
www.allitebooks.com

http://www.allitebooks.org

Learning Kendo UI Web
Development

An easy-to-follow practical tutorial to add
exciting features to your web pages without
being a JavaScript expert

John Adams

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Kendo UI Web Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2013

Production Reference: 1160513

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-434-6

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
John Adams

Reviewers
Ricardo Covo

Long Le

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Mayur Hule

Technical Editors
Vrinda Amberkar Bhosale

Dominic Pereira

Project Coordinator
Anugya Khurana

Proofreader
Dan McMahon

Lesley Harrison

Indexer
Hemangini Bari

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

John Adams currently works as an application development consultant in the
Dallas/Fort Worth area for a fantastic company called RBA. He has been developing
custom business applications with the Microsoft .NET platform for 6 years and has
specialized in development with ASP.NET MVC. He loves writing code and creating
solutions. Above all, he loves his wife and children and the lord Jesus Christ.

This book is dedicated to Michell, Samuel, and Sophie whose
patience with my late nights made this project possible.

I would also like to thank RBA, especially my manager Will,
who introduced me to the project and kicked everything off.

Finally, I would like to thank Kartikey Pandey, Anugya Khurana,
Mayur Hule, Ricardo Covo, and Long Le for their oversight and
editing skills. Their work has been exceptional and valuable
throughout.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ricardo Covo has more than a decade of international experience in the Software
Development field, with experience in Latin America, California, and Canada.
He has a wealth of experience in delivering data-driven enterprise solutions
across various industries.

With a Bachelor's degree in Systems Engineering, complemented with a certification
in Advanced Project Management, he has the right combination of technical and
leadership skills to build development teams and set them up for efficient execution.

In 2007 he founded (and is the principal of) Web Nodes – Software Development
(http://webnodes.ca); a custom software development company, with clients big
and small in Canada, United States, and South America.

Prior to Web Nodes, Ricardo spent some years in the corporate world both in Canada
and in the U.S., being part of companies such as Loblaws Inc., Trader Corporation,
UNX (http://www.unix.com) and Auctiva (http://www.auctiva.com).

Ricardo's passion for technology goes beyond work; he normally works on
personal projects in an effort to always remain on top of the changes in technology.
These projects include: http://ytnext.com, http://serversok.com, and
http://toystrunk.com.

www.allitebooks.com

http://webnodes.ca
http://serversok.com
http://www.allitebooks.org

Long Le is a senior .NET Architect and Principal ALM Practitioner at CBRE. He also
serves as principal consultant for Thinklabs and spends most of his time developing
frameworks and application blocks, providing guidance for best practices and
patterns, and standardizing the enterprise technology stack. He has been working
with Microsoft technologies for over 10 years.

Le has focused on a wide spectrum of server-side and web technologies, such
as ASP.NET Web Forms, ASP.NET MVC, Windows Workflow, LINQ and Entity
Framework, DevExpress, and Kendo UI. In his spare time, he enjoys blogging
(http://blog.longle.net) and playing Call of Duty on his XBOX. He's recently
became a proud father of his new born daughter Khloe Le. You can reach and
follow him on Twitter @LeLong37.

Special thanks to my significant other Tina Le for all your love
and support throughout this project and to my wonderful newborn
daughter Khloe Le. I love you.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Interacting with Data: DataSource, Templates,
TabStrip, and Grid	 7

Setting up the sample project	 8
KendoUI syntax styles	 17
Kendo UI MVC – basics	 18
Managing data	 21

Templates	 22
DataSource	 24

Model	 24
Schema	 27
Transport	 29
Other DataSource properties	 31
DataSource methods	 32
DataSource events	 34
Getting started with basic usage	 35

Page layout	 42
Grid	 42

Columns	 45
Summary	 54

Chapter 2: The AutoComplete Widget and its Usage	 55
AutoComplete widget – basics	 56

Binding AutoComplete to a local source	 57
Binding AutoComplete to Remote Data	 58
Using AutoComplete with MVC through Models	 61
Using AutoComplete with MVC through Ajax	 62
Sending data to the server	 63
Using Templates to Customize AutoComplete	 64
Configuring all of the AutoComplete properties	 65

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Hooking into AutoComplete widget events	 66
Change	 67
Close	 67
Open	 67
Select	 67

Using the API AutoComplete methods	 67
Close	 67
DataItem	 68
Destroy	 68
Enable	 68
Refresh	 68
Search	 69
Select	 69
Suggest	 69
Value	 69

Summary	 70
Chapter 3: Using and Customizing Calendar	 71

Calendar widget – basics	 71
Configuring the Calendar widget	 72
Calendar Widget using MVC	 76
Methods available on the Calendar widget	 78
Events fired by the Calendar widget	 81
Summary	 83

Chapter 4: The Kendo MVVM Framework	 85
Understanding MVVM – basics	 85

Simple data binding	 86
Creating the view	 87
Creating the Model and View-Model	 88

Observable data binding	 90
Adding data dynamically	 91
Using observable properties in the View	 95
Making better use of observable arrays	 98

Data-bind properties for Kendo MVVM	 102
The attr property	 102
The checked property	 103
The click property	 104
The custom property	 106
The disabled/enabled properties	 106
The events property	 106
The html/text properties	 106
The invisible/visible properties	 107

Table of Contents

[iii]

The source property	 108
The style property	 110
The value property	 111

Declarative widgets through Data-Role MVVM attributes	 112
Summary	 114

Chapter 5: HTML Editor and Custom Tools	 115
Understanding the HTML Editor	 115
Adding and removing buttons from the toolbar	 120
Adding the Styles tool	 121

Tool for inserting HTML snippets	 124
Customizing HTML Editor tools	 126

Drop-down list tools	 126
Button tools	 127

Custom template tools	 129
Custom In-line tools	 131

Using the HTML Editor API	 132
Configuration options	 132
Events	 133

Summary	 134
Chapter 6: Menu and ListView	 135

Learning the Menu widget basics	 135
Menu items with images	 141
Menu items with URLs	 143
Menu API configuration options	 144

The animation property	 144
The direction property	 144
Some more options	 145

Configuring menu methods	 145
The append(), insertAfter(), and insertBefore() methods	 146
The close(), enable(), open(), and remove() methods	 147

Menu events	 147
The Kendo UI ListView	 148

ListView basics	 148
Selecting elements with ListView	 153
Editing elements with ListView	 154
ListView API and configuration	 156

ListView methods	 157
ListView events	 158

Summary	 159

Table of Contents

[iv]

Chapter 7: Implementing PanelBar and TabStrip	 161
PanelBar basics	 161

Adding sprite images to PanelBar items	 168
Adding URLs to PanelBar items	 170
Loading AJAX content with PanelBar	 170
Controlling PanelBar animation effects	 172

Introducing the TabStrip Widget	 172
TabStrip basics	 172
Using TabStrip with a datasource	 174
Adding images to the TabStrip widget	 175
Adding URLs to TabStrip tabs	 176
Loading AJAX content with TabStrip	 177
Controlling the TabSrip widget's animation effects	 178

Summary	 179
Chapter 8: Slider Essentials	 181

Introducing Slider and RangeSlider	 181
Using Slider and RangeSlider with the MVC extension methods	 182
Implementing the basics	 183

Basic implementation using MVC extension methods	 186
Using tooltips and pop-up texts	 187

Learning keyboard controls	 188
Customizing the user interface of the slider widgets	 189

Tooltip customization	 189
Customizing tooltip options using MVC extension methods	 191

Customizing the default values	 191
Customizing tick placement	 192
Customizing slider orientation	 195

Learning API methods	 195
The enable and disable Methods	 195
Using the values	 196

Using values from a Kendo slider	 196
Using values from a Kendo range slider	 196

Hooking into events	 197
Using the change event	 197

The change event for a Kendo slider widget	 197
The change event for a Kendo range slider widget	 197

The slide event	 198
The change and slide events with MVC extension methods	 198

Summary	 198

Table of Contents

[v]

Chapter 9: Implementing the Splitter and TreeView Widgets	 199
The Splitter widget	 199

Learning the Splitter widget	 199
Loading content	 202
Loading content with AJAX	 202
Hooking into Splitter events	 203

The collapse event	 203
The contentLoad event	 204
The expand event	 204
The layoutChange event	 205
The resize event	 205

Making calls to Splitter API methods	 206
Getting a reference to the splitter object	 206
Using the ajaxRequest method	 206
Using the collapse method	 207
Using the expand method	 207
Using the max and min methods	 208
Using the size method	 208
Using the toggle method	 209

TreeView	 209
Learning TreeView	 210
Binding to a data source	 211
Using drag and drop	 212
Configuring animation effects	 214
Displaying images	 214
Using templates	 217
Hooking into TreeView events	 218
Making calls to the TreeView API methods	 219

Summary	 220
Chapter 10: The Upload and Window Widgets	 221

Uploading files	 221
Learning the Upload widget	 222
Enabling asynchronous uploads	 224
Uploading multiple files simultaneously	 226
Removing uploaded files	 227
Tracking upload progress	 228
Cancelling an update in progress	 228
Using file drag and drop	 229

The Kendo UI Window widget	 229
Customizing Window actions	 231
Loading content with AJAX	 234

Table of Contents

[vi]

Using the animation effects	 235
Using the Window widget events	 238
Using the Window widget API methods	 239

Summary	 240
Chapter 11: Web API Examples	 241

Getting familiar with the ASP.NET Web API	 241
Getting familiar with Entity Framework Code First	 246
Getting familiar with OData	 251
Using DataSourceRequest with Kendo Grid	 253
Driving the ListView with Web API	 256
Summary	 260

Index	 261

Preface
Web development today requires real expertise in HTML5, JavaScript, and CSS.
These technologies are not completely new, but there has been so much growth
around this programming model that it can be difficult to find your bearings when
trying to create a new website. It seems like every popular website has a different,
special trick in rendering attractive layouts or in creating responsive and dynamic
experiences. A beginner can feel hopeless in trying to learn how to program like this.

Fortunately, many JavaScript libraries have arisen to meet this intense demand.
Most of these libraries enable client-side functionality through special shortcuts
so that a developer can utilize very powerful functionality without writing, or even
understanding, complicated JavaScript code. The jQuery libraries are a very good
example of this; they provide rich functionality and UI controls with only a few lines
of code, hiding the complicated programming underneath.

Telerik has taken this model one step further. They have built a powerful JavaScript
framework called Kendo UI that is built on top of jQuery, but can create complete
widgets with even simpler code. Not only this, it also includes server-side code
libraries that enable developers to create widgets on the server, and all JavaScript is
generated automatically! This is an enormous productivity boost, and enables both
experienced web developers and beginners to operate on the same playing field. This
book will take you on an initial journey through the Kendo UI Framework and show
you how to create an entire set of useful and powerful widgets that will make your
web pages shine like the best sites on the Internet.

What this book covers
Chapter 1, Interacting with Data: DataSource, Templates, and Grid, teaches the
foundation of the Kendo UI DataSource and Template JavaScript objects. Learn the
basics of these tools and the most important widget of all—the Grid. These concepts
will form the basis for all of your creations with the Kendo UI framework.

Preface

[2]

Chapter 2, The AutoComplete Widget and its Usage, shows how to use Kendo UI to create
a word wheel, or auto-complete, effect on a textbox so that word suggestions appear
as the user types. Learn how to use this widget and how to connect it to different
data sources.

Chapter 3, Using and Customizing Calendar, shows how to create a full-featured
calendar control on a web page with very little required code. Learn how to use
the Kendo UI framework to customize this widget to tailor it to your needs.

Chapter 4, The Kendo MVVM Framework, introduces you to Model-View-ViewModel
(MVVM) development with Kendo UI. JavaScript MVVM frameworks are powerful
systems that allow you to bind dynamic data to web pages through declaring HTML
attributes. These systems can be complicated, but the Kendo UI MVVM framework is
as easy as this can get. Learn how to use this to enable powerful dynamic web pages.

Chapter 5, HTML Editor and Custom Tools, demonstrates the Kendo UI Editor widget.
This HTML editor widget allows you to give users a useful area to format text input
with styles and layout. This is a perfect feature for blogs, forums, and review sites.
Learn how to use and customize this widget for your own web pages.

Chapter 6, Menu and ListView, introduces you to the Menu and ListView widgets
from Kendo UI so you can effectively format and display data on your web pages.
The Menu widget creates a dynamic menu that opens with hover effects and allows
for custom animation and behaviors. The ListView is a very flexible widget that
allows you to format and template data however you like. Learn how to use these
widgets to display data on your own pages.

Chapter 7, Implementing PanelBar and TabStrip, illustrates how to build accordion
controls and tabs on your web pages. Accordion controls provide a useful way to
include a lot of content on a page without making the page grow in size. It can show
only a single section of content at a time while still providing instant access to the
rest. Tabs are very useful for creating navigation bars on a page that show what
other areas of your site that a user can visit. You will learn how to create accordion
controls with the PanelBar widget and how to create tabs using the TabStrip widget.
See how using these widgets can make your web pages look better.

Chapter 8, Slider Essentials, will teach you how to use the Kendo UI Slider widgets
to display number ranges with an attractive twist. This widget is a very convenient
method of collecting numerical input from web forms with graphical bars that can
slide and move in steps. Learn how to add these widgets to your web pages to make
your web forms really shine.

Preface

[3]

Chapter 9, Implementing the Splitter and TreeView Widgets, will illustrate how to lay out
resizable content areas on your web pages and how to visualize hierarchical data
with a simple widget. The Splitter widget helps organize web pages into resizable
zones. The TreeView widget creates dynamic displays for hierarchical data. Learn
how to create these widgets and connect them to data sources.

Chapter 10, The Upload and Window Widgets, provides instructions on how to build
powerful file upload pages and interactive dialog boxes into your web site. The
Upload widget creates a powerful file upload utility that works with AJAX and even
allows drag-and-drop functionality. The Window widget creates modal dialog boxes
that make areas of your web pages appear when necessary on top of other content.
Learn how to make these widgets and add them to your pages.

Chapter 11, Web API Examples, takes what you have learned about the Kendo UI
widgets and introduces you into a more advanced area of development using the
ASP.NET Web API framework. Web API provides a powerful server-side backend
for your Kendo UI widgets and opens up the possibilities for creative custom
development. Learn how to manage this technology in your own web applications
with ASP.NET MVC.

What you need for this book
To complete the examples in this book, you will first need Visual Studio 2012. You
can download a free trial of Visual Studio from www.microsoft.com/visualstudio
if you do not already have it installed. You will also need the Kendo UI Complete
for ASP.NET MVC install package from Telerik which you can get at http://www.
kendoui.com/download.aspx.

Who this book is for
This book is designed for beginner web developers, who are starting to learn how to
utilize JavaScript libraries to create rich and interactive web applications. The user
should be familiar with JavaScript, HTML, and CSS. Some knowledge of ASP.NET
MVC is helpful, but not required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[4]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The both tick placement option will place the tick marks on both sides of a slider."

A block of code is set as follows:

<style>
 #stateOrTerritory {
 width:200px;
 }
</style>

<h2>AutoCompletePage</h2>
<input type="text" name="stateOrTerritory" id="stateOrTerritory" />

<script type="text/javascript">

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

new StateTerritory{ Name = "Washington", IsContiguous = true,
IsState = true, IsTerritory = false },
new StateTerritory{ Name = "West Virginia", IsContiguous = true,
IsState = true, IsTerritory = false },
new StateTerritory{ Name = "Wisconsin", IsContiguous = true,
IsState = true, IsTerritory = false },
new StateTerritory{ Name = "Wyoming", IsContiguous = true,
IsState = true, IsTerritory = false }

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Notice that the
content of the Kendo UI Window widget is not yet shown, it must first be activated
through an event; in this case that event is clicking on the Show Window button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.allitebooks.org

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Interacting with Data:
DataSource, Templates,

TabStrip, and Grid
Today is an exciting time to be a web developer. Web browsers and web standards
have matured to the point that today's programmer has rich frameworks available to
boost productivity and to reach wide audiences with less code and fewer headaches.
HTML, CSS, and JavaScript have converged into a powerful and coherent unit
that allows web applications to be both aesthetically and architecturally beautiful
and elegant. Kendo UI, from Telerik, is a modern framework that embraces
these advances and provides a set of tools to enable rich web development and
configurable widgets, all with a familiar and accessible syntax.

Along these same lines, development tools have been improving as well and
Visual Studio 2012 from Microsoft is a good example. JavaScript is now a first-class
citizen in the Microsoft world and there are many improvements for JavaScript
development in the IDE, along with improved support for HTML5 and CSS3. This
is largely to support a new programming model in Windows 8 that allows web
developers to take their skills to the Windows 8 desktop, but these improvements
also directly benefit ASP.NET development —especially ASP.NET MVC. This is the
programming environment that we will use throughout this book to demonstrate
and learn the Kendo UI framework for the web.

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[8]

Setting up the sample project
Kendo UI for web development is a client-side, jQuery-powered JavaScript
framework that is not dependent on any specific server technology or platform.
This means that you can type and run the client-side examples in this book using
your choice of tools and debugging/testing environment. However, Telerik has
also released a great set of server-side extensions for the Microsoft ASP.NET MVC
framework that can significantly boost productivity. To take advantage of both of
these models, I will be using Visual Studio 2012 and the ASP.NET MVC 4 project
template for all my demonstrations and I invite you to follow along with me. Visual
Studio 2012 Express is a freely available download from http://www.microsoft.
com/visualstudio/eng/products/visual-studio-overview, if you do not
already have it installed.

Rather download completed samples?
The samples that are displayed in this book are available for download
and you can start from the completed code if you do not want to follow
all of the steps of setting it up yourself.

Once you have Visual Studio 2012 installed, click on New Project either from the
Start page or from the File menu. Then choose ASP.NET MVC 4 Web Application
from the Web group of project choices. As you can see from the following
screenshot, I have named my project LearningKendoUIWeb:

Chapter 1

[9]

Select this and click on OK. The next window will display some selections for the
type of template you want to use. I chose the basic template, but you can choose any
of the templates other than the empty template in order to follow along with the
examples. You do not need to create a unit test project for the purposes of this book.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com . If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[10]

Visual Studio will create the folder structure for your new project, and will copy
all of the necessary files into that structure so that you can run your project in the
debugger. Once this is complete, you will see your project tree in the Solution
Explorer section of the Visual Studio IDE.

Now that we have our structure, it is time to download the Telerik Kendo UI files
and place them in their proper location. Navigate to the Telerik Kendo UI website
at http://www.kendoui.com/download.aspx and download the 30-day free trial
of the Kendo UI Complete package that includes the server wrappers for ASP.NET
MVC. It will arrive as a ZIP file containing everything that you need for development
with Kendo UI. Extract the contents of the ZIP file somewhere you will remember
since you will need to reference these files throughout the rest of the book. This
screenshot shows what the ZIP file should contain:

Now, follow these steps:

1.	 Go back to Visual Studio and right-click on the Content folder in the Solution
Explorer and choose Add, New Folder. Name the new folder kendo.

Chapter 1

[11]

2.	 Right-click on the kendo folder that you just created and create two more
folders—Default and textures. Now, right-click on the Default folder
and choose Add, Existing Item.

3.	 In the file dialog that displays, navigate to the folder with the unzipped Kendo
files, then open the Styles folder and then the Default folder inside it.

4.	 Select all of the files in this folder and click on the Add button. This will add
all of these items to the Visual Studio project so that they show in Solution
Explorer and can be managed from the Visual Studio IDE.

5.	 Next, follow these same steps to add all of the items to the textures folder.
Once you have these files in place, right click on the kendo folder in Solution
Explorer again and choose Add, Existing Item.

In the dialog that displays, choose these two specific files from the Styles folder
of the unzipped kendo files and add them as well:

•	 kendo.common.min.css

•	 kendo.default.min.css

Once these two files appear in Solution Explorer, rename them by removing the .min
portion of their file names (kendo.default.min.css becomes kendo.default.css);
this will be explained in greater detail in next few paragraphs. The Content folder in
Solution Explorer should look something like this when you are finished:

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[12]

Next, we will prepare the Scripts folder by following some very similar steps.
Create a kendo folder inside of the Scripts folder in Solution Explorer and then
copy these files from the js folder of the downloaded Kendo files:

•	 jquery.min.css

•	 kendo.all.min.js

•	 kendo.aspnetmvc.min.jskendo.web.min.js

Once again, remove the .min portion of their filenames. We will, however, need two
versions of the kendo.aspnetmvc.js file as will be explained later. Go ahead and copy
the file, but only remove the <code>.min</code> portion of the filename from one
copy. This way you will have one copy of the file with a .min filename and another
copy of the file without the .min file name. The completed kendo folder in Solution
Explorer should look something like this:

As a web developer, you are surely familiar with the exercise of referencing scripts
and styles in the head portion of your web pages. ASP.NET MVC 4 comes with a
great feature that enables bundling and minimization of these scripts, along with
built-in caching, so that the browser can download these files faster and thereby
increase the performance of your site with very little effort on your part. This
feature also works with CDN locations, so that you can run with local files during
debugging and still reference CDN hosted scripts or style sheets when your site
is deployed. To enable this functionality for our sample project, you will need to
add the following code to the BundleConfig.cs file in the App_Start folder of the
project. First, add this code at the top of the file to enable CDN functionality and to
save the paths of the CDN locations that we want to use:

// Enable CDN
bundles.UseCdn = true;

// CDN paths for kendo stylesheet files
var kendoCommonCssPath = "http://cdn.kendostatic.com/2013.1.319/
styles/kendo.common.min.css";
var kendoDefaultCssPath = "http://cdn.kendostatic.com/2013.1.319/
styles/kendo.default.min.css";

Chapter 1

[13]

// CDN paths for kendo javascript files
var kendoWebJsPath = "http://cdn.kendostatic.com/2012.2.710/js/kendo.
web.min.js";

Then, add this code at the bottom of the file to create the bundles for your Kendo
files. By passing the CDN location as the second parameter of the ScriptBundle
constructor, Visual Studio will build your solution using your local files when
debugging and will build your solution using the CDN location files when building
in release mode. This is also where I should explain why we removed the .min
portion of the JavaScript and stylesheet filenames. The bundling and minification
features of ASP.NET MVC intentionally ignore files that include .min in their
filenames during debugging. This means that none of your script references from
the Kendo download will work during debugging because we do not have the pre-
minified files included in our project. There are several documented ways to deal
with this problem floating around the Internet, but the easiest way to address this for
our project is just to rename to files to avoid the entire issue.

// Create the CDN bundles for kendo javascript files
bundles.Add(new ScriptBundle("~/bundles/kendo/web/js", kendoWebJsPath)
.Include("~/Scripts/kendo/kendo.web.js"));
// The ASP.NET MVC script file is not available from the Kendo Static
CDN,
// so we will include the bundle reference without the CDN path.
bundles.Add(new ScriptBundle("~/bundles/kendo/mvc/js")
.Include("~/Scripts/kendo/kendo.aspnetmvc.js"));

// Create the CDN bundles for the kendo styleshseet files
bundles.Add(new StyleBundle("~/bundles/kendo/common/css",
kendoCommonCssPath)
 .Include("~/Content/kendo/kendo.common.css"));
bundles.Add(new StyleBundle("~/bundles/kendo/default/css",
kendoDefaultCssPath)
 .Include("~/Content/kendo/kendo.default.css"));

Now that we have the BundleConfig.cs file properly configured, we can adjust the
references in the head portion of our _Layout.cshtml file. The _Layout.cshtml
file acts as our default master page by creating a uniform head structure for all of
our pages and a default layout within which all the other pages place their specific
content. Open the _Layout.cshtml file in the Views, Shared folder and make some
changes. By default, it will have some script references that appear in the body
portion of the page and some that appear in the head portion.

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[14]

There are undoubtedly some good reasons for doing this, but since we will have
references to Kendo scripts in the body of our page before these script references
would appear, we need to move everything to the head portion. Since this file is
not very long, I have included my finished version here so that you can copy it:

@using Kendo.Mvc.UI;
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width" />
<title>@ViewBag.Title</title>
@Styles.Render("~/Content/css")
@Styles.Render("~/bundles/kendo/common/css")
@Styles.Render("~/bundles/kendo/default/css")
@Scripts.Render("~/bundles/jquery")
@Scripts.Render("~/bundles/kendo/web/js")
@Scripts.Render("~/bundles/kendo/mvc/js")
</head>
<body>
@RenderBody()

@RenderSection("scripts", required: false)
</body>
</html>

Note also that I have added an @using statement at the top of the file, make sure you
copy that as well since it will enable Intellisense on all of your pages. Intellisense
is a feature of Visual Studio that auto-completes code as you write and is a great
productivity booster. To fully enable this, you will also need to add a reference to
the Kendo.Mvc.dll file to your Visual Studio project:

1.	 First, right-click on the LearningKendoUIWeb project in the Visual Studio
Solution Explorer and choose Add Reference.

Chapter 1

[15]

2.	 Next, click on Browse and navigate the file dialog to the location where you
downloaded the Kendo files.

3.	 Find the folder named aspnetmvc, open the folder named Binaries inside it,
and then open the folder named Mvc3 inside that.

4.	 Here you will find the Kendo.Mvc.dll file; click on it and choose Add.

5.	 With this reference added, you can make the code inside it available to all
of your web pages by adding a special entry in a file called web.config.

www.allitebooks.com

http://www.allitebooks.org

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[16]

6.	 This file is located in the root of your LearningKendoUIWeb project. Open
web.config and locate the section called namespaces. Add the Kendo.Web.
UI namespace to the list like this:
<pages>
<namespaces>
 <add namespace="System.Web.Helpers" />
 <add namespace="System.Web.Mvc" />
 <add namespace="System.Web.Mvc.Ajax" />
 <add namespace="System.Web.Mvc.Html" />
 <add namespace="System.Web.Optimization" />
 <add namespace="System.Web.Routing" />
 <add namespace="System.Web.WebPages" />
 <add namespace="Kendo.Mvc.UI" />
</namespaces>
</pages>

Now create a folder to hold static content in the project. Right-click the project name
in Solution Explorer, choose Add, New Folder. Call the new folder static. This will
be the location where we place all of our client-side examples that run apart from the
MVC framework.

Visual Studio 2012 includes some good improvements in JavaScript Intellisense and
it is going to help us as we write our code. Open the file called "_references.js"
in the scripts folder and delete all of the text in it. This is the entire contents of my
"_references.js" file, copy this into yours as well:

/// <reference path="kendo/jquery.js" />
/// <reference path="kendo/kendo.web.js" />
/// <reference path="kendo/kendo.aspnetmvc.js" />

Visual Studio 2012 uses this file as the list of JavaScript libraries that it should use
for Intellisense in the editor. I have included the jQuery file included with the Kendo
zipped package and two JavaScript files that we will be using in the majority of
our web pages. Once you have this in place, you will get some very helpful coding
assistance in your JavaScript files like this:

Chapter 1

[17]

Notice how all of the Kendo options show up as you type JavaScript code in the
editor? As you program the examples throughout this book, this will become
something that you will help you.

OK, now we are ready!

KendoUI syntax styles
When using the KendoUI framework in your web pages, you will find that there are
two ways to add the widgets to your content. The standard method is to use a jQuery
syntax within script elements like this:

<input type="date" id="makeMeADatePicker" />
<script type="text/javascript">
 $("#makeMeADatePicker").kendoDatePicker();
</script>

The convention, as shown, is to select the elements through jQuery and then apply
a JavaScript method from the Kendo namespaces that alters the content into an
interactive Kendo UI widget.

There is another way, now available through HTML5, to add Kendo UI widgets
to your content through a method known as declarative initialization. This is a
practice where you typically add special attributes to your elements that start with
"data-" and then call an initializer that reads these attributes and then applies the
appropriate changes. See this code as an example:

<input type="date" id="makeMeADatePicker" data-role="datepicker" />
<script type="text/javascript">
kendo.init($("#makeMeADatePicker"));
</script>

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[18]

This type of syntax allows for a cleaner separation between JavaScript and mark-up,
and is important in the MVVM pattern that we will cover later in the book. It is also
powerfully expressive and can make the code more readable, since relevant attributes
are contained directly within the elements to which they pertain. Script blocks
containing code do not necessarily appear beside the code actually being affected,
which can make things difficult to trace in a complicated project.

Kendo UI MVC – basics
Since we will be using ASP.NET MVC quite a bit in this book, I should define some
important terms so that there isn't any confusion later. MVC stands for Model-View-
Controller; so let's establish a common terminology around these. First, a web page
is referred to as a view and, when using Razor syntax with C#, the web pages have a
file extension, cshtml. There is also the option of using Visual Basic in which case the
web pages have a file extension, vbhtml, but we will be using C# in this book so you
won't see this in the examples.

Second, the controller is a server-side classfile that is responsible for all of the logic
used in generating the content included in a web page (view). The controller, along
with the route table, is also responsible for establishing the publicly accessible URLs
to which the server will respond, and enforcing which HTTP verbs are required
to access them. In general, a controller is responsible for contacting any external
dependencies, such as a database or web server, performing any necessary logic
and calculations on the data retrieved from those external dependencies, and then
packaging up all of that processed data into an object called the model.

The model, then, is an object container that contains the data that the web page
(view) needs in order to display itself. In a properly separated system, the controller
is the engine that performs all logic, data manipulation, user-input handling,
authorization, and security. The view is the data presenter and is concerned only
with the graphical representation of the data it has been given; no logic apart from
what is required for presentation (not to say that presentation can't be complex).
The model is the standard data format that the controller uses to send its final
product to the view to be presented to the user.

When programming in the ASP.NET MVC environment, Kendo UI offers a rich set
of server-side extensions for creating its widgets. Instead of typing out an HTML
element, specifying its attributes and wiring it up to Kendo UI JavaScript, the entire
process can be done using server-side objects that appear in the view. For example,
creating a DatePicker widget in MVC Razor syntax looks like this:

@(Html.Kendo().DatePicker().Name("datePickerField"))

Chapter 1

[19]

No HTML, no JavaScript, just extension methods on the HTML class. When the page
is generated, however, you can see what was sent to the browser:

<input class="k-input" id="datePicker" name="datePicker" type="date"
/>
<script>
jQuery(function(){jQuery("#datePicker").kendoDatePicker({format:"M/d/
yyyy",
min:new Date(1900,0,1,0,0,0,0),max:new Date(2099,11,31,0,0,0,0)});});
</script>

The extension methods create all the HTML, JavaScript, and CSS information
dynamically. You can see how the final output uses the jQuery method of selecting
the input element and using .kendoDatePicker(…) to create the widget through
JavaScript. So, although the programmer didn't type out the JavaScript, it was still
necessary for Kendo UI to work; the MVC extensions are only wrappers around the
normal Kendo UI client-side framework.

I should also explain that even though the view is what generates the final web
page sent to the user's browser, it is processed on the server first. The Razor syntax
(everything that starts with @) never appears in the final page markup, it is processed
on the server in order to generate the final markup. This means that the Kendo MVC
extension methods are really a server-side shortcut to creating the final markup
needed to make them work as they normally would in JavaScript.

Programming in the MVC framework allows for a very clean separation of concerns
within the web server itself and this, in turn, allows for a great deal of flexibility
around how the views run and how dependent they are on server-side logic. For
example, widgets that use data can receive this data either as embedded material in
the view itself (a dependency on server-side logic), or they can query for data from
the client-side by calling action methods that return JSON (less dependency
on server-side logic).

As an example of a server-dependent implementation, here is a strongly-typed
view with embedded model data that can then be used by widgets on the page.
A strongly-typed view is a view page that specifies a specific type of object that
contains its model data. You can see the strongly-typed model object in this sample
on the first line starting with @model:

@model IEnumerable<LearningKendoUIWeb.Models.StateTerritory>
<textarea id="serverData" style="display:none">
@Html.Raw(ViewBag.serverData)
</textarea>
<script type="text/javascript">
varserverData = eval($("#serverData").html());

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[20]

for (var i = 0; i<serverData.length; i++) {
console.log(serverData[i].Name);
 }
</script>

ViewBag is a dynamic object that is available to you within controller action methods
and view pages. It is a dictionary object that can contain any data or objects that you
need in your view pages. The controller can add anything that you need to ViewBag,
and your view pages will then have access to that data or object just as this sample
code has shown. In this case, the controller has attached an object called serverData
that contains a JSON representation of its model data. We are using the JavaScript
function called eval() to parse it into a JavaScript object and then showing on the
JavaScript console what was inside. This is merely an example of how to embed data
into the view itself without having to use additional network requests, such as the
jQuery functions $.get or $.ajax, to retrieve data to display on the page; it may
prove beneficial in some cases where network traffic needs to be weighed against
immediate data availability that the server can provide up front.

The ViewBag.serverData property is filled in the controller like this:

publicActionResultAutoCompletePage()
{
var repository = new SampleRepository();
var data = repository.GetStatesAndTerritories();
ViewBag.serverData = new JavaScriptSerializer().Serialize(data);
return View(data);
}

Note that in this example the controller is both filling in this ViewBag property and
sending the same data to the view as a strongly-typed model; this isn't necessary, but
it is handy here since we can leverage the server's JavaScriptSerializer class to
create JSON for us before we send it to the view. Here is what the JavaScript console
shows when we fill ViewBag.serverData with the JSON representation of an array
of objects that have a Name property:

Chapter 1

[21]

It is far more common to request data from a separate endpoint and then use it once
it has been retrieved. This allows for data from external sources, and breaks the
dependency on the server to provide the data inside the page, which in turn means
the specific server implementation is likely less important and less complex. jQuery
provides several common and friendly ways of retrieving JSON data such as $.ajax,
$.get, and $.getJSON. Kendo also provides standard ways of retrieving external
data through configuration options on its widgets, often through the property method
transport.read. We will see more about this in the rest of this chapter as we discuss
DataSource and Grid, and throughout the rest of the book.

Managing data
The Kendo UI framework consists of two parts—the framework components and
the user interface (UI) widgets. Most of the content that we will cover in this book
relates to the user interface widgets and how to use them, but we will begin with
the important topic of how to manage data within Kendo UI. The DataSource
component and Templates provide a good starting place and will build a foundation
that we will use throughout the rest of this book.

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[22]

Templates
Kendo UI Templates are script blocks that contain a small section of page markup
that is used by other Kendo UI widgets to display repeating content. We will cover
these first, since they will be used throughout the rest of our examples. Here is an
example of a simple template:

var template = kendo.template("#= horseColor #");
$("#horseDiv").html(template({
 horseColor: 'brown}));

Running this code would set the HTML content of the horseDiv to a span element
that contained the horseColor value that was passed into the template function
object. It would produce the following code output:

<div id='horseDiv'>brown</div>

Templates can also be written within a special type of HTML script block so that
their layout appears more naturally within the HTML content.

<script type="text/x-kendo-template" id="template">
<tr>
<td>#= rank #</td>
<td>#= rating #</td>
<td>#= title #</td>
<td>#= year #</td>
</tr>
</script>

In this template sample, note the lines containing the code fragments #= variable_
name #. These indicate the sections of code that are interpreted by the Kendo UI
Template engine. The variable names inside these code blocks are supplied to the
template when it is used. The JavaScript property names that you use inside of a
template need to be properties on the object that is passed to the template when it is
called. Note also that the script type is x-kendo-template instead of javascript,
this is important so that the browser will not attempt to execute the script block on
its own. This is a code sample showing this template being initialized in JavaScript:

<script type="text/javascript">
var template = kendo.template($("#template").html());

functionshowMovies() {
$("#moviesTable").html(template(
 {rank: 1, rating: 9.2, title: 'Prometheus', year: 2012}
));
 }

Chapter 1

[23]

showMovies();
</script>

Notice how the template is created through a call to kendo.template(). This
method takes the literal template code as its parameter, which is why the example
shows a call to the jQuery statement $("#template").html() since this code
returns the literal content of the template script block as it appears in the web page.
So, in this example, it is equivalent to calling kendo.template('<tr><td>#= rank
#</td>…'). This means that templates can also be created in-line by typing out the
exact template code directly in the constructor.

When the template object is called as a method, it needs the data passed in as a
parameter. When the example code above runs, it produces this output:

<table id="moviesTable">
<tr>
<td>1</td>
<td>9.2</td>
<td>Prometheus</td>
<td>2012</td>
</tr>
</table>

Templates can also include JavaScript which makes it possible to do more advanced
operations, such as iterating over an array and rendering the template for each item
in that array individually. In this case, you supply the template with an array of
objects instead of a single object as before. This time, using the explicit parameter
name data is critical. Note how JavaScript code is surrounded by single # signs like
javascript code # and variable statements are surrounded by #= and then # as
in #= variable statement #. Note also that the space between the # signs and the
content inside is important.

<script type="text/x-kendo-template" id="template">
for(vari=0; i<data.length; i++) {
<tr>
<td>#= data[i].rank #</td>
<td>#= data[i].rating #</td>
<td>#= data[i].title #</td>
<td>#= data[i].year #</td>
</tr>
 # } #
</script>

Templates are an important part of building functional Kendo UI widgets, and they
become even more useful when used in tandem with the DataSources and Grids as
we will see later.

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[24]

DataSource
The Kendo UI DataSource is a JavaScript object that gives data a common interface
for the various Kendo UI widgets. The full documentation for the DataSource object
can be found on the Kendo UI website at this address: http://docs.kendoui.com/
api/framework/datasource. The DataSource is a fairly complicated object and
relies on some building blocks that deserve explanations of their own. These building
blocks are the Kendo objects known as Schema, Transport, and Model. Let's address
these first and then continue exploring the DataSource itself.

It is important to note that when creating a DataSource object, you should use the
new keyword to instantiate a new object instead of just using an object literal:

var dataSource = new kendo.data.DataSource({...<properties>...});

Model
The Model object is from the namespace kendo.data.Model and inherits from
Kendo's ObservableObject. It provides a known structure, or model, to the data
that is used by a DataSource and can also be used to enable some more advanced
functionality such as change tracking. To create a new model, you must do so
through the method kendo.data.Model.define(). In this method, you pass an
object that defines the structure of the model and sets configurable options on the
data elements within. Here is an example of a model:

var Service = kendo.data.Model.define({
id: "serviceId", // the identifier of the model
fields: {
"serviceName": {
type: "string"
 },
"unitPrice": {
type: "number"
 },
"serviceId": {
type: "number"
 }
 }
});

var currentService = new Service({
serviceName: "Rotate Tires",
unitPrice: 29.95,
serviceId: 400

Chapter 1

[25]

});

console.log(currentService.get("serviceName")); // outputs "Rotate
Tires"
console.log(currentService.get("unitPrice")); // outputs 29.95

In this example, we have created a model with three properties and we set the data
type for each of them. We then created a new model object from our model definition
and demonstrated how to access its properties through the model.get() method.
We just demonstrated that the ID of the model object is defined through the property
called id, and that the fields are defined through a property called fields. Within the
fields property, these are the options that can be set to configure each data element:

fields: {
"serviceName": { // Property name for a field
type: "string", // "string"(default), "number", "boolean", or "date"
defaultValue: "Inspection", // Default value for field when model is
 / created. Default for string is "", number
 // is 0, and date is new Date() (.i.e. today)
editable: true, // Specifies whether field is editable
nullable: false, // Specifies if default value should be used when
empty
parse: function(){...} // Specifies custom parser for field value
validation: {...} // Specifies the validation options used by Kendo
 // Validator such as 'required', 'min', and
'max'.
 },...
}

These are not all required, but they are available when you want a very specific
configuration. Here is an example from the Kendo UI site:

var Product = kendo.data.Model.define({
id: "id", // the identifier is the "id" field (declared below)
fields: {
 /* name of the field */
name: {
type: "string", // the field is a string
validation: { // validation rules
required: true // the field is required
 },
defaultValue: "<empty>" // default field value
 },

 /* name of the field */ price: {
type: "number", // the field is a number

www.allitebooks.com

http://www.allitebooks.org

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[26]

validation: { // validation rules
required: true, // the field is required
min: 1 // the minimum value is 1
 },
defaultValue: 99.99 // default field value
 },

 /* name of the field */ id: {
editable: false, // this field is not editable
nullable: true // a default value will not be assigned
 }
 }
});

Since the properties within a model are observable, you need to use special getter
and setter methods to properly trigger the behaviors that other functions and
objects are observing. To retrieve the current value of one of these properties, use
model_name.get() such as currentService.get('unitPrice'). To set the value of
the property and thereby change it, use model_name.set() such as currentService.
set('unitPrice', 14.95). The concept of observable objects is a key feature of the
MVVM framework that we will cover in a later chapter.

Two other methods available on model objects are isNew and toJSON. The isNew
method checks if the model is new or not. This is determined by whether or not
the id field is still set at the default value. If the id field is not set at the default
value, the model object is not considered new. The toJSON method returns a JSON
representation of the complete model's properties and values.

Since, as I mentioned, the model inherits from ObservableObject, it exposes
three events to which you can attach custom behaviors—change, get, and set.
The syntax for these is to use model.bind() with the name of the event and a
function to handle it:

currentService.bind('change', function(e){
alert(e.field + " just changed its value to " +
currentService.get([e.field]));
});

Chapter 1

[27]

Schema
The schema object within a DataSource is responsible for describing the raw data
format. It functions at a higher level than the model, and can even contain a model
definition within it. The Schema's job is to instruct the DataSource on where to find
information on errors, aggregates, data, groups, and total records within the raw
data object that the DataSource is using. Each of these pieces of information exists
as a property within the schema object like this:

schema: {
 errors: function(response) {
 return response.errors;
 },
 aggregates: function(response) {
 return response.aggregates;
 },
 data: function(response) {
 return response.data;
 },
 total: function(response) {
 return response.totalCount;
 }
}

In the preceding code sample, each of the properties has been set to a function which,
when passed the raw data object, will return the appropriate data from within that
object. These properties can also be set to text fields, in which case the field name
given must exist at the top level of the object and already contain the appropriate
data in the appropriate format:

schema: {
 errors: "errors_field_name",
 aggregates: "aggregates_field_name",
 data: "data_field_name",
 total: "total_field_name"
}

The aggregates property needs data returned in an object format with a structure
something like this. Each property name inside the aggregates object can contain
information on its aggregate values, such as the maximum value (max), minimum
value (min), or the total count:

{
unitPrice: { // Field Name
 max: 100, // Aggregate function and value
 min: 1 // Aggregate function and value

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[28]

 },
productName: { // Field Name
 count: 42 // Aggregate function and value
 }
}

In this case, the data has a max and min defined on the unitPrice field and a count
defined on the productName field. The DataSource object has not calculated these
values; rather they are already present in the raw data sent from the remote server,
and the schema has indicated to the DataSource object where to locate them. It is
possible to use a function to calculate aggregate values, but it is normal for the raw
data to already contain these values within it as returned by a remote server.

As I said earlier, the schema can contain a model definition within it. If this is the
case, the DataSource will call kendo.data.Model.define on the model definition
for you, in order to create the model objects from the raw data:

var dataSource = new kendo.data.DataSource({
schema: {
 model: {
 id: "ProductID",
 fields: {
 ProductID: {
 editable: false,
 nullable: true
 },
 ...

If you have already defined a Model definition, you can simply reference it and the
DataSource will use it just the same:

vardataSource = new kendo.data.DataSource({
schema: {
model: Product // Use the existing Product model
 }
});

The schema object has a parse property, which you can set to a function that
will be called before the raw data is processed. This gives you a chance to do any
pre-processing if you need it. There is also a type property that can be set to either
json or xml.

Chapter 1

[29]

Transport
The transport object contains properties that a DataSource can use to communicate
with a remote server for any of its normal data functions. Those data functions are
create, destroy, read, and update (corresponding to the different actions that can
be taken on a record). Each of these data functions exists as a property object within
the transport object and follows the same pattern of configuration options. I should
note that not all of the data functions are required; only those functions that your
DataSource should perform need to be defined within your transport object.
This is the basic configuration structure for the transport object.

transport: {
 create: { // this sets configuration for creating new records
 // on the remote server
 },
 destroy: { // this sets configuration for deleting records
 // on the remote server
 },
 read: { // this sets configuration for reading records
 // from the remote server
 },
 update: { // this sets configuration for updating records
 // on the remote server
 },
 autoSync: false, // set true to automatically sync all changes
 batch: false // set true to enable batch mode
}

Here are the different options for configuring the transport object's remote data
operations. Each of the four properties follows the same configuration pattern, but
in this code sample I have shown different ways of configuring them for the sake of
example. In this first code sample, I have configured the create operation to simply
send the value of an HTML element to the remote server.

create: { // for creating data records on remote source.
url: "/orders/create", // the url to the create service.
data: { // data to send to the create service as part of the request.
// this can also be specified as a function call.
orderId: $("#input").val()
},
cache: true, // make false to force fresh requests every time.
contentType: "application/json", // default is
 // "application/w-www-form-urlencoded"
dataType: "json", // "jsonp" is also common.
type: "POST" // which http verb to use.
 }

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[30]

In this example, we have set the destroy method to use a jQuery $.ajax function
to send data to the remote server instead of configuring it directly on the destroy
configuration object. You can do this if you prefer the jQuery syntax and want to
easily attach callback functions to the results of the operation.

destroy: { // same options as "create", with some alternatives shown.
 // this is how you use $.ajax() to run this remote service call.
 // this option can be used with "create", "destroy", "read",
 // and "update"
 $.ajax({
url: "/orders/destroy",
data: options.data, // the data field contains paging, sorting,
 // filtering, and grouping data
success: function(result) {
 // notify the DataSource that the operation is complete
Options.success(result);
}
});
}

In this example, we have created a function to serve as the source of data for the read
operation. This might be useful if you need to perform some custom logic before
receiving remote data, or if you need to bypass the remote data source entirely for
some reason.

read: { // same options as above in "create" and "destroy".
data: function() { // this is how you specify data as a function.
return {
id: 42,
name: "John Doe"
};
}
}

Remember that the configuration options you just saw are valid for any of the
transport operations, I simply showed different operations as an example for each
configuration. When a DataSource is configured with a transport configuration like
this, it will use the properties and functions within these options to perform the
related actions. It will call read when it is loading data, update when a record has
been changed, destroy when a record has been deleted, and create when a new
record is added.

Chapter 1

[31]

Other DataSource properties
When reading from local data, you need to reference it by using the property called
data like this:

var someData = [{ title: 'Prometheus', year: 2012, rating: 9, rank: 25
}];

var dataSource = new kendo.data.DataSource({
data: someData
});

Some other properties of DataSource that we have not yet seen are more for data
manipulation—aggregate, filter, group, sort, page, and pageSize. They can
work on the data client-side, or they can request that the server do the operations by
using the serverAggregates, serverFiltering, serverGrouping, serverSorting,
and serverPaging properties by adding these to the DataSource object properties
list and setting them to true.

The aggregate property takes an array of fieldnames and aggregate function names:

aggregate: [{ field: 'title', aggregate: 'count' }]

The filter property can take a simple object, an array of simple objects, or a
configurable object with some more logic to specify filtering that should be done
on the data:

// simple object
filter: { field: 'title', operator: 'startswith', value: 'Shawshank' }

// ...or array...
filter: [{field: 'year', operator: 'eq', value: '1998'}, {field: ...

// ...or configurable object...
filter:{
logic: "or",
filters: [
{ field: 'title', operator: 'startswith', value: 'Shawshank' }]
}

These are the different operators that can be used with the filter object. They can also
be used when asking the server for filtering by using the serverFiltering property.

•	 Equality: eq, ==, isequalto, equals, equalto, equal
•	 Inequality: neq, !=, isnotequalto, notequals, notequalto, notequal, ne
•	 Less: lt, <, islessthan, lessthan, less

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[32]

•	 Less or Equal: lte, <=, islessthanorequalto, lessthanequal, le
•	 Greater: gt, >, isgreaterthan, greaterthan, greater
•	 Greater or Equal: gte, >=, isgreaterthanorequalto, greaterthanequal,

ge

•	 Starts With: startswith
•	 Ends With: endswith
•	 Contains: contains

The group and sort properties can take either an object or an array of objects
to specify grouping:

group: { field: 'year', dir: 'asc' }
sort: { field: 'title', dir: 'desc' }

The page and pageSize properties both take numbers to indicate the page number
and records per page respectively.

DataSource methods
The DataSource methods are used to either change or retrieve certain elements of
the DataSource object. Several of them are related to the same data manipulation
properties that we just talked about—aggregate, aggregates, filter, group, page,
pageSize, and sort. In each of these cases, calling the method without parameters
will return the current value of the like-named property within the DataSource;
calling the method with a parameter value will set the value of the like-named
property of the DataSource to the new value passed in:

// get the current group descriptors
var g = dataSource.group();

// set a new value for filtering
dataSource.filter({ field: 'year', operator: 'gt', value: 1990 });

There are also methods for adding and removing records. The methods add and
insert both add a new record to the DataSource. The add method simply takes a
model object or an object literal matching the current data format of the items in the
DataSource. The insert method takes the same object as add, but also specifies an
index property indicating the zero-based location at which to insert the new record.
The remove method takes a model object and removes it from the DataSource:

// add a new item
dataSource.add({ year: 1997, title: 'The Fifth Element', rating: 10
});

Chapter 1

[33]

// insert an item at the 6th position in the DataSource
dataSource.insert(5, {year: 1995, title: 'Twelve Monkeys', rating
9.5});

// remove an item from the DataSource
var movie = dataSource.at(5);
dataSource.remove(movie);

The at, get, and getByUid methods retrieve specific records from the DataSource:

// get the 3rd item in the DataSource
var movie = dataSource.at(2);

// get the model instance with an id of 5
// (id is determined by the value of the schema.model.id property)
var movie = dataSource.get(5);

// get the model instance, or ObservableObject if no model has been
set
// uid is a property inherited from ObservableObject
varuid = $("tr").data("uid");
var movie = dataSource.getByUid(uid);

The fetch, query, read, sync, cancelChanges, and view methods are used for
managing the current contents and structure of the DataSource:

// fetches data using the current filter/sort/group/paging
information.
// will fetch data from transport if data is not already available in
memory.
dataSource.fetch(); // can optionally take a callback function which
 // is executed once the data is ready.

// executes a query over the data (i.e. paging/sorting/filtering/
grouping)
// this effects what the call to dataSource.view() will return.
dataSource.query({ page: 5, pageSize: 20, group:{field:'year',dir:'a
sc'}});

// read data into the DataSource using the transport.read setting
dataSource.read(); // also conveniently causes the change event to
fire

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[34]

// synchronizes changes through the transport for any pending CRUD
operations.
// if batch mode is enabled, it uses only one call per operation type
(create,
// read, update, destroy)
dataSource.sync();

// discards all un-synced changes made to the DataSource
dataSource.cancelChanges();

// returns the current state of the items in the DataSource with all
applied
//settings such as paging, sorting, filtering, and grouping.
// to ensure that data is available, this method should be used from
//within the change event of the DataSource
change: function(e){
 ...
kendo.render(template, dataSource.view());
}

To finish up the list, we will look at data, total, and totalPages:

// retrieve an observable array of items (the current data within the
DataSource)
var movies = dataSource.data();

// set the DataSource to some new data
datSource.data([{year: 2009, title: 'Cargo', rating: 6.8}, {year: ...
]);

// get, but not set, the total number of items in the DataSource
var total = dataSource.total();

// get, but not set, the total number of pages of items in the
DataSource
var pages = dataSource.totalPages();

It is important to note that you must call dataSource.read() in order for the
DataSource object to initiate the read process and populate itself with data. In other
words, until you call dataSource.read(), there is nothing to read inside your
DataSource.

DataSource events
There are three events that are available on the DataSource object—change, error,
and requestStart. The change event is fired when data is changed or read from
the transport. The error event is fired any time an error occurs during data read or
data sync; it is also fired if schema.errors has been set within the DataSource and

Chapter 1

[35]

the response from a server operation contains data in the field specified by schema.
errors. The requestStart event is fired when a data request is about to start. Like
other events, these can be set as part of the DataSource definition or later through the
bind method.

// set event handler as part of DataSource definition
var dataSource = new kendo.data.DataSource({
change: function(e){
 // handle event
 }
});

// or set event handler later through the bind method
dataSource.bind("error", function(e){
 // handle event
});

As you will see later, the change event can be a good place to put some code in
order to generate markup while a DataSource is reading in new records. It is also
the appropriate place to put any other code that should respond to changes in
the DataSource.

Getting started with basic usage
Now that we have seen the definitions of the components within a DataSource,
we will put together our first example page to demonstrate the basic usage of the
DataSource object in JavaScript. Add a new HTML file to the static folder of the
project and name it DataSource.html. Start out by adding this code:

<!DOCTYPE html>
<html>
<head>
<title>DataSource</title>
<script src="/Scripts/kendo/jquery.js"></script>
<script src="/Scripts/kendo/kendo.all.js"></script>
<link href="/Content/kendo/kendo.common.css" rel="stylesheet" />
<link href="/Content/kendo/kendo.default.css" rel="stylesheet" />
</head>
<body>
<div id="example" class="k-content">
<table id="movies">
<thead>
<tr>
<th>Rank</th>
<th>Rating</th>

www.allitebooks.com

http://www.allitebooks.org

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[36]

<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="4"></td>
</tr>
</tbody>
</table>
</div>
</body>
</html>

We have referenced jQuery and Kendo UI Web JavaScript files in the head of our
page. Now let's add a template block after the div tag so that we can script the
creation of additional table rows:

<script id="template" type="text/x-kendo-template">
<tr>
<td>#= rank #</td>
<td>#= rating #</td>
<td>#= title #</td>
<td>#= year #</td>
</tr>
<script>

Now what we need is the ability to take some data and fill out that table using the
layout as defined by this template, enter the DataSource. Add this code after the
template script block that you just typed in:

<script type="text/javascript">
 $(document).ready(function() {
 // create a template using the above definition
var template = kendo.template($("#template").html());

var movies = [
{ "rank": 1, "rating": 9.2, "year": 1994,
"title": "The Shawshank Redemption" },
{ "rank": 2, "rating": 9.2, "year": 1972,
"title": "The Godfather" },
{ "rank": 3, "rating": 9, "year": 1974,
"title": "The Godfather: Part II" },
{ "rank": 4, "rating": 8.9, "year": 1966,
"title": "Il buono, ilbrutto, ilcattivo." },
{ "rank": 5, "rating": 8.9, "year": 1994,

Chapter 1

[37]

"title": "Pulp Fiction" },
{ "rank": 6, "rating": 8.9, "year": 1957,
"title": "12 Angry Men" },
{ "rank": 7, "rating": 8.9, "year": 1993,
"title": "Schindler's List" },
{ "rank": 8, "rating": 8.8, "year": 1975,
"title": "One Flew Over the Cuckoo's Nest" },
{ "rank": 9, "rating": 8.8, "year": 2010,
"title": "Inception" },
{ "rank": 10, "rating": 8.8, "year": 2008,
"title": "The Dark Knight" }
];

var dataSource = new kendo.data.DataSource({
data: movies,
change: function () {
// subscribe to the CHANGE event of the data source
$("#movies tbody").html(
kendo.render(template, this.view())); // populate the table
 }
 });

// read data from the "movies" array
dataSource.read();
 });
</script>

Let's step through this code. You should recognize the first few lines where a Kendo
template is created from the script block that you typed just a few paragraphs ago.
After that, you see a JavaScript array of objects holding data about various movies.
This array is going to be the raw data behind the DataSource object that comes
next. The DataSource object is instantiated (note the new keyword) into the variable
called dataSource. It references the movies array as its data parameter and then
defines a function to handle the change event of the DataSource object. Inside
this change event, we are using jQuery to select the movies table and then using
kendo.render() to generate markup from our template variable for each item in
our dataSource object. Note how the template we are using does not need special
JavaScript to iterate over a collection; the DataSource object passes all of the data
to the change event through this.view(). Finally, we call dataSource.read()
which reads in the data and consequently fires the change event, thereby adding
the content to our movies table.

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[38]

The kendo.render() method takes a template function as its first argument and
then an array of data as its second argument. It runs the data through the template,
generating the resulting markup and returning it back to the caller. In the case above,
we have used jQuery to set the <tbody> element's HTML to the result of this kendo.
render()function.

Binding to remote data
Our last example was a demonstration of using local data (a JavaScript array) with
a DataSource. It is also very common and important to use the DataSource with data
that exists on a remote system. To simulate this, we will turn to the ASP.NET MVC
framework to create a server for our remote data.

In the Visual Studio Solution Explorer window, right-click on the Controllers folder
and choose Add, Controller. Name the new controller KendoController and leave
the rest of the dialog that opens at its default settings.

Chapter 1

[39]

The newly created controller class will appear in the editor portion of Visual Studio
and you will see a generic Index() method sitting in the file. This method is known
as an action method and is used to process an HTML response back to a web
browser. The comment above it indicates the route and HTTP verb that are used to
locate this action method:

// GET: /Kendo/

public ActionResult Index()
{
return View();
}

In this case, it shows that typing the route "Kendo", as in http://<server-name>/
Kendo/, would match this action method and cause it to return its view to the
browser. It would also work to specify http://<server-name>/Kendo/Index and
it is usual to supply both the controller name, "Kendo", and the action method name,
"Index", in a normal route. As a matter of convention, the MVC framework names
all controller classes with the suffix "Controller", but it does not use the suffix when
referring to the controller in an actual route (such as the path in the address bar of
your web browser). This means that the KendoController class is referred to as
"kendo" when it is part of a route. GET is the default HTTP verb that this controller
will accept when the browser requests this route.

At the top of KendoController, add a using statement for a namespace that we are
about to create—LearningKendoUIWeb.Repository. Also add Kendo.Mvc.UI and
Kendo.Mvc.Extensions:

Add a new action method called RemoteData and set it up like this:

publicJsonResultRemoteData()
{
var repository = new SampleRepository();
var data = repository.GetAllMovies();
returnJson(result, JsonRequestBehavior.AllowGet);
}

This is a simple method that instantiates a repository (which we will create in just a
moment), gathers some data from that repository, and then returns it to the client as
JSON. The second parameter to the Json() method notifies the controller class that it
is acceptable to return JSON data from this method even though the verb is GET.

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[40]

Right-click on the Models folder and click on Add, Class. Name the new class
Movie.cs. This is a very simple class to hold data about a movie:

namespace LearningKendoUIWeb.Models
{
public class Movie
 {
public int Rank { get; set; }
public double Rating { get; set; }
public int Year { get; set; }
public string Title { get; set; }
 }
}

Add a new folder to the project and call it Repository. Add a class to this folder
called SampleRepository.cs:

using LearningKendoUIWeb.Models;

namespaceLearningKendoUIWeb.Repository
{
public class SampleRepository
 {
public List<Movie>GetAllMovies()
 {
var movies = new List<Movie>{
new Movie { Rank = 1, Rating = 9.2,
 Title = "The Shawshank Redemption", Year = 1994 },
new Movie { Rank = 2, Rating = 9.1,
 Title = "The Godfather", Year = 1974 }
 };
 Return movies;
 }
 }
}

Feel free to add more movies to this list, the more the better. Now we have a simple
repository class that can return a list of movie objects, so the action method we
created in KendoController is finally valid. When the RemoteData action method is
called, it will return the list of Movie objects as a JSON array of objects like this:

Chapter 1

[41]

I have added more movies to my repository, but the structure of the result is the
same. This is exactly the sort of data that DataSource knows how to use. Here is how
to wire up DataSource to use it, find the line in the RemoteData.cshtml file where
the dataSource variable is created in JavaScript and change the code so that it looks
like this:

var dataSource = new kendo.data.DataSource({
 transport: {
read: {
url: 'Kendo/RemoteData/'
 }
 },
change: function () {
 $("#movies tbody").html(kendo.render(template, this.view()));
 }
});

Instead of the using the data property to point to a locally available array of objects,
we are using the transport property to tell Kendo that we need to request the data
from a remote source. In this case, all we have specified is how the DataSource can
read remote data and that is all we need, since the only method call we make to the
DataSource is in this line:

dataSource.read();

These examples have only scratched the surface, but it does show the DataSource in
action in a real page. It is hard, however, to really demonstrate a DataSource object
in isolation. The DataSource is only actually useful when it serves a data-rich widget,
like the Kendo UI Grid. In the pages to follow, we will explore this Grid widget
and will be able to demonstrate a more fully configured DataSource that the Grid
can take full advantage of. We will also see how to configure both the Grid and the
DataSource through the MVC Razor syntax within a view page.

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[42]

Page layout
Now that we have discussed the DataSource and Template features of the Kendo UI
framework, we can turn our attention to widgets that provide graphical elements on
our web pages. Some of these widgets actually assist you in organizing the content
or the data in your page, and the Grid is a very good example of this, which we will
cover next.

Grid
The Kendo UI Grid is a very handy widget to be familiar with. It is an easy way
to transform data into a usable and interactive grid that would normally take a
full-featured server control (as in ASP.NET WebForms) or some complex and
time-consuming JavaScript development in the page markup. In fact, it is remarkably
easy to set up a simple example. Let's say we have some JavaScript data like this that
we want to display within a web page:

<script type="text/javascript">
var repairs = [{
name: "State Inspection",
price: 39.75,
labor: 1,
staff: 1
 },
 {
name: "Brake & Clutch System Service",
price: 149.95,
labor: 3,
staff: 1
 },
 {
name: "Power Steering Service",
price: 109.96,
labor: 3,
staff: 1
 },
 {
name: "Cooling System Service",
price: 126.95,
labor: 2,
staff: 1
 },
 {
name: "Oil Change",

Chapter 1

[43]

price: 37.77,
labor: 1,
staff: 1
 },
 {
name: "CV Axle Replacement",
price: 271.11,
labor: 5,
staff: 2
 },
 {
name: "Battery Cabling Replacement",
price: 179.97,
labor: 2,
staff: 1
 },
 {
name: "Battery Replacement",
price: 118.38,
labor: 1,
staff: 1
 },
 {
name: "Fuel Induction Service",
price: 168.88,
labor: 3,
staff: 2
 },
 {
name: "Engine Air Filter Replacement",
price: 36.63,
labor: 1,
staff: 1
 },
 {
name: "Timing Belt Replacement",
price: 221.75,
labor: 3,
staff: 2
 },
 {
name: "Drive Belt Replacement",
price: 194.79,
labor: 3,

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[44]

staff: 2
 }
];
</script>

In order to turn this into a well-formatted dynamic table, it would normally require
some looping and HTML markup generation, probably through jQuery. With Kendo
UI, however, all we have to do is create a kendoGrid() function and we can see
some magic in action. Take note of how little code is involved to create a grid from
this data here:

<div id="repairsGrid"></div>
<script type="text/javascript">
 $("#repairsGrid").kendoGrid({
dataSource: repairs
 });
</script>

And here is the page output from this simple code:

See how the code involved didn't even require a table to be present within the web
page? Kendo UI generated everything that it needed in order to display this data as
a grid on the page. Now we can turn our attention to creating grids that are more
interactive and intelligent, and explore what the Kendo UI Grid widget has to offer
in displaying data from different sources.

Chapter 1

[45]

Columns
First of all, we can take control of the formatting of the Grid by specifying properties
on a columns object array. This object array is used to indicate to the Grid how to
display the data appropriately so that it appears as you want on the page. Here
is a columns object example using the Grid that we saw just a moment ago to
demonstrate the various options available for formatting:

$("#repairsGrid").kendoGrid({
...
columns: [{
field: "name",
title: "Service",
width: 300
 },
 {
field: "price",
title: "Price",
width: 50,
format: "${0:##.##}"
 },
 {
field: "labor",
title: "Labor",
width: 50,
template: "#= labor# hour(s)"
 },
 {
field: "staff",
title: "Staff",
width: 50,
template: "#= staff # tech(s)"
 }]

www.allitebooks.com

http://www.allitebooks.org

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[46]

Here is the effect on the output:

There are also simple options for enabling some dynamic interactive behaviors by
specifying which columns are filterable or sortable. Note that these are only useful
if the Grid, as a whole, has pageable and/or sortable set to true.

$("#repairsGrid").kendoGrid({
 ...
columns: [{
field: "name",
title: "Service",
width: 300,
sortable: true,
filterable: true
 },
 {
field: "price",
title: "Price",
width: 50,
format: "${0:##.##}",
sortable: true,
filterable: true
 },
 {
field: "labor",
title: "Labor",
width: 50,
template: "#= labor # hour(s)",
sortable: true,
filterable: true

Chapter 1

[47]

 },
 {
field: "staff",
title: "Staff",
width: 50,
template: "#= staff # tech(s)",
sortable: false,
filterable: false
 }],
sortable: true,
filterable: true

Note in the following screenshot, how the Service column has been sorted
alphabetically and I have clicked the filter icon, which enables me to input a filter on
the data to be displayed on the page. You can see the filter icon right above the open
window on the screen, it looks like a small funnel. Kendo UI takes care of actually
doing the sorting and the filtering by means of the dataSource property that we set
on the Grid. This means that settings you have put in place on the dataSource that
you supply to the Grid will be used by the Grid for sorting and filtering:

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[48]

When the Grid has been configured to allow editing of data, the columns property
allows you to specify a custom editor function that can be used when changing data
in that column. This can be a useful way of giving the user an easier way to input
a change, or even to control the sort of changes that can be made. For example, this
updated code sample shows adding an editor function to the Labor column so that
it displays a drop-down list when edited, giving the user a specific set of options to
choose from. There are a couple of other changes here that we will talk about next:

$("#repairsGrid").kendoGrid({
dataSource: repairs,
columns: [
 {
title: "Action",
width: 75,
command: ["edit"]
 },
{
field: "name",
title: "Service",
width: 300,
sortable: true,
filterable: true
 },
{
field: "price",
title: "Price",
width: 50,
format: "${0:##.##}",
sortable: true,
filterable: true
 },
{
field: "labor",
title: "Labor",
width: 50,
template: "#= labor # hour(s)",
sortable: true,
filterable: true,
editor: function (container, options) {
varselectEditor = $("<select name=" + options.field +
"></select>");
selectEditor.append(new Option("1", 1));
selectEditor.append(new Option("2", 2));
selectEditor.append(new Option("3", 3));

Chapter 1

[49]

selectEditor.append(new Option("4", 4));
selectEditor.append(new Option("5", 5));
selectEditor.appendTo(container);
 }
 },
 {
field: "staff",
title: "Staff",
width: 50,
template: "#= staff # tech(s)",
sortable: false,
filterable: false
 }],
sortable: true,
filterable: true,
editable: "inline"

Here is the output of the editor function, showing the drop-down list that appears
when a row enters the edit mode. It is important to set the name attribute of the
<select> element so that Kendo can bind the user's choice back to the dataSource
when the edit is saved.

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[50]

When using a custom editor function like this, the container and options objects
that are passed in have some specific properties available to them that can be useful
to you when writing your function. The container object is the page element to
which you should add any new mark-up, as we did in our example. The options
object contains two properties: options.field and options.model. The options.
field property contains the name of the field that you should use in your new
mark-up so that Kendo can bind everything properly. The options.model property
contains a reference to the actual model of the data being edited if one was specified
in the dataSource; this gives you access to data that could be important when
creating your custom logic.

Additional changes that appeared in the code sample were the editable: "inline"
property on the Grid definition (required for editing to work; the alternative to
inline is popup, which opens a special window for editing the record), and the
new column that includes command buttons. The command property of a column
object takes an array of command buttons to generate within each row. The available
options for this array include edit, create, destroy, save, and cancel. We will
return to this topic soon when we go into more detail on how to bind a Grid to
CRUD operations.

Note that all that was necessary to add these command buttons to the Grid was
to specify the command property of the column object. I did not add any <button>
elements to the column, nor did I create JavaScript event handlers. Kendo UI generated
all of this necessary markup for me through the Grid widget's existing functionality.

A significant portion of Grid functionality can be enabled through properties that
describe the Grid's current capabilities. Each of them end in -able. These properties
are editable, filterable, groupable, navigatable, pageable, scrollable,
selectable, and sortable. We have already seen filterable and sortable and
that they take simple true/false values when used. We have also seen editable, but
there is more that can be done with this option:

...
editable: {
confirmation: "Are you sure?", // text displayed to confirm a delete
 operation
destroy: true, // whether or not to delete item when button
 is clicked
mode: "popup", // options are "incell", "inline",
 and "popup"
template: "#= ... #", // template to use for pop-up editing
update: true // switch item to edit mode when
 clicked?
}

Chapter 1

[51]

The groupable property lets the user group columns by dragging them to the top of
the screen. The groupable option also includes a property, groupable.messages.
empty that will be displayed in an empty grouping area on a Grid. If you specify this
messages property, the groupable: true value is assumed and does not need to be
specified. The navigatable property turns on or off keyboard navigation within the
Grid. Here is how the bottom of our Grid definition would look with groupable and
navigatable turned on:

...
sortable: true,
filterable: true,
editable: "inline",
navigatable: true,
groupable: {
messages: {
empty: "Drag column header here for grouping"
 }
}

And the output in the page when rendered with these options:

The pageable option can be simply set to true/false, like several of the other
options, but it also allows for more fine-grained control if you desire it:

...
pageable: {
pageSize: 10,

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[52]

previousNext: true, // show buttons navigating to first/last/next/
 previous
numeric: true, // show numeric portion of the pager in the Grid?
buttonCount: 10, // number of buttons to show in numeric pager
input: true, // create input element allowing user to navigate to page
pageSizes: [5,10,20], //array of page size choices for user
refresh: true, // show a refresh button in the Grid?
info: true, // show a label with current paging information in it
messages: {
display: "Detail Template – {1} of {2} items", // info text
empty: "No Records", // text to show when there are no records
page: "Page", // first part of text of input option
of: "of Detail Template", // last part of text of input option
itemsPerPage: "items per page", // text for selecting page size
first: "Go to first page", // text of first page button tooltip
previous: "Go to the previous page", // previous page tooltip
next: "Go to next page", // next page tooltip
last: "Go to the last page", // last page tooltip
refresh: "Refresh" // text of refresh button tooltip
 }
}

Our example code configured for paging with 10 items per page would appear
like this:

...
sortable: true,
filterable: true,
editable: "inline",
navigatable: true,
groupable: {
messages: {
empty: "Drag column header here for grouping"
}
},
pageable: {
pageSize: 10
}

Chapter 1

[53]

And the output generated with these options:

The scrollable property configures whether a Grid can have a vertical scroll bar
within it, and is usually specified if you have restricted the height of the Grid on
your page. It can be set to a simple Boolean value of true/false.

The selectable property indicates whether selection is enabled or disabled within
the Grid. Its possible values are row, cell, multiple, row, and multiple, cell.
Here is how our example Grid looks with selectable: "multiple, cell".

Note that I have selected some rows for display.

Interacting with Data: DataSource, Templates, TabStrip, and Grid

[54]

The toolbar property enables a toolbar for the Grid with a certain set of commands,
similar to the command property of the column objects. Each toolbar within the
toolbar object array can have a name, template, and text configured:

...
toolbar: [
"create",
{ name: "save", text: "Save This Record" },
{ name: "cancel", text: "Cancel Changes: }]

Note how a toolbar can be a simple text value indicating which command to
implement. You can also specify objects to contain the configuration data that
you want (as in the preceding screenshot). Refer to the following screenshot:

Summary
In this chapter, we have covered a lot of fundamental information so that you can get
started creating Kendo UI-enabled web pages properly. It is essential to understand
how to use a Template and how to use a DataSource in order to do much at all with
the Kendo UI framework. Second to these, the Grid is an essential component of the
Kendo UI framework and knowing how to configure it will give you a head start
when building pages that need to display tabular data to a user.

In the next chapter, we will learn about the AutoComplete widget. It allows you to add
a word-wheel effect to input text boxes, to assist users in typing information that can
be looked up from a data source. It is a great tool that many users are drawn to and
will add a lot of functionality to your web pages without a lot of effort in writing
the code.

The AutoComplete Widget
and its Usage

The AutoComplete widget from Kendo UI creates the "word wheel" effect on an
input box as a user types. A word wheel is an effect where words appear beneath
a textbox as a user types that help suggest possible search terms. You often see this
on search engines such as Google and Bing. This can be used to give the user a list
of approved choices from which he or she can choose, or it can also help the user
type specific keywords accurately, since the canonical form of the item appears
directly beneath the input box for the user to select. It also saves the user's time if
he or she only has to type one or two characters of a potentially long search term.
The AutoComplete widget in Kendo UI is very easy to configure and brings this
functionality to users of your site with little effort on your part.

www.allitebooks.com

http://www.allitebooks.org

The AutoComplete Widget and its Usage

[56]

AutoComplete widget – basics
Open the Visual Studio project that you created in the previous chapter and then
open the KendoController.cs class in the Controllers folder. Let's add a new
action method for our initial AutoComplete test page.

public ActionResult AutoCompletePage()
{
 return View();
}

Right-click on the action method's name and choose Add View. For now, choose the
defaults that appear in the dialog and this will take you to the web page so that we
can get started.

Chapter 2

[57]

Binding AutoComplete to a local source
Since we are referencing the default layout that we created in the last chapter, we
will get all of the Kendo and jQuery files that we need in our page header without
having to retype anything.

We will start by demonstrating how to use the AutoComplete widget purely through
JavaScript with local data binding. We will need an input element, a JavaScript array,
and some jQuery.

<style>
 #stateOrTerritory {
 width:200px;
 }
</style>

<h2>AutoCompletePage</h2>
<input type="text" name="stateOrTerritory" id="stateOrTerritory" />

<script type="text/javascript">
varstatesAndTerritories = ["Alabama",
 "Alaska",
 "American Samoa",
 "Arizona",
 "Arkansas",
 ...
 "Washington",
 "West Virginia",
 "Wisconsin",
 "Wyoming"];

 $("#stateOrTerritory").kendoAutoComplete({
 dataSource: statesAndTerritories,
 filter: "startswith",
 placeholder: "Choose state or territory...",
 separator: ", "
 });

</script>

The AutoComplete Widget and its Usage

[58]

We can use a list of the United States and Territories for a nice sampling of the
alphabet and a list long enough for a demonstration. All that we have done so far
is created some data in JavaScript for the AutoComplete to use, and then wired it
up with jQuery and Kendo UI to the input element at the top of the page. We have
specified that we want to use the statesAndTerritories JavaScript array as our
data source, that we wanted the filter to run in "startswith" mode, that we want
placeholder text in the input element, and that the items in the array are separated
by a comma. These properties are explained in more detail at the end of the chapter.
Run this and you should see an input box with some nice looking placeholder text
in your browser. Type some letters in it and you get an immediate result with some
state and territory suggestions.

Binding AutoComplete to Remote Data
Now that we have seen how to wire up the AutoComplete widget using local
JavaScript data, let's see how to do it with remote data. Add a new class called
StateTerritory.cs to the Models folder in the Visual Studio project. Structure it to
hold the relevant data about states and territories so that we can use this in our page.

namespace LearningKendoUIWeb.Models
{
 public class StateTerritory
 {
 public string Name { get; set; }
 public bool IsState { get; set; }
 public bool IsTerritory { get; set; }

Chapter 2

[59]

 public bool IsContiguous { get; set; }
 }
}

Now open the SampleRepository.cs class file and add some logic to create a
repository of our state and territory data. Note that I have intentionally counted
the District of Columbia as both a state and a territory for the purposes of future
examples.

public List<StateTerritory>GetStatesAndTerritories()
{
var stateTerritories = new List<StateTerritory>{
new StateTerritory{ Name = "Alabama", IsContiguous = true,
IsState = true, IsTerritory = false },
new StateTerritory{ Name = "Alaska", IsContiguous = false,
IsState = true, IsTerritory = false },
new StateTerritory{ Name = "American Samoa", IsContiguous = false,
IsState = false, IsTerritory = false },
new StateTerritory{ Name = "Arizona", IsContiguous = true,
IsState = true, IsTerritory = false },
new StateTerritory{ Name = "Arkansas", IsContiguous = true,
IsState = true, IsTerritory = false },
...
new StateTerritory{ Name = "Washington", IsContiguous = true,
IsState = true, IsTerritory = false },
new StateTerritory{ Name = "West Virginia", IsContiguous = true,
IsState = true, IsTerritory = false },
new StateTerritory{ Name = "Wisconsin", IsContiguous = true,
IsState = true, IsTerritory = false },
new StateTerritory{ Name = "Wyoming", IsContiguous = true,
IsState = true, IsTerritory = false }
 };
return stateTerritories;
}

Now we have some server-side data that we can play with, but we still need to
expose it across HTTP. Go back to the KendoController.cs class file and add
a new action method like you see in this code block:

public JsonResult AutoCompleteData()
{
 var repository = new SampleRepository();
 var data = repository.GetStatesAndTerritories();
 returnJson(data, JsonRequestBehavior.AllowGet);
}

The AutoComplete Widget and its Usage

[60]

This will expose our collection of states and territories as a JSON array of
StateTerritory objects. Remember to set the JsonRequestBehavior.AllowGet
property or this will not work. Now we can modify our AutoCompletePage.cshtml
file to use the transport property to get its data.

$("#stateOrTerritory").kendoAutoComplete({
 dataSource: {
 transport: {
 read: {
 url: "/Kendo/AutoCompleteData/"
 }
 }
 },
 dataTextField: "Name",
 filter: "startswith",
 placeholder: "Choose state or territory...",
});

Run the page again and watch it pull data from the server. We have to specify which
field contains the data text field, since our JSON data is structured as objects and not
simply an array. We also no longer need the separator property.

Chapter 2

[61]

Using AutoComplete with MVC through
Models
We can take this one step further and transform our code into Razor syntax with
MVC. First, create a controller action method to return data from the server.

public ActionResult AutoCompletePage()
{
 var repository = new SampleRepository();
 var data = repository.GetStatesAndTerritories();
 return View(data);
}

Next, open AutoCompletePage.cshtml and delete everything in it after the <h2> tag.
At the top of the file, we need to add a declaration so that this View page becomes
strongly-typed to our new model class StateTerritory.cs.

@model IEnumerable<LearningKendoUIWeb.Models.StateTerritory>

Now add this code that utilizes the HTML helper class and the Kendo
extension methods.

<h2>AutoCompletePage</h2>
@(Html.Kendo().AutoComplete()
 .Name("statesAndTerritories")
 .DataTextField("Name")
 .BindTo(Model)
 .Filter("startswith")
 .Placeholder("Choose state or territory...")
)

Recognize the syntax? Except for the BindTo(Model) statement, these method names
are the same as the properties we used in JavaScript (except that they start with capital
letters, of course). The call to BindTo(Model) is how the MVC controller passes
data into the MVC view. In this case, we strongly-typed our view to a collection
(IEnumerable) of StateTerritory objects, and here in the code we are telling the
Kendo framework that this model contains the data to display in the AutoComplete.
The data in this model is used while the page is being created by the server, and is only
accessible through the Razor syntax code statements in the View page.

The AutoComplete Widget and its Usage

[62]

Even though we just wired up the AutoComplete to the server through MVC,
the method we used isn't really like a call to remote data. It is actually using local
data, by saving all of the model data from the server into the JavaScript where the
AutoComplete is initialized. There isn't anything wrong with this, so long as we
do not attempt to embed so much data into the page that it loads slowly. In fact it
is likely a good way to boost performance in some situations, but it is important
to know where the data is and how the page is accessing it. If we want the page to
request the data from a URL, we need to make some changes to our view.

Using AutoComplete with MVC through
Ajax
Open the view and make a change to the AutoComplete() extension method call just
like this code block.

<h2>AutoCompletePage</h2>
@(Html.Kendo().AutoComplete()
 .Name("statesAndTerritories")
 .Placeholder("Choose state or territory...")
 .DataTextField("Name")
 .Filter("startswith")
 .DataSource(source =>
 {
source.Read(read =>
 {
read.Action("AutoCompleteData", "Kendo");
 })
 .ServerFiltering(false);
 })
)

We have removed the BindTo(Model)and replaced it with a call to DataSource()
where we use a lambda expression to define how to create the data source. In this
case, we have configured it to use the action method that returns the JSON data
we configured earlier, and also that the server is not performing any filtering. This
effectively sets our web page up in the same way as our original JavaScript page that
used the transport property to get JSON data from the server.

Chapter 2

[63]

Sending data to the server
We want to be able to filter the data for the AutoComplete widget on the server
side. We can either use the data property within the transport JavaScript object,
or we can continue with our MVC example and specify the data to send inside the
DataSource lambda expression. Let's say, for example, that we want to be able to
choose what type of states and territories show up in the AutoComplete widget. We
can accomplish this by sending some data along with the request, then having the
server revise the data that it sends back. Replace the contents of AutoCompletePage.
cshtml with this updated code.

<h2>AutoCompletePage</h2>
<label for="stateType">Choose whether to see States:</label>
<select id="stateType" name="stateType">
<option value="true">Show States</option>
<option value="false">Show Only Territories</option>
</select>

@(Html.Kendo().AutoComplete()
 .Name("statesAndTerritories")
 .Placeholder("Choose state or territory...")
 .DataTextField("Name")
 .Filter("startswith")
 .DataSource(source =>
 {
 source.Read(read =>
 {
 read.Action("AutoCompleteData", "Kendo")
 .Data("onAdditionalData");
 })
 .ServerFiltering(false);
 })
)
<script type="text/javascript">
var autocomplete = $("#statesAndTerritories").
data("kendoAutoComplete");

functiononAdditionalData() {
 return {
 showStates: $("#stateType").val()
 }
 }
</script>

The AutoComplete Widget and its Usage

[64]

Notice the call to Data("onAdditionalData") in the lambda expression and the
new JavaScript method onAdditionalData() with the same name. When the data
source for the AutoComplete is read, it will fire this JavaScript event and send the
result to the server with a parameter named showStates. In order to receive this data
into your action method, you need to add a parameter to it with a matching name.

public JsonResult AutoCompleteData(bool showStates = true)
{
 // setting showStates = true means that it is an optional parameter
 // with the default value of true.
 var repository = new SampleRepository();
 var data = repository.GetStatesAndTerritories();
 if (!showStates)
 {
 data = data.Where(s =>s.IsState == false).ToList();
 }
 return Json(data, JsonRequestBehavior.AllowGet);
}

Now, when the AutoComplete code sends the showStates parameter as part of its
web request, the controller will use the value of that to determine whether or not to
filter the data that it sends back.

Using Templates to Customize
AutoComplete
Kendo templates can be used to customize the appearance of the items in your
AutoComplete. This can even get quite fancy with images and special styles. Here is
a simple example. Update the Razor portion of the AutoCompletePage.cshtml page
to look like this:

@{
var template = "#= Name # - #= IsState #";
}
@(Html.Kendo().AutoComplete()
 .Name("statesAndTerritories")
 .Placeholder("Choose state or territory...")
 .DataTextField("Name")
 .Filter("startswith")
 .DataSource(source =>
 {
 source.Read(read =>
 {

Chapter 2

[65]

 read.Action("AutoCompleteData", "Kendo")
 .Data("onAdditionalData");
 })
 .ServerFiltering(false);
 })
 .Template(template)
)

Here we have added a variable called template that is holding our Kendo template
definition. We then referenced that in our AutoComplete() setup code. Run the page
and take a look.

Configuring all of the AutoComplete
properties
The AutoComplete widget has several different properties that can be set during its
initialization to customize its behavior. Here is a structured code sample to show you
what is available on the AutoComplete widget.

$("autocomplete").kendoAutoComplete({
dataSource: dataSource, // see chapter 1
 animation: {
 close: {
 effects: "fadeOut",
 duration: 300,
 hide: true,
 show: false
 },
 open: {
 effects: "fadeIn",
 duration: 300,

The AutoComplete Widget and its Usage

[66]

 show: true
 }
 },
 dataTextField: "Name", // name of field in data source to display
 delay: 500, // milliseconds before auto complete activates
 enable: true, // set "false" to disable
 filter: "contains", // type of filtration, passed to remote source
 height: 200, // height of drop-down list
 highlightFirst: true, // highlight first item in list?
 ignoreCase: true,
 minLength: 1, // minimum characters before activating drop-down list
 placeHolder: "Enter value...", // placeholder text
 separator: ", ", // separator for completion of search terms.
 //allows for multiple search terms by using comma or
 // other delimiter
 suggest: false, // auto-type rest of search term?
 template: template // see chapter 1
}

Hooking into AutoComplete widget
events
The AutoComplete widget has several different events that it fires while performing
actions on your page. You can bind them after the AutoComplete widget has been
initialized like this:

varautoComplete = $("#autoComplete").data("kendoAutoComplete");
$("#autoComplete").data("kendoAutoComplete").bind("change",
function(e) {
 // handle event
});

Or you can define them within the properties of the AutoComplete widget itself
like this:

$("#autoComplete").kendoAutoComplete({
close: function(e) {
 // handle event
 }
});

In either case, this is the list of events to which you can attach your own code.

Chapter 2

[67]

Change
The change event fires as the selection in the AutoComplete widget changes.
You can bind events after initialization.

Close
The close event fires when the drop-down list is closed from the AutoComplete
widget.

Open
The open event fires every time the drop-down list is opened from the
AutoComplete widget.

Select
The select event fires when any of the elements is selected from the AutoComplete
widget. It passes the argument e.item to the function that handles it so that you can
access the item that was selected.

Using the API AutoComplete methods
To access the AutoComplete widget from within JavaScript code, you can access it
through the API by calling it this way through jQuery:

var autocomplete = $("autocomplete").data("kendoAutoComplete");

Once you have a variable reference to the AutoComplete widget, you will be able to
call the API methods and manipulate it through code as you wish. These are the API
methods available on the AutoComplete widget.

Close
The close() method closes the drop-down list on the AutoComplete widget.

// get a reference to the autocomplete widget
var autocomplete = $("autocomplete").data("kendoAutoComplete");

autocomplete.close();

The AutoComplete Widget and its Usage

[68]

DataItem
The dataItem() method returns the data record at the specified index.
This dataItem object will be the specific object from the AutoComplete
widget's data source at the specified index. In our examples above, it would
be a specific stateOrTerritory object.

var autocomplete = $("#autocomplete").data("kendoAutoComplete");

// get the dataItem corresponding to the passed index.
var dataItem = autocomplete.dataItem(1);

Destroy
The destroy() method prepares the AutoComplete widget for safe removal from
the DOM. It detaches all event handlers and removes data attributes. It does not
actually take the final step of removing it from the DOM; that is an action you must
program yourself.

var autocomplete = $("#autocomplete").data("kendoAutoComplete");

// detach events
autocomplete.destroy();

Enable
The enable() method toggles the AutoComplete widget on and off.

// get a reference to the autocomplete widget
var autocomplete = $("autocomplete").data("kendoAutoComplete");

// disables the autocomplete
autocomplete.enable(false);

// enables the autocomplete
autocomplete.enable(true);

Refresh
The refresh() method re-renders the items in the drop-down list of the
AutoComplete widget.

// get a reference to the Kendo UI AutoComplete
var autocomplete = $("autocomplete").data("kendoAutoComplete");
// re-render the items in drop-down list.
autocomplete.refresh();

Chapter 2

[69]

Search
The search() method filters the data source of the AutoComplete widget using the
provided parameter and then rebinds the drop-down list.

// get a reference to the autocomplete widget
var autocomplete = $("autocomplete").data("kendoAutoComplete");

// Searches for item which has "Inception" in the name.
autocomplete.search("Inception");

Select
The select() method selects a drop-down list item from the AutoComplete widget
and sets the text of the AutoComplete input box.

// get a reference to the autocomplete widget
var autocomplete = $("autocomplete").data("kendoAutoComplete");

// selects by jQuery object
autocomplete.select(autocomplete.ul.children().eq(0));

Suggest
The suggest() method forces a suggestion onto the text of the AutoComplete widget.

// note that this suggest is not the same as the configuration method
// suggest which enables/disables auto suggesting for the AutoComplete
//
// get a reference to the Kendo UI AutoComplete
varautoComplete = $("#autoComplete").data("kendoAutoComplete");

// force a suggestion to the item with the name "Inception"
autoComplete.suggest("Inception");

Value
The value() method gets or sets the value of the AutoComplete widget.

// get a reference to the autocomplete widget
var autocomplete = $("autocomplete").data("kendoAutoComplete");

// get the text of the autocomplete.
var value = autocomplete.value();

The AutoComplete Widget and its Usage

[70]

Summary
The AutoComplete widget is a great way to aid users on your site. Any time an input
box's values can be predicted, such as when they come from a specific set of values
or when searching common terms, an AutoComplete widget will immediately make
your site easier to use and your users are sure to notice and appreciate it. Not only
that, but the configuration is so straightforward that you can enable it without
much effort.

In the next chapter we will learn how to use the Calendar widget. This widget will
allow you to display and configure interactive calendar controls in your web pages
so that users can easily select dates. It will also give you a way of binding data to
calendars to show important dates. The Telerik Kendo UI Calendar widget will help
change a complicated JavaScript calendar into a simple-to-use tool for developing
great web pages.

Using and Customizing
Calendar

Calendars have long been a feature of web pages that require some clever JavaScript.
HTML5 is working toward making it all much simpler, but browser support still
isn't consistent. This is where Kendo UI is a perfect solution, being a framework that
combines HTML5 and JavaScript to create cross-browser consistency using the latest
standards. Like always, the Kendo UI solution couldn't be simpler to implement.

Calendar widget – basics
The Kendo UI Calendar widget transforms a simple HTML element, such as a div,
into a specialized HTML table that displays a calendar. It also wires up JavaScript
functionality to this table to support all of the Calendar widget events and methods.
To see the simplest possible implementation of this widget, create a new action
method in the Kendo controller so that we have a URL for "calendar":

public ActionResult Calendar()
{
 return View();
}

Then add a view for this action method and set up an empty div to hold a Kendo
calendar widget:

@{
 ViewBag.Title = "Calendar";
}

<h2>Calendar</h2>
<div id="calendar">

Using and Customizing Calendar

[72]

</div>
<script type="text/javascript">
 $("#calendar").kendoCalendar();
</script>

The output is amazing considering how little code we have written:

Click around on the calendar and observe how much functionality it already
has. The arrows at the top of the calendar navigate forward or backward by one
month. The text at the top of the calendar, shown as October 2012 in the preceding
screenshot, navigates up to a broader level of dates which makes it easy to select a
different year or decade. The date at the bottom of the calendar is a hyperlink that
navigates directly to the current date. As we add functionality later in this chapter,
we can make the calendar do even more.

Configuring the Calendar widget
Since the Calendar widget only has a few properties, let's start by examining them
and then move on to examples in using them. The calendar widget has two different
types of properties:

•	 Data/template properties: These properties configure the data behind the
calendar widget

•	 Display/formatting properties: These properties configure how the calendar
is rendered on the page and how that data is formatted

Chapter 3

[73]

Here are these properties listed in code format. Add this code to the page and run it:

$("#calendar").kendoCalendar({
 culture: 'en-US', // specifies the culture
 depth: 'month', // specifies navigation depth
 //(century/decade/month/year)
 max: new Date(2012,11,31), // latest date calendar can show
 min: new Date(1980, 0, 1), // oldest date calendar can show
 start: 'year', // specifies the start view (century/decade/
month/year)
 value: new Date(2012,9,25), // initially selected date
 format: 'yyyy/MM/dd' // format string used when the value() of
this
 //calendar is requested
});

The calendar, when configured as above, renders initially by showing a selection of
months available within the currently selected year (start: 'year'). Since we have
configured it to allow a navigation depth into each month (depth: 'month') we can
click on a month and then see that month and all of its available days:

Even though the current view is "year", today's date
is still visible within the footer of the calendar.

Using and Customizing Calendar

[74]

Speaking of the footer, let's take a look at the data/template properties that the
calendar makes available. The three main properties here are data, month, and footer
and they are the primary way to customize the calendar widget. To demonstrate a
simple example of customizing specific dates in a calendar, add this code to a page and
run it:

<h2>Calendar</h2>
<div id="calendar">
</div>
<style type="text/css">
 .specialDay {
 color: white;
 background-color: orange;
 border:1px solid black;
 }
</style>
<script type="text/x-kendo-template" id="redDays">
 # if ($.inArray(+data.date, data.dates) != -1) { #
 <div class="specialDay">#= data.value #</div>
 # } else { #
 #= data.value #
 # } #
</script>
<script type="text/javascript">
 var datesArray = [+new Date(2012, 5, 15), +new Date(2012, 5, 21)];

 $("#calendar").kendoCalendar({
 culture: 'en-US', // specifies the culture
 depth: 'month', // specifies navigation depth
 max: new Date(2012, 5,31), // latest date calendar can show
 min: new Date(2012, 5, 1), // oldest date calendar can show
 start: 'month', // specifies the start view
 value: new Date(2012,5,11), // initially selected date
 format: 'yyyy/MM/dd', // format string used to format the
date values
 dates: datesArray,
 month: {
 content: $("#redDays").html(),
 empty: "X"
 },
 footer: "Today is #= kendo.toString(data, 'd') #"
});
</script>

Chapter 3

[75]

Let's step through this code together. First, we have a special style instruction
for how special days are to be displayed. In this case, white text on an orange
background with a solid black border. We also specify a Kendo UI template block
with JavaScript to determine whether the date being rendered is one of our special
days. If it is one of the special days, then we want the custom style applied to it;
otherwise just render it as usual.

<style type="text/css">
 .specialDay {
 color: white;
 background-color: orange;
 border:1px solid black;
 }
</style>
<script type="text/x-kendo-template" id="redDays">
 # if ($.inArray(+data.date, data.dates) != -1) { #
 <div class="specialDay">#= data.value #</div>
 # } else { #
 #= data.value #
 # } #
</script>

Next, we define the actual configuration of the calendar widget. This is where
the relationship between the month property and the dates property becomes
apparent: the dates property supplies the data that the month property uses to
render the days on the calendar. In the template that we have defined, we check to
see if the current date being rendered is included in the dates array and then use
data.value to render the number of the date currently executing. Notice also that
we have prepended the dates in the dateArray with a plus sign + to force them
into a numeric date that we can easily compare with $.inArray(). This is not a
requirement in every case, but works for this example.

<script type="text/javascript">
 var datesArray = [+new Date(2012, 5, 15), +new Date(2012, 5, 21)];

 $("#calendar").kendoCalendar({
 culture: 'en-US', // specifies the culture
 depth: 'month', // specifies navigation depth
 max: new Date(2012, 5,31), // latest date calendar can show
 min: new Date(2012, 5, 1), // oldest date calendar can show
 start: 'month', // specifies the start view
 value: new Date(2012,5,11), // initially selected date
 format: 'yyyy/MM/dd', // format string used to format the
date values
 dates: datesArray,

Using and Customizing Calendar

[76]

 month: {
 content: $("#redDays").html(),
 empty: "X"
 },
 footer: "Today is #= kendo.toString(data, 'd') #"
});
</script>

The other things to note are the new property called footer that is used to render
a template for the footer of the calendar, which has access to today's date through
the data property passed to it. Also, note that the month object has another property
called empty that is used to render dates that fall outside of the min or max property
value ranges.

With the calendar set up in this way, it looks like this in the browser:

Note the special display of the dates supplied through the dateArray,
the dates out of range, and the new text used in the footer.

Calendar Widget using MVC
The Calendar widget can also be configured through the ASP.NET MVC extension
methods. To imitate the calendar we just created, you can replace the contents of
your view with this code:

<h2>Calendar</h2>
<style type="text/css">
 .specialDay {
 color: white;
 background-color: orange;
 border:1px solid black;

Chapter 3

[77]

 }
</style>
<script type="text/x-kendo-template" id="redDays">
 # if ($.inArray(+data.date, data.dates) != -1) { #
<div class="specialDay">#= data.value #</div>
 # } else { #
 #= data.value #
 # } #
</script>
<script type="text/javascript">
 var datesArray = [+new Date(2012, 5, 15), +new Date(2012, 5, 21)];
</script>
@(Html.Kendo().Calendar()
 .Name("mvcCalendar")
 .Depth(CalendarView.Month)
 .Max(new DateTime(2012, 6, 30))
 .Min(new DateTime(2012, 6, 1))
 .Start(CalendarView.Month)
 .Value(new DateTime(2012, 6, 11))
 .Format("yyyy/MM/dd")
 .MonthTemplate("# if ($.inArray(+data.date, datesArray) != -1) {
#" +
 "<div class='specialDay'>#= data.value #</div>" +
 "# } else { #" +
 "#= data.value #" +
 "# } #")
 .Footer("Today is #= kendo.toString(data, 'd') #")
)

This is the output when using this new code:

Using and Customizing Calendar

[78]

Pretty similar, isn't it? Note that the MVC extension hid the dates below max and
min and didn't give us an empty property on the month. There are a few other
unique things to note as well. First, notice that we are still using an array of dates
through JavaScript inside the view. This is because the month template is running in
JavaScript, not through MVC extensions, and needs access to this data on the client.
Because of this, and because of the fact that the MVC extensions do not provide
a dates property, we have to change the template from using data.dates to the
actual name of the JavaScript array—datesArray. In this example, I typed out the
template code directly into the MVC extension method, but there is also a method
called MonthTemplateId() where you can pass the HTML id of the template
already on the page.

Also, remember to always call the .Name() method on every Kendo MVC extension
object; it is required for the code to work. This is how the MVC extension methods
assign a unique name and id attribute to the rendered HTML output, and how all of
the JavaScript methods and events are properly wired up in the web browser. If you
do not include the .Name() method, you will also see a runtime error when you try
to run the page.

Methods available on the Calendar
widget
The Calendar widget exposes several methods that can be used to interact with it
on the page. These methods can be used to configure the widget by changing its
properties or firing specific functionality in real time. Here is a code form of the
available methods specific to the Kendo UI Calendar widget:

var calendar = $("calendarId").data("kendoCalendar");

// Set a new max date
calendar.max(new Date(2013,11,31));
// Retrieve the current max date
var lastDay = calendar.max();

// Set a new min date
calendar.min(new Date(2011, 11, 31);
// Retrieve the current min date
var oldestDay = calendar.min();

// Navigate to a specific date using a specific view
calendar.navigate(new Date(2012,2,5), "month");

Chapter 3

[79]

// Navigate down to a lower view (i.e. goes from "year" to "month")
calendar.navigateDown(new Date(2012,6,7)); // date is optional

// Navigate to the future
calendar.navigateToFuture();

// Navigate to the past
calendar.navigateToPast();

// Navigate up to a higher view (i.e. goes from "year" to "decade")
calendar.navigateUp("year");

// Set a new value (selected date) for the calendar
calendar.value(new Date(2012,4,7));

// Get the current value (selected date) of the calendar
var selectedDate = calendar.value();

Let's take an example of some of these and see it in action on our page.
Modify the code we just created for the MVC view like this:

<h2>Calendar</h2>
<style type="text/css">
 .specialDay {
 color: white;
 background-color: orange;
 border:1px solid black;
 }
</style>
<script type="text/x-kendo-template" id="redDays">
 # if ($.inArray(+data.date, data.dates) != -1) { #
<div class="specialDay">#= data.value #</div>
 # } else { #
 #= data.value #
 # } #
</script>
<script type="text/javascript">
 var datesArray = [+new Date(2012, 5, 15), +new Date(2012, 5, 21)];
</script>
@(Html.Kendo().Calendar()
 .Name("mvcCalendar")
 .Depth(CalendarView.Month).Start(CalendarView.Month)
 .Value(new DateTime(2012, 6, 11))
 .Format("yyyy/MM/dd")
 .MonthTemplate("# if ($.inArray(+data.date, datesArray) != -1) {

Using and Customizing Calendar

[80]

#" +
 "<div class='specialDay'>#= data.value #</div>" +
 "# } else { #" +
 "#= data.value #" +
 "# } #")
 .Footer("Today is #= kendo.toString(data, 'd') #")
)

<button type="button" id="navigateUp">Navigate Up</button>

<button type="button" id="navigateDown">Navigate Down</button>

<button type="button" id="showValue">Pop-Up Value</button>
<script type="text/javascript">
 $("#navigateUp").click(function () {
 var calendar = $("#mvcCalendar").data("kendoCalendar");
 calendar.navigateUp();
 });
 $("#navigateDown").click(function () {
 var calendar = $("#mvcCalendar").data("kendoCalendar");
 calendar.navigateDown(calendar.value());
 });
 $("#showValue").click(function () {
 var calendar = $("#mvcCalendar").data("kendoCalendar");
 alert(calendar.value());
 });
</script>

In order to use the calendar widget as a JavaScript object, we have to call the
.data() function on the page element that contains the calendar that we created.
Click the buttons on the page and see what they do. It should give you some idea of
what the calendar widget can offer, and how you could plug your own interactive
code into a calendar to improve the user experience.

Chapter 3

[81]

Events fired by the Calendar widget
The Kendo UI calendar widget has two events—change and navigate. These events
fire when the action after which they are named occurs. The Change fires when the
selected date is changed, navigate fires when the calendar is navigated—such as
when the month is changed or the view is moved up from "month" to "year".

What if you wanted the calendar to only appear when a user selected a certain
input box on a page, and then place its value into that input element? You could try
something like this. Modify the final script block of the page that we are working
on to look like this example:

<script type="text/javascript">
 $(function () {
 $("#mvcCalendar").hide();
 });
 $(document).ready(function () {
 $("#mvcCalendar").data("kendoCalendar").bind("change",
function (e) {
 var date = $("#mvcCalendar").data("kendoCalendar").
value();
 $("#showTheCalendar").val(kendo.toString(date, 'd'));
 });
 });
 $("#showTheCalendar").focusin(function () {
 $("#mvcCalendar").slideDown();
 });
 $("#nameInput").focusin(function () {
 $("#mvcCalendar").slideUp();
 });
 $("#ageInput").focusin(function () {
 $("#mvcCalendar").slideUp();
 });
 $("#navigateUp").click(function () {
 var calendar = $("#mvcCalendar").data("kendoCalendar");
 calendar.navigateUp();
 });
 $("#navigateDown").click(function () {
 var calendar = $("#mvcCalendar").data("kendoCalendar");
 calendar.navigateDown(calendar.value());
 });
 $("#showValue").click(function () {
 var calendar = $("#mvcCalendar").data("kendoCalendar");
 alert(calendar.value());
 });
</script>

Using and Customizing Calendar

[82]

Here we have some events, wired up by simple jQuery and jQuery UI, that show or
hide the calendar and take its value when selected. The change event of the calendar
is used to determine when to place the new date value into the input element of the
page. This is how the page appears when first rendered.

The calendar is hidden until the user clicks into the first textbox. As soon as that
happens, the events we wired up cause the calendar to appear so that the use can
select the appropriate date for the page.

Chapter 3

[83]

Summary
The Kendo UI calendar widget is easy to configure, and offers a rich element on your
page that can make working with dates a much simpler task. It can be configured
from either JavaScript or MVC extensions and makes use of Kendo templates for
highly customizable formatting and display. I have only shown basic examples of
what can be done with the templates and events; you can take these and run with
them to create some very useful interactive content.

In the next chapter we will learn about one of the most powerful features of the
Kendo UI framework of all, the Model-View-ViewModel (MVVM) framework. This
framework lets you bind data and functionality to your page through simple HTML
attributes and enable real-time changes to your data, or to a server, with immediate
feedback for the user. The MVVM framework is a great tool that you will want to use
in all of your pages.

The Kendo MVVM
Framework

JavaScript development has come a long way since its inception and the appearance
of rich MVVM frameworks is wonderful evidence of that evolution. These allow the
developer to separate responsibilities within the code to better handle complexity.
They also provide a beautifully simple syntax so that the MVVM framework itself is
left to handle the tedious work of binding dynamic data into your web pages. If you
have never used a JavaScript MVVM framework before, you are in for a treat with
the Kendo MVVM framework.

Understanding MVVM – basics
MVVM stands for Model (M), View (V), and View-Model (VM). It is part of a
family of design patterns related to system architecture that separate responsibilities
into distinct units. Some other related patterns are Model-View-Controller (MVC)
and Model-View-Presenter (MVP). These differ on what each portion of the
framework is responsible for, but they all attempt to manage complexity through
the same underlying design principles. Without going into unnecessary details here,
suffice it to say that these patterns are good for developing reliable and reusable
code and they are something that you will undoubtedly benefit from if you have
implemented them properly. Fortunately, the good JavaScript MVVM frameworks
make it easy by wiring up the components for you and letting you focus on the code
instead of the "plumbing".

The Kendo MVVM Framework

[86]

In the MVVM pattern for JavaScript through Kendo UI, you will need to create a
definition for the data that you want to display and manipulate (the Model), the
HTML markup that structures your overall web page (the View), and the JavaScript
code that handles user input, reacts to events, and transforms the static markup into
dynamic elements (the View-Model). Another way to put it is that you will have data
(Model), presentation (View), and logic (View-Model).

In practice, the Model is the most loosely-defined portion of the MVVM pattern and
is not always even present as a unique entity in the implementation. The View-Model
can assume the role of both Model and View-Model by directly containing the Model
data properties within itself, instead of referencing them as a separate unit. This is
acceptable and is also seen within ASP.NET MVC when a View uses the ViewBag or
the ViewData collections instead of referencing a strongly-typed Model class. Don't let
it bother you if the Model isn't as well defined as the View-Model and the View. The
implementation of any pattern should be filtered down to what actually makes sense
for your application.

Simple data binding
As an introductory example, consider that you have a web page that needs to display
a table of data, and also provide the users with the ability to interact with that data,
by clicking specifically on a single row or element. The data is dynamic, so you do
not know beforehand how many records will be displayed. Also, any change should
be reflected immediately on the page instead of waiting for a full page refresh from
the server. How do you make this happen?

A traditional approach would involve using special server-side controls that can
dynamically create tables from a data source and can even wire-up some JavaScript
interactivity. The problem with this approach is that it usually requires some
complicated extra communication between the server and the web browser either
through "view state", hidden fields, or long and ugly query strings. Also, the output
from these special controls is rarely easy to customize or manipulate in significant
ways and reduces the options for how your site should look and behave. Another
choice would be to create special JavaScript functions to asynchronously retrieve
data from an endpoint, generate HTML markup within a table and then wire up
events for buttons and links. This is a good solution, but requires a lot of coding and
complexity which means that it will likely take longer to debug and refine. It may
also be beyond the skill set of a given developer without significant research. The
third option, available through a JavaScript MVVM like Kendo UI, strikes a balance
between these two positions by reducing the complexity of the JavaScript but still
providing powerful and simple data binding features inside of the page.

Chapter 4

[87]

Creating the view
Here is a simple HTML page to show how a view basically works:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>MVVM Demo 1</title>
<script src="/Scripts/kendo/jquery.js"></script>
<script src="/Scripts/kendo/kendo.all.js"></script>
<link href="/Content/kendo/kendo.common.css" rel="stylesheet" />
<link href="/Content/kendo/kendo.default.css" rel="stylesheet" />
<style type="text/css">
th {
width: 135px;
 }
</style>
</head>
<body>
<table>
<caption>People Data</caption>
<thead>
<tr>
<th>Name</th>
<th>Hair Color</th>
<th>Favorite Food</th>
</tr>
</thead>
<tbody data-template="row-template"
data-bind="source: people"></tbody>
</table>
</body>
</html>

Here we have a simple table element with three columns but instead of the body
containing any tr elements, there are some special HTML5 data-* attributes
indicating that something special is going on here. These data-* attributes do nothing
by themselves, but Kendo UI reads them (as you will see below) and interprets their
values in order to link the View with the View-Model. The data-bind attribute
indicates to Kendo UI that this element should be bound to a collection of objects
called people.

The Kendo MVVM Framework

[88]

The data-template attribute tells Kendo UI that the people objects should be
formatted using a Kendo UI template. Here is the code for the template:

<script id="row-template" type="text/x-kendo-template">
<tr>
<td data-bind="text: name"></td>
<td data-bind="text: hairColor"></td>
<td data-bind="text: favoriteFood"></td>
</tr>
</script>

This is a simple template that defines a tr structure for each row within the table.
The td elements also have a data-bind attribute on them so that Kendo UI knows to
insert the value of a certain property as the "text" of the HTML element, which in this
case means placing the value in between <td> and </td> as simple text on the page.

Creating the Model and View-Model
In order to wire this up, we need a View-Model that performs the data binding.
Here is the View-Model code for this View:

<script type="text/javascript">
var viewModel = kendo.observable({
people: [
 {name: "John", hairColor: "Blonde", favoriteFood:
"Burger"},
 {name: "Bryan", hairColor: "Brown", favoriteFood:
"Steak"},
 {name: "Jennifer", hairColor: "Brown", favoriteFood:
"Salad"}
]
 });
kendo.bind($("body"), viewModel);
</script>

A Kendo UI View-Model is declared through a call to kendo.observable() which
creates an observable object that is then used for the data-binding within the View.
An observable object is a special object that wraps a normal JavaScript variable with
events that fire any time the value of that variable changes. These events notify the
MVVM framework to update any data bindings that are using that variable's value,
so that they can update immediately and reflect the change. These data bindings also
work both ways so that if a field bound to an observable object variable is changed,
the variable bound to that field is also changed in real time.

Chapter 4

[89]

In this case, I created an array called people that contains three objects with
properties about some people. This array, then, operates as the Model in this
example since it contains the data and the definition of how the data is structured.
At the end of this code sample, you can see the call to kendo.bind($("body"),
viewModel) which is how Kendo UI actually performs its MVVM wiring. I passed
a jQuery selector for the body tag to the first parameter since this viewModel object
applies to the full body of my HTML page, not just a portion of it.

With everything combined, here is the full source for this simplified example:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>MVVM Demo 1</title>
<scriptsrc="/Scripts/kendo/jquery.js"></script>
<scriptsrc="/Scripts/kendo/kendo.all.js"></script>
<link href="/Content/kendo/kendo.common.css" rel="stylesheet" />
<link href="/Content/kendo/kendo.default.css" rel="stylesheet" />
<style type="text/css">
th {
width: 135px;
 }
</style>
</head>
<body>
<table>
<caption>People Data</caption>
<thead>
<tr>
<th>Name</th>
<th>Hair Color</th>
<th>Favorite Food</th>
</tr>
</thead>
<tbody data-template="row-template"
data-bind="source: people"></tbody>
</table>
<script id="row-template" type="text/x-kendo-template">
<tr>
<td data-bind="text: name"></td>
<td data-bind="text: hairColor"></td>
<td data-bind="text: favoriteFood"></td>
</tr>
</script>

The Kendo MVVM Framework

[90]

<script type="text/javascript">
var viewModel = kendo.observable({
people: [
 {name: "John", hairColor: "Blonde", favoriteFood: "Burger"},
 {name: "Bryan", hairColor: "Brown", favoriteFood: "Steak"},
{ name: "Jennifer", hairColor: "Brown", favoriteFood: "Salad" }
]
 });
kendo.bind($("body"), viewModel);
</script>
</body>
</html>

Here is a screenshot of the page in action. Note how the data from the JavaScript
people array is populated into the table automatically:

Even though this example contains a Model, a View, and a View-Model, all three
units appear in the same HTML file. You could separate the JavaScript into other
files, of course, but it is also acceptable to keep them together like this. Hopefully
you are already seeing what sort of things this MVVM framework can do for you.

Observable data binding
Binding data into your HTML web page (View) using declarative attributes is great,
and very useful, but the MVVM framework offers some much more significant
functionality that we didn't see in the last example. Instead of simply attaching data to
the View and leaving it at that, the MVVM framework maintains a running copy of all
of the View-Model's properties, and keeps references to those properties up to date in
real time. This is why the View-Model is created with a function called "observable".
The properties inside, being observable, report changes back up the chain so that the
data-bound fields always reflect the latest data. Let's see some examples.

Chapter 4

[91]

Adding data dynamically
Building on the example we just saw, add this horizontal rule and form just below
the table in the HTML page:

<hr />
<form>
<header>Add a Person</header>
<input type="text" name="personName" placeholder="Name"
data-bind="value: personName" />

<input type="text" name="personHairColor" placeholder="Hair Color"
data-bind="value: personHairColor" />

<input type="text" name="personFavFood" placeholder="Favorite Food"
data-bind="value: personFavFood" />

<button type="button" data-bind="click: addPerson">Add</button>
</form>

This adds a form to the page so that a user can enter data for a new person that
should appear in the table. Note that we have added some data-bind attributes, but
this time we are binding the value of the input fields not the text. Note also that we
have added a data-bind attribute to the button at the bottom of the form that binds
the click event of that button with a function inside our View-Model. By binding
the click event to the addPerson JavaScript method, the addPerson method will be
fired every time this button is clicked.

These bindings keep the value of those input fields linked with the View-Model object
at all times. If the value in one of these input fields changes, such as when a user types
something in the box, the View-Model object will immediately see that change and
update its properties to match; it will also update any areas of the page that are bound
to the value of that property so that they match the new data as well.

The binding for the button is special because it allows the View-Model object to
attach its own event handler to the click event for this element. Binding an event
handler to an event is nothing special by itself, but it is important to do it this way
(through the data-bind attribute) so that the specific running View-Model instance
inside of the page has attached one of its functions to this event so that the code
inside the event handler has access to this specific View-Model's data properties and
values. It also allows for a very specific context to be passed to the event that would
be very hard to access otherwise.

The Kendo MVVM Framework

[92]

Here is the code I added to the View-Model just below the people array. The first
three properties that we have in this example are what make up the Model. They
contain that data that is observed and bound to the rest of the page:

personName: "", // Model property
personHairColor: "", // Model property
personFavFood: "", // Model property
addPerson: function () {
this.get("people").push({
name: this.get("personName"),
hairColor: this.get("personHairColor"),
favoriteFood: this.get("personFavFood")
});
this.set("personName", "");
this.set("personHairColor", "");
this.set("personFavFood", "");
}

The first several properties you see are the same properties that we are binding to in
the input form above. They start with an empty value because the form should not
have any values when the page is first loaded. It is still important to declare these
empty properties inside the View-Model in order that their value can be tracked
when it changes.

The function after the data properties, addPerson, is what we have bound to the click
event of the button in the input form. Here in this function we are accessing the people
array and adding a new record to it based on what the user has supplied in the form
fields. Notice that we have to use the this.get() and this.set() functions to access
the data inside of our View-Model. This is important because the properties in this
View-Model are special observable properties so accessing their values directly may
not give you the results you would expect.

The most significant thing that you should notice about the addPerson function is
that it is interacting with the data on the page through the View-Model properties.
It is not using jQuery, document.querySelector, or any other DOM interaction
to read the value of the elements! Since we declared a data-bind attribute on the
values of the input elements to the properties of our View-Model, we can always
get the value from those elements by accessing the View-Model itself. The values
are tracked at all times. This allows us to both retrieve and then change those
View-Model properties inside the addPerson function and the HTML page will
show the changes right as it happens. By calling this.set() on the properties and
changing their values to an empty string, the HTML page will clear the values that
the user just typed and added to the table. Once again, we change the View-Model
properties without needing access to the HTML ourselves.

Chapter 4

[93]

Here is the complete source of this example:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>MVVM Demo 2</title>
<scriptsrc="/Scripts/kendo/jquery.js"></script>
<scriptsrc="/Scripts/kendo/kendo.all.js"></script>
<link href="/Content/kendo/kendo.common.css" rel="stylesheet" />
<link href="/Content/kendo/kendo.default.css" rel="stylesheet" />
<style type="text/css">
th {
width: 135px;
 }
</style>
</head>
<body>
<table>
<caption>People Data</caption>
<thead>
<tr>
<th>Name</th>
<th>Hair Color</th>
<th>Favorite Food</th>
</tr>
</thead>
<tbody data-template="row-template" data-bind="source: people"></
tbody>
</table>
<hr />
<form>
<header>Add a Person</header>
<input type="text" name="personName" placeholder="Name" data-
bind="value: personName" />

<input type="text" name="personHairColor" placeholder="Hair Color"
data-bind="value: personHairColor" />

<input type="text" name="personFavFood" placeholder="Favorite Food"
data-bind="value: personFavFood" />

<button type="button" data-bind="click: addPerson">Add</button>
</form>
<script id="row-template" type="text/x-kendo-template">
<tr>
<td data-bind="text: name"></td>
<td data-bind="text: hairColor"></td>
<td data-bind="text: favoriteFood"></td>

The Kendo MVVM Framework

[94]

</tr>
</script>
<script type="text/javascript">
var viewModel = kendo.observable({
people: [
 {name: "John", hairColor: "Blonde", favoriteFood:
"Burger"},
 {name: "Bryan", hairColor: "Brown", favoriteFood:
"Steak"},
 {name: "Jennifer", hairColor: "Brown", favoriteFood:
"Salad"}
],
personName: "",
personHairColor: "",
personFavFood: "",
addPerson: function () {
this.get("people").push({
name: this.get("personName"),
hairColor: this.get("personHairColor"),
favoriteFood: this.get("personFavFood")
 });
this.set("personName", "");
this.set("personHairColor", "");
this.set("personFavFood", "");
 }
 });
kendo.bind($("body"), viewModel);
</script>
</body>
</html>

Chapter 4

[95]

And here is a screenshot of the page in action. You will see that one additional
person has been added to the table by filling out the form. Try it out yourself to
see the immediate interaction that you get with this code:

Using observable properties in the View
We just saw how simple it is to add new data to observable collections in the
View-Model, and how this causes any data-bound elements to immediately
show that new data. Let's add some more functionality to illustrate working
with individual elements and see how their observable values can update content
on the page.

To demonstrate this new functionality, I have added some columns to the table:

<table>
<caption>People Data</caption>
<thead>
<tr>
<th>Name</th>
<th>Hair Color</th>
<th>Favorite Food</th>
<th></th>
<th>Live Data</th>
</tr>
</thead>
<tbody data-template="row-template" data-bind="source: people"></
tbody>
</table>

The Kendo MVVM Framework

[96]

The first new column has no heading text but will contain a button on the page for
each of the table rows. The second new column will be displaying the value of the
"live data" in the View-Model for each of the objects displayed in the table.

Here is the updated row template:

<script id="row-template" type="text/x-kendo-template">
<tr>
<td><input type="text" data-bind="value: name" /></td>
<td><input type="text" data-bind="value: hairColor" /></td>
<td><input type="text" data-bind="value: favoriteFood" /></td>
<td><button type="button"
data-bind="click: deletePerson">Delete</button></td>
<td> -
 -
</td>
</tr>
</script>

Notice that I have replaced all of the simple text data-bind attributes with input
elements and valuedata-bind attributes. I also added a button with a clickdata-
bind attribute and a column that displays the text of the three properties so that you
can see the observable behavior in real time.

The View-Model gets a new method for the delete button:

deletePerson: function (e) {
var person = e.data;
var people = this.get("people");
var index = people.indexOf(person);
people.splice(index, 1);
}

When this function is called through the binding that Kendo UI has created, it passes
an event argument, here called e, into the function that contains a data property. This
data property is a reference to the model object that was used to render the specific
row of data. In this function, I created a person variable for a reference to the person
in this row and a reference to the people array; we then use the index of this person
to splice it out of the array. When you click on the Delete button, you can observe
the table reacting immediately to the change.

Here is the full source code of the updated View-Model:

<script id="row-template" type="text/x-kendo-template">
<tr>
<td><input type="text" data-bind="value: name" /></td>

Chapter 4

[97]

<td><input type="text" data-bind="value: hairColor" /></td><td><input
type="text" data-bind="value: favoriteFood" /></td>
<td><button type="button" data-bind="click:
deletePerson">Delete</button></td>
<td> -
 -
</td></tr>
</script><script type="text/javascript">
var viewModel = kendo.observable({
people: [
 {name: "John", hairColor: "Blonde", favoriteFood: "Burger"},
 {name: "Bryan", hairColor: "Brown", favoriteFood: "Steak"},
 {name: "Jennifer", hairColor: "Brown", favoriteFood: "Salad"}
],
personName: "",
personHairColor: "",
personFavFood: "",
addPerson: function () {
this.get("people").push({
name: this.get("personName"),
hairColor: this.get("personHairColor"),
favoriteFood: this.get("personFavFood")
 });
this.set("personName", "");
this.set("personHairColor", "");
this.set("personFavFood", "");
 },
deletePerson: function (e) {
var person = e.data;
var people = this.get("people");
var index = people.indexOf(person);
people.splice(index, 1);
 }
 });
kendo.bind($("body"), viewModel);
</script>
</body>
</html>

The Kendo MVVM Framework

[98]

Here is a screenshot of the new page:

Click on the Delete button to see an entry disappear. You can also see that I have
added a new person to the table and that I have made changes in the input boxes
of the table and that those changes immediately show up on the right-hand side.
This indicates that the View-Model is keeping track of the live data and updating
its bindings accordingly.

Making better use of observable arrays
In the last several examples, we have been using an array called people to show a
dynamic table with Kendo UI bindings. This has worked fine so far, but with more
complicated Models and functionality we can run into a wall, so to speak. For example,
there is no way to have the "live data" come from the Model objects themselves; we
had to concatenate three span elements in the template to form the final output. This
could cause problems for more complicated and full-featured pages, where you may
have an array of Model objects that need to be able to handle events and calculate
values on their own, instead of at the View-Model level.

Modify the row template like this:

<script id="row-template" type="text/x-kendo-template">
<tr>
<td><input type="text" data-bind="value: name.stuff" /></td>
<td><input type="text" data-bind="value: hairColor.stuff" /></td>
<td><input type="text" data-bind="value: favoriteFood.stuff" /></td>
<td><button type="button"
data-bind="click: deletePerson">Delete</button></td>
<td data-bind="text: dataString"></td>

Chapter 4

[99]

</tr>
</script>

We have changed the property names in the data-bind declaration so that they
point to an inner property that we created for them, called stuff. The important part
of the example is that we also changed the final column to point to a calculated value
function called dataString. The meaning of this will become clear as we continue.
Next, update the JavaScript block for the View-Model so that it looks like this:

<script type="text/javascript">
var viewModel = kendo.observable({
people: [],
personName: "",
personHairColor: "",
personFavFood: "",
addPerson: function () {
this.get("people").push(new person({
name: this.get("personName"),
hairColor: this.get("personHairColor"),
favoriteFood: this.get("personFavFood")
 }));
this.set("personName", "");
this.set("personHairColor", "");
this.set("personFavFood", "");
 },
deletePerson: function (e) {
var person = e.data;
var people = this.get("people");
var index = people.indexOf(person);
people.splice(index, 1);
 }
 });

var person = function (data) {
var self = this;
this.name = kendo.observable({ stuff: data.name });
this.hairColor = kendo.observable({ stuff: data.hairColor });
this.favoriteFood = kendo.observable({ stuff: data.favoriteFood });
this.dataString = function () {
returnself.name.get("stuff") + " - " +
self.hairColor.get("stuff") + " - " +
self.favoriteFood.get("stuff");
 }
 };

The Kendo MVVM Framework

[100]

viewModel.get("people").push(new person({ name: "John",
hairColor: "Blonde",
favoriteFood: "Burger" }));
viewModel.get("people").push(new person({ name: "Bryan",
hairColor: "Brown",
favoriteFood: "Steak" }));
viewModel.get("people").push(new person({ name: "Jennifer",
hairColor:"Brown",
favoriteFood: "Salad" }));

kendo.bind($("body"), viewModel);
</script>

We made several changes, so let's step through them carefully. The first important
change is right at the top, where we have replaced the static array declaration with
the people property as an empty array with the bracket notation []. Secondly, we
created a new type of object called person and gave it a constructor function with its
own internal observable objects. Each of these observable objects needs an object to
manage, simple values don't work quite as well, so we made an arbitrary property
for them called stuff. The only thing going on here is that the properties of this new
person object type are pointing to observable objects instead of simple data. Why?
Because if the properties are not observable, then the View-Model will not be notified
of the change and the user interface will not be updated through data-binding.

The purpose of this change is to enable calculated values local to the specific instance
of the object, which we have done with the dataString function inside of the person
constructor. As you can see, the dataString function extracts the values from the
locally observable properties and returns them as a formatted string. This is significant
because it means that every person object has its own copy of this function, and that
the View-Model itself is not involved in this calculation. This means that each object
inside of the View-Model's people array can observe changes specific to itself and
calculate values based on those changes. This type of Model can become very useful
for advanced scenarios.

After declaring the person constructor function, we manually added some new
person objects to the people array and then called kendo.bind() as usual. When
rendered, the page looks and behaves just as it did in the previous example, but now
the Model objects are smarter. Here is the full source code of the updated View-Model:

<script id="row-template" type="text/x-kendo-template">
<tr>
<td><input type="text" data-bind="value: name.d" /></td>
<td><input type="text" data-bind="value: hairColor.d" /></td>
<td><input type="text" data-bind="value: favoriteFood.d" /></td>
<td><button type="button"

Chapter 4

[101]

data-bind="click: deletePerson">Delete</button></td>
<td data-bind="text: dataString"></td>
</tr>
</script>
<script type="text/javascript">
var viewModel = kendo.observable({
people: [],
personName: "",
personHairColor: "",
personFavFood: "",
addPerson: function () {
this.get("people").push(new person({
name: this.get("personName"),
hairColor: this.get("personHairColor"),
favoriteFood: this.get("personFavFood")
 }));
this.set("personName", "");
this.set("personHairColor", "");
this.set("personFavFood", "");
 },
deletePerson: function (e) {
var person = e.data;
var people = this.get("people");
var index = people.indexOf(person);
people.splice(index, 1);
 }
 });

var person = function (data) {
var self = this;
 this.name = kendo.observable({ d: data.name });
this.hairColor = kendo.observable({ d: data.hairColor });
this.favoriteFood = kendo.observable({ d: data.favoriteFood });
this.dataString = function () {
returnself.name.get("d") + " - " +
self.hairColor.get("d") + " - " + self.favoriteFood.get("d");
 }
 };

viewModel.get("people").push(new person({
name: "John", hairColor: "Blonde",
favoriteFood: "Burger"
 }));
viewModel.get("people").push(new person({

The Kendo MVVM Framework

[102]

name: "Bryan", hairColor: "Brown",
favoriteFood: "Steak"
 }));
viewModel.get("people").push(new person({
name: "Jennifer", hairColor: "Brown",
favoriteFood: "Salad"
 }));

kendo.bind($("body"), viewModel);
</script>
</body>
</html>

And the output when the page is run:

Data-bind properties for Kendo MVVM
There are thirteen different types of values that can be used inside of the data-bind
Kendo UI attribute. Here is a summary of their definitions and uses.

The attr property
The attr property is used to bind the value of a View-Model to a specific HTML
attribute of a page element. For example, this is very useful for setting attributes
such as the src for an image or the href for an anchor tag.

Chapter 4

[103]

... //View-Model definition
imageSource: 'http://www.images.com/randomImage.jpg',
...

A binding like this would guarantee that the image would change along with the
View-Model to allow for dynamically loading or changing images on a web page.

Note that the attr property can set multiple attributes at once when they are
separated by commas like this:

data-bind="attr: {attribute1: value, attribute2: value, attribute3:
value, ...}"

This property can be used with any HTML element and with any valid HTML
attribute (including custom HTML5 data-* attributes).

The checked property
The checked property is used to bind the checked status of an input element with
type checkbox or radio. For checkboxes, the data-bound property can be either a
Boolean (true/false) value or an array. For radio selections, the property needs to
be a string. For example:

isChecked: true, ...

// Simple Boolean binding
// The data-bound property will be updated when the user clicks the
checkbox

<input type="checkbox" data-bind="checked: isChecked" />

animals: ["cow", "pig"], ...

// Array binding for checkboxes
// The array will change based on which checkboxes are checked by the
user
// The initial page will show both the "cow" and "pig" inputs as
checked

<input type="checkbox" value="horse" data-bind="checked: animals" />
<input type="checkbox" value="cow" data-bind="checked: animals" />
<input type="checkbox" value="pig" data-bind="checked: animals" />

tablet: "surface", ...

The Kendo MVVM Framework

[104]

// String binding for radio buttons
// The string will change based on which radio option is selected by
the user
// The initial page will show the input with the value "surface" as
checked

<input type="radio" name="tablet" value="surface" data-bind="checked:
tablet" />
<input type="radio" name="tablet" value="ipad" data-bind="checked:
tablet" />
<input type="radio" name="tablet" value="android" data-bind="checked:
tablet" />

As you will see later, the checked binding can be very useful in conjunction with the
visible/invisible bindings so that the checkboxes or radio buttons on the page
will dynamically show or hide other portions of the page.

The click property
The click property binds the click event of a button to a function inside of the
View-Model. It is a shortcut to the events binding that we will see later. Unlike
a traditional click event wire-up, the Kendo UI framework will pass context data
to the event handler to allow for a richer event-handling experience. For example,
when a click event is bound within a row template, the event argument passed to the
event handler will have access to the item from the source collection. This allows the
event handler to operate against that Model data directly without any further DOM
exploration and keeps all of the observable functionality in place.

Technically, Kendo UI supplies the DOM event wrapped in a jQuery event
object to the event handler indicated in the binding, but it also manages the data
property like we talked about in the previous paragraph. Since the event argument
is still connected to the DOM event, you can call stopPropogation() and
preventDefault() on that event argument to stop the DOM from performing any
other actions in the page.

We already saw examples of the click binding in our code samples above so here
are some of the snippets that we used there:

// Our example row template that included the click binding that will
// pass the data property to the event handler
<script id="row-template" type="text/x-kendo-template">
<tr>
<td><input type="text" data-bind="value: name.d" /></td>
<td><input type="text" data-bind="value: hairColor.d" /></td>

Chapter 4

[105]

<td><input type="text" data-bind="value: favoriteFood.d" /></td>
<td><button type="button"
data-bind="click: deletePerson">Delete</button></td>
<td data-bind="text: dataString"></td>
</tr>
</script>

// Our example form that included the click binding that has no
// relevant data property to pass to the event handler
<form>
<header>Add a Person</header>
<input type="text" name="personName" placeholder="Name"
data-bind="value: personName" />

<input type="text" name="personHairColor" placeholder="Hair Color"
data-bind="value: personHairColor" />

<input type="text" name="personFavFood" placeholder="Favorite Food"
data-bind="value: personFavFood" />

<button type="button" data-bind="click: addPerson">Add</button>
</form>

...

// This version of the click binding does not use the event argument
addPerson: function () {
this.get("people").push(new person({
name: this.get("personName"),
hairColor: this.get("personHairColor"),
favoriteFood: this.get("personFavFood")
 }));
this.set("personName", "");
this.set("personHairColor", "");
this.set("personFavFood", "");
},

// This version of the click binding uses the event argument to
// current data item from the source collection
deletePerson: function (e) {
var person = e.data;
var people = this.get("people");
var index = people.indexOf(person);
people.splice(index, 1);
}

The Kendo MVVM Framework

[106]

The custom property
Kendo UI allows for custom bindings so that you can create custom behaviors related
to the View-Model of your page. An example on the Kendo UI documentation site uses
a jQuery UI slideDown and slideUp call based on a Boolean value in the View-Model
as a short-cut to some UI transformations. Refer to the Kendo UI documentation for a
more detailed API reference for custom bindings.

The disabled/enabled properties
The disabled and enabled bindings work on input, select, and text area HTML
elements. Just as their names would indicate, they disable or enable the bound
elements respectively. These bindings are designed for use with Boolean properties,
but for the sake of JavaScript loose-typing they will consider the non-Boolean values
0, null, undefined, and "" (empty string) as false and all other non-Boolean values
as true. An example code is as follows:

allowEdit: false, ...

// This input element will be initially disabled until the
View-Model's allowEdit
// View-Model's allowEdit property is changed to true
<input type="text" data-bind="enabled: allowEdit" />

The events property
The events binding is a convenient way to wire-up event handlers in your
View-Model to events on HTML elements in your View. The click binding,
as we saw above, is a specific example of this pattern and operates in exactly
the same way. For example:

<button type="button" data-bind="events: {blur: blurHandler, click:
clickHandler,
mouseover: mouseHandler,...}">Interactive Button</button>

The html/text properties
The html binding sets the innerHtml content of an HTML element using the value of
a property from the View-Model. This binding differs from the text binding in that
it does not encode HTML tags before generating its output, which means that HTML
tags in the View-Model property will be rendered as HTML instead of as text (which
is probably what you want if you are using the html binding). An example:

spanContent: "Some Content",...

Chapter 4

[107]

This would generate output like this in the source of the rendered page:

Some Content

The text binding works in exactly the same way as the html binding, except that it
sets the simple text between element tags and it does encode HTML before output,
so do not put HTML in the property containing the text to display unless you want
the tags to show as part of the text output.

The invisible/visible properties
The invisible and visible bindings work on HTML elements that you want to
either show or hide dynamically. Just as their names indicate, they make the given
element invisible or visible respectively. These bindings are designed for use with
Boolean properties, but for the sake of JavaScript loose-typing they will consider the
non-Boolean values 0, null, undefined, and "" (empty string) as false and all other
non-Boolean values as true. An example code is as follows:

showDetails: true, ...

// This element will be initially visible unless the View-Model's
// showDetails property is changed to false
<pdata-bind="visible: showDetails">All sorts of text here...</p>

As mentioned earlier, it can be very useful to connect the value of a checkbox or a
radio button with the visible status of other elements on a page. This allows you to
change what data is displayed on the page based on selections that the user makes.
Here is a simple example:

showDetails: false, ...

<input type="checkbox" data-bind="checked: showDetails"
name="showDetails" />

<p data-bind="visible: showDetails">All sorts of text and details…</p>

This code will make the checkbox control the visibility of the paragraph element that
would contain some text that you only want displayed if the checkbox is checked.
This is probably simpler than code you would use in a normal web application,
but it illustrates the basic point.

The Kendo MVVM Framework

[108]

The source property
The source binding is designed to render a Kendo UI template using the value of
a View-Model property. If the property is an array, then the Kendo UI framework
will render the template for each element of the array. This template is specified by
the data-template attribute attached to the HTML element in question, and should
indicate the template by its id attribute. When the templates are rendered, they will
be placed directly beneath the element with the source attribute in the DOM. This is
why you would place the source attribute on the tbody element of a table so that the
tr elements in the Kendo UI template will be rendered and placed directly beneath it
in the DOM so that they will appear as rows in a table. This binding can work on any
element where it makes sense to include a collection of lower level elements, a table is
just a natural example; other good uses would be ul, ol, and select elements.

We saw the source binding with a table already in our code samples. I will paste a
little of it here as a reminder:

// table with the source binding on the tbody element
<table>
<caption>People Data</caption>
<thead>
<tr>
<th>Name</th>
<th>Hair Color</th>
<th>Favorite Food</th>
<th></th>
<th>Live Data</th>
</tr>
</thead>
<tbody data-template="row-template" data-bind="source: people"></
tbody>
</table>
...
// the template that creates the rows
<script id="row-template" type="text/x-kendo-template">
<tr>
<td><input type="text" data-bind="value: name.d" /></td>
<td><input type="text" data-bind="value: hairColor.d" /></td>
<td><input type="text" data-bind="value: favoriteFood.d" /></td>
<td><button type="button"
data-bind="click: deletePerson">Delete</button></td>
<td data-bind="text: dataString"></td>
</tr>
</script>

Chapter 4

[109]

This is a good example of using the source binding with an array of objects. The
source binding can also be used with an array of simple values, in which case you
would use the keyword this inside the template instead of a property name inside
an object:

<script id="row-template" type="text/x-kendo/template">
<tr>
<td data-bind="text: this"></td>
</tr>
</script>

The source binding can also be used with a single object (as opposed to an array) in
which case it behaves just like binding to an array with a single element. You can also
bind to the View-Model itself if you want to access a single property within it as the
source, in which case you reference the source as a property of the this keyword:

// table with the source binding on the tbody element
<table>
<caption>People Data</caption>
<thead>
<tr>
<th>Name</th>
<th>Hair Color</th>
<th>Favorite Food</th>
<th></th>
<th>Live Data</th>
</tr>
</thead>
<tbody data-template="row-template" data-bind="source: viewModel"></
tbody>
</table>
...
// the template that creates the rows
<script id="row-template" type="text/x-kendo-template">
<tr>
<td><input type="text" data-bind="value: this.name" /></td>
<td><input type="text" data-bind="value: this.hairColor" /></td>
<td><input type="text" data-bind="value: this.favoriteFood" /></td>
<td><button type="button"
data-bind="click: deletePerson">Delete</button></td>
<td data-bind="text: dataString"></td>
</tr>
</script>
...
<script type="text/javascript>

The Kendo MVVM Framework

[110]

var viewModel = kendo.observable({
name: "john",
hairColor: "blonde",
favoriteFood: "burger"
 });
...
</script>

Notice how the structure is the same as if you were referencing a single object, but
we are using the this keyword since we are referencing the View-Model directly.

When binding to a select element, note that you can use an array of simple values
or an array of objects. If you just an array of objects, use the data-text-field to
indicate which property contains the text to display within each option, and use
the data-value-field to indicate which property contains the value within each
option element.

The style property
The style binding is a great way to create a dynamic relationship between data in
your View-Model and CSS styles on your page. It is a very simple binding that
creates a direct relationship between the properties in your View-Model and the
styles in your markup. An example:

<script type="text/javascript">
var viewModel = kendo.observable({
myColor: "orange",
myFontWeight: "bold"
 });
</script>

Obviously, this becomes a lot more useful if you tie some logic to the styles you
are using in your page, such as changing the styles for alternating table rows or
changing the color of text if it meets some special criteria (such as an overdrawn
balance looking red).

Notice that we used the style property fontWeight which should look strange to you.
If you need to reference styles that normally contain a hyphen (font-weight), you
need to use a camel-cased version in the binding so that it works as a valid JavaScript
property name. So font-weight becomes fontWeight in the actual binding statement.

Finally, if you set the style value to an empty string, it will reset the value back to its
original setting.

Chapter 4

[111]

The value property
The value binding works in a very similar way to the text binding, except that it
sets the value of an input element instead of the text of a display element. The bound
value in the View-Model is updated on blur by default, such as when you press Tab
to leave the input element on the page. If you want the View-Model property to
be updated based on a different DOM event, you can set that in the data-value-
update property on the same element as the binding. We have already seen the
use of the value binding in our code samples. Here is an example of using the
data-value-update binding to customize some behavior:

// the row template
<script id="row-template" type="text/x-kendo-template">
<tr>
<td><input type="text" data-bind="value: name"
 data-value-update="keyup" /></td>
</tr>
</script>

Remember that this is a two-way binding and is most useful for retrieving data from
the users as they fill out a form.

Much like the checked binding that we saw above, the value binding works with
select elements in a similar way. By binding the value of a select element to a
string property, it will be bound to the value of the selected option element inside
of the select element if the options have values, or the text of the selected option
element if no value is present. Here is how this would look in the markup:

// Binding using the value, the selectedCar property will be bound to
the numbers
<select data-bind="value: selectedCar">
<option value="1">Honda</option>
<option value="2">Toyota</option>
<option value="3">Ford</option>
</select>

// Binding using the text, the selectedCar property will be bound to
the text
// between the option tags
<select data-bind="value: selectedCar">
<option>Honda</option>
<option>Toyota</option>
<option>Ford</option>
</select>

The Kendo MVVM Framework

[112]

Of course, you can also bind both the source and the value of a select element to
the View-Model. You are not limited to a single binding in the data-bind property.
Also, as you might expect, you can bind the value of a multiple-select element if
you are binding it to an array (instead of a simple string) so that it can hold multiple
values.

Declarative widgets through Data-Role
MVVM attributes
Kendo's MVVM also allows declarative initialization of widgets through the
data-role attribute. Declarative initialization is a different method of creating
Kendo widgets by using the data-role attribute instead of setting up the widget
through JavaScript. This is not as flexible as the JavaScript method, but it does allow
for a lot of functionality with almost no code at all. Here is a section of code taken from
the Kendo UI Web website that shows some basic set up as an introduction. The full
details for these widgets can be found there.

<table>
<tr>
<th>Widget</th>
</tr>
<tr>
<td>
<h4>AutoComplete</h4>
<input data-role="autocomplete" data-text-field="name"
data-bind="source: colors, value: autoCompleteValue"/>
</td>
</tr>
<tr>
<td>
<h4>ComboBox</h4>
<select data-role="combobox"
data-text-field="name" data-value-field="value" data-bind="source:
colors, value: comboBoxValue"></select>
</td>
</tr>
<tr>
<td>
<h4>DatePicker</h4>
<input data-role="datepicker" data-bind="value: datePickerValue" />
</td>
</tr>

Chapter 4

[113]

<tr>
<td>
<h4>DropDownList</h4>
<select data-role="dropdownlist"
data-text-field="name" data-value-field="value" data-bind="source:
colors, value: dropDownListValue"></select>
</td>
</tr>
<tr>
<td>
<h4>Grid</h4>
<div data-role="grid"
data-sortable="true" data-editable="true"
data-columns='["Name", "Price", "UnitsInStock",
{"command": "destroy"}]'
data-bind="source: gridSource"></div>
</td>
</tr>
<tr>
<td>
<h4>NumericTextBox</h4>
<input data-role="numerictextbox" data-format="c"
data-bind="value: numericTextBoxValue" />
</td>
</tr>
<tr>
<td>
<h4>Slider</h4>
<input data-role="slider" data-bind="value: sliderValue" />
</td>
</tr>
<tr>
<td>
<h4>TimePicker</h4>
<input data-role="timepicker" data-bind="value: timePickerValue" />
</td>
</tr>
<tr>
<td>
<h4>TabStrip</h4>
<div data-role="tabstrip" data-animation="false">

<li class="k-state-active">First
Second

<div>
<h4>First page:</h4>

The Kendo MVVM Framework

[114]

Pick a time: <input data-role="timepicker"
data-bind="value: timePickerValue"/>
</div>
<div>
<h4>Second page:</h4>
Time is: <span data-bind="text:
displayTimePickerValue">
</div>
</div>
</td>
</tr>
<tr>
<td>
<h4>TreeView</h4>
<div data-role="treeview"
data-animation="false"
data-drag-and-drop="true"
data-bind="source: treeviewSource"></div>
</td>
</tr>
</table>

This is a great example of using multiple bindings together, and of which bindings
rightly pertain to which widgets.

Summary
The Kendo MVVM framework brings complicated interactive JavaScript into the
realm of simple HTML attributes, templates, and View-Model functions. It is a very
powerful feature and is one that you are likely to become very accustomed to using
in your web pages. Keep in mind as you develop code that Kendo is a system in
which features can be built together very nicely; for example, you could use a Kendo
data source object as the source binding for a table or select list.

When you have powerful tools like this within your reach, you will find that
function-rich pages become normal instead of exceptionally difficult and that your
programming experience will be better than ever. In the next chapter, we will learn
about the Kendo UI HTML Editor widget. This widget adds a full-featured HTML
editing box to your web pages so that users can create content in a friendly input
area with formatting, images, and hyperlinks. It is especially useful if users can
contribute content on your site, such as with a blog or a forum.

HTML Editor and Custom
Tools

Interactive HTML editors are an important part of any website that encourages
users to post their own written content. Forums and blogs frequently offer these
controls so that users can create content with attractive styling just as if it was
created in a word processor. It is especially useful for users who are unfamiliar with
how to format text using HTML tags or CSS styles. For that matter, even users who
are familiar with HTML and CSS can appreciate not having to type it all out. This
chapter will introduce the following topics:

•	 Kendo Editor widget basics
•	 Configuring the Editor widget tools
•	 Using HTML snippets
•	 Customizing the Editor widget tools

Understanding the HTML Editor
The Kendo Editor widget creates an area on a web page where a user can create
formatted text content. To see a basic example in action, copy this code into a new
HTML page called HtmlEditor.html. This will allow you to see the widget in use
on an actual page and will provide a starting point for the rest of the chapter.

<!DOCTYPE html>
<html>
<head>
<title></title>
<script src="/Scripts/kendo/jquery.js"></script>
<script src="/Scripts/kendo/kendo.all.js"></script>
<link href="/Content/kendo/kendo.common.css" rel="stylesheet" />

HTML Editor and Custom Tools

[116]

<link href="/Content/kendo/kendo.default.css" rel="stylesheet" />
<style type="text/css">
textarea {
width: 100%;
height: 300px;
 }
</style>
</head>
<body>
<textarea id="editor"></textarea>
<script type="text/javascript">
 $(document).ready(function () {
 $("#editor").kendoEditor();
 });
</script>
</body>
</html>

This is assuming all default settings since no settings or options are explicitly set.

Note that we have bound the kendoEditor function to a
textarea element, this is important and you should always
bind HTML Editor controls to a textarea element so that the
functionality can degrade gracefully for browsers that may not
support the required JavaScript features.

If we had implemented this using ASP.NET MVC, it would look like this in the view:

@using Kendo.Mvc.UI;

@{
ViewBag.Title = "Html Editor";
}
<style type="text/css">
textarea {
width: 100%;
height: 300px;
 }
</style>

<h2>Html Editor</h2>
@(Html.Kendo().Editor()
 .Name("htmlEditor"))

Chapter 5

[117]

Note again that the Kendo MVC extensions will generate the HTML Editor within a
textarea element, which is why the style declaration for textarea elements works
in the page output.

Regardless of whether you use HTML or an MVC view, this is how the page output
looks with all defaults assumed. I have added some text using the HTML Editor
features to illustrate the purpose of the control:

Take a look at all of the tool buttons across the top of the Editor widget. Click on
them as you type text to observe what they do. Also, note that the different buttons
generated by the Kendo HTML Editor all support the HTML tabindex so you
can use the Tab key and the Shift + Tab key combination to move back and forth
respectively between the commands in order if you want.

For many sites, this is probably sufficient functionality already. To use the formatted
text that the user has created, simply retrieve the value of the textarea element and
it will contain both the content and HTML markup.

Don't forget to check your input
Since you are openly allowing the user to post HTML markup within
the content of his or her data, take extra care to sanitize the input before
you place it into a database or load it into another page. Even though
the HTML markup generated by the Kendo tool is safe, you can never
trust the final markup that is transmitted to the server from the user's
browser and must always treat it as if it may contain harmful code.

Before you use the formatted text, however, you also need to check whether the
value you are processing has been HTML encoded or not. If you retrieve the raw
value of the textarea element from the DOM, you will get HTML encoded data.
This means that text becomes text</
strong> which may or may not be what you actually want.

HTML Editor and Custom Tools

[118]

To get the non-HTML encoded data, you need to call the value() function on the
kendoEditor object by using code like this:

var editor = $("#editor").data("kendoEditor");
var nonEncodedText = editor.value();

But again, you need to be careful with what you are doing. You cannot post
non-HTML encoded data like this to most web servers without bypassing some
important security measures. The safer option would be to post the data to the web
server in an HTML encoded form, then decode it and sanitize on the server-side
before using it. This way you can still rightly reject some potentially malicious code
from the page outright before starting the process of interpreting the user input.

Here is an updated page with some buttons that show you the different outputs
from the DOM val() function versus the kendoEditor value() function:

<!DOCTYPE html>
<html>
<head>
<title></title>
<scriptsrc="/Scripts/kendo/jquery.js"></script>
<scriptsrc="/Scripts/kendo/kendo.all.js"></script>
<link href="/Content/kendo/kendo.common.css" rel="stylesheet" />
<link href="/Content/kendo/kendo.default.css" rel="stylesheet" />
<style type="text/css">
textarea {
width: 100%;
height: 300px;
 }
</style>
</head>
<body>
<textarea id="editor"></textarea>
<button name="showKendoVal" id="showKendoVal" type="button">Show Kendo
Value</button>

<button name="showHtmlVal" id="showHtmlVal" type="button">Show HTML
Value</button>
<script type="text/javascript">
 $(document).ready(function () {
 $("#editor").kendoEditor();
 $("#showHtmlVal").click(function () {
alert($("#editor").val());
 });
var editor = $("#editor").data("kendoEditor");
 $("#showKendoVal").click(function () {

Chapter 5

[119]

alert(editor.value());
 });
 });
</script>
</body>
</html>

This is the text retrieved from the Kendo value() function.

This is the text retrieved from the innerHTML of the Editor Widget.

HTML Editor and Custom Tools

[120]

Adding and removing buttons from the
toolbar
There are a few more standard tools that are available in the HTML Editor toolbar
that are not included by default:

•	 Subscript
•	 Superscript
•	 View HTML

To include these tools, you need to specify the tools property when you create
the kendoEditor object like this and list the specific tools that you want displayed:

$("#editor").kendoEditor({
tools: [
"bold",
"italic",
"underline",
"strikethrough",
"fontName",
"fontSize",
"foreColor",
"backColor",
"justifyLeft",
"justifyCenter",
"justifyRight",
"justifyFull",
"insertUnorderedList",
"insertOrderedList",
"indent",
"outdent",
"formatBlock",
"createLink",
"unlink",
"insertImage",
"subscript",
"superscript",
"viewHtml"
]
});

Chapter 5

[121]

If you specify tools you need to name all the standard tools too, if you leave any out
they will be removed from the toolbar on your page. Conversely, here is how you
would add the subscript and superscript tools using ASP.NET MVC, curiously the
viewHtml is not available in this method:

@(Html.Kendo().Editor()
.Name("htmlEditor")
.Tools(tools => tools
.SubScript()
.SuperScript()))

It could hardly be more concise, especially since with this method all of the default
tools are assumed and you only have to add those that you want to include. If you
wanted to clear out the default list of tools and then add only those that you want,
you would first call Clear() within the Tools lambda expression and then add the
specific tools that you wanted afterwards.

Here is the output with all of the standard tools included:

Adding the Styles tool
The Styles tool can be added to the HTML Editor toolbar to give the user access to
some predefined styles that you have created. This could be useful if your users are
using a special theme or if there are global styles that you want the users to have easy
access to. To enable this, you configure the tools through the kendoEditor object and
specify which options should appear in a drop-down list of styles. Here is an example:

$("#editor").kendoEditor({
tools: [
"bold",
"italic",
"underline",

HTML Editor and Custom Tools

[122]

"strikethrough",
"fontName",
"fontSize",
"foreColor",
"backColor",
"justifyLeft",
"justifyCenter",
"justifyRight",
"justifyFull",
"insertUnorderedList",
"insertOrderedList",
"indent",
"outdent",
"formatBlock",
"createLink",
"unlink",
"insertImage",
"subscript",
"superscript",
"viewHtml",
"style"
],
style:[
{text: "Big Blue", value:"bigBlue"},
{text: "Dark Grey", value:"darkGrey"}
],
stylesheets:[
"css/StyleTool.css"
]
});

Here are the contents of the StyleTool.css file:

.bigBlue {
font-size:large;
color:blue;
}
.darkGrey {
color:white;
background-color:#111111;
}

Chapter 5

[123]

To make this work, I added the Style tool to the list of tools and then added the
style configuration property and the optional stylesheets configuration property.
The style configuration property defines the different options that appear in the
Styles drop-down list, and which CSS classnames should be applied when these
styles are selected for some text in the HTML editor textarea. The stylesheets
configuration option allows you to import some additional stylesheets if they are
necessary to display your custom styles.

Here is how you would implement these styles using ASP.NET MVC:

@(Html.Kendo().Editor()
.Name("htmlEditor")
.Tools(tools => tools
.SubScript()
.SuperScript()
.Styles(styles => styles
.Add("Big Blue", "bigBlue")
.Add("Dark Grey", "darkGrey"))
)
.StyleSheets(css =>css
.Add("/Content/StyleTool.css"))
)

Here is the output from this code:

I included some styled text for the sake of demonstration and clicked on the Styles
drop-down list to show how the options in that list are also styled to match their
respective CSS classes.

HTML Editor and Custom Tools

[124]

Tool for inserting HTML snippets
The Snippets tool is a special toolbar option that is designed to insert predefined blocks
of text into the editor window with a single click. It can be used for adding canned
responses to common questions, signature blocks, time stamps, or any number of
scenarios where pre-typed text would be useful. To enable this, just like the Styles
option you configure the tools through the kendoEditor object and specify which
options should appear in a drop-down list of styles. Here is an example:

$("#editor").kendoEditor({
tools: [
"bold",
"italic",
"underline",
"strikethrough",
"fontName",
"fontSize",
"foreColor",
"backColor",
"justifyLeft",
"justifyCenter",
"justifyRight",
"justifyFull",
"insertUnorderedList",
"insertOrderedList",
"indent",
"outdent",
"formatBlock",
"createLink",
"unlink",
"insertImage",
"subscript",
"superscript",
"viewHtml",
"style",
"insertHtml"
],
style:[
{text: "Big Blue", value:"bigBlue"},
{text: "Dark Grey", value:"darkGrey"}
],
stylesheets:[
"css/StyleTool.css"
],

Chapter 5

[125]

insertHtml:[
{ text: "Today's date", value: "December 7, 2012" },
{ text: "Signature", value: "<p>Sincerely,
John Adams</p>" }
]
});

Notice that this requires very little configuration to enable. We have included
the insertHtml option in the tools configuration property and then added the
insertHtml configuration property at the end of the kendoEditor definition. Inside
the insertHtml configuration property, we have included an array of very simple
objects. They define the title of each item that should appear in the drop-down list
and the exact mark-up that should be pasted into the HTML Editor when the title
is selected.

Here is how you would implement these Snippets using ASP.NET MVC:

@(Html.Kendo().Editor()
.Name("htmlEditor")
.Tools(tools => tools
.SubScript()
.SuperScript()
.Styles(styles => styles
.Add("Big Blue", "bigBlue")
.Add("Dark Grey", "darkGrey"))
.Snippets(snippets => snippets
.Add("Today's Date", DateTime.Today.Date.ToShortDateString())
.Add("Signature", "<p>Sincerely,
John Adams</p>"))
)
.StyleSheets(css =>css
.Add("/Content/StyleTool.css"))
)

Here is the output from this code:

HTML Editor and Custom Tools

[126]

Customizing HTML Editor tools
The Kendo HTML Editor control allows you to add your own custom options to
the toolbar. This is a remarkable touch of flexibility in the Kendo UI framework,
and is something that you may find quite useful if the available built-in tools do
not completely suit your needs. The HTML Editor can accept at least three types
of custom tools. There could be more but these three appear in the published
documentation on the Kendo UI website:

•	 Override Built-in Tools
•	 Custom Template Tools
•	 Custom In-line Tools

Drop-down list tools
If you would like to alter some of the built-in drop-down list tools, you can redefine
which options appear inside them. This does not alter the nature of the tools or
what the tools do. It only determines which options appear in the drop-down
lists of the tools when you click on them. As an example, consider limiting which
options appear in the font tool. By replacing the contents of the items array, you can
customize exactly which options appear in the tool when it displays on the page:

$("#editor").kendoEditor({
tools: [
{
name: "fontName",
items:
[{text:"Garamond", value: "Garamond, serif"},
{text:"Calibri", value:"calibri, sans-serif"}]
}
]
});

This code sample demonstrates a customized fontName tool limited to two specific
options. These two fonts are not included in the default fontName tool as we saw
before, but you could also include default fonts in this custom list as well. Here is
the output of the HTML Editor configured with this custom tool:

Chapter 5

[127]

You will notice that the first two options in the list are not options that I defined in my
source code—inherited font and Verdana. These appear because the HTML Editor is
enabling the font on the page from the outer containing HTML markup and is calling
it the inherited font. It then labels this same font by name in case that helps the user
make a font selection, so inherited font and Verdana are actually both referring to the
same font inherited from the outer HTML markup of the overall page.

This type of custom tool configuration should work with any of the custom tools that
appear as a drop-down list such as the font name, font size, and format block tools.

Button tools
It seems unlikely that you will need to override many of these controls since it would
probably be more effective to create your own tool instead. Just in case you wanted
to see how it was done, however, here is a sample of code taken from the Kendo UI
website that demonstrates how to replace the viewHtml tool with custom code that
replaces its functionality:

<script type="text/x-kendo-template" id="viewHtml-template">
<div>
<textarea style="width: 400px; height: 300px;"></textarea>
<div class="viewHtml-actions">
<button class="k-button viewHtml-update">Update</button>
<button class="k-button viewHtml-cancel">Cancel</button>
</div>
</div>
</script>
<script>

HTML Editor and Custom Tools

[128]

$("#editor").kendoEditor({
tools:
[{
name: "viewHtml",
tooltip: "View HTML",
exec: function(e) {
var editor = $(this).data("kendoEditor");

var dialog = $($("#viewHtml-template").html())
.find("textarea").val(editor.value()).end()
.find(".viewHtml-update")
.click(function() {
editor.value(dialog.element
.find("textarea").val());
dialog.close();
})
.end()
.find(".viewHtml-cancel")
.click(function() {
dialog.close();
})
.end()
.kendoWindow({
modal: true,
title: "View HTML",
deactivate: function() {
dialog.destroy();
}
}).data("kendoWindow");

dialog.center().open();
}
}]
})
</script>

Chapter 5

[129]

Here is the code as it appears on the page:

This source code includes both a template and the kendoEditor configuration.
You can see that this code is basically opening a dialog, filling it with the content
from the HTML Editor control, wiring up the events for the buttons inside the dialog,
and then displaying it to the user. It gives an example, at least, of what overriding
one of the built-in tools looks like. Note that the logic for the tool's execution is
inside a property called exec; this is common for all custom button tools as well.
The tooltip property is the text that is displayed when the mouse is hovered over
the button in the toolbar.

Custom template tools
If you want to create your own custom tool that has a drop-down list of options, the
custom template tool is the best choice. It allows you to use a Kendo UI template to
markup how the tool should be displayed on the toolbar, and you can wire up its
functionality separately so that your tool can do whatever it needs to do:

<textarea id="editor"></textarea>
<button name="showKendoVal" id="showKendoVal" type="button">Show Kendo
Value</button>

<button name="showHtmlVal" id="showHtmlVal" type="button">Show HTML
Value</button>
<script type="text/x-kendo-template" id="editorColor-template">
<label for="customTool">Editor BG:</label>
<select name="customTool" id="customTool"><option value=''>None</
option><option value="blue">Blue</option><option value="green">Green</
option></select>
</script>
<script type="text/javascript">
$(document).ready(function () {
$("#editor").kendoEditor({
tools: [
{

HTML Editor and Custom Tools

[130]

name: "editorBackground",
template: $("#editorColor-template").html()
}
]
});
$("#showHtmlVal").click(function () {
alert($("#editor").val());
});
var editor = $("#editor").data("kendoEditor");
$("#showKendoVal").click(function () {
alert(editor.value());
});
$("#customTool").change(function (e) {
$("#editor").data("kendoEditor").body.style.backgroundColor =
$("#customTool").val();
});
});
</script>

You can see the Kendo template where the label and select elements are declared.
The behavior for the select element is defined in the jQuery code, but the custom
drop-down list tool is added to the HTML Editor through the tools property.

Here is the output of the page with this custom tool:

Chapter 5

[131]

This is how you create custom tools that behave as a drop-down list. As you can see,
the behavior is left completely up to you so you, can create whatever tool you need
for your site's use case.

Custom in-line tools
If you want to create your own button tool on the toolbar, the in-line tool is the right
choice. It allows you to define a tool name and the code to execute when that tool is
selected from the toolbar.

$("#editor").kendoEditor({
tools: [
{
name: "addHr",
tooltip: "Insert Horizontal Rule",
exec: function (e) {
var editor = $(this).data("kendoEditor");
editor.exec("insertHtml", { value: "<hr/>" });
}
}
]
});

This code shows a custom tool called addHr that will add an hr element to the
HTML Editor control when clicked. You can also see the use of the exec function on
the kendoEditor where you can indicate one of the built-in functions/tools of the
HTML Editor and then provide an object that supplies the parameters for it.

Here is the output from this code:

HTML Editor and Custom Tools

[132]

Using the HTML Editor API
The Kendo HTML Editor widget has a large set of API configuration options
which allow you to fine-tune the widget to the specific needs and situation of
your web page. It also exposes a set of methods and events that you can use to
programmatically enable and react to functionality that the Edit widget exposes
as it runs on the page. These options, taken together, are how you extend the Editor
widget beyond its out of the box abilities.

Configuration options
We have already covered some of this in the material above, but here are the
configuration options available for the HTML Editor control. As always, please
check the Kendo UI Web documentation at docs.kendoui.com/api/web/editor
for a more detailed list of configuration settings for these options, and to get the
latest changes or additions to the API.

$("#editor").kendoEditor({
encoded: true, // whether or not the editor should emit encoded html
 tags
messages: { // define custom labels for the built-in tools and
 dialogs
bold: "Bold",
 …
 },
stylesheets: {…}, // see above, custom stylesheets to load for editor
tools: {…}, // see above, custom and built-in tools to display in the
 editor
imageBrowser: { // the imageBrowser tool can accept a custom
 configuration
transport: { // the endpoints to use for image operations
read: "imagebrowser/read",
destroy: "imagebrowser/destroy",
create: "imagebrowser/createDirectory",
uploadUrl: "imagebrowser/upload",
thumbnailUrl: "imagebrowser/thumbnail" // path for thumbnails of images
imageUrl: "/content/images/{0}", // "{0}" is placeholder for virtual
 // path and image name

Chapter 5

[133]

},
path: "/myInitialPath/", // Initial path of images to display
fileTypes: ".png,.gif,.jpg,.jpeg", // Allowed image file extensions
schema: {…}, // a schema can be defined to interpret data returned from
 // a remote endpoint when parsing data to display images
messages: {…} // custom messages for imageBrowser controls and dialogs
 }
});

Events
As with any HTML element or JavaScript object in a complex site, a web page fires
events as the user performs certain actions within a page. By hooking into these
events with your own JavaScript code, you can react to the page's changes and data
in real time and organize the functionality of your page based on actions that the
user performs. The HTML Editor control fires the following events in response
to user actions:

•	 change: This event fires every time that the data inside of the Editor
Widget changes.

•	 execute: This event fires fires when a tool is executed. It fires every time
a tool bar button has been clicked and the code behind that button has
been executed.

•	 keydown: The keydown event fires every time a user presses a key down
while typing inside of the Editor Widget window. Hooking into this event
allows you to respond to text as the user is typing it.

•	 keyup: The keydown event fires every time a user presses and releases a key
while typing inside of the editor widget window. Hooking into this event
allows you to respond to text as the user is typing it.

•	 paste: The paste event fires every time text is pasted into the Editor
Widget area.

•	 select: The select event fires every time text inside of the Editor Widget
has been selected by a user.

HTML Editor and Custom Tools

[134]

Summary
The HTML Editor gives you a lot of functionality for a very small amount of
necessary coding. In most cases, the default control will meet all of your needs for
HTML editing on a normal site. But, if you find yourself with a need for a highly
customized tool, this HTML Editor supports a rich API, detailed configuration
options, and easily accessible events for capturing and responding to use actions.
This is a control that is not appropriate for every site, but when you need something
like this, it is a tremendous boost to productivity to find it all in such a useful and
usable package.

In the next chapter, we will cover two very important Kendo widgets—Menu and
ListView. These widgets give you the ability to create responsive and feature-rich
cascading page menus and organized data structures inside of your pages with the
same Kendo approach that you have seen in all of the previous chapters. Building on
what you already know, using these new widgets will be easy and you should be up
and running before you know it.

Menu and ListView
The Kendo UI Menu widget is designed to give you an easy way to implement
an interactive JavaScript menu that opens and closes as the user commands and
providers a rich visual display on a web page. These types of menus are available
through other tricks as well, such as CSS, but the Kendo UI widget gives you a much
more configurable framework and access to a simplified JavaScript API.

The Kendo UI ListView widget is a control for visualizing a collection of data
elements in a graphically pleasing way, especially if the data contains images or
special styles. Like all Kendo UI options, the configuration is consistent and sensible
and allows you to create great-looking content, and provides display options for
editing and selection.

These controls are a good addition to your toolset for creating modern web pages.

Learning the Menu widget basics
The Menu widget creates a fantastic drop-down menu with fly-out sections for
the menu's contents. It is functionally rich and requires very little code for most
implementations. As an introduction, here is a code sample of a basic menu created
from a static unordered HTML list:

<!DOCTYPE html>
<html>
<head>
 <title>Kendo UI Menu</title>
 <script src="/Scripts/kendo/jquery.js"></script>
 <script src="/Scripts/kendo/kendo.all.js"></script>
 <link href="/Content/kendo/kendo.common.css" rel="stylesheet" />
 <link href="/Content/kendo/kendo.default.css" rel="stylesheet" />
</head>
<body>

Menu and ListView

[136]

 <div id="menuDemo">
 <ul id="menu">

 Music

 Blues / Folk

 Contemporary Blues
 Contemporary Folk
 Traditional American
 World Folk

 Christian / Gospel

 Christian Rock / Hip Hop
 Contemporary Christian
 Traditional Gospel

 ...

 Videos

 Movies
 TV
 Trailers

 Events

 <li disabled="disabled">
 News

 </div>
 <script>
 $(document).ready(function () {
 $("#menu").kendoMenu();

Chapter 6

[137]

 });
 </script>
</body>
</html>

This is a menu showing different music styles, videos, and some other options just
to demonstrate how the code looks. The top-level elements in the unordered
list all appear as actual menu headings in the output, in this example they are Music,
Videos, Events, and News.

Notice that each of these top-level elements contains its own
name and then can optionally contain a nested unordered list
() within itself, which becomes the choices that appear
when that top-level item is selected on the page.

Moving down the chain, each of the elements in the nested list can also contain
its own for a further nested menu of options. This creates a cascading effect
where menu options can continue to expand as you move your mouse to different
options. Also note that the final top-level item, News, is marked with a disabled
attribute which means that it will still display in the output but not be selectable.

Here is the output from this code as the page is first loaded:

Here is the Menu widget once the mouse is hovered over some of the elements in
the menu. Try this on your own and see how fast and fluid the menu reacts to these
events; it is very impressive.

Menu and ListView

[138]

Like most of the widgets in the Kendo UI framework, the Menu widget does not
have to run from static HTML, it can be fuelled by a DataSource object of either local
or remote data. Here is the code adapted to use a local DataSource object instead of
static HTML:

<!DOCTYPE html>
<html>
<head>
 <title>Kendo UI Menu</title>
 <script src="/Scripts/kendo/jquery.js"></script>
 <script src="/Scripts/kendo/kendo.all.js"></script>
 <link href="/Content/kendo/kendo.common.css" rel="stylesheet" />
 <link href="/Content/kendo/kendo.default.css" rel="stylesheet" />
</head>
<body>
 <div id="menuDemo">
 </div>
 <script type="text/javascript">
 var menuData = [
 {
 text: "Music",
 items: [
 {
 text: "Blues/Folk",
 items: [
 { text: "Contemporary Blues" },
 { text: "Contemporary Folk" },
 { text: "Traditional American" },
 { text: "World Folk" }
]
 },
 {
 text: "Christian / Gospel",
 items: [
 { text: "Christian Rock / Hip Hop" },
 { text: "Contemporary Christian" },
 { text: "Traditional Gospel" }
]
 },

 ...
]
 },
 {
 text: "Videos",
 items: [
 { text: "Movies" },
 { text: "TV" },
 { text: "Trailers" }

Chapter 6

[139]

]
 },
 {
 text: "Events"
 },
 {
 text: "News",
 enabled: false
 }
];
 </script>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#menuDemo").kendoMenu(
 { dataSource: menuData });
 });
 </script>
</body>
</html>

Note that the DataSource object can be configured with all the options that you have
seen in the earlier chapters, and could just as easily be configured with a transport
property for remote data.

The output is identical to the static HTML we used the first time:

Menu and ListView

[140]

As is the case with most of the Kendo UI widgets, the interactive content on the page
is identical whether the data comes from the page mark-up or from a JavaScript data
source. To adapt this to use the MVC extension methods, we can create an MVC
View with the following source code in the cshtml file:

@using Kendo.Mvc.UI;

@{
 ViewBag.Title = "Mvc Menu";
}

<h2>Mvc Menu</h2>
@(Html.Kendo().Menu()
 .Name("menuDemo")
 .Items(items =>
 {
 items.Add().Text("Music").Items(sub =>
 {
 sub.Add().Text("Blues / Folk").Items(subsub =>
 {
 subsub.Add().Text("Contemporary Blues");
 subsub.Add().Text("Contemporary Folk");
 subsub.Add().Text("Traditional American");
 subsub.Add().Text("World Folk");
 });
 sub.Add().Text("Christian / Gospel").Items(subsub =>
 {
 subsub.Add().Text("Christian Rock / Hip Hop");
 subsub.Add().Text("Contemporary Christian");
 subsub.Add().Text("Traditional Gospel");
 });
 ...

 });
 items.Add().Text("Videos").Items(sub => {
 sub.Add().Text("Movies");
 sub.Add().Text("TV");
 sub.Add().Text("Trailers");
 });
 items.Add().Text("Events");
 items.Add().Text("News").Enabled(false);
 })
)

Chapter 6

[141]

Note, how in this code sample, I have declared the data statically. It could just as
easily be gathered from a different source using logic within C# code, or even left
as part of the JavaScript and retrieved from a remote source across HTTP.

The output, as you can see from this screenshot, is identical to the other two
code samples:

This illustrates three unique ways to create a Kendo UI Menu widget and the
differences between them.

Menu items with images
Menu items so far have only included text. The Menu widget, however, can also
contain an imageUrl property or a spriteCssClass property to display an image
along with the text. The image or sprite will appear as an icon to the left of the menu
item text.

Here is an example of using the imageUrl property to show an icon for the Videos
menu item:

...
{
 text: "Videos",
 imageUrl: "images/reel.png",
 items: [
 { text: "Movies" },
 { text: "TV" },
 { text: "Trailers" }
]
},
...

Menu and ListView

[142]

By adding this property, the output now displays the image in the menu:

This is how the code sample would look in MVC:

items.Add().Text("Videos").ImageUrl("/static/images/reel.png").
Items(sub => {
 sub.Add().Text("Movies");
 sub.Add().Text("TV");
 sub.Add().Text("Trailers");
});

Notice the ImageUrl extension method that adds the image to the output.

To use a sprite, you would first set the background image of the menu items that
should display the icons and then indicate a CSS class using the spriteCssClass
property that will specify the pixel offset for each particular icon. Each menu item
that has a spriteCssClass property specified will automatically be decorated with
the k-sprite CSS class so that this is wired up properly. Here is a potential example:

<style>
#menuDemo .k-sprite {
 background-image: url("images/sprites.png");
}
.someIcon {
 background-position: 0 0;
}
.someOtherIcon {
 background-position: 0 -32px;
}
</style>
...
<script>
...
{
 text: "Videos",
 spriteCssClass: "someIcon",
 items: [
 { text: "Movies" },
 { text: "TV" },

Chapter 6

[143]

 { text: "Trailers" }
]
},
...

The CSS section of this sample shows assigning the background-image property
for all of the k-sprite class-decorated elements and also designating two sprite
pixel background-position styles. The script section shows the spriteCssClass
property in use, which will assign that portion of the sprites image as the icon for
that menu item.

Menu items with URLs
So far all of the examples I have shown are menu items that do not perform any
actions when selected. All that you have to do is add the url property to the menu
item in order to make it navigate when clicked on. So, for any menu item that you
want to navigate the user to a different page, include a url property, as shown here,
and it will do so:

...
{
 text: "Videos",
 spriteCssClass: "someIcon",
 url: "http://www.kendoui.com",
 items: [
 { text: "Movies" },
 { text: "TV" },
 { text: "Trailers" }
]
},
...

Notice how the web browser in this screenshot is showing the URL that the Videos
menu item now navigates to.

Menu and ListView

[144]

Menu API configuration options
The Kendo UI Menu widget, as should be expected by now, is configurable through
a full set of API properties and methods. These options are properties that can be
configured, so that the Menu widget becomes suited to the needs of your web page
and style. These configurations are specified at the point in code where you create
the Menu widget. These sections will show you the options you can use.

The animation property
The animation action of the Kendo UI Menu can be configured for style, speed,
and direction. When you configure the open action of the menu, Kendo will
automatically assign the reverse behavior for the close action. If you want to
configure the close action independently of the open action, then you should
configure them both separately, as shown here:

...
$("menu").kendoMenu({
 animation: {
 close: { // animation to use when closing a menu
 effects: "slideIn", // 'slideIn' / 'fadeIn' / 'expand'
 duration: 10
 },
 open: { // animation to use when opening a menu
 effects: "slideIn:Down", // You can assign a direction too
 duration: 10
 }
 }
});
...
// or you can disable animation entirely
$("menu").kendoMenu({
 animation: false
});

The direction property
The direction property determines which direction the menus will open when the
user hovers over them. The available options here are top, bottom, left, and right.

$("menu").kendoMenu({
 direction: "bottom"
});

Chapter 6

[145]

...
// or you can specify how each level of submenus open separately
$("menu").kendoMenu({
 direction: "bottom right" // "bottom" for menu, "right" for sub
menus
});

Some more options
There are a few additional options available for configuring menu behavior. You can
configure how the menu behaves in relation to mouse movement and clicks with
the closeOnClick, openOnClick, and hoverDelay properties. You can configure
whether the overall menu is oriented horizontally or vertically with the orientation
property, and you can instruct the Kendo UI framework on how you want menus to
fit to a page with the popupCollision property. All of this is shown here:

$("menu").kendoMenu({
 closeOnClick: true, // close menus when item is selected
 hoverDelay: 100, // delay before menus open/close
 openOnClick: false, // root submenus open with item is selected
 orientation: "vertical", // root menu orientation:
 popupCollision: "fit" // how to adjust menu to screen boundaries
 // Use "fit flip" for vertical menus.
 // Set to false to disable boundary detection
completely.
});

Configuring menu methods
Some of the methods for the Kendo UI Menu widget require that you get a reference
to an existing menu item object (not just the HTML element) as a reference point for
appending or inserting some additional menu items. In this case, you can access the
menu item objects through a reference to the Kendo Menu like this:

var menu= $("#menuDemo").kendoMenu().data("kendoMenu");

In this code, you can get a reference to the Kendo Menu object from the same line of
code where you instantiate it. This way, you can reference this object in other parts
of your page and JavaScript logic. You can also get a reference to the Kendo Menu
object by calling .data(…) on the HTML element that contains it at any point in your
code, but doing it in one step is nice.

Menu and ListView

[146]

Once you have this reference, you can access the children inside of the Kendo Menu
through the element property:

menu.element.children("li").eq(3);

In this code sample, we are accessing the fourth li element in the children of this
particular menu object. The return value here will be a JavaScript object that can be
used as the reference point for the append, insertAfter, and insertBefore methods.

The append(), insertAfter(), and insertBefore()
methods
The append method takes two arguments: the JSON notation of the new menu
item(s) to be appended as children, and a reference to the menu item that will
be the parent of the newly appended items:

var menu = $("menu").data("kendoMenu");
var referenceItem = menu.element.children("li").eq(1);

menu.append(
 [{
 text: "new menu item",
 url: "http://www.music.com",
 items: [...]
 }],
 referenceItem
);

This code would append this menu item as a child to the second menu item on the
page. The insertAfter and insertBefore methods work exactly the same way,
except that they insert the new menu items at the same menu level and either after
or before the reference item respectively.

All of these methods return the Menu object to
support method chaining.

Chapter 6

[147]

The close(), enable(), open(), and remove() methods
These methods for the Kendo UI Menu do not require a JavaScript object reference;
they operate directly on the HTML elements within the menu on the page. Because
of this, you can use a jQuery selector type syntax to choose which item(s) to act upon
in a familiar syntax.

The enable method takes two parameters: the selector for the HTML element(s) and
then a true or false value to indicate whether the item should be enabled (true) or
disabled (false):

var menu = $("menu").data("kendoMenu");
menu.enable("#secondItem", false);

This particular code sample will disable the element with an HTML id value
of secondItem.

The other methods here, that is, close, open, and remove, only take a single
parameter which is the selector of the HTML element(s). Please note that the
element's ID values or class names are not assigned by the framework for you,
you have to assign these values to your elements yourself in order to select them:

var menu = $("menu").data("kendoMenu");
menu.close(".green");

menu.open("#item3");

menu.remove("#lastItem");

All of these methods return the Menu object to
support method chaining.

Menu events
There are three events fired by the Kendo UI Menu: close, open, and select.
Each of these is given an event argument with an item property that contains
the HTML element that was closed, opened, or selected, as shown here:

<script>
 $(document).ready(function () {
 function onSelected(e) {
 var menu = $("#menu").data("kendoMenu");
 menu.enable(".green", false);
 alert("disabling green menu");
 }

Menu and ListView

[148]

 $("#menu").kendoMenu({ select: onSelected });

 });
</script>

This code sample shows a method wired up to handle the select event, which
will then disable all menu items with a class name of green. Since this code is not
considering which specific element was selected, it will fire the same code regardless
of which element was selected. Here is a different example:

<script type="text/javascript">
 $(document).ready(function () {
 function onSelected(e){
 alert(e.item.innerHTML);
 };
 var menu= $("#menuDemo").kendoMenu(
 { dataSource: menuData, select: onSelected }).data("kendoMenu");
 });
</script>

This code examines the specific element that was selected and alerts its innerHTML
property back to the user.

The Kendo UI ListView
The Kendo UI ListView widget is designed to present a collection of data on a web
page with a richer set of functionality than a standard HTML list. The ListView
widget retrieves its data through a Kendo DataSource object, it presents its data
through one or more Kendo Template blocks, and it allows interaction with its data
by giving the user the ability to both select and edit the data on the page.

ListView basics
Basically, the ListView widget displays a collection of data by using a template
and a DataSource object:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>ListView</title>
 <script src="/Scripts/kendo/jquery.js"></script>
 <script src="/Scripts/kendo/kendo.all.js"></script>
 <link href="/Content/kendo/kendo.common.css" rel="stylesheet" />
 <link href="/Content/kendo/kendo.default.css" rel="stylesheet" />

Chapter 6

[149]

 <style type="text/css">
 .animal {
 width:250px;
 height:200px;
 position:relative;
 float:left;
 }
 .animal-label {
 font-size:large;
 }
 .animal-image {
 max-height:100px;
 max-width: 150px;
 margin: 5px;
 }
 #listView {
 width:750px;
 height:100%;
 }
 </style>
</head>
<body>
 <div id="listView"></div>

 <script type="text/x-kendo-tmpl" id="template">
 <div class="animal">
 <img src="../images/#= imageName #" alt="#= animalName #
 image" class="animal-image" />
 <div class="animal-label">#= animalName #</div>
 </div>
 </script>
 <script type="text/javascript">
 var animals = [
 { animalName: "African Elephant",
 imageName: "african-elephant.jpg" },
 { animalName: "African Lion", imageName: "african-lion.
jpg" },
 { animalName: "Alpaca", imageName: "alpacas.jpg" },
 { animalName: "Badger", imageName: "badger.jpg" },
 { animalName: "Black Bear", imageName: "bear-black.jpg" },
 { animalName: "Bison", imageName: "bison.jpg" },
 { animalName: "Jack-Rabbit",
 imageName: "black-tailed-jackrabbit.jpg" },
 { animalName: "Caribou", imageName: "caribou.jpg" },

Menu and ListView

[150]

 { animalName: "Giraffe", imageName: "giraffe.jpg" },
 { animalName: "Hummingbird", imageName: "humming-bird.jpg"
},
 { animalName: "Jaguar", imageName: "jaguar.jpg" },
 { animalName: "Lemur", imageName: "lemur.jpg" },
 { animalName: "Red Fox", imageName: "red-fox.jpg" },
 { animalName: "Striped Skunk", imageName: "striped-skunk.
jpg" }
];

 $(document).ready(function () {
 $("#listView").kendoListView({
 dataSource: animals,
 template: kendo.template($("#template").html())
 });
 });
 </script>
</body>
</html>

The following code sample, from the top down, shows some styles for the elements
that will appear inside the ListView widget. These style declarations are important
in order to properly lay out the images inside the ListView widget on the web page:

<style type="text/css">
 .animal {
 width:250px;
 height:200px;
 position:relative;
 float:left;
 }
 .animal-label {
 font-size:large;
 }
 .animal-image {
 max-height:100px;
 max-width: 150px;
 margin: 5px;
 }
 #listView {
 width:750px;
 height:100%;
 }
</style>

Chapter 6

[151]

We then create the div element that will contain the ListView widget and the
Kendo UI Template that structures the individual ListView elements. This template
determines how each item in the ListView will be rendered inside the web page.
Any changes to the ListView items must occur here:

<div id="listView"></div>
<script type="text/x-kendo-tmpl" id="template">
 <div class="animal">
 <img src="../images/#= ${imageName #}" alt="#= ${animalName #}
 image" class="animal-image" />
 <div class="animal-label">#= ${animalName #}</div>
 </div>
</script>

We then have the JavaScript object literal that contains some data and the instantiation
of the ListView where the dataSource and template properties are set:

<script type="text/javascript">
 var animals = [
 { animalName: "African Elephant",
 imageName: "african-elephant.jpg" },
 { animalName: "African Lion", imageName: "african-lion.
jpg" },
 { animalName: "Alpaca", imageName: "alpacas.jpg" },
 { animalName: "Badger", imageName: "badger.jpg" },
 { animalName: "Black Bear", imageName: "bear-black.jpg" },
 { animalName: "Bison", imageName: "bison.jpg" },
 { animalName: "Jack-Rabbit",
 imageName: "black-tailed-jackrabbit.jpg" },
 { animalName: "Caribou", imageName: "caribou.jpg" },
 { animalName: "Giraffe", imageName: "giraffe.jpg" },
 { animalName: "Hummingbird", imageName: "humming-bird.jpg"
},
 { animalName: "Jaguar", imageName: "jaguar.jpg" },
 { animalName: "Lemur", imageName: "lemur.jpg" },
 { animalName: "Red Fox", imageName: "red-fox.jpg" },
 { animalName: "Striped Skunk", imageName: "striped-skunk.
jpg" }
];

 $(document).ready(function () {
 $("#listView").kendoListView({
 dataSource: animals,
 template: kendo.template($("#template").html())
 });

Menu and ListView

[152]

 });
 </script>

As always, remember that the DataSource object can be fully configured to point to
remote data sources, can be structured using a schema, or can use any of the other
options that you might want to take advantage of in a production scenario.

You can see how each element from the DataSource object has been rendered with
the template, styled, and presented on the page as you would expect.

Chapter 6

[153]

Selecting elements with ListView
The ListView widget has a richer set of behaviors to offer than simply displaying
data, however, and to start let's look at how it allows "selection" of elements. In
this code sample, I have added some more properties and an event handler to the
ListView instantiation logic to demonstrate this:

 $(document).ready(function () {
 $("#listView").kendoListView({
 dataSource: animals,
 template: kendo.template($("#template").html()),
 selectable: "multiple",
 change: notifyUser
 });

 function notifyUser(e) {
 var selected = $.map(this.select(), function (item) {
 return animals[$(item).index()].animalName;
 });
 alert(selected.join(", "));
 }
 });
 </script>

The selectable property has been set with multiple to allow for multiple selection
of items (you can select multiple items on the page by holding the Ctrl button on
the keyboard while clicking with a mouse). We also added an event handler for the
change event so that we can see an alert box that displays which elements have
been selected.

In the notifyUser event handler function, I want to explain what is happening
because it looks a bit confusing at first glance. The variable selected is given an array
value of all of the selected elements' animalName property values. It does this by
using $.map on the results of this.select(). What is this.select()? Well, when
Kendo fires an event from a widget, it sets the context of that event handler so that this
refers to the Kendo widget that fired the event. So, in this case, this is a reference to
the ListView itself. This means that calling this.select() in this event handler will
return a collection of all of the selected elements within the ListView. The function as
the second parameter of $.map then grabs the animalName property from each of these
elements by using its index from the animals array. The result of this code is an array
of strings containing all of the animalName values of the selected elements from the
ListView. This is then displayed to the user using [array].join().

Menu and ListView

[154]

Here is the output with some items selected and the alert box showing from the
event handler:

Notice how the names of the animals are all showing up in the alert box that has
popped up on the page. This is great because it means that you can accurately track
selections that the user makes within your ListView and respond to those actions
however you need to.

Editing elements with ListView
The ListView widget also provides a good syntax for allowing edits to the data
within the DataSource object. You need to create a separate template to display
that allows the user to make edits and then make sure that you assign some of
the Kendo-specific class names, so that it displays and understand the commands
correctly. Here is the code of the new template. Place it right beneath the template
we created in the last example.

Chapter 6

[155]

 <script type="text/x-kendo-tmpl" id="edit-template">
 <div class="animal">
 <img src="images/#= imageName #" alt="#= animalName #
image"
 class="animal-image" />
 <div class="animal-label">
 <input type="text" data-bind="value:animalName"
name="animalName"
 required="required" /></div>
 <div>
 <a class="k-button k-button-icontext k-update-button"
 href="\\#"></
span>Save
 <a class="k-button k-button-icontext k-cancel-button"
 href="\\#"></
span>Cancel
 </div>
 </div>
 </script>

Did you notice the unusual characters in the href attribute of the
two buttons in the template? The double-backslash characters, \\#,
prevent the hash mark from being rendered as part of the Kendo
template. If this hash mark was not escaped with these backslashes,
the template would not render at all.

Next, we have added some more configurations to the JavaScript block that creates
our ListView widget. Specifically, we now have an editTemplate property that
points to the template that we just created:

<script type="text/javascript">
 var animals = [
 { animalName: "African Elephant",
 imageName: "african-elephant.jpg" },
 ...

];

 $(document).ready(function () {
 $("#listView").kendoListView({
 dataSource: animals,
 template: kendo.template($("#template").html()),
 editTemplate: kendo.template($("#edit-template").
html())
 });

Menu and ListView

[156]

 });
 </script>
</body>
</html>

Here is a screenshot where the name of the Caribou has been edited to Reindeer:

ListView API and configuration
We have already covered several of the aspects of the ListView in our preceding
examples; here are the remaining configuration properties from the documentation:

$("#listView").kendoListView({
 autoBind: true, // if false, you must call read() manually

Chapter 6

[157]

 dataSource: ..., // demonstrated above
 editTemplate: ..., // demonstrated above
 navigatable: false, // whether or not keyboard navigation is enabled
 selectable: false, // true/false or "single"/"multiple" are valid
options
 template: ..., // demonstrated above
 altTemplate: ... // template used for alternating styles if desired
});

ListView methods
The ListView widget has several methods available. Most of them are designed
to manipulate the items within the ListView, so that you can control the behavior
through code. Like with any widget, you need a reference to the listView JavaScript
object before you can call these methods, like this:

var listView = $("#listView").data("kendoListView");
...
listView.add(...)

Get the reference through the .data(...) method and then you can call the
ListView-specific methods. Here is a brief overview of the methods that take
no parameters:

•	 add: Inserts an empty item into the ListView and prepares it for editing
•	 cancel: Cancels changes in currently edited items
•	 clearSelection: Clears ListView's selected items and triggers the change

event
•	 refresh: Reloads the data and reprints the ListView
•	 save: Saves the edited ListView item. If validation succeeds, it will call the

datasource's sync method.

There are a few additional methods that do take parameters.

The edit method
This method edits the specified ListView item and triggers the edit event.
This method takes a single parameter which is the ListView item that needs
to be edited. Here is a sample:

var listView = $("#listView").data("kendoListView");
...
listView.edit(listView.element.children().first());

Menu and ListView

[158]

The remove method
This method removes the specified ListView item and triggers the remove event.
It also triggers the datasource's sync method.

var listView = $("#listView").data("kendoListView");
...
listView.remove(listView.element.children().first());

The select method
This method selects the specified ListView item. If this method is called without any
arguments, it will return a collection of all of the selected items in the ListView. This
is what we did in the code sample for selecting items. Here is a code sample for using
the method with a parameter:

var listView = $("#listView").data("kendoListView");
...
listView.select(listView.element.children().first());

ListView events
The ListView widget exposes several events for hooking into its lifecycle and
behavior. We have already seen some of these in our examples. These events can all
be assigned to handlers during the ListView instantiation as we save earlier in the
chapter. Here is a list:

•	 change: Fires when the ListView selection is changed
•	 dataBound: Fires when the ListView has received data from the DataSource

object and is about to render it
•	 dataBinding: Fires when the data is about to be rendered on the page
•	 edit: Fires when the ListView enters edit mode
•	 remove: Fires before the ListView item is removed

Chapter 6

[159]

Summary
The Menu and ListView widgets are great tools for structuring data on your web
pages. The Menu widget makes it simple to create interactive JavaScript menus for
navigation and even for displaying data with graphics. The ListView widget should
become a standard option for you when you want a standard way of rendering
collections of data elements on a web page. It gives you the ability to hook up
functionality that would otherwise require a lot of code and debugging.

In the next chapter, we will take a look at the Kendo UI PanelBar widget. Its API is
very similar to the Kendo UI Menu widget, as you will see, and it is a powerful way
to render accordion controls in a web page. Much like the Kendo UI Menu widget, its
primary responsibility is to organize hierarchical content in a way that saves screen
space, but still provides a sensible structure for users to understand.

Implementing PanelBar
and TabStrip

The PanelBar and TabStrip widgets are special Kendo UI controls for organization
data, which make it possible for a web page to contain a large amount of content but
display only one piece of that content at a time. These content sections are broken
up into panels with the PanelBar widget, or into tabs with the TabStrip widget. In
both cases, the effect is very similar and is a very useful way of keeping a web page
from becoming too cluttered. This chapter will explain the basics of implementing
the PanelBar and TabStrip controls with both HTML and ASP.NET MVC, and then
illustrate the following features:

•	 Adding images to PanelBar and TabStrip items
•	 Adding URLs to PanelBar and TabStrip items
•	 Loading AJAX content with PanelBar and TabStrip
•	 Controlling PanelBar and TabStrip animation effects

PanelBar basics
The PanelBar widget is the Kendo UI way of implementing an interactive JavaScript
"accordion" on a web page. This type of control is very useful for displaying lists of
data that could potentially take up a large amount of screen space, but compressing
it into a format that still makes sense to users. As an introduction, here is a code
sample of a basic PanelBar created from a static unordered HTML list. This HTML
list will be reformatted into an accordion control that displays a single area of the list
at a time. As you will see, when you run the code sample, this allows a large amount
of data to be visually compressed into a smaller space. It also allows the user to select
which area of the list he or she is interested in viewing and hides the details of the
other sections. This gives a powerful demonstration of some of the commonality
between Kendo widget implementations:

Implementing PanelBar and TabStrip

[162]

Note that I have used the same data as in the last
chapter for the Menu control.

<!DOCTYPE html>
<html>
<head>
 <title>Kendo UI PanelBar</title>
 <script src="/Scripts/kendo/jquery.js"></script>
 <script src="/Scripts/kendo/kendo.all.js"></script>
 <link href="/Content/kendo/kendo.common.css" rel="stylesheet" />
 <link href="/Content/kendo/kendo.default.css" rel="stylesheet" />
</head>
<body>
 <div id="panelBarDemo">
 <ul id="panelBar">

 Music

 Blues / Folk

 Contemporary Blues
 Contemporary Folk
 Traditional American
 World Folk

 Christian / Gospel

 Christian Rock / Hip Hop
 Contemporary Christian
 Traditional Gospel

 ...

 Videos

 Movies
 TV

Chapter 7

[163]

 Trailers

 Events

 <li disabled="disabled">
 News

 </div>
 <script>
 $(document).ready(function () {
 $("#panelBar").kendoPanelBar();
 });
 </script>
</body>
</html>

This source code creates a PanelBar with the same data from the Menu in the last
chapter. The top-level elements in the unordered list all appear as actual
accordion headings in the output. In this example, just as in the menu example, they
are Music, Videos, Events, and News. Notice that each of these top-level elements
contains its own name and then can optionally contain a nested unordered list ()
within itself which becomes the choices that appear when that top-level item is
selected on the page. Moving down the chain, each of the elements in the nested
list can also contain its own list for a further nested menu of options, which is
impressive as not all accordion implementations can handle this level of nested data.
This creates a cascading effect where menu options can continue to expand as you
move your mouse to different options. Also note that the final top-level item,
News, is marked with a disabled attribute which means that it will still display in the
output but not be selectable.

Implementing PanelBar and TabStrip

[164]

Here is the output from this code:

The Videos panel was clicked before this screenshot was taken so that you can see
some of the data opened, it normally starts with all of the panels closed.

Just as before with the Menu widget, the PanelBar widget does not have to run from
static HTML, it can be fuelled by a DataSource object of either local or remote data.
Here is the code adapted to use a datasource instead of static HTML:

<body>
 <div id="panelBarDemo">
 </div>
 <style type="text/css">
 #panelBarDemo img{
 max-height: 30px;
 max-width: 30px;
 }
 </style>
 <script type="text/javascript">

 var panelBarData = [
 {
 text: "Music",
 items: [
 {
 text: "Blues/Folk",
 items: [

Chapter 7

[165]

 { text: "Contemporary Blues" },
 { text: "Contemporary Folk" },
 { text: "Traditional American" },
 { text: "World Folk" }
]
 },
 {
 text: "Christian / Gospel",
 items: [
 { text: "Christian Rock / Hip Hop" },
 { text: "Contemporary Christian" },
 { text: "Traditional Gospel" }
]
 },
 ...
]
 },
 {
 text: "Videos",
 imageUrl: "/Images/reel.png",
 items: [
 { text: "Movies" },
 { text: "TV" },
 { text: "Trailers" }
]
 },
 {
 text: "Events"
 },
 {
 text: "News",
 enabled: false
 }
];
 </script>
 <script type="text/javascript">
 $(document).ready(function () {
 $("#panelBarDemo").kendoPanelBar({ dataSource:
panelBarData});
 });
 </script>
</body>
</html>

Implementing PanelBar and TabStrip

[166]

Note that the DataSource object can be configured with all the
options that you have seen in earlier chapters and could just as easily
be configured with a transport property for remote data.

In this code sample, we have also implemented a new feature, the imageUrl
property for the Videos tab. By specifying the URL of an image in the project,
the output will show this image next to the tab's title on the screen, which you
can see in the following screenshot:

To adapt this to use the MVC extension methods, you would create an MVC View
with this source code in the cshtml file:

@using Kendo.Mvc.UI;

@{
 ViewBag.Title = "Mvc PanelBar";
}

<style type="text/css">
 li img {
 max-height: 25px;
 max-width: 25px;
 }
</style>

Chapter 7

[167]

<h2>Mvc Menu</h2>
@(Html.Kendo().PanelBar()
 .Name("panelBarDemo")
 .Items(items =>
 {
 items.Add().Text("Music").Items(sub =>
 {
 sub.Add().Text("Blues / Folk").Items(subsub =>
 {
 subsub.Add().Text("Contemporary Blues");
 subsub.Add().Text("Contemporary Folk");
 subsub.Add().Text("Traditional American");
 subsub.Add().Text("World Folk");
 });
 sub.Add().Text("Christian / Gospel").Items(subsub =>
 {
 subsub.Add().Text("Christian Rock / Hip Hop");
 subsub.Add().Text("Contemporary Christian");
 subsub.Add().Text("Traditional Gospel");
 });
 ...
 });
 items.Add().Text("Videos").ImageUrl("/static/images/reel.
png").Items(sub => {
 sub.Add().Text("Movies");
 sub.Add().Text("TV");
 sub.Add().Text("Trailers");
 });
 items.Add().Text("Events");
 items.Add().Text("News").Enabled(false);
 })
)

Note, how in this code sample, we have declared the data statically. It could just as
easily be gathered from a different source using logic within C# code, or even left
as part of the JavaScript and retrieved from a remote source across HTTP. We can
also see here how the image is supplied through ASP.NET MVC syntax instead of
through the JavaScript in the last example.

Implementing PanelBar and TabStrip

[168]

The output, as you can see from this screenshot, is identical to the other two
code samples:

This illustrates three unique ways to create a Kendo UI PanelBar widget, just like
the Menu widget from before, and the differences between them.

Adding sprite images to PanelBar items
We have already seen some examples of how the PanelBar widget can contain an
imageUrl property to display an image next to a section title. It can also use a more
advanced image option by specifying a sprite image through the spriteCssClass
property. In either case, the image or sprite will appear as an icon to the left of the
menu item text.

As we have already partially seen, here is an example of using the imageUrl
property to show an icon for the Videos menu item:

...
{
 text: "Videos",
 imageUrl: "/images/reel.png",
 items: [
 { text: "Movies" },
 { text: "TV" },
 { text: "Trailers" }
]
},
...

Chapter 7

[169]

By adding this property, the output now displays the image in the menu:

This is how the code sample looks when using MVC syntax:

items.Add().Text("Videos").ImageUrl("/images/reel.png").Items(sub => {
 sub.Add().Text("Movies");
 sub.Add().Text("TV");
 sub.Add().Text("Trailers");
});

Notice the ImageUrl extension method that adds the image to the output.

To use a sprite, you would first set the background image of the menu items that
should display the icons and then indicate a CSS class using the spriteCssClass
property that will specify the pixel offset for each particular icon. Each menu item
that has a spriteCssClass property specified will automatically be decorated with
the k-sprite CSS class so that this is wired up properly. Here is a potential example:

<style>
#panelBarDemo .k-sprite {
 background-image: url("images/sprites.png");
}
.someIcon {
 background-position: 0 0;
}
.someOtherIcon {
 background-position: 0 -32px;
}
</style>
...
<script>
...
{
 text: "Videos",
 spriteCssClass: "someIcon",
 items: [

Implementing PanelBar and TabStrip

[170]

 { text: "Movies" },
 { text: "TV" },
 { text: "Trailers" }
]
},
...

The CSS section of this sample shows assigning the background-image property
for all of the k-sprite class-decorated elements and also designating two sprite
pixel background-position styles. The script section shows the spriteCssClass
property in use which will assign that portion of the sprite's image as the icon for
that menu item.

Adding URLs to PanelBar items
So far all of the examples we have seen are PanelBar items that do not perform any
actions when selected. All that we have to do is add the url property to the PanelBar
item in order to make it navigate when clicked on. So, for any PanelBar item where
we want to navigate the user to a different page, include a url property and it will
do so:

...
{
 text: "Videos",
 spriteCssClass: "someIcon",
 url: "http://www.microsoft.com",
 items: [
 { text: "Movies" },
 { text: "TV" },
 { text: "Trailers" }
]
},
...

Loading AJAX content with PanelBar
Instead of embedding all of the content into one page, a PanelBar widget can be
used to load content from other URLs dynamically using AJAX. This will reduce
the overall size of the page since only one section of the PanelBar will be loaded at
a time. It can also allow you to load content from other locations in your site that
may change independently of the site that contains your PanelBar, which can reduce
duplicate text or markup. To enable this functionality, use the contentUrls property
of the PanelBar to indicate which sites contain the markup that should be placed
inside the accordion:

Chapter 7

[171]

$("#panelId").kendoPanelBar({
 ...
 contentUrls: [
 "content1.html",
 "content2.html"]
});

Secondly, we have to create placeholders in the HTML markup to indicate where this
AJAX content will appear once it has loaded. All this requires is a structure like the
following code with elements that contain empty <div> elements which will
receive the AJAX content at the appropriate time:

<ul id="panelBarDemo">

 Remote content
 <div></div>

 More content
 <div></div>

With this combination of markup and JavaScript code, the PanelBar will load
content1 for the first tab, content2 for the second tab, and so on. It is a good idea to
keep the content on these pages very simple so that it can fit into the PanelBar areas
without being distorted.

Implementing PanelBar and TabStrip

[172]

Controlling PanelBar animation effects
The animation features of the PanelBar can be controlled through the animation
property when configuring the PanelBar object in JavaScript. The animation
property can be set to false to completely disable all animation effects, or it can be
configured like the following code sample for specific behaviors:

$("#panelId").kendoPanelBar({
 ...
 expandMode: "single", // "multiple" for multiple open tabs at once
 animation: {
 collapse: {
 duration: 1000, // milliseconds for animation effect
 effects: "fadeOut" //"fadeout" is the only option for collapse
 },
 expand: {
 duration: 500,
 effects: "expandVertical fadeIn" // choose either or both of
these
 }
});

The only available animation effect for the collapse action is fadeOut. For the expand
action, you can choose expandVertical, which is the normal action for expanding a
PanelBar, and fadeIn which changes the opacity as it expands.

Introducing the TabStrip widget
The TabStrip widget is very similar to the PanelBar widget. In fact, they perform
nearly the same function except that the PanelBar Widget organizes content into
panels that are stacked vertically while the TabStrip widget organizes content
into panels that are stacked horizontally. They are so similar, in fact, that we will
use nearly the same code to demonstrate both of them. You have already seen the
PanelBar widget in the preceding sections. Now we will take a look at the TabStrip
widget and see how it functions within web pages.

TabStrip basics
The TabStrip widget creates a series of tabs that are used to show only one specific
section of content at a time. The content within a tab can be almost anything, ranging
from simple text and markup all the way up to large <div> sections with enough
content to fill an entire web page. You have surely seen web pages that have tabs
across the top of the screen to organize different types of material onto a single web
page. The Kendo TabStrip widget is one way to create this effect on your own pages.

Chapter 7

[173]

To start, copy the following code into a new HTML page and run it in
a web browser:

<!DOCTYPE html>
<html>
<head>
 <title>Kendo UI TabStrip</title>
 <script src="/Scripts/kendo/jquery.js"></script>
 <script src="/Scripts/kendo/kendo.all.js"></script>
 <link href="/Content/kendo/kendo.common.css" rel="stylesheet" />
 <link href="/Content/kendo/kendo.default.css" rel="stylesheet" />
</head>
<body>
 <div id="panelBar">

 Music

 Videos

 Events

 <li disabled="disabled">
 News

 <div>Next concert in May of 2013!</div>
 <div>Next music video in July of 2013!</div>
 <div>Memorabilia signing on April 15th</div>
 <div></div>
 </div>
 <script>
 $(document).ready(function () {
 $("#panelBar").kendoTabStrip();
 });
 </script>
</body>
</html>

Implementing PanelBar and TabStrip

[174]

For this widget, the markup is required to follow a specific pattern. The TabStrip
itself must be declared on a <div> element that contains an unordered list () and
a collection of <div> elements right after the unordered list. This is all evident in the
preceding code sample. The unordered list contains all of the tab titles. The collection
of <div> elements contains all of the content that appears within each of the tabs
in the same order they appear in the markup. This is how this particular example
appears when run inside of a web browser:

Using TabStrip with a datasource
Much like the PanelBar, the TabStrip can be configured to use a datasource instead of
being created on top of existing HTML markup already on a web page. To adapt the
code sample from the last section into this pattern, replace the body of the page with
this code:

<body>
 <div id="panelBar">
 </div>
 <script>
 $(document).ready(function () {
 $("#panelBar").kendoTabStrip({
 dataTextField: 'text',
 dataContentField: 'content',
 dataSource: [
 {
 text: 'Music',
 content: 'Next concert in May of 2013!'
 },
 {
 text: 'Videos',
 content: 'Next music video in July of 2013!'
 },
 {
 text: 'Events',
 content: 'Memorabilia signing on April 15th'
 },
 {
 text: 'News',
 content: ''

Chapter 7

[175]

 }
]
 });
 });
 </script>
</body>

The output from this code is exactly the same as before, except that the News
tab is not disabled since there is not a property to define a disabled element
using a datasource:

Adding images to the TabStrip widget
All of the TabStrip tabs so far have only included text. The TabStrip widget, however
(just like the PanelBar widget), can also contain an imageUrl property to display
an image next to a tab's title. It can also use a more advanced image option by
specifying a sprite image through the spriteCssClass property. In either case,
the image or sprite will appear as an icon to the left of the tab's title text. Here is an
example of using the imageUrl property to show an icon for the Videos menu item:

...
{
 text: "Videos",
 imageUrl: "/images/reel.png",
 content: "Next music video in July of 2013!"
}
...

By adding this property, the output now displays the image in the menu:

Implementing PanelBar and TabStrip

[176]

This is how the same code sample looks when using MVC syntax:

@using Kendo.Mvc.UI;

@{
 ViewBag.Title = "Mvc TabStrip";
}

<style type="text/css">
 li img {
 max-height: 25px;
 max-width: 25px;
 }
</style>

<h2>Mvc TabStrip</h2>
@(Html.Kendo().TabStrip()
 .Name("tabStripDemo")
 .Items(items =>
 {
 items.Add().Text("Music")
 .Content("Next concert in May of 2013!");
 items.Add().Text("Videos")
 .Content("Next music video in July of 2013!")
 .ImageUrl("/images/reel.png");
 items.Add().Text("Events")
 .Content("Memorabilia signing on April 15th");
 items.Add().Text("News").Enabled(false);
 })
)

You should be able to notice quite a few similarities to the code we used earlier for
the PanelBar widget. To use a sprite with the TabStrip, you can follow the same
procedures as we discussed for the PanelBar.

Adding URLs to TabStrip tabs
To use a TabStrip tab as a hyperlink to another page, you can configure the url
property for that tab and it will take on this role. By doing this, we are no longer
using the tab to show any content on the page, it simply navigates directly to another
web page when it is clicked.

...
{
 text: 'News',

Chapter 7

[177]

 content: '',
 url: 'http://www.kendoui.com'
}
...

After altering the code in this way, the News tab will become a hyperlink instead
of an actual tab to display content.

Loading AJAX content with TabStrip
To load AJAX content into a tab, we need to indicate the URL for each tab's content
in the configuration. This follows the same pattern as the other options within the
TabStrip, so this should look very familiar to you by now:

<script>
 $(document).ready(function () {
 $("#panelBar").kendoTabStrip({
 dataTextField: 'text',
 dataContentField: 'content',
 dataImageUrlField: 'dataImageUrl',
 dataUrlField: 'url',
 dataContentUrlField: 'contentUrl',
 dataSource: [
 {
 text: 'Remote Content',
 contentUrl: 'content1.html'
 },
 {
 text: 'More Content',
 contentUrl: 'content2.html'
 }
]
 });
 });
</script>

Implementing PanelBar and TabStrip

[178]

When we run the web page in a browser, it appears like this with the remote content
loaded dynamically as we click on the tab's titles:

Controlling the TabSrip widget's animation
effects
The animation effects for the TabStrip widget are exactly the same as for the PanelBar
widget. They are controlled through the animation property when configuring
the TabStrip object in JavaScript. The animation property can be set to false to
completely disable all animation effects, or it can be configured like the following
code sample for specific behaviors:

$("#tabSripId").kendoTabStrip({
 ...
 animation: {
 collapse: {
 duration: 1000, // milliseconds for animation effect
 effects: "fadeOut" //"fadeout" is the only option for collapse
 },
 expand: {
 duration: 500,
 effects: "expand:vertical fadeIn" // choose either or both of
these
 }
});

The only available animation effect for the collapse action is fadeOut. For the expand
action, you can choose expand:vertical, which is the normal action for expanding
a TabStrip, and fadeIn which changes the opacity as it expands.

Chapter 7

[179]

Summary
The PanelBar widget is a highly configurable JavaScript accordion widget that gives
you considerable "bang for your buck". For a categorized list of data elements that
you need to compress into a smaller amount of screen space, the PanelBar widget is
the perfect choice for your web page. The TabStrip widget is an easy JavaScript tab
framework that allows you to organize your page content with tabs and even load
remote content dynamically onto your page when a tab is clicked. Both of these great
widgets should add useful features to your website.

In the next chapter, you will learn about the Kendo UI Slider widgets and how to use
them to collect input from users in a graphically interesting way. The slider widgets
present an HTML input as a visual bar where the user can drag a handle to the
desired option instead of typing a number into a field in a form.

Slider Essentials
The Kendo UI framework includes special widgets called sliders that show a slider
bar on a web page, so that a user can drag a handle to increase and decrease the
slider in order to choose a value. These sliders normally have tick marks and labels
that indicate the highest and lowest numbers available as well as range between
them. These widgets are great visual tools to help users select numbers on a fixed
scale, instead of just typing in a value that may or may not be appropriate. This
could be useful in a rating system, for example, or on any input control where only
a certain set of numbers are allowed. As you will see, Kendo UI allows for a good
level of configurability, so you can customize the appearance and functionality of
the UI to suit your needs.

Introducing Slider and RangeSlider
The first thing we should cover is the two different types of slider widgets that
Kendo UI makes available. There is the standard Kendo UI Slider widget and there
is a Kendo UI RangeSlider widget. The Kendo UI RangeSlider widget is designed
for more advanced scenarios where your page needs to capture a range (a bottom
and a top number) of numbers from a user in a single page element instead of just a
single value.

It is important to understand that these slider widgets are special visual aids for use
in supplying a number into an input HTML element. The final output of a slider
widget is the number that the user has selected and this number is set as the value of
the input HTML element underneath. This is important so that the input element can
then be posted inside of an HTML form and used by a web server on the other end
when the form is posted.

Slider Essentials

[182]

Along these lines, be sure to follow this pattern when creating a Kendo UI Slider
widget on your page:

<!— value is optional, but will set the initial value of the slider if
present -->
<input id="sliderId" value="2" />
...
<script>
 $(function(){
 $("#sliderId").kendoSlider({...});
 });
</script>

The kendoSlider method needs to be bound to an actual input HTML element.
So what about the Kendo UI RangeSlider widget? It uses two numbers but an input
control contains only one value. How does it maintain these two separate values?
The answer is that it uses two input elements inside of a container div tag:

<div id="rangeSliderId">
 <input />
 <input />
</div>
...
<script>
 $(function(){
 $("#rangeSliderId").kendoRangeSlider({...});
 });
</script>

This way, the Kendo UI RangeSlider widget is created on a div element and it builds
its range values into the two input elements inside of that container div to properly
render it on the page.

Using Slider and RangeSlider with the MVC
extension methods
The following code sample illustrates the basics of instantiating slider widgets by
using ASP.NET MVC extension methods. The Name method must be called for all
the Kendo widgets to work properly.

@(Html.Kendo().Slider().Name("horizontalSlider"))
...
@(Html.Kendo().RangeSlider().Name("horizontalRangeSlider"))

Chapter 8

[183]

Implementing the basics
As an introduction, I have created a sample page that shows sliders and range sliders
in a variety of configurations. We will use this same code sample in the following
sections where we discuss the features and options. In this sample, we have fixed the
positions of the elements using CSS absolute positioning. This is not necessarily best
practice for web page design, but it works to show these controls in isolation. In this
first code block, we are creating the HTML markup necessary to contain the Slider
widgets. Each Slider is created on top of a div element with input elements inside.
This will be explained more after the following code sample:

<!DOCTYPE html>
...
<body>

 <!-- Two slider widgets -->
 <div id="sliders">
 <h2 style="position:absolute;top:5px;left:40px">Slider
Widgets</h2>

 <!-- vertical slider widget -->
 <div style="position:absolute;top:65px;left:100px;">
 <input id="verticalSlider" value="2" /></div>

 <!-- horizontal slider widget -->
 <div style="position:absolute;top:285px;left:15px;">
 <input id="horizontalSlider" value="7" /></div>
 </div>

 <!-- Two rangeslider widgets -->
 <div id="rangeSliders">
 <h2 style="position:absolute;top:5px;left:300px">
 RangeSlider Widgets</h2>

 <!-- vertical rangeslider widget -->
 <div style="position:absolute;top:65px;left:388px"
 id="verticalRangeSlider">
 <!-- these inputs are required for containing the two
 Values in the range -->

 <input /><input />
 </div>

 <!-- horizontal rangeslider widget -->
 <div id="horizontalRangeSlider"

Slider Essentials

[184]

 style="position:absolute;top:285px;left:300px;">
 <!-- these inputs are required for containing the two
 Values in the range -->
 <input /><input />
 </div>
 </div>

You will see that we have created four separate slider widgets on the page, two
of them are normal slider widgets and two of them are range slider widgets. The
following JavaScript code section is what transforms the HTML markup into Kendo
widgets for the web page. You can also see some of the configuration options in these
samples, which we will discuss in detail in just a few paragraphs.

 <script>
 $(document).ready(function () {
 // create the vertical slider widget
 $("#verticalSlider").kendoSlider({
 min: -10,
 max: 20,
 orientation: "vertical",
 smallStep: 2,
 largeStep: 10,
 tickPlacement: "both"
 });

 // create the horizontal slider widget
 $("#horizontalSlider").kendoSlider({
 min: 0,
 max: 20,
 smallStep: 1,
 largeStep: 5
 });

 // create the vertical rangeslider widget
 $("#verticalRangeSlider").kendoRangeSlider({
 min: 0,
 max: 20,
 orientation: "vertical",
 selectionStart: 2,
 selectionEnd: 6,
 smallStep: 1
 });

 // create the horizontal rangeslider widget
 $("#horizontalRangeSlider").kendoRangeSlider({

Chapter 8

[185]

 min: 0,
 max: 30,
 selectionStart: 5,
 selectionEnd: 15,
 smallStep: 1,
 largeStep: 5,
 tickPlacement: "none"
 });
 });
 </script>
</body>
</html>

Here is the output from executing the preceding code block:

We organized the content on the page so that you could see the different slider
widgets and their output. The two sliders on the left, one vertical and one horizontal,
are both normal slider widgets. The two sliders on the right side, one vertical and
one horizontal, are both range slider widgets. I also adjusted properties on each of
them so that they are showing unique options for the sake of demonstration. We will
cover these options as we go through the rest of this chapter.

Slider Essentials

[186]

Basic implementation using MVC
extension methods
The following code sample illustrates how to instantiate these same sliders
by using the ASP.NET MVC extension methods. I have only included the actual
slider widgets, not the full HTML page.

<div id="sliders">
 <h2 id="slidersLabel">Slider Widgets</h2>
 @(Html.Kendo().Slider().Name("verticalSlider")
 .HtmlAttributes(new { id = "verticalSlider" })
 .Min(-10)
 .Max(20)
 .Orientation(SliderOrientation.Vertical)
 .Value(5)
 .SmallStep(2)
 .LargeStep(10)
 .TickPlacement(SliderTickPlacement.None)
 .Tooltip(tt =>
 tt.Format("{0}")))
 @(Html.Kendo().Slider().Name("horizontalSlider")
 .HtmlAttributes(new { id = "horizontalSlider" })
 .Min(0)
 .Max(20)
 .Orientation(SliderOrientation.Horizontal)
 .Value(7)
 .SmallStep(1)
 .LargeStep(5)
 .TickPlacement(SliderTickPlacement.Both))
</div>
<div id="rangeSliders">
 <h2 id="rangeSlidersLabel">RangeSlider Widgets</h2>
 @(Html.Kendo().RangeSlider().Name("verticalRangeSlider")
 .HtmlAttributes(new { id = "verticalRangeSlider" })
 .Min(0)
 .Max(20)
 .Orientation(SliderOrientation.Vertical)
 .Values(new double[] { 2, 6 })
 .SmallStep(1))
 @(Html.Kendo().RangeSlider().Name("horizontalRangeSlider")
 .HtmlAttributes(new { id = "horizontalRangeSlider" })
 .Min(0)
 .Max(30)

Chapter 8

[187]

 .Orientation(SliderOrientation.Horizontal)
 .Values(new double[] { 5, 15 })
 .SmallStep(1)
 .LargeStep(5)
 .TickPlacement(SliderTickPlacement.Both))
</div>

Just as in the normal JavaScript and HTML example above, the output from these
MVC extensions creates the same output. All four of the sliders appear with the same
options and configuration and also have the same behavior.

Using tooltips and pop-up texts
The slider widgets give several visual cues to the user to indicate their value and
their control functions. There are tooltips, or hover effects, which indicate what the
buttons at the end of the sliders will do. These tooltips are always present, they do
not require any additional configuration or code, although they can be customized
using the API. The following screenshot shows the tooltip text that appears over the
Increase button:

Slider Essentials

[188]

The following screenshot shows the tooltip text that appears over the
Decrease button:

There are also tooltip labels that indicate the value of the tick marks, if present, and
that indicate how to interact with the slider control by dragging with the mouse.
The following screenshot shows the tooltip text over the tick mark that represents
the number 18:

The following screenshot shows the tooltip text over the drag handle:

Lastly, when a user drags the controls of a range slider widget, the page will show
a label that indicates the currently selected range. The following screenshot shows
the tooltip text over the selected range, in this case, showing that the handles are
positioned at 4 and 15:

Learning keyboard controls
It is also important to note that the slider controls can also be manipulated using
the keyboard arrow buttons and the Page Up and Page Down buttons when the slider
widget has the focus on the page. Pressing the arrow button either up or down

Chapter 8

[189]

will increase or decrease the value of the slider by the number contained in the
smallStep property. Pressing Page Up or Page Down will increase or decrease the
value of the slider by the number contained in the largeStep property.

These properties, smallStep and largeStep, can be set when the slider widget
is instantiated in JavaScript as we saw in our earlier sample code:

$("#verticalSlider").kendoSlider({
 min: -10,
 max: 20,
 orientation: "vertical",
 smallStep: 2,
 largeStep: 10,
 tickPlacement: "both"
});

The numbers do not have to be even, they can be any whole number increment
that makes sense for your application.

Customizing the user interface of the
slider widgets
Many of the properties of the slider widgets can be used to customize how the user
can interact with them on the web page. The text that shows up in the tooltips and
tick mark labels can be customized to show different text that may be more specific
to your page. You can also customize the orientation of the sliders and their
default values.

Tooltip customization
The tooltip property of the slider widgets can be customized with a custom format
or a custom template and can also be disabled completely, if unwanted. For example,
imagine that your slider widget is intended for the user to select degrees (such as on
a thermometer). You could customize the format of the tooltip to reflect that unique
format. You will also see that when changing the format of the tooltip, the format of
the data labels will automatically change to match it:

$("#verticalSlider").kendoSlider({
 min: -10,
 max: 20,
 orientation: "vertical",
 smallStep: 2,
 largeStep: 10,

Slider Essentials

[190]

 tickPlacement: "both",
 tooltip: {
 format: "{0}"
 }
});

The default format is "{0}", so by adding the degree symbol after this, it will appear
properly on the page:

Notice how the labels and the tooltip both changed to match the new format.
Also note that I added the format using a degree symbol that was not HTML
encoded, the Kendo UI system handled the appropriate encoding for me.

The full options for configuring the tooltip property are displayed here:

// options for a kendoSlider
tooltip: {
 enabled: true, // enable tooltips or not
 format: "{0}", // format string for tooltips
 template:{
 value: "..." // template value for tooltips
 }
 }
}
...
// options for a kendoRangeSlider
tooltip: {
 enabled: true, // enabled or not
 format: "{0}", // format string for tooltips
 template:{
 selectionStart: "...", // template value for start range
 selectionEnd: "..." // template value for end range
 }
 }
}

Chapter 8

[191]

You should not use both a format and a template, since both of those properties are
designed to customize the display of the tooltips. The template, as you have seen
in previous chapters, would need to follow the normal Kendo template syntax and
could be used to create a highly customized tooltip for your slider control.

Customizing tooltip options using MVC extension
methods
This is how a configured tooltip looks when using ASP.NET MVC extension methods.

...

.Tooltip(tt =>
 tt.Enabled(true)
 .Format("{0}")
 .Tempalte("template would go here")) @* misspelled in the Kendo code
*@

Remember that, just as in JavaScript, you would not set both the format and the
template at the same time. Also note that the Kendo library has misspelled a word, it
has "tempalte" instead of "template". Be sure to check your code here in case Telerik
has fixed the spelling.

Customizing the default values
A slider widget can be configured to start with a specific default value. For a normal
Kendo slider widget, this comes in the form of the value property either of the input
HTML element or in the initialization of the Kendo slider widget in JavaScript, as
shown here:

<input id="sliderId" value="4" />

... // or

$("#sliderId").kendoSlider({
 value: 4,
 ...
}

Either of these methods will set the initial, or default value of the slider widget to the
number 4.

Slider Essentials

[192]

For the Kendo range slider, you need to set both of the numbers for the range, so you
need to use different properties called selectionStart and selectionEnd or set the
value properties of both of the inputs in the HTML:

<div id="rangeSliderId">
 <input value="2" />
 <input value="8" />
</div>

... // or

$("#rangeSliderId").kendoRangeSlider({
 selectionStart: 2,
 selectionEnd: 8
 ...
}

Both of these methods will set the start of the selected range to 2 and the end of the
selected range to 8.

Customizing tick placement
The tick marks and data labels on the slider widgets can also be customized by
choosing one of four supported options for their display: topLeft, bottomRight,
both, and none. These are set through the configuration property called
tickPlacement.

$("#sliderId").kendoSlider({
 tickPlacement: "topLeft"
 ...
});

Placing the tick at the top left
The topLeft tick placement option will place the tick marks on the left side of
a vertical slider or on the top side of a horizontal slider.

$("#sliderId").kendoSlider({
 tickPlacement: "topLeft"
 ...
});

Chapter 8

[193]

Here is the output:

Placing the tick at the bottom right
The bottomRight tick placement option will place the tick marks on the right side
of a vertical slider or on the bottom side of a horizontal slider:

$("#sliderId").kendoSlider({
 tickPlacement: "bottomRight"
 ...
});

Slider Essentials

[194]

Placing ticks on both sides
The both tick placement option will place the tick marks on both sides of a slider:

$("#sliderId").kendoSlider({
 tickPlacement: "both"
 ...
});

Removing the ticks entirely
The none tick placement option will remove all tick marks from a slider:

$("#sliderId").kendoSlider({
 tickPlacement: "none"
 ...
});

Chapter 8

[195]

Customizing slider orientation
You have already seen the two orientations of the slider widgets—horizontal and
vertical, but here is a brief look at the code necessary to enable these two options:

$(function(){
 orientation: "vertical" // "horizontal" or "vertical"
 ...
}

If you do not set the orientation, the default orientation will
be horizontal.

Learning API methods
When interacting with the slider widgets, you must reference the JavaScript object
through the data() method as usual:

// Kendo Slider Widget
var slider = $("#sliderId").data("kendoSlider");

// Kendo RangeSlider Widget
var rangeSlider = $("#rangeSliderId").data("kendoRangeSlider");

The enable and disable Methods
The slider widgets support methods for enabling and disabling the controls in the
web page through the enable() and disable() methods. The syntax is the same
for both slider widgets and range slider widgets, assuming you have the correct
reference to the object through JavaScript.

// get a reference to the slider
var slider = $("sliderId").data("kendoSlider");

// disable a slider
slider.disable();

// enable a slider
slider.enable();

Slider Essentials

[196]

A disabled slider widget appears as partially transparent, or grayed out, on the web
page. In the following screenshot, the slider on the left is disabled and the slider on
the right is enabled:

Using the values
The value of a slider widget can be both set and retrieved from the JavaScript API.
The syntax is different between the slider and the range slider since they each use
a different number of values internally.

Using values from a Kendo slider
Setting and retrieving values for a Kendo slider is straightforward since it contains
only a single value, as shown here:

// get a reference to the slider
var slider = $("#sliderId").data("kendoSlider");

// set the value of the slider to 7
slider.value(7);

// get the value of the slider
var sliderValue = slider.value(); // returns a number

Using values from a Kendo range slider
When setting or retrieving values from a range slider, you must communicate using
JavaScript arrays so that you can hold both values from the slider object.

// get a reference to the slider
var rangeSlider = $("#rangeSliderId").data("kendoRangeSlider");

// set the values for the range slider to 2 and 8
rangeSlider.value([2,8]);

// get the values from the range slider
var sliderValues = rangeSlider.value(); // returns an object array

Chapter 8

[197]

Hooking into events
Just as with the other Kendo UI widgets, event handlers can be bound during object
instantiation, or later through a JavaScript bind() method call. These examples will
only show the instantiation code.

Using the change event
The slider widgets will fire a change event when the user changes the value of a
slider either through clicking one of the arrows, moving the slider with the mouse,
or using the keyboard controls.

The change event for a Kendo slider widget
The change event for a Kendo slider widget can be bound and used like
the following:

$("#sliderId").kendoSlider({
 change: changeHandler,
 ...
});

...

function changeHandler (e){
 alert(e.value); // e.value contains the new value of the slider
}

The e.value property will contain the new value of the slider widget so that you can
respond to the event properly in your JavaScript code.

The change event for a Kendo range slider widget
The change event for a Kendo range slider widget can be bound as shown in the
following code snippet this. It differs from the change event for the slider widget in
that it passes an array to the event handler instead of a single value.

$("#rangeSliderId").kendoRangeSlider({
 change: changeHandler,
 ...
});

...

fuction changeHandler (e){

Slider Essentials

[198]

 alert(e.value.toString()); // e.value is an array of the new range
values
}

The slide event
The slide event is identical in syntax to the change event, but it only fires when
the user moves the slider by using the mouse, it will not fire for keyboard events or
button clicks. The preceding examples for the change event are valid for the slide
event as well.

$("#sliderId").kendoSlider({
 slide: changeHandler,
 ...
});

The change and slide events with MVC
extension methods
This is how event handlers can be wired up by using ASP.NET MVC extension
methods. Please note that the output is identical to the one outlined before; this is
simply the syntax necessary for executing the following code using MVC. See the
previous sections for more information.

.Events(events => events
 .Slide("slideHandler")
 .Change("changeHandler"))

Summary
The Kendo UI Slider and Kendo UI RangeSlider widgets are very handy tools for
collecting numbers for an input element in a web page. When collecting numbers that
must fall within a specified range, these widgets are much friendlier than returning
error messages to the user about a number being invalid. I would suggest using them
where appropriate to make your site much more interesting for your users.

In the next chapter, you will learn about the Splitter and the TreeView widgets
that allow you to load resizable dynamic content into your pages and to organize
hierarchical content in a tree-like display. These widgets will help you build
powerful pages that can handle and load content on the fly and display content
in organized patterns.

Implementing the Splitter
and TreeView Widgets

In this chapter, you will learn about two different widgets from the Kendo UI Web
framework, the Splitter widget and the TreeView widget. The Splitter widget is a
tool used for organizing content inside of a web page. It creates block-like regions
within the web page that can contain normal page elements or even additional
Splitter widget controls to further subdivide the content area. The TreeView widget
is a tool used for displaying data that is organized hierarchically, such as in tree.
A good example of data organized this way is a folder structure on a hard drive.
Folders can contain files or additional folders. When diagrammed, this creates a
nested structure such as a tree and is well suited for the TreeView widget.

The Splitter widget
The Kendo UI Splitter widget is a powerful tool for creating a dynamic page layout.
It generates bordered sections within a web page that can be resized, scrolled,
collapsed, and nested. These sections are built on top of div elements and extend
these underlying div elements with impressive functionality. As you see how to use
this widget throughout this section, I am sure you can imagine many ways of putting
it to use.

Learning the Splitter widget
The Kendo UI Splitter widget is designed to extend div HTML elements into flexible
content areas that can split up elements of your web pages, hence the name "splitter".
These content areas become resizable blocks that allow the user to choose which
portions of a page should occupy more of the visible screen. Each of these blocks can
be configured with specific behaviors and options, such as scroll bars and the ability
to collapse page elements with a single click.

Implementing the Splitter and TreeView Widgets

[200]

Here is a sample of some HTML markup that can be used with the Kendo UI
Splitter widget. Take special note of how the div elements are organized and nested;
it will become important when you see the JavaScript code that instantiates the
Kendo objects:

<div id="outerSections" style="height: 600px">
 <div id="outerTopSection" style="height: 200px">
 <div id="topSubSections" class="k-pane" style="height: 200px">
 <div style="height: 200px" class="k-pane"></div>
 <div style="height: 200px" class="k-pane"></div>
 </div>
 </div>
 <div id="outerMidSection" style="height: 200px" class="k-pane">
 <div class="k-pane"></div>
 </div>
 <div id="outerBottomSection" style="height: 200px" class="k-pane">
 <div id="bottomSubSections" class="k-pane" style="height: 200px">
 <div style="height: 200px" class="k-pane"></div>
 <div style="height: 200px" class="k-pane"></div>
 <div style="height: 200px" class="k-pane"></div>
 </div>
 </div>
</div>

The outer-most div, the one with the id value of outerSections, contains three
div elements between its tags. You can also see that each of these div elements
beneath the outerSections div contain child div elements of their own. These
child elements will become Kendo UI Splitter widget sections within the larger
outerSections area. Two of these child div elements, topSubSections and
bottomSubSections, also contain a further nested hierarchy that will become
nested Kendo UI Splitter widget sections within the outerTopSection and
outerBottomSection areas respectively.

In this JavaScript code block, you can see that there are three kendoSplitter
widgets created independently. The first Splitter widget is organized in a vertical
sequence; it is the outer-most area and will contain the following two Splitter widget
objects within itself. The second and third Splitter widget areas are organized
horizontally and are nested within other Splitter widget objects, as you will see in the
following screenshot:

<script type="text/javascript">
 $(function () {
 $("#outerSections").kendoSplitter({
 orientation: "vertical",
 panes: [

Chapter 9

[201]

 { collapsible: false, size: "200px", scrollable: false },
 { collapsible: false, size: "200px", scrollable: false },
 { collapsible: false, size: "200px", scrollable: false }
]
 });
 $("#topSubSections").kendoSplitter({
 orientation: "horizontal",
 panes: [
 { collapsible: true, scrollable: false },
 { collapsible: true, scrollable: false }
]
 });
 $("#bottomSubSections").kendoSplitter({
 orientation: "horizontal",
 panes: [
 { collapsible: true, scrollable: false },
 { collapsible: true, scrollable: false },
 { collapsible: true, scrollable: false }
]
 });
 });
</script>

You can see the three Splitter widget areas that are stacked vertically down
the page. The top-most area contains two horizontally stacked areas inside of it.
The bottom-most area contains three horizontally stacked areas. These all match
to the HTML and JavaScript code that you just saw.

Implementing the Splitter and TreeView Widgets

[202]

Loading content
The contents of the Splitter widget areas you just saw were all empty for the sake of
demonstration. This is not necessary, however. The content areas can contain all of
the normal HTML content that a div element would normally contain. For example,
you could fill some of the areas up with text, as done in the following code snippet:

<div id="topSubSections" class="k-pane" style="height: 200px">
 <div style="height:200px" class="k-pane">
 Lorem ipsum dolor sit amet, consectetur adipisicing elit...
 </div>
 <div style="height:200px" class="k-pane">
 Lorem ipsum dolor sit amet, consectetur adipisicing elit...
 </div>
</div>

This text will now appear within the Splitter widget box and be resized or collapsed
as necessary:

Loading content with AJAX
A more configurable method of populating the contents of these Splitter widget areas
is to load it via AJAX calls. To enable this functionality, simply use the contentUrl
property of the JavaScript object literal that defines a Splitter widget content area and
indicate the page that you want to load via AJAX. The Kendo UI Framework will
take care of the rest for you.

$("#bottomSubSections").kendoSplitter({
 orientation: "horizontal",
 panes: [
 { collapsible: true, scrollable: false },
 { collapsible: true, scrollable: false },
 { collapsible: true, scrollable: false,

Chapter 9

[203]

 contentUrl: "LoremIpsum.html" }
]
});

Hooking into Splitter events
The Kendo UI Splitter widget is equipped with a range of rich behaviors. Most of
these behaviors, whether enacted through a user action or through a method call,
trigger an event. Like any event in JavaScript, you can attach your own event handler
functions to these events and respond to the actions with your own custom code.
This section will show the different events available on the Kendo UI Splitter widget
and demonstrate how to hook into them.

The collapse event
The collapse event fires when a user collapses a Kendo UI Splitter widget section by
clicking on the collapse icon between two of the panes. This icon appears as a small
triangle that is pointing in the direction that the collapse action will move it. The
following is the code that is used to wire up the collapse event with an event handler:

// Binding during Splitter Widget creation
$("#splitterElement").kendoSplitter({
 ...
 collapse: collapseEventHandler
 ...
});

// Dynamic binding and unbinding
var splitter = $("#splitterElement").data("kendoSplitter");
splitter.bind("collapse", collapseEventHandler);
spliter.unbind("collapse", collapseEventHandler);

Implementing the Splitter and TreeView Widgets

[204]

The contentLoad event
The contentLoad event fires when content is loaded into a Kendo UI Splitter widget
pane. The normal use of this event is to react to the point when AJAX content has
finished loading from the remote source. The following is the code that is used to
wire up the contentLoad event with an event handler:

// Binding during Splitter Widget creation
$("#splitterElement").kendoSplitter({
 ...
 contentLoad: contentLoadEventHandler
 ...
});

// Dynamic binding and unbinding
var splitter = $("#splitterElement").data("kendoSplitter");
splitter.bind("contentLoad", contentLoadEventHandler);
spliter.unbind("contentLoad", contentLoadEventHandler);

The expand event
The expand event fires when a Kendo UI Splitter widget pane is expanded by a user
clicking on the expand icon after a pane has been collapsed. This icon appears as
small triangle pointing in the direction that the pane will expand when clicked, as
shown here:

The following is the code that is used to wire up the expand event with an
event handler:

// Binding during Splitter Widget creation
$("#splitterElement").kendoSplitter({
 ...
 expand: expandEventHandler
 ...
});

Chapter 9

[205]

// Dynamic binding and unbinding
var splitter = $("#splitterElement").data("kendoSplitter");
splitter.bind("expand", expandEventHandler);
spliter.unbind("expand", expandEventHandler);

The layoutChange event
The layoutChange event fires when the layout of a Kendo UI Splitter widget has
changed. This event is more generic than expand, collapse, and resize, so it
will often appear in conjunction with those events since all of them also indicate
that the layout has changed. The following is the code that is used to wire up the
layoutChange event with an event handler:

// Binding during Splitter Widget creation
$("#splitterElement").kendoSplitter({
 ...
 layoutChange: layoutChangeEventHandler
 ...
});

// Dynamic binding and unbinding
var splitter = $("#splitterElement").data("kendoSplitter");
splitter.bind("layoutChange", layoutChangeEventHandler);
spliter.unbind("layoutChange", layoutChangeEventHandler);

The resize event
The resize event is fired when a user drags the handle between two Kendo UI
Splitter widget panes in order to resize them. This event is also triggered during
collapse and expand. The following is the code that is used to wire up the resize
event with an event handler:

// Binding during Splitter Widget creation
$("#splitterElement").kendoSplitter({
 ...
 resize: resizeEventHandler
 ...
});

// Dynamic binding and unbinding
var splitter = $("#splitterElement").data("kendoSplitter");
splitter.bind("resize", resizeEventHandler);
spliter.unbind("resize", resizeEventHandler);

Implementing the Splitter and TreeView Widgets

[206]

Making calls to Splitter API methods
The Kendo UI Splitter widget is equipped with a range of methods that enable its
rich behaviors. Most of these methods, when fired, trigger an event. Like any event
in JavaScript, you can attach your own event handler functions to these events
and respond to the actions with your own custom code. This section will show the
different methods available on the Kendo UI Splitter widget.

Getting a reference to the splitter object
The first thing to remember when working with methods on all Kendo UI widgets
is that you must get a reference to the JavaScript object before these methods
are available. To do this, you must use the JavaScript method .data(). Here is
an example:

var splitter = $("#splitterElement").data("kendoSplitter");

Notice how jQuery is used to select the Document Object Model (DOM) element
where the Kendo UI Splitter widget has been created and then the .data() function
has been called with the parameter text kendoSplitter indicating the type of object
that we are trying to get. Now that the Kendo UI Splitter widget instance has been
retrieved, methods can be called from the splitter variable directly.

splitter.collapse("#outerPane");

Using the ajaxRequest method
The ajaxRequest method is used to load AJAX content into a specific Kendo UI
Splitter widget pane. This method takes three parameters. The first parameter is a
string used to select the specific pane into which the AJAX content should be loaded.
It uses jQuery syntax to select the element, so to select an element with an id value
of pane1, you would use #pane1 to select it. The second parameter is the URL of the
remote endpoint that contains the content to load into the pane. The third parameter
is optional and is used to send data to the remote endpoint if it takes parameters in
order to send the data back. Here is a code sample showing the method in action:

// Get a reference to the Kendo UI Splitter Widget
var splitter = $("#splitterElement").data("kendoSplitter");

// Call the ajaxRequest method
splitter.ajaxRequest("#pane1", "someContent.html");

Note that this method will cause the contentLoad
event to fire.

Chapter 9

[207]

Using the collapse method
The collapse method is used to collapse a specific Kendo UI Splitter widget pane.
This method takes one parameter. The parameter is a string used to select the specific
pane which should be collapsed. It uses jQuery syntax to select the element, so to
select an element with an id value of pane2, you would use #pane2 to select it. Here
is a code sample of the method in action:

// Get a reference to the Kendo UI Splitter Widget
var splitter = $("#splitterElement").data("kendoSplitter");

// Call the collapse method
splitter.collapse("#pane2");

Note that this method will cause the layoutChange and resize
events to fire, but it will not cause the collapse event to fire since the
user did not initiate the action with the mouse.

Using the expand method
The expand method is used to expand a specific Kendo UI Splitter widget pane.
This method takes one parameter. The parameter is a string used to select the specific
pane which should be expanded. It uses jQuery syntax to select the element, so to
select an element with an id value of pane2, you would use #pane2 to select it.
Here is a code sample of the method in action:

// Get a reference to the Kendo UI Splitter Widget
var splitter = $("#splitterElement").data("kendoSplitter");

// Call the expand method
splitter.expand("#pane2");

Note that this method will cause the layoutChange and resize
events to fire, but it will not cause the expand event to fire since the
user did not initiate the action with the mouse.

Implementing the Splitter and TreeView Widgets

[208]

Using the max and min methods
The max and min methods are used to set the maximum or minimum size of a
specific Kendo UI Splitter widget pane. These methods take two parameters. The first
parameter is a string used to select the specific pane that will be configured. It uses
jQuery syntax to select the element, so to select an element with an id value of pane3,
you would use #pane3 to select it. The second parameter is a string value representing
the new maximum or minimum size. This value is represented either as a number of
pixels or as a percentage. Here is a code sample of the method in action:

// Get a reference to the Kendo UI Splitter Widget
var splitter = $("#splitterElement").data("kendoSplitter");

// Call the max method
splitter.max("#pane3", "300px");

// Call the min method
splitter.min("#pane3", "25%");

Note that this method will not cause any events to fire.

Using the size method
The size method is used to set the size of a specific Kendo UI Splitter widget pane.
This method takes two parameters. The first parameter is a string used to select the
specific pane that will be configured. It uses jQuery syntax to select the element,
so to select an element with an id value of pane4, you would use #pane4 to select
it. The second parameter is a string value representing the new size. This value is
represented either as pixels or as a percentage. It must fall within the range of the
max and min size values. Here is a code sample of the method in action:

// Get a reference to the Kendo UI Splitter Widget
var splitter = $("#splitterElement").data("kendoSplitter");

// Call the size method
splitter.size("#pane4", "300px");

Note that this method will cause the layoutChange and
resize events to fire.

Chapter 9

[209]

Using the toggle method
The toggle method is used to switch the state of a specific Kendo UI Splitter widget
pane between collapsed and expanded. If the pane is currently expanded, the toggle
method will collapse it. If the pane is currently collapsed, the toggle method will
expand it. This method takes two parameters. The first parameter is a string used
to select the specific pane that will be toggled. It uses jQuery syntax to select the
element, so to select an element with an id value of pane5, you would use #pane5
to select it. The second parameter is an optional Boolean value (true or false) that
indicates a specific state that the pane should be set to irrespective of its current state.
A value of true sets the pane to an expanded state. A value of false sets the pane to
a collapsed state. Here is a code sample of the method in action:

// Get a reference to the Kendo UI Splitter Widget
var splitter = $("#splitterElement").data("kendoSplitter");

// Call the toggle method
splitter.toggle("#pane5");

// Force the pane to expand
splitter.toggle("#pane5", true);

// Force the pane to collapse
splitter.toggle("#pane5", false);

Note that this method will cause the layoutChange and resize
events to fire, but it will not trigger the collapse or expand events.

TreeView
The Kendo UI TreeView widget is a useful widget when you need to display data
that is organized hierarchically. Files on a hard disk and business organizational
structures are good examples of data that is organized in this way. The data has a
top-level element (such as root folder or a CEO) and then has several individual
elements (such as files or employees) and groups (such as folders or departments)
beneath that top-level element. Each group can have further levels of groups such
that the final diagram can be imagined as a tree with a root and many branches
(groups of elements) that divide many times and ultimately end with leaves
(individual elements). As you can imagine, data like this is not always very easy
to visualize and lay out on a web page. Fortunately, the Kendo UI TreeView
widget comes to our rescue as an easy way to display this data complete with rich
interaction and configuration options.

Implementing the Splitter and TreeView Widgets

[210]

Learning TreeView
The Kendo UI TreeView widget is designed to work with data that is nested in HTML
unordered lists. These are a natural fit for a TreeView to work since they can be nested
hierarchically just as Kendo UI intends to display and organize them. Much like the
other Kendo UI widgets that organize data, the TreeView widget can be instantiated
on top of HTML that has already been rendered on a web page or it can build the
HTML itself when fed data through a data source object. Here is a simple example of
instantiating a Kendo UI TreeView widget on top of pre-rendered HTML:

<div class="demo-section">
 <ul id="treeview">
 <li data-expanded="true">
 Organization Chart

 <li data-expanded="true">
 Administration

 Office Manager
 Resource Manager
 Administrative Assistant

 <li data-expanded="true">
 Consulting

 <li data-expanded="true">
 Software Development

 Desktop Applications
 Web Applications

 Business Intelligence

 Special Projects
 Portals and Collaboration

</div>
<script>
 $(document).ready(function () {

Chapter 9

[211]

 $("#treeview").kendoTreeView();
 });
</script>

This page shows an organization chart categorized by department and job function.
As you can see in the following screenshot, the Kendo UI TreeView widget does
a nice job of displaying this. The HTML is capable of rendering hierarchical data
without any assistance from the Kendo UI Framework, but ordinary HTML does not
offer collapsible sections or any of the other special behaviors that you will see as
you read on in this section.

Binding to a data source
As you just saw, the Kendo UI TreeView widget is designed to work either on top
of existing HTML markup or it can bind to a JavaScript data source. Much like the
other Kendo UI widgets that are designed to display and organize data, this data is
best contained within a Kendo DataSource object that supports the many functions
inherent within the Kendo Framework. To display the page that you saw earlier in
this fashion, you can use the following code:

<script>
 $(document).ready(function () {
 var orgChart = [{
 text: 'Organization Chart', expanded: true, items: [
 { text: 'Administration', expanded: true, items: [
 { text: 'Office Manager' },
 { text: 'Resource Manager' },
 { text: 'Administrative Assistant' }
]
 },
 { text: 'Consulting', expanded: true, items: [

Implementing the Splitter and TreeView Widgets

[212]

 {
 text: 'Software Development', expanded: true, items: [
 { text: 'Desktop Applications' },
 {text: 'Web Applications'}
]
 },
 {text: 'Business Intelligence'}
]
 },
 { text: 'Special Projects' },
 { text: 'Portals and Collaboration' }
]
 }];
 $("#treeview").kendoTreeView({
 dataSource: orgChart
 });
 });
</script>

Notice how each element can contain its own list of child elements through the
items property, such as how the Software Development group contains two child
elements: Desktop Applications and Web Applications. These child elements
can also contain their own list of child elements, and so on. This is how a tree of data
is formed and this is how the Kendo UI TreeView widget processes the data into a
graphical tree on the web page. As with any Kendo DataSource connection, the data
can be bound to a remote source and does not have to be hardcoded into the page.

Using drag and drop
Since the Kendo UI TreeView widget is enabled with special functionality through the
Kendo Framework, it can do much more than standard HTML unordered lists. One
of these special functions is dragAndDrop. When this feature is enabled on a Kendo UI
TreeView widget, the user can click on an element in a TreeView and drag it around
to anywhere else on that TreeView. Not only this, but if there are multiple TreeView
widgets on the same page with drag and drop enabled, the user can drag elements
from one TreeView widget to another! To enable this functionality, all you have to do
is set the dragAndDrop property of the Kendo UI TreeView widget to true.

$(document).ready(function() {
 $("#treeview").kendoTreeView({
 dataSource: files,
 dragAndDrop: true
 });
});

Chapter 9

[213]

When this has been enabled, the elements of the TreeView widget show a darkened
background as a mouse hovers over them to help instruct the user that they are
interactive. When an element in the TreeView is dragged, an icon appears next to it
to help indicate what action will happen when the mouse button is released. The +
sign indicates that an item will be added to a hierarchical section, as shown in the
following screenshot:

However, if the mouse is hovering in a position that will leave the item within a list,
the icon changes to a picture that looks like a short list of items. At the same time,
a small line will appear within the list that will receive the item to indicate where it
will be placed, as shown here:

Implementing the Splitter and TreeView Widgets

[214]

Configuring animation effects
You may have already noticed that the Kendo UI TreeView widget places small
triangular icons next to each section of the tree layout where items exist underneath
another item. If you click on one of these triangular icons with your mouse, the
section will either collapse into a hidden state or will expand into a visible state.
When this transition between hidden and visible occurs, the Kendo UI Framework
will animate it with some effects that make it visually appealing. These effects can be
configured to suit your own personal preference:

$("#treeview").kendoTreeView({
 ...
 animation: {
 expand: { // configure the expand animation
 duration: 200, // milliseconds of animation
 hide: false, // ?
 show: true, // ?
 effects: "expandVertical fadeIn" // one or both of these
 },
 collapse: { // configure the collapse animation
 duration: 200, // milliseconds of animation
 hide: false, // ?
 show: true, // ?
 effects: "fadeOut" // "fadeOut" is the only option here
 }
 }
 ...
});

Displaying images
The Kendo UI TreeView widget is designed to enable an attractive layout for your
content. To this end, the Kendo UI Framework has built-in support for displaying
small images inside of the TreeView widget next to the items that you are displaying.
This can be done in one of two ways. The first way is to use individual image files
for each image that you want to display. The second way is to use a CSS sprite image
that contains many images together that are offset by a certain number of pixels.

Chapter 9

[215]

To use individual image files in a Kendo UI TreeView widget, you can use the
imageUrl property of the TreeView items. The following is how this appears in code:

var orgChart = [{
 text: 'Organization Chart', expanded: true, items: [
 {
 text: 'Administration', expanded: true,
 imageUrl: '/Images/icon-organizational-chart.gif',
 items: [
 { text: 'Office Manager' },
 { text: 'Resource Manager' },
 { text: 'Administrative Assistant' }
]
 },
 {
 text: 'Consulting', expanded: true,
 imageUrl: '/Images/icon-organizational-chart.gif',
 items: [
 {
 text: 'Software Development', expanded: true, items: [
 { text: 'Desktop Applications' },
 {text: 'Web Applications'}
]
 },
 {text: 'Business Intelligence'}
]
 },
 {
 text: 'Special Projects',
 imageUrl: '/Images/icon-organizational-chart.gif',
 },
 {
 text: 'Portals and Collaboration',
 imageUrl: '/Images/icon-organizational-chart.gif',
 }
]
}];

Implementing the Splitter and TreeView Widgets

[216]

Using images like this renders the graphics against the left side of the TreeView
widget directly in-line with the text of each TreeView item that is decorated with
an imageUrl property, as shown in the following screenshot:

The other way to use images with your TreeView widget is to reference them from a
CSS sprite image file. By using sprite images, you can decrease the number of times
your web page has to call the server for separate image files and this can increase the
performance of your site. If you have a sprite image that contains your images, you
can reference it as follows in code:

<style type="text/css">
.org{
 background-image: url('/Images/icon-organizational-chart.gif');
 max-height: 25px;
 max-width: 25px;
 }
</style>
<script>
 $(document).ready(function () {
 var orgChart = [{
 text: 'Organization Chart', expanded: true, items: [
 {
 text: 'Administration', expanded: true,
 spriteCssClass: 'org',
 items: [
 { text: 'Office Manager' },
 { text: 'Resource Manager' },
 { text: 'Administrative Assistant' }
]
 },
 ...

Chapter 9

[217]

Using sprites like this renders the graphics against the left side of the TreeView
widget directly in-line with the text of each TreeView item that is decorated with
an imageUrl property, similar to how the images were rendered previously.

Using templates
The Kendo UI TreeView widget is highly configurable. Along with the ability to add
images and sprites, as you just saw in the previous section, it can also be customized
through the use of Kendo templates. These templates can be used to create a display
that is customizable into any display that you want. As an example, consider the
following code sample that is used to create a special TreeView display with icons
to the right of each item that can be clicked to remove the item from the Tree
View display:

<script id="treeview-template" type="text/kendo-ui-template">
 #: item.text #
 # if (!item.items) { #
 [x]
 # } #
</script>

<script>
$("#treeview").kendoTreeView({
 template: kendo.template($("#treeview-template").html()),
 ...
});

// Delete button behavior

Implementing the Splitter and TreeView Widgets

[218]

$(document).on("click", ".delete-link", function(e) {
 e.preventDefault();
 var treeview = $("#treeview").data("kendoTreeView");
 treeview.remove($(this).closest(".k-item"));
});
</script>

First, notice the template block at the top of the code sample. The template is
specifying that the item text is displayed. Then, only if the item does not have
a collection beneath it, the anchor link is displayed that can be clicked to delete
the item from the TreeView widget. Second, notice that the template is set in the
TreeView setup code using the template property. Finally, notice that the anchor
link's behavior has been wired up using an event handler. The function to delete
an item from a TreeView relies on the TreeView API and must be wired up using
JavaScript. Here is a screenshot of the way this looks on a web page:

Hooking into TreeView events
The Kendo UI TreeView widget fires several different types of events during
the course of its operation. These events provide you, the developer, with the
opportunity to run your own code in response to actions that the TreeView runs
as it operates. Some of these actions are directly related to user involvement, such
as when a user clicks on something. Some of them are more indirect and fire as the
TreeView widget changes its state such as when it loads content. Since there are a
large number of events associated with the TreeView widget, we will examine them
here with brief descriptions for each one:

•	 collapse: The collapse event fires when the user clicks on an arrow icon
that causes a section of the TreeView widget to collapse.

Chapter 9

[219]

•	 dataBound: The dataBound event is triggered after the data source change
event has been processed, such as when items are added or removed from
the data source or when the data source is initially populated.

•	 drag: The drag event is triggered when an item is dragged from or within a
TreeView widget. The drag event supplies a lot of very specific details about
its location to the event handler which can be used in your custom code.

•	 dragEnd: The dragEnd event is triggered when an item has been released at
the end of the drag action and it is inserted back into a TreeView widget in a
new location.

•	 dragStart: The dragStart event is triggered at the start of a drag action as
the user begins to drag an item from a TreeView widget.

•	 drop: The drop event is triggered when an item is dropped after a drag
action. The drop event supplies a lot of very specific details about its location
to the event handler which can be used in your custom code.

•	 expand: The expand event fires when the user clicks on an arrow icon that
causes a section of the TreeView widget to expand.

•	 select: The select event is triggered when a node is selected by a user
clicking on it with the mouse.

•	 navigate: The navigate event is triggered when the focus changes from one
TreeView node to something else on the page.

Making calls to the TreeView API methods
The Kendo UI TreeView widget is equipped with a wide range of methods that
enable its rich behaviors. These methods allow you to manipulate the TreeView
widget manually in all of the ways that it supports. By using these API methods,
you can configure and engage the TreeView widget however your application needs.
Like the events section just discussed, there are many methods that the TreeView
widget supports. I will list them all here with brief descriptions:

•	 append: The append method appends an element to the end of an existing
TreeView widget section.

•	 collapse: The collapse method collapses an expanded TreeView
widget section.

•	 dataItem: The dataItem method retrieves a model data item that is bound
to a TreeView widget element.

•	 enable: The enable method enables or disables a TreeView widget element.
•	 expand: The expand method expands a collapsed TreeView widget section.

Implementing the Splitter and TreeView Widgets

[220]

•	 findByText: The findByText method finds a TreeView element by its
text value.

•	 findByUID: The findByUID method finds a TreeView element by its
UID value.

•	 insertAfter: The insertAfter method inserts a new element after the
specified element in a TreeView widget.

•	 insertBefore: The insertBefore method inserts a new element before the
specified element in a TreeView widget.

•	 parent: The parent method retrieves the parent of an element in
a TreeView widget.

•	 remove: The remove method removes an element from a TreeView widget.
•	 select: The select method marks an element in a TreeView widget

as selected.
•	 setDataSource: The setDataSource method sets the data source of a

TreeView widget.
•	 text: The text method can get or set the text value of an element in a

TreeView widget.
•	 toggle: The toggle method collapses an expanded TreeView section or

expands a collapsed TreeView section.

Summary
The Kendo UI Splitter and the Kendo UI TreeView widgets offer a lot of functionality
as you develop your web pages. The Splitter widget is an impressive tool in
organizing content sections that are collapsible, expandable, and resizable. This type of
functionality is not normally so easy. The TreeView widget offers a feature-rich version
of a hierarchical unordered HTML list with some very useful features for graphics,
collapsible tree sections, and a large number of methods and events. Both of these
widgets should add a lot of value to your web site.

In the next chapter, you will learn about two final widgets from the Kendo UI Web
Framework, the Window and the Upload widgets. The Window widget allows
you create and manage modal pop-up pages with specialized content. The Upload
widget gives you a richer set of features around the traditional HTML upload
element for a great file-upload experience for the users of your website.

The Upload and Window
Widgets

Modern web applications have advanced to the point that file uploads and dialog
boxes have matured from simple, unattractive HTML elements into interactive and
customizable controls. This powerful functionality does not come for free, however;
it requires well written JavaScript and CSS styling. The Kendo UI Framework for the
Web provides prebuilt controls that give you this functionality for very little effort.
This chapter will explore these controls and illustrate their use.

Uploading files
File uploads have traditionally been a clumsy element within web pages. Uploading
multiple files was an even worse experience, often requiring multiple HTML upload
elements which forced users to click on a separate button for every file. The Kendo
UI Framework provides a specialized Upload widget that helps both users and
developers in this process. Instead of clicking on buttons for every file, users can
simply drag and drop as many files as necessary onto a web page and have them
upload automatically, and asynchronously, in the background. Developers, likewise,
can program to receive multiple files simultaneously and receive file uploads
through JavaScript without causing web pages to become slow and unresponsive.

The Upload and Window Widgets

[222]

Learning the Upload widget
Since the Upload widget is designed to upload the contents of one or more files to
a server, even the most basic implementation of this widget requires a server that
can accept file uploads. You can accomplish this by using your ASP.NET MVC
project. To receive the file uploads, you need to create an action method that accepts
IEnumerable<HttpPostedFileBase> as an input parameter. The following is how
the server will receive the files from the Kendo UI Upload widget:

// Action method to receive uploaded files
[HttpPost] // This attribute guarantees that only
 // Form POST requests can call this action method
public ActionResult Submit(IEnumerable<HttpPostedFileBase> files)
{
 if (files != null)
 {
 // ...
 // Process the files and save them
 // ...
 }

 return View();
}

With this server code in place to receive the uploaded files, you can now build the
page that will host the Kendo UI Upload widget from where the user will choose
the files to upload. The following code sample shows an HTML form that has been
configured for use as a Kendo UI Upload widget. Take special note that the form has
two required input elements: a file input and a submit input. These are the normal
input elements that you should expect for any form that uploads files, but in this
case, there is also a script element that creates a special Kendo UI Upload widget
on the file upload element.

Here is the HTML for the index view:

<form method="post" action="submit" style="width:45%">
 <div>
 <input name="files" id="files" type="file" /> // HTML file upload
 <p>
 <input type="submit" value="Submit" class="k-button" /> //
Submit button
 </p>
 </div>
</form>
<script>

Chapter 10

[223]

 $(document).ready(function() {
 $("#files").kendoUpload(); // Create the Kendo Upload Widget
 });
</script>

The following is how this markup will appear on an actual web page. Take special
note that the file input element is displayed as a button instead of the normal style
that you see with default HTML.

With all of this in place, you can click on the Select button to choose a file to upload
to the server. Once you have selected that file and clicked OK, the server will
receive the file and will run any processing instructions that you have set in
the server-side code.

The Upload and Window Widgets

[224]

The preceding screenshot shows the file selection dialog that will appear on the
user's computer, so that he or she can choose the files to upload.

By adding a breakpoint within the action method code that receives the uploaded
files, you can see how ASP.NET MVC interprets the posted data using Visual Studio
2012. The following is a screenshot of an uploaded file and the objects that display
information about that uploaded file. In this case, I uploaded a small text file called
Reflection.linq. You can see that the web server has received the file successfully
and is able to process it as you see fit. This screenshot is showing Visual Studio
in debug mode, which allows us to see the internal state of objects. Also, in this
screenshot, we can see that the first object in the IEnumerable<HttoPostedFileBase>
is a file with the FileName property value of Reflection.linq:

Enabling asynchronous uploads
While the upload experience that we just saw is already a superior experience to a
traditional HTML upload element, the experience can get much better. JavaScript is
now capable of sending file uploads asynchronously, or in the background, which
means that the user does not have to submit a form that causes the page to reload. In
other words, the process can run faster and smoother and requires less involvement.
To enable this functionality, all you have to do is add the async configuration property
to the Kendo Upload widget instantiation block. The following code sample shows
how to do it:

<form method="post" action="submit" style="width:45%">
 <div>
 <input name="files" id="files" type="file" />
 <p>
 <input type="submit" value="Submit" class="k-button" />
 </p>
 </div>
</form>

Chapter 10

[225]

<script>
 $(document).ready(function() {
 $("#files").kendoUpload(
 {
 async: { // async configuration
 saveUrl: "save", // the url to save a file is '/save'
 removeUrl: "remove", // the url to remove a file is '/remove'
 autoUpload: true // automatically upload files once selected
 }
 }
);
 });
</script>

This functionality also requires some changes to the server. Although the majority
of this code is the same as in the earlier example, this action method returns
ContentResult instead of an ActionResult, because this action method is not
sending a new web page back to the browser. Instead, it sends back a string result that
notifies the JavaScript in the web page that the file upload(s) completed successfully. If
something goes wrong with the file upload(s), the server will send an error code, such
as a code 500 internal server error.

public ContentResult Save(IEnumerable<HttpPostedFileBase> files)
{
 // The Name of the Upload component is "files"
 if (files != null)
 {
 foreach (var file in files)
 {
 // ...
 // Process the files and save them...
 // ...
 }

 // Return an empty string to signify success
 return Content("");
}

The Upload and Window Widgets

[226]

Uploading multiple files simultaneously
By default, the Kendo UI Upload widget enables uploading multiple files at the same
time, but you can specify this setting explicitly, as in the following code sample:

<script>
 $(document).ready(function() {
 $("#files").kendoUpload(
 {
 multiple: true
 }
);
 });
</script>

To upload multiple files, use the Ctrl key while you click on the files in the upload
window. See the following screenshot for a display of multiple files selected at
once. When you click the OK button, all of the files will be uploaded together to
the server and will be processed in a single transaction. No more multiple buttons
and dialogs required!

Chapter 10

[227]

Removing uploaded files
As files are uploaded with the Kendo UI Upload widget, you will see a list of the
filenames appear on the page in the file upload area. If you are using the standard
upload behavior, not the async configuration, the files listed on the page have
not yet been uploaded to the server. Rather, their filenames have been stored in
preparation for when you click the Submit button on the page to submit the HTML
with the files attached. You can see a list of files in the following screenshot that have
been marked for upload; they have not yet been sent to the server:

Since these files have not yet been uploaded, you can click the Remove button beside
any of these files to remove them from the list without any side effects. If you are
using the asynchronous file upload functionality, however, the files are uploaded
instantly to the server and there is no way to remove them until they have already
been fully uploaded. As you can see in this next screenshot, this file has already been
loaded asynchronously to the server and has already been saved somewhere by that
sever code:

There is still a way to remove the file, but it requires some extra code on the server to
make this work. Specifically, for removing asynchronous automatic uploads, another
controller action method is required. This action method receives a list of one or
more file names and deletes them from the server since they have already been
uploaded and saved. The Kendo UI Upload widget calls this method automatically
when the Remove button is clicked on the page.

public ContentResult Remove(string[] fileNames)
{
 // The parameter of the Remove action must be called "fileNames"

The Upload and Window Widgets

[228]

 if (fileNames != null)
 {
 foreach (var fullName in fileNames)
 {
 // ...
 // delete the files
 // ...
 }
 }

 // Return an empty string to signify success
 return Content("");
}

Tracking upload progress
While a file is being uploaded asynchronously, you can see the progress of the
upload with a progress bar displayed beneath the filename and a swirling circle
of dots to indicate that the action is still occurring. The following screenshot shows
a file upload in progress:

Cancelling an update in progress
While a file upload is taking place asynchronously, a button will appear beside the
progress bar for cancelling the upload. If you click this button, it will attempt to
cancel the asynchronous upload that is in progress. You should note that cancelling
asynchronous uploads is never a guaranteed success. Most file uploads occur very
quickly and it is unlikely that you will be able to cancel it in time. Also, even if you are
able to click the Cancel button in time, the process will still continue for a short period
of time before the background threads respond to the cancellation. This is just to say
that cancelling a file upload may work, but it also may not and it is hard to predict
either way.

Chapter 10

[229]

Using file drag and drop
If you are using the asynchronous file upload functionality, there is another special
feature that you can take advantage of. Since the asynchronous file upload processes
the files immediately through JavaScript, the web page can enable some special
behavior, such as dragging and dropping files onto the page using your mouse. This
functionality is also enabled by default, so you can take advantage of it without any
further configuration. All you have to do is drag a file from your computer and drop it
on the screen where the Kendo UI Upload widget is present. As you drag the file onto
the page, you will see the page react by showing some text instructing the user where
to drop the file. When the file is dropped, the upload starts immediately.

The Kendo UI Window widget
JavaScript has long supported pop-up windows that can send messages to a user
in a web browser. These messages can be simple text for the user to see, they can be
confirmation boxes to ask permission, or they can even sometimes prompt the user
to enter some information. Of course, these pop-up messages have two big problems.
First, they are unattractive and have the appearance of a system message instead of a
coherent portion of a website. Second, they have been so overused and abused in the
past that many users disable them entirely or make it a habit to avoid sites that use
them because they are annoying at best and a potential security risk at worst.

Modern web programmers have found a solution to this problem. JavaScript
frameworks have been created that can create a different kind of pop-up message.
Instead of using the actual system prompts that JavaScript did in the past, they have
found a way to display hovering HTML div elements that are not actual pop-up
messages at all, they are a true portion of the page that can be hidden or displayed
on demand. The Kendo UI Window widget is a tool to build these nice hovering
page elements.

The Upload and Window Widgets

[230]

Since the underlying concept to this technology is hiding and displaying specific
HTML div elements, the basic use of this widget is simply to create a Kendo UI
Window widget directly on a div tag. This will hide it until you are ready to
show it and, once you are ready to show it, it will animate it onto the screen as a
hovering element above the rest of your page. See the following code sample for
a basic example:

<div id="window">
 <p>Windows Azure is a cloud computing platform
 and infrastructure, created by Microsoft, for building,
 deploying and managing applications and services through
 a global network of Microsoft-managed datacenters.
 It provides both platform as a service (PaaS) and
 infrastructure as a service (IaaS) services and supports
 many different programming languages, tools and frameworks,
 including both Microsoft-specific and third-party software
 and systems. Windows Azure is Microsoft's competing product
 to Amazon's AWS cloud computing platform, Google App Engine,
 and other systems.</p>
</div>
<button id="windowButton">See Details</button>
<script>
 $(document).ready(function() {
 $("#window").kendoWindow({
 width: "600px",
 title: "About Windows Azure",
 close: onClose
 });

 var onClose = function(){
 $("#windowButton").show();
 };

 $("#windowButton").on("click", function(){
 $("#window").data("kendoWindow").open();
 $("#windowButton").hide();
 });
 });
</script>

Chapter 10

[231]

You can see the Kendo UI Window widget being created over the HTML element
with an id value of window. The button with the ID of windowButton is wired up to
open the Window widget and the event handlers hide this button while the Window
widget is open and then show it again when the Window widget is closed.

The markup inside your div will be the markup inside the Window widget when
it appears. This means that all of your styles and layouts are still shown properly in
the same way as the rest of your page; there is no disconnect. The following is how
this code looks when rendered on the page. Notice that the content of the Kendo UI
Window widget is not yet shown, it must first be activated through an event; in this
case that event is clicking on the Show Window button:

This is how the Kendo UI Window widget looks when it is activated:

Customizing Window actions
The Kendo UI Window widget adds some default functionality to all windows that it
creates. There is a button at the upper-right corner of the window, which is used as a
close button, there is a title bar to give the purpose of the window content clear to the
user, and the window is resizable if a user clicks one of the edges with a mouse and
drags it. The buttons that appear in the upper-right corner of the Window widget can
be customized for your web page and specific needs.

The Upload and Window Widgets

[232]

As you see, the only button that appears by default is the close button. However,
there are three other buttons that can be added very easily: Refresh, Minimize,
and Maximize. These buttons already have default functionality attached to them.
The Refresh button will refresh the content inside the Window widget if it has
been loaded from a remote source. The Minimize button will reduce the size of the
Window widget to just the title bar. The Maximize button will enlarge the Window
widget so that it takes up the entire web browser's screen size. After you click
either the Minimize or Maximize buttons, a new special button appears for the sole
purpose of restoring the Window widget back to its original position and size. Here
is the code you need to use in order to enable these actions in your Window widget:

<script>
 $(document).ready(function() {
 $("#window").kendoWindow({
 width: "600px",
 title: "About Windows Azure",
 actions: ["Minimize", "Maximize", "Close"],
 close: onClose
 });

 var onClose = function(){
 $("#windowButton").show();
 };

 $("#windowButton").on("click", function(){
 $("#window").data("kendoWindow").open();
 $("#windowButton").hide();
 });
 });
</script>

Chapter 10

[233]

Here is how the Window widget appears with these actions enabled:

Here is a minimized Window widget, note that the Minimize button has been
changed to the button which will restore the original size and shape of the window:

Here is a maximized Window widget in the next screenshot. Note that the Maximize
button has been changed to the button that will restore the original size and shape of
the window:

The Upload and Window Widgets

[234]

Loading content with AJAX
All of the examples you have seen so far have displayed local content in the Window
widget, or content already embedded in the web page. This is only useful in limited
scenarios. The Window widget is much more flexible when it can load content from
external sources, such as other web pages in your overall site. To make this work,
you need to configure the Window widget with a content source. You can see an
example of this in the following code sample:

<script>
 $(document).ready(function() {
 $("#window").kendoWindow({
 width: "600px",
 title: "Rams's Ten Principles of Good Design",
 content: "OtherPage.html",
 close: onClose
 });

 var onClose = function(){
 $("#windowButton").show();
 };

 $("#windowButton").on("click", function(){
 $("#window").data("kendoWindow").open();
 $("#windowButton").hide();
 });
 });
</script>

With this enabled, the Window widget will load and display this external content
as soon as it is activated. This has the added benefit that the loaded content is not
downloaded until necessary, so the page will load somewhat faster. Here is a Window
widget that has loaded external content in this way:

Chapter 10

[235]

Using the animation effects
When the Window widget is activated on the page, it animates onto the screen
with some pleasant effects. By default, it will use the zoom effect which makes the
Window widget appear as if it zooms in from a very small object into the full size.
The other available effects are the toggle effect, the expand effect, and a choice of
whether or not the Window widget animation should start as semi-transparent. The
following code sample shows the animation effects as they are configured by default:

Note that no special animation configuration is included. The only way
to run the default animation is to leave the animation configuration
element out of the setup.

<script>
 $(document).ready(function() {
 $("#window").kendoWindow({
 width: "600px",
 title: "About Alvar Aalto"
 }
 close: onClose
 });

The Upload and Window Widgets

[236]

 var onClose = function(){
 $("#windowButton").show();
 };

 $("#windowButton").on("click", function(){
 $("#window").data("kendoWindow").open();
 $("#windowButton").hide();
 });
 });
</script>

To enable the toggle animation, change the code so that it appears like the following
code sample. The toggle animation is actually the absence of a special animation,
so that the Window Widget appears or disappears immediately instead of going
through a graphical transition.

<script>
 $(document).ready(function() {
 $("#window").kendoWindow({
 width: "600px",
 title: "About Alvar Aalto",
 animation: {
 open: {
 effects: ""
 },
 close: {
 effects: ""
 }
 }
 close: onClose
 });

 var onClose = function(){
 $("#windowButton").show();
 };

 $("#windowButton").on("click", function(){
 $("#window").data("kendoWindow").open();
 $("#windowButton").hide();
 });
 });
</script>

Chapter 10

[237]

To enable the expand animation, change the code so that it appears like the following
code sample. The reverse configuration property is used to reverse the animation
for the close effect.

<script>
 $(document).ready(function() {
 $("#window").kendoWindow({
 width: "600px",
 title: "About Alvar Aalto",
 animation: {
 open: {
 effects: "expand:vertical"
 },
 close: {
 effects: "expand:vertical",
 reverse: true
 }
 }
 close: onClose
 });

 var onClose = function(){
 $("#windowButton").show();
 };

 $("#windowButton").on("click", function(){
 $("#window").data("kendoWindow").open();
 $("#windowButton").hide();
 });
 });
</script>

The transparency effect can be used with any of these animation effects, and it is
enabled or disabled separately. The following code sample shows how to enable or
disable the animation. The only difference from the previous example is the extra
string value fadeIn at the end of the effects property values.

<script>
 $(document).ready(function() {
 $("#window").kendoWindow({
 width: "600px",
 title: "About Alvar Aalto",
 animation: {
 open: {
 effects: "expand:vertical fadeIn"

The Upload and Window Widgets

[238]

 },
 close: {
 effects: "expand:vertical fadeIn",
 reverse: true
 }
 }
 close: onClose
 });

 var onClose = function(){
 $("#windowButton").show();
 };

 $("#windowButton").on("click", function(){
 $("#window").data("kendoWindow").open();
 $("#windowButton").hide();
 });
 });
</script>

Using the Window widget events
The Kendo UI Window widget provides a set of events that fire in response to
various user events. Since there a number of these, I will list them here with brief
descriptions for each one:

•	 Activate: This event fires when the Window widget animation completes
after opening

•	 Close: This event fires when the Window widget is closed
•	 Deactivate: This event fires when the Window widget animation completes

after closing
•	 Dragend: This event fires when a user finishes dragging a Window widget

with a mouse
•	 Dragstart: This event fires when a user starts to drag a Window widget

with the mouse
•	 Error: This event fires when a Window widget encounters an error while

loading remote content through AJAX

Chapter 10

[239]

•	 Open: This event fires when a Window widget opens
•	 Refresh: This event fires when the remote content within a Window widget

is refreshed from the remote source
•	 Resize: This event fires when a Window widget is resized by a user with

the mouse

Using the Window widget API methods
The API methods allow us to execute functionality on the Window widget on
demand in our JavaScript code. See the following brief description on what sort
of options we have when calling API methods:

•	 Center: Calling this method returns the Window widget to the centre
of the screen.

•	 Close: Calling this method closes the Window widget.
•	 Content: Calling this method either gets the current content of a Window

widget when called with no parameters or sets the content of a Window
widget when provided new content as a parameter.

•	 Maximize: Calling this method maximizes a Window widget.
•	 Minimize: Calling this method minimizes a Window widget.
•	 Open: Calling this method opens a Window widget that is closed.
•	 Refresh: Calling this method refreshes the content of a Window widget

from its remote source through AJAX. This method only works for Window
widget objects that have an AJAX content property set.

•	 Restore: Calling this method restores a Window widget from the minimized
state back into the normal size and position.

•	 SetOptions: Calling this method sets the configuration options of
a Window widget.

•	 Title: Calling this method either gets or sets the title of a Window widget
•	 ToFront: Calling this method brings a Window widget to the front of other

elements on the page
•	 ToggleMaximization: Calling this method either maximizes a Window

widget that is not currently maximized or returns a maximized Window
widget back to its original size and position.

The Upload and Window Widgets

[240]

Summary
In this chapter, we learned how to use the Window and Upload widgets. These
widgets give you the power to create scalable and interactive web pages that your
users will appreciate. Most importantly, these widgets provide ready-made solutions
to very common web development problems so that you can focus on your code
instead of solving repetitive problems.

In this book, we have seen a full array of the different Kendo UI Web tools that are
available for developing powerful web pages. As you have seen in every chapter,
these widgets are very friendly to use and offer a wide range of configuration
options to be tailored to your specific needs and situation. Not only this, but Telerik
has an active community of developers that can assist with implementation details
through web forums and blogs and even paid support, if necessary. I hope you
have enjoyed learning about the powerful tools available from Telerik in the Kendo
UI Web framework. These tools will lower the overall time investment and effort
involved in delivering rich web pages, and that is something most of us can
happily appreciate.

Web API Examples
Many of the widgets that we explored in the previous chapters are most useful
when paired with more advanced server-side code. For example, many web
applications use databases and work with files. While the previous chapters
showed the client-side code, such as HTML and JavaScript, that is necessary to
use these widgets, they did not focus on the ASP.NET server-side C# code that
many real-world applications utilize. To demonstrate how to use the Kendo UI
Framework with these types of scenarios, this chapter will show some specialized
examples of using the Kendo UI Framework with the ASP.NET Web API and with
the Entity Framework.

If you are unfamiliar with the ASP.NET Web API framework, you can
visit www.asp.net/web-api for some good examples, videos, and
walkthroughs.

Getting familiar with the ASP.NET
Web API
The most recent release of the ASP.NET MVC Framework, MVC 4, included
templates for a new feature known as Web API controllers. These controllers are
specialized HTTP communication endpoints and allow for the creation of RESTful
API services. A RESTful API service is a HTTP web service that allows clients to
communicate using standard HTTP verbs (Get, Post, Put, Delete, and Patch) in
order to perform operations on the server.

Web API Examples

[242]

Traditionally, ASP.NET has had the ability to create web services as SOAP
endpoints (as opposed to REST endpoints). SOAP web services use XML
schemas and are very good at serializing and deserializing strongly-typed
objects and have been widely adopted in production systems. Compared
with RESTful services, SOAP services are very verbose and brittle, as
a change to the schema is required to implement any new features.
Additionally, the explosive growth around JavaScript has made RESTful
services more appealing to developers since they can be easily accessed
through HTML script blocks and common JavaScript code.

RESTful web services are becoming more and more common on the Internet. Many
popular web-based services expose public RESTful APIs to enable integration with
mobile apps, web-based dashboards, and other software projects. This widespread
adoption is due largely in part to the equally widespread adoption of JavaScript
Object Notation (JSON) for serializing and deserializing objects. JSON makes it
simple for any web client to interpret data from any web server without requiring
specialized or proprietary licenses or algorithms.

A RESTful web request is very simple and you use them every day, if you did not
already know it. Every time you type a URL into a web browser, you are issuing an
HTTP GET request to the server at that URL address. Likewise, most web pages that
include forms use the HTTP POST verb to post that data back to the web server to be
saved. This may also jog your memory back to some of our code samples in previous
chapters. Do you remember seeing the [HttpGet] and [HttpPost] attributes on
some of the controller action methods? These attributes indicated to ASP.NET that
only a specific type of HTTP verb (either a GET or a POST) is allowed for that action
method. This does have security implications of course, but it is actually more useful
for determining which method the server should use depending on which HTTP
verb the client sent along with the request. In other words, a controller could have
five different action methods with different HTTP verb attributes for each one, as
shown here:

[HttpGet]
public ActionResult Get(int objectId = 0)
{
 ...
}

[HttpPost]
public ActionResult Post(Object postedObject)
{
 ...
}

Chapter 11

[243]

[HttpPut]
public ActionResult Put(Object objectToPut)
{
 ...
}

[HttpPatch]
public ActionResult Patch(Object objectToPatch)
{
 ...
}

[HttpDelete]
public ActionResult Delete(int objectId)
{
 ...
}

The problem with the preceding code is that it creates a separate route for each of the
different functions for the page. If this page were accessible from the route http://
mysite.com/movies, we could use http://mysite.com/movies/get/25 to see data
for a specific movie, but we would have to use a completely different route in order to
add a new movie or to delete a movie, such as http://mysite.com/movies/put. This
may not seem like such a big problem for a website where URLs can be embedded in
forms and links without much interaction from the user, but this is a big problem for
developers trying to create a program to access the API from remote code.

The ASP.NET MVC Web API solves this problem by creating special controllers
solely for the purpose of creating RESTful services. In a standard MVC controller,
each action method creates a new route (or URL) that ultimately generates some
web content inside a view. In a Web API controller, however, each action method
specifies a single HTTP verb for the same route (or URL). In other words, a Web API
controller serves only a single HTTP endpoint; it only operates for a single route. For
an API developer, this is perfect. A single HTTP endpoint, such as http://mysite.
com/api/movies, can respond to all of the HTTP verbs appropriately without having
to use different URLs for each operation.

Web API Examples

[244]

Inside of the API controller, each of the HTTP verbs gets one or more action methods
for serving that specific type of request. The route to the controller defaults to the
controller's name. So a controller called MoviesController.cs would default to the
route http://mysite.com/api/movies. This is as far as the route goes; the only
difference now between requests to this endpoint is in which HTTP verb the request
includes and which parameters are passed in as arguments. The following is the
default code generated by the ASP.NET Web API template for an API controller:

// GET api/values
public IEnumerable<string> Get()
{
 return new string[] { "value1", "value2" };
}

// GET api/values/5
public string Get(int id)
{
 return "value";
}

// POST api/values
public void Post([FromBody]string value)
{
}

// PUT api/values/5
public void Put(int id, [FromBody]string value)
{
}

// DELETE api/values/5
public void Delete(int id)
{
}

Notice that the names of the action methods are the names of HTTP verbs. This is not
an accident, it is required that the action method names either match an HTTP verb
name or begin with an HTTP verb name. So an action method can either be called
Get or it could be called GetMovie. Also notice that there are two different versions
of the Get action method in this controller. Just like in a standard controller, the same
action method can be listed multiple times as long as the signature for each method
is unique. In this case, it allows us to have a standard Get method that does not
require any parameters and a more specialized Get method that returns information
for a specific record.

Chapter 11

[245]

You can visit http://www.asp.net/web-api/overview/web-
api-routing-and-actions/routing-in-aspnet-web-api for
a good overview of Web API routing rules and naming conventions.

You will also notice that these action methods do not have the HTTP verb attributes
on them. For an API controller, these attributes are not required. There is a new
attribute in the code sample, however. You can see it in front of the parameters for
the Post and Put action methods: [FromBody]. This special attribute is used to assist
the model binder in locating the parameter in the body of the HTTP request. It is not
always necessary, such as when you are binding a complex object that the model
binder can clearly see is made up of specific properties with specific names. For a
simple string value as in this code sample, however, it needs to know that you intend
to bind the HTTP request body to that input parameter. There is also an attribute
([FromUri]) to indicate that a parameter comes from the URL. Most of the time,
these parameters will be unnecessary but they are available to help solve problems
that the model binder is unable to solve on its own. It is worth some more research
if you unfamiliar with it. The basic rules that Web API uses for model binding work
like this:

•	 Simple types are taken from the URL (URI)
•	 Complex types are taken from the request body

Simple types include all of the .NET Framework primitive types, plus DateTime,
Decimal, Guid, String, and TimeSpan. For each action method, at most one
parameter can read the request body. If you try to mark more than one parameter
with [FromBody], you will either get a runtime error or null values.

You can visit http://blogs.msdn.com/b/jmstall/
archive/2012/04/16/how-webapi-does-parameter-
binding.aspx for more information on parameter binding with
Web API.

Web API Examples

[246]

Another important concept to understand about API controllers is that they do not
return views like standard controllers do. Rather than generating HTML markup
for a web browser to display, API controllers generate raw data that is intended
for specialized client code, such as JavaScript, to consume. The format of this data
is something that you do not have to worry about. Notice how the action methods
in the previous code sample simply return string values without using the Json()
method that we have seen in some of the previous chapters. We do not need to tell
the API controller how to format its data because it will auto-negotiate the correct
format with the client during the communication process. The most common format
is JSON, but some clients may prefer XML or other data types that the ASP.NET
framework understands how to serialize.

You may be interested in knowing how this auto-negotiation works.
Here is the answer: it is based largely on the Accept header from the
client during the API call. You can even create your own content types
to extend the API framework for customized scenarios. See this page
for more information: http://www.asp.net/web-api/overview/
formats-and-model-binding/content-negotiation.

Since API controllers are not designed to render web pages with markup, you will
need to create normal controllers for your web pages as you are used to doing. To
interact with the API controllers, it is very common to utilize JavaScript, especially
jQuery, to access the API endpoints with a specific HTTP verb to accomplish
whatever task your page is designed for.

Getting familiar with Entity Framework
Code First
Most applications use a database to store information. Most databases, however,
store information in a way that does not exactly match up with server-side object
oriented programming. This is a very common problem and has given rise to the
field of Object Relational Mapping (ORM) systems. Many of these exist, but
Microsoft has created one specific to the .NET framework known as the Entity
Framework (EF). It is basically a framework designed to more easily write code that
stores information in a database but still behaves like an object oriented system. If
you have downloaded the sample content for this chapter, go ahead and open the
Chapter 11 solution now to follow along. Otherwise, create a new ASP.NET MVC 4
project and choose the Web API template when asked.

Chapter 11

[247]

The particulars of the Entity Framework are numerous and there is not enough
space here to explore them. We will go through a basic example of how to utilize the
Entity Framework Code First model so that we can show this in the examples for
this chapter. In order to use the Entity Framework, you must first install it into your
Visual Studio project through NuGet. You can do this by right-clicking the project in
the Solution Explorer in Visual Studio and choosing Manage NuGet Packages…, as
shown here:

Web API Examples

[248]

On the next screen, you should make sure that you are viewing the Online
catalogue. Type the text Entity Framework into the search box and choose Install
when it appears in the results window. Once installed, it will display a green check
mark indicating that it is ready for use:

This will install all of the necessary components of the Entity Framework into
your Visual Studio solution. We will be using a feature of the Entity Framework
known as Code First. This feature allows us to create classes, or entities, for our
data first before the database even exists. The biggest benefit from this model is
that it guarantees that the database will be designed and the data will be stored in
accordance with our object oriented architecture.

If you have not already done so, now is a good time to download the
sample content for this chapter. All of these examples and files will
already be present there, so you can follow along with working code.

Chapter 11

[249]

For the sake of illustration, we will create our entity classes in the Models folder
inside of our Visual Studio project. Create a class called Movie.cs in the Models
folder like this:

public class Movie
{
 public int Id { get; set; }
 public string Name { get; set; }
 public int ReleaseYear { get; set; }
 public int Rating { get; set; }
 public int Rank { get; set; }
}

The Entity Framework will infer from the properties here that the Id property should
become the primary key inside the database. Now that we have our model, we need
to tell the Entity Framework that we want to make a database that includes it. Create
another class in the Models folder and call it MoviesContext.cs, as shown here:

...
using System.Data.Entity;
...

public class MoviesContext : DbContext
{
 public DbSet<Movie> Movies { get; set; }
}

This code informs the Entity Framework that we want a DbContext context that
includes a DbSet of Movie entities. Let's go ahead and add some movies to our
database, so that we can make use of them in our examples. To get started, we need a
page where we can type in the movie data and have the web server save that data to
the database.

Web API Examples

[250]

Create a MoviesController controller with these options selected; it will
automatically scaffold action methods and views with basic operations for
managing the Movie entity that we just created.

If you cannot find your Movie entity or the MoviesContext class,
try building your project and trying again.

Now go to the Movies/Index page and create some movies. The first time you run
the project, it may be very slow. The reason for this is that Entity Framework is
creating your database on-the-fly in the background from the model and the context
that you provided earlier. By the time you see the web page, the database will be
up and running. You can see how I have created a few in the following screenshot.
Create at least ten so that the examples have some data later in the chapter.

Chapter 11

[251]

Although there is a lot more to learn about the Entity Framework, this brief example
has taken you all the way from a single class to a fully working database. We will
be using this movies database in the rest of the examples for this chapter. If you are
not familiar with the Entity Framework and would like to learn more, I recommend
inspecting the MoviesController.cs class that we just created with Visual Studio
to see how it created the default actions; you can then visit www.msdn.com for the
official documentation on the topic.

Getting familiar with OData
The ASP.NET Web API framework supports data queries through a syntax known as
OData. OData is a query language that is compatible with HTTP URLs so that it can
appear in URL query strings. It provides two very powerful benefits to API action
methods that are used to return lists of data. First, it automatically translates the
OData query language into an actual data query on the data inside of your API action
method. This is amazingly powerful and may be hard to believe until you can actually
see it. Basically, it is a search engine for free. Second, the OData features allow the
queries to occur on the server. This means that the server can query the data source for
the specific elements that match and then return the result back to the client. The client
does not have to query the full set of data and then filter on its own. This is a huge
performance improvement and also simplifies both client and server code.

There are four ways by which you can enable the OData query features for your
API controllers. Each providing more fine-grained control than its predecessor.

•	 Enable query support globally through WebApiConfig.cs
•	 Add the [Queryable] attribute to specific API action methods
•	 Inherit from ODataController instead of ApiController
•	 Inherit from EntitySetController instead of ODataController

The first option will globally enable query support for any ApiController action
method with an IQueryable return type. To enable this, open the WebApiConfig.
cs file inside of the App_Start folder and un-comment the line of code with config.
EnableQuerySupport():

// Uncomment the following line of code to enable query support
 for actions with an IQueryable or IQueryable<T> return type.
// To avoid processing unexpected or malicious queries, use the
 validation settings on QueryableAttribute to validate
 incoming queries.
// For more information, visit
 http://go.microsoft.com/fwlink/?LinkId=279712.
config.EnableQuerySupport();

Web API Examples

[252]

The second option will enable query support for specific action methods that you
decorate with the [Queryable] attribute. This gives you more configuration choices
than the previous option because the [Queryable] attribute has many properties
that you can configure to fine-tune its behavior. An action method decorated with
this attribute looks like the following:

// GET api/values
[Queryable]
public IQueryable<string> Get()
{
 return new string[] { "value1", "value2" }.AsQueryable();
}

The third option involves inheriting your controller class from ODataController
instead of ApiController. This will enable the full OData support that the Web
API offers and also requires some more configuration to be done, so that the OData
engine understands the Entity Data Model (EDM) for the entities that it is exposing.

ODataModelBuilder modelBuilder = new ODataConventionModelBuilder();
modelBuilder.EntitySet<Movie>("Movies");
Microsoft.Data.Edm.IEdmModel model = modelBuilder.GetEdmModel();
config.Routes.MapODataRoute("ODataRoute", "OData", model);

The preceding code needs to run as the web application starts, so it should be placed
either in Global.asax or in one of the App_Start classes, such as WebApiConfig.
cs. It reads the same type of entity model as the Entity Framework and loads this into
an OData route so that Web API understands how each part of the model is related,
what the primary keys are, and so on. This enables more advanced scenarios such as
property navigation. For more information on this, you can visit http://www.asp.
net/web-api/overview/odata-support-in-aspnet-web-api/getting-started-
with-odata-in-web-api/create-a-read-only-odata-endpoint for
an introduction.

The fourth option is similar to the previous option, but it enables more OData
functionality automatically that the ODataController class would have to do
manually. It still requires the ODataModelBuilder class as in the last option.
The URL just listed also covers information on this topic.

For our examples in this chapter, we will be using the [Queryable] attribute to
enable query support for specific action methods. I encourage you to explore this
technology more on your own, it is a powerful and extensible framework that can
provide huge productivity boosts to your code. To learn more about OData, you can
visit www.odata.org.

Chapter 11

[253]

Using DataSourceRequest with Kendo
Grid
As we saw in the first chapter, the Kendo Grid widget is designed to allow a rich
set of features such as paging, filtering, and sorting. We saw previously how this
can be driven on the client side through JavaScript and the Kendo DataSource
object. The Grid widget becomes even more powerful, however, when connected
with server-side functionality to help drive its features.

The Kendo UI Framework for ASP.NET MVC includes a special object to help facilitate
this functionality within standard MVC controllers. It does not require the Web API or
OData, although you could use them if you want to configure the Kendo DataSource
by hand. In this example, we will learn how to use the DataSourceRequest object and
how it helps drive the functionality of a Kendo Grid widget.

First, add a new action method to the MoviesController class that we
created earlier.

public ActionResult MoviesGrid([DataSourceRequest]DataSourceRequest
request)
{
 return Json(
 db.Movies.ToDataSourceResult(request), JsonRequestBehavior.
AllowGet);
}

You should notice right away the special attribute in the signature of the action
method called [DataSourceRequest]. This attribute comes from the Kendo.Mvc.
Extensions namespace, so you will need to include that in a using statement at
the top of the controller. This attribute is necessary for the Kendo UI Framework
to properly understand the communication between the Grid widget and this
server-side action method. It is also important that the [DataSourceRequest]
attribute is decorating a DataSourceRequest object and that the return
value from this action method is passed through the extension method called
ToDataSourceResult(request). These special methods drive the Kendo
functionality for data binding, sorting, paging and filtering.

Web API Examples

[254]

With this code in place, add a new action method to the KendoController called
Grid, which will be the action method we use for the view.

public ActionResult Grid()
{
 return View();
}

Create a view for this method and place the following Razor code inside it:

@using Kendo.Mvc.UI;

@{
 ViewBag.Title = "Grid";
}

@(Html.Kendo().Grid<Chapter11.Models.Movie>().Name("moviesGrid")
 .Columns(columns =>
 {
 columns.Bound(p => p.Name);
 columns.Bound(p => p.ReleaseYear);
 columns.Bound(p => p.Rating);
 columns.Bound(p => p.Rank);
 }
)
 .Pageable()
 .Sortable()
 .Filterable()
 .DataSource(dataSource => dataSource
 .Ajax()
 .PageSize(5)
 .Read(read => read.Action("MoviesGrid", "Movies"))
))

As you have seen before, this Html helper method from the Kendo UI Framework
generates a Grid widget on the view page. We have configured the columns and
enabled the Grid to be pageable, sortable, and filterable. The significant
part for this example is that we have set the DataSource object to point to the
MoviesGrid action of the Movies controller, which we set up earlier with the special
Kendo attribute and objects. When we run our project and navigate to this new view,
we get a Kendo Grid widget like the following, which has working paging buttons,
filter buttons, and sortable column headings:

Chapter 11

[255]

Unlike in Chapter 1, Interacting with Data: DataSource, Templates, TabStrip, and Grid,
however, this Grid widget is asking the server to calculate the sort order, the pages,
and the filtered results. It does this by sending special data instructions to the server
that are interpreted by the special Kendo attribute and objects. To see these data
instructions, you can turn on the Internet Explorer developer tools by pressing
the F12 key while the website is running. In the toolbar that appears, click on the
Network tab and then click Start Capturing. After clicking these buttons, click on
one of the Grid functions, such as the page arrow or one of the column headings.
You will see some activity in the developer toolbar, which means that the Grid is
communicating with the server through JavaScript AJAX calls. Double-click on the
first item in the list that shows the address /Movies/MoviesGrid, as shown here:

Double-clicking this item will open up a detailed description of the HTTP request.
Click on the Request body tab to see what the Grid sent to the server:

Web API Examples

[256]

You can see here that the Grid has asked for page number 2 with a page size of 5
records. This is how the Kendo Grid communicates with the server, through the
HTTP request body.

Driving the ListView with Web API
Similar to the Grid widget, the ListView widget is able to utilize the
[DataSourceRequest] attribute to help drive special functionality for its operations.
In this case, we will not simply be querying the data from the server, but also editing
it with the Web API.

Create an action method for our ListView example in the KendoController class,
as shown here:

private MoviesContext db = new MoviesContext();

public ActionResult ListView()
{
 return View(db.Movies);
}

Then add a view for this action method and add the following HTML markup inside:

@using Kendo.Mvc.UI;

@model IEnumerable<Chapter11.Models.Movie>

@{
 ViewBag.Title = "ListView";
}
<script type="text/x-kendo-tmpl" id="template">
 <div class="movie-view">
 <dl>
 <dt>Name</dt>
 <dd>${Name}</dd>
 <dt>Rating</dt>
 <dd>${Rating}</dd>
 <dt>Rank</dt>
 <dd>${Rank}</dd>
 </dl>
 </div>
 <div>

Chapter 11

[257]

 <a class="k-button k-button-icontext k-edit-button"
 href="\\#">Edit
 <a class="k-button k-button-icontext k-delete-button"
 href="\\#">Delete
 </div>
</script>
<h2>ListView</h2>

This basic HTML and Kendo template will be used to build the page once the data
has been retrieved. You can see how the template is simply showing each element
of a Movie object and then providing the edit and delete buttons. Next, add the
following MVC Razor code at the bottom of this view to wire everything together:

@(Html.Kendo().ListView(Model)
 .Name("moviesListView")
 .TagName("div")
 .ClientTemplateId("template")
 .Editable()
 .DataSource(dataSource => {
 dataSource
 .Read(read => read.Action("MoviesGrid", "Movies"))
 .Update(update => update.Type(HttpVerbs.Post)
 .Url("/api/MovieApi"))
 .PageSize(5)
 .Model(config => config.Id("Id"));
 })
 .Pageable())

Here, we have created a Kendo ListView, specified the ID of the template to use
when rendering it on the page, marked it as editable, and specified the data source.
Inside of the data source, we have indicated where to retrieve the data to display
(the Read method) and where to send updated data (the Update method).

Web API Examples

[258]

Next, we need to create an editor template for the Movie object, so that this ListView
can edit our Movie objects. Make a new folder under the Views/Shared folder called
EditorTemplates. Then, add a view to the EditorTemplates folder and call it
Movie.cshtml.

Open the Movie.cshtml view file and add the following code there:

@model Chapter11.Models.Movie

<div class="movie-view">
 <dl>
 <dt>Name</dt>
 <dd>@Html.EditorFor(model => model.Name)</dd>
 <dt>Rating</dt>
 <dd>@Html.EditorFor(model => model.Rating)</dd>
 <dt>Rank</dt>
 <dd>@Html.EditorFor(model => model.Rank)</dd>
 </dl>
 <div>
 <a class="k-button k-button-icontext k-update-button"
 href="\\#">Save
 <a class="k-button k-button-icontext k-cancel-button"
 href="\\#">Cancel
 </div>
</div>

This view will be used by the ListView widget when the Edit button is clicked on
a Movie item. The following is how the page looks by default (when viewing the
movies). You can see the different elements of a move item and the buttons used to
edit or delete it:

Chapter 11

[259]

This is how a movie item is rendered when you click on the Edit button. See how the
fields are now rendered as we specified in the EditorTemplate folder for the Movie
data type.

Since we have wired this up to the Web API, we can observe the changes being
sent to the server for processing if we set a breakpoint in Visual Studio inside
the API method that is being called. You can see that I have done this in the
following screenshot:

Web API Examples

[260]

With Visual Studio set this way, the program will stop when an update is made and
you can inspect the data to observe what is happening. For a production application,
you would want to use the Entity Framework to edit the movie object and save the
changes to the database.

Summary
In this chapter, we have seen how to use the Web API for some more realistic
scenarios involving two of the Kendo widgets that deal with managing data. We also
quickly explored the ASP.NET Web API fundamentals as well as Entity Framework
and OData. These tools, used together, can be a very powerful set and can create
nearly any custom solution that you need.

The examples we just saw, both use a special attribute that Telerik has provided
to help with model binding and server-side paging and filtering. It is nice to make
use of special helpers like this when they are available. I encourage you to continue
to explore these technologies on your own and see how you can create your own
custom solutions on your own web pages.

Index
Symbols
<button> element 50
_Layout.cshtml file 13
<select> element 49

A
action method 39
activate event, Window widget 238
add method, DataSource 32
add method, ListView methods 157
addPerson method 91, 92
aggregate property, DataSource 31
AJAX content

loading, with PanelBar 170
loading, with TabStrip 177

ajaxRequest method, Splitter widget 206
animation effects, PanelBar

controlling 172
animation effects, TabStrip

controlling 178
animation effects, TreeView widget

configuring 214
animation effects, Window widget

using 235-237
animation property, menu API configura-

tion options
about 144

API AutoComplete methods
close() 67
dataItem() 68
destroy() 68
enable() 68
refresh() 68
search() 69

select() 69
suggest() 69
using 67
value() 69

API configuration options, Menu widget
about 144
animation property 144
closeOnClick property 145
direction property 144
hoverDelay property 145
openOnClick property 145
orientation property 145
popupCollision property 145

append() method, menu methods 146
append method, TreeView widget 219
ASP.NET MVC 4 12
ASP.NET Web API 241-245
asynchronous uploads, Upload widget

enabling 224, 225
at method, DataSource 33
attr property, Kendo MVVM 102
AutoComplete() extension method 62
AutoComplete properties

configuring 65
AutoComplete widget

about 55
API AutoComplete methods, using 67
basics 56
binding, to local source 57, 58
binding, to remote data 58-60
customizing, Kendo templates used 64
data, sending to server 63, 64
events, hooking into 66
properties, configuring 65
using, with MVC through Ajax 62
using, with MVC through models 61

[262]

AutoComplete widget events
change event 67
close event 67
hooking into 66
open event 67
select event 67

B
buttons

adding, to HTML Editor toolbar 120
removing, from HTML Editor toolbar 121

button tools, HTML Editor 127, 129

C
Calendar Widget

about 71, 72
basics 71
configuring 72-76
events 81
methods 78, 80
MVC, using 76, 78
properties 72

cancelChanges method, DataSource 33
cancel method, ListView methods 157
center method, Window widget 239
change event, AutoComplete widget events

67
change event, DataSource 34
change event, HTML Editor 133
change event, Kendo range slider widget

197
change event, Kendo slider widget 197
change event, slider widgets 197
checked property, Kendo MVVM 103
clearSelection method, ListView methods

157
click event 91
click property, Kendo MVVM 104
close event, AutoComplete widget events

67
close event, Window widget 238
close() method, AutoComplete methods 67
close() method, menu methods 147
closeOnClick property, menu API

configuration options 145

Code First 248
collapse event, Splitter widget 203
collapse event, TreeView widget 218
collapse method, Splitter widget 207
collapse method, TreeView widget 219
columns object array 45
columns object example, Grid 45-54
contentLoad event, Splitter widget 204
content method, Window widget 239
content, Window widget

loading, AJAX used 234
CSS 7
custom In-line tools, HTML Editor 131
custom property, Kendo MVVM 106
custom template tools, HTML Editor 129-

131

D
data-* attributes 87
data-bind attribute 87
data-bind properties, Kendo MVVM

attr 102
checked 103
click 104
custom 106
disabled 106
enabled 106
events 106
html 106
invisible 107
source 108
style 110
text 106
value 111
visible 107

dataBound event, TreeView widget 219
dataItem() method, AutoComplete methods

68
dataItem method, TreeView widget 219
data method, DataSource 34
data() method, slider widgets 195
datasource

TabStrip, using with 174, 175
DataSource events

change 34
error 34

[263]

requestStart 35
DataSource, Kendo UI. See Kendo UI Data-

Source
DataSource methods

about 32
add 32
at 33
cancelChanges 33
data 34
fetch 33
get 33
getByUID 33
insert 32
query 33
read 33
remove 32
sync 33
total 34
totalPages 34
view 33

DataSource properties
aggregate 31
filter 31
group 31
page 31
pageSize 31
sort 31

DataSourceRequest
using, with Kendo Grid 253-256

dataString 99
data-template attribute 88
DatePicker widget 18
deactivate event, Window widget 238
declarative initialization, of widgets

through Data-Role MVVM attributes 112
destroy() method, AutoComplete methods

68
direction property, menu API configuration

options 144
disabled property, Kendo MVVM 106
disable() method, slider widgets 195
Document Object Model (DOM) element

206
drag and drop, TreeView widget

using 212, 213
dragEnd event, TreeView widget 219

dragend event, Window widget 238
drag event, TreeView widget 219
dragStart event, TreeView widget 219
dragstart event, Window widget 238
drop-down list tools, HTML Editor 126, 127
drop event, TreeView widget 219

E
editable property, Grid 50
edit method, ListView methods 157
enabled property, Kendo MVVM 106
enable() method, AutoComplete methods

68
enable() method, menu methods 147
enable() method, slider widgets 195
enable method, TreeView widget 219
Entity Data Model (EDM) 252
Entity Framework Code First 247, 248
Entity Framework (EF) 246-251
error event, DataSource 34
error event, Window widget 238
eval() function 20
events, Calendar Widget 81, 82
events property, Kendo MVVM 106
events, slider widgets

change event 197
slide event 198

execute event, HTML Editor 133
expand event, Splitter widget 204
expand event, TreeView widget 219
expand method, Splitter widget 207
expand method, TreeView widget 219

F
fetch method, DataSource 33
file drag and drop, Upload widget

using 229
files

uploading 221
filterable property, Grid 50
filter property, DataSource 31
findByText method, TreeView widget 220
findByUID method, TreeView widget 220

[264]

G
getByUid method, DataSource 33
get method, DataSource 33
groupable property, Grid 50
group property, DataSource 32

H
hoverDelay property, menu API

configuration options 145
HTML 7
HTML Editor

about 115-119
Snippets tool 124, 125
Styles tool, adding 121, 123

HTML Editor API
about 132
configuration options 132
events 133
using 132

HTML Editor events
change 133
execute 133
keydown 133
keyup 133
paste 133
select 133

HTML Editor toolbar
buttons, adding 120, 121
buttons, removing 121

HTML Editor tools
button tools 127, 129
custom In-line tools 131
customizing 126
custom template tools 129-131
drop-down list tools 126, 127

html property, Kendo MVVM 106

I
images

adding, to TabStrip 175, 176
images, TreeView widget

displaying 214- 217
insertAfter() method, menu methods 146
insertAfter method, TreeView widget 220
insertBefore() method, menu methods 146

insertBefore method, TreeView widget 220
insert method, DataSource 32
Intellisense 14
invisible property, Kendo MVVM 107
isNew method 26

J
JavaScript 7
JavaScript Object Notation (JSON) 39, 242
Json() method 39

K
kendo.bind() 100
KendoController class 39
KendoController.cs class 56
kendo.data.Model 24
kendo.data.Model.define() method 24
kendoEditor value() function 118
Kendo Grid

DataSourceRequest, using with 253
kendoGrid() function 44
Kendo HTML Editor. See HTML Editor
Kendo MVVM framework

about 85
data-bind properties 102
declarative widgets 112

kendo.observable() 88
kendoSlider method 182
Kendo templates

using, for customizing AutoComplete 64
Kendo UI

about 8
AutoComplete widget 55
Calendar Widget 71
data, managing 21
framework components 21
ListView widget 135, 148
Menu widget 135
PanelBar widget 161
slider widgets 181
Splitter widget 199
TabStrip widget 172
TreeView widget 209
Upload widget 222
user interface (UI) widgets 21
Window widget 229

[265]

Kendo UI DataSource
about 24
basic usage 35-37
events 34
methods 32
model object 24-26
properties 31
remote data, binding to 38-41
schema object 27
transport object 29
URL 24

Kendo UI Grid
about 42, 44
columns object array 45, 46

Kendo UI Grid properties
columns 48
editable 50
filterable 50
groupable 50
navigatable 50
options.field 50
options.model 50
pageable 50
scrollable 50, 53
selectable 50, 53
sortable 50
toolbar 54

Kendo UI MVC
basics 18-20

Kendo UI RangeSlider widget 181
Kendo UI Slider widget 181
KendoUI syntax styles 17
Kendo UI Templates

about 22
creating 22, 23

Kendo UI View-Model 88
keydown event, HTML Editor 133
keyup event, HTML Editor 133

L
layoutChange event, Splitter widget 205
LearningKendoUIWeb 8
ListView events

about 158
change 158
dataBinding 158

dataBound 158
edit 158
remove 158

ListView methods
add 157
cancel 157
clearSelection 157
edit method 157
refresh 157
remove method 158
save 157
select method 158

ListView widget
about 135, 148, 152
basics 148, 150
configuration properties 156
driving, with Web API 256-260
elements, editing 154, 155
elements, selecting 153, 154
events 158
methods 157

M
maximize method, Window widget 239
max method, Splitter widget 208
menu events 147
menu methods, Menu widget

append 146
close 147
configuring 145
enable 147
insertAfter 146
insertBefore 146
open 147
remove 147

Menu widget
about 135-141
API configuration options 144
basics 135
code sample 135
menu events 147
menu items, with images 141-143
menu items, with URLs 143
menu methods, configuring 145

methods, Calendar Widget 78, 80
methods, slider widgets

[266]

disable 195
enable 195

minimize method, Window widget 239
min method, Splitter widget 208
model.get() method 25
Model (M) 85
model object, DataSource 24
Model-View-Controller (MVC) 85
Model-View-Presenter (MVP) 85
MoviesContext class 250
MoviesController.cs class 251
multiple files, Upload widget

uploading 226
MVC 18
MVC Razor syntax 18
MVVM

about 85, 86
observable data binding 90
simple data binding 86

N
navigatable property, Grid 50
navigate event, TreeView widget 219

O
Object Relational Mapping (ORM) 246
observable data binding, MVVM

about 90
data, adding 91-95
observable arrays, using 98-100
observable properties, using in View 95-98

OData 251, 252
open event, AutoComplete widget events

67
open event, Window widget 239
open() method, menu methods 147
open method, Window widget 239
openOnClick property, menu API

configuration options 145
orientation property, menu API
configuration options 145

P
pageable property, Grid 50
page property, DataSource 32

pageSize property, DataSource 32
PanelBar widget

about 161-167
AJAX content, loading 170
animation effects, controlling 172
basics 161
sprite images, adding 168-170
URLs, adding 170

parent method, TreeView widget 220
paste event, HTML Editor 133
people 87
popupCollision property, menu API

configuration options 145
properties, Calendar Widget

data/template properties 72
display/formatting properties 72

Q
query method, DataSource 33

R
read method, DataSource 33
refresh event, Window widget 239
refresh() method, AutoComplete

methods 68
refresh method, ListView methods 157
refresh method, Window widget 239
remove method, DataSource 32
remove method, ListView methods 158
remove() method, menu methods 147
remove method, TreeView widget 220
requestStart event, DataSource 35
resize event, Splitter widget 205
resize event, Window widget 239
RESTful API service 241
RESTful web request 242
restore method, Window widget 239

S
sample project

setting up 8-16
save method, ListView methods 157
schema object, DataSource 27
ScriptBundle constructor 13
script element 222

[267]

scrollable property, Grid 50
search() method, AutoComplete methods 69
selectable property, Grid 50
select event, AutoComplete widget events

67
select event, HTML Editor 133
select event, TreeView widget 219
select() method, AutoComplete methods 69
select method, ListView methods 158
select method, TreeView widget 220
serverFiltering property, DataSource 31
setDataSource method, TreeView widget

220
setoptions method, Window widget 239
simple data binding, MVVM

about 86
Model, creating 88
View, creating 87
View-Model, creating 88

size method, Splitter widget 208
slide event, slider widgets 198
slider widget 181
slider widgets

about 182
API methods 195
basic implementation, MVC extension

methods used 186, 187
basics, implementing 183-185
events 197
keyboard controls, learning 188
pop-up texts, using 187, 188
RangeSlider widget 181
Slider widget 181
tooltips, using 187, 188
types 181
user interface, customizing 189
using, with MVC extension methods 182
values, using 196
values, using from Kendo range slider 196
values, using from Kendo slider 196

Snippets tool 124, 125
sortable property, Grid 50
sort property, DataSource 32
source property, Kendo MVVM 108-110
Splitter API methods

about 206
ajaxRequest 206

collapse 207
expand 207
max 208
min 208
reference, for splitter object 206
size 208
toggle 209

Splitter events
about 203
collapse event 203
contentLoad event 204
expand event 204
layoutChange event 205
resize event 205

Splitter widget
about 199
API methods 206
content, loading 202
content, loading with AJAX 202
div elements 200
events 203
learning 199-201

sprite images
adding, to PanelBar items 168-170

style property, Kendo MVVM 110
Styles tool

adding, to HTML Editor 121, 123
suggest() method, AutoComplete methods

69
sync method, DataSource 33

T
table element 87
TabStrip widget

about 172
AJAX content, loading 177
animation effects, controlling 178
basics 172, 174
images, adding 175, 176
URLs, adding 176
using, with datasource 174, 175

Telerik 7
Telerik Kendo UI website

URL 10
templates, Kendo UI. See Kendo UI

Templates

[268]

templates, TreeView widget
using 217, 218

textdata-bind attribute 96
text method, TreeView widget 220
text property, Kendo MVVM 106
this.get() function 92
this.set() function 92
title method, Window widget 239
tofront method, Window widget 239
ToggleMaximization method, Window

widget 239
toggle method, Splitter widget 209
toggle method, TreeView widget 220
toJSON method 26
total method, DataSource 34
totalPages method, DataSource 34
transport object, DataSource 29, 30
TreeView API methods

append 219
collapse 219
dataItem 219
enable 219
expand 219
findByText 220
findByUID 220
iinsertBefore 220
insertAfter 220
parent 220
remove 220
select 220
setDataSource 220
text 220
toggle 220

TreeView events
about 218
collapse 218
dataBound 219
drag 219
dragEnd 219
dragStart 219
drop 219
expand 219
navigate 219
select 219

TreeView widget
about 199, 209
animation effects, configuring 214

API methods 219
data source, binding to 211
drag and drop, using 212, 213
events 218
images, displaying 214-217
learning 210, 211
templates, using 217

U
update, Upload widget

cancelling 228
uploaded files, Upload widget

removing 227
upload progress, Upload widget

tracking 228
Upload widget

about 222-224
asynchronous uploads, enabling 224, 225
file drag and drop, using 229
multiple files, uploading 226
update, cancelling 228
uploaded files, removing 227
upload progress, tracking 228

URLs
adding, to PanelBar items 170
adding, to TabStrip 176

user interface, slider widgets
both tick placement option 194
bottomRight tick placement option 193
customizing 189
default values, customizing 191, 192
none tick placement option 194
slider orientation, customizing 195
tick placement, customizing 192
tooltip, customizing 189, 190, 191
tooltip, customizing MVC extension

methods used 191
topLeft tick placement option 192

V
val() function 118
valuedata-bind attributes 96
value() method, AutoComplete methods 69
value property, Kendo MVVM 111
ViewBag 20
ViewBag.serverData property 20

[269]

view method, DataSource 33
View-Model code 88
View-Model (VM) 85
View (V) 85
visible property, Kendo MVVM 107
Visual Studio 2012 Express

URL 8
Visual Studio IDE 10

W
Web API controllers 241
Web API examples

ASP.NET Web API 241, 242
DataSourceRequest, using with Kendo Grid

253
Entity Framework Code First 246
ListView, driving 256
OData 251

Window actions, Window widget
customizing 231-233

Window widget
about 229, 231
animation effects, using 235-237
API methods 239
code sample 230
content, loading with AJAX 234
events 238
Window actions, customizing 231-233

Window widget API methods
center 239
close 239
content 239
maximize 239
minimize 239
open 239
refresh 239
restore 239
SetOptions 239
title 239
tofront 239
ToggleMaximization 239

Window widget events
activate 238
close 238
deactivate 238
dragend 238
dragstart 238
error 238
open 239
refresh 239
resize 239

Thank you for buying
Learning Kendo UI Web
Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

jQuery Mobile Web Development
Essentials
ISBN: 978-1-84951-726-3 Paperback: 246 pages

Learn to use the touch-optimized, cross-device,
cross-platform jQM web framework for smartphones
and tablets

1.	 Create websites that work beautifully on a wide
range of mobile devices with jQuery mobile

2.	 Learn to prepare your jQuery mobile project by
learning through three sample applications

3.	 Packed with easy to follow examples and clear
explanations of how to easily build mobile-
optimized websites

Learning jQuery, Third Edition
ISBN: 978-1-84951-654-9 Paperback: 428 pages

Create better interaction, design, and web
development with simple JavaScript techniques

1.	 An introduction to jQuery that requires
minimal programming experience

2.	 Detailed solutions to specific client-side
problems

3.	 Revised and updated version of this popular
jQuery book

Please check www.PacktPub.com for information on our titles

WordPress Mobile Web
Development: Beginner's Guide
ISBN: 978-1-84951-572-6 Paperback: 332 pages

Make your WordPress website mobile-friendly
and get to grips with the two hottest trends in web
design— Mobile and WordPress

1.	 Learn how to build mobile and responsive
websites using WordPress

2.	 Get to grips with the best mobile plugins and
understand how they interact with your site

3.	 Learn how to make your own WordPress theme
or site responsive, including layout, images,
navigation and more

jQuery Tools UI Library
ISBN: 978-1-84951-780-5 Paperback: 112 pages

Learn jQuery Tools with clear, practical examples and
get inspiration for developing your own ideas with
the library

1.	 Learn how to use jQuery Tools, with clear,
practical projects that you can use today in your
websites

2.	 Learn how to use useful tools such as Overlay,
Scrollable, Tabs and Tooltips

3.	 Full of practical examples and illustrations,
with code that you can use in your own
projects, straight from the book

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Interacting with Data: DataSource, Templates, TabStrip, and Grid
	Setting up the sample project
	KendoUI syntax styles
	Kendo UI MVC – basics
	Managing data
	Templates
	DataSource
	Model
	Schema
	Transport
	Other DataSource properties
	DataSourceMethods
	DataSource events
	Getting started with basic usage

	Page layout
	Grid
	Columns

	Summary

	Chapter 2: The AutoComplete Widget and its Usage
	AutoComplete widget – basics
	Binding AutoComplete to a local source

	Binding AutoComplete to Remote Data
	Using AutoComplete with MVC through Models
	Using AutoComplete with MVC through Ajax
	Sending data to the server
	Using Templates to Customize AutoComplete
	Configuring all of the AutoComplete properties
	Hooking into AutoComplete widget events
	Change
	Close
	Open
	Select

	Using the API AutoComplete methods
	Close
	DataItem
	Destroy
	Enable
	Refresh
	Search
	Select
	Suggest
	Value

	Summary

	Chapter 3: Using and Customizing Calendar
	Calendar widget – basics
	Configuring the Calendar widget
	Calendar Widget using MVC
	Methods available on the Calendar widget
	Events fired by the Calendar widget
	Summary

	Chapter 4: The Kendo MVVM Framework
	Understanding MVVM – basics
	Simple data binding
	Creating the view
	Creating the Model and View-Model

	Observable data binding
	Adding data dynamically
	Using observable properties in the View
	Making better use of observable arrays

	Data-bind properties for Kendo MVVM
	The attr property
	The checked property
	The click property
	The custom property
	The disabled/enabled properties
	The events property
	The html/text properties
	The invisible/visible properties
	The source property
	The style property
	The value property

	Declarative widgets through Data-Role MVVM attributes
	Summary

	Chapter 5: HTML Editor and Custom Tools
	Understanding the HTML Editor
	Adding and removing buttons from the toolbar
	Adding the Styles tool
	Tool for inserting HTML snippets

	Customing HTML Editor tools
	Drop-down list tools
	Button tools

	Custom template tools
	Custom In-line tools

	Using the HTML Editor API
	Configuration options
	Events

	Summary

	Chapter 6: Menu and ListView
	Learning the Menu widget basics
	Menu items with images
	Menu items with URLs
	Menu API configuration options
	The animation property
	The direction property
	Some more options

	Configuring menu methods
	The append(), insertAfter(), and insertBefore() methods
	The close(), enable(), open(), and remove() methods

	Menu events

	The Kendo UI ListView
	ListView basics
	Selecting elements with ListView
	Editing elements with ListView
	ListView API and configuration
	ListView methods
	ListView events

	Summary

	Chapter 7: Implementing PanelBar and TabStrip
	PanelBar basics
	Adding sprite images to PanelBar items
	Adding URLs to PanelBar items
	Loading AJAX content with PanelBar
	Controlling PanelBar animation effects

	Introducing the TabStrip Widget
	TabStrip basics
	Using TabStrip with a datasource
	Adding images to the TabStrip widget
	Adding URLs to TabStrip tabs
	Loading AJAX content with TabStrip
	Controlling the TabSrip widget's animation effects

	Summary

	Chapter 8: Slider Essentials
	Introducing Slider and RangeSlider
	Using Slider and RangeSlider with the MVC extension methods
	Implementing the basics

	Basic implementation using MVC extension methods
	Using tooltips and pop-up texts
	Learning keyboard controls

	Customizing the user interface of the slider widgets
	Tooltip customization
	Customizing tooltip options using MVC extension methods

	Customizing the default values
	Customizing tick placement
	Customizing slider orientation

	Learning API methods
	The enable and disable Methods
	Using the values
	Using values from a Kendo slider
	Using values from a Kendo range slider

	Hooking into events
	Using the change event
	The change event for a Kendo slider widget
	The change event for a Kendo range slider widget

	The slide event
	The change and slide events with MVC extension methods

	Summary

	Chapter 9: Implementing the Splitter and TreeView Widget
	The Splitter widget
	Learning the Splitter widget
	Loading content
	Loading content with AJAX
	Hooking into Splitter events
	The collapse event
	The contentLoad event
	The expand event
	The layoutChange event
	The resize event

	Making calls to Splitter API methods
	Getting a reference to the splitter object
	Using the ajaxRequest method
	Using the collapse method
	Using the expand method
	Using the max and min methods
	Using the size method
	Using the toggle method

	TreeView
	Learning TreeView
	Binding to a data source
	Using drag and drop
	Configuring animation effects
	Displaying images
	Using templates
	Hooking into TreeView events
	Making calls to the TreeView API methods

	Summary

	Chapter 10: The Upload and Window Widgets
	Uploading files
	Learning the Upload widget
	Enabling asynchronous uploads
	Uploading multiple files simultaneously
	Removing uploaded files
	Tracking upload progress
	Cancelling an update in progress
	Using file drag and drop

	The Kendo UI Window widget
	Customizing Window actions
	Loading content with AJAX
	Using the animation effects
	Using the Window widget events
	Using the Window widget API methods

	Summary

	Chapter 11: Web API Examples
	Getting familiar with the ASP.NET
Web API
	Getting familiar with Entity Framework Code First
	Getting familiar with OData
	Using DataSourceRequest with Kendo Grid
	Driving the ListView with Web API
	Summary

	Index

