
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Callum Macrae

Learning from jQuery

www.allitebooks.com

http://www.allitebooks.org

ISBN: 978-1-449-33519-9

[LSI]

Learning from jQuery

by Callum Macrae

Copyright © 2013 Callum Macrae. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corpo-
rate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St.Laurent and Meghan Blanchette

Production Editor: Rachel Steely

Copyeditor: Rachel Monaghan

Proofreader: Kiel Van Horn

Cover Designer: Randy Corner

Interior Designer: David Futato

Illustrator: Rebecca Demarest

February 2013: First Edition.

Revision History for the First Edition.:

2013-01-28 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449335199 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning from jQuery, the image of a green broadbill, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449335199
http://www.allitebooks.org

Table of Contents

Preface. vii

1. Event Handling. 1
Listening for Events 1

Events in jQuery 1
Events in JavaScript 2
Events in Internet Explorer 8 2
Writing a Wrapper Function 3
Adding Event Handlers to Multiple Elements 5

Event Propagation 7
Internet Explorer’s .attachEvent 10

Triggering Events 11
Triggering Events in Internet Explorer 8 13
Writing a Wrapper Function to Trigger Events 13

Removing Event Handlers 14
Removing Event Handlers in Internet Explorer 8 15
Writing a Wrapper Function to Remove Events 15

Adding a “Once Only” Event Listener 16
Summary 17

2. Constructors and Prototypes. 19
Constructors 19

Method Chaining 20
Constructor, Not Function 21

Prototypes 22
.hasOwnProperty 24
Editing the Prototype of Existing Objects 24

Summary 25

3. DOM Traversal and Manipulation. 27

iii

www.allitebooks.com

http://www.allitebooks.org

Selecting an Element 27
Selecting Elements with a CSS Selector 28

Selecting Children 29
Selecting the Next Element 30
Creating an Element 31
Modifying an Existing Element 31
Cycling Through Elements 33
Moving and Copying Elements 33
Summary 34

4. AJAX. 35
Sending an AJAX Request 35
Debugging 36

Debugging Sent AJAX Requests 37
Sending POST Requests in JavaScript 37
Writing a Wrapper Function 38
A Simple Application of AJAX 39
Designing a Site with AJAX 41
Summary 41

5. JavaScript Conventions. 43
Writing JavaScript 43

Comments 43
Coding Standards 46

Literals Notation 50
Object Literals 50
Other Literals 51

Optimizations 51
Algorithms 52
Caching Variables 52
parseInt 53
Loops 53
Minimize Repeated Expressions 54

Functions 54
Declarations Versus Expressions 54
Function Callbacks 55
If Invoking Self-Defining Functions 56

Code Reuse 58
Common Antipatterns 58

Using eval 59
with 59
document.write 60

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Common Design Patterns 60
The Singleton Pattern 61
The Factory Pattern 62
The Iterator Pattern 63
The Facade Pattern 64

Summary 65

A. JavaScript Basics. 67

B. JavaScript Resources. 97

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

Many developers are comfortable with using the jQuery library, which adds features
to JavaScript and makes a lot of tasks easier, but they are slightly less confident when
using JavaScript without jQuery. This could be because they don’t like the syntax of
JavaScript and so try to avoid writing pure JavaScript as much as possible, or it could
just be because they’re hoping that they’ll never have to work on a project where they
can’t use jQuery. Whatever the reason, this can result in the parts of their code that
aren’t using jQuery being inefficient or incorrect.

If any of this sounds like you, then this book provides an opportunity for you to expand
your knowledge of the bits of JavaScript that jQuery covers up for you. In the first four
chapters, we’ll cover event handling, prototypes, working with the DOM, and AJAX.
Chapter 5 is about conventions in JavaScript, and covers some common conventions
and patterns in JavaScript. There are also two appendixes: Appendix A aims to teach
JavaScript to someone who has never written it without jQuery before, and Appen-
dix B highlights some useful tools that you can use to aid you when coding.

You can find all the major functions from this book, such as the AJAX and event
functions, and some additional code samples, on this GitHub repo.

Who This Book Is For
This book is targeted at developers who know jQuery, but who don’t yet feel confident
in their JavaScript knowledge or would just like to know more. You don’t need to know
everything there is to know about jQuery, as I’ll be explaining what something does

if it isn’t already obvious—for example, I wouldn’t explain what .fadeIn() does, as it
is descriptive enough that it doesn’t require explanation.

vii

www.allitebooks.com

http://bit.ly/V3P0ia
http://www.allitebooks.org

Who This Book Isn’t For
This book assumes a basic knowledge of jQuery, and I wouldn’t recommend reading
it if you have no experience in JavaScript or jQuery. If that describes you, I would
recommend finding a basic JavaScript book such as Michael Morrison’s Head First
JavaScript, David Sawyer McFarland’s JavaScript and jQuery: The Missing Manual, or
Shelley Powers’s Learning JavaScript. For a more comprehensive exploration, try David
Flanagan’s JavaScript: The Definitive Guide.

While it certainly won’t hurt, this book wasn’t written for you if you already consider
yourself fairly good with JavaScript, and you may not learn much. You won’t have
covered everything in the book (especially in Chapter 5), but a lot of it will likely be
material you already know.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

viii | Preface

www.allitebooks.com

http://oreil.ly/HF_JavaScript
http://oreil.ly/HF_JavaScript
http://oreil.ly/JavaScript_jQuery_TMM
http://oreil.ly/Learning_JavaScript
http://oreil.ly/JS_Definitive_Guide
http://www.allitebooks.org

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation.
You do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM of
examples from O’Reilly books does require permission. Answering a question by cit-
ing this book and quoting example code does not require permission. Incorporating
a significant amount of example code from this book into your product’s documen-
tation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning from jQuery by Callum Ma-
crae (O’Reilly). Copyright 2013 Callum Macrae, 978-1-449-33519-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organ-
izations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and dozens more. For more information about Safari Books Online,
please visit us online.

Preface | ix

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at: http://oreil.ly/Learning_jQuery

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thank you to David DeMello, Eric Hamilton, Cody Lindley, and Ralph Whitbeck, the
technical reviewers without whom this book wouldn’t be half what it is now. Thanks
also to my editors, Meghan Blanchette and Simon St.Laurent, and everyone else at
O’Reilly Media.

A massive thanks to all the folks at webdevRefinery for motivating me to write this
book in the first place.

Finally, I’d like to thank John Resig and everyone else who has contributed to the
wonderful jQuery library. Without jQuery, I would be stuck spending half my time
debugging Internet Explorer issues!

x | Preface

http://oreil.ly/Learning_jQuery
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Event Handling

In JavaScript, an event is the result of an action that can be detected by JavaScript—
for example, the user clicking a button or the page load completing. Events are the
heart of pretty much all web applications. Event handling, as you can probably tell by
the name, is how we handle these events.

jQuery provides a suite of functions to make event handling considerably easier than
in JavaScript alone. While this is nice, it can add overhead and remove control from
you, the developer. For this reason, it is important to know how you can handle events
without jQuery in pure JavaScript. In this chapter, I’ll be covering that as well as a few
other topics that can help your jQuery knowledge, such as more about what events
actually are and how they work.

Internet Explorer 8 and below does event handling completely differently than any
other browser, and completely independently from any standards. If you’re writing an
application that needs to support 99% of the market share and you cannot use jQuery,
then you will need to write for these older browsers—even IE6 still has an over 5%
market share at the time of writing. This chapter will cover event handling in Internet
Explorer as well as in other browsers.

Listening for Events

Events in jQuery
The best way to explain events is probably by using an example, and the best example
(as I’m assuming that you know jQuery) is to show an extract of jQuery code that

works with events. The following code turns the anchor element with ID foo red when

it is clicked, and then prevents the link from being followed by calling e.preventDe

fault():

1

$('a#foo').click(function (e) {

 $(this).css('color', 'red');

 e.preventDefault();

});

Events in JavaScript
Following is the same code, but in pure JavaScript. It will not work in IE8 and below,
which we will cover in the next section:

var foo = document.getElementById('foo');

foo.addEventListener('click', function (e) {

 this.style.color = 'red';

 e.preventDefault();

});

The .addEventListener function accepts three arguments. The first is the event type,
and the second is the callback to be called when the event is fired. The third argument
allows you to specify whether the event should be capturing or bubbling (i.e., the order
in which it should propagate in; I’ll explain this later), but as IE8 and below don’t
support that, it isn’t commonly used. The callback is sent the event as an argument,
which contains a lot of information—such as the x and y positions of the mouse when
it clicked the element, and information on elements such as the current element and
the element from which the event was fired (they can be different if the event has

propagated). It also has some useful methods such as .preventDefault() and .stop

Propagation(). The callback is called with the element as the context, so the element

can be referred to using this. Unlike with jQuery, the return value doesn’t do anything
at all.

.preventDefault() stops the default action from happening. For example, if we had

a link to some website with ID foo (Click

here!) and we ran the previous code, clicking the link would not go to that web-

site, as the call to e.preventDefault() would prevent it (following the link is the
default action).

In jQuery, you can also return false to prevent the default action. However, this also
stops the event from propagating (we will cover event propagation later), which is
generally undesired.

Events in Internet Explorer 8
Internet Explorer 9 introduced support for .addEventListener, and so can use the
preceding code. However, earlier IE versions don’t support it, so we have to use another

function, .attachEvent. It only supports bubbling events, and you can’t refer to the

2 | Chapter 1: Event Handling

element using this; you have to use either e.target or e.srcElement (although it is

easier to just save the element from earlier). It also doesn’t support e.preventDe

fault(); we have to set e.returnValue to false instead. Following is the same code
from the previous two examples, but for Internet Explorer 8:

var foo = document.getElementById('foo');

foo.attachEvent('onclick', function (e) {

 // Either:

 foo.style.color = 'red';

 // Or:

 ((e.target) ? e.target : e.srcElement).style.color = 'red';

 e.returnValue = false;

});

Writing a Wrapper Function
jQuery makes it very easy to bind events to objects in every browser, but it isn’t always
necessary to load the entire jQuery library just to use the event handling functions,
which can be replicated fairly easily. I’ll give you some code, and then I will explain
how it works:

function addEventListener(element, event, handler) {

 if (element.addEventListener) {

 element.addEventListener(event, handler);

 } else if (element.attachEvent) {

 element.attachEvent('on' + event, function (e) {

 e.preventDefault = function () {

 e.returnValue = false;

 };

 handler.call(element, e);

 });

 }

}

We can then call it using the following code (in any browser):

var foo = document.getElementById('foo');

addEventListener(foo, 'click', function (e) {

 this.style.color = 'red';

 e.preventDefault();

});

The addEventListener function first checks whether the element has the .addEvent

Listener method, and if so, then it calls it normally. If it doesn’t exist, the function

Listening for Events | 3

checks whether the .attachEvent method exists, and if so, then it calls function as
the handler. When the anonymous function is called, it calls the actual handler us-

ing .call, which allows us to specify the scope to be used as the first argument,

meaning that we can refer to the element using this.

To enable us to use the e.preventDefault() function in Internet Explorer, I’m adding

that function to the event, and when it is called, I’m setting e.returnValue to false.
We could also do this the other way around using the following, but I won’t be keeping
this code as we develop this function throughout the chapter because it isn’t standard-

conforming like e.preventDefault():

function addEventListener(element, event, handler) {

 if (element.addEventListener) {

 element.addEventListener(event, function (e) {

 handler.call(this, e);

 if (e.returnValue === false) {

 e.preventDefault();

 }

 });

 } else if (element.attachEvent) {

 element.attachEvent('on' + event, function (e) {

 handler.call(element, e);

 });

 }

}

That can be called as follows in any browser:

var foo = document.getElementById('foo');

addEventListener(foo, 'click', function (e) {

 this.style.color = 'red';

 e.returnValue = false;

});

We can also replicate jQuery’s return false behavior by checking the return value
of the event handler:

function addEventListener(element, event, handler) {

 if (element.addEventListener) {

 element.addEventListener(event, function (e) {

 if (handler.call(this, e) === false) {

 e.preventDefault();

 }

 });

 }

 } else if (element.attachEvent) {

 element.attachEvent('on' + event, function (e) {

 if (handler.call(element, e) === false) {

 e.returnValue = false;

4 | Chapter 1: Event Handling

 }

 });

 }

}

That can be called as follows in any browser:

var foo = document.getElementById('foo');

addEventListener(foo, 'click', function (e) {

 this.style.color = 'red';

 return false;

});

A lot of websites and web-based applications have completely dropped support for
Internet Explorer versions earlier than 9, so they do not need to use a wrapper function

or .attachEvent, and can just use .addEventListener. This reduces development and
testing time, and therefore costs less—but it does remove support for a substantial
chunk of the browser market.

I’m not going to cover this in any more detail than a brief mention here, but before
DOM 3 was specified, events were attached to elements inline. You may have seen
something like the following code before:

Click to turn red!

That code is pretty ugly, right? Not only is it very tricky to read, it is also very difficult
to maintain. Inline JavaScript and CSS is now frowned upon for those reasons, and
JavaScript and CSS should always be kept in external files. It isn’t commonly used
anymore, so I won’t be mentioning it again.

Adding Event Handlers to Multiple Elements
Sometimes it may be useful to add event listeners to multiple elements. There are two
different ways to do this: either we can cycle through the elements and add the event
handler to each one, or we can add the event handler to a common parent of the
elements, and wait for it to bubble up—see the section “Event Propagation” (page 7).
The second method is generally preferred because it uses fewer resources, but if there
are only a few elements, it can be overkill. The first method is more commonly used.

jQuery does both methods automatically. We can do the first method like this:

$('.bar').click(callback);

And the second like this:

$(document).on('click', '.bar', callback);

Listening for Events | 5

JavaScript does not do this automatically. Attempting to call .addEventListener

or .attachEvent on a list of elements will throw an error because it isn’t defined, and

calling the previously defined addEventListener function just won’t do anything, as
it won’t be able to find either method. In order to attach an event to multiple elements,
we have to loop through them:

var bars = document.getElementsByClassName('bar');

for (var i = 0; i < bars.length; i++) {

 addEventListener(bars[i], 'click', callback);

}

document.getElementsByClassName returns a NodeList, not an array. One main dif-
ference between the two is that NodeLists update live, meaning that changes to the
DOM also change the NodeList:

var paragraphs = document.getElementsByTagName('p');

console.log(paragraphs.length); // 3

// Create a new paragraph element and append it to the body

console.log(paragraphs.length); // 4

Occasionally, this can result in an infinite loop in the page: say you have a function
that loops through all paragraph elements, and then copies them to the end of a page.
This will also copy them to the end of the NodeList, meaning that they will also be
copied to the end of the page again, and again, and again…

There are two ways to avoid this. The first is to cache the length of the NodeList:

var paragraphs = document.getElementsByTagName('p');

for (var i = 0, len = paragraphs.length; i < len; i++) {

 document.body.appendChild(paragraphs[i].clone(true));

}

This means that if the original length of the NodeList were three, then it would only
clone three elements before stopping. The second approach would be to turn the
NodeList into an array:

var paragraphs = document.getElementsByTagName('p');

paragraphs = Array.prototype.slice.call(paragraphs);

for (var i = 0; i < paragraphs.length; i++) {

 document.body.appendChild(paragraphs[i].clone(true));

}

We did this by calling the Array.slice method directly on the NodeList, causing it
to treat it like an array. We can call other array methods on the NodeList using the

same method; in the following example, we loop through all elements with a data-

number attribute and return an array containing all of them:

var elements = document.querySelectorAll('[data-number]');

var numbers = Array.prototype.map.call(elements, function (element) {

6 | Chapter 1: Event Handling

 return Number(element.dataset.number); // Get the data-number attribute

});

console.log(numbers); // [3, 6, 2, 5.6]

Of course, it is easier to just use jQuery:

var numbers = $('[data-number]').map(function () {

 return $(this).data('number');

});

console.log(numbers); // [3, 6, 2, 5.6]

jQuery’s $.fn.data function automatically converts number strings to actual num-

bers. If you don’t want this behavior, you should use $.fn.attr.

Event Propagation
When an event is fired on an element, it isn’t just fired for the specific element, it is
also fired for all parent elements of that element. This can be pretty useful for setting
an event listener on multiple elements at the same time without having to loop through
them one by one:

document.addEventListener('click', function (e) {

 var element = e.srcElement;

 if (element.tagName === 'A') {

 var url = getAnchorURL(element);

 if (isEvil(url)) {

 e.preventDefault();

 // Inform user that they clicked an "evil" link

 }

 }

});

That code would add a listener for all clicks on anything in the document. When an

element with tagName “A” (an anchor element) is clicked, it checks whether the URL

is “evil” (e.g., linking to a dangerous site), and if so, it calls e.preventDefault(),

preventing the user from following the link. We have to use e.srcElement instead of

this, as this would refer to the document because that is what the event is being fired
on.

jQuery’s .on method has this behavior built in. There is an optional second parameter
that allows you to specify a selector. If the selector matches the source element

(e.srcElement), then the event listener is fired. In effect, the following code does the
same thing as the previous:

$(document).on('click', 'a', function () {

 var element = e.srcElement,

 url = getAnchorURL(element);

Event Propagation | 7

 if (isEvil(url)) {

 e.preventDefault();

 // Inform user that they clicked an "evil" link

 }

});

The action of events being fired on the parent elements is called event propagation.
The order in which they are fired is called the event order. There are two possible event
orders that they can be fired in: bubbling and capturing.

When an event bubbles, it is fired first on the element itself, and then all of its parents
respectively; see Figure 1-1 for a graphical visualization. I find this event order to
generally be the most useful.

Figure 1-1. A bubbling event

When an event “captures,” it is fired first on the document body, and then works its
way down the tree to the element itself—see Figure 1-2.

Both methods can be useful. addEventListener has a third parameter that allows you

to specify the order in which you want the event to propagate: true or unspecified for

bubbling, or false for capturing. attachEvent doesn’t support capturing event lis-
teners at all, and so Internet Explorer 8 and below only supports bubbling events.

Going back to our original code sample to stop evil links from being clicked, we can
see that it should probably be a capturing event listener rather than a bubbling event
listener, as capturing event listeners are called first (see Figure 1-3). This means that

if we call e.stopPropagation(), any event listeners added to the element itself won’t
be called, so the link has a lower chance of being followed. Our new code, using
capturing event propagation, is as follows:

8 | Chapter 1: Event Handling

www.allitebooks.com

http://www.allitebooks.org

Figure 1-2. A capturing event

document.addEventListener('click', function (e) {

 var element = e.srcElement;

 if (element.tagName === 'A') {

 var url = getAnchorURL(element);

 if (isEvil(url)) {

 e.preventDefault();

 e.stopPropagation();

 // Inform user that they clicked an "evil" link

 }

 }

}, false);

So which are fired first, bubbling or captured event listeners? Does the event start at
the element, bubble up, and then capture back down again, or does it start at the
document? The WC3 specifies that events should capture down from the document,
and then bubble back up again, which you can see in Figure 1-3.

So, say we have the following document:

<!DOCTYPE html>

<html>

<body>

 <div id="foo">

 Test anchor

 </div>

</body>

</html>

Event Propagation | 9

Figure 1-3. Capturing and then bubbling

If we click on the anchor, the events will be fired in the following order:

1. On the document (capturing)

2. On the body (capturing)

3. On div#foo (capturing)

4. On the anchor (capturing)

5. On the anchor (bubbling)

6. On div#foo (bubbling)

7. On the body (bubbling)

8. On the document (bubbling)

Internet Explorer’s .attachEvent
.attachEvent has a couple more problems besides not supporting capturing events.

With .addEventListener, the listener is called with this referring to the element on
which the listener was fired (for example, the document or the body, not necessarily

the anchor). The event also has a .currentTarget property containing the element.

With .attachEvent, this refers to the window object and .currentTarget is unde-
fined with no equivalent property, so if the same event listener is assigned to multiple
elements we have no way of determining which element the event is being fired.

10 | Chapter 1: Event Handling

It also doesn’t have the e.stopPropagation() method, and instead has a .cancelBub

ble property that must be set to true to cancel propagation. The equivalent of the
code sample that I have been using throughout this section would be:

var elements = document.getElementsByTagName('a');

for (var i = 0; i < elements.length; i++) {

 (function (element) {

 element.attachEvent('onclick', function (e) {

 var url = getAnchorURL(element);

 if (isEvil(url)) {

 e.returnValue = false;

 e.cancelBubble = true;

 // Inform user that they clicked an "evil" link

 }

 });

 })(elements[i]);

}

We’ll add a fake e.stopPropagation method to our addEventListener function so
that we can use it in our event listeners without having to test whether it exists:

function addEventListener(element, event, handler) {

 if (element.addEventListener) {

 element.addEventListener(event, handler);

 } else if (element.attachEvent) {

 element.attachEvent('on' + event, function (e) {

 e.preventDefault = function () {

 e.returnValue = false;

 };

 e.stopPropagation = function () {

 e.cancelBubble = true;

 };

 handler.call(element, e);

 });

 }

}

Triggering Events
To trigger an event in jQuery, we can simply use the .trigger method on the element,
which will simulate the event being triggered. It doesn’t, however, actually trigger a

JavaScript event—it just cycles through all events set by .on (or any of the aliases, such

as .click) and calls them. This means that it will only trigger event handlers set by

jQuery, and any event handlers set using addEventListener will be ignored. There is
no way to trigger events set using JavaScript using only jQuery.

Triggering Events | 11

To trigger events the way jQuery does it, we would have to have an array of events to

which addEventListener adds whenever it is called, and then when .trigger is called,
we’d have to cycle through them, executing the events that match the event type and
element. Then, it would get slightly more complicated, as we would have to go up the
tree, calling the event listeners for each parent element until something stops propa-

gation or we hit the <html> element. This isn’t that difficult, though, as every element

has a .parentElement property that returns an element’s parent. It’ll only return the
one element, so we don’t need to worry about cycling through them, as it will not
return a NodeList.

We’re going to focus on the other method of triggering events, as we want it to work
with event handlers added with pure JavaScript. It’s a lot trickier than the way jQuery
does it—again, IE does it differently—but it is the only way that works when event

listeners have been added via the standard JavaScript APIs (.addEventListener).

First, we create the event using document.createEvent, and then we dispatch it using

the dispatchEvent method on the element. Sounds simple, right? It isn’t. I’ll give you
a generic solution, but there are many different types of events, and for each to work
correctly, the methods called and arguments given to them need to be slightly differ-
ent. Here is the generic solution:

var element = document.getElementById('foo');

var event = document.createEvent('UIEvents');

event.initUIEvent('click', true, true, window, 1);

var returned = element.dispatchEvent(event);

returned is set to the return value of any event handlers triggered. This can be useful

for replicating jQuery’s functionality where the developer can return false to prevent
the default action:

var element = document.getElementById('foo');

element.addEventListener('click', function () {

 return false;

});

var element = document.getElementById('foo');

var event = document.createEvent('UIEvents');

event.initUIEvent('click', true, true, window, 1);

var returned = element.dispatchEvent(event);

if (returned === false) {

 event.preventDefault();

}

That code should successfully call any event handlers, but it doesn’t set any of the often
useful properties like the x and y positions of the mouse; if you want them, you will

have to set them by modifying the event object:

12 | Chapter 1: Event Handling

var event = document.createEvent('UIEvents');

event.initUIEvent('click', true, true, window, 1);

event.x = 100;

event.y = 50;

var returned = element.dispatchEvent(event);

The event automatically bubbles, so there is no need to simulate that like you would
have to with the other method.

Triggering Events in Internet Explorer 8
Syntax-wise, triggering events in Internet Explorer is fairly similar to triggering events
in other browsers, but it uses different functions. The following code fires the click

event on the element with ID foo:

var element = document.getElementById('foo');

element.fireEvent('onclick');

element.fireEvent has an optional second parameter: the event. It can be used like
so:

var element = document.getElementById('foo');

var event = document.createEventObject();

event.button = 1;

element.fireEvent('onclick', event);

Again, if you want properties like the x and y positions of the mouse, you’ll have to

add them yourself. event.button = 1 tells the event that it is a left click.

It’s a lot less generic, and you can’t usually just change the name of the function without
weird side effects—you would have to customize the code more for behavior like
mouseover events.

Writing a Wrapper Function to Trigger Events
Writing a wrapper function for triggering events without a massive switch statement
is difficult, and a tad hacky. I would usually recommend either having a function for
each type of event you want to fire, or doing it how jQuery does it and storing an
object of events that have been set. I’ve written the following wrapper function, but I
wouldn’t really recommend using it; it is just to show you how you can use a single
function to fire events in all browsers:

function triggerEvent(element, event) {

 if (element.dispatchEvent) {

 var evt = document.createEvent('UIEvents');

 evt.initUIEvent(event, true, true, window, 1);

 element.dispatchEvent(evt);

 } else if (element.fireEvent) {

Triggering Events | 13

 // Internet Explorer support

 var evt = document.createEventObject();

 evt.button = 1;

 element.fireEvent('on' + event, evt);

 } else if (element['on' + event]) {

 element['on' + event].call();

 }

}

The last statement is to demonstrate how this function can work for older browsers

that still use DOM 2. If the event has been initiated via the onclick attribute and the

browser doesn’t support either .dispatchEvent or .fireEvent, then you can manually

run the code using .call().

To trigger events on multiple elements, you can use the same method
that we used to add event handlers to multiple elements: loop through
them.

Removing Event Handlers
To remove an event in jQuery, we can just use the .off method on the element:

function clickHandler(){}

$('#foo').click(clickHandler);

// Either:

$('#foo').off('click', clickHandler);

// Or:

$('#foo').off('click');

The difference between the two calls to .off is that the first removes only the handler
specified as the second argument, while the second removes all click handlers. Call-

ing .off with no arguments would remove all event handlers of every type from that
element (at least, ones set with jQuery). Note that you have to pass the exact function
that you set, or the handler won’t be removed. The following code, for example, will
not remove the event handler:

// Does not work:

$('#foo').click(function (){});

$('#foo').off('click', function (){});

To remove an event handler in JavaScript, use JavaScript’s .removeEventListener
method. It doesn’t work in Internet Explorer 8:

14 | Chapter 1: Event Handling

var foo = document.getElementById('foo');

function clickHandler(){}

addEventListener(foo, 'click', clickHandler);

foo.removeEventListener('click', clickHandler);

If we neglect to provide the last argument to .removeEventListener, then an error
will be thrown. If you want to remove all event listeners of a certain event, you have
to keep a record of them as you add them, and loop through them, removing them
one by one (wrapper functions are very useful for this).

Removing Event Handlers in Internet Explorer 8
To remove event handlers in Internet Explorer, we have to use the .detachEvent

function. It’s fairly similar to .removeEventHandler:

var foo = document.getElementById('foo');

function clickHandler(){}

addEventListener(foo, 'click', clickHandler);

foo.detachEvent('onclick', clickHandler);

Writing a Wrapper Function to Remove Events
As shown previously with triggering events, here I have written another basic wrapper
function—but in this case, to remove events in all browsers:

function removeEventListener(element, event, handler) {

 if (element.removeEventListener) {

 element.removeEventListener(event, handler);

 } else if (element.detachEvent) {

 element.detachEvent('on' + event, handler);

 }

}

Unfortunately, this won’t be able to remove events set via addEventListener in In-

ternet Explorer, as that function gives element.attachEvent a different callback than

the one given to addEventListener. We can work around this by modifying addEven

tListener to store the old callbacks and new callbacks in an object or array, which

we can then loop through in removeEventListener to find the new callback.

As noted, we could use either an object or array: in an object, we would somehow
turn the original function into the key (if we just use the function as the key, then
functions with the same code will override each other because they will be converted
to strings) and store the functions by those keys. Then when we go to remove the
event listener, we will turn the function back into the key using the same method, and

Removing Event Handlers | 15

then the generated callback will be grabbed and removed. To use an array, we would
simply push the original function and the new function to an array and cycle through
the array to find the event listener when we go to remove it. For the sake of simplicity,
I’ll use an array in the following examples.

Our new addEventListener:

var listeners = [];

function addEventListener(element, event, handler) {

 if (element.addEventListener) {

 element.addEventListener(event, handler);

 } else if (element.attachEvent) {

 var newHandler = function (e) {

 e.preventDefault = function () {

 e.returnValue = false;

 };

 e.stopPropagation = function () {

 e.cancelBubble = true;

 };

 handler.call(element, e);

 };

 element.attachEvent('on' + event, newHandler);

 listeners.push([handler, newHandler]);

 }

}

And the updated removeEventListener with support for Internet Explorer 8 and
below:

function removeEventListener(element, event, handler) {

 if (element.removeEventListener) {

 element.removeEventListener(event, handler);

 } else if (element.detachEvent) {

 event = 'on' + event;

 for (var i = 0; i < listeners.length; i++) {

 if (listeners[i][0] === handler) {

 element.detachEvent(event, listeners[i][1]);

 break;

 }

 }

 }

}

Adding a “Once Only” Event Listener
jQuery’s .one method adds an event listener that will only be called once; once we call
the event listener the first time, it will be removed and thus will not be called again.
To do this in pure JavaScript, store a copy of the function in an object and then, in the

event handler itself, call removeEventListener.

16 | Chapter 1: Event Handling

Summary
This chapter has shown how you can use .addEventListener (and .attachEvent in

Internet Explorer 8 and below) to add event handlers, and how you can use remove

EventListener (and detachEvent in Internet Explorer 8 and below) to remove them.
It has explained the basic concepts of triggering events, as well as how events
propagate.

Summary | 17

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2

Constructors and Prototypes

Constructors are a way of creating objects, and can be initiated via the new keyword.
Many instances of an object can be created. Prototypes are one of the more powerful
features of JavaScript, and allow the developer to declare a method or property that
all instances of an object will inherit.

This chapter is less about building on your existing jQuery knowledge than teaching
you a method you can use to enhance your jQuery code. To an extent, it will also help
you understand how jQuery works, as jQuery itself uses prototypes.

Constructors
Constructors are functions that are called by the new keyword. For example:

function Greeting(item) {

 this.log = function () {

 console.log('Hello ' + item + '!');

 };

}

var hello = new Greeting('world');

hello.log(); // Hello world!

Begin the names of your constructors with a capital letter; this will
help you remember whether it is a function or a constructor. This is
fairly common practice, so you should be able to recognize construc-
tors in other people’s code, too.

It is possible to create the object and call a method on the same line, which can often
be useful:

19

new Greeting('alien').log(); // Hello alien!

In other languages, the closest thing to constructors are classes. Classes have con-
structor functions, which in that context are functions that are run when a class is
used to create an object. It’s easier to specify code that should be run on creation in
JavaScript:

function Greeting(item) {

 this.item = item;

 console.log('New greeting created.');

 // Do something else here

 this.setItem = function (item) {

 this.item = item;

 };

 this.log = function () {

 console.log('Hello ' + this.item + '!');

 };

}

Unlike with classes, there is no way to run some code when the instance is destroyed
(sometimes called a deconstructor in other languages, as opposed to the constructor),

but you could add something like a .destroy method to the constructor function

instead of using the traditional delete keyword to delete objects.

Method Chaining
In jQuery, you may have seen the following syntax used:

$('#foo').on('hover', function () {

 // ...

}).on('blur', function () {

 // ...

});

This is known as method chaining, as multiple methods are being called one after the

other. It is possible to achieve this by using return this at the end of a function, which
will return the object so that the function can be run again:

function Add(number) {

 if (typeof number !== 'number') {

 number = 0;

 }

 this.add = function (num) {

 number += num;

 return this;

 };

20 | Chapter 2: Constructors and Prototypes

 this.log = function () {

 console.log(number);

 };

}

We can then call it using the following code:

new Add(10).add(5).add(1.5).log(); // 16.5

jQuery uses method chaining quite a lot, and it also does so by returning this.

Considering the first code sample again, we can see that the call to $('#foo')

.on('hover') must return the $('#foo') object. We can see this by looking at the

jQuery source code; at the bottom of jQuery.fn.on is this code:

 return this.each(function() {

 jQuery.event.add(this, types, fn, data, selector);

 });

jQuery.fn.each in turn returns the value of jQuery.each(this, callback,

args), which is this:

 each: function (object, callback, args) {

 // ...

 return object;

 },

Constructor, Not Function
It is possible to call any function normally, which would result in an error or unex-
pected behavior if it is a constructor. For example, if we call the last function we defined

(Add from the method chaining example) as a normal function, it adds a couple meth-
ods to the window object, and then throws a TypeError when we attempt to call

the .add method; the Add function doesn’t return anything, and undefined has no add
method. To work around this, we can simply put the following extract of code at the
top of the function:

if (!(this instanceof Add)) {

 return new Add(number);

}

This would make the function perform the same even if you omitted the new con-
structor. It is fairly bad practice to rely on this, though, and should be avoided.

Another approach would be to throw an error:

if (!(this instanceof Add)) {

 return new Error('This is a constructor, not a function');

}

That would be more useful in a library than in your own code, though (after all, you
know that functions beginning with capital letters are constructors, right?).

Constructors | 21

Prototypes
Prototypes allow the developer to create a method or property of an object that is
inherited by all instances of that object. For example, look at the following piece of
code:

function User(id) {

 this.id = id;

 this.sendMsg = function (msg) {

 // Do stuff here

 };

 this.getMsgs = function () {

 // Do stuff here

 };

}

Nothing wrong with this code, right? But imagine if we had hundreds, possibly thou-
sands, of that object. Every instance of that object would have a copy of those two
functions, which would use quite a bit of memory. If they’re exactly the same function
on every instance of the object, why do we have to have copies of them instead of
reusing the function?

That’s exactly what prototypes do. If you add a method to the prototype of the function,
then every function will inherit that method. We can rewrite the previous code as the
following:

function User(id) {

 this.id = id;

}

User.prototype.sendMsg = function (msg) {

 // Do stuff here

};

User.prototype.getMsgs = function (msg) {

 // Do stuff here

};

The preceding code would do exactly the same thing, but would use a lot less memory.
It also has the advantage that if you edit the prototype of an object after a few of them
have been initiated, the existing instances will also use the edited prototype:

function User(id) {

 this.id = id;

}

var bob = new User(32);

console.log(bob.foo); // undefined

22 | Chapter 2: Constructors and Prototypes

User.prototype.foo = 'bar';

console.log(bob.foo); // bar

This is because the methods and variables assigned to the prototype aren’t copied to
the object, but when a method is called it first checks the object for that method, and
then the prototype of the object, and then the prototype of the prototype, etc.

If you console.log an object in a good browser, you will be able to
inspect the prototype of an object as well as the object itself. Figure 2-1

shows the console.log of an object that was created using var obj =

new Constructor(); where Constructor was defined as an empty
function. Some properties were then set.

Figure 2-1. console.log to view a prototype

__proto__ is the prototype of the element.

jQuery uses prototypes on jQuery node lists. The $ function can be called hundreds,
possibly thousands, of times. If jQuery copied every method and property over every
single time, that would be quite costly, and your application would stop doing much

very quickly. We assign methods by either calling the jQuery.fn.extend function—
which cycles through the given object, adding methods to the prototype—or by adding

them directly to jQuery.fn, like so:

jQuery.fn.log = function () {

 console.log(this);

 return this;

};

We can test that this has worked by running the following code:

$('p').log();

It should log all the paragraph elements in the document to the console.

Prototypes | 23

The reason that you’re adding methods to jQuery.fn and not jQuery.prototype is
that the developers have decided that it looks nicer, and so have added something like
the following line of code somewhere:

jQuery.fn = jQuery.prototype;

As objects are passed by reference and not copied, jQuery.fn is equivalent to

jQuery.prototype and so any modifications to jQuery.fn will also be made to the
prototype.

.hasOwnProperty
There is a handy function that will tell you whether a method or property is owned

by the object or the prototype: .hasOwnProperty. For example:

var $document = $(document);

$document.log = function () {};

console.log(typeof $document.log); // function

console.log(typeof $document.css); // function; no help here

console.log($document.hasOwnProperty('log')); // true

console.log($document.hasOwnProperty('css')); // false

Editing the Prototype of Existing Objects
It is also possible to edit the prototypes of objects that are defined by JavaScript, such

as Array and String. This allows us to add useful methods to them—for example, a
method that returns the sum of all the values in an array:

Array.prototype.sum = function () {

 for (var sum = 0, i = 0; i < this.length; i++) {

 sum += this[i];

 }

 return sum;

}

console.log([1, 2, 3].sum()); // 6

this refers to the object that the method is being called from, in this case [1, 2, 3].

The major fundamental difference between jQuery and the Prototype library is that
jQuery doesn’t touch any prototypes—in fact, it doesn’t touch anything except the

jQuery and $ variables—and Prototype modifies the prototypes of elements to add
functionality to the language instead.

24 | Chapter 2: Constructors and Prototypes

While in theory it is possible to edit the prototypes of objects like NodeList (for ex-

ample, to add a .forEach function), older versions of Internet Explorer throw an error
if you try to access the prototype of an object that isn’t one of the five global objects

(Array, Boolean, Number, Object, and String). It’s also pretty bad practice.

Summary
This chapter has shown you how to create constructor functions and create instances

of them using the new keyword, and how you can chain methods by returning this
in the method:

function Add() {

 var number = 0;

 this.add = function (num) {

 number += num;

 };

 this.getValue = function () {

 return number;

 };

}

new Add().add(4).add(2).add(5).getValue(); // 11

We looked at prototypes—how every object inherits methods from the prototype of
its constructor function, and the constructor function of that constructor function.
We looked at how we can also modify the prototypes of built-in functions to enhance
their functionality:

Object.prototype.foo = 'bar';

Add.prototype.hello = 'world';

var adder = new Add();

console.log(adder.foo); // bar

console.log(adder.hello); // world

Finally, we looked at how we can use the .hasOwnProperty method to see whether a
method or property belongs to an object, or the prototype of an object.

Summary | 25

CHAPTER 3

DOM Traversal and Manipulation

The Document Object Model (DOM for short) is the API provided by the browser to
enable you to view and interact with objects (such as elements) in HTML and XML
documents. jQuery includes a number of functions that make working with the DOM
a lot easier than with JavaScript alone, which can be pretty ugly. However, the func-
tions provided by jQuery can be rather hefty (especially in older browsers), and it is
often a lot faster to just use pure JavaScript. Therefore, it is important to know how
both work.

Selecting an Element
In jQuery, there is only really one way to select an element, and that is with the CSS
selector:

$('#foo');

In JavaScript, there are several ways. You can select elements with their CSS selector
(which I will cover later), but it isn’t supported in Internet Explorer versions earlier
than 8, so I will cover the traditional methods first.

You can select an element by its Id, ClassName, or TagName. The syntax is pretty similar
for all of them:

document.getElementById('foo');

document.getElementsByClassName('bar');

document.getElementsByTagName('p');

The first line, document.getElementById, gets the element with ID foo. As there can
only be one element associated with each ID, there is no need to return a NodeList

here, and it will return either the element or null.

27

The second line, document.getElementsByClassName, gets all elements with “bar” as
one of their classes. It will return the elements as a NodeList, which is similar to an
array, as detailed later.

The final line, document.getElementsByTagName, gets all paragraph elements and re-
turns them as a NodeList.

A NodeList is an object that acts like an array, but isn’t. This means that you can access

the elements using elements[i], but you cannot directly use array methods

like .splice and .forEach. You can, however, use them with the Array prototype:

var elements = document.getElementsByClassName('bar');

Array.prototype.slice.call(elements, 2, 5);

The .slice call will return an array of elements, not a NodeList. This can also be used
to convert NodeLists to arrays:

var elements = document.getElementsByClassName('bar');

console.log(Array.isArray(elements)); // false

elements = Array.prototype.slice.call(elements);

console.log(Array.isArray(elements)); // true

If you’re using a decent browser, then you can probably log elements

to the console using console.log. This allows you to see which ele-
ments you have selected, and see what you can do with them next.

Selecting Elements with a CSS Selector
It is possible to select elements using CSS selectors via .querySelector and .query

SelectorAll:

document.querySelector('#foo');

document.querySelectorAll('.bar');

document.querySelectorAll('.bar span, #foo');

document.querySelectorAll('a[href*="danger"]');

As demonstrated in the last example, it is possible to use CSS3 selectors (that will

select all anchor elements with the word danger anywhere in their href). This isn’t
supported in Internet Explorer, though—Internet Explorer only supports CSS2 se-
lectors, and IE7 and below don’t support this function at all.

When only making simple selections such as selecting a single element by ID or se-
lecting some elements by class, it is far more efficient to use the traditional method
of selecting them. See a benchmark here: http://jsperf.com/getelementbyid-vs-jquery-id.

28 | Chapter 3: DOM Traversal and Manipulation

www.allitebooks.com

http://jsperf.com/getelementbyid-vs-jquery-id
http://www.allitebooks.org

The Prototype and MooTools libraries have aliases for document.querySelector and

document.querySelectorAll: the $ and $$ functions. In addition to being aliases, they
add support for browsers that do not support the functions natively (you can use a
library such as Sizzle for this):

if (!document.querySelector || !document.querySelectorAll) {

 // Load library here

}

function $(selector) {

 return document.querySelector

 ? document.querySelector(selector)

 : customQuerySelector(selector);

}

function $$(selector) {

 return document.querySelectorAll

 ? document.querySelectorAll(selector)

 : customQuerySelectorAll(selector);

}

Selecting Children
Sometimes you may want to select the children of an element. With jQuery, this is
again very easy:

$('#foo').children('.bar')

It’s also fairly easy in JavaScript, as it is possible to use the .getElement...

and .querySelector functions on elements, as well as the document:

document.getElementById('foo').getElementsByClassName('bar');

Make sure that you don’t attempt to run any of them on a NodeList, though—it won’t
work. Instead, you must loop through the elements. These functions only work on
elements:

// Does not work:

document.getElementsByTagName('p').getElementsByClassName('test');

// This works:

var elements = document.getElementsByTagName('p'),

 allElements = [];

Array.prototype.forEach.call(elements, function (element) {

 children = element.getElementsByClassName('test');

 allElements = allElements.concat(Array.prototype.slice.call(children));

});

// This also works:

document.querySelectorAll('p .test');

Selecting Children | 29

Selecting the Next Element
To select the next sibling of an element in jQuery, all we have to do is call the .next
function:

$('#foo').next('.bar');

That would return #foo’s next sibling with the classname bar. To do this with Java-

Script alone is a bit more complicated, but we can do so by using .nextElementSi

bling and a loop, like this:

var element = document.getElementById('foo');

element = element.nextElementSibling;

while (element && element.className.indexOf('bar') === -1) {

 element = element.nextElementSibling;

}

In the loop, we check whether element is truthy, and if it isn’t, then we have reached
the end of the list and there is no such element. If that is the case, then we break out

of the loop and element will be null. Then, we check that the element has the class

bar; if it doesn’t, then we continue the loop. If it matches, then we break out of the

loop and element contains the element we were looking for. If we don’t want to match

a selector, we can just use the .nextElementSibling property without the while loop
(although you might still want to check that it exists).

To find the previous element, you can use similar code, but with .previousElement

Sibling. To find a parent element (.parent using jQuery), we can use .parentElement.

To return all of an element’s siblings (like jQuery’s .siblings), you have to find the

children of the parent element (.parentNode.childNodes) and then loop through,
removing all nodes that aren’t elements, and removing the original element itself;
obviously, an element cannot be its own sibling. We can use the following code:

var element = document.getElementById('foo');

var elements = element.parentNode.childNodes;

for (var siblings = [], i = 0; i < elements.length; i++) {

 if (elements[i].nodeType === 1 && elements[i] !== element) {

 siblings.push(elements[i]);

 }

}

console.log(siblings);

We’re using .push, as it is more efficient in this case. Converting a NodeList to an

array effectively uses .push on every element, and then using .splice would do some

additional work on top of that; it is more efficient to cycle through, running .push for
all the elements we want.

30 | Chapter 3: DOM Traversal and Manipulation

Creating an Element
Creating an element in jQuery is fairly simple, while it is pretty overcomplicated in
JavaScript. Here is how to create an element in jQuery:

$('<strong class="test">text').appendTo('body');

There are two ways to create elements in JavaScript. One of them is to modify

the .innerHTML of the element, but this should usually be avoided as it converts the
element (in this case, the body) into HTML, adds the new HTML, and parses it back
again. This means that any event listeners and formatting added on the fly will be lost.

The other way—the correct way, in this context—is to create the element using docu

ment.createElement, and then append it using .appendChild:

// The wrong way, using innerHTML:

document.body.innerHTML += '<strong class="test">text';

// The correct way:

var newElement = document.createElement('strong');

newElement.setAttribute('class', 'test');

newElement.innerHTML = 'text';

document.body.appendChild(newElement);

Using document.createElement is longer and more complicated than adjusting

the .innerHTML, but it is far more efficient. The .setAttribute method is fairly de-

scriptive; it sets the class attribute to test (we could also have used the .class

Name attribute for this). You may have noticed that I used .innerHTML to set the text
of the element; in this case, it is fine to change the HTML directly, as it is a blank
element and thus it has no additional overhead beyond having to parse what you’re

passing to it, which isn’t much. The alternative to modifying the .innerHTML would

be to use document.createTextNode and append it to newElement using the newEle

ment.appendChild method:

var newElement = document.createElement('strong');

newElement.setAttribute('class', 'test');

var text = document.createTextNode('text');

newElement.appendChild(text);

document.body.appendChild(newElement);

Both are equally correct, but the first is shorter and more readable.

Modifying an Existing Element
If we want to modify the text of an element in jQuery (say, we want to replace all
instances of the word swear with *), then we can use the following code:

$('#foo').text($('#foo').text().replace(/swear/g, '*****'));

Creating an Element | 31

That only works on elements with no children; if you run it on an element with chil-
dren, the child will be removed:

<p id="foo">this is a <i>test</i> for <u>swears</u></p>

<!-- After jQuery code has been ran: -->

<p id="foo">this is a test for *****s</p>

If we wanted to replace some text on an element with children, we would have to

use .html instead of .text. This isn’t good, and is effectively the same as this Java-
Script:

var element = document.getElementById('foo');

element.innerHTML = element.innerHTML.replace(/swear/g, '*****');

If the element has a lot of children, then this can be very inefficient, as it has to convert
the entire tree to HTML, and then back again when it has been modified. Also, if any

element has something like a className of swear, it will be replaced; you may want
this behavior, but for the purposes of demonstration, we do not. A better solution
would be to cycle through all the children of the element, checking what type it is. If
it is a TextNode, then we run the swear regex, and if it is an element then we recurse,
running the function again on that element:

var TEXT_NODE = 3,

 ELEMENT_NODE = 1;

function replace(element, find, replacement) {

 var child, i, value,

 children = element.childNodes;

 for (i = 0; i < children.length; i++) {

 child = children[i];

 value = child.nodeValue;

 if (child.nodeType === TEXT_NODE) {

 child.nodeValue = value.replace(find, replacement);

 } else if (child.nodeType === ELEMENT_NODE) {

 replace(child, find, replacement);

 }

 }

}

var element = document.getElementById('foo');

replace(element, /swear/g, '*****');

In the first two lines of this example, we define two constants, TEXT_NODE and ELE

MENT_NODE. The reasoning behind this isn’t strictly relevant to the example, as we could

have just used child.nodeType === 3, but using the constants makes the code more

readable; after all, who has memorized all the values for nodeType?

32 | Chapter 3: DOM Traversal and Manipulation

While it is possible to use a string in the .replace call, it will be con-

verted to a regex using new RegExp('swear'), and so won’t be global,
meaning that only the first instance of swear will be replaced.

Cycling Through Elements
Cycling through elements can be useful for, say, adding an event listener to each of
them individually or changing an attribute. In jQuery, cycling through a list of ele-
ments is easy:

$('.bar').each(function () {

 $(this).css('color', 'red');

});

It is also quite easy in JavaScript:

var elements = document.getElementsByClassName('bar');

for (var i = 0; i < elements.length; i++) {

 elements[i].style.color = 'red';

}

If you want to refer to the element as this, you can use an anonymous function

with .call to set the scope:

var elements = document.getElementsByClassName('bar');

for (var i = 0; i < elements.length; i++) {

 (function () {

 this.style.color = 'red';

 }).call(elements[i]);

}

It’s overkill to do that to merely change the color of a number of elements, but with

larger changes it can be a lot cleaner than calling elements[i] every single time, and
cleaner than assigning the element to a variable at every iteration of the loop (plus we
could have the “last one only” problem—detailed in Chapter 5—if we added an event
listener, which this approach solves without requiring an additional closure).

Moving and Copying Elements
It can be useful to be able to move and copy elements; for example, we may want to

move a textarea to another point on a page when a button is pressed. We’re talking
about moving the element in the DOM here, not necessarily on the page—the latter
can be achieved relatively trivially using CSS. In jQuery, we can use the following
methods to move and copy elements:

$('#foo').insertBefore($('#bar')); // moves #foo to directly before #bar

$('#foo').clone().insertAfter($('#bar')); // copies #foo to after #bar

Cycling Through Elements | 33

To move an element in pure JavaScript, we can use the .insertBefore method:

var foo = document.getElementById('foo');

var bar = document.getElementById('bar');

bar.parentNode.insertBefore(foo, bar);

.insertBefore uses a slightly strange syntax. You have to call it on the parent node,

and send the element to insert (elementToInsert) and the element to insert it before

(insertBeforeThis) as arguments (in that order):

element.parentNode.insertBefore(elementToInsert, insertBeforeThis);

To copy the element, we can simply call the .cloneNode method before calling in

sertBefore:

var foo = document.getElementById('foo').cloneNode(true);

var bar = document.getElementById('bar');

bar.parentNode.insertBefore(foo, bar);

The argument being passed to .cloneNode (true in the previous example) should

almost always be true. It tells JavaScript that you want to clone the entire tree (the

children of the element), as well as the element itself. Setting this to false or omitting
the argument entirely would just copy the children without cloning them, so making
any changes to the children of the new element would change the children of the old
element (and vice versa).

Summary
In this chapter, we have explored the Document Object Model and how you, the
developer, can interact with it using JavaScript in the following ways:

• Selecting elements using the traditional document.getElement functions

• Selecting elements using the newer document.querySelector functions using
CSS selectors

• Selecting children and sibling elements

• Creating elements using document.createElement

• Modifying elements using .innerHTML and by cycling through them

• Cycling through elements

• Moving and copying elements using .insertBefore and .cloneNode

34 | Chapter 3: DOM Traversal and Manipulation

CHAPTER 4

AJAX

One of jQuery’s most used features is its suite of AJAX functions. They offer some
significant improvements over the native JavaScript AJAX features, as they are a lot
easier to use. AJAX is the act of making an HTTP request from JavaScript without
having to reload the page; you could think of it as an inline HTTP request. Sometimes,
however, it isn’t worth loading the entire jQuery library to send a few requests and
nothing else, or it doesn’t provide enough control. It’s also useful to know how jQuery

does it, as it can help you when you’re trying to debug your code. jQuery’s $.ajax
function is also a massive 379 lines long at the time of writing.

In this chapter, we will cover the basics of AJAX, explore a bit about designing a website
to use AJAX, and then AJAXify an example piece of code. This chapter contains a bit
of PHP, but PHP knowledge isn’t strictly necessary—it’s not complicated PHP and I
will be explaining it along the way.

Sending an AJAX Request
To send an AJAX request in jQuery, we use this very simple syntax:

$.get('/ajax/?foo=bar', function (data) {

 console.log(data); // The response

});

Sending an AJAX request in JavaScript alone is a lot more complicated. To send an

AJAX request, we use the XMLHttpRequest object (or ActiveXObject in older ver-
sions of Internet Explorer). Here is an example of a basic AJAX request:

if (window.XMLHttpRequest) {

 var req = new XMLHttpRequest();

} else {

 // Internet Explorer

 var req = new ActiveXObject('Microsoft.XMLHTTP');

35

}

var url = '/ajax/?foo=bar';

req.open('GET', url, true);

req.onreadystatechange = function () {

 if (req.readyState === 4 && req.status === 200) {

 console.log(req.responseText);

 } else if (req.readyState === 4) {

 throw new Error('XHR Request failed: ' + req.status);

 }

};

req.send();

That sends a GET request to /ajax/?foo=bar, and then if the request succeeds, logs the
output to the console. If it fails, it throws an error. There are a few things that you
should know about this example:

• The third argument of req.open should always be set to true, as it tells the browser
that you want to make the request asynchronous (runs in the background and
then calls the callback, as opposed to blocking the page until the request returns).

If set to false, it tells the browser that you want a synchronous request. This used
to cause a memory leak in Firefox, so Mozilla disabled it; attempting to send a
request synchronously now just throws an error. It was also bad practice to use it
when it did work.

• It is safe to use .onreadystatechange instead of adding an event listener, as we
know that only one event listener will be added to it and nothing will be over-
written.

It isn’t worth the hassle of adding support for both .addEventListener and

.attachEvent.

• req.readyState will always be set to 4, eventually. There is no need to have a

setTimeout to throw an error on timeout.

• When sending GET requests, you should just append any data you want to send
to the end of the URL (like you would for a normal HTTP request). We’ll cover
POST requests in a bit.

Debugging
For debugging AJAX requests, it is wise to have a simple echo script installed to which
you can send data. Mine is written in PHP, but it doesn’t matter what language it is
written in:

36 | Chapter 4: AJAX

<?php

echo json_encode(array(

 'method' => $_SERVER['request_method'],

 'GET' => $_GET,

 'POST' => $_POST

));

?>

That sample of code simply sends a JSON-encoded array of information: first, it sends
the request method (usually GET or POST, but DELETE and PUT are also fairly

common), and then it dumps the GET ($_GET) and POST ($_POST) information. This

allows us to see exactly what has been sent. We can use JSON.parse to turn it into a
JavaScript object when we receive it at the client side.

JSON (JavaScript Object Notation) is a unified format for sending data with either
native support or libraries written for almost every language. It was pioneered by
Douglas Crockford, who also wrote JSLint and JSCheck. In JavaScript, we can use

JSON.stringify to turn it into JSON, or JSON.parse to turn it back into a real Java-
Script object. It and XML are the most commonly used formats for sending data over
AJAX requests, although JSON tends to be more popular recently. I prefer JSON, as
it offers better support and uses less bandwidth. Most APIs offer both XML and JSON.

Debugging Sent AJAX Requests
Most good browsers have an option in the console (usually accessible by right-
clicking) that, when enabled, will display all AJAX requests in the console. It can be
helpful for seeing whether a request has actually been sent, and whether the problem
is on the client side or server side.

Some browsers will also log the returned data when this option is enabled, which can
be helpful, as well.

Sending POST Requests in JavaScript
The syntax to send a POST request is mostly the same as that to send a GET request,
with a couple of minor differences. The following code sends the same data to the
same URL as this chapter’s first code example, but using POST instead of GET:

if (window.XMLHttpRequest) {

 var req = new XMLHttpRequest();

} else {

 // Internet Explorer

 var req = new ActiveXObject('Microsoft.XMLHTTP');

}

Sending POST Requests in JavaScript | 37

var url = '/ajax/';

var data = 'foo=bar';

req.open('POST', url, true);

req.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');

req.onreadystatechange = function () {

 if (req.readyState === 4 && req.status === 200) {

 console.log(req.responseText);

 } else if (req.readyState === 4) {

 throw new Error('XHR Request failed: ' + req.status);

 }

};

req.send(data);

Data is sent using the same format as a query string, but is sent in req.send, not as

part of the URL. When sending data, we also set the Content-type header to appli

cation/x-www-form-urlencoded.

Writing a Wrapper Function
Instead of writing out a large block of code every time you want to send an AJAX
request, we can use a function that will accept arguments such as method, URL, data,
and a callback:

function request(method, url, data, callback) {

 if (window.XMLHttpRequest) {

 var req = new XMLHttpRequest();

 } else {

 // Internet Explorer

 var req = new ActiveXObject('Microsoft.XMLHTTP');

 }

 if (method === 'GET' && typeof data === 'string') {

 url += '?' + data;

 }

 req.open(method, url, true);

 if (method === 'POST' && typeof data === 'string') {

 req.setRequestHeader('Content-type',

 'application/x-www-form-urlencoded');

 }

 req.onreadystatechange = function () {

 if (req.readyState === 4 && req.status === 200) {

 var contentType = req.getResponseHeader('Content-type');

 if (contentType === 'application/json') {

 callback(JSON.parse(req.responseText));

38 | Chapter 4: AJAX

www.allitebooks.com

http://www.allitebooks.org

 } else {

 callback(req.responseText);

 }

 } else if (req.readyState === 4) {

 throw new Error('XHR Request failed: ' + req.status);

 }

 };

 req.send((typeof data === 'string' && method === 'POST') ? data : null);

 return req;

}

You can call it using the following code:

request('GET', '/ajax', 'foo=bar', function (body) {

 console.log(body);

});

You may have noticed that the function includes some code that the original two

samples did not; if the Content-type is set to application/json, it attempts to parse
it. jQuery does this, too; it’s pretty useful.

You could also create some alias functions, like jQuery does:

function get(url, data, callback) {

 return request('GET', url, data, callback);

}

function post(url, data, callback) {

 return request('POST', url, data, callback);

}

A Simple Application of AJAX
To demonstrate an application of AJAX, we will build a simple page that gets the time
from the server. First we will build it without AJAX, and then we will add AJAX
support (I’ll explain why I did it in that order in a bit).

Let’s call our page ajax.php, and put the following in it:

<!DOCTYPE html>

<html>

<head>

 <title>time()</title>

 <meta charset="utf-8">

</head>

<body>

 The time() is:

 <?php echo time(); ?>

</body>

</html>

A Simple Application of AJAX | 39

As we reload the page, it will update. However, what if we want to update it using a
button or automatically? We could use a button to refresh the page, or we could use
AJAX. First, we will need to check whether the request is an AJAX request, and then

if it is AJAX we will return only the value of time(). Save this as ajaxUpdate.php:

<?php

if ($_SERVER['HTTP_X_REQUESTED_WITH'] === 'XMLHttpRequest') {

 echo time();

} else {

 echo 'Please go to ajax.php and request this page using AJAX.';

}

?>

This checks whether the request is an AJAX request, and if so it outputs the time. If
not, it displays an error to the user. Then we can add the following code to the client
side, in order to send the AJAX request:

function updateTime() {

 get('ajaxUpdate.php', '', function (time) {

 document.getElementById('time').innerHTML = time;

 });

}

Whenever updateTime is called, it sends a request to the server, and when it gets a
reply it updates the element to display the updated time value. So the final ajax.php
is as follows (use it with the original ajaxUpdate.php):

<!DOCTYPE html>

<html>

<head>

 <title>time()</title>

 <meta charset="utf-8">

<body>

 The time() is:

 <?php echo time(); ?>

 <button>Update time</button>

 <!-- functions.js should contain the get

 and addEventListener functions -->

 <script src="functions.js"></script>

 <script>

 var button = document.getElementsByTagName('button')[0];

 addEventListener(button, 'click', function () {

 get('ajaxUpdate.php', '', function (time) {

 document.getElementById('time').innerHTML = time;

 });

 });

 </script>

</body>

</html>

40 | Chapter 4: AJAX

Designing a Site with AJAX
There are two approaches to writing an AJAX-enabled website. The first is to write
the AJAX to begin with, and the second is to design the entire site without AJAX and
then add AJAX afterward. There are several advantages and disadvantages of each
approach.

Advantages of the first approach:

• Easier and faster to develop, as it only requires one method to be developed instead
of an AJAX and a non-AJAX approach

• Better support for modern browsers

• More freedom, as you can use modern features without having to worry about
older browsers

Advantages of the second approach:

• Easier to keep JavaScript and HTML separate, as the HTML doesn’t rely on
JavaScript

• Better support for older browsers and browsers with JavaScript disabled (which
is surprisingly common)

Summary
In this shorter chapter, we looked at AJAX: using the XMLHttpRequest object (or

ActiveXObject in IE) to send both GET and POST requests, as well as using req.on

readystatechange to get the data that the server sends back. I also explained a couple
of ways you can debug sent AJAX requests, and I gave you a wrapper function that
you can use to send requests without writing out a huge block of code every time.

Finally, we looked at how we could add AJAX to a simple application, and covered a
couple of different approaches to AJAXify applications.

Designing a Site with AJAX | 41

CHAPTER 5

JavaScript Conventions

This chapter will cover some common conventions that you can use to improve your
JavaScript. It covers topics such as making your code more readable by using com-
ments and whitespace correctly, optimizing your code in order to improve perfor-
mance, design patterns, and some common antipatterns (code that causes more prob-
lems than it solves).

Following the conventions in this chapter will significantly improve the performance
and maintainability of your code, and you will find that both the quality of your code
and your coding abilities will significantly improve.

Writing JavaScript
It is important when writing JavaScript to make your code as easy to read as possible.
This makes your code easier to review, and easier to read back later (say, a couple of
years down the road, when your project suddenly gains in popularity and a few bugs
are found). It also means that if a developer wants to contribute to your project, or
your project is passed on to another developer, that he can read and understand your
code without having to study it for a long time beforehand.

Comments
By leaving comments in your code, you are ensuring that anyone who reads your code
in the future will be able to tell what it does without having to dissect it. I generally
leave comments before every function and at every line or block of code where it isn’t
immediately clear what it does.

43

A good example would be this:

var i = 0;

while (true) { // Infinite loop until break is called

 console.log(i);

 i++;

 if (i == 6) {

 break;

 }

}

The comments before functions generally have a special syntax. They are commonly
called DocBlocks, and there are applications designed to parse them and create doc-
umentation from them. DocBlocks usually follow this general syntax:

/**

 * Description of function.

 *

 * @param type name Description of parameter.

 * @param int iterations This is an example.

 * @returns type Description of return value.

 */

function functionName() {

 // Do stuff here

}

It shouldn’t go any more than a certain amount of characters wide—usually 79, as that
is the maximum width of a terminal. You can simply wrap the lines, like this:

/**

 * Longer description of function here, wrapping multiple lines. The

 * function does this, this, this, and this.

 *

 * @param int iterations This is an example.

 * @returns type Description of return value.

 */

function functionName() {

 // Do stuff here

}

The items that are available depend on the documentation generator you’re using, but
common ones include those listed in Table 5-1.

44 | Chapter 5: JavaScript Conventions

Table 5-1. Items available in DocBlocks

Item Description

@author Gives the author of the component.

@constructor Marks the function as a constructor.

@deprecated Marks the function as deprecated.

@description Some documentation parsers prefer @description to putting the description on the first line.

@example Shows an example code snippet.

@extends Says what the function or object extends (doesn’t really apply much to JavaScript, but it is good to know).

@ignore Tells the documentation to ignore the block of code following the comment.

@link Links to another class or function in the documentation (@sometag See here: {@link MyFunc

tion}).

@namespace Give the name of the namespace where the function resides.

@param Describes a parameter of the function. Replaces @argument, which is deprecated.

@private Marks the function as private, and it will not be shown in the documentation.

@public Marks the opposite of @private, and implied if not specified.

@returns Describes what the function returns.

@see Says to see another function (@see MyFunction).

@since Says what version the function was added in.

@throws Says that the function may throw this error.

@version Gives the version number of the file or class.

I’ve written a longer example containing multiple DocBlocks. As well as the DocBlocks
before the comments that we have seen before, it also contains a DocBlock at the very
beginning of the file to explain what the file does, and some basic info such as a version
number and author information. This would also be where you’d put a copyright and
license. The following code sample would be included into another project as a library:

/**

 * parser.js: Parses some text.

 *

 * @version 1.0.2

 * @author Callum Macrae <callum@lynxphp.com>

 */

/**

 * Parses some text.

 *

 * @constructor

 * @example

 * var textParse = new Parser();

 * textParse.parse(text);

 * textParse.get('name');

 * @since 1.0.0

Writing JavaScript | 45

 */

function Parser() {

 this.data = {};

}

/**

 * Parses the text given to it.

 *

 * @param string text The string to parse.

 * @returns object The parser object you called.

 * @since 1.0.1

 */

Parser.prototype.parse = function (text) {

 // Parse text...

 return this;

};

/**

 * The old function to add text to parse.

 * Replaced with .parse: {@link Parser.prototype.parse}

 *

 * Will be removed completely in the near future.

 *

 * @deprecated

 * @see Parser.prototype.parse

 */

Parser.prototype.addText = function () {

 return this.parse.call(this, arguments);

};

/**

 * Gets some parsed data.

 *

 * @param string item The item to return.

 * @returns string The item specified by the item

 * argument. If not found, will return null.

 * @since 1.0.0

 */

Parser.prototype.get = function (item) {

 return this.data[item];

};

Coding Standards
It is important to maintain good and consistent standards while coding. This, as I said
before, is advantageous for multiple reasons—mostly because it is easier to read, both
by yourself at a later date and by others.

46 | Chapter 5: JavaScript Conventions

Whitespace

The easiest and best way to make your code easier to read is to use whitespace (both
tabs and spaces). I’ll give you a few examples of how I use whitespace:

// Calling functions

functionName('test',[1,2,3]); // Not enough whitespace

functionName('test', [1, 2, 3]); // Just right

functionName ('test ' , [1 , 2 , 3]); // Too much

// Declaring variables

var a='foo',b='bar'; // Not enough

var a = 'foo',

 b = 'bar'; // Just right (although it could be on one line, too)

// If statements, while statements, etc.

if(foo){

 // Do stuff

}else{

 // Do other stuff

}

// Better:

if (foo) {

 // Do stuff

} else {

 // Do other stuff

}

// Indents

if (foo) {

console.log('test'); // Needs indenting!

}

if (foo) {

 console.log('test');

}

As you can see in all those examples, the ones with more whitespace are more readable
than the ones without. Too much whitespace, however, can have the same effect as
not enough whitespace, and make the code tricky to read.

Writing JavaScript | 47

Curly braces

Curly braces are used to denote either object literals or block statements, the latter of
which group statements together as follows:

{

 statement_1();

 statement_2();

}

Curly braces are usually used with control flow statements such as if and while:

if (comparison) {

 statement_1();

 statement_2();

}

This control statement simply runs the statement directly after it, and the block state-

ment has nothing to do with the if statement. In fact, the block statement is entirely
optional, as you can see here:

if (comparison)

 statement_1;

However, because the control statement only runs the statement following it, if you
decide at a later date to add another statement, you will need to add the curly braces.
For that reason, I tend to just use the curly braces at all times, even when there is only
one statement (it looks better, too).

The topic of where to put curly braces is, in most languages, a bit of a holy war. The
two usual contenders are braces on the same line:

if (test) {

 // Do something

} else {

 // Do something else

}

Or on their own line:

if (test)

{

 // Do something

}

else

{

 // Do something else

}

Both make sense, both look fairly good, and both work. However, there are still some
cases where the braces must go on the same line (for example, when you’re declaring
an object). Also, anonymous functions don’t look good with the braces on their own
line:

48 | Chapter 5: JavaScript Conventions

www.allitebooks.com

http://www.allitebooks.org

// Excerpt

someFunction('test', function ()

{

 // Do something

});

For this reason, a lot of developers who usually put braces on their own line (usually
because they’re not primarily JavaScript developers) put the braces for anonymous
functions on the same line. This can result in samples of code like the following, which
doesn’t look good at all:

var obj = {

 test: function () {

 for (var i = 0; i < arguments.length; i++)

 {

 if (typeof arguments[i] === 'string')

 {

 handleString(arguments[i], function () {

 return {

 foo: 'bar';

 };

 });

 }

 else

 {

 handleOther(arguments[i]);

 }

 }

 }

};

It’s inconsistent and messy, and the reason that I recommend that you put the braces
on the same line in all cases.

Naming conventions

Inconsistent naming conventions make it difficult to remember and work out variable
names. While there isn’t really a wrong way to name variables, it is very important
that you keep them consistent. Here are the most common ways of naming variables
and functions:

// Camel caps

var thisVarName = '';

function myFunction() {}

// Underscores

var this_var_name = '';

function my_function() {}

// All lowercase

var thisvarname = '';

function myfunction() {}

Writing JavaScript | 49

// Underscores with capitals

var This_Var_Name = '';

function My_Function() {}

JavaScript itself uses the first—camel caps—in its native functions. For this reason,
code that uses camel caps tends to look better than code that uses a different naming
convention, and camel caps tend to be most widely used. The second convention
demonstrated, underscores, is also pretty commonly used, but isn’t as popular in
JavaScript as it is in some other languages.

Throughout this book, I have been using camel caps.

Literals Notation
JavaScript has literal notations available for stuff like creating new objects and arrays,
which allow you to shorten your code and make it clearer. It is better to use literals

than the constructor functions, such as new Object() and new Array(), and I’ll ex-
plain why using a few examples.

Object Literals
The object literal simply uses curly braces. Here are two ways of defining exactly the
same object:

// Using the literal syntax

var obj = {};

// Using the constructor function (antipattern)

var obj = new Object();

The most obvious reason to use the literal syntax instead of the constructor function
is that it is shorter to type, but there are a couple more reasons. The literal syntax never

has scoping issues—if, for example, you accidentally call a variable Object, you would
overwrite the object constructor, and you would not be able to create any more objects
using the constructor function. This can never happen to the literal syntax. In a similar
vein, the parser doesn’t have to do any scope resolution with the literal syntax. If you
use the literal syntax, JavaScript knows exactly what you mean and gives you an object.
If you use the constructor function, however, then JavaScript has to check the current

scope, then cycle up through the parent scopes until it finds the Object constructor.
The first uses fewer resources and is slightly quicker. Finally, you can declare properties
using the literal notation:

// Using the literal syntax

var obj = {

 foo: 'bar',

 hello: 'world'

};

50 | Chapter 5: JavaScript Conventions

// Using the constructor function (antipattern)

var obj = new Object();

obj.foo = 'bar';

obj.hello = 'world';

Other Literals
Sometimes the constructor offers features that the literal does not, and so the con-

structor should be used. For example, with Array objects, you can send an integer
argument to the constructor, and it will specify the length of the array. This can be
useful for repeating a string:

var repeats = 6;

var str = 'test ';

str = New Array(repeats + 1).join(str);

console.log(str); // test test test test test test

Unlike the literal, the RegExp constructor accepts string input, so you can concatenate
user input into it (which you cannot do with the literal):

var re = new RegExp('\nUser: ' + username + '\n', 'g');

Table 5-2 lists constructors and their corresponding literals.

Table 5-2. Constructors and literals

Constructors Literals

var obj = new Object(); var obj = {};

var ary = new Array(); var ary = [];

var re = new RegExp('[a-z]+', 'g'); var re = /[a-z]+/g

var str = new String(); var str = '';

var num = new Number(); var num = 0;

var bool = new Boolean(); var bool = false;

Optimizations
Optimizing your code can make it faster and use fewer resources. A micro-
optimization, which I will demonstrate in this section, is an optimization that improves
the performance of the script by a negligible (not noticeable) amount. When you’re
running an application on a server, improving the performance of a script by a couple
of microseconds can improve the application’s overall performance by reducing the
response time of the server by a couple of microseconds per request, freeing it up for
other requests. However, on the client side, micro-optimizations are less important
because the user won’t notice a few microseconds’ difference.

Optimizations | 51

Strictly speaking, micro-optimizations should be the job of the browser. However, not
all browsers have fast JavaScript engines, and some people would argue that the day
when micro-optimizations are no longer necessary is not yet here.

However, it is important to know a few of the most effective micro-optimizations for
JavaScript; if you’re writing code that could be used on the server side or on very old
browsers, micro-optimizations could help.

To read about optimizing your code in far more detail than I could fit into a section
of a chapter, check out High Performance JavaScript by Nicholas C. Zakas.

Algorithms
The easiest and most efficient way of speeding up your script and lowering resource
usage is to design your algorithms more efficiently. For example, if you’re implement-
ing a sorting algorithm to order some elements and you’re comparing every element
with every other element, why not just compare it to the nearest ones? This area is
more algorithm design than JavaScript, so I won’t be covering it here.

This type of optimization doesn’t usually count as a micro-optimization, as it can often
noticeably speed up your script.

Caching Variables
When looping through an array or NodeList, you generally call the .length property
at every iteration. Every time you read that property, the length has to be calculated,
which can be expensive. Instead, you can cache the length in a variable:

for (var i = 0, l = ary.length; i < l; i++) {

 // Do something here

}

When finding an element using jQuery, you’d be wise to cache it instead of calling the
jQuery function multiple times:

$('#foo').click(function () {

 $.myFunc($('#foo'), function () {

 $('#foo').show();

 });

 $('#foo').hide();

});

// Better:

var foo = $('#foo');

foo.click(function () {

 $.myFunc(foo, function () {

52 | Chapter 5: JavaScript Conventions

http://oreil.ly/High_Performance_js

 foo.show();

 });

 foo.hide();

});

This is a minor improvement, though, and makes the code slightly harder to read; if
you want to know what element a variable contains, you might have to scroll back a
bit.

parseInt
parseInt takes a string and returns a parsed number. However, it also contains some
additional functionality that you may not need, which will slow the function down.

In such a case, you can use new Number(12) to convert a string into a number without
the additional overhead:

parseInt('35'); // 35

new Number('35'); // faster

parseInt('21.8'); // 21

new Number('21.8'); // 21.8

parseInt('3 dogs'); // 3

new Number('3 dogs'); // NaN

One thing to bear in mind is that the latter method returns an object, not a number:

typeof parseInt('3'); // number

typeof new Number('3'); // object

The easiest way to convert the string into an actual number is to precede it with +, the
unary operator:

typeof +new Number('3'); // number

It is worth noting that unless you’re going to be using typeof on the number, you don’t
need to cast it to a number—as soon as you perform an arithmetic operation with the
object, it will be treated as a number anyway. This is how we changed the type in the
previous example.

Loops
In addition to the preceding code (caching the length), there are other ways to increase
the speed of a loop. You can cycle through the loop backward:

for (var i = array.length; i--;) {

 // Do something

}

As this only runs one statement per loop, it performs twice as well. When i hits zero,

the loop will be stopped. Even faster still for this is the while loop:

Optimizations | 53

var i = 100;

while (i--) {

 // Do something

}

Minimize Repeated Expressions
Instead of repeating the same code multiple times, it is more efficient to store it in a
variable. For example:

var top = 10 * (x / 7 + y / 5);

var bottom = 5 * (x / 7 + y / 5);

var left = 4 * (x / 7 + y / 5);

var right = 13 * (x / 7 + y / 5);

// Better:

var factor = (x / 7 + y / 5);

var top = 10 * factor;

var bottom = 5 * factor;

var left = 4 * factor;

var right = 13 * factor;

Functions
There are multiple conventions involving functions that you can use to improve your
code.

Declarations Versus Expressions
Function declarations and function expressions perform in different ways and can be
used to complete different tasks. As demonstrated here, there are three types of func-
tions: a declared function, an anonymous function, and a named function. For
example:

// Function declaration

function test() {

 // Do something

}

// Anonymous function expression

var test = function () {

 // Do something

};

// Named function expression

var test = function test () {

 // Do something

};

54 | Chapter 5: JavaScript Conventions

You may have noticed two slight differences in the coding standards of function ex-
pressions and function declarations. As a personal preference only, I have placed a
space before the parentheses in the expressions but not the declaration. This is to mark
them as function expressions, as it sometimes isn’t clear at first glance:

(function test () {

 // Do something

}());

test(); // Error; not defined

I also put a semicolon after the function expressions, as dumb minifiers prefer it; you
can put a function declaration on one line with stuff after it without a semicolon, but
a function expression must be followed by a semicolon.

As previously noted, declarations and expressions both perform differently. Much like
variables, function declarations are hoisted (placed at the beginning of the scope) and
so can be called before they’re actually defined. For example, the following code works
fine (although it doesn’t actually do anything):

test();

function test() {

 // Do something

}

It performs slightly strangely, though; the function will be hoisted even if the block of
code will never be run. This can result in weird situations like the following:

test(); // false

if (true) {

 function test() {

 return true;

 }

} else {

 console.log('test'); // will never be called

 function test() {

 return false;

 }

}

That doesn’t happen with anonymous or named function expressions.

Function Callbacks
There are conventions regarding the correct usage of anonymous and named func-
tions as callbacks. The only alternatives to using an anonymous function as a callback

are to use setInterval to check whether the function has changed a variable and run

some code when it has, or use eval:

Functions | 55

// Warning: antipattern!

function call(func) {

 eval(func + '()');

}

Obviously, that function is dangerous and vulnerable. A slightly better example can
be explained using event handling. (The following code isn’t actually possible, but

imagine that it is for this example.) onEventSetToTrue will set clicked to true when

#foo is clicked:

var clicked = false;

onEventSetToTrue('#foo', 'click', clicked);

function handler() {

 if (clicked) {

 clicked = false;

 // Do something else

 }

}

setInterval('handler()', 100);

This isn’t nearly as efficient as just giving it a callback, as there can be a delay. Also, if
you click the element more than once in 100 ms, the event handler will only be called
once. Even the previous example should have used a callback; we’re effectively using

eval when we give setInterval a string. It also looks nicer when we use a callback:

$('#foo').click(function () {

 // Do something

});

If Invoking Self-Defining Functions
A self-invoking function is an anonymous function that is defined, and then run
straightaway. It is mainly useful for resolving scoping issues:

(function () {

 // Do something

})();

jQuery plug-ins use it for accessing the jQuery variable as $ without overwriting any
existing variable that could have been defined by other libraries, and to prevent pol-
lution of the global namespace:

(function ($) {

 // Do something

})(jQuery);

Self-invoking functions can also have the parentheses to call the function inside the
wrapper parentheses, but it is more common to find them outside:

56 | Chapter 5: JavaScript Conventions

(function () {

 // Do something

}());

Self-defining functions use a similar concept, and are good for resolving browser com-
patibility issues. For example, consider the following code:

function matchesSelector(element, selector) {

 if (element.matchesSelector) {

 return element.matchesSelector(selector);

 } else if (element.webkitMatchesSelector) {

 return element.webkitMatchesSelector(selector);

 } else if (element.mozMatchesSelector) {

 return element.mozMatchesSelector(selector);

 }

 // else call a library here

}

There are a couple of disadvantages to using this code. Every time the function is
called, it has to potentially check a few properties of the element until it finds what it
needs, and the library needs to be loaded even if it isn’t going to be used. We can use
the following code instead, which uses the special kind of self-invoking function
known as a self-defining function:

var matchesSelector = (function () {

 if (HTMLElement.prototype.matchesSelector) {

 return function (element, selector) {

 return element.matchesSelector(selector);

 };

 } else if (HTMLElement.prototype.webkitMatchesSelector) {

 return function (element, selector) {

 return element.webkitMatchesSelector(selector);

 };

 } else if (HTMLElement.prototype.mozMatchesSelector) {

 return function (element, selector) {

 return element.mozMatchesSelector(selector);

 };

 }

 // Load library here

 return function (element, selector) {

 // Call library here

 };

})();

It’s quite a bit longer, but it is far more efficient. Not only does the function not need
to check what exists every single time despite the fact that it won’t ever change, but
the function also gives us a convenient place to load the library so that the library will
only ever be loaded when it is actually needed.

Functions | 57

Code Reuse
It is far harder to maintain code when it is repeating itself. The action of DRYing your
code (where DRY is Don’t Repeat Yourself) moves repeating code into functions and
assigns identical strings to variables. It leads to easier-to-read and easier-to-maintain
code, and also reduces the footprint of the code, making it use less bandwidth. Con-
sider the following code sample, which takes a few elements and moves them 10 pixels
right and 10 pixels up:

$('#foo').css('top', '-=10px');

$('#foo').css('left', '+=10px');

$('#bar').css('top', '-=10px');

$('#bar').css('left', '+=10px');

$('#hello').css('top', '-=10px');

$('#hello').css('left', '+=10px');

$('#world').css('top', '-=10px');

$('#world').css('left', '+=10px');

What happens if you decide that you want to move the elements 20 px instead of 10
px? You have to change every value manually. If you have a good code editor, it is easy
to change them, but it is better to not have to. You could also use a variable, but that
would create some very ugly code:

var dist = 10;

$('#foo').css('top', '-=' + dist + 'px');

$('#foo').css('left', '+=' + dist + 'px');

$('#bar').css('top', '-=' + dist + 'px');

$('#bar').css('left', '+=' + dist + 'px');

$('#hello').css('top', '-=' + dist + 'px');

$('#hello').css('left', '+=' + dist + 'px');

$('#world').css('top', '-=' + dist + 'px');

It is better to do something like this:

['#foo', '#bar', '#hello', '#world'].forEach(function(el) {

 $(el).css('top', '-=10px')

 .css('left', '+=10px');

});

Now you only have to change two values. This is far easier to change without making
any significant edits; imagine this example over thousands of lines, with hundreds of
operations.

Common Antipatterns
In addition to being aware of the common conventions, it is important for you to be
aware of the common antipatterns, too. You should actively avoid any of the code that
you find in this section.

58 | Chapter 5: JavaScript Conventions

www.allitebooks.com

http://www.allitebooks.org

Using eval
eval runs (evaluates) the string given to it as JavaScript code:

var code = 'console.log("test");';

eval(code);

The preceding code simply logs “test” to the console.

eval is used fairly commonly by developers who don’t know how to do something
without it. For example, the following example is sometimes used to access a property
of an object. It is an antipattern, as there is an easier way to do it:

var property = 'testProperty';

var value = eval('obj.' + property);

// Preferred:

var value = obj[property];

In general, if you’re using eval, you’re doing it wrong.

eval is such a problem because it opens up your code to potentially execute unsafe
operations. It is generally used to accept input from the user, or receive code from a
remote server. If you’re receiving data from an external source, you don’t know that
the data hasn’t been tampered with, and thus you could be executing malicious code.

If accepting input from the user, you don’t need to use eval, so you shouldn’t.

In addition to passing code to the eval function itself, there are other, similar ways

of evaluating code from strings that you should avoid. You can pass code to set

Interval and setTimeout in strings, and the Function object accepts a string:

setInterval('console.log("test")', 1000);

setTimeout('someFunction()', 1000);

new Function('console.log("test")');

Don’t do that!

with
The with statement was designed to offer a shorthand way to access properties of an
object. Unfortunately, it doesn’t always behave quite as expected and can be confusing,
so you should avoid it.

When you attempt to access a variable within a with statement, the browser first
checks whether the object has that property, and if not, it accesses the variable nor-
mally. Consider the following code:

with (obj) {

 a = b;

}

Common Antipatterns | 59

What does it do? It could be doing any one of the following:

a = b

a = obj.b

obj.a = b

obj.a = obj.b

Without going back and looking at the object, we have no idea what is happening. It
is also slower than accessing the object or variable directly.

document.write
document.write is a function used commonly in tutorials to demonstrate outputting
values. Basically, it outputs whatever is given to it:

<p>

 <script>document.write('Hello world!');</script>

</p>

Output:

<p>

 Hello world!

</p>

That is (usually) as far as the tutorials take it, besides conditionals and variable output.

There is almost no situation where document.write is a useful function to have; for

outputting elements, there is document.createElement, and for debugging, there is

console.log, which is a far superior function because it supports outputting objects,

elements, and functions as well as text, numbers, and Boolean values like docu

ment.write. In addition, document.write behaves differently depending on where it
is called; if it is called after the document has finished loading, it will entirely overwrite
the existing DOM, destroying the page.

Common Design Patterns
Design patterns are conventions that will help you with the design or structure of your
code, and can be used on your code to solve a common problem. As many developers
have used them before us, you can be fairly sure that these patterns will solve your
problem in a clean and efficient way. In this section, I will explain a few of the more
common design patterns and how they can be implemented in JavaScript.

This is not a fully comprehensive guide to design patterns in JavaScript. To find out
a lot more about this topic, I would recommend Learning JavaScript Design Patterns
by Addy Osmani, which in addition to being published by O’Reilly, is available as a
free book online.

60 | Chapter 5: JavaScript Conventions

http://oreil.ly/js_design_patterns
http://bit.ly/ZQNe8L

The Singleton Pattern
You would implement the Singleton pattern, in other languages, by creating a class
with a method that creates a new instance of a class if one doesn’t exist, or return that
object if it already does. It is used in languages where only the current scope is checked,
instead of the current scope and then all the parents.

So, in short, implementing the Singleton pattern is as simple as just creating an object:

var demoSingleton = {

 foo: 'bar',

 hello: function () {

 return 'Hello world!';

 }

}

There is no need to do anything special.

That hasn’t really explained Singleton very well; there is no easy way to explain it in
JavaScript. The following information isn’t really necessary unless you want to know
what the Singleton pattern actually is, so if you aren’t interested in that or don’t know
PHP (which is what I will be using to explain it), you can skip to the next subheading.

The following code sample is bad code, as it uses globals:

<?php

class MyClass {

 // ...

}

$myClass = new MyClass();

function myFunction() {

 global $myClass;

 // ...

}

It is better to not use globals, so instead we create a static class (which is automatically
global) and use it to get the object:

<?php

class MyClass {

 // ...

}

class MyClassSingleton {

 private $myClass;

 public static function get() {

 if (!is_object($this->myClass)) {

 $this->myClass = new MyClass();

 }

 return $this->myClass;

 }

Common Design Patterns | 61

}

function myFunction() {

 $myClass = MyClassSingleton::get();

 // ...

}

$myClass is then an instance of the MyClass object.

The Factory Pattern
The Factory pattern is a creational pattern that helps create objects. It creates a generic
interface for creating objects without using a constructor, where we can specify the
type of the factory object to be created.

This pattern is easiest to explain by example. We’re going to be simulating a real factory
in the following code example:

function Ford(options) {

 this.color = options.color || 'blue';

 this.year = options.year || new Date().getFullYear();

}

function Mini(options) {

 this.color = options.color || 'red';

 this.model = options.model || 'Cooper';

}

function CarFactory(){}

CarFactory.prototype.carType = Ford; // Default is ford

CarFactory.prototype.createCar = function (options) {

 if (options.carType === 'mini') {

 this.carType = Mini;

 } else if (options.carType === 'ford') {

 this.carType = Ford;

 }

 return new this.carType(options);

};

var factory = new CarFactory();

var mini = factory.createCar({

 carType: 'mini',

 model: 'One'

});

We can then see by logging the mini variable to the console that it is an instance of

the Mini object. You can also use instanceof to confirm this.

62 | Chapter 5: JavaScript Conventions

Another approach would be to have an object telling the .createCar method where

all the cars are instead of having an if-else statement. This makes it easier to add
other cars, and it also means that cars can be added on the fly. For example:

function Ford(options) {

 this.color = options.color || 'blue';

 this.year = options.year || new Date().getFullYear();

}

function Mini(options) {

 this.color = options.color || 'red';

 this.model = options.model || 'Cooper';

}

function CarFactory(){}

CarFactory.prototype.carType = Ford; // Default is ford

CarFactory.prototype.carTypes = {

 ford: Ford,

 mini: Mini

};

CarFactory.prototype.createCar = function (options) {

 if (options.carType && this.carTypes[options.carType]) {

 this.carType = this.carTypes[options.carType];

 }

 return new this.carType(options);

};

Be careful where you use the Factory pattern. If the problem doesn’t require this pat-
tern, then using it could make your code unnecessarily complicated. It’s most useful
where initiating the object is complex, or where a lot of small objects need to share
the same properties or methods.

The Iterator Pattern
The Iterator pattern is a commonly used design pattern that makes it very easy to
iterate through the elements of an aggregate object. For example, consider the fol-
lowing code:

var element, elements = new ElementIterator('.foo');

while ((element = elements.next())) {

 console.log(element);

}

That code simply loops through all elements with className foo, logging them to
the console. What is special, however, is how the code is getting the elements; instead

of looping through them with a for loop, we’re using a while loop with a call to

elementIterator.next. This can have a few advantages over just a for loop, such as

the ability to add a .previous method as well as a .next method and go backward
and forward as required.

Common Design Patterns | 63

The following is an example implementation of the ElementIterator function that
would allow the previous code to run:

function ElementIterator(selector) {

 this.elements = document.querySelectorAll(selector);

 this.currentElement = -1;

}

ElementIterator.prototype.current = function () {

 return this.elements[this.currentElement];

};

ElementIterator.prototype.hasNext = function () {

 return !!(this.elements[this.currentElement + 1]);

};

ElementIterator.prototype.next = function () {

 if (this.hasNext()) {

 this.currentElement++;

 return this.current();

 } else {

 return undefined;

 }

};

The .next and .hasNext methods can easily be adapted for both .previous and

.hasPrevious. It is also common to see a .reset or .restart method, which would

reset this.currentElement to 0 and return the first element.

The Facade Pattern
The final design pattern that I will be covering here is also among the smallest and
simplest design patterns. Facade (or sometimes façade, the French word from which
it originates) means “frontage”; that is, obscuring what goes on underneath with
something different.

Basically, a facade function is a function that calls a number of other functions in

order to make a process simpler for the user. For example, given two functions, func

tion1() and function2(), the following is an example of the Facade pattern in action:

function functions1and2() {

 function1();

 function2();

}

That’s simple enough.

The usage of the Facade pattern has a couple of advantages and disadvantages. It makes
the code easier to read and is DRYer, but it can hit performance when using this
pattern; you’ve got to consider how significant that performance impact is and wheth-
er it is worth it.

64 | Chapter 5: JavaScript Conventions

In jQuery, $.fn.css and $.fn.animate are examples of facade functions, as they call
multiple internal functions without actually doing much themselves.

Summary
In this chapter, we have explored some common conventions in JavaScript, and how
using them can help both your code and your ability to write it. We also explored
antipatterns, specifically how they can have a detrimental effect on your code and
thus should be avoided. We also looked into a few of the more common design pat-
terns, and how using them can improve the structure of your code.

Here are a few conventions we discussed:

• Comments and DocBlocks.

• Coding standards, such as the use of whitespace, the naming of variables and
functions, and the placement of curly braces.

• Literal notations versus using the constructor functions such as Array and

Function.

• Optimizations, including demonstrations of a few micro-optimizations and
questioning whether they’re really necessary.

• Function declarations versus expressions, the function callback pattern, and self-
defining and self-invoking functions.

• The basic concepts of code reuse, and DRYing your code.

• Some common antipatterns, including the use of eval, the with statement, and

document.write.

We also covered a few of the most basic design patterns:

• The Singleton pattern (specifically, how it doesn’t apply to JavaScript)

• The Factory pattern

• The Iterator pattern

• The Facade pattern

For a longer read on conventions and patterns in JavaScript, try JavaScript Patterns
by Stoyan Stefanov.

Summary | 65

http://oreil.ly/js_Patterns

APPENDIX A

JavaScript Basics

JavaScript is a versatile, lightweight, and easy-to-use scripting language. It is most
often used in websites and web-based applications, although it is becoming increas-
ingly common to find it used on the server side using a server-side implementation
of JavaScript such as Node.js. Some desktop and mobile applications are even starting
to use JavaScript and HTML5.

Due to the wide usage and huge popularity of JavaScript, many libraries have been
written for it, a few of which include jQuery, YUI, Dojo, and MooTools. jQuery is
currently the most popular, with 85% of the market share and thousands of contrib-
utors. Many major projects are built off jQuery, such as jQuery Mobile, Twitter Boot-
strap, and jQuery UI.

It is also extremely fast—Apple and Google’s fight for the fastest JavaScript engine
(Safari’s Nitro and Chrome’s V8 engine, respectively) has pushed the engineers at both
companies to improve the speed of the engines to the point where micro-
optimizations are almost entirely unnecessary.

JavaScript is a very forgiving language, and often developers can make mistakes
without them having an effect on the site; browsing the Internet with the JavaScript
console open often displays errors on many big websites. Unfortunately, this has the
side effect of allowing the developers to make mistakes of which they are not made
aware, and they develop bad habits that they may then pass on to other people. A lot
of online tutorials, and often even books, contain misleading or incorrect information,
and will lead the reader into bad habits.

67

http://nodejs.org/

Hello World!
This appendix is a quick explanation of what you can do in JavaScript, explained
mostly from your existing jQuery knowledge. If you’re not confident with your Java-
Script abilities or only know jQuery, it is definitely worth reading this chapter; while
you may know some of the material it covers already, it is definitely good to have it
explained properly.

I’ll be explaining the basic features of JavaScript, such as strings, functions, and vari-
ables, primarily using examples; they’re fairly easy to pick up. To display output in this

chapter, we will be using the built-in console.log function. This simply outputs the
arguments passed to it into the browser’s JavaScript console. This function doesn’t
work in IE8 and older versions of Firefox, and will throw an error if you try to use it.
Throughout the appendix, I’ll be using Google Chrome for examples and demon-
strations. You can access the console in Chrome in View → Developer → JavaScript
Console (it is also worth getting into the habit of using the keyboard shortcut: Option-
Command-I in OS X, or Ctrl-Shift-I in Windows).

For example, the following code logs “Hello World!” to the console, as shown in
Figure A-1:

console.log('Hello World!'); // Hello World!

Figure A-1. “Hello World!” in the console

The “undefined” that you can see in Figure A-1 is the return value of the code that

was run, which in this case is undefined, as the function didn’t return anything. We

can also return values to view them, instead of using console.log. For an example of
that, see Figure A-2.

68 | Appendix A: JavaScript Basics

Figure A-2. “Hello World!” in the console (returned)

We passed a string to console.log. You’ll probably have used strings in jQuery and
in any other programming language you’ve worked with. A string is just a collection

of characters wrapped in quotes (either single or double): "This is a string". Unlike
with some other languages, single quotes and double quotes behave exactly the same;
it doesn’t matter which you use. You can concatenate (join) two strings together using
the + operator:

console.log('Hello ' + "World!"); // Hello World!

The same character is also used to add numbers together (this time, as the unary
operator). We’ll cover numbers in more detail later:

console.log(2 + 3); // 5

Comments
Comments are easy in JavaScript, and you have probably already used them when
writing jQuery. A comment is simply a note in the code that you can read to refami-
liarize yourself when you come back to that code later. The JavaScript engine will
ignore it:

// This is a comment, and won't be parsed

/* This comment spans

multiple lines

*/

Comments are also commonly used to prevent the execution of some code, which can
be useful when debugging your code:

console.log('one'); // one

//console.log('two'); // will not run

console.log('three'); // three

Comments | 69

Variables
Variables are also pretty easy. Again, you have likely used them when writing jQuery,
but you may have been using them wrong (for example, by not declaring them). You

must declare all variables using var. For example:

var foo = 'bar';

console.log(foo); // bar

Due to the forgiving nature of JavaScript, it won’t actually complain if you don’t declare
the variable, but you may encounter debugging issues because such a variable does
not behave the same as one that has been declared.

JavaScript has what is known as a function scope, which determines where variables
can be accessed from based upon where they were defined. For example, a variable
declared within a function will become “local” to that function, which means that it
can only be accessed from within that function, or any functions declared within that
function. Any variable declared outside a function will become “global,” and can be
accessed from anywhere, including in functions. For example:

var a = 'foo';

function test() {

 var b = 'bar';

 console.log(a); // foo

 console.log(b); // bar

}

test();

console.log(a); // foo

console.log(b); // ReferenceError: undefined

In this code sample, we can see that the variable a, defined outside the function, can

be accessed from within the function. The variable b can be accessed from within the

function, but not outside of the function like a can.

A variable declared outside a function, but modified inside the function without being
redeclared, will stay modified:

var a = 'foo';

var b = 'bar';

function test() {

 a = 'test';

 var b = 'Hello!';

 console.log(a); // test

 console.log(b); // Hello!

}

test();

console.log(a); // test

console.log(b); // bar

70 | Appendix A: JavaScript Basics

This code sample is similar to the previous one, but a is changed—and stays changed.
It also shows us that variables declared inside the function that are also declared out-
side the function do not overwrite the old value, which is still the same after the
function has been called.

While some tutorials and websites may tell you that omitting the var
declaration is safe and just declares the variable globally, this is very
bad practice and should not be done unless the variable has been de-
clared in a parent scope.

Numbers
You can perform arithmetic operations in JavaScript:

console.log(2 + 2); // 4

console.log(4 - 2); // 2

console.log(4 * 2); // 8

console.log(6 / 2); // 3

We can also use noninteger numbers:

console.log(3.5 + -2); // 1.5

console.log(5.75 - 2.2); // 3.55

You can use the parseInt and parseFloat functions to convert a string

into a number. parseInt ignores anything after the first decimal place,

meaning that it will always return a whole number, while parse

Float returns the number exactly as it displays. For example:

console.log(parseInt('122')); // 122

console.log(parseInt('1.8')); // 1

console.log(typeof parseInt('122')); // number

console.log(parseFloat('3.5')); // 3.5

console.log(typeof parseFloat('3.5')); // number

We can perform some more complicated arithmetic tasks using the built-in Math
object:

console.log(Math.round(3.4)); // 3

console.log(Math.ceil(3.4)); // 4

console.log(Math.pow(2, 10)); // 1024

To see a full list of functions in the Math object, you can consult the documentation
at the MDN website.

Numbers | 71

http://mzl.la/Wyiani

The Assignment Operators
When working with a variable that has a numeric value, you can use the following
shortcuts to modify the value:

var x = 2;

x += 7; // x = x + 9 (9)

x -= 1; // x = x - 1 (8)

x *= 2; // x = x * 2 (16)

x /= 4; // x = x / 4 (4)

As a further shortcut, there are operators for incrementing and decrementing a vari-
able by one. They’re the same as in other languages:

var x = 2;

x++; // x = x + 1 (3)

x--; // x = x - 1 (2)

You can also use the += operator for strings (but using any of the other assignment

operators with strings will return NaN):

var x = 'Hello ';

x += 'world!'; // Hello world!

Functions
There are two main ways of defining a function in JavaScript: the function declaration
and the function expression. For example:

// Function declaration

function greet(name) {

 console.log('Hello ' + name + '!');

}

// Function expression (anonymous function)

var greet2 = function (name) {

 console.log('Hello ' + name + '!');

};

Function expressions can either be named or anonymous. They have a fairly similar

syntax, but the named function has a .name property, which can be used for back-
tracing, usually by the browser:

// Anonymous function expression

var greet3 = function (name) {

 // ...

};

console.log(greet3.name); // blank string

// Named function expression

72 | Appendix A: JavaScript Basics

var greet4 = function greet (name) {

 // ...

};

console.log(greet4.name); // greet

It is worth noting that the .name property is not actually part of the JavaScript spec-
ification, and attempting to access it will result in an error in Internet Explorer—if
you want global support for your code, you shouldn’t use this property.

A function declaration and a function expression look and behave in very similar
ways, but the former is hoisted, meaning that it appears at the top of the scope (the
function or file) so that it can be called before it is actually defined. Function expres-
sions also look much better as arguments for other functions (we’ll get to that in a
bit).

We use the same syntax to call each type of function:

greet('Alien'); // Hello Alien!

greet2('World'); // Hello World!

Hoisting Example
As foo is a function declaration, it is hoisted, meaning that it goes at the beginning of
the scope—either the top of the page (in this case) or the top of the function. This

means that it is available before it is defined from the top of the scope, so typeof

foo returns function. As bar is only a function expression, it isn’t available until after

it has been defined, so typeof bar returns undefined:

console.log(typeof foo); // function

console.log(typeof bar); // undefined

function foo() {}

var bar = function () {};

This behavior can have some pretty weird side effects. For example:

// Example one

function test() {

 return 'one';

}

console.log(test()); // two

function test() {

 return 'two';

}

// Example two

if (true) {

 function test2() {

Functions | 73

 return 'one';

 }

} else {

 function test2() {

 return 'two';

 }

}

console.log(test2()); // two

We can work around both of these example scenarios fairly easily by using a function
expression.

Variable declarations are also hoisted, but that affects you as a developer far less than
function hoisting does (which is why it was mentioned here, not under the string
section). Only the declaration itself is hoisted; the actual assignment is not. The only
real effect this has is that if you define a variable as a later point in the function, you
cannot access the variable from a parent scope:

var a = 'foo';

var b = function () {

 console.log(a); // undefined

 var a = 'bar';

};

b();

As it is common practice to put all variable function declarations at the top of the
function (and it is definitely something that I would encourage you to make a habit
of), this isn’t a massive issue.

Functions as Arguments
Functions can also be sent as arguments to functions, like this:

function call(func, data) {

 func(data);

}

call(function (a) {

 console.log(a);

}, 'Test');

This function, while slightly more complicated than any of the previous code examples
in this book, is actually pretty simple. First, we define a function that simply calls the
function sent to it (in this case, the anonymous function), and then we call it. This
sort of syntax is used a lot in jQuery, usually for callbacks:

$('a.bounce').click(function () {

 // Do something with the element

});

74 | Appendix A: JavaScript Basics

This code, when jQuery detects that a.bounce has been clicked, calls the anonymous
function.

Returning a Value
We can also return a value from a function:

function product(a, b) {

 return a * b;

}

console.log(product(2, 4)); // 8

console.log(product(10, 0)); // 0

If we do not specify a return value, undefined is returned:

function blank() {

 // no return statement

}

console.log(blank()); // undefined

Objects
An object is a way of storing a collection of indexed data. Again, it is easiest to explain
with an example:

var your_obj = {

 foo: 'bar',

 otherIndex: 2 + 2

};

console.log(your_obj.foo); // bar

console.log(your_obj.otherIndex); // 4

The object is defined using curly braces, and allows data to be stored by keys (known
as properties). This notation is known as the object literal notation. We can access and

modify objects using the dot operator, and delete items using the delete keyword:

your_obj.foo = 'test';

console.log(your_obj.foo); // test

delete your_obj.foo;

console.log(your_obj.foo); // undefined

You can store any type of data in an object, including other objects.

var obj = {

 foo: {

 foo: 'bar'

Objects | 75

 }

};

console.log(obj.foo.foo); // bar

Here is where it starts to get a little more complicated, though. Almost everything is
an object in JavaScript (which is why we can use functions as arguments). For example,
we can treat a function like an object, setting and accessing properties and methods:

var foo = function () {};

foo.hello = 'world';

console.log(foo); // function () {}

console.log(foo.hello); // world

console.log(foo.length); // 0

As demonstrated here, objects have built-in properties that they inherit from the ob-

ject from which they were created (in this case, the Function object).

'string'.length would return the length of the string, which in this case is 6, and

(function(){}).length would return the number of arguments it accepts, which in
this case is 0. Objects also have built-in methods:

console.log('string'.toUpperCase()); // STRING

MDN (Mozilla Developer Network) has some extremely good JavaScript references.
It has a list of all the string methods here, where you can find all the methods for the

other objects, like Arrays and Objects.

Just as functions can be treated as objects, we can have variables that are accessible as

both an object and a function. This is how jQuery’s $ variable works. We can simulate
the behavior using the following code:

function $(selector) {

 return document.querySelectorAll(selector);

}

// Loops through elements

$.each = function (array, cb) {

 for (var i = 0; i < array.length; i++) {

 cb.call(i, array[i], array);

 }

}

var paragraphs = $('p'); // returns all paragraphs

$.each(paragraphs, function (index, paragraph) {

 // ...

});

This isn’t exactly how jQuery works (the function returns a real NodeList instead of
a jQuery node list, which is covered in Chapter 3), but the principle is the same.

76 | Appendix A: JavaScript Basics

http://mzl.la/RKxal6
http://mzl.la/11nBlYi

Finding the Type of a Variable
You can use the typeof operator to find out what type of data a variable contains. This
has a lot of practical applications, such as checking whether variables are the correct
type (e.g., checking whether the input in a string function is in fact a string) or check-
ing whether a variable is defined:

var str = '';

console.log(typeof str); // string

console.log(typeof 4); // number

console.log(typeof {}); // object

The five types are string, number, object, function, and boolean. It can also return

undefined, which means that the variable hasn’t been defined.

Sometimes the operator can return some weird things:

console.log(typeof null); // object

console.log(typeof NaN); // number

A variable that is null doesn’t contain anything; it’s sort of a halfway point between

undefined and an empty string. NaN means “Not a Number,” and is returned when

you try to do impossible mathematical operations such as "a" / 2.

To work around these, you can use the following:

var null_var = null;

console.log(null_var === null); // true

console.log(isNaN(NaN)); // true

We’ll learn more about the === operator in “Comparison Operators” (page 83); it just
means “equal to.”

Arrays
Arrays are similar to objects, but their contents are accessed differently and they do
not have properties like objects, just numeric values known as indexes:

var foo = ['one', 'two', 'three'];

console.log(foo[0]); // one

console.log(foo[2]); // three

As with pretty much everything in computing, lists are indexed from the number 0.

Arrays have a number of built-in methods that you can use to modify the array. To

add new items to arrays, you can use the .push method:

Finding the Type of a Variable | 77

var foo = ['one', 'two'];

foo.push('three');

console.log(foo[0]); // one

console.log(foo[2]); // three

To delete an item from the array, you can use the .splice method. In addition to

deleting items, .splice also allows you to add new items to the middle of the array:

var foo = ['one', 'junk', 'more junk', 'three'];

foo.splice(1, 2, 'two');

console.log(foo[0]); // one

console.log(foo[2]); // three

This deletes two items from the item with index 1 (junk) and replaces them with

two. The third argument is optional, so you can just delete items without replacing
them, too:

var foo = ['one', 'two', 'junk', 'three'];

foo.splice(2, 1);

console.log(foo[0]); // one

console.log(foo[2]); // three

Consult MDN to see a full list of the array methods available.

Detecting an Array
As typeof [] returns "object", we cannot use it to detect an array. Instead, we can

use the instanceof operator or the Array.isArray function:

console.log([] instanceof Array); // true

console.log(Array.isArray([])); // true

The instanceof operator isn’t too reliable, as it can be tricked into returning the wrong

answer. The best way of detecting an array is definitely to use the Array.isArray
function. However, it is relatively new (it was introduced in JavaScript 1.8.5), and thus
isn’t supported in Internet Explorer 7 and lower. There are two ways around this. The

first is to use jQuery’s jQuery.isArray function:

console.log($.isArray([])); // true

console.log($.isArray({})); // false

The second workaround is to create the Array.isArray function if it doesn’t exist.
The following snippet of code is from MDN:

if(!Array.isArray) {

 Array.isArray = function (vArg) {

 return Object.prototype.toString.call(vArg) === "[object Array]";

 };

}

78 | Appendix A: JavaScript Basics

http://mzl.la/Wyiani

This can be called the same way Array.isArray is called.

Looping
Loops are found in nearly every modern computing language, and are a very powerful
feature. Their name is fairly descriptive: loops allow you to repeat the same block of
code. This is good for, say, looping through arrays of objects.

The for Loop
The first loop we’ll look at is the for loop. It is a common way of looping through
arrays:

var foo = ['one', 'two', 'three'];

for (var i = 0; i < foo.length; i++) {

 console.log(foo[i]);

}

This results in the three elements being individually logged to the console. The loop

is, again, quite simple: var i = 0 defines i as 0; i < foo.length returns false when

i is not less than foo.length, stopping the loop; and i++ is the equivalent of i = i +

1, as explained in “Numbers” (page 71).

The first statement, var i = 0, is run once, before the first iteration. The third state-

ment, i++, is run every single time. The second statement is the conditional that tells

the loop when to stop looping. If the result of the second statement is either false or

0, then the loop stops running (null, undefined, or a blank string won’t stop the loop).

In modern browsers, there is a more elegant solution available for looping through

arrays. If you have used a language such as PHP, you will have used the foreach loop
before. This was introduced in JavaScript recently, so doesn’t have support in all
browsers, but it is a lot cleaner (although slightly different from implementations in
other languages). The following code outputs exactly the same as the previous code
example:

var foo = ['one', 'two', 'three'];

foo.forEach(function (value, index) {

 console.log(value);

});

For support in older browsers, it is worth either using a for loop or a loop from a

library. (MDN also has a workaround for this to add .forEach support in older

browsers; check out the .foreach page.) Nearly all libraries have functions like this,

and jQuery is no exception. The jQuery.each function behaves in a very similar

manner to the foreach loop:

Looping | 79

http://mzl.la/XX4VDg

var foo = ['one', 'two', 'three'];

$.each(foo, function (index, value) {

 console.log(value);

});

That will output the same as both the previous loop examples.

There is another method that is similar to Array.forEach: Array.map. It cycles
through the array, running the given function on each element, and creating a new
array from the return values, which is then returned, leaving the original array intact.
For example, the following code will take an array of numbers and return an array of
those numbers squared:

var numbers = [1, 2, 3, 5, 10];

var newNumbers = numbers.map(function (number) {

 return Math.pow(number, 2);

});

console.log(newNumbers); // [1, 4, 9, 25, 100]

Similarly to Array.forEach, jQuery provides a function so that you can use this be-

havior in browsers that don’t support map natively. As you can see, it is fairly easy to
use:

var numbers = [1, 2, 3, 5, 10];

var newNumbers = $.map(numbers, function (number) {

 return Math.pow(number, 2);

});

console.log(newNumbers); // [1, 4, 9, 25, 100]

It behaves exactly the same, and leaves the original array intact.

For a map function that would work in every browser without jQuery, you can use a

for loop:

var numbers = [1, 2, 3, 5, 10],

 newNumbers = [];

for (var i = 0; i < numbers.length; i++) {

 newNumbers.push(Math.pow(number, 2));

}

console.log(newNumbers); // [1, 4, 9, 25, 100]

The while Loop
The while loop executes the contained code while a given conditional is true:

80 | Appendix A: JavaScript Basics

var i = 0;

while (i < 100) {

 console.log(i);

 i++;

}

This outputs the numbers 0 to 99. The reason it wouldn’t output 100 is that i is in-

cremented after it is logged to the console, meaning that when it hits 100, i < 100

will return false and the loop will be stopped.

Developers use a while loop fairly often to count down instead of using a for loop to
count up. If order doesn’t matter (or you need to go backward), cycling through back-

ward can be a lot more efficient, as there is only one statement per iteration (i--), as

opposed to two with a for loop (i <= 100 and i++). The following code will output
the numbers 99 to 0 inclusive:

var i = 100;

while (i--) {

 console.log(i);

}

The do-while Loop
The do-while loop is similar to the while loop, but the conditional is after the code
block, which changes the behavior slightly and ensures that the loop will always be
run once:

var i = 0;

do {

 i++;

} while (false);

console.log(i); // 1

With loops such as in the preceding subsection’s while loop example, do-while will
behave exactly the same. The following code will output the numbers 0 to 99:

var i = 0;

do {

 console.log(i);

 i++;

} while (i < 100);

The break and continue Statements
You can use break to break out of any loop, and you can use continue to stop executing
the code block and move to the next iteration.

The following code sample is an example of the break statement. It is similar to the

previous code sample, but will only output the numbers 0 to 50, as when i++ increases

i to 51, i > 50 will return true and break will be called, stopping the loop:

Looping | 81

var i = 0;

while (i < 100) {

 console.log(i);

 i++;

 if (i > 50) {

 break;

 }

}

The break statement can be useful if the conditional to stop a loop is too big; you can

make the loop infinite using while (true), and then have the break statement in an

if statement—or have a couple of if statements. You should be careful while doing

this, though, as messing up the conditional in the if statement would cause a real
infinite loop.

The following example demonstrates the continue statement. It expands on the pre-

vious example, but the continue before the if statement will ensure that the break
statement will never run; the numbers 0 to 99 will be logged:

var i = 0;

while (i < 100) {

 console.log(i);

 i++;

 continue;

 if (i > 50) {

 break;

 }

}

for..in statements
for..in statements are used to loop through an object:

var foo = {

 one: 1,

 two: 2

};

for (var prop in foo) {

 console.log(prop + ': ' + foo[prop]);

}

This outputs one: 1 and then two: 2. As you can see, it assigned prop to be the

property, not the value itself, so the value had to be retrieved via foo[prop].

82 | Appendix A: JavaScript Basics

Conditional Statements

The if Statement
The if statement executes some code if a given conditional is true:

if (true) {

 // Execute code

}

if (false) {

 // Code here won't be executed

}

In addition to the simple if statement, you can also use else if and else:

if (i < 10) {

 // i is less than ten

} else if (i < 15) {

 // i is less than 15 and more than or equal to ten

} else {

 // i is more than or equal to 15

}

Comparison Operators
As seen in the for and while loops, it is possible to use < to determine whether one
number is smaller than another number. There are also a number of other comparison
operators listed in Table A-1.

Table A-1. Comparison operators (examples return true)

Operator Description Example

== The two inputs are equal. 4 == "4"

=== The two inputs are the same. 'a' === 'a'

!= The two inputs are not equal. 7 != 4

!== The two inputs are not the same. 4 !== "4"

< The first input is less than the second input. 2 < 6

> The first input is greater than the second. "f" > "c"

<= The first input is less than or equal to the second. 2 <= 2

>= The first input is greater than or equal to the second. 5 >= 3

The difference between == and === is that === checks whether the inputs are the same

type, while == does not. For example, 0 == false and '0' == 0 would return true,

while 0 === false and '0' === 0 would not.

Conditional Statements | 83

Objects (including arrays and functions), when compared via == and ===, act slightly

differently than strings and numbers; these operations will return true if the objects

are the same, but false if they aren’t:

var ary = [], obj = {};

console.log(ary == []); // false

console.log(ary === []); // false

console.log(ary == ary); // true

console.log(obj === obj); // true

If you want to compare two objects or arrays, you must loop through them and com-
pare the contents. Comparing objects and arrays can be useful in testing libraries (in
fact, it is often essential).

When comparing two different objects, check the lengths before loop-
ing through them; if they’re not the same length, then you know
they’re not the same and so there is no need to loop through them.

Logical Operators
Logical operators are used to group multiple conditional statements together; see
Table A-2.

Table A-2. Logical operators (examples return true)

Operator Description Example

&& “And”: both are true. true && true

|| “Or”: one is true. false || true

! Negates the value given to it. !false

For example:

if (age < 18 || age > 25) {

 // age is either less than 18 OR above 25

}

if (age > 18 && gender === 'male') {

 // age is greater than 18 AND gender is male

}

if (!age) {

 // age is falsy

}

84 | Appendix A: JavaScript Basics

You can use two negation logical operators to cast a variable to

Boolean (true or false):

console.log(!!''); // false

console.log(!!7); // true

In an if statement, you don’t need to cast the variable to Boolean.

Falsy values

In the last comment in the preceding code example, I referred to a variable as falsy. A

falsy variable is one where it evaluates to false; it is either false, undefined, '', 0, or

null. Everything else is truthy. In the aforementioned example, it was probably either

0 or '' (assuming that we’re accepting input from a form).

In the context of an if statement, statements that return falsy will cause the block to
not be evaluated:

if (false) {

 // will not be run

}

if (undefined) {

 // will not be run

}

if ('' || 0 || null) {

 // will not be run

}

Any other value (a truthy value) will cause the block to be evaluated:

if ([]) {

 // will be run

}

if ('Hello world!') {

 // will be run

}

if (-1) {

 // will be run

}

The switch Statement
The switch statement executes a block of code specified by a value:

var foo = 'bar';

switch (foo) {

 case 'a':

 console.log('This will not be logged');

 break;

 case 'bar':

Conditional Statements | 85

 console.log('This will be logged');

 break;

 case 'foo':

 console.log('This will not be logged');

 break;

}

The statement will take the value given to it (in this case, bar) and run the code from

the given case statement until it hits a break statement or the closing parenthesis. In

the preceding code, the switch statement will run the code from case 'bar': to the

break on the line below the console.log, meaning that it will be the only con

sole.log called.

We can also have multiple case statements:

var foo = 'bar';

switch (foo) {

 case 'a':

 console.log('Will not be logged');

 break;

 case 'bar':

 case 'foo':

 console.log('Will be logged');

 break;

}

Then, while Will be logged will be logged if foo is equal to bar, it will also be logged

if foo is equal to foo.

There is one more statement: the default statement. If no cases match the variable,
then the default statement will be called:

switch (foo) {

 case 'bar':

 console.log('Will be called if the foo variable equals bar');

 break;

 default:

 console.log('Will be called if foo equals anything else');

 break;

}

We’ll use a new object, Date, for a more complicated example of a switch statement:

switch (new Date().getDay()) {

 case 5:

 console.log('Friday!');

 break;

 case 6:

 case 0:

86 | Appendix A: JavaScript Basics

 console.log('Weekend!');

 break;

 default:

 console.log('Weekday :-(');

 break;

}

The Date object is a native JavaScript object for performing date and time functions.

new Date() creates a new instance of the Date object with the current date and time,

and the .getDay() method returns the day of the week where 0 is Sunday and 6 is a
Saturday.

If we omit the break statement, the code will “fall through,” and both the current case
and the next will be executed:

switch (new Date().getDay()) {

 case 0:

 case 6:

 console.log('The week has passed');

 case 5:

 console.log('Thursday has passed');

 case 4:

 console.log('Wednesday has passed');

 case 3:

 console.log('Tuesday has passed');

 case 2:

 console.log('Monday has passed');

}

On Wednesday, both “Tuesday has passed” and “Monday has passed” will be logged,
and on the weekend everything will be logged. On Monday, nothing will be logged.

This technique is often considered fairly bad practice—it can sometimes make de-

bugging difficult, and if you accidentally miss a break statement, it will make your
code behave strangely and will be difficult to catch. I would say that it’s fine to use in
moderation, but be very careful.

If you’ve only got one bit of code per case, then it can often be a lot easier (and certainly
a lot cleaner and easier to debug) to just use an object. The following three code
samples will do exactly the same thing:

// Using a switch statement:

switch (randLetter()) {

 case 'A':

 console.log('The function returned A');

Conditional Statements | 87

 break;

 case 'E':

 console.log('This time, the function returned E');

 break;

 case 'I':

 console.log('I!');

 break;

 case 'O':

 console.log('Oh, the function returned "O"');

 break;

 case 'U':

 console.log('You? Ewe? Yew?');

 break;

 default:

 console.log('The function returned an inferior letter');

 break;

}

// Using an object

var letters = {

 A: function () {

 console.log('The function returned A');

 },

 E: function () {

 console.log('This time, the function returned E');

 },

 I: function () {

 console.log('I!');

 },

 O: function () {

 console.log('Oh, the function returned "O"');

 },

 U: function () {

 console.log('You? Ewe? Yew?');

 },

 default: function () {

 console.log('The function returned an inferior letter');

 }

};

var letter = randLetter();

if (letters[letter]) {

 letters[letter].call();

} else {

 letters.default();

}

88 | Appendix A: JavaScript Basics

// Or even:

var letters = {

 A: 'The function returned A',

 E: 'This time, the function returned E',

 I: 'I!',

 O: 'Oh, the function returned "O"',

 U: 'You? Ewe? Yew?',

 default: 'The function returned an inferior letter'

};

console.log(letters[randLetter()] || letters.default);

Delays
There are two functions built into JavaScript that allow you to implement a delay into

your code. The first, setTimeout, calls the given function after a specified time interval
(specified in milliseconds, a thousandth of a second). The following code waits one
second and then logs “Hello world!” to the console:

setTimeout(function () {

 console.log('Hello world!');

}, 1000);

As JavaScript is an asynchronous language, this would not stop the code below from

running. The following code would log one to the console after 500 ms, and then two

500 ms after that. To have one logged 500 ms after two was logged, we would either
have to adjust the time on the second timeout to be 1,500 ms, or we would have to

put it in the anonymous function that is being called by the first setTimeout:

setTimeout(function () {

 console.log('two');

}, 1000);

setTimeout(function () {

 console.log('one');

}, 500);

The second function that allows you to work with delays is setInterval, which calls

the given function every x milliseconds, instead of just once like setTimeout does.
The code function logs “Hello world!” to the console every two seconds:

setInterval(function () {

 console.log('Hello world!');

}, 2000);

When you call either setTimeout or setInterval, it returns a number that can then

be passed to clearTimeout or clearInterval to stop the timeout or interval from
running:

Delays | 89

var id = setInterval(function () {

 console.log('Hello world1');

}, 500);

setTimeout(function () {

 clearInterval(id);

}, 5050);

That code would log “Hello world!” to the console twice a second for five seconds, at
which point it would stop. The 5,050 is to ensure that it happens 10 times; if it were
5,000, it would only happen nine times, and it could be misunderstood if 5,500 were

used. clearTimeout works the same way; setTimeout returns an ID that can then be

passed to clearTimeout to cancel the running of the timeout. Obviously, if the timeout
has already run, clearing it won’t do anything.

Regular Expressions
Regular expressions, commonly known as “regex” or “RegExp,” are a very powerful
tool used to parse data. To people who haven’t met them before, regular expressions
can seem to have a somewhat confusing syntax, but as you learn and get used to them,
they become clearer and easier to write. As regular expressions aren’t exclusive to
JavaScript—the syntax most commonly used is from Perl—I won’t explain regular
expressions themselves, just how to use them in JavaScript. To find out more about
regular expressions generally, read Mastering Regular Expressions by Jeffrey E. F. Friedl.

There are two ways to create a regular expression in JavaScript. The first is the pre-
ferred way, but if you want to accept user input into the regular expression, then you
have to use the second:

var regex = /(?:foo)+/g;

var regex2 = new RegExp('^' + username + ': (.+)$', 'i');

The first method utilizes the RegExp literal, while the second just creates a new instance

of the RegExp object. Both methods have the same end result, but the first is more
readable and slightly more efficient; I have explained why in greater detail in Chap-
ter 5.

For the regex variable, (?:foo)+ is the regular expression itself, and g is the modifier.

For the regex2 variable, '^' + username + ': (.+)$' generates the regular expres-

sion, and the i modifier is used.

There are two main methods used to execute regular expressions, .exec and .test.
Both are methods of the regular expression and accept a string input:

90 | Appendix A: JavaScript Basics

http://oreil.ly/Mastering_RegEx

var regex = /^hello/ig; // tests whether string begins with "hello"

regex.test('Hello world!'); // true

regex.exec('Hello world!'); // ["hello"]

regex.test('Foo bar'); // false

regex.exec('Foo bar'); // null

.test returns a Boolean value denoting whether the regex matches the string,

while .exec returns the array. Any capturing groups return their contents as part of

the returned array (they wouldn’t affect the output of .test, though):

var regex = /^hello ([^]+)!$/i;

regex.exec('Hello world!'); // ["Hello world!", "world"]

Regular Expressions in String Functions
Some string functions also accept regular expressions as arguments:

"abcdefg".split(/[c|e]/g); // ["ab", "d", "fg"]

"abcdefg".search(/[c|e]/g); // 2

"abcdefg".match(/[c|e]/g); // ["c", "e"]

"abcdefg".replace(/(c|e)/g, 'x'); // abxdxfg

For .match and .replace, remember to use the global modifier. If you don’t, only the
first instance will be matched and the output will be very different, as demonstrated

in the following example. You don’t need to use the global modifier for .split

and .search, as .split seems to ignore it and .search only returns the index of the
first instance anyway:

"abcdefg".split(/[c|e]/); // ["ab", "d", "fg"]

"abcdefg".search(/[c|e]/); // 2

"abcdefg".match(/[c|e]/); // ["c"]

"abcdefg".replace(/(c|e)/, 'x'); // abxdefg

Error Handling
The JavaScript way of handling errors is fairly similar to how errors work in other

languages. We can throw errors using a throw statement:

throw new Error('This is an error');

This will display the error in the console, as you can see in Figure A-3.

Error Handling | 91

Figure A-3. Throwing an error

All runtime errors are thrown like this as well. You can catch and handle errors using

a try-catch statement, like in other languages:

try {

 throw new Error('Test');

} catch (e) {

 console.log(e);

}

This will just result in your Error object being logged to the console. Executing a

throw statement stops the execution of code in the current block, so it is important to
catch errors or your application could die silently, leaving the user wondering what

is happening. The error objects created have two properties, name and message. name

is the name property from the constructor function, and could be Error, one of the

other built-in constructors such as TypeError or ReferenceError, or a custom con-

structor, which I will cover in a bit. message is just the string that was passed to the

constructor, which was 'Test' in the previous example.

Besides the Error object, JavaScript has six other error constructors built in, as listed
in Table A-3.

Table A-3. Error constructors

Constructor Description

EvalError Thrown when you use eval improperly.

RangeError Thrown when you pass a number to a function that is outside the allowed range—for example, if you try

to create an array of length -1.

ReferenceError Thrown when you try to reference a variable that does not exist.

SyntaxError Thrown when you pass invalid code to eval.

TypeError Thrown when a variable or argument is of the wrong type—for example, if you try to access a property

of an undefined variable.

URIError Thrown when you give the encodeURI or decodeURI functions invalid arguments.

92 | Appendix A: JavaScript Basics

It is also possible to create your own error types using the Error object:

function CustomError(message) {

 this.name = 'CustomError';

 this.message = message;

}

CustomError.prototype = new Error();

CustomError.prototype.constructor = CustomError;

throw new CustomError('This is a custom error');

That will usually result in something like "CustomError: This is a custom error"
being displayed in the console, an example of which you can see in Figure A-4.

Figure A-4. Throwing a custom error

Summary
In this chapter, you learned the fundamentals of JavaScript:

• You create strings using quotes ("string" and 'string') and concatenate them

using the + operator.

• You learned how to work with numbers—specifically, arithmetic operations using

*, /, +, and -, and the assignment operator shortcuts such as += and /=.

• Functions allow you to reuse code. There are three different types:

— Anonymous function expressions: var func = function () {};.

— Named function expressions: var func = function func () {};.

— Function declarations: function func() {}.

• You can return values using return.

• You can call functions using the following syntax: greet('World').

Summary | 93

• You can create objects (collections of indexed data) using the object literals (var

obj = {};), and you can access and modify properties using the dot operator.

Delete object properties using the delete keyword.

• Boolean data is the simplest form of data: true or false.

• You can retrieve the type of a variable using typeof: typeof {} === 'object'.

Comment code using either single-line comments:

// This is a single line comment

or multiline comments:

/* This can span multiple lines */

Arrays can be used to store nonindexed lists of information. You can create these using

the array literal, var ary = ['one', 'two'], and you can access and modify items

using indexes: ary[0] === 'one'. You can detect arrays using instanceof and

Array.isArray(), but not typeof because it returns 'object'.

There are three main loops. The first, the for loop, can loop through arrays and objects
like this:

// Cycle through arrays

for (var i = 0; i < ary.length; i++) {

 // ...

}

for (var prop in obj) {

 // ...

}

The while loop is used to loop while a certain condition is true, and the do-while
loop is used in a very similar way, but will always run the given code at least once:

while (i < 27) {

 // ...

}

do {

 // ...

} while (i < 27);

Newer browsers support a forEach method on Array objects, which can be used like
this:

['one', 'two'].forEach(function (value, index) {

 console.log(value);

});

94 | Appendix A: JavaScript Basics

Conditionals (e.g., myVar > 10) can be used to control the flow of the script via if,

if-else, and else statements. There are many different conditionals available, such

as ==, !==, <=, and >. We can use logical operators to group the conditionals together.

&& will return true if both conditionals are true, and || will return true if one is true.

Finally, we can use the negation operator (!) to negate a value.

setTimeout and setInterval allow you to put delays in your code, and run code at
every specified time interval:

setTimeout(function () {

 // ...

}, 1000);

We can define regular expressions using either the RegExp object, which accepts two

arguments—new RegExp('[a-z]+', 'g')`—or the regular expression literal

—/[a-z]+/g`. We can use regexes with their .exec and .test methods, and there are
also several string functions that accept regex arguments.

We can throw errors using the throw statement: throw new Error('This is an ex

ample error'), and catch them again by using a try-catch statement. In addition to

the Error object, there are six built-in error objects—including SyntaxError and
`TypeError`—and you can also create your own custom error objects.

Summary | 95

APPENDIX B

JavaScript Resources

There are many resources, both applications and websites, that you can use to aid your
JavaScript development.

A Good IDE
Your editor is your most useful tool when coding. I prefer IDEs (integrated develop-
ment environments) to normal text editors, as they usually include additional tools
such as debugging tools, file and database management, and sometimes support for
version control software. You can see an example of an IDE (in this case, JetBrains
PhpStorm, my IDE of preference) in Figure B-1. When I’m coding, I have only my
IDE, a browser (usually Chrome), a terminal, and a music player open; my IDE in-
cludes a regex toolkit that can test my regular expressions for me, a powerful debugger
(although it doesn’t actually support JavaScript, hence my use of Chrome), and an
HTTP inspector for when Chrome isn’t enough.

Some IDEs may cost a lot—mine did—but I have found that in the majority of cases,
the best ones are the more expensive ones. A free or cheap IDE may claim to have
tons of features that a more expensive rival may not, but it may be difficult to use,
poorly researched, and buggy. I would recommend trying more than one IDE before
deciding which to use. Most of the paid ones have free trials available, so make sure
to give them a try.

GitHub
GitHub is a huge website that hosts Git repositories. It offers free hosting to open
source projects, and paid accounts are also available for people who want to hide their
repositories from the public. But it isn’t just that—it also adds features to Git that make
developing much easier. It allows you to view the code from the website, which can

97

https://github.com/

Figure B-1. JetBrains PhpStorm

be very useful for viewing other people’s projects, and it also allows you to view the
commit history of a project. In addition, instead of commits being tagged with a name
and an email address, they are tagged with the GitHub account of the committer, so
you can view everything that person has contributed, what projects she has contrib-
uted to, and various other statistics.

GitHub also provides other functions for Git repositories, such as an issue tracker for
each repository, a wiki, and a static website. It also shows some helpful graphs, such
as impact (which developers have contributed what), traffic, clones, and fork infor-
mation.

JSHint
JSHint is a syntax checker that checks your code for bad practices and warns you about
them. It is based on JSLint, which is a similar tool written by Douglas Crockford.
However, some people (including me) find JSLint far too strict about some things,
and so JSHint was written. You can see a screenshot of JSHint in action—in this case,
checking for problems in the functions from Chapter 1—in Figure B-2.

98 | Appendix B: JavaScript Resources

http://jshint.com/

Figure B-2. JSHint testing the addEventListener and removeEventListener functions
from Chapter 1

JSPerf
JSPerf is a great website for testing the performance of JavaScript samples
(Figure B-3 shows it in action). You can enter multiple code samples, and it will test
them all to see which performs the most iterations per second, and is fastest. It then
saves the results and displays them in a graph compared to all the other browsers that
have performed that test, making it very easy to compare the code across multiple
browsers.

As an example, let’s test whether it’s worth caching the result of a call to jQuery if it’s
going to be called multiple times. You could add the following two test cases:

// First test case

$('#foo');

$('#foo');

$('#foo');

// Second test case

var foo = $('#foo');

foo;

foo;

foo;

JSPerf | 99

http://jsperf.com/

Obviously, the second test case will be three times faster than the first test case; they
contain basically exactly the same code, but the first contains it three times. But is it
worth caching? Does it save only a few nanoseconds per iteration? If so, it probably
isn’t worth worrying about.

Figure B-3. Test case from Chapter 3

Mozilla Developer Network
The Mozilla Developer Network (MDN) contains a huge array of resources and doc-
umentation for frontend developers. Searching the website, you can find articles, tu-
torials, links to useful tools, and documentation on pretty much every JavaScript
function, object, and method.

You can find it at https://developer.mozilla.org/en-US/.

Pastebins
A pastebin is a place to dump code to share with others. For example, if you’re stuck
with a piece of code or you just want to show off how awesome something you wrote
is, then you can paste it into the pastebin and it will give you a link to share with other
people. Pastebins usually have built-in syntax highlighters that it will apply to your
code. The most commonly used pastebin is Pastebin.com, which at the time of writing
boasts over 17 million pastes. However, its syntax highlighter for JavaScript isn’t great
and can be difficult to read. For this reason, I usually use another pastebin.

100 | Appendix B: JavaScript Resources

https://developer.mozilla.org/en-US/
http://pastebin.com/

Gist
Gist is GitHub’s pastebin. It has excellent syntax highlighting for JavaScript, and allows
you to fork and clone pastes and see the difference between different revisions of
pastes. It isn’t as complicated as I make it sound, and is extremely powerful.

JSFiddle
Something similar to a pastebin (but I wouldn’t classify it as a pastebin) is JSFiddle. It
allows you to paste your HTML, JavaScript, and CSS in, and it will then run it for you.
You can then save it and send the link to other people, and they can see and edit your
page. This is useful for the same reason that normal pastebins are useful, except with
the added functionality; as well as fixing your code, it allows people to test their edits
and debug your existing code. You can see a screenshot of me editing some code from
Chapter 1 in Figure B-4.

Figure B-4. Fiddle for some code from Chapter 2: View here

Version Control Software
Version control software (sometimes known as revision software) is a way of saving
“snapshots” of your code. I’ll explain this in terms of Git, as it is the version control
system I use on a regular basis and the only one I am familiar enough with to write
about. Other version control systems include SVN and Mercurial.

Version Control Software | 101

https://gist.github.com/
http://jsfiddle.net/
http://jsfiddle.net/Hm9k4/

When you make a change in your code, you can commit the changes. This means that
for every change (usually a feature or bug fix), there is a commit. At any point you
can modify the changes made in a commit or remove a previous commit, which means
that you can undo changes without having to do it manually. You can also, if you break
something, revert to the last commit without having to manually undo every change
that you have made; this can prove extremely useful.

Version control systems can also be useful for collaborating with other developers on
the same piece of code. You can branch the code (i.e., create a copy of the code), do
your work, commit the changes, and merge the changes back into the master branch.
Multiple branches can be created, and Git is especially good at merging conflicting
changes (for example, from multiple developers working simultaneously on the same
file). Unless the developers have changed the same line, no manual intervention is
required.

Version control systems also include many other features, and can often significantly
speed up development time.

102 | Appendix B: JavaScript Resources

About the Author
Callum Macrae is a professional JavaScript developer based in the UK. He regularly
contributes JavaScript-related patches to open source projects, including phpBB and
jQuery++. When not coding or writing, he spends most of his time drumming or
cycling.

Colophon
The animal on the cover of Learning from jQuery is an Asian green broadbill (Calyp‐
tomena viridis). It is distinct from the African green broadbill (Pseudocalyptomena
graueri), also known as the Grauer’s broadbill. Despite Walter Rothschild christening
the Grauer’s broadbill pseudocalyptomena, or “false” Calyptomena, modern science
has discovered that this bird is, in fact, related to the Asian green broadbill. Thus, both
this bird and its cousin are true broadbill birds.

The Asian green broadbill is a small bird, averaging 15 cm in length. It has brilliant
green and blue plumage, with black bars on its wings and a puff of feathers just above
its beak. The broadbill is so named for its broad beak, although the beak itself is weak
because this species primarily feeds on figs.

The broadbill inhabits evergreen trees in Malaysian and Indonesian forests, and is still
fairly common, despite increasing habitat loss. This bird makes its nest out of lichen
and spider webs, which camouflages the nests to look like arboreal litter.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC Ga-
ramond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con-
densed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Isn’t For
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Event Handling
	Listening for Events
	Events in jQuery
	Events in JavaScript
	Events in Internet Explorer 8
	Writing a Wrapper Function
	Adding Event Handlers to Multiple Elements

	Event Propagation
	Internet Explorer’s .attachEvent

	Triggering Events
	Triggering Events in Internet Explorer 8
	Writing a Wrapper Function to Trigger Events

	Removing Event Handlers
	Removing Event Handlers in Internet Explorer 8
	Writing a Wrapper Function to Remove Events

	Adding a “Once Only” Event Listener
	Summary

	Chapter 2. Constructors and Prototypes
	Constructors
	Method Chaining
	Constructor, Not Function

	Prototypes
	.hasOwnProperty
	Editing the Prototype of Existing Objects

	Summary

	Chapter 3. DOM Traversal and Manipulation
	Selecting an Element
	Selecting Elements with a CSS Selector

	Selecting Children
	Selecting the Next Element
	Creating an Element
	Modifying an Existing Element
	Cycling Through Elements
	Moving and Copying Elements
	Summary

	Chapter 4. AJAX
	Sending an AJAX Request
	Debugging
	Debugging Sent AJAX Requests

	Sending POST Requests in JavaScript
	Writing a Wrapper Function
	A Simple Application of AJAX
	Designing a Site with AJAX
	Summary

	Chapter 5. JavaScript Conventions
	Writing JavaScript
	Comments
	Coding Standards

	Literals Notation
	Object Literals
	Other Literals

	Optimizations
	Algorithms
	Caching Variables
	parseInt
	Loops
	Minimize Repeated Expressions

	Functions
	Declarations Versus Expressions
	Function Callbacks
	If Invoking Self-Defining Functions

	Code Reuse
	Common Antipatterns
	Using eval
	with
	document.write

	Common Design Patterns
	The Singleton Pattern
	The Factory Pattern
	The Iterator Pattern
	The Facade Pattern

	Summary

	Appendix A. JavaScript Basics
	Hello World!
	Comments
	Variables
	Numbers
	The Assignment Operators

	Functions
	Hoisting Example
	Functions as Arguments
	Returning a Value

	Objects
	Finding the Type of a Variable
	Arrays
	Detecting an Array

	Looping
	The for Loop
	The while Loop
	The do-while Loop
	The break and continue Statements
	for..in statements

	Conditional Statements
	The if Statement
	Comparison Operators
	Logical Operators
	The switch Statement

	Delays
	Regular Expressions
	Regular Expressions in String Functions

	Error Handling
	Summary

	Appendix B. JavaScript Resources
	A Good IDE
	GitHub
	JSHint
	JSPerf
	Mozilla Developer Network
	Pastebins
	Gist
	JSFiddle

	Version Control Software

	About the Author

