
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Richard Dallaway

Lift Cookbook

www.allitebooks.com

http://www.allitebooks.org

Lift Cookbook

by Richard Dallaway

Copyright © 2013 Richard Dallaway. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Kara Ebrahim
Copyeditor: Kiel Van Horn
Proofreader: Linley Dolby

Indexer: Judy McConville
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

June 2013: First Edition

Revision History for the First Edition:

2013-06-21: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449362683 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Lift Cookbook, the image of an American lobster, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36268-3

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449362683
http://www.allitebooks.org

Table of Contents

Preface. vii

1. Installing and Running Lift. 1
1.1. Downloading and Running Lift 1
1.2. Creating a Lift Project from Scratch Using SBT 4
1.3. Developing Using a Text Editor 8
1.4. Incorporating JRebel 9
1.5. Developing Using Eclipse 12
1.6. Developing Using IntelliJ IDEA 13
1.7. Viewing the lift_proto H2 Database 15
1.8. Using the Latest Lift Build 16
1.9. Using a New Version of Scala 17

2. HTML. 19
2.1. Testing and Debugging CSS Selectors 19
2.2. Sequencing CSS Selector Operations 20
2.3. Setting Meta Tag Contents 22
2.4. Setting the Page Title 23
2.5. HTML Conditional Comments 24
2.6. Returning Snippet Markup Unchanged 26
2.7. Snippet Not Found When Using HTML5 27
2.8. Avoiding CSS and JavaScript Caching 28
2.9. Adding to the Head of a Page 30
2.10. Custom 404 Page 33
2.11. Other Custom Status Pages 34
2.12. Links in Notices 36
2.13. Link to Download Data 37
2.14. Test on a Req 39

iii

www.allitebooks.com

http://www.allitebooks.org

2.15. Rendering Textile Markup 43

3. Forms Processing in Lift. 45
3.1. Plain Old Form Processing 45
3.2. Ajax Form Processing 47
3.3. Ajax JSON Form Processing 50
3.4. Use a Date Picker for Input 55
3.5. Making Suggestions with Autocomplete 58
3.6. Offering Choices with Radio Buttons 64
3.7. Conditionally Disable a Checkbox 69
3.8. Use a Select Box with Multiple Options 70
3.9. File Upload 75

4. REST. 79
4.1. DRY URLs 79
4.2. Missing File Suffix 80
4.3. Missing .com from Email Addresses 83
4.4. Failing to Match on a File Suffix 84
4.5. Accept Binary Data in a REST Service 85
4.6. Returning JSON 86
4.7. Google Sitemap 88
4.8. Calling REST Service from a Native iOS Application 90

5. JavaScript, Ajax, and Comet. 95
5.1. Trigger Server-Side Code from a Button 95
5.2. Call Server When Select Option Changes 100
5.3. Creating Client-Side Actions in Your Scala Code 103
5.4. Focus on a Field on Page Load 104
5.5. Add a CSS Class to an Ajax Form 105
5.6. Running a Template via JavaScript 106
5.7. Move JavaScript to End of Page 107
5.8. Run JavaScript on Comet Session Loss 109
5.9. Ajax File Upload 111
5.10. Format a Wired Cell 114

6. Request Pipeline. 117
6.1. Debugging a Request 117
6.2. Running Code When Sessions Are Created (or Destroyed) 119
6.3. Run Code When Lift Shuts Down 120
6.4. Running Stateless 121
6.5. Catch Any Exception 122
6.6. Streaming Content 124

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

6.7. Serving a File with Access Control 127
6.8. Access Restriction by HTTP Header 128
6.9. Accessing HttpServletRequest 130
6.10. Force HTTPS Requests 131

7. Relational Database Persistence with Record and Squeryl. 133
7.1. Configuring Squeryl and Record 133
7.2. Using a JNDI DataSource 135
7.3. One-to-Many Relationship 136
7.4. Many-to-Many Relationship 140
7.5. Adding Validation to a Field 147
7.6. Custom Validation Logic 150
7.7. Modify a Field Value Before It Is Set 152
7.8. Testing with Specs 153
7.9. Store a Random Value in a Column 158
7.10. Automatic Created and Updated Timestamps 159
7.11. Logging SQL 161
7.12. Model a Column with MySQL MEDIUMTEXT 162
7.13. MySQL Character Set Encoding 163

8. MongoDB Persistence with Record. 165
8.1. Connecting to a MongoDB Database 165
8.2. Storing a Hash Map in a MongoDB Record 167
8.3. Storing an Enumeration in MongoDB 170
8.4. Embedding a Document Inside a MongoDB Record 171
8.5. Linking Between MongoDB Records 172
8.6. Using Rogue 175
8.7. Storing Geospatial Values 177
8.8. Running Queries from the Scala Console 180
8.9. Unit Testing Record with MongoDB 181

9. Around Lift. 187
9.1. Sending Plain-Text Email 187
9.2. Logging Email Rather than Sending 189
9.3. SMTP Authentication 191
9.4. Sending Authenticated Email 193
9.5. Sending Email with Attachments 194
9.6. Run a Task Later 196
9.7. Run Tasks Periodically 197
9.8. Fetching URLs 198

10. Production Deployment. 203

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

10.1. Deploying to CloudBees 203
10.2. Deploying to Amazon Elastic Beanstalk 209
10.3. Deploying to Heroku 212
10.4. Distributing Comet Across Multiple Servers 217

11. Contributing, Bug Reports, and Getting Help. 223
11.1. You’d Like Some Help 223
11.2. How to Report Bugs 224
11.3. Contributing Small Code Changes and ScalaDoc 225
11.4. Contributing Documentation 226
11.5. How to Add a New Recipe to This Cookbook 226
11.6. Sharing Code in Modules 227

Index. 233

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

This is a collection of solutions to questions you might have while developing web
applications with the Lift Web Framework.

The aim is to give a single, short answer to a specific question. When there are multiple
approaches, or styles, we’ll give you one solution, but will point you at alternatives in
the discussion.

Chapter 1 will get you up and running with Lift, but in other respects, this cookbook is
aimed at practitioners and the questions they have asked. If this is the first time you’ve
heard of Lift, you’ll want to look at:

• Simply Lift

• Torsten Uhlmann’s Instant Lift Web Applications How-to (PACKT Publishing)

• Timothy Perrett’s Lift in Action (Manning Publications)

Contributors
I’ve mined the Lift mailing list for these recipes, but I’m not the only one. Recipes have
been contributed by:

• Jono Ferguson, who’s a Scala consultant based in Sydney, Australia. He can be found
lurking on the Lift mailing list and occasionally helps out with Lift modules. Find
him at https://twitter.com/jonoabroad and http://underscoreconsulting.com.

• Franz Bettag, who’s been an enthusiastic Scala hacker for several years now. He
joined the Lift team in January 2012 and actively tweets and blogs about his newest
Scala adventures. Find him at https://twitter.com/fbettag.

• Marek Żebrowski.

vii

www.allitebooks.com

http://simply.liftweb.net
https://twitter.com/jonoabroad
http://underscoreconsulting.com
https://twitter.com/fbettag
http://www.allitebooks.org

• Peter Robinett, who’s a web and mobile developer and a Lift committer. He can be
found on the Web and on Twitter.

• Kevin Lau, who’s a founder of a few web apps with a focus in AWS cloud, iOS, and
Lift.

• Tony Kay.

You should join them: Recipe 11.5 tells you how.

Source
The text of this cookbook is at https://github.com/d6y/lift-cookbook.

You’ll find projects for each chapter on GitHub.

Updates
Follow @LiftCookbook on Twitter.

Software Versions
Except where otherwise indicated, the examples use Lift 2.5 with SBT 0.12 and
Scala 2.9.

Lift 2.5 is also available for Scala 2.10.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

viii | Preface

www.allitebooks.com

http://www.bubblefoundry.com
http://twitter.com/pr1001
https://github.com/d6y/lift-cookbook
https://github.com/LiftCookbook/
https://twitter.com/liftcookbook
http://www.allitebooks.org

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Lift Cookbook by Richard Dallaway (O’Reil‐
ly). Copyright 2013 Richard Dallaway, 978-1-449-36268-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course

Preface | ix

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

Technology, and dozens more. For more information about Safari Books Online, please
visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/lift-cookbook.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
These recipes exist because of the many contributions on the Lift mailing list, where
Liftafarians, as they are known, generously give their time to ask questions, put together
example projects, give answers, share alternatives, and chip in with comments. Thank
you.

I am indebted to the contributors who have taken the trouble to write new recipes, and
to those who have provided corrections and suggestions.

You’ll see I’ve repeatedly referenced the work of Antonio Salazar Cardozo, Diego Med‐
ina, Tim Nelson, David Pollak, and Dave Whittaker. These are fantastic communicators:
thank you guys.

x | Preface

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/lift-cookbook
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

It’s been a pleasure working with the O’Reilly team, and they have immensely improved
the text. Thank you, especially Meghan Blanchette, Kara Ebrahim, and Kiel Van Horn.

Many thanks to Jono for all the encouragement and help.

To Jane, Mum, Dad: thank you. It’s amazing what you can do with a supportive family.

Preface | xi

CHAPTER 1

Installing and Running Lift

This chapter covers questions regarding starting development with Lift: running a first
Lift application and setting up a coding environment. You’ll find answers regarding
production deployment in Chapter 10.

1.1. Downloading and Running Lift

Problem
You want to install and run Lift on your computer.

Solution
The only prerequisite for installing and running Lift is to have Java 1.5 or later installed.
Instructions for installing Java can be found at http://java.com/.

You can find out if you have Java from the shell or command prompt by asking for the
version you have installed:

$ java -version

java version "1.7.0_13"

Java(TM) SE Runtime Environment (build 1.7.0_13-b20)

Java HotSpot(TM) 64-Bit Server VM (build 23.7-b01, mixed mode)

Once you have Java, the following instructions will download, build, and start a basic
Lift application.

For Mac and Linux

• Visit http://liftweb.net/download and download the most recent Lift 2.5 ZIP file.

• Unzip the file.

• Start Terminal or your favourite shell tool.

1

http://java.com/
http://liftweb.net/download

• Navigate into the unzipped folder and into the scala_29 subfolder and then into the
lift_basic folder.

• Run ./sbt.

• Required libraries will be downloaded automatically.

• At the SBT prompt (>), type container:start.

• Open your browser and go to http://127.0.0.1:8080/.

• When you’re done, type exit at the SBT prompt to stop your application from
running.

For Windows

• Visit http://liftweb.net/download and locate the link to the most recent ZIP version
of Lift 2.5 and save this to disk.

• Extract the contents of the ZIP file.

• Navigate in Explorer to the extracted folder, and once inside, navigate into sca‐
la_29 and then lift_basic.

• Double-click sbt.bat to run the build tool; a Terminal window should open.

• Required libraries will be downloaded automatically.

• At the SBT prompt (>), type container:start.

• You may find Windows Firewall blocking Java from running. If so, opt to “allow
access.”

• Start your browser and go to http://127.0.0.1:8080/.

• When you’re done, type exit at the SBT prompt to stop your application from
running.

Expected result

The result of these commands should be a basic Lift application running on your com‐
puter, as shown in Figure 1-1.

2 | Chapter 1: Installing and Running Lift

http://liftweb.net/download

Figure 1-1. The basic Lift application home page

Discussion
Lift isn’t installed in the usual sense of “installing software.” Instead, you use standard
build tools, such as SBT or Maven, to assemble your application with the Lift framework.
In this recipe, we downloaded a ZIP file containing four fairly minimal Lift applications,
and then started one of them via the build tool.

Simple Build Tool

Typing sbt starts a Simple Build Tool used by Scala projects (it’s not specific to Lift).
SBT will check the project definition and download any libraries required, which will
include the Lift framework.

This download happens once, and the downloaded files are stored on disk in .ivy2 under
your home folder.

Your application build is configured by build.sbt. Looking inside, you’ll see:

• Basic information about your application, including a name and version

• Resolvers, which inform SBT where to fetch dependencies from

• Settings for plugins and the Scala compiler

• A list of dependencies required to run your application, which will include the Lift
framework

1.1. Downloading and Running Lift | 3

Running your application

The SBT command container:start starts the web server on the default port of 8080
and passes requests to your Lift application. The word container refers to the software
you deploy your application into. There are a variety of containers (Jetty and Tomcat
are probably the best known) all of which conform to a standard for deployment. The
upshot is you can build your application and deploy to whichever one you prefer. The
container:start command uses Jetty.

Source code

The source code of the application resides in src/main/webapp and src/main/scala. If
you take a look at index.html in the webapp folder, you’ll see mention of lift:hello
World. That’s a reference to the class defined in scala/code/snippet/HelloWorld.scala.
This is a snippet invocation and an example of Lift’s view first approach to web applica‐
tions. That is, there’s no routing set up for the index page to collect the data and forward
it to the view. Instead, the view defines areas of the content that are replaced with func‐
tions, such as those functions defined in HelloWorld.scala.

Lift knows to look in the code package for snippets, because that package is declared as
a location for snippets in scala/bootstrap/liftweb/Boot.scala. The Boot class is run when
starting your application, and it’s where you can configure the behaviour of Lift.

See Also
The Simple Build Tool documentation is at http://www.scala-sbt.org.

Tutorials for Lift can be found in Simply Lift, Instant Lift Web Applications How-to
(PACKT Publishing), and in Lift in Action (Manning Publications Co.).

1.2. Creating a Lift Project from Scratch Using SBT

Problem
You want want to create a Lift web project from scratch without using the ZIP files
provided on the official Lift website.

Solution
You will need to configure SBT and the Lift project yourself. Luckily, only five small files
are needed.

First, create an SBT plugin file at project/plugins.sbt (all filenames are given relative to
the project root directory):

libraryDependencies <+= sbtVersion(v => v match {

 case "0.11.0" => "com.github.siasia" %% "xsbt-web-plugin" % "0.11.0-0.2.8"

4 | Chapter 1: Installing and Running Lift

http://www.scala-sbt.org
http://simply.liftweb.net/

 case "0.11.1" => "com.github.siasia" %% "xsbt-web-plugin" % "0.11.1-0.2.10"

 case "0.11.2" => "com.github.siasia" %% "xsbt-web-plugin" % "0.11.2-0.2.11"

 case "0.11.3" => "com.github.siasia" %% "xsbt-web-plugin" % "0.11.3-0.2.11.1"

 case x if x startsWith "0.12" =>

 "com.github.siasia" %% "xsbt-web-plugin" % "0.12.0-0.2.11.1"

})

This file tells SBT that you will be using the xsbt-web-plugin and chooses the correct
version based upon your version of SBT.

Next, create an SBT build file, build.sbt:

organization := "org.yourorganization"

name := "liftfromscratch"

version := "0.1-SNAPSHOT"

scalaVersion := "2.10.0"

seq(com.github.siasia.WebPlugin.webSettings :_*)

libraryDependencies ++= {

 val liftVersion = "2.5"

 Seq(

 "net.liftweb" %% "lift-webkit" % liftVersion % "compile",

 "org.eclipse.jetty" % "jetty-webapp" % "8.1.7.v20120910" %

 "container,test",

 "org.eclipse.jetty.orbit" % "javax.servlet" % "3.0.0.v201112011016" %

 "container,compile" artifacts Artifact("javax.servlet", "jar", "jar")

)

}

Feel free to change the various versions, though be aware that certain versions of Lift
are only built for certain versions of Scala.

Now that you have the basics of an SBT project, you can launch the sbt console. It should
load all the necessary dependencies, including the proper Scala version, and bring you
to a prompt.

Next, create the following file at src/main/webapp/WEB-INF/web.xml:

<!DOCTYPE web-app SYSTEM "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <filter>

 <filter-name>LiftFilter</filter-name>

 <display-name>Lift Filter</display-name>

 <description>The Filter that intercepts Lift calls</description>

 <filter-class>net.liftweb.http.LiftFilter</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>LiftFilter</filter-name>

 <url-pattern>/*</url-pattern>

1.2. Creating a Lift Project from Scratch Using SBT | 5

 </filter-mapping>

</web-app>

The web.xml file tells web containers, such as Jetty as configured by xsbt-web-plugin,
to pass all requests on to Lift.

Next, create a sample index.html file at src/main/webapp/index.html for our Lift app to
load. For example:

<!DOCTYPE html>

<html>

 <head>

 <title>Lift From Scratch</title>

 </head>

 <body>

 <h1>Welcome, you now have a working Lift installation</h1>

 </body>

</html>

Finally, set up the basic Lift boot settings by creating a Boot.scala file at src/main/scala/
bootstrap/Boot.scala. The following contents will be sufficient:

package bootstrap.liftweb

import net.liftweb.http.{Html5Properties, LiftRules, Req}

import net.liftweb.sitemap.{Menu, SiteMap}

/**

 * A class that's instantiated early and run. It allows the application

 * to modify lift's environment

 */

class Boot {

 def boot {

 // where to search snippet

 LiftRules.addToPackages("org.yourorganization.liftfromscratch")

 // Build SiteMap

 def sitemap(): SiteMap = SiteMap(

 Menu.i("Home") / "index"

)

 // Use HTML5 for rendering

 LiftRules.htmlProperties.default.set((r: Req) =>

 new Html5Properties(r.userAgent))

 }

}

Congratulations, you now have a working Lift project!

You can verify that you have a working Lift project by launching the Jetty web container
from the SBT console with the container:start command. First, the Boot.scala file
should be compiled and then you should be notified that Jetty has launched and is

6 | Chapter 1: Installing and Running Lift

www.allitebooks.com

http://www.allitebooks.org

listening at http://localhost:8080. You should be able to go to the address in your web
browser and see the rendered index.html file you created earlier.

Discussion
As shown previously, creating a Lift project from scratch is a relatively simple process.
However, it can be a tricky one for newcomers, especially if you are not used to the Java
Virtual Machine (JVM) ecosystem and its conventions for web containers. If you run
into problems, make sure the files are in the correct locations and that their contents
were not mistakenly modified. If all else fails, refer to the sample project next or ask for
help on the Lift mailing list.

Lift projects using SBT or similar build tools follow a standard project layout, where
Scala source code is in src/main/scala and web resources are in src/main/webapp. Your
Scala files must be placed either directly at src/main/scala or in nested directories
matching the organization and name you defined in build.sbt, in our case giving us src/
main/scala/org/yourorganization/liftfromscratch/. Test files match the directory struc‐
ture but are placed in src/test/ instead of src/main/. Likewise, the web.xml file must be
placed in src/main/webapp/WEB-INF/ for it to be properly detected.

Given these conventions, you should have a directory structure looking quite, if not
exactly, like this:

- project root directory

 | build.sbt

 - project/

 | plugins.sbt

 - src/

 - main/

 - scala/

 - bootstrap/

 | Boot.scala

 - org/

 - yourorganization/

 - liftfromscratch/

 | <your Scala code goes here>

 - webapp/

 | index.html

 | <any other web resources - images, HTML, JavaScript, etc - go here>

 - WEB-INF/

 | web.xml

 - test/

 - scala/

 - org/

 - yourorganization/

 - liftfromscratch/

 | <your tests go here>

1.2. Creating a Lift Project from Scratch Using SBT | 7

http://groups.google.com/group/liftweb

See Also
There is a sample project created using this method.

1.3. Developing Using a Text Editor

Problem
You want to develop your Lift application using your favourite text editor, hitting reload
in your browser to see changes.

Solution
Run SBT while you are editing, and ask it to detect and compile changes to Scala files.
To do that, start sbt and enter the following to the SBT prompt:

~; container:start; container:reload /

When you save a source file in your editor, SBT will detect this change, compile the file,
and reload the web container.

Discussion
An SBT command prefixed with ~ makes that command run when files change. The
first semicolon introduces a sequence of commands, where if the first command suc‐
ceeds, the second will run. The second semicolon means the reload command will run
if the start command ran OK. The start command will recompile any Scala source
files that have changed.

When you run SBT in this way, you’ll notice the following output:

1. Waiting for source changes... (press enter to interrupt)

And indeed, if you do press Enter in the SBT window, you’ll exit this triggered execu‐
tion mode and SBT will no longer be looking for file changes. However, while SBT is
watching for changes, the output will indicate when this happens with something that
looks a little like this:

[info] Compiling 1 Scala source to target/scala-2.9.1/classes...

[success] Total time: 1 s, completed 15-Nov-2012 18:14:46

[pool-301-thread-4] DEBUG net.liftweb.http.LiftServlet - Destroyed Lift handler.

[info] stopped o.e.j.w.WebAppContext{/,[src/main/webapp/]}

[info] NO JSP Support for /, did not find org.apache.jasper.servlet.JspServlet

[info] started o.e.j.w.WebAppContext{/,[src/main/webapp/]}

[success] Total time: 0 s, completed 15-Nov-2012 18:14:46

2. Waiting for source changes... (press enter to interrupt)

8 | Chapter 1: Installing and Running Lift

https://github.com/bubblefoundry/lift-from-scratch

Edits to HTML files don’t trigger the SBT compile and reload commands. This is because
SBT’s default behaviour is to look for Scala and Java source file changes, and also changes
to files in src/main/resources/. This works out just fine, because Jetty will use your
modified HTML file when you reload the browser page.

Restarting the web container each time you edit a Scala file isn’t ideal. You can reduce
the need for restarts by integrating JRebel into your development environment, as de‐
scribed in Recipe 1.4.

However, if you are making a serious number of edits, you may prefer to issue a con
tainer:stop command until you’re ready to run you application again with contain
er:start. This will prevent SBT compiling and restarting your application over and
over. The SBT console has a command history, and using the up and down keyboard
arrows allows you to navigate to previous commands and run them by pressing the
Return key. That takes some of the tedium out of these long commands.

One error you may run into is:

java.lang.OutOfMemoryError: PermGen space

The permanent generation is a Java Virtual Machine concept. It’s the area of memory
used for storing classes (amongst other things). It’s a fixed size, and once it is full, this
PermGen error appears. As you might imagine, continually restarting a container causes
many classes to be loaded and unloaded, but the process is not perfect, effectively leaking
memory. The best you can do is stop and then restart SBT. If you’re seeing this error
often, check the setting for -XX:MaxPermSize inside the sbt (or sbt.bat) script, and if you
can, double it.

See Also
Triggered execution has a number of settings you can adjust, as described in the SBT
documentation.

See the SBT Command Line Reference for an overview of available commands.

Commands and configuration options for the SBT web plugin are described on the
GitHub wiki.

1.4. Incorporating JRebel

Problem
You want to avoid application restarts when you change a Scala source file by using
JRebel.

1.4. Incorporating JRebel | 9

http://bit.ly/154mizT
http://bit.ly/154mizT
http://bit.ly/178Zztv
https://github.com/JamesEarlDouglas/xsbt-web-plugin/wiki
https://github.com/JamesEarlDouglas/xsbt-web-plugin/wiki

Solutions
There are three steps required: install JRebel once; each year, request the free Scala
license; and configure SBT to use JRebel.

First, visit https://my.jrebel.com/plans and request the free Scala license.

Second, download the “Generic ZIP Archive” version of JRebel, unzip it to where you
like. For this recipe, I’ve chosen to use /opt/zt/jrebel/.

When you have received your account confirmation email from JRebel, you can copy
your “authentication token” from the “Active” area of ZeroTurnaround’s site. To apply
the token to your local install, run the JRebel configuration script:

$ /opt/zt/jrebel/bin/jrebel-config.sh

For Windows, navigate to and launch bin\jrebel-config.cmd.

In the “Activation” setting, select “I want to use myJRebel” and then in the “License”
section, paste in your activation token. Click the “Activate” button, and once you see the
license status change to “You have a valid myJRebel token,” click “Finish.”

Finally, configure SBT by modifying the sbt script to enable JRebel. This means setting
the -javaagent and -noverify flags for Java, and enabling the JRebel Lift plugin.

For Mac and Linux, the script that’s included with the Lift downloads would become:

java -Drebel.lift_plugin=true -noverify -javaagent:/opt/zt/jrebel/jrebel.jar \

 -Xmx1024M -Xss2M -XX:MaxPermSize=512m -XX:+CMSClassUnloadingEnabled -jar \

 `dirname $0`/sbt-launch-0.12.jar "$@"

For Windows, modify sbt.bat to be:

set SCRIPT_DIR=%~dp0

java -Drebel.lift_plugin=true -noverify -javaagent:c:/opt/zt/jrebel/jrebel.jar \

 -XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=256m -Xmx1024M -Xss2M \

 -jar "%SCRIPT_DIR%\sbt-launch-0.12.jar" %*

There’s nothing else to do to use JRebel. When you start SBT, you’ll see a large banner
stating something like this:

###

 JRebel 5.1.1 (201211271929)

 (c) Copyright ZeroTurnaround OU, Estonia, Tartu.

 Over the last 30 days JRebel prevented

 at least 335 redeploys/restarts saving you about 13.6 hours.

....

With JRebel installed, you can now container:start your application, modify and
compile a Scala file, and reload a page in your application. You’ll see a notice that the
class has been reloaded:

10 | Chapter 1: Installing and Running Lift

https://my.jrebel.com/plans

[2012-12-16 23:15:44] JRebel: Reloading class 'code.snippet.HelloWorld'.

That change is live, without having to restart the container.

Discussion
JRebel is very likely to speed up your development. It updates code in a running Java
Virtual Machine, without having to stop and restart it. The effect is that, on the whole,
you can compile a class, then hit reload in your browser to see the change in your Lift
application.

Even with JRebel you will need to restart your applications from time to time, but JRebel
usually reduces the number of restarts. For example, Boot.scala is run when your ap‐
plication starts, so if you modify something in your Boot.scala, you’ll need to stop and
start your application. JRebel can’t help with that.

But there are also other situations that JRebel cannot help with, such as when a superclass
changes. Generally, JRebel will emit a warning about this in the console window. If that
happens, stop and start your application.

The -Drebel.lift_plugin=true setting adds Lift-specific functionality to JRebel.
Specifically, it allows JRebel to reload changes to LiftScreen, Wizard, and RestHelp
er. This means you can change fields or screens, and change REST serve code.

Purchased licenses

This recipe uses a free Scala license for a service called myJRebel. This communicates
with JRebel servers via the activation code. If you have purchased a license from Zero‐
Turnaround, the situation is slightly different. In this case, you will have a license key
that you store in a file called jrebel.lic. You can place the file in a .jrebel folder in your
home directory, or alongside jrebel.jar (e.g., in the /opt/zt/jrebel/ folder, if that’s where
you installed JRebel), or you can specify some other location. For the latter option,
modify the sbt script and specify the location of the file by adding another Java setting:

-Drebel.license=/path/to/jrebel.lic

See Also
Details about how JRebel works can be found in the ZeroTurnaround FAQ.

The Lift support was announced in a blog post in 2012, where you’ll find more about
the capabilities of the plugin.

1.4. Incorporating JRebel | 11

http://zeroturnaround.com/software/jrebel/resources/faq/
http://zeroturnaround.com/jrebel/lift-support-in-jrebel/

1.5. Developing Using Eclipse

Problem
You want to develop your Lift application using the Eclipse IDE, hitting reload in your
browser to see changes.

Solution
Use the “Scala IDE for Eclipse” plugin to Eclipse, and the sbteclipse plugin for SBT. This
will give Eclipse the ability to understand Scala, and SBT the ability to create project
files that Eclipse can load.

The instructions for the Eclipse plugin are given at http://scala-ide.org. There are a
number of options to be aware of when picking an update site to use: there are different
sites for Scala 2.9 and 2.10, and for different versions of Eclipse. Start with the stable
version of the plugin rather than a nightly or milestone version. This will give you an
Eclipse perspective that knows about Scala.

Once the Eclipse plugin is installed and restarted, you need to create the project files to
allow Eclipse to load your Lift project. Install sbteclipse by adding the following to
projects/plugins.sbt in your Lift project:

addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "2.1.2")

You can then create Eclipse project files (.project and .classpath) by entering the fol‐
lowing into the SBT prompt:

eclipse

Open the project in Eclipse by navigating to “File → Import…” and selecting “General
→ Existing Projects into Workspace.” Browse to and choose your Lift project. You are
now set up to develop your application in Eclipse.

To see live changes as you edit and save your work, run SBT in a separate terminal
window. That is, start sbt from a terminal window outside of Eclipse and enter the
following:

~; container:start; container:reload /

The behaviour of this command is described in Recipe 1.3, but if you’re using JRebel
(see Recipe 1.4), then you just need to run container:start by itself.

You can then edit in Eclipse, save to compile, and in your web browser, hit reload to see
the changes.

12 | Chapter 1: Installing and Running Lift

http://scala-ide.org

Discussion
One of the great benefits of an IDE is the ability to navigate source, by Cmd+click (Mac)
or F3 (PC). You can ask the SBT eclipse command to download the Lift source and
Scaladoc, allowing you to click through to the Lift source from methods and classes,
which is a useful way to discover more about Lift.

To achieve this in a project, run eclipse with-source=true in SBT, but if you want
this to be the default behaviour, add the following to your build.sbt file:

EclipseKeys.withSource := true

If you find yourself using the plugin frequently, you may wish to declare it in your global
SBT configuration files so it applies to all projects. To do that, create a ~/.sbt/plugins/
plugins.sbt file containing:

resolvers += Classpaths.typesafeResolver

addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "2.1.2")

Note the blank line between the resolvers and the addSbtPlugin. In .sbt files, a blank
line is required between statements.

Finally, set any global configurations (such as withSource) in ~/.sbt/global.sbt.

See Also
There are other useful settings for sbteclipse. You’ll also find the latest version number
for the plugin on that site.

The SBT ~/.sbt/ structure is described in the guide to using plugins and in the wiki page
for global configuration.

1.6. Developing Using IntelliJ IDEA

Problem
You want to use the IntelliJ IDEA development environment when writing your Lift
application.

Solution
You need the Scala plugin for IntelliJ, and an SBT plugin to generate the IDEA project
files.

The IntelliJ plugin you’ll need to install only once, and these instructions are for IntelliJ
IDEA 12. The details may vary between releases of the IDE, but the basic idea is to find
the JetBrains Scala plugin, and download and install it.

1.6. Developing Using IntelliJ IDEA | 13

https://github.com/typesafehub/sbteclipse/wiki
http://bit.ly/144HiaM
http://bit.ly/19A3eAw
http://bit.ly/19A3eAw

From the “Welcome to IntelliJ IDEA” screen, select “Configure” and then “Plugins.”
Select “Browse repositories…” In the search box, top right, type “Scala.” You’ll find on
the left a number of matches: select “Scala.” On the right, you’ll see confirmation that
this is the “Plugin for Scala language support” and the vendor is JetBrains, Inc. Select
the “Download and Install” icon from the top of the window, or right-click to download
and install. “Close” the dialog, and OK out of the plugins window. You’ll be prompted
to restart IntelliJ IDEA.

With the IDE configured, you now need to include the SBT plugin inside your Lift
project by adding the following to the file projects/plugins.sbt:

addSbtPlugin("com.github.mpeltonen" % "sbt-idea" % "1.4.0")

Start SBT, and at the SBT prompt, create the IDEA project files by typing:

gen-idea

This will generate the .idea and .iml files that IntelliJ uses. Inside IntelliJ you can open
the project from the “File” menu, picking “Open…” and then navigating to your project
and selecting the directory.

To see live changes as you edit and save your work, run SBT in a separate Terminal
window. That is, start sbt from a Terminal window outside of IntelliJ and enter the
following:

~; container:start; container:reload /

This behaviour of this command is described in Recipe 1.3, but if you’re using JRebel
(see Recipe 1.4), then you just need to run container:start by itself.

Each time you compile or make the project, the container will pick up the changes, and
you can see them by reloading your browser window.

Discussion
By default, the gen-idea command will fetch source for dependent libraries. That means
out of the box you can click through to Lift source code to explore it and learn more
about the framework.

If you want to try the latest snapshot version of the plugin, you’ll need to include the
snapshot repository in your plugin.sbt file:

resolvers += "Sonatype snapshots" at

 "http://oss.sonatype.org/content/repositories/snapshots/"

Setting up the SBT IDEA plugin globally, for all SBT projects, is the same pattern as
described for Eclipse in Recipe 1.5.

14 | Chapter 1: Installing and Running Lift

See Also
The sbt-idea plugin doesn’t have a configuration guide yet. One way to discover the
features is to browse the release notes in the notes folder of that project.

JetBrains has a blog for the Scala plugin with feature news and tips.

1.7. Viewing the lift_proto H2 Database

Problem
You’re developing using the default lift_proto.db H2 database, and you would like to use
a tool to look at the tables.

Solution
Use the web interface included as part of H2. Here are the steps:

1. Locate the H2 JAR file. For me, this was: ~/.ivy2/cache/com.h2database/h2/jars/
h2-1.2.147.jar.

2. Start the server from a Terminal window using the JAR file: java -cp /path/to/
h2-version.jar org.h2.tools.Server.

3. This should launch your web browser, asking you to log in.

4. Select “Generic H2 Server” in “Saved Settings.”

5. Enter jdbc:h2:/path/to/youapp/lift_proto.db;AUTO_SERVER=TRUE for “JDBC
URL,” adjusting the path for the location of your database, and adjusting the name
of the database (lift_proto.db) if different in your Boot.scala.

6. Press “Connect” to view and edit your database.

Discussion
The default Lift projects that include a database, such as lift_basic, use the H2 relational
database, as it can be included as an SBT dependency and requires no external instal‐
lation or configuration. It’s a fine product, although production deployments typically
use standalone databases, such as PostgreSQL or MySQL.

Even if you’re deploying to a non–H2 database, it may be useful to keep H2 around
because it has an in-memory mode, which is great for unit tests. This means you can
create a database in memory, and throw it away when your unit test ends.

If you don’t like the web interface, the connection settings described in this recipe should
give you the information you need to configure other SQL tools.

1.7. Viewing the lift_proto H2 Database | 15

https://github.com/mpeltonen/sbt-idea
http://blog.jetbrains.com/scala/

See Also
The H2 site lists the features and configuration options for database engine.

If you’re using the console frequently, consider making it accessible from your Lift ap‐
plication in development node. This is described by Diego Medina in a blog post.

The example Lift project for Chapter 7 has the H2 console enabled.

1.8. Using the Latest Lift Build

Problem
You want to use the latest (“snapshot”) build of Lift.

Solution
You need to make two changes to your build.sbt file. First, reference the snapshot
repository:

resolvers += "snapshots" at

 "http://oss.sonatype.org/content/repositories/snapshots"

Second, change the liftVersion in your build to be the latest version. For this example,
let’s use the 2.6 snapshot version of Lift:

val liftVersion = "2.6-SNAPSHOT"

Restarting SBT (or issuing a reload command) will trigger a download of the latest
build.

Discussion
Production releases of Lift (e.g., 2.4, 2.5), as well as milestone releases (e.g., 2.5-M3) and
release candidates (e.g., 2.5-RC1) are published into a releases repository. When SBT
downloads them, they are downloaded once.

Snapshot releases are different: they are the result of an automated build, and change
often. You can force SBT to resolve the latest versions by running the command clean
and then update.

See Also
To learn the detail of snapshot versions, dig into the Maven Complete Reference.

16 | Chapter 1: Installing and Running Lift

www.allitebooks.com

http://www.h2database.com
https://fmpwizard.telegr.am/blog/lift-and-h2
http://bit.ly/10iFg9Q
http://bit.ly/11Nc1ub
http://www.allitebooks.org

1.9. Using a New Version of Scala

Problem
A new Scala version has just been released and you want to immediately use it in your
Lift project.

Solution
You may find that the latest snapshot of Lift is built using the latest Scala version. Failing
that, and assuming you cannot wait for a build, you may still be in luck. Providing that
the Scala version is binary compatible with the latest version used by Lift, you can change
your build file to force the Scala version.

For example, let’s assume your build.sbt file is set up to use Lift 2.5 with Scala 2.9.1:

scalaVersion := "2.9.1"

libraryDependencies ++= {

 val liftVersion = "2.5"

 Seq(

 "net.liftweb" %% "lift-webkit" % liftVersion % "compile->default"

)

}

Suppose you now want to use Scala 2.9.3 but Lift 2.5 was only built against Scala 2.9.1.
Replace %% with % for the net.liftweb resources and explicitly include the Scala version
that Lift was built against for each Lift component:

scalaVersion := "2.9.3"

libraryDependencies ++= {

 val liftVersion = "2.5"

 Seq(

 "net.liftweb" % "lift-webkit_2.9.1" % liftVersion % "compile->default"

)

}

What we’ve done here is change the scalaVersion to the new version we want to use,
but explicitly specified we want the 2.9.1 Scala version for Lift. This works because the
two different Scala versions are binary compatible.

Discussion
Dependencies have a particular naming convention. For example, the lift-webkit
library for Lift 2.5 is called lift-webkit_2.9.1-2.5.jar. Normally, in build.sbt we simply
refer to "net.liftweb" %% "lift-webkit", and SBT turns that into the name of a file
that can be downloaded.

1.9. Using a New Version of Scala | 17

However, in this recipe, we have forced SBT to explicitly fetch the 2.9.1 version of the
Lift resources rather than allow it to compute the URL to the Lift components. This is
the difference between using %% and % in a dependency: with %% you do not specify the
Scala version, as SBT will append the scalaVersion number automatically; with % this
automatic change is not made, so we have to manually specify more details for the name
of the library.

Please note this only works for minor releases of Scala: major releases break compati‐
bility. For example, Scala 2.9.1 is compatible with Scala 2.9.0, but not 2.10.

See Also
Binary compatibility in Scala is discussed on the Scala user mailing list.

The SBT Library Dependencies page describes how SBT manages version numbers.

Recipe 1.8 describes how to use a snapshot version of Lift.

18 | Chapter 1: Installing and Running Lift

http://article.gmane.org/gmane.comp.lang.scala.user/39290
http://bit.ly/163xPlx

CHAPTER 2

HTML

Generating HTML is often a major component of web applications. This chapter is
concerned with Lift’s View First approach and use of CSS Selectors. Later chapters focus
more specifically on form processing, REST web services, JavaScript, Ajax, and Comet.

Code for this chapter is at https://github.com/LiftCookbook/cookbook_html.

2.1. Testing and Debugging CSS Selectors

Problem
You want to explore or debug CSS selectors interactively.

Solution
You can use the Scala REPL to run your CSS selectors.

Here’s an example where we test out a CSS selector that adds an href attribute to a link.
Start from within SBT and use the console command to get into the REPL:

> console

[info] Starting scala interpreter...

[info]

Welcome to Scala version 2.9.1.final

Type in expressions to have them evaluated.

Type :help for more information.

scala> import net.liftweb.util.Helpers._

import net.liftweb.util.Helpers._

scala> val f = "a [href]" #> "http://example.org"

f: net.liftweb.util.CssSel =

 (Full(a [href]), Full(ElemSelector(a,Full(AttrSubNode(href)))))

19

https://github.com/LiftCookbook/cookbook_html

scala> val in = <a>click me

in: scala.xml.Elem = <a>click me

scala> f(in)

res0: scala.xml.NodeSeq =

 NodeSeq(click me)

The Helpers._ import brings in the CSS selector functionality, which we then exercise
by creating a selector, f, calling it with a very simple template, in, and observing the
result, res0.

Discussion
CSS selector transforms are one of the distinguishing features of Lift. They succinctly
describe a node in your template (lefthand side) and give a replacement (operation, the
righthand side). They do take a little while to get used to, so being able to test them at
the Scala REPL is useful.

It may help to know that prior to CSS selectors, Lift snippets were typically defined in
terms of a function that took a NodeSeq and returned a NodeSeq, often via a method
called bind. Lift would take your template, which would be the input NodeSeq, apply
the function, and return a new NodeSeq. You won’t see that usage so often anymore, but
the principle is the same.

The CSS selector functionality in Lift gives you a CssSel function, which is NodeSeq =>
NodeSeq. We exploit this in the previous example by constructing an input NodeSeq
(called in), then creating a CSS function (called f). Because we know that CssSel is
defined as a NodeSeq => NodeSeq, the natural way to execute the selector is to supply
the in as a parameter, and this gives us the answer, res0.

If you use an IDE that supports a worksheet, which both Eclipse and IntelliJ IDEA do,
then you can also run transformations in a worksheet.

See Also
The syntax for selectors is best described in Simply Lift.

See Recipe 1.5 and Recipe 1.6 for how to work with Eclipse and IntelliJ IDEA.

2.2. Sequencing CSS Selector Operations

Problem
You want your CSS selector binding to apply to the results of earlier binding expressions.

20 | Chapter 2: HTML

http://simply.liftweb.net/

Solution
Use andThen rather than & to compose your selector expressions.

For example, suppose we want to replace <div id="foo"/> with <div id="bar">bar
content</div> but for some reason we need to generate the bar div as a separate step
in the selector expression:

sbt> console

[info] Starting scala interpreter...

[info]

Welcome to Scala version 2.9.1.final (Java 1.7.0_05).

Type in expressions to have them evaluated.

Type :help for more information.

scala> import net.liftweb.util.Helpers._

import net.liftweb.util.Helpers._

scala> def render = "#foo" #> <div id="bar"/> andThen "#bar *" #> "bar content"

render: scala.xml.NodeSeq => scala.xml.NodeSeq

scala> render(<div id="foo"/>)

res0: scala.xml.NodeSeq = NodeSeq(<div id="bar">bar content</div>)

Discussion
When using &, think of the CSS selectors as always applying to the original template, no
matter what other expressions you are combining. This is because & is aggregating the
selectors together before applying them. In contrast, andThen is a method of all Scala
functions that composes two functions together, with the first being called before the
second.

Compare the previous example if we change the andThen to &:

scala> def render = "#foo" #> <div id="bar" /> & "#bar *" #> "bar content"

render: net.liftweb.util.CssSel

scala> render(<div id="foo"/>)

res1: scala.xml.NodeSeq = NodeSeq(<div id="bar"></div>)

The second expression will not match, as it is applied to the original input of <div
id="foo"/>—the selector of #bar won’t match on id=foo, and so adds nothing to the
results of render.

See Also
The Lift wiki page for CSS selectors also describes this use of andThen.

2.2. Sequencing CSS Selector Operations | 21

https://www.assembla.com/spaces/liftweb/wiki/Binding_via_CSS_Selectors

2.3. Setting Meta Tag Contents

Problem
You want to set the content of an HTML meta tag from a snippet.

Solution
Use the @ CSS binding name selector. For example, given:

<meta name="keywords" content="words, here, please" />

The following snippet code will update the value of the content attribute:

"@keywords [content]" #> "words, we, really, want"

Discussion
The @ selector selects all elements with the given name. It’s useful in this case to change
the <meta name="keyword"> tag, but you may also see it used elsewhere. For example,
in an HTML form, you can select input fields such as <input name="address"> with
"@address".

The [content] part is an example of a replacement rule that can follow a selector. That’s
to say, it’s not specific to the @ selector and can be used with other selectors. In this
example, it replaces the value of the attribute called “content.” If the meta tag had no
“content” attribute, it would be added.

There are two other replacement rules useful for manipulating attributes:

• [content!] to remove an attribute with a matching value.

• [content+] to append to the value.

Examples of these would be:

scala> import net.liftweb.util.Helpers._

import net.liftweb.util.Helpers._

scala> val in = <meta name="keywords" content="words, here, please" />

in: scala.xml.Elem = <meta name="keywords" content="words, here, please"></meta>

scala> val remove = "@keywords [content!]" #> "words, here, please"

remove: net.liftweb.util.CssSel = CssBind(Full(@keywords [content!]),

 Full(NameSelector(keywords,Full(AttrRemoveSubNode(content)))))

scala> remove(in)

res0: scala.xml.NodeSeq = NodeSeq(<meta name="keywords"></meta>)

and:

22 | Chapter 2: HTML

scala> val add = "@keywords [content+]" #> ", thank you"

add: net.liftweb.util.CssSel = CssBind(Full(@keywords [content+]),

 Full(NameSelector(keywords,Full(AttrAppendSubNode(content)))))

scala> add(in)

res1: scala.xml.NodeSeq = NodeSeq(<meta content="words, here, please, thank you"

 name="keywords"></meta>)

Appending to a class attribute

Although not directly relevant to meta tags, you should be aware that there is one con‐
venient special case for appending to an attribute. If the attribute is class, a space is
added together with your class value. As a demonstration of that, here’s an example of
appending a class called btn-primary to a div:

scala> def render = "div [class+]" #> "btn-primary"

render: net.liftweb.util.CssSel

scala> render(<div class="btn"/>)

res0: scala.xml.NodeSeq = NodeSeq(<div class="btn btn-primary"></div>)

See Also
The syntax for selectors is best described in Simply Lift.

See Recipe 2.1 for how to run selectors from the REPL.

2.4. Setting the Page Title

Problem
You want to set the <title> of the page from a Lift snippet.

Solution
Select the content of the title element and replace it with the text you want:

"title *" #> "I am different"

Assuming you have a <title> tag in your template, this will result in:

<title>I am different</title>

Discussion
This example uses an element selector, which picks out tags in the HTML template and
replaces the content. Notice that we are using "title *" to select the content of the
title tag. If we had left off the *, the entire title tag would have been replaced with
text.

2.4. Setting the Page Title | 23

http://simply.liftweb.net/

As an alternative, it is also possible to set the page title from the contents of SiteMap,
meaning the title used will be the title you’ve assigned to the page in the site map. To do
that, make use of Menu.title in your template directly:

<title data-lift="Menu.title"></title>

The Menu.title code appends to any existing text in the title. This means the following
will have the phrase "Site Title - " in the title, followed by the page title:

<title data-lift="Menu.title">Site Title - </title>

If you need more control, you can of course bind on <title> using a regular snippet.
This example uses a custom snippet to put the site title after the page title:

<title data-lift="MyTitle"></title>

object MyTitle {

 def render = <title><lift:Menu.title /> - Site Title</title>

}

Notice that our snippet is returning another snippet, <lift:Menu.title/>. This is a
perfectly normal thing to do in Lift, and snippet invocations returned from snippets
will be processed by Lift as normal.

See Also
Recipe 2.7 describes the different ways to reference a snippet, such as data-lift and
<lift: ... />.

At the Assembla website, there’s more about SiteMap and the Menu snippets.

2.5. HTML Conditional Comments

Problem
You want to make use of Internet Explorer HTML conditional comments in your
templates.

Solution
Put the markup in a snippet and include the snippet in your page or template.

For example, suppose we want to include the HTML5 Shiv (a.k.a. HTML5 Shim) Java‐
Script so we can use HTML5 elements with legacy IE browsers. To do that, our snippet
would be:

package code.snippet

import scala.xml.Unparsed

24 | Chapter 2: HTML

https://www.assembla.com/spaces/liftweb/wiki/SiteMap

object Html5Shiv {

 def render = Unparsed("""<!--[if lt IE 9]>

 <script src="http://html5shim.googlecode.com/svn/trunk/html5.js">

 </script><![endif]-->""")

}

We would then reference the snippet in the <head> of a page, perhaps even in all pages
via templates-hidden/default.html:

<script data-lift="Html5Shiv"></script>

Discussion
The HTML5 parser used by Lift does not carry comments from the source through to
the rendered page. If you just tried to paste the html5shim markup into your template
you’d find it missing from the rendered page.

We deal with this by generating unparsed markup from a snippet. If you’re looking at
Unparsed and are worried, your instincts are correct. Normally, Lift would cause the
markup to be escaped, but in this case, we really do want unparsed XML content (the
comment tag) included in the output.

If you find you’re using IE conditional comments frequently, you may want to create a
more general version of the snippet. For example:

package code.snippet

import xml.{NodeSeq, Unparsed}

import net.liftweb.http.S

object IEOnly {

 private def condition : String =

 S.attr("cond") openOr "IE"

 def render(ns: NodeSeq) : NodeSeq =

 Unparsed("<!--[if " + condition + "]>") ++ ns ++ Unparsed("<![endif]-->")

}

It would be used like this:

<div data-lift="IEOnly">

 A div just for IE

</div>

and produces output like this:

<!--[if IE]><div>

 A div just for IE

</div><![endif]-->

2.5. HTML Conditional Comments | 25

Notice that the condition test defaults to IE, but first tries to look for an attribute called
cond. This allows you to write:

<div data-lift="IEOnly?cond=lt+IE+9">

 You're using IE 8 or earlier

</div>

The + symbol is the URL encoding for a space, resulting in:

<!--[if lt IE 9]><div>

 You're using IE 8 or earlier

</div><![endif]-->

See Also
The IEOnly example is derived from a posting on the mailing list from Antonio Salazar
Cardozo.

The html5shim project can be downloaded from its Google Code site.

2.6. Returning Snippet Markup Unchanged

Problem
You want a snippet to return the original markup associated with the snippet invocation.

Solution
Use the PassThru transform.

Suppose you have a snippet that performs a transform when some condition is met, but
if the condition is not met, you want the snippet to return the original markup.

Starting with the original markup:

<h2>Pass Thru Example</h2>

<p>There's a 50:50 chance of seeing "Try again" or "Congratulations!":</p>

<div data-lift="PassThruSnippet">

 Try again - this is the template content.

</div>

We could leave it alone or change it with this snippet:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.util.PassThru

import scala.util.Random

26 | Chapter 2: HTML

www.allitebooks.com

http://bit.ly/lift-ieonly
http://bit.ly/lift-ieonly
http://bit.ly/11ltJBR
http://www.allitebooks.org

import xml.Text

class PassThruSnippet {

 private def fiftyFifty = Random.nextBoolean

 def render =

 if (fiftyFifty) "*" #> Text("Congratulations! The content was changed")

 else PassThru

}

Discussion
PassThru is an identity function of type NodeSeq => NodeSeq. It returns the input it is
given:

object PassThru extends Function1[NodeSeq, NodeSeq] {

 def apply(in: NodeSeq): NodeSeq = in

}

A related example is ClearNodes, defined as:

object ClearNodes extends Function1[NodeSeq, NodeSeq] {

 def apply(in: NodeSeq): NodeSeq = NodeSeq.Empty

}

The pattern of converting one NodeSeq to another is simple, but also powerful enough
to get you out of most situations, as you can always arbitrarily rewrite the NodeSeq.

2.7. Snippet Not Found When Using HTML5

Problem
You’re using Lift with the HTML5 parser and one of your snippets is rendering with a
“Class Not Found” error. It even happens for <lift:HelloWorld.howdy />.

Solution
Switch to the designer-friendly snippet invocation mechanism. For example:

<div data-lift="HellowWorld.howdy"></div>

Discussion
In this Cookbook, we use the HTML5 parser, which is set in Boot.scala:

// Use HTML5 for rendering

LiftRules.htmlProperties.default.set((r: Req) =>

 new Html5Properties(r.userAgent))

2.7. Snippet Not Found When Using HTML5 | 27

The HTML5 parser and the traditional Lift XHTML parser have different behaviours.
In particular, the HTML5 parser converts elements and attribute names to lowercase
when looking up snippets. This means Lift would take <lift:HelloWorld.howdy />
and look for a class called helloworld rather than HelloWorld, which would be the
cause of the “Class Not Found” error.

Switching to the designer-friendly mechanism is the solution here, and you gain vali‐
dating HTML as a bonus.

There are three popular ways of referencing a snippet:

As an HTML5 data attribute: data-lift="MySnippet"
This is the style we use in this book, and is valid HTML5 markup.

Using the lift attribute, as in: lift="MySnippet"
This won’t strictly validate against HTML5, but you may see it used.

The XHTML namespace version: <lift:MySnippet />
You’ll see the usage of this tag in templates declining because of the way it interacts
with the HTML5 parser. However, it works just fine outside of a template, for ex‐
ample when embedding a snippet invocation in your server-side code (Recipe 2.4
includes an example of this for Menu.title).

See Also
The key differences between the XHTML and HTML5 parsers are outlined on the
mailing list.

2.8. Avoiding CSS and JavaScript Caching

Problem
You’ve modified CSS or JavaScript in your application, but web browsers have cached
your resources and are using the older versions. You’d like to avoid this browser caching.

Solution
Add the with-resource-id attribute to script or link tags:

<script data-lift="with-resource-id" src="/myscript.js"

 type="text/javascript"></script>

The addition of this attribute will cause Lift to append a resource ID to your src (or
href), and as this resource ID changes each time Lift starts, it defeats browser caching.

The resultant HTML might be:

28 | Chapter 2: HTML

http://bit.ly/lift-parsers
http://bit.ly/lift-parsers

<script src="/myscript.js?F619732897824GUCAAN=_"

 type="text/javascript" ></script>

Discussion
The random value that is appended to the resource is computed when your Lift appli‐
cation boots. This means it should be stable between releases of your application.

If you need some other behaviour from with-resource-id, you can assign a new func‐
tion of type String => String to LiftRules.attachResourceId. The default imple‐
mentation, shown previously, takes the resource name, /myscript.js in the example, and
returns the resource name with an ID appended.

You can also wrap a number of tags inside a <lift:with-resource-id>...<lift:with-
resource-id> block. However, avoid doing this in the <head> of your page, as the
HTML5 parser will move the tags to be outside of the head section.

Note that some proxies may choose not to cache resources with query parameters at all.
If that impacts you, it’s possible to code a custom resource ID method to move the
random resource ID out of the query parameter and into the path.

Here’s one approach to doing this. Rather than generate JavaScript and CSS links that
look like /assets/style.css?F61973, we will generate /cache/F61973/assets/style.css. We
then will need to tell Lift to take requests that look like this new format, and render the
correct content for the request. The code for this is:

package code.lib

import net.liftweb.util._

import net.liftweb.http._

object CustomResourceId {

 def init() : Unit = {

 // The random number we're using to avoid caching

 val resourceId = Helpers.nextFuncName

 // Prefix with-resource-id links with "/cache/{resouceId}"

 LiftRules.attachResourceId = (path: String) => {

 "/cache/" + resourceId + path

 }

 // Remove the cache/{resourceId} from the request if there is one

 LiftRules.statelessRewrite.prepend(NamedPF("BrowserCacheAssist") {

 case RewriteRequest(ParsePath("cache" :: id :: file, suffix, _, _), _, _) =>

 RewriteResponse(file, suffix)

 })

 }

}

2.8. Avoiding CSS and JavaScript Caching | 29

This would be initialised in Boot.scala:

CustomResourceId.init()

or you could just paste all the code into Boot.scala, if you prefer.

With the code in place, we can, for example, modify templates-hidden/default.html and
add a resource ID class to jQuery:

<script id="jquery" data-lift="with-resource-id"

 src="/classpath/jquery.js" type="text/javascript"></script>

At runtime, this would be rendered in HTML as:

<script type="text/javascript" id="jquery"

 src="/cache/F352555437877UHCNRW/classpath/jquery.js"></script>

Most of the work for this is happening in the statelessRewrite, which is working at
a low level inside Lift. The two parts to it are:

• A RewriteRequest that is the pattern we’re matching on

• A RewriteResponse that is the result we want if the request matches

Looking at the RewriteRequest first, this expects three arguments: the path, which we
care about, and then the method (e.g., GetRequest, PutRequest) and the HTTPRe
quest itself, neither of which concern us in this instance. In the path part, we’re matching
on patterns that start with cache followed by something (we don’t care what), and then
the rest of the path, represented by the name file. In that situation, we rewrite to the
original path, which is just the file with the suffix, effectively removing the /cache/
F352555437877UHCNRW part. This is the content that Lift will serve.

See Also
http://bit.ly/14BfNYJ shows the default implementation of attachResourceId.

Google’s “Optimize caching” notes are a good source of information about browser
behaviour.

You can learn more about URL rewriting at the Lift wiki. Rewriting is used rarely, and
only for special cases. Most problems that look like rewriting problems are better solved
with a Menu Param.

2.9. Adding to the Head of a Page

Problem
You use a template for layout, but on one specific page you need to add something to
the <head> section.

30 | Chapter 2: HTML

http://bit.ly/14BfNYJ
http://bit.ly/154phIM
http://bit.ly/1abV4x2
http://bit.ly/10iHiHb

Solution
Use the head snippet so Lift knows to merge the contents with the <head> of your page.
For example, suppose you have the following contents in templates-hidden/default.html:

<html lang="en" xmlns:lift="http://liftweb.net/">

 <head>

 <meta charset="utf-8"></meta>

 <title data-lift="Menu.title">App: </title>

 <script id="jquery" src="/classpath/jquery.js"

 type="text/javascript"></script>

 <script id="json" src="/classpath/json.js"

 type="text/javascript"></script>

 </head>

 <body>

 <div id="content">The main content will get bound here</div>

 </body>

</html>

Also suppose you have index.html on which you want to include red-titles.css to change
the style of just this page.

Do so by including the CSS in the part of the page that will get processed, and mark it
with the head snippet:

<!DOCTYPE html>

<html>

 <head>

 <title>Special CSS</title>

 </head>

 <body data-lift-content-id="main">

 <div id="main" data-lift="surround?with=default;at=content">

 <link data-lift="head" rel="stylesheet"

 href="red-titles.css" type="text/css" />

 <h2>Hello</h2>

 </div>

 </body>

</html>

Note that this index.html page is validated HTML5, and will produce a result with the
custom CSS inside the <head> tag, something like this:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>App: Special CSS</title>

 <script type="text/javascript"

 src="/classpath/jquery.js" id="jquery"></script>

 <script type="text/javascript"

 src="/classpath/json.js" id="json"></script>

 <link rel="stylesheet" href="red-titles.css" type="text/css">

 </head>

2.9. Adding to the Head of a Page | 31

 <body>

 <div id="main">

 <h2>Hello</h2>

 </div>

 <script type="text/javascript" src="/ajax_request/liftAjax.js"></script>

 <script type="text/javascript">

 // <![CDATA[

 var lift_page = "F557573613430HI02U4";

 //]]>

 </script>

 </body>

</html>

Discussion
If you find your tags not appearing in the <head> section, check that the HTML in your
template and page is valid HTML5.

You can also use <lift:head>...</lift:head> to wrap a number of expressions, and
will see <head_merge>...</head_merge> used in the code example as an alternative to
<lift:head>.

Another variant you may see is class="lift:head", as an alternative to data-
lift="head".

The head snippet is a built-in snippet, but otherwise no different from any snippet you
might write. What the snippet does is emit a <head> block, containing the elements you
want in the head. These can be <title>, <link>, <meta>, <style>, <script>, or <base>
tags. How does this <head> block produced by the head snippet end up inside the main
<head> section of the page? When Lift processes your template, it automatically merges
all <head> tags into the main <head> section of the page.

You might suspect you can therefore put a plain old <head> section anywhere on your
template. You can, but that would not necessarily be valid HTML5 markup.

There’s also tail, which works in a similar way, except anything marked with this snip‐
pet is moved to be just before the close of the body tag.

See Also
Recipe 5.7 describes how to move JavaScript to the end of the page with the tail snippet.

The W3C HTML validator is a useful tool for tracking down HTML markup issues that
may cause problems with content being moved into the head of your page.

32 | Chapter 2: HTML

http://validator.w3.org/

2.10. Custom 404 Page

Problem
You want to show a customised “404” (not found) page.

Solution
In Boot.scala, add the following:

import net.liftweb.util._

import net.liftweb.http._

LiftRules.uriNotFound.prepend(NamedPF("404handler"){

 case (req,failure) =>

 NotFoundAsTemplate(ParsePath(List("404"),"html",true,false))

})

The file src/main/webapp/404.html will now be served for requests to unknown
resources.

Discussion
The uriNotFound Lift rule needs to return a NotFound in reply to a Req and Box[Fail
ure]. This allows you to customise the response based on the request and the type of
failure.

There are three types of NotFound:

NotFoundAsTemplate

Useful to invoke the Lift template processing facilities from a ParsePath

NotFoundAsResponse

Allows you to return a specific LiftResponse

NotFoundAsNode

Wraps a NodeSeq for Lift to translate into a 404 response

In the example, we’re matching any not found situation, regardless of the request and
the failure, and evaluating this as a resource identified by ParsePath. The path we’ve
used is /404.html.

In case you’re wondering, the last two true and false arguments to ParsePath indicate
the path we’ve given is absolute and doesn’t end in a slash. ParsePath is a representation
for a URI path, and exposing if the path is absolute or ends in a slash are useful flags for
matching on, but in this case, they’re not relevant.

2.10. Custom 404 Page | 33

Be aware that 404 pages, when rendered this way, won’t have a location in the site map.
That’s because we’ve not included the 404.html file in the site map, and we don’t have
to, because we’re rendering via NotFoundAsTemplate rather than sending a redirect
to /404.html. However, this means that if you display an error page using a template that
contains Menu.builder or similar (as templates-hidden/default.html does), you’ll see
“No Navigation Defined.” In that case, you’ll probably want to use a different template
on your 404 page.

As an alternative, you could include the 404 page in your site map but make it hidden
when the site map is displayed via the Menu.builder:

Menu.i("404") / "404" >> Hidden

See Also
Recipe 6.5 shows how to catch any exception thrown from your code.

2.11. Other Custom Status Pages

Problem
You want to show a customised page for certain HTTP status codes.

Solution
Use LiftRules.responseTransformers to match against the response and supply an
alternative.

As an example, suppose we want to provide a custom page for 403 (“Forbidden”) statuses
created in our Lift application. Further, suppose that this page might contain snippets
so will need to pass through the Lift rendering flow.

To do this in Boot.scala, we define the LiftResponse we want to generate and use the
response when a 403 status is about to be produced by Lift:

def my403 : Box[LiftResponse] =

 for {

 session <- S.session

 req <- S.request

 template = Templates("403" :: Nil)

 response <- session.processTemplate(template, req, req.path, 403)

 } yield response

LiftRules.responseTransformers.append {

 case resp if resp.toResponse.code == 403 => my403 openOr resp

 case resp => resp

}

34 | Chapter 2: HTML

The file src/main/webapp/403.html will now be served for requests that generate 403
status codes. Other non–403 responses are left untouched.

Discussion
LiftRules.responseTransformers allows you to supply LiftResponse => LiftRes
ponse functions to change a response right at the end of the HTTP processing cycle.
This is a very general mechanism: in this example, we are matching on a status code,
but we could match on anything exposed by LiftResponse.

In the recipe, we respond with a template, but you may find situations where other kinds
of responses make sense, such as an InMemoryResponse.

You could even simplify the example to just this:

LiftRules.responseTransformers.append {

 case resp if resp.toResponse.code == 403 => RedirectResponse("/403.html")

 case resp => resp

}

In Lift 3, responseTransformers will be modified to be a partial func‐
tion, meaning you’ll be able to leave off the final case resp => resp
part of this example.

That redirect will work just fine, with the only downside that the HTTP status code sent
back to the web browser won’t be a 403 code.

A more general approach, if you’re customising a number of pages, would be to define
the status codes you want to customise, create a page for each, and then match only on
those pages:

LiftRules.responseTransformers.append {

 case Customised(resp) => resp

 case resp => resp

}

object Customised {

 // The pages we have customised: 403.html and 500.html

 val definedPages = 403 :: 500 :: Nil

 def unapply(resp: LiftResponse) : Option[LiftResponse] =

 definedPages.find(_ == resp.toResponse.code).flatMap(toResponse)

2.11. Other Custom Status Pages | 35

 def toResponse(status: Int) : Box[LiftResponse] =

 for {

 session <- S.session

 req <- S.request

 template = Templates(status.toString :: Nil)

 response <- session.processTemplate(template, req, req.path, status)

 } yield response

}

The convention in Customised is that we have an HTML file in src/main/webapp that
matches the status code we want to show, but of course you can change that by using a
different pattern in the argument to Templates.

One way to test the previous examples is to add the following to Boot.scala to make all
requests to /secret return a 403:

val Protected = If(() => false, () => ForbiddenResponse("No!"))

val entries = List(

 Menu.i("Home") / "index",

 Menu.i("secret") / "secret" >> Protected,

 // rest of your site map here...

)

If you request /secret, a 403 response will be triggered, which will match the response
transformer showing you the contents of the 403.html template.

See Also
Recipe 2.10 explains the built-in support for custom 404 messages.

Recipe 6.5 shows how to catch any exception thrown from your code.

2.12. Links in Notices

Problem
You want to include a clickable link in your S.error, S.notice, or S.warning messages.

Solution
Include a NodeSeq containing a link in your notice:

S.error("checkPrivacyPolicy",

 See our privacy policy)

You might pair this with the following in your template:

36 | Chapter 2: HTML

www.allitebooks.com

http://www.allitebooks.org

Discussion
You may be more familiar with the S.error(String) signature of Lift notices than the
versions that take a NodeSeq as an argument, but the String versions just convert the
String argument to a scala.xml.Text kind of NodeSeq.

See Also
Lift notices are described on the wiki.

2.13. Link to Download Data

Problem
You want a button or a link that, when clicked, will trigger a download in the browser
rather than visiting a page.

Solution
Create a link using SHtml.link, provide a function to return a LiftResponse, and wrap
the response in a ResponseShortcutException.

As an example, we will create a snippet that shows the user a poem and provides a link
to download the poem as a text file. The template for this snippet will present each line
of the poem separated by a
:

<h1>A poem</h1>

<div data-lift="DownloadLink">

 <blockquote>

 line goes here

 </blockquote>

 download link here

</div>

The snippet itself will render the poem and replace the download link with one that will
send a response that the browser will interpret as a file to download:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.http._

import xml.Text

class DownloadLink {

2.13. Link to Download Data | 37

http://www.assembla.com/spaces/liftweb/wiki/Lift_Notices_and_Auto_Fadeout

 val poem =

 "Roses are red," ::

 "Violets are blue," ::

 "Lift rocks!" ::

 "And so do you." :: Nil

 def render =

 ".poem" #> poem.map(line => ".line" #> line) &

 "a" #> downloadLink

 def downloadLink =

 SHtml.link("/notused",

 () => throw new ResponseShortcutException(poemTextFile),

 Text("Download"))

 def poemTextFile : LiftResponse =

 InMemoryResponse(

 poem.mkString("\n").getBytes("UTF-8"),

 "Content-Type" -> "text/plain; charset=utf8" ::

 "Content-Disposition" -> "attachment; filename=\"poem.txt\"" :: Nil,

 cookies=Nil, 200)

}

Recall that SHtml.link generates a link and executes a function you supply before fol‐
lowing the link.

The trick here is that wrapping the LiftResponse in a ResponseShortcutException
will indicate to Lift that the response is complete, so the page being linked to (in this
case, notused) won’t be processed. The browser is happy: it has a response to the link
the user clicked on, and will render it how it wants to, which in this case will probably
be by saving the file to disk.

Discussion
SHtml.link works by generating a URL that Lift associates with the function you give
it. On a page called downloadlink, the URL will look something like:

downloadlink?F845451240716XSXE3G=_#notused

When that link is followed, Lift looks up the function and executes it, before processing
the linked-to resource. However, in this case, we are shortcutting the Lift pipeline by
throwing this particular exception. This is caught by Lift, and the response wrapped by
the exception is taken as the final response from the request.

This shortcutting is used by S.redirectTo via ResponseShortcutException.redi
rect. This companion object also defines shortcutResponse, which you can use like
this:

38 | Chapter 2: HTML

import net.liftweb.http.ResponseShortcutException._

def downloadLink =

 SHtml.link("/notused",

 () => {

 S.notice("The file was downloaded")

 throw shortcutResponse(poemTextFile)

 },

 Text("Download"))

We’ve included an S.notice to highlight that throw shortcutResponse will process
Lift notices when the page next loads, whereas throw new ResponseShortcutExcep
tion does not. In this case, the notice will not appear when the user downloads the file,
but it will be included the next time notices are shown, such as when the user navigates
to another page. For many situations, the difference is immaterial.

This recipe has used Lift’s stateful features. You can see how useful it is to be able to close
over state (the poem), and offer the data for download from memory. If you’ve created
a report from a database, you can offer it as a download without having to regenerate
the items from the database.

However, in other situations you might want to avoid holding this data as a function on
a link. In that case, you’ll want to create a REST service that returns a LiftResponse.

See Also
Chapter 4 looks at REST-based services in Lift.

Recipe 6.6 discusses InMemoryResponse and similar responses to return content to the
browser.

For reports, the Apache POI project includes libraries for generating Excel files; and
OpenCSV is a library for generating CSV files.

2.14. Test on a Req

Problem
You want to be able to test a function that needs a Req.

Solution
Supply a mock request to Lift’s MockWeb.testReq, and run your test in the context of
the Req supplied by testReq.

The first step is to add Lift’s Test Kit as a dependency to your project in build.sbt:

libraryDependencies += "net.liftweb" %% "lift-testkit" % "2.5" % "test"

2.14. Test on a Req | 39

http://poi.apache.org/
http://opencsv.sourceforge.net

To demonstrate how to use testReq, we will test a function that detects a Google crawler.
Google identifies crawlers via various User-Agent header values, so the function we
want to test would look like this:

package code.lib

import net.liftweb.http.Req

object RobotDetector {

 val botNames =

 "Googlebot" ::

 "Mediapartners-Google" ::

 "AdsBot-Google" :: Nil

 def known_?(ua: String) =

 botNames.exists(ua contains _)

 def googlebot_?(r: Req) : Boolean =

 r.header("User-Agent").exists(known_?)

}

We have the list of magic botNames that Google sends as a user agent, and we define a
check, known_?, that takes the user agent string and looks to see if any robot satisfies the
condition of being contained in that user agent string.

The googlebot_? method is given a Lift Req object, and from this, we look up the header.
This evaluates to a Box[String], as it’s possible there is no header. We find the answer
by seeing if there exists in the Box a value that satisfies the known_? condition.

To test this, we create a user agent string, prepare a MockHttpServletRequest with the
header, and use Lift’s MockWeb to turn the low-level request into a Lift Req for us to test
with:

package code.lib

import org.specs2.mutable._

import net.liftweb.mocks.MockHttpServletRequest

import net.liftweb.mockweb.MockWeb

class SingleRobotDetectorSpec extends Specification {

 "Google Bot Detector" should {

 "spot a web crawler" in {

 val userAgent = "Mozilla/5.0 (compatible; Googlebot/2.1)"

 // Mock a request with the right header:

 val http = new MockHttpServletRequest()

 http.headers = Map("User-Agent" -> List(userAgent))

40 | Chapter 2: HTML

 // Test with a Lift Req:

 MockWeb.testReq(http) { r =>

 RobotDetector.googlebot_?(r) must beTrue

 }

 }

 }

}

Running this from SBT with the test command would produce:

[info] SingleRobotDetectorSpec

[info]

[info] Google Bot Detector should

[info] + spot a web crawler

[info]

[info] Total for specification SingleRobotDetectorSpec

[info] Finished in 18 ms

[info] 1 example, 0 failure, 0 error

Discussion
Although MockWeb.testReq is handling the creation of a Req for us, the environment
for that Req is supplied by the MockHttpServletRequest. To configure a request, create
an instance of the mock and mutate the state of it as required before using it with
testReq.

Aside from HTTP headers, you can set cookies, content type, query parameters, the
HTTP method, authentication type, and the body. There are variations on the body
assignment, which conveniently set the content type depending on the value you assign:

• JValue will use a content type of application/json.

• NodeSeq will use text/xml (or you can supply an alternative).

• String uses text/plain (unless you supply an alternative).

• Array[Byte] does not set the content type.

Data table

In the example test shown earlier, it would be tedious to have to set up the same code
repeatedly for different user agents. Specs2’s Data Table provides a compact way to run
different example values through the same test:

package code.lib

import org.specs2._

import matcher._

import net.liftweb.mocks.MockHttpServletRequest

2.14. Test on a Req | 41

import net.liftweb.mockweb.MockWeb

class RobotDetectorSpec extends Specification with DataTables {

 def is = "Can detect Google robots" ^ {

 "Bot?" || "User Agent" |

 true !! "Mozilla/5.0 (Googlebot/2.1)" |

 true !! "Googlebot-Video/1.0" |

 true !! "Mediapartners-Google" |

 true !! "AdsBot-Google" |

 false !! "Mozilla/5.0 (KHTML, like Gecko)" |> {

 (expectedResult, userAgent) => {

 val http = new MockHttpServletRequest()

 http.headers = Map("User-Agent" -> List(userAgent))

 MockWeb.testReq(http) { r =>

 RobotDetector.googlebot_?(r) must_== expectedResult

 }

 }

 }

 }

}

The core of this test is essentially unchanged: we create a mock, set the user agent, and
check the result of googlebot_?. The difference is that Specs2 is providing a neat way
to list out the various scenarios and pipe them through a function.

The output from running this under SBT would be:

[info] Can detect Google robots

[info] + Bot? | User Agent

[info] true | Mozilla/5.0 (Googlebot/2.1)

[info] true | Googlebot-Video/1.0

[info] true | Mediapartners-Google

[info] true | AdsBot-Google

[info] false | Mozilla/5.0 (KHTML, like Gecko)

[info]

[info] Total for specification RobotDetectorSpec

[info] Finished in 1 ms

[info] 1 example, 0 failure, 0 error

Although the expected value appears first in our table, there’s no requirement to put it
first.

See Also
The Lift wiki discusses this topic and also other approaches such as testing with
Selenium.

42 | Chapter 2: HTML

https://www.assembla.com/spaces/liftweb/wiki/Testing_Lift_Applications

2.15. Rendering Textile Markup

Problem
You want to render Textile markup in your web application.

Solution
Install the Lift Textile module in your build.sbt file by adding the following to the list of
dependencies:

"net.liftmodules" %% "textile_2.5" % "1.3"

You can then use the module to render Textile using the toHtml method.

For example, starting SBT after adding the module and running the SBT console
command allows you to try out the module:

scala> import net.liftmodules.textile._

import net.liftmodules.textile._

scala> TextileParser.toHtml("""

 | h1. Hi!

 |

 | The module in "Lift":http://www.liftweb.net for turning Textile markup

 | into HTML is pretty easy to use.

 |

 | * As you can see.

 | * In this example.

 | """)

res0: scala.xml.NodeSeq =

NodeSeq(, <h1>Hi!</h1>,

, <p>The module in Lift for turning Textile

 markup
</br>into HTML is pretty easy to use.</p>,

, As you can see.

 In this example.

,

,)

It’s a little easier to see the output if we pretty print it:

scala> val pp = new PrettyPrinter(width=35, step=2)

pp: scala.xml.PrettyPrinter = scala.xml.PrettyPrinter@54c19de8

scala> pp.formatNodes(res0)

res1: String =

<h1>Hi!</h1><p>

 The module in

 Lift

2.15. Rendering Textile Markup | 43

 for turning Textile markup

</br>

 into HTML is pretty easy to use.

</p>

 As you can see.

 In this example.

Discussion
There’s nothing special code has to do to become a Lift module, although there are
common conventions: they typically are packaged as net.liftmodules, but don’t have to
be; they usually depend on a version of Lift; they sometimes use the hooks provided by
LiftRules to provide a particular behaviour. Anyone can create and publish a Lift
module, and anyone can contribute to existing modules. In the end, they are declared
as dependencies in SBT, and pulled into your code just like any other dependency.

The dependency name is made up of two elements: the name and the “edition” of Lift
that the module is compatible with, as shown in Figure 2-1. By “edition” we just mean
the first part of the Lift version number. A “2.5” edition implies the module is compatible
with any Lift release that starts “2.5.”

Figure 2-1. The structure of a module version

This structure has been adopted because modules have their own release cycle, inde‐
pendent of Lift. However, modules may also depend on certain features of Lift, and Lift
may change APIs between major releases, hence the need to use part of the Lift version
number to identify the module.

See Also
There’s no real specification of what Textile is, but there are references available that
cover the typical kinds of markup to enter and what HTML you can expect to see.

The unit tests for the Textile module give you a good set of examples of what is supported.

Recipe 11.6 describes how to create modules.

44 | Chapter 2: HTML

http://redcloth.org/hobix.com/textile/
http://bit.ly/11lwwLr

CHAPTER 3

Forms Processing in Lift

This chapter looks at how to process form data with Lift: submitting forms, working
with form elements. The end result of a form submission can be records being updated
in a database, so you may also find Chapter 7 or Chapter 8 useful, as they discuss rela‐
tional databases and MongoDB, respectively.

To the extent that form processing is passing data to a server, there are also recipes in
Chapter 5 that are relevant to form processing.

You’ll find many of the examples from this chapter as source code at https://github.com/
LiftCookbook/cookbook_forms.

3.1. Plain Old Form Processing

Problem
You want to process form data in a regular, old-fashioned, non-Ajax way.

Solution
Extract form values with S.param, process the values, and produce some output.

For example, we can show a form, process an input value, and give a message back as a
notice. The template is a regular HTML form, with the addition of a snippet:

<form data-lift="Plain" action="/plain" method="post">

 <input type="text" name="name" placeholder="What's your name?">

 <input type="submit" value="Go">

</form>

In the snippet, we can pick out the value of the field name with S.param("name"):

45

https://github.com/LiftCookbook/cookbook_forms
https://github.com/LiftCookbook/cookbook_forms

package code.snippet

import net.liftweb.common.Full

import net.liftweb.http.S

import net.liftweb.util.PassThru

object Plain {

 def render = S.param("name") match {

 case Full(name) =>

 S.notice("Hello "+name)

 S.redirectTo("/plain")

 case _ =>

 PassThru

 }

}

The first time through this snippet, there will be no parameter, so we just pass back the
form unchanged to the browser, which is what PassThru is doing. You can then enter a
value into the name field and submit the form. This will result in Lift processing the
template again, but this time, with a value for the name input. The result will be your
browser redirected to a page with a message set for display.

Discussion
Manually plucking parameters from a request isn’t making the best use of Lift, but
sometimes you need to do it, and S.param is the way you can process request parameters.

The result of S.param is a Box[String], and in the previous example, we pattern match
on this value. With more than one parameter, you’ve probably seen S.param used in
this way:

def render = {

 for {

 name <- S.param("name")

 pet <- S.param("petName")

 } {

 S.notice("Hello %s and %s".format(name,pet))

 S.redirectTo("/plain")

 }

 PassThru

}

If both name and petName are provided, the body of the for will be evaluated.

Related functions on S include:

S.params(name)

Produces a List[String] for all the request parameters with the given name

46 | Chapter 3: Forms Processing in Lift

www.allitebooks.com

http://www.allitebooks.org

S.post_? and S.get_?
Tells you if the request was a GET or POST

S.getRequestHeader(name)

Gives the Box[String] for a header in the request with the given name

S.request

Accesses the Box[Req], which gives you access to further HTTP-specific informa‐
tion about the request

As an example of using S.request, we could produce a List[String] for the values of
all request parameters that have name somewhere in their parameter name:

val names = for {

 req <- S.request.toList

 paramName <- req.paramNames

 if paramName.toLowerCase contains "name"

 value <- S.param(paramName)

} yield value

Note that by opening up S.request we can access all the parameter names via the
paramNames function on Req.

Screen or Wizard provide alternatives for form processing, but sometimes you just want
to pull values from a request, as demonstrated in this recipe.

See Also
Simply Lift covers a variety of ways of processing forms.

3.2. Ajax Form Processing

Problem
You want to process a form on the server via Ajax, without reloading the whole page.

Solution
Mark your form as an Ajax form with data-lift="form.ajax" and supply a function
to run on the server when the form is submitted.

Here’s an example of a form that will collect our name and submit it via Ajax to the
server:

<form data-lift="form.ajax">

 <div data-lift="EchoForm">

 <input type="text" name="name" placeholder="What's your name?">

 <input type="submit">

 </div>

3.2. Ajax Form Processing | 47

http://simply.liftweb.net

</form>

<div id="result">Your name will be echoed here</div>

The following snippet will echo back the name via Ajax:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.http.SHtml.{text,ajaxSubmit}

import net.liftweb.http.js.JsCmd

import net.liftweb.http.js.JsCmds.SetHtml

import xml.Text

object EchoForm extends {

 def render = {

 var name = ""

 def process() : JsCmd = SetHtml("result", Text(name))

 "@name" #> text(name, s => name = s) &

 "type=submit" #> ajaxSubmit("Click Me", process)

 }

}

The render method is binding the name input field to a function that will assign whatever
the user enters to the variable name. Note you’ll more typically see s => name = s written
in the shorter form of name = _.

When the button is pressed, the process function is called, which will return the value
of the name back to the element in the HTML with an ID of result.

Discussion
The data-lift="form.ajax" part of this recipe ensures that Lift adds the Ajax pro‐
cessing mechanics to the form. This means the <form> element in the output will end
up as something like this:

<form id="F2203365740CJME2G" action="javascript://"

 onsubmit="liftAjax.lift_ajaxHandler(

 jQuery('#'+"F2203365740CJME2G").serialize(),

 null, null, "javascript");return false;">

 ...

</form>

In other words, when the form is asked to submit, Lift will serialise the form via Ajax.
This means you don’t necessarily need the submit button at all. In this example with a
single text field, if you omit the submit button you can trigger serialisation by pressing
Return. This will trigger the s => name = s function, which was bound in our regular

48 | Chapter 3: Forms Processing in Lift

data-lift="EchoForm" snippet. In other words, the value name will be assigned even
without a submit button.

Adding in a submit button gives us a way to perform actions once all the field’s functions
have been executed.

Notice that Lift’s approach is to serialise the form to the server, execute the functions
associated with the fields, execute the submit function (if any), then return a JavaScript
result to the client. The default serialisation process is to use jQuery’s serialization
method on the form. This serialises fields except submit buttons and file uploads.

Submit styling

The SHtml.ajaxSubmit function generates a <input type="submit"> element for the
page. You may prefer to use a styled button for submit. For example, with Twitter Boot‐
strap, a button with an icon would require the following markup:

<button id="submit" class="btn btn-primary btn-large">

 <i class="icon-white icon-ok"></i> Submit

</button>

Pressing a <button> inside a form triggers the submit. However, if you bound that
button with SHtml.ajaxSubmit, the content, and therefore the styling, would be lost.

To fix this, you can assign a function to a hidden field. This function will be called when
the form is submitted just like any other field. The only part of our snippet that changes
is the CSS selector binding:

import net.liftweb.http.SHtml.hidden

"@name" #> text(name, s => name = s) &

"button *+" #> hidden(process)

The *+ replacement rule means append a value to the child node of the button. This
will include a hidden field in the form, something like this:

<input type="hidden" name="F11202029628285OIEC2" value="true">

When the form is submitted, the hidden field is submitted, and like any field, Lift will
call the function associated with it: process, in this case.

The effect is something like ajaxSubmit, but not exactly the same. In this instance, we’re
appending a hidden field after the <button>, but you could place it anywhere on the
form you find convenient. However, there’s one complication: when is process called?
Is it before the name has been assigned or after? That depends on the order in which the
fields are rendered. That’s to say, in your HTML template, placing the button before the
text field (and therefore moving the hidden field’s position in this example), the pro
cess function is called before the name has been set.

3.2. Ajax Form Processing | 49

There are a couple of ways around that. Either, ensure your hidden fields used in this
way appear late in your form, or make sure the function is called late with a formGroup:

import net.liftweb.http.SHtml.hidden

import net.liftweb.http.S

"@name" #> text(name, s => name = s) &

"button *+" #> S.formGroup(1000) { hidden(process) }

The formGroup addition manipulates the function identifier to ensure it sorts later,
resulting in the function process being called later than fields in the default group (0).

Lift 2.6 and 3.0 may contain ajaxOnSubmit, which will give the relia‐
bility of ajaxSubmit and the flexibility of the hidden-field approach.
If you want to try it in Lift 2.5, Antonio Salazar Cardozo has created a
helper you can include in your project.

See Also
Function order is discussed in the Lift Cool Tips wiki page.

For more details about the form serialisation process, take a look at the jQuery
documentation.

Recipe 5.9 describes Ajax file uploads.

3.3. Ajax JSON Form Processing

Problem
You want to process a form via Ajax, sending the data in JSON format.

Solution
Make use of Lift’s jlift.js JavaScript library and JsonHandler class.

As an example, we can create a “motto server” that will accept an institution name and
the institution’s motto and perform some action on these values. We’re just going to
echo the name and motto back to the client.

Consider this HTML, which is not in a form, but includes jlift.js:

<html>

<head>

 <title>JSON Form</title>

</head>

<body data-lift-content-id="main">

50 | Chapter 3: Forms Processing in Lift

http://bit.ly/ZPCR41
http://bit.ly/19AaP2f
http://api.jquery.com/serialize/
http://api.jquery.com/serialize/

<div id="main" data-lift="surround?with=default;at=content">

 <h1>Json Form example</h1>

 <!-- Required for JSON forms processing -->

 <script src="/classpath/jlift.js" data-lift="tail"></script>

 <div data-lift="JsonForm" >

 <script id="jsonScript" data-lift="tail"></script>

 <div id="jsonForm">

 <label for="name">

 Institution

 <input id="name" type="text" name="name" value="Royal Society" />

 </label>

 <label for="motto">

 Motto

 <input id="motto" type="text" name="motto" value="Nullius in verba" />

 </label>

 <input type="submit" value="Send" />

 </div>

 <div id="result">

 Result will appear here.

 </div>

 </div>

</div>

</body>

</html>

This HTML presents the user with two fields, a name and a motto, wrapped in a <div>
called jsonForm. There’s also a placeholder for some results, and you’ll notice a json
Script placeholder for some JavaScript code. The jsonForm will be manipulated to
ensure it is sent via Ajax, and the jsonScript will be replaced with Lift’s code to perform
the serialisation. This happens in the snippet code:

package code.snippet

import scala.xml.{Text, NodeSeq}

import net.liftweb.util.Helpers._

import net.liftweb.util.JsonCmd

import net.liftweb.http.SHtml.jsonForm

import net.liftweb.http.JsonHandler

3.3. Ajax JSON Form Processing | 51

import net.liftweb.http.js.JsCmd

import net.liftweb.http.js.JsCmds.{SetHtml, Script}

object JsonForm {

 def render =

 "#jsonForm" #> ((ns:NodeSeq) => jsonForm(MottoServer, ns)) &

 "#jsonScript" #> Script(MottoServer.jsCmd)

 object MottoServer extends JsonHandler {

 def apply(in: Any): JsCmd = in match {

 case JsonCmd("processForm", target, params: Map[String, String], all) =>

 val name = params.getOrElse("name", "No Name")

 val motto = params.getOrElse("motto", "No Motto")

 SetHtml("result",

 Text("The motto of %s is %s".format(name,motto)))

 }

 }

}

Like many snippets, this Scala code contains a render method that binds to elements
on the page. Specifically, jsonForm is being replaced with SHtml.jsonForm, which will
take a NodeSeq (which are the input fields), and turns it into a form that will submit the
values as JSON. The submission will be to our MottoServer code.

The jsonScript element is bound to JavaScript that will perform the transmission and
encoding of the values to the server.

If you click the “Send” button and observe the network traffic, you’ll see the following
sent to the server:

{

 "command": "processForm",

 "params": {"name":"Royal Society","motto":"Nullius in verba"}

}

This is the value of the all parameter in the JsonCmd being pattern matched against in
MottoServer.apply. Lift has taken care of the plumbing to make this happen.

The result of the pattern match in the example is to pick out the two field values and
send back JavaScript to update the results <div> with: “The motto of the Royal Society
is Nullius in verba.”

Discussion
The JsonHandler class and the SHtml.jsonForm method are together performing a lot
of work for us. The jsonForm method is arranging for form fields to be encoded as JSON
and sent, via Ajax, to our MottoServer as a JsonCmd. In fact, it’s a JsonCmd with a default
command name of "processForm".

52 | Chapter 3: Forms Processing in Lift

Our MottoServer class is looking for (matching on) this JsonCmd, extracting the values
of the form fields, and echoing these back to the client as a JsCmd that updates a <div>
on the page.

The MottoServer.jsCmd part is generating the JavaScript required to deliver the form
fields to the server. As we will see later, this is providing a general purpose function we
can use to send different JSON values and commands to the server.

Notice also, from the network traffic, that the form fields sent are serialised with the
names they are given on the page. There are no “F…” values sent that map to function
calls on the server. A consequence of this is that any fields dynamically added to the
page will also be serialised to the server, where they can be picked up in the MottoServer.

The script jlift.js is providing the plumbing to make much of this happen.

Before going on, convince yourself that we’re generating JavaScript on the server side
(MottoServer.jsCmd), which is executed on the client side when the form is submitted,
to deliver results to the server.

Additional commands

In the previous example, we match on a JsonCmd with a command name of "process
Form". You may be wondering what other commands can be supplied, or what the
meaning of the target value is.

To demonstrate how you can implement other commands, we can add two additional
buttons. These buttons will just convert the motto to upper- or lowercase. The server-
side render method changes as follows:

def render =

 "#jsonForm" #> ((ns:NodeSeq) => jsonForm(MottoServer, ns)) &

 "#jsonScript" #> Script(

 MottoServer.jsCmd &

 Function("changeCase", List("direction"),

 MottoServer.call("processCase", JsVar("direction"),

 JsRaw("$('#motto').val()"))

)

)

The JsonForm is unchanged. We still include MottoServer.jsCmd, and we still want to
wrap the fields and submit them as before. What we’ve added is an extra JavaScript
function called changeCase, which takes one argument called direction and as a body
calls the MottoServer with various parameters. When it is rendered on the page, it
would appear as something like this:

function changeCase(direction) {

 F299202CYGIL({'command': "processCase", 'target': direction,

 'params': $('#motto').val() });

}

3.3. Ajax JSON Form Processing | 53

The F299202CYGIL function (or similar name) is generated by Lift as part of MottoServ
er.jsCmd, and it is responsible for delivering data to the server. The data it is delivering,
in this case, is a JSON structure consisting of a different command (processCase), a
target of whatever the JavaScript value direction evaluates to, and a parameter that is
the result of the jQuery expression for the value of the #motto form field.

When is the changeCase function called? That’s up to us, and one very simple way to
call the function would be by this addition to the HTML:

<button onclick="javascript:changeCase('upper')">Upper case the Motto</button>

<button onclick="javascript:changeCase('lower')">Lower case the Motto</button>

When either of these buttons are pressed, the result will be a JSON value sent to the
server with the command of processCase and the direction and params set accord‐
ingly. All that is left is to modify our MottoServer to pick up this JsonCmd on the server:

object MottoServer extends JsonHandler {

 def apply(in: Any): JsCmd = in match {

 case JsonCmd("processForm", target, params: Map[String, String], all) =>

 val name = params.getOrElse("name", "No Name")

 val motto = params.getOrElse("motto", "No Motto")

 SetHtml("result",

 Text("The motto of %s is %s".format(name,motto)))

 case JsonCmd("processCase", direction, motto: String, all) =>

 val update =

 if (direction == "upper") motto.toUpperCase

 else motto.toLowerCase

 SetValById("motto", update)

 }

}

The first JsonCmd is unchanged. The second matches on the parameters sent and results
in updating the form fields with an upper- or lowercase version of the motto.

See Also
The Lift demo site contains further examples of JsonHandler.

If you want to process JSON via REST, take a look at the stateless JSON examples.

Lift in Action, section 9.1.4 discusses “Using JSON forms with AJAX,” as does section
10.4 of Exploring Lift.

54 | Chapter 3: Forms Processing in Lift

http://demo.liftweb.net/json_more
http://demo.liftweb.net/stateless_json
http://exploring.liftweb.net

3.4. Use a Date Picker for Input

Problem
You want to provide a date picker to make it easy for users to supply dates to your forms.

Solution
Use a standard Lift SHtml.text input field and attach a JavaScript date picker to it. In
this example, we will use the jQuery UI date picker.

Our form will include an input field called birthday to be used as a date picker, and
also the jQuery UI JavaScript and CSS:

<!DOCTYPE html>

<head>

 <meta content="text/html; charset=UTF-8" http-equiv="content-type" />

 <title>jQuery Date Picker</title>

</head>

<body data-lift-content-id="main">

<div id="main" data-lift="surround?with=default;at=content">

 <h3>When's your birthday?</h3>

 <link data-lift="head" type="text/css" rel="stylesheet"

 href="//cdnjs.cloudflare.com/ajax/libs/jqueryui/1.10.2/css/smoothness

 /jquery-ui-1.10.2.custom.min.css">

 </link>

 <script data-lift="tail"

 src="//cdnjs.cloudflare.com/ajax/libs/jqueryui/1.10.2/jquery-ui.min.js">

 </script>

 <div data-lift="JqDatePicker?form=post">

 <input type="text" id="birthday">

 <input type="submit" value="Submit">

 </div>

</div>

</body>

</html>

This would normally produce a regular text input field, but we can change that by adding
JavaScript to attach the date picker to the input field. You could do this in the template,
but in this example, we’re enhancing the text field as part of the snippet code:

package code.snippet

import java.util.Date

import java.text.SimpleDateFormat

3.4. Use a Date Picker for Input | 55

import net.liftweb.util.Helpers._

import net.liftweb.http.{S, SHtml}

import net.liftweb.http.js.JsCmds.Run

import net.liftweb.common.Loggable

class JqDatePicker extends Loggable {

 val dateFormat = new SimpleDateFormat("yyyy-MM-dd")

 val default = (dateFormat format now)

 def logDate(s: String) : Unit = {

 val date : Date = tryo(dateFormat parse s) getOrElse now

 logger.info("Birthday: "+date)

 }

 def render = {

 S.appendJs(enhance)

 "#birthday" #> SHtml.text(default, logDate)

 }

 val enhance =

 Run("$('#birthday').datepicker({dateFormat: 'yy-mm-dd'});")

}

Notice in render we are binding a regular SHtml.text field to the element with the ID
of birthday, but also appending JavaScript to the page. JavaScript selects the birth
day input field and attaches a configured date picker to it.

When the field is submitted, the logDate method is called with the value of the text
field. We parse the text into a java.util.Date object. The tryo Lift helper will catch
any ParseException and return a Box[Date], which we open, or default to the current
date if a bad date is supplied.

Running this code and submitting the form will produce a log message such as:

INFO code.snippet.DatePicker - Birthday: Sun Apr 21 00:00:00 BST 2013

Discussion
The approach outlined in this recipe can be used with other date picker libraries. The
key point is to configure the date picker to submit a date in a format you can parse when
the value is submitted to the server. This is the “wire format” of the date, and does not
have to necessarily be the same format the user sees in the browser, depending on the
browser or the JavaScript library being used.

HTML5 date pickers

The HTML5 specification includes support for a variety of date input types: datetime,
datetime-local, date, month, time, and week. For example:

56 | Chapter 3: Forms Processing in Lift

www.allitebooks.com

http://www.allitebooks.org

<input type="date" name="birthday" value="2013-04-21">

This type of input field will submit a date in yyyy-mm-dd format, which our snippet
would be able to process.

As more browsers implement these types, it will become possible to depend on them.
However, you can default to the HTML5 browser-native date pickers today and fall back
to a JavaScript library as required. The difference is shown in Figure 3-1.

Figure 3-1. An input field with the jQuery UI date picker attached, compared to the
browser-native date picker in Chrome

To detect whether the browser supports type="date" inputs, we can use the Modern‐
izr library. This is an additional script in our template:

<script data-lift="tail"

 src="//cdnjs.cloudflare.com/ajax/libs/modernizr/2.6.2/modernizr.min.js">

</script>

We will use this in our snippet. In fact, there are two changes we need to make to the
snippet:

1. Add the type="date" attribute to the input field.

2. Modify the JavaScript to only attach the jQuery UI date picker in browsers that
don’t support the type="date" input.

In code, that becomes:

3.4. Use a Date Picker for Input | 57

def render = {

 S.appendJs(enhance)

 "#birthday" #> SHtml.text(default, logDate, ("type"->"date"))

}

val enhance = Run(

 """

 |if (!Modernizr.inputtypes.date) {

 | $('input[type=date]').datepicker({dateFormat: 'yy-mm-dd'});

 |}

 """.stripMargin)

The "type" -> "date" parameter on SHtml.text is setting the attribute type to the
value date on the resulting <input> field.

When this snippet runs, and the page is rendered, the jQuery UI date picker will be
attached to input fields of type="date" only if the browser doesn’t support that type
already.

See Also
Dive into HTML5 describes how to detect browser features.

The jQuery UI API documentation lists the various configuration options for the date
picker.

The HTML5 date input types submit dates in RFC 3339 format.

3.5. Making Suggestions with Autocomplete

Problem
You want to provide an autocomplete widget, to give users suggestions as they type into
a text field.

Solution
Use a JavaScript autocomplete widget, for example, the jQuery UI autocomplete via the
AutoComplete class from the Lift widgets module.

Start by adding the Lift widgets module to your build.sbt:

libraryDependencies += "net.liftmodules" %% "widgets_2.5" % "1.3"

To enable the autocomplete widget, initialise it in Boot.scala:

import net.liftmodules.widgets.autocomplete.AutoComplete

AutoComplete.init()

We can create a regular form snippet:

58 | Chapter 3: Forms Processing in Lift

http://bit.ly/198JaCB
http://api.jqueryui.com/datepicker/
http://bit.ly/11Bl9hi

<form data-lift="ProgrammingLanguages?form=post">

 <input id="autocomplete">

 <input type="submit">

</form>

Connect the AutoComplete class to the element with the ID of autocomplete:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.common.Loggable

import net.liftmodules.widgets.autocomplete.AutoComplete

class ProgrammingLanguages extends Loggable {

 val languages = List(

 "C", "C++", "Clojure", "CoffeeScript",

 "Java", "JavaScript",

 "POP-11", "Prolog", "Python", "Processing",

 "Scala", "Scheme", "Smalltalk", "SuperCollider"

)

 def render = {

 val default = ""

 def suggest(value: String, limit: Int) =

 languages.filter(_.toLowerCase.startsWith(value))

 def submit(value: String) : Unit =

 logger.info("Value submitted: "+value)

 "#autocomplete" #> AutoComplete(default, suggest, submit)

 }

}

The last line of this snippet shows the binding of the AutoComplete class, which takes:

• A default value to show

• A function that will produce suggestions from the text value entered—the result is
a Seq[String] of suggestions

• A function to call when the form is submitted

Running this code renders as shown in Figure 3-2.

3.5. Making Suggestions with Autocomplete | 59

Figure 3-2. The rendering of the ProgrammingLanguages snippet

When the form is submitted, the submit function will be passed the selected value. The
submit function is simply logging this value:

 INFO code.snippet.ProgrammingLanguages - Value submitted: Scala

Discussion
The autocomplete widget uses jQuery autocomplete. This can be seen by examining the
NodeSeq produced by the AutoComplete.apply method:

 <head>

 <link type="text/css" rel="stylesheet"

 href="/classpath/autocomplete/jquery.autocomplete.css">

 </link>

 <script type="text/javascript"

 src="/classpath/autocomplete/jquery.autocomplete.js">

 </script>

 <script type="text/javascript">

// <![CDATA[

 jQuery(document).ready(function(){

 var data = "/ajax_request?F846528841915S2RBI0=foo";

 jQuery("#F846528841916S3QZ0V").

 autocomplete(data, {minChars:0,matchContains:true}).

 result(function(event, dt, formatted) {

 jQuery("#F846528841917CF4ZGL").val(formatted);

 }

);

 });;

//]]>

</script>

 </head>

 <input type="text" value="" id="F846528841916S3QZ0V"></input>

 <input name="F846528841917CF4ZGL" type="hidden" value=""

 id="F846528841917CF4ZGL"></input>

60 | Chapter 3: Forms Processing in Lift

This chunk of markup is generated from the AutoComplete(default, suggest, sub
mit) call. What’s happening here is that the jQuery UI autocomplete JavaScript and CSS,
which is bundled with the Lift widgets module, is being included on the page. Recall
from Recipe 2.9 that Lift will merge the <head> part of this markup into the <head> of
the final HTML page.

When the page loads, the jQuery UI autocomplete function is bound to the input field,
and configured with a URL, which will deliver the user’s input to our suggest function.
All suggest needs to do is return a Seq[String] of values for the jQuery autocomplete
code to display to the user.

Submitting new values

One peculiarity of the AutoComplete widget is that if you type in a new value—one not
suggested—and press submit, it is not sent to the server. That is, you need to click on
one of the suggestions to select it. If that’s not the behaviour you want, you can
adjust it.

Inside the render method, we can modify the behaviour by adding JavaScript to the
page:

import net.liftweb.http.S

import net.liftweb.http.js.JsCmds.Run

S.appendJs(Run(

"""

 |$('#autocomplete input[type=text]').bind('blur',function() {

 | $(this).next().val($(this).val());

 |});

""".stripMargin))

With this in place, when the input field loses focus—for example, when the submit
button is pressed—the value of the input field is stored as the value to be sent to the
server.

Alternative autocomplete JavaScript

Looking at the way the widget module builds autocomplete functionality may give you
an insight into how you can incorporate other JavaScript autocomplete libraries into
your Lift application. The idea is to include the JavaScript library, connect it to an ele‐
ment on the page, and then arrange for the server to be called to generate suggestions.
Of course, if you only have a few items for the user to pick from, you could just include
those items on the page, rather than making a round trip to the server.

As an example of server-generated suggestions, we can look at the Typeahead compo‐
nent that is included in Twitter Bootstrap.

To incorporate Typeahead, the template needs to change to include the library and mark
the input field in the way Typeahead expects:

3.5. Making Suggestions with Autocomplete | 61

<link data-lift="head" rel="stylesheet"

 href="//netdna.bootstrapcdn.com/twitter-bootstrap/2.3.1/css/

 bootstrap-combined.min.css">

<script data-lift="tail"

 src="//netdna.bootstrapcdn.com/twitter-bootstrap/2.3.1/js/bootstrap.min.js">

</script>

<form data-lift="ProgrammingLanguagesTypeAhead">

 <script id="js"></script>

 <input id="autocomplete" type="text"

 data-provide="typeahead" autocomplete="off">

 <input type="submit">

</form>

We’ve included a placeholder with an ID of js for the JavaScript that will call back to
the server. We’ll get to that in a moment.

The way Typeahead works is that we attach it to our input field and tell it to call a
JavaScript function when it needs to make suggestions. That JavaScript function is going
to be called askServer, and it is given two arguments: the input the user has typed so
far (query), and a JavaScript function to call when the suggestions are available (call
back). The Lift snippet needs to use the query value and then call the JavaScript call
back function with whatever suggestions are made.

A snippet to implement this would be as follows:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.common.{Full, Empty, Loggable}

import net.liftweb.http._

import net.liftweb.http.js.JsCmds._

import net.liftweb.http.js.JsCmds.Run

import net.liftweb.http.js.JE.JsVar

import net.liftweb.json.JsonAST._

import net.liftweb.json.DefaultFormats

class ProgrammingLanguagesTypeAhead extends Loggable {

 val languages = List(

 "C", "C++", "Clojure", "CoffeeScript",

 "Java", "JavaScript",

 "POP-11", "Prolog", "Python", "Processing",

 "Scala", "Scheme", "Smalltalk", "SuperCollider"

)

 def render = {

 implicit val formats = DefaultFormats

62 | Chapter 3: Forms Processing in Lift

 def suggest(value: JValue) : JValue = {

 logger.info("Making suggestion for: "+value)

 val matches = for {

 q <- value.extractOpt[String].map(_.toLowerCase).toList

 lang <- languages.filter(_.toLowerCase startsWith q)

 } yield JString(lang)

 JArray(matches)

 }

 val callbackContext = new JsonContext(Full("callback"),Empty)

 val runSuggestion =

 SHtml.jsonCall(JsVar("query"), callbackContext, suggest _)

 S.appendJs(Run(

 """

 |$('#autocomplete').typeahead({

 | source: askServer

 |});

 """.stripMargin))

 "#js *" #> Function("askServer", "query" :: "callback" :: Nil,

 Run(runSuggestion.toJsCmd)) &

 "#autocomplete" #> SHtml.text("", s => logger.info("Submitted: "+s))

 }

}

Working from the bottom of the snippet, we bind a regular Lift SHtml.text input to
the autocomplete field. This will receive the selected value when the form is submitted.
We also bind the JavaScript placeholder to a JavaScript function definition called ask
Server. This is the function that Typeahead will call when it wants suggestions.

The JavaScript function we’re defining takes two arguments: the query and callback.
The body of askServer causes it to run something called runSuggestion, which is a
jsonCall to the server, with the value of the query.

The suggestions are made by the suggest function, which expects to be able to find a
String in the passed in JSON value. It uses this value to find matches in the list of
languages. These are returned as a JArray of JString, which is treated as JSON data
back on the client.

What does the client do with the data? It calls the callback function with the sugges‐
tions, which results in the display updating. We specify its callback via JsonContext,
which is a class that lets us specify a custom function to call on success of the request
to the server.

3.5. Making Suggestions with Autocomplete | 63

It may help to understand this by looking at the JavaScript generated in the HTML page
for askServer:

<script id="js">

function askServer(query, callback) {

 liftAjax.lift_ajaxHandler('F268944843717UZB5J0=' +

 encodeURIComponent(JSON.stringify(query)), callback, null, "json")

}

</script>

As the user types into the text field, Typeahead calls askServer with the input supplied.
Lift’s Ajax support arranges for that value, query, to be serialised to our suggest function
on the server, and for the results to be passed to callback. At that point, Typeahead
takes over again and displays the suggestions.

Typing Scala to the text field and pressing submit will produce a sequence like this on
the server:

INFO c.s.ProgrammingLanguagesTypeAhead - Making suggestion for: JString(Sc)

INFO c.s.ProgrammingLanguagesTypeAhead - Making suggestion for: JString(Sca)

INFO c.s.ProgrammingLanguagesTypeAhead - Making suggestion for: JString(Sca)

INFO c.s.ProgrammingLanguagesTypeAhead - Making suggestion for: JString(Scal)

INFO c.s.ProgrammingLanguagesTypeAhead - Making suggestion for: JString(Scala)

INFO c.s.ProgrammingLanguagesTypeAhead - Submitted: Scala

See Also
Recipe 5.1 describes jsonCall.

The behaviour of the widget module with respect to new values is described in a ticket
on the module’s GitHub page. Enhancing modules is one route to get involved with Lift,
and Chapter 11 describes other ways to contribute.

The jQuery UI Autocomplete documentation describes how to configure the widget.
The version included with the Lift widgets module is version 1.0.2.

The Typeahead widget is part of Twitter Bootstrap.

3.6. Offering Choices with Radio Buttons

Problem
You want users to select an option using radio buttons.

Solution
Use SHtml.radioElem to present the options as radio buttons.

To illustrate this, let’s create a form to allow a user to indicate his gender:

64 | Chapter 3: Forms Processing in Lift

http://bit.ly/144McVx
http://jqueryui.com/autocomplete/
http://bit.ly/11FA1w1

object BirthGender extends Enumeration {

 type BirthGender = Value

 val Male = Value("Male")

 val Female = Value("Female")

 val NotSpecified = Value("Rather Not Say")

}

We’re using an enumeration, but it could be any class. The toString of the class will be
used as the label shown to the user.

To present these options and handle the selection of an option, we use this enumeration
in a snippet:

package code.snippet

import net.liftweb.common._

import net.liftweb.util.Helpers._

import net.liftweb.http.SHtml

import net.liftweb.http.SHtml.ChoiceHolder

object Radio extends Loggable {

 import BirthGender._

 val options : Seq[BirthGender] = BirthGender.values.toSeq

 val default : Box[BirthGender] = Empty

 val radio : ChoiceHolder[BirthGender] =

 SHtml.radioElem(options, default) { selected =>

 logger.info("Choice: "+selected)

 }

 def render = ".options" #> radio.toForm

}

Rather than generate the radio buttons in one expression on the render method, we’ve
pulled out the intermediate values to show their types. The radio.toForm call is gen‐
erating the radio buttons, and we’re binding them to the CSS selector .option in the
following template:

<div data-lift="Radio?form=post">

 <input type="radio">Option 1</input>

 <input type="radio">Option 2</input>

 <input type="submit" value="Submit">

</div>

3.6. Offering Choices with Radio Buttons | 65

The class="options" span will be replaced with the radio buttons from the code, and
when the form is submitted, the function supplied to SHtml.radioElem will be called,
resulting in the selected value being logged. For example, if no radio button is selected:

INFO code.snippet.Radio - Choice: Empty

or if the third button was selected:

INFO code.snippet.Radio - Choice: Full(Rather Not Say)

Discussion
Many of the Lift SHtml methods return a NodeSeq, which can be directly bound into our
HTML. However, radioElem is different in that it gives us a ChoiceHolder[T], and to
generate a NodeSeq from that, we’re calling toForm. This has implications for how you
customise radio buttons, as we’ll see later.

The radioElem method expects three parameters:

SHtml.radioElem(options, default) { selected =>

 logger.info("Choice: "+selected)

}

The first is the set of options to show, as a Seq[T]. The second is the value to be prese‐
lected, as a Box[T]. In the example, we have no preselected value, which is represented
as Empty. Finally, there’s the function to run when the form is submitted, of type Box[T]
=> Any.

Note that even if the user selects no value, your function will be called, and it will be
passed the value Empty.

To understand a little more of what’s happening, take a look at the default HTML pro‐
duced by radioElem:

 <input value="F317293945993CDMQZ" type="radio" name="F317293946030HYAFP">

 <input name="F317293946030HYAFP" type="hidden" value="F317293946022HCGEG">

 Male

 <input value="F31729394600RIE253" type="radio" name="F317293946030HYAFP">

 Female

 <input value="F317293946011OMEMM" type="radio" name="F317293946030HYAFP">

 Rather Not Say

Notice that:

• All the input fields have the same randomly generated name.

66 | Chapter 3: Forms Processing in Lift

• The input fields have randomly generated values.

• There’s a hidden field added to the first item.

This might be a surprise if you were just expecting something like this:

<input type="radio" name="gender" value="Male">Male

<input type="radio" name="gender" value="Female">Female

<input type="radio" name="gender" value="NotSpecified">Rather Not Say

By using random values, Lift has helped us by protecting against a range of form-based
attacks, such as submitting values we’re not expected, or setting values on fields we don’t
want set.

Each of the random radio button values is associated, on the server, with a BirthGen
der value from our options sequence. When the form is submitted, Lift picks out the
selected value (if any), looks up the corresponding BirthGender value, and calls our
function.

The hidden field ensures that the function will be called even if no radio button is
selected. This is because the browser will at least submit the hidden field, and this is
enough to trigger the server-side function.

Customising the HTML

The default HTML wraps each radio button in a and separates them with a

. Let’s change that to make it work well with the Twitter Bootstrap framework, and
put each choice in a <label> and give it a class.

To customise the HTML, you need to understand that the ChoiceHolder is a container
for a sequence of items. Each item is a ChoiceItem:

final case class ChoiceItem[T](key: T, xhtml: NodeSeq)

The key in our example is a BirthGender instance, and the xhtml is the radio button
input field (plus the hidden field for the first option). With this knowledge, we can write
a helper to generate a NodeSeq in the style we want:

import scala.xml.NodeSeq

import net.liftweb.http.SHtml.ChoiceItem

object LabelStyle {

 def htmlize[T](item: ChoiceItem[T]) : NodeSeq =

 <label class="radio">{item.xhtml} {item.key.toString}</label>

 def toForm[T](holder: ChoiceHolder[T]) : NodeSeq =

 holder.items.flatMap(htmlize)

}

3.6. Offering Choices with Radio Buttons | 67

The htmlize method produces a <label> element with the class we want, and it contains
the radio input (item.xhtml) and the text of the label (item.key.toString). The to
Form is applying the htmlize function to all the choices.

We can apply this in our snippet:

def render = ".options" #> LabelStyle.toForm(radio)

and the result would be the following:

<label class="radio">

 <input value="F234668654428LWW305" type="radio" name="F234668654432WS5LWK">

 <input name="F234668654432WS5LWK" type="hidden" value="F234668654431KYJB3S">

 Male

</label>

<label class="radio">

 <input value="F234668654429MB5RF3" type="radio" name="F234668654432WS5LWK">

 Female

</label>

<label class="radio">

 <input value="F234668654430YULGC1" type="radio" name="F234668654432WS5LWK">

 Rather Not Say

</label>

The toForm method could be wrapping the choices in some other HTML, such as a
. But in this case, it’s not: it’s just applying htmlize to each ChoiceItem. As a con‐
sequence of this, we could make LabelStyle the default across our Lift application:

ChoiceHolder.htmlize = c => LabelStyle.htmlize(c)

This works because toForm on ChoiceHolder defers to ChoiceHolder.htmlize, and
ChoiceHolder.htmlize is a variable you can assign to.

String values

If you want to work directly with String values for options, you can use SHtml.radio.
Although it too produces a ChoiceHolder, it differs from radioElem in that it uses the
same String as both the label and the value. The function associated with each option
is called only if a value is selected by the user.

An SHtml.radio version of our example would look like this:

SHtml.radio(

 "Male" :: "Female" :: "Rather Not Say" :: Nil,

 Empty,

 selected => logger.info("Choice: "+selected)

)

This is a similar structure to radioElem: there’s a list of options, a default, a function to
call, and it produces a ChoiceHolder[String]. When a form is submitted, our function
is passed the String value of the selected option. If no radio buttons are selected, the
function is not called.

68 | Chapter 3: Forms Processing in Lift

3.7. Conditionally Disable a Checkbox

Problem
You want to add the disabled attribute to a SHtml.checkbox based on a conditional
check.

Solution
Create a CSS selector transform to add the disabled attribute, and apply it to your
checkbox transform.

For example, suppose you have a simple checkbox:

class Likes {

 var likeTurtles = false

 def render =

 "#like" #> SHtml.checkbox(likeTurtles, likeTurtles = _)

}

and a corresponding template:

<!DOCTYPE html>

<head>

 <meta content="text/html; charset=UTF-8" http-equiv="content-type" />

 <title>Disable Checkboxes</title>

</head>

<body data-lift-content-id="main">

<div id="main" data-lift="surround?with=default;at=content">

 <div>Select the things you like:</div>

 <form data-lift="Likes">

 <label for="like">Do you like turtles?</label>

 <input id="like" type="checkbox">

 </form>

</div>

</body>

</html>

Further, suppose you want to disable it roughly 50% of the time. We could do that by
adjusting the NodeSeq generated from SHtml.checkbox:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.util.PassThru

import net.liftweb.http.SHtml

class Likes {

3.7. Conditionally Disable a Checkbox | 69

 var likesTurtles = false

 def disable =

 if (math.random > 0.5d) "* [disabled]" #> "disabled"

 else PassThru

 def render =

 "#like" #> disable(SHtml.checkbox(likesTurtles, likesTurtles = _))

}

When the checkbox is rendered, it will be disabled roughly half the time.

Discussion
The disable method returns a NodeSeq => NodeSeq function, meaning when we apply
it, we need to give it a NodeSeq, which is exactly what SHtml.checkbox provides.

The [disabled] part of the CSS selector is selecting the disabled attribute and replacing
it with the value on the right of the #>, which is “disabled” in this example.

What this combination means is that half the time the disabled attribute will be set on
the checkbox, and half the time the checkbox NodeSeq will be left untouched because
PassThru does not change the NodeSeq.

See Also
Recipe 2.6 describes the PassThru function.

3.8. Use a Select Box with Multiple Options

Problem
You want to show a number of options in a select box, and allow the user to select
multiple values.

Solution
Use SHtml.multiSelect(options, default, selection). Here’s an example where a
user can select up to three options:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.http.SHtml

import net.liftweb.common.Loggable

class MultiSelect extends Loggable {

70 | Chapter 3: Forms Processing in Lift

 case class Item(id: String, name: String)

 val inventory =

 Item("a", "Coffee") ::

 Item("b", "Milk") ::

 Item("c", "Sugar") :: Nil

 val options : List[(String,String)] =

 inventory.map(i => (i.id -> i.name))

 val default = inventory.head.id :: Nil

 def render = {

 def selection(ids: List[String]) : Unit = {

 logger.info("Selected: "+ids)

 }

 "#opts *" #>

 SHtml.multiSelect(options, default, selection)

 }

}

In this example, the user is being presented with a list of three items, with the first one
selected, as shown in Figure 3-3. When the form is submitted, the selection function
is called, with a list of the selected option values.

Figure 3-3. Selecting from multiple options

The template to go with the snippet could be:

<div data-lift="MultiSelect?form=post">

 <p>What can I get you?</p>

 <div id="opts">options go here</div>

 <input type="submit" value="Place Order">

</div>

This will render as something like:

<form action="/" method="post"><div>

 <p>What can I get you?</p>

 <div id="opts">

 <select name="F25749422319ALP1BW" multiple="true">

3.8. Use a Select Box with Multiple Options | 71

 <option value="a" selected="selected">Coffee</option>

 <option value="b">Milk</option>

 <option value="c">Sugar</option>

 </select>

 </div>

 <input value="Place Order" type="submit">

</form>

Discussion
Recall that an HTML select consists of a set of options, each of which has a value and a
name. To reflect this, the previous example takes our inventory of objects and turns it
into a list of string pairs, called options.

The function given to SHtml.multiSelect will receive the values (IDs), not the names,
of the options. That is, if you ran the code, and selected “Coffee” and “Milk,” the function
would see List("a", "b").

Selecting no options

Be aware that if no options are selected, your handling function is not called. This is
described in issue 1139.

One way to work around this is to add a hidden function to reset the list. For example,
we could modify the previous code to be a stateful snippet and remember the values we
selected:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.http.{StatefulSnippet, SHtml}

import net.liftweb.common.Loggable

class MultiSelectStateful extends StatefulSnippet with Loggable {

 def dispatch = {

 case _ => render

 }

 case class Item(id: String, name: String)

 val inventory =

 Item("a", "Coffee") ::

 Item("b", "Milk") ::

 Item("c", "Sugar") :: Nil

72 | Chapter 3: Forms Processing in Lift

https://github.com/lift/framework/issues/1139

 val options : List[(String,String)] =

 inventory.map(i => (i.id -> i.name))

 var current = inventory.head.id :: Nil

 def render = {

 def logSelected() =

 logger.info("Values selected: "+current)

 "#opts *" #> (

 SHtml.hidden(() => current = Nil) ++

 SHtml.multiSelect(options, current, current = _)

) &

 "type=submit" #> SHtml.onSubmitUnit(logSelected)

 }

}

The template is unchanged, and the snippet has been modified to introduce a cur
rent value and a hidden function to reset the value. We’ve bound the submit button to
simply log the selected values when the form is submitted.

Each time the form is submitted the current list of IDs is set to whatever you have
selected in the browser. But note that we have started with a hidden function that resets
current to the empty list. This means that if the receiving function in multiSelect is
never called, because nothing is selected, the value stored in current would reflect this
and be Nil.

That may be useful, depending on what behaviour you need in your application.

Type-safe options

If you don’t want to work in terms of String values for an option, you can use multi
SelectObj. In this variation, the list of options still provides a text name, but the value
is in terms of a class. Likewise, the list of default values will be a list of class instances.

The only changes to the code are to produce a List[(Item,String)] for the options,
and use an Item as a default:

val options : List[(Item,String)] =

 inventory.map(i => (i -> i.name))

val default = inventory.head :: Nil

The call to generate the multiselect from this data is similar, but note our selection
function now receives a list of Item:

def render = {

3.8. Use a Select Box with Multiple Options | 73

 def selection(items: List[Item]) : Unit = {

 logger.info("Selected: "+items)

 }

 "#opts *" #>

 SHtml.multiSelectObj(options, default, selection)

 }

Enumerations

You can use multiSelectObj with enumerations:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.http.SHtml

import net.liftweb.common.Loggable

class MultiSelectEnum extends Loggable {

 object Item extends Enumeration {

 type Item = Value

 val Coffee, Milk, Sugar = Value

 }

 import Item._

 val options : List[(Item,String)] =

 Item.values.toList.map(i => (i -> i.toString))

 val default = Item.Coffee :: Nil

 def render = {

 def selection(items: List[Item]) : Unit = {

 logger.info("Selected: "+items)

 }

 "#opts *" #>

 SHtml.multiSelectObj(options, default, selection)

 }

}

The enumeration version works in the same way as the type-safe version.

See Also
The “Submit styling” discussion in Recipe 3.2 discusses the use of hidden fields as func‐
tion calls.

Recipe 5.2 describes how to trigger a server-side action when a selection changes in the
browser.

74 | Chapter 3: Forms Processing in Lift

Chapter 6 of Exploring Lift, “Forms in Lift,” discusses multiselect and other types of form
elements.

3.9. File Upload

Problem
You want a snippet to allow users to upload a file to your Lift application.

Solution
Use a FileParamHolder in your snippet, and extract file information from it when the
form is submitted.

Start with a form that is marked as multipart=true:

<html>

<head>

 <title>File Upload</title>

 <script id="jquery" src="/classpath/jquery.js" type="text/javascript">

 </script>

 <script id="json" src="/classpath/json.js" type="text/javascript"></script>

</head>

<body>

<form data-lift="FileUploadSnippet?form=post;multipart=true">

 <label for="file">

 Select a file: <input id="file"></input>

 </label>

 <input type="submit" value="Submit"></input>

</form>

</body>

</html>

We bind the file input to SHtml.fileUpload and the submit button to a function to
process the uploaded file:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.http.SHtml._

import net.liftweb.http.FileParamHolder

import net.liftweb.common.{Loggable, Full, Empty, Box}

class FileUploadSnippet extends Loggable {

 def render = {

 var upload : Box[FileParamHolder] = Empty

3.9. File Upload | 75

http://exploring.liftweb.net/

 def processForm() = upload match {

 case Full(FileParamHolder(_, mimeType, fileName, file)) =>

 logger.info("%s of type %s is %d bytes long" format (

 fileName, mimeType, file.length))

 case _ => logger.warn("No file?")

 }

 "#file" #> fileUpload(f => upload = Full(f)) &

 "type=submit" #> onSubmitUnit(processForm)

 }

}

The fileUpload binding ensures that the file is assigned to the upload variable. This
allows us to access the Array[Byte] of the file in the processForm method when the
form is submitted.

Discussion
HTTP includes an encoding type of multipart/form-data that was introduced to sup‐
port binary data uploads. The ?form=post;multipart=true parameters in the template
mark the form with this encoding, and the HTML generated will look like this:

<form enctype="multipart/form-data" method="post" action="/fileupload">

When the browser submits the form, Lift detects the multipart/form-data encoding
and extracts any files from the request. These are available as uploadedFiles on a Req
object, for example:

val files : List[FileParamHolder] = S.request.map(_.uploadedFiles) openOr Nil

However, as we’re dealing with a form with a single upload field, it’s easier to use
SHtml.fileUpload to bind the input to our upload variable. Lift arranges for the func‐
tion f => upload = Full(f) to be called when a file is selected and uploaded via this
field. If the file is zero length, the function is not called.

The default behaviour for Lift is to read the file into memory and present it as a File
ParamHolder. In this recipe, we’re pattern matching on the fields of the FileParamHold
er and simply printing out what we know about the file. We’re ignoring the first pa‐
rameter, which will be Lift’s generated name for the field, but capturing the mime type,
original filename, and the raw data that was in the file.

You probably don’t want to use this method for very large files. In fact, LiftRules
provides a number of size restrictions that you can control:

LiftRules.maxMimeFileSize

The maximum size of any single file uploaded (7 MB by default)

76 | Chapter 3: Forms Processing in Lift

LiftRules.maxMimeSize

The maximum size of the multipart upload in total (8 MB by default)

Why two settings? Because when the form is submitted, there may be a number of fields
on the form. For example, in the recipe, the value of the submit button is sent as one of
the parts, and the file is sent as another. Hence, you might want to limit file size, but
allow for some field values, or multiple files, to be submitted.

If you hit the size limit, an exception will be thrown from the underlying file upload
library. You can catch the exception, as described in Recipe 6.5:

LiftRules.exceptionHandler.prepend {

 case (_, _, x : FileUploadIOException) =>

 ResponseWithReason(BadResponse(), "Unable to process file. Too large?")

}

Be aware that the container (Jetty, Tomcat) or any web server (Apache, Nginx) may also
have limits on file upload sizes.

Uploading a file into memory may be fine for some situations, but you may want to
upload larger items to disk and then process them in Lift as a stream. Lift supports this
via the following setting:

LiftRules.handleMimeFile = OnDiskFileParamHolder.apply

The handleMimeFile variable expects to be given a function that takes a field name,
mime type, filename, and InputStream and returns a FileParamHolder. The default
implementation of this is the InMemFileParamHolder, but changing to OnDiskFilePar
amHolder means Lift will write the file to disk first. You can of course implement your
own handler in addition to using OnDiskFileParamHolder or InMemFileParamHolder.

With OnDiskFileParamHolder, the file will be written to a temporary location (Sys
tem.getProperty("java.io.tmpdir")), but it’s up to you to remove it when you’re
done with the file. For example, our snippet could change to:

def processForm() = upload match {

 case Full(content : OnDiskFileParamHolder) =>

 logger.info("File: "+content.localFile.getAbsolutePath)

 val in: InputStream = content.fileStream

 // ...do something with the stream here...

 val wasDeleted_? = content.localFile.delete()

 case _ => logger.warn("No file?")

}

Be aware that OnDiskFileParamHolder implements FileParamHolder, so would match
the original FileParamHolder pattern used in the recipe. However, if you access the
file field of OnDiskFileParamHolder, you’ll bring the file into memory, which would
defeat the point of storing it on disk to process it as a stream.

3.9. File Upload | 77

If you want to monitor the progress of the upload on the server side, you can. There’s
a hook in LiftRules that is called as the upload is running:

def progressPrinter(bytesRead: Long, contentLength: Long, fieldIndex: Int) {

 println("Read %d of %d for %d" format (bytesRead, contentLength, fieldIndex))

}

LiftRules.progressListener = progressPrinter

This is the progress of the whole multipart upload, not just the file being uploaded. In
particular, the contentLength may not be known (in which case, it will be -1), but if it
is known, it is the size of the complete multipart upload. In the example in this recipe,
that would include the size of the file, but also the submit button value. This also explains
the fieldIndex, which is a counter as to which part is being processed. It will take on
the values of 0 and 1 for the two parts in this example.

See Also
The HTTP file upload mechanics are described in RFC 1867, Form-based File Upload
in HTML.

Recipe 4.5 discusses file upload in the context of a REST service.

See Recipe 5.9 for an example of an Ajax file upload through integration with a JavaScript
library, providing progress indicators and drag-and-drop support.

78 | Chapter 3: Forms Processing in Lift

http://tools.ietf.org/html/rfc1867
http://tools.ietf.org/html/rfc1867

CHAPTER 4

REST

This chapter looks at recipes around REST web services, via Lift’s RestHelper trait. For
an introduction, take a look at the Lift wiki page and Chapter 5 of Simply Lift.

The sample code from this chapter is at https://github.com/LiftCookbook/cookbook_rest.

4.1. DRY URLs

Problem
You find yourself repeating parts of URL paths in your RestHelper and you Don’t want
to Repeat Yourself (DRY).

Solution
Use prefix in your RestHelper:

package code.rest

import net.liftweb.http.rest.RestHelper

import net.liftweb.http.LiftRules

object IssuesService extends RestHelper {

 def init() : Unit = {

 LiftRules.statelessDispatch.append(IssuesService)

 }

 serve("issues" / "by-state" prefix {

 case "open" :: Nil XmlGet _ => <p>None open</p>

 case "closed" :: Nil XmlGet _ => <p>None closed</p>

 case "closed" :: Nil XmlDelete _ => <p>All deleted</p>

79

http://bit.ly/11Bm810
http://simply.liftweb.net
https://github.com/LiftCookbook/cookbook_rest

 })

}

This service responds to URLs of /issues/by-state/open and /issues/by-state/closed and
we have factored out the common part as a prefix.

Wire this into Boot.scala with:

import code.rest.IssuesService

IssuesService.init()

We can test the service with cURL:

$ curl -H 'Content-Type: application/xml'

 http://localhost:8080/issues/by-state/open

<?xml version="1.0" encoding="UTF-8"?>

<p>None open</p>

$ curl -X DELETE -H 'Content-Type: application/xml'

 http://localhost:8080/issues/by-state/closed

<?xml version="1.0" encoding="UTF-8"?>

<p>All deleted</p>

Discussion
You can have many serve blocks in your RestHelper, which helps give your REST
service structure.

In this example, we’ve arbitrarily decided to return XML and to match on an XML
request using XmlGet and XmlDelete. The test for an XML request requires a content
type of text/xml or application/xml, or a request for a path that ends with .xml. This is
why the cURL request includes a header with with the -H flag. If we hadn’t included that,
the request would not match any of our patterns, and the result would be a 404 response.

See Also
Recipe 4.6 gives an example of accepting and returning JSON.

4.2. Missing File Suffix

Problem
Your RestHelper expects a filename as part of the URL, but the suffix (extension) is
missing, and you need it.

Solution
Access req.path.suffix to recover the suffix.

80 | Chapter 4: REST

For example, when processing /download/123.png, you want to be able to reconstruct
123.png:

package code.rest

import net.liftweb.http.rest.RestHelper

import net.liftweb.http.LiftRules

import xml.Text

object Reunite extends RestHelper {

 private def reunite(name: String, suffix: String) =

 if (suffix.isEmpty) name else name+"."+suffix

 serve {

 case "download" :: file :: Nil Get req =>

 Text("You requested "+reunite(file, req.path.suffix))

 }

 def init() : Unit = {

 LiftRules.statelessDispatch.append(Reunite)

 }

}

We are matching on download but rather than using the file value directly, we pass it
through the reunite function first to attach the suffix back on (if any).

Requesting this URL with a command like cURL will show you the filename as expected:

$ curl http://127.0.0.1:8080/download/123.png

<?xml version="1.0" encoding="UTF-8"?>

You requested 123.png

Discussion
When Lift parses a request, it splits the request into constituent parts (e.g., turning the
path into a List[String]). This includes a separation of some suffixes. This is good for
pattern matching when you want to change behaviour based on the suffix, but a hin‐
drance in this particular situation.

Only those suffixes defined in LiftRules.explicitlyParsedSuffixes are split from
the filename. This includes many of the common file suffixes (such as .png, .atom, .json)
and also some you may not be so familiar with, such as .com.

Note that if the suffix is not in explicitlyParsedSuffixes, the suffix will be an empty
string and the name (in the previous example) will be the filename with the suffix still
attached.

Depending on your needs, you could alternatively add a guard condition to check for
the file suffix:

4.2. Missing File Suffix | 81

case "download" :: file :: Nil Get req if req.path.suffix == "png" =>

 Text("You requested PNG file called "+file)

Or rather than simply attaching the suffix back on, you could take the opportunity to
do some computation and decide what to send back. For example, if the client supports
the WebP image format, you might prefer to send that:

package code.rest

import net.liftweb.http.rest.RestHelper

import net.liftweb.http.LiftRules

import xml.Text

object Reunite extends RestHelper {

 def init() : Unit = {

 LiftRules.statelessDispatch.append(Reunite)

 }

 serve {

 case "negotiate" :: file :: Nil Get req =>

 val toSend =

 if (req.header("Accept").exists(_ == "image/webp")) file+".webp"

 else file+".png"

 Text("You requested "+file+", would send "+toSend)

 }

}

Calling this service would check the HTTP Accept header before deciding what resource
to send:

$ curl http://localhost:8080/negotiate/123

<?xml version="1.0" encoding="UTF-8"?>

You requested 123, would send 123.png

$ curl http://localhost:8080/negotiate/123 -H "Accept: image/webp"

<?xml version="1.0" encoding="UTF-8"?>

You requested 123, would send 123.webp

See Also
Recipe 4.3 shows how to remove items from explicitlyParsedSuffixes.

The source for HttpHelpers.scala contains the explicitlyParsedSuffixes list,
which is the default list of suffixes that Lift parses from a URL.

82 | Chapter 4: REST

http://bit.ly/120TCpl

4.3. Missing .com from Email Addresses
When submitting an email address to a REST service, a domain ending .com is stripped
before your REST service can handle the request.

Solution
Modify LiftRules.explicitlyParsedSuffixes so that Lift doesn’t change URLs that
end with .com.

In Boot.scala:

import net.liftweb.util.Helpers

LiftRules.explicitlyParsedSuffixes = Helpers.knownSuffixes - "com"

Discussion
By default, Lift will strip off file suffixes from URLs to make it easy to match on suffixes.
An example would be needing to match on all requests ending in .xml or .pdf. Howev‐
er, .com is also registered as one of those suffixes, but this is inconvenient if you have
URLs that end with email addresses.

Note that this doesn’t impact email addresses in the middle of URLs. For example,
consider the following REST service:

package code.rest

import net.liftweb.http.rest.RestHelper

import net.liftweb.http.LiftRules

import xml.Text

object Suffix extends RestHelper {

 def init() : Unit = {

 LiftRules.statelessDispatch.append(Suffix)

 }

 serve {

 case "email" :: e :: "send" :: Nil Get req =>

 Text("In middle: "+e)

 case "email" :: e :: Nil Get req =>

 Text("At end: "+e)

 }

}

With this service init method called in Boot.scala, we could then make requests and
observe the issue:

4.3. Missing .com from Email Addresses | 83

$ curl http://localhost:8080/email/you@example.com/send

<?xml version="1.0" encoding="UTF-8"?>

In middle: you@example.com

$ curl http://localhost:8080/email/you@example.com

<?xml version="1.0" encoding="UTF-8"?>

At end: you@example

The .com is being treated as a file suffix, which is why the solution of removing it from
the list of suffixes will resolve this problem.

Note that because other top-level domains, such as .uk, .nl, .gov, are not in explicitly
ParsedSuffixes, those email addresses are left untouched.

See Also
Recipe 4.2 describes the suffix processing in more detail.

4.4. Failing to Match on a File Suffix

Problem
You’re trying to match on a file suffix (extension), but your match is failing.

Solution
Ensure the suffix you’re matching on is included in LiftRules.explicitlyParsedSuf
fixes.

As an example, perhaps you want to match anything ending in .csv at your /reports/
URL:

case Req("reports" :: name :: Nil, "csv", GetRequest) =>

 Text("Here's your CSV report for "+name)

You’re expecting /reports/foo.csv to produce “Here’s your CSV report for foo,” but you
get a 404.

To resolve this, include "csv" as a file suffix that Lift knows to split from URLs. In
Boot.scala, call:

LiftRules.explicitlyParsedSuffixes += "csv"

The pattern will now match.

Discussion
Without adding "csv" to the explicitlyParsedSuffixes, the example URL would
match with:

84 | Chapter 4: REST

case Req("reports" :: name :: Nil, "", GetRequest) =>

 Text("Here's your CSV report for "+name)

Here we’re matching on no suffix (""). In this case, name would be set to "foo.csv".
This is because Lift separates file suffixes from the end of URLs only for file suffixes that
are registered with explicitlyParsedSuffixes. Because "csv" is not one of the default
registered suffixes, "foo.csv" is not split. That’s why "csv" in the suffix position of Req
pattern match won’t match the request, but an empty string in that position will.

See Also
Recipe 4.2 explains more about the suffix removal in Lift.

4.5. Accept Binary Data in a REST Service

Problem
You want to accept an image upload, or other binary data, in your RESTful service.

Solution
Access the request body in your REST helper:

package code.rest

import net.liftweb.http.rest.RestHelper

import net.liftweb.http.LiftRules

object Upload extends RestHelper {

 def init() : Unit = {

 LiftRules.statelessDispatch.append(Upload)

 }

 serve {

 case "upload" :: Nil Post req =>

 for {

 bodyBytes <- req.body

 } yield <info>Received {bodyBytes.length} bytes</info>

 }

}

Wire this into your application in Boot.scala:

import code.rest.Upload

Upload.init()

Test this service using a tool like cURL:

4.5. Accept Binary Data in a REST Service | 85

$ curl -X POST --data-binary "@dog.jpg" -H 'Content-Type: image/jpg'

 http://127.0.0.1:8080/upload

<?xml version="1.0" encoding="UTF-8"?>

<info>Received 1365418 bytes</info>

Discussion
In this example, the binary data is accessed via the req.body, which returns a Box[Ar
ray[Byte]]. We turn this into a Box[Elem] to send back to the client. Implicits in
RestHelper turn this into an XmlResponse for Lift to handle.

Note that web containers, such as Jetty and Tomcat, may place limits on the size of an
upload. You will recognise this situation by an error such as java.lang.IllegalSta
teException: Form too large705784>200000. Check with documentation for the
container for changing these limits.

To restrict the type of image you accept, you could add a guard condition to the match,
but you may find you have more readable code by moving the logic into an unapply
method on an object. For example, to restrict an upload to just a JPEG you could say:

serve {

 case "jpg" :: Nil Post JPeg(req) =>

 for {

 bodyBytes <- req.body

 } yield <info>Jpeg Received {bodyBytes.length} bytes</info>

 }

object JPeg {

 def unapply(req: Req): Option[Req] =

 req.contentType.filter(_ == "image/jpg").map(_ => req)

}

We have defined an extractor called JPeg that returns Some[Req] if the content type of
the upload is image/jpg; otherwise, the result will be None. This is used in the REST
pattern match as JPeg(req). Note that the unapply needs to return Option[Req] as this
is what’s expected by the Post extractor.

See Also
Odersky, et al., (2008), Programming in Scala, Chapter 24, discusses extractors in detail.

Recipe 3.9 describes form-based (multipart) file uploads

4.6. Returning JSON

Problem
You want to return JSON from a REST call.

86 | Chapter 4: REST

http://www.artima.com/pins1ed/extractors.html

Solution
Use the Lift JSON domain-specific language (DSL). For example:

package code.rest

import net.liftweb.http.rest.RestHelper

import net.liftweb.http.LiftRules

import net.liftweb.json.JsonAST._

import net.liftweb.json.JsonDSL._

object QuotationsAPI extends RestHelper {

 def init() : Unit = {

 LiftRules.statelessDispatch.append(QuotationsAPI)

 }

 serve {

 case "quotation" :: Nil JsonGet req =>

 ("text" -> "A beach house isn't just real estate. It's a state of mind.") ~

 ("by" -> "Douglas Adams") : JValue

 }

}

Wire this into Boot.scala:

import code.rest.QuotationsAPI

QuotationsAPI.init()

Running this example produces:

$ curl -H 'Content-type: text/json' http://127.0.0.1:8080/quotation

{

 "text":"A beach house isn't just real estate. It's a state of mind.",

 "by":"Douglas Adams"

}

Discussion
The type ascription at the end of the JSON expression (: JValue) tells the compiler that
the expression is expected to be of type JValue. This is required to allow the DSL to
apply. It would not be required if, for example, you were calling a function that was
defined to return a JValue.

The JSON DSL allows you to create nested structures, lists, and everything else you
expect of JSON.

In addition to the DSL, you can create JSON from a case class by using the Extrac
tion.decompose method:

4.6. Returning JSON | 87

import net.liftweb.json.Extraction

import net.liftweb.json.DefaultFormats

case class Quote(by: String, text: String)

val quote = Quote(

 "A beach house isn't just real estate. It's a state of mind.",

 "Douglas Adams")

implicit val formats = DefaultFormats

val json : JValue = Extraction decompose quote

This will also produce a JValue, which when printed will be:

{

 "by":"A beach house isn't just real estate. It's a state of mind.",

 "text":"Douglas Adams"

}

See Also
The README file for the lift-json project is a great source of examples for using the
JSON DSL.

4.7. Google Sitemap

Problem
You want to make a Google Sitemap using Lift’s rendering capabilities.

Solution
Create the site map structure, and bind to it as you would for any template in Lift.

Start with a sitemap.html in your webapp folder containing valid XML-Sitemap markup:

<?xml version="1.0" encoding="utf-8" ?>

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

 <url data-lift="SitemapContent.base">

 <loc></loc>

 <changefreq>daily</changefreq>

 <priority>1.0</priority>

 <lastmod></lastmod>

 </url>

 <url data-lift="SitemapContent.list">

 <loc></loc>

 <lastmod></lastmod>

 </url>

</urlset>

Make a snippet to fill the required gaps:

88 | Chapter 4: REST

https://github.com/lift/framework/tree/master/core/json

package code.snippet

import org.joda.time.DateTime

import net.liftweb.util.CssSel

import net.liftweb.http.S

import net.liftweb.util.Helpers._

class SitemapContent {

 case class Post(url: String, date: DateTime)

 lazy val entries =

 Post("/welcome", new DateTime) :: Post("/about", new DateTime) :: Nil

 val siteLastUdated = new DateTime

 def base: CssSel =

 "loc *" #> "http://%s/".format(S.hostName) &

 "lastmod *" #> siteLastUpdated.toString("yyyy-MM-dd'T'HH:mm:ss.SSSZZ")

 def list: CssSel =

 "url *" #> entries.map(post =>

 "loc *" #> "http://%s%s".format(S.hostName, post.url) &

 "lastmod *" #> post.date.toString("yyyy-MM-dd'T'HH:mm:ss.SSSZZ"))

}

This example is using canned data for two pages.

Apply the template and snippet in a REST service at /sitemap:

package code.rest

import net.liftweb.http._

import net.liftweb.http.rest.RestHelper

object Sitemap extends RestHelper {

 serve {

 case Req("sitemap" :: Nil, _, GetRequest) =>

 XmlResponse(

 S.render(<lift:embed what="sitemap" />,

 S.request.get.request).head)

 }

}

Wire this into your application in Boot.scala, for example:

LiftRules.statelessDispatch.append(code.rest.Sitemap)

Test this service using a tool like cURL:

$ curl http://127.0.0.1:8080/sitemap

<?xml version="1.0" encoding="UTF-8"?>

4.7. Google Sitemap | 89

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

 <url>

 <loc>http://127.0.0.1/</loc>

 <changefreq>daily</changefreq>

 <priority>1.0</priority>

 <lastmod>2013-02-10T19:16:12.433+00:00</lastmod>

 </url>

 <url>

 <loc>http://127.0.0.1/welcome</loc>

 <lastmod>2013-02-10T19:16:12.434+00:00</lastmod>

 </url><url>

 <loc>http://127.0.0.1/about</loc>

 <lastmod>2013-02-10T19:16:12.434+00:00</lastmod>

 </url>

</urlset>

Discussion
You may be wondering why we’ve used REST here when we could have used a regular
HTML template and snippet. The reason is that we want XML rather than HTML out‐
put. We use the same mechanism, but invoke it and wrap it in an XmlResponse.

The S.render method takes a NodeSeq and an HTTPRequest. The first we supply by
running the sitemap.html snippet; the second is simply the current request. XmlRes
ponse requires a Node rather than a NodeSeq, which is why we call head—as there’s only
one node in the response, this does what we need.

Note that Google Sitemaps needs dates to be in ISO 8601 format. The built-in
java.text.SimpleDateFormat does not support this format prior to Java 7. If you are
using Java 6, you need to use org.joda.time.DateTime as we are in this example.

See Also
You’ll find an explanation of the Sitemap Protocol on Google’s Webmaster Tools site.

4.8. Calling REST Service from a Native iOS Application

Problem
You want to make an HTTP POST from a native iOS device to a Lift REST service.

Solution
Use NSURLConnection, ensuring you set the content-type to application/json.

For example, suppose we want to call this service:

90 | Chapter 4: REST

http://bit.ly/163CV1h

package code.rest

import net.liftweb.http.rest.RestHelper

import net.liftweb.json.JsonDSL._

import net.liftweb.json.JsonAST._

object Shouty extends RestHelper {

 def greet(name: String) : JValue =

 "greeting" -> ("HELLO "+name.toUpperCase)

 serve {

 case "shout" :: Nil JsonPost json->request =>

 for { JString(name) <- (json \\ "name").toOpt }

 yield greet(name)

 }

}

The service expects a JSON post with a parameter of name, and it returns a greeting as
a JSON object. To demonstrate the data to and from the service, we can include the
service in Boot.scala:

LiftRules.statelessDispatch.append(Shouty)

Call it from the command line:

$ curl -d '{ "name" : "World" }' -X POST -H 'Content-type: application/json'

 http://127.0.0.1:8080/shout

{

 "greeting":"HELLO WORLD"

}

We can implement the POST request using NSURLConnection:

static NSString *url = @"http://localhost:8080/shout";

-(void) postAction {

 // JSON data:

 NSDictionary* dic = @{@"name": @"World"};

 NSData* jsonData =

 [NSJSONSerialization dataWithJSONObject:dic options:0 error:nil];

 NSMutableURLRequest *request = [

 NSMutableURLRequest requestWithURL:[NSURL URLWithString:url]

 cachePolicy:NSURLRequestUseProtocolCachePolicy timeoutInterval:60.0];

 // Construct HTTP request:

 [request setHTTPMethod:@"POST"];

 [request setValue:@"application/json" forHTTPHeaderField:@"Content-Type"];

 [request setValue:[NSString stringWithFormat:@"%d", [jsonData length]]

 forHTTPHeaderField:@"Content-Length"];

 [request setHTTPBody: jsonData];

4.8. Calling REST Service from a Native iOS Application | 91

 // Send the request:

 NSURLConnection *con = [[NSURLConnection alloc]

 initWithRequest:request delegate:self];

}

- (void)connection:(NSURLConnection *)connection

 didReceiveResponse:(NSURLResponse *)response {

 // Start off with new, empty, response data

 self.receivedJSONData = [NSMutableData data];

}

- (void)connection:(NSURLConnection *)connection

 didReceiveData:(NSData *)data {

 // append incoming data

 [self.receivedJSONData appendData:data];

}

- (void)connection:(NSURLConnection *)connection

 didFailWithError:(NSError *)error {

 NSLog(@"Error occurred ");

}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {

 NSError *e = nil;

 NSDictionary *JSON =

 [NSJSONSerialization JSONObjectWithData: self.receivedJSONData

 options: NSJSONReadingMutableContainers error: &e];

 NSLog(@"Return result: %@", [JSON objectForKey:@"greeting"]);

}

Obviously in this example we’ve used hardcoded values and URLs, but this will hopefully
be a starting point for use in your application.

Discussion
There are many ways to do HTTP POST from iOS, and it can be confusing to identify
the correct way that works, especially without the aid of an external library. The previous
example uses the iOS native API.

92 | Chapter 4: REST

Another way is to use AFNetworking. This is a popular external library for iOS devel‐
opment, can cope with many scenarios, and is simple to use:

#import "AFHTTPClient.h"

#import "AFNetworking.h"

#import "JSONKit.h"

static NSString *url = @"http://localhost:8080/shout";

-(void) postAction {

 // JSON data:

 NSDictionary* dic = @{@"name": @"World"};

 NSData* jsonData =

 [NSJSONSerialization dataWithJSONObject:dic options:0 error:nil];

 // Construct HTTP request:

 NSMutableURLRequest *request =

 [NSMutableURLRequest requestWithURL:[NSURL URLWithString:url]

 cachePolicy:NSURLRequestUseProtocolCachePolicy timeoutInterval:60.0];

 [request setHTTPMethod:@"POST"];

 [request setValue:@"application/json" forHTTPHeaderField:@"Content-Type"];

 [request setValue:[NSString stringWithFormat:@"%d", [jsonData length]]

 forHTTPHeaderField:@"Content-Length"];

 [request setHTTPBody: jsonData];

 // Send the request:

 AFJSONRequestOperation *operation =

 [[AFJSONRequestOperation alloc] initWithRequest: request];

 [operation setCompletionBlockWithSuccess:^(AFHTTPRequestOperation *operation,

 id responseObject)

 {

 NSString *response = [operation responseString];

 // Use JSONKit to deserialize the response into NSDictionary

 NSDictionary *deserializedJSON = [response objectFromJSONString];

 [deserializedJSON count];

 // The response object can be a NSDicionary or a NSArray:

 if([deserializedJSON count]> 0) {

 NSLog(@"Return value: %@",[deserializedJSON objectForKey:@"greeting"]);

 }

 else {

 NSArray *deserializedJSONArray = [response objectFromJSONString];

 NSLog(@"Return array value: %@", deserializedJSONArray);

 }

 }failure:^(AFHTTPRequestOperation *operation, NSError *error)

 {

 NSLog(@"Error: %@",error);

 }];

 [operation start];

}

4.8. Calling REST Service from a Native iOS Application | 93

The NSURLConnection approach is more versatile and gives you a starting point to craft
your own solution, such as by making the content type more specific. However, AFNet
working is popular and you may prefer that route.

See Also
You may find the “Complete REST Example” in Simply Lift to be a good test ground for
your calls to Lift.

94 | Chapter 4: REST

http://simply.liftweb.net/index-5.4.html

CHAPTER 5

JavaScript, Ajax, and Comet

Lift is known for its great Ajax and Comet support, and in this chapter, we’ll explore
these.

For an introduction to Lift’s Ajax and Comet features, see Simply Lift, Chapter 9 of Lift
in Action (Perrett, 2012, Manning Publications, Co.), or watch Diego Medina’s video
presentation.

The source code for this chapter is at https://github.com/LiftCookbook/cookbook_ajax.

5.1. Trigger Server-Side Code from a Button

Problem
You want to trigger some server-side code when the user presses a button.

Solution
Use ajaxInvoke:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.http.SHtml

import net.liftweb.http.js.{JsCmd, JsCmds}

import net.liftweb.common.Loggable

object AjaxInvoke extends Loggable {

 def callback() : JsCmd = {

 logger.info("The button was pressed")

 JsCmds.Alert("You clicked it")

 }

95

http://simply.liftweb.net
http://bit.ly/12unDnJ
http://bit.ly/12unDnJ
https://github.com/LiftCookbook/cookbook_ajax

 def button = "button [onclick]" #> SHtml.ajaxInvoke(callback)

}

In this snippet, we are binding the click event of a button to an ajaxInvoke: when the
button is pressed, Lift arranges for the function you gave ajaxInvoke to be executed.

That function, callback, is just logging a message and returning a JavaScript alert to
the browser. The corresponding HTML might include:

<div data-lift="AjaxInvoke.button">

 <button>Click Me</button>

</div>

Discussion
The signature of the function you pass to ajaxInvoke is Unit => JsCmd, meaning you
can trigger a range of behaviours: from returning Noop if you want nothing to happen,
through changing DOM elements, all the way up to executing arbitrary JavaScript.

The previous example uses a button but will work on any element that has an event you
can bind to. We’re binding to onclick but it could be any event the DOM exposes.

Related to ajaxInvoke are the following functions:

SHtml.onEvent

Calls a function with the signature String => JsCmd because it is passed the val
ue of the node it is attached to. In the previous example, this would be the empty
string, as the button has no value.

SHtml.ajaxCall

This is more general than onEvent, as you give it the expression you want passed
to your server-side code.

SHtml.jsonCall

This is even more general still: you give it a function that will return a JSON object
when executed on the client, and this object will be passed to your server-side
function.

Let’s look at each of these in turn.

onEvent: receiving the value of a DOM element

You can use onEvent with any element that has a value attribute and responds to the
event you choose to bind to. The function you supply to onEvent is called with the
element’s value. As an example, we can write a snippet that presents a challenge to the
user and validates the response:

package code.snippet

96 | Chapter 5: JavaScript, Ajax, and Comet

import scala.util.Random

import net.liftweb.util.Helpers._

import net.liftweb.http.SHtml

import net.liftweb.http.js.JsCmds.Alert

object OnEvent {

 def render = {

 val x, y = Random.nextInt(10)

 val sum = x + y

 "p *" #> "What is %d + %d?".format(x,y) &

 "input [onchange]" #> SHtml.onEvent(answer =>

 if (answer == sum.toString) Alert("Correct!")

 else Alert("Try again")

)

 }

}

This snippet prompts the user to add the two random numbers presented in the <p>
tag, and binds a validation function to the <input> on the page:

<div data-lift="OnEvent">

 <p>Problem appears here</p>

 <input placeholder="Type your answer"></input>

</div>

When onchange is triggered (by pressing Return or the Tab key, for example), the text
entered is sent to our onEvent function as a String. On the server-side, we check the
answer and send back “Correct!” or “Try again” as a JavaScript alert.

ajaxCall: receiving an arbitrary client-side string

Where onEvent sends this.value to your server-side code, ajaxCall allows you to
specify the client-side expression used to produce a value.

To demonstrate this, we can create a template that includes two elements: a button and
a text field. We’ll bind our function to the button, but read a value from the input field:

<div data-lift="AjaxCall">

 <input id="num" value="41"></input>

 <button>Increment</button>

</div>

We want to arrange for the button to read the num field, increment it, and return it back
to the input field:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.http.SHtml

import net.liftweb.http.js.JE.ValById

5.1. Trigger Server-Side Code from a Button | 97

import net.liftweb.http.js.JsCmds._

object AjaxCall {

 def increment(in: String) : String =

 asInt(in).map(_ + 1).map(_.toString) openOr in

 def render = "button [onclick]" #>

 SHtml.ajaxCall(ValById("num"), s => SetValById("num", increment(s)))

 }

The first argument to ajaxCall is the expression that will produce a value for our func‐
tion. It can be any JsExp, and we’ve used ValById, which looks up the value of an element
by the ID attribute. We could have used a regular jQuery expression to achieve the same
effect with JsRaw("$('#num').val()").

Our second argument to ajaxCall takes the value of the JsExp expression as a
String. We’re using one of Lift’s JavaScript commands to replace the value with a new
value. The new value is the result of incrementing the number (providing it is a number).

The end result is that you press the button and the number updates. It should go without
saying that these are simple illustrations, and you probably don’t want a server round-
trip to add one to a number. The techniques come into their own when there is some
action of value to perform on the server.

You may have guessed that onEvent is implemented as an ajaxCall for
JsRaw("this.value").

jsonCall: receiving a JSON value

Both ajaxCall and onEvent end up evaluating a String => JsCmd function. By contrast,
jsonCall has the signature JValue => JsCmd, meaning you can pass more complex
data structures from JavaScript to your Lift application.

To demonstrate this, we’ll create a template that asks for input, has a function to convert
the input into JSON, and a button to send the JSON to the server:

<div data-lift="JsonCall">

 <p>Enter an addition question:</p>

 <div>

 <input id="x"> + <input id="y"> = <input id="z">.

 </div>

 <button>Check</button>

</div>

<script type="text/javascript">

// <![CDATA[

function currentQuestion() {

 return {

 first: parseInt($('#x').val()),

98 | Chapter 5: JavaScript, Ajax, and Comet

 second: parseInt($('#y').val()),

 answer: parseInt($('#z').val())

 };

}

//]]>

The currentQuestion function is creating an object, which will be turned into a JSON
string when sent to the server. On the server, we’ll check that this JSON represents a
valid integer addition problem:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.http.SHtml

import net.liftweb.http.js.{JsCmd, JE}

import net.liftweb.common.Loggable

import net.liftweb.json.JsonAST._

import net.liftweb.http.js.JsCmds.Alert

import net.liftweb.json.DefaultFormats

object JsonCall extends Loggable {

 implicit val formats = DefaultFormats

 case class Question(first: Int, second: Int, answer: Int) {

 def valid_? = first + second == answer

 }

 def render = {

 def validate(value: JValue) : JsCmd = {

 logger.info(value)

 value.extractOpt[Question].map(_.valid_?) match {

 case Some(true) => Alert("Looks good")

 case Some(false) => Alert("That doesn't add up")

 case None => Alert("That doesn't make sense")

 }

 }

 "button [onclick]" #>

 SHtml.jsonCall(JE.Call("currentQuestion"), validate _)

 }

}

Working from the bottom of this snippet up, we see a binding of the <button> to the
jsonCall. The value we’ll be working on is the value provided by the JavaScript function
called currentQuestion. This was defined on the template page. When the button is
clicked, the JavaScript function is called and the resulting value will be presented to
validate, which is our JValue => JsCmd function.

5.1. Trigger Server-Side Code from a Button | 99

All validate does is log the JSON data and alert back if the question looks correct or
not. To do this, we use the Lift JSON ability to extract JSON to a case class and call the
valid_? test to see if the numbers add up. This will evaluate to Some(true) if the addition
works, Some(false) if the addition isn’t correct, or None if the input is missing or not a
valid integer.

Running the code and entering 1, 2, and 3 into the text fields will produce the following
in the server log:

JObject(List(JField(first,JInt(1)), JField(second,JInt(2)),

 JField(answer,JInt(3))))

This is the JValue representation of the JSON.

See Also
Recipe 5.2 includes an example of SHtml.onEvents, which will bind a function to a
number of events on a NodeSeq.

Exploring Lift, Chapter 10, lists various JsExp classes you can use for ajaxCall.

Recipe 3.3 using JsonHandler to send JSON data from a form to the server.

5.2. Call Server When Select Option Changes

Problem
When an HTML select option is selected, you want to trigger a function on the server.

Solution
Register a String => JsCmd function with SHtml.ajaxSelect.

In this example, we will look up the distance from Earth to the planet a user selects. This
lookup will happen on the server and update the browser with the result. The
interface is:

<div data-lift="HtmlSelectSnippet">

 <div>

 <label for="dropdown">Planet:</label>

 <select id="dropdown"></select>

 </div>

 <div id="distance">Distance will appear here</div>

</div>

100 | Chapter 5: JavaScript, Ajax, and Comet

http://exploring.liftweb.net/master/index-10.html

The snippet code binds the <select> element to send the selected value to the server:

package code.snippet

import net.liftweb.common.Empty

import net.liftweb.util.Helpers._

import net.liftweb.http.SHtml.ajaxSelect

import net.liftweb.http.js.JsCmd

import net.liftweb.http.js.JsCmds.SetHtml

import xml.Text

class HtmlSelectSnippet {

 // Our "database" maps planet names to distances:

 type Planet = String

 type LightYears = Double

 val database = Map[Planet,LightYears](

 "Alpha Centauri Bb" -> 4.23,

 "Tau Ceti e" -> 11.90,

 "Tau Ceti f" -> 11.90,

 "Gliese 876 d" -> 15.00,

 "82 G Eridani b" -> 19.71

)

 def render = {

 // To show the user a blank label and blank value option:

 val blankOption = ("" -> "")

 // The complete list of options includes everything in our database:

 val options : List[(String,String)] =

 blankOption ::

 database.keys.map(p => (p,p)).toList

 // Nothing is selected by default:

 val default = Empty

 // The function to call when an option is picked:

 def handler(selected: String) : JsCmd = {

 SetHtml("distance", Text(database(selected) + " light years"))

 }

 // Bind the <select> tag:

 "select" #> ajaxSelect(options, default, handler)

 }

}

The last line of the code is doing the work for us. It is generating the options and binding
the selection to a function called handler. The handler function is called with the value
of the selected item.

5.2. Call Server When Select Option Changes | 101

We’re using the same String (the planet name) for the option label and value, but they
could be different.

Discussion
To understand what’s going on here, take a look at the HTML that Lift produces:

<select id="dropdown"

 onchange="liftAjax.lift_ajaxHandler('F470183993611Y15ZJU=' +

 this.options[this.selectedIndex].value, null, null, null)">

 <option value=""></option>

 <option value="Tau Ceti e">Tau Ceti e</option>

 ...

</select>

The handler function has been stored by Lift under the identifier of
F470183993611Y15ZJU (in this particular rendering). An onchange event handler is at‐
tached to the <select> element and is responsible for transporting the selected value
to the server, and bringing a value back. The lift_ajaxHandler JavaScript function is
defined in liftAjax.js, which is automatically added to your page.

Collecting the value on form submission

If you need to additionally capture the selected value on a regular form submission, you
can make use of SHtml.onEvents. This attaches event listeners to a NodeSeq, triggering
a server-side function when the event occurs. We can use this with a regular form with
a regular select box, but wire in Ajax calls to the server when the select changes.

To make use of this, our snippet changes very little:

var selectedValue : String = ""

"select" #> onEvents("onchange")(handler) {

 select(options, default, selectedValue = _)

} &

"type=submit" #> onSubmitUnit(() => S.notice("Destination "+selectedValue))

We are arranging for the same handler function to be called when an onchange event
is triggered. This event binding is applied to a regular SHtml.select, which is storing
the selectedValue when the form is submitted. We also bind a submit button to a
function that generates a notice of which planet was selected.

The corresponding HTML also changes little. We need to add a button and make sure
the snippet is marked as a form with ?form:

<div data-lift="HtmlSelectFormSnippet?form=post">

 <div>

 <label for="dropdown">Planet:</label>

 <select id="dropdown"></select>

 </div>

102 | Chapter 5: JavaScript, Ajax, and Comet

 <div id="distance">Distance will appear here</div>

 <input type="submit" value="Book Ticket"/>

</div>

Now when you change a selected value, you see the dynamically updated distance cal‐
culation, but pressing the “Book Ticket” button also delivers the value to the server.

See Also
Recipe 3.8 describes how to use classes rather than String values for select boxes.

5.3. Creating Client-Side Actions in Your Scala Code

Problem
In your Lift code you want to set up an action that is run purely in client-side JavaScript.

Solution
Bind your JavaScript directly to the event handler you want to run.

Here’s an example where we make a button slowly fade away when you press it, but
notice that we’re setting up this binding in our server-side Lift code:

package code.snippet

import net.liftweb.util.Helpers._

object ClientSide {

 def render = "button [onclick]" #> "$(this).fadeOut()"

}

In the template, we’d perhaps say:

<div data-lift="ClientSide">

 <button>Click Me</button>

</div>

Lift will render the page as:

<button onclick="$(this).fadeOut()">Click Me</button>

Discussion
Lift includes a JavaScript abstraction that you can use to build up more elaborate ex‐
pressions for the client-side. For example, you can combine basic commands:

5.3. Creating Client-Side Actions in Your Scala Code | 103

import net.liftweb.http.js.JsCmds.{Alert, RedirectTo}

def render = "button [onclick]" #>

 (Alert("Here we go...") & RedirectTo("http://liftweb.net"))

This pops up an alert dialog and then sends you to http://liftweb.net. The HTML would
be rendered as:

<button onclick="alert("Here we go...");

window.location = "http://liftweb.net";">Click Me</button>

Another option is to use JE.Call to execute a JavaScript function with parameters.
Suppose we have this function defined:

function greet(who, times) {

 for(i=0; i<times; i++)

 alert("Hello "+who);

}

We could bind a client-side button press to this client-side function like this:

import net.liftweb.http.js.JE

def render =

 "button [onclick]" #> JE.Call("greet", "World!", 3)

On the client-side, we’d see:

<button onclick="greet("World!",3)">Click Me For Greeting</button>

Note that the types String and Int have been preserved in the JavaScript syntax of the
call. This has happened because JE.Call takes a variable number of JsExp arguments
after the JavaScript function name. There are wrappers for JavaScript primitive types
(JE.Str, JE.Num, JsTrue, JsFalse) and implicit conversions to save you having to wrap
the Scala values yourself.

See Also
Chapter 10 of Exploring Lift gives a list of JsCmds and JE expressions.

5.4. Focus on a Field on Page Load

Problem
When a page loads, you want the browser to select a particular field for input from the
keyboard.

Solution
Wrap the input with a FocusOnLoad command:

104 | Chapter 5: JavaScript, Ajax, and Comet

http://exploring.liftweb.net/

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.http.js.JsCmds.FocusOnLoad

class Focus {

 def render = "name=username" #> FocusOnLoad(<input type="text"/>)

}

The CSS transform in render will match against a name="username" element in the
HTML and replace it with a text input field that will be focused on automatically when
the page loads.

Although we’re focusing on inline HTML, this could be any NodeSeq, such as the one
produced by SHtml.text.

Discussion
FocusOnLoad is an example of a NodeSeq => NodeSeq transformation. It appends to the
NodeSeq with the JavaScript required to set focus on that field.

The JavaScript that performs the focus simply looks up the node in the DOM by ID and
calls focus on it. Although the previous example code doesn’t specify an ID, the com‐
mand FocusOn is smart enough to add one automatically for us.

There are two related JsCmd choices:

Focus

Takes an element ID and sets focus on the element

SetValueAndFocus

Similar to Focus, but takes an additional String value to populate the element with

These two are useful if you need to set focus from Ajax or Comet components
dynamically.

See Also
The source for FocusOnLoad is worth checking out to understand how it and related
commands are constructed. This may help you package your own JavaScript function‐
ality up into commands that can be used in CSS binding expressions.

5.5. Add a CSS Class to an Ajax Form

Problem
You want to set the CSS class of an Ajax form.

5.5. Add a CSS Class to an Ajax Form | 105

http://bit.ly/198KMMS

Solution
Name the class via ?class= query parameter:

<form data-lift="form.ajax?class=boxed">

...

</form>

Discussion
If you need to set multiple CSS classes, encode a space between the class names (e.g.,
class=boxed+primary).

The form.ajax construction is a regular snippet call: the Form snippet is one of the
handful of built-in snippets, and in this case, we’re calling the ajax method on that
object. However, normally snippet calls do not copy attributes into the resulting markup,
but this snippet is implemented to do exactly that.

See Also
For an example of accessing these query parameters in your own snippets, see Recipe 2.5.

Simply Lift, Chapter 4, introduces Ajax forms.

5.6. Running a Template via JavaScript

Problem
You want to load an entire page—a template with snippets—inside of the current page
(i.e., without a browser refresh).

Solution
Use Template to load the template and SetHtml to place the content on the page.

Let’s populate a <div> with the site home page when a button is pressed:

<div data-lift="TemplateLoad">

 <div id="inject">Content will appear here</div>

 <button>Load Template</button>

</div>

The corresponding snippet would be:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.http.{SHtml, Templates}

import net.liftweb.http.js.JsCmds.{SetHtml, Noop}

106 | Chapter 5: JavaScript, Ajax, and Comet

http://simply.liftweb.net/

import net.liftweb.http.js.JsCmd

object TemplateLoad {

 def content : JsCmd =

 Templates("index" :: Nil).map(ns => SetHtml("inject", ns)) openOr Noop

 def render = "button [onclick]" #> SHtml.ajaxInvoke(content _)

}

Clicking the button will cause the content of /index.html to be loaded into the inject
element.

Discussion
Templates produces a Box[NodeSeq]. In the previous example, we map this content
into a JsCmd that will populate the inject <div>.

If you write unit tests to access templates, be aware that you may need to modify your
development or testing environment to include the webapps folder. To do this for SBT,
add the following to build.sbt:

unmanagedResourceDirectories in Test <+= (baseDirectory) {

 _ / "src/main/webapp"

}

For this to work in your IDE, you’ll need to add webapp as a source folder to locate
templates.

See Also
Recipe 5.1 describes ajaxInvoke and related methods.

5.7. Move JavaScript to End of Page

Problem
You want the JavaScript created in your snippet to be included at the end of the HTML
page.

Solution
Use S.appendJs, which places your JavaScript just before the closing </body> tag, along
with other JavaScript produced by Lift.

In this HTML, we have placed a <script> tag in the middle of the page and marked it
with a snippet called JavaScriptTail:

5.7. Move JavaScript to End of Page | 107

<!DOCTYPE html>

<head>

 <meta content="text/html; charset=UTF-8" http-equiv="content-type" />

 <title>JavaScript in Tail</title>

</head>

<body data-lift-content-id="main">

<div id="main" data-lift="surround?with=default;at=content">

 <h2>JavaScript in the tail of the page</h2>

 <script type="text/javascript" data-lift="JavaScriptTail">

 </script>

 <p>

 The JavaScript about to be run will have been moved

 to the end of this page, just before the closing

 body tag.

 </p>

</div>

</body>

</html>

The <script> content will be generated by a snippet. It doesn’t need to be a <script>
tag; the snippet just replaces the content with nothing, but hanging the snippet on the
<script> tag is a reminder of the purpose of the snippet:

package code.snippet

import net.liftweb.util.Helpers._

import net.liftweb.http.js.JsCmds.Alert

import net.liftweb.http.S

import xml.NodeSeq

class JavaScriptTail {

 def render = {

 S.appendJs(Alert("Hi"))

 "*" #> NodeSeq.Empty

 }

}

Although the snippet is rendering nothing, it calls S.appendJs with a JsCmd. This will
produce the following in the page just before the end of the body:

<script type="text/javascript">

// <![CDATA[

jQuery(document).ready(function() {

 alert("Hi");

});

//]]>

</script>

Observe that the snippet was in the middle of the template, but the JavaScript appears
at the end of the rendered page.

108 | Chapter 5: JavaScript, Ajax, and Comet

Discussion
There are three other ways you could tackle this problem. The first is to move your
JavaScript to an external file, and simply include it on the page where you want it. For
substantial JavaScript code, this might make sense.

The second is a variation on S.appendJs: S.appendGlobalJs works in the same way
but does not include the jQuery ready around your JavaScript. This means you have
no guarantee the DOM has loaded when your function is called.

A third option is wrap your JavaScript in a <lift:tail> snippet:

class JavascriptTail {

 def render =

 "*" #> <lift:tail>{Script(OnLoad(Alert("Hi")))}</lift:tail>

}

Note that lift:tail is a general purpose Lift snippet and can be used to move various
kinds of content to the end of the page, not just JavaScript.

See Also
Recipe 2.9 discusses a related Lift snippet for moving content to the head of the page.

Recipe 2.7 describes the different ways of invoking a snippet, such as <lift:tail> versus
data-lift="tail".

5.8. Run JavaScript on Comet Session Loss

Problem
You’re using a Comet actor and you want to arrange for some JavaScript to be executed
in the event of the session being lost.

Solution
Configure your JavaScript via LiftRules.noCometSessionCmd.

As an example, we can modify the standard Lift chat demo to save the message being
typed in the event of the session loss. In the style of the demo, we would have an Ajax
form for entering a message and the Comet chat area for displaying messages received:

<form data-lift="form.ajax">

 <input type="text" data-lift="ChatSnippet" id="message"

 placeholder="Type a message" />

</form>

<div data-lift="comet?type=ChatClient">

5.8. Run JavaScript on Comet Session Loss | 109

 A message

</div>

To this we can add a function, stash, which we want to be called in the event of a Comet
session being lost:

<script type="text/javascript">

// <![CDATA[

function stash() {

 saveCookie("stashed", $('#message').val());

 location.reload();

}

jQuery(document).ready(function() {

 var stashedValue = readCookie("stashed") || "";

 $('#message').val(stashedValue);

 deleteCookie("stashed");

});

// Definition of saveCookie, readCookie, deleteCookie omitted.

</script>

Our stash function will save the current value of the input field in a cookie called
stashed. We arrange, on page load, to check for that cookie and insert the value into
our message field.

The final part is to modify Boot.scala to register our stash function:

import net.liftweb.http.js.JsCmds.Run

LiftRules.noCometSessionCmd.default.set(() => Run("stash()"))

In this way, if a session is lost while composing a chat message, the browser will stash
the message, and when the page reloads the message will be recovered.

To test the example, type a message into the message field, then restart your Lift appli‐
cation. Wait 10 seconds, and you’ll see the effect.

Discussion
Without changing noCometSessionCmd, the default behaviour of Lift is to arrange for
the browser to load the home page, which is controlled by the LiftRules.noCometSes
sionPage setting. This is carried out via the JavaScript function lift_sessionLost in
the file cometAjax.js.

By providing our own () => JsCmd function to LiftRules.noCometSessionCmd, Lift
arranges to call this function and deliver the JsCmd to the browser, rather than lift_ses

110 | Chapter 5: JavaScript, Ajax, and Comet

sionLost. If you watch the HTTP traffic between your browser and Lift, you’ll see the
stash function call being returned in response to a Comet request.

Factory

The noCometSessionCmd.default.set call is making use of Lift’s dependency injec‐
tion. Specifically, it’s setting up the supply side of the dependency. Although we’re setting
a default here, it’s possible in Lift to supply different behaviours with different scopes:
request or session.

This recipe has focused on the handling of loss of session for Comet; for Ajax, there’s a
corresponding LiftRules.noAjaxSessionCmd setting.

See Also
You’ll find the The ubiquitous Chat app in Simply Lift.

Being able to debug HTTP traffic is a useful way to understand how your Comet or Ajax
application is performing. There are many plugins and products to help with this, such
as the HttpFox plugin for Firefox.

5.9. Ajax File Upload

Problem
You want to offer your users an Ajax file upload tool, with progress bars and drag-and-
drop support.

Solution
Add Sebastian Tschan’s jQuery File Upload widget to your project, and implement a
REST end point to receive files.

The first step is to download the widget and drag the js folder into your application as
src/main/webapp/js. We can then use the JavaScript in a template:

<!DOCTYPE HTML>

<html>

<head>

 <meta charset="utf-8">

 <title>jQuery File Upload Example</title>

</head>

<body>

<h1>Drag files onto this page</h1>

5.9. Ajax File Upload | 111

http://bit.ly/16nYJVY
http://bit.ly/16nYJVY
http://simply.liftweb.net/
http://mzl.la/14BkhyC
http://bit.ly/1ac2yAj

<input id="fileupload" type="file" name="files[]" data-url="/upload" multiple>

<div id="progress" style="width:20em; border: 1pt solid silver; display: none">

 <div id="progress-bar" style="background: green; height: 1em; width:0%"></div>

</div>

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">

</script>

<script src="js/vendor/jquery.ui.widget.js"></script>

<script src="js/jquery.iframe-transport.js"></script>

<script src="js/jquery.fileupload.js"></script>

<script>

 $(function () {

 $('#fileupload').fileupload({

 dataType: 'json',

 add: function (e,data) {

 $('#progress-bar').css('width', '0%');

 $('#progress').show();

 data.submit();

 },

 progressall: function (e, data) {

 var progress = parseInt(data.loaded / data.total * 100, 10) + '%';

 $('#progress-bar').css('width', progress);

 },

 done: function (e, data) {

 $.each(data.files, function (index, file) {

 $('<p/>').text(file.name).appendTo(document.body);

 });

 $('#progress').fadeOut();

 }

 });

 });

</script>

</body>

</html>

This template provides an input field for files, an area to use as a progress indicator, and
configures the widget when the page loads in a jQuery $(...) block. This is just
regular usage of the JavaScript widget, and nothing particularly Lift-specific.

The final part is to implement a Lift REST service to receive the file or files. The URL
of the service, /upload, is set in data-url on the input field, and that’s the address we
match on:

package code.rest

import net.liftweb.http.rest.RestHelper

import net.liftweb.http.OkResponse

112 | Chapter 5: JavaScript, Ajax, and Comet

object AjaxFileUpload extends RestHelper {

 serve {

 case "upload" :: Nil Post req =>

 for (file <- req.uploadedFiles) {

 println("Received: "+file.fileName)

 }

 OkResponse()

 }

}

This implementation simply logs the name of the file received and acknowledges suc‐
cessful delivery with a 200 status code back to the widget.

As with all REST services, it needs to be registered in Boot.scala:

LiftRules.dispatch.append(code.rest.AjaxFileUpload)

By default, the widget makes the whole HTML page a drop-target for files, meaning you
can drag a file onto the page and it will immediately be uploaded to your Lift application.

Discussion
In this recipe, we’ve shown just the basic integration of the widget with a Lift application.
The demo site for the widget shows other capabilities, and provides documentation on
how to integrate them.

Many of the features just require JavaScript configuration. For example, we’ve used the
widget’s add, progressall, and done handlers to show, update, and then fade out a
progress bar. When the upload is completed, the name of the uploaded file is appended
to the page.

In the REST service, the uploaded files are available via the uploadedFiles method on
the request. When Lift receives a multipart form, it automatically extracts files as
uploadedFiles, each of which is a FileParamHolder that gives us access to the file
Name, length, mimeType, and fileStream.

By default, uploaded files are held in memory, but that can be changed (see “Discus‐
sion” in Recipe 3.9).

In this recipe, we return a 200 (OkResponse). If we wanted to signal to the widget that
a file was rejected, we can return another code. For example, perhaps we want to reject
all files except PNG images. On the server-side we can do that by replacing the OkRes
ponse with a test:

import net.liftweb.http.{ResponseWithReason, BadResponse, OkResponse}

5.9. Ajax File Upload | 113

http://blueimp.github.com/jQuery-File-Upload/

if (req.uploadedFiles.exists(_.mimeType != "image/png"))

 ResponseWithReason(BadResponse(), "Only PNGs")

else

 OkResponse()

We would mirror this with a fail handler in the client JavaScript:

fail: function (e, data) {

 alert(data.errorThrown);

}

If we uploaded, say, a JPEG, the browser would show an alert dialog reporting “Only
PNGs.”

See Also
Diego Medina has posted a Gist of Lift REST code to integrate more fully with the image
upload and image reviewing features of the widget, specifically implementing the JSON
response that the widget expects for that functionality.

Recipe 3.9 describes the basic file upload behaviour of Lift and how to control where
files are stored.

Antonio Salazar Cardozo has posted example code for performing Ajax file upload using
Lift’s Ajax mechanisms. This avoids external JavaScript libraries.

5.10. Format a Wired Cell

Problem
You want a wired UI element to have a different format than plain conversion to a string.
For example, you’d like to display a floating-point value as a currency.

Solution
Use the WiringUI.toNode method to create a wiring node that can render the output
formatted as you desire.

As an example, consider an HTML template to display the quantity of an item being
purchased and the subtotal:

<div data-lift="Wiring">

<table>

 <tbody>

 <tr><td>Quantity</td><td id="quantity">?</td></tr>

 <tr><td>Subtotal</td><td id="subtotal">?</td></tr>

 </tbody>

</table>

114 | Chapter 5: JavaScript, Ajax, and Comet

http://bit.ly/lift-restupload
http://bit.ly/lift-ajaxupload

<button id="add">Add Another One</button>

</div>

We’d like the subtotal to display as US dollars. The snippet would be:

package code.snippet

import java.text.NumberFormat

import java.util.Locale

import scala.xml.{NodeSeq, Text}

import net.liftweb.util.Helpers._

import net.liftweb.util.{Cell, ValueCell}

import net.liftweb.http.{S, WiringUI}

import net.liftweb.http.SHtml.ajaxInvoke

import net.liftweb.http.js.JsCmd

class Wiring {

 val cost = ValueCell(1.99)

 val quantity = ValueCell(1)

 val subtotal = cost.lift(quantity)(_ * _)

 val formatter = NumberFormat.getCurrencyInstance(Locale.US)

 def currency(cell: Cell[Double]): NodeSeq => NodeSeq =

 WiringUI.toNode(cell)((value, ns) => Text(formatter format value))

 def increment(): JsCmd = {

 quantity.atomicUpdate(_ + 1)

 S.notice("Added One")

 }

5.10. Format a Wired Cell | 115

 def render =

 "#add [onclick]" #> ajaxInvoke(increment) &

 "#quantity *" #> WiringUI.asText(quantity) &

 "#subtotal *" #> currency(subtotal)

}

We have defined a currency method to format the subtotal not as a Double but as a
currency amount using the Java number-formatting capabilities. This will result in val‐
ues like “$19.90” being shown rather than “19.9.”

Discussion
The primary WiringUI class makes it easy to bind a cell as text. The asText method
works by converting a value to a String and wrapping it in a Text node. This is done
via toNode, however, we can use the toNode method directly to generate a transform
function that is both hooked into the wiring UI and uses our code for the translation of
the item.

The mechanism is type-safe. In this example, cost is a Double cell, quantity is an Int
cell, and subtotal is inferred as a Cell[Double]. This is why our formatting function
is passed value as a Double.

Note that the function passed to toNode must return a NodeSeq. This gives a great deal
of flexibility as you can return any kind of markup in a NodeSeq. Our example complies
with this signature by wrapping a text value in a Text object.

The WiringUI.toNode requires a (T, NodeSeq) => NodeSeq. In the previous example,
we ignore the NodeSeq, but the value would be the contents of the element we’ve bound
to. Given the input:

<td id="subtotal">?</td>

this would mean the NodeSeq passed to us would just be the text node representing “?”.
With a richer template we can use CSS selectors. For example, we can modify the
template:

<td>Subtotal</td><td id="subtotal">

 <i>The value is <b class="amount">?</i>

</td>

Now we can apply a CSS selector to change just the amount element:

(value, ns) => (".amount *" #> Text(formatter format value)) apply ns)

See Also
Chapter 6 of Simply Lift describes Lift’s Wiring mechanism, and gives a detailed shop‐
ping example.

116 | Chapter 5: JavaScript, Ajax, and Comet

http://simply.liftweb.net/

CHAPTER 6

Request Pipeline

When a request reaches Lift, there are a number of points where you can jump in and
control what Lift does, sending back a different kind of response or controlling access.
This chapter looks at the pipeline through examples of different kinds of LiftRes
ponses and configurations.

You can get a great overview of the pipeline, including diagrams, from the Lift pipeline
wiki page.

See https://github.com/LiftCookbook/cookbook_pipeline for the source code that ac‐
companies this chapter.

6.1. Debugging a Request

Problem
You want to debug a request and see what’s arriving to your Lift application.

Solution
Add an onBeginServicing function in Boot.scala to log the request. For example:

LiftRules.onBeginServicing.append {

 case r => println("Received: "+r)

}

Discussion
The onBeginServicing call is called quite early in the Lift pipeline, before S is set up,
and before Lift has the chance to 404 your request. The function signature it expects is
Req => Unit. We’re just logging, but the functions could be used for other purposes.

117

http://www.assembla.com/spaces/liftweb/wiki/HTTP_Pipeline
http://www.assembla.com/spaces/liftweb/wiki/HTTP_Pipeline
https://github.com/LiftCookbook/cookbook_pipeline

If you want to select only certain paths, you can. For example, to track all requests
starting /paypal:

LiftRules.onBeginServicing.append {

 case r @ Req("paypal" :: _), _, _) => println(r)

}

This pattern will match any request starting /paypal, and we’re ignoring the suffix on
the request, if any, and the type of request (e.g., GET, POST, or so on).

There’s also LiftRules.early, which is called before onBeginServicing. It expects an
HTTPRequest => Unit function, so is a little lower-level than the Req used in onBegin
Servicing. However, it will be called by all requests that pass through Lift. To see the
difference, you could mark a request as something that the container should handle by
itself:

LiftRules.liftRequest.append {

 case Req("robots" :: _, _, _) => false

}

With this in place, a request for robots.txt will be logged by LiftRules.early but won’t
make it to any of the other methods described in this recipe.

If you need access to state (e.g., S), use earlyInStateful, which is based on a Box[Req]
not a Req:

LiftRules.earlyInStateful.append {

 case Full(r) => // access S here

 case _ =>

}

It’s possible for your earlyInStateful function to be called twice. This will happen
when a new session is being set up. You can prevent this by only matching on requests
in a running Lift session:

LiftRules.earlyInStateful.append {

 case Full(r) if LiftRules.getLiftSession(r).running_? => // access S here

 case _ =>

}

Finally, there’s also earlyInStateless, which like earlyInStateful, works on a
Box[Req] but in other respects is the same as onBeginServicing. It is triggered after
early and before earlyInStateful.

As a summary, the functions described in this recipe are called in this order:

1. LiftRules.early

2. LiftRules.onBeginServicing

3. LiftRules.earlyInStateless

118 | Chapter 6: Request Pipeline

4. LiftRules.earlyInStateful

See Also
If you need to catch the end of a request, there is also an onEndServicing that can be
given functions of type (Req, Box[LiftResponse]) => Unit.

Recipe 6.4 describes how to force requests to be stateless.

6.2. Running Code When Sessions Are Created (or
Destroyed)

Problem
You want to carry out actions when a session is created or destroyed.

Solution
Make use of the hooks in LiftSession. For example, in Boot.scala:

LiftSession.afterSessionCreate ::=

 ((s:LiftSession, r:Req) => println("Session created"))

LiftSession.onBeginServicing ::=

 ((s:LiftSession, r:Req) => println("Processing request"))

LiftSession.onShutdownSession ::=

 ((s:LiftSession) => println("Session going away"))

If the request path is marked as being stateless via LiftRules.statelessReqTest, this
example would only execute the onBeginServicing functions.

Discussion
The hooks in LiftSession allow you to insert code at various points in the session life
cycle: when the session is created, at the start of servicing the request, after servicing,
when the session is about to shut down, at shutdown, etc. The pipeline diagrams men‐
tioned at the start of this chapter are a useful guide to these stages.

The list of session hooks follows:

onSetupSession

This will be the first hook called when a session is created.

afterSessionCreate

This will be called after all onSetupSession functions have been called.

6.2. Running Code When Sessions Are Created (or Destroyed) | 119

onBeginServicing

This will be called at the start of request processing.

onEndServicing

This will be called at the end of request processing.

onAboutToShutdownSession

This will be called just before a session is shut down (for example, when a session
expires or the Lift application is being shut down).

onShutdownSession

This will be called after all onAboutToShutdownSession functions have been run.

If you are testing these hooks, you might want to make the session expire faster than
the 30 minutes of inactivity used by default in Lift. To do this, supply a millisecond value
to LiftRules.sessionInactivityTimeout:

// 30 second inactivity timeout

LiftRules.sessionInactivityTimeout.default.set(Full(1000L * 30))

There are two other hooks in LiftSession: onSessionActivate and onSessionPassi
vate. These may be of use if you are working with a servlet container in distributed
mode and want to be notified when the servlet HTTP session is about to be serialised
(passivated) and deserialised (activated) between container instances. These hooks are
rarely used.

Note that the Lift session is not the same as the HTTP session. Lift bridges from the
HTTP session to its own session management. This is described in some detail in
Exploring Lift.

See Also
Session management is discussed in section 9.5 of Exploring Lift.

Recipe 6.4 shows how to run without state.

6.3. Run Code When Lift Shuts Down

Problem
You want to have some code executed when your Lift application is shutting down.

Solution
Append to LiftRules.unloadHooks:

LiftRules.unloadHooks.append(() => println("Shutting down"))

120 | Chapter 6: Request Pipeline

http://exploring.liftweb.net/

Discussion
You append functions of type () => Unit to unloadHooks, and these functions are run
right at the end of the Lift handler, after sessions have been destroyed, Lift actors have
been shut down, and requests have finished being handled.

This is triggered, in the words of the Java servlet specification, “by the web container to
indicate to a filter that it is being taken out of service.”

See Also
Recipe 9.7 includes an example of using an unload hook.

6.4. Running Stateless

Problem
You want to force your application to be stateless at the HTTP level.

Solution
In Boot.scala:

LiftRules.enableContainerSessions = false

LiftRules.statelessReqTest.append { case _ => true }

All requests will now be treated as stateless. Any attempt to use state, such as via Ses
sionVar for example, will trigger a warning in developer mode: “Access to Lift’s statefull
features from Stateless mode. The operation on state will not complete.”

Discussion
HTTP session creation is controlled via enableContainerSessions, and applies for all
requests. Leaving this value at the default (true) allows more fine-grained control over
which requests are stateless.

Using statelessReqTest allows you to decide, based on the StatelessReqTest case
class, if a request should be stateless (true) or not (false). For example:

def asset(file: String) =

 List(".js", ".gif", ".css").exists(file.endsWith)

LiftRules.statelessReqTest.append {

 case StatelessReqTest("index" :: Nil, httpReq) => true

 case StatelessReqTest(List(_, file), _) if asset(file) => true

}

6.4. Running Stateless | 121

This example would only make the index page and any GIFs, JavaScript, and CSS files
stateless. The httpReq part is an HTTPRequest instance, allowing you to base the decision
on the content of the request (cookies, user agent, etc.).

Another option is LiftRules.statelessDispatch, which allows you to register a func‐
tion that returns a LiftResponse. This will be executed without a session, and is con‐
venient for REST-based services.

If you just need to mark an entry in SiteMap as being stateless, you can:

Menu.i("Stateless Page") / "demo" >> Stateless

A request for /demo would be processed without state.

See Also
Chapter 4 contains recipes for REST-based services in Lift.

The Lift wiki gives further details on the processing of stateless requests.

This stateless request control was introduced in Lift 2.2. The announcement on the
mailing list gives more details.

6.5. Catch Any Exception

Problem
You want a wrapper around all requests to catch exceptions and display something to
the user.

Solution
Declare an exception handler in Boot.scala:

LiftRules.exceptionHandler.prepend {

 case (runMode, request, exception) =>

 logger.error("Failed at: "+request.uri)

 InternalServerErrorResponse()

}

In this example, all exceptions for all requests at all run modes are being matched,
causing an error to be logged and a 500 (internal server) error to be returned to the
browser.

Discussion
The partial function you add to exceptionHandler needs to return a LiftResponse
(i.e., something to send to the browser). The default behaviour is to return an XhtmlRes

122 | Chapter 6: Request Pipeline

http://www.assembla.com/wiki/show/liftweb/Stateless_Requests
http://bit.ly/lift-stateless
http://bit.ly/lift-stateless

ponse, which in Props.RunModes.Development gives details of the exception, and in all
other run modes simply says: “Something unexpected happened.”

You can return any kind of LiftResponse, including RedirectResponse, JsonRes
ponse, XmlResponse, JavaScriptResponse, and so on.

The previous example just sends a standard 500 error. That won’t be very helpful to your
users. An alternative is to render a custom message but retain the 500 status code that
will be useful for external site-monitoring services, if you use them:

LiftRules.exceptionHandler.prepend {

 case (runMode, req, exception) =>

 logger.error("Failed at: "+req.uri)

 val content = S.render(<lift:embed what="500" />, req.request)

 XmlResponse(content.head, 500, "text/html", req.cookies)

}

Here we are sending back a response with a 500 status code, but the content is the Node
that results from running src/main/webapp/template-hidden/500.html. Create that file
with the message you want to show to users:

<html>

<head>

 <title>500</title>

</head>

<body data-lift-content-id="main">

<div id="main" data-lift="surround?with=default;at=content">

 <h1>Something is wrong!</h1>

 <p>It's our fault - sorry</p>

</div>

</body>

</html>

You can also control what to send to clients when processing Ajax requests. In the
following example, we’re matching just on Ajax POST requests, and returning custom
JavaScript to the browser:

import net.liftweb.http.js.JsCmds._

val ajax = LiftRules.ajaxPath

LiftRules.exceptionHandler.prepend {

 case (mode, Req(ajax :: _, _, PostRequest), ex) =>

 logger.error("Error handing ajax")

 JavaScriptResponse(Alert("Boom!"))

}

You could test out this handling code by creating an Ajax button that always produces
an exception:

package code.snippet

6.5. Catch Any Exception | 123

import net.liftweb.util.Helpers._

import net.liftweb.http.SHtml

class ThrowsException {

 private def fail = throw new Error("not implemented")

 def render = "*" #> SHtml.ajaxButton("Press Me", () => fail)

}

This Ajax example will jump in before Lift’s default behaviour for Ajax errors. The default
is to retry the Ajax command three times (LiftRules.ajaxRetryCount), and then ex‐
ecute LiftRules.ajaxDefaultFailure, which will pop up a dialog saying: “The server
cannot be contacted at this time.”

See Also
Recipe 2.10 describes how to create a custom 404 (not found) page.

6.6. Streaming Content

Problem
You want to stream content back to the web client.

Solution
Use OutputStreamResponse, passing it a function that will write to the OutputStream
that Lift supplies.

In this example, we’ll stream all the integers from one, via a REST service:

package code.rest

import net.liftweb.http.{Req,OutputStreamResponse}

import net.liftweb.http.rest._

object Numbers extends RestHelper {

 // Convert a number to a String, and then to UTF-8 bytes

 // to send down the output stream.

 def num2bytes(x: Int) = (x + "\n") getBytes("utf-8")

 // Generate numbers using a Scala stream:

 def infinite = Stream.from(1).map(num2bytes)

 serve {

 case Req("numbers" :: Nil, _, _) =>

 OutputStreamResponse(out => infinite.foreach(out.write))

124 | Chapter 6: Request Pipeline

 }

}

Scala’s Stream class is a way to generate a sequence with lazy evaluation. The values
being produced by infinite are used as example data to stream back to the client.

Wire this into Lift in Boot.scala:

LiftRules.dispatch.append(Numbers)

Visiting http://127.0.0.1:8080/numbers will generate a 200 status code and start pro‐
ducing the integers from 1. The numbers are produced quite quickly, so you probably
don’t want to try that in your web browser, but instead from something that is easier to
stop, such as cURL.

Discussion
OutputStreamResponse expects a function of type OutputStream => Unit. The Out
putStream argument is the output stream to the client. This means the bytes we write
to the stream are written to the client. The relevant line from the example is:

OutputStreamResponse(out => infinite.foreach(out.write))

We are making use of the write(byte[]) method on out, a Java OutputStream, and
sending it the Array[Byte] being generated from our infinite stream.

Be aware that OutputStreamResponse is executed outside of the scope of S. This means
if you need to access anything in the session, do so outside of the function you pass to
OutputStreamResponse.

For more control over status codes, headers, and cookies, there are a variety of signatures
for the OutputStreamResponse object. For the most control, create an instance of the
OutputStreamResponse class:

case class OutputStreamResponse(

 out: (OutputStream) => Unit,

 size: Long,

 headers: List[(String, String)],

 cookies: List[HTTPCookie],

 code: Int)

Note that setting size to -1 causes the Content-Length header to be skipped.

There are two related types of response: InMemoryResponse and StreamingResponse.

InMemoryResponse

InMemoryResponse is useful if you have already assembled the full content to send to
the client. The signature is straightforward:

case class InMemoryResponse(

 data: Array[Byte],

6.6. Streaming Content | 125

 headers: List[(String, String)],

 cookies: List[HTTPCookie],

 code: Int)

As an example, we can modify the recipe and force our infinite sequence of numbers
to produce the first few numbers as an Array[Byte] in memory:

import net.liftweb.util.Helpers._

serve {

 case Req(AsInt(n) :: Nil, _, _) =>

 InMemoryResponse(infinite.take(n).toArray.flatten, Nil, Nil, 200)

}

The AsInt helper in Lift matches on an integer, meaning that a request starting with a
number matches, and we’ll return that many numbers from the infinite sequence. We’re
not setting headers or cookies, and this request produces what you’d expect:

$ curl http://127.0.0.1:8080/3

1

2

3

StreamingResponse

StreamingResponse pulls bytes into the output stream. This contrasts with Output
StreamResponse, where you are pushing data to the client.

Construct this type of response by providing a class with a read method that can be
read from:

case class StreamingResponse(

 data: {def read(buf: Array[Byte]): Int},

 onEnd: () => Unit,

 size: Long,

 headers: List[(String, String)],

 cookies: List[HTTPCookie],

 code: Int)

Notice the use of a structural type for the data parameter. Anything with a matching
read method can be given here, including java.io.InputStream`–like objects,
meaning `StreamingResponse can act as a pipe from input to output. Lift pulls 8 K
chunks from your StreamingResponse to send to the client.

Your data read function should follow the semantics of Java IO and return “the total
number of bytes read into the buffer, or –1 if there is no more data because the end of
the stream has been reached.”

See Also
The JavaDoc for InputStream gives the full contract for the read method.

126 | Chapter 6: Request Pipeline

http://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html

6.7. Serving a File with Access Control

Problem
You have a file on disk and you want to allow users to download it, but only if they are
allowed to. If they are not allowed to, you want to explain why.

Solution
Use RestHelper to serve the file or an explanation page.

For example, suppose we have the file /tmp/important and we only want selected re‐
quests to download that file from the /download/important URL. The structure for that
would be:

package code.rest

import net.liftweb.util.Helpers._

import net.liftweb.http.rest.RestHelper

import net.liftweb.http.{StreamingResponse, LiftResponse, RedirectResponse}

import net.liftweb.common.{Box, Full}

import java.io.{FileInputStream, File}

object DownloadService extends RestHelper {

 // (code explained below to go here)

 serve {

 case "download" :: Known(fileId) :: Nil Get req =>

 if (permitted) fileResponse(fileId)

 else Full(RedirectResponse("/sorry"))

 }

}

We are allowing users to download “known” files. That is, files we approve of for access.
We do this because opening up the filesystem to any unfiltered end user input pretty
much means your server will be compromised.

For our example, Known is checking a static list of names:

val knownFiles = List("important")

object Known {

 def unapply(fileId: String): Option[String] = knownFiles.find(_ == fileId)

}

For requests to these known resources, we convert the REST request into a Box[Lif
tResponse]. For permitted access we serve up the file:

private def permitted = scala.math.random < 0.5d

6.7. Serving a File with Access Control | 127

private def fileResponse(fileId: String): Box[LiftResponse] = for {

 file <- Box !! new File("/tmp/"+fileId)

 input <- tryo(new FileInputStream(file))

 } yield StreamingResponse(input,

 () => input.close,

 file.length,

 headers=Nil,

 cookies=Nil,

 200)

If no permission is given, the user is redirected to /sorry.html.

All of this is wired into Lift in Boot.scala with:

LiftRules.dispatch.append(DownloadService)

Discussion
By turning the request into a Box[LiftResponse], we are able to serve up the file, send
the user to a different page, and also allow Lift to handle the 404 (Empty) cases.

If we added a test to see if the file existed on disk in fileResponse, that would cause the
method to evaluate to Empty for missing files, which triggers a 404. As the code stands,
if the file does not exist, the tryo would give us a Failure that would turn into a 404
error with a body of “/tmp/important (No such file or directory).”

Because we are testing for known resources via the Known extractor as part of the pattern
for /download/, unknown resources will not be passed through to our File access code.
Again, Lift will return a 404 for these.

Guard expressions can also be useful for these kinds of situations:

serve {

 case "download" :: Known(id) :: Nil Get _ if permitted => fileResponse(id)

 case "download" :: _ Get req => RedirectResponse("/sorry")

}

You can mix and match extractors, guards, and conditions in your response to best fit
the way you want the code to look and work.

See Also
Chapter 24: Extractors from Programming in Scala.

6.8. Access Restriction by HTTP Header

Problem
You need to control access to a page based on the value of an HTTP header.

128 | Chapter 6: Request Pipeline

http://bit.ly/179b986

Solution
Use a custom If in SiteMap:

val HeaderRequired = If(

 () => S.request.map(_.header("ALLOWED") == Full("YES")) openOr false,

 "Access not allowed"

)

// Build SiteMap

val entries = List(

 Menu.i("Header Required") / "header-required" >> HeaderRequired

)

In this example, header-required.html can only be viewed if the request includes an
HTTP header called ALLOWED with a value of YES. Any other request for the page will be
redirected with a Lift error notice of “Access not allowed.”

This can be tested from the command line using a tool like cURL:

$ curl http://127.0.0.1:8080/header-required.html -H "ALLOWED:YES"

Discussion
The If test ensures the () => Boolean function you supply as a first argument returns
true before the page it applies to is shown. In this example, we’ll get true if the request
contains a header called ALLOWED, and the optional value of that header is
Full("YES"). This is a LocParam (location parameter) that modifies the SiteMap item.
It can be appended to any menu items you want using the >> method.

Note that without the header, the test will be false. This will mean links to the page will
not appear in the menu generated by Menu.builder.

The second argument to the If() is what Lift does if the test isn’t true when the user
tries to access the page. It’s a () => LiftResponse function. This means you can return
whatever you like, including redirects to other pages. In the example, we are making
use of a convenient implicit conversation from a String (“Access not allowed”) to a
notice with a redirection that will take the user to the home page.

If you visit the page without a header, you’ll see a notice saying “Access not allowed.”
This will be the home page of the site, but that’s just the default. You can request that
Lift show a different page by setting LiftRules.siteMapFailRedirectLocation in
Boot.scala:

LiftRules.siteMapFailRedirectLocation = "static" :: "permission" :: Nil

If you then try to access header-required.html without the header set, you’ll be redirected
to /static/permission and shown the content of whatever you put in that page.

6.8. Access Restriction by HTTP Header | 129

See Also
The Lift wiki gives a summary of Lift’s SiteMap and the tests you can include in site map
entries.

There are further details in Chapter 7 of Exploring Lift, and “SiteMap and access control,”
Chapter 7 of Lift in Action (Perrett, 2012, Manning Publications, Co.).

6.9. Accessing HttpServletRequest

Problem
You have an API to call that requires access to the HttpServletRequest.

Solution
Cast S.request:

import net.liftweb.http.S

import net.liftweb.http.provider.servlet.HTTPRequestServlet

import javax.servlet.http.HttpServletRequest

def servletRequest: Box[HttpServletRequest] = for {

 req <- S.request

 inner <- Box.asA[HTTPRequestServlet](req.request)

} yield inner.req

You can then make your API call:

servletRequest.foreach { r => yourApiCall(r) }

Discussion
Lift abstracts away from the low-level HTTP request, and from the details of the servlet
container your application is running in. However, it’s reassuring to know, if you abso‐
lutely need it, there is a way to get back down to the low level.

Note that the results of servletRequest is a Box, because there might not be a request
when you evaluate servletRequest—or you might one day port to a different deploy‐
ment environment and not be running on a standard Java servlet container.

As your code will have a direct dependency on the Java Servlet API, you’ll need to include
this dependency in your SBT build:

"javax.servlet" % "servlet-api" % "2.5" % "provided"

130 | Chapter 6: Request Pipeline

https://www.assembla.com/wiki/show/liftweb/SiteMap
http://exploring.liftweb.net

6.10. Force HTTPS Requests

Problem
You want to ensure clients are using HTTPS.

Solution
Add an earlyResponse function in Boot.scala redirecting HTTP requests to HTTPS
equivalents. For example:

LiftRules.earlyResponse.append { (req: Req) =>

 if (req.request.scheme != "https") {

 val uriAndQuery = req.uri +

 (req.request.queryString.map(s => "?"+s) openOr "")

 val uri = "https://%s%s".format(req.request.serverName, uriAndQuery)

 Full(PermRedirectResponse(uri, req, req.cookies: _*))

 }

 else Empty

}

Discussion
The earlyResponse call is called early on in the Lift pipeline. It is used to execute code
before a request is handled and, if required, exit the pipeline and return a response. The
function signature expected is Req => Box[LiftResponse].

In this example, we are testing for a request that is not https, and then formulating a
new URL that starts https and appends to it the rest of the original URL and any query
parameters. With this created, we return a redirection to the new URL, along with any
cookies that were set.

By evaluating to Empty for other requests (i.e., HTTPS requests), Lift will continue
passing the request through the pipeline as usual.

The ideal method to ensure requests are served using the correct scheme would be via
web server configuration, such as Apache or Nginx. This isn’t possible in some cases,
such as when your application is deployed to a Platform as a Service (PaaS) such as
CloudBees.

Amazon Load Balancer

For Amazon Elastic Load Balancer, note that you need to use an X-Forwarded-Proto
header to detect HTTPS. As mentioned in their Overview of Elastic Load Balancing
document, “Your server access logs contain only the protocol used between the server
and the load balancer; they contain no information about the protocol used between
the client and the load balancer.”

6.10. Force HTTPS Requests | 131

http://bit.ly/198LFoy
http://bit.ly/198LFoy

In this situation, modify the test from req.request.scheme != "https" to:

req.header("X-Forwarded-Proto") != Full("https")

132 | Chapter 6: Request Pipeline

CHAPTER 7

Relational Database Persistence with
Record and Squeryl

Squeryl is an object-relational mapping library. It converts Scala classes into tables, rows,
and columns in a relational database, and provides a way to write SQL-like queries that
are type-checked by the Scala compiler. The Lift Squeryl Record module integrates
Squeryl with Record, meaning your Lift application can use Squeryl to store and fetch
data while making use of the features of Record, such as data validation.

The code in this chapter can be found at https://github.com/LiftCookbook/cook
book_squeryl.

7.1. Configuring Squeryl and Record

Problem
You want to configure your Lift application to use Squeryl and Record.

Solution
Include the Squeryl-Record dependency in your build, and in Boot.scala, provide a
database connection function to SquerylRecord.initWithSquerylSession.

For example, to configure Squeryl with PostgreSQL, modify build.sbt to add two de‐
pendencies, one for Squeryl-Record and one for the database driver:

libraryDependencies ++= {

 val liftVersion = "2.5"

 Seq(

 "net.liftweb" %% "lift-webkit" % liftVersion,

 "net.liftweb" %% "lift-squeryl-record" % liftVersion,

 "postgresql" % "postgresql" % "9.1-901.jdbc4"

133

https://github.com/LiftCookbook/cookbook_squeryl
https://github.com/LiftCookbook/cookbook_squeryl

 ...

)

}

In Boot.scala, we define a connection and register it with Squeryl:

Class.forName("org.postgresql.Driver")

def connection = DriverManager.getConnection(

 "jdbc:postgresql://localhost/mydb",

 "username", "password")

SquerylRecord.initWithSquerylSession(

 Session.create(connection, new PostgreSqlAdapter))

All Squeryl queries need to run in the context of a transaction. One way to provide a
transaction is to configure a transaction around all HTTP requests. This is also config‐
ured in Boot.scala:

import net.liftweb.squerylrecord.RecordTypeMode._

import net.liftweb.http.S

import net.liftweb.util.LoanWrapper

S.addAround(new LoanWrapper {

 override def apply[T](f: => T): T = {

 val result = inTransaction {

 try {

 Right(f)

 } catch {

 case e: LiftFlowOfControlException => Left(e)

 }

 }

 result match {

 case Right(r) => r

 case Left(exception) => throw exception

 }

 }

})

This arranges for requests to be handled in the inTransaction scope. As Lift uses an
exception for redirects, we catch this exception and throw it after the transaction com‐
pletes, avoiding rollbacks after an S.redirectTo or similar.

Discussion
You can use any JVM persistence mechanism with Lift. What Lift Record provides is a
light interface around persistence with bindings to Lift’s CSS transforms, screens, and
wizards. Squeryl-Record is a concrete implementation to connect Record with Squeryl.
This means you can use standard Record objects, which are effectively your schema,
with Squeryl and write queries that are validated at compile time.

134 | Chapter 7: Relational Database Persistence with Record and Squeryl

Plugging into Squeryl means initialising Squeryl’s session management, which allows
us to wrap queries in Squeryl’s transaction and inTransaction functions. The differ‐
ence between these two calls is that inTransaction will start a new transaction if one
doesn’t exist, whereas transaction always creates a new transaction.

By ensuring a transaction is available for all HTTP requests via addAround, we can write
queries in Lift, and for the most part, do not have to establish transactions ourselves
unless we want to. For example:

import net.liftweb.squerylrecord.RecordTypeMode._

val r = myTable.insert(MyRecord.createRecord.myField(aValue))

In this recipe, the PostgreSqlAdapter is used. Squeryl also supports: OracleAdapter,
MySQLInnoDBAdapter and MySQLAdapter, MSSQLServer, H2Adapter, DB2Adapter, and
DerbyAdapter.

See Also
The Squeryl Getting Started Guide links to more information about session management
and configuration.

See Recipe 7.2 for configuring connections via Java Naming and Directory Interface
(JNDI).

7.2. Using a JNDI DataSource

Problem
You want to use a Java Naming and Directory Interface (JNDI) data source for your
Record-Squeryl Lift application.

Solution
In Boot.scala, call initWithSquerylSession with a DataSource looked up from the
JNDI context:

import javax.sql.DataSource

val ds = new InitialContext().

 lookup("java:comp/env/jdbc/mydb").asInstanceOf[DataSource]

SquerylRecord.initWithSquerylSession(

 Session.create(ds.getConnection(), new MySQLAdapter))

Replace mydb with the name given to your database in your JNDI configuration, and
replace MySQLAdapter with the appropriate adapter for the database you are using.

7.2. Using a JNDI DataSource | 135

http://squeryl.org/getting-started.html

Discussion
JNDI is a service provided by the web container (e.g., Jetty, Tomcat) that allows you to
configure a database connection in the container and then refer to the connection by
name in your application. One advantage of this is that you can avoid including database
credentials to your Lift source base.

The configuration of JNDI is different for each container, and may vary with versions
of the container you use. The “See Also” section next includes links to the documentation
pages for popular containers.

Some environments may also require that you to reference the JNDI resource in your
src/main/webapp/WEB-INF/web.xml file:

<resource-ref>

 <res-ref-name>jdbc/mydb</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

</resource-ref>

See Also
Resources for JNDI configuration include:

• An example on the Lift wiki for Apache and Jetty configuration.

• The documentation for Jetty gives examples for various databases.

• For Tomcat, see the JNDI configuration guide.

7.3. One-to-Many Relationship

Problem
You want to model a one-to-many relationship, such as a satellite belonging to a single
planet, but a planet possibly having many satellites.

Solution
Use Squeryl’s oneToManyRelation in your schema, and on your Lift model, include a
reference from the satellite to the planet.

The objective is to model the relationship as shown in Figure 7-1.

136 | Chapter 7: Relational Database Persistence with Record and Squeryl

http://bit.ly/17MFWXB
http://bit.ly/11NjLfK
http://bit.ly/19AhF7F

Figure 7-1. One planet may have many satellites, but a satellite orbits just one planet

In code:

package code.model

import org.squeryl.Schema

import net.liftweb.record.{MetaRecord, Record}

import net.liftweb.squerylrecord.KeyedRecord

import net.liftweb.record.field.{StringField, LongField}

import net.liftweb.squerylrecord.RecordTypeMode._

object MySchema extends Schema {

 val planets = table[Planet]

 val satellites = table[Satellite]

 val planetToSatellites = oneToManyRelation(planets, satellites).

 via((p,s) => p.id === s.planetId)

 on(satellites) { s =>

 declare(s.planetId defineAs indexed("planet_idx"))

 }

 class Planet extends Record[Planet] with KeyedRecord[Long] {

 override def meta = Planet

 override val idField = new LongField(this)

 val name = new StringField(this, 256)

 lazy val satellites = MySchema.planetToSatellites.left(this)

 }

 object Planet extends Planet with MetaRecord[Planet]

 class Satellite extends Record[Satellite] with KeyedRecord[Long] {

 override def meta = Satellite

 override val idField = new LongField(this)

 val name = new StringField(this, 256)

 val planetId = new LongField(this)

 lazy val planet = MySchema.planetToSatellites.right(this)

 }

 object Satellite extends Satellite with MetaRecord[Satellite]

}

7.3. One-to-Many Relationship | 137

This schema defines the two tables based on the Record classes, as table[Planet] and
table[Satellite]. It establishes a oneToManyRelation based on (via) the planetId
in the satellite table.

This gives Squeryl the information it needs to produce a foreign key to constrain the
planetId to reference an existing record in the planet table. This can be seen in the
schema generated by Squeryl. We can print the schema in Boot.scala with:

inTransaction {

 code.model.MySchema.printDdl

}

which will print:

-- table declarations :

create table Planet (

 name varchar(256) not null,

 idField bigint not null primary key auto_increment

);

create table Satellite (

 name varchar(256) not null,

 idField bigint not null primary key auto_increment,

 planetId bigint not null

);

-- indexes on Satellite

create index planet_idx on Satellite (planetId);

-- foreign key constraints :

alter table Satellite add constraint SatelliteFK1 foreign key (planetId)

 references Planet(idField);

An index called planet_idx is declared on the planetId field to improve query per‐
formance during joins.

Finally, we make use of the planetToSatellites.left and right methods to establish
lookup queries as Planet.satellites and Satellite.planet. We can demonstrate
their use by inserting example data and running the queries:

inTransaction {

 code.model.MySchema.create

 import code.model.MySchema._

 val earth = planets.insert(Planet.createRecord.name("Earth"))

 val mars = planets.insert(Planet.createRecord.name("Mars"))

 // .save as a short-hand for satellite.insert when we don't need

 // to immediately reference the record (save returns Unit).

 Satellite.createRecord.name("The Moon").planetId(earth.idField.is).save

 Satellite.createRecord.name("Phobos").planetId(mars.idField.is).save

 val deimos = satellites.insert(

 Satellite.createRecord.name("Deimos").planetId(mars.idField.is))

138 | Chapter 7: Relational Database Persistence with Record and Squeryl

 println("Deimos orbits: "+deimos.planet.single.name.is)

 println("Moons of Mars are: "+mars.satellites.map(_.name.is))

}

Running this code produces the output:

Deimos orbits: Mars

Moons of Mars are: List(Phobos, Deimos)

In this example code, we’re calling deimos.planet.single, which returns one result or
will throw an exception if the associated planet was not found. headOption is the safer
way if there’s a chance the record will not be found, as it will evaluate to None or
Some[Planet].

Discussion
The planetToSatellites.left method is not a simple collection of Satellite objects.
It’s a Squeryl Query[Satellite], meaning you can treat it like any other kind of Query
able[Satellite]. For example, we could ask for those satellites of a planet that are
alphabetically after “E,” which for Mars would match “Phobos”:

mars.satellites.where(s => s.name gt "E").map(_.name)

The left method result is also a OneToMany[Satellite] that adds the following
methods:

assign

Adds a new relationship, but does not update the database

associate

Similar to assign, but updates the database

deleteAll

Removes the relationships

The assign call gives the satellite the relationship to the planet:

val express = Satellite.createRecord.name("Mars Express")

mars.satellites.assign(express)

express.save

The next time we query mars.satellites, we will find the Mars Express orbiter.

A call to associate would go one step further for us, making Squeryl insert or update
the satellite automatically:

val express = Satellite.createRecord.name("Mars Express")

mars.satellites.associate(express)

7.3. One-to-Many Relationship | 139

The third method, deleteAll, does what it sounds like it should do. It would execute
the following SQL and return the number of rows removed:

delete from Satellite

The right side of the one-to-many also has additional methods added by Many
ToOne[Planet] of assign and delete. Be aware that to delete the “one” side of a many-
to-one, anything assigned to the record will need to have been deleted already to avoid
a database constraint error that would arise from, for example, leaving satellites refer‐
encing nonexistent planets.

As left and right are queries, it means each time you use them you’ll be sending a new
query to the database. Squeryl refers to these forms as stateless relations.

The stateful versions of left and right look like this:

class Planet extends Record[Planet] with KeyedRecord[Long] {

 ...

 lazy val satellites : StatefulOneToMany[Satellite] =

 MySchema.planetToSatellites.leftStateful(this)

}

class Satellite extends Record[Satellite] with KeyedRecord[Long] {

 ...

 lazy val planet : StatefulManyToOne[Planet] =

 MySchema.planetToSatellites.rightStateful(this)

}

This change means the results of mars.satellites will be cached. Subsequent calls on
that instance of a Planet won’t trigger a round trip to the database. You can still asso
ciate new records or deleteAll records, which will work as you expect, but if a rela‐
tionship is added or changed elsewhere you’ll need to call refresh on the relation to
see the change.

Which version should you use? That will depend on your application, but you can use
both in the same record if you need to.

See Also
The Squeryl Relations page provides additional details.

7.4. Many-to-Many Relationship

Problem
You want to model a many-to-many relationship, such as a planet being visited by many
space probes, but a space probe also visiting many planets.

140 | Chapter 7: Relational Database Persistence with Record and Squeryl

http://bit.ly/163FgJv

Solution
Use Squeryl’s manyToManyRelation in your schema, and implement a record to hold
the join between the two sides of the relationship. Figure 7-2 shows the structure we
will create in this recipe, where Visit is the record that will connect each many to the
other many.

Figure 7-2. Many-to-many: Jupiter was visited by Juno and Voyager 1; Saturn was only
visited by Voyager 1

The schema is defined in terms of two tables, one for planets and one for space probes,
plus a relationship between the two based on a third class, called Visit:

package code.model

import org.squeryl.Schema

import net.liftweb.record.{MetaRecord, Record}

import net.liftweb.squerylrecord.KeyedRecord

import net.liftweb.record.field.{IntField, StringField, LongField}

import net.liftweb.squerylrecord.RecordTypeMode._

import org.squeryl.dsl.ManyToMany

object MySchema extends Schema {

 val planets = table[Planet]

 val probes = table[Probe]

 val probeVisits = manyToManyRelation(probes, planets).via[Visit] {

 (probe, planet, visit) =>

 (visit.probeId === probe.id, visit.planetId === planet.id)

 }

 class Planet extends Record[Planet] with KeyedRecord[Long] {

 override def meta = Planet

 override val idField = new LongField(this)

 val name = new StringField(this, 256)

 lazy val probes : ManyToMany[Probe,Visit] =

 MySchema.probeVisits.right(this)

 }

 object Planet extends Planet with MetaRecord[Planet]

7.4. Many-to-Many Relationship | 141

 class Probe extends Record[Probe] with KeyedRecord[Long] {

 override def meta = Probe

 override val idField = new LongField(this)

 val name = new StringField(this, 256)

 lazy val planets : ManyToMany[Planet,Visit] =

 MySchema.probeVisits.left(this)

 }

 object Probe extends Probe with MetaRecord[Probe]

 class Visit extends Record[Visit] with KeyedRecord[Long] {

 override def meta = Visit

 override val idField = new LongField(this)

 val planetId = new LongField(this)

 val probeId = new LongField(this)

 }

 object Visit extends Visit with MetaRecord[Visit]

}

In Boot.scala, we can print out this schema:

inTransaction {

 code.model.MySchema.printDdl

}

which will produce something like this, depending on the database in use:

-- table declarations :

create table Planet (

 name varchar(256) not null,

 idField bigint not null primary key auto_increment

);

create table Probe (

 name varchar(256) not null,

 idField bigint not null primary key auto_increment

);

create table Visit (

 idField bigint not null primary key auto_increment,

 planetId bigint not null,

 probeId bigint not null

);

-- foreign key constraints :

alter table Visit add constraint VisitFK1 foreign key (probeId)

 references Probe(idField);

alter table Visit add constraint VisitFK2 foreign key (planetId)

 references Planet(idField);

Notice that the visit table will hold a row for each relationship between a planetId
and probeId.

142 | Chapter 7: Relational Database Persistence with Record and Squeryl

Planet.probes and Probe.planets provide an associate method to establish a new
relationship. For example, we can establish a set of planets and probes:

val jupiter = planets.insert(Planet.createRecord.name("Jupiter"))

val saturn = planets.insert(Planet.createRecord.name("Saturn"))

val juno = probes.insert(Probe.createRecord.name("Juno"))

val voyager1 = probes.insert(Probe.createRecord.name("Voyager 1"))

and then connect them:

juno.planets.associate(jupiter)

voyager1.planets.associate(jupiter)

voyager1.planets.associate(saturn)

We can also use Probe.planets and Planet.probes as a query to look up the associa‐
tions. To access all the probes that had visited each planet in a snippet, we can write this:

package code.snippet

class ManyToManySnippet {

 def render =

 "#planet-visits" #> planets.map { planet =>

 ".planet-name *" #> planet.name.is &

 ".probe-name *" #> planet.probes.map(_.name.is)

 }

}

The snippet could be combined with a template like this:

<div data-lift="ManyToManySnippet">

 <h1>Planet facts</h1>

 <div id="planet-visits">

 <p>

 Name will be here was visited by:

 </p>

 <li class="probe-name">Probe name goes here

 </div>

</div>

The top half of Figure 7-3 gives an example of the output from this snippet and template.

Discussion
The Squeryl DSL manyToManyRelation(probes, planets).via[Visit] is the core el‐
ement here connecting our Planet, Probe, and Visit records together. It allows us to
access the “left” and “right” sides of the relationship in our model as Probe.planets
and Planet.probes.

7.4. Many-to-Many Relationship | 143

As with Recipe 7.3 for one-to-many relationships, the left and right sides are queries.
When you ask for Planet.probes, the database is queried appropriately with a join on
the Visit records:

Select

 Probe.name,

 Probe.idField

From

 Visit,

 Probe

Where

 (Visit.probeId = Probe.idField) and (Visit.planetId = ?)

Also as described in Recipe 7.3, there are stateful variants of left and right to cache
the query results.

In the data we inserted into the database, we did not have to mention Visit. The Squeryl
manyToManyRelation has enough information to know how to insert a visit as the re‐
lationship. Incidentally, it doesn’t matter which way round we make the calls in a many-
to-many relationship. The following two expressions are equivalent and result in the
same database structure:

juno.planets.associate(jupiter)

// ..or..

jupiter.probes.associate(juno)

You might even wonder why we had to bother with defining a Visit record at all, but
there are benefits in doing so. For example, you can attach additional information onto
the join table, such as the year the probe visited a planet.

To do this, we modify the record to include the additional field:

class Visit extends Record[Visit] with KeyedRecord[Long] {

 override def meta = Visit

 override val idField = new LongField(this)

 val planetId = new LongField(this)

 val probeId = new LongField(this)

 val year = new IntField(this)

}

Visit is still a container for the planetId and probeId references, but we also have a
plain integer holder for the year of the visit.

To record a visit year, we need the assign method provided by ManyToMany[T]. This
will establish the relationship but not change the database. Instead, it returns the in‐
stance Visit, which we can change and then store in the database:

probeVisits.insert(voyager1.planets.assign(saturn).year(1980))

The return type of assign in this case is Visit, and Visit has a year field. Inserting the
Visit record via probeVisits will create a row in the table for visits.

144 | Chapter 7: Relational Database Persistence with Record and Squeryl

To access this extra information on the Visit object, you can make use of a couple of
methods provided by ManyToMany[T]:

associations

A query returning the Visit objects related to the Planet.probes or Probe.plan
ets

associationMap

A query returning pairs of (Planet,Visit) or (Probe,Visit), depending on
which side of the join you call it on (probes or planets)

For example, in a snippet, we could list all the space probes and, for each probe, show
the planet it visited and what year it was there. The snippet would look like this:

"#probe-visits" #> probes.map { probe =>

 ".probe-name *" #> probe.name.is &

 ".visit" #> probe.planets.associationMap.collect {

 case (planet, visit) =>

 ".planet-name *" #> planet.name.is &

 ".year" #> visit.year.is

 }

}

We are using collect here rather than map just to match the (Planet,Visit) tuple and
give the values meaningful names. You could also use (for { (planet, visit) <-
probe.planets.associationMap } yield ...) if you prefer.

The lower half of Figure 7-3 demonstrates how this snippet would render when com‐
bined with the following template:

<h1>Probe facts</h1>

<div id="probe-visits">

 <p>Space craft name visited:</p>

 <li class="visit">

 Name here in n

</div>

7.4. Many-to-Many Relationship | 145

Figure 7-3. Example output from using the many-to-many features in this recipe

To remove an association, use the dissociate or dissociateAll methods on the left
or right queries. To remove a single association:

val numRowsChanged = juno.planets.dissociate(jupiter)

This would be executed in SQL as:

delete from Visit

where

 probeId = ? and planetId = ?

To remove all the associations:

val numRowsChanged = jupiter.probes.dissociateAll

The SQL for this is:

delete from Visit

where

 Visit.planetId = ?

What you cannot do is delete a Planet or Probe if that record still has associations in
the Visit relationship. What you’d get is a referential integrity exception thrown. In‐
stead, you’ll need to dissociateAll first:

jupiter.probes.dissociateAll

planets.delete(jupiter.id)

146 | Chapter 7: Relational Database Persistence with Record and Squeryl

However, if you do want cascading deletes, you can achieve this by overriding the default
behaviour in your schema:

// To automatically remove probes when we remove planets:

probeVisits.rightForeignKeyDeclaration.constrainReference(onDelete cascade)

// To automatically remove planets when we remove probes:

probeVisits.leftForeignKeyDeclaration.constrainReference(onDelete cascade)

This is part of the schema, in that it will change the table constraints, with printDdl
producing this (depending on the database you use):

alter table Visit add constraint VisitFK1 foreign key (probeId)

 references Probe(idField) on delete cascade;

alter table Visit add constraint VisitFK2 foreign key (planetId)

 references Planet(idField) on delete cascade;

See Also
Recipe 7.3, on one-to-many relationships, discusses leftStateful and rightState
ful relations, which are also applicable for many-to-many relationships.

Foreign keys and cascading deletes are described on the Squeryl Relations page.

7.5. Adding Validation to a Field

Problem
You want to add validation to a field in your model, so that users are informed of missing
fields or fields that aren’t acceptable to your application.

Solution
Override the validations method on your field and provide one or more validation
functions.

As an example, imagine we have a database of planets and we want to ensure any new
planets entered by users have names of at least five characters. We add this as a validation
on our record:

 class Planet extends Record[Planet] with KeyedRecord[Long] {

 override def meta = Planet

 override val idField = new LongField(this)

 val name = new StringField(this, 256) {

 override def validations =

 valMinLen(5, "Name too short") _ :: super.validations

7.5. Adding Validation to a Field | 147

http://squeryl.org/relations.html

 }

 }

To check the validation, in our snippet we call validate on the record, which will return
all the errors for the record:

package code

package snippet

import net.liftweb.http.{S,SHtml}

import net.liftweb.util.Helpers._

import model.MySchema._

class ValidateSnippet {

 def render = {

 val newPlanet = Planet.createRecord

 def validateAndSave() : Unit = newPlanet.validate match {

 case Nil =>

 planets.insert(newPlanet)

 S.notice("Planet '%s' saved" format newPlanet.name.is)

 case errors =>

 S.error(errors)

 }

 "#planetName" #> newPlanet.name.toForm &

 "type=submit" #> SHtml.onSubmitUnit(validateAndSave)

 }

}

When the snippet runs, we render the Planet.name field and wire up a submit button
to call the validateAndSave method.

If the newPlanet.validate call indicates there are no errors (Nil), we can save the
record and inform the user via a notice. If there are errors, we render all of them with
S.error.

The corresponding template could be:

<html>

<head>

 <title>Planet Name Validation</title>

</head>

<body data-lift-content-id="main">

<div id="main" data-lift="surround?with=default;at=content">

 <h1>Add a planet</h1>

 <div data-lift="Msgs?showAll=false">

 <lift:notice_class>noticeBox</lift:notice_class>

148 | Chapter 7: Relational Database Persistence with Record and Squeryl

 </div>

 <p>

 Planet names need to be at least 5 characters long.

 </p>

 <form class="ValidateSnippet?form">

 <div>

 <label for="planetName">Planet name:</label>

 <input id="planetName" type="text"></input>

 Msg to appear here

 </div>

 <input type="submit"></input>

 </form>

</div>

</body>

</html>

In this template, the error message is shown next to the input field, styled with a CSS
class of errorClass. The success notice is shown near the top of the page, just below
the <h1> heading, using a style called noticeBox.

Discussion
The built-in validations are:

valMinLen

Validates that a string is at least a given length, as shown previously

valMaxLen

Validates that a string is not above a given length

valRegex

Validates that a string matches the given pattern

An example of regular expression validation on a field would be:

import java.util.regex.Pattern

val url = new StringField(this, 1024) {

 override def validations =

 valRegex(Pattern.compile("^https?://.*"),

 "URLs should start http:// or https://") _ ::

 super.validations

}

7.5. Adding Validation to a Field | 149

The list of errors from validate are of type List[FieldError]. The S.error method
accepts this list and registers each validation error message so it can be shown on the
page. It does this by associating the message with an ID for the field, allowing you to
pick out just the errors for an individual field, as we do in this recipe. The ID is stored
on the field, and in the case of Planet.name, it is available as Planet.name.uniqueFiel
dId. It’s a Box[String] with a value of Full("name_id"). It is this name_id value that
we used in the lift:Msg?id=name_id&errorClass=error markup to pick out just the
error for this field.

You don’t have to use S.error to display validation messages. You can roll your own
display code, making use of the FieldError directly. As you can see from the source for
FieldError, the error is available as a msg property:

case class FieldError(field: FieldIdentifier, msg: NodeSeq) {

 override def toString = field.uniqueFieldId + " : " + msg

}

See Also
BaseField.scala in the Lift source code contains the definition of the built-in String
Validators.

Chapter 3 describes form processing, notices, and errors.

7.6. Custom Validation Logic

Problem
You want to provide your own validation logic and apply it to a field in a record.

Solution
Implement a function from the type of the field to List[FieldError], and reference
the function in the validations on the field.

Here’s an example: we have a database of planets, and when a user enters a new planet,
we want the name to be unique. The name of the planet is a String, so we need to
provide a function from String => List[FieldError].

With the validation function defined (valUnique, next), we include it in the list of
validations on the name field:

import net.liftweb.util.FieldError

class Planet extends Record[Planet] with KeyedRecord[Long] {

 override def meta = Planet

 override val idField = new LongField(this)

150 | Chapter 7: Relational Database Persistence with Record and Squeryl

http://bit.ly/120VGhc

 val name = new StringField(this, 256) {

 override def validations =

 valUnique("Planet already exists") _ ::

 super.validations

 }

 private def valUnique(errorMsg: => String)(name: String): List[FieldError] =

 Planet.unique_?(name) match {

 case true => FieldError(this.name, errorMsg) :: Nil

 case false => Nil

 }

}

object Planet extends Planet with MetaRecord[Planet] {

 def unique_?(name: String) = from(planets) { p =>

 where(lower(p.name) === lower(name)) select(p)

 }.isEmpty

}

The validation is triggered just like any other validation, as described in Recipe 7.5.

Discussion
By convention, validation functions have two argument lists: the first for the error mes‐
sage, and the second to receive the value to validate. This allows you to easily reuse your
validation function on other fields. For example, if you wanted to validate that satellites
have a unique name, you could use exactly the same function but provide a different
error message.

The FieldError you return needs to know the field it applies to as well as the message
to display. In the example, the field is name, but we’ve used this.name to avoid confusion
with the name parameter passed into the valUnique function.

The example code has used text for the error message, but there is a variation of Fiel
dError that accepts NodeSeq. This allows you to produce safe markup as part of the
error if you need to. For example:

FieldError(this.name, <p>Please see our name policy</p>)

For internationalisation, you may prefer to pass in a key to the validation function, and
resolve it via S.?:

val name = new StringField(this, 256) {

 override def validations =

 valUnique("validation.planet") _ ::

 super.validations

 }

// ...combined with...

7.6. Custom Validation Logic | 151

private def valUnique(errorKey: => String)(name: String): List[FieldError] =

 Planet.unique_?(name) match {

 case false => FieldError(this.name, S ? errorKey) :: Nil

 case true => Nil

 }

See Also
Recipe 7.5 discusses field validation and the built-in validations.

Text localisation is discussed on the Lift wiki.

7.7. Modify a Field Value Before It Is Set

Problem
You want to modify the value of a field before storing it (for example, to clean a value
by removing leading and trailing whitespace).

Solution
Override setFilter and provide a list of functions to apply to the field.

To remove leading and trailing whitespace entered by the user, the field would use the
trim filter:

val name = new StringField(this, 256) {

 override def setFilter = trim _ :: super.setFilter

}

Discussion
The built-in filters are:

crop

Enforces the field’s min and max length by truncation

trim

Applies String.trim to the field value

toUpper and toLower
Change the case of the field value

removeRegExChars

Removes matching regular expression characters

notNull

Converts null values to an empty string

152 | Chapter 7: Relational Database Persistence with Record and Squeryl

https://www.assembla.com/wiki/show/liftweb/Localization

Filters are run before validation. This means if you have a minimum length validation
and the trim filter, for example, users cannot pass the validation test by just including
spaces on the end of the value they enter.

A filter for a String field would be of type String => String, and the setFilter
function expects a List of these. Knowing this, it’s straightforward to write custom
filters. For example, here’s is a filter that applies a simple form of title case on our name
field:

 def titleCase(in: String) =

 in.split("\\s").

 map(_.toList).

 collect {

 case x :: xs => (Character.toUpperCase(x).toString :: xs).mkString

 }.mkString(" ")

This function is splitting the input string on spaces, converting each word into a list of
characters, converting the first character into uppercase, and then gluing the strings
back together.

We install titleCase on a field like any other filter:

val name = new StringField(this, 256) {

 override def setFilter =

 trim _ :: titleCase _ :: super.setFilter

}

Now when a user enters “jaglan beta” as a planet name, it is stored in the database as
“Jaglan Beta.”

See Also
The best place to understand the filters is the trait StringValidators in the source for
BaseField.

If you really do need to apply title case to a value, the Apache Commons WordUtils
class provides ready-made functions for this.

7.8. Testing with Specs

Problem
You want to write Specs2 unit tests that access your database model with Squeryl and
Record.

7.8. Testing with Specs | 153

http://bit.ly/120VGhc
http://bit.ly/120VGhc
http://commons.apache.org/lang/
http://commons.apache.org/lang/

Solution
Use an in-memory database, and arrange for it to be set up before your test and destroyed
after it.

There are three parts to this: including a database in your project and connecting to it
in an in-memory mode; creating a reusable trait to set up the database; and then using
the trait in your test.

The H2 database has an in-memory mode, meaning it won’t save data to disk. It needs
to be included in build.sbt as a dependency. Whilst you are editing build.sbt, also disable
SBT’s parallel test execution to prevent database tests from influencing each other:

libraryDependencies += "com.h2database" % "h2" % "1.3.170"

parallelExecution in Test := false

Create a trait to initialise the database and create the schema:

package code.model

import java.sql.DriverManager

import org.squeryl.Session

import org.squeryl.adapters.H2Adapter

import net.liftweb.util.StringHelpers

import net.liftweb.common._

import net.liftweb.http.{S, Req, LiftSession }

import net.liftweb.squerylrecord.SquerylRecord

import net.liftweb.squerylrecord.RecordTypeMode._

import org.specs2.mutable.Around

import org.specs2.execute.Result

trait TestLiftSession {

 def session = new LiftSession("", StringHelpers.randomString(20), Empty)

 def inSession[T](a: => T): T = S.init(Req.nil, session) { a }

}

trait DBTestKit extends Loggable {

 Class.forName("org.h2.Driver")

 Logger.setup = Full(net.liftweb.util.LoggingAutoConfigurer())

 Logger.setup.foreach { _.apply() }

 def configureH2() = {

 SquerylRecord.initWithSquerylSession(

 Session.create(

 DriverManager.getConnection("jdbc:h2:mem:dbname;DB_CLOSE_DELAY=-1",

 "sa", ""),

154 | Chapter 7: Relational Database Persistence with Record and Squeryl

 new H2Adapter)

)

 }

 def createDb() {

 inTransaction {

 try {

 MySchema.drop

 MySchema.create

 } catch {

 case e : Throwable =>

 logger.error("DB Schema error", e)

 throw e

 }

 }

 }

}

case class InMemoryDB() extends Around with DBTestKit with TestLiftSession {

 def around[T <% Result](testToRun: =>T) = {

 configureH2

 createDb

 inSession {

 inTransaction {

 testToRun

 }

 }

 }

}

In summary, this trail provides an InMemoryDB context for Specs2. This context ensures
that the database is configured, the schema created, and a transaction is supplied around
your test.

Finally, mix the trait into your test and execute in the scope of the InMemoryDB context.

As an example, using the schema from Recipe 7.3, we can test that the planet Mars has
two moons:

package code.model

import org.specs2.mutable._

import net.liftweb.squerylrecord.RecordTypeMode._

import MySchema._

class PlanetsSpec extends Specification with DBTestKit {

 sequential

7.8. Testing with Specs | 155

 "Planets" >> {

 "know that Mars has two moons" >> InMemoryDB() {

 val mars = planets.insert(Planet.createRecord.name("Mars"))

 Satellite.createRecord.name("Phobos").planetId(mars.idField.is).save

 Satellite.createRecord.name("Deimos").planetId(mars.idField.is).save

 mars.satellites.size must_== 2

 }

 }

}

Running this with SBT’s test command would show a success:

> test

[info] PlanetsSpec

[info]

[info] Planets

[info] + know that Mars has two moons

[info]

[info]

[info] Total for specification PlanetsSpec

[info] Finished in 1 second, 274 ms

[info] 1 example, 0 failure, 0 error

[info]

[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0

[success] Total time: 3 s, completed 03-Feb-2013 11:31:16

Discussion
The DBTestKit trait has to do quite a lot of work for us. At the lowest level, it loads the
H2 driver and configures Squeryl with an in-memory connection. The mem part of the
JDBC connection string (jdbc:h2:mem:dbname;DB_CLOSE_DELAY=-1) means that H2
won’t try to persist the data to disk. The database just resides in memory, so there are
no files in disk to maintain, and it runs quickly.

By default, when a connection is closed, the in-memory database is destroyed. In this
recipe, we’ve disabled that by adding the DB_CLOSE_DELAY=-1, which will allow us to
write unit tests that span connections if we want to.

The next step up from connection management is the creation of the database schema
in memory. We do this in createDb by throwing away the schema and any data when
we start a test, and create it afresh. If you have very common test datasets, this might be
a good place to insert that data before your test runs.

These steps are brought together at the InMemoryDB class, which implements a Specs2
interface for code to run Around a test. We’ve also wrapped the test around a TestLift
Session. This provides an empty session, which is useful if you are accessing

156 | Chapter 7: Relational Database Persistence with Record and Squeryl

state-related code (such as the S object). It’s not necessary for running tests against
Record and Squeryl, but it has been included here because you may want to do that at
some point.

In our specification itself, we mix in the DBTestKit and reference the InMemoryDB
context on the tests that access the database. You’ll note that we’ve used >> rather than
Specs2’s should and in that you may have seen elsewhere. This is to avoid name conflicts
between Specs2 and Squeryl that you might come across.

As we disabled parallel execution with SBT, we also disable parallel execution in Specs2
with sequential. We are doing this to prevent a situation where one test might be
expecting data that another test is modifying at the same time.

If all the tests in a specification are going to use the database, you can use the Specs2
AroundContextExample[T] to avoid having to mention InMemoryDB on every test. To
do that, mix in AroundContextExample[InMemoryDB] and define aroundContext:

package code.model

import MySchema._

import org.specs2.mutable._

import org.specs2.specification.AroundContextExample

import net.liftweb.squerylrecord.RecordTypeMode._

class AlternativePlanetsSpec extends Specification with

 AroundContextExample[InMemoryDB] {

 sequential

 def aroundContext = new InMemoryDB()

 "Solar System" >> {

 "know that Mars has two moons" >> {

 val mars = planets.insert(Planet.createRecord.name("Mars"))

 Satellite.createRecord.name("Phobos").planetId(mars.idField.is).save

 Satellite.createRecord.name("Deimos").planetId(mars.idField.is).save

 mars.satellites.size must_== 2

 }

 }

}

All the tests in AlternativePlanetsSpec will now be run with an InMemoryDB around
them.

7.8. Testing with Specs | 157

We’ve used a database with an in-memory mode for the advantages of speed and no
files to clean up. However, you could use any regular database: you’d need to change the
driver and connection string.

See Also
See the H2 database website for more about H2’s in-memory database settings.

Recipe 8.9 discusses unit testing with MongoDB, but the comments on SBT’s other
testing commands and testing in an IDE would apply to this recipe, too.

7.9. Store a Random Value in a Column

Problem
You need a column to hold a random value.

Solution
Use UniqueIdField:

import net.liftweb.record.field.UniqueIdField

val randomId = new UniqueIdField(this, 32) {}

Note the {} in the example; this is required as UniqueIdField is an abstract class.

The size value, 32, indicates how many random characters to create.

Discussion
The UniqueIdField field is a kind of StringField and the default value for the field
comes from StringHelpers.randomString. The value is randomly generated, but not
guaranteed to be unique in the database.

The database column backing the UniqueIdField in this recipe will be a varchar(32)
not null or similar. The value stored will look like:

GOJFGQRLS5GVYGPH3L3HRNXTATG3RM5M

As the value is made up of just letters and numbers, it makes it easy to use in URLs as
there are no characters to escape. For example, it could be used in a link to allow a user
to validate her account when sent the link over email, which is one of the uses in
ProtoUser.

If you need to change the value, the reset method on the field will generate a new
random string for the field.

158 | Chapter 7: Relational Database Persistence with Record and Squeryl

http://bit.ly/10iP3wQ

If you need an automatic value that is even more likely to be unique per-row, you can
add a field that wraps a universally unique identifier (UUID):

import java.util.UUID

val uuid = new StringField(this, 36) {

 override def defaultValue = UUID.randomUUID().toString

}

This will automatically insert values of the form “6481a844-460a-a4e0-9191-
c808e3051519” in records you create.

See Also
Java’s UUID support includes a link to RFC 4122, which defines UUIDs.

7.10. Automatic Created and Updated Timestamps

Problem
You want created and updated timestamps on your records and would like them auto‐
matically updated when a row is added or updated.

Solution
Define the following traits:

package code.model

import java.util.Calendar

import net.liftweb.record.field.DateTimeField

import net.liftweb.record.Record

trait Created[T <: Created[T]] extends Record[T] {

 self: T =>

 val created: DateTimeField[T] = new DateTimeField(this) {

 override def defaultValue = Calendar.getInstance

 }

}

trait Updated[T <: Updated[T]] extends Record[T] {

 self: T =>

 val updated = new DateTimeField(this) {

 override def defaultValue = Calendar.getInstance

 }

 def onUpdate = this.updated(Calendar.getInstance)

7.10. Automatic Created and Updated Timestamps | 159

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

}

trait CreatedUpdated[T <: Updated[T] with Created[T]] extends

 Updated[T] with Created[T] {

 self: T =>

}

Add the trait to the model. For example, we can modify a Planet record to include the
time the record was created and updated:

class Planet private () extends Record[Planet]

 with KeyedRecord[Long] with CreatedUpdated[Planet] {

 override def meta = Planet

 // field entries as normal...

}

Finally, arrange for the updated field to be updated:

class MySchema extends Schema {

 ...

 override def callbacks = Seq(

 beforeUpdate[Planet] call {_.onUpdate}

)

 ...

Discussion
Although there is a built-in net.liftweb.record.LifecycleCallbacks trait that al‐
lows you to trigger behaviour onUpdate, afterDelete, and so on, it is only for use on
individual fields, rather than records. As our goal is to update the updated field when
any part of the record changes, we can’t use the LiftcycleCallbacks here.

Instead, the CreatedUpdated trait simplifies adding updated and created fields to a
record, but we do need to remember to add a hook into the schema to ensure the updated
value is changed when a record is modified. This is why we set the callbacks on the
Schema.

The schema for records with CreatedUpdated mixed in will include two additional
columns:

updated timestamp not null,

created timestamp not null

The timestamp is used for the H2 database. For other databases, the type may be
different.

The values can be accessed like any other record field. Using the example data from
Recipe 7.3, we could run the following:

val updated : Calendar = mars.updated.id

val created : Calendar = mars.created.is

160 | Chapter 7: Relational Database Persistence with Record and Squeryl

If you only need created time, or updated time, just mix in the Created[T] or Upda
ted[T] trait instead of CreatedUpdated[T].

It should be noted that onUpdate is called only on full updates and not on partial up‐
dates with Squeryl. A full update is when the object is altered and then saved; a partial
update is where you attempt to alter objects via a query.

If you’re interested in other automations for Record, the Squeryl schema callbacks sup‐
port these triggered behaviours:

• beforeInsert and afterInsert

• afterSelect

• beforeUpdate and afterUpdate

• beforeDelete and afterDelete

See Also
Full and partial updates are described in Insert, Update, and Delete.

7.11. Logging SQL

Problem
You want to see the SQL being executed by Squeryl.

Solution
Add the following any time you have a Squeryl season, such as just before your query:

org.squeryl.Session.currentSession.setLogger(s => println(s))

By providing a String => Unit function to setLogger, Squeryl will execute that func‐
tion with the SQL it runs. In this example, we are simply printing the SQL to the console.

Discussion
You’ll probably want to use the logging facilities in Lift to capture SQL. For example:

package code.snippet

import net.liftweb.common.Loggable

import org.squeryl.Session

class MySnippet extends Loggable {

7.11. Logging SQL | 161

http://squeryl.org/inserts-updates-delete.html

 def render = {

 Session.currentSession.setLogger(s => logger.info(s))

 // ...your snippet code here...

 }

}

This will log queries according to the settings for the logging system, typically the Log‐
back project configured in src/resources/props/default.logback.xml.

It can be inconvenient to have to enable logging in each snippet during development.
To trigger logging for all snippets, you can modify the addAround call in Boot.scala

(Recipe 7.1) to include a setLogger call while inTransaction:

S.addAround(new LoanWrapper {

 override def apply[T](f: => T): T = {

 val result = inTransaction {

 Session.currentSession.setLogger(s => logger.info(s))

 // ... rest of addAround as normal

See Also
You can learn about logging in Lift from the Logging wiki page.

7.12. Model a Column with MySQL MEDIUMTEXT

Problem
You want to use MySQL’s MEDIUMTEXT for a column, but StringField doesn’t have this
option.

Solution
Use Squeryl’s dbType in your schema:

object MySchema extends Schema {

 on(mytable)(t => declare(

 t.mycolumn defineAs dbType("MEDIUMTEXT")

))

}

This schema setting will give you the correct column type in MySQL:

create table mytable (

 mycolumn MEDIUMTEXT not null

);

On the record you can use StringField as usual.

162 | Chapter 7: Relational Database Persistence with Record and Squeryl

https://www.assembla.com/spaces/liftweb/wiki/Logging

Discussion
This recipe points towards the flexibility available with Squeryl’s schema definition DSL.
The column attribute in this example is just one of a variety of adjustments you can
make to the default choices that Squeryl uses.

For example, you can use the syntax to chain column attributes for a single column, and
also define multiple columns at the same time:

object MySchema extends Schema {

 on(mytable)(t => declare(

 t.mycolumn defineAs(dbType("MEDIUMTEXT"),indexed),

 t.id definedAs(unique, named("MY_ID"))

))

}

See Also
The schema definition page for Squeryl gives examples of attributes you can apply to
tables and columns.

7.13. MySQL Character Set Encoding

Problem
Some characters stored in your MySQL database are appearing as ???.

Solution
Ensure that:

• LiftRules.early.append(_.setCharacterEncoding("UTF-8")) is included in
Boot.scala.

• ?useUnicode=true&characterEncoding=UTF-8 is included in your JDBC connec‐
tions URL.

• Your MySQL database has been created using a UTF-8 character set.

Discussion
There are a number of interactions here that can impact characters going into, and
coming out of, a MySQL database. The basic problem is that bytes transferred across
networks have no meaning unless you know the encoding.

The setCharacterEncoding("UTF-8") call in Boot.scala is being applied to every
HTTPRequest that ultimately, in a servlet container, is applied to a ServletRequest. This

7.13. MySQL Character Set Encoding | 163

http://squeryl.org/schema-definition.html

is how parameters in a request are going to be interpreted by the servlet container when
received.

The flip side of this is that responses from Lift are encoded as UTF-8. You’ll see this in
a number of places. For example, templates-hidden/default includes:

<meta http-equiv="content-type" content="text/html; charset=UTF-8" />

Also, the LiftResponse classes set the encoding as UTF-8.

Another aspect is how character data from Lift is sent to the database over the network.
This is controlled by the parameters to the JDBC driver. The default for MySQL is to
detect the encoding, but it seems from experience that this is not a great option, so we
force the UTF-8 encoding.

Finally, the MySQL database itself needs to store the data as UTF-8. The default character
encoding is not UTF-8, so you’ll need to specify the encoding when you create the
database:

CREATE DATABASE myDb CHARACTER SET utf8

See Also
The MySQL JDBC configuration guide.

164 | Chapter 7: Relational Database Persistence with Record and Squeryl

http://bit.ly/ZPKfwi

CHAPTER 8

MongoDB Persistence with Record

This chapter gives recipes for making use of MongoDB in your Lift application. Many
of the code examples in this chapter can be found at https://github.com/LiftCookbook/
cookbook_mongo.

8.1. Connecting to a MongoDB Database

Problem
You want to connect to a MongoDB database.

Solution
Add the Lift MongoDB dependencies to your build and configure a connection using
net.liftweb.mongodb and com.mongodb.

In build.sbt, add the following to libraryDependencies:

"net.liftweb" %% "lift-mongodb-record" % liftVersion

In Boot.scala, add:

import com.mongodb.{ServerAddress, Mongo}

import net.liftweb.mongodb.{MongoDB,DefaultMongoIdentifier}

val server = new ServerAddress("127.0.0.1", 27017)

MongoDB.defineDb(DefaultMongoIdentifier, new Mongo(server), "mydb")

This will give you a connection to a local MongoDB database called mydb.

Discussion
If your database needs authentication, use MongoDB.defineDbAuth:

165

https://github.com/LiftCookbook/cookbook_mongo
https://github.com/LiftCookbook/cookbook_mongo

MongoDB.defineDbAuth(DefaultMongoIdentifier, new Mongo(server),

 "mydb", "username", "password")

Some cloud services will give you a URL to connect to, such as mongodb://
alex.mongohq.com:10050/fglvBskrsdsdsDaGNs1. In this case, the host and the port make
up the first part, and the database name is the part after the /.

If you need to turn a URL like this into a connection, you can do so by using
java.net.URI to parse the URL and make a connection:

object MongoUrl {

 def defineDb(id: MongoIdentifier, url: String) {

 val uri = new URI(url)

 val db = uri.getPath drop 1

 val server = new Mongo(new ServerAddress(uri.getHost, uri.getPort))

 Option(uri.getUserInfo).map(_.split(":")) match {

 case Some(Array(user,pass)) =>

 MongoDB.defineDbAuth(id, server, db, user, pass)

 case _ =>

 MongoDB.defineDb(id, server, db)

 }

 }

}

MongoUrl.defineDb(DefaultMongoIdentifier,

 "mongodb://user:pass@127.0.0.1:27017/myDb")

The full URL scheme for MongoDB is more complicated, allowing for multiple hosts
and connection parameters, but the previous code handles optional username and
password fields and may be enough to get you up and running with your MongoDB
configuration.

The DefaultMongoIdentifier is a value used to identify a particular connection. Lift
keeps a map of identifiers to connections, meaning you can connect to more than one
database. The common case is a single database, and that is usually assigned to Default
MongoIdentifier.

However, if you do need to access two MongoDB databases, you can create a new iden‐
tifier and assign it as part of your record. For example:

object OtherMongoIdentifier extends MongoIdentifier {

 def jndiName: String = "other"

}

MongoUrl.defineDb(OtherMongoIdentifier, "mongodb://127.0.0.1:27017/other")

166 | Chapter 8: MongoDB Persistence with Record

object Country extends Country with MongoMetaRecord[Country] {

 override def collectionName = "example.earth"

 override def mongoIdentifier = OtherMongoIdentifier

}

The lift-mongodb-record dependency itself depends on another Lift module, lift-
mongodb, which provides connectivity and other lower-level access to MongoDB. Both
bottom out with the MongoDB Java driver.

See Also
Connection configuration that includes replica sets and MongoDB options, such as
timeout settings, are described on the Lift wiki.

The full MongoDB connection format is described in Connection String URI Format.

8.2. Storing a Hash Map in a MongoDB Record

Problem
You want to store a hash map in MongoDB.

Solution
Create a MongoDB record that contains a MongoMapField:

import net.liftweb.mongodb.record._

import net.liftweb.mongodb.record.field._

class Country private () extends MongoRecord[Country] with StringPk[Country] {

 override def meta = Country

 object population extends MongoMapField[Country,Int](this)

}

object Country extends Country with MongoMetaRecord[Country] {

 override def collectionName = "example.earth"

}

In this example, we are creating a record for information about a country, and the
population is a map from a String key, representing a city in that country, to an Integer
value, representing the population of that city.

We can use it in a snippet like this:

class Places {

 val uk = Country.find("uk") openOr {

 val info = Map(

 "Brighton" -> 134293,

 "Birmingham" -> 970892,

8.2. Storing a Hash Map in a MongoDB Record | 167

https://www.assembla.com/wiki/show/liftweb/Mongo_Configuration
http://docs.mongodb.org/manual/reference/connection-string/

 "Liverpool" -> 469017)

 Country.createRecord.id("uk").population(info).save

 }

 def facts = "#facts" #> (

 for { (name,pop) <- uk.population.is } yield

 ".name *" #> name & ".pop *" #> pop

)

}

When this snippet is called, it looks up a record by _id of uk or creates it using some
canned information. The template to go with the snippet could include:

<div data-lift="Places.facts">

 <table>

 <thead>

 <tr><th>City</th><th>Population</th></tr>

 </thead>

 <tbody>

 <tr id="facts">

 <td class="name">Name here</td><td class="pop">Population</td>

 </tr>

 </tbody>

 </table>

</div>

In MongoDB, the resulting data structure would be:

$ mongo cookbook

MongoDB shell version: 2.0.6

connecting to: cookbook

> show collections

example.earth

system.indexes

> db.example.earth.find().pretty()

{

 "_id" : "uk",

 "population" : {

 "Brighton" : 134293,

 "Birmingham" : 970892,

 "Liverpool" : 469017

 }

}

Discussion
If you do not set a value for the map, the default will be an empty map, represented in
MongoDB as the following:

{ "_id" : "uk", "population" : { } }

An alternative is to mark the field as optional:

168 | Chapter 8: MongoDB Persistence with Record

object population extends MongoMapField[Country,Int](this) {

 override def optional_? = true

}

If you now write the document without a population set, the field will be omitted in
MongoDB:

> db.example.earth.find();

{ "_id" : "uk" }

To append data to the map from your snippet, you can modify the record to supply a
new Map:

uk.population(uk.population.is + ("Westminster"->81766)).update

Note that we are using update here, rather than save. The save method is pretty smart
and will either insert a new document into a MongoDB collection or replace an existing
document based on the _id. Update is different: it detects just the changed fields of the
document and updates them. It will send this command to MongoDB for the document:

{ "$set" : { "population" : { "Brighton" : 134293 , "Liverpool" : 469017 ,

 "Birmingham" : 970892 , "Westminster" : 81766} }

You’ll probably want to use update over save for changes to existing records.

To access an individual element of the map, you can use get (or value):

uk.population.get("San Francisco")

// will throw java.util.NoSuchElementException

or you can access via the standard Scala map interface:

val sf : Option[Int] = uk.population.is.get("San Francisco")

What a MongoMapField can contain

You should be aware that MongoMapField supports only primitive types.

The mapped field used in this recipe is typed String => Int, but of course MongoDB
will let you mix types such as putting a String or a Boolean as a population value. If
you do modify the MongoDB record in the database outside of Lift and mix types, you’ll
get a java.lang.ClassCastException at runtime.

See Also
There’s a discussion on the mailing list regarding the limited type support in MongoMap
Field and a possible way around it by overriding asDBObject.

8.2. Storing a Hash Map in a MongoDB Record | 169

http://bit.ly/lift-mongomap

8.3. Storing an Enumeration in MongoDB

Problem
You want to store an enumeration in a MongoDB document.

Solution
Use EnumNameField to store the string value of the enumeration. Here’s an example
using days of the week:

object DayOfWeek extends Enumeration {

 type DayOfWeek = Value

 val Mon, Tue, Wed, Thu, Fri, Sat, Sun = Value

}

We can use this to model someone’s birth day-of-week:

package code.model

import net.liftweb.mongodb.record._

import net.liftweb.mongodb.record.field._

import net.liftweb.record.field.EnumNameField

class Birthday private () extends MongoRecord[Birthday] with StringPk[Birthday]{

 override def meta = Birthday

 object dow extends EnumNameField(this, DayOfWeek)

}

object Birthday extends Birthday with MongoMetaRecord[Birthday]

When creating records, the dow field will expect a DayOfWeek value:

import DayOfWeek._

Birthday.createRecord.id("Albert Einstein").dow(Fri).save

Birthday.createRecord.id("Richard Feynman").dow(Sat).save

Birthday.createRecord.id("Isaac Newton").dow(Sun).save

Discussion
Take a look at what’s stored in MongoDB:

> db.birthdays.find()

{ "_id" : "Albert Einstein", "dow" : "Fri" }

{ "_id" : "Richard Feynman", "dow" : "Sat" }

{ "_id" : "Isaac Newton", "dow" : "Sun" }

The dow value is the toString of the enumeration, not the id value:

Fri.toString // java.lang.String = Fri

Fri.id // Int = 4

170 | Chapter 8: MongoDB Persistence with Record

If you want to store the ID, use EnumField instead.

Be aware that other tools, notably Rogue, expect the string value, not the integer ID, of
an enumeration, so you may prefer to use EnumNameField for that reason.

See Also
Recipe 8.6 introduces Rogue.

8.4. Embedding a Document Inside a MongoDB Record

Problem
You have a MongoDB record, and you want to embed another set of values inside it as
a single entity.

Solution
Use BsonRecord to define the document to embed, and embed it using BsonRecord
Field. Here’s an example of storing information about an image within a record:

import net.liftweb.record.field.{IntField,StringField}

class Image private () extends BsonRecord[Image] {

 def meta = Image

 object url extends StringField(this, 1024)

 object width extends IntField(this)

 object height extends IntField(this)

}

object Image extends Image with BsonMetaRecord[Image]

We can reference instances of the Image class via BsonRecordField:

class Country private () extends MongoRecord[Country] with StringPk[Country] {

 override def meta = Country

 object flag extends BsonRecordField(this, Image)

}

object Country extends Country with MongoMetaRecord[Country] {

 override def collectionName = "example.earth"

}

To associate a value:

val unionJack =

 Image.createRecord.url("http://bit.ly/unionflag200").width(200).height(100)

Country.createRecord.id("uk").flag(unionJack).save(true)

8.4. Embedding a Document Inside a MongoDB Record | 171

In MongoDB, the resulting data structure would be:

> db.example.earth.findOne()

{

 "_id" : "uk",

 "flag" : {

 "url" : "http://bit.ly/unionflag200",

 "width" : 200,

 "height" : 100

 }

}

Discussion
If you don’t set a value on the embedded document, the default will be saved as:

"flag" : { "width" : 0, "height" : 0, "url" : "" }

You can prevent this by making the image optional:

object image extends BsonRecordField(this, Image) {

 override def optional_? = true

}

With optional_? set in this way, the image part of the MongoDB document won’t be
saved if the value is not set. Within Scala you will then want to access the value with a
valueBox call:

val img : Box[Image] = uk.flag.valueBox

In fact, regardless of the setting of optional_?, you can access the value using valueBox.

An alternative to optional values is to always provide a default value for the embedded
document:

object image extends BsonRecordField(this, Image) {

 override def defaultValue =

 Image.createRecord.url("http://bit.ly/unionflag200").width(200).height(100)

}

See Also
The Lift wiki describes BsonRecord in more detail.

8.5. Linking Between MongoDB Records

Problem
You have a MongoDB record and want to include a link to another record.

172 | Chapter 8: MongoDB Persistence with Record

http://bit.ly/144UdJO

Solution
Create a reference using a MongoRefField such as ObjectIdRefField or StringRef
Field, and dereference the record using the obj call.

As an example, we can create records representing countries, where a country references
the planet where you can find it:

class Planet private() extends MongoRecord[Planet] with StringPk[Planet] {

 override def meta = Planet

 object review extends StringField(this,1024)

}

object Planet extends Planet with MongoMetaRecord[Planet] {

 override def collectionName = "example.planet"

}

class Country private () extends MongoRecord[Country] with StringPk[Country] {

 override def meta = Country

 object planet extends StringRefField(this, Planet, 128)

}

object Country extends Country with MongoMetaRecord[Country] {

 override def collectionName = "example.country"

}

To make this example easier to follow, our model mixes in StringPk[Planet] to use
strings as the primary key on our documents, rather than the more usual MongoDB
object IDs. Consequently, the link is established with a StringRefField.

In a snippet we can make use of the planet reference by resolving it with .obj:

class HelloWorld {

 val uk = Country.find("uk") openOr {

 val earth = Planet.createRecord.id("earth").review("Harmless").save

 Country.createRecord.id("uk").planet(earth.id.is).save

 }

 def facts =

 ".country *" #> uk.id &

 ".planet" #> uk.planet.obj.map { p =>

 ".name *" #> p.id &

 ".review *" #> p.review

 }

 }

For the value uk, we look up an existing record, or create one if none is found. We create
earth as a separate MongoDB record, and then reference it in the planet field with the
ID of the planet.

8.5. Linking Between MongoDB Records | 173

Retrieving the reference is via the obj method, which returns a Box[Planet] in this
example.

Discussion
Referenced records are fetched from MongoDB when you call the obj method on a
MongoRefField. You can see this by turning on logging in the MongoDB driver. Do this
by adding the following to the start of your Boot.scala:

System.setProperty("DEBUG.MONGO", "true")

System.setProperty("DB.TRACE", "true")

Having done this, the first time you run the previous snippet, your console will include:

INFO: find: cookbook.example.country { "_id" : "uk"}

INFO: update: cookbook.example.planet { "_id" : "earth"} { "_id" : "earth" ,

 "review" : "Harmless"}

INFO: update: cookbook.example.country { "_id" : "uk"} { "_id" : "uk" ,

 "planet" : "earth"}

INFO: find: cookbook.example.planet { "_id" : "earth"}

What you’re seeing here is the initial lookup for uk, followed by the creation of the earth
record and an update that is saving the uk record. Finally, there is a lookup of earth
when uk.obj is called in the facts method.

The obj call will cache the planet reference. That means you could say:

".country *" #> uk.id &

".planet *" #> uk.planet.obj.map(_.id) &

".review *" #> uk.planet.obj.map(_.review)

and you’d still only see one query for the earth record despite calling obj multiple times.
The flip side of that is if the earth record was updated elsewhere in MongoDB after you
called obj you would not see the change from a call to uk.obj unless you reloaded the
uk record first.

Querying by reference

Searching for records by a reference is straightforward:

val earth : Planet = ...

val onEarth : List[Country] = Country.findAll(Country.planet.name, earth.id.is)

Or in this case, because we have String references, we could just say:

val onEarth : List[Country] = Country.findAll(Country.planet.name, "earth")

Updating and deleting

Updating a reference is as you’d expect:

uk.planet.obj.foreach(_.review("Mostly harmless.").update)

This would result in the changed field being set:

174 | Chapter 8: MongoDB Persistence with Record

INFO: update: cookbook.example.planet { "_id" : "earth"} { "$set" : {

 "review" : "Mostly harmless."}}

A uk.planet.obj call will now return a planet with the new review.

Or you could replace the reference with another:

uk.planet(Planet.createRecord.id("mars").save.id.is).save

Again, note that the reference is via the ID of the record (id.is), not the record itself.

To remove the reference:

uk.planet(Empty).save

This removes the link, but the MongoDB record pointed to by the link will remain in
the database. If you remove the object being referenced, a later call to obj will return
an Empty box.

Types of link

The example uses a StringRefField, as the MongoDB records themselves use String
as the _id. Other reference types are:

ObjectIdRefField

This is possibly the most frequently used kind of reference, when you want to ref‐
erence via the usual default ObjectId in MongoDB.

UUIDRefField

This is used for records with an ID based on java.util.UUID.

StringRefField

This is used in this example, where you control the ID as a String.

IntRefField and LongRefField
This is used when you have a numeric value as an ID.

See Also
10Gen, Inc.’s Data Modeling Decisions describes embedding of documents compared to
referencing objects.

8.6. Using Rogue

Problem
You want to use Foursquare’s type-safe domain specific language (DSL), Rogue, for
querying and updating MongoDB records.

8.6. Using Rogue | 175

http://docs.mongodb.org/manual/core/data-modeling/

Solution
You need to include the Rogue dependency in your build and import Rogue into your
code.

For the first step, edit build.sbt and add:

"com.foursquare" %% "rogue" % "1.1.8" intransitive()

In your code, run import com.foursquare.rogue._ and then start using Rogue. For
example, using the Scala console (see Recipe 8.8):

scala> import com.foursquare.rogue.Rogue._

import com.foursquare.rogue.Rogue._

scala> import code.model._

import code.model._

scala> Country.where(_.id eqs "uk").fetch

res1: List[code.model.Country] = List(class code.model.Country={_id=uk,

 population=Map(Brighton->134293, Liverpool->469017, Birmingham->970892)})

scala> Country.where(_.id eqs "uk").count

res2: Long = 1

scala> Country.where(_.id eqs "uk").

 modify(_.population at "Brighton" inc 1).updateOne()

Discussion
Rogue is able to use information in your Lift record to offer an elegant way to query and
update records. It’s type-safe, meaning, for example, if you try to use an Int where a
String is expected in a query, MongoDB would allow that and fail to find results at
runtime, but Rogue enables Scala to reject the query at compile time:

scala> Country.where(_.id eqs 7).fetch

<console>:20: error: type mismatch;

 found : Int(7)

 required: String

 Country.where(_.id eqs 7).fetch

The DSL constructs a query that we then fetch to send the query to MongoDB. That
last method, fetch, is just one of the ways to run the query. Others include:

count

Queries MongoDB for the size of the result set

countDistinct

Shows the number of distinct values in the results

176 | Chapter 8: MongoDB Persistence with Record

exists

True if there’s any record that matches the query

get

Returns an Option[T] from the query

fetch(limit: Int)

Similar to fetch, but returns at most limit results

updateOne, updateMulti, upsertOne, and upsertMulti
Modify a single document, or all documents, that match the query

findAndDeleteOne and bulkDelete_!!
Delete records

The query language itself is expressive, and the best place to explore the variety of queries
is in the QueryTest specification in the source for Rogue. You’ll find a link to this in the
README of the project on GitHub.

Rogue is working towards a version 2 release that introduces a num‐
ber of new concepts. If you want to give it a try, take a look at the
instructions and comments on the Rogue mailing list.

See Also
For geospacial queries, see Recipe 8.7.

The README page for Rogue is a great starting point, and includes a link to QueryT
est giving plenty of example queries to crib.

The motivation for Rogue is described in a Foursquare engineering blog post.

8.7. Storing Geospatial Values

Problem
You want to store latitude and longitude information in MongoDB.

Solution
Use Rogue’s LatLong class to embed location information in your model. For example,
we can store the location of a city like this:

import com.foursquare.rogue.Rogue._

import com.foursquare.rogue.LatLong

8.7. Storing Geospatial Values | 177

http://bit.ly/rogue2-announce
https://github.com/foursquare/rogue
http://bit.ly/120WkLF

class City private () extends MongoRecord[City] with ObjectIdPk[City] {

 override def meta = City

 object name extends StringField(this, 60)

 object loc extends MongoCaseClassField[City, LatLong](this)

}

object City extends City with MongoMetaRecord[City] {

 import net.liftweb.mongodb.BsonDSL._

 ensureIndex(loc.name -> "2d", unique=true)

 override def collectionName = "example.city"

}

We can store values like this:

val place = LatLong(50.819059, -0.136642)

val city = City.createRecord.name("Brighton, UK").loc(pos).save(true)

This will produce data in MongoDB that looks like this:

{

 "_id" : ObjectId("50f2f9d43004ad90bbc06b83"),

 "name" : "Brighton, UK",

 "loc" : {

 "lat" : 50.819059,

 "long" : -0.136642

 }

}

Discussion
MongoDB supports geospatial indexes, and we’re making use of this by doing two things.
First, we are storing the location information in one of MongoDB’s permitted formats.
The format is an embedded document containing the coordinates. We could also have
used an array of two values to represent the point.

Second, we’re creating an index of type 2d, which allows us to use MongoDB’s geospatial
functions such as $near and $within. The unique=true in the ensureIndex highlights
that you can control whether locations needs to be unique (true, no duplications) or
not (false).

With regard to the unique index, you’ll note that we’re calling save(true) on the City
in this example, rather than the plain save in most other recipes. We could use save
here, and it would work fine, but the difference is that save(true) raises the write
concern level from “normal” to “safe.”

With the normal write concern, the call to save would return as soon as the request has
gone down the wire to the MongoDB server. This gives a certain degree of reliability in
that save would fail if the network had gone away. However, there’s no indication that
the server has processed the request. For example, if we tried to insert a city at the exact
same location as one that was already in the database, the index uniqueness rule would

178 | Chapter 8: MongoDB Persistence with Record

be violated and the record would not be saved. With just save (or save(false)), our
Lift application would not receive this error, and the call would fail silently. Raising the
concern to “safe” causes save(true) to wait for an acknowledgment from the MongoDB
server, which means the application will receive exceptions for some kinds of errors.

As an example, if we tried to insert a duplicate city, our call to save(true) would
result in:

com.mongodb.MongoException$DuplicateKey: E11000 duplicate key

 error index: cookbook.example.city.$loc_2d

There are other levels of write concern, available via another variant of save that takes
a WriteConcern as an argument.

If you ever need to drop an index, the MongoDB command is:

db.example.city.dropIndex("loc_2d")

Querying

The reason this recipe uses Rogue’s LatLong class is to enable us to query using the
Rogue DSL. Suppose we’ve inserted other cities into our collection:

> db.example.city.find({}, {_id:0})

{"name": "London, UK", "loc": {"lat": 51.5, "long": -0.166667} }

{"name": "Brighton, UK", "loc": {"lat": 50.819059, "long": -0.136642} }

{"name": "Paris, France", "loc": {"lat": 48.866667, "long": 2.333333} }

{"name": "Berlin, Germany", "loc": {"lat": 52.533333, "long": 13.416667} }

{"name": "Sydney, Australia", "loc": {"lat": -33.867387, "long": 151.207629} }

{"name": "New York, USA", "loc": {"lat": 40.714623, "long": -74.006605} }

We can now find those cities within 500 kilometers of London:

import com.foursquare.rogue.{LatLong, Degrees}

val centre = LatLong(51.5, -0.166667)

val radius = Degrees((500 / 6378.137).toDegrees)

val nearby = City.where(_.loc near (centre.lat, centre.long, radius)).fetch()

This would query MongoDB with this clause:

{ "loc" : { "$near" : [51.5 , -0.166667 , 4.491576420597608]}}

which will identify London, Brighton, and Paris as near to London.

The form of the query is a centre point and a spherical radius. Records falling inside
that radius match the query and are returned closest first. We calculate the radius in
radians: 500 km divided by the radius of the Earth, approximately 6,378 km, gives us
an angle in radians. We convert this to Degrees as required by Rogue.

See Also
The MongoDB Manual discusses geospatial indexes.

8.7. Storing Geospatial Values | 179

http://docs.mongodb.org/manual/core/geospatial-indexes/

Learn more about write concerns from the MongoDB Manual.

8.8. Running Queries from the Scala Console

Problem
You want to try out a few queries interactively from the Scala console.

Solution
Start the console from your project, call boot(), and then interact with your model.

For example, using the MongoDB records developed as part of Recipe 8.1, we can per‐
form a basic query:

$ sbt

...

> console

[info] Compiling 1 Scala source to /cookbook_mongo/target/scala-2.9.1/classes...

[info] Starting scala interpreter...

[info]

Welcome to Scala version 2.9.1.final ...

Type in expressions to have them evaluated.

Type :help for more information.

scala> import bootstrap.liftweb._

import bootstrap.liftweb._

scala> new Boot().boot

scala> import code.model._

import code.model._

scala> Country.findAll

res2: List[code.model.Country] = List(class code.model.Country={_id=uk,

 population=Map(Brighton -> 134293, Liverpool -> 469017,

 Birmingham -> 970892)})

scala> :q

Discussion
Running everything in Boot may be a little heavy handed, especially if you are starting
up various services and background tasks. All we need to do is define a database
connection. For example, using the sample code presented in Recipe 8.1, we could in‐
itialise a conection with:

scala> import bootstrap.liftweb._

import bootstrap.liftweb._

180 | Chapter 8: MongoDB Persistence with Record

http://docs.mongodb.org/manual/core/write-operations/

scala> import net.liftweb.mongodb._

import net.liftweb.mongodb._

scala> MongoUrl.defineDb(DefaultMongoIdentifier,

 "mongodb://127.0.0.1:27017/cookbook")

scala> Country.findAll

res2: List[code.model.Country] = List(class code.model.Country={_id=uk,

 population=Map(Brighton -> 134293, Liverpool -> 469017,

 Birmingham -> 970892)})

See Also
Recipe 8.1 explains connecting to MongoDB and Recipe 8.6 describes querying with
Rogue.

8.9. Unit Testing Record with MongoDB

Problem
You want to write unit tests to run against your Lift Record code with MongoDB.

Solution
Using the Specs2 testing framework, surround your specification with a context that
creates and connects to a database for each test and destroys it after the test runs.

First, create a Scala trait to set up and destroy a connection to MongoDB. We’ll be mixing
this trait into our specifications:

import net.liftweb.http.{Req, S, LiftSession}

import net.liftweb.util.StringHelpers

import net.liftweb.common.Empty

import net.liftweb.mongodb._

import com.mongodb.ServerAddress

import com.mongodb.Mongo

import org.specs2.mutable.Around

import org.specs2.execute.Result

trait MongoTestKit {

 val server = new Mongo(new ServerAddress("127.0.0.1", 27017))

 def dbName = "test_"+this.getClass.getName

 .replace(".", "_")

 .toLowerCase

 def initDb() : Unit = MongoDB.defineDb(DefaultMongoIdentifier, server, dbName)

8.9. Unit Testing Record with MongoDB | 181

 def destroyDb() : Unit = {

 MongoDB.use(DefaultMongoIdentifier) { d => d.dropDatabase() }

 MongoDB.close

 }

 trait TestLiftSession {

 def session = new LiftSession("", StringHelpers.randomString(20), Empty)

 def inSession[T](a: => T): T = S.init(Req.nil, session) { a }

 }

 object MongoContext extends Around with TestLiftSession {

 def around[T <% Result](testToRun: =>T) = {

 initDb()

 try {

 inSession {

 testToRun

 }

 } finally {

 destroyDb()

 }

 }

 }

}

This trait provides the plumbing for connection to a MongoDB server running locally,
and creates a database based on the name of the class it is mixed into. The important
part is the MongoContext, which ensures that around your specification the database is
initialised, and that after your specification is run, it is cleaned up.

To use this in a specification, mix in the trait and then add the context:

import org.specs2.mutable._

class MySpec extends Specification with MongoTestKit {

 sequential

 "My Record" should {

 "be able to create records" in MongoContext {

 val r = MyRecord.createRecord

 // ...your useful test here...

 r.valueBox.isDefined must beTrue

 }

 }

}

You can now run the test in SBT by typing test:

> test

[info] Compiling 1 Scala source to target/scala-2.9.1/test-classes...

182 | Chapter 8: MongoDB Persistence with Record

[info] My Record should

[info] + be able to create records

[info]

[info]

[info] Total for specification MySpec

[info] Finished in 1 second, 199 ms

[info] 1 example, 0 failure, 0 error

[info]

[info] Passed: : Total 1, Failed 0, Errors 0, Passed 0, Skipped 0

[success] Total time: 1 s, completed 03-Jan-2013 22:47:54

Discussion
Lift normally provides all the scaffolding you need to connect and run against Mon‐
goDB. Without a running Lift application, we need to ensure MongoDB is configured
when our tests run outside of Lift, and that’s what the MongoTestKit trait is providing
for us.

The one unusual part of the test setup is including a TestLiftSession. This provides
an empty session around your test, which is useful if you are accessing or testing state-
related code (e.g., access to S). It’s not strictly necessary for running tests against Record,
but it has been included here because you may want to do that at some point, for example
if you are testing user login via MongoDB records.

There are a few nice tricks in SBT to help you run tests. Running test will run all the
tests in your project. If you want to focus on just one test, you can:

> test-only org.example.code.MySpec

This command also supports wildcards, so if we only wanted to run tests that start with
the word “Mongo” we could:

> test-only org.example.code.Mongo*

There’s also test-quick (in SBT 0.12), which will only run tests that have not been run,
have changed, or failed last time, and ~test to watch for changes in tests and run them.

test-only together with modifications to around in MongoTestKit can be a good way
to track down any issues you have with a test. By disabling the call to destroyDb(), you
can jump into the MongoDB shell and examine the state of the database after a test
has run.

Database cleanup

Around each test, we’ve simply deleted the database so the next time we try to use it,
it’ll be empty. In some situations, you may not be able to do this. For example, if you’re
running tests against a database hosted with companies such as MongoLabs or Mon‐
goHQ, then deleting the database will mean you won’t be able to connect to it next time
you run.

8.9. Unit Testing Record with MongoDB | 183

One way to resolve that is to clean up each individual collection, by defining the col‐
lections you need to clean up and replacing destroyDb with a method that will remove
all entries in those collections:

lazy val collections : List[MongoMetaRecord[_]] = List(MyRecord)

def destroyDb() : Unit = {

 collections.foreach(_ bulkDelete_!! new BasicDBObject)

 MongoDB.close

}

Note that the collection list is lazy to avoid start up of the Record system before we’ve
initialised our database connections.

Parallel tests

If your tests are modifying data and have the potential to interact, you’ll want to stop
SBT from running your tests in parallel. A symptom of this would be tests that fail
apparently randomly, or working tests that stop working when you add a new test, or
tests that seem to lock up. Disable by adding the following to build.sbt:

parallelExecution in Test := false

You’ll notice that the example specification includes the line: sequential. This disables
the default behaviour in Specs2 of running all tests concurrently.

Running tests in IDEs

IntelliJ IDEA detects and allows you to run Specs2 tests automatically. With Eclipse,
you’ll need to include the JUnit runner annotation at the start of your specification:

import org.junit.runner.RunWith

import org.specs2.runner.JUnitRunner

@RunWith(classOf[JUnitRunner])

class MySpec extends Specification with MongoTestKit {

...

You can then “Run As…” the class in Eclipse.

See Also
The Specs2 site contains examples and a user guide.

If you prefer to use the Scala Test framework, take a look at Tim Nelson’s Mongo Auth
Lift module. It includes tests using that framework. Much of what Tim has written there
has been adapted to produce this recipe for Specs2.

The Lift MongoDB Record library includes a variation on testing with Specs2, using
just Before and After rather than the around example used in this recipe.

184 | Chapter 8: MongoDB Persistence with Record

http://specs2.org/
http://www.scalatest.org
https://github.com/eltimn/lift-mongoauth
https://github.com/eltimn/lift-mongoauth
http://bit.ly/11NldyA

Flapdoodle provides a way to automate the download, install, setup, and cleanup of a
MongoDB database. This automation is something you can wrap around your unit tests,
and a Specs2 integration is included using the same Before and After approach to
testing used by Lift MongoDB Record.

The test interface provided by SBT, such as the test command, also supports the ability
to fork tests, set specific configurations for test cases, and ways to select which tests are
run.

The Lift wiki describes more about unit testing and Lift sessions.

8.9. Unit Testing Record with MongoDB | 185

https://github.com/flapdoodle-oss/embedmongo.flapdoodle.de
https://github.com/athieriot/specs2-embedmongo
http://www.scala-sbt.org/release/docs/Detailed-Topics/Testing
http://bit.ly/144UxZk

CHAPTER 9

Around Lift

This chapter looks at interacting with other systems from within Lift, such as sending
email, calling URLs, or scheduling tasks.

Many of the recipes in this chapter have code examples in a project at https://github.com/
LiftCookbook/cookbook_around.

9.1. Sending Plain-Text Email

Problem
You want to send a plain-text email from your Lift application.

Solution
Use the Mailer:

import net.liftweb.util.Mailer

import net.liftweb.util.Mailer._

Mailer.sendMail(

 From("you@example.org"),

 Subject("Hello"),

 To("other@example.org"),

 PlainMailBodyType("Hello from Lift"))

Discussion
Mailer sends the message asynchronously, meaning sendMail will return immediately,
so you don’t have to worry about the time costs of negotiating with an SMTP server.
However, there’s also a blockingSendMail method if you do need to wait.

187

https://github.com/LiftCookbook/cookbook_around
https://github.com/LiftCookbook/cookbook_around

By default, the SMTP server used will be localhost. You can change this by setting the
mail.smtp.host property. For example, edit src/mail/resources/props/default.props and
add the line:

mail.smtp.host=smtp.example.org

The signature of sendMail requires a From, Subject, and then any number of MailTypes:

To, CC, and BCC
The recipient email address

ReplyTo

The address that mail clients should use for replies

MessageHeader

Key/value pairs to include as headers in the message

PlainMailBodyType

A plain-text email sent with UTF-8 encoding

PlainPlusBodyType

A plain-text email, where you specify the encoding

XHTMLMailBodyType

For HTML email (Recipe 9.3)

XHTMLPlusImages

For attachments (Recipe 9.5)

In the previous example, we added two types: PlainMailBodyType and To. Adding more
is as you’d expect:

Mailer.sendMail(

 From("you@example.org"),

 Subject("Hello"),

 To("other@example.org"),

 To("someone@example.org"),

 MessageHeader("X-Ignore-This", "true"),

 PlainMailBodyType("Hello from Lift"))

The address-like MailTypes (To, CC, BCC, ReplyTo) can be given an optional “personal
name”:

From("you@example.org", Full("Example Corporation"))

This would appear in your mailbox as:

From: Example Corporation <you@example.org>

The default character set is UTF-8. If you need to change this, replace the use of Plain
MailBodyType with PlainPlusBodyType("Hello from Lift", "ISO8859_1").

188 | Chapter 9: Around Lift

See Also
Recipe 9.5 describes email with attachments.

For HTML email, see Recipe 9.3.

9.2. Logging Email Rather than Sending

Problem
You don’t want email sent when developing your Lift application locally, but you do
want to see what would have been sent.

Solution
Assign a logging function to Mailer.devModeSend in Boot.scala:

import net.liftweb.util.Mailer._

import javax.mail.internet.{MimeMessage,MimeMultipart}

Mailer.devModeSend.default.set((m: MimeMessage) =>

 logger.info("Would have sent: "+m.getContent)

)

When you send an email with Mailer, no SMTP server will be contacted, and instead,
you’ll see output to your log:

Would have sent: Hello from Lift

Discussion
The key part of this recipe is setting a MimeMessage => Unit function on Mailer.dev
ModeSend. We happen to be logging, but you can use this function to handle the email
any way you want.

The Lift Mailer allows you to control how email is sent at each run mode: by default,
email is sent for devModeSend, profileModeSend, pilotModeSend, stagingModeSend,
and productionModeSend; whereas, by default, testModeSend only logs that a message
would have been sent.

The testModeSend logs a reference to the MimeMessage, meaning your log would show
a message like:

Sending javax.mail.internet.MimeMessage@4a91a883

This recipe has changed the behaviour of Mailer when your Lift application is in de‐
veloper mode (which it is by default). We’re logging just the body part of the message.

9.2. Logging Email Rather than Sending | 189

Java Mail doesn’t include a utility to display all the parts of an email, so if you want more
information, you’ll need to roll your own function. For example:

def display(m: MimeMessage) : String = {

 val nl = System.getProperty("line.separator")

 val from = "From: "+m.getFrom.map(_.toString).mkString(",")

 val subj = "Subject: "+m.getSubject

 def parts(mm: MimeMultipart) = (0 until mm.getCount).map(mm.getBodyPart)

 val body = m.getContent match {

 case mm: MimeMultipart =>

 val bodyParts = for (part <- parts(mm)) yield part.getContent.toString

 bodyParts.mkString(nl)

 case otherwise => otherwise.toString

 }

 val to = for {

 rt <- List(RecipientType.TO, RecipientType.CC, RecipientType.BCC)

 address <- Option(m.getRecipients(rt)) getOrElse Array()

 } yield rt.toString + ": " + address.toString

 List(from, to.mkString(nl), subj, body) mkString nl

}

Mailer.devModeSend.default.set((m: MimeMessage) =>

 logger.info("Would have sent: "+display(m))

)

This would produce output of the form:

Would have sent: From: you@example.org

To: other@example.org

To: someone@example.org

Subject: Hello

Hello from Lift

This example display function is long but mostly straightforward. The body value
handles multipart messages by extracting each body part. This is triggered when sending
more structured emails, such as the HTML emails described in Recipe 9.3.

If you want to debug the mail system while it’s actually sending the email, enable the
Java Mail debug mode. In default.props add:

mail.debug=true

This produces low-level output from the Java Mail system when email is sent:

190 | Chapter 9: Around Lift

DEBUG: JavaMail version 1.4.4

DEBUG: successfully loaded resource: /META-INF/javamail.default.providers

DEBUG SMTP: useEhlo true, useAuth false

DEBUG SMTP: trying to connect to host "localhost", port 25, isSSL false

...

See Also
Run modes are described on the Lift wiki.

9.3. SMTP Authentication

Problem
You want to send an HTML email from your Lift application.

Solution
Give Mailer a NodeSeq containing your HTML message:

import net.liftweb.util.Mailer

import net.liftweb.util.Mailer._

val msg = <html>

 <head>

 <title>Hello</title>

 </head>

 <body>

 <h1>Hello</h1>

 </body>

 </html>

Mailer.sendMail(

 From("me@example.org"),

 Subject("Hello"),

 To("you@example.org"),

 msg)

Discussion
An implicit converts the NodeSeq into an XHTMLMailBodyType. This ensures the mime
type of the email is text/html. Despite the name of “XHTML,” the message is converted
for transmission using HTML5 semantics.

The character encoding for HTML email, UTF-8, can be changed by setting mail.char
set in your Lift properties file.

If you want to set both the text and HTML version of a message, supply each body
wrapped in the appropriate BodyType class:

9.3. SMTP Authentication | 191

https://www.assembla.com/spaces/liftweb/wiki/Run_Modes

val html = <html>

 <head>

 <title>Hello</title>

 </head>

 <body>

 <h1>Hello!</h1>

 </body>

</html>

var text = "Hello!"

Mailer.sendMail(

 From("me@example.org"),

 Subject("Hello"),

 To("you@example.org"),

 PlainMailBodyType(text),

 XHTMLMailBodyType(html)

)

This message would be sent as a multipart/alternative:

Content-Type: multipart/alternative;

 boundary="----=_Part_1_1197390963.1360226660982"

Date: Thu, 07 Feb 2013 02:44:22 -0600 (CST)

------=_Part_1_1197390963.1360226660982

Content-Type: text/plain; charset=UTF-8

Content-Transfer-Encoding: 7bit

Hello!

------=_Part_1_1197390963.1360226660982

Content-Type: text/html; charset=UTF-8

Content-Transfer-Encoding: 7bit

<html>

 <head>

 <title>Hello</title>

 </head>

 <body>

 <h1>Hello!</h1>

 </body>

 </html>

------=_Part_1_1197390963.1360226660982--

When receiving a message with this content, it is up to the mail client to decide which
version to show (text or HTML).

See Also
For sending with attachments, see Recipe 9.5.

192 | Chapter 9: Around Lift

9.4. Sending Authenticated Email

Problem
You need to authenticate with an SMTP server to send email.

Solution
Set the Mailer.authenticator in Boot with the credentials for your SMTP server, and
enable the mail.smtp.auth flag in your Lift properties file.

Modify Boot.scala to include:

import net.liftweb.util.{Props, Mailer}

import javax.mail.{Authenticator,PasswordAuthentication}

Mailer.authenticator = for {

 user <- Props.get("mail.user")

 pass <- Props.get("mail.password")

} yield new Authenticator {

 override def getPasswordAuthentication =

 new PasswordAuthentication(user,pass)

}

In this example, we expect the username and password to come from Lift properties,
so we need to modify src/main/resources/props/default.props to include them:

mail.smtp.auth=true

mail.user=me@example.org

mail.password=correct horse battery staple

mail.smtp.host=smtp.sendgrid.net

When you send email, the credentials in default.props will be used to authenticate with
the SMTP server.

Discussion
We’ve used Lift properties as a way to configure SMTP authentication. This has the
benefit of allowing us to enable authentication for just some run modes. For example,
if our default.props did not contain authentication settings, but our production.de‐
fault.props did, then no authentication would happen in development mode, ensuring
we can’t accidentally send email outside of a production environment.

You don’t have to use a properties file for this: the Lift Mailer also supports JNDI, or
you could look up a username and password some other way and set Mailer.authen
ticator when you have the values.

9.4. Sending Authenticated Email | 193

However, some mail services such as SendGrid do require mail.smtp.auth=true to be
set, and that should go into your Lift properties file or set as a JVM argument:
-Dmail.smtp.auth=true.

See Also
As well as mail.smtp.auth, there are a range of settings to control the Java Mail API.
Examples include controlling port numbers and timeouts.

9.5. Sending Email with Attachments

Problem
You want to send an email with one or more attachments.

Solution
Use the Mailer XHTMLPlusImages to package a message with attachments.

Suppose we want to construct a CSV file and send it via email:

val content = "Planet,Discoverer\r\n" +

 "HR 8799 c, Marois et al\r\n" +

 "Kepler-22b, Kepler Science Team\r\n"

case class CSVFile(bytes: Array[Byte],

 filename: String = "file.csv",

 mime: String = "text/csv; charset=utf8; header=present")

val attach = CSVFile(content.mkString.getBytes("utf8"))

val body = <p>Please research the enclosed.</p>

val msg = XHTMLPlusImages(body,

 PlusImageHolder(attach.filename, attach.mime, attach.bytes))

Mailer.sendMail(

 From("me@example.org",

 Subject("Planets"),

 To("you@example.org"),

 msg)

What’s happening here is that our message is an XHTMLPlusImages instance, which ac‐
cepts a body message and attachment. The attachment, the PlusImageHolder, is an
Array[Byte], mime type, and a filename.

194 | Chapter 9: Around Lift

http://docs.oracle.com/javaee/5/api/javax/mail/package-summary.html

Discussion
XHTMLPlusImages can also accept more than one PlusImageHolder if you have more
than one file to attach. Although the name PlusImageHolder may suggest it is for at‐
tachment images, you can attach any kind of data as an Array[Byte] with an appropriate
mime type.

By default, the attachment is sent with an inline disposition. This controls the Content-
Disposition header in the message, and inline means the content is intended for
display automatically when the message is shown. The alternative is attachment, and
this can be indicated with an optional final parameter to PlusImageHolder:

PlusImageHolder(attach.filename, attach.mime, attach.bytes, attachment=true)

In reality, the mail client will display the message how it wants to, but this extra parameter
may give you a little more control.

To attach a premade file, you can use LiftRules.loadResource to fetch content from
the classpath. If our project contained a file called Kepler-22b_System_Diagram.jpg in
the src/main/resources/ folder, we could load and attach it like this:

val filename = "Kepler-22b_System_Diagram.jpg"

val msg =

 for (bytes <- LiftRules.loadResource("/"+filename))

 yield XHTMLPlusImages(

 <p>Please research this planet.</p>,

 PlusImageHolder(filename, "image/jpg", bytes))

msg match {

 case Full(m) =>

 Mailer.sendMail(

 From("me@example.org"),

 Subject("Planet attachment"),

 To("you@example.org"),

 m)

 case _ =>

 logger.error("Planet file not found")

}

As the content of src/main/resources is included on the classpath, we pass the filename
to loadResource with a leading / character so the file can be found at the right place on
the classpath.

The loadResource returns a Box[Array[Byte]] as we have no guarantee the file will
exist. We map this to a Box[XHTMLPlusImages] and match on that result to either send
the email or log that the file wasn’t found.

9.5. Sending Email with Attachments | 195

See Also
Messages are sent using the multipart/related mime heading, with an inline dispo‐
sition. Lift ticket #1197 links to a discussion regarding multipart/mixed that may be
preferable for working around issues with Microsoft Exchange.

RFC 2183 describes the Content-Disposition header.

9.6. Run a Task Later

Problem
You want to schedule code to run at some future time.

Solution
Use net.liftweb.util.Schedule:

import net.liftweb.util.Schedule

import net.liftweb.util.Helpers._

Schedule(() => println("doing it"), 30 seconds)

This would cause “doing it” to be printed on the console 30 seconds from now.

Discussion
The signature for Schedule used previously expects a function of type () => Unit,
which is the thing we want to happen in the future, and a TimeSpan from Lift’s Time
Helpers, which is when we want it to happen. The 30 seconds value gives us a Time
Span via the Helpers._ import, but there’s a variation called perform that accepts a Long
millisecond value if you prefer that:

Schedule.perform(() => println("doing it"), 30*1000L)

Behind the scenes, Lift is making use of the ScheduledExecutorService from
java.util.concurrent and, as such, returns a ScheduledFuture[Unit]. You can use
this future to cancel the operation before it runs.

It may be a surprise to find that you can call Schedule with just a function as an argu‐
ment, and not a delay value. This version runs the function immediately, but on a worker
thread. This is a convenient way to asynchronously run other tasks without going to the
trouble of creating an actor for the purpose.

There is also a Schedule.schedule method that will send an actor a specified message
after a given delay. This takes a TimeSpan delay, but again there’s also a Schedule.per
form version that accepts a Long as a delay.

196 | Chapter 9: Around Lift

https://github.com/lift/framework/issues/1197
http://www.ietf.org/rfc/rfc2183.txt

See Also
Recipe 9.7 includes an example of scheduling with actors.

ScheduledFuture is documented via the Java Doc for Future. If you’re building com‐
plex, low-level, cancellable concurrency functions, it’s advisable to have a copy of Java
Concurrency in Practice close by (written by Goetz, et al., Addison-Wesley Professional).

9.7. Run Tasks Periodically

Problem
You want a scheduled task to run periodically (repeatedly).

Solution
Use net.liftweb.util.Schedule ensuring that you call schedule again during your
task to reschedule it. For example, using an actor:

import net.liftweb.util.Schedule

import net.liftweb.actor.LiftActor

import net.liftweb.util.Helpers._

object MyScheduledTask extends LiftActor {

 case class DoIt()

 case class Stop()

 private var stopped = false

 def messageHandler = {

 case DoIt if !stopped =>

 Schedule.schedule(this, DoIt, 10 minutes)

 // ... do useful work here

 case Stop =>

 stopped = true

 }

}

The example creates a LiftActor for the work to be done. On receipt of a DoIt message,
the actor reschedules itself before doing whatever useful work needs to be done. In this
way, the actor will be called every 10 minutes.

Discussion
The Schedule.schedule call is ensuring that this actor is sent the DoIt message after
10 minutes.

9.7. Run Tasks Periodically | 197

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html

To start this process off, possibly in Boot.scala, just send the DoIt message to the actor:

MyScheduledTask ! MyScheduledTask.DoIt

To ensure the process stops correctly when Lift shuts down, we register a shutdown
hook in Boot.scala to send the Stop message to prevent future reschedules:

LiftRules.unloadHooks.append(() => MyScheduledTask ! MyScheduledTask.Stop)

Without the Stop message, the actor would continue to be rescheduled until the JVM
exits. This may be acceptable, but note that during development with SBT, without the
Stop message, you will continue to schedule tasks after issuing the container:stop
command.

Schedule returns a ScheduledFuture[Unit] from the Java concurrency library, which
allows you to cancel the activity.

See Also
Chapter 1 of Lift in Action (by Perrett, Manning Publications, Co.) includes a Comet
Actor clock example that uses Schedule.

9.8. Fetching URLs

Problem
You want your Lift application to fetch a URL and process it as text, JSON, XML, or
HTML.

Solution
Use Dispatch, “a library for asynchronous HTTP interaction.”

Before you start, include Dispatch dependency in build.sbt:

libraryDependencies += "net.databinder.dispatch" %% "dispatch-core" % "0.9.5"

Using the example from the Dispatch documentation, we can make an HTTP request
to try to determine the country from the service at http://www.hostip.info/use.html:

import dispatch._

val svc = url("http://api.hostip.info/country.php")

val country : Promise[String] = Http(svc OK as.String)

println(country())

Note that the result country is not a String but a Promise[String], and we use apply
to wait for the resulting value.

198 | Chapter 9: Around Lift

http://www.hostip.info/use.html

The result printed will be a country code such as GB, or XX if the country cannot be
determined from your IP address.

Discussion
This short example expects a 200 (OK) status result and turns the result into a String,
but that’s a tiny part of what Dispatch is capable of. We’ll explore further in this section.

What if the request doesn’t return a 200? In that case, with the code we have, we’d get
an exception such as: “Unexpected response status: 404.” There are a few ways to change
that.

We can ask for an Option:

val result : Option[String] = country.option()

As you’d expect, this will give a None or Some[String]. However, if you have debug level
logging enabled in your application, you’ll see the request and response and error mes‐
sages from the underlying Netty library. You can tune these messages by adding a logger
setting to default.logback.xml file:

<logger name="com.ning.http.client" level="WARN"/>

A second possibility is to use either with the usual convention that the Right is the
expected result and Left signifies a failure:

country.either() match {

 case Left(status) => println(status.getMessage)

 case Right(cc) => println(cc)

}

This will print a result as we are forcing the evaluation with an apply via either().

Promise[T] implements map, flatMap, filter, fold, and all the usual methods you’d
expect it to allow you to compose. This means you can use the promise with a for
comprehension:

val codeLength = for (cc <- country) yield cc.length

Note that codeLength is a Promise[Int]. To get the value, you can evaluate code
Length() and you’ll get a result of 2.

As well as extracting string values with as.String, there are other options, including:

as.Bytes

To work with Promise[Array[Byte]]

as.File

To write to a file, as in Http(svc > as.File(new File("/tmp/cc")))

9.8. Fetching URLs | 199

as.Response

To allow you to provide a client.Response => T function to use on the response

as.xml.Elem

To parse an XML response

As an example of as.xml.Elem:

val svc = url("http://api.hostip.info/?ip=12.215.42.19")

val country = Http(svc > as.xml.Elem)

println(country.map(_ \\ "description")())

This example is parsing the XML response to the request, which returns a Promise[sca
la.xml.Elem]. We’re picking out the description node of the XML via a map, which will
be a Promise[NodeSeq] that we then force to evaluate. The output is something like:

<gml:description

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:gml="http://www.opengis.net/gml">

 This is the Hostip Lookup Service

</gml:description>

That example assumes the request is going to be well formed. In addition to the core
Databinder library, there are extensions for JSoup and TagSoup to assist in parsing
HTML that isn’t necessarily well formed.

For example, to use JSoup, include the dependency:

libraryDependencies += "net.databinder.dispatch" %% "dispatch-jsoup" % "0.9.5"

You can then use the features of JSoup, such as picking out elements of a page using CSS
selectors:

import org.jsoup.nodes.Document

val svc = url("http://www.example.org").setFollowRedirects(true)

val title = Http(svc > as.jsoup.Document).map(_.select("h1").text).option

println(title() getOrElse "unknown title")

Here we are applying JSoup’s select function to pick out the <h1> element on the page,
taking the text of the element, which we turn into a Promise[Option[String]]. The
result, unless example.org has changed, will be “Example Domain.”

As a final example of using Dispatch, we can pipe a request into Lift’s JSON library:

import net.liftweb.json._

import com.ning.http.client

object asJson extends (client.Response => JValue) {

 def apply(r: client.Response) = JsonParser.parse(r.getResponseBody)

}

val svc = url("http://api.hostip.info/get_json.php?ip=212.58.241.131")

200 | Chapter 9: Around Lift

val json : Promise[JValue] = Http(svc > asJson)

case class HostInfo(country_name: String, country_code: String)

implicit val formats = DefaultFormats

val hostInfo = json.map(_.extract[HostInfo])()

The URL we’re calling returns a JSON representation for location information of the IP
address we’ve passed.

By providing a Response => JValue to Dispatch, we’re able to pass the response body
through to the JSON parser. We can then map on the Promise[JValue] to apply what‐
ever Lift JSON functions we want to. In this case, we’re extracting a simple case class.

The result would show hostInfo as:

HostInfo(UNITED KINGDOM,GB)

See Also
The Dispatch documentation is well written and guides you through the way Dispatch
approaches HTTP. Do spend some time with it.

For questions about Dispatch, the best place is the Dispatch Google Group.

The previous major version of Dispatch, 0.8.x (“Dispatch Classic”), is quite different
from the “reboot” of the project as version 0.9. Consequently, examples you may see
that use 0.8.x will need some conversion to run with 0.9.x. Nathan Hamblen’s blog
describes the change.

For working with JSoup, take a look at the JSoup Cookbook.

9.8. Fetching URLs | 201

http://dispatch.databinder.net/Dispatch.html
https://groups.google.com/forum/#!forum/dispatch-scala
http://bit.ly/14Bm6LS
http://jsoup.org/cookbook/

CHAPTER 10

Production Deployment

Deploying a Lift application to production means little more than packaging it and
ensuring you set the run mode to production. The recipes in this chapter show how to
do this for various hosted services.

You can also install and run a container such as Tomcat or Jetty on your own servers.
Containers were introduced in “Running your application” on page 4. This brings with
it the need to understand how to install, configure, start, stop, and manage each con‐
tainer, and how to integrate it with load balancers or other frontends. These are large
topics, and you can find out more from such sources as:

• The deployment section of the Lift wiki.

• Timothy Perrett, Lift in Action, Chapter 15, “Deployment and Scaling,” Manning
Publications, Co.

• Jason Brittain and Ian F. Darwin, Tomcat: The Definitive Guide, O’Reilly Media,
Inc.

• Tanuj Khare, Apache Tomcat 7 Essentials, Packt Publishing.

The Lift wiki includes a page on Tomcat configuration options relevant to Lift.

10.1. Deploying to CloudBees

Problem
You have an account with the CloudBees PaaS hosting environment, and you want to
deploy your Lift application there.

203

https://www.assembla.com/spaces/liftweb/wiki/Deployment
https://www.assembla.com/spaces/liftweb/wiki/Tomcat

Solution
Use the SBT package command to produce a WAR file that can be deployed to Cloud‐
Bees, and then use the CloudBees SDK to configure and deploy your application.

From within the CloudBees “Grand Central” console, create a new application under
your account. In what follows, we’ll assume your account is called myaccount and your
application is called myapp.

For the best performance, you will want to ensure the Lift run mode is set to “produc‐
tion.” Do this from the CloudBees SDK command line:

$ bees config:set -a myaccount/myapp run.mode=production

This will set the run mode to production for your CloudBees applications identified as
myaccount/myapp. Omitting the -a will set it for your whole CloudBees account.

CloudBees will remember this setting, so you only need to do it once.

You can then deploy:

$ sbt package

...

[info] Packaging /Users/richard/myapp/target/scala-2.9.1/myapp.war...

...

$ bees app:deploy -a myaccount/myapp ./target/scala-2.9.1/myapp.war

This will send your WAR file to CloudBees and deploy it. You’ll see the location (URL)
of your application output from the bees app:deploy command when it completes.

If you change a configuration setting, you will need to restart the application for the
setting to take effect. Deploying the application will do this, otherwise, run the bees
app:restart command:

$ bees app:restart -a myaccount/myapp

Discussion
If you are deploying an application to multiple CloudBees instances, be aware that, by
default, CloudBees will round robin requests to each instance. If you use any of Lift’s
state features, you’ll want to enable session affinity (sticky sessions):

$ bees app:update -a myaccount/myapp stickySession=true

If you are using Comet, it’ll work fine, but the CloudBees default is to enable request
buffering. This allows CloudBees to do smart things, such as rerouting requests in a
cluster if one machine does not respond. A consequence of request buffering is that
long-polling Comet requests will time out more often. To turn this feature off, run the
following:

$ bees app:update -a myaccount/myapp disableProxyBuffering=true

204 | Chapter 10: Production Deployment

As with the run mode setting, CloudBees will remember these settings, so you only need
to set them once.

Finally, you may want to increase the permanent generation memory setting of the JVM.
By default, an application has 64 MB assigned for the PermGen. To increase this to 128
MB, run the bees app:update command:

$ bees app:update -a myaccount/myapp jvmPermSize=128

The commands bees app:info and bees config:list will report back the settings for
your application.

RDBMS configuration

If you are using a SQL database in your application, you’ll want to configure src/main/
webapp/WEB-INF/cloudbees-web.xml. For example:

<?xml version="1.0"?>

<cloudbees-web-app xmlns="http://www.cloudbees.com/xml/webapp/1">

<appid>myaccount/myapp</appid>

<resource name="jdbc/mydb" auth="Container" type="javax.sql.DataSource">

 <param name="username" value="dbuser" />

 <param name="password" value="dbpassword" />

 <param name="url" value="jdbc:cloudbees://mydb" />

 <!-- For these connections settings, see:

 http://commons.apache.org/dbcp/configuration.html

 -->

 <param name="maxActive" value="10" />

 <param name="maxIdle" value="2" />

 <param name="maxWait" value="15000" />

 <param name="removeAbandoned" value="true" />

 <param name="removeAbandonedTimeout" value="300" />

 <param name="logAbandoned" value="true" />

 <!-- Avoid idle timeouts -->

 <param name="validationQuery" value="SELECT 1" />

 <param name="testOnBorrow" value="true" />

 </resource>

</cloudbees-web-app>

This is a JNDI database configuration, defining a connection to a CloudBees database
called mydb. This will be used by Lift if the JNDI name is referenced in Boot.scala:

DefaultConnectionIdentifier.jndiName = "jdbc/mydb"

if (!DB.jndiJdbcConnAvailable_?) {

 // set up alternative local database connection here

}

10.1. Deploying to CloudBees | 205

Because the JNDI setting is only defined in cloudbees-web.xml, it will only be available
in a CloudBees environment. This means you can develop against a different database
locally and use your CloudBees database when deploying.

Host IP and port number

Generally, you don’t need to know about your deployed instance’s public host name and
port number. Requests to your application URL are routed to a specific instance by
CloudBees. However there are situations, especially when you have multiple instances,
where you do need to find this out. For example, if you want to receive messages from
Amazon’s Simple Notification Service (SNS), then each instance will need to give a direct
URL to SNS when the application boots.

CloudBees has provided documentation on how to do this. To get the public hostname,
you need to make an HTTP request to http://instance-data/latest/meta-data/public-
hostname. For example:

import io.Source

val beesPublicHostname : Box[String] = tryo {

 Source.fromURL("http://instance-data/latest/meta-data/public-hostname").

 getLines().toStream.head

}

This will return a Full hostname on the CloudBees environment, but when running
locally will fail and return a Failure. For example:

Failure(instance-data,Full(java.net.UnknownHostException: instance-data),Empty)

The port number can be found from the name of a file in the .genapps/ports folder of
your application deployment:

val beesPort : Option[Int] = {

 val portsDir = new File(System.getenv("PWD"), ".genapp/ports")

 for {

 files <- Option(portsDir.list)

 port <- files.flatMap(asInt).headOption

 } yield port

}

The java.io.File list method returns a list of filenames in a directory, but will return
null if the directory doesn’t exist or if there are any IO errors. For this reason, we wrap
it in Option to convert null values to None.

Running locally, this will return a None, but on CloudBees, you’ll see a Full[Int] port
number.

You might put these two values together as follows:

import java.net.InetAddress

val hostAndPort : String =

206 | Chapter 10: Production Deployment

http://bit.ly/163GynV

 (beesPublicHostname openOr InetAddress.getLocalHost.getHostAddress) +

 ":" + (beesPort getOrElse 8080).toString

Running locally, hostAndPort might be 192.168.1.60:8080 and running on Cloud‐
Bees, it would be something like ec2-204-236-222-252.compute-1.amazonaws.com:
8520.

Java version

Currently the default JVM provided by CloudBees is JDK 7, but you can select 6, 7, and
8. To change the default Java Virtual Machine, use the bees config:set command:

$ bees config:set -a myaccount/myapp -Rjava_version=1.8

Excluding the application identifier -a myaccount/myapp from the command will set
the JVM as the default for all applications in the account. The bees config:set com‐
mand will update the configuration, but not take effect until the application has been
updated or restarted.

The JVM can also be changed when an application is deployed or updated via the fol‐
lowing commands:

$ bees app:deploy -a myaccount/myapp sample.war -Rjava_version=1.6

$ bees app:update -a myaccount/myapp -Rjava_version=1.7

To confirm which JVM an application is currently running, use the bees con

fig:list command, which will display the Java version:

$ bees config:list -a myaccount/myapp

Runtime Parameters:

 java_version=1.6

Container version

CloudBees offers several containers: Tomcat 6.0.32 (the default), Tomcat 7, JBoss 7.02,
JBoss 7.1, and GlassFish 3.

To change containers, the application will need to be redeployed, as CloudBees uses
different file configurations for the various containers. Hence we use the bees app:de
ploy command. The following example updates to Tomcat 7:

$ bees app:deploy -t tomcat7 -a myaccount/myapp sample.war

The JVM and container commands can be run as a single bees app:deploy, as follows:

$ bees app:deploy -t tomcat -a myaccount/myapp sample.war -Rjava_version=1.6

This would deploy sample.war to the myapp application on myaccount with Tomcat
6.0.32 and JDK 6.

To determine which container an application is deployed to, use the command bees
app:info:

10.1. Deploying to CloudBees | 207

$ bees app:info -a myaccount/myapp

Application : myaccount/myapp

Title : myapp

Created : Wed Mar 20 11:02:40 EST 2013

Status : active

URL : myapp.myaccount.cloudbees.net

clusterSize : 1

container : java_free

containerType : tomcat

idleTimeout : 21600

maxMemory : 256

proxyBuffering : false

securityMode : PUBLIC

serverPool : stax-global (Stax Global Pool)

ClickStarts

ClickStart applications are templates to quickly get an application and automated build
up and running at CloudBees. The Lift ClickStart creates a private Git source repository
at CloudBees that contains a Lift 2.4 application, provisions a MySQL database, creates
a Maven-based Jenkins build, and deploys the application. All you need to do is provide
a name for the application (without whitespace).

To access the Git source repository created for you, you’ll need to upload an SSH public
key. You can do this in the “My Keys” section of your account settings on the CloudBees
website.

The build that’s created for you will automatically build and deploy your application to
CloudBees when you push changes to your Git repository.

If all of that’s a good match to the technologies and services you want to use, ClickStart
is a great way to deploy your application. Alternatively, it gives you a starting point from
which you can modify elements; or you could fork the CloudBees Lift template and
create your own.

See Also
The CloudBees SDK provides command-line tools for configuring and controlling
applications.

The CloudBees developer portal contains a “Resources” section that provides details of
the CloudBees services. In it, you’ll find details on PermGen settings, JVM selection,
and servlet containers.

208 | Chapter 10: Production Deployment

https://github.com/CloudBees-community/lift_template
https://github.com/CloudBees-community/lift_template
https://wiki.cloudbees.com/bin/view/RUN/BeesSDK
https://developer.cloudbees.com
https://wiki.cloudbees.com/bin/view/RUN/JVM+PermGen+Space
https://developer.cloudbees.com/bin/view/RUN/JVMVersion
https://developer.cloudbees.com/bin/view/RUN/ClickStack

10.2. Deploying to Amazon Elastic Beanstalk

Problem
You want to run your Lift application on Amazon Web Services (AWS) Elastic Beanstalk.

Solution
Create a new Tomcat 7 environment, use SBT to package your Lift application as a WAR
file, and then deploy the application to your environment.

To create a new environment, visit the AWS console, navigate to Elastic Beanstalk, and
select “Apache Tomcat 7” as your environment. This will create and launch a default
Beanstalk application. This may take a few minutes, but will eventually report “Suc‐
cessfully running version Sample Application.” You’ll be shown the URL of the appli‐
cation (something like http://default-environment-nsdmixm7ja.elasticbeanstalk.com),
and visiting the URL you’re given will show the running default Amazon application.

Prepare your WAR file by running:

$ sbt package

This will write a WAR file into the target folder. To deploy this WAR file from the AWS
Beanstalk web console (see Figure 10-1), select the “Versions” tab under the “Elastic
Beanstalk Application Details” and click the “Upload new version” button. You’ll be
given a dialog where you give a version label and use the “Choose file” button to select
the WAR file you just built. You can either upload and deploy in one step, or upload
first and then select the version in the console and hit the “Deploy” button.

The Beanstalk console will show “Environment updating…”, and after some minutes,
it’ll report “Successfully running.” Your Lift application is now deployed and running
on Beanstalk.

A final step is to enable Lift’s production run mode. From the environment in the AWS
Beanstalk web console, follow the “Edit Configuration” link. A dialog will appear, and
under the “Container” tab, add -Drun.mode=production to the “JVM Command Line
Options” and hit “Apply Changes” to redeploy your application.

10.2. Deploying to Amazon Elastic Beanstalk | 209

Figure 10-1. AWS console, with Elastic Beanstalk service selected

Discussion
Elastic Beanstalk provides a prebuilt stack of software and infrastructure, in this case:
Linux, Tomcat 7, a 64 bit “t1.micro” EC2 instance, load balancing, and an S3 bucket.
That’s the environment and it has reasonable default settings. Beanstalk also provides
an easy way to deploy your Lift application. As we’ve seen in this recipe, you upload an
application (WAR file) to Beanstalk and deploy it to the environment.

As with many cloud providers, keep in mind that you want to avoid local file storage.
The reason for this is to allow instances to be terminated or restarted without data loss.
With your Beanstalk application, you do have a filesystem and you can write to it, but
it is lost if the image is restarted. You can get persistent local file storage—for example,
using Amazon Elastic Block Storage—but you’re fighting against the nature of the
platform.

Logfiles are written to the local filesystem. To access them, from the AWS console,
navigate to your environment, into the “Logs” tab, and hit the “Snapshot” button. This
will take a copy of the logs and store them in an S3 bucket, and give you a link to the

210 | Chapter 10: Production Deployment

file contents. This is a single file showing the content of a variety of logfiles, and cata‐
lina.out will be the one showing any output from your Lift application. If you want to
try to keep these logfiles around, you can configure the environment to rotate the logs
to S3 every hour from the “Container” tab under “Edit Configuration.”

The Lift application WAR files are stored in the same S3 bucket that the logs are stored
in. From the AWS console, you’ll find it under the S3 page listed with a name like
“elasticbeanstalk-us-east-1-5989673916964.” You’ll note that the AWS uploads makes
your WAR filename unique by adding a prefix to each filename. If you need to be able
to tell the difference between these files in S3, one good approach is to bump the ver
sion value in your build.sbt file. This version number is included in the WAR
filename.

Multiple instances

Beanstalks enables autoscaling by default. That is, it launches a single instance of your
Lift application, but if the load increases above a threshold, up to four instances may be
running.

If you’re making use of Lift’s state features, you’ll need to enable sticky sessions from
the “Load Balancer” tab of the environment configuration. It’s a checkbox named
“Enable Session Stickiness”—it’s easy to miss, but that tab does scroll to show more
options if you don’t see it the first time.

Working with a database

There’s nothing unusual you have to do to use Lift and a database from Beanstalk.
However, Beanstalk does try to make it easy for you to work with Amazon’s Relational
Database Service (RDS). Either when creating your Beanstalk environment, or from the
configuration options later, you can add an RDS instance, which can be an Oracle, SQL-
Server, or MySQL database.

The MySQL option will create a MySQL InnoDB database. The database will be acces‐
sible from Beanstalk, but not from elsewhere on the Internet. To change that, modify
the security groups for the RDS instance from the AWS web console. For example, you
might permit access from your IP address.

When your application launches with an associated RDS instance, the JVM system
properties include settings for the database name, host, port, user, and password. You
could pull them together like this in Boot.scala:

Class.forName("com.mysql.jdbc.Driver")

val connection = for {

 host <- Box !! System.getProperty("RDS_HOSTNAME")

 port <- Box !! System.getProperty("RDS_PORT")

 db <- Box !! System.getProperty("RDS_DB_NAME")

 user <- Box !! System.getProperty("RDS_USERNAME")

 pass <- Box !! System.getProperty("RDS_PASSWORD")

10.2. Deploying to Amazon Elastic Beanstalk | 211

} yield DriverManager.getConnection(

 "jdbc:mysql://%s:%s/%s" format (host,port,db),

 user, pass)

That would give you a Box[Connection] that, if Full, you could use in a SquerylRe
cord.initWithSquerylSession call, for example (see Chapter 7).

Alternatively, you might want to guarantee a connection by supplying defaults for all
the values with something like this:

Class.forName("com.mysql.jdbc.Driver")

val connection = {

 val host = System.getProperty("RDS_HOSTNAME", "localhost")

 val port = System.getProperty("RDS_PORT", "3306")

 val db = System.getProperty("RDS_DB_NAME", "db")

 val user = System.getProperty("RDS_USERNAME", "sa")

 val pass = System.getProperty("RDS_PASSWORD", "")

 DriverManager.getConnection(

 "jdbc:mysql://%s:%s/%s" format (host,port,db),

 user, pass)

}

See Also
Amazon provided a walkthrough with screenshots, showing how to create a Beanstalk
application.

Elastic Beanstalk, by van Vliet et al. (O’Reilly) goes into the details of the Beanstalk
infrastructure, how to work with Eclipse, enabling continuous integration, and how to
hack the instance (for example, to use Nginx as a frontend to Beanstalk).

The Amazon documentation for “Configuring Databases with AWS Elastic Bean‐
stalk” describes the RDS settings in more detail.

10.3. Deploying to Heroku

Problem
You want to deploy your Lift application to your account on the Heroku cloud platform.

Solution
Package your Lift application as a WAR file and use the Heroku deploy plugin to send
and run your application. This will give you an application running under Tomcat 7.
Anyone can use this method to deploy an application, but Heroku provides support
only for Enterprise Java customers.

212 | Chapter 10: Production Deployment

http://bit.ly/11FFQtl
http://shop.oreilly.com/product/0636920020561.do
http://bit.ly/ZPLZ95
http://bit.ly/ZPLZ95

This recipe walks through the process in three stages: one-time setup; deployment of
the WAR; and configuration of your Lift application for production performance.

If you’ve not already done so, download and install the Heroku command-line tools
(“Toolbelt”) and log in using your Heroku credentials and upload an SSH key:

$ heroku login

Enter your Heroku credentials.

Email: you@example.org

Password (typing will be hidden):

Found the following SSH public keys:

1) github.pub

2) id_rsa.pub

Which would you like to use with your Heroku account? 2

Uploading SSH public key ~/.ssh/id_rsa.pub... done

Authentication successful.

Install the deploy plugin:

$ heroku plugins:install https://github.com/heroku/heroku-deploy

Installing heroku-deploy... done

With that one-time setup complete, you can create an application on Heroku. Here we’ve
not specified a name, so we are given a random name of “glacial-waters-6292” that we
will use throughout this recipe:

$ heroku create

Creating glacial-waters-6292... done, stack is cedar

http://glacial-waters-6292.herokuapp.com/ |

git@heroku.com:glacial-waters-6292.git

Before deploying, we set the Lift run mode to production. This is done via the con
fig:set command. First check the current settings for JAVA_OPTS and then modify the
options by adding -Drun.mode=production:

$ heroku config:get JAVA_OPTS --app glacial-waters-6292

-Xmx384m -Xss512k -XX:+UseCompressedOops

$ heroku config:set JAVA_OPTS="-Drun.mode=production -Xmx384m -Xss512k

 -XX:+UseCompressedOops" --app glacial-waters-6292

We can deploy to Heroku by packaging the application as a WAR file and then running
the Heroku deploy:war command:

$ sbt package

....

[info] Packaging target/scala-2.9.1/myapp-0.0.1.war ...

....

$ heroku deploy:war --war target/scala-2.9.1/myapp-0.0.1.war

 --app glacial-waters-6292

Uploading target/scala-2.9.1/myapp-0.0.1.war............done

Deploying to glacial-waters-6292.........done

Created release v6

10.3. Deploying to Heroku | 213

Your Lift application is now running on Heroku.

Discussion
There are a few important comments regarding Lift applications on Heroku. First, note
that there’s no support for session affinity. This means if you deploy to multiple dynos
(Heroku terminology for instances), there is no coordination over which requests go
to which servers. As a consequence, you won’t be able to make use of Lift’s stateful
features and will want to turn them off (Recipe 6.4 describes how to do that).

Second, if you are using Lift Comet features, there’s an adjustment to make in Boot.sca‐
la to work a little better in the Heroku environment:

LiftRules.cometRequestTimeout = Full(25)

This setting controls how long Lift waits before testing a Comet connection. We’re
replacing the Lift default of 120 seconds with 25 seconds, because Heroku terminates
connections after 30 seconds. Although Lift recovers from this, the user experience may
be to see a delay when interacting with a page.

A third important point to note is that the dyno will be restarted every day. Additionally,
if you are only running one web dyno, it will be idled after an hour of inactivity. You
can see this happening by tailing your application log:

$ heroku logs -t --app glacial-waters-6292

...

2012-12-31T11:31:39+00:00 heroku[web.1]: Idling

2012-12-31T11:31:41+00:00 heroku[web.1]: Stopping all processes with SIGTERM

2012-12-31T11:31:43+00:00 heroku[web.1]: Process exited with status 143

2012-12-31T11:31:43+00:00 heroku[web.1]: State changed from up to down

Anyone visiting your Lift application will cause Heroku to unidle your application.

Note, though, that the application was stopped with a SIGTERM. This is a Unix signal
sent to a process, the JVM in this case, to request it to stop. Unfortunately, the Tomcat
application on Heroku does not use this signal to request Lift to shut down. This may
be of little consequence to you, but if you do have external resources you want to release
to other actions to take at shutdown, you need to register a shutdown hook with the
JVM.

For example, you might add this to Boot.scala if you’re running on Heroku:

Runtime.getRuntime().addShutdownHook(new Thread {

 override def run() {

 println("Shutdown hook being called")

 // Do useful clean up here

 }

})

214 | Chapter 10: Production Deployment

Do not count on being able to do much during shutdown. Heroku allows around 10
seconds before killing the JVM after issuing the SIGTERM.

Possibly a more general approach is to perform cleanup using Lift’s unload hooks (see
Recipe 6.3) and then arrange the hooks to be called when Heroku sends the signal to
terminate:

Runtime.getRuntime().addShutdownHook(new Thread {

 override def run() {

 LiftRules.unloadHooks.toList.foreach{ f => tryo { f() } }

 }

})

This handling of SIGTERM may be a surprise, but if we look at how the application is
running on Heroku, things become clearer. The dyno is an allocation of resources (512
MB of memory) and allows an arbitrary command to run. The command being run is
a Java process starting a “webapp runner” package. You can see this in two ways. First,
if you shell to your dyno, you’ll see a WAR file as well as a JAR file:

$ heroku run bash --app glacial-waters-6292

Running `bash` attached to terminal... up, run.8802

~ $ ls

Procfile myapp-0.0.1.war webapp-runner-7.0.29.3.jar

Second, by looking at the processes executing:

$ heroku ps --app glacial-waters-6292

=== web: `${PRE_JAVA}java ${JAVA_OPTS} -jar webapp-runner-7.0.29.3.jar

 --port ${PORT} ${WEBAPP_RUNNER_OPTS} myapp-0.0.1.war`

web.1: up 2013/01/01 22:37:35 (~ 31s ago)

Here we see a Java process executing a JAR file called webapp-runner-7.0.29.3.jar that
is passed our WAR file as an argument. This is not identical to the Tomcat catalina.sh
script you may be more familiar with, but instead is this launcher process. As it does
not register a handler to deal with SIGTERM, we will have to if we need to release any
resources during shutdown.

All of this means that if you want to launch a Lift application in a different way, you can.
You’d need to wrap an appropriate container (Jetty or Tomcat, for example), and provide
a main method for Heroku to call. This is sometimes called containerless deployment.

If you are not a Heroku Enterprise Java customer, and you’re uncomfortable with the
unsupported nature of the deploy:war plugin, you now know what you need to do to
run in a supported way: provide a main method that launches your application and listen
for connections. The “See Also” section gives pointers for how to do this.

10.3. Deploying to Heroku | 215

https://github.com/jsimone/webapp-runner

Database access in Heroku

Heroku makes no restrictions on which databases you can connect to from your Lift
application, but they try to make it easy to use their PostgreSQL service by attaching a
free database to applications you create.

You can find out if you have a database by running the pg command:

$ heroku pg --app glacial-waters-6292

=== HEROKU_POSTGRESQL_BLACK_URL (DATABASE_URL)

Plan: Dev

Status: available

Connections: 0

PG Version: 9.1.6

Created: 2012-12-31 10:02 UTC

Data Size: 5.9 MB

Tables: 0

Rows: 0/10000 (In compliance)

Fork/Follow: Unsupported

The URL of the database is provided to your Lift application as the DATABASE_URL
environment variable. It will have a value of something like this:

postgres://gghetjutddgr:RNC_lINakkk899HHYEFUppwG@ec2-54-243-230-119.compute-1.

 amazonaws.com:5432/d44nsahps11hda

This URL contains a username, password, host, and database name, but needs to be
manipulated to be used by JDBC. To do so, you might include the following in Boot.scala:

 Box !! System.getenv("DATABASE_URL") match {

 case Full(url) => initHerokuDb(url)

 case _ => // configure local database perhaps

}

def initHerokuDb(dbInfo: String) {

 Class.forName("org.postgresql.Driver")

 // Extract credentials from Heroku database URL:

 val dbUri = new URI(dbInfo)

 val Array(user, pass) = dbUri.getUserInfo.split(":")

 // Construct JDBC connection string from the URI:

 def connection = DriverManager.getConnection(

 "jdbc:postgresql://" + dbUri.getHost + ':' + dbUri.getPort +

 dbUri.getPath, user, pass)

 SquerylRecord.initWithSquerylSession(

 Session.create(connection, new PostgreSqlAdapter))

}

Here we are testing for the presence of the DATABASE_URL environment variable, which
would indicate that we are in the Heroku environment. We can then extract out the

216 | Chapter 10: Production Deployment

connection information to use in Session.create. We would additionally need to
complete the usual addAround configuration described in Recipe 7.1.

For it to run, build.sbt needs the appropriate dependencies for Record and PostgreSQL:

...

"postgresql" % "postgresql" % "9.1-901.jdbc4",

"net.liftweb" %% "lift-record" % liftVersion,

"net.liftweb" %% "lift-squeryl-record" % liftVersion,

...

With this in place, your Lift application can make use of the Heroku database. You can
also access the database from the shell, for example:

$ pg:psql --app glacial-waters-6292

psql (9.1.4, server 9.1.6)

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

Type "help" for help.

d44nsahps11hda=> \d

No relations found.

d44nsahps11hda=> \q

$

To access via a JDBC tool outside of the Heroku environment, you’ll need to include
parameters to force SSL. For example:

jdbc:postgresql://ec2-54-243-230-119.compute-1.amazonaws.com:5432/

d44nsahps11hda?username=gghetjutddgr&password=RNC_lINakkk899HHYE-

FUppwG&ssl=true&sslfactory=org.postgresql.ssl.NonValidatingFactory

See Also
The Scala and Java articles at Heroku, and Dynos and the Dyno Manager, are useful to
learn more of the details described in this recipe.

The JVM shutdown hooks are described in the JDK documentation.

Heroku’s guide to containerless deployment makes use of Maven to package your ap‐
plication. There is also a template SBT project from Matthew Henderson that includes
a JettyLauncher class.

Request Timeout describes how Heroku deals with Comet long polling.

10.4. Distributing Comet Across Multiple Servers

Problem
You use Lift’s Comet support, and want to run across multiple servers for increased
redundancy or to handle increased load.

10.4. Distributing Comet Across Multiple Servers | 217

https://devcenter.heroku.com/categories/scala
https://devcenter.heroku.com/categories/java
https://devcenter.heroku.com/articles/dynos
http://docs.oracle.com/javase/7/docs/api/java/lang/Runtime.html
https://devcenter.heroku.com/articles/java-webapp-runner
https://github.com/ghostm/lift_blank_heroku
https://devcenter.heroku.com/articles/request-timeout

Solution
Use the publish/subscribe (pubsub) model to connect each server to a topic and route
Comet messages out to the topic where it can be broadcast to all servers that are part of
your application.

There are a variety of technologies you can use to accomplish this, such as databases,
message systems, and actor systems. For this recipe, we will use the RabbitMQ message
service, but there are examples using CouchDB and Amazon’s Simple Notification Ser‐
vice in the “See Also” section.

Regardless of the technology, the principle is illustrated in Figure 10-2. A Comet event
originating on one Lift application is sent to a service for redistribution. It is the re‐
sponsibility of this service (labeled “topic” in the figure) to ensure all the participating
Lift applications receive the event.

Figure 10-2. Comet events originating on one server are distributed via a topic

The first step is to download and install RabbitMQ. Then start the server:

$./sbin/rabbitmq-server -detatched

This command will produce various messages as it starts but will eventually say: “broker
running.”

The Lift application we’ll use to demonstrate the pubsub pattern is the real-time chat
application, described in Simply Lift. The first modification is to include the Lift module
to talk to RabbitMQ. This is a one-line addition to the libraryDependencies in
build.sbt:

"net.liftmodules" %% "amqp_2.5" % "1.3"

AMQP stands for Advanced Message Queuing Protocol, a protocol that RabbitMQ
talks. The AMQP module provides abstract actors to send and receive messages, and
we will implement these actors as RemoteSend and RemoteReceiver:

218 | Chapter 10: Production Deployment

http://rabbitmq.com/

package code.comet

import net.liftmodules.amqp._

import com.rabbitmq.client._

object Rabbit {

 val factory = new ConnectionFactory {

 import ConnectionFactory._

 setHost("127.0.0.1")

 setPort(DEFAULT_AMQP_PORT)

 }

 val exchange = "lift.chat"

 val routing = ""

 val durable = true

 val autoAck = false

 object RemoteSend extends AMQPSender[String](factory, exchange, routing) {

 def configure(channel: Channel) =

 channel.exchangeDeclare(exchange, "fanout", durable)

 }

 object RemoteReceiver extends AMQPDispatcher[String](factory) {

 def configure(channel: Channel) = {

 channel.exchangeDeclare(exchange, "fanout", durable)

 val queueName = channel.queueDeclare().getQueue()

 channel.queueBind(queueName, exchange, routing)

 channel.basicConsume(queueName, autoAck,

 new SerializedConsumer(channel, this))

 }

 }

}

This code is establishing RemoteSend and RemoteReceiver actors that serialise String
values via RabbitMQ. This code is explored in the “Discussion” section next.

To make use of this and route Comet messages over RabbitMQ, we need to make two
changes. In Boot.scala, we need to start listening for messages from RabbitMQ:

RemoteReceiver ! AMQPAddListener(ChatServer)

This is attaching the ChatServer as a listener for AMQP messages from the
RemoteReceiver.

The final change is to the ChatServer itself. The regular behaviour of the ChatServer
is to receive a String message from a client and update all the screens attached to the
Comet server:

10.4. Distributing Comet Across Multiple Servers | 219

override def lowPriority = {

 case s : String => msgs :+= s; updateListeners()

}

The change to route messages over RabbitMQ is to redirect any String from clients to
RabbitMQ, and handle any AMQP messages from RabbitMQ and update all clients:

override def lowPriority = {

 case AMQPMessage(s: String) => msgs :+= s; updateListeners()

 case s: String => RemoteSend ! AMQPMessage(s)

}

This change means all our Comet chat messages go out to RabbitMQ where they are
distributed to all the instances of our Lift application, and all the instances receive the
messages back as AMQPMessage instances and update chat clients as normal.

Discussion
To run more than one instance of your Lift application locally, you’ll want to start SBT
as normal, and then in another Terminal, start again but on a different port number:

$ sbt

...

> set port in container.Configuration := 9090

[info] Reapplying settings...

[info] Set current project to RabbitMQ Chat (in build file:rabbitmq_chat/)

> container:start

You can then visit one application at http://127.0.0.1:8080 and another at http://
127.0.0.1:9090.

In the example code, you can see that AMQPSender[T] and AMQPDispatcher[T] take care
of most of the work for us, and we provide some configuration. In the case of Remote
Send we’re configuring the AMQPSender to work with String messages and to work with
an exchange called lift.chat. In RabbitMQ, the exchange is the entity we send mes‐
sages to, and the exchange has the responsibility for passing on the message. In this case,
the exchange is a fanout (a simple kind of topic) where each subscriber receives a copy
of any messages sent to the exchange. This is clearly what we want to get our chat
messages sent to all connected Lift instances of the chat application.

The RemoteReceiver is also configured to receive String messages, although the con‐
figuration is a little longer. Here, as well as indicating the exchange to be used, we declare
a temporary queue for our Lift instance. The queue is the place where RabbitMQ sends
messages, and what we’re saying here is that each receiver has its own queue. The fanout
exchange will ensure any message sent to the exchange is placed into every queue. The
queue has a random name assigned by RabbitMQ and is destroyed when we disconnect
from it.

220 | Chapter 10: Production Deployment

The final part of the RemoteReceiver is to specify how we consume messages. The
default behaviour of RemoteSend is to serialise objects, so we mirror that in the receiver
by using the SerializedConsumer class provided by the AMQP module.

To see the behaviour of RabbitMQ, it’s useful to install the management web console.
From the directory where you installed RabbitMQ:

$./sbin/rabbitmq-plugins enable rabbitmq_management

Visit the administrative web interface at http://127.0.0.1:15672/ and log in. The default
username and password is “guest.”

Needing to have RabbitMQ (or other types of pubsub solutions) running during de‐
velopment may be inconvenient. In that case, you can simply not initialise the service
in Boot.scala:

if (Props.productionMode)

 RemoteReceiver ! AMQPAddListener(ChatServer)

And in the chat server, send only to local clients:

override def lowPriority = {

 case AMQPMessage(s: String) => msgs :+= s; updateListeners()

 case s: String =>

 if (Props.productionMode) RemoteSend ! AMQPMessage(s)

 else { msgs :+= s; updateListeners() }

 }

Note that Props.productionMode is true for the run modes of Production, Staging,
and Pilot.

See Also
The Lift Chat example is described in Simply Lift. The source code used in this recipe
is on GitHub.

Source for the Lift AMQP module can be found on GitHub.

If you want to learn more about RabbitMQ, take a look at the tutorials or Alvaro Videla
and Jason J.W. Williams’s RabbitMQ in Action: Distributed Messaging for Everyone
(Manning Publications Co.).

Diego Medina has implemented a distributed Comet solution using CouchDB, and has
described it in a blog post.

Amazon’s Simple Notification Service (SNS) is a fanout facility so it can also be used to
implement this pattern. You can find a Lift module for SNS on GitHub.

10.4. Distributing Comet Across Multiple Servers | 221

http://simply.liftweb.net/
https://github.com/LiftCookbook/rabbitmq_chat
https://github.com/liftmodules/amqp
http://www.rabbitmq.com/tutorials/tutorial-five-java.html
https://fmpwizard.telegr.am/blog/distributed-comet-chat-lift
https://github.com/SpiralArm/liftmodules-aws-sns

CHAPTER 11

Contributing, Bug Reports, and
Getting Help

11.1. You’d Like Some Help

Problem
You’re stuck on something in Lift and you’d like some help.

Solution
Ask a question on the Lift mailing list.

Discussion
You will find some information about Lift on StackOverflow, Quora, and elsewhere, but
the mailing list is the place to go to get help and support. You can search the archive to
see if your question has already been addressed, but questions are very welcome as it
helps the Lift community understand what users need and what might be causing prob‐
lems or need explanation. Much of what you’re reading here originates from questions
that have been asked on the mailing list.

New members to the mailing list are moderated to help reduce spam. This means the
first time you post, your message may take a few hours to show up.

See Also
The Lift community is one of the things that makes Lift what it is. Please take a look at
http://liftweb.net/community before posting: you’ll get the best response with a polite
question.

223

https://groups.google.com/group/liftweb
http://liftweb.net/community

If you need paid consulting, development, or SLA-backed support, there’s a list of or‐
ganizations on the wiki.

11.2. How to Report Bugs

Problem
You’ve found a bug and want to report it.

Solution
Discuss your findings on the Lift mailing list, describing what you’re seeing, and what
you’d expected to see.

By all means look at the existing tickets to see if your issue is there or recently fixed, but
please do not raise a ticket unless asked to do so by a Lift committer on the mailing list.

Discussion
If Lift is not behaving as you expect, please ask questions about what you’re seeing. The
ideal form of these questions is “When I do X, my Lift app does Y, but I expect it to do Z,
why?” This provides a set of language to discuss your application and the way that Lift
responds to requests. Perhaps there’s a way of improving Lift. Perhaps there’s a concept
that’s different in Lift than you might be used to. Perhaps there’s a documentation issue
that can help bridge the gap between what Lift is doing and what you expect it to do. Most
importantly, just because Lift is behaving differently than you expect it to, it’s not neces‐
sarily a bug in Lift.

— David Pollack
 http://bit.ly/lift-expects

A great way to get help with the issue you have, or get a bug fixed, is to produce a small
example to illustrate the problem and post it on GitHub. The key is to provide instruc‐
tions so someone can run the example and see exactly what you see without having to
jump through hoops.

See Also
You’ll find a list of tickets at http://ticket.liftweb.net/.

If you’re asked to, or want to, post example code, please follow the guide.

If you’ve found a bug, and you’re asked to create a ticket, the main thing to do is include
a link to the mailing list discussion of the issue, as described in Creating tickets.

224 | Chapter 11: Contributing, Bug Reports, and Getting Help

https://www.assembla.com/spaces/liftweb/wiki/Commercial_Support
http://ticket.liftweb.net/
http://www.assembla.com/wiki/show/liftweb/Posting_example_code
http://www.assembla.com/wiki/show/liftweb/Creating_tickets

11.3. Contributing Small Code Changes and ScalaDoc

Problem
You have a small change or ScalaDoc improvement you’d like incorporated into Lift.

Solution
You can issue pull requests against the Lift source, providing your change meets one of
the following requirements:

• It’s a change to a comment.

• It’s example code.

• It’s a small change, enhancement, or bug fix to Lift.

Your pull request must include an edit to add your signature to the bottom of the
contributors.md file.

Discussion
Historically, Lift had a strict contributor policy of simply not accepting any code con‐
tributions except from committers who had signed an agreement to assign copyright
to the Lift project. This allowed corporations wanting to adopt Lift to do so without
litigation concerns.

The safety is still there, now via the requirement for a signature on the contributors file,
which reads:

By submitting this pull request which includes my name and email address (the email
address may be in a non-robot readable format), I agree that the entirety of the contri‐
bution is my own original work, that there are no prior claims on this work including,
but not limited to, any agreements I may have with my employer or other contracts, and
that I license this work under an Apache 2.0 license.

What’s a small change? That’s a good question, and if you’re unsure, talk about your
proposed change on the mailing list.

See Also
This contribution policy was introduced in November 2012.

The contributors.md file is found on GitHub.

The Lift source is on GitHub. The framework project is probably the one you want,
although you’ll also find Git repositories for examples and Lift websites there.

GitHub provides an introduction to pull requests.

11.3. Contributing Small Code Changes and ScalaDoc | 225

http://www.lift.la/blog/new_contribution_policy
https://github.com/lift/framework/blob/master/contributors.md
https://github.com/lift/
https://help.github.com/articles/using-pull-requests

Recipe 11.6 describes how to share code of any size via Lift modules.

11.4. Contributing Documentation

Problem
You’d like to contribute documentation to Lift.

Solution
Update or add to the Lift wiki.

You’ll need to sign in, or create a free account, with Assembla, the company that hosts
the wiki. You then need to become a watcher of the Lift wiki, which is offered as a link
on the top right of the Lift wiki page. As a watcher, you can edit pages and create new
pages.

Discussion
If you’re unsure about a change you’d like to make, just ask for feedback on the Lift
mailing list.

One limitation of the watcher role on Assembla is that you cannot move pages. If you
create a new page in the wrong section, or want to reorganise pages, you’ll need to ask
on the Lift mailing list for someone with permissions to do that for you.

See Also
The markup format for the wiki pages is Textile.

11.5. How to Add a New Recipe to This Cookbook

Problem
You’d like to add a section or chapter to this cookbook.

Solution
If you’re comfortable using Git, you can fork the repository and send a pull request.

Alternatively, download a template file, write your recipe, and email it to the Lift mailing
list.

You can find the template file on GitHub.

226 | Chapter 11: Contributing, Bug Reports, and Getting Help

https://www.assembla.com/wiki/show/liftweb
http://redcloth.org/hobix.com/textile/
https://groups.google.com/group/liftweb
https://groups.google.com/group/liftweb
http://bit.ly/19AllpY

Discussion
Anything you’ve puzzled over, or things that have surprised you, impressed you, or are
nonobvious are great topics for recipes. Improvements, discussions, and clarifications
of existing recipes are welcome, too.

The cookbook is structured using a markup language called AsciiDoc. If you’re familiar
with Markdown or Textile, you’ll find similarities. For the cookbook, you only need to
know about section headings, source code formatting, and links. Examples of all of these
are in the template.asciidoc file.

To find out where to make a change, you need to know that each chapter is a separate
file, and each recipe is a section in that file.

Licensing

We ask contributors the following:

• You agree to license your work (including the words you write, the code you use,
and any images) to us under the Creative Commons Attribution, Non Commercial,
No Derivatives license.

• You assert that the work is your own, or you have the necessary permission for the
work.

To keep things simple, all author royalties from this book are given to charity.

See Also
The source to this book is on GitHub.

The AsciiDoc cheatsheet is a quick way to get into AsciiDoc, but if you need more, the
AsciiDoc home page has the details.

GitHub provides an introduction to pull requests.

Recipe 11.4 describes other ways to contribute documentation to Lift.

11.6. Sharing Code in Modules

Problem
You have code you’d like to share between Lift projects or with the community.

Solution
Create a Lift module, and then reference the module from your Lift projects.

11.6. Sharing Code in Modules | 227

https://github.com/d6y/lift-cookbook/
http://powerman.name/doc/asciidoc
http://www.methods.co.nz/asciidoc/
https://help.github.com/articles/using-pull-requests

As an example, let’s create a module to embed the snowstorm snowfall effect on every
page in your Lift web application (please don’t do this).

There’s nothing special about modules: they are coded, packaged, and used like any
other dependency. What makes them possible is the exposure of extension points via
LiftRules. The main convention is to have an init method that Lift applications can
use to initialise your module.

For our snowstorm, we’re going to package some JavaScript and inject the script onto
every page.

Starting with the lift_blank template downloaded from liftweb.net, we can remove all
the source and HTML files, as this won’t be a runnable Lift application in itself. However,
it will leave us with the regular Lift structure and build configuration.

Our module will need the snowstorm JavaScript file copied as resources/toserve/snow‐
storm.js. This will place the JavaScript file on the classpath of our Lift application.

The final piece of the module is to ensure the JavaScript is included on every page:

package net.liftmodules.snowstorm

import net.liftweb.http._

object Snowstorm {

 def init() : Unit = {

 ResourceServer.allow {

 case "snowstorm.js" :: Nil => true

 }

 def addSnow(s: LiftSession, r: Req) = S.putInHead(

 <script type="text/javascript" src="/classpath/snowstorm.js"></script>)

 LiftSession.onBeginServicing = addSnow _ :: LiftSession.onBeginServicing

 }

}

Here we are plugging into Lift’s processing pipeline and adding the required JavaScript
to the head of every page.

We modify build.sbt to give the module a name, organisation, and version number. We
also can remove many of the dependencies and the web plugin as we only depend on
the web API elements of Lift:

name := "snowstorm"

version := "1.0.0"

228 | Chapter 11: Contributing, Bug Reports, and Getting Help

https://github.com/scottschiller/snowstorm/

organization := "net.liftmodules"

scalaVersion := "2.9.1"

resolvers ++= Seq(

 "snapshots" at "http://oss.sonatype.org/content/repositories/snapshots",

 "releases" at "http://oss.sonatype.org/content/repositories/releases"

)

scalacOptions ++= Seq("-deprecation", "-unchecked")

libraryDependencies ++= {

 val liftVersion = "2.5"

 Seq(

 "net.liftweb" %% "lift-webkit" % liftVersion % "compile"

)

}

We can publish this plugin to the repository on disk by starting SBT and typing:

publish-local

With our module built and published, we can now include it in our Lift applications.
To do that, modify the Lift application’s build.sbt to reference this new “snowstorm”
dependency:

libraryDependencies ++= {

 val liftVersion = "2.5"

 Seq(

 ...

 "net.liftmodules" %% "snowstorm" % "1.0.0",

 ...

In our Lift application’s Boot.scala, we finally initialise the plugin:

import net.liftmodules.snowstorm.Snowstorm

Snowstorm.init()

When we run our Lift application, white snow will be falling on every page, supplied
by the module.

Discussion
The module is self contained: there’s no need for users to copy JavaScript files around
or modify their templates. To achieve that, we’ve made use of ResourceServer. When
we reference the JavaScript file via /classpath/snowstorm.js, Lift will attempt to locate
snowstorm.js from the classpath. This is what we want for our Lift application, because
snowstorm.js will be inside the module JAR file.

However, we do not want to expose all files on the classpath to anyone visiting our
application. To avoid that, Lift looks for resources inside a toserve folder, which for our

11.6. Sharing Code in Modules | 229

purposes means files and folders inside src/main/resources/toserve. You can think
of /classpath meaning toserve (although, you can change those values via LiftRules.re
sourceServerPath and ResourceServer.baseResourceLocation).

As a further precaution, you need to explicitly allow access to these resources. That’s
done with:

ResourceServer.allow {

 case "snowstorm.js" :: Nil => true

}

We’re just always returning true for anyone who asks for this resource, but we could
dynamically control access here if we wanted.

S.putInHead adds the JavaScript to the head of a page and is triggered on every page
by LiftSession.onBeginServicing (also discussed in Recipe 6.2). We could make use
of Req here to restrict the snowstorm to particular pages, but we’re adding it to every
page.

Hopefully you can see that anything you can do in a Lift application you can probably
turn into a Lift module. A typical approach might be to have functionality in a Lift
application, and then factor out settings in Boot into a module init method. For ex‐
ample, if you wanted to provide REST services as a module, that would be possible and
is an approach taken by the Lift PayPal module.

Making your module available

If you do want your module to be used by a wider audience, you need to publish it to a
public repository, such as Sonatype or CloudBees. You’ll also want to keep your module
up-to-date with Lift releases. There are a few conventions around this.

One convention is to include the Lift “edition” as part of the module name. For example,
version 1.0.0 of your foo module for Lift 2.5 would have the name foo_2.5. This makes
it clear your module is compatible with Lift for all of 2.5, including milestones, release
candidates, snapshots, and final releases. It also means you need to publish your module
only once, at least until Lift 2.6 or 3.0 is available.

One way to manage updates is to make a modification to your module build to allow
the Lift version number to change. This makes it possible to automate the build when
new versions of Lift are released. To do that, create project/LiftModule.scala in your
module:

import sbt._

import sbt.Keys._

object LiftModuleBuild extends Build {

 val liftVersion = SettingKey[String]("liftVersion",

 "Full version number of the Lift Web Framework")

230 | Chapter 11: Contributing, Bug Reports, and Getting Help

 val liftEdition = SettingKey[String]("liftEdition",

 "Lift Edition (short version number to append to artifact name)")

 val project = Project("LiftModule", file("."))

}

This defines a setting to control the Lift version number. You use it in your module
build.sbt like this:

name := "snowstorm"

organization := "net.liftmodules"

version := "1.0.0-SNAPSHOT"

liftVersion <<= liftVersion ?? "2.5-SNAPSHOT"

liftEdition <<= liftVersion apply { _.substring(0,3) }

name <<= (name, liftEdition) { (n, e) => n + "_" + e }

...

libraryDependencies <++= liftVersion { v =>

 "net.liftweb" %% "lift-webkit" % v % "provided" ::

 Nil

}

Note the "provided" configuration for Lift in the build file. This means that when your
module is used, the version of Lift’s WebKit will be the version provided by the appli‐
cation being built by the person using your module.

What the previous code gives you is a way for your module to depend on Lift (“2.5”),
without locking your module into a specific release if it happens to be built with “2.5-
SNAPSHOT.” By using a setting of liftVersion, we can control the version via a script
for all modules. This is what we do to publish a range of Lift modules after each Lift
release, as described on the Lift wiki.

When your module is built, don’t forget to announce it on the Lift mailing list.

Debugging your module

When working on a module and testing it in a Lift application, it would be a chore to
have to publish your module each time you changed it. Fortunately, SBT allows your
Lift application to depend on the source of a module. To use this, change your Lift project
to remove the dependency on the published module and instead add a local dependency
by creating project/LocalModuleDev.scala:

import sbt._

object LocalModuleDev extends Build {

 lazy val root = Project("", file(".")) dependsOn(snow)

11.6. Sharing Code in Modules | 231

https://www.assembla.com/spaces/liftweb/wiki/Releasing_the_modules

 lazy val snow = ProjectRef(uri("../snowstorm"), "LiftModule")

}

We are assuming that the snowstorm source can be found at ../snowstorm relative to the
Lift application we are using. With this in place, when you build your Lift project, SBT
will automatically compile and depend on changes in the local snowstorm module.

See Also
Originally, Lift included a set of modules, but these have been separated out to individual
projects. The Lift contributor policy outlined in Recipe 11.3 doesn’t apply to Lift mod‐
ules: you’re free to contribute to these modules as you would any other open source
project.

The Lift wiki pages for modules can be reached via http://liftmodules.net.

The Snowstorm project has been “setting CPUs on fire worldwide every winter since
2003,” and the module developed for this recipe is on GitHub.

To publish to Sonatype, take a look at their guide. CloudBees offers an open source
repository.

There are other ways to structure common code between Lift applications. For an ex‐
ample that uses SBT modules and Git, see the mailing list discussion on “Modularize
Lift Applications”.

232 | Chapter 11: Contributing, Bug Reports, and Getting Help

https://github.com/liftmodules/
https://github.com/liftmodules/
http://liftmodules.net
https://github.com/scottschiller/snowstorm/
https://github.com/LiftCookbook/snowstorm-example-module
http://bit.ly/163Hb0y
http://www.cloudbees.com/foss/foss-dev.cb
http://www.cloudbees.com/foss/foss-dev.cb
http://bit.ly/lift-moduleapp
http://bit.ly/lift-moduleapp

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
& (combining) selectors, 21
200 status code, 125, 199
403 (forbidden) statuses, 34
404 (Empty) pages, 128
404 (not found) pages, 33
404 status, 199
500 (internal server) error, 122
@ selector expressions, 22

A
access control, 127
access not allowed error message, 129
AFNetworking, 93
Ajax

file upload tool, 111
form processing via, 47
server-side code triggering, 95–100
setting CSS class, 105

ajaxCall, 96, 97
ajaxInvoke, 95–100
ajaxSelect, 100
alert dialog boxes, 104
Amazon Elastic Block Storage, 210
Amazon Elastic Load Balancer, 131
Amazon Web Services (AWS) Elastic Beanstalk,

209

Amazon’s Simple Notification Service (SNS),
206, 218

AMQP (Advanced Message Queuing Protocol),
218

andThen selector expressions, 21
AsciiDoc markup language, 227
Assembla, 226
associations, removing, 146
attributes, 22
authentication

for databases, 165
for email, 193

authentication tokens, 10
autocomplete suggestions, 58–64

alternative libraries for, 61
jQuery UI for, 58
new values and, 61
query/callback functions, 62
Typeahead, 61

autoscaling, 211

B
Beanstalk, 209
binary compatibility, 17, 18
binary data uploads, 76, 85
Boot.scala, 4
Bootstrap, 61
browsers

avoiding caching, 28

233

detecting features in, 57
downloads vs. visits, 37
field focus in, 104
handling session loss, 109
loading pages without refresh, 106
reloading, 8, 9, 11
running code on session creation/destruc‐

tion, 119
session affinity, 204, 211
using legacy, 24

BsonRecord, 171
bugs, reporting of, 224
build.sbt, contents, 3, 107

C
chat sessions, 109, 218
checkboxes

conditional disablement of, 69
multiple options, 70

Chrome, date picker format, 57
class attributes, 23
Class Not Found error message, 27
clickable links, 36, 37
ClickStart Applications, 208
cloud services, 166, 210
CloudBees, 203–208
Cmd+click shortcut, 13
code changes, contributing, 225
code sharing, modules for, 227–232
Comet

and CloudBees, 204
and Heroku, 214
and multiple servers, 217–221
executing JavaScript with, 109

conditional checks, 69
conditional comments, 24
containerless deployment, 215
containers

and CloudBees, 207
deployment to, 203
troubleshooting, 7
types of, 4
upload size limits, 86

content types, setting, 41
contributors

to Lift Cookbook, vii
to Lift Web Framework, 225, 226

controlled access, 127
cookies, 110

CouchDB, 218
created time, 161
CSS caching, 28
CSS classes, setting on Ajax forms, 105
CSS selectors

and disabled attribute, 69
applying to earlier expressions, 20
setting meta tag contents with, 22
syntax for, 23
testing/debugging, 19

currency, 114
custom HTTP status pages, 34
custom validation logic, 150

D
Data Table (Spec2), 41
database constraint errors, 140
database persistence

with MongoDB and Record, 165–185
with Squeryl Record module, 133–164

databases
alternative, 15
cleanup after testing, 183
configuring connections to, 136, 205, 216
in-memory, 154
RDS instances of, 211
viewing, 15

Databinder library, 200
date pickers, 55
DBTestKit trait, 156, 183
dbType, 162
debugging requests, 117
dependencies, naming conventions of, 17, 44
dependency injection, 111
dialog boxes, 104
directory structure, 7
Dispatch library, 198
documentation, contribution of, 226
documents, embedding in database records, 171
downloads, triggering, 37
drag-and-drop support, 111
Drebel plugin, 11
DRY URLs, 79

E
earlyResponse function, 131
Eclipse IDE, development in, 12, 184
Elastic Beanstalk, 209

234 | Index

element selectors, 23
email

.com missing from address, 83
attachments, 194
authenticated, 193
HTML, 190
logging vs. sending, 189
plain-text, 187

Enterprise Java, 212
enumerations, 74, 170
EnumNabeField, 170
error messages

404 (Empty) pages, 128
404 (not found) pages, 33
500 (internal server), 122
access not allowed, 129
Class Not Found, 27
clickable links in, 36
database constraint errors, 140
file access, 127
from validation process, 150
java.lang.ClassCastException, 169
java.lang.OutOfMemoryError: PermGen

space, 9
referential integrity exception, 146

exception handlers, 122
exceptions, catching, 122
explanation pages, 127

F
F3 shortcut, 13
field focus, 104
field validation, 147, 150
files

access control to, 127
container-specific configuration, 207
JAR files, 215
local vs. cloud storage of, 210
recovering filename suffixes, 80
suffix matching, 84
uploading, 75, 85, 111
WAR files, 204, 209, 212

filters, 152
floating-point values, 114
FocusOnLoad command, 104
forbidden (403) status pages, 34
formGroup function, 50
forms processing

Ajax JSON format, 50–54

autocomplete suggestions, 58–64
collecting values from, 102
conditional disablement, 69
date picker input, 55
field validation, 147, 150
file upload, 75
HTML input fields, 22
multiple selections, 70–75
radio buttons, 64–68
routine (non-Ajax) methods, 45
via Ajax, 47

Foursquare’s domain-specific language (DSL),
175

functions
delayed execution of, 196
hidden, 72
identity, 27
order of execution, 49
server-side code and, 103
testing of, 39
triggering with HTML select option, 100

G
geospatial indexes, 177
Google Sitemaps, 88
guard conditions, 86, 128

H
H2 Database Engine, 15, 154
hash maps, 167
head section, adding to, 30
help, accessing, 223
Heroku, 212–217
hidden fields, 49, 67
hidden functions, 72
hooks, 119, 120, 214
hosting

and multiple servers, 217–221
with CloudBees, 203–208
with Elastic Beanstalk, 209
with Heroku, 212–217

HTML
conditional comments, 24
email, 190
meta tags, 22
moving JavaScript to end of pages, 107
select options, 100

Index | 235

HTML5
date pickers, 56
email semantics, 191
markup issues, 32
parser, 25, 27

HTTP
header access restriction, 128
interaction, 198
POSTs from iOS devices, 90
status codes, 34, 199

HTTPS use, forcing, 131
HttpServletRequest access, 130

I
identity functions, 27
images

storing within a record, 171
uploading, 85

in-memory mode, 15, 154
initWithSquerylSession, 135
InMemoryResponse, 125
IntelliJ IDEA development environment, 13,

184
interactive development, CSS selector debug‐

ging, 19
internal server (500) error messages, 122
internationalisation, 151
Internet Explorer, conditional comments, 24
iOS applications, HTTP POSTs from, 90

J
JAR files, 215
Java Mail, 190
Java Naming and Directory Interface (JNDI),

135, 193, 205
Java Virtual Machine (JVM)

and CloudBees, 207
troubleshooting, 7, 9, 11, 205

Java, installation of, 1
java.lang.ClassCastException, 169
JavaScript

caching, 28
client-side function triggering with, 103
custom messages, 123
executing with Comet actor, 109
field focus with, 104
moving to page end, 107
running a template with, 106

server-side function triggering with, 100
JBoss, 207
Jetty, 4, 86, 136, 203
jlift.js JavaScript library, 50
jQuery File Upload widget, 111
jQuery UI autocomplete, 58
jQuery UI date picker, 55
JRebel

license for, 10, 11
reducing restarts with, 9, 11

JSON DSL, 87
JSON format

form processing in, 50–54
returning from REST calls, 86

jsonCall, 96, 98
JsonHandler class, 50
JSoup, 200
JVM persistence mechanisms, 134

L
latitude/longitude information, 177
license, for JRebel, 10, 11
Lift applications

authenticated email, 193
autoscaling of, 211
basic instructions, 1
code execution at shutdown of, 120
creating from scratch, 4
delayed tasks, 196
Eclipse IDE development, 12, 184
email attachments, 194
email logging, 189
fetching URLs, 198
forced to be stateless, 121
HTML email, 191
HTML generation, 19–44
IntelliJ IDEA development, 13, 184
lift_proto.db H2 database for, 15
plain-text email in, 187
production deployment of, 203–221
repeat tasks, 197
running, 4
source code for, 4
speeding development of, 11
Squeryl-Record configuration, 133

(see also Record-Squeryl Lift applica‐
tions)

standard layout of, 7
text editor development, 8

236 | Index

Textile markup rendering, 43
verification of, 7

Lift community, 223
Lift Cookbook

code use permissions, ix, 227
contributors, vii
projects for, viii
software versions used in, viii, 16
submitting recipes to, 226

Lift JSON domain-specific language (DSL), 87
Lift mailing list, 223
Lift modules, 44, 58
Lift Web Framework

accessing help, 223
as designer-friendly, 27
bug reports, 224
ClickStart Applications, 208
CSS selector transforms, 20, 69, 105
downloading, 1
form processing in, 45–78
latest build of, 16
learning more about, 13
Lift MongoDB dependencies, 165
modules for code sharing, 227
prerequisites, vii
snippets in, 20
Squeryl Record module, 133
stateful features of, 39, 121, 204, 211
submitting improvements to, 225
Textile module, 43
view first approach of, 4, 19
vs. conventional software, 3
Widgets module, 58

Lift wiki page, 226
LiftRules

.early, 118

.earlyInStateful, 118

.earlyInStateless, 118

.noCometSessionCmd, 109, 111

.onBeginServicing, 117

.unloadHooks, 120
LiftSession hooks, 119
lift_basic H2 database, 15
links

clickable, 36
types of, 175

load balancers, 131, 203, 211
location information, 177
logging, 161, 189, 211

M
Mailer, 187, 191, 193, 194
Mailer.authenticator, 193
Mailer.devModeSend, 189
mailing list, for help with Lift, 223
many-to-many relationships, 141–147
mapped fields, 167
Markdown, 227
Maven-based Jenkins build, 208
MEDIUMTEXT, 162
meta tag contents, setting, 22
milestone releases, 16
minimum/maximum length validation, 149
mock requests, 39
modules, for code sharing, 227–232
MongoDB

connecting to, 165
document embedding, 171
enumeration storage, 170
hash map storage, 167
latitude/longitude information, 177
linked records, 172
queries with Scala console, 180
querying/updating records, 175
unit tests, 181–185

MongoHQ, 183
MongoLabs, 183
MongoMapFields, 169
MongoRefField, 173
Motto example, 50
multiple selections, 70
MySQL, 162, 163, 211

N
names/naming

of dependencies, 17
page titles, 23
recovering filename suffixes, 80

Netty library, 199
not found messages, 33

O
object-relational mapping, 133
ObjectIdRefField, 173
onBeginServicing function, 117
one-to-many relationships, 136–140
onEvent, 96, 102

Index | 237

OutputSteamResponse, 124

P
page not found (404 error) message, 33
page titles, 23
parallel tests, 184
parameters, manual selection of, 46
PassThru transform, 26
permanent generation, 9, 205
port numbers, 194, 206
PostgreSQL service, 216
production deployments

databases for, 15
to Amazon Web Services (AWS) Elastic

Beanstalk, 209
to CloudBees, 203–208
to Heroku, 212–217

production releases, 16
progress bars, 111
public hostnames, 206
publish/subscribe (pubsub) model, 217

Q
queries

by reference, 174
of location information, 179
with Scala console, 180

query parameters, 105
questions about Lift, how to ask, 224

R
RabbitMQ message service, 218
radio buttons, 64–68, 95
RDBMS (Relational Database Management Sys‐

tem), 205, 211
Record, configuration of, 133
Record-Squeryl Lift applications

configuring, 133
custom validation logic for, 150
field validation in, 147
JNDI data sources for, 135
many-to-many relationships in, 141–147
modifying values before storage, 152–153
MySQLs character set encoding, 163
MySQLs MEDIUMTEXT, 162
one-to-many relationships in, 136–140
random value column storage, 158

SQL logging, 161
testing with Specs, 153–158
timestamps in, 159

records
linking, 172
querying/updating, 175
searching for, 174

redundancy, 217
references

querying by, 174
types of, 175
updating/deleting, 174

referential integrity exception, 146
regular expression validation, 149
release candidates, 16
releases repository, 16
replacement rules, 22, 49
reporting bugs, 224
reports, generating, 39
request buffering, 204
request pipeline

access-controlled files, 127
catching exceptions, 122
code execution at shutdown, 120
code execution on session creation/destruc‐

tion, 119
controlling, 117
debugging requests, 117
diagrams of, 117
forcing HTTPS use, 131
HTTP header access restriction, 128
HttpServletRequest access, 130
shortcutting, 38
stateless mode, 121
streaming content, 124

requests
configuring, 41
creating mock, 39
debugging, 117
processing with S.param, 45

resource ID attribute, 28
REST web services, 79–94

and report generation, 39
avoiding URL repeats, 79
file suffix matching, 84
file uploads, 111
Google Sitemaps, 88
image uploads, 85
native iOS applications and, 90

238 | Index

preserving .com URL endings, 83
recovering filename suffixes, 80
returning JSON, 86

RestHelper, 11, 79, 127
Rogue, 175

S
S.

addAround, 134, 157
appendJs, 56, 61, 63, 107, 107
attr, 25
error, 36, 148, 150
formGroup, 50
getrequest, 46
getRequestHeadter(name), 46
get_?, 46
hostName, 89
init, 154, 182
notice, 36, 39, 46, 102, 116, 148
param, 45, 46
params(name), 46
post_?, 46
putInHead, 228
redirectTo, 38, 46, 134
render, 89, 123
request, 34, 130
request.map, 76, 128
session, 34
warning messages, 36

S3 bucket, 210
Safari, date picker format, 57
Scala

binary compatibility in, 17, 18
changing versions of, 17
client-side actions and, 103
interactive queries, 180
relational database conversion, 133
REPL CSS selector testing, 19
Stream class, 125
type-safe options, 176

Scala IDE for Eclipse plugin, 12
Schedule, 196, 197
security

file access control, 127
form-based attacks, 67

select boxes, 70
SendGrid, 194
server-side code

triggering with buttons, 95

triggering with HTML select option, 100
session affinity, 204, 211
session hooks, 119
session loss, 109
setFilter, 152
SetHtml, 106
SHtml.

ajaxCall, 96, 97
ajaxSelect, 100
jsonCall, 96, 98
jsonForm method, 52
onEvent, 96, 102
text input field, 55

shutdown hooks, 214
shutdown, code execution at, 120
SIGTERM, 214
Simple Build Tool (SBT)

command history in, 9
configuration of, 4
Eclipse plugin for, 12, 184
standard layout with, 7
starting, 3
text editor development with, 8
triggered execution mode, 8
unit tests in, 182
using CloudBees with, 204
using Elastic Beanstalk with, 209
using JRebel with, 10

SiteMap, 128
sitemap structure, 88
SMTP servers, 187, 193
snapshot releases, 16
snippet invocation, 4
snippets, 20, 22, 23, 24, 26, 27, 30
source code, 4, 7
Specs2, 41, 153, 181
SQL databases, 205
SQL logging, 161
SQL-like queries, 133
SQL-Server, 211
Squeryl Record module, 133
Squeryl, configuring, 133
stash function, 110
stateless mode, 121
sticky sessions, 204, 211
streaming content, 124
StreamingResponse, 126
submit buttons, 49, 103

(see also radio buttons)

Index | 239

submit styling, 49
superclass changes, 11

T
tables, viewing in databases, 15
TagSoup, 200
tasks

delayed execution of, 196
repeat execution of, 197

templates
adding to the head section, 30
for CloudBees, 208
for Lift Cookbook submissions, 226
loading without browser refresh, 106
using Google Sitemaps with, 88
using IE HTML conditional comments in,

24
text editors, development with, 8
text localization, 151
Textile markup, 43, 227
timeouts, 194
timestamps, 159
titles, page titles, 23
Tomcat, 4, 86, 136, 203, 207, 209, 212
topics, 218
triggered execution mode, 8
Tschan, Sebastian, 111
Twitter Bootstrap, 61
type ascription, 87
type-safe options, 73, 116, 175
Typeahead component, 61, 64

U
UI elements, wired, 114
unexpected response (404) status, 199
UniqueIdField, 158
unit tests

H2’s in-memory mode and, 15
with Specs2, 153–158, 181–185

unload hooks, 120

unparsed XML content, 25
updated time, 161
URLs

avoiding repeats, 79
database connection with, 166
fetching, 198, 216
preserving .com endings, 83

UTF-8 character set, 163, 191

V
validation, 147, 150
values

collecting upon form submission, 102
embedding in database records, 171, 178
geospatial, 177
modifying before storage, 152–153
storage in a column, 158

view first approach
CSS selectors and, 19
definition of, 4

W
WAR files, 204, 209, 212
web containers, 7, 9, 136

(see also containers)
whitespace, removing, 152
wire formats, for dates, 56
wired cells, formatting, 114
WiringUI.toNode method, 114
Wizard, 11

X
XHTML parser, 28
XHTMLMailBodyType, 191
XHTMLPPlusImages, 194

Z
ZeroTurnaround, 11

240 | Index

About the Author
Richard Dallaway is a partner at Underscore Consulting, working on client software
projects. He’s a Lift committer, where he has focused on the module system. Prior to
Underscore, Richard gained his PhD from the School of Cognitive Science at the Uni‐
versity of Sussex, then worked on machine-learning projects before moving to consul‐
tancy and software engineering. He lives with his wife and one small terrier in Brighton,
UK.

Colophon
The animal on the cover of Lift Cookbook is an American lobster (Homarus ameri‐
canus), a species of lobster found on the Atlantic coast of North America.

The cover image is from an unknown source. The cover font is Adobe ITC Garamond.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and
the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Contributors
	Source
	Updates
	Software Versions
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Installing and Running Lift
	1.1. Downloading and Running Lift
	Problem
	Solution
	Discussion
	See Also

	1.2. Creating a Lift Project from Scratch Using SBT
	Problem
	Solution
	Discussion
	See Also

	1.3. Developing Using a Text Editor
	Problem
	Solution
	Discussion
	See Also

	1.4. Incorporating JRebel
	Problem
	Solutions
	Discussion
	See Also

	1.5. Developing Using Eclipse
	Problem
	Solution
	Discussion
	See Also

	1.6. Developing Using IntelliJ IDEA
	Problem
	Solution
	Discussion
	See Also

	1.7. Viewing the lift_proto H2 Database
	Problem
	Solution
	Discussion
	See Also

	1.8. Using the Latest Lift Build
	Problem
	Solution
	Discussion
	See Also

	1.9. Using a New Version of Scala
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. HTML
	2.1. Testing and Debugging CSS Selectors
	Problem
	Solution
	Discussion
	See Also

	2.2. Sequencing CSS Selector Operations
	Problem
	Solution
	Discussion
	See Also

	2.3. Setting Meta Tag Contents
	Problem
	Solution
	Discussion
	See Also

	2.4. Setting the Page Title
	Problem
	Solution
	Discussion
	See Also

	2.5. HTML Conditional Comments
	Problem
	Solution
	Discussion
	See Also

	2.6. Returning Snippet Markup Unchanged
	Problem
	Solution
	Discussion

	2.7. Snippet Not Found When Using HTML5
	Problem
	Solution
	Discussion
	See Also

	2.8. Avoiding CSS and JavaScript Caching
	Problem
	Solution
	Discussion
	See Also

	2.9. Adding to the Head of a Page
	Problem
	Solution
	Discussion
	See Also

	2.10. Custom 404 Page
	Problem
	Solution
	Discussion
	See Also

	2.11. Other Custom Status Pages
	Problem
	Solution
	Discussion
	See Also

	2.12. Links in Notices
	Problem
	Solution
	Discussion
	See Also

	2.13. Link to Download Data
	Problem
	Solution
	Discussion
	See Also

	2.14. Test on a Req
	Problem
	Solution
	Discussion
	See Also

	2.15. Rendering Textile Markup
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Forms Processing in Lift
	3.1. Plain Old Form Processing
	Problem
	Solution
	Discussion
	See Also

	3.2. Ajax Form Processing
	Problem
	Solution
	Discussion
	See Also

	3.3. Ajax JSON Form Processing
	Problem
	Solution
	Discussion
	See Also

	3.4. Use a Date Picker for Input
	Problem
	Solution
	Discussion
	See Also

	3.5. Making Suggestions with Autocomplete
	Problem
	Solution
	Discussion
	See Also

	3.6. Offering Choices with Radio Buttons
	Problem
	Solution
	Discussion

	3.7. Conditionally Disable a Checkbox
	Problem
	Solution
	Discussion
	See Also

	3.8. Use a Select Box with Multiple Options
	Problem
	Solution
	Discussion
	See Also

	3.9. File Upload
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. REST
	4.1. DRY URLs
	Problem
	Solution
	Discussion
	See Also

	4.2. Missing File Suffix
	Problem
	Solution
	Discussion
	See Also

	4.3. Missing .com from Email Addresses
	Solution
	Discussion
	See Also

	4.4. Failing to Match on a File Suffix
	Problem
	Solution
	Discussion
	See Also

	4.5. Accept Binary Data in a REST Service
	Problem
	Solution
	Discussion
	See Also

	4.6. Returning JSON
	Problem
	Solution
	Discussion
	See Also

	4.7. Google Sitemap
	Problem
	Solution
	Discussion
	See Also

	4.8. Calling REST Service from a Native iOS Application
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. JavaScript, Ajax, and Comet
	5.1. Trigger Server-Side Code from a Button
	Problem
	Solution
	Discussion
	See Also

	5.2. Call Server When Select Option Changes
	Problem
	Solution
	Discussion
	See Also

	5.3. Creating Client-Side Actions in Your Scala Code
	Problem
	Solution
	Discussion
	See Also

	5.4. Focus on a Field on Page Load
	Problem
	Solution
	Discussion
	See Also

	5.5. Add a CSS Class to an Ajax Form
	Problem
	Solution
	Discussion
	See Also

	5.6. Running a Template via JavaScript
	Problem
	Solution
	Discussion
	See Also

	5.7. Move JavaScript to End of Page
	Problem
	Solution
	Discussion
	See Also

	5.8. Run JavaScript on Comet Session Loss
	Problem
	Solution
	Discussion
	See Also

	5.9. Ajax File Upload
	Problem
	Solution
	Discussion
	See Also

	5.10. Format a Wired Cell
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Request Pipeline
	6.1. Debugging a Request
	Problem
	Solution
	Discussion
	See Also

	6.2. Running Code When Sessions Are Created (or Destroyed)
	Problem
	Solution
	Discussion
	See Also

	6.3. Run Code When Lift Shuts Down
	Problem
	Solution
	Discussion
	See Also

	6.4. Running Stateless
	Problem
	Solution
	Discussion
	See Also

	6.5. Catch Any Exception
	Problem
	Solution
	Discussion
	See Also

	6.6. Streaming Content
	Problem
	Solution
	Discussion
	See Also

	6.7. Serving a File with Access Control
	Problem
	Solution
	Discussion
	See Also

	6.8. Access Restriction by HTTP Header
	Problem
	Solution
	Discussion
	See Also

	6.9. Accessing HttpServletRequest
	Problem
	Solution
	Discussion

	6.10. Force HTTPS Requests
	Problem
	Solution
	Discussion

	Chapter 7. Relational Database Persistence with Record and Squeryl
	7.1. Configuring Squeryl and Record
	Problem
	Solution
	Discussion
	See Also

	7.2. Using a JNDI DataSource
	Problem
	Solution
	Discussion
	See Also

	7.3. One-to-Many Relationship
	Problem
	Solution
	Discussion
	See Also

	7.4. Many-to-Many Relationship
	Problem
	Solution
	Discussion
	See Also

	7.5. Adding Validation to a Field
	Problem
	Solution
	Discussion
	See Also

	7.6. Custom Validation Logic
	Problem
	Solution
	Discussion
	See Also

	7.7. Modify a Field Value Before It Is Set
	Problem
	Solution
	Discussion
	See Also

	7.8. Testing with Specs
	Problem
	Solution
	Discussion
	See Also

	7.9. Store a Random Value in a Column
	Problem
	Solution
	Discussion
	See Also

	7.10. Automatic Created and Updated Timestamps
	Problem
	Solution
	Discussion
	See Also

	7.11. Logging SQL
	Problem
	Solution
	Discussion
	See Also

	7.12. Model a Column with MySQL MEDIUMTEXT
	Problem
	Solution
	Discussion
	See Also

	7.13. MySQL Character Set Encoding
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. MongoDB Persistence with Record
	8.1. Connecting to a MongoDB Database
	Problem
	Solution
	Discussion
	See Also

	8.2. Storing a Hash Map in a MongoDB Record
	Problem
	Solution
	Discussion
	See Also

	8.3. Storing an Enumeration in MongoDB
	Problem
	Solution
	Discussion
	See Also

	8.4. Embedding a Document Inside a MongoDB Record
	Problem
	Solution
	Discussion
	See Also

	8.5. Linking Between MongoDB Records
	Problem
	Solution
	Discussion
	See Also

	8.6. Using Rogue
	Problem
	Solution
	Discussion
	See Also

	8.7. Storing Geospatial Values
	Problem
	Solution
	Discussion
	See Also

	8.8. Running Queries from the Scala Console
	Problem
	Solution
	Discussion
	See Also

	8.9. Unit Testing Record with MongoDB
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Around Lift
	9.1. Sending Plain-Text Email
	Problem
	Solution
	Discussion
	See Also

	9.2. Logging Email Rather than Sending
	Problem
	Solution
	Discussion
	See Also

	9.3. SMTP Authentication
	Problem
	Solution
	Discussion
	See Also

	9.4. Sending Authenticated Email
	Problem
	Solution
	Discussion
	See Also

	9.5. Sending Email with Attachments
	Problem
	Solution
	Discussion
	See Also

	9.6. Run a Task Later
	Problem
	Solution
	Discussion
	See Also

	9.7. Run Tasks Periodically
	Problem
	Solution
	Discussion
	See Also

	9.8. Fetching URLs
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Production Deployment
	10.1. Deploying to CloudBees
	Problem
	Solution
	Discussion
	See Also

	10.2. Deploying to Amazon Elastic Beanstalk
	Problem
	Solution
	Discussion
	See Also

	10.3. Deploying to Heroku
	Problem
	Solution
	Discussion
	See Also

	10.4. Distributing Comet Across Multiple Servers
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Contributing, Bug Reports, and Getting Help
	11.1. You’d Like Some Help
	Problem
	Solution
	Discussion
	See Also

	11.2. How to Report Bugs
	Problem
	Solution
	Discussion
	See Also

	11.3. Contributing Small Code Changes and ScalaDoc
	Problem
	Solution
	Discussion
	See Also

	11.4. Contributing Documentation
	Problem
	Solution
	Discussion
	See Also

	11.5. How to Add a New Recipe to This Cookbook
	Problem
	Solution
	Discussion
	See Also

	11.6. Sharing Code in Modules
	Problem
	Solution
	Discussion
	See Also

	Index
	About the Author

