
www.allitebooks.com

http://www.allitebooks.org

Learning JavaScriptMVC

Learn to build well-structured JavaScript web
applications using JavaScriptMVC

Wojciech Bednarski

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning JavaScriptMVC

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2013

Production Reference: 1140513

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-020-5

www.packtpub.com

Cover Image by Will Kewley (william.kewley@kbbs.ie)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Wojciech Bednarski

Reviewer
Juri Strumpflohner

Acquisition Editor
Mary Nadar

Commissioning Editor
Priyanka Shah

Technical Editors
Kirti Pujari

Lubna Shaikh

Nitee Shetty

Jalasha D'costa

Project Coordinator
Michelle Quadros

Proofreader
Elinor Perry-Smith

Indexer
Monica Ajmera Mehta

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Wojciech Bednarski is a software engineer with expert knowledge of client-side
technologies. He is passionate about JavaScript, Node.js, HTML5, Ruby, NoSQL,
and POSIX-compliant systems.

While at university he started taking up freelance jobs and was obsessed by web
accessibility and usability as well as web standards.

Then, he moved to Warsaw where he started working as a web developer at eo
Networks, which is recognized as one of the 50th fastest growing company in
Central Europe.

He then started work at Roche, one of the largest pharmaceutical companies in the
world, where he worked on large scale web-based systems as well as conducted
workshops and technical seminars. He was recognized with an Informatics Service
Award in the category of Innovation.

He then moved to Copenhagen and started work at YouSee, the subsidiary of TDC,
the biggest Danish telecom company, where he programmed set top boxes. He won
Copenhagen Startup Weekend and also began the Everplaces startup.

At the time of writing this book, he is a consultant for a New York-based company
working on the next big thing you will use. He works from different places and lives
with his beautiful wife and two black cats. He also loves taking pictures, you can have
a sneak peek at www.pixmod.net. He is also fond of driving sports cars and traveling.

You can visit his professional profile at www.linkedin.com/in/bednarski/ or you
can follow him on Twitter @wbednarski.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Juri Strumpflohner currently works as a software architect for an e-government
company where he helps create appealing rich client web applications with HTML5,
JavaScript, and the .NET technology stack. Besides that, he is an active blogger,
writing about web and mobile development topics and promoting best practice. He
also actively participates in online communities such as StackOverflow. When he is
not in front of his computer then he is probably practicing Yoseikan Budo where he
currently owns a 2nd DAN Black Belt. He has a MSc degree in Computer Science
from the Free University of Bolzano, Italy.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and
more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with JavaScriptMVC	 7

What is JavaScriptMVC?	 7
License	 8
Links	 8

Why JavaScriptMVC?	 8
System architecture approach	 9

JavaScriptMVC single-page application	 10
Advantages	 10
Downsides	 10

Real-world examples	 10
Installing JavaScriptMVC	 11

Choosing your method	 11
Which method is right for me?	 11
The first method – download the package	 11
The second method – pull the code from Git repositories	 12
The third method – vagrant	 14

Documentation and API	 14
The architecture of JavaScriptMVC	 15

DocumentJS	 15
FuncUnit	 15
jQueryMX	 16
StealJS	 16

Dependency management	 16
Concatenation and compression	 16
Logger	 17
Code generator	 17
Package management	 17
Code cleaner	 17

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Building simple applications	 17
Todo list	 17

Loader	 18
Model	 19
Fixtures	 22
View	 25
Controller	 26
Routing	 27
Complete application code	 28

Summary	 31
Chapter 2: DocumentJS	 33

How does DocumentJS work?	 34
Writing the documentation	 34

Type directives	 38
Tag directives	 39

Generating the documentation	 40
Summary	 41

Chapter 3: FuncUnit	 43
Creating tests	 44

Module	 45
Open	 45

Test	 45
Ok	 46
S	 46

Running tests	 46
Web browser	 46
Selenium	 47
PhantomJS	 47
EnvJS	 48

Integration	 48
Summary	 48

Chapter 4: jQueryMX	 49
$.Class	 50

The first parameter	 52
The second parameter	 52
The third parameter	 52
Method override	 52
Life cycle	 53

$.Model	 53
$.View	 55

Embedded	 55
External	 56

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Sub-templates	 56
$.Controller	 57
DOM helpers	 57

$.cookie	 58
$.fn.compare	 58
$.fn.selection	 59
$.fn.within	 60
$.Range	 60
$.route	 61

Special events	 61
$.Drag and $.Drop	 62

Language helpers	 62
$.Object	 62

same	 62
$.Observe	 64
$.String	 65

deparam	 65
$.toJSON	 66
$.Vector	 66

Summary	 67
Chapter 5: StealJS	 69

Dependency management	 69
Logger	 70
Code cleaner	 71
Concatenation and compression	 71
Summary	 72

Chapter 6: Building the App	 73
Time tracking and invoicing for freelancers	 73

Planning	 74
Preparing wireframes	 75
Setup project	 78

Tracking changes under VCS	 79
Application structure	 80

IndexedDB	 81
Creating models	 81
Creating controllers	 89
Creating views	 95
Creating a bootstrap	 102
Running the application	 103

Summary	 104
Index	 105

www.allitebooks.com

http://www.allitebooks.org

Preface
Learning JavaScriptMVC will guide you through all the framework aspects and show
you how to build small- to mid-size, well-structured and documented client-side
applications that you will love working on.

What this book covers
Chapter 1, Getting Started with JavaScriptMVC, provides an overview of the
JavaScriptMVC framework. Install it, go over the architecture, and learn how to do it
in the best possible way—by building a simple application.

Chapter 2, DocumentJS, shows how, despite being powerful, DocumentJS is a simple
tool designed to easily create searchable documentation of any JavaScript codebase.

Chapter 3, FuncUnit, explains how FuncUnit is a functional testing framework with
jQuery-like syntax. Using FuncUnit, we can run tests in all modern web browsers.
Writing test is really easy and fast.

Chapter 4, jQueryMX, shows how jQueryMX is a collection of jQuery libraries that
provides the functionality necessary to implement and organize large JavaScript
applications. It provides classical inheritance simulation and a model-view-controller
layer to provide logically separated codebase.

Chapter 5, StealJS, shows that StealJS is an independent code manager and build tool.

Chapter 6, Building the App, shows how to build real-world applications from concept
through design, implementation, documentation, and testing.

Preface

[2]

What you need for this book
To run the examples in this book the following software will be required:

•	 JavaScriptMVC kick-starter: https://github.com/wbednarski/
JavaScriptMVC_kick-starter

•	 Oracle VM VirtualBox: https://www.virtualbox.org/
•	 Vagrant: http://downloads.vagrantup.com/

Who this book is for
This book is for anyone who is interested in developing small- and mid-size web
applications with the JavaScriptMVC framework, which is based on the most
popular JavaScript library – jQuery.

Readers should be familiar with JavaScript, browser APIs, jQuery, HTML5, and CSS.

Conventions
In this book, you will find different styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text are shown as follows: "Easy switch to another version by the
checkout tag."

A block of code is set as follows:

<!doctype html>

<html>
 <head>
 <title>Todo List</title>
 <meta charset="UTF-8" />
 </head>
 <body>
 <ul id="todos">
 all done!

 <script src="../steal/steal.js?todo"></script>
 </body>
</html>

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

steal(
 'jquery/class',
 'jquery/model',
 'jquery/dom/fixture',
 'jquery/view/ejs',
 'jquery/controller',
 'jquery/controller/route',

 function ($) {

 }
);

Any command-line input or output is written as follows:

$ git submodule add git://github.com/bitovi/steal.git

$ git submodule add git://github.com/bitovi/documentjs.git

$ git submodule add git://github.com/bitovi/funcunit.git

$ git submodule add git://github.com/jupiterjs/jquerymx jquery

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Archive
button is visible when task is hovered."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[4]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Getting Started with
JavaScriptMVC

In this chapter, get an overview of the JavaScriptMVC framework. We will install
it, go through the architecture, and learn it in the best possible way. Finally, we will
build a simple application. There is nothing that works better than an example. Some
say this is the only thing that works.

What is JavaScriptMVC?
JavaScriptMVC (JMVC) is a JavaScript open source model-view-controller (MVC)
framework build, on top of the jQuery library.

It is the backend agnostic client-side framework that can be used with any backend
solution, such as Node.js, Ruby on Rails, Django, and so on.

The idea behind JavaScriptMVC is to provide a set of tools to build high quality and
maintainable applications in the shortest amount of time possible.

JavaScriptMVC contains the following independent components:

•	 StealJS: This is the dependency manager and production build
•	 FuncUnit: This is the unit and functional test component
•	 jQueryMX: This contains a set of plugins that provide the functionality to

implement and organize large JavaScript codebases into a well-structured
and organized form, provide a model-view-controller abstraction layer

•	 DocumentJS: This is the documentation

The first version was published in May 2008. Current Version 3.2 was released in
December 2010. The latest version at the time of writing this book is 3.2.2.

Getting Started with JavaScriptMVC

[8]

In the next Version 3.3 of JavaScriptMVC, which should be released soon, jQueryMX
project will be replaced by CanJS. Projects using current version of JMVC should
work after small refactoring with JMVC 3.3 thanks to the names fallback.

JavaScriptMVC 4.0 will be renamed to DoneJS and contain significant changes to
StealJS which will be fully AMD compatible work with CommonJS and run with
Node.js. FuncUnit will be split into 3 parts: Syn - Synthetic event library, ShouldJS
- Asynchronous test driving using Jasmine or QUnit and DidJS - Automated test
runner bindings for Jasmine or QUnit for Selenium, PhantomJS, and so on.

License
JavaScriptMVC is licensed under the MIT license with the following exceptions:

•	 Rhino: This is the JavaScript command line (MPL 1.1)
•	 Selenium browser automation (Apache 2)

Links
You can refer to the following URLs to learn more about JavaScriptMVC:

•	 Official website: http://javascriptmvc.com
•	 Repository: https://github.com/bitovi/javascriptmvc

Why JavaScriptMVC?
JavaScriptMVC is a solid and well documented framework.

It is based on the extremely popular JavaScript library jQuery, where many
JavaScript programmers are familiar with its factory methods and chainable
function style.

JavaScriptMVC is a complete package. It contains everything we need to build,
manage, document, and test JavaScript projects.

Since it is a modular framework, we don't need to use all the available components.
We can start by using only framework components that we actually need, and add
additional components as and when we need them.

Chapter 1

[9]

The learning curve is pretty low, especially if a reader is familiar with other
JavaScript frameworks, such as lightweight Backbone and Sammy or heavyweight
toolkits such as Dojo toolkit or Google Closure. At the same time, it offers much
more than lightweight brothers without a heavy feel, such as Google Closure which
produces much cleaner code and provides better documentation than the very
popular Dojo toolkit.

One of its killer features is that it prevents memory leakage. This is a very important
aspect of client-side applications, which perform many operations on the Document
Object Model (DOM) tree.

MVC in JavaScriptVC
JavaScriptMVC utilizes the classic MVC pattern, which separates
business logic and application data from the user interface.

System architecture approach
When building web applications, we can distinguish between two approaches—
multi-page application and single-page application.

In multi-page application, most of the business logic is implemented in the backend
system, with some enhancement done in JavaScript. For example, the Ruby on Rails
application, where most of the main logic is done by the backend MVC architecture
and when a user navigates to another page, an ordinary http request is sent.

In single-page application, most of the business logic is implemented on the
frontend side. For example, the JavaScriptMVC application, where most of the main
logic is done by frontend MVC architecture. When a user navigates to another page,
the frontend router dispatches all requests and makes calls to the back end API
written; for example, in Sinatra.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with JavaScriptMVC

[10]

JavaScriptMVC single-page application
JavaScriptMVC is designed for single-page application use cases. It's good to know
about the advantages and disadvantages of the single-page application approach
compared to that of the multi-page application.

Advantages
•	 Most of the states are maintained in the client, so we don't need to keep the

session states on the server side
•	 Most of the requests are done through XRH calls, so there is no need to load a

new page each time, which could cause high memory footprint (especially in
the old fashion, non event-based servers such as Apache)

•	 Most of the business logic is on the client side, so we can save many calls to
the server

Downsides
•	 Load balance and Content Delivery Network (CDN) can be tricky since

RPC is used to move data back and forth between the server and client.
•	 Search Engine Optimization (SEO) can be tricky due to on-demand

JavaScript built pages.

Real-world examples
Readers can find web applications built with the JavaScriptMVC framework at
http://community.javascriptmvc.com/posts/in-bucket/apps.

Installing JavaScriptMVC
Installing JavaScriptMVC is as easy as making tea, but faster.

Choosing your method
There are three methods.

•	 Download the complete package from the official website
(http://javascriptmvc.com) or build a custom package including the
components we want to use (http://javascriptmvc.com/builder.html)

Chapter 1

[11]

•	 Pull code from the Git repositories hosted on GitHub.
•	 Use Vagrant

The last two methods are the preferred way, for the following reasons:

•	 Easy update to the latest version
•	 Easy switch to another version by the checkout tag
•	 Contribution to the project; how awesome is that? For more information

about contributing, visit http://javascriptmvc.com/docs.
html#!developwithgit

The third method seems to be the best one, because it contains all the advantages
from the second one, plus it creates an encapsulated environment, which we can
easily and quickly create or delete without affecting our current development
environment setup.

Which method is right for me?
For a fast tryout library, choose the first method. For the actual development,
definitely choose the second one.

The first method – download the package
In this method, we will use a web interface on the JavaScriptMVC web page to
configure and download the package:

1.	 Download the complete package from http://javascriptmvc.com and
unpack its content.

2.	 Create a folder named Todo under the local web server working directory.
3.	 Copy all files from javascriptmvc-3.2.2 to the Todo folder and start the

web server.

$ mkdir Todo && cp -r javascriptmvc-3.2.2/* Todo && cd Todo

That is it; we are all set and ready to go.

Getting Started with JavaScriptMVC

[12]

The second method – pull the code from Git
repositories
We assume that the reader knows and has installed Git.

If not, the following resources might be helpful:

•	 Installing Git: http://git-scm.com/book/en/Getting-Started-
Installing-Git

•	 Free book Pro Git: http://git-scm.com/book
•	 Git reference: http://gitref.org

In the following steps, we are going to install JavaScriptMVC for our Todo
example project:

1.	 Under local web server directory, create new folder named Todo:
$ mkdir Todo && cd Todo

2.	 Inside the Todo folder, create a new Git repository:
$ git init

3.	 Add JavaScriptMVC components as submodules to the project:
$ git submodule add git://github.com/bitovi/steal.git

$ git submodule add git://github.com/bitovi/documentjs.git

$ git submodule add git://github.com/bitovi/funcunit.git

$ git submodule add git://github.com/jupiterjs/jquerymx jquery

4.	 Install and update the submodules:
$ git submodule init

$ git submodule update

Chapter 1

[13]

5.	 The last module we need to install is Syn. Since it is already a submodule to
the FuncUnit project, all we need to do is initialize and update it:
$ cd funcunit

$ git submodule init

$ git submodule update

6.	 Switch Syn to the master branch:
$ cd syn/

$ git checkout master

7.	 Go back to the root directory of the project:
$ cd ../..

8.	 Move the js command to the root directory of the project:

$./steal/js steal/make.js

Verifying Installation
The project directory should have following folder structure:

.git

.gitmodules

documentjs

funcunit

jquery

js

js.bat

steal

That is it; we are all set and ready to go.

More about submodules in Git: http://git-scm.com/book/
en/Git-Tools-Submodules

Getting Started with JavaScriptMVC

[14]

The third method – Vagrant
To install JavaScriptMVC using this method, we need to install Vagrant, which is
a virtualized development tool wrapper around Oracle VM VirtualBox, an x86 and
AMD64/Intel64 virtualization software package.

1.	 Download and install Oracle VM VirtualBox
(https://www.virtualbox.org).

2.	 Download and install Vagrant (http://downloads.vagrantup.com).
3.	 Download an unpack the JavaScriptMVC kick-starter (https://github.

com/wbednarski/JavaScriptMVC_kick-starter/archive/master.zip).
4.	 Inside JavaScriptMVC kick-starter folder type vagrant up.

This command creates a virtual environment and a projects directory.
It also installs the web server. JavaScriptMVC framework will be placed in
the Todo directory.

Any changes we make inside the projects directory are immediately visible in web
browser at http://192.168.111.111/.

Documentation and API
Good documentation and API, many tutorials, and a well documented codebase is
the strong side of JavaScriptMVC:

•	 JavaScriptMVC documentation: http://javascriptmvc.com/docs.html
•	 JavaScriptMVC API: http://jqapi.com
•	 JavaScriptMVC tutorials: http://javascriptmvc.com/docs.

html#!tutorials

•	 JavaScriptMVC code examples: http://javascriptmvc.com/docs.
html#!examples

Active community on the forum and Stack Overflow:

•	 Stack Overflow questions about JavaScriptMVC: http://stackoverflow.
com/questions/tagged/javascriptmvc

•	 JavaScriptMVC official forum: http://forum.javascriptmvc.com/
allforums

Chapter 1

[15]

The architecture of JavaScriptMVC
The architecture of JavaScriptMVC is modular. The powerful stack contains
everything we need to build a well organized, tested, and documented application.

Here is a list of the JavaScriptMVC key components as well as topics covered in the
next chapters.

DocumentJS
DocumentJS is an independent JavaScript documentation application and provides
the following:

•	 Inline demos with source code and HTML panels
•	 Adds tags to the documentation
•	 Adds documentation as favorite
•	 Auto suggest search
•	 Test result page
•	 Comments
•	 Extends the JSDoc syntax
•	 Adds undocumented code because it understands JavaScript

FuncUnit
FuncUnit is an independent web testing framework and provides the following:

•	 Test clicking, typing, moving mouse cursor, and drag-and-drop utility
•	 Follows users between pages
•	 Multi browser and operating system support
•	 Continuous integration solution
•	 Writes and debugs tests in the web browser
•	 Chainable API that parallels jQuery

Getting Started with JavaScriptMVC

[16]

jQueryMX
jQueryMX is the MVC part of JavaScriptMVC and provides the following:

•	 Encourages logically separated, deterministic code
•	 MVC layer
•	 Uniform client-side template interface (supports jq-tmpl, EJS, JAML, Micro,

and Mustache)
•	 Ajax fixtures
•	 Useful DOM utilities
•	 Language helpers
•	 JSON utilities
•	 Class system
•	 Custom events

StealJS
StealJS is an independent code manager and build tool and provides the following
powerful features:

Dependency management
•	 Loads JavaScript and CoffeeScript
•	 Loads CSS, Less, and Sass files
•	 Loads client-side templates such as TODO
•	 Loasd individual files only once
•	 Loads files from a different domain

Concatenation and compression
•	 Google Closure compressor
•	 Makes multi-page build
•	 Pre processes TODO
•	 Can conditionally remove specified code from the production build
•	 Builds standalone jQuery plugins

Chapter 1

[17]

Logger
•	 Logs messages in a development mode

Code generator
•	 Generates an application skeleton
•	 Adds the possibility to create your own generator

Package management
•	 Downloads and install plugins from SVN and Git repositories
•	 Installs the dependencies
•	 Runs install scripts
•	 Loads individual files only once
•	 Loads files from a different domain

Code cleaner
•	 Runs JavaScript beautifier against your codebase
•	 Runs JSLint against your codebase

Building simple applications
We installed JavaScriptMVC and went briefly through its components. Now, we are
ready to build our first JavaScriptMVC application.

Excited? Let's do the magic.

Todo list
We are going to learn JavaScriptMVC on the classic example application – the
to-do list.

If you are curious and want to compare different JavaScript frameworks
based on the todos application examples, then the GitHub project
is absolutely fantastic. You can find it at https://github.com/
tastejs/todomvc/tree/gh-pages/architecture-examples.
The project home page is at http://todomvc.com/.

Getting Started with JavaScriptMVC

[18]

Loader
In the Todo folder that we created during installing JavaScriptMVC, create a folder
named todo. Create files named todo.html and todo.js inside todo.

The project directory should have following structure:

Todo/

 .git

 .gitmodules

 todo/

 todo.html

 todo.js

 documentjs

 funcunit

 jquery

 js

 js.bat

 steal

Copy and paste the following code into todo.html to load the StealJS and
todo.js files:

<!doctype html>

<html>
 <head>
 <title>Todo List</title>
 <meta charset="UTF-8" />
 </head>
 <body>
 <ul id="todos">
 all done!

 <script src="../steal/steal.js?todo"></script>
 </body>
</html>

Chapter 1

[19]

../steal/steal.js?todo is the equivalent of ../
steal/steal.js?todo/todo.js. If file name is not
provided StealJS, try to load the JavaScript file with the
same name as the given folder.

In todo.js, add the following code to load the jQueryMX plugins. They are necessary
to implement this application:

steal(
 'jquery/class',
 'jquery/model',
 'jquery/dom/fixture',
 'jquery/view/ejs',
 'jquery/controller',
 'jquery/controller/route',

 function ($) {

 }
);

Open the page in a web browser by typing http://YOUR_LOCAL_WEB_SERVER/Todo/
todo.html, and use a web development tool, such as Google Chrome Inspector, to
check if StealJS and all the listed plugins are loaded properly.

Model
The next step is to add a model to our application by extending $.Model from the
jQueryMX project.

The first parameter is the model name (string), the second parameter is the object
with the class properties and methods. The last parameter is the prototype instance
property, which we leave as an empty object for this example:

steal(
 'jquery/class',
 'jquery/model',
 'jquery/dom/fixture',
 'jquery/view/ejs',
 'jquery/controller',
 'jquery/controller/route',

www.allitebooks.com

http://www.allitebooks.org

Getting Started with JavaScriptMVC

[20]

 function ($) {
 $.Model('Todo', {
 findAll: 'GET /todos',
 findOne: 'GET /todos/{id}',
 create: 'POST /todos',
 update: 'PUT /todos/{id}',
 destroy: 'DELETE /todos/{id}'
 },
 {

 }
);
 }
);

Class properties are not random; they are described in the model API.
http://javascriptmvc.com/docs.html#!jquerymx.

We've created the Todo model for our todo list application. Now, it's time to play
around with it.

1.	 Open a web browser and type the following line into the JavaScript console:
var todo = new Todo({name: 'write a book'});

todo is now an instance of Todo with property name and property value
write a book.

2.	 Get the property value as follows:
todo.attr('name');

3.	 Set the property value if the property exists, as follows:
todo.attr('name', 'write JavaScript book');

Or by attrs, where we can set more then one property at the time as well as
add a new property:

todo.attrs({name: 'write JavaScriptMVC book!'});

Chapter 1

[21]

4.	 Add two new properties:
todo.attrs({
 person: 'Wojtek',
 dueDate: '1 December 1012'
});

5.	 List all the properties:

Todo.attrs();

The following screenshot shows the execution of the preceding commands:

Getting Started with JavaScriptMVC

[22]

Fixtures
Since we have no backend service to handle /todo API calls in our frontend
application, any attempt to invoke one of the model's CRUD methods on the Todo
model will cause a network error.

Create, Read, Update, Delete (CRUD) are the four
basic functions of persistent storage.

Chapter 1

[23]

At this point, $.fixture comes to the rescue. With this feature, we can work on a
project even when backend code is not ready yet.

Create fixtures for the Todo model:

steal(
 'jquery/class',
 'jquery/model',
 'jquery/util/fixture',
 'jquery/view/ejs',
 'jquery/controller',
 'jquery/controller/route',

 function ($) {
 $.Model('Todo', {
 findAll: 'GET /todos',
 findOne: 'GET /todos/{id}',
 create: 'POST /todos',
 update: 'PUT /todos/{id}',
 destroy: 'DELETE /todos/{id}'
 },
 {

 }
);

 // Fixtures
 (function () {

 var TODOS = [
 // list of todos
 {
 id: 1,
 name: 'read The Good Parts'
 },
 {
 id: 2,
 name: 'read Pro Git'
 },
 {
 id: 3,
 name: 'read Programming Ruby'
 }
];

 // findAll
 $.fixture('GET /todos', function () {
 return [TODOS];
 });

 // findOne

Getting Started with JavaScriptMVC

[24]

 $.fixture('GET /todos/{id}', function (orig) {
 return TODOS[(+orig.data.id) - 1];
 });

 // create
 var id = 4;
 $.fixture('POST /todos', function () {
 return {
 id: (id++)
 };
 });

 // update
 $.fixture('PUT /todos/{id}', function () {
 return {};
 });

 // destroy
 $.fixture('DELETE /todos/{id}', function () {
 return {};
 });

 }());
 }
);

Now, we can use our Todo model methods as if backend services were here.

For instance, we can list all todos:
Todo.findAll({}, function(todos) {
 console.log('todos: ', todos);
});

The following screenshot shows the output of the console.log('todos: ',
todos); command:

Chapter 1

[25]

View
Now, it is a good time to add some HTML code to actually see something beyond
the browser console. To do this, use the open source client-side template system
Embedded JavaScript (EJS).

Create a new file todos.ejs in the todo directory (the same folder where todo.js is
located), and add the following code to it:

<% $.each(this, function(i, todo) { %>

 <li <%= ($el) -> $el.model(todo) %>>
 <%= todo.name %>
 <em class="destroy">delete

<% }) %>

Then, type the following in the console:

$('#todos').html('todos.ejs', Todo.findAll());

Now, we can see all todos printed:

Getting Started with JavaScriptMVC

[26]

Basically, the EJS template is an HTML file with injected JavaScript code between <%
and %> or <%= and %> (and a few other ways).

The difference is that in the second case, all the values returned by the JavaScript
code are escaped and printed out. In the first one, they are only evaluated.

The first line is a jQuery each loop— no magic here. However, the next line could
be a new thing for many readers. It is ECMAScript Harmony-like, arrow style
syntax for functions used by the EJS parser that doesn't darken the whole picture
by its simplicity.

The following syntax:

($el) -> $el.model(todo)

Can be explained as follows:

function ($el) {
 return $el.model(todo)
}

Controller
Let's add some action to our user interface.

Add the following code to the todo.js file, and refresh the application in a browser:

$.Controller('Todos', {
 // init method is called when new instance is created
 'init': function (element, options) {
 this.element.html('todos.ejs', Todo.findAll());
 },

 // add event listener to strong element on click
 'li strong click': function (el, e) {
 // trigger custom event
 el.trigger('selected', el.closest('li').model());

 // log current model to the console
 console.log('li strong click', el.closest('.todo').model());
 },

 // add event listener to em element on click
 'li .destroy click': function (el, e) {
 // call destroy on the model to prevent memory leaking
 el.closest('.todo').model().destroy();
 },

 // add event listener to Todo model on destroyed

Chapter 1

[27]

 '{Todo} destroyed': function (Todo, e, destroyedTodo) {
 // remove element from the DOM tree
 destroyedTodo.elements(this.element).remove();

 console.log('destroyed: ', destroyedTodo);
 }
});

// create new controller instance
new Todos('#todos');

Now, you can click on the todo name to see the console log or delete it.

The init method is called when a new controller is instantiated.

When the controller element is removed from the DOM tree (in our case, #todos),
the destroy method is called automatically, unbinding all controller event
handlers and releasing its element to prevent memory leakage.

Routing
Replace the following code:

// create new Todo controller instance
new Todos('#todos');

With:

// routing
$.Controller('Routing', {
 init: function () {
 new Todos('#todos');
 },

 // the index page
 'route': function () {
 console.log('default route');
 },

 // handle URL witch hash
 ':id route': function (data) {
 Todo.findOne(data, $.proxy(function (todo) {
 // increase font size for current todo item
 todo.elements(this.element).animate({fontSize: '125%'},
750);
 }, this));
 },

 // add event listener on selected

Getting Started with JavaScriptMVC

[28]

 '.todo selected': function (el, e, todo) {
 // pass todo id as a parameter to the router
 $.route.attr('id', todo.id);
 }
});

// create new Routing controller instance
new Routing(document.body);

Refresh the application and try to click on the todo list elements. You will see that
the URL updates after clicking on the todo item with its corresponding ID.

Complete application code
Here is the complete code for the Todo application:

steal(
 'jquery/class',
 'jquery/model',
 'jquery/util/fixture',
 'jquery/view/ejs',
 'jquery/controller',
 'jquery/controller/route',

 function ($) {
 $.Model('Todo', {
 findAll: 'GET /todos',
 findOne: 'GET /todos/{id}',
 create: 'POST /todos',
 update: 'PUT /todos/{id}',
 destroy: 'DELETE /todos/{id}'
 },
 {

 }
);

 // Fixtures
 (function () {
 var TODOS = [
 // list of todos
 {
 id: 1,
 name: 'read The Good Parts'
 },
 {
 id: 2,
 name: 'read Pro Git'
 },

Chapter 1

[29]

 {
 id: 3,
 name: 'read Programming Ruby'
 }
];

 // findAll
 $.fixture('GET /todos', function () {
 return [TODOS];
 });

 // findOne
 $.fixture('GET /todos/{id}', function (orig) {
 return TODOS[(+orig.data.id) - 1];
 });

 // create
 var id = 4;
 $.fixture('POST /todos', function () {
 return {
 id: (id++)
 };
 });

 // update
 $.fixture('PUT /todos/{id}', function () {
 return {};
 });

 // destroy
 $.fixture('DELETE /todos/{id}', function () {
 return {};
 });
 }());

 $.Controller('Todos', {
 // init method is called when new instance is created
 'init': function (element, options) {
 this.element.html('todos.ejs', Todo.findAll());
 },

 // add event listener to strong element on click
 'li strong click': function (el, e) {
 // trigger custom event
 el.trigger('selected', el.closest('li').model());

 // log current model to the console
 console.log('li strong click', el.closest('.todo').
model());
 },

www.allitebooks.com

http://www.allitebooks.org

Getting Started with JavaScriptMVC

[30]

 // add event listener to em element on click
 'li .destroy click': function (el, e) {
 // call destroy on the model to prevent memory leaking
 el.closest('.todo').model().destroy();
 },

 // add event listener to Todo model on destroyed
 '{Todo} destroyed': function (Todo, e, destroyedTodo) {
 // remove element from the DOM tree
 destroyedTodo.elements(this.element).remove();

 console.log('destroyed: ', destroyedTodo);
 }
 });

 // routing
 $.Controller('Routing', {
 init: function () {
 new Todos('#todos');
 },

 // the index page
 'route': function () {
 console.log('default route');
 },

 // handle URL witch hash
 ':id route': function (data) {
 Todo.findOne(data, $.proxy(function (todo) {
 // increase font size for current todo item
 todo.elements(this.element).animate({fontSize:
'125%'}, 750);
 }, this));
 },

 // add event listener on selected
 '.todo selected': function (el, e, todo) {
 // pass todo id as a parameter to the router
 $.route.attr('id', todo.id);
 }
 });

 // create new Routing controller instance
 new Routing(document.body);
 }
);

Chapter 1

[31]

Summary
In this chapter, we learned what JavaScriptMVC is, and why it is a good and solid
framework. We also learned how to install it, and browse the documentation and
API. We got an overview of its architecture by building a simple application.

If you can understand all the code that we have written in this chapter, you will be
able to dig into the framework easily and fast. Congratulations!

DocumentJS
Source code alone is insufficient; documentation is an important part of software
engineering. DocumentJS is a powerful, yet simple tool designed to easily create
searchable documentation for any JavaScript codebase.

In this chapter, we will to get an overview of DocumentJS. We will learn how it
works and learn to generate its documentation.

The following are the key features of DocumentJS:

•	 Flexible and easy to extend
•	 Support Markdown: http://en.wikipedia.org/wiki/Markdown
•	 Integrated documentation viewer with API search
•	 Works with any JavaScript code and not only with JavaScriptMVC

If you are familiar with JSDoc, YUIDoc, YARD, or similar documentation syntax/
tools in then DocumentJS can be learned a, few minutes.

The documentation for DocumentJS can be found at http://javascriptmvc.com/
docs.html#!DocumentJS.

Markdown is a text-to-HTML conversion tool that allows you to
write using an easy-to-read and easy-to-write plain text format
(http://daringfireball.net/projects/markdown).

DocumentJS

[34]

How does DocumentJS work?
The architecture of DocumentJS is organized around types and tags.

Types represent every relatively independent part of the JavaScript code that we
may want to comment, such as classes, functions (methods), or attributes.

Tags provide additional information to types, such as parameters and returns.

DocumentJS parses JavaScript and Markdown files to produce JSONP files that are
used by JMVCDoc to render documentation.

Writing the documentation
Let's add a documentation to our Todo list application in Chapter 1, Getting Started
with JavaScriptMVC.

To add the main documentation page, create a Markdown file todo.md in the Todo/
todo directory with the following content:

@page index TodoApp
@description TodoApp is simple todo application.

TodoApp documentation

Here we can add some more documentation formatted by [Markdown][1]!

[1]: http://daringfireball.net/projects/markdown/syntax "Check out
Markdown syntax"

Then, add these documentation blocks to the todo.js file:

steal(
 'jquery/class',
 'jquery/model',
 'jquery/util/fixture',
 'jquery/view/ejs',
 'jquery/controller',
 'jquery/controller/route',
 function ($) {

 /**
 * @class Todo
 * @parent index
 * @constructor
 * @author Wojciech Bednarski
 * Creates a new todo.

Chapter 2

[35]

 */
 $.Model('Todo',{

 /**
 * @function findAll
 * Get all todos
 * @return {Array} an array contains objects with all
todos
 */
 findAll: 'GET /todos',

 /**
 * @function findOne
 * Get todo by id
 * @return {Object} an objects contains single todo
 */
 findOne: 'GET /todos/{id}',

 /**
 * @function create
 * Create todo
 * @param {Object} todo
 * Todo object
 * @codestart
 * {name: 'read a book by Alfred Szklarski'}
 * @codeend
 *
 * @return {Object} an object contains newly created
todo
 * @codestart
 * {
 * id: 577,
 * name: 'read a book by Alfred Szklarski'
 * }
 * @codeend
 *
 * ### Example:
 * @codestart
 * var todo = new Todo({name: 'read a book by Alfred
Szklarski'});
 * todo.save(function (todo) {
 * console.log(todo);
 * });
 * @codeend
 */
 create: 'POST /todos',

 /**
 * @function update
 * Update todo by id

DocumentJS

[36]

 * @return {Object} an object contains updated todo
 */
 update: 'PUT /todos/{id}',

 /**
 * @function destroy
 * Destroy todo by id
 * @return {Object} an object contains destroyed todo
 */
 destroy: 'DELETE /todos/{id}'
 },
 {

 }
);

 // Fixtures
 (function () {
 var TODOS = [
 // list of todos
 {
 id: 1,
 name: 'read The Good Parts'
 },
 {
 id: 2,
 name: 'read Pro Git'
 },
 {
 id: 3,
 name: 'read Programming Ruby'
 }
];

 // findAll
 $.fixture('GET /todos', function () {
 return [TODOS];
 });

 // findOne
 $.fixture('GET /todos/{id}', function (orig) {
 return TODOS[(+orig.data.id) - 1];
 });

 // create
 var id = 4;
 $.fixture('POST /todos', function () {
 return {
 id: (id++)
 };

Chapter 2

[37]

 });

 // update
 $.fixture('PUT /todos/{id}', function () {
 return {};
 });

 // destroy
 $.fixture('DELETE /todos/{id}', function () {
 return {};
 });
 }());

 /**
 * @class Todos
 * Creates a new Todos controller
 * @parent index
 * @constructor
 * @param {String} DOMElement DOM element
 * @return {Object}
 */
 $.Controller('Todos', {
 // init method is called when new instance is created
 'init': function (element, options) {
 this.element.html('todos.ejs', Todo.findAll());
 },

 // add event listener to strong element on click
 'li strong click': function (el, e) {
 // trigger custom event
 el.trigger('selected', el.closest('li').model());

 // log current model to the console
 console.log('li strong click', el.closest('.todo').
model());
 },

 // add event listener to em element on click
 'li .destroy click': function (el, e) {
 // call destroy on the model to prevent memory leaking
 el.closest('.todo').model().destroy();
 },

 // add event listener to Todo model on destroyed
 '{Todo} destroyed': function (Todo, e, destroyedTodo) {
 // remove element from the DOM tree
 destroyedTodo.elements(this.element).remove();

 console.log('destroyed: ', destroyedTodo);
 }

DocumentJS

[38]

 });

 /**
 * @class Routing
 * Creates application router
 * @parent index
 * @constructor
 * @param {String} DOMElement DOM element
 * @return {Object}
 */
 $.Controller('Routing', {
 init: function () {
 new Todos('#todos');
 },

 // the index page
 'route': function () {
 console.log('default route');
 },

 // handle URL witch hash
 ':id route': function (data) {
 Todo.findOne(data, $.proxy(function (todo) {
 // increase font size for current todo item
 todo.elements(this.element).animate({fontSize:
'125%'}, 750);
 }, this));
 },

 // add event listener on selected
 '.todo selected': function (el, e, todo) {
 // pass todo id as a parameter to the router
 $.route.attr('id', todo.id);
 }
 });

 // create new Routing controller instance
 new Routing(document.body);
 }
);

Type directives
Type directives represent JavaScript constructs that you may want to document:

•	 @page: This adds a standalone page
•	 @attribute: These are the document values on an object

Chapter 2

[39]

•	 @function: These are document functions
•	 @class: This documents a class
•	 @prototype: This is added to the previous class or a constructor's prototype

functions
•	 @static: This is added to the previous class or constructor's static functions
•	 @add: This adds the docs to a class or constructor described in another file

Tag directives
Tag directives provide additional information to the comments:

•	 @alias: This specifies other commonly used names for class or constructor
•	 @author: This specifies the author of a class
•	 @codestart: This specifies the start of a code block
•	 @codeend: This specifies end of a code block
•	 @constructor: This documents a contractor function and its parameters
•	 @demo: This is the placeholder for an application demo
•	 @description: This is used to add a short description
•	 @download: This is used to adds download link
•	 @iframe: This is used to add an iframe with example code
•	 @hide: This hides the class view
•	 @inherits: This specifies what the Class or Constructor inherits
•	 @parent: This specifies under which parent the current type should be

located
•	 @param: This specifies a function parameter
•	 @plugin: This specifies a plugin by which an object gets stolen
•	 @return: This specifies what a function returns
•	 @scope: This forces the current type to start the scope
•	 @tag: This specifies the tags for searching
•	 @test: This specifies the links for test cases
•	 @type: This sets the type for the current commented code
•	 @image: This adds an image

www.allitebooks.com

http://www.allitebooks.org

DocumentJS

[40]

Generating the documentation
All we need to do to generate the documentation is run the doc command from the
command line (inside the Todo directory):

$./documentjs/doc todo

PROCESSING SCRIPTS

 todo/todo.js

 todo/todo.md

GENERATING DOCS -> todo/docs

Using default page layout. Overwrite by creating: todo/summary.ejs

This generates the documentation, which we can browse by opening docs.html
located in the Todo/todo directory:

We can customize the look and feel of the documentation by changing the summary.
ejs template file. Simply copy the template from documentjs/jmvcdoc to Todo/
todo and modify it.

Chapter 2

[41]

Summary
In this chapter, we have learned what it DocumentJS is and how to write and
generate its documentation.

One good habit that every programmer should have is that he or she must document
the codebase and keep it up to date.

FuncUnit
FuncUnit is a functional testing framework with jQuery-like syntax. It is built on top
of the QUnit unit test framework.

Using FuncUnit, we can run tests in all the modern web browsers under OS X,
GNU/Linux, or Windows.

Writing a test is really easy and fast, especially if the reader is familiar with the
jQuery syntax and/or the QUnit framework.

FuncUnit allow us to run tests in web browsers as well as integrates it with
automation tools such as Selenium, or run tests from the command line using
wrappers such as PhantomJS.

FuncUnit can be integrated with build tools, such as Maven, to run as a part of the
build process. It can be integrated with continuous integration tools, such as Jenkins.
More information on FuncUnit can be found at the following URLs:

•	 Documentation: http://javascriptmvc.com/docs.html#!FuncUnit
•	 Source code: https://github.com/bitovi/funcunit
•	 QUnit: http://docs.jquery.com/QUnit

According to Wikipedia, functional testing is defined as follows:

Functional testing is a type of black box testing that bases its test cases on the
specifications of the software component under test. Functions are tested by
feeding them input and examining the output, and internal program structure
is rarely considered.

FuncUnit

[44]

In this chapter, we are going to get an overview of the FuncUnit functional testing
framework, create tests, and run them against our Todo application.

Unit testing versus functional testing
Unit testing tests an individual unit-like method
or function, while functional testing tests the entire
functionality usually through the product user interface.

Creating tests
Creating tests is writing a code that runs against application code to ensure that
the code meets its design and behaves as intended. Writing tests can save time by
finding bugs at the early development stage.

Lets add our first test for the Todo app:

1.	 In the Todo/todo folder, create a folder named tests. Inside it, create a file
named todo_test.html with following content:
<!doctype html>

<html>
 <head>

 <title>Todo List - tests</title>
 <meta charset="UTF-8" />
 <link rel="stylesheet" href="../../funcunit/qunit/qunit.css"
/>
 </head>
 <body>
 <h1 id="qunit-header">AutoSuggest Test Suite</h1>

 <h2 id="qunit-banner"></h2>

 <div id="qunit-testrunner-toolbar"></div>
 <h2 id="qunit-userAgent"></h2>
 <ol id="qunit-tests">

 <script src="../../steal/steal.js?todo/tests/todo_test.js"></
script>

 </body>
</html>

This file provides a page skeleton that is populated with the FuncUnit
output, which remains the same for all future test cases—use it as a template;
only the title and path to the test file will change (highlighted code).

Chapter 3

[45]

2.	 Next, create a todo_test.js file with following content:

steal(
 'funcunit',
 function ($) {

 module('Todo app', {
 setup: function () {
 S.open('//todo/todo.html');
 }
 });

 test('page has #todos placeholder', function () {
 ok(S('body > #todos').size(), 'The #todo is child of the
body');
 });
 }
);

Module
A module signature is given by module(name, [lifecycle]);.

The module method comes from the QUnit project and provides the functionality to
divide test into modules.

The first parameter is a string with a module name. The second one is an object with
two possible methods, setup and teardown. The setup callback method runs before
each test, while the teardown runs after each test in the module.

Open
An open signature is given by open(path, [success], [timeout]).

In our example, we used the open method to open a given URL and run it against the
test 'page has #todos placeholder'.

Test
A test signature is given by test(name, [expected], test).

This method runs the actual test code.

The first parameter is the name of the test, while the second is required to actually
run the code.

FuncUnit

[46]

Ok
An ok signature is given by ok(state, [message]).

The ok method is a Boolean assertion. If the first parameter evaluates to true, the test
passes. The second parameter is optional and it describes test.

S
S is basically copy of the jQuery shortcut $, extended by FuncUnit-specific methods.

Running tests
There are quite few ways to run tests. Using a web browser, a command-line tool
will open the web browser and close it after the test execution is completed. We can
also run tests using standalone JavaScript environments.

Web browser
Disable the pop-up blocker and open tests/todo_test.html in the browser. The
test will open the Todo application and run the test case against it. After this, you
should be able to see something similar to the following screenshot:

Chapter 3

[47]

Selenium
Run the following command from the Todo app directory:

$./js funcunit/run selenium todo/tests/todo_test.html

This command will open Firefox, run exactly the same test as in the web browser
example, close the browser, and print the results on a command line.

PhantomJS
A much faster solution is running test using PhantomJS, because it doesn't launch the
web browser.

Execute following command to run the test:

$./js funcunit/run phantomjs todo/tests/todo_test.html

The preceding command will run the test in a PhantomJS environment, so it won't
open any web browser as it did in the previous case. But, it will run tests inside the
WebKit wrapper.

The command-line output should be similar to the following:

Opening file:///Users/wbednarski/Sites/DEV/JMVC/Todo/todo/tests/todo_
test.html

starting steal.browser.phantomjs

steal.js INFO: Opening //todo/todo.html

steal.js INFO: using a dynamic fixture for GET /todos

steal.js INFO: ajax request to todos.ejs, no fixture found

steal.js INFO: ajax request to todos.ejs, no fixture found

default route

Todo app

 page has #todos placeholder

 [x] The #todo is child of the body

Time: 3 seconds, Memory: 81.06 MB

OK (1 tests, 0 assertions)

FuncUnit

[48]

EnvJS
Another way to run tests is to use EnvJS-simulated browser environments written in
JavaScript.

EnvJS can only be used to run unit tests, because it doesn't accurately implement
event simulation.

Run the test by executing the following command:

$./js funcunit/run envjs todo/tests/todo_test.html

Integration
Integration is possible with popular build or CI tools, such as Jenkins or Maven:

•	 Jenkins: http://javascriptmvc.com/docs.html#!funcunit.jenkins
•	 Maven: http://javascriptmvc.com/docs.html#!funcunit.maven

Summary
As we can see, FuncUnit is an easy-to-use, powerful testing framework.

Writing test cases is fast and easy. The possibility to run them in several ways as well
as integrate them with automated and build tools makes FuncUnit a solid tool.

Now, we have no excuses not to write tests.

jQueryMX
jQueryMX is a collection of jQuery libraries that provides functionality necessary to
implement and organize large JavaScript applications.

It provides classical inheritance simulation, model-view-controller layers to provide
logically separated codebase. It also provides useful DOM helpers, custom events,
and language helpers.

In this chapter we will go through the most common or most interesting ones.

For the full plugins list go to http://javascriptmvc.com/
docs.html#!jquerymx.

We use the existing Todo application folder structure to play around with
jQueryMX plugins.

In the Todo folder create a jquerymx_playground folder with two files using the
following code snippet:

<!doctype html>

<html>
<head>
 <title>jQueryMX playground</title>
 <meta charset="UTF-8"/>
</head>
<body>

<script src="../steal/steal.js?jquerymx_playground/jquerymx_
playground_0.js"></script>
</body>
</html>

www.allitebooks.com

http://www.allitebooks.org

jQueryMX

[50]

When a code snippet is indicated as run in the console it means paste and execute the
example in Google Chrome Console on the opened index.html page. We can use any
web browser console such as Firebug, however, Google Chrome (and Safari) seem to
be among the best at the moment and have a very handy code complementation.

$.Class
$.Class provides classical inheritance simulation based on John Resig's
Simple JavaScript Inheritance found at http://ejohn.org/blog/
simple-javascript-inheritance/.

The class signature is $.Class([NAME , STATIC,]
PROTOTYPE) -> Class.

The class method is available to all class instances whereas the instance method is
available only to a particular instance.

Let's write some examples in the file jquerymx_playground_0.js:

steal(
 'jquery/class',
 function ($) {
 $.Class('Bank.Account', {
 setup: function () {
 console.log('Bank.Account class: setup');
 },

 init: function () {
 console.log('Bank.Account class: init');
 },

 getType: function () {
 return 'Bank.Account class method';
 }
 },
 {
 setup: function () {
 console.log('Bank.Account instance: setup');
 },

 init: function () {
 console.log('Bank.Account instance: init');
 },

 getType: function () {
 return 'Bank.Account instance method';
 }

Chapter 4

[51]

 }
);

 Bank.Account('Bank.Account.SavingsAccount', {
 setup: function () {
 console.log('Bank.Account.SavingsAccount
 class: setup');
 },

 init: function () {
 console.log('Bank.Account.SavingsAccount
 class: init');
 }
 },
 {
 setup: function () {
 console.log('Bank.Account.SavingsAccount
 instance: setup');
 },

 init: function () {
 console.log('Bank.Account.SavingsAccount
 instance: init');
 },

// getExtendedType: function () {
// return 'Hello ' + this.getType();
// },

 getType: function () {
 return 'Hello ' + this._super();
 }
 }
);

// console.log('instantiate: acc, savingAcc');
// window.acc = new Bank.Account();
// window.savingAcc = new Bank.Account.SavingsAccount();
 }
);

In the console we can see that classes are created. Lets create some instances as follows:

var acc = new Bank.Account();
var savingAcc = new Bank.Account.SavingAccount();

We can execute instance methods as follows:

acc.getType();
savingAcc.getType();

jQueryMX

[52]

In the following sections, let's break down the code and see what happened here.

The first parameter
Using $.Class we created a new class with the name Account passing the
string Bank.Account as a first parameter. By using the dot notation we created a
namespace Bank. This is why we created a new instance of the class Account we
called Bank.Account. In this case Bank is just an empty object to help us create nice
and tidy application object structure.

An alternative namespace, for example, could CompanyName.Product.SomeClass.

The second parameter
As the second parameter we passed object with properties, which are class properties
shared with all classes instances.

In our case class method getType from the Account class is available in the
SavingAccount class. We can thus type the following in the console:

Bank.Account.SavingsAccount.getType();

The third parameter
As the third parameter we passed an object with properties, which are instance
properties shared with all instances. We thus type the following command in
the console:

savingAcc.getType();

Method override
In the getType instance method example, we can see how to override methods in the
children objects.

In SavingAccount we override the getType method by adding an additional Hello
string to the ancestor method of the same name, and call ancestor method using the
following:

this._super();

In case we don't want to use the same name, we can use the following:

getExtendedType: function () {
 return 'Hello ' + this.getType();
}

Chapter 4

[53]

Life cycle
In both class and instance we can use the predefined method setup and init.

If it exists it is always called, so there is no need to call it manually.

The setup method is called first, then the init method. In most cases there is no
need to use the setup method.

$.Model
$.Model is the application data layer. It provides an easy way to connect to the
services that provide RESTful APIs, listen to data changes, and bind HTML elements
to models, deferrers, and validations.

$.Model is very handy; we don't need to manually write XHR calls using jQuery's
Ajax method for instance. We can map our backend API using $.Model and then use
its methods to pull/push data to the server.

We can organize $.Models with a list using $.Model.List, which is similar to
Backbone.js's collections (http://backbonejs.org/#Collection).

Let's write some code in the file jquerymx_playground_1.js:

steal(
 'jquery/model',
 'jquery/dom/fixture',
 function ($) {
 $.Model('AccountModel', {
 findAll: 'GET /accounts',
 findOne: 'GET /accounts/{id}',
 create: 'POST /accounts',
 update: 'PUT /accounts/{id}',
 destroy: 'DELETE /accounts/{id}'
 },
 {

 }
);

 // Fixtures
 (function () {
 var accounts = [
 {
 id: 1,
 type: 'USD'
 },
 {

jQueryMX

[54]

 id: 2,
 type: 'EUR'
 }
];

 // findAll
 $.fixture('GET /accounts', function () {
 return [accounts];
 });

 // findOne
 $.fixture('GET /accounts/{id}', function () {
 return accounts;
 });

 // create
 $.fixture('POST /accounts', function () {
 return {};
 });

 // update
 $.fixture('PUT /accounts/{id}', function (id, acc) {
 return acc;
 });

 // destroy
 $.fixture('DELETE /accounts/{id}', function () {
 return {};
 });
 }());

 AccountModel.findAll({}, function (accounts) {
 $.each(accounts, function (i, acc) {
 $('<p>').model(acc).text(acc.type).
 appendTo('body');
 });
 });

 AccountModel.bind('updated', function (e, acc) {
acc.elements($('body')).remove();
 });

 AccountModel.bind('created', function (e, acc) {
 console.log('AccountModel.bind: event: ', e,
 'Account: ', acc);
 });
 }
);

Chapter 4

[55]

Lets break down this code and see what happened here:

•	 The code starting from $.Model is responsible for mapping API to our
model.

•	 The lines starting with $.fixtures are responsible for imitating server
responses. Fixtures are very helpful when we need to start development
without the web server API being ready or available.

•	 The bind method in the model class is responsible for binding model
methods update and create. We can try using them to see how they work
from the web browser console by executing these methods on the instance of
AccountModel.

$.View
$.View is a client-side template solution. It populates HTML templates with data.

It comes with four pre-packaged template engines, which can be downloaded from
the following websites:

•	 EJS: http://embeddedjs.com (default one created by JMVC team)
•	 Jaml: http://javascriptmvc.com/docs.html#!Jaml
•	 Micro: http://javascriptmvc.com/docs.html#!Micro
•	 jQuery templates: http://api.jquery.com/category/plugins/

templates

It's easy to extend it by using $.View.register.

Templates can be embedded in the HTML documents or loaded synchronously or
asynchronously from external files. $.View supports template caching and bundling
in the production builds.

Embedded
Templates are embedded in the HTML documents as follows:

Let's copy the following code into index.html file:

<script type='text/ejs' id="accounts">
 <p>JavaScriptMVC is <%= message %></p>
</script>

jQueryMX

[56]

Also, copy the following code into file jquerymx_playground_2.js:

steal(
 'jquery/view',
 'jquery/view/ejs',
 function ($) {

 }
);

In the console, type the following:

$('body').html('accounts', {message: 'Awesome'});

As a result, the following DOM node should be created:

<p>JavaScriptMVC is Awesome</p>

External
This method of using templates is the most common one, since it allows for better
organization of the project file's structure:

Create a file message.ejs and copy the previous template into it. The file content
should look as follows:

<p>JavaScriptMVC is <%= message %></p>

Type the following in the console:

$('body').html('message.ejs', {message: 'Awesome'});

The object with the property message is passed into the HTML method which uses
message.ejs file to render the text "Awesome" in place of <%= message %> and then
append it into the body DOM node.

The result should be the same as in the embedded one.

Sub-templates
Inside a template we can embed another template, as follows:

<%= $.View('sub-message.ejs', message); %>

Chapter 4

[57]

$.Controller
The $.Controller plugin helps to create an organized, memory leak-free JavaScript
code.

A great example of how to use $.Controller is the Todos controller from Chapter 1,
Getting Started with JavaScriptMVC, is as follows:

$.Controller('Todos', {
 // init method is called when new instance is created
 'init': function (element, options) {
 this.element.html('todos.ejs', Todo.findAll());
 },

 // add event listener to strong element on click
 'li strong click': function (el, e) {
 // trigger custom event
 el.trigger('selected', el.closest('li').model());

 // log current model to the console
 console.log('li strong click',
 el.closest('.todo').model());
 },

 // add event listener to em element on click
 'li .destroy click': function (el, e) {
 // call destroy on the model to prevent memory
 leaking
 el.closest('.todo').model().destroy();
 },

 // add event listener to Todo model on destroyed
 '{Todo} destroyed': function (Todo, e, destroyedTodo) {
 // remove element from the DOM tree
 destroyedTodo.elements(this.element).remove();

 console.log('destroyed: ', destroyedTodo);
 }
 });

DOM helpers
DOM helpers extensions add a set of useful plugins for the DOM. They are described
in the following sections.

jQueryMX

[58]

$.cookie
The $.cookie plugin contains useful methods to manage cookies.

Let's paste the following code into the jquerymx_cookie.js file:

steal(
 'jquery/dom/cookie',
 function ($) {

 }
);

We can create a cookie in the console using the following command:

$.cookie('CookieName', 'CookieValue');

In the resources tab we can see that cookie has been created.

We can get a cookie using it's cookie name, as follows:

$.cookie('CookieName');

We can also delete a cookie using the following command:

$.cookie('CookieName', null);

$.fn.compare
The $.fn.compare plugin compares two nodes and returns a number describing
how they are positioned each together.

Let's paste following code into the jquerymx_compare.js file:

steal(
 'jquery/dom/compare',
 function ($) {
 $('body').append('<p>paragraph</p>
 strong');
 }
);

In the console, run the following command:

$('p').compare($('strong'));

Next, run the following command:

$('strong').compare($('p'));

Chapter 4

[59]

In the first case we should get 4 and in the second case 2.

Here is what the numbers mean:

•	 0: The elements are identical
•	 1: The nodes are in different documents (or one is outside of a document)
•	 2: strong precedes p
•	 4: p precedes strong
•	 8: strong contains p
•	 16: p contains strong

$.fn.selection
The $.fn.selection plugin sets or gets current text selection on any element.

Let's paste the following code into the jquerymx_selection.js file:

steal(
 'jquery/dom/selection',
 function ($) {
 $('body').append('<p>Hello from paragraph!</p>');
 }
);

In the console, run the following command:

$('p').selection();

It should return null.

Now, select some part of the text and run the command again, it should return an
object as follows:

{
 end: 15,
 start: 4
}

To set the selection, use the following command:

$('p').selection(6, 10);

www.allitebooks.com

http://www.allitebooks.org

jQueryMX

[60]

$.fn.within
The $.fn.within plugin returns the elements that are within the given position.

Let's paste the following code into the jquerymx_within.js file:

steal(
 'jquery/dom/within',
 function ($) {
 $('body').append('<p>Hello from paragraph!</p>');
 }
);

In the console, run the following command:

$('p').within(30, 20);

It should return an array containing all p elements with a position left 30 px and top
20 px.

$.Range
The $.Range plugin contains useful methods that operate on text selections to
support creating, moving, and comparing selections.

Let's paste the following code into the jquerymx_range.js file:

steal(
 'jquery/dom/range',
 function ($) {
 $('body').append('<p>Hello from paragraph!</p>');
 }
);

In the console, run the following command:

$.Range.current();

To get the current range, select some portion of the text and execute the code again
and compare the returned objects.

To get the current selection text, run the following command in the console:

$.Range.current().toString();

Chapter 4

[61]

$.route
The $.route plugin contains useful methods to manage the application state.

Let's paste the following code into the jquerymx_route.js file:

steal(
 'jquery/dom/route',
 function ($) {
 $.route.bind('change', function (e, attr, how,
 newVal, oldVal) {
 console.log('event: ', e, '| attribute changes: ',
 attr, '| how changes: ', how, '| new value: ',
 newVal, '| old value: ', oldVal);
 });
 }
);

At the end of the URL, type the following:

#!&type=UTC

Then, type the following command and observe the console output:

#!&type=GTM

Another example of routing can be found in Chapter 1, Getting Started with
JavaScriptMVC, in the Todo application.

Special events
Special events extensions add a set of special events plugins.

jQueryMX

[62]

$.Drag and $.Drop
The $.Drag and $.Drop plugins contain the drag and drop events.

Let's paste the following code into the jquerymx_draganddrop.js file:

steal(
 'jquery/event/drag',
 'jquery/event/drag/limit',
 'jquery/event/drag/scroll',
 'jquery/event/drag/step',
 'jquery/event/drop',
 function ($) {

 $('body').append('<p>Drag me, but not too far...</p>');

 $('p').bind('dragmove', function (e, drag) {
 if (drag.location.top() > 150 || drag.location.
 left() > 450) {
 console.log('limiter');
 e.preventDefault();
 }
 });
 }
);

Language helpers
Language helpers are a set of jQuery plugins. They are described in the
following sections.

$.Object
The $.Object plugin contains the following three useful methods:

•	 same: It compares two objects
•	 subset: It checks if an object is a set of another object
•	 subsets: It returns the subsets of an object

same
The same method can compare two objects. It supports nested objects. We can
also specify if the comparison is case sensitive or if we can skip a particular
property comparison.

Chapter 4

[63]

Let's paste the following code into the jquerymx_object.js file:

steal(
 'jquery/lang/object',
 function ($) {
 window.object_1 = {
 property_1: 'foo',
 property_2: {
 property_1: 'bar',
 property_2: {
 property_1: 'Hello JMVC!'
 }
 }
 };

 window.object_2 = {
 property_1: 'foo',
 property_2: {
 property_1: 'bar',
 property_2: {
 property_1: 'HELLO JMVC!'
 }
 }
 };
 }
);

In the console, run the following command:

$.Object.same(object_1, object_2);

It should return false.

Now try to ignore the case:

$.Object.same(object_1, object_2, {property_2: 'i'});

It should return true, since property_2 and all its children are compared with the
ignore case flag.

To ignore the case in a particular property we can specify it as follows:

$.Object.same(object_1, object_2, {property_2: {property_2: { property_1:
'i'}}});

The result should be true as well.

jQueryMX

[64]

$.Observe
The $.Observe plugin provides an observer pattern for the JavaScript objects
and arrays.

Let's paste the following code into the jquerymx_observe.js file:

steal(
 'jquery/lang/observe',
 'jquery/lang/observe/delegate',
 function ($) {
 window.data = {
 accNumber: {
 iban: 'SWISSQX',
 number: 6987687
 },
 owner: {
 fName: 'Nicolaus',
 lName: 'Copernicus'
 }
 };

 window.oData = new $.Observe(data);

 oData.bind('change', function (e, attr, how, newVal, oldVal) {
 console.log('event: ', e, '| attribute changes: ', attr,
'| how changes: ', how, '| new value: ', newVal, '| old value: ',
oldVal);
 });
 }
);

In the console, run the following command:

oData.attr('accNumber.number');

Next, run the following command:

data.accNumber.number;

The same number should be displayed.

Change the value of the number property using the following command:

oData.attr('accNumber.number', 123456);

Chapter 4

[65]

Since we bound the anonymous function to the change event, which is emitted when
any of the observable object property has changed, console.log with all passed
information, should be displayed.

Please note that oData is a copy of data, so the command:

oData.attr('accNumber.number');

Is different from:

data.accNumber.number;

$.String
The $.String plugin contains useful string methods.

Let's paste following code into the jquerymx_string.js file:

steal(
 'jquery/lang/string',
 'jquery/lang/string/deparam',
 'jquery/lang/string/rsplit',
 function ($) {

 }
);

deparam
This method converts URL parameters into an object literal.

In the console run the following command:

$.String.deparam('en=1&home=a3373dsf6wfd&page[main]=uy7887d');

It should convert string into the following object:

{
 en: '1',
 home: 'a3373dsf6wfd',
 page: {
 main: 'uy7887d'
 }
}

jQueryMX

[66]

$.toJSON
The $.toJSON plugin contains useful object methods.

Let's paste the following code into the jquerymx_tojson.js file:

steal(
 'jquery/lang/json',
 function ($) {
 window.object_1 = {
 property_1: 'foo',
 property_2: {
 property_1: 'bar',
 property_2: {
 property_1: 'Hello JMVC!'
 }
 }
 };
 }
);

In the console, run the following command:

$.toJSON(object_1);

It should return a JSON representation of a given object.

$.Vector
The $.Vector plugin contains useful methods to create and operate on vectors.

Let's paste the following code into the jquerymx_vector.js file:

steal(
 'jquery/lang/vector',
 function ($) {

 }
);

In the console, run the following command:

new jQuery.Vector(1,2);

It should return a new Vector instance.

Chapter 4

[67]

Summary
In this chapter we learned what jQueryMX plugins have to offer and how we can use
them to make our day-to-day coding more efficient.

In the next chapter we will learn about dependency management tool, StealJS.

StealJS
StealJS is an independent code manager and packaging tool, which allows us to load
JavaScript and other file types into an application, concatenate multiple JavaScript
or CSS files, and compress their content. StealJS provides cross-browser message
logging, code generators, and a simple package management tool.

In this chapter, we will go through all the StealJS features.

StealJS requires Java 1.6 or greater.

Dependency management
Dependency management is a tool, which provides an organized way for managing
software components to work together as a one system.

The following are a few StealJS key features:

•	 Loading individual files only once
•	 Loading files from different domains
•	 Loading JavaScript and CoffeeScript
•	 Loading CSS less

We have used StealJS many times in the previous chapters. Let's have a closer look at
it now.

StealJS

[70]

Using StealJS, we can load files as follows:

steal(
 'file_one',
 'file_two',
 function ($) {

 }
);

These files are loaded in parallel and in a random order. If file_two has
dependences in file_one, we can wait for file_one before starting to fetch file_
two, as follows:

steal(
 'file_one').then(

 'file_two',
 function ($) {

 }
);

Logger
steal.dev provides two logging functions similar to the popular console.log()
function, and automatically removes them from the production build.

We can use it as follows:

steal.dev.log('See me in the console');
steal.dev.warn('Me too!');

All logs are removed from the production build.

Chapter 5

[71]

Code cleaner
steal.clean beautifies the JavaScript code and checks it using the JSLint code
quality tool:

•	 http://www.jslint.com

•	 http://jsbeautifier.org

We can use the cleanjs command to beautify the code in one file:

$./js steal/cleanjs todo/todo.js

Or all files in our project:

$./js steal/cleanjs todo/todo.html

To run our code against JSLint, add the -jslint true parameter:

$./js steal/cleanjs todo/todo.js -jslint true

We can ignore the files from being cleaned by adding a comment similar to the
following:

//!steal-clean

Concatenation and compression
steal.build compresses and concatenates CSS and JavaScript files into a single or
several files. It uses the Google Closure compressor by default.

Since it opens the applications in Envjs, it can be run against applications that don't
use StealJS.

To make production-ready files of our Todo application, we can run the
following command:

$./js steal/buildjs todo/todo.html -to todo_prod

We can run the script against a URL:

$./js steal/buildjs http://YOUR_SERVER/todo/todo.html -to todo_prod

StealJS

[72]

Summary
In this chapter, we learned how to load files into the project, used cross-browser
logging systems that are removed in production build, cleaned the code and made a
production-ready application.

Building the App
In the past few chapters we have learned what JavaScriptMVC is, how to install it,
and we went through its components.

Now is the time for the most exciting chapter for any developer. We are going to
build a real-world application. Due to the book's scope limitation we are not going to
write backend API set-up servers, and so on, instead of we will use browser storage.

Thanks to layer separation in JavaScriptMVC this is easily done by changing the
code in the model to switch the application persistent layer from browser storage
option to any backend language, framework, or system such as Sinatra, Ruby on
Rails, Django, and Node.js.

This chapter's goal is to show how to build a real-word application from concept
through design, implementation, documentation, and testing. We will develop an
application that actually does something, is useful for readers, and can be easily
customized to the reader's needs.

Time tracking and invoicing for
freelancers
The app we are going to build in this chapter is called Time tracking and invoicing
for freelancers; let's call it TTI in short.

Application development will only start here. We are not going to write the
complete code base, it will be simply too big to fit it here. It's like a homework
exercise, when students start their writing application at university and finish
them at home. Be creative!

Building the App

[74]

Planning
Okay, so we are going to write an application. Now it's time to answer the most
important question: What problem is our application is about to solve?

We can clearly identify two main application areas:

•	 Tracking time we spend on a task
•	 Making an invoice

Let's break down our application's main areas into a features list as follows:

•	 Clients list
•	 Time tracker

°° Track time
°° Fixed cost task

•	 Reports
°° Daily
°° Weekly

•	 Statistics
°° Monthly
°° Yearly

•	 Invoicing
•	 Export and import data

A features list will help us make a development plan. Now we can think about how
much time we need to accomplish for each of them. We can use just a calendar to
write down our estimates or use one of many the free issue-tracking tools such as
https://trello.com/ or http://trac.edgewall.org/.

The ideal solution would be to use a methodology such as Scrum—http://
en.wikipedia.org/wiki/Scrum_(development) or one of the best issue-tracking
tools in the business, JIRA—http://en.wikipedia.org/wiki/JIRA.

Chapter 6

[75]

Preparing wireframes
The next step is preparing application wireframes. This is a very important step in
the application development cycle. It allows us to quickly sketch the application
interface for different pages as well as very fast redesign pages and saves time in
future development. Once we start writing the code, any changes will be harder and
less cost efficient than changing wireframes.

The next steps are creating mockups and prototypes. However, we do not have a
graphic designer here and no client to show business logic and finally it's out of this
book's scope, so we are going straight to the next step.

Wireframes are generally basic sketches of components used in the application to
show user interface and application features.

Mockups are the next level of wireframes, basically containing all we can find on
wireframes but were in the actual design.

Prototypes are semi-functional applications to present business logic.

We can create wireframes by using just a piece of paper and pencil; a lot of people
prefer this way. There is a bunch of different software that can help us in this step. I'll
use Balsamiq Mockups but really any tool will be good here.

To give us a better overview on TTI application let's have a look at wireframes:

Since this book orientation is portrait and web browsers orientation are landscape,
the reader is asked to have a look at following the wireframes from a different
perspective.

The following wireframe shows the time tracker main page.

The main menu is located at the top-left corner and allows us to switch between the
main application functionalities.

Breadcrumb is located at the top center and allows us to easily indicate which part of
the appllication we are currently in.

Settings and Export/Import Data tabs go on the top-right corner.

Building the App

[76]

Time Tracker is located in the center with two main tabs: Active Tasks and Archive
Tasks. Each task has fields: Hours, Cost, Task ID, Description, and Notes. The Add
New Task button is located at the bottom that allows us to add a new task. Archive
button is visible when task is hovered. To edit a task double-click on it. The URL for
the time tracker page is /timetracker.

Chapter 6

[77]

The following wireframe shows the invoice main page. The URL is /invoice:

Building the App

[78]

The following wireframe shows the clients main page. The URL is /clients.

Setup project
We are assuming that the reader has installed a web server, such as Apache or
Nginx. In the server-working directory we need to create the TTI folder. Another
option is to use the Vagrant-powered environment created especially for this book
available at https://github.com/wbednarski/JavaScriptMVC_kick-starter.

In this folder we will initialize the Git repository to track all changes, install
JavaScriptMVC, and create the application structure.

Chapter 6

[79]

Tracking changes under VCS
It's a good idea from the very beginning to keep all the project files under the
version control system. The reason for that is very simple and beneficial for future
development—we can easily revert any changes and track them.

Using decentralized VCS has an invaluable benefit over centralized VCS, because we
can commit changes without push, so we can commit often even after a small change
in the codebase. Another good practice is to use one branch per feature.

In this book we are going to use Git, but actually any Distributed Version Control
Systems (DVCS) is good. Mercurial is another popular DVCS.

The following steps should be performed to create a new Git repository, add all the
files, and commit them:

1.	 Inside the TTI directory, type to install JavaScriptMVC:
$ git init

$ git submodule add git://github.com/jupiterjs/steal.git

$ git submodule add git://github.com/jupiterjs/documentjs.git

$ git submodule add git://github.com/jupiterjs/funcunit.git

$ git submodule add git://github.com/jupiterjs/jquerymx.git jquery

2.	 Install and update JavaScriptMVC submodules using the following
commands:
$ git submodule init

$ git submodule update

3.	 Install Syn using the following commands:
$ cd funcunit

$ git submodule init

$ git submodule update

4.	 Move the js command to the project's root directory (run from root
directory):

$./steal/js steal/make.js

By default all the repositories are on a master branch. Let's switch to
the latest version of JavaScriptMVC, which is 3.2.2 at the time this book
was written.

Building the App

[80]

5.	 In all the submodules directories, type the following command:
$ git checkout v3.2.2

6.	 In the TTI directory create our application directory tti and add it under
Git.
$ mkdir tti

$ git add .

$ git commit -m "initial commit"

If the reader wants to keep the codebase copy on the server, they
can do this using the free code hosting solutions available at
https://github.com or https://bitbucket.org.

All the code we are going to develop will be placed in the tti folder.

Application structure
Our application structure will look similar to the following hierarchy:

TTI/
 |
 |tti/
 | |controllers/
 | |
 | |docs/
 | |
 | |models/
 | |
 | |tests/
 | | |unit/
 | | | |models/
 | | |
 | | |functional/
 | |
 | |views/
 | |styles/
 | | |css/
 | | |
 | | |sass/
 | |
 | |templates/
 | |tasks
 | |

Chapter 6

[81]

 | |clients
 |
 |vendors/
 |jquery_ui/
 |
 |pouchdb/

IndexedDB
Since local storage is too simple for our application and Web SQL database is
deprecated the natural choice is IndexedDB.

In the root level create vendors directory to store all third part code, plugins,
and so on.

Download and copy PouchDB to the vendors directory library, which provides
good cross-browser API for IndexedDB. You can download PouchDB from the
following location:

•	 http://pouchdb.com

•	 https://github.com/daleharvey/pouchdb

Creating models
Let's create a task.js file under the models directory. In the Task model we will
keep all task-related CRUD methods that operate on a local database.

steal(
 'jquery/model',
 'vendors/pouchdb.js',

 function ($) {
 'use strict'

 // local variable to keep reference to time-tracker database
 var db;

 /**
 * @class TTI.Models.Task
 * @parent index
 * @constructor
 * @author Wojciech Bednarski
 */
 $.Model('TTI.Models.Task', {

Building the App

[82]

 /**
 * @function init
 * @hide
 * Creates database time-tracker or get it if exists
 */
 init: function () {
 Pouch('idb://time-tracker', function (err,
timeTracker) {
 db = timeTracker;

 console.log('TTI.Models.Task.init() | idb://
time-tracker | err:', err, 'db:', db);
 })
 },

The init method is responsible for creating a time-tracker database or getting
reference to it if it exists. The idb:// protocol is telling PouchDB to use IndexedDB
as a storage option.

 /**
 * @function findAll
 * Get all tasks
 * @return {Object} an object contains objects with
all tasks
 *
 * ### Example:
 * @codestart
 * TTI.Models.Task.findAll(function (tasks) {
 * // do something with tasks
 * },
 * function (error) {
 * // handle error here
 * });
 * task.save(function (task) {
 * console.log(task);
 * });
 * @codeend
 */
 findAll: function (success, error) {
 return db.allDocs(
 {
 include_docs: true // this is needed to
return not only task ID but task it self
 },

Chapter 6

[83]

 function (err, response) {
 console.log('TTI.Models.Task.findAll() |
GET | err:', err, 'client:', response);

 if (response) {
 success(response);
 }
 else if (err) {
 error(err);
 }
 }
);
 },

The findAll method is responsible for retrieving an object with all the items from
our database. Readers can have a look at the example usage in the comment on the
preceding code listing.

 /**
 * @function findOne
 * Find task by given ID
 * @param {String} task ID
 * Task object
 * @codestart
 * String (UUID)
 * @codeend
 *
 * @return {Object} an object contains requested task
 * @codestart
 * {
 * id: String (UUID),
 * hours: Number,
 * cost: {
 * rate: Number,
 * total: Number
 * },
 * taskID: String,
 * description: String,
 * note: String
 * }
 * @codeend
 *
 * ### Example:
 * @codestart

Building the App

[84]

 * TTI.Models.Task.findOne('UUID', function (success,
error) {
 * // code goes here
 * });
 * @codeend
 */
 findOne: function (id, success, error) {
 return db.get(id, function (err, doc) {

 if (doc) {
 success(doc);
 }
 else if (err) {
 error(err);
 }

 });
 },

The findOne method is responsible for retrieving an object with a particular item
from our database. Readers can have a look at the example usage in the comment on
the preceding code listing.

 /**
 * @function create
 * Create new task
 * @param {Object} task
 * Task object
 * @codestart
 * {
 * hours: Number,
 * cost: {
 * rate: Number,
 * total: Number
 * },
 * taskID: String,
 * description: String,
 * note: String
 * }
 *
 * {
 * hours: 7,
 * cost: {
 * rate: 100,
 * total: 700

Chapter 6

[85]

 * },
 * taskID: 'JIRA-2789',
 * description: 'Implement new awesome feature!',
 * note: ''
 * }
 * @codeend
 *
 * @return {Object} an object contains newly created
task UUID
 * @codestart
 * {
 * id: "8D812FF6-4B96-4D73-8D18-01FACEF33531"
 * ok: true
 * rev: "1-c5a4055b6c3edac099083cc0b485d4e3"
 * }
 * @codeend
 *
 * ### Example:
 * @codestart
 * var task = new TTI.Models.Task({ task object goes
here });
 * task.save(function (task) {
 * console.log(task);
 * });
 * @codeend
 */
 create: function (task, success, error) {
 return db.post(task, function (err, response) {
 console.log('TTI.Models.Task.create() | POST |
err:', err, 'client:', response);

 if (response) {
 success(response);
 }
 else if (err) {
 error(err);
 }
 });
 },

Building the App

[86]

The create method is responsible for creating a new item in our database. Readers
can have a look at the example usage in the comment on the preceding code listing.

 /**
 * @function update
 * Update task by given ID
 * @param {Object} task
 * Task object
 * @codestart
 * {
 * _id: String (UUID),
 * hours: Number,
 * cost: {
 * rate: Number,
 * total: Number
 * },
 * taskID: String,
 * description: String,
 * note: String
 * }
 * @codeend
 *
 * @return {Object} an object contains updated task
UUID
 * @codestart
 * {
 * id: "8D812FF6-4B96-4D73-8D18-01FACEF33531"
 * ok: true
 * rev: "1-c5a4055b6c3edac099083cc0b485d4e3"
 * }
 * @codeend
 *
 * ### Example:
 * @codestart
 * TTI.Models.Task.update({ task object goes here });
 * @codeend
 */
 update: function (task, success, error) {
 return db.put(task, function (err, response) {
 console.log('TTI.Models.Task.update() | POST |
err:', err, 'client:', response);

 if (response) {
 success(response);
 }

Chapter 6

[87]

 else if (err) {
 error(err);
 }
 });
 },

The update method is responsible for updating a particular item in our database.
Readers can have a look at the example usage in the comment on the preceding
code listing.

 /**
 * @function destroy
 * Destroy task by given ID
 * @param {Object} task
 * Task object
 * @codestart
 * String (UUID)
 * @codeend
 *
 * @return {Object} an object contains destroyed task
UUID
 * @codestart
 * {
 * id: "8D812FF6-4B96-4D73-8D18-01FACEF33531"
 * ok: true
 * rev: "1-c5a4055b6c3edac099083cc0b485d4e3"
 * }
 * @codeend
 *
 * ### Example:
 * @codestart
 * TTI.Models.Task.destroy('UUID', function (success,
getError, removeError) {
 * // handle errors here
 * });
 * @codeend
 */
 destroy: function (id, success, getError, removeError)
{
 return db.get(id, function (getErr, doc) {

 if (getErr) {
 getError(getErr);
 }

Building the App

[88]

 db.remove(doc, function (removeErr, response)
{

 if (response) {
 success(response);
 }
 else if (removeErr) {
 removeError(removeErr);
 }

 });
 });
 }
 },
 {

 }
);

 }
);

This destroy method is responsible for destroying a particular item in our
database. Readers can have a look at the example usage in the comment on the
preceding code listing.

Let's create a client.js file under models directory. In Client model we will keep
all the task-related CRUD methods that operate on a local database. Create a
bootstrap file:

steal(
 'jquery/model',

 function ($) {
 'use strict';

 $.Model('TTI.Models.Client', {
 init: function () {
 // create database clients or get it if exists.

 console.log('TTI.Models.Client.init() | idb://
clients | err:');

 },

 findAll: function () {

 },

Chapter 6

[89]

 findOne: function () {

 },

 create: function () {

 },

 update: function () {

 },

 destroy: function () {

 }
 },
 {

 }
);
 }
);

Creating controllers
Let's create a tasks.js file under the controllers directory where we can handle
all the application actions.

steal(
 'jquery/view/ejs',
 'jquery/controller',
 'tti/models/task.js'
).then(
 function ($) {
 'use strict';

 console.log('TTI.Controllers.Tasks');

 /**
 * @class TTI.Controllers.Tasks
 * Creates a new Tasks controller
 * @parent index
 * @constructor
 * @param {String} DOMElement DOM element
 * @return {Object}

Building the App

[90]

 */
 $.Controller('TTI.Controllers.Tasks', {
 'init': function (element, options) {
 var self = this;

 $('title').text('Time Tracker | TTI');

 TTI.Models.Task.findAll(function (data) {
 if (!data.rows.length) {
 data.rows = [
 {
 doc: {
 hours: '',
 cost: {
 total: ''
 },
 taskID: '',
 description: 'No tasks so far!',
 note: ''

 }
 }
];
 }

 self.element.html('tti/views/templates/tasks/
tasks.ejs', data.rows);

 });

 },

 '{TTI.Models.Task} created': function (Task, e, task) {
 console.log('task', task);
 console.log('this.element', this.element);
 $('tbody tr:last', this.element).after('tti/views/
templates/tasks/task.ejs', task);
 $('tbody tr:last', this.element).effect('highlight',
{}, 3000);
 },

 '{TTI.Models.Task} destroyed': function (Task, e, task) {
 task.elements(this.element).remove();
 },

 '.add-task click': function () {
 this.element.append('tti/views/templates/tasks/add_
task.ejs', {}).find('.create-new-task-dialog-form').dialog({
 autoOpen: false,

Chapter 6

[91]

 modal: true,
 buttons: {
 'Create New Task': function () {
 var self = this;

 window.task = new TTI.Models.Task({
 hours: $('input[name="hours"]', this).
val(),
 taskID: $('input[name="task-id"]',
this).val(),
 cost: {
 rate: 0,
 total: 0
 },
 description:
$('input[name="description"]', this).val(),
 note: $('input[name="note"]', this).
val()
 });

 window.task.save(function () {
 $(self).dialog('destroy').remove();
 });

 },
 Cancel: function () {
 $(this).dialog('destroy').remove();
 }
 },
 close: function () {
 $(this).dialog('destroy').remove();
 }
 }).dialog('open');

 }

 });

 }
);

Let's create the clients.js file under the controllers directory.

steal(
 'jquery/view/ejs',
 'jquery/controller'
).then(
 function ($) {
 'use strict';

Building the App

[92]

 console.log('TTI.Controllers.Client');

 /**
 * @class TTI.Controllers.Client
 * Creates a new Tasks controller
 * @parent index
 * @constructor
 * @param {String} DOMElement DOM element
 * @return {Object}
 */
 $.Controller('TTI.Controllers.Client', {
 'init': function () {

 $('title').text('Clients | TTI');

 var testData = [
 {
 name: 'The First Awesome Client!'
 },
 {
 name: 'The Second Awesome Client!'
 }
];

 this.element.html('tti/views/templates/clients.ejs',
testData);

 }

 });

 }
);

Let's create the router.js file under the controllers directory.

steal(
 'tti/controllers/navigation.js',
 'tti/controllers/client.js',
 'tti/controllers/tasks.js',
 'jquery/controller',
 'jquery/controller/route'
).then(
 function ($) {
 'use strict';

 /**

Chapter 6

[93]

 * @class TTI.Controllers.Router
 * Creates application router
 * @parent index
 * @constructor
 * @param {String} DOMElement DOM element
 * @return {Object}
 */
 $.Controller('TTI.Controllers.Router', {
 init: function () {
 console.log('r init');
 },

 // the index page
 'route': function (e) {
 console.log('default route', e);
 },

 ':page route': function (data) {
 $('#content').empty().append('<div>');

 if (data.page === 'time-tracker') {
 new TTI.Controllers.Tasks('#content div');
 }
 else if (data.page === 'clients') {
 new TTI.Controllers.Client('#content div');
 }
 }

 });

 // create new Router controller instance
 $('body').bind('TTI/db-ready', function () {
 new TTI.Controllers.Router(document.body);
 });
 }
);

Let's create the navigation.js file under the controllers directory.

steal(
 'jquery/view/ejs',
 'jquery/controller',
 'jquery/dom/route'
).then(
 function ($) {
 'use strict';

 /**
 * @class TTI.Controllers.Navigation

Building the App

[94]

 * Creates application main navigation controller
 * @parent index
 * @constructor
 * @param {String} DOMElement DOM element
 * @return {Object}
 */
 $.Controller('TTI.Controllers.Navigation', {
 init: function () {
 var navItems = [
 {
 name: 'Time Tracker',
 className: 'time-tracker'
 },
 {
 name: 'Invoice',
 className: 'invoice'
 },
 {
 name: 'Clients',
 className: 'clients'
 },
 {
 name: 'Reports',
 className: 'reports'
 },
 {
 name: 'Statistics',
 className: 'statistics'
 }
];

 this.element.html('tti/views/templates/navigation.
ejs', navItems);
 },

 '.time-tracker click': function (e) {
 $.route.attr('page', 'time-tracker');
 },

 '.clients click': function (e) {
 $.route.attr('page', 'clients');
 }

 });

 }
);

Chapter 6

[95]

Creating views
Let's create the views folder under the tti directory and inside it, two directories:
styles and templates.

In the templates directory create client.ejs file with the following content:

<h2>Clients List</h2>

 <% $.each(this, function(i, client) { %>

 <li <%= ($el) -> $el.model(client) %>>
 <%= client.name %>

 <% }) %>

In the templates directory create the navigation.ejs file with the following content:

<% $.each(this, function(i, item) { %>

 <li class="<%= item.className %>">
 <%= item.name %>

<% }) %>

In the templates directory create the tasks directory. Create the tasks.ejs file
with the following content:

<table summary="Time Tracker list of tasks.">
 <thead>
 <tr>
 <th scope="col">Hours</th>
 <th scope="col">Cost</th>
 <th scope="col">Task ID</th>
 <th scope="col">Description</th>
 <th scope="col">Note</th>
 </tr>
 </thead>
 <tbody>
 <% $.each(this, function(i, task) { %>
 <tr <%= ($el) -> $el.model(task) %>>
 <td>

Building the App

[96]

 <%= task.doc.hours %>
 </td>
 <td>
 <%= task.doc.cost.total %>
 </td>
 <td>
 <%= task.doc.taskID %>
 </td>
 <td>
 <%= task.doc.description %>
 </td>
 <td>
 <%= task.doc.note %>
 </td>
 </tr>
 <% }) %>
 </tbody>
</table>

Add Task

In the tasks directory create the task.ejs file with the following content:

<tr <%= ($el) -> $el.model(task) %>>
 <td>
 <%= task.hours %>
 </td>
 <td>
 <%= task.cost.total %>
 </td>
 <td>
 <%= task.taskID %>
 </td>
 <td>
 <%= task.description %>
 </td>
 <td>
 <%= task.note %>
 </td>
</tr>

Chapter 6

[97]

In the tasks directory create the add_task.ejs file with the following content:

<div class="create-new-task-dialog-form" title="Create New Task">
 <form>
 <fieldset>
 <label>Hours <input type="text" name="hours"
/></label>
 <label>Task ID <input type="text" name="task-
id" /></label>
 <label>Description <input type="text"
name="description" /></label>
 <label>Note <input type="text" name="note"
/></label>
 </fieldset>
 </form>
</div>

In the styles directory create two directories: css and sass.

In the sass directory create the tti.scss file with the following content:

@import 'reset';
@import 'static';
@import 'mixins';
@import 'skelton';

In the sass directory create the _static.scss file with the following content:

$blue: #5C94BF;
$black: #3E4246;
$white: #F6F6F7;
$vlGreen: #B7D190;
$lGreen: #9CBA6E;
$dGreen: #424A38;
$mGrey: #5B5B5B;
$yellow: #F8AE03;
$lBlue: #167BBE;
$dBlue: #0E69B3;
$gBlue: #7489A1;

Building the App

[98]

In the sass directory create the _mixins.scss file with the following content:

@mixin link {
 color: $lGreen;
 cursor: pointer;
 text-decoration: none;

 &:hover {
 text-decoration: underline;
 }
}

@mixin borderRadius($topLeft, $topRight, $bottomRight, $bottomLeft) {
 -moz-border-radius-topleft: $topLeft;
 -moz-border-radius-topright: $topRight;
 -moz-border-radius-bottomright: $bottomRight;
 -moz-border-radius-bottomleft: $bottomLeft;
 -webkit-border-radius: $topLeft $topRight $bottomRight
$bottomLeft;
 border-radius: $topLeft $topRight $bottomRight $bottomLeft;
}

@mixin button {
 @include borderRadius(5px, 5px, 5px, 5px);
 display: inline-block;
 padding: 0 7px;
 line-height: 20px;
 height: 20px;
 cursor: pointer;
}

In the sass directory create the _reset.scss file with the following content:

// http://meyerweb.com/eric/tools/css/reset/
// v2.0 | 20110126
// License: none (public domain)

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,

Chapter 6

[99]

table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, embed,
figure, figcaption, footer, header, hgroup,
menu, nav, output, ruby, section, summary,
time, mark, audio, video {
 margin: 0;
 padding: 0;
 border: 0;
 font-size: 100%;
 font: inherit;
 vertical-align: baseline;
}
// HTML5 display-role reset for older browsers
article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section {
 display: block;
}

body {
 line-height: 1;
}

ol, ul {
 list-style: none;
}

blockquote, q {
 quotes: none;
}

blockquote:before, blockquote:after,
q:before, q:after {
 content: '';
 content: none;
}

table {
 border-collapse: collapse;
 border-spacing: 0;
}

textarea {
 min-height: 100px;
}

Building the App

[100]

In the sass directory create the skelton.scss file with the following content:

html,
body {
 color: $black;
 background: $white;
 font: 11px/18px "Helvetica Neue", Helvetica, Verdana, sans-serif;
}

input,
select,
textarea {
 font: 12px/18px "Helvetica Neue", Helvetica, Verdana, sans-serif;
}

table {
 width: 100%;
 border: 1px solid $gBlue;

 thead {
 color: $white;
 background: $blue;

 tr {

 &:last-child {
 @include borderRadius(5px, 5px, 5px, 5px);
 }

 th {
 padding: 7px 0;
 }
 }
 }

 tbody {

 tr {

 td {
 padding: 3px 0;
 border-bottom: 1px solid $gBlue;
 text-align: center;
 }

Chapter 6

[101]

 }
 }

}

#container {
 width: 1100px;
 margin: 0 auto;

 #header {
 padding: 10px;
 height: 50px;

 #main-navigation {

 li {
 @include link;
 margin-right: 7px;
 display: inline-block;
 }
 }
 }

 h2 {
 font-size: 14px;
 }

 ol {
 margin: 7px;
 list-style-type: decimal;
 list-style-position: inside;
 }

 .add-task {
 @include button;
 margin-top: 20px;
 color: $white;
 background: $lGreen;

 &:hover {
 background: $yellow;
 }
 }
}

Building the App

[102]

Creating a bootstrap
In the root directory let's create the index.html file with the following code.
Bootstrap is responsible for loading all the files needed by the application to run.

<!doctype html>

<html>
 <head>
 <title>TTI</title>
 <meta charset="UTF-8" />
 </head>
 <body>
 <div id="container">
 <header id="header">
 <nav id="main-navigation">

 </nav>
 <div id="breadcrumb"></div>
 <nav id="secondary-navigation"></nav>
 </header>

 <div id="content">
 <div><p>Loading...</p></div>
 </div>

 <footer id="footer">

 </footer>

 </div>

 <script src="steal/steal.js?tti"></script>

 </body>
</html>

In the tti directory create the tti.js file with the following code:

steal(
 function ($) {
 console.log('tti.js');
 },
 'vendors/jquery_ui/css/smoothness/jquery.ui.core.css',
 'vendors/jquery_ui/css/smoothness/jquery.ui.dialog.css',
 'vendors/jquery_ui/css/smoothness/jquery.ui.theme.css',

Chapter 6

[103]

 'tti/views/styles/css/tti.css',
 'tti/models/task.js',
 'tti/models/client.js',
 'tti/controllers/tasks.js',
 'tti/controllers/router.js',
 'tti/controllers/navigation.js'
).then(
 'vendors/jquery_ui/jquery.ui.core.js'
).then(
 'vendors/jquery_ui/jquery.effects.core.js'
).then(
 'vendors/jquery_ui/jquery.effects.highlight.js'
).then(
 'vendors/jquery_ui/jquery.ui.widget.js'
).then(
 'vendors/jquery_ui/jquery.ui.position.js',
 'vendors/jquery_ui/jquery.ui.dialog.js'
).then(
 function ($) {
 new TTI.Controllers.Navigation('#main-navigation ul');
 }
);

Running the application
In order to run our application we convert the SASS files into the CSS file which can
be read by web browsers.

We used SASS instead of plain CSS to split code into many small files for better
readability and better code re-use. This aspect is very important, especially in big
applications.

SASS can be installed by executing $ gem install sass command or downloading
it from the Git repository at http://sass-lang.com/download.html.

To compile SASS code into CSS code, go to views folder and type:

$ sass --watch sass:css

Then run the web server and navigate to index.html.

Building the App

[104]

Summary
In this chapter we learned how to build a JavaScriptMVC application and organize
code and workflow to create web applications in a more efficient and less error
prone way.

Index
Symbols
$.Class

about 50, 52
first parameter 52
life cycle 53
method override 52
second parameter 52
third parameter 52

$.Controller plugin 57
$.cookie plugin 58
$.Drag and $.Drop plugin 62
$.fn.compare plugin 58, 59
$.fn.selection plugin 59
$.fn.within plugin 60
$ gem install sass command 103
$.Model 53, 55
$.Object plugin

about 62
same method 62

$.Observe plugin 64
$.Range plugin 60
$.route plugin 61
$.String plugin

about 65
deparam method 65

$.toJSON plugin 66
$.Vector plugin 66
$.View

about 55
embedded 55
external 56
sub-templates 56

@add, type directive 39
@alias, tag directive 39

@attribute, type directive 38
@author, tag directive 39
@class, type directive 39
@codestart, tag directive 39
@constructor, tag directive 39
@demo, tag directive 39
@description, tag directive 39
@download, tag directive 39
@function, tag directive 39
@hide, tag directive 39
@iframe, tag directive 39
@image, tag directive 39
@inherits, tag directive 39
@page, tag directive 38
@param, tag directive 39
@parent, tag directive 39
@plugin, tag directive 39
@prototype, tag directive 39
@return, tag directive 39
@scope, tag directive 39
@static, tag directive 39
@tag, tag directive 39
@test, tag directive 39
@type, tag directive 39

A
application

changes under VCS, tracking 80
project, setting up 78
structure 80
wireframes, preparing 75-78
writing 74

[106]

B
bootstrap

creating 102
Breadcrumb 75

C
CanJS 7, 16
class method 50
cleanjs command 71
code cleaner 71
CommonJS 26
console.log() function 70
Content Delivery Network (CDN) 10
controllers

creating 89-93
create method 86
Create, Read, Update, Delete (CRUD) 22

D
deparam method 65
dependency management 69
destroy method 88
Distributed Version Control Systems

(DVCS) 79
documentation

generating 40
writing 34

DocumentJS
about 7, 15, 33
documentation, URL 33
documentation, writing 34
features 33
tag directives 39
tags 34
type directives 38
types 34
working 34

Document Object Model (DOM) tree 9
DoneJS 8
DOM helpers

$.cookie plugin 58
$.fn.compare plugin 58, 59
$.fn.selection plugin 59

$.fn.within plugin 60
$.Range plugin 60
$.route plugin 61
about 57

E
EJS

URL 55
EnvJS

used, for running tests 48

F
findAll method 83
findOne method 84
free code hosting solutions

URL 80
free issue-tracking tools

URL 74
functional testing 43
FuncUnit

about 7, 15, 43
documentation, URL 43
QUnit, URL 43
source code, URL 43

G
getType instance method 52
getType method 52
Git

reference, URL 12
submodules, URL 13
URL, for installing 12

I
IndexedDB 81
init method 82
installation, JavaScriptMVC

code, pulling from Git repositories 12
package, downloading 11
Vagrant used 14
verifying 13
ways 11

instance method 50

[107]

J
Jaml

URL 55
JavaScriptMVC

about 7, 8
advantages 10
API, URL 14
application, building 17
application, code 28
architecture 15
CanJS 7
code examples, URL 14
controller 26, 27
disadvantages 10
documentation, URL 14
DocumentJS 7
fixtures 22, 23, 24
framework, URL 10
FuncUnit 7
installing 11
Loader 18
MIT license, exceptions 8
model, adding to application 19, 20
MVC 9
official forum, URL 14
real-world examples 10
repository, URL 8
routing 27, 28
Stack Overflow questions, URL 14
StealJS 7
system architecture approach 9
Todo list application 17
tutorials, URL 14
URL, for downloading package 11
view 25, 26
website, URL 8

Jenkins
URL 48

jQuery 8
jQueryMX 49
jQuery templates

URL 55
JSLint code quality tool

URL 71

JVMC. See JavaScriptMVC

L
language helpers

$.Object plugin 62
$.Observe plugin 64, 65
$.String plugin 65
$.toJSON plugin 66
$.Vector plugin 66
about 62

logger 70

M
Markdown

URL 33
Maven

URL 48
Micro

URL 55
MIT license

exceptions 8
mockups 75
models

creating 81-88
model-view-controller (MVC) framework 7
module method 45
MIT license

exceptions 8
multi-page application 9

O
ok signature 46
open signature 45
Oracle VM VirtualBox

URL, for installing 14

P
PhantomJS

used, for running tests 47
PouchDB

URL, for downloading 81
prototypes 75

[108]

Q
QUnit

URL 43

R
Rhino 8

S
same method 62, 63
SASS 103
sass directory 98
Scrum

URL 74
Search Engine Optimization (SEO) 10
Selenium

used, for running tests 47
Simple JavaScript Inheritance

URL 50
special events plugins

$.Drag and $.Drop plugin 62
S signature 46
steal.build 71
steal.clean 71
steal.dev 70
StealJS

about 7, 16, 69
features 16, 17, 69

T
tag directives

@alias 39
@author 39
@codestart 39
@constructor 39
@demo 39
@description 39
@download 39
@hide 39
@iframe 39
@image 39
@inherits 39
@param 39
@parent 39
@plugin 39

@return 39
@scope 39
@tag 39
@test 39
@type 39
about 38

templates directory 95
tests

creating 44, 45
module method 45
ok signature 46
open signature 45
running 46
S signature 46
test signature 45

test signature 45
tests, running

EnvJS used 48
integration 48
PhantomJS used 47
Selenium used 47
web browser used 46

Time tracking and invoicing for freelancers.
See TTI

Todo application 71
Todo list application

about 17
code 28
controller 26
fixtures 22, 24
loader 18, 19
model 19, 20
routing 27, 28
view 25, 26

TTI 73
type directives

@add 39
@attribute 38
@class 39
@function 39
@page 38
@prototype 39
@static 39
about 38

U

[109]

update method 87

V
Vagrant

URL, for installing 14
views

creating 95-100

W
web browser

used, for running tests 46
wireframes

clients main page 78
invoice main page 77
preparing 75

Thank you for buying
Learning JavaScriptMVC

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Ext JS 4 First Look
ISBN: 978-1-849516-66-2 Paperback: 340 pages

A practical guide including examples of the new
features in Ext JS 4 and tips to migrate from Ext JS 3

1.	 Migrate your Ext JS 3 applications easily to Ext
JS 4 based on the examples presented in this
guide

2.	 Full of diagrams, illustrations, and step-by-step
instructions to develop real world applications

3.	 Driven by examples and explanations of how
things work

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-849516-86-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext JS
features to advanced application dsign using Sencha's
Ext JS

1.	 Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style

2.	 From creating forms to theming your
interface, you will learn the building blocks for
developing the perfect web application

3.	 Easy to follow recipes step through practical
and detailed examples which are all fully
backed up with code, illustrations, and tips

Please check www.PacktPub.com for information on our titles

Sencha Touch Mobile JavaScript
Framework
ISBN: 978-1-849515-10-8 Paperback: 316 pages

Build web applications for Apple iOS and Google
Android touchscreen devices with this first HTML5
mobile framework

1.	 Learn to develop web applications that look
and feel native on Apple iOS and Google
Android touchscreen devices using Sencha
Touch through examples

2.	 Design resolution-independent and graphical
representations like buttons, icons, and tabs of
unparalleled flexibility

3.	 Add custom events like tap, double tap, swipe,
tap and hold, pinch, and rotate

RapidWeaver 5 Beginner's Guide
ISBN: 978-1-849692-05-2 Paperback: 362 pages

Build beautiful and professional websites with ease
using RapidWeaver

1.	 Jump into developing websites on your Mac
with RapidWeaver.

2.	 Step-by-step tutorials for novice users to get
your websites built and published online.

3.	 Advanced tips and exercises for existing
RapidWeaver users.

4.	 A great A-Z guide for building websites
irrespective of your level of expertise.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with JavaScriptMVC
	What is a JavaScriptMVC?
	License
	Links

	Why JavaScriptMVC?
	System architecture approach
	JavaScriptMVC single-page application
	Advantages
	Downsides

	Real-world examples
	Installing JavaScriptMVC
	Choosing your method
	Which method is right for me?
	The first method – download the package
	The second method – pull the code from Git repositories
	The third method – vagrant

	Documentation and API
	The architecture of JavaScriptMVC
	DocumentJS
	FuncUnit
	jQueryMX
	StealJS
	Dependency management
	Concatenation and compression
	Logger
	Code generator
	Package management
	Code cleaner

	Building simple applications
	Todo list
	Loader
	Model
	Fixtures
	View
	Controller
	Routing
	Complete application code

	Summary

	Chapter 2: DocumentJS
	How DocumentJS works?
	Writing the documentation
	Type directives
	Tag directives

	Generating the documentation
	Summary

	Chapter 3: FuncUnit
	Creating tests
	Module
	Open

	Test
	Ok
	S

	Running tests
	Web browser
	Selenium
	PhantomJS
	EnvJS

	Integration
	Summary

	Chapter 4: jQueryMX
	$.Class
	The first parameter
	The second parameter
	The third parameter
	Method override
	Life cycle

	$.Model
	$.View
	Embedded
	External
	Sub-templates

	$.Controller
	DOM helpers
	$.cookie
	$.fn.compare
	$.fn.selection
	$.fn.within
	$.Range
	$.route

	Special events
	$.Drag and $.Drop

	Language helpers
	$.Object
	same

	$.Observe
	$.String
	deparam

	$.toJSON
	$.Vector

	Summary

	Chapter 5: StealJS
	Dependency management
	Logger
	Code cleaner
	Concatenation and compression
	Summary

	Chapter 6: Building the App
	Time tracking and invoicing for freelancers
	Planning
	Preparing wireframes
	Setup project
	Tracking changes under VCS
	Application structure

	IndexedDB
	Creating models
	Creating controllers
	Creating views
	Creating bootstrap
	Running the application

	Summary

	Index

