
www.allitebooks.com

http://www.allitebooks.org

Learning Modernizr

Create forward-compatible websites using feature

detection features of Modernizr

Adam Watson

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Modernizr

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2012

Production Reference: 1171212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-022-9

www.packtpub.com

Cover Image by J.Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Adam Watson

Reviewers

Chetankumar Akarte

Ben Fhala

Michelle Williamson

Acquisition Editor

Wilson D'Souza

Commissioning Editor

Meeta Rajani

Maria D'souza

Technical Editor

Nitee Shetty

Copy Editors

Vrinda Amberkar

Alida Paiva

Project Coordinator

Shraddha Bagadia

Proofreader

Aaron Nash

Indexers

Hemangini Bari

Rekha Nair

Graphics

Aditi Gajjar

Production Coordinator

Prachali Bhiwandkar

Cover Work

Prachali Bhiwandkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Adam Watson began life as a guitar maker but quickly transitioned into tech
after landing a irmware-testing gig at Hewlett Packard. After getting a taste of the
tech life, he began designing and coding websites in early 2000. Now, he works for
BUZZMEDIA, a leading pop-culture company developing a mobile face for the
company network of more than 40 music and pop-culture websites. He has also
helped in writing the oficial Facebook plugin for WordPress, re-factoring portions
of it a week before its oficial launch.

BUZZMEDIA is the leader in pop-culture and has millennial audience reach. It's
the world's fastest-growing digital media company, with more than 100 million
monthly unique visitors.

Over 35 BUZZMEDIA brands including SPIN, Celebuzz, Stereogum, Buzznet,
The Supericial, Idolator, Just Jared, Just Jared Jr., PureVolume, The Hype Machine,
AbsolutePunk, What Would Tyler Durden Do?, SocialiteLife, Go Fug Yourself,
Pink is the New Blog, Gorilla vs. Bear, RCRD LBL, Videogum, TheFrisky, Egotastic!,
Concrete Loop, Brooklyn Vegan, Crunktastical, Punknews.org, and others are
category-leading, authentic, inluential voices.

I'd like to thank Kelly, M.J., and Maddy for their support in helping
me to make this book possible.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Chetankumar Akarte is an Electronics Engineer from Nagpur University located
in central India. He has more than 6 years of experience in the design, development,
and deployment of Web, Windows, and mobile-based applications, with expertise in
PHP, .NET, JavaScript, Java, Android, and more.

He likes to contribute on the newsgroups' forums. He has written articles for
Electronics For You, DeveloperIQ, and Flash & Flex Developer's Magazine. In his
spare time, he likes to maintain his technical blog at http://www.tipsntracks.com
to get in touch with developers community. He has been a technical reviewer for
two books published by Packt Publishing. He has released some Marathi and Hindi
e-book applications on the Android market (https://play.google.com/store/
apps/developer?id=Chetankumar+Akarte).

He lives in the hilly Kharghar area of Navi Mumbai with his son Kaiwalya and wife
Shraddha. You can visit his websites at http://www.xfunda.com and http://www.
tipsntracks.com, or get in touch with him at chetan.akarte@gmail.com.

I would like to thank my wife Shraddha and my parents for their
consistent support and encouragement. My lovely son Kaiwalya
who allowed me to use his playtime with me to dedicate towards
this book. I would also like to thank Packt Publishing for giving me
the opportunity to do something useful and especially the Project
Coordinator, Shraddha Bagadia for all the valuable support.

www.allitebooks.com

http://www.allitebooks.org

Ben Fhala is a leading voice in the Technology Advertising world of New York.
He is the owner of the online video training school 02geek.com, an Adobe ACP.
He enjoys spending most of his time in learning and teaching, and has a love for
visual programming and visualization in general.

He has had the honor to develop applications for US Congress members, Prime
Ministers, and Presidents around the world. He has built many advertising
experiences for companies such as Target, AT&T, Crayola, Marriott, Neutrogena,
and Nokia. He has technically directed and led many award winning projects and
has so far helped three agencies receive an Agency of the Year Award (not just
helped but led the technical side to produce award quality work).

He has recently written his irst book, HTML5 Graphing and Data Visualization
Cookbook, Packt Publishing, available from November 2012.

Thanks for giving me a chance to be a part of this book. I've enjoyed
reading it and putting my few small pointers. It's been honored to be
included in this project and I want to thank the readers for joining in
and wish them a great read.

Michelle Williamson began her journey with computers in 1994 with a
traumatizing mishap involving a 15-page graduate class paper and an unformatted
loppy disk. She spent 5 years as a staunch luddite before becoming obsessed
with web development and technology in general. She has been a freelancing
web developer since 2000, starting out in Microsoft platforms, then drinking the
open source Kool-Aid in 2008 and has since devoted her time primarily to Drupal
development. She's an incessant learner, addicted to head-scratching challenges,
and looks forward to experiencing the continued evolution of mobile technology.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: Getting Started with Modernizr 5

Detect and design with features, not User Agents (browsers) 6
The Modernizr namespace 7

Supporting features with CSS selectors 9

Focusing on features, not browsers 11
What's wrong with browser snifing? 11
User Agent snifing – a big headache and a little payoff 12

Summary 14

Chapter 2: Installing Modernizr 15

Creating the foundation 15

Using conditional comments 18
The no-js class 18

Downloading the Modernizr library 19

Verifying the script connection 21
Blocking versus non blocking 22

The async attribute 23
Blocking to allow shimming 23
Adding the navigation 24
The section frames 26

Styling the page 26
Smoother transitions with jQuery 27

Determining the base experience 29

Images for icons 30
Opacity 30
Hex colors 31
HTML5 semantic elements 32
Custom fonts 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Fixed positioning 32
The core HTML 32

Google fonts API 38

The CSS 39

Summary 42

Chapter 3: Using Modernizr the Right Way 43
Frame 1 – swapping images for CSS 44

Keeping it WebKit, for now 44
The stripes 44
The curves 48
Clouds 53

Frame 2 – multiple backgrounds, text shadow, and RGBA color 56
RGBA 57

Text shadow 58
Frame 3 – box relect, HSLA color, and generated content 60

HSL color 60
Box shadow 61
Converting the clouds to CSS 62
Extra credit – converting the Modernizr logo to CSS 67

Frame 4 – animations 69
Animating the clouds 73

Frame 5 – putting it all together and making it rain 74

Caveats 75
Vendor preixing 79
Preixing with Modernizer.preixed 80

Summary 81

Chapter 4: Customizing to Your Unique Needs 83
Customizing Modernizr 83

The Modernizr.addTest plugin API 86
Modernizr.load 86

Using polyills 87
Media queries with Modernizr.mq 91

Respond 92

Further reading and resources 98

jQuery's Best Friends 98
Require JS 99

Backbone JS 99

Underscore 100
HTML5 Rocks 100

Summary 100
Index 101

Preface
While we eagerly wait for the days to come where a single piece of code works
across all browsers. Cross-browser strategies have arisen to meet these challenges
in the meantime. You may already be familiar with some of these strategies; for
example, detecting the browser version and manufacturer, and serving different
pieces accordingly. More recently a new technique has emerged known as feature
detection, targeting the look and feel of features as opposed to speciic browsers.
For example, creating a look for an element such as a div element for browsers that
support and do not support box-shadow. We'll dive into this and much more in the
chapters that follow.

What this book covers
Chapter 1, Getting Started with Modernizr, describes the concepts of feature
detection compared to more traditional User Agent snifing.

Chapter 2, Installing Modernizr, installs the library and establishes a basic
HTML template.

Chapter 3, Using Modernizr the Right Way, covers multiple methods of feature
detection and implements designs and functionalities around them.

Chapter 4, Customizing to Your Unique Needs, builds a custom-tailored version
of the Modernizr library as well as exploring a few of the extras that come
with it.

Preface

[2]

What you need for this book
You will need a text editor such as Sublime Text, and a modern WebKit browser
such as Google Chrome.

Who this book is for
This book is for web developers with intermediate to advanced knowledge of
cross-browser development with CSS and HTML5.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The no-js CSS class method isn't
something exclusive to Modernizr".

A block of code is set as follows:

<div id="main">

<div id="frame-1" class="frame"></div>

<div id="frame-2" class="frame"></div>

<div id="frame-3" class="frame"></div>

<div id="frame-4" class="frame"></div>

<div id="frame-5" class="frame"></div>

</div>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

#navbar{

 width: 100%;

 height: 50px;

 text-align: center;

 position: fixed;

 top: 0;

 padding: 0;

 background: url(images/stripe-header.png) 0 0 #333;

 border-bottom: solid 1px white;

 z-index: 10;

}

Preface

[3]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Simply
select Production as the download option".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the iles e-mailed directly to you.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started

with Modernizr
Are you tired of approaching the way you build your websites as though it was two
or maybe three years ago? By that I mean not building the experience as if it were for
the browser of today, but instead building it for the oldest browser your users are
most likely to be navigating with. Are you also tired of building different versions of
the same website for an abundance of browsers, by version, and then stufing them
full of CSS hacks? What if there was a better and more manageable way?

What if you could build something not only for three years ago, but also for today?
What if you could even build it for as far into the future as three years from now?
What if you could do this without having to do any sort of browser snifing at all?
I'm very happy to say that this is possible today, thanks to the concept of feature
detection and a lightweight, customizable detection library named Modernizr.

In this chapter we will cover the following topics:

• What is feature detection?
• What is Modernizr?
• The Modernizr namespace; storing the test results.
• CSS selector test results.

• Designing for the feature and not the browser.

• Why UA snifing is bad.

Getting Started with Modernizr

[6]

Detect and design with features, not User
Agents (browsers)
What if you could build your website based on features instead of for the individual
browser idiosyncrasies by manufacturer and version, making your website not just
backward compatible but also forward compatible? You could quite potentially
build a fully backward and forward compatible experience using a single code base
across the entire UA spectrum. What I mean by this is instead of baking in an MSIE
7.0 version, an MSIE 8.0 version, a Firefox version, and so on of your website, and
then using JavaScript to listen for, or sniff out, the browser version in play, it would
be much simpler to instead build a single version of your website that supports all
of the older generation, latest generation, and in many cases even future generation
technologies, such as a video API, box-shadow, irst-of-type, and more.

Think of your website as a full-ledged cable television network
broadcasting over 130 channels, and your users as customers
that sign up for only the most basic package available, of only
15 channels. Any time that they upgrade their cable (browser)
package to one offering additional channels (features), they can
begin enjoying them immediately because you have already
been broadcasting to each one of those channels the entire time.

What happens now is that a proverbial line is drawn in the sand, and the site is built
on the assumption that a particular set of features will exist and are thus supported.
If not, fallbacks are in place to allow a smooth degradation of the experience as usual,
but more importantly the site is built to adopt features that the browser will eventually
have. Modernizr can detect CSS features, such as @font-face, box-shadow, and CSS
gradients. It can also detect HTML5 elements, such as canvas, localstorage, and
application cache. In all it can detect over 40 features for you, the developer.

Another term commonly used to describe this technique is "progressive enhancement".
When the time inally comes that the user decides to upgrade their browser, the new
features that the more recent browser version brings with it, for example text-shadow,
will automatically be detected and picked up by your website, to be leveraged by
your site with no extra work or code from you when they do. Without any additional
work on your part, any text that is assigned text-shadow attributes will turn on at
the lick of a switch so that user's experience will smoothly, and progressively be
enhanced.

What is Modernizr? More importantly, why should you use
it? At its foundation, Modernizr is a feature-detection library
powered by none other than JavaScript.

Chapter 1

[7]

Here is an example of conditionally adding CSS classes based on the browser, also
known as the User Agent. When the browser parses this HTML document and inds
a match, that class will be conditionally added to the page.

<!--IE only conditional comments http://www.quirksmode.org/css/
condcom.html -->

<!--[if lt IE 7]> <html class="lt-ie9 lt-ie8 lt-ie7"> <![endif]-->

<!--[if IE 7]> <html class=" lt-ie9 lt-ie8"> <![endif]-->

<!--[if IE 8]> <html class="lt-ie9"> <![endif]-->

Now that the browser version has been found, the developer can use CSS to alter
the page based on the version of the browser that is used to parse the page. In the
following example, IE 7, IE 8, and IE 9 all use a different method for a drop shadow
attribute on an anchor element:

/* IE7 Conditional class using UA sniffing */

.lt-ie7 a{ display: block; float: left; background: url(drop-shadow.
gif); }

.lt-ie8 a{ display: inline-block; background: url(drop-shadow.png);
}

.lt-ie9 a{ display: inline-block; box-shadow: 10px 5px 5px
rgba(0,0,0,0.5); }

The problem with the conditional method of applying styles is that not only does it
require more code, but it also leaves a burden on the developer to know what browser
version is capable of a given feature, in this case box-shadow. Here is the same
example using Modernizr. Note how Modernizr has done the heavy lifting for you,
irrespective of whether or not the box-shadow feature is supported by the browser:

/* Box shadow using Modernizr CSS feature detected classes */

.box-shadow a{ box-shadow: 10px 5px 5px rgba(0,0,0,0.5); }

.no-box-shadow a{ background: url(drop-shadow.gif); }

The Modernizr namespace
The Modernizr JavaScript library in your web page's header is a lightweight feature
library that will test your browser for the features that it may or may not support,
and store those results in a JavaScript namespace aptly named Modernizr. You can
then use those test results as you build your website.

From this point on everything you need to know about what features your user's
browser can and cannot support can be checked for in two separate places. Going
back to the cable television analogy, you now know what channels (features) your
user does and does not have, and can act accordingly.

Getting Started with Modernizr

[8]

The following screenshot shows the Modernizr object from the console:

Modernizr is storing either true or false properties inside its namespace based
on the features that the browser supports, which can in turn be used to tightly and
easily control the user's experience.

The irst place you can use to check for support is, of course, the Modernizr
JavaScript object now available on the page. Let's say, for example, you wanted
to know if the viewer of your web page has support for 3D CSS transformations
within the browser (user agent) they are using. Checking for this is as simple as a
conditional in your JavaScript code, as shown in the following code snippet:

//JavaScript test for 3D CSS Transformations.
if(Modernizr.csstransforms3d){
 console.log('3D CSS Transformations are supported!');
}

Modernizr has stored this as a property of either true or false, and by checking
the result of this test, we are able to ascertain if the browser that any particular user
is accessing your web page with has that feature supported. If they do, great! If
they don't, then we can degrade the experience a bit so they aren't left viewing a big
empty box on the page, and the best part is that once they do inevitably upgrade, all
of the really cool features will be there, ready and waiting.

Chapter 1

[9]

After the Modernizr library feature tests have run on your page, there will be a
great number of test results now stored as properties in the Modernizr JavaScript
namespace. In fact, at the time of this writing, over 40 feature tests were performed by
this lightweight, lightning fast library, not counting the additional extensions available
in the user community for even more feature tests, for example, CSS3 media queries.
The following screenshot shows an example from the JavaScript console that is testing
for CSS gradients and logging a success message if they are supported:

Modernizr version 2.5 tests over 40 next-generation features, which means that there
are over 40 applications you can build for today that aren't even available yet in
many of the current browsers.

Supporting features with CSS selectors
It doesn't stop at JavaScript either. There is a second way to leverage the feature tests
from Modernizr. You see that what Modernizr has also done behind the scenes is
added a series of CSS selectors to the HTML element of the web page. By inspecting
the element in the browser and viewing the Document Object Model (DOM),
you'll see that Modernizr was also hard at work on the DOM tree in addition to the
JavaScript, and has added a selector to the HTML element for all of the feature tests
that were performed.

If I inspect an element in Google Chrome 19 for example, I get the following code
snippet added to the HTML element of my DOM tree:

<html class="js flexbox canvas canvastext webgl no-touch geolocation
postmessage websqldatabase indexeddb hashchange history draganddrop
websockets rgba hsla multiplebgs backgroundsize borderimage
borderradius boxshadow textshadow opacity cssanimations csscolumns
cssgradients cssreflections csstransforms csstransforms3d
csstransitions fontface generatedcontent video audio localstorage
sessionstorage webworkers applicationcache svg inlinesvg smil
svgclippaths"...

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Modernizr

[10]

The whole mess of selectors that you see are the feature tests, which Modernizr
ran and has now stored as properties within its namespace. Now that they are
additionally inside the DOM, there is a second capability available for use. We can
now create style conditions around these functionalities from the stylesheet as well.

It's not limited to pass the tests either. Let's see what happens when I run that exact
same Modernizr script in Internet Explorer 8 using Windows 7 as my environment:

<html class="js no-flexbox no-canvas no-canvastext no-webgl no-
touch geolocation postmessage no-websqldatabase no-indexeddb
hashchange no-history draganddrop no-websockets no-rgba no-hsla no-
multiplebgs no-backgroundsize no-borderimage no-borderradius no-
boxshadow no-textshadow no-opacity no-cssanimations no-csscolumns
no-cssgradients no-cssreflections no-csstransforms no-csstransforms3d
no-csstransitions fontface generatedcontent no-video no-audio
localstorage sessionstorage no-webworkers no-applicationcache no-svg
no-inlinesvg no-smil no-svgclippaths"...

Now that's a whole lot of selectors and a whole lot of no's! Let's look at some key
differences between the two examples. You see Modernizr not only adds in its
own classes for the features that are supported but also for the features that are
not supported.

For example, Internet Explorer 8 does not support the CSS 3D transformations (and
won't until version 10), previously tested for and supported in Google Chrome 19, and
as such Modernizr has added a no-csstransforms3d class to the HTML element.

All other CSS features that are supported and not supported have been added as
well. For example, CSS gradients are also unsupported by this version of Internet
Explorer, and therefore a class of no-cssgradients has been added, and a fallback
can be created via the stylesheet. Using this you can do something as extreme as
hiding elements that use this feature, or as mild as providing an alternate view to
the user.

By taking advantage of the no-cssgradients class that was added for us by our
lovely feature-detection library, we can enhance the experience and do it all once
from one stylesheet if we like; more on that later.

Here is an example of using CSS to progressively adapt the experience for the user:

//No support for 3D transforms.no-cssgradients .header{

background-image: url('images/bg-gradient.png');}

//Supported 3D transforms.cssgradients .header{

background-image: linear-gradient(bottom, rgb(13,25,248) 36%,
rgb(39,53,255) 68%, rgb(67,80,255) 84%);

}

Chapter 1

[11]

As you can see in the preceding example, users with browsers that support CSS
gradients will have the browser render a CSS gradient, and browsers that do not
will instead have a more resourceful and HTTP request-hungry PNG image as the
background image.

Focusing on features, not browsers
Hopefully by now you're starting to get the idea of how feature detection differs
from the traditional way of browser (User Agent) snifing, and how you can use that
to your beneit.

Modernizr doesn't ever ask the question, is this Internet Explorer 8, or is this Firefox
13? Instead it asks the question, is there support for a particular feature? Is there CSS
gradient support? Is there multiple background image support?

Features can be predicted in parts because although not a inalized speciication,
HTML5 has been adopted as a new standard by all the major browser manufacturers.
That's right, all manufacturers, even Internet Explorer. You can bet that feature
detection is a world more reliable than UA snifing as well.

What's wrong with browser snifing?
So what exactly is wrong with browser snifing, the process of checking the browser
manufacturer and version with which the user is visiting your site with the help of
JavaScript? After all, it's gotten us all this far, right?

Consider the amount of browsers in the market today and contrast that with the
browsers available ive years ago. The market has grown; for example, a particular
browser named Google Chrome came from virtually nowhere and quickly grabbed
a huge chunk of the market share. Not only has the number of manufacturers for
browsers grown, but the devices that they support and are deployed on have grown
as well. Where there was once just the Opera browser for instance, Opera at the time
of this publication now makes a version of their browser for Windows, Mac, Linux,
Mobile, and Tablet browsers.

Skip the middleman and quit wasting time using unreliable UA
snifing to determine the browser version and manufacturer,
and then use that information to deduce what can and cannot be
done. Instead go straight to the source and have Modernizr tell
you what is and isn't possible.

Getting Started with Modernizr

[12]

That sure is a whole lot of browser snifing to do! Plus that's only one manufacturer.
We still haven't gotten around to Mozilla Firefox, Google Chrome, Apple Safari, or
Microsoft Internet Explorer. We haven't even come near newer devices coming out
every year, for example, Amazon Kindle Fire. Do you really want to have to detect
and route for potentially every one of these devices and add in new code each time
another one comes to market? I sure don't!

An example of User Agent (browser) snifing the old way using JavaScript is shown
in the following code snippet:

<script>
/*** Logging User Agent to the javascript console.
*/console.log(navigator.userAgent);
</script>

Doing this from Google Chrome 19 will return the following:

"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_4) AppleWebKit/536.5
(KHTML, like Gecko) Chrome/19.0.1084.56 Safari/536.5"

Yikes! So is this Mozilla, Chrome, or Safari? This return code hasn't even told us if
we can use an HTML5 or CSS3 feature. We would need to further consult another
resource such as caniuse.com to check what is and isn't available to us based on the
type of browser we discovered. The amount of if-else statements could really get out
of hand quickly.

Conversely let us look again at Modernizr running a feature test:

<script>

if(Modernizr.geolocation){
//That's it! Look how simple and easy that was.
}</script>

User Agent snifing – a big headache and a
little payoff
User Agent snifing has and will always be nothing but an unreliable headache
with very little pay off. It won't be getting simpler or easier, only more elaborate.
In fact, the very popular and arguably most widely used JavaScript library in the
world, jQuery even warns against using UA snifing and favors feature detection
for its own internal usage. In fact, don't be too surprised if jQuery eventually
removes UA snifing methods from its core library altogether in the future. I can
almost guarantee you that the moment it isn't needed anymore, it will go the way
of the Dodo.

Chapter 1

[13]

If you are still very much tied to this method for building your web pages, now is
the time to wean yourself away from browser snifing and over to feature detection.
We are in a very good place right now because, at long last, no single browser owns
nearly the entire market share.

As of April 2012, no single browser had more than 25 percent of the market share,
as seen in the following screenshot:

Image courtesy of Wikipedia (http://commons.wikimedia.org/wiki/File:Browser_Usage_on_Wikipedia_
February_2012.svg)

Whereas before we were tied to constantly worrying and stressing over support for
a particular browser—because although very antiquated it may have accounted for
85 percent of your users (I don't really need to name names here)—no longer is that
the case.

In actuality, it makes things much easier for the vendors themselves to not have to
deal with UA detection, as they can now focus less on reporting (and occasionally
spooing their information) and more on the supporting and even inventing of new
features. It's a win for everyone!

Getting Started with Modernizr

[14]

Summary
By now I hope you can see how feature detection allows you to do so much more by
using so little. The need to go back into the existing code for new devices is reduced,
and with ininitely less worry than we ever had during browser snifing. In the next
chapter, we'll create a foundation for the use of the Modernizr library, as well as get
a bit more in-depth with how this JavaScript feature-detection library works.

Installing Modernizr
We've covered the principles behind Modernizr and its feature detection. We are
also aware of what feature detection actually is and how this library can save you
a great deal of time as well as headache. Now we are in a good place where we can
start putting these concepts into practice. To do so, we'll set up a bit of code to act as
our feature detecting HTML foundation, and then add in Modernizr for our feature
detecting to really take action.

In this chapter, we'll be diving a bit deeper into Modernizr by:

• Setting up a code base for feature detection based on HTML5 Boilerplate

• Downloading the Modernizr library

• Discussing blocking versus non blocking

• Creating sectioned frames and animating navigation with jQuery
• Spicing up the fonts using the Google font API

Creating the foundation
In a new HTML page, we'll start with a clean HTML5 skeleton, or foundation. I'm
a huge fan of HTML5 Boilerplate, so I'm going to use a bit of markup borrowed
from the index.html ile that is included with the download package. I'll be
removing a few elements; however, for the sake of staying within scope, I'll also
explain the things I am intentionally leaving in. Don't worry about needing the
full package for this book. I'll be sure to thoroughly cover every thing we need and
you'll have all the code for the lessons here. That being said, I cannot recommend
HTML5 Boilerplate highly enough for getting started with HTML5 web pages and
it's worth checking out. In fact, some of the Modernizr team is also on the Boilerplate
team. HTML5 Boilerplate, which includes Modernizr, is available for download at
http://html5boilerplate.com/.

Installing Modernizr

[16]

For these exercises, I'm going to use a simpliied, scaled down version for the sake of
clarity to focus more on Modernizr, and less on the many other goodies it contains,
such as loading a Chrome frame plugin for legacy versions of IE.

In a new directory, using a code editor of your choice, create an index.html ile and
add the following code. I'll explain this as we go as well so don't feel deterred if it
feels a bit overwhelming at irst.

For my code editor I will be using Sublime Text 2, which is available as a full feature,
free trial download at http://www.sublimetext.com/, but of course, use whatever
text editor you are most comfortable with. I'll be naming my folder modernizr, and
in my folder my new index.html ile will contain the following HTML code snippet:

Downloading the example code

You can download the example code iles for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the iles e-mailed directly to you.

<!doctype html>

<!-- paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-
neither/ -->

<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7" lang="en">
<![endif]-->

<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8" lang="en">
<![endif]-->

<!--[if IE 8]> <html class="no-js lt-ie9" lang="en"> <![endif]-->

<!--[if gt IE 8]><!--> <html class="no-js" lang="en"> <!--<![endif]-->

<head>

 <meta charset="utf-8">

<!-- Force IE to use the latest version of its rendering engine -->

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <title>Getting Started with Modernizr</title>

 <meta name="description" content="A Mondernizr test page.">

 <!-- Modernizr will be included in the head of the page. We'll need
it do do some light lifting before the DOM tree renders load feature
detection and shimming -->

<script src="modernizr-2.5.3.js"></script>

</head>

<body>

Chapter 2

[17]

<h1>Modernizr is great!</h1>

</body>

</html>

Now for a quick run-through of what we have so far. In the irst line, I am declaring
the doctype attribute as html. The doctype attribute, also known as the Document
Type Deinition (DTD), lets the browser know that the page being rendered is HTML.

Earlier type deinitions in the previous version of HTML4 were much more
elaborate, as shown in the following code snippet:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">

Thankfully in HTML5, declaring DTD is much simpler.

Now onto the next bit. This isn't using Modernizr just yet, but it is doing something
slightly Modernizr-esque, in that, it is adding conditional CSS class selectors to the
page. These are referred to as CSS conditional comments. IE has supported these
conditional comments since Version 5. We can rest assured they will work until IE
10, which has removed support for them. Where they differ is that it is in a way UA
snifing, which is not ideal. As long as you don't rely on this heavily, you should be
okay for now. We'll go ahead and leave it in for illustrative purposes of what we're
solving with Modernizr and feature detection.

<!-- paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-
neither/ -->

<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7" lang="en">
<![endif]-->

<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8" lang="en">
<![endif]-->

<!--[if IE 8]> <html class="no-js lt-ie9" lang="en"> <![endif]-->

<!--[if gt IE 8]><!--> <html class="no-js" lang="en"> <!--<![endif]-->

What is going to happen when the browser is loaded in Internet Explorer is that the
conditional comments will be parsed and rendered. If for example, a person is using
IE8, the HTML element will show up on the page as the following:

<html class="no-js lt-ie9 lt-ie8" lang="en">

You could therefore in theory, control certain aspects of these separate browsers by
way of conditional class styles, if you wanted to, which would look something like
the following code snippet:

/* A background for ie7 users */

.lt-ie7 body{

 background: url(upgrade-already-cmon-seriously.gif);

Installing Modernizr

[18]

}

/* Everyone else */

body{

 background: url(super-happy-rainbows.png);

}

Using conditional comments
That being said, I wouldn't recommend using conditional comments unless
absolutely necessary. I like to view conditional styles the way I view laundry day.
I put it off as much as I can until it's absolutely necessary. If you'd like to learn
more about conditional comments then pay a visit to the quirks mode website at
quirksmode.org/css/condcom.html.

The no-js class
Also, you must be sure to add a no-js CSS class to the HTML element. Modernizr
will look for and replace this after it has run along with adding in all the other CSS
feature support tags that come from the results of its feature tests. Odds are that the
browser will have js, unless your user has JavaScript disabled on his/her browser
as he/she surfs your web page from the basement wearing a homemade tin foil hat
to keep JavaScript from reading his thoughts. That's just a joke of course, but kidding
aside, unlike the justice system, all browsers are assumed, and loaded guilty of
being featureless; meaning, support for js is assumed to be missing and Modernizr
is the detective on the case to prove otherwise. In the Modernizr world, browsers
are guilty of being featureless until proven innocent. The no-js CSS class method
isn't something exclusive to Modernizr; you'll see it in a few other places such as the
WordPress backend.

<html class="no-js lt-ie9 lt-ie8" lang="en">

The next thing we do is set the newer, much simpler than before HTML5
metacharacter to utf-8 for the character encoding for the HTML document:

 <meta charset="utf-8">

Then we set the compatibility mode for Internet Explorer to use the highest
compatibility mode available. There's more on that at http://msdn.microsoft.
com/en-us/library/cc288325(v=vs.85).aspx.

<!-- Force IE to use the latest version of its rendering engine -->

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

By telling IE to use the latest version of its rendering engine in our page, we're doing
our part to eliminate as many IE hiccups as possible.

Chapter 2

[19]

Downloading the Modernizr library
Now that the head of our document contains most of the important bits we come to
the Modernizr library loading. I've coded this as though it is in the root of the site
folder for now. Of course we haven't actually downloaded it yet so what better time
than now to do that. I'm going to go to www.modernizr.com and download the full,
uncompressed development version in its full glory, which will include more than
40 of the library's feature tests, as well as nicely documented code. Again, save this
to the same folder that holds the HTML ile we just made. The following screenshot
gives us a peek of the website where we can download Modernizr:

There are a couple of other options available to you if you wanted to load this from
a CDN instead of downloading it. While this isn't recommended for production
environments, it is perfectly suitable for development. The detraction from using
this for production is that the development version is probably much heavier than
you need. I would recommend iguring out the features you need once your site is
built, and then doing your own customized and miniied build for your production
websites, more on that later in the book. Where the CDN could come in handy
would be if you had a series of development sites and didn't want to have to fuss
with a download of the library for each site. I would advise that you do a custom
build for production sites each time, and use only what you need. This is a very
lightweight library but any overhead you can cut away is always going to help the
overall performance of your page. This is especially important for blocking scripts.
The following links are to some publicly available CDNs in case you're interested:

• From the Microsoft Modernizr CDN, we can visit:

http://www.asp.net/ajaxlibrary/cdn.ashx#Modernizr_Releases_on_

the_CDN_7

• From the CDNjs CDN, we can visit:

http://cdnjs.com/index.html

www.allitebooks.com

http://www.allitebooks.org

Installing Modernizr

[20]

The rest of the code is pretty standard HTML and doesn't really vary at all from
HTML4 so I won't go into further detail on it. Go ahead and include it in your page
to inish the HTML document. We now have a fully framed setup. Let's go ahead
and preview it in the browser and see what we have so far. The following screen
will appear:

We have the basic skeleton of an HTML5 page now. Let's sprinkle in a couple more
important bits to make it more of a page. First off, we'll need a stylesheet so I'm
going to make a style.css ile and include that into the page header. Also, lets give
this page some batteries with some jQuery compliments of the Google CDN, and
then an empty script ile that will be created in the same root as the rest of the site
iles and included in the page after jQuery. I'm going to name the empty JavaScript
ile script.js.

I won't go into detail on how to link a stylesheet since you can probably already do
that with your eyes closed, so just before the ending body tag place the following
code. We'll place this code snippet at the end of the script so the DOM tree won't be
blocked by it:

<!-- jQuery from the CDN -->

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.
js"></script>

<!-- A page for all of our js -->

<script src="script.js"></script>

Chapter 2

[21]

That's a pretty good start. Let's take a moment to recap. Modernizr is loaded into the
head of the document along with jQuery being loaded at the end of the document
to prevent DOM blocking. After the jQuery library include in the footer of the page
we also call include from script.js, which will hold all of the custom JavaScript
documents. This means that now is a good time to create that ile in the same folder
as all the other scripts. So at this point we have an index.html ile to hold our code,
a style.css ile to contain all the paint, or styling for the page, the Modernizr
library included in the header, an include of the jQuery library via the Google CDN,
and a script.js ile to place all of the JavaScript pages. These options can be seen in
the following screenshot:

Now we have a really great blend of JavaScript, CSS, and HTML for us to get up and
running. jQuery will help us do a lot of the JavaScript heavy lifting and save us even
more cross browser JavaScript headaches, and Modernizr will do all the shimming
and feature detection for us. Now that everything is connected, we can move on to
the foundation code for our project. First we will verify the connectivity of the js
ile, add in the navigation, create ive section frames that will have smooth jQuery
animation-driven transitions, and then we'll style the whole thing and add in some
custom fonts.

Verifying the script connection
Let's make sure everything's included correctly before moving ahead. In the script.
js ile, I'm going to add in a quick statement to be logged into the console. I like to
do this to ensure that everything is hooked together before proceeding any further.
As simple as this is, it is useful because it helps in any debugging later on when we
can rule out that a script isn't properly linked in the HTML document.

In script.js add the following code snippet:

<script>

//check that Modernizr is loading by printing out version.

console.log("Modernizr is present and version is: ",Modernizr._
version);

//check that jQuery is loading by printing out version.

console.log("jQuery is present and version is: ",jQuery.fn.jquery);

</script>

Installing Modernizr

[22]

Blocking versus non blocking
The reason we've put this library into the head of the HTML page and not the footer
is because we actually want Modernizr to be a blocking script; this way it will test
for, and if applicable create or shim, any elements before the DOM is rendered.
We also want to be able to tell what features are available to us before the page
is rendered. The script will load, Modernizr will test the availability of the new
semantic elements, and if necessary, shim in the ones that fail the tests, and the rest
of the page load will be on its merry way.

Now when I say that we want the script to be "blocking", what I mean by that is
the browser will wait to render or download any more of the page content until the
script has inished loading. In essence, everything will move in a serial process and
future processes will be "blocked" from occurring until after this takes place. This is
also referred to as single threaded. More commonly as you may already be aware of,
JavaScripts are called upon in the footer of the page, typically before the last body tag
or by way of self-construction through use of an anonymous or immediate function,
which only builds itself once the DOM is already parsed.

Chapter 2

[23]

The async attribute
Even more recently, included page scripts can have the async attribute added to their
tag elements, which will tell the browser to download other scripts in parallel. I like
to think of serial versus parallel script downloading in terms of a phone conversation,
each script being a single phone call. For each call made, a conversation is held, and
once complete, the next phone call is made until there aren't any numbers left to be
dialed. Parallel or asynchronous would be like having all of the callers on a conference
call at one time. The browser, as the person making all these calls at once, has the
superpower to hold all these conversations at the same time. I like to think of blocking
scripts as phone calls, which contain pieces of information in their conversations that
the person or browser would need to know before communicating or dialing up with
the other scripts on this metaphoric conference call.

Blocking to allow shimming
For our needs, however, we want Modernizr to block that, so that all feature tests
and shimming can be done before DOM render. The piece of information the
browser needs before calling out the other scripts and parts of the page is what
features exist, and whether or not semantic HTML5 elements need to be simulated.
Doing otherwise could mean tragedy for something being targeted that doesn't exist
because our shim wasn't there to serve its purpose by doing so. It would be similar
to a roofer trying to attach shingles to a roof without any nails. Think of shimming
as the nails for the CSS to attach certain selectors to their respective DOM nodes.
Browsers such as IE typically ignore elements they don't recognize by default so the
shims make the styles hold to the replicated semantic elements, and blocking the
page ensures that happens in a timely manner.

Shimming, which is also referred to as a "shiv", is when JavaScript
recreates an HTML5 element that doesn't exist natively in the
browser. The elements are thus "shimmed" in for use in styling. The
browser will often ignore elements that don't exist natively otherwise.

Installing Modernizr

[24]

Say for example, the browser that was used to render the page did not support
the new HTML5 section element tag. If the page wasn't shimmed to accommodate
this before the render tree was constructed, you would run the risk of the CSS
not working on those section elements. Looking at the reference chart on
http://caniuse.com, this is somewhat likely for anyone using IE 8 or earlier:

Now that we've adequately covered how to load Modernizr in the page header, we
can move back on to the HTML.

Adding the navigation
Now that we have veriied all of the JavaScript that is connected, we can start
adding in more visual HTML elements. I'm going to add in ive sections to the page
and a ixed navigation header to scroll to each of them. Once that is all in place
and working, we'll disable the default HTML actions in the navigation and control
everything with JavaScript. By doing this, there will be a nice graceful fallback for
the two people on the planet that have JavaScript disabled. Just kidding, maybe
it's only one person. All joking aside, a no JavaScript fallback will be in place in
the event that it is disabled on the page.

If everything checks out as it should, you'll see the following printed in the
JavaScript console in developer tools:

Chapter 2

[25]

While we're at it let's remove the h1 tag as well. Since we now know for a fact that
Modernizr is great, we don't need to "hello world" it. Once the h1 tag is removed,
it's time for a bit of navigation. The HTML used is as follows:

<!-- Placing everything in the <header> html5 tag. -->

<header>

<div id="navbar">

<div id="nav">

<!-- Wrap the navigation in the new html5 nav element -->

 <nav>

 Section One

 Section Two

 Section Three

 Section Four

 Section Four

</nav>

</div>

</div>

</header>

This is a fairly straightforward navigation at the moment. The entire fragment is
placed inside the HTML5 header element of the page. A div tag with the id ield
of navbar will be used for targeting.

I prefer to use HTML5 purely for semantic markup of the page as much as possible
and to use div tags to target with styles. You could just as easily add CSS selectors
to the new elements and they would be picked up as if they were any other inline
or block element.

Installing Modernizr

[26]

The section frames
After the nav element we'll add the page section frames. Each frame will be a div
element, and each div element will have an id ield matching the href attribute of
the element from the navigation. For example, the irst frame will have the id ield of
frame-1 which matches the href attribute of the irst anchor tag in the navigation.
Everything will also be wrapped in a div tag with the id ield of main. Each panel or
section will have the class name of frame, which allows us to apply common styles
across sections as shown in the following code snippet:

<div id="main">

<div id="frame-1" class="frame"></div>

<div id="frame-2" class="frame"></div>

<div id="frame-3" class="frame"></div>

<div id="frame-4" class="frame"></div>

<div id="frame-5" class="frame"></div>

</div>

Styling the page
Now is also a good time to add some styles for the elements that are new to the page.
In the styles.css ile we'll add the following to start shaping things into place:

/* Basic navigation styling */

#navbar{

 width: 100%;

 height: 50px;

 text-align: center;

 position: fixed;

 top: 0;

 padding: 0;

 z-index: 10;

 background: url(images/stripe-header.png) 0 0 #333;

 border-bottom: solid 1px white;

}

/* Add a decorative border to the top of the #main element */

#main{

 border-top: solid 2px #333;

}

/* General styling for the websites frames */

.frame{

 height: 700px;

Chapter 2

[27]

 position: relative;

 border-bottom: dotted 5px #fff;

 background: url(images/grey-stripe.png);

}

The navigation bar will remain in place and therefore has a ixed setting and a z
index of 10 so that it may stay above all the content moving beneath it when any
of the links in the navigation are clicked. The general styling for the frames gives
each one a height of 700 pixels, and each will have relative positioning applied in
preparation of the elements we're going to be placing inside them. I've added a
dotted white border as a way to see where the boundaries of each frame reside.

Now I'm going to style the navigation links as well. Nothing over the top at this
stage, but enough to get us started using the following code snippet:

/* Apply some very basic styling to the anchor tags in the navigation
*/

#nav a{

 padding: 0 10px;

 margin: 0 1px;

 background: #eee;

}

This will allow us to see, albeit very crudely, where each navigation item ends
and begins.

Smoother transitions with jQuery
There is not a lot happening yet, but we're really getting up and running with a great
foundation so let's continue on that streak. If we click the navigation links you can
see how the default browser behavior is to scroll to that particular section with the id
ield matching that of the href attribute. While not very exciting, I think it is important
from time to time to stop and view the experience from as many levels as possible. Feel
free to take a moment and preview this all in the browser. Clicking each link in the
navigation should sort of knee jerk the page down to the relative section.

Now that's great and fully functional, but let's write some JavaScript that will,
thanks to a little help from jQuery, create a more graceful scrolling transition
via the jQuery's animation method.

In the scripts.js ile, I'll be writing the following immediate function to be
attached to the jQuery object:

/**

 * Immediate function to disable the default browser behavior for the

 * navigation anchor tags and replace it with a much smoother animation

Installing Modernizr

[28]

 * using jQuery.animate

**/

 (function($){

 //Bind a function to the 'click' event of the anchor tag

 $('#nav a').click(function() {

 //The href attribute which matches the id of the div element.

 var destination = $(this).attr('href');

 //compensate for the height of the navigation bar

 var navBarHeight = $('#navbar').height();

 // Calculate the amount using the distance of the element from
 the page top,

 // and the height of the navigation bar.

 var amount = $(destination).offset().top - navBarHeight;
 $('html,body').animate({ scrollTop: amount }, 'slow');

 // Cancel the default browser behavior by returning false.

 // which will disable the hash in the address bar from appearing.

 return false;

});

 })(jQuery);

I also removed the previous bits that were used to check the connectedness of our
earlier JavaScripts since we don't need them anymore now that we know everything
is hooked up correctly.

The script is fairly straightforward and uses jQuery to do the heavy lifting. On
page load, all of the anchor elements that are children of the nav element will be
bound with a function that is triggered by the mouse via a click event. When any
one of these links is clicked, the page will scroll to the div element that has an id
ield matching the href attribute of the link. So the irst link, which has an attribute
of #frame-1, will smoothly scroll down the page until the div element with the
element containing the matching id ield of frame-1 is reached. The uppermost part
of the div element will then be positioned at the uppermost part of the page. The
only thing is, we have a ixed element currently occupying some real estate at the
top of the page, so we'll need to compensate for that. This is done by using jQuery to
keep track of how high the navigation is and then subtracting that from the position
the page would normally animate to. The very last part, which is returning false,
is removing the default activity that the browser would normally do, which would
have been to add the href attribute up into the top address bar, before jumping
down to that section of the page, similar to the way the name attribute would work
as an anchor in the page's content.

Chapter 2

[29]

That's a bit undesirable, and using the returning false tactic will allow for a
smoother experience, although you could leave it in if you wanted to remember the
state of the page. By that I mean if you wanted a particular section of the page to be
displayed on the initial page load minus any action of the user. That is to say, if you
wanted to set up a bit of functionality that would read the id ield from the address
bar and move the page to that state without any clicking by the user. For example,
if you wanted to share that section of the page with another person. By keeping
the id ield, also known as a hash, or hashbang, in the URL and combining it with
something to listen for, perhaps the newer hashchange event and handle it based
on parameters, you would accomplish a somewhat crude way of remembering the
browser state.

If you refresh the page now, you'll see that the default and rather jumpy browser
behavior has been replaced by a nice jQuery powered smooth transitioning effect
using only a few simple lines of code. Each panel should now gracefully animate
into view. Much better.

Determining the base experience
Now that we have the bones of the page in place, it would be a good time to
stop and determine what the base, or core-level experience will be. Based on this
determination, any necessary fallbacks or degradation can be put into place as well,
as enhancements that the page will inherit and pick up on as the browser is updated
to support such features.

Our base experience will use and assume support of the following:

• Images for icons

• Opacity

• Hex colors

• New HTML5 semantic elements

• Custom fonts

• Fixed positioning

www.allitebooks.com

http://www.allitebooks.org

Installing Modernizr

[30]

Images for icons
For the core experience, we're going to assume that our users aren't supporting
the latest and greatest features used to make icons. These being, but not limited to,
border-radius, css-gradients, box-shadow, and so on. The core experience is
more or less a CSS2 leaning experience, but don't worry, we'll be folding in some
really cool CSS3 stuff as well later on. If we were UA snifing, the level of support
we'd be looking at would roughly be IE 8, Safari 5, Opera 11.6, Chrome 17, Firefox
11, or future versions of these browser applications. For the purposes of this project,
we won't be concerning ourselves with the mobile versions of these browsers but
generally the newer mobile and tablet browsers are some of the most cutting edge
technologies, so aside from device width considerations this experience would in
all likelihood work in those as well. Maybe, having to buy a new cell phone every
couple of years has its beneits after all. So the next time you see somebody rushing
out to get the latest gadget, you can smile to yourself knowing it's probably packing
some bleeding edge technology, such as WebKit, in addition to its shiny new high
retina display that packs 4 pixels into the space that previous phones only occupied
with a single pixel.

Images in this chapter will be minimal and consist of tabs for the navigation, a logo
image, and a couple of background images as well. In Chapter 3, Using Modernizr the
Right Way, we will see about doing away with all of them and replace them with CSS
versions and even do a little bit of animating with the logo. The beneit of this is they
will be vector-based, instead of pixel-based, carry fewer overheads with bytes, and
eliminate the need for the HTTP requests that currently serve them up. Just imagine
how happy that's going to make all of those performance evaluation browser tests at
the reduction of HTTP requests and page size.

Opacity
The irst thing you are probably thinking is, what about IE 8? After all, IE 8 doesn't
actually support the opacity parameter despite all the rumors that it would. Well,
this is where the degraded experience considerations come into play. If we again go
back to the good folks at caniuse.com and view the chart on CSS opacity, we'll see
that while it is not supported, there is partial support by way of ilters. So if we use a
little, actually a lot of vendor preixing and steer clear of trying to get crazy on some
transparent PNGs, which can end up looking like white haloed blobs when faded in
and out, we'll be in a pretty good shape.

Chapter 2

[31]

Here's what the vendor preixing will look like:

If you don't want to be bothered trying to remember the vendor preix naming
conventions, there are many sources on the Internet widely available and happy to
do that for you in a matter of milliseconds. One I like in particular is Preixr, which
can be found at www.prefixr.com. Simply paste in your CSS, click to generate and
you're just a copy and paste away from having a fully vendor preixed stylesheet:

/* Vendor prefixed, and IE appeased opacity */

.watermark{

 /* MS Filtering to fill in gaps in opacity support */

 -ms-filter: "progid:DXImageTransform.Microsoft.Alpha(Opacity=30)";

 filter: alpha(opacity=30);

 opacity: .3;

}

We'll use this CSS class to simulate a watermarking effect in our page example
in the next chapter.

Hex colors
Despite there being a few new color options to the game, we'll stick with the
traditional plain toast RGB hexadecimal values for the core user experience for
the time being. New to the ield are hsla and rgba, which in addition to color,
allow for luminosity and opacity.

Installing Modernizr

[32]

HTML5 semantic elements
Yes, they are new and cool, and the good news is that even if your browser is older
than your wine collection, and there's a moderate possibility the new elements
aren't supported out of the box, shimming has our back, so these make it into the
core experience.

Custom fonts
Font face slips in, albeit just barely. It's been supported since IE 8 with a little
massaging; Firefox has had it since Version 3, and Chrome and Safari have had
support woven in for a while as well. Plus, thanks to native CSS fallbacks, we can
put in an additional system-available fonts as a stack to ill in any gaps.

Fixed positioning
This title refers to the position of elements in the page. Our nav element will have
a ixed position and will stay there oblivious to page scroll. Fixed positioning isn't
exactly the new kid on the block, after all it's been supported since IE 7. Nevertheless,
it's something to be aware of and is included in the core experience.

Time to put this into practice, and by practice I mean HTML, so let's piece in some
new bits and bobs and then cover what's new. I'm going to build off the previous
skeleton we made.

The core HTML
The new code we're going to add will result in the following core experience that
we will fold in all sorts of CSS3 features in the next chapter:

Chapter 2

[33]

The irst bits of the following code will be the conditional styles we mentioned
earlier, as well as declaring the new HTML5 document type:

<!doctype html>

<!-- paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-
neither/ -->

<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7" lang="en">
<![endif]-->

<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8" lang="en">
<![endif]-->

<!--[if IE 8]> <html class="no-js lt-ie9" lang="en"> <![endif]-->

<!--[if gt IE 8]><!--> <html class="no-js" lang="en"> <!--<![endif]-->

<head>

Now, we declare the character set for the page and also tell IE to use the latest
version of its rendering engine available. Furthermore, we give our page a brief meta
description as shown in the following code snippet:

<meta charset="utf-8">

<!-- Force IE to use the latest version of its rendering engine -->

<meta http-equiv="X-UA-Compatible" content="IE=edge">

 <title>Getting Started with Modernizr</title>

 <meta name="description" content="A Modernizr test page.">

Installing Modernizr

[34]

Linking to the stylesheet and Modernizr library, as well as making a call to include
Google web fonts in the document, is shown in the following code snippet:

 <link href='http://fonts.googleapis.com/css?family=Fredoka+One|Squad
a+One' rel='stylesheet' type='text/css'>

<link rel="stylesheet" href="style.css">

<!-- Modernizr will be included in the head of the page. We'll need
it do do some light lifting before the DOM tree renders load feature
detection and shimming -->

<script src="modernizr-2.5.3.js"></script>

</head>

<body>

 <header>

 <!--- The page navigation -->

 <div id="navbar">

 <div id="logo"></div>

 <div id="nav">

 <nav>

 1

 2

 3

 4

 5

 </nav>

 </div>

 </div>

 </div>

 </header>

 <div id="main" role="main">

Now we set up a series of frames beginning of course with frame one, and increasing
until ive frames are reached. Each frame will hold a new series of features, often
building off of the previous frame's contents. For the irst frame, a title and subtitle
are what we will begin with. The other frames will be elaborated on a bit later in the
book. For now, the focus is on getting a structure into place. Beyond the frames, there
is the footer and a call out to include the jQuery library on the page as well as a call
out to custom script.js page where the heavy lifting for JavaScript will occur as
shown in the following code snippet:

 <div id="frame-1" class="frame">

 <hgroup>

 <h1 class"title">Modernizr</h1>

 <h2 class="subtitle">The Feature detection library.</h2>

 </hgroup>

Chapter 2

[35]

 </div>

 <div id="frame-2" class="frame ">Section Two</div>

 <div id="frame-3" class="frame">Section Three</div>

 <div id="frame-4" class="frame ">Section Four</div>

 <div id="frame-5" class="frame">Section Five</div>

 </div>

 <footer>

 <div class="foot">Footer</div>

 </footer>

 <!-- JavaScript at the bottom for fast page loading →

 <!-- jQuery via Google CDN -->

 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.
js"></script>

 <script src="script.js"></script>

</body>

</html>

This naturally wouldn't be complete without the CSS paint, so here's that as well.
This irst part handles the basic styles for all of our header tags. Nothing too
complex, yet beyond the custom Google font. The HTML is as follows:

/* Zero out page margins and pad the top of the page to compensate for
the header */

body{

 padding-top: 50px;

 margin: 0;

 background: #eee;

}

/* Header Elements */

h1, h2{

 display: block;

 margin: 0 auto;

 text-align: center;

}

/* A title for the first section as well as styling with the Google
web fonts */

h1{

 font-family: 'Fredoka One', cursive;

 padding-top: 10%;

 font-size: 4em;

 color: #D91E76;

}

Installing Modernizr

[36]

/* Style the subtitle as well, also using a google web font */

h2{

 font-family: 'Squada One', cursive;

 color: #333;

}

Next we style the navigational elements. The navigational elements consist of the
navigation bar, logo, and anchor elements. We will also add in a hover state style
for the section links using the following code snippet:

/* Navigation */

#navbar{

 width: 100%;

 height: 50px;

 text-align: center;

 position: fixed;

 top: 0;

 padding: 0;

 background: url(images/stripe-header.png) 0 0 #333;

 border-bottom: solid 1px white;

 z-index: 10;

}

/* The logo png, in the next chapter we'll enhance this and make it
entirely css based */

#navbar #logo{

 position: absolute;

 width: 70px;

 height: 110px;

 background: url(images/logo.png);

 top: -5px;

 left: 10%;

}

/* Apply some very basic styling to the anchor tags in the navigation
*/

#nav a{

 margin: 0 5px;

 line-height: 3em;

 color: white;

 font-size: 3em;

 text-decoration: none;

Chapter 2

[37]

 font-family: 'Fredoka One', cursive;

 background: url(images/link-tabs.png) no-repeat 0px 0 transparent;

 display: inline-block;

 height: 138px;

 width: 75px;

 text-align: center;

}

/* Hover states for the nav links. */

#nav a:hover{

 color: black;

 background-position: -75px 0;

}

Last, we style the main page frame that wraps the sections of the page. We also
give each frame a general styling including the height and the bottom footer a
black background using the following code snippet:

/* Decorative border for the top element */

#main{

 border-top: solid 2px #333;

}

/* General styles for all the sections, i.e. frames */

#main .frame{

 height: 700px;

 position: relative;

 border-bottom: dotted 5px #fff;

 /* Image fallback, to be replaced by CSS3 hotness in chapter 3 */

 background: url(images/grey-stripe.png);

}

/* Footer , basic black for now*/

.foot{

 background: black;

 height: 50px;

 border-top: solid 5px #333;

}

The JavaScript will remain the same for now. Let's sum up the fresh code. The
majority of work has been done in paint, which is what I call the CSS, but there
are some new things in the HTML.

Installing Modernizr

[38]

Google fonts API
Google has an ever growing gold mine of spectacular and guilt-free open source
fonts at our disposal. I've included a couple of fonts that I really like that spruce up
the h1 and h2 tags for the irst section. The code can even be generated for you on the
website; in general the call is made as an HTTP request and each font is separated by
a pipe. I've added it to the header of our web page using the following code snippet:

<link href='http://fonts.googleapis.com/css?family=Fredoka+One|Squada+
One' rel='stylesheet' type='text/css'>

The Google web fonts can be seen in the following screenshot:

Apart from the web fonts, the rest of the additions are your everyday, run-of-the-mill
HTML elements.

Chapter 2

[39]

The CSS
The CSS for now is more or less a bunch of ordinary CSS2 with some background
images at this stage in the game. The bulk of the look is with the header so let's cover
that a bit.

The links are displayed as inline-block elements, which allows them to stay centered
and also have a width and height applied to them. This is crucial if we want to be
able to use a background image with them. The background image is a combination
of an off state and a hover state. This means that the image has the visual look of the
normal and hover state combined as one image which will cut HTTP requests in half.
The hover style in the CSS moves the position of the background image to fulill the
look for the visual hover.

The preceding image is a look at the nav section of CSS again. Notice how the hover
state swaps the position of the background image and changes the text color. Also
notice that the font family is using one of the families included by the Google Font
API. The code snippet used is as follows:

/* Apply some very basic styling to the anchor tags in the navigation
*/

#nav a{

 margin: 0 5px;

 line-height: 3em;

 color: white;

 font-size: 3em;

 text-decoration: none;

 font-family: 'Fredoka One', cursive;

 background: url(images/link-tabs.png) no-repeat 0px 0 transparent;

 display: inline-block;

 height: 138px;

 width: 75px;

 text-align: center;

}

www.allitebooks.com

http://www.allitebooks.org

Installing Modernizr

[40]

#nav a:hover{

 color: black;

 background-position: -75px 0;

}

We will accomplish the following identical look using no images at all in the next
chapter, using CSS3 in conjunction with some CSS classes provided by Modernizr:

The header that spans across the top of the page in a ixed position uses a striped
PNG image for the background, again in the next chapter we'll duplicate that with
CSS3. The important points are the position set to ixed, the background URL, which
is a PNG image (as small as possible about 115 bytes) with a fallback background
color of #333 as shown in the following code snippet:

/* Navigation */

#navbar{

 width: 100%;

 height: 50px;

 text-align: center;

 position: fixed;

 top: 0;

 padding: 0;

 background: url(images/stripe-header.png) 0 0 #333;

 border-bottom: solid 1px white;

 z-index: 10;

}

Chapter 2

[41]

The logo is a PNG image as well, again rather straightforward. It's a background
image of its div element. The logo will be absolutely positioned inside the navbar
element using the following code snippet:

/* The logo png, in the next chapter we'll enhance this and make it
entirely css based */

#navbar #logo{

 position: absolute;

 width: 70px;

 height: 110px;

 background: url(images/logo.png);

 top: -5px;

 left: 10%;

}

The inal visual piece is the stripe background of each section panel. Again, this is
a background image PNG with the overhead size as small as possible. Our PNG
background image weighs in at only 81 bytes, as seen in the following code snippet:

/* General styles for all the sections, i.e. frames */

#main .frame{

 height: 700px;

 position: relative;

 border-bottom: dotted 5px #fff;

 /* Image fallback, to be replaced by CSS3 hotness in the next
chapter */

 background: url(images/grey-stripe.png);

}

There we have it. Each section panel will have a striped background, a thick bottom
dashed border, and is ready for some fresh visual CSS3 content! I have also pre-
emptively set its position to relative in preparation for any content we place inside
that may end up being absolutely positioned. This is so the items inside each frame
will be positioned absolutely to the frame itself as opposed to the page.

The header is placed inside the new HTML5 h group block and has been set to be a
block element; typically this element is set as an inline element by default, which is
common for text. By setting these h1 and h2 elements as block-level elements, we get
to take advantage of centering them with the left and right margin being set to auto.
Additionally, they have some of the Google font sprucing up as well, and are on
their way to even more CSS3 being added in.

Installing Modernizr

[42]

Summary
That's it for our base experience! We've built an HTML5 skeleton, included the
full Modernizr library, the jQuery library from the CDN, and with our own native
JavaScript created a smooth animation. We created an image light page header that
remains ixed throughout the page scrolling and frames for the page navigation to
animate to. Our irst section, or frame, for now contains a group of headers that are
styled by some custom fonts compliments of the Google Fonts API.

What's next? Since we have the core experience ready to go, we can move onto
some CSS3 gravy for these mashed potatoes. In the next chapter, we will enhance
with CSS3 using Modernizr as our feature compass. This means vector-based icons
with border radius and gradients, fonts that pop off the page, animated logos, and a
whole lot more!

Using Modernizr

the Right Way
The Modernizr library is a tool that is built using JavaScript. Similar to the way
that JavaScript can be used in a "wrong" and a "right" way, the same rules apply
to Modernizr. By "wrong" and "right" I mean that it is very forgiving and will
work whether implemented correctly or incorrectly. This chapter will be broken
into phases or frames, and each frame will add something new to progress the
experience. We'll focus on how a core experience can be enhanced by progression
into more cutting edge features available in current cutting edge browsers.

I've always been a fan of the old 8-bit and 16-bit video games. So, I thought that
would be a great look for something fun we can build. We'll start out with the irst
frame, building on our foundation of code that we made in the previous chapter.
In the irst frame we'll keep the look pretty close to that of the previous chapter,
but this time round we'll feature detect to pull out the extra bits that can be done
by more modern browsers. The following screenshot gives you a peek at our inal
video game built:

Using Modernizr the Right Way

[44]

By the end of this chapter when we reach frame ive, we will have achieved
the following:

• A CSS cloud will be raining every feature that tested true

• All images will have been replaced so that only CSS remains for the visuals

Frame 1 – swapping images for CSS
In this section, we will be doing the following:

• Replace all core design images with CSS-only versions

• Recreate the logo using CSS border radius, box shadow, and web fonts

• Spice up the header logo using CSS gradients

• Recreate the navigation tabs using CSS border radius

• Replace the frame background using CSS gradients and background size

• Begin building the video game's look and feel

The irst set of feature testing we'll be doing is for CSS gradients and also background
size. This will allow us to achieve identical look but free from the shackles of PNG
images. Cutting down on the amount of images used on the page will free up resource
overhead and allow faster page loads. We won't remove the need for images entirely
just yet, but the main site elements will all be converted.

Keeping it WebKit, for now
Everything that we will be doing right now will be using the WebKit vendor preix
of webkit where needed, which will work in WebKit browsers such as Safari and
Chrome. Then towards the end of the chapter, we'll make sure all the vendors are
addressed and we'll ill in those as well. Sticking with just one vendor for now will
keep things simple as we work to get to the point of progressive experiences.

The main elements—navigation, background, and logo—currently consist of stripes
and curves. Both of which can be recreated with CSS.

The stripes
The stripes can be replicated using CSS gradients in tandem with background size.
Before we can use something like that we'll want to know that it's available to be
used. We have two options to do this: either use the HTML selectors added for us or
use the JavaScript to test a combination of features and on success add new classes to
the DOM elements.

Chapter 3

[45]

The following code snippet gives a small example of how that would be accomplished
with CSS in our stylesheet:

/* Method 1: Using the seasoned html elements and CSS. */

#frame-1{

 ... Image version of striped background

}

.cssgradients #frame-1{

 ... CSS gradient version of striped background

}

The following code snippet gives an example of how the same effect can be
accomplished in our JavaScript:

// Method 2: Using JavaScript to add a CSS class.

if(Modernizr.cssgradients){

 //Use jQuery to season with the css class.

 $("#frame-1").addClass("stripes");

}

We will then add the following stripes CSS class containing the gradient
instructions for the earlier example:

/* CSS Stripe class to be added by JavaScript*/

.stripes{

 CSS Gradient info

}

With the new class added to the frame, the all new CSS version of the stripes
will gracefully replace the original PNG image version.

Time to put this to practice. First we'll cover the navigation and then move into
the irst frame. Once that's completed we can move into adding fun with some
visual elements.

In the stylesheet, I'll remove the background from the original frame class:

/* Structure class for each frame panel */

.frame{

 height: 700px;

 position: relative;

 border-bottom: dotted 5px #fff;

 background-color: #eee;

}

Using Modernizr the Right Way

[46]

Also I'll create a CSS class called vert-stripe-img that will contain the background
image removed from the frame, using the following code snippet:

.vert-stripe-img{

 //The original background image relocated to it's own class.

 background: url(images/grey-stripe.png);

}

And while we're at it, let's also create a similar class with the near identical look
but using the CSS gradients and background size this time and naming it vert-
stripe-gradient:

.vert-stripe-gradient{

 background-image: -webkit-linear-gradient(0deg,transparent 50%, #fff
 50%);

 background-size:5px;

}

I'm going to make a slight modiication to the earlier frame CSS class by removing
the background image. I'll be doing this so that frame acts more like a structure class
and not a structure and styling combination. Now all instances of the frame class in
the code will be for the structure only.

As you can see by checking the results for gradient and background size support
via JavaScript, we can toggle what type of background is displayed. If the support
is available the PNG background is exchanged for the purely CSS gradient version.
I've made the stripes of the CSS version a little bit wider, as shown in the following
code snippet, so it's a little easier to distinguish which is in use for the purposes of
these exercises:

$(document).ready(function(){

//Check for CSS Gradient and Background Size support.

// If both are present then switch to using the gradient version.

if(Modernizr.cssgradients && Modernizr.backgroundsize){

 $('#frame-1').removeClass('vert-stripe-img').addClass('vert-stripe-
gradient');

 }

});

From this point forward, I'm going to automatically add the vert-stripe gradient
class to the subsequent frame panels in the exercises ahead. This is intended more as
a proof-of-concept and in the future frames we will assume that this feature exists.
My goal is that by the end of this chapter the gears in your head will be turning,
thinking about all the possibilities available to you with this library. Hopefully, this
gives an idea about how to use feature detection to toggle based on this feature set.
The preceding example uses JavaScript.

Chapter 3

[47]

However, the same could be achieved using only CSS selectors and chaining them
together, as seen in the following code snippet:

//The same effect achieved with CSS only.

#frame-1{

 background: url(images/grey-stripe.png);

}

//The background gradients achieved by chaining together the CSS
classes.

.backgroundsize.cssgradients #frame-1{

 background-image: -webkit-linear-gradient(0deg,transparent 50%, #fff
50%);

 background-size:5px;

}

Doing this would achieve the same effect. By chaining together the two CSS classes,
the browser will pick up and apply the gradients only if those two classes exist inside
the HTML element. The effect of the preceding code snippet where we widened the
stripes can be seen in the following screenshot:

Now that we have stripes, let's do the same thing but using slanted stripes for the top
navigation header on the page using the following code snippet:

//Image class for the striped navigation.

.nav-stripes-img{

 background: url(images/stripe-header.png) 0 0 #333;

}

Using Modernizr the Right Way

[48]

//Gradient class for the striped navigation.

.nav-stripes-gradient{

 background-size: 10px 10px;

 background-image:

-webkit-gradient(linear, 0% 0%, 100% 100%,

 color-stop(25%, rgba(0, 0, 0, 0.1)),

 color-stop(25%, transparent),

 color-stop(50%, transparent),

 color-stop(50%, rgba(0, 0, 0, 0.1)),

 color-stop(75%, rgba(0, 0, 0, 0.1)),

 color-stop(75%, transparent),

 color-stop(100%, transparent));

 background-color: #333;

}

And naturally we need to add the controller that enables this gradient striped in
the JavaScript. It will be virtually identical to the previous statement, as seen in
the following code snippet:

<script>

$(document).ready(function(){

//Check for CSS Gradient and Background Size support.

// If both are present then switch to using the gradient version.

if(Modernizr.cssgradients && Modernizr.backgroundsize){

// Remove the navigation header image based

// stripes and replace with the CSS as well.

$('#navbar').removeClass('nav-stripes-img').addClass('nav-stripes-
gradient');

 }

}); //end document ready

</script>

With the JavaScript and CSS in place, the browser should now be showing the
CSS gradient version of the stripes, which again are just a little bit wider than
the image-based ones so they are visually easier to detect while we are testing
features. That should about do it for the striped elements, which brings us to
the curvy elements.

The curves
By curves I refer to the rounded parts, whether they be a full circle, like in the logo
or a rounded edge, like without top tabs, which remind me a bit of cartoon piano
keys. All of these are done with images for now but can be completely replicated
using borderradius.

Chapter 3

[49]

As this is a single feature dependency and not multiple, the previous example
needed both, gradient support as well as background size support. We can do this
much more easily using just the stylesheet we want without having to worry about
the order of these special element declarations in the HTML tag. This is done by
simply placing borderradius before whatever element we are targeting. I prefer to
target with just CSS as much as possible because it keeps things simple and it's all
done in a single ile so it's easier to debug. Let's irst start with the navigation tabs.
I'm going to prepend a class of no-borderradius to the original, and also add in a
border radius supported version, as seen in the following code snippet:

/* Navigation tabs using the current image based structure */

.no-borderradius #nav a{

 margin: 0 5px;

 line-height: 3em;

 color: white;

 font-size: 3em;

 text-decoration: none;

 font-family: 'Fredoka One', Arial;

 background: url(images/link-tabs.png) no-repeat 0px 0 transparent;

 display: inline-block;

 height: 138px;

 width: 75px;

 text-align: center;

}

.no-borderradius #nav a:hover{

 color: black;

 background-position: -75px 0;

}

/* Navigation now using only CSS if borderradius is supported */

.borderradius #nav a{

 padding: 50px 20px 30px 20px;

 margin: 0 10px;

 background: #333;

 height: 100px;

 border-bottom-right-radius: 10em;

 border-bottom-left-radius: 10em;

 box-shadow: 6px 0px 0 #999;

 line-height: 3em;

 color: white;

 font-size: 3em;

 text-decoration: none;

 font-family: 'Fredoka One', Arial;

}

www.allitebooks.com

http://www.allitebooks.org

Using Modernizr the Right Way

[50]

.borderradius #nav a:hover{

 color: #eee;

 background: black;

}

Last but not least, let's recreate the grey underneath the tabs with box-shadow using
another CSS declaration, as seen the following code snippet:

/* Progressively add a box-shadow to the navigation tabs */

.boxshadow #nav a{

 box-shadow: 6px 0px 0 #999;

}

And as simple as that we have a default version of the navigation tabs and a
progressive version using border radius support. If you want to see the difference
between the two versions, simply edit the element in your browser console, prepend
no- to the borderradius and box-shadow properties, and that's it!

Speaking of borders, before we convert the circle in the logo to CSS, let's irst convert
the logo banner to CSS as well. We can achieve this with a little trickery using the
border property. However we'll need to do a bit of adding of some div elements, as
seen in the following code snippet, to make this possible:

<!-- The HTML markup for CSS version of the logo -->

<div id="logo">

<div class="logo-inner">

 <div class="circle">M</div>

 </div>

 </div>

This varies a bit from the original that was simply a single div element with an id
ield of logo. Again we have one of two options. We can either add the additional
HTML and use only the stylesheet or add the new HTML via JavaScript and then
use CSS to target everything.

I'm going to use JavaScript this time because I don't like having extra DOM nodes in
my markup if I don't need to. Plus, the logo will look just ine should the feature be
false, or even if the JavaScript was disabled (although that would be a real buzz kill
for Modernizr). The HTML in use is as follows:

$(document).ready(function(){

//Add inner html to the logo div if border radius is supported.

 if(Modernizr.borderradius){

 var innerHtml = '<div class="logo-inner">';

Chapter 3

[51]

 innerHtml += '<div class="circle">M</div>';

 innerHtml += '</div>';

 $('#logo').html(innerHtml);

 }

}); //end of document ready

And then of course the CSS styles to follow suit:

/* Logo */

.no-borderradius #logo{

 position: absolute;

 width: 70px;

 height: 110px;

 background: url(images/logo.png);

 top: -5px;

 left: 10%;

}

.borderradius #logo{

 position: absolute;

 left: 10%;

 width: 0;

 height: 70px;

 border-left: 35px solid #999;

 border-right: 35px solid #999;

 border-bottom: 35px solid transparent;

}

.borderradius #logo .logo-inner{

 position: absolute;

 width: 0;

 height: 70px;

 border-left: 32px solid black;

 border-right: 32px solid black;

 border-bottom: 32px solid transparent;

 left: -32px;

 top: -5px;

}

Using Modernizr the Right Way

[52]

.borderradius #logo .logo-inner .circle {

 border-radius: 50%;

 border: solid 2px #999;

 width: 50px;

 height: 50px;

 text-align: center;

 line-height: 50px;

 color: white;

 font-size: 30px;

 position: absolute;

 left: -27px;

 top: 10px;

 font-family: 'Fredoka One', Arial;

}

Like earlier there is a no- state to handle the feature not being supported and
additional styles for the newly added DOM elements, logo-inner and circle.

Some key things have taken place here. The banner that holds the circular logo has
been replicated with CSS using a border trick. You have seen a border consists of
four edges and in this instance the div element itself isn't actually shown, merely its
borders. The bottom border is set to transparent and the two sides are set to display,
which is what creates that triangular effect and gives us a banner type look. The
logo container div is doing the exact same thing, which is what gives it a nice grey
edge. Nested inside all of this is the circle, which is achieved with borderradius. A
circle can be created by setting the width and height of a block-level element to be
identical to each other and then applying a borderradius property of half or in our
case 50 percent.

Only one last progression is remaining and then we can move onto the graphics and
other bits that we'll be building on in each additional frame panel. Let's add a little
bit of polish to the logo by way of a radial gradient. Until now we've been using
variations on linear gradients, so let's see what we can do with the radial version:

/* Add a bit of polish to the logo using a radial gradient to mimmic
reflection */

.cssgradients #logo .logo-inner .circle{

 background: -webkit-radial-gradient(circle, rgba(216, 216, 216,
0.84), black);

}

Chapter 3

[53]

Now the logo has a radial gradient, which mimics a light relection and gives it
a more three-dimensional quality. Now, not only is the entire code base able to
deliver the identical experience using both images and CSS, but additionally we've
done some subtle enhancements by adding a gradient to the logo, as seen in the
following screenshot:

Now that the core has a core and progressive version we can move on to the content
within these frame panels and do even more really cool and fun things.

Clouds
The irst thing I'd like to do is add some clouds behind the Modernizr headline. The
HTML is as follows:

<hgroup>

 <h1 class"title">Modernizr</h1>

 <h2 class="subtitle">The feature detection library.</h2>

</hgroup>

 <div class="mini-cloud mini-cloud-l"></div>

 <div class="mini-cloud mini-cloud-r"></div>

The clouds are the same graphics we had seen earlier and as you probably must have
noticed, looking at the selectors in the following code snippet there is a left and right
cloud. Let's look at the CSS for them:

/* Mini clouds */

.mini-cloud{

 background: url(images/cloud.png) no-repeat 0 0 transparent;

 width: 162px;

 height: 104px;

 position: absolute;

Using Modernizr the Right Way

[54]

}

/* Left position of mini cloud */

.mini-cloud-l{

 left: 34%;

 top: 250px;

}

/* Right position of mini cloud */

.mini-cloud-r{

 left: 55%;

 top: 278px;

}

I'm also going to bump the headers down a bit from the top of the page to get the
alignment of all the visual elements into a better state of balance. The following code
snippet will move everything into the vertical center of the frame:

/* Same as before but altering the position from top */

h1{

 font-family: 'Fredoka One', Arial;

 padding-top: 10%;

 font-size: 4em;

 color: #D91E76;

 top: 154px;

}

h2{

 font-family: 'Squada One', Arial,cursive;

 color: #333;

 top: 165px;

}

Finally let's really add the Modernizr logo above the clouds; it will sit just above the
h1 tag and rest on it just like a cake topper would on a delicious three-tiered cake.

Here is the HTML. This time I'm using an inline img element because I'd like to
cover as many bases as possible in these exercises. More commonly one might use a
CSS background image, even merged with other images as a sprite to reduce HTTP
requests. We'll do something a bit like that later with feature detection, but right now
an inline image will do just nicely, as seen in the following code snippet:

<!-- The html for the logo -->

<div id="modernizr-logo">

</div>

Chapter 3

[55]

The CSS styles for the logo, more or less positioning it within the frame panel using
the following code snippet:

/* Modernizr logo, more or less positioning it within the frame */

#modernizr-logo{

 position: relative;

 width: 125px;

 margin: 0 auto;

 height: 60px;

 top: 15px;

 z-index: 3;

}

If everything went according to plan, the logo should now look something like the
following screenshot:

That's a pretty good stopping point. So far we've replaced all of the navigation
and background with a pure CSS3 version using WebKit, just CSS selectors, and
JavaScript partnered with CSS. After that we swapped the logo with a purely CSS
version using JavaScript and spiced up the logo with a radial gradient. After this
was achieved we started on the actual content of the page by adding in some clouds
and the oficial Modernizr logo.

In the subsequent sections, frames we will be building on this current look and
feel by adding in even more style elements that leverage the CSS classes, and once
that's done we will start playing around with the new features we have by changing
the look and experimenting with the gradients a bit more. The last two frames in
particular will be focused more on having some fun with the newer features once
they have been detected, although they will also bring some new things to the table.

Using Modernizr the Right Way

[56]

Frame 2 – multiple backgrounds, text
shadow, and RGBA color
In this section we'll be doing the following:

• Creating multiple backgrounds to change the color

• Adding a text shadow to the page for headings

• Using RGBA color for alpha

Now we're going to leave the irst frame alone and head into the open waters over to
frame two. In frame two, we will be detecting and then using multiple backgrounds.
The original background is ok, but it would be nice to saturate it with some color.
Adding color is actually quite simple with multiple background support. We'll also
be taking advantage of support for RGBA, which is identical to traditional RGB color
with one very key addition—alpha. Alpha for anybody familiar with things such as
Photoshop is more or less the opacity of the color.

Multiple background support is as you would imagine noted in the namespace and
also the DOM as multiplebgs. Therefore we can target the background using just
the CSS as shown in the following example.

In this example, we return again to the CSS and JavaScript hybrid method. The CSS
will have its own selector class and JavaScript will be in control of whether or not to
place it on the frame-2 element, as shown in the following code snippet:

/* Adds an additional linear gradient background. */

.additionalBgRgb{

background: -webkit-linear-gradient(0deg,rgb(7, 165, 179) 50%,
rgb(138, 214, 230) 50%), rgb(40, 194, 209);

}

//Add the additionalBgRgb class to the Frame-2 element.

$(document).ready(function(){

//Add an additional background to the frame, if supported.

if(Modernizr.cssgradients && Modernizr.multiplebgs){

$('#frame-2').addClass('additionalBgRgb');

}

}); //End of document ready.

If you save this all and refresh the browser, you'll now notice that the class has been
added to the frame-2 element and the background has now been changed to a very
nice blue-green color, as seen in the following screenshot:

Chapter 3

[57]

RGBA
Let's take this a little bit further and use RGBA and capitalize on the alpha property
to tone this color down a touch. We'll do this the very same way but with RGBA
color this time instead of RGB color.

In the JavaScript in the script.js ile add the following after the previous condition:

//Add an additional background to the frame, if supported.

if(Modernizr.cssgradients && Modernizr.multiplebgs){

 $('#frame-2').addClass('additionalBgRgb');

}

//Simlar to RGB, using a multiple background this time using RGBA.

if(Modernizr.cssgradients

&& Modernizr.multiplebgs

&& Modernizr.rgba){

$('#frame-2')

.removeClass('additionalBgRgb')

.addClass('additionalBgRgba');

}

The CSS with RGBA will be similar, with a slight difference being the opacity,
which will tone down the saturation of the color a touch. The code used to make
this change is as follows:

.additionalBgRgba{

background: -webkit-linear-gradient(0deg,rgba(7, 165, 179, 0.6) 50%,
rgba(138, 214, 230, 0.82) 50%), rgba(40, 194, 209, 0.5);

}

Using Modernizr the Right Way

[58]

The way we have the code set up now is that we check for multiple background
support, and if found, season the frame-2 element with a new class of
addtionalBgRgb. Then a second check is done for multiple background and
RGBA support and if found, the addtionalBgRgb class is removed and replaced
by the rgba class.

This works ine, and there may be no noticeable difference in the page speed but it
could be better. Let's reverse the conditionals and set the rgb class to be a fallback of
the rgba class. As RGBA color is ultimately what we're after it makes sense to test for
that irst and if it's not present to fall back on, or settle for the rgb class version. The
code snippet used is as follows:

//Simlar to RGB, using a multiple background this time using RGBA.

if(Modernizr.cssgradients

&& Modernizr.multiplebgs

&& Modernizr.rgba){

$('#frame-2').addClass('additionalBgRgba');

}

//Fall back on the rgb class.

else if(Modernizr.cssgradients && Modernizr.multiplebgs){

$('#frame-2').addClass('additionalBgRgb');

}

Text shadow
Having a custom font is great. In fact I think the world has seen about enough poor
man's Helvetica for one lifetime, but that doesn't mean we have to stop there. In fact
with textshadow support enabled we can do some really cool things with the text
that we have. This time we're jumping back into the CSS; we won't need JavaScript
as the fallback for this would be what we already currently see on the page.

I know that I'll be using these elements in all the frames from this point forward.
So, I'll add them all now as shown in the following code snippet:

/* Text Shadow for current and future h1 elements */

.textshadow #frame-2 h1,

.textshadow #frame-3 h1,

.textshadow #frame-4 h1,

.textshadow #frame-5 h1{

 text-shadow: 1px 2px 6px #333;

Chapter 3

[59]

 text-shadow: 1px 0px #eee, 0px 1px #ccc,

 2px 1px #eee, 1px 2px #ccc,

 3px 2px #eee, 2px 3px #333;

}

/* Ad text shadow to current and future h2 elements */

.textshadow #frame-2 h2,

.textshadow #frame-3 h2,

.textshadow #frame-4 h2,

.textshadow #frame-5 h2{

 text-shadow: 4px 3px 1px rgb(9, 154, 160);

}

This should be fairly self-explanatory as it's been covered by other features, but let's
do a quick review. All browsers that pass the textshadow feature test will be given
a text shadow. In the case of the h1 element's multiple shadows have been added to
give it a nice raised effect.

We could do a no-textshadow instance as well, but the default experience doesn't
warrant it as we're happy enough with how it looks should text-shadow be ignored
by the browser not supporting it. This is a good practice in my opinion because it
keeps code low, when you design, as much as possible into the base experience that
you are happy with. So, minimal exceptions have to be used.

That's a pretty good place to end for this frame. We've added a nice text-shadow
effect, introduced a second background so that frame 2 is not only using the original
stripes but a colored RGB background as well to give it a nice blue-green color, and
we reduced the saturation of the second background with the introduction of the
alpha property with RGBA color.

www.allitebooks.com

http://www.allitebooks.org

Using Modernizr the Right Way

[60]

Frame 3 – box relect, HSLA color, and
generated content
In this section, we'll be doing the following:

• Switching color to HSLA

• Adding CSS relections
• Recreating clouds using CSS-generated content :after and :before classes

• Using CSS Transform to modify the scale of the clouds

• Swapping the miniature clouds for CSS clouds

In this section we'll introduce a new color type, HSL, which stands for Hue,
Saturation, and Lightness. This is yet another way of representing color. In software
programs such as Adobe Photoshop there have been multiple ways to express color
for some time now.

In Photoshop, for example, documents are typically converted to CMYK (Cyan,
Magenta, Yellow, and Black) for use in print, RGB for Web, and even other formats
such as LAB, which isn't device dependent and was designed to approximate human
vision. HSL is just another great way of expressing color in the browser as 3D. You
can learn more about HSL and these other color models at learn.colorotate.org/
color-models.html.

Even if you're perfectly happy with plain old RGB, it's good to at least be aware
of these other color models as they can really open up a whole new set of color
possibilities once you start playing around with them.

We'll also be adding a relection using the box reflect property to the h1 tag,
and then fading it out using some gradient background trickery so that it mimics
something you'd do with a layer mask gradient in an image editing program.

Once the relection has been added and adequately "masked" to simulate a fading
effect, we'll be converting the clouds to completely CSS3-based ones using the
generatedcontent feature test. I'm going to chain selectors as a proof of concept
for this example.

HSL color
The HSL color will also take full advantage of multiple backgrounds. The end result
will be a background similar to the previous RGBA, but with a little bit of a different
take in order to distinguish the two. The great thing about current browsers such
as Google Chrome is that the developer tools have a color palette and also color
conversion feature that makes experimenting with color easier than it has ever been.

Chapter 3

[61]

Let's begin by adding the following chained selectors to the style.css ile, which
will lighten the background for frame-3:

/* Multiple Background Using hsla color */

.multiplebgs.hsla #frame-3{

background: -webkit-linear-gradient(0deg,hsla(0, 100%, 50%, 0) 50%,
hsla(190, 100%, 16%, 0.14) 50%),

hsla(185, 65%, 55%, 0.42);

}

Also, change the color of the text shadow for only the h2 element of frame-3. This is
where the chaining really takes a step up:

/* Example using 3 chained selectors */

.textshadow.multiplebgs.hsla #frame-3 h2.subtitle{

 text-shadow: 4px 4px 1px #fff;

}

What has happened now is the background has lightened a bit and the color of the
text-shadow has been changed to accommodate this as well.

Box shadow
With box shadow at our disposal we can lip an element above, left, right, or below
itself. Let's lip the h1 tag in frame 3 (and later frames) on its back and mask it with
a mask that fades the element out by using a linear gradient mask. This will give it a
true relection, look, and feel. This can be done using the following code snippet:

/* CSS Reflections */

.cssreflections.cssgradients.rgba #frame-3 h1,

.cssreflections.cssgradients.rgba #frame-4 h1,

.cssreflections.cssgradients.rgba #frame-5 h1{

 -webkit-box-reflect: below -0.35em

-webkit-gradient(linear, left top, left bottom, from(transparent),
color-stop(80%, transparent),

to(rgba(255,255,255,0.3)));

}

Using Modernizr the Right Way

[62]

The effect of the box shadow property can be seen in the following screenshot:

Converting the clouds to CSS
The CSS clouds we are currently using actually began their life as purely CSS-based.
I wish I could take the credit for these but they were actually created on one of my
favorite websites at codepen.io/ribardb/pen/cykFj. The following screenshot
gives you a peek at this website:

Chapter 3

[63]

We will be staying pretty true to the original way these clouds were made and only
altering the color slightly using the following code snippet:

/* CSS Clouds class */

.cssCloud{

 background: white;

 height: 110px;

 width: 300px;

 -webkit-border-radius: 50px;

 margin: 0 auto;

 position: relative;

 z-index: 2;

 top: 3px;

 box-shadow: inset 5px -4px 18px 4px rgba(75, 98, 120, 0.5),

 inset 7px 8px 20px 0px rgba(235, 245, 255, 0.2),

 inset 0px 0px 50px 6px rgba(235, 245, 255, 0.2),

 0px 0px 20px 6px rgba(240, 240, 240, 0.5);

}

This will give us the irst part of the cloud, which is the base. After this we add the
other two parts using CSS-generated content. Both the :before and :after classes
will help to complete the clouds, as shown in the following code snippet:

/* Set the positioning to absolute */

.cssCloud:before, .cssCloud:after{

 content: '';

 position:absolute;

}

/* The second cloud piece */

.cssCloud:before{

 background: white;

 height: 170px;

 width : 170px;

 -webkit-border-radius: 100px;

 top:-80px;

 left:40px;

 box-shadow: inset 3px 9px 6px rgba(111, 181, 217, 0.5),

Using Modernizr the Right Way

[64]

 inset 4px 15px 15px rgba(235, 245, 255, 0.2),

 inset 3px 2px 2px rgba(230, 230, 230, 0.5),

 -10px -10px 15px rgba(255, 255, 255, 0.1),

 0px -10px 15px rgba(255, 255, 255, 0.3),

 0 -10px 10px -5px rgba(0, 0, 0, 0.05);

}

/* The third and final piece. */

.cssCloud:after{

 background: white;

 height: 100px;

 width : 100px;

 -webkit-border-radius: 50px;

 top:-21px;

 left:170px;

 box-shadow: inset 2px 4px 2px rgba(111, 181, 217, 0.6),

 inset 4px 15px 15px rgba(235, 245, 255, 0.2),

 inset 3px 2px 2px rgba(230, 230, 230, 0.5),

 -10px -10px 15px rgba(255, 255, 255, 0.1),

 0 -10px 15px rgba(255, 255, 255, 0.3),

 0 -10px 10px -5px rgba(0, 0, 0, 0.05);

}

This is the core CSS3 cloud. However, this cloud is much larger than we need
because we'll be using it again in the next section. We want it to be much smaller so
that it matches the size of the image-based clouds. To do this we can make another
CSS class and use that to scale the entire thing down. As this requires the additional
feature CSS transforms, let's turn once again to the JavaScript in the script.js ile
to add this class to scale the cloud:

$(document).ready(function(){

//Frame 3 checks for CSS Gradients, Generated Content and also CSS
Transform.

if(Modernizr.cssgradients

 && Modernizr.csstransforms

 && Modernizr.generatedcontent

){

// Loop through frame panel 3 and remove the image css classes

//and then season with the CSS3 versions.

$('#frame-3').find('.mini-cloud').each(function(){

Chapter 3

[65]

$(this).removeClass('mini-cloud')

 .addClass('cssCloud smallCloud');

 });

 }

});

What's taking place in the JavaScript is that all of the necessary features are tested
for as a feature set, and if all of the ducks are in a row, the original CSS classes that
used images for the clouds are removed and the CSS3 ones are added in their place.

One last piece remains and that is for the clouds to be scaled down to match the
original image-based versions. In the CSS ile we'll be adding some classes that
control scale using the following code snippet:

/* Classes to scale and reposition

the CSS version of the mini clouds

*/

/* Set positioning to absolute, but relative to parent and then scale
down by 50% */

.smallCloud{

 position: absolute;

 -webkit-transform: scale(0.5);

}

/* Top position the :before part */

.smallCloud:before{

 top: -85px;

}

/* Top position the :after part */

.smallCloud:after{

 top: -21px;

}

/* Re-adjust the position of the left cloud */

.mini-cloud-l.smallCloud{

 left: 25%;

}

/* Re-adjust the position of the right cloud */

Using Modernizr the Right Way

[66]

.mini-cloud-r.smallCloud{

 left: 50%;

}

That should about do it. The clouds should now match the size and positioning of
their image-based predecessors. So much so that it may be hard to tell which one is
being used. So, let's add one last little bit of icing to this cake.

Just after each loop in the JavaScript, add one more line:

$(this).removeClass('mini-cloud')

 .addClass('cssCloud smallCloud');

//This new line will add a span element inside the cloud div.

$(this).html('');

And in the style.css ile, add the CSS instructions for the shadow as shown in
the following code snippet:

/* Shadow */

.cssCloud .shadow {

 width: 300px;

 position: absolute;

 background: black;

 bottom: -185px;

 z-index: -2;

 box-shadow: 0 0 30px 8px rgba(50, 50, 50, 0.9);

 -webkit-border-radius: 50%;

}

Now the CSS versions will have tiny shadows underneath them, whereas the
image versions will not. This should make viewing which version is in play for
proof-of-concept feature detection much easier for this frame. The resulting logo
is seen in the following screenshot:

Chapter 3

[67]

Extra credit – converting the Modernizr logo

to CSS
Frame 3 is now entirely CSS-based except for one last piece, the oficial Modernizr
logo. I think we might as well go all the way here and convert that as well. The only
feature that is really required is borderradius, which by this frame we assume is a
feature that already exists since we covered it in the original frame-1 panel.

Nonetheless I want to show one more way of using CSS only to toggle. This
time I'm going to leave both of these in the DOM and use CSS to control what
is to be displayed.

/* The CSS for the official Modernizr logo */

/* Hide by default */

#modernizr-logo .logo-wrap{

 display: none;

}

#modernizr-logo .shape-wrap{

 position: absolute;

 bottom: 0;

}

#modernizr-logo .curve-contain{

 width: 60px;

 height: 60px;

 overflow: hidden;

 position: absolute;

 right: 0;

}

#modernizr-logo .curve{

 width: 120px;

 height: 120px;

 background: #333;

 display: block;

 border-radius: 50%;

 left: -60px;

 position: absolute;

}

Using Modernizr the Right Way

[68]

#modernizr-logo .block{

 display: block;

 width: 20px;

 height: 20px;

 background: #333;

 position: absolute;

 bottom: 0;

}

#modernizr-logo .block-1{

 left: 20px;

 height: 40px;

}

#modernizr-logo .block-2{

 left: 40px;

 height: 60px;

}

/* Hide image version for all future frames. */

.borderradius #frame-3 #modernizr-logo img,

.borderradius #frame-4 #modernizr-logo img,

.borderradius #frame-5 #modernizr-logo img{

 display:none;

}

/* Display CSS version for all subsequent frames. */

.borderradius #frame-3 #modernizr-logo .logo-wrap,

.borderradius #frame-4 #modernizr-logo .logo-wrap,

.borderradius #frame-5 #modernizr-logo .logo-wrap{

 display: block;

}

And of course the inal HTML for the frame is as follows:

<div id="frame-3" class="frame vert-stripe-gradient">

 <h1 class="title">Modernizr</h1>

 <h2 class="subtitle">The feature detection library.</h2>

 <div class="mini-cloud mini-cloud-l"></div>

 <div class="mini-cloud mini-cloud-r"></div>

 <div id="modernizr-logo">

Chapter 3

[69]

 <div class="logo-wrap">

 <div class="shape-wrap">

 </div>

 <div class="curve-contain">

 </div>

 </div>

 </div>

 </div>

What the CSS is doing in the preceding code is hiding the image element inside
the modernizr-logo container and instead displaying the pure CSS version, if the
borderradius feature is enabled. This is just one more way of toggling a feature
on or off by way of feature detection.

That about sums up everything we needed to do for frame 3. At this point, everything
has been converted to be 100 percent CSS3 by way of feature detection. We also
covered as many bases as possible with the methods available to us to make this all
possible. We used generated content in tandem with gradients and border radius to
make the clouds. We also used box relect to create a nice relection for the h1 tag. Last
but not the least we used the HSL color model to alter the background of our frame.

Frame 4 – animations
In this section, we will be doing the following:

• Adding a large cloud to the frame

• Using the old striped background as a visual object instead

• Animating the Modernizr logo with rotation

• Creating a new background using CSS gradients

• Animating the miniature clouds

In this frame, we'll be adding some inishing touches and playing around a bit with
what we already have. The irst thing I'm going to do is add another cloud to the
frame that will act as a centerpiece. It's going to reside just behind the title but in
front of the smaller clouds.

Using Modernizr the Right Way

[70]

I am also going to remove the previous shadows and instead have a single shadow
beneath the main cloud.

The HTML for frame 4 will be as follows:

<div id="frame-4" class="frame">

 <h1 class="title">Modernizr</h1>

 <h2 class="subtitle">Making it rain progressive experiences.</h2>

 <div class="mini-cloud mini-cloud-l">

 </div>

 <div class="mini-cloud mini-cloud-r">

 </div>

 <div id="modernizr-logo">

 <div class="shape-wrap">

 </div>

 <div class="curve-contain">

 </div>

 </div>

 <div class="rain-drops">

 <div class="rainbg"></div>

 </div>

 <div class="cssCloud" >

 </div>

</div>

The large cloud has been added at the very end of the frame as follows:

<div class="cssCloud" >

</div>

Chapter 3

[71]

We don't actually have to do anything new here because we styled all of this in the
previous frame 3 and scaled it down. Here in this frame we show it at the original
scale, complete with shadow.

Also, you'll notice the addition of a rain-drops div with a rainbg div nested inside.
We're going to be using this in not just this frame but the inal frame as well. For this
frame we will be taking the striped background used in the earlier frames and use it
instead as a visual effect by also combining it with box shadow as well.

In place of the previous background we'll still be using gradients, but minus the
striped bars. The CSS for both is as follows:

#frame-4,

#frame-5{

 background: -webkit-gradient(linear, left top, left bottom,
from(rgba(0, 51, 71, 1)), color-stop(50%, rgba(23, 255, 218, 0)),
color-stop(70%, rgba(23, 255, 218, 0)),color-stop(66%, rgba(23, 255,
255, 0)),to(rgba(51, 51, 51,0.8)));

}

#frame-4 .rainbg,

#frame-5 .rainbg{

 height: 65px;

 width: 100%;

 position: absolute;

 background-image: -webkit-linear-gradient(0deg,rgba(135, 175, 195,
0.3) 50%, rgba(215, 225, 235, 0.6) 50%);

 background-size: 5px;

 -webkit-box-reflect: below 0 -webkit-gradient(linear, left top,
left bottom, from(transparent), color-stop(50%, transparent),
to(rgba(255,255,255,1)));

}

Using Modernizr the Right Way

[72]

If we take a look in the browser we now have a vibrant gradient background in
place of the previous striped one. Additionally, the striped background is now
gone and its place is a visual element representing rain. We can see these changes
in the following screenshot:

As you have probably noticed, in each frame we show a method for detecting
features to be used in the frame at that particular time, but in subsequent frames
we'll often statically add those features in with the assumption that we had already
detected them. The cssCloud class in frame 4, for example. We're doing this mostly
to save your eyeballs from having to stare at an overly redundant sequence of
code, and to instead distill each individual idea as the best possible one. I think
it's most important in these exercises to illustrate the concepts and possibilities,
as opposed to following the letter of the law in every frame as we are covering a
great deal of information.

In these inal two frames, I am going to be bypassing illustrating feature detection
and getting right down to brass tacks. I am doing this because frames 4 and 5 are
representations of the more advanced, latest, and greatest browser features. Also,
we have covered all of the bases pretty well as to how one would go about checking
irst for these features, and again it would be a bit redundant as this frame thus far
uses features we have already tested for in previous exercises. There is however one
inal feature not yet covered, animation, which we will be exploring now.

Chapter 3

[73]

Animating the clouds
Let's add a subtle animation to mini clouds by making them roll back and forth as
though they are blowing in the wind. The irst step is to deine the CSS, beginning
with the keyframe deinitions as shown in the following code snippet:

/* The left mini cloud. */

@-webkit-keyframes cloud-l{

 from{ left: 25% }

 to{ left: 20%;}

}

/* The right mini cloud. */

@-webkit-keyframes cloud-r{

 from{ left: 50% }

 to{ left: 55%;}

}

The clouds are going to shift gently back and forth 5 percent from their current
position. We'll of course have to add the rest of the animation parameters to the
previous classes as well, using the following code snippet:

/* Animation params for the right cloud */

.cssanimations #frame-4 .mini-cloud-r{

 -webkit-animation-duration: 5s;

 -webkit-animation-iteration-count: 10;

 -webkit-animation-direction: alternate;

 -webkit-animation-timing-function: ease-out;

 -webkit-animation-fill-mode:both;

 -webkit-animation-delay: 5s;

 -webkit-animation-name: cloud-r;

}

/* Animation params for the left cloud */

.cssanimations #frame-4 .mini-cloud-l{

 -webkit-animation-duration: 5s;

 -webkit-animation-iteration-count: 10;

 -webkit-animation-direction: alternate;

 -webkit-animation-timing-function: ease-out;

 -webkit-animation-fill-mode:both;

Using Modernizr the Right Way

[74]

 -webkit-animation-delay: 2s;

 -webkit-animation-name: cloud-l;

}

As you can see, in frame 4 if cssanimations is available the clouds will rock gently
back and forth across the page.

How about we do one last animation example and make the logo spin, much like a
coin on its edge?

We can use the following code snippet to do this:

/* The animation for the logo spin. */

@-webkit-keyframes "logo-spin" {

 from { -webkit-transform: rotateY(0deg); }

 to { -webkit-transform: rotateY(-360deg); }

}

.cssanimations #logo .logo-inner .circle{

 -webkit-animation-name: logo-spin;

 -webkit-animation-duration: 4s;

 -webkit-animation-iteration-count: 10;

 -webkit-animation-direction: alternate;

 -webkit-animation-timing-function: ease-out;

 -webkit-animation-fill-mode: forwards;

 -webkit-animation-delay: 25s;

}

Our screen should look something like the following:

Frame 5 – putting it all together and

making it rain
In this section, we'll be doing the following:

• Creating the rain function and making it rain

• Creating the rain drops using border-radius

Chapter 3

[75]

This last frame is all about fun. What we're going to do is use JavaScript to ind each
feature that passed the feature test, make that a rain drop, and make it fall out of the
cloud. We're literally going to have Modernizr make it rain features.

Caveats
This inal frame is built exclusively on WebKit browsers such as Google Chrome
and Safari. This is because we're building things not available on many of today's
browsers and with feature testing properly in place we're dealing with features
that wouldn't be seen at all. These features would only be shown once the browser
had "progressed" far enough to interpret them. However, for the sake of building a
forward-thinking experience we'll need to be able to see what we are viewing. So,
the typical feature detection guard has been dropped. We will not detect whether a
feature is supported with JavaScript or CSS before we use it as we have in the past.

Building for the future means that some but not all browsers will be ready for these
features. I recommend at the time of this writing viewing the last two frames in
Google Chrome 20 and above.

For the HTML all we need to add is this extra part to the rain-drops div. It's
another div element named drops-wrapper that will act as a wrapper for all of the
raindrops, as seen in the following code snippet:

<div class="rain-drops">

 <div class="drops-wrapper"></div>

 <div class="rainbg"></div>

 </div>

The raindrops will be CSS and be done using border-radius, transform, and some
animation that will make the drop fall, as shown in the following code snippet:

.drop {

 position: absolute;

 width: 1em;

 height: 1em;

 -webkit-border-top-left-radius: 10em;

 -webkit-border-top-right-radius: 1em;

 -webkit-border-bottom-right-radius: 10em;

 -webkit-border-bottom-left-radius: 1em;

 border-radius-topleft: 10em;

 border-radius-topright: 0;

 border-radius-bottomright: 10em;

Using Modernizr the Right Way

[76]

 border-radius-bottomleft: 10em;

 border-top-left-radius: 10em;

 border-top-right-radius: 0;

 border-bottom-right-radius: 10em;

 border-bottom-left-radius: 10em;

 -webkit-transform: rotate(-45deg);

 -moz-transform: rotate(-45deg);

 -o-transform: rotate(-45deg);

 -ms-transform: rotate(-45deg);

 transform: rotate(-45deg);

 text-align: center;

 font-family: Arial;

 font-size: 1em;

 color: #fff;

 z-index: 1;

 color: #336699;

 background-color: #0567a0;

 -webkit-box-shadow: 0 0px 2px 5px rgba(11,144,213,0.5);

 box-shadow: 0 0px 2px 5px rgba(11,144,213,0.5);

 -webkit-animation-fill-mode: forwards;

 -moz-animation-fill-mode: forwards;

 -ms-animation-fill-mode: forwards;

 -o-animation-fill-mode: forwards;

 animation-fill-mode: forwards;

 -webkit-animation-name: rain;

 -moz-animation-name: rain;

 -ms-animation-name: rain;

 -o-animation-name: rain;

 animation-name: rain;

}

.drop p {

 -webkit-transform: rotate(45deg);

 -moz-transform: rotate(45deg);

 -o-transform: rotate(45deg);

 -ms-transform: rotate(45deg);

 transform: rotate(45deg);

}

This time I've taken the liberty of adding all the vendor preixes as well in order
to give a fuller picture in our inal example.

Chapter 3

[77]

The cloud will have three drops fall at any given time. To keep things as simple as
possible, there are three separate classes that position and specify the timing of the
drops' descent, as shown in the following code snippet:

.drop-1 {

 left: 60px;

 -webkit-animation-duration: 3s;

}

.drop-2 {

 left: 100px;

 -webkit-animation-duration: 2s;

}

.drop-3 {

 left: 180px;

 -webkit-animation-duration: 2.5s;

}

Next we will add the following JavaScript:

/*

 * Adds a droplet for each feature that the browser has.

*/

function randomRange (min, max) {

 return Math.floor(Math.random() * (max - min + 1)) + min;

}

//The array to collect the passed tests.

var rainDrops = [];

/* Loop through the Modernizr global and collect the passed test into
an array */

(function($){

for(var prop in Modernizr) {

 if(Modernizr.hasOwnProperty(prop))

 if(Modernizr[prop] === true){

 //Push each passed test into an array.

 rainDrops.push(prop);

Using Modernizr the Right Way

[78]

 }

 }

 }

)(jQuery);

//Loop through the array of passed tests and add raindrops to the
cloud.

var start = 0;

var end = slice = 3;

function dripFaucet(){

 var dropSet,

 drops = '';

 //Grab 3 from the results.

 dropSet = rainDrops.slice(start , end);

 for (i=0; i< dropSet.length; i++){

 drops += '<div class="drop drop-'+(i + 1)+' " style="z-index:
'+ randomRange(1,3) +' top: '+randomRange(90,100)+'px ;"><p>'+
rainDrops[start + i] +'</p></div>';

 }

 //Move the pointer up in the array for the next set.

 start = end;

 end = end + slice;

 $('.rain-drops .drops-wrapper', '#frame-5').html(drops);

}

window.setInterval(function(){ dripFaucet(); }, 2000);

The JavaScript loops through the stored Modernizr tests, if a test passed, it is
stored in an array. This array is then parsed and drops are added three at a time
to the cloud. For WebKit browsers, the CSS drops animate by falling, as seen in
the following screenshot:

Chapter 3

[79]

Vendor preixing
As I mentioned earlier, this tutorial was WebKit-centric. However, the majority of
these features are available in most current versions of browsers. The way that the
browser in question detects these is by use of a vendor preix.

The following is an earlier linear gradient example, fully vendor preixed:

.vert-stripe-gradient {

 background-image: -webkit-linear-gradient(0deg,transparent 50%,
rgba(255,255,255,.5) 50%);

 background-image: -moz-linear-gradient(0deg,transparent 50%,
rgba(255,255,255,.5) 50%);

 background-image: -o-linear-gradient(0deg,transparent 50%,
rgba(255,255,255,.5) 50%);

 background-image: -ms-linear-gradient(0deg,transparent 50%,
rgba(255,255,255,.5) 50%);

 background-image: linear-gradient(0deg,transparent 50%,
rgba(255,255,255,.5) 50%);

 -webkit-background-size: 5px;

 -moz-background-size: 5px;

 background-size: 5px;

}

Using Modernizr the Right Way

[80]

As you can see the CSS is iterative for each vendor and is rather cut and dry. I tend
to write my code with a single vendor in mind, and then use a preix generator such
as Preixr, which can be found at prefixr.com. Simply paste in your code and full
vendor preixing is done for you on the ly. Vendor preixing plugins are also widely
available for most if not all popular IDEs. The following screenshot shows us a peek
how the earlier code is used on the website:

Preixing with Modernizer.preixed
Modernizr has a preixing utility under the hood. This is helpful should you want to
automatically obtain the preix while using JavaScript. Simply pass the preix you are
looking for as an argument and the function will return the applicable vendor preix.

For example, Modernizr.prefixed('animation-duration') in Google Chrome
would return WebkitAnimation-duration.

Chapter 3

[81]

Summary
In this chapter, we divided feature sets into ive separate frames in order to represent
ive different levels of feature progressions. The last two frames may only work
in a WebKit-enabled browser with the most edge features under the hood such as
Google Chrome 20 and above, but they should really drive home the idea of building
for features that aren't available across the board just yet, but most certainly will be
some day. We also showed that there are limits. The last two frames use features that
may pass all available tests, but that have implementations that may not work for a
speciic use case just yet. Also, we had a bit of fun and made it rain features.

We have now managed to illustrate how a singular experience can be enhanced by
progression into the upper atmosphere of browser features. I hope that by now you
are well aware of the many ways in which the features can be tested for and used in
a browser, how fallbacks and progressions can be put into practice, and that your
mind is swirling with all sorts of new ideas to put into practice. In the next chapter,
we will cover a few more in-depth topics within the library itself, as well as some
additional resources.

Customizing to Your

Unique Needs
In this chapter we'll be covering some of the extras provided by Modernizr that
go beyond just feature detection, as well as customizing the library to suit your
individual needs. Up to this point we've used the library as a development build.
The development build includes all of the feature tests and library extras, which will
be covered in a bit more detail as well. As a performance goal however, we want to
keep any overhead as light as possible. We've lightened overhead (download size)
signiicantly by reducing HTTP requests, when we converted some images to be
purely CSS. Now we can go a step further and lighten the ile size of the Modernizr
library by building a custom version with only the features we need. This will
allow the library to download as fast as possible and in turn enhance overall page
performance. Here's what this chapter will be covering:

• Custom building Modernizr for leaner overhead

• Modernizr.load (YepNope JS) for conditionally loading
• Loading polyills and other conditional scripts
• Shim media queries using Respond JS

• Further reading and resources

Customizing Modernizr
In the examples from the previous chapter, we used the full development build of
the library. This however isn't recommended for production sites because the full
library would be rarely needed. It is better instead to reduce the overhead ile size
by custom building this library with only the feature tests that are needed.

Customizing to Your Unique Needs

[84]

This is very easy to do by using the custom build options on the Modernizr website.
Simply select Production as the download option and choose the boxes for the
features your application needs, click on Generate and you're off and running. It has
even been miniied for you. For the previous chapter, a custom build of the library
would include the following tests:

• CSS3

 ° @font-face

 ° background-size

 ° border-radius

 ° box-shadow

 ° hsla

 ° multiple backgrounds

 ° opacity

 ° rgba

 ° text-shadow

 ° CSS Animations

 ° CSS Generated Content

 ° CSS Gradients

 ° CSS Reflections

 ° CSS 2D transforms

 ° CSS Transitions

• Extensibility

 ° Modernizr.prefixed

 ° Modernizr.testProp

 ° Modernizr.testAllProps

 ° Modernizr._domPrefixes

• Extra

 ° html5shiv

 ° Modernizr.load

 ° Add CSS Classes

Chapter 4

[85]

The extensibility part isn't actually needed if all of your vendor preixing was
done manually or by a vendor preix generator such as Preixr, which we touched
upon in the previous chapter. It's been left in the build. So, we can cover it in a
bit more detail in this chapter as well. The other extensible includes are required
by Modernizr.prefixed and will be auto selected for you upon custom build.
However, as we have them it's a good chance to highlight one of the most useful
methods, the addTest method.

The custom build of Modernizr weighs in at about 10 KB. Compare that with the full
development build we used that weighed in at around 47 KB. This means that the
development version was over four times the size needed to run the application in
the previous chapter. The custom build tool looks as follows on Modernizr.com:

Customizing to Your Unique Needs

[86]

Why stress over kilobytes? Aren't they trivial when it comes to overhead? Now that
applications are moving from the Web and expanding into almost every digital
device imaginable, this makes a huge difference. By minimizing as much overhead as
possible, not only does the site load as fast as it can, but also a room is made for other
hungrier resources such as images. The extra 37 KB could be an entire CSS sprite.

The Modernizr.addTest plugin API
While we are on the topic of extending, Modernizr has a plugin API that you can
use to extend the library and add in some of your own. For example, if you wanted
to test whether Safari is running in a sort of web app mode called standalone on an
iPhone, which is often the case for websites that have been bookmarked by adding
to the device's home screen, you could do so by creating the following custom test:

//Add a test for Safari Mobile standalone mode.

Modernizr.addTest("standalone", window.navigator.standalone);

The second argument can either be passed as a function that returns a true or false
result, or as we've done in the preceding example by passing in a property. This
method is handy when not a lot of logic has to be applied and the result is a simple
true or false statement. After running this function, Modernizr will now add either
a standalone or no-standalone class to the page, as well as store this result along
with the others.

Modernizr.load
Modernizr has a load method, also known as the popular YepNope JS conditional
loading library. It is a hugely popular conditional loader for polyills that is also
capable of loading other resources including CSS iles. Modernizr capitalizes on
the capability of YepNope JS by packaging it under its hood under the method
name of load.

This new test for standalone mode can now be used by Modernizr.load to
conditionally load additional scripts. Let's say, for example, you wanted to load
some special scripts when the browser is running as a web app. The new custom
standalone test we created can be used to do this. In this next bit of code, our new
test will be performed and a ictional webapp.js script will be loaded if the condition
is true.

//Custom test for standalone mode.

Modernizr.addTest('standalone', window.navigator.standalone);

Modernizr.load({

 test: Modernizr.standalone,

 yep: 'webapp.js',

Chapter 4

[87]

 complete: function () {

 console.log("Standalone was tested for and the conditional script
was loaded if needed");

 }

});

The test we created is added and performed using Modernizr.addTest. Then
Modernizr.load runs this test and if it passes, the yep script—a special webapp.
js will be loaded. The last method, named complete, is also run after all of this has
completed. The complete method will run regardless of the test passing or failing.

Modernizr.load, also known as YepNope JS, is known most famously for the
conditional loading of polyills. Let's go over an example of using this helpful
method to conditionally load one of our own.

Using polyills
What exactly is a polyill? Remy Sharp, who coined the term, deines a polyill on his
blog as follows:

A polyill, or polyiller, is a piece of code (or plugin) that provides the technology
that you, the developer, expect the browser to provide natively. Flattening the
API landscape if you will.

Paul Irish deines a polyill as follows:

A shim that mimics a future API, providing fallback functionality to
older browsers.

The etymology comes from a spackling paste named Polyilla and best summed up
the ideals of what was being accomplished when creating this functionality.

In the following test, we're going to use a built-in test for local storage and load
a polyill if that test result does not pass. In this example, we'll just test against
the window property and not using Modernizr because that particular test wasn't
included in our custom build. However, that is something that can be included
in the library.

//Test for local storage and load a polyfill if needed.

Modernizr.load({

 test: window.localStorage,

 nope: 'storage.js', //Local storage is not supported, load polyfill

 complete: function () {

 console.log("local storage has been polyfilled if required");

 }

});

Customizing to Your Unique Needs

[88]

Using this code, we get something similar to the following screenshot:

There are a large number of polyills available to you on the Internet. A large
list of polyills can be found on the Modernizr Github at https://github.com/
Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills.

How about we try this out in a web page and put it into practice? In a new HTML
page, I'm going to make a quick and simple div element that will wrap an input text
ield and a button. Upon entering a value into the text ield and then clicking on the
button, that value will be saved in the browser's local storage. On page refresh, the
saved value will be checked for and then added to the text ield if it is found. I will
be using the following HTML for the page:

<!doctype html>

<!-- paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-
neither/ -->

<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7" lang="en">
<![endif]-->

<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8" lang="en">
<![endif]-->

<!--[if IE 8]> <html class="no-js lt-ie9" lang="en"> <![endif]-->

<!--[if gt IE 8]><!--> <html class="no-js" lang="en"> <!--<![endif]-->

<head>

 <meta charset="utf-8">

<!-- Force IE to use the latest version of its rendering engine -->

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <title></title>

 <meta name="description" content="A Modernizr test page.">

 <link rel="stylesheet" href="styles.css">

<script src="modernizr.custom.js"></script>

</head>

<body>

<h1>Local Storage Example</h1>

 <div id="localStorage">

Chapter 4

[89]

 <input type="text" class="textinput"/><button>Save to Local Storage</
button>

 </div>

 <!-- JavaScript at the bottom for fast page loading -->

 <!-- Grab Google CDN's jQuery, with a protocol relative URL; fall
back to local if offline -->

 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
jquery.min.js"></script>

 <script src="script.js"></script>

</body>

</html>

In the styles.css ile, we'll add the basic styles for the form using the following
code snippet:

#localStorage{

 margin: 300px auto 0;

 width: 265px;

 background: #eee;

 padding: 20px;

}

/* Add a drop shadow */

.boxshadow #localStorage {

 -webkit-box-shadow: 0 0 2px 2px #ccc;

 box-shadow: 0 0 2px 2px #ccc;

}

Using this code, we get something similar to the following screenshot:

Customizing to Your Unique Needs

[90]

As you will have already noticed it's a straightforward, bare bones text input and
button wrapped by a div element. A stylesheet, jQuery, and JavaScript ile are
included similar to the naming conventions in the previous chapters. The script.
js ile is where all of the heavy lifting is going to happen. I am also going to wrap all
of the JavaScript in a little bit of shorthand for the document ready method to ensure
that the DOM will be loaded before running any of the JavaScript. I'm going to irst
add in the previous examples, the localStorage test, the standalone test, and the
polyill loading as seen in the following code snippet:

$(function(){

 //Test for localstorage and load a polyfill if needed.

 Modernizr.load({

 test: window.localStorage,

 nope: 'storage.js',

 complete: function () {

 localStorage.setItem("successfull save", "Saving to local
storage now that it's safe");

 }

 });

Modernizr.addTest('standalone', window.navigator.standalone);

 Modernizr.load({

 test: Modernizr.standalone,

 yep: 'specialjavascriptfunctions.js',

 complete: function () {

 console.log("Standalone was tested for, and the conditional
script was loaded if needed");

 }

 });

});

If you view this new HTML page in the browser you'll see the console has logged the
localStorage and the standalone complete messages.

Now, we can add the code that will handle localStorage input processing:

$(function(){

// ...previous code from Modernizr.load, Modernizr.addTest above

 //Cache the text input, and local storage into variables.

 var textVal = $('.textinput', '#localStorage');

 var storedItem = localStorage.getItem("textvalue");

 //Check and see if anything has been stored

 //from the text input. Set the text input to have it's value.

 if(typeof storedItem === 'string'){

 textVal.val(storedItem);

 }

Chapter 4

[91]

 //Bind a function to the click event of

 //our button that saves the value into localstorage.

 //An alert is fired after this is done.

 $('button', '#localStorage').click(function(){

 localStorage.setItem("textvalue", textVal.val());

 alert("Saved into local storage!");

 });

}); //end of code

With the code all in place, and the polyill conditionally loaded, we can test our form.
Once the value is saved an alert will appear, as shown in the following screenshot:

Media queries with Modernizr.mq
Support for media queries must be added through the custom build screen. I've
gone ahead and rebuilt a new custom download using the previous options, as
well as adding media query support found under the Extra panel, as shown in
the following screenshot:

Customizing to Your Unique Needs

[92]

With media queries added to the library, a new mq method is now available. One
caveat that should be noted is that if a browser does not support media queries at all
this method will always return false. This applies generally to old versions of IE.

With media queries now in our library, testing is as simple as passing an argument.
Here is the sample usage from the Modernizr site:

Modernizr.mq('only screen and (max-width: 768px)') // true

This will test the media type of "only screen" (as opposed to print, or other) for a
maximum width of 768 pixels. Now, as mentioned earlier, older IE browsers with
no support for media queries to speak of will always return false. To combat
these earlier versions the Modernizr library would include a shim for this named
Respond JS. However, this is no longer the case and if you want to shim in this type
of support, it must be added manually due to some IE 8 crashing issues causing the
need for its removal. Hopefully, future versions will resolve this bottleneck. In the
next section, I'll show you how to use the mq method to test for support and then
shim with Respond JS.

Respond
As I previously mentioned, Modernizr used to be bundled with Respond.js, however
recently as of version 2.5 it was decoupled from the library itself and must now
be downloaded separately and then added manually. This was due to some IE 8
crashing issues.

Because it has been removed, I won't go into a lot of detail about it beyond
implementing and lightly reviewing the example from the Respond JS download
website and showing how to load it as a polyill with Modernizr.load.

On the Respond JS Github page, this bit of JavaScript describes itself as follows:

A fast & lightweight polyill for min/max-width CSS3 Media Queries (for IE 6-8,
and more).

This means if you wanted media queries regarding this scope to be backward
compatible you could leverage this tiny library to accomplish that. One such use
could, for example, be if your web page was built to have a responsive layout that
adapted to the width and height of the viewable area.

Here is another brief example of using a test to load in a polyill; in this example,
no test is performed and the script is explicitly loaded in for shim support:

Modernizr.load({

 load: Modernizr.hasmediaq,

Chapter 4

[93]

 complete: function(){

 console.log('respond.js has been loaded');

 }

});

Of course you may prefer to conditionally load this polyill; we can create and apply
a new custom test using Modernizr.mq and instead polyill with the script only as
needed as seen in the following code snippet:

 Modernizr.addTest('hasmediaq', Modernizr.mq('only all'));

 Modernizr.load({

 test: Modernizr.hasmediaq,

 nope: 'respond.js',

 complete: function(){

 console.log('respond.js has been loaded');

 }

 });

Now that we have a media query functionality successfully polyilled, let's put it to
use. As I mentioned before, I'm going to borrow a page from the example available
on the Respond JS test page but with a little bit of a twist.

In this next step, I'll be adding the following CSS, pasted from the example on the
Respond JS website, and then adapted to our example code we've already been
using. In the Respond JS test case, the background color of the page changes color
as different media queries are met. The example we'll use will cause the background
color of just the localStorage div to change color as the size of the page changes.
As each new condition is met, the applicable style will be applied to the element.

Add the following CSS to the styles.css page:

/*

 * Respond.js test page styles applied to our

 * custom example. Resizing the page will

 * change the color of the #localStorage div

 * Based on http://scottjehl.github.com/Respond/test/test.html

*/

/*styles for 300 and up @ 16px!*/

/* The max-width declaration below blocks this from ever working */

@media only screen and (min-width: 18.75em){

 #localStorage {

 background: yellow;

 }

}

Customizing to Your Unique Needs

[94]

/*styles for 480px - 620px @ 16px!*/

@media only screen and (min-width: 30em) and (max-width: 38.75em) {

 #localStorage {

 background: green;

 }

}

@media screen and (min-width: 38.75em),only
print,projector{#localStorage {background:red;}}

/*styles for 800px and up @ 16px!*/

@media screen and (min-width: 50em){

 #localStorage {

 background: blue;

 }

}

/*styles for 1100px and up @ 16px!*/

@media screen and (min-width: 68.75em){

 #localStorage {

 background: orange;

 }

}

/*styles for 1200px and up @ 16px!*/

@media screen and (min-width: 1200px){

 #localStorage {

 background: navy;

 }

}

Now when we resize the page you'll notice the background color changing on the
localStorage wrapper, as seen in the following screenshot:

Putting it all together here is the inal code including tests, HTML, CSS, and
JavaScript loading with jQuery.

Chapter 4

[95]

JavaScript executing on DOM ready via jQuery in script.js ile uses the following
code snippet:

$(function(){

 //Test for localstorage and load a polyfill if needed.

 Modernizr.load({

 test: window.localStorage,

 nope: 'storage.js', //load localstorage polyfill

 complete: function () {

 localStorage.setItem("successfull save", "Saving to local
 storage now that it's safe");

 }

 });

 //Create a test for media queries. Then load respondjs polyfill if
needed.

 Modernizr.addTest('hasmediaq', Modernizr.mq('only all'));

 Modernizr.load({

 test: Modernizr.hasmediaq,

 nope: 'respond.js',

 complete: function(){

 console.log('respond.js has been loaded');

 }

 });

 Modernizr.addTest('standalone', window.navigator.standalone);

 Modernizr.load({

 test: Modernizr.standalone,

 yep: 'specialjavascriptfunctions.js',

 complete: function () {

 console.log("Standalone was tested for and the conditional
 script was loaded if needed");

 }

 });

 //Cache the text input, and local storage into variables.

 var textVal = $('.textinput', '#localStorage');

 var storedItem = localStorage.getItem("textvalue");

 //Check and see if anything has been stored

 //from the text input. Set the text input to have its value.

 if(typeof storedItem === 'string'){

 textVal.val(storedItem);

 }

 //Bind a function to the click event of

 //our button that saves the value into localstorage.

 //An alert is fired after this is done.

Customizing to Your Unique Needs

[96]

 $('button', '#localStorage').click(function(){

 localStorage.setItem("textvalue", textVal.val());

 alert("Saved into local storage!");

 });

});

CSS styles including the color changing media queries for our styles.css ile are
used in the following code snippet:

/* Wrapper for the text input and button. */

#localStorage{

 margin: 300px auto 0;

 width: 265px;

 background: #eee;

 padding: 20px;

}

/* Add a drop shadow */

.boxshadow #localStorage {

 -webkit-box-shadow: 0 0 2px 2px #ccc;

 box-shadow: 0 0 2px 2px #ccc;

}

/*

 * Respond.js test page styles applied to our

 * custom example. Resizing the page will

 * change the color of the #localStorage div

 * Based on http://scottjehl.github.com/Respond/test/test.html

*/

/*styles for 300 and up @ 16px!*/

/* The max-width declaration below blocks this from ever working */

@media only screen and (min-width: 18.75em){

 #localStorage {

 background: yellow;

 }

}

/*styles for 480px - 620px @ 16px!*/

@media only screen and (min-width: 30em) and (max-width: 38.75em) {

 #localStorage {

 background: green;

 }

}

Chapter 4

[97]

@media screen and (min-width: 38.75em),only
print,projector{#localStorage {background:red;}}

/*styles for 800px and up @ 16px!*/

@media screen and (min-width: 50em){

 #localStorage {

 background: blue;

 }

}

/*styles for 1100px and up @ 16px!*/

@media screen and (min-width: 68.75em){

 #localStorage {

 background: orange;

 }

}

/*styles for 1200px and up @ 16px!*/

@media screen and (min-width: 1200px){

 #localStorage {

 background: navy;

 }

}

And last but not least, the simple HTML page for inputting and saving a text string
into localStorage is shown in the following code snippet:

<!doctype html>

<!-- paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-
neither/ -->

<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7" lang="en">
<![endif]-->

<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8" lang="en">
<![endif]-->

<!--[if IE 8]> <html class="no-js lt-ie9" lang="en"> <![endif]-->

<!--[if gt IE 8]><!--> <html class="no-js" lang="en"> <!--<![endif]-->

<head>

 <meta charset="utf-8">

<!-- Force IE to use the latest version of its rendering engine -->

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <title></title>

 <meta name="description" content="A Modernizr test page.">

 <link rel="stylesheet" href="styles.css">

 <!-- Modernizr will be included in the head of the page. We'll need
it do do some light lifting before the DOM tree renders load feature
detection and shimming -->

Customizing to Your Unique Needs

[98]

<script src="modernizr.custom.js"></script>

</head>

<body>

<!-- Creates a very simple form for storing a text string into
localstorage -->

 <div id="localStorage">

 <input type="text" class="textinput"/><button>Save to Local Storage</
button>

 </div>

 <!-- JavaScript at the bottom for fast page loading -->

 <!-- Grab Google CDN's jQuery, with a protocol relative URL; fall
back to local if offline -->

 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
jquery.min.js"></script>

 <script src="script.js"></script>

</body>

</html>

Just like that we've conditionally shimmed for and applied a series of media queries
with CSS and Respond JS. We've polyilled and saved something into localStorage
with Modernizr.load. Finally, we trimmed the fat on our library by way of a custom
build to get the most amount of kick with the smallest overhead.

Further reading and resources
I highly encourage you to explore the Modernizr docs in addition to using the
examples in these chapters as seeds to grow ideas from. My hope is that by broadly
covering all of the principles and practices in as many ways as possible the gears in
your head will begin turning and you'll be illed with fresher ways of implementing
previous projects as well as new approaches for what lies ahead.

Now that we've about wrapped up our feature detecting, polyilling fun, I'd like to
cover a few resources that are quite helpful and worth checking out. These are just the
tip of the iceberg but should get you well on your way to building more solid apps.

jQuery's Best Friends
The website jQuerysBestFriends.com by Alex Sexton is delivered in slide format
and covers just about everything important to building in JavaScript today with a
nice side of humor. It is highly recommended to take the time to read through each
slide, as well as get a laugh or two as Alex covers an array of practices and principles.
You'll walk away more educated and full of great resources in development today.

Chapter 4

[99]

Require JS
This is one of the best ways, if not the best, to load JavaScript into your pages
and applications. Require JS allows a simple and sanity saving way of loading
dependencies as needed in a module centric way. Compare this with the more
traditional way of dumping every bit of JavaScript and using only a portion of
it as needed. This way you can load only what you need in a manageable way.

While YepNope/Modernizr.load is useful for a more micro level using tests to
conditionally load scripts, this is better suited for the broader picture loading of
JavaScript. With an additional plugin, it is also possible to load templates as well.

In addition to the beneit of modularity and loading tools, Require JS comes
packaged with a great optimizer for production code builds, including CSS.
Find it at RequireJS.org.

Backbone JS
Backbone JS is one of my favorite MVC JavaScript frameworks and pairs quite
nicely with Require JS and Modernizr. Using Backbone allows you to break up
your application into Models, Views, and Collections. Find out more at
BackboneJS.org.

Customizing to Your Unique Needs

[100]

Underscore
Self described as a "utility-belt library for JavaScript", and the "tie to go along with
jQuery's tux", this library provides 60 or so functions, many of which are probably
more highly optimized versions of those you are already using. This library even
has a built-in template utility that picks up where jQuery templates left off. Find
out more at UnderscoreJS.org.

HTML5 Rocks
Mobile, gaming, or meat and potatoes web development, this site covers it all with
practical exercises, advice, and articles on virtually every topic related to the new
HTML5 speciication. Find out more at Html5rocks.com.

Summary
That's all folks! Our time has come to an end. We've introduced the idea of detecting
features as an alternative to UA snifing. We progressively built up an experience
that while only attractive in WebKit browsers today, will be picked up without any
extra work on your part—assuming you've vendor preixed accordingly—once the
other manufacturers have adopted those features into their builds. We even took the
test results performed by the Modernizr library and literally made it rain all of those
wonderful features your browser has, or will at least one day have in the not too
distant future. Thanks for reading this book. Happy coding!

Index

Symbols

@font-face 6

A

addTest method 85
addtionalBgRgb class 58
Amazon Kindle Fire 12
animations 69, 70, 72
Apple Safari 12
application cache 6
async attribute 23

B
Backbone JS 99
base experience

custom fonts 32
determining 29
ixed positioning 32
hex colors 31
HTML5 semantic elements 32
images for icons 30
opacity 30
support 29

beneits
browser snifing, limitations 11, 12
User Agent snifing 12, 13

beneits, Modernizr 11
blocking

about 22
navigation, adding 24, 25
section frames 26
shimming 23

borderradius property 52
box relect property 60
box shadow 61, 62
browser snifing

about 11
limitations 11, 12

C

canvas 6
cloud

animating 73, 74
CMYK 60
CSS

about 39-41
image swapping 44
Modernizr logo, converting 67-69

CSS classes
adding, based on browser 7

CSS clouds
using 62-66

CSS features
box shadow 6
@font-face 6

Cyan, Magenta, Yellow, and Black.

See CMYK

D

Document Object Model (DOM) 9

Document Type Deinition. See DTD
drop shadow attribute 7
DTD 17

[102]

F

feature detection 6, 7
feature tests 9, 10
Firefox 6
irst-of-type 6

G

Google Chrome 12
Google Chrome 9, 19
Google fonts API 38

H

hashchange event 29
hex colors 31
HSL 60
HSL color 60
HTML 32-37
HTML5 elements

application cache 6
canvas 6
local storage 6

HTML5 Modernizr. See Modernizr
HTML5 Rocks 100

Hue, Saturation, and Lightness. See HSL

I

image swapping, for CSS
about 44
clouds 53, 54, 55
curves 48-53
stripes, replicating 44-48
WebKit, using 44

Internet Explorer 8 10

J

JavaScript library, Modernizr 7
jQuerysBestFriends.com website 98

L

localstorage 6

M

Microsoft Internet Explorer 12
Modernizer.preixed

preixing 80
Modernizr

about 5, 43
beneits 11
blocking 22
customizing 83-85
feature detection 6
feature tests 9, 10
foundation, creating 15
JavaScript library 7
Modernizr.addTest plugin API 86
Modernizr.load 86
namespace 7
non blocking 22

Modernizr.addTest plugin API 86
Modernizrc foundation

conditional comments, using 18
creating 15-17
no-js class 18

Modernizr library
downloading 19, 20
script connection, verifying 21

Modernizr.load
about 86, 87
polyills 87-91

Modernizr logo
converting, to CSS 67-69

Modernizr.mq
media queries support 91

Modernizr object
screenshot 8

Mozilla Firefox 12
mq method 92
MSIE 8.0 version 6
multiple backgrounds

creating 56

N
namespace, Modernizr 7-9
navbar element 41
no-cssgradients class 10

[103]

no-csstransforms3d class 10
no-js class 18
non blocking 22

P

page styling
about 26, 27
transitions, jQuery used 27, 28

preixing
Modernizer.preixed, using 80

Preixr 31
progressive enhancement 6

R

rain function
creating 74-78

Require JS 99
resources, Modernizr

Backbone JS 99
HTML5 Rocks 100
jQuerys Best Friends 98
Require JS 99
Underscore.JS 100

Respond.js 92, 94, 98
RGBA

using 57, 58

S

shimming 23

T

text shadow
adding, to page 58, 59

U
UA spectrum 6
Underscore.JS 100
User Agent 7
User Agent snifing 12, 13

V

vendor preix
using 79, 80

vert-stripe gradient class 46
video API 6

W

Windows 7 10

Y

YepNope JS. See Modernizr.load

Thank you for buying

Learning Modernizr

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it irst before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Twitter Bootstrap Web
Development How-To
ISBN: 978-1-84951-882-6 Paperback:68 pages

A hands-on introduction to building websites with
Twitter Bootstrap's powerful front-end development
framework

1. Conquer responsive website layout with
Bootstrap's lexible grid system

2. Leverage carefully-built CSS styles for
typography, buttons, tables, forms, and more

3. Deploy Bootstrap's jQuery plugins to create
drop-downs, switchable tabs, and an image
carousel

Responsive Web Design with

HTML5 and CSS3
ISBN: 978-1-84969-318-9 Paperback: 324 pages

Learn responsive design using HTML5 and CSS3 to
adapt websites to any browser or screen size

1. Everything needed to code websites in HTML5
and CSS3 that are responsive to every device or
screen size

2. Learn the main new features of HTML5 and
use CSS3's stunning new capabilities including
animations, transitions and transformations

3. Real world examples show how to
progressively enhance a responsive design
while providing fall backs for older browsers

Please check www.PacktPub.com for information on our titles

HTML5 Canvas Cookbook
ISBN: 978-1-84969-136-9 Paperback: 348 pages

Over 80 recipes to revolutionize the web experience
with HTML5 Canvas

1. The quickest way to get up to speed with
HTML5 Canvas application and game
development

2. Create stunning 3D visualizations and games
without Flash

3. Written in a modern, unobtrusive, and objected
oriented JavaScript style so that the code can be
reused in your own applications.

HTML5 Video How-To
ISBN: 978-1-84969-364-6 Paperback: 82 pages

Over 20 practical, hands-on recipes to encode and
display videos in the HTML5 video standard

1. Encode and embed videos into web pages
using the HTML5 video standard

2. Publish videos to popular sites, such as
YouTube or VideoBin

3. Provide cross-browser support for HTML5
videos and create your own custom video
player using jQuery

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Modernizr
	Detect and design with features, not User Agents (browsers)
	The Modernizr namespace
	Supporting features with CSS selectors

	Focusing on features, not browsers
	What's wrong with browser sniffing?
	User Agent sniffing – a big headache and a little payoff

	Summary

	Chapter 2: Installing Modernizr
	Creating the foundation
	Using conditional comments
	The no-js class

	Downloading the Modernizr library
	Verifying the script connection

	Blocking versus non blocking
	The async attribute
	Blocking to allow shimming
	Adding the navigation
	The section frames

	Styling the page
	Smoother transitions with jQuery

	Determining the base experience
	Images for icons
	Opacity
	Hex colors
	HTML5 semantic elements
	Custom fonts
	Fixed positioning

	The core HTML
	Google fonts API
	The CSS
	Summary

	Chapter 3: Using Modernizr the Right Way
	Frame 1 – swapping images for CSS
	Keeping it WebKit, for now
	The stripes
	The curves
	Clouds

	Frame 2 – multiple backgrounds, text shadow, and RGBA color
	RGBA
	Text shadow

	Frame 3 – box reflect, HSLA color, and generated content
	HSL color
	Box shadow
	Converting the clouds to CSS
	Extra credit – converting the Modernizr logo to CSS

	Frame 4 – animations
	Animating the clouds

	Frame 5 – putting it all together and making it rain
	Caveats
	Vendor prefixing
	Prefixing with Modernizer.prefixed

	Summary

	Chapter 4: Customizing to Your Unique Needs
	Customizing Modernizr
	The Modernizr.addTest plugin API
	Modernizr.load
	Using polyfills

	Media queries with Modernizr.mq
	Respond
	Further reading and resources
	jQuery's Best Friends
	Require JS
	Backbone JS
	Underscore
	HTML5 Rocks

	Summary

	Index

