocabulary

Product
description

153Embedding RDFa using the schema.org vocabulary

 <img property="image" src="http://images.bestbuy.com/BestBuy_US/images/

products/5430/5430135_sa.jpg" alt="http://images.bestbuy.com/BestBuy_US/
images/products/5430/5430135_sa.jpg">

Model: DSCWX100/B SKU: <span

➥ property="productID">5430135
<div property="aggregateRating" typeof="AggregateRating">
Customer Reviews: 4.9 of
5.0 Stars (14

➥ reviews)

</div>
Best Buy

http://www.bestbuy.com

<div property="offers" typeof="AggregateOffer">
Sale Price: $199.99

Regular Price: $219.99

In Stock

</div>
<h3>
Product Description
<div property="description">

10x optical/20x clear image zoom
2.7" Clear Photo LCD display
1080/60i HD video
Optical image stabilization

</div>
</h3>

Sample Customer Reviews

<div property="review" typeOf="Review">
Impressive - by: ABCD,
November 29, 2012

➥

At 4 ounces this is a wonder. with a bright view screen and tons of

➥ features this camera can't be beat
5.0 of
5.0 Stars

</div>

<div property="review" typeOf="Review">
Nice Camera, easy to use, panoramic feature by: <span

➥ property="author">AbcdE, <span property="datePublished"

➥ content="2012-11-26">November 26, 2012

Great for when you don't feel like dragging the SLR around. Panoramic feature

➥ and video quality are very good.

4.75 of
5.0 Stars

Review aggregate

Single person review

154 CHAPTER 6 Enhancing results from search engines
</div>

</div>
</body>
</html>

6.3.4 Extracting Linked Data from a schema.org enhanced HTML document

The resulting Turtle obtained from entering the HTML document shown in listing 6.13
into the validator and RDF 1.1 distiller (http://www.w3.org/2012/pyRdfa/) is illus-
trated in the following listing. As we mentioned previously, this output can be retained
and published. It can be used as input to other applications. In section 6.4, we’ll illus-
trate mining similar Linked Data using SPARQL.

@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix schema: <http://schema.org/> .

<http://www.example.com/sampleProduct> rdfa:usesVocabulary schema: .

[] a schema:Product;
 schema:aggregateRating [a schema:AggregateRating;
 schema:bestRating "5.0"@en;
 schema:ratingCount "14"@en;
 schema:ratingValue "4.9"@en];
 schema:brand [a schema:Organization];
 schema:description """

10x optical/20x clear image zoom
2.7" Clear Photo LCD display
1080/60i HD video
Optical image stabilization

"""@en,
 "18.2-Megapixel Digital Camera - Black "@en;
 schema:highPrice "219.99"@en;
 schema:image <http://images.bestbuy.com/BestBuy_US/images/products/5430/

5430135_sa.jpg>;
 schema:lowPrice "199.99"@en;
 schema:model "DSCWX100/B "@en;
 schema:name " Cyber-shot DSC-WX100 "@en;
 schema:offers """
Sale Price: $199.99
Regular Price: $219.99
In Stock
"""@en;
 schema:productID "5430135 "@en;
 schema:review [a schema:Review;
 schema:author "AbcdE"@en;
 schema:bestRating "5.0"@en;
 schema:datePublished "2012-11-26"@en;
 schema:ratingValue "4.75"@en],
 [a schema:Review;
 schema:author "ABCD"@en;

Listing 6.14 Resulting Turtle from HTML annotated with schema.org vocabulary

155Extracting RDFa from HTML and applying SPARQL
 schema:bestRating "5.0"@en;
 schema:datePublished "2012-11-29"@en;
 schema:ratingValue "5.0"@en];
 schema:URI "http://www.bestbuy.com "@en .

NOTE [] represents a blank node. Refer to chapter 2 for additional explanation.

Annotating your data with the schema.org vocabulary and RDFa 1.1 Lite will provide a
more satisfying result from SEO, expose your information to more consumers, and
contribute to the community of publically accessible published Linked Data.

6.4 How do you choose between using schema.org or GoodRelations?
As a web developer, how do you choose between GoodRelations and schema.org? This
question isn’t easy to answer and may not have a one-size-fits-all response. When
schema.org was introduced, web authors who wanted to improve their SEO and target
the major search engines—Google, Microsoft, Yahoo!, and Yandex—would select
schema.org and annotate their web pages using the microdata syntax. But now that
schema.org supports RDFa 1.1 Lite, web authors have more options.

 The W3C, the developers of RDFa, took the feedback they received from Google,
Microsoft, and Yahoo! very seriously and proposed RDFa Lite in response to their con-
cerns. The schema.org community was concerned about the complexity of RDFa.
Manu Sporny, the chair of the W3C RDF Web Applications Working Group, addressed
this: “With RDFa 1.1, our focus has been on simplifying the language for Web authors.
In some cases, we’ve simplified the RDFa markup to only require two HTML attributes
to markup some of the schema.org examples. In most cases you only need three
HTML attributes to express a concept that will enhance your search ranking… it’s as
simple as that.”10 With the support of RDFa 1.1 Lite, a developer can annotate a page
using the schema.org vocabulary and if needed supplement those annotations with
vocabulary from other sources, including GoodRelations.

 The advantage of using RDFa 1.1 Lite with either schema.org or GoodRelations is
that a web author can apply other features of the full RDFa standard because RDFa
Lite is a subset of RDFa. For the time being, features outside of RDFa Lite would be
ignored by the schema.org community. Consequently, at the moment, the choice
between GoodRelations or schema.org seems to be one of best fit for the task at hand.
Examine the vocabularies and determine which one addresses your needs. Because
they can be used in conjunction with each other, we think that the choice is one of
personal preference.

6.5 Extracting RDFa from HTML and applying SPARQL
RDF extracted from the RDFa-enhanced HTML files can be queried using SPARQL. The
following listing illustrates a SPARQL query selecting the individual reviews and yields

10 Eric Franzon, “Schema.org announces intent to support RDFa Lite!” November 11, 2011, http://seman-
ticweb.com/breaking-schema-org-announces-intent-to-support-rdfa-lite_b24623#more-24623.

http://semanticweb.com/breaking-schema-org-announces-intent-to-support-rdfa-lite_b24623#more-24623
http://semanticweb.com/breaking-schema-org-announces-intent-to-support-rdfa-lite_b24623#more-24623

156 CHAPTER 6 Enhancing results from search engines
the results. The source being queried is a file copy of the Turtle extracted by the vali-
dator and RDF 1.1 distiller (http://www.w3.org/2012/pyRdfa/). This output is shown
after the listing.

prefix v: <http://rdf.data-vocabulary.org/#>
prefix rev: <http://purl.org/stuff/rev#>

SELECT ?date ?summary ?value
FROM <http://rosemary.umw.edu/~marsha/other/sonyCameraGRversion3.ttl>

WHERE {
 ?review a v:Review
 ; v:dtreviewed ?date
 ; v:summary ?summary
 ; v:value ?value .
} LIMIT 10

This query selects a review that identifies a date, narrative summary, and a rating value
and extracts the date of the review, its narrative summary, and the numeric value of
the rating. As we’d expect based on chapter 5, we have three columns of output repre-
senting the date, narrative summary, and numeric value. Following are the results of
this query showing the two reviews selected.

| date | summary
 | value |
===
===
| "2012-11-29"@en | "At 4 ounces this is a wonder. With a bright view screen

and
 tons of features, this camera can't be beat "@en | "5.0 "@en |
| "2012-11-26"@en | "Great for when you don't feel like dragging the SLR

around.
 Panoramic feature and video quality are very good."@en | "4.75 "@en |

In this example, we applied a SPARQL query to RDFa extracted from our HTML page
describing our Sony camera. The query selected the individual person reviews and
extracted the date, summary, and star value contained in each review. Our HTML page
contained two reviews.

6.6 Summary
We’ve illustrated three techniques for enhancing your web pages with RDFa 1.1. Sec-
tion 6.1 illustrated how to use RDFa and the FOAF vocabulary to add structured data
and semantic meaning to your HTML content. Section 6.2 illustrated how to annotate
your HTML content with RDFa and the GoodRelations business-oriented vocabulary to
add structured data and hence semantic meaning to a product description and sales

Listing 6.15 Sample SPARQL query to select reviews

157Summary
information. Section 6.3 accomplished the same goal but is limited to RDFa 1.1 Lite
because it’s supported by schema.org.

 In the next chapter, we’ll be examining data reuse and RDF databases, and we’ll be
building an application illustrating spidering Linked Data.

RDF database fundamentals
This chapter will enable you to recognize the benefits of Linked Data modeling over
other forms of modeling. The chapter is not intended as a thorough analysis of dif-
ferent database models but will present sufficient content to enable you to under-
stand the features associated with RDF databases. We’ll highlight the differences
between the traditional relational database approach and RDF databases. We’ll
explain why the Linked Data community finds RDF databases useful and the types of
problems such systems solve. We’ll demonstrate how to transform data from Excel,
CSV, and XML formats to Turtle for ease of integration into other applications. The
final section of this chapter will develop a real-world example involving the collection
and reuse of Linked Data as well as storing this content into an RDF database.

7.1 Classifying RDF databases
In general, databases can be classified in two broad categories, relational and
NoSQL (Not Only SQL). RDF databases are just one of the many types of NoSQL
databases and the only type based on an international family of standards. RDF

This chapter covers
■ An overview of RDF databases
■ A comparison of RDF and relational databases
■ Collecting Linked Data in an RDF database
158

http://www.w3.org/2001/vcard-rdf/3.0
http://www.w3.org/2001/vcard-rdf/3.0
http://purl.org/spar/datacite/
http://purl.org/spar/datacite/

159Classifying RDF databases
databases are also the only ones whose semantic meaning is formally defined. As you
can see from figure 7.1, RDF is an integral component of the technology that powers
the underlying layer supporting the Semantic Web.

RDF is one of three defined data models that underlie all other W3C standards.
Linked Data uses RDF as its data model because RDF is the standard for representing
data on the web. It’s built upon the well-established lower-level standards like HTTP
and URIs. Given the growth exhibited in the Linked Open Data cloud and increased
use of RDFa to enhance web pages, we expect that RDF data will still be usable even
decades from now.

 In previous chapters, we described RDF as a generic, graph-based data model that
represents data in the form of triples. These triples are records containing three val-
ues (subject, predicate, object) containing (URI, URI, URI) or (URI, URI, value). There
are basic forms that can be used to store this data. In chapter 4, we developed individ-
ual files of Turtle statements. Interestingly, we’re unlikely to view such files as a self-
contained database, but in the RDF world they are. Each individual file can be queried
using SPARQL and the extracted results harvested and used in data aggregations or as
input to other applications. For instance, our aggregation of data from the Internet
Movie Database and Best Buy RDFa could have been output to a Turtle file for future
processing. But searching large files of triples can be a slow process.

 An RDF database system needs to satisfy several challenges, as summarized here:

Internet

One Web

URI/IRI, HTTP

Web Architectural Principles

XML Infoset, RDF(S) Graph

XML, Namespaces, Schemas, XQuery/XPath, XSLT, DOM, XML Base, XPointer, RDF/XML, SPARQL

Web
Applications

XHTML

SVG CDF

XForms

SMIL

CSS XSL

WICD

Mobile

XHTML Basic

XForms Basic

SMIL Mobile

MWI BP

Voice

VoiceXML

CCXML

SSML

EMMA

Web
Services

SOAP

WS-CDL

WSDL

MTOM

Semantic
Web

OWL

RDFa

GRDDL

RIF

Privacy,
Security

P3P

XML Enc

XML Sig

XKMS

Web Accessibility / Internationalization / Device Independence / Mobile Access / Quality Assurance

APPELSKOS

POWDERWS-A

SRGSMobile SVG

CSS Mobile

Figure 7.1 W3C technology stack

http://www.example.com/grammyWinners
http://www.example.com/grammyWinners
http://www.example.com/artistBios
http://www.example.com/grammyWinners
http://www.example.com/grammyWinners
http://www.example.com/artistBios
http://www.example.com/artistBios
http://www.w3.org/wiki/ConverterToRdf
http://www.w3.org/wiki/ConverterToRdf
http://pypi.python.org/pypi/xlrd
http://pypi.python.org/pypi/xlrd
http://pypi.python.org/pypi/xlrd
http://wiki.python.org/moin/CheeseShopTutorial
http://www.ibm.com/developerworks/xml/library/x-disprdf
http://www.ibm.com/developerworks/xml/library/x-disprdf
http://www.ibm.com/developerworks/xml/library/x-disprdf
http://finance.yahoo.com
http://finance.yahoo.com
http://finance.yahoo.com

160 CHAPTER 7 RDF database fundamentals
■ Triples must be capable of being uniquely identified.
■ Given a subject and predicate, searches should be efficient and execute quickly.
■ Given a predicate and object, searches should be efficient and execute quickly.
■ The RDF graph represented in the data must be preserved.

Note that many RDF databases use relational databases as their storage layer (although
many others are purpose-built). Such relational RDF stores can be classified in three
categories as summarized in table 7.1. These categories refer to the model used to
store the data. Interestingly, relational database management systems have demon-
strated that they can efficiently host large amounts of data. Hence, they may also be
used to store RDF. The challenge of such systems is to properly translate a SPARQL
query into SQL. SQL isn’t designed for storage and retrieval of RDF data, whereas
SPARQL is able to query an RDF graph represented in RDF triples.

In general, RDF databases are triplestores. A triplestore is a system that has some form
of persistent storage of RDF data and lets you run SPARQL queries against that data.
Many of these systems are based on reusing and adapting well-established techniques
from relational databases. One basic approach would be to create a single table of
three columns where the first column holds the subject, the second the predicate, and
the third column the object. The basic three-column table can be optimized, but as of
yet there are no best practices. Optimization techniques include indexing, applica-
tions of various hash functions, and restructuring of the basic table approach.

7.1.1 Selecting an RDF database systems

A large variety of databases are available, and the challenge is to find the one best
suited for your project. Table 7.2 lists a few commonly used triplestores.

Table 7.1 Classifications of relational RDF stores

Category Description

Vertical (triple)
table stores

Each RDF triple is stored directly in a three-column table (subject, predicate, object).

Property (n-ary)
table stores

Multiple RDF properties are modeled as n-ary table columns for a single subject.

Horizontal (binary)
table stores

RDF triples are modeled as one horizontal table or into a set of vertically parti-
tioned binary tables where each individual table represents an RDF property.

Table 7.2 Commonly used triplestores

Name URL

4Store http://www.4store.org/

Allegro-Graph http://www.franz.com/agraph/allegrograph

http://www.4store.org/
http://www.franz.com/agraph/allegrograph
http://www.example.com/grammyWinners

161Classifying RDF databases
At the end of the day, the choice of database system for a Linked Data deployment
should be guided by criteria such as the persistence strategy, the size of data to be
served, and the relative frequencies of access and update. A reliable persistence strat-
egy ensures data preservation, consistency, and integrity. Additional criteria for evalu-
ation will likely include consideration of hardware and software requirements, cost,
SPARQL support, ability to be embedded in an existing system, live backup capability,
and security level. You’ll need to critically examine each option in detail to determine
whether it will meet your needs.

7.1.2 RDF databases versus RDBMS

There are several important differences between RDF databases and relational data-
bases. We’ll examine the differences in transactional models and schema descrip-
tions, the breaching of traditional knowledge containers, and the elimination of data
warehouses.

DIFFERENCE IN TRANSACTIONAL MODELS

Relational databases exhibit reliability, efficiency, and consistency. Most support the
ACID model:

■ Atomicity of transactions ensures that if any transaction in a multistep operation
fails, then all associated transactions are rolled back. The database is
unchanged.

■ Consistency of each transaction means that no element of an atomic transaction
may violate the database’s business rules. Any transaction violating a rule results
in failure and the database remains unchanged. This supports atomicity.

BigData http://www.bigdata.com/

Fuseki http://jena.apache.org/documentation/serving_data/index.html

Mulgara http://mulgara.org/

Oracle http://www.oracle.com/technetwork/database/options/semantic-tech/
index.html

OWLIM http://www.ontotext.com/owlim

Redland RDF Library http://librdf.org/

Sesame http://www.openrdf.org/

StarDog http://stardog.com/

Virtuoso http://virtuoso.openlinksw.com/

Table 7.2 Commonly used triplestores (continued)

Name URL

http://www.bigdata.com/
http://jena.apache.org/documentation/serving_data/index.html
http://mulgara.org/
http://www.oracle.com/technetwork/database/options/semantic-tech/index.html
http://www.oracle.com/technetwork/database/options/semantic-tech/index.html
http://www.ontotext.com/owlim
http://librdf.org/
http://www.openrdf.org/
http://stardog.com/
http://virtuoso.openlinksw.com/
http://localhost:3030/ds/data?default
http://localhost:3030/ds/data?default
http://localhost:3030/ds/query?query=SELECT+%3Fday+%3FmaxTemp+%3FuvValue+WHERE+%7B+%3Fday+%3Chttp%3A%2F%2Fwww.example.com%2FWeatherHealth%2FSchema%23max_temp%3E+%3FmaxTemp+%3B+%3Chttp%3A%2F%2Fwww.example.com%2FWeatherHealth%2FSchema%23uv_value%3E+%3FuvValue+.+%7D+LIMIT+10
http://www.example.com/WeatherHealth/Schema#max_temp
http://www.example.com/WeatherHealth/Schema#max_temp
http://www.example.com/WeatherHealth/Schema#uv_value
http://www.example.com/WeatherHealth/Schema#uv_value

162 CHAPTER 7 RDF database fundamentals
■ Isolation between multiple transactions means that transactions must occur and
complete sequentially. No transaction may see the intermediate product of
another.

■ Durability ensures that a successful transaction is permanently preserved
through the use of backups and transaction logs.

The independence, flexibility, and distributed nature of the Web make enforcing
rigid ACID expectations impossible. NoSQL databases, which include RDF databases,
view ACID expectations as overly rigorous and hindering the operation of a database.
Instead, NoSQL databases favor a softer model known as the BASE model. A BASE
model embraces three tenets:

■ Basic availability of the data even in the event of multiple failures. NoSQL data-
bases spread data across many storage systems with a high degree of replication.
If one segment of data is disrupted, then it expects other segments to be avail-
able and so prevent a complete database outage.

■ Soft state abandons the consistency requirement of the ACID model. This model
places the responsibility for data consistency with the developer and is not
maintained by the database.

■ Eventual consistency means that NoSQL systems expect that at some point data
will converge to a consistent state, with no guarantees as to when this will occur.

DIFFERENCE IN SCHEMA DESCRIPTION

Data is transformed into useful information by adding context. For example, 888771234
alone is not particularly meaningful. But in a different format, 888-77-1234, many of us
would guess that it could be a U.S. Social Security Number. Even better, if this number
were in Jane Doe’s file, in a field labeled SSN, then you’d likely assume that Jane Doe’s
Social Security Number is 888-77-1234. Data published using Linked Data standards pro-
vides such context.

 In a relational database this data could be stored in a table like table 7.3, Database
Table A, where field names represent the schema that might be defined in a data dic-
tionary but more likely is not.

Figure 7.2 shows a schema associated with the ssn field of a representative relational
database. The schema is generic and doesn’t offer any description of the meaning
of the field. You are left to make your own association between the field name and
its meaning. You need to rely on the database designer to have chosen meaning-
ful names.

Table 7.3 Database Table A

id last first ssn date

1001 Doe Jane 888771234 11-12-1959

http://www.example.com/WeatherHealth/ZipCodes/20191/01-09-13
http://www.example.com/WeatherHealth/ZipCodes/20191/01-09-13
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#integer

163Classifying RDF databases
In contrast, using an RDF database, this data would be represented in an unambigu-
ous manner, as shown in figure 7.3, with documented schema. The following listing
shows Jane Doe’s information represented in RDF using an unambiguous schema.

@base <http://www.example.com/~jdoe/foaf.ttl#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
@prefix datacite: <http://purl.org/spar/datacite/> .

 <me> a foaf:Person;
 foaf:family_name "Doe";
 foaf:givenname "Jane";
 foaf:name "Jane Doe";
 vcard:BDAY "1959-12-11";
 datacite:social-security-number "888771234".

You could access the URI associated with any predicate and see the schema associated
with that term, for example, a Social Security Number, as shown in figure 7.3. We
think the choice of which schema description is more meaningful is obvious.

Listing 7.1 Jane Doe record formatted in RDF

Figure 7.2 Documented schema for ssn field of a representative SQL database

Figure 7.3 Datacite schema for Social Security Number

164 CHAPTER 7 RDF database fundamentals
BREACHING OF TRADITIONAL KNOWLEDGE CONTAINERS

The next difference is the benefit of being able to breach encapsulated containers.
This benefit can be illustrated by a simple example. Let’s consider two independent
websites. One site fronts an MS SQL database of all Grammy awards (http://
www.example.com/grammyWinners); the other site fronts a large MySQL database of
biographies of music artists (http://www.example.com/artistBios). These sites were
started independently of each other and do not collaborate. The Grammy awards DB
contains all Grammy-winning productions and a list of artists who wrote, performed,
or produced these works. It doesn’t contain any artist information except for the art-
ist’s name and date of birth. The second site of music artist biographies contains a full
listing of many current and former artists/performers, complete biographies of each
artist/performer, and a list of associated music works.

 What information might you, as a user of each of these systems, be interested in
extracting? Users of http://www.example.com/grammyWinners would benefit from
selecting a Grammy winner’s name and having personal biographical information dis-
played. Unfortunately, the biographical information is stored in a separate database at
http://www.example.com/artistBios. Figure 7.4 illustrates the independence and sep-
aration of these two databases.

 Users of http://www.example.com/artistBios would benefit from being able to select
an artist’s musical work and having its Grammy award statistics displayed. Unfortunately,
the Grammy award statistics are stored in http://www.example.com/grammyWinners.

 Any sharing of data between these two sites can’t be accomplished by joining the
tables contained in their separate databases. They’re unlikely to share primary keys,
metadata, or identifiers, and their individual database server systems are likely incom-
patible. Collaboration would entail working together to design a common data format
and common artist IDs (vocabulary alignment). This sort of information sharing across
incompatible, independently designed data systems requires time, additional cost, and
human intervention to provide contextual interpretation of the different datasets.

Figure 7.4 Independent and separate relational databases

http://www.example.com/grammyWinners
http://www.example.com/grammyWinners
http://www.w3.org/wiki/ConverterToRdf
http://www.w3.org/wiki/ConverterToRdf
http://www.w3.org/wiki/ConverterToRdf

165Classifying RDF databases
Contrast this scenario with one where each dataset is stored using structured data in
RDF format (Linked Data). We’d expect both sites to follow the Linked Data princi-
ples in structuring their data. They’d use a common, standard vocabulary (base ontol-
ogy) in describing their data, refer to URIs appropriately, and publish that data on a
query-able endpoint so that both sites could communicate across the Web. This com-
mon, standard vocabulary would enable the following:

■ Each site would be able to query the other using common terms.
■ The Grammy winners site could now query the artist names on the artist biogra-

phies site at will and gain more detail about a specific artist.
■ The artist biographies site could query the Grammy winners site and gain more

detail about a production’s Grammy status.

Most important, this collaboration is possible because of the inherent characteristics
of Linked Data. Thus, independently designed and maintained datasets can share
their knowledge domains by being interlinked and queried together.

ELIMINATION OF DATA WAREHOUSES

The final difference is the elimination of the need for building data warehouses. The
process necessary to build such a warehouse is illustrated in figure 7.5. Traditionally,
combining resources from multiple databases required the construction of a data
warehouse. Data warehouses are centralized data repositories that integrate data from
various transactional, legacy, or external systems, applications, and sources. The col-
lection and housing of this data are focused on the isolation and optimization of que-
ries without any impact on the systems that support a business’ primary transactions.

 This integration of multiple large databases into a single repository, as depicted in
figure 7.5, is achieved at great expense and time. A major portion of this expense is
the extraction, transformation, and loading processes. The alignment of database
schemas is called vocabulary alignment.

Data Warehouse

Database 1

Database 2

Database 3

O Gender:Female

M

N

F

Status:Married

Smoker:No

Fulltime:Yes

Extract Transform Load

Figure 7.5 Diagram of the process of constructing a data warehouse from independent relational data-
bases

http://jena.apache.org/documentation/serving_data/index.html

166 CHAPTER 7 RDF database fundamentals
Data warehouses, as such, aren’t needed when using RDF stores. The integration of
multiple data sources is made easier in Linked Data by three mechanisms:

■ Use of the same URIs to name resources whenever possible
■ Reuse of common vocabularies wherever possible
■ Use of owl:sameAs to indicate that a particular resource is identical (or nearly

identical) to another resource

These mechanisms allow for rapid alignment of resources after their creation.

7.1.3 Benefits of RDF database systems

We’ve already illustrated a number of advantages of using RDF database systems in com-
parison to RDBMS. We’ve illustrated the ease with which knowledge containers can be
breached. We’ve illustrated that data warehouses aren’t needed with RDF databases.
Also, all RDF databases offer additional benefits as listed and described in table 7.4.

In general, the Linked Data community prefers RDF triplestores over other systems for
the following reasons:

■ Access—Linked Data may be queried with SPARQL much more naturally (and
more capably) than with SQL. SPARQL can perform distributed queries (using the
FROM and FROM NAMED clauses), something that the SQL standard doesn’t support.

■ Distributed queries of Linked Data—These allow many interesting use cases, such
as leaving data sources in place (without copying) while querying.

■ Fit for purpose—RDF databases store and allow access to RDF data using the RDF
data model. This allows RDF to be accessed and manipulated in ways natural to
that data model.

■ Efficiency—Some RDF databases allow access to and manipulation of RDF more
quickly than other mechanisms.

In this overview of RDF databases we’ve covered criteria that you need to consider in
selecting an RDF database, the differences of RDF databases over RDBMS, and other

Table 7.4 Summary of benefits of RDF databases

Benefit Description

SPARQL You enjoy the use of a powerful standard query language.

Ease of
collaboration

Standard serialization formats provide import/export capability based on well-defined,
standardized, implementation-independent formats such as N-Triples/N-Quads.

Data portability You can switch RDF storage solutions in-house, use multiple different solutions con-
currently, and share data with others.

No vendor
lock-in

If RDF database solution A isn’t working out, you can switch to RDF database solution
B or C; there’s no need to transform the data.

Tool chain
portability

Your RDF-based code doesn’t need to change just because you switch RDF database
programs.

167Transforming spreadsheet data to RDF
benefits of using RDF databases. We’ve stressed how using RDF facilitates the integra-
tion and aggregation of distributed and diverse data stores. In the next sections, we’ll
demonstrate how non-RDF sources can be transformed and aggregated. We’ll demon-
strate applying such aggregations in solving more complex problems.

7.2 Transforming spreadsheet data to RDF
In building applications, you’re likely to find that data you need is already available in
non-RDF storage like Excel spreadsheets, comma-separated value (.csv) files, and SQL
RDBMS. To facilitate integrating these diverse data formats, you need to transform the
data into RDF. There are tools available to help you transform your data. The W3C main-
tains a list of tools that convert data from many non-RDF formats to RDF. You can find this
list at http://www.w3.org/wiki/ConverterToRdf. You can always create your own tools.

 In this section we’ll demonstrate how you can use Python to transform data from
MS Excel format to Turtle. The free Lingfo Python library has built-in capabilities that
handle reading binary Excel files. This library is available from http://
pypi.python.org/pypi/xlrd. Reference http://wiki.python.org/moin/CheeseShopTu-
torial for installation instructions. Another excellent resource is “Integrate disparate
data sources with Semantic Web technology” (http://www.ibm.com/developerworks/
xml/library/x-disprdf) by Bob DuCharme. In this article DuCharme illustrates inte-
grating data from Excel spreadsheets (XLS files), CSV files obtained from http://
finance.yahoo.com, and RDF data from DBpedia. The source files DuCharme uses in
his application are available from the link at the end of his article.

7.2.1 A basic RDF conversion of MS Excel

Manually converting large amounts of data to an RDF format is often too time-
consuming or too complex to be worth doing. The Python script shown in listing 7.2 is
modeled after DuCharme’s sources and presents an automated process of converting
an Excel spreadsheet to RDF. It accesses the Excel spreadsheet as entered by the user
and outputs valid Turtle. This is a useful and generic script that outputs the column
labels as predicates formatted as URIs using the URI associated with the prefix field.
Listing 7.2 illustrates the process of transforming a spreadsheet into RDF, but it
doesn’t support the Linked Data principles as put forth by Tim Berners-Lee “to
include links to other URIs” that are resolvable. This RDF output is still usable but has
limited utility to localized queries. You’d need to be aware of the column labels and
use them in your SPARQL queries. In the real world, you’d want to map the column
labels to resolvable URIs such as those in FOAF or vCard.

Convert inputFile.xls spreadsheet to Turtle.
#
import xlrd1

Listing 7.2 Python script to convert an Excel spreadsheet to Turtle

1 “Lingfo—Python ‘xlrd’ package for extracting data from Excel files,” 0.6.1 final, http://www.lexicon.net/
sjmachin/xlrd.htm.

See the URL in the
footnote for Lingfo
information.1

http://pypi.python.org/pypi/xlrd
http://pypi.python.org/pypi/xlrd
http://pypi.python.org/pypi/xlrd
http://pypi.python.org/pypi/xlrd
http://www.ibm.com/developerworks/xml/library/x-disprdf
http://www.ibm.com/developerworks/xml/library/x-disprdf
http://finance.yahoo.com
http://finance.yahoo.com
http://www.lexicon.net/sjmachin/xlrd.htm
http://www.lexicon.net/sjmachin/xlrd.htm

168 CHAPTER 7 RDF database fundamentals

refix

nd

.

import sys

if(len(sys.argv) < 2):
 inputFile = input('Enter

➥ "source:\\\\subdirectory\\\\inputFile.xls " \n==>')
else:
 inputFile = sys.argv[1]

book = xlrd.open_workbook(inputFile)
sheet = book.sheet_by_index(0) # Get the first sheet
rowCount = sheet.nrows
colCount = sheet.ncols
print "@prefix field: <http://www.example.com/fieldNames#>."
print "@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>."

for rowNum in range(rowCount):
 rowValues = sheet.row_values(rowNum,start_colx=0, end_colx=None)
 if (rowNum == 0):
 propertyNames = rowValues
 for i in range(colCount):
 propertyNames[i] = propertyNames[i].replace(" ","")
 else:
 print "<field:%s>" % str(rowNum)
 for i in range(colCount-1):
 print ' field:%s "%s";'%(propertyNames[i],rowValues[i])
 print ' field:%s "%s".'%(propertyNames[colCount-1],rowValues[colCount-

➥ 1])

When the script from listing 7.2 is applied to the spreadsheet shown in figure 7.6, Tur-
tle output is obtained.

Command-line arguments
supplied using Python

xls2rdf.py input.xls.

Use the Lingfo
library to obtain
the Excel
spreadsheet.

Output the p
statements.

Process
spreadsheet a
output Turtle.

First row has
property names

Remove
any spaces
in names.

Property values, so
output them as RDF.

Figure 7.6 Sample Excel spreadsheet

169Transforming spreadsheet data to RDF

s
n
s

The following Turtle output was produced by the Python script shown in listing 7.2.

@prefix field: <http://www.example.com/fieldNames#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
<field:1>
 field:FirstName "Lucas";
 field:LastName "Aladdin";
 field:State "VA";
 field:EmailAddress "luke@example.com".
<field:2>
 field:FirstName "Pat";
 field:LastName "Albert";
 field:State "MD";
 field:EmailAddress "albert@example.com".

This output is valid RDF but not useful Linked Data because it isn’t linked anywhere and
it doesn’t provide mapping information. It doesn’t follow the Linked Data principles
introduced in chapter 1. Generating meaningful URIs is tedious and typically requires
human involvement. The Python script in listing 7.3 illustrates the process and pro-
duces meaningful Turtle Linked Data that follows the principles of Linked Data.

7.2.2 Transforming MS Excel to Linked Data

In reviewing the following listing, you’ll notice that you need to supply the links to the
vocabularies associated with the Linked Data terms that match the column headings
and the actual Linked Data terms associated with each column heading. The output
from this script is useful Linked Data and is shown following the listing.

import xlrd2

import sys

if(len(sys.argv) < 2):
 inputFile = input('Enter filename of spreadsheet as \n' +
 '"source:\\\\subdirectory\\\\inputFile.xls " \n==>')
else:
 inputFile = sys.argv[1]
#inputFile = "c:\\users\\zaidman\\desktop\\sample1.xls"
book = xlrd.open_workbook(inputFile)
sheet = book.sheet_by_index(0) # Get the first sheet
rowCount = sheet.nrows
colCount = sheet.ncols
prefix=""

print "Gathering mapping information to transform spreadsheet data to "
print "Linked Data vocabulary\n\n"
prompt = 'Enter "<url>" of where the rdf form of this spreadsheet will'
prompt = prompt + ' be published \n'
baseurl = input(prompt)

Listing 7.3 Python script that converts a spreadsheet to useful Linked Data

2 “Lingfo—Python ‘xlrd’ package for extracting data from Excel files,” 0.6.1 final, http://www.lexicon.net/
sjmachin/xlrd.htm.

See the URL in the
footnote for Lingfo
information.2

Command-line argument
supplied using Pytho

xls2rdf.py input.xl

Use the Lingfo library
to obtain the Excel
spreadsheet.

http://www.lexicon.net/sjmachin/xlrd.htm
http://www.lexicon.net/sjmachin/xlrd.htm

170 CHAPTER 7 RDF database fundamentals
print 'Now gathering prefix information \n'
print 'Enter "prefix,<URL of vocabulary>"\n'
line = input('Enter ""[return] when all prefix information has been

➥ entered \n')
count = 0;
while (line <> ""):
 count +=1
 prefix= prefix + line +'|'
 print 'Enter next "prefix,<URL of vocabulary>"\n'
 line = input('or enter ""[return] when all prefixes have

➥ been entered\n')
print '\nPreparing to gather predicate information for column headings\n'
propertyNames = sheet.row_values(0,start_colx=0, end_colx=None)
for i in range(colCount):
 propertyNames[i]=input('prefix:term for ' + propertyNames[i] + ' ==> ')

print '\n\n'
print '@prefix base: ' + baseurl
stmts=prefix.split("|");
for i in range(count):
 items=stmts[i].split(",")
 print '@prefix ' + items[0]+': ' + items[1]
#Process spreadsheet
rowNum=1
while (rowNum <rowCount):
 rowValues = sheet.row_values(rowNum,start_colx=0, end_colx=None)
 print "<base:%s>" % str(rowNum)
 for i in range(colCount-1):
 print '%s "%s";'%(propertyNames[i],rowValues[i])
 print '%s "%s".'%(propertyNames[colCount-1],rowValues[colCount-1])
 rowNum +=1

The output illustrates that common RDF Linked Data vocabularies are being used in
transforming the spreadsheet into useful Turtle Linked Data. The output file from
such a script could be queried using SPARQL.

@prefix base: http://www.example.com/sample.ttl#
@prefix foaf: http://xmlns.com/foaf/0.1/
@prefix v: http://www.w3.org/2006/vcard/ns#
<base:1>
foaf:firstName "Lucas";
foaf:lastName "Aladdin";
v:region "VA";
v:email "luke@example.com".
<base:2>
foaf:firstName "Pat";
foaf:lastName "Albert";
v:region "MD";
v:email "albert@example.com".

The script shown in listing 7.3 is less than eloquent. But it does illustrate the need for
human involvement in preparing a useful transformation from non-RDF data to useful
Turtle. It also illustrates that the process is straightforward and can be automated. Fur-
ther modification of the process could include retaining the mapping information in

First row
has property

names.

Output the prefix
statements.

Process
spreadsheet.

171Application: collecting Linked Data in an RDF database
a mapping file, enabling the user to modify an existing mapping file for use with a
related spreadsheet, and automatic detection of available mapping files. Although
these enhancements would make the tools more useful, that’s not their purpose in
this illustration, and thus we chose to present the simple version. Other applications
will illustrate more sophisticated techniques.

7.2.3 Finding RDF converter tools

If you’re not so eager to prepare your own scripts, an alternate option is to use tools
already available. The W3C maintains an index of Converter to RDF tools, also known
as RDFizers (http://www.w3.org/wiki/ConverterToRdf), which convert application
data from an application-specific format into RDF. Such tools include converters for
Excel spreadsheets, Quicken Interchange Format, and plug-ins for SQL databases like
MySQL. The list of available converters is extensive and too long to include here.

 In this section, we’ve demonstrated two applications that can be used to convert
data in CSV format to Turtle format. To further illustrate the utility of integrating
diverse and distributed RDF data, we present an application in section 7.3 that demon-
strates the collection of diverse data formats, their conversion to RDF, and the storage
of this aggregated RDF data in a Fuseki Triplestore.

7.3 Application: collecting Linked Data in an RDF database
This application is a demonstration of combining data in Linked Data format from
multiple sources on the Web. The feeds that we will use come from two U.S. govern-
ment agencies:

■ The U.S. Environmental Protection Agency’s (EPA) SunWise Program (http://
www.epa.gov/sunwise/)

■ The National Oceanic and Atmospheric Administration’s (NOAA) National
Digital Forecast Database (NDFD)3

The SunWise program is a large effort by the EPA aimed at educating the public on
how to protect themselves from the sun. NOAA’s NDFD is a collection of digital fore-
casts of the most relevant weather information from field offices around the United
States. This information includes everything from maximum and minimum tempera-
tures to wave heights along coastal areas.

7.3.1 Outlining the process

The application we demonstrate here uses three data sources. It retrieves XML data
from NOAA web services, CSV data from the EPA’s SunWise Program, and a local file of
postal ZIP codes. The ZIP codes contained in our file are all of the postal codes associ-
ated with the U.S. state of Virginia, but your input file could contain those postal
codes of interest to you. The ZIP code file used for this example is available at http://
linkeddatadeveloper.com/Projects/Linked-Data/resources/va-zip-codes.txt.

3 “What is the NDFD?”, updated October 4, 2012, http://www.nws.noaa.gov/ndfd/.

http://www.epa.gov/sunwise/
http://www.epa.gov/sunwise/
http://linkeddatadeveloper.com/Projects/Linked-Data/resources/va-zip-codes.txt
http://linkeddatadeveloper.com/Projects/Linked-Data/resources/va-zip-codes.txt

172 CHAPTER 7 RDF database fundamentals
 Each line of va-zipcodes.txt contains a single ZIP code. Please remember to adjust
the name of this file to match your application. A portion of the ZIP code file is shown
here:

20101
20102
20103
20104
20105
. . .
24649
24651
24656
24657
24658

We’ll store our transformed and aggregated data using a Fuseki RDF database from the
Apache Jena project. Fuseki includes a lightweight, in-memory database perfect for
working with small amounts of RDF data. In order to execute our application, you’ll
need to install Fuseki and set permissions by following the instructions at http://
jena.apache.org/documentation/serving_data/index.html. You should already have
Python installed from chapter 4.

 Our application creates an output file of the Turtle data mined from the NOAA
and EPA sources. This file is later loaded into the Fuseki database for query. A sample
of the contents of this file is shown in the following listing.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix wh: <http://www.example.com/WeatherHealth/Schema#> .

<http://www.example.com/WeatherHealth/ZipCodes/20101> wh:weather_for
<http://www.example.com/WeatherHealth/ZipCodes/20101/01-09-13> .
<http://www.example.com/WeatherHealth/ZipCodes/20101/01-09-13>

➥ wh:max_temp 57
 ; wh:min_temp 34
 ; wh:uv_value 2
 ; wh:uv_alert "False"
.
<http://www.example.com/WeatherHealth/ZipCodes/24658>

➥ wh:weather_for

➥ <http://www.example.com/WeatherHealth/ZipCodes/24658/01-09-13> .
<http://www.example.com/WeatherHealth/ZipCodes/24658/01-09-13>

➥ wh:max_temp 58
 ; wh:min_temp 39
 ; wh:uv_value 1
 ; wh:uv_alert "False"
.

7.3.2 Using Python to aggregate our data sources

The application itself is provided in listing 7.5. The program follows this process:

Listing 7.4 Turtle from weather data

http://jena.apache.org/documentation/serving_data/index.html
http://jena.apache.org/documentation/serving_data/index.html

173Application: collecting Linked Data in an RDF database

is

i

1 Aggregate the data as mined from the EPA and NOAA sources based on selected
ZIP codes.

2 Transform the aggregated data into Turtle.
3 Store this Turtle content in the file weatherData.ttl.
4 Load the contents of weatherData.ttl into the Fuseki in-memory database.
5 Query the database for the maximum temperature and UV value expected for a

given ZIP code.

#! /usr/bin/python
import os
import urllib
import urllib2
from urllib2 import Request, urlopen, URLError
import csv
from cStringIO import StringIO
import xml.etree.ElementTree as ET
from datetime import date
import subprocess
from time import sleep

Variables, input, and output files
input = open('va-zip-codes.txt', 'r')
output = open('weatherData.ttl', 'w')
today = date.today().strftime("%m-%d-%y")

print "\nStarting Fuseki..."
os.chdir("/Users/LukeRuth/Desktop/jena-fuseki-0.2.5/")
args1 = ['./fuseki-server', '--update', '--mem', '/ds']
subprocess.Popen(args1)

sleep(10)
print "\n"

print >>output, "@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> ."
print >>output, "@prefix wh:

➥ <http://www.example.com/WeatherHealth/Schema#> .\n"

Cycle through every zip code in the input file
for line in input:
 zip = line

 zip = zip.rstrip()

 noaaQuery =
 "http://graphical.weather.gov/xml/sample_products/browser_interface/

➥ ndfdXMLclient.php?ZIP CodeList=" + zip +

➥ "&product=time-series&maxt=maxt&mint=mint"
 epaQuery =

➥ "http://iaspub.epa.gov/enviro/efservice/getEnvirofactsUVDAILY/ZIP/"

➥ + zip + "/CSV"

Listing 7.5 Finding maximum temperature and UV index for all ZIP codes in Virginia

Include necessary
libraries.

Modify the
reference to this
file to match
your input.

Modify the
reference to th
file to be the
location of the
desired Turtle
output file.

Start Fuseki server.

The directory in this
command must match
the location of the Fusek
Server on your system.Wait for the server

to respond.

Print
prefixes.

Assign ZIP code to variable zip and
remove trailing newline character.

Build up query
URLs to issue.

174 CHAPTER 7 RDF database fundamentals

 noaaReq = urllib2.Request(url=noaaQuery)
 try:
 noaaContents = urllib2.urlopen(noaaReq).read()
 except URLError, e:
 if hasattr(e, 'reason'):
 print'We failed to reach a server.'
 print 'Reason: ', e.reason
 elif hasattr(e, 'code'):
 print 'The server couldn\'t fulfill the request.'
 print 'Error code: ', e.code
 else:
 # Parse and obtain desired NOAA xml contents
 root = ET.fromstring(noaaContents)
 for temperature in root.findall(".//value/..[@type='maximum']"):
 maxTemp = temperature.find('value').text

 for temperature in root.findall(".//value/..[@type='minimum']"):
 minTemp = temperature.find('value').text

 try:
 epaContents = urllib2.urlopen(epaQuery).read()
 except URLError, e:
 if hasattr(e, 'reason'):
 print'We failed to reach a server.'
 print 'Reason: ', e.reason
 elif hasattr(e, 'code'):
 print 'The server couldn\'t fulfill the request.'
 print 'Error code: ', e.code
 else:
 epaContents = epaContents.rstrip()
 # Loop through EPA CSV file and assign values to variables
 reader = csv.DictReader(StringIO(epaContents), delimiter=',')
 for row in reader:
 uvValue = row['UV_VALUE']
 uvAlert = row['UV_ALERT']

 print >>output, "<http://www.example.com/WeatherHealth/ZipCodes/" +

➥ zip + "> wh:weather_for

➥ <http://www.example.com/WeatherHealth/ZipCodes/" +

➥ zip + "/" + today + "> ."
 print >>output, "<http://www.example.com/WeatherHealth/ZipCodes/"

➥ + zip + "/" + today + ">"

 # Only print values that are present
 if (maxTemp):
 print >>output, " wh:max_temp " + maxTemp
 if (minTemp):
 print >>output, " ; wh:min_temp " + minTemp
 if (uvValue):
 print >>output, " ; wh:uv_value " + uvValue

 if (uvAlert == "0"):
 print >>output, " ; wh:uv_alert \"False\""

Retrieve NOAA contents
and assign to variable
noaaContents—catch
and print any errors.

Retrieve EPA contents
and assign to variable
epaContents—catch
and print any errors.

Start making
Turtle.

175Application: collecting Linked Data in an RDF database
 elif (uvAlert == "1"):
 print >>output, " ; wh:uv_alert \"True\""

 print >>output, ". \n";

Close zip code input and Turtle output files
input.close()
output.close()

print "Loading Data..."
args2 = ["./s-put", "http://localhost:3030/ds/data", "default", "/Users/

LukeRuth/Desktop/LinkedData_WeatherHealthApp/Chapter7/weatherData.ttl"]
subprocess.Popen(args2)

sleep(10)
print "\n"

print "Executing Query..."
args3 = ["./s-query", "--service",

➥ "http://localhost:3030/ds/query",

➥ "SELECT ?day ?maxTemp ?uvValue WHERE { ?day

➥ <http://www.example.com/WeatherHealth/Schema#max_temp> ?maxTemp ;

➥ <http://www.example.com/WeatherHealth/Schema#uv_value>

➥ ?uvValue . } LIMIT 1"]
subprocess.Popen(args3)

sleep(10)
print "\nScript Complete.\n"

7.3.3 Understanding the output

This query asks, “Today, in this ZIP code, what is the maximum temperature expected
and the UV value?” The query would run for all the ZIP codes (which is a big, cumber-
some query) had we not put LIMIT 1 on it. The output as produced by listing 7.5 can
be found in the following listing. You can reduce the execution time by reducing the
number of ZIP codes in the input file. You can obtain results for all of the ZIP codes in
the input file by removing the limit from the SPARQL query.

Starting Fuseki...
09:48:34 INFO Server :: Dataset: in-memory
09:48:35 INFO Server :: Dataset path = /ds
09:48:35 INFO Server :: Fuseki 0.2.5 2012-10-20T17:03:29+0100
09:48:35 INFO Server :: Started 2013/01/09 09:48:35 EST on port 3030

Loading Data...
09:55:17 INFO Fuseki :: [1] PUT http://localhost:3030/ds/data?default
09:55:17 INFO Fuseki :: [1] 204 No Content

Executing Query...
09:55:27 INFO Fuseki :: [2] GET http://localhost:3030/ds/

query?query=SELECT+%3Fday+%3FmaxTemp+%3FuvValue+WHERE+%7B+%3Fday+%3Chttp
%3A%2F%2Fwww.example.com%2FWeatherHealth%2FSchema%23max_temp%3E+%3FmaxTe

Listing 7.6 Output from Listing 7.5

Load data file into
Fuseki database.

Wait for the server
to respond. Query

Fuseki.

Wait for the server
to respond.

Starting Fuseki. Loading Turtle
data into the

database.

Executing our
SPARQL query.

176 CHAPTER 7 RDF database fundamentals
mp+%3B+%3Chttp%3A%2F%2Fwww.example.com%2FWeatherHealth%2FSchema%23uv_val
ue%3E+%3FuvValue+.+%7D+LIMIT+10

09:55:27 INFO Fuseki :: [2] Query = SELECT ?day ?maxTemp ?uvValue WHERE {
?day <http://www.example.com/WeatherHealth/Schema#max_temp> ?maxTemp ;
<http://www.example.com/WeatherHealth/Schema#uv_value> ?uvValue . }
LIMIT 10

09:55:27 INFO Fuseki :: [2] OK/select
09:55:27 INFO Fuseki :: [2] 200 OK
{
 "head": {
 "vars": ["day" , "maxTemp" , "uvValue"]
 } ,
 "results": {
 "bindings": [
 {
 "day": { "type": "uri" , "value": "http://www.example.com/

WeatherHealth/ZIP Codes/20191/01-09-13" } ,
 "maxTemp": { "datatype": "http://www.w3.org/2001/XMLSchema#integer" ,

"type": "typed-literal" , "value": "57" } ,
 "uvValue": { "datatype": "http://www.w3.org/2001/XMLSchema#integer" ,

"type": "typed-literal" , "value": "2" }
]
 }
}

Script Complete.

This application illustrates how easy it is to use RDF as a common data model for data
integration. In just a dozen statements, you can collect and transform the NOAA
weather data from XML format into Turtle, as shown here:

noaaQuery =

➥ "http://graphical.weather.gov/xml/sample_products/browser_interface/

➥ ndfdXMLclient.php?

➥ ZIP CodeList=" + zip + "&product=time-series&maxt=maxt&mint=mint"

noaaReq = urllib2.Request(url=noaaQuery)

Parse and obtain desired NOAA xml contents
root = ET.fromstring(noaaContents)
for temperature in root.findall(".//value/..[@type='maximum']"):
 maxTemp = temperature.find('value').text

for temperature in root.findall(".//value/..[@type='minimum']"):
 minTemp = temperature.find('value').text
print >>output, "<http://www.example.com/WeatherHealth/ZIP Codes/" +

➥ zip + "> wh:weather_for

➥ <http://www.example.com/WeatherHealth/ZIP Codes/" + zip + "/" +

➥ today + "> ."
 print >>output, "<http://www.example.com/WeatherHealth/ZIP Codes/"

➥ + zip + "/" + today + ">"

 # Only print values that are present
 if (maxTemp):
 print >>output, " wh:max_temp " + maxTemp

Output of query.

Results show a high of
57 with a UV index of 2.

177Summary
 if (minTemp):
 print >>output, " ; wh:min_temp " + minTemp

 print >>output, ". \n";

Similar statements collect and transform the EPA data from CSV to Turtle.
 This application illustrates how diverse data formats may be aggregated, converted

to RDF, combined, stored in an RDF database, and queried to produce results that
solve specific problems. In this case, we’re able to determine the anticipated maxi-
mum temperature and UV value for each ZIP code in Virginia. Combining these inde-
pendent data sources was critical to enabling us to query the NOAA and EPA datasets
together and determine the maximum temperature expected and the UV value for
today, in the specified ZIP code. Ultimately, the final output could be considered when
issuing alerts so that residents in at-risk communities can exercise caution when par-
ticipating in outdoor activities.

7.4 Summary
This chapter helped you understand the differences between the traditional relational
database approach and RDF databases. After reading this chapter you understand the
advantages of RDF databases over RDBMS. You understand why the Linked Data com-
munity finds RDF databases useful and the types of problems such systems are best fit
to solve. In general, integrating information already in RDF format is painless. But
data that you need and would like to use is often stored in non-RDF sources. The good
news is that much of this data can be transformed into RDF for ease of integration into
other applications.

 We’ve identified available resources to help you accumulate data from diverse non-
RDF resources, and we’ve demonstrated this process by building an application that
collects such sources and stores the aggregation in an RDF database. Now you’re about
ready to build some of your own Linked Data applications. Chapter 8 will familiarize
you with ways to describe your RDF data so it may be discovered on the Web, and chap-
ter 9 will familiarize you with more sophisticated tools like Callimachus and the
advanced problems that Callimachus can help you solve.

Datasets
In previous chapters we’ve stressed the importance of applying the principles of
Linked Data. You’ll recall that one of these principles is to use HTTP URIs so that
the references are resolvable and define the item without equivocation. By using
vocabularies like Description of a Project (DOAP) to describe software projects,
Vocabulary of Interlinked Datasets (VoID) to describe datasets, and sitemaps for
describing websites, you support the principles of Linked Data and facilitate con-
necting to other datasets and enable yourself to publish your data on the Linked
Open Data (LOD) cloud. This chapter will familiarize you with these vocabularies
and best practices for publication.

This chapter covers
■ The Description of a Project vocabulary for

describing projects
■ The Vocabulary of Interlinked Datasets for

describing datasets
■ The purpose and preparation of a sitemap for

describing sites
■ Techniques for linking to other datasets
■ How to join the Linked Open Data cloud
178

http://www.rdfabout.com/demo/validator/
http://sw.deri.org/2007/07/sitemapextension
http://sw.deri.org/2007/07/sitemapextension
http://example.com/critters/bonobos#DS
http://example.com/critters/bonobos#DS
http://example.com/critters/bonobos#DS
http://example.com/critters/bonobos/%3c/sc:linkedDataPrefix
http://example.com/critters/bonobos/%3c/sc:linkedDataPrefix
http://example.com/critters/bonobos/%3c/sc:linkedDataPrefix

179Description of a Project
 This chapter will provide an introduction to the ways that new Linked Data should
be described and linked into the larger Linked Data world. Just as FOAF describes peo-
ple, DOAP describes projects, VoID describes datasets, and semantic sitemaps describe
the Linked Data offerings on a site. Once those descriptions are in place, the next step
is to ensure that you meet the guidelines of the LOD cloud by linking out to other
datasets and (optionally) asking DBpedia to link to your data. Then, you can follow
the published guidelines for joining the LOD cloud.

 Here are some definitions that you should keep in mind as you read this chapter:

■ A dataset is a collection of related data that’s published, maintained, or aggre-
gated by a single provider. It’s often available as RDF and accessible, for exam-
ple, through dereferenceable HTTP URIs or a SPARQL endpoint.

■ An RDF link is an RDF triple whose subject and object are contained in different
datasets. In addition, these datasets may be on different servers.

■ A linkset is a collection of RDF links between two datasets.
■ Metadata is data about data.

8.1 Description of a Project
Completing an open-source project is certainly an accomplishment, but attracting
users and contributors can be a task in itself. What information would potential users
and/or contributors need to know about your project, and how can you provide it?
Users and contributors would need the name, description, its homepage, a download
page and mirror site, a license type, limitations like specific OS and programming lan-
guage requirements, the category of the project, and how to report bugs and deter-
mine known bugs. You can represent all this and more using DOAP. In addition, you
can connect a DOAP file to your project’s registration in various online catalogs.

 Edd Dumbill (http://eddology.com/about) created DOAP in 2004. DOAP is an
XML/RDF vocabulary to describe software projects and in particular open source proj-
ects. A DOAP file is a machine-readable document that’s used to share information
about a project. Listing 8.1 is a sample DOAP file.

 A DOAP file can be used to easily import projects into directories, automate the
updating of these directories, exchange data between directories, configure resources
like mailing lists, and provide support for package maintainers who bundle resources
for distribution. In short, you can save a lot of time by creating and maintaining a
DOAP file.

 There are many online catalogs in which you can register your product and
announce the existence and purpose of your project. Some of these catalogs are:

■ Freecode (http://freecode.com/)
■ The Free Software Directory (http://directory.fsf.org/wiki/Main_Page)
■ The GNOME Project (http://www.GNOME.org/)
■ The Open Source Directory (http://osdir.com/)
■ SourceForge (http://sourceforge.net)

http://en.wikipedia.org/wiki/Dereferenceable_Uniform_Resource_Identifier
http://semanticweb.org/wiki/SPARQL_endpoint
http://freecode.com/
http://www.gnu.org/directory/
http://directory.fsf.org/wiki/Main_Page
http://www.gnome.org/
http://osdir.com/
http://sourceforge.net
http://projects.apache.org/guidelines.html
http://projects.apache.org/guidelines.html
http://projects.apache.org/create.html
http://projects.apache.org/create.html
http://example.com/critters/bonobos/dump.ttl
http://www.sindice.com/developers/publishing
http://sindice.com/api/v2/ping
http://sindice.com/main/submit
http://sindice.com/main/submit
http://sindice.com/main/submit
http://sindice.com/search?q=date:today+domain:www.example.com
http://sindice.com/search?q=date:last_week+domain:www.example.com
http://sindice.com/search?q=date:last_week+domain:www.example.com
http://example.com/critters/bonobos/Mary
http://example.com/critters/bonobos/Mary
http://example.org/critters/bonobos/Mary
https://github.com/dbpedia/dbpedia-links
https://github.com/dbpedia/dbpedia-links
http://datahub.io/en/about
http://datahub.io/en/about
http://datahub.io/en/about
http://datahub.io/
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/CKANmetainformation
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/CKANmetainformation
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/CKANmetainformation

180 CHAPTER 8 Datasets
The process of manually registering is time-consuming. In addition, each new release
requires someone to visit each catalog’s site and update the project information. For-
tunately, the Semantic Web provides a mechanism for the automation of catalog regis-
tration and maintenance. You can take advantage of this by publishing and
maintaining a DOAP file for your project.

8.1.1 Creating a DOAP profile

Now we’re going to show you how to create a DOAP profile for Callimachus, an open
source project developed by 3 Round Stones. We did this using DOAP A Matic, which
provides a simple mechanism for preparing this profile. The resulting minimal DOAP
descriptor is illustrated in listing 8.1 This file was prepared using DOAP A Matic:
http://crschmidt.net/semweb/doapamatic/. The DOAP profile for Callimachus is
published at http://3roundstones.com/callimachus/callimachus.doap. You could
prepare a DOAP profile using an editor but we recommend that you use DOAP A
Matic. The resulting profile is in XML, and unless you’re familiar with XML, creating
this file from scratch is difficult.

<Project xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#

➥ xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

➥ xmlns=http://usefulinc.com/ns/doap#

➥ xmlns:foaf=http://xmlns.com/foaf/0.1/

➥ xmlns:admin="http://webns.net/mvcb/">
<name>The Callimachus Project</name>
<shortname>Callimachus</shortname>
<shortdesc>
Callimachus is the leading Open Source platform for navigating,

➥ managing, and visualizing applications using the Web of Data.
</shortdesc>
<description>
Callimachus is the leading Open Source platform for navigating, managing,

➥ and visualizing applications using the Web of Data. Use Callimachus to

➥ create and deploy mobile and Web apps using open data and enterprise

➥ content using open Web standards.
</description>
<homepage rdf:resource="http://callimachusproject.org/"/>
<wiki rdf:resource="http://callimachusproject.org/docs/?view"/>
<download-page

➥ rdf:resource="http://code.google.com/p/callimachus/downloads/list"/>
<bug-database

➥ rdf:resource="http://code.google.com/p/callimachus/issues/list"/>
<category rdf:resource="http://dbpedia.org/resource/Category:Semantic_Web"/>
<programming-language>Java</programming-language>
<programming-language>JavaScript</programming-language>
<license rdf:resource="http://usefulinc.com/doap/licenses/asl20"/>
<maintainer>
<foaf:Person>
<foaf:name>James Leigh</foaf:name>
<foaf:homepage rdf:resource="http://3roundstones.com"/>

Listing 8.1 Example DOAP file for Callimachus

This is the Apache License
Selection from the list of

available licenses.

https://github.com/dbpedia/dbpedia-links
http://lab.linkeddata.deri.ie/ve2/
http://lab.linkeddata.deri.ie/ve2/
https://live.gnome.org/MaintainersCorner
http://sindice.com
http://sindice.com
http://crschmidt.net/semweb/doapamatic/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://usefulinc.com/ns/doap#
http://xmlns.com/foaf/0.1/
http://linkeddata.uriburner.com/ode/
http://3roundstones.com/callimachus/callimachus.doap
http://datasets/bonobo.info/bonobo_links.nt
http://lab.linkeddata.deri.ie/ve2/
http://dbpedia.org/resource/Bonobo
http://dbpedia.org/resource/Bonobo
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://xmlns.com/foaf/0.1/
http://purl.org/dc/terms/
http://rdfs.org/ns/void
http://example.com/critters/bonobos#DS
http://example.com/critters/bonobos
http://example.org/critters/bonobos/Mary
http://manning.com/
http://opendatacommons.org/licenses/pddl/1.0/
http://example.com/sparql
http://example.com/sparql
http://example.com/critters/bonobos/dump.ttl
http://dbpedia.org/page/Category:Mammals_of_Africa
http://eol.org/pages/326448/overview
https://github.com/dbpedia/dbpedia-links
https://github.com/dbpedia/dbpedia-links
https://github.com/dbpedia/dbpedia-links
https://github.com/dbpedia/dbpedia-links
https://github.com/dbpedia/dbpedia-links

181Description of a Project
<foaf:mbox_sha1sum>ded445287ad3645499f20d61f1f1fbd3f17b7917</
foaf:mbox_sha1sum>

</foaf:Person>
</maintainer>
<developer>
<foaf:Person>
<foaf:name>David Wood</foaf:name>
<foaf:homepage rdf:resource="http://3roundstones.com"/>
<foaf:mbox_sha1sum>abe8c5daaf522b41c7550a48360be9379e59db2c</

foaf:mbox_sha1sum>
</foaf:Person>
</developer>
<helper>
<foaf:Person>
<foaf:name>Luke Ruth</foaf:name>
<foaf:homepage rdf:resource="http://3roundstones.com"/>
<foaf:mbox_sha1sum>8e9e08a4cc834f24b69e8fbee7d786493a3f3f9c</

foaf:mbox_sha1sum>
</foaf:Person>
</helper>
<repository>
<SVNRepository>
<browse rdf:resource="http://code.google.com/p/callimachus/source/browse/"/>
<location rdf:resource="http://callimachus.googlecode.com/svn/trunk/"/>
</SVNRepository>
</repository>
</Project>

Figure 8.1 represents the form available from DOAP A Matic. A closer examination of
the contents of listing 8.1 shows that each item corresponds to the contents of the
form. Figure 8.1 is the first screen of this form. You’ll notice that some of the text of
the descriptions isn’t visible. You should note that the length of the text isn’t limited
by the width of the text box for the short and full descriptions. The tool automatically
supplies the URL of the license as selected. In our case, the corresponding license is
Apache License 2.0. You’ll also note that we skipped categories that weren’t relevant,
like “Download Mirror.”

 Clicking the Generate button, at the bottom of the form but not visible in figure 8.1,
converts the information entered in the form to RDF/XML, as shown in listing 8.1. You
can then copy the output and retain it for future editing and/or publishing. The DOAP
RDF/XML file can be enhanced by adding additional statements using a text editor and
manually inserting relevant content. In examining listing 8.1, you’ll notice that the FOAF
vocabulary is used to describe the people associated with the project, such as the main-
tainer and the developer. If reading listing 8.1 is difficult because of the RDF/XML for-
mat, remember that you can copy and paste the DOAP A Matic output into a converter
like the one found at http://www.rdfabout.com/demo/validator/ that converts and
displays the equivalent Turtle file.

http://www.rdfabout.com/demo/validator/
http://www.sitemaps.org/protocol.html
http://www.sitemaps.org/protocol.html
http://rdf.opiumfield.com/
http://rdf.opiumfield.com/
http://rdf.opiumfield.com/
http://dbpedia.org/
http://dbpedia.org/
http://foaf.qdos.com/
http://identi.ca/
http://www.spin.de/
http://oai.rkbexplorer.com/
http://users.livejournal.com/
http://users.livejournal.com/
http://products.semweb.bestbuy.com/
https://github.com/dbpedia/dbpedia-links

182 CHAPTER 8 Datasets
8.1.2 Using the DOAP vocabulary

You should be aware of the full DOAP vocabulary so that you can add additional rele-
vant content. The DOAP vocabulary currently contains three kinds of classes:

■ Project—The main project resource
■ Version—An instance of released software
■ Repository—A source code repository

For convenience, a summary of the DOAP classes and properties is contained in table 8.1.

Table 8.1 DOAP classes and selected properties

Project class

name category—URI of assigned
type

license—URI of associated
license

shortname wiki—URI of assigned wiki download-page—URI of
where the project can be
obtained

homepage bug-database—URI for bug
reporting

download-mirror—URI of
mirror site

old-homepage screenshots—URI of a web
page of screenshots

repository—a
doap:Repository for the
source code

Figure 8.1 Sample of DOAP A Matic’s form

http://www.sitemaps.org/protocol.html
http://www.sitemaps.org/protocol.html#escaping
http://api.hi5.com/

183Description of a Project
For a complete description, access the DOAP schema at the DOAP namespace, http://
usefulinc.com/ns/doap. A more readable version of the full schema can be displayed by
using Morten Frederiksen’s Schema Reader (http://xml.mfd-consult.dk/ws/2003/01/
rdfs/), an online service for transforming an RDF schema to human-readable form. A
sample of the output from this service is shown in figure 8.2.

 After you’ve completed a DOAP file, you should use a validator like the RDF Valida-
tor and Converter found at http://www.rdfabout.com/demo/validator/ to ensure
that the content of the document is valid RDF. Then you need to publish it in a pub-
licly accessible space where it can be obtained via an HTTP or HTTPS request. After
publication, your project description will be available to aggregator sites that pull in
project information from different sources and combine them into a single database.
You can either notify an aggregator directly of the location of your DOAP file or you
can register it at one of the sites from which an aggregator harvests such files. Harvest-
ing of updates would be automatic. In general, the DOAP file is stored with the proj-
ect. Project maintainers do not need to visit the aggregator site to maintain their
records. As needed, simply update your local DOAP file and wait for the aggregator
site to harvest the new information. That’s the beauty of the automated maintenance
of this data.

created—YYYY-MM-DD format mailing-list—URI of such
list

release—a doap:Version
for current release

description programming-language maintainer—foaf:Person
for project maintainer or leader

shortdesc os—specific OS limitations, omit
if not OS specific

developer—foaf:Person
of project developer

documenter—foaf:Person
of documentation contributor

translator—foaf:Person
of a translation contributor

Repository class

anon-root—path of the root
of the anonymously accessible
repository

module—module name of
source code within the repository

browse—URL of web browser
interface to the repository

location—base URL of archive

Version class

branch—a string indicating the
branch of this version, such as
stable, unstable, GNOME26

name—a release name, such as
Lion

created—date of release in
YYYY-MM-DD form

revision—revision number of
the release; e.g., 2.5

Table 8.1 DOAP classes and selected properties (continued)

Project class

http://usefulinc.com/ns/doap
http://usefulinc.com/ns/doap
http://usefulinc.com/ns/doap
http://eol.org/pages/326448/overview
http://eol.org/pages/326448/overview
http://www.sitemaps.org/protocol.html#urldef
http://www.sitemaps.org/protocol.html#urldef

184 CHAPTER 8 Datasets
Unfortunately, expectations about the content of a DOAP file may differ among online
catalog services. One such service, the Apache Software Foundation (ASF), at http://
projects.apache.org/guidelines.html, provides a form to assist you in creating an ASF-
compatible DOAP file at http://projects.apache.org/create.html. You can find a sam-
ple of an ASF DOAP file in the following listing. Once you determine where the file will
be stored, send an email to <site-dev@apache.org> so it may be included in the project
listings. The URL of this DOAP file must use HTTP and not HTTPS.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"?>
<rdf:RDF xml:lang="en"
 xmlns="http://usefulinc.com/ns/doap#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:asfext="http://projects.apache.org/ns/asfext#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/">
<!--
 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with
 this work for additional information regarding copyright ownership.

Listing 8.2 An ASF DOAP file for the Callimachus Project

Figure 8.2 Sample of DOAP schema transformed with Frederiksen’s schema viewer

http://www.sitemaps.org/protocol.html
http://projects.apache.org/guidelines.html
http://code.google.com/p/sitemap-generators/wiki/SitemapGenerators
http://code.google.com/p/sitemap-generators/wiki/SitemapGenerators
http://code.google.com/p/sitemap-generators/wiki/SitemapGenerators
http://example.com/catalog/

185Description of a Project

nce

.

 The ASF licenses this file to You under the Apache License, Version 2.0
 (the "License"); you may not use this file except in compliance with
 the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->
 <Project rdf:about="http://callimachusproject.org/">
 <created>2013-01-31</created>
 <license rdf:resource="http://usefulinc.com/doap/licenses/asl20" />
 <name>Apache The Callimachus Project</name>
 <homepage rdf:resource="http://callimachusproject.org/" />
 <asfext:pmc rdf:resource="http://abdera.apache.org" />
 <shortdesc>Callimachus is the leading Open Source platform

➥ for navigating, managing, and visualizing applications using

➥ the Web of Data.</shortdesc>
 <description>Callimachus is the leading Open Source platform

➥ for navigating, managing, and visualizing applications using

➥ the Web of Data. Use Callimachus to create and deploy mobile

➥ and Web apps using open data and enterprise content using open

➥ Web standards.</description>
 <bug-database

➥ rdf:resource="http://code.google.com/p/callimachus/issues/list" />
 <download-page

➥ rdf:resource="http://code.google.com/p/callimachus/downloads/list" />
 <programming-language>Java</programming-language>
 <category rdf:resource="http://projects.apache.org/category/content" />
 <release>
 <Version>
 <name>Callimachus</name>
 <created>2010-12-21</created>
 <revision>1.0</revision>
 </Version>
 </release>
 <repository>
 <SVNRepository>
 <location

➥ rdf:resource="http://callimachus.googlecode.com/svn/trunk/"/>
 <browse

➥ rdf:resource="http://code.google.com/p/callimachus/source/browse/"/>
 </SVNRepository>
 </repository>
 <maintainer>
 <foaf:Person>
 <foaf:name>James Leigh</foaf:name>
 <foaf:mbox rdf:resource="mailto:james@example.com"/>
 </foaf:Person>
 </maintainer>
 </Project>
</rdf:RDF>

Additional
content

expected
by ASF.

Notice that the
mailbox refere
isn’t encrypted
using sha1sum

http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd
http://www.sitemaps.org/schemas/sitemap/0.9/siteindex.xsd
http://example.com/catalog.rdf#catalog</sc:datasetURI
http://example.com/products/%3c/sc:linkedDataPrefix
http://example.com/sparql
http://example.org/data/catalog_archive.rdf.gz [CA]</sc:dataDumpLocation
http://www.bbc.co.uk
http://www.bbc.co.uk

186 CHAPTER 8 Datasets
The expectations for a GNOME DOAP file are similar to those produced by DOAP A
Matic. GNOME provides specific guidance at https://live.GNOME.org/Maintainers-
Corner. One difference is that the email entries aren’t encrypted. An additional require-
ment is that the DOAP file needs to be named according to the name of your module
(for example, callimachus.doap) and located in the top directory in the master repos-
itory. The differences among these DOAP files are minor. Once you prepare a basic
DOAP file, you can use a text editor to customize the contents for various catalogs.

 As we’ve just discussed, you should document and publicize your open source proj-
ect using a DOAP profile. The preparation of this document will enable aggregators to
compile your project’s information in their databases. You maintain the original docu-
ment in your space, and the aggregator will automatically update their records.

8.2 Documenting your datasets using VoID
Publishers are increasingly interested in making their content searchable, linkable,
and easier to aggregate and reuse. Social media sites and search engines want to
expose their content to the right users, in a rich and attractive form. A dataset pub-
lisher needs to be able to publish metadata about their dataset so that the dataset can
be discovered and aggregated by search engines and Web spiders. Consumers need to
know the contents of your dataset, its location, which vocabularies are used, and other
datasets to which this dataset refers. This metadata needs to provide clear licensing
information so that consumers can determine how they might use the data and how to
attribute credits. Consumers need to have information about the access interfaces.
The Vocabulary of Interlinked Datasets can support these needs, and the publication
of a VoID file about your dataset will facilitate its use by others.

8.2.1 The Vocabulary of Interlinked Datasets

VoID was introduced in 2009. It’s an RDF schema vocabulary for expressing metadata
about RDF datasets. It’s intended as a bridge between the publishers and users of RDF
data, with applications ranging from data discovery to cataloging and archiving of
datasets. This section presents an overview of the VoID vocabulary. It contains terms
that enable you to express general metadata, access metadata, structural metadata,
and links between datasets. It also provides deployment advice and discusses the dis-
covery of VoID descriptions. Table 8.2 shows an overview of this vocabulary.

 A complete listing and associated descriptions can be found at
http://www.w3.org/TR/void.

General metadata includes information such as a title and description, the license of
the dataset, and information about its subject. It utilizes the Dublin Core model (http:
//www.w3.org/TR/void/#metadata). Some of these properties are the name of the data-
set, the creator and publisher, date of creation, and date of most recent modification.
Access metadata describes how RDF data can be accessed using protocols such as RDF
Data Dumps, SPARQL endpoints, and resolvable HTTP URIs.

http://sws.geonames.org/5224323/
http://www.w3.org/TR/void/#metadata
http://www.w3.org/TR/void/#metadata
https://live.GNOME.org/MaintainersCorner
http://example.com/catalog.rdf
http://example.com/catalog.rdf
http://example.com/products/
http://example.com/products/
http://data.nytimes.com/69949648080753147811
http://data.nytimes.com/69949648080753147811
http://rdf.freebase.com/ns/en.rhode_island

187Documenting your datasets using VoID
Structural metadata provides high-level information about the schema and internal
structure of a dataset and can be helpful when exploring or querying datasets. This
includes information such as the vocabularies used in the dataset, statistics about the
size of the dataset, and examples of typical resources in the dataset. This information
is useful for tasks such as querying and data integration.

Descriptions of links between datasets provide information about the relationship
between multiple datasets. The void:target property is used to name the two datasets.
Every linkset must have exactly two distinct void:targets. void:target has subprop-
erties, void:subjectsTarget and void:objectsTarget. These can be used to state the
subject-object direction of the links explicitly: the subjects of all link triples are in the
dataset named void:subjectsTarget and the objects in void:objectsTarget.

 A linkset may not have more than one void:subjectsTarget or more than one
void:objectsTarget. There are two different notions of “directionality” for RDF
links: the dataset providing the subjects of the triples uses void:subjectsTarget and
the dataset containing the objects uses void:objectsTarget. The dataset contain-
ing the links expresses this by making the linkset a void:subset of the respective tar-
get datasets.

 This is especially important when referring to owl:sameAs links. This property is
symmetric, so its subjects and objects are exchangeable. The question is usually which
publisher made the links available as part of its dataset. The publisher should make its
linkset a void:subset of the target dataset.

8.2.2 Preparing a VoID file

This section will explain how to use the ve2 editor to prepare a VoID file. We’ll illus-
trate two such files; the first one is for a fictitious dataset and demonstrates how to

Table 8.2 VoID at a glance

Classes

Dataset DatasetDescription Linkset TechnicalFeature

Properties

class classPartition classes dataDump

distinctObjects distinctSubjects documents entities

exampleResource feature inDataset linkPredicate

objectsTarget openSearchDescription properties property

property-
Partition

rootResource sparqlEndpoint subjectsTarget

subset target triples uriLookupEndpoint

uriRegexPattern uriSpace vocabulary

188 CHAPTER 8 Datasets
express the interlinking of two separate datasets, as shown in the following listing. The
second, shown in listing 8.4, is for our Bonobo dataset, which isn’t interlinked but
should be meaningful to you because we discussed this dataset in chapter 2.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix void: <http://rdfs.org/ns/void#> .
@prefix : <#> .

your dataset
:myDS rdf:type void:Dataset ;
 foaf:homepage <http://example.org/> ;
 dcterms:title "Example Dataset" ;
 dcterms:description "A simple dataset in RDF." ;
 dcterms:publisher <http://example.org/me> ;
 dcterms:source <http://example.org/source.xml> ;
 dcterms:license <http://opendatacommons.org/licenses/pddl/1.0/> ;
 void:sparqlEndpoint <http://dbpedia.org/sparql> ;
 void:uriLookupEndpoint <http://lookup.dbpedia.org> ;
 void:vocabulary <http://purl.org/dc/terms/> ;
 void:exampleResource <http://example.org/resource/ex> ;
 void:subset :myDS-DS1 .
datasets you link to

:DS1 rdf:type void:Dataset ;
 foaf:homepage <http://dbpedia.org/> ;
 dcterms:title "DBpedia" ;
 dcterms:description "Linked Data version of Wikipedia." ;
 void:exampleResource <http://dbpedia.org/resource/Ludwig_van_Beethoven> .

:myDS-DS1 rdf:type void:Linkset ;
 void:linkPredicate <http://www.w3.org/2002/07/owl#sameAs> ;
 void:target :myDS ;
 void:target :DS1 .

To prepare a dataset for publication, you’ll need a void file that you publish alongside
the dataset. We recommend that you use ve2—the VoID editor (http://lab.linked-
data.deri.ie/ve2/). This tool walks you through the preparation of this file and pro-
vides a form that enables you to enter relevant information about your dataset.

 ve2, maintained by Michael Hausenblas (http://mhausenblas.info/), has multiple
capabilities. It enables you to prepare a VoID file, inspect it, and announce it. All you
need to do is point your browser at http://lab.linkeddata.deri.ie/ve2/. The editor
enables you to specify most of the metadata that you’ll need. But you can always copy
and paste the output into a text editor and insert additional information if needed.

 Figure 8.3 is a screen shot of using ve2 to generate the VoID file for listing 8.4. This
figure illustrates the ease with which you can create a VoID file.

Listing 8.3 Sample VoID file for a fictitious dataset

We assume that the empty
prefix is bound to the base
URL of the current file.

Interlinking
to :DS1

http://lab.linkeddata.deri.ie/ve2/

189Documenting your datasets using VoID

You can find the VoID file by using ve2 to insert content related to our Bonobo dataset,
in the following listing. We chose this illustration because you’re familiar with this
dataset from chapter 2.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix void: <http://rdfs.org/ns/void#> .
@prefix : <#> .

Bonobos dataset
<http://example.com/critters/bonobos#DS> rdf:type void:Dataset ;
 foaf:homepage <http://example.com/critters/bonobos> ;
 dcterms:title "Bonobos Dataset" ;
 dcterms:description "A dataset in RDF that describes bonobos (pan

➥ paniscus)." ;
 void:exampleResource <http://example.org/critters/bonobos/Mary> ;
 dcterms:publisher <http://manning.com/> ;
 dcterms:license <http://opendatacommons.org/licenses/pddl/1.0/> ;
 void:sparqlEndpoint <http://example.com/sparql> ;
 void:dataDump <http://example.com/critters/bonobos/dump.ttl> ;
 dcterms:subject <http://dbpedia.org/page/Category:Mammals_of_Africa> .

As we’ve just discussed, you need to be able to publish metadata about your dataset so that
the dataset can be discovered and aggregated by search engines and web spiders. The prep-
aration and publication of a VoID file about your dataset is the way to accomplish this.

Listing 8.4 A sample void.ttl file for a fictitious Bonobo dataset

Figure 8.3 Sample of creation screen of ve2

We assume that the empty
prefix is bound to the base
URL, site of publication, of
the current file.

Sample URL
showcasing
data

190 CHAPTER 8 Datasets
8.3 Sitemaps
Webmasters need to inform search engines about pages on their sites that are avail-
able for crawling. Sitemaps support this effort. In general, a sitemap is an XML file
that lists URLs for a site along with additional metadata about each URL. Using a
sitemap, webmasters can provide information about each URL:

■ Last update
■ Frequency of updates
■ The relative level of importance of this URL
■ Metadata about specific types of content on your site
■ Running time, category, and family-friendly status of a video
■ Subject matter, type, and license of an image

The content of a sitemap helps search engines more effectively crawl your site. A sitemap
is especially useful in identifying dynamic web content that’s provided on the fly.

 Web crawlers usually discover pages from links both within your site and from
other sites. Sitemaps supplement this data and enable crawlers that support sitemaps
to pick up all URLs specified in the map. Sitemaps are especially useful if your site is
new and has few links to it and if your site has a large archive of content pages that are
poorly linked to each other. Using sitemaps is no guarantee that search engines will
include your web pages in their results, but it will improve your chances for discovery.

 Fortunately, the W3C has a standard protocol defining these documents. This for-
mat, Sitemap 0.90, is described at http://www.sitemaps.org/protocol.html. More good
news is that Google, Yahoo!, and Microsoft have jointly adopted this protocol, thus sim-
plifying how webmasters and online publishers submit their sites’ contents for indexing.
A semantic sitemap facilitates the consumption of published RDF data by Semantic Web
browsers and search engines. Semantic sitemaps are an extension of the Sitemap 0.90
protocol. Semantic sitemaps enable the smart selection of data access methods by clients
and crawlers alike. This additional information will announce the presence of RDF data
and deal with specific RDF publishing needs. Section 8.3.1 will briefly address the format
and preparation of a sitemap that follows the 0.90 protocol. We’ll then address the
extensions that you’d use to generate a semantic sitemap.

8.3.1 Non-semantic sitemaps

Follow the guidelines on http://www.sitemaps.org/protocol.html in preparing a
sitemap and verify that the file is syntactically correct. You can find an XML validation
tool at http://www.w3schools.com/xml/xml_validator.asp. Here are some guidelines
that you should be especially careful to follow:

■ All data values must be entity-escaped (http://www.sitemaps.org/proto-
col.html#escaping).

■ The file itself must be UTF-8 encoded (save the file using this format) and
encoded for readability by the web server on which it’s located.

http://www.sitemaps.org/protocol.html#escaping
http://www.sitemaps.org/protocol.html#escaping

191Sitemaps

y,
■ All URLs in a sitemap must be from a single host.
■ A sitemap file can contain no more than 50,000 URLs and must be no larger

than 50 MB when uncompressed; break larger sitemaps into multiple smaller
sitemaps.

■ List multiple sitemaps in a sitemap index file (http://www.sitemaps.org/proto-
col.html) and then submit the index file.

The following listing shows a basic sitemap that contains just one URL and uses all
required and optional tags.

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <url>
 <loc>http://www.example.com/Samples/</loc>
 <lastmod>2012-02-01</lastmod>
 <changefreq>monthly</changefreq>
 <priority>0.8</priority>
 </url>
</urlset>

You can create your sitemap manually using a text editor. Alternatively, there are a
number of tools (http://code.google.com/p/sitemap-generators/wiki/SitemapGen-
erators) available that can help you generate your sitemap. After you’ve prepared
your sitemap file, place it on your web server. The location of a sitemap file deter-
mines the set of URLs that can be included in that sitemap. A sitemap file located
at http://example.com/Sample/sitemap.xml can include any URLs starting with
http://example.com/Sample/ but may not include URLs starting with http://exam-
ple.com/catalog/.

 Now you need to inform the search engines that support this protocol of its exis-
tence. You can do this by the following methods:

■ Submitting it to them via the search engine’s submission interface.
■ Specifying the location in your site’s robots.txt file. Robots.txt is a regular text file

that through its name has special meaning to the majority of robots on the Web.
For example, the robots.txt file at http://www.example.com/robots.txt would
contain the line Sitemap: http://www.sitemaphost.com/sitemap1.xml.

■ Sending an HTTP request.

Listing 8.5 Sample XML sitemap

Encloses all information about the set of
URLs included in the sitemap. Required.

Encloses all
information

about a specific
URL. Required.

Specifies the URL
of the resource.
Required.

The date the URL was
last modified, in YYYY-

MM-DDThh:mm TZD
format. Required,

although the time value
is optional.

Provides a hint about how
frequently the page is likely
to change. Optional. Valid
values are always, hourly,
daily, weekly, monthly, yearl
never (an archived URL).

Describes the priority of a URL relative
to all the other URLs on the site. This

priority can range from 1.0 (extremely
important) to 0.1 (not important).

Doesn’t affect search rankings.

http://www.sitemaps.org/protocol.html
http://www.sitemaps.org/protocol.html
http://code.google.com/p/sitemap-generators/wiki/SitemapGenerators
http://code.google.com/p/sitemap-generators/wiki/SitemapGenerators

192 CHAPTER 8 Datasets

Its S
Web i

exam
catalog

alog;
be re

t
fur
ann

a
dataset

/exam
cat
Search engines can then retrieve your sitemap and make the URLs available to their
crawlers.

8.3.2 Semantic sitemaps

In this section, we’ll discuss the extensions that are needed to prepare a semantic
sitemap. This additional information is intended to improve crawling performance,
enable a complete crawl of disconnected datasets, efficiently discover scattered and
poorly linked RDF documents, identify and catalog SPARQL endpoints, enable site
operators to make delegated authorities visible, identify RDF dumps, and perform
closed-world queries about self-contained data. Semantic sitemaps enable the efficient
indexing of large datasets because they require no crawling on your site. You can
download the schema for semantic sitemaps at http://www.sitemaps.org/schemas/
sitemap/0.9/sitemap.xsd. You can find the schema for semantic sitemap index files at
http://www.sitemaps.org/schemas/sitemap/0.9/siteindex.xsd. The following listing
illustrates a semantic sitemap. A second example is in listing 8.7 and again uses our
Bonobo example.

<?xml version="1.0" encoding="UTF-8"?>1

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
 xmlns:sc="http://sw.deri.org/2007/07/sitemapextension/scschema.xsd">
 <sc:dataset>
 <sc:datasetLabel>Example Corp. Product Catalog</sc:datasetLabel>
 <sc:datasetURI>http://example.com/catalog.rdf#catalog</sc:datasetURI>
 <sc:linkedDataPrefix slicing="subject-object">
http://example.com/products/</sc:linkedDataPrefix>
 <sc:sampleURI>http://example.com/products/widgets/X42</sc:sampleURI>
 <sc:sampleURI>http://example.com/products/categories/all</sc:sampleURI>
 <sc:sparqlEndpointLocation slicing="subject-object">

➥ http://example.com/sparql

➥ </sc:sparqlEndpointLocation>
 <sc:dataDumpLocation>

➥
http://example.com/data/catalogdump.rdf.gz

➥ </sc:dataDumpLocation>
 <sc:dataDumpLocation>

➥ http://example.org/data/catalog_archive.rdf.gz </sc:dataDumpLocation>
 <sc:dataDumpLocation>

➥ http://example.org/data/product_categories.rdf.gz </sc:dataDumpLocation>
#E, #F

 <changefreq>weekly</changefreq>
 </sc:dataset>
</urlset>

Listing 8.6 Sitemap XML file that uses semantic crawling extensions1

1 http://sw.deri.org/2007/07/sitemapextension/#examples

Namespace for the
sitemapextension vocabulary

Dataset
is labeled

as the
Example

Corp.
Product
Catalog.

emantic
dentifier
is http://
ple.com/
.rdf#cat
 it would
asonable
o expect
ther RDF
otations
bout the
 at http:/
ple.com/
alog.rdf.

Dataset contents have identifiers starting with
http://example.com/products/, and descriptions

of them are served as linked data.

The dump of the
entire dataset is
split into three

parts.

Updates to the
dataset should be
expected weekly.

http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd
http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd

193Sitemaps

o

a

Table 8.3 lists the tags that can be used in a semantic sitemap. After preparation, the
semantic sitemap needs to be published by saving it on your server and noting its exis-
tence in the corresponding robots.txt file.

The following listing illustrates a possible semantic sitemap for our Bonobo site. We’ll
reference this sitemap in the next section when we address linking to external data.

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"

➥ xmlns:sc="http://sw.deri.org/2007/07/sitemapextension">
 <sc:dataset>
 <sc:datasetLabel>
 Bonobos Dataset
 </sc:datasetLabel>
 <sc:datasetURI>http://example.com/critters/bonobos#DS
 </sc:datasetURI>
 <sc:sampleURI>http://example.com/critters/bonobos/Mary
 </sc:sampleURI>
 <sc:linkedDataPrefix sc:slicing="subject-object">
 http://example.com/critters/bonobos/</sc:linkedDataPrefix>
 <sc:sparqlEndpoint sc:slicing="subject-object">
 http://example.com/sparql
 </sc:sparqlEndpoint>
 <sc:dataDump>http://example.com/critters/bonobos/dump.ttl
 </sc:dataDump>
 <changefreq>weekly</changefreq>
 </sc:dataset>
</urlset>

Table 8.3 Semantic sitemap extensions

Semantic sitemap tags Description

sc:dataset Declares a dataset

sc:linkedDataPrefix A prefix for Linked Data hosted on a server

sc:sparqlEndpointLocation The location of a SPARQL protocol endpoint

sc:sparqlGraphName Specifies the URI of a named graph within the SPARQL endpoint

sc:dataDumpLocation Location of an RDF data dump file

sc:datasetURI Optional URI that identifies the current dataset

sc:datasetLabel Optional name of the dataset

sc:sampleURI Points to a representative sample within the dataset; useful for
human exploration of the dataset

Listing 8.7 Sample semantic sitemap for our Bonobo example

URL pointing t
sample data

A base URL is
included in
<sc:linkedDat
Prefix>.

194 CHAPTER 8 Datasets
8.3.3 Enabling discovery of your site

Just as Google can index your web pages, Sindice can index your semantic content
using semantic sitemaps (http://www.sindice.com/developers/publishing), as illus-
trated in figure 8.4. Content providers need to do the following:

■ Publish data as machine-readable pages using RDF or RDFa standards.
■ Enable effective discovery and synchronization using your sitemap.xml and

robots.txt files. Be sure to include lastmod, changefreq, and priorityfields so
Sindice and others can limit their downloads to only new and changed pages.

■ Tell Sindice about your site. Individual pages from your site can quickly be
updated into Sindice by sending an automatic notification using the Sindice
Ping API. For example:

curl -H "Accept: text/plain" --data-binary

➥ 'http://www.example.com/mypage.html'

➥ http://sindice.com/api/v2/ping

NOTE 'http://www.example.com/mypage.html' needs to be replaced with
the actual URL at which your data is published. This URL needs to be pub-
licly accessible.

An alternative method is to use the submit form, which can be found at http://
sindice.com/main/submit.

■ Check that your site has been discovered and synchronized. A day or even some
hours after submitting your site, you can search Sindice to determine how many
of your pages have been indexed. Substitute your domain into the following
searches to find which pages have been indexed today or over the past week:
http://sindice.com/search?q=date:today+domain:www.example.com and
http:// sindice.com/search?q=date:last_week+domain:www.example.com.

Both VoID and semantic sitemaps can include sample URLs within a dataset. But the
bonobo example developed in chapter 2 doesn’t contain instances of bonobos; it
merely provides a description of bonobos in general. Therefore, we can’t really pro-
vide an example URL. If you needed to, you could add a description of a specific
bonobo to the dataset, like this:

http://example.com/critters/bonobos/Mary a dbpedia:Bonobo;
rdfs:label "Mary the bonobo".

Once you have a specific bonobo, you could add it as a sample URL to the VoID and
semantic sitemap.

 The sitemap triple would be

<sc:sampleURI>http://example.com/critters/bonobos/Mary
</sc:sampleURI>

The VoID sample URL triple would be

void:exampleResource <http://example.org/critters/bonobos/Mary> .

http://sindice.com/main/submit
http://sindice.com/main/submit

195Linking to other people’s data
In our discussion of sitemaps, we’ve demonstrated how to prepare a sitemap so that
you can inform search engines about pages on your site that are available for crawling.

8.4 Linking to other people’s data
You’ll recall our small bonobo dataset from chapter 2, repeated in listing 8.8. Assume
we’re interested in publishing this dataset on the LOD cloud. This dataset would be
more useful if we publish it with links to other related datasets already published. To
that end, we’re going to find related content on the LOD cloud so we can add links to
our data.

 One method for finding and selecting target datasets for interlinking is the “fol-
low-your-nose” principle. In this method, you manually inspect the content by follow-
ing URIs step by step. This is obviously labor intensive and time-consuming—by all
measures expensive. A better approach would be to use semantic indexers, like
Sindice (http://sindice.com) or a Web of Data browser like OpenLink Data
Explorer (http://linkeddata.uriburner.com/ode/). In addition, if a site’s semantic
sitemap indicates the availability of a SPARQL endpoint, then the dataset could be
queried. Let’s see what we can find regarding bonobos using Sindice and OpenLink
Data Explorer.

@prefix dbpedia: <http://dbpedia.org/resource/> .
@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.com/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

Listing 8.8 Bonobo example data in Turtle format from chapter 2

Figure 8.4 Sindice sitemap availability submission form

196 CHAPTER 8 Datasets
@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

dbpedia:Bonobo
 rdf:type dbpedia-owl:Eukaryote , dbpedia-owl:Mammal ,
dbpedia-owl:Animal ;
 rdfs:comment "The bonobo, Pan paniscus, previously called the pygmy
chimpanzee and less often, the dwarf or gracile chimpanzee, is a great ape
and one of the two species making up the genus Pan; the other is Pan
troglodytes, or the common chimpanzee. Although the name \"chimpanzee\" is
sometimes used to refer to both species together, it is usually understood
as referring to the common chimpanzee, while Pan paniscus is usually
referred to as the bonobo."@en ;
 foaf:depiction <http://upload.wikimedia.org/wikipedia/commons/a/a6/

Bonobo-04.jpg> ;
 foaf:name "Bonobo"@en ;
 rdfs:seeAlso http://eol.org/pages/326448/overview .

<http://dbpedia.org/resource/San_Diego_Zoo> rdfs:label "San Diego Zoo"@en ;
 <http://semanticweb.org/wiki/Property:Contains> dbpedia:Bonobo ;
 vcard:adr _:1 ;
 dbpedia:Exhibit _:2 ;
 a ex:Zoo
.

<http://dbpedia.org/resource/Columbus_Zoo_and_Aquarium> rdfs:label

➥ "Columbus Zoo and Aquarium"@en ;
 <http://semanticweb.org/wiki/Property:Contains> dbpedia:Bonobo ;
 a ex:Zoo
.

_:1 vcard:locality "San Diego" ;
 vcard:region "California" ;
 vcard:country-name "USA"
.

_:2 rdfs:label "Pygmy Chimps at Bonobo Road"@en ;
 <http://dbpedia.org/property/dateStart> "1993-04-03-08:00"^^xsd:date ;
 <http://semanticweb.org/wiki/Property:Contains> dbpedia:Bonobo
.

ex:Zoo a rdfs:Class .

Starting with Sindice.com, we searched for “bonobo.” We got more than 8,000 hits,
but not all of them refer to RDF data, as shown in figure 8.5. We decided to narrow the
choices using the advanced search option.

 As you can see in figure 8.6, we were able to narrow our search to about 3,000 doc-
uments. Looking at the selected members of the LOD cloud shown in figure 8.7, you
can see that dbpedia.org and wordnet.rkbexplorer are both present, so these RDF
links would help us reach our goal of 50 RDF links. You should manually examine
these datasets to determine their relevance to your dataset. In fact, the results contain
references to musicbrainz, which refers to a musician whose stage name is Bonobo.

Location of the
“Bonobos are
mammals” triple

This triple includes an external
link to the Encyclopedia of Life.

197Linking to other people’s data
Figure 8.5 Basic Sindice search for “bonobo”

Figure 8.6 Sindice bonobo advanced search results

198 CHAPTER 8 Datasets
All in all, we found more than 100 datasets relevant to bonobos, including:

We’ll augment our RDF dataset and update our VoID file to show these links. These tri-
ples will be inserted; see listing 8.9.

rdfs:seeAlso http://www.bbc.co.uk/nature/species/Bonobo.rdf ;
rdfs:seeAlso http://www.bbc.co.uk/nature/adaptations/Visual_perception#p00bk61z ;
rdfs:seeAlso http://wordnet.rkbexplorer.com/id/word-bonobo ;

@prefix dbpedia: <http://dbpedia.org/resource/> .
@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://example.com/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

dbpedia:Bonobo
 rdf:type dbpedia-owl:Eukaryote , dbpedia-owl:Mammal ,

■ rdf.opiumfield.com (2080) ■ dbpedia.org (296)
■ www.bbc.co.uk (198) ■ api.hi5.com (85)
■ foaf.qdos.com (27) ■ identi.ca (18)
■ www.spin.de (16) ■ oai.rkbexplorer.com (13)
■ users.livejournal.com (8) ■ products.semweb.bestbuy.com (7)

Listing 8.9 Extended bonobo example data in Turtle format

Figure 8.7 Selection
from the LOD cloud di-
agram

199Linking to other people’s data
dbpedia-owl:Animal ;
 rdfs:comment "The bonobo, Pan paniscus, previously called the pygmy
chimpanzee and less often, the dwarf or gracile chimpanzee, is a great ape
and one of the two species making up the genus Pan; the other is Pan
troglodytes, or the common chimpanzee. Although the name \"chimpanzee\" is
sometimes used to refer to both species together, it is usually understood
as referring to the common chimpanzee, while Pan paniscus is usually
referred to as the bonobo."@en ;
 foaf:depiction <http://upload.wikimedia.org/wikipedia/commons/a/a6/

Bonobo-04.jpg> ;
 foaf:name "Bonobo"@en ;
 rdfs:seeAlso http://eol.org/pages/326448/overview ;
 rdfs:seeAlso http://www.bbc.co.uk/nature/species/Bonobo.rdf ;
 rdfs:seeAlso
 ➥ http://www.bbc.co.uk/nature/adaptations/

Visual_perception#p00bk61z ;
 rdfs:seeAlso http://wordnet.rkbexplorer.com/id/word-bonobo .

<http://dbpedia.org/resource/San_Diego_Zoo> rdfs:label "San Diego Zoo"@en ;
 <http://semanticweb.org/wiki/Property:Contains> dbpedia:Bonobo ;
 vcard:adr _:1 ;
 dbpedia:Exhibit _:2 ;
 a ex:Zoo
.

<http://dbpedia.org/resource/Columbus_Zoo_and_Aquarium> rdfs:label

➥ "Columbus Zoo and Aquarium"@en ;
 <http://semanticweb.org/wiki/Property:Contains> dbpedia:Bonobo ;
 a ex:Zoo
.

_:1 vcard:locality "San Diego" ;
 vcard:region "California" ;
 vcard:country-name "USA"
.

_:2 rdfs:label "Pygmy Chimps at Bonobo Road"@en ;
 <http://dbpedia.org/property/dateStart> "1993-04-03-08:00"^^xsd:date ;
 <http://semanticweb.org/wiki/Property:Contains> dbpedia:Bonobo
.

ex:Zoo a rdfs:Class .

We also need to modify the VoID file to reflect the links to these external datasets. The
modified file is shown in the following listing. These external dataset links are single-
directional. Our dataset references them, but they don’t reference our bonobo dataset.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix void: <http://rdfs.org/ns/void#> .

Listing 8.10 Modified VoID file showing links to external datasets

Additional RDF links

200 CHAPTER 8 Datasets
@prefix : <#> .

your dataset
<http://example.com/critters/bonobos#DS> rdf:type void:Dataset ;
 foaf:homepage <http://example.com/critters/bonobos> ;
 dcterms:title "Bonobos Dataset" ;
 dcterms:description "A dataset in RDF that describes bonobos

➥ (pan paniscus)l" ;
 dcterms:publisher <http://manning.com/> ;
 dcterms:license <http://opendatacommons.org/licenses/pddl/1.0> ;
 void:sparqlEndpoint <http://example.com/sparql> ;
 void:dataDump <http://example.com/critters/bonobos/dump.ttl> ;
 void:exampleResource <http://example.org/critters/bonobos/Mary> ;
 void:subset :myDS-DS1 ;
 void:subset :myDS-DS2 .

datasets you link to

interlinking to :DS1
:DS1 rdf:type void:Dataset ;
 foaf:homepage <http://www.bbc.co.uk> ;
 dcterms:title "bbc" ;
 dcterms:description "rdf of bonobo data" ;
 void:exampleResource <http://www.bbc.co.uk/nature/species/Bonobo.rdf> .

:myDS-DS1 rdf:type void:Linkset ;
 void:linkPredicate <http://www.w3.org/2000/01/rdf-schema#seeAlso> ;
 void:target <http://example.com/critters/bonobos#DS> ;
 void:target :DS1 .

interlinking to :DS2
:DS2 rdf:type void:Dataset ;
 foaf:homepage <http://wordnet.rkbexplorer.com> ;
 dcterms:title "wordnet" ;
 dcterms:description "rdf dictionary" .

:myDS-DS2 rdf:type void:Linkset ;
 void:linkPredicate <http://www.w3.org/2000/01/rdf-schema#seeAlso> ;
 void:target <http://example.com/critters/bonobos#DS> ;
 void:target :DS2 .

8.5 Examples of using owl:sameAs to interlink datasets
A critical component in the ability to interlink RDF datasets is the use of owl:sameAs.
This property enables machines to merge resource descriptions if the resources
described are linked with owl:sameAs. Owl:sameAs is part of <$startrange>OWL (Web
Ontology Language):interlinking datasets usingOWL and is frequently used to sup-
port Linked Data integration across identified resources and across distributed data-
sets. It provides an alternative means to rdfs:seeAlso to refer to an external
equivalent resource. It plays a critical role in supporting the Linked Data principles as
put forth by Tim Berners-Lee “to include links to other URIs” so that discovery of
related data is promoted. The following listing shows examples of using owl:sameAs.
The first example is an extraction of a fragment from a FOAF document. The use of

Defining the
relationship to
www.bbc.co.uk, DS1

Defining the relationship to
wordnet.rkbexplorer.com, DS2

201Examples of using owl:sameAs to interlink datasets
owl:sameAs here enables the integration of information from this FOAF document
and that stored on my Facebook and Twitter accounts.

@base <http://rosemary.umw.edu/~marsha/foaf.ttl#> .
@base <http://rosemary.umw.edu/~marsha/foaf.ttl#> .
@prefix admin: <http://webns.net/mvcb/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

<me> a foaf:Person;
 foaf:family_name "Zaidman";
 foaf:givenname "Marsha";
 foaf:homepage <http://rosemary.umw.edu/~marsha>;
 owl:sameAs <http://www.facebook.com/marsha.zaidman>;
 owl:sameAs <https://twitter.com/MarshaZman>.

More recent uses of owl:sameAs connect resources from Linked Data sources. The
example shown in the following listing illustrates that the New York Times is adding links
to a Geonames URI, a DBpedia URI, and a Freebase URI. All links are now equivalent
to The New York Times resource (http://data.nytimes.com/69949648080753147811),
and all contents at these links may be integrated.

<http://data.nytimes.com/69949648080753147811>
owl:sameAs <http://data.nytimes.com/rhode_island_geo> ;
owl:sameAs <http://dbpedia.org/resource/Rhode_Island> ;
owl:sameAs <http://rdf.freebase.com/ns/en.rhode_island> ;
owl:sameAs <http://sws.geonames.org/5224323/> .

To reiterate, the use of owl:sameAs in this context will enable machine aggregation of
the data in the specified equivalent links. But such simple aggregation may introduce
errors. For example, the use of owl:sameAs may combine context-dependent descrip-
tions provided in different data sources. To appreciate the problem, you have to under-
stand entailment. Entailments are the sets of facts that can be deduced from the meaning
of Semantic Web data. The crucial difference between plain-old data and Linked Data
is that Linked Data includes these entailments. Consider the English-language state-
ment “bananas are yellow.” Because it’s expressed in a language, it has meaning in addi-
tion to the single fact that bananas are yellow. If we also assert that a specific object is a
banana, then there is an entailment that the object is also yellow.

 You should be aware that the common usage of owl:sameAs may raise questions.
As an example involving the population of the state of Rhode Island (figure 8.8), the

Listing 8.11 Extract from FOAF document illustrating owl:sameAs

Listing 8.12 Illustration of using owl:sameAs to connect linked resources

Additional prefix
statement to make
the OWL ontology
accessible

Identifies the references to my Facebook
account and my Twitter account as matching

resources in the remote documents

202 CHAPTER 8 Datasets
The New York Times is using owl:sameAs to show the equivalence of http://
data.nytimes.com/69949648080753147811 to http://rdf.freebase.com/ns/en.rhode
_island and to http://sws.geonames.org/5224323/. Unfortunately, the populations
reported for Rhode Island using these two sources are 1,051,302 and 1,050,292,
respectively. Each value could be true in a certain context. But in answering a simple
question, “What is the population of Rhode Island?” web users expect a single
response and not a set of alternatives. This occurs because an OWL reasoner conflated
the context-dependent descriptions. A reasoner is a program that performs logical
operations, such as the operations defined in OWL. Naturally, a human reader would
understand that these populations are associated with different years.

 Properly applying owl:sameAs is important to the integration of data in related
resources. But the use of owl:sameAs has known issues. Some of them stem from pos-
sible misuse of the term. In general, the fundamental problem with the use of URIs as
identifiers and the use of owl:sameAs is one of context and the implicit import of
properties. These equivalences are drawn because owl:sameAs is both symmetric and
transitive. Unfortunately, owl:sameAs is often used when describing the “same thing
but in different contexts” or “two things that are very similar to each other” but is bet-
ter described using owl:equivalentTo. Realistically, the proper application of
owl:sameAs is a value judgment that can be made only by the creator of the data.

 As our final activity in linking to other people’s data, DBpedia now allows you to
inform them of new datasets and ask that they link to you. We’ll discuss this in sec-
tion 8.6. The GitHub repository, https://github.com/dbpedia/dbpedia-links, has
complete information.

8.6 Joining Data Hub
By now you’re probably eager to join the LOD cloud and share your data with others.
The process that you need to follow to share your data on Data Hub (formerly CKAN)

Figure 8.8 The New York Times LOD on Rhode Island

http://data.nytimes.com/69949648080753147811
http://data.nytimes.com/69949648080753147811
http://rdf.freebase.com/ns/en.rhode _island
http://rdf.freebase.com/ns/en.rhode _island

203Joining Data Hub
is available at http://datahub.io/en/about. For convenience, we’ll briefly discuss the
process here:

1 Navigate to http://datahub.io/. Figure 8.9 shows the Data Hub welcome
screen. Click the link to the dataset submission page, shown in figure 8.10.

2 To add your dataset to Data Hub, you need to follow the process outlined at
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/
DataSets/CKANmetainformation. This includes documentation and naming
expectations and is outlined here for your convenience. See figure 8.11 for the
actual form. Describe your dataset with the following information:

a.Data Hub name (unique ID for your dataset on Data Hub, in the form of
[a-z0-9-]{2+}+”THE NAME OF YOUR DATASET”)

b.Title (full name of your dataset)
c.URL (link to dataset homepage)
d.Number of triples (approximate number of RDF triples in the dataset)
e.Links (separate links for each dataset to which your dataset links)

3 Data Hub tags
a.Tag your newly added dataset with “lod.”
b.Tag it with “nolinks” if your dataset doesn’t have any incoming links

(inlinks) or outgoing links (outlinks).
4 Provide as much additional information as possible (for example, SPARQL

endpoint, VoID description, license, and the topic of the dataset). This infor-
mation helps the community to know more about the development state
of the Web of Linked Data. Recommended documentation is described at
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/
DataSets/CKANmetainformation.

Figure 8.9 Data Hub welcome page

http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/CKANmetainformation
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/CKANmetainformation
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/CKANmetainformation
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/CKANmetainformation
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/CKANmetainformation

204 CHAPTER 8 Datasets
In completing the submission form, be sure to include license information so that
others will understand how they may use your data. The more complete your informa-
tion, the more useful your dataset will be to future users.

NOTE Before creating a new Data Hub package, double-check that a package
doesn’t already exist for your dataset by navigating to http://datahub.io/
dataset or selecting the Search option, visible in figure 8.10.

Figure 8.10 Data Hub Add a Dataset selection

Figure 8.11 Data Hub Add a Dataset submission page

http://datahub.io/dataset
http://datahub.io/dataset

205Requesting outgoing links from DBpedia to your dataset
This section addressed joining Data Hub, which enables you to join the LOD cloud
and publicize your dataset to others.

8.7 Requesting outgoing links from DBpedia to your dataset
As we mentioned in chapter 1, you should do your best to publish 5-Star data that has
both inlinks and outlinks. One way to generate inlinks to your dataset is by requesting
DBpedia to provide links to your data. dbpedia-links is a version-controlled repository
that contains outgoing links in N-Triples format for DBpedia. You accomplish this by
pointing your browser to https://github.com/dbpedia/dbpedia-links and then using
the GitHub interface to upload links to your dataset using their GUI.

 Follow these steps as outlined to create these outgoing links from DBpedia to your
dataset.

1 Navigate to https://github.com/dbpedia/dbpedia-links.
2 Log in to your own GitHub account. (You can create an account if you need one.)
3 Fork the repository, https://github.com/dbpedia/dbpedia-links, into your

GitHub space. The fork operation enables you to use the dbpedia-links repository
as a starting point for your own. Simply click the Fork button; see figure 8.12.

4 To add links to a previous unlinked dataset, do the following:
Create a folder with the dataset domain, for example, http://datasets/

bonobo.info.

Put your triples into a .nt file, for example, http://datasets/bonobo.info/
bonobo_links.nt.

bonobo_links would contain N-Triples like <http://dbpedia.org/

resource/Bonobo> owl:sameAs <http://example.com/species/Bonobo>.

In addition to owl:sameAs, these N-Triples may also contain a few other
predicates like umbel:isLike and skos:{exact|close|...}Match.

Then copy in the metadata.ttl stub from one of the other examples in the
repository.

NOTE The metadata.ttl file isn’t used yet and so is just a stub. You should
verify that this is still the case when you submit your request.

Figure 8.12 GitHub screenshot of Fork option

206 CHAPTER 8 Datasets
5 To modify an existing dataset, follow the steps outlined in step 4, but modify an
existing .nt file or create a separate one.

6 Finalize your edits by sending a pull request via GitHub; see figure 8.13. This
operation requests that DBpedia add your triples to their repository.

NOTE All information uploaded to the dbpedia-links repository will be con-
sidered as public domain, and you’ll lose all rights to it. It will be relicensed
under the same license as DBpedia uses.

When establishing DBpedia outgoing links, please honor the conventions posted at
the GitHub repository: https://github.com/dbpedia/dbpedia-links.

8.8 Summary
In this chapter, we’ve illustrated how you can best share your datasets and projects on
the Web. We’ve illustrated how you can optimize the inclusion of your projects and
datasets in Semantic Web search results. This optimization is best achieved by publish-
ing DOAP files of your projects and VoID files for your datasets along with a semantic
sitemap. Ultimately, you can publish your qualified datasets on the LOD cloud. Chap-
ter 9 will acquaint you with the Callimachus Project and illustrate how it can support
your Linked Data applications.

N-Triples
N-Triples is a subset of Turtle, and all tools that support Turtle input will support
N-Triples. Each line of an N-Triple file represents a single statement of information
or a comment. Each statement has three components: the subject, the predicate,
and the object.

Each component is separated by white space and each statement ends in a period.

Subjects may take the form of a full URI or a blank node. Predicates must be a full
URI, and objects may be a full URI, a blank node, or a literal. This format will be
adopted as a standard in the latter part of 2013.

Figure 8.13 GitHub screenshot of Pull Request option

Part 4

Pulling it all together

What is Callimachus? How can you use it to generate web pages from RDF
data? How can you use Callimachus to build web applications? What’s the cur-
rent state of Linked Data on the Semantic Web? What does the future hold for
Linked Data on the Semantic Web?

 By this point, you’ve traveled a long way in your understanding, appreciation,
and application of Linked Data on the Web. These final three chapters help you
regroup. Part 4 introduces you to an advanced tool and walks you through an
extension of the weather application originally presented in chapter 7. This new
weather application looks nice and has some functionality you’ll want to use in
your own applications. It’s based on RDF data you created from data feeds at a cou-
ple of open data sites provided by the U.S. government. We summarize the pro-
cess of publishing Linked Data from preparation to publication and clarify easily
overlooked steps like minting URIs and customizing vocabularies. We expect you
to find this a helpful reference as you prepare your own datasets for publication.

Callimachus: a Linked
Data management system
This chapter will bring together much of what you learned from the previous chap-
ters. At this point in the book, you’re ready to build a web app using Linked Data.
Having a platform for Linked Data development will make your work easier and
faster. This chapter will introduce you to the Callimachus Project. We’ll show you
how to get started with Callimachus and how to use it to build web applications
using Linked Data.

 The project team calls Callimachus a Linked Data management system, but it
might be better thought of as an application server for Linked Data. Callimachus is

This chapter covers
■ An introduction to the Callimachus Project
■ Getting started with Callimachus
■ Using HTML templates to create web pages
■ Creating and editing RDF data using the

Callimachus template system
■ Creating a web application with Callimachus
209

210 CHAPTER 9 Callimachus: a Linked Data management system
open source software released under the Apache 2.0 license. Callimachus provides
browser-based development tools to easily create web applications using RDF data.

 Callimachus has several major features:

■ A template system to automatically generate web pages for each member of an
OWL class. OWL classes are technically either equivalent to or subclasses of RDF
Schema classes (depending on the OWL profile used), but for our purposes you
can think of them as being equivalent.

■ An ability to retrieve data at runtime and convert it to RDF.
■ An ability to associate SPARQL queries with URLs, to parameterize those queries,

and to use their results with charting libraries.
■ An implementation of persistent URLs (PURLs).
■ A structured writing system based on DocBook and including a visual editing

environment.

In short, Callimachus allows you to navigate, visualize, and build applications on
Linked Data. The data may be stored locally or gathered from the Web. It may even be
converted into RDF as it’s brought into Callimachus. These features make Callimachus
an excellent tool for Linked Data developers.

 We won’t cover all of those features here because they’re already described in the
Callimachus documentation. Instead, we’ll show you how to build web pages from
RDF classes using a Callimachus template; create a simple note-taking application that
creates, edits, and views notes; and extend the weather application from chapter 7.
You can then explore the rest of its capabilities on your own.

 The Callimachus Project is named for an ancient Greek researcher at the Library
of Alexandria, Callimachus of Cyrene. He was the first person in recorded history to
have a demonstrated need for graph data structures. In Callimachus’s day, books con-
sisted of rolls of papyrus. The title, author, and subject of each book were written on a
leather tag sewn onto the edge of the paper. Those tags are the precursors to the tags
we find in HTML, XML, and other markup languages. The Callimachus Project’s logo
comes from these tags, as shown in figure 9.1

Figure 9.1 The Calli-
machus logo’s origin
in literal tags

211Getting started with Callimachus
Callimachus is a new type of application server that allows applications to build on
Linked Data. You could compare it to application servers that build on structured data
in a relational database or document management systems that operate on docu-
ments. Callimachus is one of a new category of Linked Data products that include Vir-
tuoso Open-Source Edition1 and commercial products such as TopBraid Composer.2

9.1 Getting started with Callimachus
First, obviously, you need to get a Callimachus instance up and running. Start by
downloading the most recent release from the project’s website, http://callimachus-
project.org. Follow the installation directions provided in its documentation to set up
your own Callimachus server. Start the server and resolve the service’s URL in your
web browser. You should see a welcome screen similar to the one in figure 9.2 if every-
thing goes well.

 Please note that as of this writing Callimachus 1.2 requires Java Development Kit
(JDK) 1.7, not just a Java Runtime Environment (JRE). Earlier Java versions aren’t
supported.

1 OpenLink Software, Virtuose Open-Source Edition, “What’s New,” http://virtuoso.openlinksw.com/
dataspace/doc/dav/wiki/Main/.

2 Explanation of editions and licensing, http://www.topquadrant.com/products/TB_Composer.html.

Figure 9.2 The default Callimachus home screen

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
http://callimachusproject.org
http://callimachusproject.org

212 CHAPTER 9 Callimachus: a Linked Data management system
One of the easiest and most useful things you can do with Callimachus is generate web
pages based on RDF data. The next section will show you how to load RDF data into
Callimachus and use its template system to generate web pages for each instance of a
class of RDF resources.

9.2 Creating web pages using RDF classes
The first thing to do with Callimachus is to add RDF data to it, accomplished via the Cal-
limachus file manager. Log into Callimachus using the initial user you established and
select the Home Folder option from the main menu. As of this writing, the main menu
is accessed by selecting the gear icon in the upper right in the default theme. You can
use the file manager to make subfolders and add or remove RDF and other resources,
just like a file manager on your computer. The difference with the Callimachus file man-
ager is that resources aren’t really in a filesystem; the file manager views are generated
at runtime from RDF. This allows RDF resources to reside in an RDF database, while binary
resources, like images or HTML pages, reside in a Binary Large Object (BLOB) store.

9.2.1 Adding data to Callimachus

Make a subfolder to contain your sample data so
you don’t pollute the home folder. We called ours
bonobos, but you can give it any name that you like.
You create a subfolder by selecting the gear icon in
the upper-left corner of the Callimachus folder view
and selecting the Folder option. Figure 9.3 shows
the pull-down menu from the gear icon and the
Folder option being selected.

 You’ll need to be logged into Callimachus to
make folders or add content. If you don’t see the
gear icon, but you do see a link that says “Sign in,”
please log in first.

 Next, you’ll create some sample data. You’ll
make a Turtle file containing a couple of bonobos
named Mary and Bonny. You’ll need to say that
these two bonobos are each instances of the dbpe-
dia:Bonobo class and also that dbpedia:Bonobo is
an OWL class. Earlier examples showed the assign-
ment of dbpedia:Bonobo as an RDFS class, which isn’t sufficient for Callimachus. Calli-
machus can only associate resources with OWL classes. Listing 9.1 shows our sample
data. Note that we’ve described each bonobo using a label and a comment so we have
some information to show about them. Labels and comments provide a reasonable
minimum level of human-readable information about any RDF resource and help to
make your data self-commenting.

Figure 9.3 Creating a
folder in Callimachus

213Creating web pages using RDF classes

s
e
@prefix dbpedia: <http://dbpedia.org/resource/> .
@prefix ex: <http://localhost:8080/bonobos/> .3
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

dbpedia:Bonobo a owl:Class
 ;rdfs:label "Bonobo" .

ex:Mary a dbpedia:Bonobo
 ; rdfs:label "Mary"
 ; rdfs:comment "Mary is a pleasant bonobo."
.

ex:Bonny a dbpedia:Bonobo
 ; rdfs:label "Bonny"
 ; rdfs:comment "Bonny is not very nice. She throws things at visitors."
.

Save the contents of listing 9.1 to a file. Navigate into your new folder (you should
already be there) and select the Upload button (upward-pointing arrow in a circle) to
upload your sample data file. You should see something similar to figure 9.4 when the
file has been uploaded to your folder.

9.2.2 Telling Callimachus about your OWL class

The sample data contains an OWL class, but Callimachus doesn’t automatically associ-
ate imported classes with resources. This is actually a good idea, because you might
not want Callimachus to automatically generate web pages for instances of all classes.
Some people have created datasets that use tens of thousands of classes, which might
get very confusing. So, you need to tell Callimachus about your Bonobo class. You do
that by making an equivalent Callimachus class and associating the two.

 You can explore all the OWL classes in a file by clicking that file, clicking the gear drop-
down in the top right of the screen, and selecting “Explore OWL classes in this graph.”
This is the Callimachus Class Explorer and is shown in figure 9.5. You can see the dbpe-
dia:Bonobo class (shown as just the suffix Bonobo). It has a description of “null” because

Listing 9.1 Some bonobos in Turtle format

3 For example, by default configuration, data URIs should start with http://localhost:8080/.

Your prefix here
should match your
personal Callimachu
instance’s host nam
and path.3

Making bonobos
into an OWL class

Statements about the
bonobo called Mary

Statements about the
bonobo called Bonny

Figure 9.4 Creating a view of the bonobo data

http://localhost:8080/

214 CHAPTER 9 Callimachus: a Linked Data management system
we didn’t add an rdfs:comment describing it
in our sample data.4 The Assign Templates
link next to the class name may be used to
generate an equivalent Callimachus class
and assign Callimachus templates to the
class. Click that link now.

 You’ll be taken to a New Class page
where the Callimachus equivalent class will
be created. Call your class Bonobo to match
the dbpedia:Bonobo class, give it a comment if you like, and then select the small icon
to the upper right of the View Template label in the Page Templates section. Figure 9.6
shows how this looks.

9.2.3 Associating a Callimachus view template to your class

A Callimachus view template is used to generate web pages (views) of a class
instance. Every class instance will be viewed using the same template. You’ll find that
adding a new view template will present the opportunity to create a new one or to
point to one already in the file manager. In this case, you’ll create a new one and use

4 It’s always better to describe your data. As an exercise, you could add an rdfs:comment describing the
dbpedia:Bonobo class to your sample data and upload it again. You’d then see your description in the Class
Explorer.

Figure 9.6 Creating a Callimachus class for bonobos and assigning a view template to it

Figure 9.5 The list of owl:Classes
found in the bonobo folder

215Creating web pages using RDF classes

the default template provided. The following listing shows the default view template
and its components.

<?xml version="1.0" encoding="UTF-8" ?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<head>
 <title resource="?this">{rdfs:label}</title>
 <link rel="edit-form" href="?edit" />
 <link rel="comments" href="?discussion" />
 <link rel="describedby" href="?describe" />
 <link rel="version-history" href="?history" />
</head>
<body resource="?this">
 <h1 property="rdfs:label" />
 <pre class="wiki" property="rdfs:comment" />
</body>
</html>

You’ll notice that Callimachus templates are just XHTML with some (very) minor syn-
tax added to them. Those of you who are familiar with other template languages such
as PHP or JSP might be surprised by how little extra syntax there is. In fact, the added
syntax is just RDFa. RDFa attributes are used to provide hints to Callimachus on how to
locate the RDF data you’d like to present.

 The RDFa in Callimachus templates is parsed to generate SPARQL queries to locate
the right data in Callimachus’s underlying RDF database, so Callimachus introduces
minor extensions to standard XHTML+RDFa but keeps them to a minimum. The full
template language is described in the Callimachus documentation.

 Save your new template by clicking the Create button in the template pop-up win-
dow and providing a filename. We generally use the class name followed by the type of
template as a name, so we called this one bonobo view.xhtml.

 Next, save your class using the Create button on the New Class page. You’ll be redi-
rected to a view of the saved class construct.

 The class resource page has a link in the gear drop-down in the upper right called
Bonobos Resources. Selecting it will show you the two resources that are members of
this class. They both came from your
sample data: Mary and Bonny. Figure 9.7
shows you the list. Adding more named
bonobos to your sample data will add
more entries onto this list. Selecting a
resource from this list will use the view
template to generate a web page about
each bonobo.

Listing 9.2 The bonobo view template

XML namespaces
in this XHTML

document serve
the same purpose

as PREFIXes in
Turtle or SPARQL.

“?this” is replaced at
execution time with
the URI of the
requested resource (a
particular bonobo).

A header based on
the object of the
rdfs:label triple

A preformatted text
area based on the
object of the
rdfs:comment triple

Figure 9.7 The list of bonobo resources

http://purl.org/net/LinkedData/WeatherApp

216 CHAPTER 9 Callimachus: a Linked Data management system
 Figure 9.8 shows you what you’ll see by
selecting the link to Mary. A web page is
drawn for the bonobo Mary that uses the
two RDF triples defined in the view tem-
plate, one using an rdfs:label and the
other using an rdfs:comment. The page for
Bonny looks identical, with the obvious
exception that the label will be Bonny and
the comment will be Bonny’s comment.
If you want to extend this example, take the following steps:

1 Add more data to the sample data file. You might, for example, describe the
hair color of each bonobo or say what they like to eat. You do that by adding
RDF about each resource.

2 Replace the data file on the server with the one you edited. Alternatively, you
could edit the Turtle in place on the server by selecting the Edit option from
the data file’s description page.

3 Extend the view template to display the new information. You can do this by
finding the view template in the folder, selecting it, and then selecting Edit.

Your generated pages should now show the new data!
 This section provided an introduction to generating web pages from RDF data. Of

course, some web pages contain forms that allow user input. Callimachus uses that
capability to allow you to create and edit RDF data from dynamically created web pages
so casual users never need to see RDF serializations directly (unless they want to).

 The next section describes the create and edit templates and shows how they can
be used to quickly make a simple web application for taking notes.

9.3 Creating and editing class instances
This section describes a simple note-taking application. It uses the Callimachus create
and edit templates to produce and modify RDF class instances without the need to first
upload RDF. The application will allow users to fill out a form to create a new note,
view notes that have been created, and edit them as desired. Each note will be named
with a label and contain information in a comment. The user who last modified a note
and the date and time of creation will be shown when a note is viewed.

 You’ll need to be logged into Callimachus in order to create the components of
the notes application.

 Figure 9.9 shows the structure of the notes application. Start by creating a Callimachus
folder to hold the application and then a subfolder to store the notes that will be created.
The top-level folder will contain four files: a note class and the three templates associ-
ated with that class. The templates are used to create, view, and edit a note. You’ll
need to create a class from the gear menu. Call the class Note, and make sure to create
the three templates while you’re in the class-creation interface, just as you did for the

Figure 9.8 The bonobo instance called Mary,
rendered via the bonobo view template

217Creating and editing class instances
bonobo view in the previous section. You can accept the default contents for each of
the templates for now and edit them after you read the details about the desired func-
tionality in the following listings.

 Figure 9.10 shows how the Note class should look when you’ve finished creating it.

rdfs:label

The create template

The edit template

The view template

rdfs:comment

Figure 9.10 Structure of the notes application

The note class

The create template

The edit template

The view template

Figure 9.9 The Note class’s page

218 CHAPTER 9 Callimachus: a Linked Data management system

e

l
9.3.1 Creating a new note

The create template is simply an XHTML page with a form element. Two fields are
defined to collect data for an rdfs:label and an rdfs:comment. The structure is very
much like the bonobo view template in listing 9.2. The major differences are the addi-
tion of the form and that the body tag doesn’t need an attribute referring to the URI of
the resource (resource="?this") because no resource has been created yet. Instead,
the form will be used to create an RDF resource. The following listing shows the contents
of the create template. Your create template should be identical (or differ only because
of minor version changes in Callimachus). You shouldn’t need to modify it.

<?xml version="1.0" encoding="UTF-8" ?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<head>
 <title>New Note</title>
</head>
<body>
 <h1>New Note</h1>
 <form method="POST" action="" enctype="application/rdf+xml"
typeof="" onsubmit="return

➥ calli.saveResourceAs(event,calli.slugify($('#label').val()))">
 <fieldset>
 <div class="control-group">
 <label for="label" class="control-label">Label</label>
 <div class="controls">
 <input type="text" id="label" value=

➥ "{rdfs:label}" class="auto-expand" required="required"

➥ autofocus="autofocus" />
 </div>
 </div>
 <div class="control-group">
 <label for="comment" class="control-label">Comment</label>
 <div class="controls">
 <textarea id="comment"
class="auto-expand">{rdfs:comment}</textarea>
 </div>
 </div>
 <div class="form-actions">
 <button type="submit" class="btn
btn-success">Create</button>
 </div>
 </fieldset>
 </form>
</body>
</html>

Now that you have a create template, you can return to the Note class page and select
the link from the main menu in the upper right, Create a New Note. That will bring

Listing 9.3 The notes create template

A text field for th
label, which will
create a triple
using an rdfs:labe
predicate

A textarea for the comment,
which will create a triple using
an rdfs:comment predicate

219Creating and editing class instances

t

you to a web page generated from the create tem-
plate. Fill out the label and comment fields and
click the Create button. You’ll be prompted to save
your new note. Make sure to put it into the notes
subfolder to keep things neat.

 Callimachus can be configured to allow
resources to be automatically saved into a certain
directory, but we’ve omitted that subtlety for brevity.
The Callimachus documentation can tell you how
to help your users avoid the extra navigation step.

 Figure 9.11 shows the note create template in
action.

 You’ll be redirected to a view of your new note
as soon as you create it. That view is generated
from the view template. You’ll get an error that
reads “No such method for this resource” if you
forget to create your view template. Create a view template if that happens to you.

9.3.2 Creating a view template for a note

The default view template is the same one you used for the bonobos. It shows only a
label and a comment. Let’s add a couple of items to it that Callimachus already tracks,
specifically the name of the user who created or modified the note and the date and
time it was last modified.

 The next listing shows the view template to use. It contains a few extra lines to
include the new information.

<?xml version="1.0" encoding="UTF-8" ?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:prov="http://www.w3.org/ns/prov#">
<head>
 <title resource="?this">{rdfs:label}</title>
 <link rel="edit-form" href="?edit" />
 <link rel="comments" href="?discussion" />
 <link rel="describedby" href="?describe" />

 <link rel="version-history" href="?history" />
</head>
<body resource="?this">
 <h1 property="rdfs:label" />
 <pre class="wiki" property="rdfs:comment" />
 <hr/>
 <p>Time created: {prov:endedAtTime}</

span></p>

Listing 9.4 The notes view template

“?this” is replaced at execution
time with the URI of the requested
resource (a particular bonobo).

A header
based on

the object
of the

rdfs:label
triple

A paragraph
to show the

ime the note
was created.

A preformatted text area
based on the object of the
rdfs:comment triple

Figure 9.11 The note cre-
ate template in action

220 CHAPTER 9 Callimachus: a Linked Data management system
 <div rel="prov:wasGeneratedBy" resource="?prov">
 Created by: {rdfs:label}
 </div>
</body>
</html>

Your users won’t need to be authenticated in order to create notes (unless you change
the default permissions on the resources—you can see the Callimachus documenta-
tion if you want to do that). But only authenticated users will have their names associ-
ated with the notes they create or modify.

 You should now be able to see notes that look like the one in figure 9.12. You can
view your existing notes either by navigating to the notes subfolder and selecting a
particular note or by going to the Note Resources link available from the Main Menu
on the Note class page and selecting a note from there.

 The only thing left to do now is to create an edit template so you can modify your
notes after they’ve been created. Edit templates may seem to be the most complicated
of the Callimachus templates, but they’re really only a cross between the create and
view templates you’ve already seen.

9.3.3 Creating an edit template for notes

Like view templates, edit templates need to have an attribute on the <body> tag
(resource="?this") so Callimachus can find which note you want to edit. Like create
templates, edit templates are XHTML forms and have form elements for each item you
want users to be able to edit.

 Note that Callimachus offers you complete control over which elements you can
create, view, and edit. You can collect more information than you display or restrict
editing to just a few fields. It’s all up to you.

 Listing 9.5 shows the edit template for notes. It should be identical to the default
one you already created, so there shouldn’t be any need to change it unless you

A division to show the
name of the user who

created the note

Figure 9.12 A view of a
note, generated by the
note view template

221Creating and editing class instances
want to add editable fields later. Try it out by viewing a note and selecting the Edit
tab near the top of the page. You’ll naturally need to be logged into Callimachus to
edit resources.

<?xml version="1.0" encoding="UTF-8" ?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<head>
 <title resource="?this">{rdfs:label}</title>
</head>
<body resource="?this">
 <h1 property="rdfs:label" />
 <form method="POST" action="" enctype=

➥ "application/sparql-update" resource="?this">
 <fieldset>
 <div class="control-group">
 <label for="label" class="control-label">Label</label>
 <div class="controls">
 <input type="text" id="label" value=

➥ "{rdfs:label}" class="auto-expand" required="required" />
 </div>
 </div>
 <div class="control-group">
 <label for="comment" class="control-label">Comment</label>
 <div class="controls">
 <textarea id="comment" class=

➥ "auto-expand">{rdfs:comment}</textarea>
 </div>
 </div>
 <div class="form-actions">
 <button type="submit" class="btn
btn-primary">Save</button>
 <button type="button"

➥ onclick="window.location.replace('?view')"

➥ class="btn">Cancel</button>
 <button type="button"

➥ onclick="calli.deleteResource(event)"

➥ class="btnbtn-danger">Delete</button>
 </div>
 </fieldset>
 </form>
</body>
</html>

This section showed you how to create a simple Callimachus application without
needing to write or read RDF directly. You did need to keep track of some RDF predi-
cates (rdfs:label and rdfs:comment) in order to make the templates.

 The following section shows you how to make a much more complicated applica-
tion based on the weather application you started to develop in chapter 7.

Listing 9.5 The notes edit template

Note the additional
attribute on the
<body> tag to refer
to a particular note, as
in the view template.

A text field
for the label

A textarea for
the comment

Additional buttons to
save or cancel the edit
and to delete the note

222 CHAPTER 9 Callimachus: a Linked Data management system
9.4 Application: creating a web page from multiple data sources
You can extend the weather information collection app from chapter 7 to combine
multiple datasets and display the results on a web page. This is a demonstration of
retrieving real-world data from multiple sources on the Web, converting it into Linked
Data, and making an application using it. This application applies many of the lessons
you’ve learned in this book. You’ll extend the application developed in chapter 7 by
creating a good-looking web user interface for it. By the end of this section you’ll have
gone from existing data in CSV and XML that are available from real-world govern-
ment data sources and ended up with a useful Linked Data application.

 The feeds that you’ll use come from two U.S. government agencies:

■ U.S. Environmental Protection Agency’s (EPA) SunWise program5

■ National Oceanic and Atmospheric Administration’s (NOAA) National Digital
Forecast Database (NDFD)6

The SunWise program is a large effort by the EPA aimed at educating the public on
how to protect themselves from the sun. NOAA’s NDFD is a collection of digital fore-
casts of the most relevant weather information from field offices around the United
States. This information includes everything from maximum and minimum tempera-
tures to wave height along coastal areas.

 Viewing the structure of the weather application in figure 9.13 quickly reveals its
components. It comprises basic web tools and techniques including CSS, JavaScript
(js/ folder), pictures (media/ folder), and XHTML (index). The bits that are new to
web applications are the SPARQL queries (queries/ folder) and the weather data itself
(data/folder) represented in Turtle. The landing page file is just an explanation of
the application.

 Some of the building blocks for this application are outside the purview of this
book and therefore won’t be explained in depth. For example, there’s JavaScript that
allows for easier rendering of the page elements and CSS that spruces up the page, but
neither relates to the Linked Data aspects of the application. Please see the source
code for the weather application at http:LinkedDataDeveloper.com if you’re inter-
ested in those details.

9.4.1 Making and querying Linked Data from NOAA and EPA

The first step to this application is to adapt the data-collection script from chapter 7
for use with Callimachus. Because Callimachus uses Sesame as its RDF store, we’ll no
longer need to store the data in Fuseki. Any of the code responsible for starting, load-
ing data into, or querying Fuseki should be removed. Now the script performs the
same data retrieval but simply prints the results to an output document. You can then

5 SunWise, Sun safety for kids and educators, http://www.epa.gov/sunwise/.
6 National Weather Service, National Digital Forecast Database, general information, http://

www.nws.noaa.gov/ndfd/.

http://www.epa.gov/sunwise/
http://www.nws.noaa.gov/ndfd/
http://www.nws.noaa.gov/ndfd/
http:LinkedDataDeveloper.com
http:LinkedDataDeveloper.com
http:LinkedDataDeveloper.com

223Application: creating a web page from multiple data sources
load this document into the data directory of the weather application on Callimachus.
This can be done in four steps:

1 Navigate to the data folder.
2 Select the upload button (upward-pointing arrow in a circle).
3 Click Choose File and select the output file from the script.
4 Click Upload.

You could also choose to modify the script to upload the contents of the file using
the Callimachus REST API. The REST API is described in the Callimachus
documentation.

 Now that the data is in Callimachus, you can begin to write the supporting code
that queries that data, manipulates it as needed, and renders it in the XHTML page.
First, you need to extract the data you’re interested in. That can be accomplished via
a Callimachus feature called a Named Query. A Named Query is a SPARQL query
that has been assigned a URL, so the results of the query are returned when the URL
is resolved. Looking at our data you can see that there are two distinct datasets we’re
interested in; one is the temperature data from NOAA and the other is the UV Index
data from the EPA. In order to construct a successful query, you must understand the
structure of the data and how it will be used in the application. You can see that
each URI is unique to the ZIP code and date level by looking at the way the URIs

Figure 9.13 Structure of the weather application

224 CHAPTER 9 Callimachus: a Linked Data management system
were constructed. The following snippet shows how the ZIP code and date are used
to create a unique URI structure for the identification of this data.

<http://www.example.com/WeatherHealth/ZipCodes/22401/02-28-2013>

This structure indicates that the application must construct this URI from the user’s
input (ZIP code and date) and issue it as a parameter to the Named Query. You use two
predicates to link that URI to its maximum and minimum temperatures: wh:max_temp
and wh:min_temp. As a last step, because you don’t know what the temperature’s value
will be, you want to assign variables to those values (?maxTemp and ?minTemp) for use in
the SELECT clause. Now that you have the three pieces of information you need—the
subject, predicate, and object—you can construct the query. Navigate to the queries/
directory and from the Create menu in the top left select More options, More options,
then Query. You should type the contents of the following listing into the text editor
that appears and save the file with a name you choose.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX wh: <http://www.example.com/WeatherHealth/Schema#>

SELECT ?maxTemp ?minTemp {
 <$zipDateURI> wh:max_temp ?maxTemp
 ; wh:min_temp ?minTemp .
}

Now you can follow a nearly identical process to create the Named Query for retriev-
ing UV Index data, as shown in the next listing.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX wh: <http://www.example.com/WeatherHealth/Schema#>

SELECT ?value ?alert {
 <$zipDateURI> wh:uv_value ?value
 ; wh:uv_alert ?alert .
}

These queries (listings 9.6 and 9.7) as they stand won’t return any results unless a
value is passed in to satisfy the $zipDateURI parameter, which the rest of our applica-
tion will take care of shortly.

9.4.2 Creating a web page to contain the application

From here you can begin work on index.xhtml, which contains not only HTML but also
the JavaScript that will allow you to utilize the queries you just wrote. Before you start
collecting data, you need the infrastructure, which will be the HTML, to hold that data
on the page and the ability for users to interact with the page. The following listing shows
a basic version of the HTML that will serve as the base for the weather application.

Listing 9.6 The weather SPARQL query

Listing 9.7 The UV Index SPARQL query

The $ symbol is the syntactic
representation of a parameter. The text
following the dollar sign will be used as
the parameter name in the query URI.

225Application: creating a web page from multiple data sources
<?xml version="1.0" encoding="UTF-8" ?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<head>
<meta charset="utf-8"/>
<title>Linked Data Health App</title>
</head>
<body>
<div id="dashboard">
<div>
<div>
 <div id="location">
<input name="zip" maxlength="5" placeholder="ZIP code" value="" />
Enter a VA ZIP code above
</div>
</div>
<div>
<div id="date">
 <div></div>
 <a>
 <a>
</div>
 </div>
</div>
<div id="feedback"></div>
<div>
<div>
 <div id="weather"><div>Weather</div></div>
 </div>
 <div>
 <div id="uv-index"><div>UV Index</div></div>
 </div>
 </div>
 </div>
</body>
</html>

You’ll notice many empty tags here, but this is simply to show the structure of the page
before increasing the complexity by adding CSS classes and IDs for use in JavaScript. If
you want to style the page using CSS and prepare the HTML to be enhanced via
JavaScript, you must add the appropriate classes and attributes to the existing tags.
You also need to include the appropriate libraries for your JavaScript and CSS to func-
tion. The next listing is the fully described version of listing 9.8 and is only waiting for
your custom JavaScript to be put in.

<?xml version="1.0" encoding="UTF-8" ?>
<html xmlns="http://www.w3.org/1999/xhtml"

Listing 9.8 Stripped-down index.xhtml

Listing 9.9 Fully described index.xhtml

226 CHAPTER 9 Callimachus: a Linked Data management system

ta-
al-
er.
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<head>
<meta charset="utf-8"/>
<title>Linked Data Health App</title>
<style type="text/css" media="all">
@import url(css/bootstrap.min.css);
 @import url(css/weatherhealth.css);
</style>
<script type="text/javascript" src="js/jquery.min.js"></script>
<script type="text/javascript" src="js/date.js"></script>
<script type="text/javascript" src="https://www.google.com/jsapi"></script>
</head>
<body>
<div id="dashboard">
<div class="grid-row location-date">
<div class="w1">
 <div id="location">
<input name="zip" maxlength="5" placeholder="ZIP code" value="" />
Enter a VA ZIP code above
 </div>
</div>
<div class="w1 ml2">
<div id="date">
 <div class="active"></div>

</div>
 </div>
</div>
<div id="feedback" class="alert alert-info"></div>
<div class="grid-row data" style="margin-left: 200px; margin-right: 200px;">
<div id="weatherPopover" class="w2" rel="popover" data-placement="top" data-

original-title="Source: NOAA" data-content=

➥ "This data is provided and published by the National Oceanic

➥ and Atmospheric Association (NOAA).">
 <div id="weather" class="tile"><div class="title">Weather</div></div>
 </div>
 <div id="uvIndexPopover" class="w2" rel="popover"

➥ data-placement="top" data-original-title="Source: US EPA SunWise">
 <div id="uv-index" class="tile">

➥ <div class="title">UV Index</div></div>
 </div>
 </div>
 </div>
 <script type="text/javascript" src="js/weatherhealth.js"></script>
<script type="text/javascript" src="js/bootstrap.min.js"></script>
</body>
</html>

9.4.3 Creating JavaScript to retrieve and display Linked Data

Now with the infrastructure in place you can begin to add the JavaScript that will
give the page its functionality. The key bit of code uses Google’s Visualization API to

The attributes rel, da
placement, and data-origin
title are used for the popov

227Application: creating a web page from multiple data sources

ath
e
issue a query and load the results into a
variable for manipulation and presenta-
tion. The specific function is google

.visualization.Query.
 You’ll first create the box showing

today’s high and low temperatures, as
shown in figure 9.14. Listing 9.10 uses
that API call to execute the query you
wrote in listing 9.6 and return the results
for manipulation.

function getWeatherData(queryURI) {
google.load("visualization", "1.0", {callback:function() {
new google.visualization.Query("queries/weather.rq?resul

➥ ts&zipDateURI=" + queryURI).send(
 function(result){
 var data = result.getDataTable();
var rows = data.getNumberOfRows();
if (rows > 0) {
 for (var i=0; i<rows; i++) {
var maxTemp = data.getValue(i,0);
var minTemp = data.getValue(i,1);

wh.renderWeather({value: maxTemp + "°F / " + minTemp + "°F" })
 }
} else {
 wh.renderWeather({value: 'N/A'})
 }
}
);
}});
}

Next, you’ll create the box showing
today’s UV index, as shown in figure 9.15.
Listing 9.11 uses the same API call to exe-
cute the query written in listing 9.7. You’ll
then write some custom JavaScript to
interpret this data and translate it for
interpretation by the CSS definitions.

function getUVIndexData(queryURI) {
google.load("visualization", "1.0", {callback:function() {
 new google.visualization.Query(

➥ "queries/uvindex.rq?results&zipDateURI=" + queryURI).send(
function(result){

Listing 9.10 The temperature data-retrieval function

Listing 9.11 The UV Index data retrieval function

Include the appropriate p
to the query and structur
for passing parameters.

Assign temperature values to
maxTemp and minTemp for
use throughout the function.

JavaScript function renderWeather() allows
for easy display of contents inside the
weather tile, and ° is the HTML

character encoding for the degrees symbol.

Figure 9.14 The temperature box

Figure 9.15 The UV Index box

228 CHAPTER 9 Callimachus: a Linked Data management system
var data = result.getDataTable();
var rows = data.getNumberOfRows();
var severity;
for (var i=0; i<rows; i++) {
var index = data.getValue(i,0);
var alert = data.getValue(i,1);

if (index >= 1 && index <= 2) {
 severity = 1;
} else if (index >= 3 && index <= 5) {
 severity = 2;
} else if (index >= 6 && index <= 7) {
 severity = 3;
} else if (index >= 8 && index <= 10) {
 severity = 4;
} else if (index >= 11) {
severity = 5;
} else {
 severity = 0;
}

if (index != "" && index != null && alert != "" && alert != null) {
wh.renderUvIndex({value: index + ' <small>out of 11</small>',

➥ info: 'Alert: ' + alert, severity: severity })
} else {
wh.renderUvIndex({value: 'N/A', info: 'Unavailable', severity: 0 })
 }
}
}
);
 }});
}

The functions defined in listings 9.10 and 9.11 are fundamental to the application but
need another function to control them and pass in the appropriate parameter. This is
done through the construction of an onChange function. The next listing shows this
function and how little code is needed here.

$('body').on('locationChange dateChange', function() {
var queryURI =

➥ "http://www.example.com/WeatherHealth/ZipCodes/"

➥ + wh.getLocation() + "/" + wh.getDate();

wh.feedback('The location is ' + wh.getLocation() +

➥ '. The date is ' + wh.getDate() + '.');

getWeatherData(queryURI);
getUVIndexData(queryURI);
});

Listing 9.12 Function control JavaScript

Depending on UV index
returned, assign appropriate
severity level for CSS rules

Build the query string using
the user-entered ZIP code
and user-selected date.

Show the feedback
message to the user
displaying the ZIP
code and date.

Run the respective JavaScript
functions to retrieve weather

and UV index data.

229Application: creating a web page from multiple data sources
9.4.4 Bringing it all together

Now you have a number of snippets of code that all serve their own unique purpose,
and it may be a bit tough to keep track of them all, so let’s summarize what you’ve
done and how the pieces fit together.

1 Write queries to extract the data you’re interested in (listings 9.6 and 9.7).
2 Write the HTML to hold the data you want to display (listings 9.8 and 9.9).
3 Write the JavaScript you need to drive functionality (listings 9.10, 9.11, and 9.12).
4 Put it all together (listing 9.13 and figure 9.16).

The following listing shows the entirety of index.xhtml and includes all relevant
JavaScript.

<?xml version="1.0" encoding="UTF-8" ?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<head>
<meta charset="utf-8"/>
<title>Linked Data Health App</title>
<style type="text/css" media="all">
 @import url(css/bootstrap.min.css);
 @import url(css/weatherhealth.css);
</style>
<script type="text/javascript" src="js/jquery.min.js"></script>
<script type="text/javascript" src="js/date.js"></script>
<script type="text/javascript" src="https://www.google.com/jsapi"></script>
<script>
// <![CDATA[
function getWeatherData(queryURI) {
 google.load("visualization", "1.0", {callback:function() {
 new google.visualization.Query("queries/

weather.rq?results&zipDateURI=

➥ " + queryURI).send(
function(result){
var data = result.getDataTable();
var rows = data.getNumberOfRows();
if (rows > 0) {
for (var i=0; i<rows; i++) {
var maxTemp = data.getValue(i,0);
var minTemp = data.getValue(i,1);

wh.renderWeather({value: maxTemp + "°F / " + minTemp + "°F" })
}
} else {
wh.renderWeather({value: 'N/A'})
} // Close else
}
);

Listing 9.13 Complete index.xhtml

230 CHAPTER 9 Callimachus: a Linked Data management system
}});
}

function getUVIndexData(queryURI) {
google.load("visualization", "1.0", {callback:function() {
 new google.visualization.Query(

➥ "queries/uvindex.rq?results&zipDateURI=" + queryURI).send

➥ (function(result){
var data = result.getDataTable();
var rows = data.getNumberOfRows();
var severity;
for (var i=0; i<rows; i++) {
var index = data.getValue(i,0);
var alert = data.getValue(i,1);

if (index >= 1 && index <= 2) {
severity = 1;
} else if (index >= 3 && index <= 5) {
 severity = 2;
} else if (index >= 6 && index <= 7) {
 severity = 3;
} else if (index >= 8 && index <= 10) {
 severity = 4;
} else if (index >= 11) {
 severity = 5;
} else {
 severity = 0;
}

if (index != "" && index != null && alert != "" && alert != null) {
 wh.renderUvIndex({value: index + ' <small>out of 11</small>',

➥ info: 'Alert: ' + alert, severity: severity })
} else {
 wh.renderUvIndex({value: 'N/A', info: 'Unavailable', severity: 0 })
}
}
}
);
}});
}
//]]>
</script>
</head>
<body>
<div id="dashboard">
<div class="grid-row location-date">
<div class="w1">
 <div id="location">
<input name="zip" maxlength="5" placeholder="ZIP code" value="" />
Enter a VA ZIP code above
 </div>
</div>
<div class="w1 ml2">
<div id="date">
 <div class="active"></div>

231Application: creating a web page from multiple data sources

</div>
 </div>
</div>
<div id="feedback" class="alert alert-info"></div>
<div class="grid-row data" style="margin-left: 200px;

➥ margin-right: 200px;">
<div id="weatherPopover" class="w2" rel="popover" data-placement=

➥ "top" data-original-title="Source: NOAA" data-content=

➥ "This data is provided and published by the National Oceanic

➥ and Atmospheric Association (NOAA).">
 <div id="weather" class="tile"><div class="title">Weather</div></div>
 </div>
 <div id="uvIndexPopover" class="w2" rel="popover"

➥ data-placement="top" data-original-title="Source: US EPA SunWise">
 <div id="uv-index" class="tile"><div class="title">

➥ UV Index</div></div>
 </div>
 </div>
 </div>
 <script type="text/javascript" src="js/weatherhealth.js"></script>
<script type="text/javascript" src="js/bootstrap.min.js"></script>
<script>
// <![CDATA[
$('body').on('locationChange dateChange', function() {
var queryURI =

➥ "http://www.example.com/WeatherHealth/ZipCodes/" +

➥ wh.getLocation() + "/" + wh.getDate();

wh.feedback('The location is ' + wh.getLocation() +

➥ '. The date is ' + wh.getDate() + '.');

getWeatherData(queryURI);
getUVIndexData(queryURI);
});

$('#weatherPopover').popover({trigger: 'hover'})
$('#uvIndexPopover').popover({trigger: 'hover', html: true,
content: function () {
return 'This data is published by the US EPA SunWise Program. <img

src="media/uvindexscale.gif" />';
 }
})
//]]>
</script>
</body>
</html>

In a relatively short amount of time and with a small amount of code, you’ve created a
very powerful application. You’ve now successfully retrieved authoritative government
data, turned it into Linked Data, aggregated it easily thanks to the advantages of RDF,
and displayed it in an attractive interactive web page for public consumption.

Assign popover functionality
to weather tile.

Display image
inside popover.

232 CHAPTER 9 Callimachus: a Linked Data management system
A live, working example of this application can be found at http://purl.org/net/
LinkedData/WeatherApp.

9.5 Summary
This chapter introduced the Callimachus Project, an open source application server
for Linked Data. We showed you how to get started with Callimachus, how to generate
web pages from RDF data, and how to build some applications using it.

 We covered three types of Callimachus templates: view, create, and edit. We
showed you how to use those templates to create a Linked Data note-taking applica-
tion and discussed how to modify it to make it more interesting.

 We walked you through an extension of the weather application originally pre-
sented in chapter 7. This new weather application looks nice and has functionality you
can actually use. It’s based on the RDF data you created from data feeds at a couple of
open data sites provided by the U.S. government.

 Don’t forget that you can see these applications running and get digital versions of
the source code at the book’s companion site, LinkedDataDeveloper.com.

Figure 9.16 Screenshot of the weather application

http://purl.org/net/LinkedData/WeatherApp
http://purl.org/net/LinkedData/WeatherApp

Publishing
 Linked Data—a recap
In this chapter, we’ll capture the process of publishing Linked Data from prepara-
tion to public publication and highlight critical steps in this process. You want to
publish your data using the RDF data model because it is the international standard
for representing data on the Web. You want to use the Linked Data principles to
describe your data so others can find and reuse it more easily. There are many seri-
alization formats (as described in chapter 2) but only one data model. This stan-
dardized model then enables data sources to be

■ Easily crawled by search engines
■ Accessed using generic data browsers
■ Easily integrated with other data from diverse data sources
■ Expressed using different schemata
■ Expressed using different serialization formats
■ Explored by following URIs to additional information
■ Published on the Web and easily shared

This chapter covers
■ A summary of publishing Linked Data
233

http://neologism.deri.ie
http://neologism.deri.ie
http://neologism.deri.ie
http://www.w3.org/TR/swbp-vocab-pub/

234 CHAPTER 10 Publishing Linked Data—a recap
We’ve examined each of the steps of this process in previous chapters. But sometimes
seeing the big picture is difficult when you’re learning individual steps. In this section,
we’re going to focus on the sequence of steps you’d follow to publish Linked Data. As
always, we’ll be employing Linked Data publishing best practices, which encompass
the Linked Data principles. These principles provide a framework for publishing and
consuming data on the Web but don’t provide implementation details. The imple-
mentation steps are:

1 Prepare your data.
2 Interlink your data to other datasets.
3 Publish your data.

10.1 Preparing your data
Prepare your data by transforming data from its existing non-RDF format into one of
the RDF formats. You can choose the easiest format for your task, as presented in chap-
ter 2. The transformation is likely to necessitate minting URIs, selecting appropriate
vocabularies, and saving the data in your chosen RDF format. Chapters 4, 5, and 6
showed you how to perform those steps.

 The final step is deciding which format to use. The most popular choices of serial-
ization formats are RDF/XML, Turtle, RDF/JSON, and RDFa. Don’t forget to validate
your data and correct any errors prior to exposure. You may choose to store your data-
set in an RDF database (chapter 7). The use of an RDF database facilitates SPARQL
access to your data.

 Chapters 1 and 2 address the Linked Data principles as proposed by Tim Berners-
Lee, the inventor of the Web. These principles are:

■ Use URIs as names for things.
■ Use HTTP URIs so that people can look up those names.
■ When someone looks up a URI, provide useful information, using the standards

(RDF*, SPARQL).1

■ Include links to other URIs, so that users can discover more things.

The quality of your data is dependent on you following these principles. Tim Berners-
Lee at Gov 2.0 Expo 2010 during his “Open, Linked Data for a Global Community”
presentation proposed this quality of data, as depicted in figure 10.1.

 Your goal should be to do your best to publish 5-Star data. The process of publish-
ing your data on the Web is multifaceted. In the next sections, we’d like to reinforce
some details that we want to be sure you don’t overlook.

1 The term RDF* is sometimes used to refer to the entire family of RDF standards.

235Minting URIs
10.2 Minting URIs
In brief, you mint URIs by assigning URIs to the resources that you wish to describe.
These URIs facilitate two aspects of Linked Data. First, they act as globally unique
names for the things you want to describe, and second, by using HTTP URIs, they pro-
vide an easy way to link to and access each description online. As we discussed in chap-
ter 2, you need to define your URIs within a publicly accessible HTTP namespace
under your control. Use URIs that can be referenced. Avoid exposing implementation
details in your URIs. Use short, mnemonic names. You need your URIs to be stable and
persistent. Changing your URIs later will break any established links, so devote extra
thought to them during the preparation phase.

 To prevent problems and confusion in publishing your data, it’s beneficial to
decide how URIs should be constructed. There are many approaches to structuring
URIs and several pros and cons for each. These have been taken into account in the
patterns suggested here.

 Many of our URIs fall into the following pattern:

http://{authority}/{container}/{item_key}

■ The authority part is generally a DNS machine name, optionally with a port. This
is necessary for your URL to resolve on the Web. If you’re worried about the
machine name changing, you might want to use a persistent URL (PURL) instead.

■ The container part allows you to keep keys separate to each context, avoiding
clashes where a number is, for example, an identifier that was originally used in
a relational database. Example containers might be "addresses", "facili-
ties", "people", or "books". Naturally, you could use nested containers if you
like (such as /offices/US/NewYork/).

Figure 10.1
5-Star data

236 CHAPTER 10 Publishing Linked Data—a recap
■ The item key uniquely identifies a specific resource within that container. For
the item key you should use clear, human-readable, natural keys that facilitate
easy linking by others. So, if your container is an address, the item key might
be a string made up of the address components such as the building number,
street name, city, and so on. For people it might be a name. All item keys that
use natural keys should be URL encoded, of course, or (better yet) just replace
spaces with hyphens or something equally readable.

Keep in mind that for each URI pattern you’re making three key decisions:

■ What is a suitable container name?
■ Should the resource be at the root of the data or nested within something else?
■ What should form the item’s key?

These decisions play a key role in ensuring that URI patterns are robust and allow for
extension later.

10.3 Selecting vocabularies
Selecting appropriate vocabularies can be challenging. We recommend that you think
about the kind of information you’re representing. What are you trying to represent?
Is it a person? Is it an event? Try to find an existing vocabulary that meets your needs.
You want your data to be easily interlinked with other datasets so you need to reuse
common vocabularies as much as possible. Table 10.1 contains references to selected
vocabularies along with the associated category indicating which terms are best
described by those vocabularies. See chapter 2 for a more comprehensive list of com-
mon vocabularies. If none of the available vocabularies are sufficient, then try to
extend an existing vocabulary rather than creating a vocabulary from scratch.

Table 10.1 Selected vocabularies by category

Groupings Common vocabularies

Person related FOAF (http://smlns.com/foaf/0.1/)
vCard (http://www.w3.org/2006/vcard/ns#)
Relationship (http://purl.org/vocab/relationship)

General purpose RDF Core (http://www.w3.org/1999/02/22-rdf-syntax-ns#)
RDF Schema (http://www.w3.org/2000/01/rdf-schema#)
Schema.org (http://schema.org)

Knowledge
 organization

Simple Knowledge Organization System (http://www.w3.org/2004/02/skos/core#)

Spatial (location) Basic Geo (http://www.w3.org/2003/01/geo/)

Temporal (things and
events)

Dublin Core (http://dublincore.org/documents/dcmi-terms/)
Event Ontology (http://purl.org/NET/c4dm/event.owl)

E-commerce GoodRelations (http://purl.org/goodrelations/v1#)

Graph object Open Graph Protocol Vocabulary (http://ogp.me/ns#)

http://smlns.com/foaf/0.1/
http://www.w3.org/2006/vcard/ns
http://purl.org/vocab/relationship
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://schema.org
http://www.w3.org/2004/02/skos/core
http://www.w3.org/2003/01/geo/
http://dublincore.org/documents/dcmi-terms/
http://purl.org/NET/c4dm/event.owl
http://purl.org/goodrelations/v1
http://ogp.me/ns

237Interlinking your data to other datasets
10.4 Customizing vocabulary
When you can’t find a vocabulary that fulfills your needs, you can create a customized
vocabulary (chapters 2 and 4). We recommend creating an RDF vocabulary. You
should consider using a tool like Neologism (http://neologism.deri.ie) to help create
and publish your vocabulary. Regardless of method of creation, be sure to pay atten-
tion to these guidelines:

■ Avoid defining a new vocabulary from scratch, but try to extend an existing
vocabulary by publishing terms in a namespace you control.

■ Liberally add rdfs:comments for each term invented, and always provide an
rdfs:label property. This will provide for both people and machine
consumption.

■ Make term URIs referenceable and follow the W3C Best Practice Recipes for
Publishing RDF Vocabularies (http://www.w3.org/TR/swbp-vocab-pub/).

■ Make use of existing terms or provide mappings to them using rdfs:subClassOf
or rdfs:subPropertyOf.

■ Explicitly state all ranges and domains for predicates.

Here’s an example:

tri:reporting_year
rdf:type rdf:Property ;
rdfs:label "reporting year" ;
rdfs:comment "Indicates a year when a TRI Report was submitted to the U.S.
 EPA's Toxic Release Inventory system." ;
rdfs:domain tri:Report ;
rdfs:range rdfs:Literal .

10.5 Interlinking your data to other datasets
You can discover other datasets for interlinking by the follow-your-nose method, using
a semantic indexer such as Sindice, employing owl:sameAs, rdfs:subClassOf, or
rdfs:subPropertyOf, and locating related datasets using SPARQL. Recall that you
want to interlink datasets because this aids in the discovery of your data by others and
positions your dataset within the Web of Data. These tools and techniques are dis-
cussed in chapters 4, 5, 6, and 8.

 Be sure to verify by examination or query that the datasets you discovered are
indeed relevant and related to your data. Document your dataset by preparing a VoID

Datasets VoID (http://rdfs.org/ns/void#)

Open source projects DOAP (http://usefulinc.com/ns/doap#)

Sitemaps Sitemaps 0.9 (http://www.sitemaps.org/schemas/sitemap/0.9)

Table 10.1 Selected vocabularies by category (continued)

Groupings Common vocabularies

http://rdfs.org/ns/void
http://usefulinc.com/ns/doap
http://www.sitemaps.org/schemas/sitemap/0.9

238 CHAPTER 10 Publishing Linked Data—a recap
file (chapter 8) that includes triples that interlink your data with that of others and
publish it in the same DNS as your dataset. You should prepare a semantic sitemap
(chapter 8) that describes your dataset and publish it in the same DNS as your dataset.
Pay special attention to licensing issues, and ensure that you license your data in
accordance with how you prefer to share it with others. Proper licensing ensures that
others will understand how they may reuse your data.

10.6 Publishing your data
Publishing your data can be as simple as storing it in a publicly accessible DNS and
ensuring the appropriate permissions are set. If desired and appropriate, you can pub-
lish your dataset on the LOD cloud, join Data Hub, register your dataset (chapter 8),
and request outgoing links from DBpedia to your dataset. Improving the visibility of
your dataset by interlinking and registering it on the LOD cloud facilitates sharing
your data with others.

10.7 Summary
We’ve highlighted the process of publishing Linked Data from preparation to public
publication. We’ve identified and tried to clarify easily overlooked steps like minting
URIs and customizing vocabularies. We hope that you will find this a helpful reference
as you prepare your own datasets for publication.

The evolving Web
In our closing chapter, we’ll survey the current state of the Semantic Web and the
role of Linked Data. We’ll identify interesting applications of Linked Data. We’ll
attempt to predict the direction the Semantic Web and Linked Data will take and
look at some emerging applications.

11.1 The relationship between Linked Data and the Semantic Web
Many people assume that the evolving Web of Data is synonymous with the Seman-
tic Web. That’s a bit misleading. The original World Wide Web as envisioned by
Tim Berners-Lee had semantic hyperlinks. In other words, each hyperlink had
meaning. One hyperlink might lead to information about the author of a web
page, and another might lead to a description of a particular service. But that’s not
how the Web evolved. For most of its two decades of existence, hyperlinks on the
Web were without any particular meaning. The best that we could say about them
was that they meant “look over here.”

This chapter covers
■ Linked Data and the evolving Web—current state
■ Linked Data and the evolving Web—future

directions
239

http://www.data.gov
http://www.data.gov
http://www.data.gov
http://www.data.gov.uk
http://www.data.gouv.fr
http://www.data.gouv.fr
http://www.data.gov.sg

240 CHAPTER 11 The evolving Web
 By the time the term Semantic Web was coined in 1999, the discussion was around soft-
ware agents that would use structured data and artificial intelligence to perform actions
on your behalf, such as making a dental appointment or ordering your groceries.1 We
know that hasn’t happened yet. Instead, the Web has evolved in different directions. The
Web of Data, and specifically Linked Data as envisioned by Tim Berners-Lee in 2005, has
grown tremendously. The Linking Open Data project has managed to create a lot of
structured data on the Web, and that data is being used in useful ways. Linked Data is
as essential to today’s Web of Data as hypertext is to the Web of Documents.

 The Semantic Web was originally envisioned as an iteration, or evolution, of the
World Wide Web in which computers would be able to perform many functions for us
automatically by way of understanding shared, structured data. Tim Berners-Lee artic-
ulated this vision at the XML-2000 Conference in Washington, D.C., in December 2000.
Figure 11.1 illustrates his formulation.

 Structured data in the form of RDF would be serialized in an XML format (RDF/
XML). The data could be described via various ontologies, and the resulting highly
organized information could be reasoned over with a logic engine to produce new,
meaningful information that was logically inferred from the underlying statements.
This was a vision strong on traditional artificial intelligence techniques that was dis-
tributed across the Web. Further, individual data documents would be signed using
public-key cryptography methods to allow computers to verify who was claiming what.

 We might indeed be able to schedule dentist appointments automatically or have our
computers purchase movie tickets for us with a minimum of direction if the Semantic
Web had developed that way. But several things about this idea turned out to be rather
optimistic. Some of the more obvious ones included the difficulties in combining this
vision with deployed information-management technologies; the small number of peo-
ple who had the skills to build the complicated tools needed; the complexity of the RDF/
XML syntax, which hindered adoption; and the difficulties in distributing cryptographic

1 Tim Berners-Lee, et al., “The Semantic Web [Preview],” Scientific American, May 17, 2001, http://www.sci-
entificamerican.com/article.cfm?id=the-semantic-web.

Figure 11.1 The Semantic Web
“layer cake” as presented by Tim
Berners-Lee, 2000

http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://logd.tw.rpi.edu/demo/international_dataset_catalog_search
http://logd.tw.rpi.edu/demo/international_dataset_catalog_search
http://logd.tw.rpi.edu/demo/international_dataset_catalog_search
http://logd.tw.rpi.edu/demo/international_dataset_catalog_search
http://semantic.data.gov
http://semantic.data.gov
http://semantic.data.gov
http://www.data.gov
http://www.data.gov
http://Www.data.gov
http://Www.data.gov
http://Www.data.gov
http://www.health.data.gov
http://www.energy.data.gov
http://www.law.data.gov
http://www.education.data.gov
http://www.education.data.gov

241The relationship between Linked Data and the Semantic Web
keys between individuals and companies. Perhaps more damaging was the lack of a sim-
ple, consistent, and easily implementable set of use cases for the idea. Most people just
didn’t “get it” and were only vaguely interested in having their computers schedule den-
tal appointments for them anyway.

 The Semantic Web has not, however, died. It has morphed into several directions
as the underlying concepts have been applied to specific problems. Semantics are now
a part of mainstream life, at least in the technology-rich parts of the world, and are
used daily by people whenever they use Apple’s Siri, see Google search results, or
“like” a web page. More specialized semantic products assist organizations with infor-
mation management, inventory control, data collection, and business workflows.

 Figure 11.2 illustrates the fragmentation of the Semantic Web and suggests how peo-
ple pick and choose parts of the technology stack to solve specific problems. Few use all
of the possible techniques at once. Even the foundation layers have changed to allow for
the internationalization of the Web and deemphasize XML in favor of simpler syntaxes.

 We should note that throughout these changes, the data model has remained
wholly RDF. The reasons for this are clear: modern computing allows us to operate on
a graph data model that more closely resembles the complexity of the real world and
the inner workings of the human brain. We’re no longer forced to think in hierar-
chies because of the limitations of our technology. We don’t expect that situation to
change. Instead, we expect a data model close to or evolving from RDF to become

Figure 11.2 Semantic Web—Current State, courtesy of Benjamin Nowack (http://www.bnode.org/).
For a full color version of the figure, see http://linkeddatadeveloper.com/Projects/Linked-Data/media/
fig11.2.png.

http://www.bnode.org/
http://www.bnode.org/
http://linkeddatadeveloper.com/Projects/Linked-Data/media/fig11.2.png
http://linkeddatadeveloper.com/Projects/Linked-Data/media/fig11.2.png

242 CHAPTER 11 The evolving Web
more important to our society as time passes. After all, the Web is our global reposi-
tory of knowledge, and it is itself a graph of information.

 When you look more closely at figure 11.2 you’ll see a small column to the left of
the main figure. That column represents the small subset of Semantic Web techniques
that are used for Linked Data. Linked Data is built strictly on the Web, uses various
RDF formats and the RDF data model, and has a model (the Linked Data principles)
layered on top to make it do what we wish it to do. Figure 11.3 visually diagrams the
relationships among the Semantic Web, RDF, and various structured data formats.
This diagram emphasizes that

■ Linked Data is a subset of Semantic Web techniques.
■ Linked Data is built upon RDF.
■ Structured data includes more than just RDF.
■ Schema.org supports two techniques, one of which is Microdata and the other

is RDFa.

You’re naturally free to bring other parts of the Semantic Web stack to bear on your
Linked Data. You may, if you wish, query it with SPARQL, apply rules or a logic engine,
cryptographically sign and verify your documents, or build applications on it. But you
don’t have to do any of this. Linked Data is simple in nature. That, coupled with its
clear use cases, is perhaps why it’s valuable.

Linked
Data

Structured
Data

Other RDF
formats

RDFa

RDF

Microformats Microdata

Semantic
Web

schema.org

Figure 11.3 The structured data ecosystem

http://Schema.org

243The relationship between Linked Data and the Semantic Web
11.1.1 Demonstrated successes

Some of the demonstrated successes of Linked Data are Google rich snippets;
schema.org’s adoption of RDFa Lite and the GoodRelations vocabulary; increasing use
of RDFa in the web pages of companies like Best Buy and Sears; Data.gov; and the con-
tinuing growth of the LOD cloud. These successes are difficult to see because Linked
Data is “under the hood.”

ADOPTION OF RDFA LITE BY SCHEMA.ORG

Search engines exploit semantic data when generating search results. The recent col-
laboration by Bing, Google, and Yahoo! in forming schema.org demonstrates support
for structured data on the Web. As we addressed in chapter 6, schema.org provides
schemas for many common domains (http://schema.org/docs/gs.html). Its recent
adoption of RDFa Lite further supports the facilitation of sharing data through com-
patible formats. This adoption is an acknowledgment of the importance of RDFa.

GOOGLE RICH SNIPPETS

Google rich snippets support RDFa along with microformats (http://
microformats.org/) and Microdata; see figure 11.3. Rich snippets technology sup-
ports numerous vocabularies including GoodRelations and RDF Data Vocabulary
(http://rdf.data-vocabulary.org). Many companies are creating rich snippets–
enabled pages and benefitting from a higher click-through rate in search results.
Websites that don’t employ rich snippets may suffer significant sales losses by drop-
ping a position in their search rankings.

PROLIFERATION OF KNOWLEDGE BASES FOR SEARCH ENGINE EXPLOITATION

A knowledge base is an information repository that enables information to be collected,
organized, shared, searched, and utilized. It can be either machine-readable or intended
for human use. MusicBrainz is one such knowledge base. The major search engines sup-
port knowledge bases in specific domains. Bing supports knowledge bases in entertain-
ment, sports, and travel domains. Google through its acquisition of Freebase (http://
www.freebase.com) supports Linked Open Data. Google’s use of Linked Data extends
beyond Freebase. In May 2012, it introduced its Knowledge Graph (http://
googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html).
The basis of the Knowledge Graph is the accumulated information about the searches,
query sessions, and clicks that searchers perform on the Web each day. Research in this
area is ongoing, as evidenced by Microsoft being granted a patent in November 2012 for
its process of collecting data on underserved queries.

GROWTH IN THE LINKING OPEN DATA CLOUD

The number of datasets published on the Linking Open Data cloud has grown by a
factor of two every year since its inception in 2007. DataHub.io provides a synopsis of
the growth of this arena. Perhaps the growth is more apparent when you realize that
the Linking Open Data cloud contains more than 31 billion triples. This number
grows every day. Table 11.1 contains a summary of some of the more prominent data-
sets recognized by DataHub.io. There are more than 5,165 datasets as of this writing.

http://schema.org/docs/gs.html
http://microformats.org/
http://microformats.org/
http://rdf.data-vocabulary.org
http://www.freebase.com
http://www.freebase.com
http://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
http://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.ibm.com/developerworks/webservices/library/ws-restful/

244 CHAPTER 11 The evolving Web
FACEBOOK’S USE OF RDFA AND ITS CREATION OF RDF DATA

Facebook’s Like button generates two sets of RDF triples each time a Like button is
clicked. One set is sent to Facebook for its database, and the other set is sent to the
company displaying the page. In additional support of Linked Data, Facebook is
embedding RDFa using its Open Graph Protocol in company Facebook pages.

USE OF RDFA AND GOODRELATIONS

More and more companies are following Best Buy’s example and embedding RDFa in
their web pages. Many of these companies are employing the GoodRelations vocabulary
to do this. Prominent companies utilizing RDFa include Google, Sears, Kmart, and Face-
book. The adoption of this vocabulary by schema.org will further proliferate its use.

OPEN GOVERNMENT DATA

The goal and focus of open government data (OGD) is to facilitate the sharing of
machine-readable datasets covering government activity. This is an international effort
with the four largest sites being www.data.gov (U.S.), www.data.gov.uk (UK),
www.data.gouv.fr (France), and www.data.gov.sg (Singapore.) A list of datasets and catalogs
can be found at http://logd.tw.rpi.edu/demo/international_dataset_catalog _search.

 Governments prefer releasing data through OGD portals because it is less costly
than publishing reports. These sets are often heterogeneous structures and formats
(not 5-Star data).

 Semantic Community (http://semantic.data.gov) provides support on the use of
Linked Data and Semantic Web technologies to improve your ability to use data from
http://www.data.gov. You can participate in collaborative government data access,
aggregate data from different agencies, transform the raw data into RDF, customize
applications, and provide feedback to enhance the quality of published data.
www.data.gov enables access to more than 400,000 datasets from 185 U.S. government
organizations. The newest communities can be found at www.health.data.gov,
www.energy.data.gov, www.law.data.gov, and www.education.data.gov. Open Linked
Data is being used in the health and energy sectors. OGD and semantic.data.gov are
active initiatives that provide useful information to consumers and the broader com-
munity. These organizations have many opportunities for community involvement in
providing improved access to available data and the development of specific applica-
tions. In fact, the application in chapter 7 accesses and aggregates both EPA and NOAA
data from this repository of open government data.

Table 11.1 Selected Linking Open Data datasets

Source URL

Bioportal http://datahub.io/group/bioportal

Canadian, citizen-led effort to promote open data http://www.datadotgc.ca/

Economics http://datahub.io/group/economics

Linking Open Data cloud http://datahub.io/group/lodcloud

245What’s coming
11.2 What’s coming
In the early 1990s, we were eager to publish and share documents. Now we’re eager to
share data. We can see that data is all around us. If we could share that data more easily
and integrate large, disparate datasets, there could be huge benefits, and Linked Data
is able to fulfill this need. We think it’s interesting and relevant to note that semantic
technologies have begun to permeate many industries and even consumer products.

 Semantic Web technologies are used in situations as diverse as Apple’s Siri, IBM’s
Watson, Google’s Knowledge Graph, Facebook’s Entity Graph, financial systems,
online payment systems, NASA inventory systems, workflows for publishers, drug dis-
covery at pharmaceutical companies, cancer research, government transparency pub-
lications, and so on.

 In other words, semantic technology is very horizontal. Now, what does that say
about Linked Data? Our guess is that it’s becoming the basis by which we’ll soften
(probably not “break”) silos on the various social networks. Users clearly want to share
data between Google+, Facebook, and Twitter as well as new market entrants that we
don’t know about yet. These networks have a cross-domain data interoperability prob-
lem, and Linked Data is currently the best tool we have to address that problem.

 Future uses of Linked Data are already in the planning stages. It’s apparent to us
that the future of Linked Data will extend well beyond the research community. Here
are a few examples.

11.2.1 Google extended rich snippets

Rich snippets are currently displayed based on the content of a single web page.
Future extended rich snippets could combine data from multiple sources. The model
for this application is called Content-Centric Networking and would employ RDF tri-
ples. The resulting rich snippets may contain embedded video, lists of others who are
attending an event, and locations where a movie is being shown. Experiments have
already demonstrated that Content-Centric Networking is useful when many parties
are interested in the same content. This could be fueled by web-scale triple propaga-
tion for popular web pages.

11.2.2 Digital accountability and transparency legislation

A future application of the Open Government Data resources would help the United
States optimize its federal spending. The Digital Accountability and Transparency Act
was considered by the U.S. Congress. Unfortunately, this legislation didn’t pass, but it
did raise interest and awareness. We’d expect similar legislation to be under consider-
ation in the near future. This act would have established an independent board that
would track all federal spending. The sponsors of the 2012 bill, Rep. Darrell Issa of
California and Sen. Mark Warner of Virginia, believe such a bill could prevent waste
and abuse of federal money. Teradata of Dayton, Ohio, one of the private-sector par-
ties interested in this arena, suggested consolidating datasets from across several fed-
eral agencies. This aggregated data could then be analyzed and reviewed. They expect

246 CHAPTER 11 The evolving Web
such data would expose abuses in the federal procurement system. Teradata’s system
is, at the time of this writing, being used in Arizona, Iowa, Maryland, Michigan, Mis-
souri, New Jersey, Ohio, Oklahoma, and Texas, with $1.8 billion recovered.

11.2.3 Impact of advertising

In 2011, Facebook realized $3.1 billion in ad revenue for the year. Analysts expect that
in 2012, Facebook’s ad revenue will have grown to $5.06 billion. Linked Data plays a
large role in supporting this effort. The RDF accumulated from Like button clicks can
be analyzed so that advertisers can hit their target audience. Similarly, by aggregating
and analyzing the data of your browsing habits, advertisers can identify potential cus-
tomers. Look for more activity in this area.

11.2.4 Enhanced searches

Both Google and Facebook are building knowledge bases in preparation for the next-
generation search engine. We expect that the next-generation search engine will
understand the concepts behind the queries and anticipate what you need before
you’re able to articulate it. Facebook’s Entity Graph and Google’s Knowledge Graph
are actively acquiring data.

 Facebook’s Entity Graph is vital to the success of Facebook’s Graph Search service.
This service isn’t yet universally available. Unlike a conventional search engine, Graph
Search is designed to understand the meaning of the phrases entered by a searcher
and deliver specific results. The results are people, places, books, or movies rather
than links to web pages. The Entity Graph describes everything from the restaurants
of New York to the concepts of philosophy and the connections between those con-
cepts. Facebook is relying on people for contribution of the data as well as its accuracy.
By prompting you to tag duplicate content, Facebook’s Entity Graph has “learned” the
different ways people refer to the same thing—for example, that NPR and National
Public Radio refer to the same thing.

 Conventional search engines are based on matching words and phrases and not what
the terms actually mean. The Knowledge Graph is a vast database that allows Google’s
software to identify relationships among data on people, places, and things. Google’s
Knowledge Graph contains more than 500 million entries, with more than 3.5 billion
links among them.

 Although Google and Facebook are building their knowledge bases in different
ways, both knowledge bases represent Linked Data. Both Google and Facebook are
interested in the same result, the next-generation search engine.

11.2.5 Participation by the big guys

Large enterprises like IBM, EMC, Oracle, and other large software vendors are cur-
rently participating in the Linked Data Platform Working Group at the W3C. In fact,
IBM is one of the co-chairs. They’re helping to define a common RESTful web services
API for the interoperability of enterprise software products. You can find background

247Conclusion
information on the RESTful web services (API) at http://www.ibm.com/developer-
works/webservices/library/ws-restful/.

IBM supports Linked Data in a number of their products. For instance, DB2 ver-
sion 10 provides support for RDF with a SPARQL engine on top of DB2. EMC uses
Linked Data technology in its Big Data open source RDF database platform. Oracle
brought an RDF Store to the market as an optional feature in the Enterprise Edition of
11g. These companies are interested in participating on the Linked Data Platform
Working Group to enumerate the necessary standards and provide guidance on con-
ventions and good practices. Involvement and agreement from companies like IBM,
EMC, and Oracle will simplify deployment by reducing options and increasing interop-
erability. Defining standards will help the Linked Data community move forward.

11.3 Conclusion
Linked Data is being used beyond the LOD cloud, and it’s becoming the basis for data
sharing in many contexts. We expect that our own interactions with data on the Web
will evolve along with new contexts for data sharing. Our belief is that there is no
Semantic Web per se, as envisioned by Tim Berners-Lee, et al., nor will there ever be.
Instead, we see the Web constantly evolving to include more semantics. Right now we
have strong semantics in the hyperlinks used in Linked Data. Hyperlinks in RDF have
meaning, and they can both name and define relationships between resources on the
Web. Perhaps the future will see those semantics being used more by web browsers
and thus enter the mainstream. Only time will tell.

http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.ibm.com/developerworks/webservices/library/ws-restful/

appendix A
Development environments

This appendix covers information regarding setting up the tools and packages used
by the examples in this book:

■ cURL
■ Python
■ ARQ
■ Fuseki
■ Callimachus

A.1 cURL
cURL, a command-line tool for getting or sending files using URL syntax, is a true
open source/free software tool that you can modify and redistribute. You may also
freely use cURL in your commercial projects. cURL is licensed under an MIT/X
derivate license. To download a copy of cURL, point your browser to http://
cURL.haxx.se/dlwiz/. We recommend that you select one of the cURL executable
packages. Select the curl executable link. This will take you to a site where you can
select your OS of choice and download a prebuilt cURL binary for your system.
Download and extract the source provided. Be sure to note the path to curl.exe
because you may need to navigate to it later. Here are some commands that you
might try to ensure that your installation is functioning properly:

■ man curl—Displays the manual page for cURL.
■ curl http://www.google.com >> ~/google.txt—cURL resolves the Google

home page URL and appends the results to the file google.txt in your home
directory.

We suggest that you complete an online tutorial to better understand how to use
cURL. Here are two:
249

http://curl.haxx.se/dlwiz/
http://curl.haxx.se/dlwiz/
http://curl.haxx.se/dlwiz/?type=bin

250 APPENDIX A Development environments
■ http://quickleft.com/blog/command-line-tutorials-curl
■ http://curl.haxx.se/docs/httpscripting.html

A.2 Python
Python is a powerful dynamic programming language that’s used in a variety of appli-
cation domains. Python’s notable features include clear, readable syntax; full modular-
ity and supporting hierarchical packages; exception-based error handling; high-level,
dynamic data types; extensive standard libraries and third-party modules; and support
for all major OSes without need for changes to the source code.

 You can download a Python interpreter from Python.org (http://python.org). Fol-
low the guidelines at http://wiki.python.org/moin/BeginnersGuide/Download to
select the proper installation package to meet your needs.

 You should also download and install the free libraries RDFLib, Lingfo, and
html5lib. These libraries can be found here:

■ RDFLib—https://github.com/RDFLib/rdflib.
■ html5lib—http://code.google.com/p/html5lib/downloads/

detail?name=html5lib-0.95.tar.gz.
■ Lingfo—http://www.lexicon.net/sjmachin/xlrd.htm. Follow the instructions

contained at http://wiki.python.org/moin/CheeseShopTutorial for proper
installation.

These library downloads should be stored in [PYTHON HOME]/lib.

A.3 ARQ
ARQ is a SPARQL processor that can be used from a command-line interface. ARQ can
be downloaded from the Jena project’s site at Apache (http://jena.apache.org).
Source and binary executables for various operating systems can be retrieved from
http://www.apache.org/dist/jena/. Make sure that you note the directory into which
you extract the ARQ files.

 Setting up ARQ is straightforward. A single environment variable is used to tell
ARQ where its installation directory is located. The next listing shows how that’s done
on various OSes. In this listing, using Unix-like systems, we’re assuming the ARQ files
were extracted to /Applications/ARQ-2.8.8. In the Windows system, we’re assuming
the ARQ files were extracted to c:\MyProjects. You may select different directories, but
note the path because you need to set the ARQROOT variable accordingly.

For Unix-like systems, including Linux and OS X:
$ export ARQROOT='/Applications/ARQ-2.8.8'
$ /Applications/ARQ-2.8.8/bin/arq –h

For Windows:
set ARQROOT=c:\MyProjects\ARQ
c:\MyProjects\ARQ\bat\arq.bat /h

Listing A.1 Setting up ARQ

Getting
help for

ARQ

Setting up the
ARQ environment

http://quickleft.com/blog/command-line-tutorials-curl
http://curl.haxx.se/docs/httpscripting.html
http://python.org/download/releases/2.7.3/
http://wiki.python.org/moin/BeginnersGuide/Download
https://github.com/RDFLib/rdflib
http://code.google.com/p/html5lib/downloads/detail?name=html5lib-0.95.tar.gz
http://code.google.com/p/html5lib/downloads/detail?name=html5lib-0.95.tar.gz
http://www.lexicon.net/sjmachin/xlrd.htm
http://wiki.python.org/moin/CheeseShopTutorial
http://jena.apache.org
http://www.apache.org/dist/jena/

251Callimachus
You can verify the correct installation and setup of your ARQ environment by navigat-
ing to the ARQ directory and executing a prevously saved SPARQL query (for example,
sample.rq) on previously saved RDF data (sampleData.rdf):

/bin/arq --query sample.rq --data sampleData.rdf

A.4 Fuseki
Fuseki is a lightweight, in-memory database suitable for working with small amounts
of RDF data. Fuseki implements SPARQL query and update protocols that can present
RDF data and answer SPARQL queries over HTTP. Fuseki also implements the SPARQL
Graph Store HTTP Protocol.

 Additional documentation and Fuseki installation and execution instructions are
available from http://jena.apache.org/documentation/serving_data/index.html.
Installation procedures vary, so we recommend you follow the instructions relevant to
your OS.

A.5 Callimachus
Developers refer to Callimachus as a Linked Data management system. You may
think of it as an application server for Linked Data. Callimachus is open source soft-
ware released under the Apache 2.0 license. Callimachus provides browser-based
development tools to easily create web applications using RDF data. Callimachus
allows you to navigate, visualize, and build applications upon Linked Data. The data
may be stored locally or gathered from the Web and may even be converted as it’s
brought into Callimachus.

 You can download the most recent release and documentation from the proj-
ect’s website, http://callimachusproject.org. Installation and configuration instruc-
tions are in the file README.txt in the Callimachus distribution. Start the server and
resolve the service’s URL in your web browser. You’ll see the Callimachus welcome
screen following a successful installation.

http://jena.apache.org/documentation/serving_data/index.html
http://callimachusproject.org

appendix B
SPARQL results formats

This appendix explores the different output formats available for SPARQL queries.
These formats allow for a high level of flexibility when using SPARQL in your appli-
cations. We cover the general structure of each format and where to find more
detailed information about each.

 All of the example results in this appendix are based on the first SPARQL query
example shown in chapter 5 (listing 5.1). Keep in mind that this is a very simple
query, and as queries become more complex, so do their results. For your conve-
nience, the following listing is a copy of the SPARQL query from listing 5.1.

prefix foaf: <http://xmlns.com/foaf/0.1/>
prefix pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

This appendix covers
■ SPARQL XML results format
■ SPARQL JSON results format
■ SPARQL CSV and TSV results format

Listing B.1 SPARQL query from listing 5.1
252

http://xmlns.com/foaf/0.1/

253SPARQL XML results format
select ?name ?latitude ?longitude
from <http://3roundstones.com/dave/me.rdf>
from <http://sw-app.org/foaf/mic.rdf>
where {
 ?person foaf:name ?name ;
 foaf:based_near ?near .
 ?near pos:lat ?latitude ;
 pos:long ?longitude .
}
LIMIT 10

B.1 SPARQL XML results format
The SPARQL query results in XML format is a W3C Recommendation. The full specifi-
cation is available online at http://www.w3.org/TR/rdf-sparql-XMLres/. It’s a stan-
dard for the representation of the results of a SPARQL query in XML syntax. It consists
of two main sections: a head section and a results section; both are wrapped in a
SPARQL definition. From that point there are many options for further definition and
representation, but here we’ll cover only the basics.

 All SPARQL XML results must be wrapped in a SPARQL document element, as out-
lined in the next listing.

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 ...
</sparql>

Within the SPARQL document element there must be two additional elements: a head
section and a results section. For SELECT queries that return a series of variables, all
variables must be defined in the order in which they’re requested in the SELECT state-
ment of the query. The example query we’re using throughout this appendix (listing 5.1
in chapter 5) selects ?name, ?latitude, and ?longitude in that order. The relationship
is established via variable tags with a name attribute corresponding to the variable name
from the query. The listing that follows shows the document element from listing B.2 now
including the head element.

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="name"/>
 <variable name="latitude"/>
 <variable name="longitude"/>
 </head>
 ...
</sparql>

Listing B.2 SPARQL XML document element

Listing B.3 SPARQL XML head element

The head and results
elements will appear
here, within the SPARQL
document element.

The results element
will appear here.

http://www.w3.org/TR/rdf-sparql-XMLres/

254 APPENDIX B SPARQL results formats
The second element contained within the SPARQL document element is the results
element, which contains the actual results of the query. Each value retrieved from
the query’s SELECT statement is described using a results element within the par-
ent results element. These results are bound to the variables delineated in the
head element described earlier in the SPARQL document element via a binding tag
with a name attribute that matches the variable name. The next listing shows a full
example of a SPARQL XML result set including variable definitions and results bound
to those variables.

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 <head>
 <variable name="name"/>
 <variable name="latitude"/>
 <variable name="longitude"/>
 </head>
 <results>
 <result>
 <binding name="name">Michael G. Hausenblas</binding>
 <binding name="latitude">47.064</binding>
 <binding name="longitude">15.453</binding>
 </result>
 <result>
 <binding name="name">David Wood</binding>
 <binding name="latitude">38.300</binding>
 <binding name="longitude">-77.466</binding>
 </result>
 </results>
</sparql>

Result bindings can be further specified with the use of different document element tags
within the binding element. Results can be typed as URIs (<uri>), literals (<literal>),
literals with language tags (<literal xml:lang="…">), typed literals (<literal data-
type="…">), or blank nodes (<bnode>). The next listing shows an example using the
<binding> tag.

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
 ...
 [[
 <binding name="name"><literal>David Wood</literal></binding>
]]
 ...
</sparql>

For further references, explanation, and examples, see the full specification online
(http://www.w3.org/TR/rdf-sparql-XMLres/).

Listing B.4 Complete SPARQL XML result set

Listing B.5 SPARQL XML results binding type example

255SPARQL JSON results format

ery

y
e
B.2 SPARQL JSON results format
The SPARQL query results in JSON format is a W3C Proposed Recommendation. The
full specification in its current state is available online at http://www.w3.org/TR/
sparql11-results-json/. It’s in the process of becoming a standard for the representa-
tion of the results of a SPARQL query using JSON syntax. Just as with the XML format-
ting, it consists of two main sections: a head section and a results section. Both of
these are contained within a single parent JSON object. From that point there
are many options for further definition and representation, but here we’ll cover only
the basics.

 The parent JSON object contains two member objects, head and results. The list-
ing that follows shows an example head section.

{
 "head": {
"vars": ["name" , "latitude", “longitude”]
 } ,
 ...
}

Once the variables are defined, the results of the query can be described appropri-
ately. This is where the results member appears. The results member object con-
tains a bindings member array, which creates a JSON object for every result from the
query. The next listing shows an example of the bindings array.

"results": {
 "bindings" : [
 {
 "name" : { ... },
 "latitude" : { ... },
 "longitude" : { ... },
 }
]
}

The results are bound to the variables defined in the head element by the key of the
key-value pair defined in each JSON object. At this point, these two elements can be
combined within the parent JSON object to form a complete example of a SPARQL
JSON result set. The following listing shows this full example.

Listing B.6 SPARQL JSON head element

Listing B.7 SPARQL JSON results element

Opening of the
parent JSON
object that

contains the
head member

The vars member
array that defines the
variable names used in
the results member

Results member
object will go here.

Opening of the bindings
JSON object, which contains a
JSON object for each result

Opening of the first
result JSON object,
which contains the

type and value of
the results

Definition of qu
result for name
variable

Definition of
query result for
latitude variable

Definition of quer
result for longitud
variable

http://www.w3.org/TR/sparql11-results-json/

256 APPENDIX B SPARQL results formats

 of
ult
e
{
 "head": { "vars": ["name" , "latitude", "longitude"]
 } ,
 "results": {
 "bindings": [
 {
 "name": {"type": "literal" , "value": "Michael G. Hausenblas
 "latitude": {"type": "literal" , "value": "47.064"},
 "longitude": {"type": "literal" , "value": "15.453"}
 },
 {
 "name": {"type": "literal" , "value": "David Wood"},
 "latitude": {"type": "literal" , "value": "38.300"},
 "longitude": {"type": "literal" , "value": "-77.466"}
 }
]
 }
}

As you can see, the elements used in the JSON formatting are identical to the format-
ting of XML results with only minor syntactic differences. The head element con-
tains variable definitions, the results element contains the results of the query,
and variables are bound within binding elements, which can define both their type
and value.

B.3 SPARQL CSV and TSV results format
The SPARQL query results in CSV (comma-separated value) and TSV (tab-separated
value) format are a W3C Proposed Recommendation. The full specification in its cur-
rent state is available online at http://www.w3.org/TR/sparql11-results-csv-tsv/. It’s in
the process of becoming a standard for the representation of the results of a SPARQL
query using CSV and TSV structure.

 The formatting for SPARQL CSV results is quite different from either XML or JSON.
Due to its inherent structure, all of the information encoded in RDF can’t be trans-
ferred successfully to CSV. Whereas XML and JSON can encode types for the values
returned from the query, CSV can only return a string literal and the type must be
inferred. The syntax and structure are identical to any other CSV file, where the first
line defines the variables in the order in which they were gathered from the SELECT
clause. Each line after the first line represents a result from the query bound to the
columns defined in the first line by their relative position. The next listing shows an
example CSV result set.

Listing B.8 Complete SPARQL JSON result set

Opening of the parent JSON
object, which contains head
and results members

Opening of the head JSON
object, which declares

the variable names

Opening of the
results JSON

object, which
contains query

results

Definition of query result
for name variable

Definition
query res
for latitud
variable

Definition of query
result for longitude

variable

http://www.w3.org/TR/sparql11-results-csv-tsv/

257SPARQL CSV and TSV results format
name, latitude, longitude
Michael G. Hausenblas, 47.064, 15.453
David Wood, 38.300, -77.466

TSV is identical in structure to CSV but allows for the serialization of RDF types using
the same syntax as SPARQL and Turtle. If the value is a URI, it’s enclosed in angle
brackets (<URI>). If the value is a literal, it’s enclosed in either single or double quotes
("literal") with the option to add a language tag (@lang) or a data type (^^). The
following listing shows an example of a TSV SPARQL result set. <TAB> is used in place
of an actual tab character.

name<TAB>latitude<TAB>longitude
"Michael G. Hausenblas"@en<TAB>47.064<TAB>15.453
"David Wood"@en<TAB>38.300<TAB>-77.466

XML, JSON, CSV, and TSV all have similarities and differences when it comes to struc-
ture, syntax, and application. The key is to choose which serialization is appropriate
for your application.

Listing B.9 Complete SPARQL CSV result set

Listing B.10 Complete SPARQL TSV result set

First line denoting
the variables. This

order applies to all
subsequent lines.

The first value is for the
variable name; the second for
the variable latitude; the third
for the variable longitude.

First line denoting
the variables. This

order applies to all
subsequent lines.

The first value ("name") is a literal with an
English language tag; the second and third
values are bare strings without a type. An

XSD:datatype could be added if desired.

glossary

This appendix covers common Linked Data terms and their definitions. Terminol-
ogy is constantly growing and evolving, and as Linked Data continues to expand, so
too will the language around it.

APACHE JENA

An open source software implementation of a Semantic Web development frame-
work. Supports the storage, retrieval, and analysis of RDF information. See http://
jena.apache.org.

CALLIMACHUS

A Linked Data management system (or application server for Linked Data). Sup-
ports the building of Linked Data applications. See http://callimachusproject.org.

CONNEG

See content negotiation.

CONTENT NEGOTIATION

In HTTP, the use of a message header to indicate which response formats a client
will accept. Content negotiation allows HTTP servers to provide different versions
of a resource representation in response to any given URI request.

CONTROLLED VOCABULARIES

Carefully selected sets of terms that are used to describe units of information; used
to create thesauri, taxonomies, and ontologies.

CSV
See comma-separated values format.

COMMA-SEPARATED VALUES FORMAT

A tabular data format in which columns of information are separated by comma
characters.

CURL
A command-line open source/free software client that can transfer data, including
machine-readable RDF, from or to a server using one of its many supported
protocols.
258

http://jena.apache.org
http://jena.apache.org

259GLOSSARY glossary
DATA MODELING

The process of organizing data and information describing it into a faithful represen-
tation of a specific domain of knowledge.

DATASET

A collection of RDF data, comprising one or more RDF graphs that are published,
maintained, or aggregated by a single provider. In SPARQL, an RDF dataset represents
a collection of RDF graphs over which a query may be performed.

DBPEDIA

An RDF representation of the metadata held in Wikipedia and made available for
SPARQL queries on the World Wide Web.

DCMI
See Dublin Core Metadata Initiative.

DIRECTED GRAPH

A graph in which the links between nodes are directional (they only go from one
node to another and not necessarily in reversed order). RDF represents things
(nouns) and the relationships between them (verbs) in a directed graph. In RDF, the
links are differentiated by being assigned URIs.

DUBLIN CORE METADATA ELEMENT SET

A vocabulary of 15 properties for use in resource descriptions, such as can be found in
a library card catalog (author, publisher, and so on). The most commonly used vocab-
ulary for Semantic Web applications.

DUBLIN CORE METADATA INITIATIVE

An open international organization engaged in the development of interoperable
metadata standards, including the Dublin Core Element Set and Dublin Core Meta-
data Terms. See http://dublincore.org.

DUBLIN CORE METADATA TERMS

A vocabulary of bibliographic terms used to describe both physical publications and
those on the Web. An extended set of terms beyond those basic terms found in the Dub-
lin Core Metadata Element Set. See http://dublincore.org/documents/dcmi-terms/.

ENTITY

In the sense of an entity-attribute-value model, an entity is synonymous with the sub-
ject of an RDF triple. See triple.

FOAF
See Friend of a Friend.

FRIEND OF A FRIEND

A Semantic Web vocabulary describing people and their relationships for use in
resource descriptions.

GRAPH

A collection of objects (represented by nodes), any of which may be connected by
links between them. See also directed graph.

260 GLOSSARY glossary
INTERNATIONALIZED RESOURCE IDENTIFIER

A global identifier standardized by joint action of the World Wide Web Consortium
and Internet Engineering Task Force. An IRI may or may not be resolvable on the
Web. A generalization of URIs that allows characters from the Universal Character Set
(Unicode). Slowly replacing URIs. See also URI, URL.

IRI
See internationalized resource identifier.

JAVASCRIPT OBJECT NOTATION

A language-independent data format for representing simple data structures.

JAVASCRIPT OBJECT NOTATION FOR LINKING DATA

A language-independent data format for representing Linked Data, based on JSON.
JSON-LD is capable of serializing any RDF graph or dataset, and most, but not all, JSON-
LD documents can be directly transformed to RDF.

JSON
See JavaScript Object Notation.

JSON-LD
See JavaScript Object Notation for Linking Data.

LINKED DATA

A pattern for hyperlinking machine-readable datasets to each other using Semantic Web
techniques, especially via the use of RDF and URIs. Enables distributed SPARQL queries
of the datasets and a browsing or discovery approach to finding information (as com-
pared to a search strategy). See http://www.w3.org/DesignIssues/LinkedData.html.

LINKED DATA API
A REST API that allows data publishers to provide URLs to lists of things and allows cli-
ents to retrieve machine-readable data from those URLs.

LINKED DATA CLIENT

A web client that supports HTTP content negotiation for the retrieval of Linked Data
from URLs and/or SPARQL endpoints.

LINKED DATA PLATFORM

A specification that defines a REST API to read and write Linked Data for the purposes
of enterprise application integration. Defined by the World Wide Web Consortium
(W3C).

LINKED OPEN DATA

Linked Data published on the public Web and licensed under one of several open-
content licenses permitting reuse.

LINKED OPEN DATA CLOUD

A colloquial phrase for the total collection of Linked Data published on the Web.

LINKING OPEN DATA CLOUD DIAGRAM

A diagram representing datasets published by the Linking Open Data project from 2007
to 2011. The diagram stopped being updated when individual datasets could no longer

http://www.w3.org/DesignIssues/LinkedData.html

261GLOSSARY glossary
be meaningfully represented in a single diagram because of the number of total data-
sets. See http://lod-cloud.net/state/.

LINKING OPEN DATA PROJECT

An open community project to interlink data on the Web using URIs and RDF.

LINKSET

A collection of RDF links between two datasets.

MACHINE-READABLE DATA

Data formats that may be readily parsed by computer programs without access to pro-
prietary libraries. For example, CSV, TSV, and RDF formats are machine-readable, but
PDF and Microsoft Excel are not.

METADATA

Information used to administer, describe, preserve, present, use, or link other infor-
mation held in resources, especially knowledge resources, whether physical or virtual.
Metadata may be further subcategorized into several types (including general, access,
and structural metadata).

N-QUADS

A line-based format to encode an RDF dataset (possibly consisting of multiple RDF graphs).
Defined by the World Wide Web Consortium. See http://www.w3.org/TR/n-quads/.

N-TRIPLES

A subset of Turtle that defines a line-based format to encode a single RDF graph. Used
primarily as an exchange format for RDF data. Defined by the World Wide Web Con-
sortium. See http://www.w3.org/TR/n-triples/.

NAMESPACE

See namespace IRI.

NAMESPACE IRI
A base IRI shared by all terms in a given vocabulary or ontology.

OBJECT

The final term in an RDF statement. See triple.

ONTOLOGY

A formal model that allows knowledge to be represented for a specific domain.

PERSISTENT UNIFORM RESOURCE LOCATOR

URLs that act as permanent identifiers in the face of a dynamic and changing web
infrastructure. PURLs redirect to the current location of or proxy specific web
content.

PREDICATE

The middle term (the linkage, or verb) in an RDF statement. See triple.

PROVENANCE

Data related to where, when, and how information was acquired.

http://lod-cloud.net/state/

262 GLOSSARY glossary
PROTOCOL

A set of instructions for transferring data from one computer to another over a net-
work. A protocol standard defines both message formats and the rules for sending
and receiving those messages. One of the most common internet protocols is the
Hypertext Transfer Protocol (HTTP).

PURL
See persistent uniform resource locator.

QUAD STORE

A colloquial phrase for an RDF database that stores RDF triples plus an additional ele-
ment of information, often used to collect statements into groups.

RDF
See Resource Description Framework.

RDFA

See Resource Description Framework in Attributes.

RDF DATABASE

A type of database designed specifically to store and retrieve RDF information. May be
implemented as a triple store, quad store, or other type.

RDF/JSON
A simple serialization of RDF triples in JSON. See also JSON-LD.

RDF LINK

An RDF triple whose subject and object are contained in different datasets. The data-
sets may be found on different servers.

RDF SCHEMA

See Resource Description Framework Schema.

RDF/XML
An RDF syntax encoded in XML. A standard of the World Wide Web Consortium.

REFERENCEABLE URIS
URIs that are used as identifiers in RDF graphs and that also may be resolved as URLs
on the Web.

REQUEST

An action requested by a client using a particular protocol to request a response from
a server. In HTTP, a request is synonymous with the term URL resolution. See also response.

RESOURCE

In an RDF context, a resource can be anything that an RDF graph describes.

RESOURCE DESCRIPTION FRAMEWORK

A family of international standards for data interchange on the Web produced by the
World Wide Web Consortium.

263GLOSSARY glossary
RESOURCE DESCRIPTION FRAMEWORK IN ATTRIBUTES (RDFA)
An RDF syntax encoded in HTML documents. It’s a standard of the World Wide Web
Consortium.

RESOURCE DESCRIPTION FRAMEWORK SCHEMA (RDFS)
A standard of the World Wide Web Consortium and the simplest RDF vocabulary
description language. It provides much less descriptive capability than the Simple
Knowledge Organization System (SKOS) or the Web Ontology Language (OWL).

RESPONSE

An action by a server taken as the result of a request by a client. In HTTP, a response
provides a resource representation to the calling client. See also request.

REST
See Representational State Transfer.

REPRESENTATIONAL STATE TRANSFER

An architectural style for information systems used on the Web. It explains some of
the Web’s key features, such as extreme scalability and robustness to change.

REST API
An API implemented using HTTP and the principles of REST to allow actions on web
resources. The most common actions are to create, retrieve, update, and delete resources.

SEMANTIC WEB

An evolution or part of the World Wide Web that consists of machine-readable data in
RDF and an ability to query that information in standard ways (for example, via SPARQL).

SINDICE

A search engine for Linked Data. It offers search and querying capabilities across the
data it knows about, as well as specialized APIs and tools for presenting Linked Data
summaries. See http://sindice.com.

SPARQL
See SPARQL Protocol and RDF Query Language.

SPARQL ENDPOINT

A service that accepts SPARQL queries and returns answers to them as SPARQL result sets.

SPARQL PROTOCOL AND RDF QUERY LANGUAGE

A query language standard for RDF data on the Semantic Web; analogous to the Struc-
tured Query Language (SQL) for relational databases. A family of standards of the
World Wide Web Consortium. See http://www.w3.org/TR/sparql11-overview/.

SUBJECT

The initial term in an RDF statement. See triple.

TAB-SEPARATED VALUES FORMAT

A tabular data format in which columns of information are separated by tab characters.

TRIG
An extension of Turtle to encode an RDF dataset. Defined by the World Wide Web
Consortium. See http://www.w3.org/TR/trig/. See also N-Quads and Turtle.

http://sindice.com
http://www.w3.org/TR/trig/

264 GLOSSARY glossary
TRIPLE

An RDF statement, consisting of two things (a subject and an object) and a relation-
ship between them (a verb, or predicate). This subject-predicate-object triple forms
the smallest possible RDF graph (although most RDF graphs consist of many such
statements).

TRIPLESTORE

A colloquial phrase for an RDF database that stores RDF triples.

TSV
See tab-separated values format.

TURTLE

An RDF syntax intended to be readable by humans. It’s a standard of the World Wide
Web Consortium. See http://www.w3.org/TR/turtle/.

UNIFORM RESOURCE IDENTIFIER

A global identifier standardized by joint action of the World Wide Web Consortium
and Internet Engineering Task Force. It may or may not be resolvable on the Web. See
also IRI and URL. See http://tools.ietf.org/html/rfc3986 and http://www.w3.org/
DesignIssues/Architecture.html.

UNIFORM RESOURCE LOCATOR

A global identifier for web resources standardized by joint action of the World Wide
Web Consortium and Internet Engineering Task Force. A URL is resolvable on the
Web and is commonly called a web address. See also IRI and URI.

URI
See uniform resource identifier.

URL
See uniform resource locator.

VOCABULARY

A collection of terms for a particular purpose, such as RDF Schema, FOAF, or the Dub-
lin Core Metadata Element Set. The use of this term overlaps with ontology.

VOCABULARY ALIGNMENT

The process of analyzing multiple vocabularies to determine terms that are common
across them and to record those relationships.

VOID
Vocabulary of Interlinked Datasets, an RDF Schema vocabulary for expressing meta-
data about RDF datasets and a standard of the World Wide Web Consortium.

WEB OF DATA

A subset of the World Wide Web that contains Linked Data.

WEB OF DOCUMENTS

The original, or traditional, World Wide Web in which published resources were
nearly always documents.

http://www.w3.org/TR/turtle/
http://tools.ietf.org/html/rfc3986
http://www.w3.org/DesignIssues/Architecture.html

index
Numerics

4Store 160
5-Star Linked Data mug 5

A

?abstract variable 110
access metadata 186
Account property 81
accountName property 81
accountServiceHomepage property 81
acquaintanceOf property 89
Add a Dataset submission page, Data Hub 205
ADD operation 113
Additional Info tab 86
?address variable 105
advertising, Linked Data impact 246
Age property 81
Agent class 80
Agent-Promise-Object Principle 135
aggregateRating property 149
aggregating data

crawling web and aggregating data example
crawling with Python 73–75
creating HTML output 75–76
overview 73

overview 66–70
using browser plug-ins 70–72
using Python 172–175

aimChatID property 81
Airport Ontology 40
Allegro-Graph 160
ambivalentOf property 89
ancestorOf property 89

anon-root class 183
antagonistOf property 89
Apache

configuring 57
mod_asis 57–58

Apache Jena 258
Apache Software Foundation. See ASF
application/owl+xml Content-Type 56
application/rdf+xml Content-Type 56
apprenticeTo property 89
ARQ 250
ASF (Apache Software Foundation) 184
ASK query, querying with SPARQL 111
Assign Templates link 214
attributes, HTML element 132–133
authoritative vocabularies 40
AVG function 110

B

@base directive 46
based_near property 81
BBC use case 9–11
Best Buy 71–76
BIBO vocabulary 40
BigData 161
<binding> tag 114
Bio vocabulary 41
Birthday property 81
blank nodes, overview 35–36
Bonobo class 213–214
bookmarklets

JavaScript 97
jQuery 97
overview 97–98
265

INDEX266
branch class 183
brand property 149
browser plug-ins 70–72

C

Callimachus Project
Callimachus 251, 258
creating and editing classes

creating edit template 220–221
creating new note 218–219
creating view template 219–220
overview 216–218

creating web pages from multiple data sources
creating HTML page 224–226
JavaScript to retrieve and display Linked

Data 226
overview 222, 229–232
querying Linked Data from NOAA and

EPA 222–224
creating web pages using RDF classes

adding data 212–213
associating view template with class 214–216
overview 212
setting up classes 213–214

overview 209
setting up 212

center parameter 120
childOf property 89
classes, overview 36
Classic Web 60
CLEAR operation 113
closeFriendOf property 89
collaboratesWith property 89
colleagueOf property 89
comma-separated values format. See CSV
Compact URI Expressions. See CURIEs
configurations

for Apache 57
using Apache mod_asis 57–58
using Content-Type header 54–57

conneg 23, 258
CONSTRUCT query, querying with SPARQL 112
consuming Linked Data

aggregating Linked Data
overview 66–70
using browser plug-ins 70–72

crawling web and aggregating data example
crawling with Python 73–75
creating HTML output 75–76
overview 73

finding distributed Linked Data
Data Hub 65–66
SameAs.org 65
Sindice 64

overview 63
thinking like Web 61–62

content negotiation, defined 258
Content-Type header 54–57
@context object 52
controlled vocabularies, defined 258
COPY operation 113
core vocabularies 39
COUNT function 110
?count variable 110
cpanel interface 57
crawling web and aggregating data example

crawling with Python 73–75
creating HTML output 75–76
overview 73

Create a New Note link, Callimachus 218
CREATE operation 113
created class, DOAP 183
Creative Commons Rights Expression

Language 41
CSV (comma-separated value)

.csv files 167
format, defined 258
SPARQL result format 256–257

CURIEs (Compact URI Expressions) 49
curl command 19, 24, 249–250, 258
curly braces 53
currentProject property 81–82

D

Data Hub
joining 203–204
overview 65–66

data models
blank nodes 35–36
classes 36
formats

JSON-LD 52–54
overview 43–44
RDF/XML 46–49
RDFa 49–52
Turtle 44–46

linking RDF documents using custom vocabu-
lary
adding items to wish list document 95–97
bookmarklet tool for 97–98
creating wish list vocabulary 93
overview 93
publishing wish list document 94–95

principles of Linked Data 28–33
triples 33–35
typed literals 37–38
vocabularies

commonly used 39–41

INDEX 267
data models (continued)
creating 42–43
overview 38–39

web server configuration
configuring Apache 57
using Apache mod_asis 57–58
using Content-Type header 54–57

--data parameter 104
data warehouses, RDF databases 165–166
databases

advantages of 166–167
collecting Linked Data into

aggregating data sources using Python
172–175

output for 175–177
overview 171
process for 171–172

importing spreadsheet data
converting to Linked Data 169–171
overview 167
tools for 171
using Python script 167–169

overview 158–160
selecting 160–161
vs. RDBMS

breaching encapsulated containers 164–165
data warehouses 165–166
schema description 162–163
transactional models 161–162

Dataset class 187
datasets

defined 259
DOAP

creating profile 180–181
overview 179–180
using vocabulary 182–186

documenting using VoID
creating VoID file 187–189
overview 186–187

interlinking, using owl 237–238
joining Data Hub 203–204
publishing to LOD cloud 195–200
requesting outgoing links from DBpedia

to 204–206
sitemaps

enabling discovery of site 194–195
non-semantic sitemaps 190–192
overview 190
semantic sitemaps 192–193

DBpedia 66, 107–108
defined 259
project 5, 9, 12–13
requesting outgoing links from 204–206
URI 201

dbpedia-links repository 206
dbpedia-owl:Mammal class 53
dbpedia:Bonobo class 42, 212
DCMI, defined 259
default-graph-uri parameter 108
DELETE operation 113
Depiction property 81
dereferenceable identifiers 16
descendantOf property 89
DESCRIBE query, querying with SPARQL

111–112
describing data 15–18
description class, DOAP 183
description of a project. See DOAP
description property 149
Developer plug-in, RDFa 73
Digital Accountability and Transparency Act

245–246
directed graph, defined 259
discoverability 15–16
dnaChecksum property 81
DOAP (description of a project)

creating profile 180–181
overview 179–180
using vocabulary 182–186
vocabulary 41

DOAP A Matic 180–182, 186
DOCTYPE declarations 49
Document class 80
documenter class, DOAP 183
documenting datasets

creating VoID file 187–189
overview 186–187

drawMap() function 118–119
drawTable() function 118
DROP operation 113
Dublin Core 41
Dublin Core Metadata Element Set, defined 259
Dublin Core Metadata Initiative, defined 259
Dublin Core Metadata Terms, defined 259
DuCharme, Bob 167

E

EAV (Entity-Attribute-Value) data model 17
Edit tab, Callimachus 221
embedding RDFa in HTML

extracting Linked Data from enhanced
document 133–134

GoodRelations vocabulary
example using 137–145
extracting Linked Data from enhanced

document 145–148
overview 134–137

overview 126–129

INDEX268
embedding RDFa in HTML (continued)
schema.org vocabulary

example using 150–154
extracting Linked Data from enhanced

document 154–155
overview 148–150

span attributes 132–133
using FOAF vocabulary 129–132

employedBy property 89
employerOf property 89
encapsulated containers 164–165
endpoints, SPARQL 107–108, 192
enemyOf property 89
engagedTo property 89
enhancing search results

choosing vocabulary 155
embedding RDFa in HTML

extracting Linked Data from enhanced
document 133–134

overview 126–129
span attributes 132–133
using FOAF vocabulary 129–132

future of Linked Data 246
GoodRelations vocabulary

example using 137–145
extracting Linked Data from enhanced

document 145–148
overview 134–137

schema.org vocabulary
example using 150–154
extracting Linked Data from enhanced

document 154–155
overview 148–150

SPARQL queries on extracted RDFa 155–157
Entity-Attribute-Value data model. See EAV data

model
entity, defined 259
Environmental Protection Agency. See EPA
EPA (U.S. Environmental Protection

Agency) 222–224
<ex:Zoo> tag 47
ex:OldSocks term 42
ex:smellsLike term 42
ex:Zoo class 42, 47
Extensible Markup Language. See XML

F

Facebook
likes 8–9
RDFa used by 244

familyName property 81–82
File Transfer Protocol. See FTP
FILTERs 110–111
finding distributed Linked Data

Data Hub 65–66
SameAs.org 65
Sindice 64

firstName property 81–82
FOAF (Friend of a Friend)

creating profile
automated generation 85–88
customizing 88–90
describing relationships in 83–85
manually 82–83
overview 80–81
vocabulary 41, 81–82

defined 259
displaying data on map example

creating page 117–118
JavaScript for map 119–122
JavaScript for table 118–119
SPARQL query for 116–117

linking RDF documents using custom vocabulary
adding items to wish list document 95–97
bookmarklet tool for 97–98
creating wish list vocabulary 93
overview 93
publishing wish list document 94–95

overview 79–80
publishing profile 90–91
viewing profile 91

foaf:depiction property 135
foaf:knows property 83
foaf:mbox_sha1sum property 83
foaf:name property 103
foaf.rdf file 103
foafmap.js file 116
foafvcard.rq file 104
Focus property 81
formats

CSV 258
for SPARQL 113–115
N-Triples 56
RDF

JSON-LD 52–54
overview 43–44
RDF/XML 46–49
RDFa 49–52
Turtle 44–46

SPARQL
CSV 256–257
JSON 255–256
TSV 256–257
XML 253–254

TSV 264
Turtle 69

fragment identifiers 30–31
Free Software Directory 179
Freebase, URI 66, 201

INDEX 269
Freecode 179
Friend of a Friend. See FOAF
friendOf property 89
Friends I Know tab 86
FROM clause 107, 166
FROM NAMED clause 166
FTP (File Transfer Protocol) 12
fundedBy property 81
Fuseki 161, 222, 251
future of Linked Data

advertising impact 246
Digital Accountability and Transparency

Act 245–246
enhanced searches 246
Google rich snippets 245
participation of large corporations 246–247

G

Geekcode property 81–82
Gender property 81
general metadata 186
Generate button, DOAP A Matic form 181
Geo vocabulary 41
Geonames URI 201
GeoNames vocabulary 41
GET request, HTTP 18, 108
GitHub repository 202
givenName property 81
GNOME Project 179
GNU (GNU’s Not Unix) Project 100
GoodRelations vocabulary 41

example using 137–145
extracting Linked Data from enhanced

document 145–148
overview 134–137

Google rich snippets 8–9
future of Linked Data 245
Linked Data successes 243

google.visualization.Query function 227
gr:BusinessEntity class 135–136
gr:condition property 136
gr:description property 135
gr:hasCurrency property 136–137
gr:hasCurrencyValue property 136
gr:hasManufacturer property 135
gr:hasMaxCurrencyValue property 136–137
gr:hasMinCurrencyValue property 136–137
gr:hasPriceSpecification tag 136
gr:Location class 135
gr:name property 135
gr:Offering class 135
gr:ProductOrService class 135
gr:QuantitativeValue tag 136–137
gr:validThrough property 136

grandchildOf property 89
grandparentOf property 89
@graph object 53
graph, defined 259
Group class 80

H

hasMet property 89
<head> tag 113–114
holdsAccount property 81
homepage class, DOAP 182
Homepage property 81
href attribute 129
.htaccess file 57
html version attribute 143
HTML, embedding in

extracting Linked Data from enhanced
document 133–134

GoodRelations vocabulary
example using 137–145
extracting Linked Data from enhanced

document 145–148
overview 134–137

overview 126–129
schema.org vocabulary

example using 150–154
extracting Linked Data from enhanced

document 154–155
overview 148–150

span attributes 132–133
using FOAF vocabulary 129–132

HTTP (Hypertext Transfer Protocol) 12
httpd.conf file 57

I

IANA (Internet Assigned Numbers Authority) 55
icqChatID property 81
@id object 53
Image class 80
image property 150
IMDb (Internet Movie Database) 65
img property 81–82, 89
influencedBy property 89
inlinks tag 203
INSERT function 113
Interest property 81
interlinking data

to other datasets 237–238
using owl 200–202

internationalized resource identifier, defined 260
Internet Assigned Numbers Authority. See IANA
Internet Movie Database. See IMDb

INDEX270
IRI, defined 260
ISBN (International Standard Book Numbers) 12
isPrimaryTopicOf property 81

J

Jabbered property 81
Java Development Kit. See JDK
Java Runtime Environment. See JRE
JavaScript 226
JavaScript Object Notation. See JSON
JDK (Java Development Kit) 211
JPEG images 56
JRE (Java Runtime Environment) 211
JSON (JavaScript Object Notation) 52

defined 260
SPARQL result format 255–256

JSON-LD (JSON for Linking Data)
defined 260
file 56
format, overview 52–54

.jsonld extension 57

K

knowledge bases for search engines 243
knows property 81–82
knowsByReputation property 89
knowsInpassing property 89
knowsOf property 89

L

LabelProperty class 80
lastName property 81–82
LD_Book_VA_ZIP Codes.txt 172
lifePartnerof property 89
Like button, Facebook 9
link tag 85
Linked Data

aggregating
overview 66–70
using browser plug-ins 70–72

BBC use case 9–11
crawling web and aggregating data example

crawling with Python 73–75
creating HTML output 75–76
overview 73

creating HTML output 75–76
Data Hub 65–66
defined 4–6, 260
describing data 15–18
Facebook likes 8–9
finding distributed Linked Data

Data Hub 65–66
SameAs.org 65
Sindice 64

freeing data 4, 7
future of

advertising impact 246
Digital Accountability and Transparency

Act 245–246
enhanced searches 246
Google rich snippets 245
participation of large corporations 246–247

Google rich snippets 8–9
LOD 14
overview 66–70
principles of

including links to other URIs 13–14
providing useful information 12–13
RDF data model 28–33
using HTTP URIs 12
using URIs as names for things 11–12

problems using 6–7
publishing

interlinking data to other datasets 237–238
minting URIs 235–236
preparing data 234
publishing data 238
vocabularies 236–237

RDF data model 18–20
SameAs.org 65
Semantic Web and 239–243
Sindice 64
successes using

adoption of RDFa by companies 244
Facebook using RDFa 244
Google rich snippets 243
knowledge bases for search engines 243
LOD cloud growth 243–244
open government data 244
Schema.org adoption of RDFa Lite 243

thinking like Web 61–62
US EPA Linked Data service example

accessing Linked Data 22
creating user interface 24–26
overview 20–22

using browser plug-ins 70–72
with Python 73–75

Linked Data API 260
Linked Data client 260
Linked Data Platform 260
Linked Open Data. See LOD
linkset, defined 261
livefoaf.rq file 106
livesWith property 89
LOAD operation 113
location class 183

INDEX 271
LOD (Linking Open Data)
cloud 14–15
defined 260–261
Linked Data successes 243–244
project example 14, 62, 66
publishing to cloud 195–200

LOD cloud 14
Logo property 81
lostContactWith property 89

M

machine-readable data, defined 261
Made property 81
Maker property 81
manufacturer property 150
map example, FOAF

creating page 117–118
JavaScript for map 119–122
JavaScript for table 118–119
SPARQL query for 116–117

maptype parameter 120
MAX function 110
Mbox property 81
mbox_sha1sum property 81
Member property 81
membershipClass property 81
mentorOf property 89
metadata 186, 261
metadata.ttl file 206
MIME (Multipurpose Internet Mail

Extensions) 55
MIN function 110
minting URIs 235–236
mod_asis, Apache 57–58
model property 150
MOODb 68
MOVE operation 113
msnchatID property 81
Mulgara 161
Multipurpose Internet Mail Extensions. See MIME
MusicBrainz 66
myersBriggs property 81–82

N

N-Triples format 56, 206, 261
name class, DOAP 182
name property 81, 150
?name variable 103
Named Query feature 223
namespace, defined 261
National Oceanic and Atmospheric Administra-

tion. See NOAA

neighborOf property 89
Netflix 68
Nick property 81
NOAA (National Oceanic and Atmospheric

Administration) 222–224
nolinks tag 203
non-semantic sitemaps 190–192
Note class 216–218, 220
Note Resources link, Callimachus 220

O

Object Reuse and Exchange 41
object, defined 261
offers property 150
OGD (open government data) 244
old-homepage class, DOAP 182
onChange function 228
OnlineAccount class 80
OnlineChatAccount class 80
OnlineEcommerceAccount class 80
OnlineGamingAccount class 80
ontology, defined 261
open government data. See OGD
Open Source Directory 179
Opened property 81
OpenLibrary 66
OpenStreetMap 24
Oracle 161
Organization class 80
outlinks tag 203
OWL (Web Ontology Language)

files 36, 41, 56
interlinking datasets using 200–202

owl:sameAs property 187
OWLIM 161

P

Page property 81
parentOf property 89
Participant property 89
pastProject property 81–82
Persistent URLs. See PURLs
Person class 80
PersonalProfileDocument class 80
Phone property 81
pipe symbol (|) 120
plan property 81–82
plug-ins, browser 70–72
PNG images 56
POST request, HTTP 108
predicate, defined 261
prefix attribute 130

INDEX272
primaryTopic property 81
principles of Linked Data

including links to other URIs 13–14
providing useful information 12–13
RDF data model 28–33
using HTTP URIs 12
using URIs as names for things 11–12

ProductDB 66–68
productID property 150
ProductWiki 66
profiles, FOAF

creating
automated generation 85–88
customizing 88–90
describing relationships in 83–85
manually 82–83
overview 80–81

publishing 90–91
viewing 91

Project class 80
property attribute 49, 132
protocol, defined 262
provenance, defined 261
Publications property 81–82
publishing Linked Data

interlinking data to other datasets 237–238
minting URIs 235–236
preparing data 234
publishing data 238
to LOD cloud 195–200
vocabularies

customizing 237
selecting 236–237

PURLs (Persistent URLs) 81, 210, 262
defined 261

Python
aggregating data sources using 172–175
crawling web with 73–75
importing spreadsheet data into RDF

database 167–169
overview 250

Q

QNames 47
quad store, defined 262
querying with SPARQL

ASK query 111
CONSTRUCT query 112
DESCRIBE query 111–112
extracted RDFa data 155–157
RDF files

file on web 106–107
multiple files 104–106
single file 102–104

SELECT query 109–111
SPARQL 1.1 113
SPARQL endpoints 107–108

R

RDBMS (relational database management system)
breaching encapsulated containers 164–165
data warehouses 165–166
schema description 162–163
transactional models 161–162

RDF (Resource Description Framework) 5, 9
RDF classes

creating and editing
creating edit template 220–221
creating new note 218–219
creating view template 219–220
overview 216–218

creating web pages from
adding data 212–213
associating view template with class 214–216
overview 212
setting up classes 213–214

RDF data model 18–20
blank nodes 35–36
classes 36
formats

JSON-LD 52–54
overview 43–44
RDF/XML 46–49
RDFa 49–52
Turtle 44–46

linking RDF documents using custom vocabulary
adding items to wish list document 95–97
bookmarklet tool for 97–98
creating wish list vocabulary 93
overview 93
publishing wish list document 94–95

principles of Linked Data 28–33
triples 33–35
typed literals 37–38
vocabularies

commonly used 39–41
creating 42–43
overview 38–39

web server configuration
configuring Apache 57
using Apache mod_asis 57–58
using Content-Type header 54–57

RDF databases
advantages of 166–167
collecting Linked Data into

aggregating data sources using Python
172–175

output for 175–177

INDEX 273
RDF databases (continued)
overview 171
process for 171–172

defined 262
importing spreadsheet data

converting to Linked Data 169–171
overview 167
tools for 171
using Python script 167–169

overview 158–160
selecting 160–161
vs. RDBMS

breaching encapsulated containers 164–165
data warehouses 165–166
schema description 162–163
transactional models 161–162

RDF files, querying with SPARQL
file on web 106–107
multiple files 104–106
single file 102–104

RDF link, defined 262
RDF Schema. See RDFS
RDF Turtle file 56
rdf:about attribute 47
rdf:RDF tag 48
rdf:type property 36, 47, 49
RDF/JSON 262
RDF/XML

defined 262
file 56
format overview 46–49

RDFa (Resource Description Framework in
Attributes) 9

attributes 215
defined 262
DOCTYPE headers 49
embedding in HTML

extracting Linked Data from enhanced
document 133–134

overview 126–129
span attributes 132–133
using FOAF vocabulary 129–132

format, overview 49–52
Linked Data successes 244
querying extracted data in SPARQL 155–157
used by Facebook 244

RDFa Lite
adoption by schema.org 243

RDFizers 171
RDFS (RDF Schema) 36, 41, 262
rdfs:Class property 36–37
rdfs:comment 33
rdfs:seeAlso property 35, 103, 109
rdfs:subClassOf property 36
reasoner 202

Redland RDF Library 161
referenceable URIs, defined 262
rel:enemyOf property 84
relational database management system. See

RDBMS
Relationship property 89
relationships, in FOAF profiles 83–85
Representational State Transfer. See REST API
request, defined 262
resource attribute 49
Resource Description Framework in Attributes. See

RDFa 9
Resource Description Framework. See RDF
resource, defined 262
response, defined 263
REST (Representational State Transfer) API 263
result formats

CSV 256–257
JSON 255–256
overview 113–115
TSV 256–257
XML 253–254

<results> tag 114
review property 150
revision class 183
rich snippets 8–9
robots.txt file 191
Rotten Tomatoes 68

S

SameAs.org 65
sc:dataDumpLocation extension 193
sc:dataset extension 193
sc:datasetLabel extension 193
sc:datasetURI extension 193
sc:linkedDataPrefix extension 193
sc:sampleURI extension 193
sc:sparqlEndpointLocation extension 193
sc:sparqlGraphName extension 193
schema description, RDF databases 162–163
schema.org vocabulary

adoption of RDFa Lite 243
example using 150–154
extracting Linked Data from enhanced

document 154–155
overview 148–150

schoolHomepage property 81–82
search engine optimization. See SEO
search engine result enhancement

choosing vocabulary 155
embedding RDFa in HTML

extracting Linked Data from enhanced
document 133–134

overview 126–129

INDEX274
search engine result enhancement (continued)
span attributes 132–133
using FOAF vocabulary 129–132

GoodRelations vocabulary
example using 137–145
extracting Linked Data from enhanced

document 145–148
overview 134–137

schema.org vocabulary
example using 150–154
extracting Linked Data from enhanced

document 154–155
overview 148–150

SPARQL queries on extracted RDFa 155–157
SELECT query 103, 106, 109–111, 224
semantic sitemaps 192–193
Semantic Web

defined 263
Linked Data and 239–243

Semantic Web Education and Outreach. See SWEO
sensor parameter 120
SEO (search engine optimization) 49, 125
Sesame 161
sha1 property 81
shortdesc class, DOAP 183
shortname class, DOAP 182
siblingOf property 89
Sindice 64, 263
SIOC vocabulary 41
sitemaps

enabling discovery of site 194–195
non-semantic sitemaps 190–192
overview 190
semantic sitemaps 192–193

size parameter 120
skolemization 36
SKOS vocabulary 41
skypeID property 81
Social Networking tab 86
SourceForge 179
span elements, RDFa attributes in 132–133
SPARQL 9

defined 263
displaying FOAF data on map example

creating page 117–118
JavaScript for map 119–122
JavaScript for table 118–119
query for 116–117

endpoints 192, 263
language 17
overview 99–101
query types

ASK query 111
CONSTRUCT query 112
DESCRIBE query 111–112

in SPARQL 1.1 113
SELECT query 109–111

querying extracted RDFa data 155–157
querying RDF files

file on web 106–107
multiple files 104–106
single file 102–104

querying SPARQL endpoints 107–108
result formats 113–115

CSV 256–257
JSON 255–256
TSV 256–257
XML 253–254

version 1.1 113
Spotify 67
spouseOf property 89
spreadsheet data

converting to Linked Data 169–171
overview 167
tools for 171
using Python script 167–169

src attribute 24, 129
StarDog 161
Status property 81
structural metadata 187
subject, defined 263
SUM function 110
SunWise program 171, 222
Surname property 81–82
SWEO (Semantic Web Education and

Outreach) 14

T

tab-separated values. See TSV
tag attributes 46
Terse RDF Triple Language 44
Theme property 81
thinking like Web 61–62
Thumbnail property 81
tipjar property 81
title property 81
tools

ARQ 250
Callimachus 251
converting spreadsheet data for RDF

databases 171
cURL 249–250
for finding distributed Linked Data

Data Hub 65–66
SameAs.org 65
Sindice 64

Fuseki 251
Python 250

topic property 81

INDEX 275
topic_interest property 81
transactional models, RDF databases 161–162
TriG, defined 263
triple patterns 101, 106
triples 33–35, 264
triplestores 160

defined 264
TSV (tab-separated values) 256–257, 264
.ttl extension 57–58
Turtle 44–46, 69, 264
typed literals 37–38
typeof attribute 49, 130, 141, 152

U

URI property 150
URIs (uniform resource identifiers) 11

defined 264
minting 235–236
using as names for things 11–12
using HTTP URIs 12

URL (uniform resource locator) 264
?url variable 103
US EPA Linked Data service example

accessing Linked Data 22
creating user interface 24–26
overview 20–22

UV Index box 227

V

v:hasReview property 135
v:Review-aggregate property 135
@value object 53
vCard

files 104
vocabulary 41

vcard: prefix 38
vcard:adr address 105
vhost (virtual host) files 57
view template

associating with class 214–216
creating for RDF class 219–220

virtual host. See vhost files
Virtuoso 161
vocabularies

alignment 264
authoritative 40
controlled 258
core 39
customizing 237
defined 264
DOAP 182–186
FOAF vocabulary 81–82
GoodRelations

example using 137–145
extracting Linked Data from enhanced

document 145–148
overview 134–137

linking RDF documents using custom
adding items to wish list document 95–97
bookmarklet tool for 97–98
creating wish list vocabulary 93
overview 93
publishing wish list document 94–95

RDF
commonly used 39–41
creating 42–43
overview 38–39

schema.org
example using 150–154
extracting Linked Data from enhanced

document 154–155
overview 148–150

selecting 236–237
wish list

adding items to wish list document 95–97
creating 93
publishing 94–95

vocabulary alignment, defined 264
VoID (Vocabulary of Interlinked Datasets)

defined 264
documenting datasets

creating VoID file 187–189
overview 186–187

vocabulary 41
void:objectsTarget property 187
void:subjectsTarget property 187
void:target property 187

W

W3C (World Wide Web Consortium) 5, 18
W3C Working Group Note 114
Web of Data 60, 264
Web of Documents 60, 264
Web Ontology Language. See OWL
web pages

creating from multiple data sources
creating HTML page 224–226
JavaScript to retrieve and display Linked

Data 226
overview 222, 229–232
querying Linked Data from NOAA and

EPA 222–224
creating using RDF classes

adding data 212–213
associating view template with class 214–216
overview 212
setting up classes 213–214

INDEX276
web server configuration
configuring Apache 57
using Apache mod_asis 57–58
using Content-Type header 54–57

weblog property 81
WHERE clause 102
Wikipedia 68
wish list vocabulary

adding items to wish list document 95–97
creating 93
publishing 94–95

wishlistItem triple 95
WordNet 41
workInfoHomepage property 82
workplaceHomepage property 81–82
worksWith property 89
World Wide Web Consortium. See W3C
wouldLikeToKnow property 89

X

XML (Extensible Markup Language) 253–254
XML Schema Datatypes 41
xml:base directive 48

Y

yahooChatID property 81
yourDomain value 94
yourWishList value 94

Z

$zipDateURI parameter 224
zoom parameter 120

Wood ● Zaidman ● Ruth ● Hausenblas

T
he current Web is mostly a collection of linked docu-
ments useful for human consumption. The evolving Web
includes data collections that may be identifi ed and linked

so that they can be consumed by automated processes. The
W3C approach to this is Linked Data and it is already used
by Google, Facebook, IBM, Oracle, and government agencies
worldwide.

Linked Data presents practical techniques for using Linked Data
on the Web via familiar tools like JavaScript and Python. You’ll
work step-by-step through examples of increasing complexity
as you explore foundational concepts such as HTTP URIs, the
Resource Description Framework (RDF), and the SPARQL que-
ry language. Then you’ll use various Linked Data document
formats to create powerful Web applications and mashups.

What’s Inside
● Finding and consuming Linked Data
● Using Linked Data in your applications
● Building Linked Data applications using
 standard Web techniques

Written to be immediately useful to Web developers, this
book requires no previous exposure to Linked Data or
Semantic Web technologies.

David Wood is co-chair of the W3C’s RDF Working Group.
Marsha Zaidman served as CS chair at University of Mary
Washington. Luke Ruth is a Linked Data developer on the
Callimachus Project. Michael Hausenblas led the Linked Data
Research Centre.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/LinkedData

$49.99 / Can $52.99 [INCLUDING eBOOK]

Linked Data

WEB DEVELOPMENT/DATABASES

M A N N I N G

“A friendly introduction
to the use and publication

of structured data
 on the WWW.”

—From the Foreword by
Tim Berners-Lee, Director of W3C

“A practical guide
for integrating and

publishing structured
 data on the Web.”—Cristofer Weber, NeoGrid

“Takes a complex academic
subject and makes it

 clear and relevant.”
—Mike Westaway, AstraZeneca

“Highly recommended
to all explorers of the
 Semantic Web.”—Rob Crowther, author of
Hello! HTML5 & CSS3

SEE INSERT

	Linked Data
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Intended audience
	Roadmap
	How to use this book
	Code conventions and downloads
	Author Online

	about the cover illustration
	Part 1: The Linked Data Web
	Chapter 1: Introducing Linked Data
	1.1 Linked Data defined
	1.2 What Linked Data won’t do for you
	1.3 Linked Data in action
	1.3.1 Freeing data
	1.3.2 Linked Data with Google rich snippets and Facebook likes
	1.3.3 Linked Data to the rescue at the BBC

	1.4 The Linked Data principles
	1.4.1 Principle 1: Use URIs as names for things
	1.4.2 Principle 2: Use HTTP URIs so people can look up those names
	1.4.3 Principle 3: When someone looks up a URI, provide useful information
	1.4.4 Principle 4: Include links to other URIs

	1.5 The Linking Open Data project
	1.6 Describing data
	1.7 RDF: a data model for Linked Data
	1.8 Anatomy of a Linked Data application
	1.8.1 Accessing a facility’s Linked Data
	1.8.2 Creating the user interface from Linked Data

	1.9 Summary

	Chapter 2: RDF: the data model for Linked Data
	2.1 The Linked Data principles extend RDF
	2.2 The RDF data model
	2.2.1 Triples
	2.2.2 Blank nodes
	2.2.3 Classes
	2.2.4 Typed literals

	2.3 RDF vocabularies
	2.3.1 Commonly used vocabularies
	2.3.2 Making your own vocabularies

	2.4 RDF formats for Linked Data
	2.4.1 Turtle—human-readable RDF
	2.4.2 RDF/XML—RDF for enterprises
	2.4.3 RDFa—RDF in HTML
	2.4.4 JSON-LD—RDF for JavaScript Developers

	2.5 Issues related to web servers and published Linked Data
	2.6 File types and web servers
	2.6.1 When you can configure Apache

	2.7 When you have limited control over Apache
	2.8 Linked Data platforms
	2.9 Summary

	Chapter 3: Consuming Linked Data
	3.1 Thinking like the Web
	3.2 How to consume Linked Data
	3.3 Tools for finding distributed Linked Data
	3.3.1 Sindice
	3.3.2 SameAs.org
	3.3.3 Data Hub

	3.4 Aggregating Linked Data
	3.4.1 Aggregating some Linked Data from known datasets
	3.4.2 Getting Linked Data and RDF from web pages using browser plug-ins

	3.5 Crawling the Linked Data Web and aggregating data
	3.5.1 Using Python to crawl the Linked Data Web
	3.5.2 Creating HTML output from your aggregated RDF

	3.6 Summary

	Part 2: Taming Linked Data
	Chapter 4: Creating Linked Data with FOAF
	4.1 Creating a personal FOAF profile
	4.1.1 Introducing the FOAF vocabulary
	4.1.2 Method I: manual creation of a basic FOAF profile
	4.1.3 Enhancing a basic FOAF profile
	4.1.4 Method II: automated generation of a FOAF profile

	4.2 Adding more content to a FOAF profile
	4.3 Publishing your FOAF profile
	4.4 Visualization of a FOAF profile
	4.5 Application: linking RDF documents using a custom vocabulary
	4.5.1 Creating a wish list vocabulary
	4.5.2 Creating, publishing, and linking the wish list document
	4.5.3 Adding wish list items to our wish list document
	4.5.4 Explanation of our bookmarklet tool

	4.6 Summary

	Chapter 5: SPARQL—querying the Linked Data Web
	5.1 An overview of a typical SPARQL query
	5.2 Querying flat RDF files with SPARQL
	5.2.1 Querying a single RDF data file
	5.2.2 Querying multiple RDF files
	5.2.3 Querying an RDF file on the Web

	5.3 Querying SPARQL endpoints
	5.4 Types of SPARQL queries
	5.4.1 The SELECT query
	5.4.2 The ASK query
	5.4.3 The DESCRIBE query
	5.4.4 The CONSTRUCT query
	5.4.5 SPARQL 1.1 Update

	5.5 SPARQL result formats (XML, JSON)
	5.6 Creating web pages from SPARQL queries
	5.6.1 Creating the SPARQL query
	5.6.2 Creating the HTML page
	5.6.3 Creating the JavaScript for the table
	5.6.4 Creating JavaScript for the map

	5.7 Summary

	Part 3: Linked Data in the wild
	Chapter 6: Enhancing results from search engines
	6.1 Enhancing HTML by embedding RDFa
	6.1.1 RDFa markup using FOAF vocabulary
	6.1.2 Using the HTML span attribute with RDFa
	6.1.3 Extracting Linked Data from a FOAF-enhanced HTML document

	6.2 Embedding RDFa using the GoodRelations vocabulary
	6.2.1 An overview of the GoodRelations vocabulary
	6.2.2 Enhancing HTML with RDFa using GoodRelations
	6.2.3 A closer look at selections of RDFa GoodRelations
	6.2.4 Extracting Linked Data from GoodRelations-enhanced HTML document

	6.3 Embedding RDFa using the schema.org vocabulary
	6.3.1 An overview of schema.org
	6.3.2 Enhancing HTML with RDFa Lite using schema.org
	6.3.3 A closer look at selections of RDFa Lite using schema.org
	6.3.4 Extracting Linked Data from a schema.org enhanced HTML document

	6.4 How do you choose between using schema.org or GoodRelations?
	6.5 Extracting RDFa from HTML and applying SPARQL
	6.6 Summary

	Chapter 7: RDF database fundamentals
	7.1 Classifying RDF databases
	7.1.1 Selecting an RDF database systems
	7.1.2 RDF databases versus RDBMS
	7.1.3 Benefits of RDF database systems

	7.2 Transforming spreadsheet data to RDF
	7.2.1 A basic RDF conversion of MS Excel
	7.2.2 Transforming MS Excel to Linked Data
	7.2.3 Finding RDF converter tools

	7.3 Application: collecting Linked Data in an RDF database
	7.3.1 Outlining the process
	7.3.2 Using Python to aggregate our data sources
	7.3.3 Understanding the output

	7.4 Summary

	Chapter 8: Datasets
	8.1 Description of a Project
	8.1.1 Creating a DOAP profile
	8.1.2 Using the DOAP vocabulary

	8.2 Documenting your datasets using VoID
	8.2.1 The Vocabulary of Interlinked Datasets
	8.2.2 Preparing a VoID file

	8.3 Sitemaps
	8.3.1 Non-semantic sitemaps
	8.3.2 Semantic sitemaps
	8.3.3 Enabling discovery of your site

	8.4 Linking to other people’s data
	8.5 Examples of using owl:sameAs to interlink datasets
	8.6 Joining Data Hub
	8.7 Requesting outgoing links from DBpedia to your dataset
	8.8 Summary

	Part 4: Pulling it all together
	Chapter 9: Callimachus: a Linked Data management system
	9.1 Getting started with Callimachus
	9.2 Creating web pages using RDF classes
	9.2.1 Adding data to Callimachus
	9.2.2 Telling Callimachus about your OWL class
	9.2.3 Associating a Callimachus view template to your class

	9.3 Creating and editing class instances
	9.3.1 Creating a new note
	9.3.2 Creating a view template for a note
	9.3.3 Creating an edit template for notes

	9.4 Application: creating a web page from multiple data sources
	9.4.1 Making and querying Linked Data from NOAA and EPA
	9.4.2 Creating a web page to contain the application
	9.4.3 Creating JavaScript to retrieve and display Linked Data
	9.4.4 Bringing it all together

	9.5 Summary

	Chapter 10: Publishing Linked Data—a recap
	10.1 Preparing your data
	10.2 Minting URIs
	10.3 Selecting vocabularies
	10.4 Customizing vocabulary
	10.5 Interlinking your data to other datasets
	10.6 Publishing your data
	10.7 Summary

	Chapter 11: The evolving Web
	11.1 The relationship between Linked Data and the Semantic Web
	11.1.1 Demonstrated successes

	11.2 What’s coming
	11.2.1 Google extended rich snippets
	11.2.2 Digital accountability and transparency legislation
	11.2.3 Impact of advertising
	11.2.4 Enhanced searches
	11.2.5 Participation by the big guys

	11.3 Conclusion

	appendix A: Development environments
	A.1 cURL
	A.2 Python
	A.3 ARQ
	A.4 Fuseki
	A.5 Callimachus

	appendix B: SPARQL results formats
	B.1 SPARQL XML results format
	B.2 SPARQL JSON results format
	B.3 SPARQL CSV and TSV results format

	glossary
	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

