
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Terry Jones and Nicholas H. Tollervey

Learning jQuery Deferreds

www.allitebooks.com

http://www.allitebooks.org

Learning jQuery Deferreds

by Terry Jones and Nicholas H. Tollervey

Copyright © 2014 Terry Jones and Nicholas H. Tollervey. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette

Production Editor: Kristen Brown

Copyeditor: Charles Roumeliotis

Proofreader: Kristen Brown

Cover Designer: Karen Montgomery

Interior Designer: David Futato

January 2014: First Edition

Revision History for the First Edition:

2013-12-20: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449369392 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Learning jQuery Deferreds, the image of a musky rat-kangaroo, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36939-2

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449369392
http://www.allitebooks.org

Table of Contents

Preface. vii

1. Introduction. 1
Food for Thought 1
Terminology: Deferreds and Promises 3
Familiar Promises 4

2. The jQuery Deferred API. 7
Consuming Promises 8

More Terminology: Resolve, Reject and Progress 8
done 9
fail 9
always 10
progress 10
promise 11
then 11
state 13
when 13

Creating Deferreds 15
Construction 15
resolve and resolveWith 16
reject and rejectWith 17
notify and notifyWith 17

Putting It All Together 17
Deferred Dynamics 18
Deprecated Promise Methods 19

isRejected and isResolved 19
pipe 19

iii

www.allitebooks.com

http://www.allitebooks.org

Changes in the jQuery Deferred API 19

3. Deferred Recipes. 21
A Replacement for the setTimeout Function 21

Challenges 22
Messaging in Chrome Extensions 23

Challenges 24
Accessing Chrome Local Storage 25

Challenges 26
Running Promise-Returning Functions One by One 26

Challenges 28
A Promise Pool with an emptyPromise Method 28

Creating a Promise Pool 29
Using the Promise Pool 30
Challenges 31

Displaying Google Maps 32
Challenges 36

Communicating with a Web Worker 37
The Web Worker Code 37
Creating a Web Worker 39
Using It 40
Summary 41
Challenges 41

Using Web Sockets 42
The Web Socket Server 42
The Web Socket Client 44
Challenges 46

Automatically Retrying Failing Deferred Calls 47
Challenges 48

Memoization 49
Discussion 50
Avoiding the Dogpile Effect 51
Challenges 51

Short-Term Memoization of In-Progress Function Calls 52
createUser Is Not Idempotent 53
Challenges 53

Streaming Promise Events 54
Delivering More Information 54
Delegating the Event Stream 55
To Be Continued… 56
Challenges 56

Getting the First Result from a Set of Promises 57

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Which Promise Fired? 58
A Fly in the Soup 59
delegateEventStream Redux 59
Challenges 60

A Deferred Queue 61
Challenges 63

when2: An Improved jQuery.when 63
Using when2 to Time Out a Single Promise 67
Differences from $.when 68
Challenges 69

Timing Out Promises 69
Challenges 72

Controlling Your Own Destiny 73
Challenges 74

Deactivating a Promise 74
Challenges 76

4. More Time in the Mental Gymnasium. 77
Do You Really Understand jQuery Deferreds? 77
Promises/A+ 78
Promises Are First-Class Objects for Function Calls 79
Asynchronous Data Structures 80
Advantages of Deferreds 81
Difficulties with Deferreds 82
Further Reading 83

A. Hints for Selected Challenges. 85

B. The Promises/A+ Specification. 107

C. Converting an ArrayBuffer to Base 64. 113

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

The world of JavaScript has changed significantly in recent years with more sophisti‐
cation in client-side JavaScript applications and the arrival of server-side JavaScript
using node.js.

In building increasingly complex applications, JavaScript programmers have had to
become more adept at dealing with asynchronous APIs. In earlier years, JavaScript was
all client side. Programmers were only required to deal with single, independent asyn‐
chronous function calls, whose results were used to update an HTML user interface.

The situation today is far richer. Server-side JavaScript applications regularly make
multiple asynchronous calls to many other services to produce responses: to databases,
caches, load balancers, the filesystem, authentication systems, third-party APIs, etc.
Meanwhile, client-side JavaScript now has routine access to dozens of asynchronous
APIs, such as those provided by HTML5 as well as good old AJAX (remember, the first
A in AJAX stands for asynchronous). Applications need to be able to coordinate simul‐
taneous calls to multiple asynchronous APIs: to get the fastest result, to combine in‐
formation, to wait for multiple calls to complete, to execute calls in specific orders, to
alter the flow of control depending on results, to deal with errors, to fall back to alternate
services (e.g., on cache misses), to retry failing network calls, and so on.

“Callback hell,” a phrase with about 10,000 Google hits, describes what happens when
programmers try to build modern applications with old-school single-callback pro‐
gramming. For many programmers, this pain is their daily reality. Using single callbacks
to build applications that need to do even basic coordination of asynchronous calls can
be very difficult. You have to think hard and often end up with complicated, brittle, and
opaque solutions. These contain hard-to-find bugs, are hard to document, and can be
very hard to extend when additional asynchronous requirements enter the picture.
Coding for multiple asynchronous events with the single-callback model is a real chal‐
lenge, even for very smart and experienced programmers.

vii

www.allitebooks.com

http://nodejs.org/
http://www.allitebooks.org

About You
Firstly, we’re writing for jQuery programmers who do not know about deferreds. We’ve
found that most programmers who use jQuery have never heard of deferreds. Among
those who have, there are many who find deferreds confusing or who are under the false
impression that they are too abstract or difficult to understand. Deferreds are a misun‐
derstood yet powerful programming paradigm. Recently, deferreds have been added to
many JavaScript libraries and frameworks, and are now attracting widespread attention.
A search for “deferreds” on StackOverflow currently gives over 18,000 hits, up 40% in
the six months since we started this book.

We also want to help JavaScript programmers, both client side and server side, who know
about deferreds but aren’t making heavy use of them. If you’d like to beef up your prac‐
tical knowledge, to see more examples in action, and to think about deferreds from
different angles, we’d love to have you as a reader. We want to help you stretch your
mind, in both breadth and depth; the book has 18 real-world examples of deferred use
along with 75 challenges (and their solutions) to push your thinking.

Finally, and most ambitiously, we hope we’ve written a book that will be useful and
stimulating to programmers using deferreds and promises beyond those in jQuery and
even beyond JavaScript. The conceptual underpinnings of deferreds are almost identical
across the many JavaScript packages and other programming languages that support
them. Because the concepts are so similar and so few, you’ll find it straightforward to
port code between implementations. Virtually everything you learn in this book will be
useful for working with other flavors of deferreds. We want it to be a fun and valuable
read, no matter what your preferred language is. We’ve tried to write the book we wish
had been available as we learned deferreds ourselves.

Our Aims
In this book we’ll teach you how to avoid callback hell by using deferreds.

But there’s much more to deferreds than that. Deferreds provide something that was
not there before: a simple mechanism for dealing with future results. This gives you the
opportunity to do things in different ways that go beyond mere simplification of syntax.
It gives you the opportunity to really think about the practice of programming and to
broaden your mental toolkit. The thinking can of course be critical, including conclu‐
sions about which deferred package to use or whether it is even sensible to use deferreds
in a given situation. For us, the process of learning about and beginning to appreciate
programming with deferreds was a feeling of our brains growing new muscles.

Our primary aim is to introduce deferreds to programmers who have had no exposure
to them. We’re aiming to give you a really strong general and concrete understanding
of what deferreds are and how to wield them. If we succeed, you’ll be fully confident

viii | Preface

www.allitebooks.com

http://bit.ly/1bC2dDQ
http://www.allitebooks.org

when encountering deferreds in any other context: whether with another JavaScript
deferred package or in a different programming language.

A secondary aim is to provide a broad collection of examples of nontrivial real-world
deferred uses. We’ve been programming with deferreds (in Python and JavaScript) for
the last 7 years and have pulled together some of the most useful examples we’ve built
in that time. These are usually relatively short snippets of code, around 100 lines, but
sometimes require careful thought to develop. We hope the detailed recipes in Chap‐
ter 3 will be a place you’ll return to for ideas on how to approach deferred problems you
face.

Challenges
The deferred recipes in Chapter 3 all leave you with a set of challenges. These are meant
to encourage you to engage with and think more deeply about the material just pre‐
sented. If you want to write code as well, that’s a bonus. The main point, however, is to
think. Don’t be a passive reader! Working with deferreds very often requires focused
thinking about how problems, and small variations on them, might be solved. Once you
“get” deferreds, solving puzzles with them can be very engaging. The more you do it,
the better you get, and the more you see their flexibility and power. Above all though,
figuring out how to do things with deferreds is just plain fun!

If you’re stuck on a challenge, you’ll find hints and solutions in Appendix A.

jQuery Deferreds
We chose to focus on jQuery deferreds because jQuery is ubiquitous and because two

important and familiar aspects of jQuery ($.ajax and animations) already have deferred
support built in.

However, jQuery deferreds are certainly not the last word on the subject. As you will
see, they differ markedly in one important respect from the many (at least 35) other
deferred packages for JavaScript: jQuery deferreds do not currently follow the excellent
Promises/A+ specification (see “Promises/A+” on page 78).

This book was written for the 1.10.2 or 2.0.3 versions of jQuery. Because the jQuery
deferred API has changed several times, it is important to know where you stand, as
we’ll see in “Changes in the jQuery Deferred API” on page 19. Server side, we’re using
version 1.9.1 of the jQuery-deferred node module. The node module and much of the
jQuery deferred code was written by Julian Aubourg.

Preface | ix

http://bit.ly/1bC2dDS
http://bit.ly/1bBXTVf
http://bit.ly/1bBY6aK
http://jquery.com/
http://bit.ly/1bC2aIi
http://bit.ly/1bC2aIj

Our JavaScript Coding Style, or Lack Thereof
JavaScript is not a “there’s only one way to do it” language. As a result, almost every line
of code in the book could have been written differently. To keep the focus on deferreds,
we’ve chosen to write code in the simplest/clearest possible way. It will be up to you to
slightly change our examples to fit whatever coding style or framework you’re using to,

for example, create JavaScript objects (via new, using self-calling anonymous functions,

global variables, etc.), loop (for loop, $.map, [].forEach etc.), write variable declara‐

tions, log via console.log, and so on. Also, in the name of keeping the focus on defer‐
reds, we often ignore (or almost ignore) error processing.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a general note.

This icon indicates a warning or caution.

x | Preface

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/jquery-deferreds/code.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. Attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning jQuery Deferreds, by Terry Jones
and Nicholas H. Tollervey (O’Reilly). Copyright 2014 Terry Jones and Nicholas H. Toll‐
ervey, 978-1-4493-6939-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers including O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

Preface | xi

https://github.com/jquery-deferreds/code
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax).

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/learn-jquery-deferreds.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thanks to the Python Twisted community, who have helped with our ongoing deferred
education, and whose thinking has enormously influenced the design of deferreds in
other languages.

Thanks to Fluidinfo for the various open source (Twisted) deferred code it has pub‐
lished, and for the opportunity to work with and learn about deferreds in depth.

Thanks to Justin Wohlstadter of Wayfinder for allowing us to adapt some Coffeescript
examples one of us wrote for him.

Thanks to the jQuery developers and especially to Julian Aubourg for adding deferreds
to jQuery and for extracting that code to produce the jQuery-deferred node module.

Thanks to Francesco Agati, Michael Chermside, Jonathan Dobson, Tim Golden, Peter
Inglesby, Robert Rees, David Semeria, and Justin Wohlstadter for their careful and useful
reviews.

Thanks to the professional and efficient editing and production team at O’Reilly:
Meghan Blanchette, Kristen Brown, Charles Roumeliotis, and Simon St. Laurent.

xii | Preface

http://oreil.ly/learn-jquery-deferreds
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://twistedmatrix.com
http://fluidinfo.com
http://bit.ly/1bC2aIi

Terry would like to thank Ana, Sofia, Lucas, Findus, and the Flying Spaghetti Monster.

Nicholas would like to thank Mary, Penelope, Sam, and William for their continued
support and leg-pulling.

Preface | xiii

http://bit.ly/1bC2bf7

CHAPTER 1

Introduction

A deferred represents a result that may not be available yet. It is an abstraction for
something that has yet to be realized.

We attach code to the deferred to take care of the expected or erroneous result when it
becomes available.

That’s it!

Deferred usage is very similar to the way we make plans: when X finishes, if there was
no error, do Y, otherwise do Z. To give an everyday example, “when the tumble dryer
finishes, if the clothes are dry, fold them and put them away, otherwise hang them on
the line.” Here, “the tumble dryer finishes” is the deferred, “fold them” and “put them
away” are handlers for the good case (also known as callbacks) and “hang them on the
line” is the handler for an error condition (sometimes known as an errback). Once the
plan is made, we’re free to get on with something else.

Although the outcome of the deferred is undetermined, we can plan ahead for two
possibilities: the clothes are either going to be wet or dry when the tumble dryer finishes.
The dryer may actually already be finished, but that does not impact our planning. The
important thing to note is that deferreds provide a clear separation between initiating
something (resulting in a deferred) and handling the result (when the deferred com‐
pletes). There are many advantages from this clean separation, and in this book we’ll
explore them.

Don’t panic if this all seems a bit abstract; there are plenty of examples coming right up.

Food for Thought
JavaScript programs operate in an event-based environment. Let’s be clear about what
that means. Keystrokes, mouse clicks, and low-level I/O operations completing are all
events. As your program runs, it can, in advance, tell the JavaScript runtime about events

1

http://bit.ly/1bC2aYH

1. See “when” on page 13 for jQuery’s solution.

it is interested in and provide code to execute when such events occur. Later, when events
relevant to your program happen, the JavaScript runtime will invoke the code you wrote
to handle them.

This is a simple, efficient, and familiar model. It closely matches the way we plan ahead
in our daily lives. Most of us could quickly make a breakfast of fresh orange juice, toast,
and boiled eggs by preparing all three items at once. We know that we’ll have time to
squeeze the oranges while the toast and the eggs are cooking, so we’ll get them both
cooking first. We know what to do, regardless of whether the toast or the eggs are cooked
first. On a grander scale, consider the kitchen staff of a busy restaurant. By initiating
long-term actions (e.g., putting water on to boil), by reacting to events (e.g., the cheese
on a dish is browning), and by switching among other tasks in the meantime, a small
team can efficiently prepare a wide range of dishes for a large number of simultaneous
diners.

In event-based programming (and not only in JavaScript), handling single events is
trivial. Coordinating code to handle multiple events, though, can be very challenging.
Ad hoc solutions are often awkward to construct, difficult to test, brittle, hard for others
to follow, and depressing to maintain.

The problem rears its head even in trivial situations. For example, suppose you have a

JavaScript food API available, with makeToast and makeEggs functions. Both accept a
callback function that they call once their product is done, passing the finished result
as an argument. An example call looks like:

makeToast(function(toast){

 // Toast is ready!

});

Your challenge is to write a function called makeBreakfast that gets the toast and the
eggs cooking simultaneously and that calls a single callback when both are ready.

function makeBreakfast(callback){

 // Use makeToast and makeEggs to make toast and eggs simultaneously.

 // When both are ready, pass them to callback.

}

Pause now, please, and think about how you’d implement makeBreakfast.

Here’s a common strategy: when either underlying function (makeToast or makeEggs)
finishes, check to see if the other result is also available. If so, call the callback. If not,
store the result so the termination of the other function can pass it to the callback. The
resulting code isn’t elegant and doesn’t generalize well. What if making breakfast ex‐
pands to also include making coffee and pancakes?1

2 | Chapter 1: Introduction

2. Note that jQuery’s terminology (and implementation) is slightly different from other packages, some of which
do not use the term “deferred” at all. At some point you might like to read the Wikipedia article on “Futures
and promises”.

3. Jessica McKellar was added as an author in the second edition and the nice analogy was removed. Our
reference is to the second edition.

This is an extremely trivial example of managing multiple events, yet our code is already
a mess. Real-world scenarios are almost always more complex, and can of course be
much more complex.

If you had to solve problems like the above a few times, you’d soon see a general pattern.
You’d likely write a helper function or two. And if you did that, you’d be well on your
way to implementing deferreds!

Terminology: Deferreds and Promises
We need to get a little terminology clear from the very beginning: the difference between
deferreds and promises in jQuery.2

Continuing with our food theme, the first edition3 of Twisted Network Programming
Essentials by Abe Fettig (O’Reilly) gives a beautiful analogy of deferreds in the real world.
Some popular restaurants use remotely activated buzzers to let diners know when a
table is available. This avoids a physical queue of waiting customers clogging up the
entrance to the restaurant and allows future diners to enjoy a drink at the bar or a short
walk in the interim. This elegant approach moves us from a problematic and boring
synchronous solution (waiting in line) to an asynchronous one that lets everyone get
on with other things in the meantime.

When the maître d’hôtel puts your details (number of diners, seating preference, etc.)
into the restaurant’s system, he or she is taking the first in a series of steps that will result
in you eventually getting a table. In jQuery terminology, the maître d’ creates a de‐
ferred. You are handed a buzzer, which corresponds to a promise. At some point in the
future, when a table becomes free, the maître d’ will push a button or click a mouse to
“resolve” the deferred and the buzzer will go off in your pocket. Importantly, you (the
holder of the promise), cannot cause the buzzer to go off. Only the maître d’ (the holder
of the deferred) can do that.

With jQuery deferreds, things work in exactly the same way. The programmer writing
a function that needs to get some slow work done (for example, a database operation
or a network call) creates a deferred and arranges to fire it when the result of the work
becomes available. From the deferred a promise is obtained and returned to the caller.
Just like the diner with the buzzer, the caller cannot cause the promise to fire. Just as
future diners can have a drink at the bar, a program that receives a promise can get on

Terminology: Deferreds and Promises | 3

http://bit.ly/1bC2dDX
http://bit.ly/1bC2dDX
http://oreil.ly/1bC2fLU
http://oreil.ly/1bC2fLU

with other computations instead of twiddling its thumbs while waiting for the promise
to fire.

To summarize: create deferreds but return promises.

Familiar Promises
If you’ve ever used $.ajax in jQuery or used any of the animate methods, you’ve already
used a promise. For example, you may have written:

$('#label').animate({ opacity: 0.25 }, 100, function(){

 // Animation done.

});

The return value of the animate function gives you a way to get a promise that is resolved
when the animation finishes. You could instead have written:

var promise = $('#label').animate({ opacity: 0.25 }, 100).promise();

promise.done(function(){

 // Animation done.

});

That may not seem like a big deal, but what if you want to coordinate what happens
after two animations have finished? Using promises, it’s trivial:

var promise1 = $('#label-1').animate({ opacity: 0.25 }, 100).promise();

var promise2 = $('#label-2').animate({ opacity: 0.75 }, 200).promise();

$.when(promise1, promise2).done(function(){

 // Both animations are done.

});

The jQuery $.when method can accept multiple promises and return a new one that
will let you know when all the passed promises have resolved. Contrast the simplicity
of the above with the breakfast-making shenanigans in “Food for Thought” on page 1.

The $.ajax method returns a value that also has promise methods. So, you could write
the following:

$.when($.ajax('http://google.com'), $.ajax('http://yahoo.com')).then(

 function(googlePage, yahooPage){

 // Both URLs have been fetched.

 }

);

It’s easy to do more complex things, e.g., fetch the contents of two URLs, run an ani‐
mation after each loads, and then do something else when all four events are finished:

$.when(

 $.ajax('http://google.com').then(function(){

 return $('#label_1').animate({ opacity: 0.25 }, 100);

4 | Chapter 1: Introduction

www.allitebooks.com

http://www.allitebooks.org

 }),

 $.ajax('http://yahoo.com').then(function(){

 return $('#label_2').animate({ opacity: 0.75 }, 200);

 })

).then(

 function(){

 // Both URLs have been fetched and both animations have completed.

 }

);

Notice how the code almost reads like a natural language description of a simple plan.

Unfortunately, deferreds have a reputation for being abstract and difficult to under‐
stand. As we’ve seen though, they’re not! They’re conceptually very close to the way we
naturally think about and plan for future events.

The basic understanding of deferreds provided in this chapter is all you need to enjoy
some of the mind-bending, elegant, and downright fun ways in which deferreds can
make event-based programming so challenging and rewarding. We’ll see a ton of ex‐
amples of using deferreds in Chapter 3. But before we do that, we’ll need to learn about
the jQuery deferred API.

Familiar Promises | 5

CHAPTER 2

The jQuery Deferred API

There are different levels at which you can learn about jQuery deferreds, and these each
give a different perspective.

At the lowest level there is the JavaScript source, the jQuery deferred.js and call‐
backs.js files. Reading the source is very informative, but it’s definitely not the simplest
JavaScript to understand! Besides being challenging to follow (jQuery is optimized for
code size and execution speed, not readability), the source also doesn’t tell you what
deferreds are for or how to use them. From reading the source, it’s not even clear what
the methods available on deferreds might be.

Next, there’s the official jQuery documentation for the Deferred object, jQuery.when

(which we’ll refer to as $.when from now on), and the .promise() function for DOM
element collections. The API documentation tells you what methods are available, what
their arguments are, methods that are deprecated or that have changed between ver‐
sions, etc. You’ll want to read the official documentation closely and will probably return
to it many times as you become increasingly fluent with deferreds.

A further level is a proposal (see “Promises/A+” on page 78) for standardizing the be‐
havior of promises across JavaScript libraries. While not directly associated with
jQuery’s deferreds and promises, it illustrates the guidance that informed the imple‐
mentation of the API.

What’s missing is a higher-level discussion that explains the API and the dynamics of
deferreds. That’s what we aim to provide in this chapter. We discuss every API method
and often show examples of API calls, but we’re not attempting to duplicate the online
documentation. Read our description to understand the API and then consult the of‐
ficial documentation if you need more detail.

A natural way to begin is to first look at what you can do when a promise is returned
by a function you call. Once you understand that, it’s easy to learn how to make deferreds
yourself so that your code can return promises to others.

7

http://bit.ly/IK0c24
http://bit.ly/1bC2dDY
http://bit.ly/1bC2dDY
http://bit.ly/1bC2dUe
http://bit.ly/1bC2dUh
http://bit.ly/1bC2bf6

1. Actually, this is not strictly true. $.ajax returns an object that has methods that point to the promise methods

on a deferred that $.ajax uses internally. For regular jQuery users, this detail is of no importance and can
be ignored.

Consuming Promises
What kinds of functions return promises?

There are three ways you can receive a promise using jQuery (two of which we men‐

tioned in “Familiar Promises” on page 4). First, $.ajax returns a promise.1 Most jQuery

users are used to using $.ajax by passing error and success functions in the call to

create the request. But you can also treat the return value of $.ajax as a promise and

reap the benefits of operating on deferreds. Second, we’ve seen that jQuery animate

methods return an object with a promise method that returns you a promise. Third,

when you select a set of DOM elements (e.g., $('p') to select all HTML <p> elements),

the result is an object with a promise method that also returns a promise. By default it
resolves when all animations on the selected elements are finished.

In addition to these, you might receive promises from function calls to other (non-
jQuery) JavaScript APIs.

However it happens, if you have your hands on a promise, it’s important to understand
what you can do with it.

More Terminology: Resolve, Reject and Progress
The first thing to understand about a promise is that it was created from a deferred.
Whoever made the deferred is going to arrange for the promise they gave you to deliver
you a value. jQuery uses resolve, reject, and progress to describe the things that can
happen to your promise. If nothing goes wrong, the promise will be resolved. If an error
occurs, it will be rejected. Along the way, the deferred might make measurable progress
and report this to your promise. In this book we’ll sometimes informally say a deferred
or a promise has fired. By this we mean that the deferred was rejected or resolved, but
that we don’t care which.

8 | Chapter 2: The jQuery Deferred API

http://bit.ly/1bC2bfa

In the following API examples, we assume you have a variable called

promise obtained from a function that created a deferred and re‐
turned its promise.

done
Use the done method on a promise to arrange for a function to be called if the deferred
is resolved:

promise.done(function(result){

 // result is the value with which the deferred was resolved.

 console.log('The promise was resolved with', result);

});

done can be called many times on the same promise. Each call results in the passed
function being added to a list of functions that will be called when the promise is
resolved.

The function you pass to done will be called with all the arguments the deferred is
resolved with. The above example just shows the simple case of a deferred being resolved
with one argument.

Note that there is no point in returning a value from a done callback! Any returned value

will simply disappear. It will not be passed on. It will not be given to other done callback

functions. All done callbacks are independent. They will all be called with the same
value. If you want to modify the result of a promise so as to pass the modified value

along, you’ll need to use then, explained on page 11.

fail
Use the fail method on a promise to arrange for a function to be called if the deferred
is rejected:

promise.fail(function(error){

 // error is the value with which the deferred was rejected.

 console.log('The promise was rejected with', error);

});

As with done, fail can be called multiple times to add failure functions. Functions

passed to fail will be called with the full set of arguments the deferred was rejected

with. Also, as with callbacks attached via done, there is no point in returning a value

from a fail callback.

Consuming Promises | 9

http://bit.ly/1bC2dUu
http://bit.ly/1bC2bfh

always
If you want a function to be called no matter whether the original deferred is resolved

or rejected, you can pass it to the always method on the promise. This is useful, for
example, in cleaning up or logging:

promise.always(function(value){

 // The deferred fired with value, either via its resolve or reject method.

 console.log('The promise fired with value', value);

});

Note that in the callback function above, you may not be able to tell whether the value
comes from the deferred being resolved or rejected, and you shouldn’t care. If you do

care, you should probably be using done and/or fail.

As with done and fail, always can be called multiple times to add functions that should
always be called. All arguments used to reject or resolve the deferred will be passed along

to the promise always functions. Also, as with callbacks attached via done and fail,

there is no point in returning a value from an always callback.

progress
Deferreds may be able to report periodically on the progress of the asynchronous activity

they’re associated with. A progress callback can be used to handle these events:

promise.progress(function(value){

 // A progress value has been reported by the deferred.

 console.log('Progress!', value);

});

Note that a progress function can be called many times. This can be used to support,
for example, a user interface that updates a progress bar as an operation proceeds.

jQuery calls progress callbacks every jQuery.fx.interval milliseconds on elements

that are being animated. See the entry for the progress attribute of the jQuery ani

mate documentation. In reading the animate documentation, note that passing a

progress function to the animate constructor via:

$('#something').animate({..., progress: function(){ ... })

is equivalent to:

$('#something').animate(...).promise().progress(function(){ ... })

As with done, fail, and always, progress can be called multiple times to add functions

that should receive progress information. Also, as with callbacks attached via done,

fail, and always, there is no point in returning a value from a progress callback.

10 | Chapter 2: The jQuery Deferred API

http://bit.ly/1bC2eri
http://bit.ly/1dbI7Dd
http://bit.ly/1bC2bvL
http://bit.ly/1bC2bM4
http://bit.ly/1bC2bM4

promise
The jQuery promise function can be used to obtain a promise against the completion
of actions on a selection of DOM elements. Here’s an example, adapted from

the .promise() documentation:

$('div').each(function(i){

 $(this).fadeIn().fadeOut(1000 * (i + 1));

});

$('div').promise().done(function(){

 // All <div> animations are finished.

});

By default, the promise method will return a promise from a deferred that is resolved
when all animations on an element collection have fired. You can also pass an argument

to promise to name a different event queue that the promise should correspond to (the
default name is “fx,” for “effects”). An even more advanced method is to pass an object

to promise, in which case jQuery will attach the usual promise methods (done, fail,

etc.) to the object and return it. These nondefault uses of promise are outside the scope

of this book. To learn more, see the .promise() documentation and hunt for examples
online.

The promise function is only available client side: it operates on a
collection of elements jQuery has selected from the DOM.

then
then is the only mechanism jQuery provides to take output values from one deferred,
modify them, and plug them in as inputs to another deferred. You cannot do this with

done, fail, or progress: any values returned by those callbacks are ignored. To properly

understand what then does, you need to know that it creates a new deferred and returns
its promise. Behind the scenes, it hooks up the output of the original promise to go
through the modifying functions you provide and to then trigger the new deferred it
has created (whose promise it will return).

The modification functions you give to then can themselves return new promises.

You can pass then up to three positional function arguments, to process a resolve value,

an error value, or progress values from the original promise. Pad the call to then with

null arguments, if necessary, to ensure that your function is in the correct position.

Here is a fanciful example that passes all three callback functions to then:

Consuming Promises | 11

http://bit.ly/1bC2bf6
http://bit.ly/1bC2bf6
http://bit.ly/1bC2bM9

promise.then(

 function(result){

 // The deferred was resolved with result. Double it and pass it on.

 return 2 * result;

 },

 function(error){

 // The deferred was rejected with error. Log it and pass on a different

 // (null) error.

 console.log('Error received:', error);

 return null;

 },

 function(value){

 // The deferred made progress. Convert it to a percentage string.

 return Math.round(value * 100.0) + '%';

 }

);

Below is an example where only progress values from the original promise are modified
and passed on. Any resolve or reject value will be passed through unchanged to the new
promise, which logs progress and the eventual resolved value. Don’t worry if you don’t

understand the calls to promise, notify, and resolve; you’ll learn about them in “Cre‐
ating Deferreds” on page 15.

var d = $.Deferred(),

 promise = d.promise();

var newPromise = promise.then(

 null,

 null,

 function(value){

 // The deferred made progress. Convert to a percentage string.

 return Math.round(value * 100.0) + '%';

 }

);

newPromise.progress(function(value){

 console.log('Progress:', value);

});

newPromise.done(function(value){

 console.log('Finished:', value);

});

d.notify(0.141592);

d.notify(0.618033);

d.resolve(27);

The preceding code produces the following output on the console:

Progress: 14%

Progress: 62%

Finished: 27

12 | Chapter 2: The jQuery Deferred API

Although the call signature of the then method of jQuery promises

resembles the then method of promises that follow the Promises/A
+ specification, the two functions behave quite differently when it
comes to processing errors and handling exceptions. In addition, the

Promises/A+ then function only accepts two arguments. We’ll dis‐
cuss the differences in “Promises/A+” on page 78.

state
New deferreds start life in a pending state and remain that way until they are either
resolved or rejected. Once resolved or rejected, their state can no longer change.

You can call state to discover the state of a deferred (or its promise). You’ll get back a

string, one of 'pending', 'resolved', or 'rejected'. Unless you’re debugging, you’re
unlikely to need this function.

when
jQuery has a when function to help you work with multiple promises. In this book we’ll

refer to it as $.when, which is how you’ll likely use it in your code. Note that $.when is
a totally separate top-level jQuery function; it’s not part of a deferred or a promise.

If you have to call several functions that return promises and take an action only when

all are completed, $.when is your friend.

Before we see how convenient $.when is, though, you can learn a lot by thinking about
how it might work and by writing a version of it yourself, no matter how primitive or

restricted. This should remind you strongly of the makeBreakfast challenge in “Food
for Thought” on page 1.

Here’s how you might naively write code to take an action after two promises are finished

without using $.when:

function callAfter(firstAction, secondAction, finalize){

 // Call finalize after the deferreds returned by firstAction and

 // secondAction have both finished. Pass finalize the result from both

 // deferreds.

 // NOTE: Don't write code like this! Use $.when instead.

 var finishedCount = 0, result1, result2;

 firstAction().done(

 function(result){

 finishedCount++;

 result1 = result;

 if (finishedCount === 2){

 finalize(result1, result2);

Consuming Promises | 13

http://bit.ly/1bC2aI7
http://bit.ly/1bC2aI7
http://bit.ly/1bC2eHK
http://bit.ly/1bC2dUh

2. Later, in “when2: An Improved jQuery.when” on page 63, we’ll write a much more robust function that doesn’t
have these issues.

 }

 }

);

 secondAction().done(

 function(result){

 finishedCount++;

 result2 = result;

 if (finishedCount === 2){

 finalize(result1, result2);

 }

 }

);

}

There are some serious problems with the above!2

1. There is no error checking. If firstAction or secondAction return a promise that
is ultimately rejected, this is not handled.

2. What if we want to call three promise-returning functions, not two? More code

duplication is needed and existing calls to callAfter will need to be found and
changed.

3. What happens if firstAction or secondAction doesn’t return a promise?

4. The return value of finalize is lost.

In spite of these problems, our code contains the core of what’s needed. It keeps count
of how many promises have been resolved and keeps the results for the eventual calling

of finalize. Most importantly, it gets its work done in a callback it adds to each promise
it needs to monitor. That’s a pattern you’ll encounter repeatedly in this book and in
deferred-using code in the wild. It’s part of what makes deferreds so cool.

The jQuery $.when function (with some help from then) takes care of all these issues,
allowing you to simply write:

$.when(firstAction(), secondAction()).then(finalize);

The call to $.when returns a new promise, as does the call to then. If either firstAc

tion or secondAction rejects the promise it returns, the error value will be propagated

to finalize.

Can you see why the final result, from finalize, is no longer lost? When it becomes

available, it will be used to resolve the promise returned by then. So if you need the
result, you can simply write:

14 | Chapter 2: The jQuery Deferred API

www.allitebooks.com

http://www.allitebooks.org

$.when(firstAction(), secondAction()).then(finalize).done(function(){

 // arguments holds the result returned by the finalize function.

});

$.when also correctly handles the case in which the value returned by either (or both)

of firstAction or secondAction is not a deferred.

There’s a gotcha to watch out for when using $.when. The follow‐
ing doesn’t behave as you might hope:

var promises = [

 $.ajax('http://google.com'),

 $.ajax('http://yahoo.com'),

 $.ajax('http://www.nytimes.com')

];

// NOTE: DON'T DO THIS!

$.when(promises).then(function(results){

 console.log('All URLs fetched.');

});

There are two problems here. First, $.when expects promises to be
given as individual parameters, not as an array. Second, the results

of the promises will be passed by $.when as individual parameters to
the callback function, not as a single array of results.

To pass an array of promises to $.when, you’ll therefore need to use

apply:

var promises = [

 $.ajax('http://google.com'),

 $.ajax('http://yahoo.com'),

 $.ajax('http://www.nytimes.com')

];

$.when.apply($, promises).then(

 function(result1, result2, result3){

 console.log('All URLs fetched.');

 }

);

Creating Deferreds
Once you’re comfortable receiving promises from functions and working with them by
attaching callbacks, you’ll soon want to write your own function or API that creates a
deferred and returns its promise.

Construction
To create a deferred, you just call $.Deferred():

var deferred = $.Deferred();

Creating Deferreds | 15

3. This is named after the Twisted Python function of the same name.

As discussed in “Terminology: Deferreds and Promises” on page 3, instead of returning
a deferred to the caller of your code, you’ll almost always want to return a promise. The

promise is obtained by calling the promise method on the deferred:

var deferred = $.Deferred(),

 promise = deferred.promise();

For convenience, the $.Deferred constructor allows you to pass it a function that can
be used to initialize the deferred once it is created. The function receives the deferred

as its only argument. For example, here’s a handy succeed function3 that returns a
promise that has already been fired with a specified result:

function succeed(value){

 return $.Deferred(function(d){

 d.resolve(value);

 }).promise();

}

Can you think of situations in which succeed might be useful? (Don’t worry if not—
keep reading.)

You may find it interesting to read the official API documentation on jQuery.Deferred().

resolve and resolveWith
You normally create a deferred and return its promise to your caller because you want
to arrange for a slow task (such as a network or other I/O call) to be performed. When

the task completes, you use the resolve method on the deferred to trigger the calling

of any done or always callbacks attached to the promise.

The resolve call signature is dead simple: just call it with any arguments you like. These

will be passed to all done and always callbacks added to the deferred’s promise.

It is perfectly acceptable, and quite common, to resolve a deferred before returning its
promise. This tends to happen in situations where you write a function that normally
causes a long-running task to be initiated but which sometimes already knows the an‐
swer, as we’ll see in “Memoization” on page 49. You can keep your function interface
consistent (i.e., always returning a promise) by returning a promise that corresponds
to a deferred you have already resolved. One beauty of deferreds is that your caller does
not need to know whether the promise you return has already been resolved—they just
add callbacks to it with no regard for the timing of resolution or rejection.

The variant, resolveWith, allows you to also pass a context object, which is then pro‐

vided to the always and done callbacks as their this object.

16 | Chapter 2: The jQuery Deferred API

http://bit.ly/1jJPsPp
http://bit.ly/1bC2eHN
http://bit.ly/1bC2eaJ
http://bit.ly/1bC2bMi
http://bit.ly/1bC2eaK

reject and rejectWith
To indicate to a promise that an error has occurred (thus invoking its always and fail

callbacks), use the reject method on the deferred. As with resolve, you may pass any

arguments you like to the reject call. These will be passed to all fail and always
callbacks added to the deferred’s promise.

As with deferred resolution, it is perfectly acceptable to reject a deferred before returning
its promise.

The variant, rejectWith, allows you to also pass a context object, which is then provided

to the always and fail callbacks as their this object.

notify and notifyWith
After you’ve created a deferred and returned its promise, you’ll at some later point want
to resolve or reject the deferred so your caller (who has the promise) can proceed. In
some circumstances, though, you might obtain information about the progress of the
underlying operation that you launched, and may want to pass that information along
to the promise holder. The classic UI example is an animated progress bar that shows
the user what percentage complete a task is.

The notify call signature is also dead simple: just call notify with any arguments you

like. These will be passed to all progress callbacks added to the deferred’s promise.

And yes, you guessed it, the notifyWith variant allows you to also pass a context object,

which is then provided to the progress callbacks as their this object.

Note that once you have resolved or rejected a deferred, further notify calls on it will

have no effect (i.e., they will not result in invocation of any progress callbacks on the
promise).

Putting It All Together
Now that you know all about creating deferreds and consuming promises, it should be
clear that there are three pairs of methods on a deferred that you can invoke that cause
the running of a corresponding set of callbacks on the promise for the deferred. Table 2-1
shows the naming correspondence.

If you call a deferred method named in the left column with some set of arguments, all
the callbacks added via the promise method named in the right column will be invoked,
in the order they were added, each with the same set of arguments.

Putting It All Together | 17

http://bit.ly/1bC2eaN
http://bit.ly/1bC2eaO
http://bit.ly/1bC2bvC
http://bit.ly/1bC2bvy

Table 2-1. Correspondence between deferred and promise method names

Deferred method Promise method

resolve or resolveWith done

reject or rejectWith fail

notify or notifyWith progress

Deferred Dynamics
Here is a summary of aspects of deferred behavior (some of which were described at
length earlier) that you need to understand, along with some principles of deferred
usage:

• If your code creates a deferred but doesn’t eventually cause it to be resolved or
rejected, you’re probably doing it wrong. Almost without exception, code that cre‐
ates a deferred should be responsible for getting it fired.

• A function that creates a deferred can resolve or reject it before its promise is
returned.

• If you write a function that creates a deferred that you want to return, return the

result of calling promise() on the deferred.

• Any always, done, or fail callbacks added to a promise whose deferred has already
been resolved or rejected will be called immediately, as appropriate.

• The resolve, reject, and notify methods of a deferred can be called with any
number of arguments, all of which will be passed to the corresponding methods on
the promise.

• When a deferred is resolved (or rejected), the done (or fail) callbacks of its promise
are invoked in the order they were added.

• always callback functions are appended to both the done and fail lists of functions
to be called when the deferred fires. So they will be called, in turn, as the functions

in the list of done or fail callbacks is invoked.

• Fire at will! It’s not an error to resolve or reject a deferred multiple times. As you’d
expect, only the first resolve or reject triggers callbacks attached to the promise. You
don’t need to keep track of whether a deferred you create has been fired. The de‐
ferred handles that for you.

• If you call notify on a deferred that has already been resolved or rejected, nothing

happens (i.e., any progress callbacks attached to the deferred’s promise will not be
called).

• It is perfectly safe to return the same promise instance to multiple independent

callers of your code. Any done, fail, or progress callbacks added to it cannot

18 | Chapter 2: The jQuery Deferred API

interfere with one another. In other words, there is no chaining of returned values

from done, fail, or progress callbacks.

• Only then can be used to pass on a modified return value from a deferred. It does
this by creating a new deferred and returning its promise.

• If, as a promise consumer, you find yourself wondering about whether a promise

has fired or not (i.e., your code relies on state), you probably don’t fully understand
deferreds. Part of the point is that you don’t have to worry.

• Use reject for low-level, fundamental, exceptional problems (i.e., where you’d raise
an exception in nondeferred code). For example, if you make a call to a remote

HTTP service, use reject for the cases where there’s a network error. Use re

solve to send back a status code (even if it’s an error code) and a result.

Deprecated Promise Methods
We’ll mention the deprecated promise methods in case you ever have to maintain older
jQuery-based code. If possible, replace them with the suggested alternatives.

isRejected and isResolved
isRejected and isResolved returned Boolean values to indicate if a deferred or
promise is in a rejected or resolved state. They were deprecated in jQuery 1.7 and re‐

moved in 1.8. Use the new state method instead.

pipe
pipe is the now-deprecated (in jQuery 1.8) original name of the then method. The two

are identical: a quick look at deferred.js reveals the line promise.pipe = promise.then;.

Changes in the jQuery Deferred API
Be careful when reading the jQuery Deferred object documentation. Deferreds were
introduced to jQuery in version 1.5 and in several subsequent versions there were

changes to parts of the deferred API. For example, in the documentation for then, you’ll
see its supported call signatures changed in versions 1.7 and 1.8 and that the different
behaviors are all still documented.

When reading code that uses jQuery deferreds, it is therefore sometimes important to
know what version of jQuery the code will be run against. That advice applies to this
book too (jQuery versions 1.10.2 and 2.0.3 are now current). And, needless to say
(hopefully!), when you’re writing deferred code you need to know what version of
jQuery will be loaded.

Deprecated Promise Methods | 19

http://bit.ly/1bC2eHK
http://bit.ly/1bC2eaV
http://bit.ly/1bC2eaY
http://bit.ly/1bC2eHK
http://bit.ly/1bC2eaZ
http://bit.ly/1bC2bM9
http://bit.ly/IK0c24
http://bit.ly/1bC2dUe
http://bit.ly/1bC2bM9

Likewise, if you’re modernizing an existing project that uses deferreds, be careful in
moving to a new version of jQuery—especially if, through some inconceivable chain of
events, the code you’re working on doesn’t have a test suite!

20 | Chapter 2: The jQuery Deferred API

CHAPTER 3

Deferred Recipes

In this chapter you will find many examples of using jQuery deferreds. These are all
based on actual use cases. The intention is to show you a broad collection of real-world
uses of deferreds in order to make this book maximally useful.

Although we’ve arranged the examples to be read in order of increasing difficulty, most
of them can be read in isolation. We encourage you to “dip in” wherever it’s useful.

A Replacement for the setTimeout Function
Sometimes, when using a site such as Twitter or Gmail, a warning message appears
when an asynchronous task is taking too long. For example, Twitter will replace the
“spinner” at the bottom of their infinite scroll with an “oops” message along with a
suggestion that you click a link to trigger the request again or refresh the page. Gmail
is cleverer: when there is a connectivity problem, it displays a warning message and then
counts down until the point at which it retries the network call that failed.

There is a built-in function in JavaScript called setTimeout. It works like this:

setTimeout(function(){

 console.log('Display after half a second');

}, 500);

console.log('Display immediately (unblocked)');

The result of this is:

Display immediately (unblocked)

Display after half a second

Implementing the functionality described above using just setTimeout might be hard
to do in a clear and comprehensible way, especially if there were the potential for nested

calls to setTimeout.

21

http://mzl.la/1bC2fvs

This kind of thing is easy to achieve with deferreds. In fact, the Gmail example almost
reads as if it is describing a deferred: “when there is a connectivity problem, display a
warning message and then retry after a certain number of seconds.”

Here’s a simple replacement for setTimeout that uses deferreds. This is adapted from
Fun With jQuery Deferreds by Michael Bleigh.

function wait(timeout){

 var deferred = $.Deferred();

 setTimeout(deferred.resolve, timeout);

 return deferred.promise();

}

And here’s how you use it:

wait(500).done(function(){

 console.log('Timeout fired!');

});

This produces the following, as you would expect:

Timeout fired!

Given a promise-based timeout, it is not too hard to combine it with other promises to
create solutions similar to those implemented by Twitter and Gmail. We’ll show you
how you might do this in “Using when2 to Time Out a Single Promise” on page 67, once
we have another handy utility in our deferred tool belt. Furthermore, the promise re‐

turned by the wait function is a representation of the timeout that can be reused and
passed around your code in ways that would be impossible if you’d stuck to the plain

old setTimeout function.

Challenges

1. As you may remember from reading “Construction” on page 15, you can pass a

function to $.Deferred. The function will be called with the new deferred instance.
This is just a convenience; you can create and configure a deferred in one go. Change

wait to work in this way.

2. Suppose there were functions called one and two that you wanted to call when the

timeout expired. You could put calls to them into the function you pass to then.
Subtly different though would be to instead somehow pass the timeout to those
other functions. How would you do that?

3. setTimeout returns a value that can be passed to clearTimeout to prevent the

timeout function from being run. Our wait function lacks this capability. Change

it so that it returns a promise that also has a cancel method on it that will cause the

promise returned by wait to be rejected.

22 | Chapter 3: Deferred Recipes

http://bit.ly/1bC2fvp
http://bit.ly/1bC2iaL
http://mzl.la/1bC2fvv

Messaging in Chrome Extensions
A common need when working on a project that uses deferreds is to use an existing
callback-based API in a way that’s compatible with deferreds. This is usually a simple
task.

Here we’ll illustrate the process using the messaging API found in Chrome extensions.
Don’t worry if you don’t use Chrome or don’t build extensions with it; this example
doesn’t require any prior Chrome experience.

A Chrome extension can have an invisible “background” page that communicates with
“content scripts” running in the tabs the user has open. The API call used by the back‐

ground page to send a message to a tab is chrome.tabs.sendMessage, with the following
signature:

chrome.tabs.sendMessage(tabId, message, responseCallback);

Here the message can be anything at all. The responseCallback, if provided, will be
called with a response if the content script running in the tab wants to send back a reply,
or will be called with no argument in the case of a Chrome error (e.g., trying to send a
message to a nonexistent tab). So a typical nondeferred usage might be:

chrome.tabs.sendMessage(17, { action: 'addSidebar' }, function(result){

 if (result === undefined){

 console.error('Chrome error:', chrome.runtime.lasterror.message);

 }

 else if (result.success){

 console.log('Sidebar added to DOM.');

 }

 else {

 console.error('Could not add sidebar to tab 17:', result.error);

 }

});

To convert this to code that uses deferreds, we’ll first need a replacement for

chrome.tabs.sendMessage that returns a promise:

function sendMessageDeferred(tabId, message){

 var deferred = $.Deferred(); //

 chrome.tabs.sendMessage(tabId, message, function(result){

 if (result === undefined){

 deferred.reject(chrome.runtime.lasterror.message); //

 }

 else {

 deferred.resolve(result); //

 }

 });

 return deferred.promise(); //

}

Messaging in Chrome Extensions | 23

http://bit.ly/1bC2eYu

You’ll use this pattern over and over again as you work with deferreds.

Make a deferred, whose promise will be returned to the caller.

Arrange to reject the deferred if anything goes wrong in making the API call(s)
you need to make.

Arrange to resolve the deferred with a result value if all goes well.

Return the deferred’s promise to our caller.

With the sendMessageDeferred function in place, we can now use it in our code:

sendMessageDeferred(17, { action: 'addSidebar' })

.done(function(result){

 if (result.success){

 console.log('Sidebar added to DOM.');

 }

 else {

 console.error('Could not add sidebar to tab 17:', result.error);

 }

})

.fail(function(error){

 console.error('Chrome error:', error);

});

We could use $.when to send messages to several tabs, only proceeding once all tabs had
replied:

$.when(

 sendMessageDeferred(17, { action: 'addSidebar' }),

 sendMessageDeferred(18, { action: 'hideSidebar' }),

 sendMessageDeferred(19, { action: 'hideSidebar' })

)

.done(function(){

 console.log('All tab sidebars adjusted.');

})

.fail(function(error){

 console.error('Chrome error:', error);

});

As we saw in “when” on page 13, it’s quite awkward to log a status line (as in the done
callback above) after sending a message to multiple tabs without using deferreds. Fur‐
ther, in this simple example, the set of tabs to send to is static. Writing this code without
deferreds is much more difficult if the set of tabs to send to is stored in a list of arbitrary
size.

Challenges

1. What will happen if the content script in the tab receiving the message does not call

the sendResponse function?

24 | Chapter 3: Deferred Recipes

www.allitebooks.com

http://bit.ly/1bC2cjj
http://www.allitebooks.org

2. If the tabs wanted to return a result (for example, the elapsed time taken to hide or
show the sidebar), how would we access the three results?

Accessing Chrome Local Storage
As a second example of converting a callback API to a deferred API, let’s write a deferred-
based API for access to the Chrome browser’s local storage.

The Chrome local storage API differs from the W3C Web Storage localStorage API
in some important ways. Of most interest to us is that the Chrome local storage is
asynchronous. The methods used to get, set, etc., keys each take a callback function that

is called once the storage operation has completed. You can check the chrome.stor

age documentation for the complete details of the API.

Making a deferred API from the Chrome API is very easy. There are five functions: get,

getBytesInUse, set, clear, and remove. They all have similar signatures. For example,

set looks like this:

chrome.storage.local.set(items, callback)

To make a deferred method for set, we don’t really need to know what items represents.

All we need to know is that callback will be called by Chrome when it has set the key

values it is given. Our version of set will look as follows:

function set(items){

 var deferred = $.Deferred(); //

 chrome.storage.local.set(items, function(){

 if (chrome.runtime.lasterror){

 deferred.reject(chrome.runtime.lasterror.message); //

 }

 else {

 deferred.resolve(); //

 }

 });

 return deferred.promise(); //

}

This should look familiar by now. It follows the classic pattern:

Create a deferred.

Arrange to reject the deferred in case of error.

Arrange to resolve the deferred with a result if no error occurs.

Return a promise created from the deferred.

Accessing Chrome Local Storage | 25

http://bit.ly/1bC2feU
http://bit.ly/1bC2feX

You’d use the above set function as follows:

set({

 lastURL: 'http://bit.ly/jquery-deferreds',

 timestamp: new Date().toUTCString()

}).done(function(){

 // Keys for the user's last URL and timestamp saved to local storage.

});

Challenges

1. Write deferred versions for the other chrome.storage.local functions (get, get

BytesInUse, remove, and clear).

2. The node.js Redis package provides a callback-style interface to the Redis. Choose
some Redis API calls and make deferred versions of them. Your functions should
call the existing callback-based API to get the Redis work done; you’re just providing
a deferred interface.

Running Promise-Returning Functions One by One
There will be occasions when you need to call several promise-returning functions one
by one, with each function starting only after the preceding one has completed. Some‐
times implicit dependencies between the functions require this, but more commonly
you’ll just need to use the result of an early function as an input to a later one.

If you read Chapter 2, you’ll already know how to do this by using the then method of
a returned promise. For example, if you want to change the opacity on one DOM ele‐
ment and only then change the opacity on a second element, you could write:

var promise = $('#label-1').animate({ opacity: 0.25 }, 100).promise()

 .then(function(){

 return $('#label-2').animate({ opacity: 0.75 }, 200).promise();

 });

While this doesn’t look too bad for running two functions one after another, it quickly
gets uglier with more. A more serious drawback is that because it is just static code, it
can’t be used if we have a list of promise-returning functions we need to run one after
the other.

It would look much nicer—and be easier to add to—if we could write something like
this:

var promise = synchronously([

 [$('#label-1').animate, { opacity: 0.25 }, 100],

 [$('#label-2').animate, { opacity: 0.75 }, 200]

]);

26 | Chapter 3: Deferred Recipes

http://bit.ly/1bC2feX
http://bit.ly/1bC2hUb
http://redis.io

Fortunately, it’s easy to write synchronously, a function that takes a list of functions to
run, along with their arguments. It returns a promise that fires when all functions have
been run to completion one after another.

Here’s how it might look:

function synchronously(tasks){

 var i, task, func,

 promise = $.Deferred().resolve().promise(), //

 makeRunner = function(func, args){ //

 return function(){

 return func.apply(null, args).promise();

 };

 };

 for (i = 0; i < tasks.length; i++){

 task = tasks[i];

 func = task.shift();

 promise = promise.then(makeRunner(func, task)); //

 }

 return promise;

}

This works as follows:

Create a promise variable that we’ll eventually return. The deferred from which

the promise is made is resolved immediately with an undefined value. When

we first call then on that promise, the function we pass to then will be run
immediately. Note that we don’t care about the value the promise fires with; we’re
just trying to get the task functions run sequentially.

makeRunner functions as a closure that returns a function to invoke the current

task with its arguments. Note that we assume that calling func returns either a
promise or something that can be used to obtain a promise.

There is an unfortunate subtlety here. All promises have a promise method
(undocumented!) that, when called with no arguments, returns the promise. The

method is actually identical to the (documented) promise method of its deferred.

So if func returns a promise, calling promise() on it simply returns the promise.

More usefully, if func happens to be a call to animate, the call to promise() is

essential—it ensures that the returned value, passed to then, is a promise. See
the challenges below for more on this.

This slightly dubious line reuses (updates) the promise variable to hold the

promise returned by calling then on the current promise. In effect, we’re adding
a new function to be called when the current promise is done and then forgetting
about that promise. We only have to worry about the most recent promise, which
we return to our caller. Because the original promise was fired on creation, we
don’t have to hang onto it for any reason.

Running Promise-Returning Functions One by One | 27

Challenges

1. Improve the synchronously function so that each function is run with a passed

this object for its context.

2. The anonymous function passed to promise.then in synchronously ignores any
arguments it is passed. Why is that? What will its arguments be?

3. How could you improve synchronously to allow for the case in which some of the

functions to be called did not return promises or objects with a promise method?

4. The following code fragment is identical to the first one above, but it uses done

instead of then:

var promise = $('#label-1').animate({ opacity: 0.25 }, 100).promise()

 .done(

 function(){

 return $('#label-2').animate({ opacity: 0.75 }, 200).promise();

 }

);

What difference will this make to code that adds callbacks to the promise? The
answer is important. If you don’t know it, you don’t properly understand jQuery
deferreds yet.

5. This fragment uses when instead of then:

var promise = $.when(

 $('#label-1').animate({ opacity: 0.25 }, 100),

 $('#label-2').animate({ opacity: 0.75 }, 200)

);

How will this behave differently from our earlier two fragments that used then and

done? Why is it not necessary to call .promise() on the result of the call to animate?

A Promise Pool with an emptyPromise Method
When running a node service, you’ll occasionally need to shut it down. The service
might have many requests in progress, so ideally, you should shut things down grace‐
fully. Some of the outstanding requests may have users on the other ends of them. When
the shutdown signal arrives, you may need to make several calls to cleanly disconnect
from other services or to start others.

In these cases, a useful and simple trick is to maintain a pool of promises that correspond
to outstanding tasks, and to provide a method that returns a promise that fires when
the pool is empty (i.e., when all the promises in the pool have completed).

28 | Chapter 3: Deferred Recipes

Creating a Promise Pool
Here’s createPromisePool, a function that maintains a promise pool as described

above. It returns an object with add and emptyPromise methods. The former adds a
promise to the pool and the latter returns a promise that resolves when the pool empties:

var $ = require('jquery-deferred'); //

function createPromisePool(){

 var inProgress = [], //

 waitingForEmpty = []; //

 return {

 add: function(promise){

 inProgress.push(promise); //

 promise.always(function(){

 var i;

 for (i = 0; i < inProgress.length; i++){ //

 if (inProgress[i] === promise){

 inProgress.splice(i, 1);

 break;

 }

 }

 if (inProgress.length === 0){ //

 for (i = 0; i < waitingForEmpty.length; i++){

 waitingForEmpty[i].resolve();

 }

 waitingForEmpty = [];

 }

 });

 },

 emptyPromise: function(){ //

 var deferred = $.Deferred();

 waitingForEmpty.push(deferred);

 return deferred.promise();

 }

 };

}

require is a core node.js function for loading JavaScript from another file.

inProgress holds a list of outstanding promises.

waitingForEmpty holds a list of deferreds whose promises have been given to
pool observers that want to know when the pool is empty.

Add the given promise to the list of in-progress tasks.

When the promise fires, remove it from the in-progress promises.

A Promise Pool with an emptyPromise Method | 29

http://bit.ly/1bC2hTZ

If we now have no promises in progress, resolve all waiting deferreds.

The emptyPromise function creates a new deferred, adds it to the list of waiters,
and returns its promise.

Using the Promise Pool
Suppose you’re using the Express node HTTP server and you have a function called

handleRequest that takes an incoming request and returns a promise that fires once
the request has been dealt with. Server code that uses a promise pool might have frag‐
ments like this:

var express = require('express'),

 app = express(),

 pool = createPromisePool(),

 shuttingDown = false;

app.get('/', function(req, res){

 if (shuttingDown){

 res.redirect('http://example.com'); //

 }

 else {

 pool.add(handleRequest(req, res)); //

 }

});

app.get('/shutdown', function(req, res){

 if (shuttingDown === false){

 shuttingDown = true;

 pool.add(flushAvatarCache()); //

 pool.add(sendShutdownEmail());

 pool.add(flushLogs());

 pool.emptyPromise().done(//

 function(){

 res.send(200); //

 process.exit(0);

 }

);

 }

 else {

 res.send(200); //

 }

});

app.listen(9999);

If the server is shutting down when a request arrives, redirect the request to
some other URL (alternatively, we could fail the request). The important thing
is to stop processing requests—to not add any more request promises to the
pool.

30 | Chapter 3: Deferred Recipes

http://expressjs.com/

Otherwise, call handleRequest and add the promise it returns to the pool.

On shutdown, arrange for final tasks to be done, adding the promise for each
one to the pool of outstanding work.

When all outstanding work is finished, exit the node process.

The server status (200) is not written back to the client until the service has really

been halted. We could have returned a 200 status immediately, but by waiting
until everything is done, the client knows their call succeeded.

If a shutdown request arrives while we are already shutting down, we simply

return a 200 immediately (see the challenges below).

Challenges

1. Change the emptyPromise function so it consists of a single return statement. Hint:

pass an initialization function to $.Deferred.

2. What will happen if the in-progress pool is empty when emptyPromise is called?

3. Change emptyPromise to accept a Boolean argument, checkImmediately. If check

Immediately is true and the in-progress pool is empty when emptyPromise is called,
it should return an already resolved promise.

4. The processing of a shutdown request is too simplistic because it may start functions

like flushAvatarCache before all existing HTTP requests are finished. Change the
shutdown code so that it first waits for the pool of HTTP GET requests to empty,
then adds shutdown promises to the pool, and then waits again for the pool to empty
before exiting.

5. Change createPromisePool to allow the caller to pass a function. The function

should be evaluated each time an outstanding promise fires and if it returns true,
resolve all the waiting deferreds. You might like to pass the function the number of

items in the inProgress list, or even the list itself (if you’re the trusting type).

6. In createPromisePool the inProgress list is linearly scanned and then spliced (in

the always callback) each time a request finishes. This will be very inefficient if you

are processing many simultaneous requests. How could you change inProgress to

be a JavaScript object so you could then use delete to quickly remove the completed

promise? Don’t forget to also change the inProgress.length === 0 test.

7. If a shutdown request arrives while we are already shutting down, the code above

returns a 200 immediately. This might be problematic: such a 200 response actually
only indicates that a shutdown is in progress, not that it has completed. A better

approach would be to only return a 200 when the currently running shutdown
process has completed. Change the shutdown code so that additional shutdown

requests receive a 200 response only when the in-progress shutdown sequence

A Promise Pool with an emptyPromise Method | 31

completes. Your code should work no matter how many shutdown requests are
received during the shutdown process.

Displaying Google Maps
The Google Maps API makes it extremely easy to add map images to web applications.

Just add a src attribute containing a latitude and longitude of a location to an HTML

 tag and Google takes care of the rest.

The direct approach is extremely convenient and easy, but is likely too simplistic in
practice. One issue is that network requests are slow, particularly on mobile devices.
Also, the Google API is no longer free or may be limited by a quota, so reducing API
calls by caching can save money and/or keep an application working correctly for longer.
Caching can have strong benefits for location-aware applications since many of us are
creatures of habit, repeatedly visiting certain places like home, the office, the gym, and
favorite restaurants.

In this section, we’ll build a function that returns a function that manages a cache of
fetched maps. As you’d expect, the returned function does its work without hitting the
Google API unless necessary.

We’ll end up being able to write code like this:

var fetchMap = createMapCache(),

 latitude = 52.203558,

 longitude = 0.119436;

fetchMap(latitude, longitude).done(function(map){

 // Use the map.

});

The first time you call fetchMap with a particular (latitude, longitude) pair, the map is
fetched from Google. Thereafter, calls for the same location will quickly return a locally
cached map.

We’ll build a three-level solution, storing a data URI locally. If you’re unfamiliar with
them, data URIs are a nice way to easily store image data (as base 64 strings) in memory

in a format that can be used in HTML tags.

Our approach will store the coordinates and data URI of the last-requested location in
memory as JavaScript variables. When called, our lookup function will first check the
last coordinates and return the stored data URI if the location matches. If the in-memory
location does not match, we’ll check Chrome local storage. Only if that also fails will we
go to the Google API. On any cache miss (either in-memory or local storage, or both)
we’ll make sure to save the newly retrieved data URI as appropriate.

32 | Chapter 3: Deferred Recipes

http://bit.ly/1bC2feM
http://bit.ly/1bC2cjn
http://bit.ly/1bC2hTW

The use of Chrome local storage for the middle layer of our approach is an unimportant
detail. Please don’t let it put you off if you’re not a Chrome user. The example is worth
considering in any case, and you should be able to swap in your own middle level if
necessary.

First of all, here are a couple of utility functions to get and set values from Chrome local
storage. We covered this topic in “Accessing Chrome Local Storage” on page 25, so these
functions should look familiar.

function localStorageGet(keys){

 var deferred = $.Deferred();

 chrome.storage.local.get(keys, function(result){

 if (chrome.runtime.lasterror){

 deferred.reject(chrome.runtime.lasterror.message);

 }

 else {

 deferred.resolve(result);

 }

 });

 return deferred.promise();

}

function localStorageSet(items){

 var deferred = $.Deferred();

 chrome.storage.local.set(items, function(){

 if (chrome.runtime.lasterror){

 deferred.reject(chrome.runtime.lasterror.message);

 }

 else {

 deferred.resolve();

 }

 });

 return deferred.promise();

}

We’ll also need a promise-returning function that does a Google Maps API lookup of a
map, given a latitude and longitude:

function googleLookup(latitude, longitude){

 var deferred = $.Deferred(),

 url = ('http://maps.googleapis.com/maps/api/staticmap?center=' + //

 latitude + ',' + longitude +

 '&zoom=10&size=400x200&sensor=false'),

 TIMEOUT = 1500,

 xhr = new XMLHttpRequest();

 xhr.open('GET', url, true);

 xhr.send();

 xhr.responseType = 'arraybuffer'; //

 var requestTimer = setTimeout(function(){ //

 xhr.abort();

Displaying Google Maps | 33

 deferred.reject();

 }, TIMEOUT);

 xhr.onload = function(){

 clearTimeout(requestTimer);

 if (xhr.status === 200){

 deferred.resolve(

 'data:image/png;base64,' +

 base64ArrayBuffer(xhr.response) //

);

 }

 else {

 deferred.reject();

 }

 };

 xhr.onerror = function(){

 clearTimeout(requestTimer);

 deferred.reject();

 };

 return deferred.promise();

}

The URL here is the endpoint for the Google Maps API.

We create our own XMLHttpRequest object so that we can set its responseType

to arraybuffer. Normally we’d use a $.ajax call for convenience, but the data

Type option for $.ajax does not currently allow for receiving an ArrayBuffer.

We set up a timeout to reject the deferred if the Google API call doesn’t complete

within TIMEOUT milliseconds.

When the data becomes available from Google, we turn it into a data URI. The

base64ArrayBuffer function that converts an ArrayBuffer to base 64 is given
in Appendix C.

Finally, here’s the main function, createMapCache. It returns a map-fetching function
that maintains a cache:

function createMapCache(){

 var lastKey, lastDataURI; //

 return function(latitude, longitude){ //

 var deferred = $.Deferred();

 var getMap = function(latitude, longitude){ //

 var key = 'map-' + latitude + '-' + longitude; //

 if (key === lastKey){ //

 deferred.resolve(lastDataURI);

34 | Chapter 3: Deferred Recipes

www.allitebooks.com

http://bit.ly/1bC2feM
http://www.allitebooks.org

 }

 else {

 localStorageGet(key).then(//

 function(obj){

 if (obj.hasOwnProperty(key)){ //

 lastDataURI = obj[key];

 lastKey = key;

 deferred.resolve(lastDataURI);

 }

 else {

 // key not in local storage, use Google.

 googleLookup(latitude, longitude).then(

 function(dataURI){

 var store = {};

 store[key] = dataURI;

 localStorageSet(store); //

 lastDataURI = dataURI;

 lastKey = key;

 deferred.resolve(dataURI);

 },

 function(error){

 deferred.reject(error);

 }

);

 }

 },

 function(error){

 deferred.reject(error);

 }

);

 }

 };

 if (arguments.length === 2){ //

 getMap(latitude, longitude);

 }

 else {

 navigator.geolocation.getCurrentPosition(//

 function(position){

 getMap(position.coords.latitude, position.coords.longitude);

 },

 function(error){

 deferred.reject(error);

 }

);

 }

 return deferred.promise();

 };

}

Displaying Google Maps | 35

lastKey keeps track of the last key we used (in local storage) so we can reply

quickly to a repeated request. Similarly, lastDataURI is the value associated with
the last key.

Return a function that takes a latitude and a longitude.

getMap is the function that does all the work.

First, we choose a key for local storage. The map- prefix aims to reduce the risk
of key collision with other apps.

The first check is a simple synchronous test against the location we were called
with last time.

If the in-memory lookup doesn’t work, arrange to look in the local storage.

If we find the key in local storage, remember it and return its value via resolving
the deferred.

Otherwise, the key was not in local storage so we call the Google Maps API. If

that is successful, we store the new value in local storage and in the lastKey and

lastDataURI variables.

The function we’re returning can accept latitude and longitude arguments, so if

we’re provided with these, call getMap directly.

Otherwise, get the user’s latitude and longitude from the browser. We assume

here that you have a modern browser, with support for navigator.geolocation.

Challenges

1. Storing just one last data URI in memory is pretty stingy. Add an LRU data struc‐
ture to store a larger number of recent results.

2. getMap is the only function in this book that calls a promise-returning function but
ignores the returned promise. Can you see where? Why is the promise ignored?

3. Error handling in the above could be greatly improved. Errors can arise when asking
the user to permit location information for the application, in talking to Chrome’s
local storage, and (for several reasons) in the Google Maps API. Add a well-defined
error object that the deferred is rejected with that will always allow the caller to
detect what went wrong.

4. One shortcoming of the above code is that it may make unnecessary simultaneous
calls to the Google Maps API. Suppose a first call triggers a query to the Google API
and that while that network request is still in progress, a second call to our function
arrives for the same location. The second call will trigger an identical request to the
Google API. This is not too hard to prevent. Add a JavaScript object that will store
deferreds from requests in progress. When a new call arrives, check to see if the
coordinates correspond to an outstanding request and, if so, return its promise.

36 | Chapter 3: Deferred Recipes

http://bit.ly/1bC2hU2
http://bit.ly/1bC2feT
http://bit.ly/1bC2feT

You’ll need to add cleanup code via a callback on each deferred you create to take
the deferred out of the set of in-progress deferreds.

This is an excellent example of a common pattern: put deferreds into a data structure
as you create (or receive) them and add callbacks to them to remove them from the
data structure after they fire. We saw this in “A Promise Pool with an emptyPromise
Method” on page 28 and will encounter it again in “Short-Term Memoization of
In-Progress Function Calls” on page 52.

Communicating with a Web Worker
JavaScript is single-threaded. Calling long-running functions, whether client side or
server side, can have a severe usability impact. Client side, the browser UI freezes while
the call is in progress. Server side, processing of other requests stops while the long-
running function executes. New connections may be missed.

Client side, the traditional approach to alleviating this situation has been to perform
computations in parts, giving the browser a chance to attend to other tasks. This is an

unnatural approach to programming, often made more awkward by the use of set

Timeout to schedule the next phase of a computation.

Web workers are designed to fix this problem. A web worker is simply a separate Java‐
Script thread, spawned by the main thread. Communication with the web worker is
done using message passing. At any point, the main thread can send a message to a
worker, and vice versa.

In this example, we’ll make it possible to send a message to a web worker and receive a
promise that will fire with the reply. This is very useful because the promise provides a
formal mechanism for receiving a reply to a message. When your code makes a call to
a web worker, it can immediately arrange for the processing of the response instead of
fielding a reply elsewhere in your code (which will likely involve having to figure out
what it’s a reply to, as well as reestablishing the context in which you originally sent the
message).

The Web Worker Code
Below is the code that will be run in the web worker thread:

var METHODS = { //

 add: function(callback, payload){

 callback({ result: payload[0] + payload[1] });

 },

 ping: function(callback){

 log('Ping command received, replying with pong.');

 callback({ result: 'pong' });

Communicating with a Web Worker | 37

http://bit.ly/1bC2fvk

 }

};

addEventListener('message', function(event){ //

 var job = event.data;

 if (METHODS.hasOwnProperty(job.method)){

 METHODS[job.method](

 function(result){

 result.requestId = job.requestId;

 postMessage(result); //

 },

 job.payload);

 }

 else { //

 log("Attempt to call unknown method '" + job.method + "'.");

 }

});

function log(message){ //

 postMessage({

 message: message,

 type: 'log'

 });

}

The METHODS object has a key for each of the methods that the main thread can
call in the web worker. There are two functions: one to add two arguments passed

in the payload and one to respond to a ping command with the string pong.

The addEventListener section is the key to the coordination of incoming
messages and outgoing results. It examines the incoming message for the

method to call and calls the corresponding method (in the METHODS object) with
a callback and the message payload. It takes the result of the call and sends it
back to the main thread along with the request ID from the incoming message.

The postMessage function is part of the web worker specification. It is used to
send a message back to the code that created the web worker.

It is possible that you might want your web worker to process messages that
don’t need replies and have nothing to do with deferreds, request IDs, etc. If so,
those can easily be handled here. For now, we’re just logging the reception of an
unrecognized message.

The log function illustrates that the web worker can still send an unsolicited
message to the main thread. This will be used if an attempt is made to call an

unknown method. The ping function also logs its usage.

Let’s suppose we’ve stored this code in a file called examples/src/web-worker.js. We’ll
need the filename below.

38 | Chapter 3: Deferred Recipes

Creating a Web Worker
The request ID in each message is obviously what ties together requests and their replies.

You can see how the ID is used in createWebWorker, below, which creates a web worker

and arranges to send it messages. createWebWorker returns an object with add and ping
methods on it, both of which return promises.

function createWebWorker(sourceFile){ //

 var requests = {}, // Key is request id, value is a deferred.

 requestId = 0, // Incremented on each message sent.

 worker = new Worker(sourceFile),

 sendJob = function(method, payload){ //

 var deferred = $.Deferred(),

 id = requestId++;

 requests[id] = deferred;

 worker.postMessage({

 method: method,

 payload: payload,

 requestId: id

 });

 return deferred.promise();

 },

 handleResponse = function(response){ //

 var deferred, id;

 if (response.hasOwnProperty('requestId')){

 id = response.requestId;

 if (requests.hasOwnProperty(id)){

 deferred = requests[id];

 delete requests[id];

 if (response.hasOwnProperty('result')){

 deferred.resolve(response.result);

 }

 else {

 deferred.reject(response.error);

 }

 }

 }

 else {

 // An unsolicited message from the worker.

 if (response.type === 'log'){

 console.log('Worker says:', response.message);

 }

 else {

 console.log('Unknown message from worker:', response);

 }

 }

 };

Communicating with a Web Worker | 39

 worker.addEventListener('message', function(event){ //

 handleResponse(event.data);

 });

 return { //

 add: function(a, b){

 return sendJob('add', [a, b]);

 },

 ping: function(){

 return sendJob('ping');

 }

 };

}

The name of the source file containing the web worker code must be passed to

createWebWorker, which passes it to the Worker constructor.

The sendJob function is used to send a message to the web worker. Each message
specifies what method should be run by the web worker, its payload (which may

be undefined), and a request ID. A deferred is created and stored in the re

quests object using the request ID. Storing the deferreds associated with the in-
progress tasks requested of the web worker will allow us to pass the eventual
result to our caller.

The handleResponse function is used to process all incoming messages from
the web worker. These are first checked to see if they contain a request ID. If so,

the deferred corresponding to the request is taken from the requests object and
it is either resolved or rejected depending on the presence of a result in the
message.

Incoming messages that do not have a request ID can also be handled, as

illustrated by the log message. The log messages are a handy way of getting
information out of a web worker (which does not have its own console object
or other mechanism for providing diagnostics).

Add an event listener that receives messages from the worker. All messages are

passed to handleResponse.

The createWebWorker function returns an object with add and ping attributes
that can be used to call the corresponding function in the web worker. Both these
methods return a promise, as you would (hopefully!) expect.

Using It
Finally, here’s an example of how you could use the above:

var worker = createWebWorker('examples/src/web-worker.js'); //

$.when(worker.add(3, 4), worker.ping()) //

40 | Chapter 3: Deferred Recipes

.done(

 function(total, pingReply){

 console.log('Total = ' + total + '. Ping reply = ' + pingReply + '.');

 }

);

First, we create a web worker via a call to createWebWorker. The argument is
the name of the file containing the web worker code.

The jQuery $.when function is used to coordinate the result of the two promises

obtained by calling worker.add and worker.ping.

The above produces the following output on the console log, as you would expect:

Worker says: Ping command received, replying with pong.

Total = 7. Ping reply = pong.

Summary
The above approach takes nothing away from the informal ad hoc messaging used
between the main thread and its web workers. The main thread and the web worker are

both still free to use postMessage at any time. Our code just adds some explicit methods
that can be called in the web worker and arranges, in the main thread, for the corre‐
sponding functions to return promises. Any incoming message with a request ID is
assumed to be a response to such a method call. Messages from the web worker without

request IDs are handled separately (as with the log messages).

Challenges

1. Change createWebWorker to log a message if it receives a response containing a
request ID that is unknown.

2. Let’s add some timing information to createWebWorker. Change it to store a time‐

stamp for each request when it is received. In handleResponse, use console.log
to log the elapsed processing time for each request. Next, add a slow request method
to the web worker (e.g., use iteration to compute large Fibonacci numbers). Then,
write a loop to send 1000 of these requests to the web worker and examine the
logged elapsed request times. What’s going on?

3. If the code run by a web worker is CPU-bound, once it starts processing a message,
it won’t react to further incoming messages until the currently underway compu‐
tation is done. In this scenario, instead of sending multiple messages to a web
worker, we could maintain a queue of requests and only send the worker another

when the previous request finishes. Change createWebWorker to work in this way.

4. Add to your simple timing statistics to also keep track of how long each request
spends in the queue before being sent to the web worker.

Communicating with a Web Worker | 41

5. Enhance your queued version of createWebWorker to create a pool of identical web
workers. The thread pool size can be passed as an argument. When a request comes
in, add it to the request queue and then look for an available worker to process it.
Send 1000 messages to the pool of web workers and examine the request times.

Using Web Sockets
Web sockets are a second example of free-form messaging, in which a client and server
can send unsolicited messages at any time. There is no built-in formal mechanism for
making a call and getting a response.

As in “Communicating with a Web Worker” on page 37, we’ll include a request ID each
time we send a request, and the server will send it back with the result of the call.

The Web Socket Server
Here’s a node.js server to handle incoming web socket requests:

var port = 9999,

 $ = require('jquery-deferred'),

 express = require('express'),

 app = express(),

 server = require('http').createServer(app),

 io = require('socket.io').listen(server);

var METHODS = { //

 add: function(payload){

 return $.Deferred().resolve(payload[0] + payload[1]).promise();

 },

 subtract: function(payload){

 return $.Deferred().resolve(payload[0] - payload[1]).promise();

 },

 divide: function(payload){

 if (payload[1] === 0){ //

 return $.Deferred().reject('Cannot divide by zero.').promise();

 }

 else {

 return $.Deferred().resolve(payload[0] / payload[1]).promise();

 }

 }

};

io.sockets.on('connection', function (socket){

 socket.on('request', function(request){

 var method = request.method,

 func = METHODS[method]; //

 if (func){

 func(request.payload) //

 .done(function(result){

42 | Chapter 3: Deferred Recipes

http://bit.ly/1bC2iaG

 socket.emit('response', { //

 payload: result,

 requestId: request.requestId

 });

 })

 .fail(function(error){

 socket.emit('response', { //

 error: 'Calling ' + method + ' failed: ' + error,

 requestId: request.requestId

 });

 }

);

 }

 else {

 socket.emit('response', { //

 error: 'Unknown method: ' + method,

 requestId: request.requestId

 });

 }

 });

});

server.listen(port, '0.0.0.0');

The METHODS object contains the functions that a client can call and expect replies
from. Notice that each of the functions returns a promise that has already been
resolved (or rejected). This is just to illustrate that, server side, we expect to be
making calls to promise-returning functions. In more typical circumstances, the
node server would make calls to other asynchronous methods that returned
promises that the called methods would fire themselves.

The div function checks the denominator of the division, and returns a rejected
promise in the case of zero.

We look up the method name on all incoming request requests. Note that as in
“Communicating with a Web Worker” on page 37, we are not precluding a
situation in which the client wants to send other kinds of requests, such as those
not requiring a response.

Supposing it exists, we call the local (server-side) function, which returns a

promise. We use done and fail callbacks to process its result or error.

If the call was successful, we send a response back to the client with the result
and also the request ID from the original request. Returning the original request
ID allows the client (see below) to route the result to its correct (deferred)
destination when it arrives.

If the call fails, we send a response back to the client with an error and the request
ID from the original request, as above.

Using Web Sockets | 43

If the client asked us to call a method we don’t know about, we send back an
error, again including the original request ID.

The Web Socket Client
Below is client code that knows how to send requests and handle responses. It also has

an example main function that sends off four requests and logs the results. A cleaner

design would separate request handling (makeRequest and handleResponse) from the

example usage (main).

var $ = require('jquery-deferred'),

 socket = require('socket.io-client').connect('http://localhost:9999'),

 requests = {}, //

 requestId = 0; //

function makeRequest(method, payload){ //

 var deferred = requests[requestId] = $.Deferred();

 socket.emit('request', {

 method: method,

 payload: payload,

 requestId: requestId++ //

 });

 return deferred.promise();

}

function handleResponse(response){

 var deferred = requests[response.requestId]; //

 if (response.error){

 deferred.reject(response.error); //

 }

 else {

 deferred.resolve(response.payload); //

 }

 delete requests[response.requestId]; //

}

function main(){

 var finishedCount = 0, //

 possiblyExit = function(){

 if (++finishedCount === 4){

 process.exit();

 }

 };

 makeRequest('add', [20, 15]).then(//

 function(result){ console.log('20 + 15 = ', result); },

 function(error){ console.log('Oops!', error); }

).always(possiblyExit); //

 makeRequest('subtract', [20, 15]).then(

 function(result){ console.log('20 - 15 = ', result); },

44 | Chapter 3: Deferred Recipes

www.allitebooks.com

http://www.allitebooks.org

 function(error){ console.log('Oops!', error); }

).always(possiblyExit);

 makeRequest('multiply', [20, 15]).then(

 function(result){ console.log('20 * 15 = ', result); },

 function(error){ console.log('Oops!', error); }

).always(possiblyExit);

 makeRequest('divide', [20, 0]).then(

 function(result){ console.log('20 / 0 = ', result); },

 function(error){ console.log('Oops!', error); }

).always(possiblyExit);

}

socket.on('connect', function(){ //

 socket.on('response', handleResponse);

 main();

});

requests will be keyed by request ID and its values will be outstanding deferreds.
These correspond to server requests that have not yet received an answer.

requestId will be a unique ID sent in each server request.

The makeRequest function does the work of sending a request to the server. It

creates a deferred (whose promise will be returned), puts it into requests, and
sends a message to the the server.

The message to the server includes the request ID, which is then incremented
to be ready for sending the next request (if any).

When a response arrives, its corresponding deferred is found in requests.

If the response contains an error, the original deferred is rejected.

If not, the original deferred is resolved with the result from the server.

The entry in the requests object is removed, seeing as its deferred has now
either been resolved or rejected.

In the main client code, we manually keep track of how many of our requests
have been answered and exit when all responses are in. See the challenges below
for more on this.

Each time we call makeRequest with a method and a payload, we use then on
the returned promise to set up further processing of the server response.

We add a call to possiblyExit to each promise. When the last call to finish

completes, the client will exit. By using always, we make sure possiblyExit is
called regardless of whether the server call succeeded or resulted in an error.

Once the web socket connection is made, arrange to process incoming messages

using handleResponse.

Using Web Sockets | 45

Running the client code produces the following on the console, as you’d expect:

20 + 15 = 35

20 - 15 = 5

Oops! Unknown method: multiply

Oops! Calling divide failed: Cannot divide by zero.

Challenges

1. What trivial change could you make to the server code to allow called functions

(i.e., those in METHODS) to return results that are not promises?

2. What would happen if the server had a bug and didn’t send a request ID in a re‐
sponse, or sent a request ID that the client never sent, or sent a request ID that had
already been used? Fix the client code to handle these situations as best you can.

3. In the code above, the client can make a call to the server and get a response, but
not vice versa. Make it possible for the server to send a request to the client and get
a response.

4. The example client code sends four requests to the server and uses a variable

(finishedCount) to count how many responses it has received and to know when
to exit. An alternative approach would be to write that part of the client as follows:

function main(){

 return $.when(

 makeRequest('add', [20, 15]).then(

 function(result){ console.log('20 + 15 = ', result); },

 function(error){ console.log('Oops!', error); }

),

 makeRequest('subtract', [20, 15]).then(

 function(result){ console.log('20 - 15 = ', result); },

 function(error){ console.log('Oops!', error); }

),

 makeRequest('multiply', [20, 15]).then(

 function(result){ console.log('20 * 15 = ', result); },

 function(error){ console.log('Oops!', error); }

),

 makeRequest('divide', [20, 0]).then(

 function(result){ console.log('20 / 0 = ', result); },

 function(error){ console.log('Oops!', error); }

)

);

}

socket.on('connect', function(){

 socket.on('response', handleResponse);

 main().always(function(){

 process.exit();

 });

});

46 | Chapter 3: Deferred Recipes

This is much more concise. There’s only one small problem: it won’t work! Why
not?

5. Read the jQuery source code and find the line that causes the above $.when ap‐

proach to fail. How could you change $.when to not behave that way, and what

would that mean for code that used it? Given that the signature of $.when doesn’t
permit backward-compatible changes, how could you write a more flexible

$.when? How could the call signature of $.when have been written to allow future
changes so we wouldn’t be stuck with this behavior?

Automatically Retrying Failing Deferred Calls
These days a common need is to write code that talks to services that may be briefly
unavailable. If an error of some kind occurs, the correct (and documented) action to
take is just to retry the original call a little later. Examples include the APIs for Amazon’s
S3 service and Twitter. Transient API failures occur fairly frequently with both those
services.

Below is a function where you pass a context (i.e., a value for this), a function to be
called, and some arguments for the function. If the function call fails, it is retried re‐
peatedly after increasing delays. The original failure value is returned (via a promise
that is rejected) if all attempts to call the function fail:

function retryingCaller(/* context, function, args... */){

 var context = arguments[0],

 func = arguments[1],

 args = arguments.slice(2),

 deferred = $.Deferred(),

 rejectValue,

 delays = [0.0, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 1.0, 2.0],

 attempt = 0,

 wait = function(timeout){ //

 var d = $.Deferred();

 setTimeout(d.resolve, timeout);

 return d.promise();

 },

 error = function(value){ //

 if (rejectValue === undefined){

 rejectValue = value; //

 }

 if (attempt === delays.length){

 deferred.reject(rejectValue); //

 }

 else {

 call(); //

 }

Automatically Retrying Failing Deferred Calls | 47

 },

 call = function(){

 wait(delays[attempt++]).done(//

 function(){

 $.when(func.apply(context, args)).then(

 deferred.resolve, //

 error //

);

 }

);

 };

 call();

 return deferred.promise();

}

This is the wait function we wrote earlier, in “A Replacement for the setTimeout
Function” on page 21.

error will be run each time a promise returned by the underlying function is

rejected. Its job is to save the first reject value and to either reject the master

deferred (whose promise is returned by retryingCaller) or to arrange for the
underlying function to be called again.

Save the first reject value (see the challenges below for different approaches to
rejecting the master deferred).

If the number of allowed attempts has been reached, reject the master deferred

with the original reject value.

We still have some attempts left, so call the underlying function again.

Wait for the next delay time to elapse before calling the underlying function.

If the underlying function runs without error, pass its return value along to the
master deferred.

If the underlying function hits an error, call our error function, which will either
arrange for a retry or reject the master deferred.

Challenges

1. Make it possible for the caller to specify the delay intervals.

2. If all calls to the passed function fail, the promise returned by retryingCaller
should be rejected with the error value from the first failing call. But there’s one
condition under which this is violated. Figure out what can go wrong and fix the
bug.

3. Instead of rejecting the deferred with the original error value, reject it with the final
value, or keep a list of the failure values and reject it with a list of all failures.

48 | Chapter 3: Deferred Recipes

4. Our code is circular: the call function arranges to invoke error if something goes

wrong, but error invokes call if the maximum number of attempts has not been
reached. Is there a way this circularity could cause the stack to fill with invocations

of call, error, and the function passed to retryingCaller?

5. Make it possible for the caller to pass an error-checking function. Each time the
underlying function fails, pass the error value to the checking function. If it returns

true, continue to retry the underlying function; otherwise, reject the master de‐
ferred. This allows a caller to provide an error-checking function that, for example,

could cause retryingCaller to retry the function on HTTP 500 (Internal Server

Error), 502 (Bad Gateway), and 504 (Gateway Timeout) errors, but to not retry on
any other HTTP error.

As another possibility, an error checker could allow just two 404 (Not Found) error
retries, as illustrated below:

function tester(){

 var count = 0, max404errors = 2;

 return function(error){

 return error.status === 404 ? count++ < max404errors : true;

 };

}

Memoization
Memoization is a simple technique for greatly speeding up repeat calls to an idempotent
function. Informally, an idempotent function is one that returns the same value each
time you call it with the same arguments. In those cases, it is safe to store (“memoize”)
the function’s result the first time it is called and to return the known result thereafter
for identical calls. Ignoring issues of the memory used to store results, memoization of
computationally expensive functions has the happy result of delivering massive speed
gains.

Simple memoization is easy to implement in many programming languages, including
JavaScript. At first glance, though, it seems like memoization in the context of deferreds
might be more involved. There are three cases we need to consider:

a. The function to be memoized has never before been called with the given argument.

b. The function has already been called with this argument, but the promise the
memoizing function originally returned has not yet been resolved.

c. The function has already been called with this argument, and the promise that was
originally returned has been resolved.

Memoization | 49

http://bit.ly/1bC2hUc
http://bit.ly/1bC2ff2
http://bit.ly/1bC2ff2

In addition, if we want to be able to memoize arbitrary functions, we’ll have to deal with
functions that return promises, functions that return nonpromises, and functions that
can return either.

Fortunately, it turns out that this is one of the rare cases where a very simple solution
solves what seems like a tricky situation:

function memoize(func){

 var promises = {}; //

 return function(arg){

 if (promises.hasOwnProperty(arg) === false){ //

 promises[arg] = $.when(func(arg)).promise(); //

 }

 return promises[arg]; //

 };

}

The promises object holds promises corresponding to calls already made to

func.

When a call is made, check for an existing promise for the given argument.

If the promise doesn’t exist, this is the first time we’ve been called with this

argument. Call func on the argument, use $.when to create a promise that will
be resolved with the result, and store the new promise.

Return the promise for this call.

Discussion
Firstly, we’ve made a simplifying assumption: that func will not be called with JavaScript
objects (lists are objects too) as an argument. See the challenges below if this makes you
feel better.

If you’ve encountered memoization before, the code above should seem completely
unremarkable. But, as simple as it seems, this example deserves some discussion. How
does this simple function handle all three cases listed above?

Firstly, it turns out that cases (b) and (c) above can be treated identically. One of the
beauties of deferreds is that you can use them in blissful ignorance of whether they have
been resolved yet or not. In the case of (b), we have an unresolved promise in the

promises object. It has already been returned to at least one caller. If another call is made
with the same argument, the same unresolved promise is again returned. When the
result arrives, both callers will get it. In the case of (c), the promise corresponding to
the passed argument has already fired, but we’re still holding the promise and we can
simply return it again. The promise already contains the result, which will be passed
immediately to any additional callbacks added to it by our caller.

50 | Chapter 3: Deferred Recipes

In normal memoization, a cache of known results is maintained. In our case, we keep

a cache of promises. Because we wrap the call to func inside $.when, the function re‐

turned by memoize will always return a promise, even if func does not. This is a departure

from strict memoization. To repeat, the result from func is not returned: instead, we

return a promise that will resolve with that result. It is the use of $.when that allows us

to ignore the issue of whether func returns a promise or not. Because $.when handles
both cases, we don’t need to check the returned value.

Avoiding the Dogpile Effect
Let’s compare deferred-based memoization to memoization without deferreds.

Without deferreds, what happens if a first call comes in with an argument X, but before

func(X) has finished computing there is another call with argument X? Then another,
and another, and maybe thousands of others? The nondeferred code winds up calling

func(X) many times. That is, it does exactly the thing we are trying to avoid in the first
place! This is informally known as the “dogpile effect.” It can result in all sorts of trouble,
including memory exhaustion, CPU overload, or a form of denial of service attack.

With deferreds though, we immediately have a placeholder for the result of the first call
(with any given argument) to the memoized function. With that promise safely stored,
we can just return it to the hordes of callers that hit the service before the result is in.
When the result finally arrives and the deferred for that call is resolved, all the callers
will receive it. Deferreds solve this problem so cleanly, without you having to lift a finger,
that you may not have even realized there was a potential problem there at all. Neat.

This effortless avoidance of the dogpile effect is a great example of the value of deferreds.

Challenges

1. Modify memoize to allow a context argument to be passed as well as a function. The

context should be used as this when func is called.

2. What happens if func is called with a JavaScript object?

3. How would you modify the above code if func took two arguments instead of one?
What if it took any number of arguments, each of arbitrary type?

4. The returned function will give the same promise to multiple callers. Will this create
a problem if callers each add their own callbacks to the promise?

5. How would you change memoize if you wanted to be stricter and only return a

promise when func did?

6. What would be the effect of not wrapping the func(arg) call in $.when?

Memoization | 51

http://bit.ly/1bC2iav

7. The promises object can only grow in size. It would be good to discard results that

have not been accessed recently. Add a housekeeping function to memoize that’s

invoked periodically by setInterval to delete items from promises that haven’t
been accessed recently.

Short-Term Memoization of In-Progress Function Calls
Regular functions compute their results each time they’re called. At the other extreme,
memoized functions can remember earlier results forever and never recompute any‐
thing. In this example we’ll consider the middle ground, functions that are only briefly
memoized.

An application built by the authors consisted of multiple front-end HTTP servers using
RPC to internal servers to fulfill API requests. One HTTP API request was called

createUser. In a typical setup, a request to create a user in a system will either get a
successful result upon user creation or an error if the user already exists. But it is also
possible that while a request to create a specific user is underway, another request arrives
to create the same username. A simplistic outcome in this situation might be that the
first request receives a successful status code and the second results in a database trans‐

action error that is translated into a UserExists error.

We can easily improve on this, though, if we’re using deferreds to create users. When a
request arrives to create a user and a promise-returning function is called to do the
work, we can keep track of the promise as well as returning it to our caller. Then, if a
second call arrives to create the same user before the first has finished, we simply return
the same promise. At that point, our code will have returned the same promise twice
and our callers will both receive the same result. Once the original request has finished,
we can forget the promise and allow subsequent requests to flow through the system as
normal. Here’s the code:

var promises = {}; //

function createUser(username){

 if (promises.hasOwnProperty(username)){ //

 return promises[username];

 }

 else {

 var promise = internalCreateUser(username); //

 promises[username] = promise; //

 promise.always(function(){

 delete promises[username]; //

 });

 return promise;

 }

}

52 | Chapter 3: Deferred Recipes

http://mzl.la/1bC2ire

The promises object holds promises corresponding to in-progress create

User requests. This is exactly as in “Memoization” on page 49.

createUser first checks to see if promises contains a promise for the given
username, and if so it simply returns it. This is the case where a second (or third,
etc.) request for an identical username arrives while a first request is in progress.

If there is no call in progress, a call is made to the internal function that does
the work of making a user. This function is assumed to return a promise.

The promise from internalCreateUser is stored in the promises object.

A callback is added to the promise returned by internalCreateUser that will

remove the promise from promises. As a result, subsequent calls to createUser

will trigger another call to internalCreateUser, even if the call has been made
before.

createUser Is Not Idempotent
In regular memoization, the function being memoized is idempotent: the result of a
function call is assumed to never change and can be remembered for all time. But

createUser is not idempotent. When it is called with a nonexistent username, it returns
a value to indicate the user was created. On subsequent calls (with the same username),
it returns a value to indicate the user already existed. So we’re not doing regular (per‐

manent) memoizing of the createUser result. We’re just making sure that if there’s an
in-progress call for a given argument, we use its result instead of making a second

simultaneous and identical call to internalCreateUser. The memoization is short-
term; it only lasts as long as the function call is outstanding. It’s a funny kind of memo‐
ization, because we’re not storing the result of the function call, we’re effectively storing
the in-progress function call. We return to this discussion in “Promises Are First-Class
Objects for Function Calls” on page 79.

Challenges

1. What undesirable outcome could occur if the promise from internalCreate

User were put into the promises object after the always callback is set up?

2. The problem in the previous challenge is an example that illustrates a general prin‐
ciple of maintaining data structures that hold deferreds and promises. Can you
generalize our specific problem to arrive at the principle?

3. Think about the similarities and differences between the short-term in-progress
function call memoization above and regular caching with result expiry after a fixed
time.

Short-Term Memoization of In-Progress Function Calls | 53

Streaming Promise Events
In this example we’ll do some curious things in order to build up a tool we’ll put to good
use in a later example.

Take a look at the following function and figure out what it does (and doesn’t do!) before
reading on:

function simpleEventStream(promises){

 var i, deferred = $.Deferred(),

 stream = function(){

 deferred.notify.apply(deferred, arguments);

 };

 for (i = 0; i < promises.length; i++){

 promises[i].done(stream).fail(stream).progress(stream);

 }

 return deferred.promise();

}

There are a couple of odd things going on here. The function accepts a list of promises

and it adds the same stream function to all of the done, fail, and progress callback

lists. The stream function calls the notify function on the deferred whose promise is

returned by simpleEventStream. So, every time one of the passed promises is resolved,
rejected, or notified of progress, the arguments of that call will be passed on as progress

events on the returned promise. In other words, simpleEventStream takes all events
generated by a given set of promises and delivers them, as they occur, to its caller via a
stream of progress events on its returned promise.

But there’s something else that’s odd about simpleEventStream. It never calls resolve

or reject on the deferred it creates! Hmm…shouldn’t that be illegal, or something? Not
really. There’s no rule that says a deferred has to be fired. Of course they usually are, but
we have a case where we’re using a deferred for something slightly different than a one-
time conclusion.

Delivering More Information
There’s an obvious first improvement we could make to the event streamer: report the
index of the promise that created the event as well as whether the promise was resolved,
rejected, or notified. That’s an easy addition:

function eventStream(promises){

 var i, deferred = $.Deferred(),

 callNotify = function(index, type){

 return function(){

 deferred.notify(index, type, arguments);

 };

 };

54 | Chapter 3: Deferred Recipes

www.allitebooks.com

http://www.allitebooks.org

 for (i = 0; i < promises.length; i++){

 promises[i]

 .done(callNotify(i, 'resolve'))

 .fail(callNotify(i, 'reject'))

 .progress(callNotify(i, 'notify'));

 }

 return deferred.promise();

}

Here, any progress callback added to the promise returned by eventStream will be
called with the index of the promise that created the event, the type of event (resolution,
rejection, or progress notification), and the arguments provided to the promise.

If you’re wondering what use this could possibly be, imagine you had a set of promises

and you wanted to log all their events, in order. You could of course manually add done,

fail, and progress logging functions to each promise and then collate the output, but

it would be simpler to just pass the promises to eventStream and add a single pro

gress function to do the logging.

That may not seem particularly useful, but we’re not done yet.

Delegating the Event Stream
The eventStream function is interesting, but so far it doesn’t seem all that useful unless

you want to observe promise events. The promise we received from eventStream never
fires. What if we wanted it to be resolved or rejected under certain circumstances?

Here’s a slight variation on the above, delegateEventStream, which also returns a
promise:

function delegateEventStream(promises, eventHandler){ //

 var i, deferred = $.Deferred(),

 callHandler = function(index, type){ //

 return function(){

 eventHandler(index, type, arguments, deferred); //

 };

 };

 for (i = 0; i < promises.length; i++){

 promises[i]

 .done(callHandler(i, 'resolve'))

 .fail(callHandler(i, 'reject'))

 .handler(callHandler(i, 'notify'));

 }

 return deferred.promise();

}

Streaming Promise Events | 55

A little explanation is probably in order:

delegateEventStream must be passed an array of promises and an event handler
function.

The callHandler function returns a function that will call the event handler.

Each time the event handler function is called, it is passed the index of the

promise, the type of event ('resolve', 'reject', or 'notify'), the arguments

involved, and the deferred delegateEventStream created.

As you may have noticed, although delegateEventStream creates a deferred, it not only

never resolves it or rejects it, it also never even calls notify on it as the earlier examples
did. Even odder, it passes the deferred off to an unspecified event handler function.

What’s going on?

To Be Continued…
As unsatisfying as it might be, we’re going to leave this little experiment for now. You

can take solace from the variety of unusual tricks we used in working towards delega

teEventStream. We made a deferred that was never resolved or rejected, we used a

progress callback to deliver events from other deferreds, and, finally, we created a
deferred that we never used, but which we instead pass to another function that we
didn’t even write.

Stay tuned to see how delegateEventStream saves the day in a later example.

Challenges

1. What would change if simpleEventStream used promises[i].then(stream,

stream, stream) instead of chaining calls to done, fail, and progress?

2. Modify eventStream so that it keeps a count of the number of its promises that

have resolved or been rejected and calls resolve on the deferred whose promise it
returned when all promises have fired. This is like a final signal to the caller of

eventStream to indicate that there will be no further events.

3. Prove you understand delegateEventStream by writing a function called clone

Promise that takes a promise and uses delegateEventStream to return another one
that acts in the same way. We can’t think of any reason why you’d want to do that,
but don’t let that get in the way of stretching your mind!

56 | Chapter 3: Deferred Recipes

Getting the First Result from a Set of Promises
There are occasions when you have multiple ways of obtaining a needed value. You don’t
care which one is used, you just want the result as quickly as possible. For example,
server-side code might need to retrieve a user’s avatar image. The image might be stored
in a fast cache, such as Redis or memcached, it might be stored in a distributed filesystem,
or you may need to fall back to making an external network request (perhaps to Grav‐
atar) to get an image after retrieving the user’s email address from either a cache or a
database.

The normal approach is to query the potential sources in order of expected response
time. You look first in the cache. If that fails, you check the local filesystem. If that fails,
you make a network request. The problem is that every time the best case doesn’t happen,
the call that is finally successful doesn’t even start until after the earlier attempts have
all failed.

An improved approach (at least if speed is all you care about) is to launch the different
attempts all at once. Then you take the first result that comes back. Managing this kind
of processing seems pretty easy if you’re working with promises. Let’s start with the
simplest approach:

function fastestPromise(promises){

 var deferred = $.Deferred(),

 done = function(result){

 deferred.resolve(result);

 },

 fail = function(error){

 deferred.reject(error);

 };

 for (var i = 0; i < promises.length; i++){

 promises[i].done(done).fail(fail);

 }

 return deferred.promise();

}

If you’ve been reading your way through this book, the above code will hopefully need

no explanation. If you need a summary, though, the fastestPromise function adds a

done and a fail callback to all the promises you pass it. The callbacks simply take the

value they’re passed and use it to fire the deferred whose promise fastestPromise
originally returned. Because it doesn’t matter how many times a deferred is fired, we
don’t have to worry about subsequent promises finishing and also trying to fire the

promise fastestPromise returned. Only the first call to resolve or reject counts; the
rest have no effect.

Getting the First Result from a Set of Promises | 57

http://redis.io/
http://memcached.org/
http://en.gravatar.com/
http://en.gravatar.com/

Which Promise Fired?
This simplistic function can be made more useful. Our caller will likely want to know
which of their promises was the first to fire. That way, if the response doesn’t come from
the cache, they can cache it. Or if the result comes in while network requests are still
ongoing, it may be possible to cancel them.

So let’s pass the index of the promise that fires first back to the caller:

function fastestPromiseWithIndex(promises){

 var deferred = $.Deferred(),

 makeDone = function(index){

 return function(result){

 deferred.resolve(index, result);

 };

 },

 makeFail = function(index){

 return function(error){

 deferred.reject(index, error);

 };

 };

 for (var i = 0; i < promises.length; i++){

 promises[i].done(makeDone(i)).fail(makeFail(i));

 }

 return deferred.promise();

}

We can use the function as follows, supposing avatarFromRedis, avatarFromFilesys

tem and avatarFromGravatar have all been defined elsewhere and that each of them
returns a promise:

var fastest = fastestPromiseWithIndex([

 avatarFromRedis('joe'),

 avatarFromFilesystem('joe'),

 avatarFromGravatar('joe@example.com')

])

.then(function(index, avatar){

 if (index !== 0){

 // The response was not from Redis. Add the avatar info to Redis so

 // we have it cached.

 }

 if (index !== 2){

 // The response was not from Gravatar. Cancel the outstanding

 // Gravatar network request.

 }

 return avatar;

});

58 | Chapter 3: Deferred Recipes

fastest.done(function(avatar){

 // Use the avatar.

});

Note that the promise returned by fastestPromiseWithIndex fires with two arguments:

the index of the promise arguments that fired and the result (or error). The then function

examines the returned index and updates the Redis cache or cancels the network re‐

quest, as appropriate, and passes along just the avatar result.

A Fly in the Soup
It seems like we’re done, but in fact the reasoning behind the above approach is massively

flawed. Can you figure out what we’ve overlooked? (Hint: What do you think avatar

FromRedis might do if it doesn’t find a key?)

The problem has to do with timing, cache misses, and failure handling. The avatar

FromRedis call is probably always going to be the first to complete. What should it do

if it cannot find the key in question? Rejecting its deferred will cause fastestPromise

WithIndex to in turn reject its deferred, which is not what we want at all. If avatarFrom

Redis instead resolves its deferred with a value to indicate a missing key, fastestPro

miseWithIndex will resolve its deferred and pass along the nonanswer. That’s no use to

us either. We can’t really expect avatarFromRedis to simply be quiet if it doesn’t find a
key. In any case, it should be able to reject its deferred if it runs into some other error.
It might even be that the Redis service has been stopped or is unreachable for some
reason. That shouldn’t prevent us from getting an answer from another source, though.

We have exactly the same set of problems with avatarFromFilesystem, which might
also not find the file it’s asked for, etc.

What to do?

We don’t want to revert to calling our functions sequentially, so we need to figure out a

way to ignore cache misses, and maybe other errors, that come from avatarFromRe

dis and avatarFromFilesystem (and avatarFromGravatar too, for that matter). We

need more control over the promise we get back from fastestPromiseWithIndex.

delegateEventStream Redux
If you managed to stay awake all the way through the last example (“Streaming Promise

Events” on page 54), you might realize that the delegateEventStream function we built
is just what we need now.

All we need is a handler function for the events coming from the promises returned by

avatarFromRedis and friends. For simplicity, let’s assume that those functions all call

resolve on the deferreds they create when they can’t find what they’re asked for and

Getting the First Result from a Set of Promises | 59

that in that case they send a JavaScript object with a status attribute set to 404. Here’s
the event handler we need:

function eventHandler(index, type, args, deferred){

 if (type === 'resolve'){

 if (args[0].status === 404){

 // Ignore any not-found errors.

 }

 else {

 deferred.resolve.apply(deferred, args);

 }

 }

 else if (type === 'reject'){

 deferred.reject.apply(deferred, args);

 }

}

Using eventHandler we arrive at a solution that looks just like our earlier one that used

fastestPromiseWithIndex, but which instead uses delegateEventStream:

var fastest = delegateEventStream([avatarFromRedis('joe'),

 avatarFromFilesystem('joe'),

 avatarFromGravatar('joe@example.com')],

 eventHandler);

fastest.done(function(avatar){

 // Use the avatar.

});

Challenges

1. Add error processing to the code above that uses fastestPromiseWithIndex.

2. What will happen if fastestPromise or fastestPromiseWithIndex is called with
an empty list of promises?

3. In the code that uses fastestPromiseWithIndex, the user’s email is conveniently
embedded in the JavaScript. This is of course unrealistic. Modify the code so that
it looks in both Redis and a database to find the email address from the username,

passing the result to avatarFromGravatar. You can assume the existence of

promise-returning functions emailFromRedis and emailFromDatabase. Of course

you should use fastestPromiseWithIndex to initially get the email address the
fastest way possible, and add it to Redis if it is not already there. For extra credit,

replace the use of fastestPromiseWithIndex with delegateEventStream.

4. A nice feature about $.when is that you can safely pass it objects that are not prom‐
ises. It considers any such argument to be, essentially, a value that has already been

returned by a promise. Modify fastestPromiseWithIndex to behave in the same
way—i.e., if any argument is not a promise, resolve the deferred you created (whose

60 | Chapter 3: Deferred Recipes

promise you’re about to return). This adds flexibility because the three avatar-
fetching functions will no longer need to return promises. You could, for example,

keep an in-memory cache of the most recent user avatars and pass fastestPromi

seWithIndex a function that returns a synchronous result from that cache. Hint:

jQuery heuristically decides if an argument to $.when is a promise by checking to

see if it has a promise attribute that’s a function.

5. How would you change eventHandler to ignore failures due to Redis being
unreachable?

6. How would you change eventHandler if one of the called lookup functions rejected

its deferred whenever it couldn’t find something (instead of resolving it with a 404
status)? Keep in mind that a lookup function might reject its deferred for other
reasons too.

7. In the solution using delegateEventStream, we don’t populate Redis or the file‐
system in case of lookup misses. How would you fix that?

8. There is a small but important bug in our final solution. What is it and how can
you fix it?

A Deferred Queue
The Python event-driven networking engine Twisted is entirely based on deferreds.
Twisted deferreds are conceptually identical to those in jQuery, but the details of their
behavior differs in several important ways.

An extraordinarily elegant small class in Twisted is DeferredQueue.

Before we examine it, though, think about code for a regular synchronous queue. What

happens if you call get on a regular queue that’s empty? Almost certainly one of two

things: you’ll get some kind of QueueEmpty error, or else your code will block until some
other code puts something into the queue. That is, you either get a synchronous error
or you get a synchronous nonempty response.

Below is a simplified version of the Twisted class, written for use in node.js. The make

Queue function returns an object that has queue get and put methods on it.

function makeQueue(){

 var $ = require('jquery-deferred'),

 waiting = [], //

 queue = []; //

 return {

 get: function(){

 var deferred;

 if (queue.length){

 deferred = $.Deferred().resolve(queue.shift()); //

A Deferred Queue | 61

http://www.python.org/
http://bit.ly/1jJPsPp
http://bit.ly/1bC2ff3
http://bit.ly/1bC2ff5

 }

 else {

 deferred = $.Deferred();

 waiting.push(deferred); //

 }

 return deferred.promise();

 },

 put: function(item){

 if (waiting.length){

 waiting.shift().resolve(item); //

 }

 else {

 queue.push(item); //

 }

 }

 };

}

waiting is a list of unresolved deferreds whose promises were returned to callers

of get when there were no items in the queue. As items are put into the queue,
these deferreds will be resolved.

queue is a list of items that have been put, but which have not yet been retrieved

with a get.

When a call is made to get and there are items in the queue, a new deferred is
made, the first item in the queue is used to resolve it immediately, and its promise
is returned to the caller. Any callbacks the caller adds to the returned promise
will run at once because the deferred has already been resolved.

If there is nothing in the queue in get, a new deferred is made, it is added to

waiting (so we can later resolve it when an item arrives via put), and its promise
is returned.

When put is called, if an earlier caller to get received an unresolved promise

(i.e., the queue was empty in get so it returned a promise whose deferred is still

in waiting), resolve its deferred with the incoming item.

If there are no earlier callers who have not yet received a result, push the new

item onto the queue so it can be given to a future caller of get.

The Twisted DeferredQueue class is a thing of beauty. It’s a valuable example. This kind
of coding with deferreds seems routine and straightforward to us now. But it certainly
wasn’t always that way. If you don’t 100% understand the above, we highly recommend
that you stop and take the time to read it again and to think about it. Once you really
“get” it, you’ll be well on your way to mastering deferreds.

62 | Chapter 3: Deferred Recipes

Challenges

1. Implement a deferred priority queue. The put function should accept an optional

numeric priority argument and get should return a promise that fires with the
highest priority element.

2. Enhance the priority queue with functions that allow an element to be deleted from
the queue or to be re-prioritized.

when2: An Improved jQuery.when
In “Getting the First Result from a Set of Promises” on page 57, we focused on requesting
the same information (a user’s avatar) from various possible sources and acting on the
first response. While our solution is useful, the implementation was a bit simplistic and
not as general as it could have been.

An obvious first generalization is that we may want to make several calls that are not
designed to return the same information. For example, we might make a web socket
API request to a remote server and want to set a timeout on the reply. If we have a
deferred for both the web socket request and the timeout, it would be useful to have a
way to get a third deferred that resolves when the first of the other two is resolved.

These situations have a lot in common with what $.when provides. $.when returns a
promise that resolves when all its arguments are resolved. In “Getting the First Result
from a Set of Promises” on page 57, we wanted a promise that resolves as soon as any
of its promises is resolved.

There’s another aspect of $.when that can be limiting: as soon as any of its promises is
rejected, it rejects the deferred whose promise it returned. So it doesn’t provide a mech‐
anism for monitoring a collection of promises and getting results from all of them—
including any errors. We’ve actually already run into this limitation, in the web socket
“Challenges” on page 46.

In summary, there are three common actions that might be wanted on a set of promises:

1. Resolve on the first success.

2. Reject on the first error (the $.when behavior).

3. Resolve when all results (successes or errors) have been collected.

These behaviors don’t seem that different. Given their similarity to $.when, it shouldn’t

be that hard to modify $.when to make it more flexible.

when2: An Improved jQuery.when | 63

We wrote when2 to do exactly that. You can load it after loading jQuery (hence its use

of jQuery instead of $). Our when2 function is based on the $.when jQuery deferred.js

source. The source for when2, and a test suite, can also be found on GitHub.

The when2 function takes two arguments: promises, which is a list of promises (that

may include nonpromise values) and options, an optional JavaScript object. The

options object lets us choose among the three behaviors just described:

1. If options.resolveOnFirstSuccess is true, the promise returned by when2 will

resolve as soon as any of the passed deferreds resolves. The always and done call‐

backs will be passed index and value arguments, where index is the index of the

deferred that fired. If nonpromises are in the arguments to when2, the first one seen

will trigger the resolve callbacks (not very useful, but consistent).

2. If options.rejectOnFirstError is false, the promise returned by when2 will never
be rejected. It will collect the results (successes and failures) from all the passed

promises and deliver them all at once via resolve. The when2 caller gets to figure
out which values, if any, are errors.

3. If no options argument is passed or options.rejectOnFirstError is true, the

promise returned by when2 will be rejected on the first error. This is the behavior

of $.when. The arguments passed to always and fail callbacks will be an index

and a value.

jQuery.when2 = function(promises, options){ //

 var i,

 coreSlice = [].slice,

 resolveValues = promises ? coreSlice.call(promises) : [], //

 length = resolveValues.length,

 resolveContexts = length ? new Array(length) : window,

 remaining = length, //

 promiseArgFound = false, //

 resolveOnFirstSuccess = (options &&

 options.resolveOnFirstSuccess), //

 rejectOnFirstError = !options || options.rejectOnFirstError, //

 deferred = jQuery.Deferred(), //

 doneFunc = function(i){ //

 return function(value){

 if (deferred.state() === 'pending'){

 --remaining; //

 resolveContexts[i] = this;

 resolveValues[i] = arguments.length > 1 ?

 coreSlice.call(arguments) : value;

 if (resolveOnFirstSuccess){

 deferred.resolveWith(

 this, [i, resolveValues[i]]); //

64 | Chapter 3: Deferred Recipes

http://bit.ly/IK0c24
http://bit.ly/IK0c24
http://bit.ly/1bC2iaC

 }

 else if (remaining === 0){ //

 deferred.resolveWith(resolveContexts, resolveValues);

 }

 }

 };

 },

 failFunc = function(i){ //

 if (rejectOnFirstError){

 return function(value){

 if (deferred.state() === 'pending'){

 value = arguments.length > 1 ?

 coreSlice.call(arguments) : value;

 deferred.rejectWith(this, [i, value]); //

 }

 };

 }

 else {

 return function(value){

 if (deferred.state() === 'pending'){

 resolveContexts[i] = this;

 resolveValues[i] = arguments.length > 1 ?

 coreSlice.call(arguments) : value; //

 if (!--remaining){ //

 deferred.resolveWith(

 resolveContexts, resolveValues);

 }

 }

 };

 }

 },

 progressFunc = function(i){ //

 return function(value){

 if (deferred.state() === 'pending'){

 value = arguments.length > 1 ?

 coreSlice.call(arguments) : value;

 deferred.notifyWith(this, [i, value]);

 }

 };

 };

 for (i = 0; i < length; i++){ //

 if (resolveValues[i] && //

 jQuery.isFunction(resolveValues[i].promise)){

 promiseArgFound = true;

 resolveValues[i].promise()

 .done(doneFunc(i))

 .fail(failFunc(i))

 .progress(progressFunc(i));

 }

when2: An Improved jQuery.when | 65

 else {

 if (resolveOnFirstSuccess){ //

 deferred.resolveWith(window, [i, resolveValues[i]]);

 }

 resolveContexts[i] = window;

 --remaining; //

 }

 }

 if (promiseArgFound === false){

 deferred.resolveWith(resolveContexts, resolveValues); //

 }

 return deferred.promise();

};

There’s quite a bit of detail (inherited from $.when) in the above that we won’t try to
explain, seeing as the main point here is to understand deferreds rather than all the
idiosyncracies of JavaScript. Even ignoring those details, there’s a lot going on in

when2. Take a deep breath.

Here’s how it works:

Accept two arguments: a list of promises (this may include nonpromise values)
and an optional JavaScript object to indicate when the returned promise should
be resolved or rejected, as described above.

resolveValues will collect the results (and errors, if rejectOnFirstError is
false) returned by the passed promises.

remaining will be used to count the number of outstanding promises yet to fire.

When it reaches zero, the promise returned by when2 will be resolved (assuming

it has not already been resolved or rejected due to the passed value of resol

veOnFirstSuccess or rejectOnFirstError).

promiseArgFound tracks whether any of the arguments passed to when2 have

promise methods. If no promises are passed to when2, the promise it returns will
already have been fired (since there is nothing to wait for).

resolveOnFirstSuccess, if true, will cause the returned promise to resolve as
soon as any of the passed arguments is resolved. Note that any passed argument
that does not have a promise method will be counted as already being “resolved,”
and will trigger a resolve call on the deferred whose promise is returned.

rejectOnFirstError, if true (or if no options object is passed), will cause the
returned promise to be rejected as soon as any of the passed arguments is

rejected. This is the behavior of $.when.

Create the master deferred, whose promise will be returned.

66 | Chapter 3: Deferred Recipes

doneFunc returns a callback function that can be added to the done list of a passed
promise.

One of the passed promises has resolved, so decrement the count of remaining
outstanding promises.

If resolveOnFirstSuccess was true, we immediately resolve the master
deferred. Instead of just passing the result along with no indication of which
promise fired, pass the index of the promise as well.

Otherwise, if the count of remaining promises to fire is now zero, resolve the
master deferred.

failFunc is similar to doneFunc, but it handles the case where a passed promise
is rejected.

If rejectOnFirstError is true, we reject the master deferred. Again, we pass the
index of the promise that was rejected along with the error.

If rejectOnFirstError is not true, the error value is stored in the resolveVal

ues array (whose name is therefore a slight misnomer).

If there are no outstanding promises remaining, resolve the master deferred with
the accumulated results.

progressFunc mirrors doneFunc and failFunc, though it is simpler. Note that

progress callbacks will also be called with an index and a value.

Loop over the passed arguments.

If an argument has a promise method, we assume it’s something we can add

done, fail, and progress callbacks to, and do so. We also set promiseArg

Found to true so we’ll know that the returned promise should not be fired
immediately.

If an argument is not a promise and resolveOnFirstSuccess is true, resolve the
master deferred. This is probably not very useful, but it’s consistent with the

treatment of these values as, essentially, already resolved promises by $.when.

The count of outstanding promises is decremented if an argument is not a
promise.

Finally, if no promise argument was found, resolve the master deferred with all
the passed arguments.

Using when2 to Time Out a Single Promise
We can use the resolveOnFirstSuccess option to when2 in a nice way that lets us time
out a promise.

when2: An Improved jQuery.when | 67

The trick is to call when2 with the promise you want to time out and a promise returned

from the wait function we wrote earlier (in “A Replacement for the setTimeout Func‐

tion” on page 21), and set the resolveOnFirstSuccess option to true. when2 returns a

new promise that will fire either because the wait promise has resolved or because your
original promise did.

To be more concrete, suppose you have a variable called promise returned by some
other function and you want to allow it 200 milliseconds to fire before taking some other
action. You’d write:

$.when2(

 [wait(200), promise],

 { resolveOnFirstSuccess: true })

.done(function(index, result){

 if (index === 0){

 // Timeout!

 }

 else {

 // The promise was resolved with the given result.

 }

});

This small example again illustrates the building-block beauty of deferreds. If you don’t
have quite what you need, make a new deferred and hook your old one up to it to give
you the behavior you need.

Differences from $.when
Here’s a summary of the key differences from the $.when function:

• You must pass a list of promises to when2 instead of just passing all your promises
as individual arguments.

• You can optionally also pass a JavaScript object with resolveOnFirstSuccess

and/or rejectOnFirstError attributes. The default behavior is to fail on the first

error, just like $.when.

• When either (or both) of resolveOnFirstSuccess or rejectOnFirstError is in
effect, all callbacks are called with two arguments: an index into the passed list of
promises (so you can figure out which promise fired) and the result.

• progress callbacks added to a promise returned by when2 will always be called with
an index and a result, as above.

• If rejectOnFirstError is false, the when2 master deferred will never be rejected. It
will be resolved with the result of all promises, each with a success or error value
(you get to figure out which is which).

68 | Chapter 3: Deferred Recipes

Challenges

1. How would the behavior of when2 change if the line with the resolveWith call at
the end of the function was commented out?

2. What would change if the if (deferred.state() === 'pending') guard tests
were all removed?

3. An alternative behavior when a nonpromise argument is passed and resolveOn

FirstSuccess is true is to just store the argument in resolveValues and not resolve
the master deferred until an actual promise argument (if any) is resolved. How
would you make this simple change? What should happen in the case that no

promises are passed to when2?

4. We saw a neat way to time out a single promise using when2. Unfortunately, that
trick won’t work if we try to time out more than one promise. Why not?

5. Imagine that a caller of when2 wasn’t interested in receiving progress updates from
the passed promises but instead wanted to know when each passed promise was

resolved. For example, you might send write commands to three mirrored servers
and you want to know when any two of them have completed the write. Modify

when2 so that each time one of the passed promises is resolved, the index and the

result is passed to the progress callbacks. Note that the promise returned by when2

will still be resolved or rejected exactly as above; you’re just repurposing the pro

gress events. You can add to the options argument to let the caller request this
behavior. See also “Streaming Promise Events” on page 54.

Timing Out Promises
In “when2: An Improved jQuery.when” on page 63, we met when2 and saw how it could
be used to time out a single promise. One of the challenges given in that example was
figuring out why that approach will not work if you need to time out multiple simulta‐
neous deferreds.

The problem is that setting resolveOnFirstSuccess to true in calling when2 will pre‐
vent us from being notified properly when all the promises have been resolved. The
timeout part works fine. The problem is that any single promise that completes before

the timeout will trigger the resolve of the master deferred from when2. There’s no way
to get all the results!

A sneaky first thought for fixing this might be to instead use a modified wait function
that rejects its deferred if the timeout happens:

Timing Out Promises | 69

function waitThenReject(timeout){

 var d = $.Deferred();

 setTimeout(d.reject, timeout);

 return d.promise();

}

Then we could use it as follows, assuming we already had two promises returned from
other functions:

/* THE FOLLOWING DOESN'T WORK! */

$.when2([waitThenReject(200), promise1, promise2])

.done(function(timeoutResult, result1, result2){

 // Both promises are resolved.

})

.fail(function(index, error){

 if (index === 0){

 // Timeout!

 }

 else {

 // The promise given by index was rejected with the given error.

 }

});

But, cute as it is, this approach has a fatal flaw. Can you spot it?

The problem is that the promise returned by waitThenReject is never resolved—it can

only be rejected. The done callback above will never be called. In fact, the promise

returned by when2 will always be rejected, even if promise1 and promise2 are both

resolved before the timeout. If they both resolve early, the deferred created by when2
doesn’t get resolved as it is waiting for three deferreds to resolve.

One solution to this would be to add an integer resolveAfter to the options passed to

when2 that would cause it to resolve the master deferred once that many underlying
promises were resolved. Part of that is easy (the resolving), but part of it would be slightly
messy—what values would we resolve the master deferred with for those promises that
had not yet resolved?

Instead, let’s do something more challenging to help you learn more about working with
deferreds. First, here’s a timeout function that returns a promise and a trigger function:

function deactivatingWait(timeout, triggerCount){

 var deferred = $.Deferred(),

 count = 0,

 timeoutId = setTimeout(deferred.reject, timeout),

 trigger = function(){

 if (++count === triggerCount){

 clearTimeout(timeoutId);

 deferred.resolve();

 }

 };

70 | Chapter 3: Deferred Recipes

 return [deferred.promise(), trigger];

}

As with our waitThenReject function, the returned promise will be rejected after the
timeout has elapsed.

However, this will only happen if the trigger function has not already been called at least

triggerCount times. If the trigger is called triggerCount times, the returned promise
is resolved.

As a result, we obtain a promise that will be rejected after a timeout, but which can also

be made to resolve under the right conditions. All we need to do is call deactivating

Wait, arrange for our preexisting promises to call the trigger function when they’re

resolved, and then pass the promise from deactivatingWait to when2 along with our
original promises:

var result = deactivatingWait(200, 2),

 timeoutPromise = result[0],

 trigger = result[1];

promise1.done(trigger);

promise2.done(trigger);

$.when2([timeoutPromise, promise1, promise2])

.done(function(timeoutResult, result1, result2){

 // Both promises resolved before the time out.

})

.fail(function(index, error){

 if (index === 0){

 // Timeout!

 }

 else {

 // The promise given by index was rejected with the given error.

 }

});

The above is slightly clunky, but we’re almost there. Now that we know what to do, it’s

not hard to create a utility function to hide the setup work and to massage the when2
callback results:

function when2WithTimeout(timeout, promises, options){

 var result = deactivatingWait(timeout, promises.length),

 timeoutPromise = result[0],

 trigger = result[1],

 i;

 for (i = 0; i < promises.length; i++){

 promises[i].done(trigger);

 }

Timing Out Promises | 71

 return $.when2([timeoutPromise].concat(promises), options).then(

 function(){

 // Drop the 'undefined' result of the deactivatingWait promise.

 return Array.prototype.slice.call(arguments, 1);

 },

 function(index, error){

 // Adjust the index to match promises.

 return [index - 1, error];

 },

 function(index, value){

 // Adjust the index to match promises.

 return [index - 1, value];

 }

);

}

This function is used as follows:

when2WithTimeout(200, [promise1, promise2])

.done(function(results){

 // Both promises are resolved. Results are in results[0] and results[1].

})

.fail(function(result){

 var index = result[0],

 error = result[1];

 if (index === -1){

 // Timeout!

 }

 else {

 // The promise given by index was rejected with the given error.

 }

});

The timeout is detected in the fail callback when the index is -1.

Challenges

1. What would happen if we removed the clearTimeout call in the deactivating

Wait function above?

2. A minor wrinkle in when2WithTimeout is that it should check options to make sure

rejectOnFirstError is true (or missing, since that’s the default). What would hap‐

pen if rejectOnFirstError were not true?

72 | Chapter 3: Deferred Recipes

Controlling Your Own Destiny
Through this book we’ve drilled the create deferreds, return promises message into you.
That’s a safety-first convention that makes good sense: code that receives a promise has
no way of accidentally firing it.

But what if you want to deliberately fire a promise you receive?

While this might sound like it goes completely against the intention of deferreds, in
practice there are legitimate reasons you might want to fire a promise you received from
someone else.

For example, you might be building a system that needs to time out the requests it is
making, causing them to immediately resolve with a specific default value. Or you might
want an outstanding deferred to be rejected at a specific moment (e.g., system shutdown)
with a specific given value. Or maybe you’ve received a promise for a long-running task
that doesn’t send any progress information and you want to provide progress informa‐

tion (e.g., elapsed time) yourself by calling notify. You can’t do any of these things if
all you have is a promise. The code that returned you the promise has total control. If
there’s a bug in that code that causes it not to fire, or something else goes wrong, you’re
out of luck and your whole program may hang as a result.

So there are plenty of reasons why you might want to somehow resolve, reject, or notify
a promise you were given. Not letting you do so just so you don’t accidentally shoot
yourself in the foot is a pretty thin reason to take away control. Wouldn’t it be more
mature and trusting if code that returned a read-only promise instead returned a de‐
ferred? The deferred receiver could convert it into a read-only promise if it knew it

would never need to fire the deferred and wanted to disable the resolve, reject, etc.,
methods for safety?

Given that we’re unlikely to change the world and that there is already a ton of code out
there that returns promises, what can we do? How can we wrest back control and escape
the read-only world where we’re treated like children who need to be protected from
themselves? Take a moment to think about it.

It turns out there’s an easy fix that again illustrates the elegance of deferreds. You can
write a function like the following:

function deferredFromPromise(promise){

 var deferred = $.Deferred();

 promise

 .done(deferred.resolve)

 .fail(deferred.reject)

 .progress(deferred.notify);

 return deferred;

}

Controlling Your Own Destiny | 73

How cool is that?

The deferredFromPromise function takes a promise and returns a new deferred. All it

does is hook up the output (done, fail, progress) of the original promise so that it will

trigger the corresponding method (resolve, reject, notify) on the deferred. Because

there’s no problem if a jQuery deferred has resolve or reject called on it multiple
times (the later calls have no effect), only the first code to fire the deferred returned by

deferredFromPromise will determine its fate. That could be the code that made the
deferred from which the original promise was obtained (the normal situation), but it

could equally be your code that receives the deferred from deferredFromPromise.

This is another example of why deferreds are so elegant. We had what looked like a
fundamental limitation but found an easy way around it by making another deferred
and wiring things up the way we wanted them. Other examples of this technique are

the promise then method, $.when (if you pass it more than one argument), when2 (see
“when2: An Improved jQuery.when” on page 63), and our example in “Timing Out
Promises” on page 69. Deferreds make great building blocks!

Challenges

1. Rewrite deferredFromPromise to be a function that executes just one statement.

2. If you were writing an API that returned promises and you wanted to give your
caller the ability to fire them, you could simply wrap your returned promise in a

call to deferredFromPromise. What could you do that would be even easier?

3. What will happen if promise has already been resolved or rejected when it is passed

to deferredFromPromise?

Deactivating a Promise
To complement “Controlling Your Own Destiny” on page 73, there’s another way in
which you might want to give yourself more control over a promise.

What happens if for some reason you decide you’re no longer interested in the result of
a promise and you don’t want to receive a value from it at all? For example, you might
be shutting down a system and need to ignore some outstanding promises that you
would normally want to react to. A subsystem that could handle a resolved promise
result might have been shut down or a data structure holding results might no longer
exist. Whatever the case, you want to deactivate an existing promise, so that it never
calls the callbacks you attached to it earlier.

74 | Chapter 3: Deferred Recipes

Once again we can solve the problem using a second deferred. Here’s a deactivatable

Promise function that takes one promise and returns another that has a deactivate
method on it:

function deactivatablePromise(promise){

 var deferred = $.Deferred(),

 newPromise = deferred.promise(),

 deactivated = false, //

 unlessDeactivated = function(func){ //

 return function(value){

 if (deactivated === false){

 return func(value);

 }

 };

 };

 promise //

 .done(unlessDeactivated(deferred.resolve))

 .fail(unlessDeactivated(deferred.reject))

 .progress(unlessDeactivated(deferred.notify));

 newPromise.deactivate = function(){ //

 deactivated = true;

 return newPromise;

 };

 return newPromise; //

}

Suppose you call a function that returns a promise and you want to be able to deactivate
the promise if it becomes necessary.

Instead of adding callbacks to the promise, first pass it to deactivatablePromise to
obtain a promise that you can deactivate. Then add your callbacks to that new promise.

If you later call the deactivate method on it, the new promise will not call any of its
callbacks when it fires (unless it had already fired, of course).

Here’s how it works:

We use a deactivated variable that keeps track of whether deactivate has been
called and that we’ll use to conditionally trigger the new promise.

The unlessDeactivated function takes a function argument (func) and returns

a function that will call func with an argument, but only if deactivate has not
been called.

Arrange for the existing promise to conditionally call the new deferred’s re

solve, reject, and notify functions if it fires. If the new promise has been
deactivated (see next point), though, the event will not be passed on to the new
promise.

Deactivating a Promise | 75

We add a deactivate method to the new promise that just sets the deactiva

ted variable to be true.

Return the new promise.

Challenges

1. Why does the newPromise.deactivate function return the new promise?

2. unlessDeactivated returns a function that takes one parameter (value). Change
it to be compatible with jQuery deferreds: it should accept any number of param‐

eters and pass these on in the call to func.

3. It’s not 100% safe to add our own deactivate method to the promise returned by

deactivatablePromise. If a future version of jQuery adds an identically named

function to promises, we’ll clobber it. How might you change deactivatablePro

mise to eliminate this risk?

4. Write a function that takes a promise and returns an object with resolve, resolve

With, reject, rejectWith, notify, and notifyWith methods (as in “Controlling

Your Own Destiny” on page 73) as well as a deactivate method, as in this example.
That combination gives you total freedom: you can (essentially) fire the promise
yourself or you can choose to deactivate it.

76 | Chapter 3: Deferred Recipes

CHAPTER 4

More Time in the Mental Gymnasium

The recipes in the previous chapter are useful in a practical sense, yet we also wrote
them to help you exercise the mental muscles needed for thinking about deferreds.
Although conceptually simple, deferreds and promises can be mind-bending and yet a
pleasure to ponder.

It may take some time to digest everything, but deferreds are worth exploring further
(both more deeply and broadly), and that’s the purpose of this chapter.

Do You Really Understand jQuery Deferreds?
To warm up, let’s see if you really understand jQuery deferreds. If you do, you should
be able to answer the following questions with little hesitation:

• Explain the differences between done, then, and $.when.

• Given a promise variable, what’s the difference between these two code fragments?

promise.then(doneFunc, errorFunc)

promise.done(doneFunc).fail(errorFunc)

• What happens if you return a value from a done callback? What should you probably
be doing instead?

• What happens if you call then on a promise, but don’t provide any arguments?

• Take another look at this code fragment from “Familiar Promises” on page 4:

$.when(

 $.ajax('http://google.com').then(function(){

 return $('#label_1').animate({ opacity: 0.25 }, 100);

 }),

 $.ajax('http://yahoo.com').then(function(){

 return $('#label_2').animate({ opacity: 0.75 }, 200);

 })

77

).then(

 function(){

 // Both URLs have been fetched and both animations have completed.

 }

);

In order of difficulty:

— .promise() is not called on the result of the calls to animate. Why is that not
needed?

— What would be the effect of removing the two return keywords (i.e., call ani

mate as above, just don’t return its result)?

— How can you arrange to get the results of the $.ajax calls passed as arguments
to the final function?

If you’re unsure of the answers to these questions, rereading Chapter 2 will probably
help, as will writing small pieces of code to have a closer look. Make sure you understand
all the points listed in “Deferred Dynamics” on page 18.

Promises/A+
Feeling warmed up? Let’s stretch our mental muscles a bit further by learning about a
standard for promises.

We have mentioned the Promises/A+ proposal at several points in the book. It’s a library-
agnostic clarification of the expected behavior of promises. There is also the original
Promises/A (upon which jQuery promises is based) and a newer Promises/B propos‐
al. Promises/A+ is the most popular current proposal. A+ is a clarification, extension,
and simplification of the original Promises/A.

It is important that you know about Promises/A+, because most of the popular promise
libraries conform to the A+ proposal. Its main (although not exclusive) focus is the

means of interacting with promises via the then method. It’s a short, well-written docu‐
ment released in the public domain. It takes only minutes to read. We’ve included a copy
in Appendix B.

To summarize, Promises/A+ states that the then method should return a new promise.

In so doing, it facilitates the chaining of callbacks via further calls via then on subse‐

quently returned promises. It makes explicit the expected behavior of both the onFul

filled and onRejected handlers and how a promise may transition between pending,
fulfilled, and rejected states.

Rather than repeat an already well-written and compact document, we feel it necessary
to explain the most important and subtle way it differs from the apparently similar
jQuery deferred API.

78 | Chapter 4: More Time in the Mental Gymnasium

http://bit.ly/1bC2aI7
http://bit.ly/1bBV1Yp
http://bit.ly/1bC2d6S
http://bit.ly/1bC2d6S

It boils down to error handling.

In the Promises/A+ world, an exception raised in a callback passed to then is handled

automatically. The call to then will return a promise in a rejected state, with the exception

set as the reason attribute of the new promise.

However, jQuery promises don’t do this. Their then doesn’t return a rejected promise.

Instead, exceptions are not caught. An exception in a function passed to then will break

any neatly composed chain of then handlers. An exception in an always, done, or fail
callback will terminate that callback but also prevent the invocation of the rest of the
callbacks added to the promise. In all these cases, the exception will propagate up the
call stack. If you’re running a node.js server, an uncaught exception will cause your
server to exit, which is clearly a serious problem.

Therefore, when using jQuery deferreds you’ll need to be more careful about catching
regular exceptions in your callback functions and finding ways to fail when the original
call stack context (in which you arranged for the callbacks to be invoked) has long gone.
Promises/A+ lets failures flow back via rejected promises.

This difference and its impact is elegantly discussed in Dominic Denicola’s article
“You’re Missing the Point of Promises”, in which he introduces a test suite for Promises/
A+ compliance. The slides of Dominic’s “Promises, Promises” presentation are also
worth reading, particularly the description of the correspondence between asynchro‐
nous Promises/A+ code and regular synchronous code.

There are a number of other differences between jQuery deferreds and Promises/A+.

For example, the jQuery version of then allows you to pass a progress function, but
Promises/A+ does not require this (though Promises/A did). The Promises/A+ speci‐

fication makes no mention of methods such as done, fail, etc., relying only on then.
You will discover other differences—including runtime ones such as speed and memory
usage—if you compare the implementations yourself or spend some time online reading
comparison tests and benchmarks.

There are many packages for JavaScript (and some in other languages too) that conform
to the Promises/A+ standard. The Promises/A+ website contains an up-to-date list.

Promises Are First-Class Objects for Function Calls
In JavaScript, we describe functions as first-class objects. It’s why we’re able to do all
sorts of interesting, empowering, and downright fun things with functions: return a
function from a function, pass a function as an argument into yet another function, and
create anonymous functions on the fly. It’s hard to imagine JavaScript without such a
powerful core feature.

Promises Are First-Class Objects for Function Calls | 79

http://bit.ly/1bC2eHX
http://bit.ly/1bC2eHU
http://slidesha.re/1bC2iHu
http://bit.ly/1bC2eI3

With that in mind, try this exercise in a change of perspective: deferreds and promises
are first-class objects for function calls.

If you think about it, they give us a way to take a function call (or the handling of an
event) and pass it around: we can return a promise from a function, pass a promise as
an argument into a function, store it in a data structure, and, obviously, arrange how to
process the result (or error) of the function call independently of the function call itself.

To be a bit more abstract: a promise is a time-independent reification of a function call.

A promise is time-independent because, as we saw in “Memoization” on page 49, you
don’t have to worry whether the underlying function call has already completed, is
currently in progress, or has yet to run. There may even be no way to find out. The point
is that you don’t have to care and you shouldn’t care.

Like many others, we described deferreds and promises in Chapter 1 as representing a
result that may not be available yet. Describing promises as a reification of a function
call takes the time factor completely out of the picture. If you’ve managed to switch your
perspective, this way of looking at deferreds is a lot simpler to explain and understand.

Asynchronous Data Structures
Although deferreds are useful for handling familiar tasks such as network calls, user
interface events, and talking to databases and other storage, nothing about deferreds is
specific to those things. Because deferreds are not tied to any particular usage, you can
use them to build asynchronous implementations of other things that might seem
surprising.

For example, consider asynchronous data structures. “A Deferred Queue” on page 61
gives a good example of this line of thinking. Let’s revisit the deferred queue code, slightly
simplified:

var waiting = [], queue = [];

function get(){

 var deferred = $.Deferred();

 if (queue.length){

 deferred.resolve(queue.shift());

 }

 else {

 waiting.push(deferred);

 }

 return deferred.promise();

}

function put(item){

 if (waiting.length){

 waiting.shift().resolve(item);

 }

80 | Chapter 4: More Time in the Mental Gymnasium

 else {

 queue.push(item);

 }

}

As we suggested in that example, think about code for a regular synchronous queue.

What happens if you call get on a regular queue that’s empty? Almost certainly one of

two things: you’ll get some kind of QueueEmpty error, or else your code will block until
some other code puts something into the queue. That is, you either get a synchronous
error or you get a synchronous nonempty response.

In contrast, look at the get function above. A new deferred is always made. If the queue
is nonempty, the deferred is resolved and its promise is returned. If the queue is empty,

the deferred is added to waiting and its promise is returned. Code calling get on an
empty queue doesn’t get an error and it doesn’t block; it always receives a result imme‐
diately. How can you get a result from an empty queue? Easy! The result is a promise.

In either case, the caller just attaches callbacks to the returned promise, and goes on its
merry way. It doesn’t need to know if the promise has already fired or when it will fire.
It just needs to know how to process a queue item.

In effect, we’ve built an asynchronous data structure. We find that concept very attrac‐
tive, and thinking in those terms helped us to see part of the reason why deferreds are
so great. Deferreds are not specifically asynchronous or synchronous: they’re so simple
they don’t even care, and as a consumer of promises, your code doesn’t have to either.
That’s all remarkably elegant.

Bonus challenge: imagine you have a producer and a consumer wanting to exchange a
dictionary data structure. The producer will produce values in a random key order,
while the consumer requests keys in some other random order. Implement an asyn‐
chronous dictionary using deferreds in the style of the deferred queue above.

Advantages of Deferreds
It is typical to first gain an appreciation of deferreds (in general, not just the jQuery
flavor) by using them in the context of a specific problem. But deferreds are useful and
powerful in multiple ways. Your understanding will be stronger if you consider them
all at once. Here’s a summary.

Deferreds provide a formal first-class place to hold a future result. You can pass a de‐
ferred to other pieces of code. This allows multiple independent pieces of code to act
on its result. The first-class object gives your program a data structure that captures the
fact that a function has been called. That data structure can be used from the moment
the function has been called until it has returned. As we saw in “Memoization” on page
49, this can be very useful. Because the deferred is time-independent, you also don’t

Advantages of Deferreds | 81

http://bit.ly/1bC2c2T

need to worry about events firing before you’ve added handlers for them—you can add
event handlers (callbacks) after the fact.

Without deferreds, you get to attach just one callback handler to events. If other code
needs to also handle the result of the event, calls to those other functions need to be
placed in the original callback. This leads to a mess: callback handlers that do not serve
a single purpose and that are harder to understand and test.

Deferreds make great building blocks. We’ve repeatedly seen how simple it is to solve
problems by creating an additional deferred and hooking up things just as we need
them. It is a testament to the elegance and power of deferreds that this can be done so
cleanly and easily. Each time you do it, you just end up with another deferred, which
allows for additional processing layers to be added in an identical way, if needed.

Deferreds make it simple(r) to work with multiple asynchronous calls. In “Food for
Thought” on page 1 and “when” on page 13, we looked at how awkward it can be to
work with more than one asynchronous function call. The examples we considered were
trivial. When building non-toy systems, things get much more complicated. Deferreds
can’t make a complicated situation less complex, but they will allow you to write code
to handle it in a cleaner way. Code that doesn’t use deferreds does not have an object to
pass around that represents the handling of an event (or the future result of a function
call). This forces us to set up complex event handling using the lexical structure of our
code—callbacks in callbacks in callbacks, etc. The logical structure of one’s code can
become extremely awkward, as can error handling. Complex programs using deferreds
can also be very difficult to understand and arguably harder to follow logically, but there
is more scope for cleaner separation of code and nicer error handling (at least with
Promises/A+).

Deferreds are very useful for setting up processing of request responses in a free-form
messaging environment (where both sides can send messages at any time). We saw
examples of this in “Communicating with a Web Worker” on page 37 and “Using Web
Sockets” on page 42. An important advantage of this approach is that code that makes
an asynchronous call can arrange to process the response without losing context. When
you make the call, your code has access to its current scope, local variables, relevant UI
components, etc. In free-form messaging, when the reply arrives, you often need to
reconstruct the necessary parts of the original context in order to process the result.
With deferreds, you can set this up on the spot by adding handlers to the deferred, which
is extremely convenient in practice.

Difficulties with Deferreds
There are a few ways in which deferreds can be problematic.

Occasionally you will build a complex structure of dependent deferreds and one of them
will fail to fire. For example, a network request is somehow lost or never returns. This

82 | Chapter 4: More Time in the Mental Gymnasium

jams up the whole system: a deferred never fires and all downstream deferreds fail to
resolve. This kind of problem has to be dealt with by programmers in any case; it’s not
specific to deferreds, but there can be a feeling of a certain brittle dependency. We’ve
explored several ways in which these problems can be addressed: timing out promises
(in “when2: An Improved jQuery.when” on page 63 and “Timing Out Promises” on
page 69), firing promises ourselves (in “Controlling Your Own Destiny” on page 73),
and deactivating promises entirely (in “Deactivating a Promise” on page 74).

A second issue, which is more serious and which may preclude the use of deferreds at
all, is that deferreds keep the result of their computation around. If it happens that you
only need a result once, introducing deferreds will add to memory load and may make
garbage collection more difficult for the system.

Deferreds are often viewed as resulting in code that is difficult to read and understand.
This is subjective, of course. It is also the case that some programming situations are
inherently complicated, and that complexity cannot really be mitigated. Nevertheless,
making sense of deferred code can sometimes be more difficult than it is with more
traditional JavaScript callback nesting. This is especially the case with very simple event
handling. Once asynchronous code logic gets more than a couple of levels deep, we’ve
found deferred code to be cleaner due to its separation and having first-class objects to
pass around and store in data structures. There’s more to deferreds, though, than po‐
tential gains (or losses) in code organization and readability, as just discussed above. In
our experience, any loss in code readability is more than made up for by gains in other
ways.

There is sometimes the feeling of a lock-in effect when using deferreds. Once you start
calling and writing functions that use deferreds, you’ll invariably end up doing more of
it. That’s also the case with nested callback handling; it’s just a different style of getting
things done. Fortunately, JavaScript is inherently event-based, so it is usually trivial to
write deferred-based wrappers for functions you want to call that do not follow this
style. It is also usually very easy to mix deferred-using code with regular code.

Finally, if you’re building a team, use of deferreds may have a human resources impact:
you’ll likely end up looking for programmers who are already familiar with deferreds.
Programmers who are unfamiliar with deferreds are definitely still in the majority. We
hope to help change that!

Further Reading
James Coglan has written three excellent articles on promises: “Promises are the monad
of asynchronous programming”, “Callbacks are imperative, promises are functional:
Node’s biggest missed opportunity”, and “Callbacks, promises, and simplicity”. The
articles may not be easy to understand on a first reading. You might find it easiest to
start with the second. They are well worth rereading and thinking about until you do

Further Reading | 83

http://bit.ly/1jJQACC
http://bit.ly/1bC2eHQ
http://bit.ly/1bC2eHQ
http://bit.ly/1bTd9A1
http://bit.ly/1bTd9A1
http://bit.ly/1bC2c2D

get it. Don’t give up—it’s important! For balance, you should also read Drew Craw‐
ford’s response, “Broken Promises”, which describes issues he ran into using promises
in the highly memory-constrained iOS environment, and, more generally, why trying
to use promises to solve every asynchronous flow of control problem can lead to
difficulties.

Many people have written about jQuery deferreds online, and some of the articles are
excellent. There was a flurry of writing when deferreds were introduced to jQuery in
version 1.5 on January 31, 2011. As mentioned in “Changes in the jQuery Deferred
API” on page 19, subsequent changes in the deferred API mean you need to be a little

careful when reading. For example, most recent online articles still discuss the pipe
function, which was deprecated in version 1.8 (August 9, 2012). But don’t worry too
much: even if articles are slightly out of date with respect to the API, you can still learn
a lot from them and may benefit from other people’s perspectives and explanations.
Here’s a small selection, focused mainly on jQuery deferreds, that you may find useful:

• “Creating Responsive Applications Using jQuery Deferred and Promises”

• “Redemption from Callback Hell”

• “jQuery.Deferred is the most important client-side tool you have”

• “Using Deferreds in jQuery 1.5”

• “Asynchronous Programming in JavaScript with ‘Promises’”

You might also be interested to read how Twitter transitioned their architecture to use
“services” that return futures (i.e., deferreds) via RPC using Finagle.

Deferreds have been around since 1976, under many names and guises, and in many
programming languages. For some history, see the Wikipedia article on “Futures and
promises”.

84 | Chapter 4: More Time in the Mental Gymnasium

http://bit.ly/1bC2eHT
http://bit.ly/1bC2eHT
http://bit.ly/IK2b6E
http://bit.ly/1bC2c2F
http://bit.ly/1bBSWvD
http://bit.ly/1bC2c2K
http://bit.ly/1bBTkds
http://bit.ly/1bC2eYq
http://bit.ly/1bC2eYr
http://bit.ly/1bC2cji
http://bit.ly/1bC2dDX
http://bit.ly/1bC2dDX

APPENDIX A

Hints for Selected Challenges

Here you’ll find solutions or hints for almost all the challenges in the book. Where an
answer requires a significant amount of code, we make some suggestions but have left
the coding to you.

A Replacement for the setTimeout Function
1. This is pretty easy:

function wait(timeout){

 return $.Deferred(function(deferred){

 setTimeout(deferred.resolve, timeout);

 }).promise();

}

2. You’d write something like this:

var promise = wait(500);

promise.done(function(){

 console.log('Timeout fired!');

});

one(promise);

two(promise);

Of course the one and two functions have to be able to accept a promise.

We described this challenge as “subtly different” because it’s meant to demonstrate

that our replacement setTimeout function is more than just a syntactic nicety. It
gives you something you didn’t have before: a value that you can pass around to
others. Although this is a trivial example, the principle is important.

3. We just need to store the timeout identifier and add a function to the returning
promise to clear the timeout and reject the deferred:

85

function wait(timeout){

 var deferred = $.Deferred(),

 promise = deferred.promise(),

 timeoutId = setTimeout(deferred.resolve, timeout);

 promise.cancel = function(){

 clearTimeout(timeoutId);

 deferred.reject.apply(deferred, arguments);

 };

 return promise;

}

Note that this isn’t the best coding style. We probably shouldn’t be adding attributes
to the promise in this way. How would you fix this shortcoming? While you’re at

it, add a cancelWith function to call rejectWith on the deferred.

Messaging in Chrome Extensions
1. That depends. The message to the content script will never receive a reply, so the

promise will never be resolved. That’s fine if the caller isn’t expecting a response
and doesn’t need to know that the message was received. If there’s good coordination
between the people writing the background code and the content script code, it may
be perfectly fine not to send a response. The safest route is probably to always send

back a null response to indicate that the message was received, though this adds
communication overhead within Chrome.

2. The results from the tabs are collected by $.when and passed as arguments to the

done callback function. The simple code we showed in the example just happens to
ignore its arguments.

Accessing Chrome Local Storage
1. This is pretty straightforward:

function get(keys){

 var deferred = $.Deferred();

 chrome.storage.local.get(keys, function(result){

 if (chrome.runtime.lasterror){

 deferred.reject(chrome.runtime.lasterror.message);

 }

 else {

 deferred.resolve(result);

 }

 });

86 | Appendix A: Hints for Selected Challenges

 return deferred.promise();

}

function getBytesInUse(keys){

 var deferred = $.Deferred();

 chrome.storage.local.getBytesInUse(keys, function(bytesInUse){

 if (chrome.runtime.lasterror){

 deferred.reject(chrome.runtime.lasterror.message);

 }

 else {

 deferred.resolve(bytesInUse);

 }

 });

 return deferred.promise();

}

function remove(keys){

 var deferred = $.Deferred();

 chrome.storage.local.remove(keys, function(){

 if (chrome.runtime.lasterror){

 deferred.reject(chrome.runtime.lasterror.message);

 }

 else {

 deferred.resolve();

 }

 });

 return deferred.promise();

}

function clear(){

 var deferred = $.Deferred();

 chrome.storage.local.clear(function(){

 if (chrome.runtime.lasterror){

 deferred.reject(chrome.runtime.lasterror.message);

 }

 else {

 deferred.resolve();

 }

 });

 return deferred.promise();

}

2. The node.js Redis package provides an API call for the Redis get command. The
node.js Redis API signature is:

Accessing Chrome Local Storage | 87

http://bit.ly/1bC2hUb
http://bit.ly/IJYz4r

get('hash-key', function(err, result) {

 // Check for error, use result, etc.

});

The callback function is called with two arguments, an error and a result, as is
common in node.js APIs. The caller should check to see if an error occurred and if
not, it can use the result.

Writing a promise-returning replacement is quite straightforward:

var redis = require('redis'),

 client = redis.createClient(),

 $ = require('jquery-deferred');

function redisGet(hashkey){

 var deferred = $.Deferred();

 client.get(hashkey, function(err, result){

 if (err){

 deferred.reject(err);

 }

 else {

 deferred.resolve(result);

 }

 });

 return deferred.promise();

}

There are of course many other Redis API calls you could make promise-returning
versions of. Not surprisingly, you can also find a full promise-based API, though
note that it is based on Promises/A+, not on jQuery deferreds.

Running Promise-Returning Functions One by One

1. In the loop in synchronously, as well as shifting out the task function, also shift

a context. Pass the context to apply as its first argument (instead of passing null).

When you call synchronously, you’ll obviously need to pass in a context for each
function.

2. Any arguments to the function passed to then are ignored because they will contain

the return result of the previously run function (or undefined when the first func‐
tion is run). The values are ignored because we are not passing along a modified

result, we’re just running the functions (whose arguments are passed in the tasks

list and given to apply).

3. To allow for calling functions that do not return promises, we need to check the

return result from apply. If it has a method called promise that is a function, we

88 | Appendix A: Hints for Selected Challenges

http://bit.ly/IJZNwH
http://bit.ly/1bC2aI7

can call it and return the result. Otherwise, we just return the value that comes back

from apply. Note that this is also how jQuery guesses that a value is a deferred. It’s
not foolproof!

This is pretty much what $.when does when you pass it a single argument, so you

could just make a simple change and use $.when:

function synchronously(tasks){

 var i, task, func,

 promise = $.Deferred().resolve().promise(),

 makeRunner = function(func, args){

 return function(){

 return $.when(func.apply(null, args));

 };

 };

 for (i = 0; i < tasks.length; i++){

 task = tasks[i];

 func = task.shift();

 promise = promise.then(makeRunner(func, task));

 }

 return promise;

}

4. If done is used instead of then, the promise will fire all its attached callbacks as soon
as the first animation is complete. That is, it will not wait until the second animation

is finished. The second animation is a done callback on the promise, just like any
other. This is a common source of error, and can be hard to debug. A solid under‐
standing of deferred dynamics (see “Deferred Dynamics” on page 18) will make
you less likely to write code like this in the first place.

5. The $.when version will start both animations at the same time instead of running
them one after the other.

It is not necessary to call promise() on the result of animate because $.when will

do that for you. Note that animate doesn’t return a promise directly; it’s necessary

to call promise() on its result to get one.

A Promise Pool with an emptyPromise Method
1. Create a deferred, initialize it, and return its promise in one statement:

function emptyPromise(){

 return $.Deferred(function(deferred){

 waitingForEmpty.push(deferred);

 }).promise();

}

2. The promise returned by emptyPromise will not be resolved until after at least one
promise is added to the pool and the pool subsequently empties.

A Promise Pool with an emptyPromise Method | 89

3. Change the emptyPromise function as follows:

function emptyPromise(checkImmediately){

 var deferred = $.Deferred();

 if (checkImmediately && inProgress.length === 0){

 return deferred.resolve().promise();

 }

 else {

 waitingForEmpty.push(deferred);

 return deferred.promise();

 }

}

4. The shutdown handler could look like this:

app.get('/shutdown', function(req, res){

 if (shuttingDown === false){

 shuttingDown = true;

 pool.emptyPromise().done(function(){

 pool.add(flushAvatarCache());

 pool.add(sendShutdownEmail());

 pool.add(flushLogs());

 pool.emptyPromise().done(function(){

 res.send(200);

 process.exit(0);

 });

 });

 }

 else {

 res.send(200);

 }

});

5. This one’s up to you!

6. You could maintain an integer request ID, incremented on each call to add. Use a

closure to capture its current value when setting up the always callback. The ID

would be an attribute of inProgress (now a JavaScript object). So when a promise

is resolved or rejected, the promise can immediately be found in inProgress. You
could maintain a count of the pool size to know when to resolve waiting deferreds,

or else use the jQuery convenience function isEmptyObject.

7. Keep a list of responses that are awaiting an HTTP 200 status reply (shutdownRes

ponses in the code below). When the first shutdown request is received, arrange to
later respond to all shutdown requests (including those which arrive during the

shutdown) in the done callback that runs after the pool empties for the second time.
You might try something like this:

var express = require('express'),

 app = express(),

 pool = createPromisePool(),

 shuttingDown = false,

90 | Appendix A: Hints for Selected Challenges

http://bit.ly/1bC2d6W

 shutdownResponses = [];

app.get('/', function(req, res){

 if (shuttingDown){

 res.redirect('http://example.com');

 }

 else {

 pool.add(handleRequest(req, res));

 }

});

app.get('/shutdown', function(req, res){

 shutdownResponses.push(res);

 if (shuttingDown === false){

 shuttingDown = true;

 pool.emptyPromise().done(function(){

 pool.add(flushAvatarCache());

 pool.add(sendShutdownEmail());

 pool.add(flushLogs());

 pool.emptyPromise().done(function(){

 for (var i = 0; i < shutdownResponses.length; i++){

 shutdownResponses[i].send(200);

 }

 process.exit(0);

 });

 });

 }

});

app.listen(9999);

Note that we again use emptyPromise twice.

Bonus challenge! If the shutdownResponses.push(res); line were moved after the

if block that follows it, we might be introducing a subtle bug. Can you see what it
is? Hint: What happens if, on the first shutdown call, the request pool is already
empty and the three administrative cleanup functions complete instantaneously?

Displaying Google Maps
1. There are tons of JavaScript LRU cache packages around. Use one that provides a

key/value store API. The keys in our case can be a latitude/longitude string and

each value will be a data URI. The LRU cache will replace lastKey and lastDataURI.

2. When a data URI has been retrieved from Google, getMap calls localStorageSet,
but discards its return value.

Displaying Google Maps | 91

We did this for simplicity—and because there’s not much that could be done at this
point, other than logging or perhaps retrying a failed call. If the call fails and the
last value isn’t cached as a result, it’s not fatal—the application continues to work,
albeit with less effective caching. In production code you’d probably want to do
something, but showing an error message to a user is probably out of the question
and logging will likely go unnoticed. Maybe the error could be silently reported via
a server call.

3. Sorry, you’re on your own!

4. Use the example in “Short-Term Memoization of In-Progress Function Calls” on
page 52 to keep track of in-flight Google API requests.

Communicating with a Web Worker

1. Log the message in an else branch you add to the if (requests.hasOwnProper

ty(id)) in handleResponse.

2. If you’re not sure where to keep the timestamp for each request, the answer to the
next challenge will help. The reason the request times build up is that the web worker
is also run in a single thread and can only do one thing at a time.

3. Here’s how we’d do it:

function createWebWorker(sourceFile){

 var queue = [], // IDs of requests yet to be sent.

 requests = {}, // Key is request ID, value is request spec.

 requestId = 0, // Incremented on each message sent.

 worker = new Worker(sourceFile),

 workerState = 'idle',

 processQueue = function(){

 var id, request;

 if (workerState === 'idle' && queue.length > 0){

 workerState = 'busy';

 id = queue.shift();

 request = requests[id];

 worker.postMessage({

 method: request.method,

 payload: request.payload,

 requestId: id

 });

 }

 },

 enqueueRequest = function(method, payload){

 var deferred = $.Deferred(),

 id = requestId++;

92 | Appendix A: Hints for Selected Challenges

 requests[id] = {

 deferred: deferred,

 method: method,

 payload: payload,

 };

 queue.push(id);

 processQueue();

 return deferred.promise();

 },

 handleResponse = function(response){

 var deferred, id;

 if (response.hasOwnProperty('requestId')){

 workerState = 'idle';

 id = response.requestId;

 if (requests.hasOwnProperty(id)){

 deferred = requests[id];

 delete requests[id];

 if (response.hasOwnProperty('result')){

 deferred.resolve(response.result);

 }

 else {

 deferred.reject(response.error);

 }

 }

 processQueue();

 }

 else {

 // An unsolicited message from the worker.

 if (response.type === 'log'){

 console.log('Worker says:', response.message);

 }

 else {

 console.log('Unknown message from worker:', response);

 }

 }

 };

 worker.addEventListener('message', function(event){

 handleResponse(event.data);

 });

 return {

 run: enqueueRequest

 };

}

We’ve added a queue of request IDs that have yet to be sent to the worker. To make

the code a bit more general, we just return an object with a run function. run takes

a method name and a payload and passes these to enqueueRequest, which puts a

request specification into requests and adds the request ID to queue. It then calls

Communicating with a Web Worker | 93

processQueue, which will send a request to the worker if it’s not busy. Each time

we handle a response, processQueue is called again.

4. Based on the code above: in enqueueRequest, store the time the request is received

into the requests object, along with the rest of the request specification. In

processQueue, add another timestamp to the request specification to record when

the queued request is sent to the worker. In handleResponse, log both the time
spent in the queue and the time spent processing.

5. Also based on the above code: keep an array of workers, each with a state. In

processQueue, look for an idle worker, mark it as busy, and send it the request. In

handleResponse, you’ll need to figure out which worker sent the response so you
can mark that worker as now being idle. That means you’ll need to save the worker’s

index in the request specification in enqueueRequest.

Using Web Sockets

1. Instead of processing the return result of func(request.payload) using done and

fail callbacks, use $.when, which knows how to handle a nonpromise result, re‐
turning it via a new promise.

2. If the server didn’t send a request ID in a response, the value of deferred in the

handleResponse function in the web sockets client will be undefined, which will
cause an exception to be raised. The deferred corresponding to that request (as‐
suming the server has not spontaneously sent a response without receiving a re‐
quest) will never fire, so the request will hang indefinitely unless timed out by some
other mechanism. The same thing will happen—though for a slightly different rea‐
son—if a request ID that has already been used is sent.

3. You’re on your own! Obviously, the server needs to put its own request IDs into the
messages it sends, and the client will need to send them back. You’ll need to make
sure that both sides can distinguish between responses to their own outstanding
requests and incoming new requests from the other side.

4. The problem is the use of $.when. There is no server-side multiply function, so

the corresponding makeRequest promise will be rejected. That causes the imme‐

diate rejection of the promise returned by $.when. You could fix this by using when2

(see “when2: An Improved jQuery.when” on page 63) and setting the rejectOn

FirstError option to false.

5. The jQuery source code line that causes $.when to reject immediately is in the for

loop near the bottom of the when function in deferred.js. It’s this line: .fail(de

ferred.reject).

94 | Appendix A: Hints for Selected Challenges

http://bit.ly/IK0c24

If the call signature of $.when had accepted a list of promises instead of treating all
its arguments as promises, it would have been possible to alter its behavior with a
flag. See “when2: An Improved jQuery.when” on page 63 for an approach to chang‐
ing this behavior.

Automatically Retrying Failing Deferred Calls
1. This is too easy to warrant even a hint!

2. The problem occurs if the passed function returns a promise that is rejected with

no arguments. In that case, the value of value in the error function will be unde

fined. If a subsequent call to the passed function returns a promise that is rejected

with a non-undefined value, that failure result will be stored in rejectValue. In

this case, the first failure result (undefined) is overwritten and will not be returned.

You can fix this small problem by introducing another variable, to remember

whether a failure has occurred. Instead of testing the value of rejectValue in

error, test the new variable—and only if no previous failure has occurred, store the

passed error value in rejectValue.

3. To reject with the final error, get rid of the rejectValue variable and all its associated

code. In the error function, if the number of call attempts is up, reject the deferred

with the value received. Similarly, to return all the errors, keep a list of them and

call reject with the list once the call limit is reached.

4. The stack never has more than one call to the function passed to retryingCaller.
A repeat call to that function is not made until the previous call has completely
finished (and has returned an error). The stack has therefore been popped before
a repeat call is made.

5. You hopefully won’t need any help with this. Arrange to pass an error-checking
function and call it in the error callback.

Memoization

1. This is easy, assuming you know your JavaScript. Pass a context argument to

memoize and use apply to invoke the passed func function.

2. If func is called with an object, JavaScript will convert it to a string when accessing

promises[arg]. This is not very useful because converting an object into a string

gets you '[object Object]'. So the memoization would fail horribly—all calls that
passed an object would pull out the same memoized value, no matter what contents

Automatically Retrying Failing Deferred Calls | 95

http://mzl.la/1bC2fvz

the object had. The situation is a teeny tiny bit better for arrays, but only if the array
is shallow and doesn’t contain other arrays or objects.

One way to fix this is to check (in the returned function) the argument type and

use something like JSON.stringify to turn arrays and objects into strings.

3. If func took two arguments, you’d modify memoize to return a function that ac‐
cepted two arguments. It could make the two arguments into a single string for

lookup in the promises object (note previous challenge).

To generalize this, you’re going to need to loop in some way over the passed argu‐
ments. An obvious approach would be to build up a lookup string (for accessing

promises) argument by argument, checking the type of each. There are other ways
to skin this cat, though, so we suggest you take a look around on the Web and read
some of the many interesting articles.

4. No, this is not a problem. See the summary of “Deferred Dynamics” on page 18 to
understand why.

5. You would need to examine the result of calling func(arg). If it appeared to be a

promise, you could store it in promises and return it. If not, you’d also want to store

the result (perhaps the promises variable could be renamed to results) and return

it. In other words, don’t unconditionally call $.when.

6. If you didn’t wrap the func(arg) call in $.when, the promises object would obvi‐

ously contain whatever func(arg) returned. That could be a promise, but it could
be any other value. That’s not a problem, except you’d need to tell the caller of

memoize that they should check the type of the return value, if they care. This is true
memoization, rather than the version we wrote initially that always stores (and
returns) promises.

7. You can write this one yourself. You should store JavaScript objects in the promises

object (which you might rename to promiseInfo). Each object would contain a
promise and a timestamp. You’d update the timestamp on any call for a previously
seen argument.

There are two issues to consider here. First, what will happen to the setInterval

timer once a memoization instance goes out of scope and is garbage-collected?

Second, what happens if you remove an old item from promiseInfo and it contains
a promise that has not yet fired?

Short-Term Memoization of In-Progress Function Calls

1. If the promise is added to the promises object after the call to always (which

removes the promise from promises), there is the possibility that internalCrea

teUser might finish immediately, in which case the delete would fail and the

96 | Appendix A: Hints for Selected Challenges

http://mzl.la/1bC2ir9
http://bit.ly/IK2bmX
http://bit.ly/IK2aj7

promise would then be added to promises. That would be very unfortunate! An

out-of-date promise would be permanently stored in the promises object. You
might think that this could never happen, but imagine if someday someone speeds

up internalCreateUser (perhaps it is memoized or otherwise cached, or perhaps
a test suite stubs it out).

2. The problem above is a good example of a general principle you should follow when
maintaining deferreds or promises in data structures. First put the deferred into
the data structure you’re using to hold them, and only then add callbacks to it to
remove it from that data structure when it fires. Never assume that a promise you
have received has not already fired.

3. The two are very similar. In both cases, a known result is stored for a finite time
and then discarded. With short-term in-progress function call memoization, the
result is (effectively) stored in the deferred during the time it takes for the function
to complete. With cache expiry (e.g., after a fixed time or on an LRU basis), results
are also kept temporarily and then discarded.

Streaming Promise Events

1. The only difference is that another deferred would be created, by then. While

then(stream, stream, stream) looks cute, we don’t need to modify and pass on

the value delivered to the notify method of our deferred, so there’s no need to use

then.

2. Here’s how we’d do it. The only point to be careful about is that we should notify
the promise about the final resolve or reject of the passed promises before resolving
our own deferred:

function eventStream(promises){

 var i, deferred = $.Deferred(),

 firedCount = 0,

 callNotify = function(index, type){

 return function(){

 deferred.notify({

 index: index,

 type: type,

 args: [].slice.call(arguments)

 });

 if (type === 'resolve' || type === 'reject'){

 if (++firedCount === promises.length){

 // All promised have fired.

 deferred.resolve();

 }

 }

 };

Streaming Promise Events | 97

 };

 for (i = 0; i < promises.length; i++){

 promises[i]

 .done(callNotify(i, 'resolve'))

 .fail(callNotify(i, 'reject'))

 .progress(callNotify(i, 'notify'));

 }

 return deferred.promise();

}

3. You can clone a promise using delegateEventStream by passing it a handler that
just calls the corresponding method on the deferred it is passed:

function clonePromise(promise){

 var handler = function(index, type, args, deferred){

 var func;

 if (type === 'resolve'){

 func = deferred.resolve;

 }

 else if (type === 'reject'){

 func = deferred.reject;

 }

 else if (type === 'notify'){

 func = deferred.notify;

 }

 func.apply(deferred, args);

 };

 return delegateEventStream([promise], handler);

}

In case you don’t get the flow of events here, delegateEventStream creates a new

promise and returns it, and it’s that promise that clonePromise also returns. When

the original promise (passed to clonePromise and passed on to delegateEvent

Stream) is resolved or rejected or makes progress, delegateEventStream will call

the handler defined in clonePromise with the information about what happened.
To effectively clone the original promise, we just make the same thing happen

to the new promise (whose deferred has been passed to our handler by delegate

EventStream). This is admittedly convoluted, but see if you can think it through.
It’s good advanced training for thinking about hooking up multiple deferreds.

Getting the First Result from a Set of Promises

1. By now you shouldn’t need to pause for even a second to solve this. Use fail to add

error processing. Remember that your fail callback will receive two arguments:
the index of the promise that was rejected, and an error value.

98 | Appendix A: Hints for Selected Challenges

2. A no-argument call to fastestPromise will result in a promise, as usual. Unfortu‐
nately, the promise will never fire! You might think there’s no way this could happen

—who would be silly enough to call fastestPromise with no arguments when

you’re clearly supposed to give it arguments? But, a call via fastestPromise.ap

ply could do it by accidentally supplying an empty argument list. So it’s better to
be defensive and to throw some kind of error (or, perhaps, to return an already
rejected promise holding some kind of error).

3. You could write something like this:

var lookup = fastestPromiseWithIndex([

 emailFromRedis('joe'),

 emailFromDatabase('joe')

])

.then(function(index, email){

 var avatarLookup;

 if (index !== 0){

 // Add email address to Redis so we have it cached.

 }

 avatarLookup = fastestPromiseWithIndex([

 avatarFromRedis('joe'),

 avatarFromFilesystem('joe'),

 avatarFromGravatar(email)

]);

 avatarLookup.then(function(index, avatar){

 if (index !== 0){

 // The response was not from Redis.

 // Add avatar info to Redis so we have it cached.

 }

 if (index !== 2){

 // The response was not from Gravatar.

 // Cancel the outstanding Gravatar network request.

 }

 return avatar;

 });

 return avatarLookup.promise();

});

This introduces a slowdown, though, as all requests to look up an avatar now start
with a lookup of the user’s email address (to pass to Gravatar). This may be accept‐
able (due to the Redis caching of email addresses), but in practice you might want
to try the Redis and database avatar lookups first. Only if they fail should you look
up the email address and make the call to Gravatar.

Getting the First Result from a Set of Promises | 99

Note that in a real-world scenario you would need to build this functionality using

delegateEventStream, not fastestPromiseWithIndex, as explained in “delega‐
teEventStream Redux” on page 59.

4. The following will work, with the usual caveat that testing whether an object is a
promise is not bulletproof:

function fastestPromiseWithIndex(promiseInfo){

 var item, deferred = $.Deferred(),

 makeDone = function(index){

 return function(result){

 deferred.resolve(index, result);

 };

 },

 makeFail = function(index){

 return function(error){

 deferred.reject(index, error);

 };

 };

 for (var i = 0; i < promiseInfo.length; i++){

 item = promiseInfo[i];

 if (item.promise && jQuery.isFunction(item.promise)){

 item.promise().done(makeDone(i)).fail(makeFail(i));

 }

 else {

 deferred.resolve(i, item);

 break;

 }

 }

 return deferred.promise();

}

5. In eventHandler where we check if type === 'reject', examine args. If a tran‐

sient network failure is indicated, don’t call deferred.reject.

6. Exactly as above, handle this when promises are rejected. Differentiate between the
different reasons for the rejection.

7. In eventHandler, whenever a promise is resolved, we need to check if the status is

a 404 and, if so, whether the index is 0 or 1. In either of those cases, arrange to add
the avatar to the cache that missed. We can only populate the caches once we actually
have the avatar, but we won’t yet have it when the fast cache lookups fail. If you’ve

been paying attention, a solution should spring to mind! Just add a done callback
to the deferred’s promise. When the deferred fires later with the eventual result, we
can update either or both of the Redis and filesystem caches, as needed. Try some‐
thing like this:

function eventHandler(index, type, args, deferred){

 if (type === 'resolve'){

100 | Appendix A: Hints for Selected Challenges

 if (args[0].status === 404){

 if (index === 0){

 // Redis look-up failed.

 deferred.promise().done(function(avatar){

 // Add avatar to Redis cache.

 });

 }

 else if (index === 1){

 // Filesystem look-up failed.

 deferred.promise().done(function(avatar){

 // Add avatar to filesystem cache.

 });

 }

 }

 else {

 deferred.resolve.apply(deferred, args);

 }

 }

 else if (type === 'reject'){

 deferred.reject.apply(deferred, args);

 }

}

8. The bug will be triggered if all three lookup functions resolve with a 404 status. In

that case, the deferred (created by delegateEventStream and passed to eventHan

dler) will never be fired. An easy way to fix this is to write a function, makeEvent

Handler, that returns the eventHandler function. makeEventHandler can have a
private variable that counts the number of resolved deferreds. If all three deferreds

resolve with a 404 status, eventHandler can reject or resolve the deferred in some
way, or set up further processing to try to get a result.

A Deferred Queue
1. A priority queue can naturally be implemented with a heap data structure. But don’t

reinvent the wheel more than strictly necessary, unless you want to learn about
heaps by implementing one. There are already many JavaScript priority queue
implementations.

2. You’re largely on your own on this one, sorry! To help with the thinking, it is useful

to return a task identifier from put. A task identifier can then be passed to the delete

and reprioritize functions, allowing those elements to be found in the priority
queue.

One of us wrote a Twisted (Python) deferred priority queue with delete and repri‐
oritize functions that may be a useful point of reference.

A Deferred Queue | 101

http://bit.ly/IJYVIr
http://bit.ly/IJZ9iN

when2: An Improved jQuery.when

1. The promise returned by when2 would never be resolved in the cases where you
passed it no promise arguments.

2. There would be no change in the behavior of when2, since it doesn’t matter if a
deferred is resolved or rejected multiple times. The change would be a slight re‐
duction in code size and a slight increase in run time.

3. You might change the end of when2 to look like this:

for (i = 0; i < length; i++){

 if (resolveValues[i] &&

 jQuery.isFunction(resolveValues[i].promise)){

 promiseArgFound = true;

 resolveValues[i].promise()

 .done(doneFunc(i))

 .fail(failFunc(i))

 .progress(progressFunc(i));

 }

 else {

 resolveContexts[i] = window;

 --remaining;

 }

}

if (!promiseArgFound){

 if (resolveOnFirstSuccess && length){

 deferred.resolveWith(window, [0, resolveValues[0]]);

 }

 else {

 deferred.resolveWith(resolveContexts, resolveValues);

 }

}

return deferred.promise();

4. When we have only one promise, we can use resolveOnFirstSuccess and the first

to finish (either the wait promise or the promise we want to time out) will send its

result to the done callback. But if we have multiple promises that we want the results
from (assuming they’ll all complete before the timeout), we’ll only ever get the result
of one of them (the first to resolve).

5. The easiest solution is to take what’s currently called when the deferreds make pro‐
gress and instead call it when the deferreds are resolved. That’s easily done: just

change the callback-adding code in the for loop at the end of when2 to look like
this:

resolveValues[i].promise()

 .done(progressFunc(i))

102 | Appendix A: Hints for Selected Challenges

 .done(doneFunc(i))

 .fail(failFunc(i));

Note that we call done with the progress function first. That way, the progress

callbacks attached to the when2 promise will get notified of all deferreds as they
finish, before the master deferred is finally resolved with all values. If we had instead
written:

.done(doneFunc(i)).done(progressFunc(i))

the “progress” completion of the last deferred to resolve would not be reported

because the when2 deferred would have already been resolved by the function re‐

turned by doneFunc(i).

Timing Out Promises

1. If we removed the clearTimeout call in deactivatingWait, nothing would change.
The timeout would be triggered, but the deferred would have already been resolved.
Rejecting a deferred after it has already been resolved has no effect (see “Deferred

Dynamics” on page 18 if you’re unclear on this). The clearTimeout call is only
included for good housekeeping, and it doesn’t leave someone reading your code
to wonder why it’s not cleared (an explanatory comment would help).

2. If rejectOnFirstError were not true (or missing from options), timeout expiry

would not cause the when2 deferred to be rejected. when2WithTimeout would be
completely broken because it would never time out.

Controlling Your Own Destiny

1. deferredFromPromise can be made into a one-liner by passing an initialization

argument to $.Deferred() as follows:

function deferredFromPromise(promise){

 return $.Deferred(function(deferred){

 promise

 .done(deferred.resolve)

 .fail(deferred.reject)

 .progress(deferred.notify);

 });

}

2. Just return the deferred! There’s no need to extract its promise and pass that to

deferredFromPromise.

3. The code will still work just fine. The deferred returned by deferredFromPro

mise will already be resolved. Because the passed promise has fired, the addition of

Timing Out Promises | 103

callbacks to it in deferredFromPromise will cause deferred to be resolved or re‐
jected (as appropriate) immediately.

Deactivating a Promise

1. The new promise is returned so the result of calling deactivate can be chained.
Given that you’ve just deactivated the promise, though, you’re highly unlikely to
want to add any more callbacks to it! Returning the promise is therefore of ques‐
tionable utility.

2. Change unlessDeactivated to use apply, as follows:

function unlessDeactivated(){

 return function(){

 if (deactivated === false){

 func.apply(deferred, [].slice.call(arguments));

 }

 };

}

3. There are two obvious ways. You could create a new object and copy the public

methods (done, fail, etc.) from newPromise to it, as well as giving it a deactiva

ted method. That would work, but it’s also not future-proof. If jQuery adds a

deactivate method to promises, that method would not be accessible from the

artificial promise returned by deactivatablePromise; only our deactivate meth‐
od could be called.

A better solution would be to change deactivatablePromise to return a list of two

things: the new promise and a separate deactivate function.

4. Here’s how you might do it:

function controllablePromise(promise){

 var deferred = $.Deferred(),

 deactivated = false,

 unlessDeactivated = function(func){

 return function(){

 if (deactivated === false){

 return func.apply(deferred,

 [].slice.call(arguments));

 }

 return deferred;

 };

 },

 resolve = unlessDeactivated(deferred.resolve),

 resolveWith = unlessDeactivated(deferred.resolveWith),

 reject = unlessDeactivated(deferred.reject),

 rejectWith = unlessDeactivated(deferred.rejectWith),

104 | Appendix A: Hints for Selected Challenges

 notify = unlessDeactivated(deferred.notify),

 notifyWith = unlessDeactivated(deferred.notifyWith);

 promise.done(resolve).fail(reject).progress(notify);

 deferred.resolve = resolve;

 deferred.resolveWith = resolveWith;

 deferred.reject = reject;

 deferred.rejectWith = rejectWith;

 deferred.notify = notify;

 deferred.notifyWith = notifyWith;

 deferred.deactivate = function(){

 deactivated = true;

 return deferred;

 };

 return deferred;

}

See the previous challenge to learn why this approach isn’t 100% safe.

Bonus challenge! Why does the function returned by unlessDeactivated return
the deferred? Why did the version in “Deactivating a Promise” on page 74 not do
so?

Deactivating a Promise | 105

1. This appendix reproduces the Promises/A+ specification.

APPENDIX B

The Promises/A+ Specification

An open standard for sound, interoperable JavaScript promise—by implementers,

for implementers.1

A promise represents the eventual result of an asynchronous operation. The primary

way of interacting with a promise is through its then method, which registers callbacks
to receive either a promise’s eventual value or the reason why the promise cannot be
fulfilled.

This specification details the behavior of the then method, providing an interoperable
base which all Promises/A+ conformant promise implementations can be depended on
to provide. As such, the specification should be considered very stable. Although the
Promises/A+ organization may occasionally revise this specification with minor
backward-compatible changes to address newly-discovered corner cases, we will inte‐
grate large or backward-incompatible only after careful consideration, discussion, and
testing.

Historically, Promises/A+ clarifies the behavioral clauses of the earlier Promises/A pro‐
posal, extending it to cover de facto behaviors and omitting parts that are underspecified
or problematic.

Finally, the core Promises/A+ specification does not deal with how to create, fulfill, or

reject promises, choosing instead to focus on providing an interoperable then method.
Future work in companion specifications may touch on these subjects.

107

http://bit.ly/1bC2aI7
http://bit.ly/1bBV1Yp
http://bit.ly/1bBV1Yp

Terminology

1. “promise” is an object or function with a then method whose behavior conforms
to this specification.

2. “thenable” is an object or function that defines a then method.

3. “value” is any legal JavaScript value (including undefined, a thenable, or a promise).

4. “exception” is a value that is thrown using the throw statement.

5. “reason” is a value that indicates why a promise was rejected.

Requirements

Promise States
A promise must be in one of three states: pending, fulfilled, or rejected.

1. When pending, a promise:

a. may transition to either the fulfilled or rejected state.

2. When fulfilled, a promise:

a. must not transition to any other state.

b. must have a value, which must not change.

3. When rejected, a promise:

a. must not transition to any other state.

b. must have a reason, which must not change.

Here, “must not change” means immutable identity (i.e., ===), but does not imply deep
immutability.

The then Method
A promise must provide a then method to access its current or eventual value or reason.

A promise’s then method accepts two arguments:

promise.then(onFulfilled, onRejected)

1. Both onFulfilled and onRejected are optional arguments:

a. If onFulfilled is not a function, it must be ignored.

b. If onRejected is not a function, it must be ignored.

108 | Appendix B: The Promises/A+ Specification

2. Here “platform code” means engine, environment, and promise implementation code. In practice, this re‐

quirement ensures that onFulfilled and onRejected execute asynchronously, after the event loop turn in

which then is called, and with a fresh stack. This can be implemented with either a “macro-task” mechanism

such as setTimeout or setImmediate, or with a “micro-task” mechanism such as MutationObserver or

process.nextTick. Since the promise implementation is considered platform code, it may itself contain a
task-scheduling queue or “trampoline” in which the handlers are called.

3. That is, in strict mode this will be undefined inside of them; in sloppy mode, it will be the global object.

4. Implementations may allow promise2 === promise1, provided the implementation meets all requirements.

Each implementation should document whether it can produce promise2 === promise1 and under what
conditions.

2. If onFulfilled is a function,

a. It must be called after promise is fulfilled, with promise’s value as its first argu‐
ment.

b. It must not be called before promise is fulfilled.

c. It must not be called more than once.

3. If onRejected is a function,

a. It must be called after promise is rejected, with promise’s reason as its first
argument.

b. It must not be called before promise is rejected.

c. It must not be called more than once.

4. onFulfilled or onRejected must not be called until the execution context stack
contains only platform code.2

5. onFulfilled and onRejected must be called as functions (i.e., with no this value3).

6. then may be called multiple times on the same promise.

a. If/when promise is fulfilled, all respective onFulfilled callbacks must execute

in the order of their originating calls to then.

b. If/when promise is rejected, all respective onRejected callbacks must execute

in the order of their originating calls to then.

7. then must return a promise.4

promise2 = promise1.then(onFulfilled, onRejected);

a. If either onFulfilled or onRejected returns a value x, run the Promise Reso‐

lution Procedure [[Resolve]](promise2, x).

b. If either onFulfilled or onRejected throws an exception e, promise2 must be

rejected with e as the reason.

c. If onFulfilled is not a function and promise1 is fulfilled, promise2 must be
fulfilled with the same value.

Requirements | 109

http://bit.ly/1bBXimt
http://bit.ly/IK14Ux
http://bit.ly/1bC2aYw
http://bit.ly/1bC2dDL
http://bit.ly/IK0wxP

5. Generally, it will only be known that x is a true promise if it comes from the current implementation. This
clause allows the use of implementation-specific means to adopt the state of known-conformant promises.

6. This procedure of first storing a reference to x.then, then testing that reference, and then calling that refer‐

ence, avoids multiple accesses to the x.then property. Such precautions are important for ensuring consis‐
tency in the face of an accessor property, whose value could change between retrievals.

d. If onRejected is not a function and promise1 is rejected, promise2 must be
rejected with the same reason.

The Promise Resolution Procedure
The promise resolution procedure is an abstract operation taking as input a promise and

a value, which we denote as [[Resolve]](promise, x). If x is a thenable, it attempts

to make promise adopt the state of x, under the assumption that x behaves at least

somewhat like a promise. Otherwise, it fulfills promise with the value x.

This treatment of thenables allows promise implementations to interoperate, as long as

they expose a Promises/A+-compliant then method. It also allows Promises/A+ im‐

plementations to “assimilate” nonconformant implementations with reasonable then
methods.

To run [[Resolve]](promise, x), perform the following steps:

1. If promise and x refer to the same object, reject promise with a TypeError as the
reason.

2. If x is a promise, adopt its state:5

a. If x is pending, promise must remain pending until x is fulfilled or rejected.

b. If/when x is fulfilled, fulfill promise with the same value.

c. If/when x is rejected, reject promise with the same reason.

3. Otherwise, if x is an object or function,

a. Let then be x.then.6

b. If retrieving the property x.then results in a thrown exception e, reject promise

with e as the reason.

c. If then is a function, call it with x as this, first argument resolvePromise, and

second argument rejectPromise, where:

i. If/when resolvePromise is called with a value y, run [[Resolve]](promise,

y).

ii. If/when rejectPromise is called with a reason r, reject promise with r.

110 | Appendix B: The Promises/A+ Specification

7. Implementations should not set arbitrary limits on the depth of thenable chains, and assume that beyond

that arbitrary limit the recursion will be infinite. Only true cycles should lead to a TypeError; if an infinite
chain of distinct thenables is encountered, recursing forever is the correct behavior.

iii. If both resolvePromise and rejectPromise are called, or multiple calls to
the same argument are made, the first call takes precedence, and any further
calls are ignored.

iv. If calling then throws an exception e,

i. If resolvePromise or rejectPromise have been called, ignore it.

ii. Otherwise, reject promise with e as the reason.

d. If then is not a function, fulfill promise with x.

4. If x is not an object or function, fulfill promise with x.

If a promise is resolved with a thenable that participates in a circular thenable chain,

such that the recursive nature of [[Resolve]](promise, thenable) eventually causes

[[Resolve]](promise, thenable) to be called again, following the above algorithm
will lead to infinite recursion.

Implementations are encouraged, but not required, to detect such recursion and reject

promise with an informative TypeError as the reason.7

Requirements | 111

APPENDIX C

Converting an ArrayBuffer to Base 64

The base64ArrayBuffer function we used in “Displaying Google Maps” on page 32 was
written by Nicolas Perriault and posted on StackOverflow.

The (slightly cleaned-up) code is reproduced below.

function base64ArrayBuffer(arrayBuffer){

 var base64 = '',

 encodings = ('ABCDEFGHIJKLMNOPQRSTUVWXYZ' +

 'abcdefghijklmnopqrstuvwxyz' +

 '0123456789+/'),

 bytes = new Uint8Array(arrayBuffer),

 byteLength = bytes.byteLength,

 byteRemainder = byteLength % 3,

 mainLength = byteLength - byteRemainder,

 a, b, c, d,

 chunk,

 i;

 // Main loop deals with bytes in chunks of 3

 for (i = 0; i < mainLength; i = i + 3){

 // Combine the three bytes into a single integer

 chunk = (bytes[i] << 16) | (bytes[i + 1] << 8) | bytes[i + 2];

 // Use bitmasks to extract 6-bit segments from the triplet

 a = (chunk & 16515072) >> 18; // 16515072 = (2^6 - 1) << 18

 b = (chunk & 258048) >> 12; // 258048 = (2^6 - 1) << 12

 c = (chunk & 4032) >> 6; // 4032 = (2^6 - 1) << 6

 d = chunk & 63; // 63 = 2^6 - 1

 // Convert the raw binary segments to the appropriate ASCII encoding

 base64 += encodings[a] + encodings[b] + encodings[c] + encodings[d];

 }

113

http://bit.ly/1bC2aYy

 // Deal with the remaining bytes and padding

 if (byteRemainder === 1){

 chunk = bytes[mainLength];

 a = (chunk & 252) >> 2; // 252 = (2^6 - 1) << 2

 // Set the 4 least significant bits to zero

 b = (chunk & 3) << 4; // 3 = 2^2 - 1

 base64 += encodings[a] + encodings[b] + '==';

 } else if (byteRemainder === 2){

 chunk = (bytes[mainLength] << 8) | bytes[mainLength + 1];

 a = (chunk & 64512) >> 10; // 64512 = (2^6 - 1) << 10

 b = (chunk & 1008) >> 4; // 1008 = (2^6 - 1) << 4

 // Set the 2 least significant bits to zero

 c = (chunk & 15) << 2; // 15 = 2^4 - 1

 base64 += encodings[a] + encodings[b] + encodings[c] + '=';

 }

 return base64;

}

114 | Appendix C: Converting an ArrayBuffer to Base 64

About the Authors
Terry Jones is the founder and CTO of Fluidinfo, and has been programming for 35
years. He has worked extensively with deferreds for the last 7 years and, strange to say,
has become passionate about them. In particular, he loves how elegantly deferreds can
be clicked together to build more complex things and how thinking about them has
broadened his perspective on programming. There’s more about Terry on his out-of-
date web pages and he also blogs regularly. He can be reached at terry@jon.es.

Nicholas H. Tollervey is a classically trained musician, philosophy graduate, teacher,
writer, and software developer. He’s just like this biography: concise, honest, and full of
useful information. He blogs at ntoll.org, tweets as ntoll and can be reached at
ntoll@ntoll.org.

Colophon
The animal on the cover of Learning jQuery Deferreds is a musky rat-kangaroo
(Hypsiprymnodon moschatus).

The cover image is from Johnson’s Natural History. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://fluidinfo.com
http://jon.es/terry.html
http://blogs.fluidinfo.com/terry
http://ntoll.org/
http://twitter.com/ntoll

	Copyright
	Table of Contents
	Preface
	About You
	Our Aims
	Challenges
	jQuery Deferreds
	Our JavaScript Coding Style, or Lack Thereof
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	Food for Thought
	Terminology: Deferreds and Promises
	Familiar Promises

	Chapter 2. The jQuery Deferred API
	Consuming Promises
	More Terminology: Resolve, Reject and Progress
	done
	fail
	always
	progress
	promise
	then
	state
	when

	Creating Deferreds
	Construction
	resolve and resolveWith
	reject and rejectWith
	notify and notifyWith

	Putting It All Together
	Deferred Dynamics
	Deprecated Promise Methods
	isRejected and isResolved
	pipe

	Changes in the jQuery Deferred API

	Chapter 3. Deferred Recipes
	A Replacement for the setTimeout Function
	Challenges

	Messaging in Chrome Extensions
	Challenges

	Accessing Chrome Local Storage
	Challenges

	Running Promise-Returning Functions One by One
	Challenges

	A Promise Pool with an emptyPromise Method
	Creating a Promise Pool
	Using the Promise Pool
	Challenges

	Displaying Google Maps
	Challenges

	Communicating with a Web Worker
	The Web Worker Code
	Creating a Web Worker
	Using It
	Summary
	Challenges

	Using Web Sockets
	The Web Socket Server
	The Web Socket Client
	Challenges

	Automatically Retrying Failing Deferred Calls
	Challenges

	Memoization
	Discussion
	Avoiding the Dogpile Effect
	Challenges

	Short-Term Memoization of In-Progress Function Calls
	createUser Is Not Idempotent
	Challenges

	Streaming Promise Events
	Delivering More Information
	Delegating the Event Stream
	To Be Continued…
	Challenges

	Getting the First Result from a Set of Promises
	Which Promise Fired?
	A Fly in the Soup
	delegateEventStream Redux
	Challenges

	A Deferred Queue
	Challenges

	when2: An Improved jQuery.when
	Using when2 to Time Out a Single Promise
	Differences from $.when
	Challenges

	Timing Out Promises
	Challenges

	Controlling Your Own Destiny
	Challenges

	Deactivating a Promise
	Challenges

	Chapter 4. More Time in the Mental Gymnasium
	Do You Really Understand jQuery Deferreds?
	Promises/A+
	Promises Are First-Class Objects for Function Calls
	Asynchronous Data Structures
	Advantages of Deferreds
	Difficulties with Deferreds
	Further Reading

	Appendix A. Hints for Selected Challenges
	A Replacement for the setTimeout Function
	Messaging in Chrome Extensions
	Accessing Chrome Local Storage
	Running Promise-Returning Functions One by One
	A Promise Pool with an emptyPromise Method
	Displaying Google Maps
	Communicating with a Web Worker
	Using Web Sockets
	Automatically Retrying Failing Deferred Calls
	Memoization
	Short-Term Memoization of In-Progress Function Calls
	Streaming Promise Events
	Getting the First Result from a Set of Promises
	A Deferred Queue
	when2: An Improved jQuery.when
	Timing Out Promises
	Controlling Your Own Destiny
	Deactivating a Promise

	Appendix B. The Promises/A+ Specification
	Terminology
	Requirements
	Promise States
	The then Method
	The Promise Resolution Procedure

	Appendix C. Converting an ArrayBuffer to Base 64
	About the Authors

