
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Jon Manning, Paris Buttfield-Addison, and Tim Nugent

FOURTH EDITION

Learning Cocoa with Objective-C

www.allitebooks.com

http://www.allitebooks.org

Learning Cocoa with Objective-C, Fourth Edition

by Jon Manning, Paris Buttfield-Addison, and Tim Nugent

Copyright © 2014 Jonathon Manning, Paris Buttfield-Addison, Tim Nugent. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian Jepson and Rachel Roumeliotis

Production Editor: Melanie Yarbrough

Copyeditor: Jasmine Kwityn

Proofreader: Gillian McGarvey

Indexer: Lucie Haskins

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Rebecca Demarest

February 2014: Fourth Edition

Revision History for the Fourth Edition:

2014-02-14: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491901397 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Learning Cocoa with Objective-C, the image of an Irish setter, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-491-90139-7

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491901397
http://www.allitebooks.org

Table of Contents

Preface. xi

1. Cocoa Development Tools. 1
The Mac and iOS Developer Programs 1

Registering for a Developer Program 2
Downloading Xcode from Apple Developer 3

Getting Around in Xcode 3
Creating Your First Cocoa Project 5
The Xcode Interface 7

Developing a Simple Objective-C Application 14
Designing the Interface 14
Connecting the Code 15

Using the iOS Simulator 17

2. Object-Oriented Programming with Objective-C. 21
Object-Oriented Programming 21

Objects 22
Inheritance 23
Interfaces and Implementations 23
Methods 24
Messages 25
Properties 26
Protocols 29
Class Extensions 30
Modules 31

Memory Management 33
Reference Counting 33
Automatic Reference Counting 33
Object Graphs in Objective-C 34

iii

www.allitebooks.com

http://www.allitebooks.org

The NSObject Lifecycle 35
Allocation and Initialization 35
Retain and Release 36
Finalization and Deallocation 36

3. Foundation. 37
Mutable and Immutable Objects 37
Strings 38

Creating Strings 39
Working with Strings 39
Comparing Strings 42
Searching Strings 43

Arrays 43
Fast Enumeration 46
Mutable Arrays 46

Dictionaries 48
NSValue and NSNumber 49
Data 50

Loading Data from Files and URLs 50
Serialization and Deserialization 51

Design Patterns in Cocoa 54
Model-View-Controller 54
Delegation 56
Key-Value Observing 56

4. Applications on OS X and iOS. 59
What Is an Application? 59

Applications, Frameworks, Utilities, and More 60
What Are Apps Composed Of? 61
Using NSBundle to Find Resources in Applications 63

The Application Lifecycle 64
OS X Applications 64
iOS Applications 66

The Application Sandbox 71
Application Restrictions 71

5. Graphical User Interfaces. 75
Interfaces in OS X and iOS 75
MVC and Application Design 76
Nib Files 76

Structure of a Nib File 77
Storyboards 81

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Outlets and Actions 81
How Nib Files Are Loaded 82

Constructing an Interface 83
Guidelines and Constraints 83

Building an App with Nibs and Constraints 85
UI Dynamics 87

UI and Gravity 88
Snapping UI 89

Designing Interfaces for Both iOS 6 and 7 90
Core Animation 91

Layers 92
Animations 93

6. Blocks and Operation Queues. 95
Blocks 95

Block Syntax 96
Block Lifecycles 97
Methods with Block Parameters 99
Blocks and Memory Management 100
Modifying Local Variables from Inside Blocks with __block 100

Concurrency with Operation Queues 101
Operation Queues and NSOperation 102
Performing Work on Operation Queues 102

Putting It All Together 104

7. Drawing Graphics in Views. 109
How Drawing Works 109
The Pixel Grid 111

Retina Displays 111
Pixels and Screen Points 113

Drawing in Views 114
Frame Rectangles 114
Bounds Rectangles 115

Building a Custom View 116
Creating the Project 116
Filling with a Solid Color 117
Working with Paths 118
Creating Custom Paths 120
Multiple Subpaths 122
Shadows 124
Gradients 128
Transforms 131

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

SpriteKit 133

8. Audio and Video. 137
AV Foundation 137
Playing Video with AVPlayer 138

AVPlayerLayer 139
Putting It Together 139
AVPlayerView 143

Playing Sound with AVAudioPlayer 146
Speech Synthesis 147
Working with the Photo Library 148

Capturing Photos and Video from the Camera 148
Building a Photo Application 150
The Photo Library 152

9. Model Objects and Data Storage. 155
Key-Value Coding 156
Key-Value Observing 158

Registering for Change Notifications 158
Notifying Observers of Changes 160

Notifications with NSNotification 160
Preferences 161

Registering Default Preferences 162
Accessing Preferences 163
Setting Preferences 164

Working with the Filesystem 164
Using NSFileManager 166
File Storage Locations 169

Working with the Sandbox 169
Enabling Sandboxing 169
Open and Save Panels 170
Security-Scoped Bookmarks 171

10. Cocoa Bindings. 173
Binding Views to Models 173
A Single Bindings App 174
Binding to Controllers 177
Array and Object Controllers 178
A More Complex Bindings App 179

11. Table Views and Collection Views. 187
Data Sources and Delegates 187

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Table Views 188
UITableView on iOS 188

Sections and Rows 189
Table View Controllers 189
Table View Cells 190
Implementing a Table View 193

NSTableView on OS X 196
Sorting a Table View 200
NSTableView with Bindings 201

Collection Views 202
UICollectionView on iOS 202

12. Document-Based Applications. 207
The NSDocument and UIDocument Classes 208
Document Objects in MVC 208
Kinds of Documents 208
The Role of Documents 209
Document-Based Applications on OS X 210

Autosaving and Versions 210
Representing Documents with NSDocument 211
Saving Simple Data 212
Saving More Complex Data 214

Document-Based Applications on iOS 218

13. Networking. 227
Connections 227

NSURL 228
NSURLRequest 229
NSURLConnection 230
NSURLSession 230
NSURLResponse and NSHTTPURLResponse 231

Building a Networked Application 231
Bonjour Service Discovery 233

Browsing for Shared iTunes Libraries 234
Multipeer Connectivity 236

14. Working with the Real World. 241
Working with Location 241

Location Hardware 242
The Core Location Framework 243
Working with Core Location 245

Geocoding 248

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Region Monitoring and iBeacons 251
Locations and Privacy 252
Maps 253

Using Maps 253
Annotating Maps 254
Maps and Overlays 255

Device Motion 256
Working with Core Motion 257

Printing Documents 261
Printing on OS X 262
Printing on iOS 263

Game Controllers 264
App Nap 267

15. Event Kit. 269
Understanding Events 269

Accessing the Event Store 270
Accessing Calendars 271
Accessing Events 271

Working with Events 272
Building an Events Application 273
User Privacy 278

16. Instruments and the Debugger. 281
Getting Started with Instruments 282

The Instruments Interface 282
Observing Data 284
Adding Instruments from the Library 286

Fixing Problems with Instruments 286
Retain Cycles and Leaks 292
Using the Debugger 295

Setting Breakpoints 295
Inspecting Memory Contents 299
Working with the Debugger Console 299

17. Sharing and Notifications. 301
Sharing 301

Sharing on iOS 304
Sharing on OS X 306

Notifications 307
Push Notifications 307
Sending Push Notifications 308

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Setting Up to Receive Push Notifications 309
Receiving Push Notifications 311
Local Notifications 313

18. Nonstandard Apps. 315
Command-Line Tools 315
Preference Panes 317

How Preference Panes Work 317
Preference Domains 318
Building a Sample Preference Pane 319

Status Bar Items 321
Building a Status Bar App 321

iOS Apps with Multiple Windows 323

19. Working with Text. 327
Internationalization and Localization 327

Strings Files 327
Creating a Sample Localized Application 328

Formatting Data with NSFormatter 330
Detecting Data with NSDataDetector 333
TextKit 335

20. iCloud. 337
What iCloud Stores 337
Setting Up for iCloud 338
Testing Whether iCloud Works 340
Storing Settings 340
iCloud Storage 345

Index. 353

Table of Contents | ix

Preface

We’ve been developing for the Cocoa framework from when the Mac first supported it.
Since then, we’ve seen the ecosystem of Cocoa and Objective-C development evolve
from a small programmer’s niche to one of the most important and influential devel‐
opment environments in the world. (In fact, in 2012, and as 2013 closed, Objective-C
is the third most popular programming language according to the TIOBE index, up
from fifth most popular in 2011.)

Over the years, we’ve built a lot of large, complex iOS and OS X software, shipping it to
millions upon millions of users along the way. We’ve picked up a deep understanding
of the toolset, frameworks, and programming language—an understanding that is cru‐
cial to building the best possible software for iOS and OS X. Apple constantly changes
things, as the recent introduction of the svelte iPad Air and the powerful iPhone 5s show,
but the knowledge necessary to bend the development tools, frameworks, and languages
to your will stays fairly constant. This book will give you the knowledge, confidence,
and appreciation for iOS and OS X development with Cocoa, Cocoa Touch, and
Objective-C.

Audience
We assume that you’re a reasonably capable programmer, but we don’t assume you’ve
ever developed for iOS or OS X, or used Objective-C before. We also assume that you’re
fairly comfortable navigating OS X as a user, and know how to use an iOS device.

Organization of This Book
In this book, we’ll be talking about Cocoa and Cocoa Touch, the frameworks used on
OS X and iOS, respectively. Along the way, we’ll also be covering Objective-C, including
its syntax and features. Pretty much every chapter contains practical exercises that you
can follow along with. The early chapters cover general topics, such as setting up a

xi

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

development environment and coming to grips with the Objective-C language, while
later chapters cover specific features of Cocoa and Cocoa Touch.

Here is a concise breakdown of the material each chapter covers:

Chapter 1, Cocoa Development Tools
This chapter introduces Cocoa and Cocoa touch, the frameworks used on OS X
and iOS. It introduces Xcode, the IDE that you’ll be using while coding for these
platforms. This chapter also covers the Apple Developer Programs, which are nec‐
essary if you want to distribute software on the Mac or iTunes App Stores.

Chapter 2, Object-Oriented Programming with Objective-C
This chapter covers object-oriented programming, the programming paradigm
used in Objective-C, as well as how Objective-C implements object-oriented pro‐
gramming. This chapter also covers memory management in Cocoa and Cocoa
touch, which is one of the most important things to understand when developing
for the Mac and for iOS.

Chapter 3, Foundation
This chapter introduces the Foundation framework, which provides the basic data
types (like strings, arrays, and dictionaries). This chapter also discusses the under‐
lying design patterns on which much of Cocoa and Cocoa Touch are based.

Chapter 4, Applications on OS X and iOS
This chapter discusses how applications are assembled and operate on Mac and iOS
devices. In this chapter, we’ll talk about the application life cycle on both platforms,
as well as how sandboxing affects application access to data and resources.

Chapter 5, Graphical User Interfaces
This chapter demonstrates how user interfaces are loaded and presented to the user.
This chapter introduces one of the most powerful concepts provided by Cocoa:
nibs, which are predesigned and preconfigured user interfaces, and which can be
directly connected to your code. This chapter also discusses Core Animation, the
animation system used on OS X and iOS, and UIDynamics, used for adding physics
to your user interfaces.

Chapter 6, Blocks and Operation Queues
This chapter introduces blocks, which are an incredibly flexible and useful addition
that Objective-C introduces to the C language. Blocks are functions that can be
stored in variables and passed around like values. This makes things like callbacks
very simple to implement. This chapter also introduces operation queues, which
are a straightforward way to work with concurrency without having to deal with
threads.

xii | Preface

Chapter 7, Drawing Graphics in Views
In this chapter, you’ll learn about the drawing system used on both OS X and iOS,
as well as how to draw custom graphics. SpriteKit, the retina display, as well as how
view geometry works are also covered.

Chapter 8, Audio and Video
This chapter covers audio and video playback using AVFoundation, the audio and
video engine. You’ll also learn how use speech synthesis, access the iOS photo li‐
brary, and get access to the user’s photos.

Chapter 9, Model Objects and Data Storage
This chapter covers a range of data storage options available on OS X and iOS. Key-
Value Coding and Key-Value Observing, preferences, notifications, and filesystem
access are all covered. In addition, you’ll learn how to make security-scoped book‐
marks, which allow sandboxed apps to retain access to locations that the user has
granted your apps permission to use.

Chapter 10, Cocoa Bindings
This chapter covers Cocoa Bindings, a tremendously powerful system that allows
you to connect your application’s user interface to an application’s data without the
need for intermediary “glue code.”

Chapter 11, Table Views and Collection Views
This chapter covers table views (an effective way to display multiple rows of data
to your user) and collection views, which allow you to display a collection of items
to the user.

Chapter 12, Document-Based Applications
This chapter discusses the document systems on both iOS and OS X, which are
instrumental in creating applications that work with multiple documents. Here, we
discuss the differences in how the two platforms handle documents.

Chapter 13, Networking
Cocoa and Cocoa Touch provide straightforward tools for accessing networked
resources, and this chapter demonstrates how to retrieve information from the
Internet while keeping the application responsive. This chapter also covers the net‐
work service discovery system, Bonjour, and multipeer connectivity.

Chapter 14, Working with the Real World
This chapter covers a variety of technologies used to work with the physical world:
Core Location, for getting access to the GPS; Core Motion, for learning about how
the hardware is moving and oriented; and the printing systems on both iOS and
OS X. Beacons, game controllers, and maps are also discussed.

Preface | xiii

Chapter 15, Event Kit
This chapter discusses the calendaring system used on iOS and OS X, and demon‐
strates how to get access to the user’s calendar. We also discuss considerations for
user privacy.

Chapter 16, Instruments and the Debugger
This chapter covers Instruments, the profiler and analysis tool for Mac and iOS
applications. An example of a crashing application is discussed, and the cause of
the crash is diagnosed and fixed using the application. Additionally, this chapter
covers Xcode’s built-in debugger.

Chapter 17, Sharing and Notifications
This chapter discusses how applications can share text, images, and other content
with various services like Twitter and Facebook, using the built-in sharing systems
(which don’t require your application to deal with authenticating to these services).
Additionally, we’ll cover both push notifications and local notifications, which allow
your application to display information to the user without running.

Chapter 18, Nonstandard Apps
Not every program you write will be an app that sits on the user’s home screen, and
this chapter tells you how to write three different kinds of nontraditional apps:
command-line tools, menu bar apps, multiscreen iOS apps, and preference panes.

Chapter 19, Working with Text
This chapter covers TextKit, as well as the string localization system available on
iOS and OS X. Here, we also discuss data extraction from text using the built-in
Data Detectors.

Chapter 20, iCloud
This chapter discusses iCloud, the cloud data storage and syncing system provided
by Apple. The functionality and requirements of iCloud are discussed, as well as
demonstration apps for both OS X and iOS.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

xiv | Preface

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip or suggestion.

This icon signifies a general note.

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/thesecretlab/LearningCocoa4thEd.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning Cocoa with Objective-C by Jona‐
thon Manning, Paris Buttfield-Addison, and Tim Nugent (O’Reilly). Copyright 2014
Jonathon Manning, Paris Buttfield-Addison, and Tim Nugent, 978-1-491-90139-7.”

Preface | xv

https://github.com/thesecretlab/LearningCocoa4thEd

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both
book and video form from the world’s leading authors in
technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Learning_Cocoa_4e.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

xvi | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/Learning_Cocoa_4e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Jon thanks his mother, father, and the rest of his crazily extended family for their tre‐
mendous support.

Paris thanks his long-suffering mother, whose credit card bankrolled literally hundreds
of mobile devices through his childhood; an addiction which, in all likelihood, created
the iPhone-, iPad-, mobile-obsessed monster he is today.

Tim thanks his parents and family for putting up with his rather lackluster approach to
life.

We’d all like to thank our editors, Brian Jepson and Rachel Roumeliotis—their skill and
advice were invaluable to completing the book. Likewise, all the O’Reilly Media staff
we’ve interacted with over the course of writing the book have been the absolute gurus
of their fields.

A huge thank-you to Tony Gray and the AUC for the monumental boost they gave us
and others listed on this page. We wouldn’t be writing this book if it weren’t for them.

Thanks also to Neal Goldstein, who deserves full credit and/or blame for getting us into
the whole book-writing racket.

We’d like to thank the support of the goons at MacLab, who know who they are and
continue to stand watch for Admiral Dolphin’s inevitable apotheosis, as well as Professor
Christopher Lueg, Dr Leonie Ellis, and the rest of the staff at the University of Tasmania
for putting up with us.

Additional thanks to Nic W, Andrew B, Jess L, and Ash J, for a wide variety of reasons.
Finally, very special thanks to Steve Jobs, without whom this book (and many others
like it) would not have reason to exist.

Preface | xvii

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.auc.edu.au

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Cocoa Development Tools

Developing applications using Cocoa and Cocoa Touch involves the use of a set of tools
developed by Apple. In this chapter, you’ll learn about these tools, where to get them,
how to use them, how they work together, and what they can do.

These development tools have a long and storied history. Originally a set of standalone
application tools for the NeXTSTEP OS, they were adopted by Apple for use as the
official OS X tools. Later, Apple largely consolidated them into one application, known
as Xcode, though some of the applications (such as Instruments and the iOS Simulator)
remain separate, owing to their relatively peripheral role in the development process.

In addition to the development applications, Apple offers memberships in its Developer
Programs (formerly Apple Developer Connection), which provide resources and sup‐
port for developers. The programs allow access to online developer forums and speci‐
alized technical support for those interested in talking to the framework engineers.

Now, with the introduction of Apple’s curated application storefronts for OS X and iOS,
these developer programs have become the official way for developers to provide their
credentials when submitting applications to the Mac App Store or iTunes App Store—
in essence, they are your ticket to selling apps through Apple. In this chapter, you’ll learn
how to sign up for these programs, as well as how to use Xcode, the development tool
used to build apps for OS X and iOS.

The Mac and iOS Developer Programs
Apple runs two developer programs, one for each of the two platforms you can write
apps on: iOS and OS X.

You need to have a paid membership to the iOS developer program if you want to run
code on your iOS devices because signing up is the only way to obtain the necessary
code-signing certificates. (At the time of writing, membership in the developer

1

programs costs $99 USD per year, per program.) It isn’t as necessary to be a member of
the Mac developer program if you don’t intend to submit apps to the Mac App Store
(you may, for example, prefer to sell your apps yourself). However, the Mac developer
program includes useful things like early access to the next version of the OS, so it’s
worth your while if you’re serious about making apps. Downloading Xcode is free, even
if you aren’t a member of either developer program.

Both programs provide, among a host of other smaller features:

• Access to the Apple Developer Forums, which are frequented by Apple engineers
and designed to allow you to ask questions of your fellow developers and the people
who wrote the OS.

• Access to beta versions of the OS before they are released to the public, which
enables you to test your applications on the next version of OS X and iOS and make
necessary changes ahead of time. You also receive beta versions of the development
tools.

• A digital signing certificate (one each for OS X and iOS) used to identify you to the
App Stores. Without this, you cannot submit apps for sale, making the programs
mandatory for anyone who wants to release software either for free or for sale via
the App Store.

As a developer, you can register for one or both of the developer programs. They don’t
depend on one another.

Finally, registering for a developer program isn’t necessary to view the documentation
or to download the current version of the developer tools, so you can play around with
writing apps without opening your wallet.

Registering for a Developer Program
To register for one of the developer programs you’ll first need an Apple ID. It’s quite
likely that you already have one, since the majority of Apple’s online services require
one to identify you. If you’ve ever used iCloud, the iTunes store (for music or for apps),
MobileMe, or Apple’s support and repair service, you already have an ID. You might
even have more than one (one of the authors of this book has four). If you don’t yet have
an ID, you’ll create one as part of the registration process. When you register for a
program, it gets added to your Apple ID.

To get started, visit the Apple site for the program you want to join.

• For the Mac program, go to http://developer.apple.com/programs/mac/.

• For the iOS program, go to http://developer.apple.com/programs/ios/.

Simply click through the steps to enroll.

2 | Chapter 1: Cocoa Development Tools

http://developer.apple.com/programs/mac/
http://developer.apple.com/programs/ios/

You can choose to register as an individual or as a company. If you register as an indi‐
vidual, your apps will be sold under your name. If you register as a company, your apps
will be sold under your company’s legal name. Choose carefully, as it’s very difficult to
convince Apple to change your program’s type.

If you’re registering as an individual, you’ll just need your credit card. If you’re regis‐
tering as a company, you’ll need your credit card as well as documentation that proves
that you have authority to bind your company to Apple’s terms and conditions.

Apple usually takes about 24 hours to activate an account for individuals, and longer
for companies. Once you’ve received confirmation from Apple, you’ll be emailed a link
to activate your account; when that’s done, you’re a full-fledged developer!

Downloading Xcode from Apple Developer
To develop apps for either platform, you’ll use Xcode, Apple’s integrated development
environment. Xcode combines a source code editor, debugger, compiler, profiler, iPhone
and iPad simulator, and more into one package, and it’s where you’ll spend the majority
of your time when developing applications.

There are two ways to download Xcode. If you’re running OS X Lion (10.7 or later), you
can get Xcode from the Mac App Store. Simply open the App Store application and
search for “Xcode,” and it’ll pop up. It’s a free download, though it’s rather large (the
current version is about 1.7GB at the time of writing).

If you’re running OS X Snow Leopard (10.6) or simply don’t want to use the App Store,
you can download Xcode from Apple’s site. Doing this requires enrollment in either of
the developer programs. Visit http://developer.apple.com/xcode/ and sign in to your
developer account to download the application. If you’re running Lion and want to
download directly, visit https://developer.apple.com/downloads/ and search for “Xcode”
—you can find the download link in the search results.

Once you’ve downloaded Xcode, it’s straightforward enough to install it. The Mac App
Store gives you an installer to double-click; if you’ve downloaded it directly, you get a
disk image to open, which contains the same installer. Follow the prompts to install.

Getting Around in Xcode
Xcode is designed around a single window. Each of your projects will have one window,
which adapts to show what you’re working on.

To start exploring Xcode, you’ll first need to create a project by following these steps:

1. Launch Xcode. Find Xcode by opening Spotlight (by pressing ⌘-Spacebar) and typ‐

ing Xcode. You can also find it by opening the Finder, going to your hard drive, and
opening the Applications directory. If you had any projects open previously, Xcode

Getting Around in Xcode | 3

http://developer.apple.com/xcode/
https://developer.apple.com/downloads/

will open them for you. Otherwise, the Welcome to Xcode screen appears
(Figure 1-1).

Figure 1-1. The Welcome to Xcode window

2. Create a new project. Do this simply by clicking “Create a new Xcode project” or go

to File→New→Project.

You’ll be asked what kind of application to create. The template selector is divided
into two areas. On the lefthand side, you’ll find a collection of categories that ap‐
plications can be in. You can choose to create an iOS or Mac project template, which
sets up a project directory that will get you started in the right direction.

Since we’re just poking around Xcode at the moment, it doesn’t really matter, so
choose Application under the OS X header and select Cocoa Application. This cre‐
ates an empty Mac application.

3. Enter information about the project. Depending on the kind of project template you
select, you’ll be asked to provide different information about how the new project
should be configured.

At a minimum, you’ll be asked for the following info, no matter which platform
and template you choose:

The application’s name
This is the name of the project and is visible to the user. You can change this
later.

4 | Chapter 1: Cocoa Development Tools

Your company identifier
This is used to generate a bundle ID, a string that looks like a reverse domain
name. (For example, if O’Reilly made an application named MyUse‐

fulApplication, the bundle ID would be com.oreilly.MyUsefulApplication.)

Bundle IDs are the unique identifier for an application, and
are used to identify that app to the system and to the App
Store. Because each bundle ID must be unique, the same ID
can’t be used for more than one application in either of the
iOS or Mac App Stores. That’s why the format is based on

domain names—if you own the site usefulsoftware.com,

all of your bundle IDs would begin with com.usefulsoft

ware, and you won’t accidentally use a bundle ID that some‐
one else is using or wants to use because nobody else owns
the same domain name.

The class prefix
Class prefixes are two- or three-letter codes that go on the front of your classes
and prevent your class names from interfering with existing classes.

This means that a class called String with the class prefix of LC (for “Learning

Cocoa”) would be LCString. Apple’s classes, for example, commonly use NS as

their class prefix—their String class is NSString. Apple uses other prefixes as
well.

Since the release of Xcode 5, the class prefix is no longer a required field, how‐
ever it is still good practice to use a class prefix for all your own code.

If you’re writing an application for the Mac App Store, you’ll also be prompted for the
App Store category (whether it’s a game, an educational app, a social networking app,
and so on).

Depending on the template, you may also be asked for other information (for example,
the file extension for your documents if you are creating a document-aware application
such as a Mac app).

Creating Your First Cocoa Project
Follow the steps below to create a new iOS application project named HelloCocoa, which
will help familiarize you with the Xcode environment.

1. Create a new Cocoa Touch application for iOS. Create your new project by choosing

File→New→Project or pressing ⌘-Shift-N. Choose Application from the iOS list,
select Single View Application, and then click Next. This creates an app that has
only one screen (Figure 1-2).

Getting Around in Xcode | 5

Figure 1-2. Selecting a single-view application for iOS

2. Name the application. Enter HelloCocoa in the Product Name section.

3. Make the application run on the iPhone. Choose iPhone from the Devices drop-
down list.

iOS applications can run on the iPad, iPhone, or both. Applica‐
tions that run on both are called “universal” applications and run
the same binary but have different user interfaces. For this exer‐
cise, just choose iPhone.

4. Set your company identifier. Enter your site’s domain name backwards. So our do‐

main name, oreilly.com, would be entered as com.oreilly.

If you don’t have a domain name, enter anything you like, as long as it looks like a

backwards domain name. com.mycompany will do.

If you plan on releasing your app, either to the App Store or
elsewhere, it’s very important to use a company identifier that
matches a domain name you own. The App Store requires it, and
the fact that the operating system uses the bundle ID that it
generates from the company identifier means that using a do‐
main name that you own eliminates the possibility of acciden‐
tally creating a bundle ID that conflicts with someone else’s.

6 | Chapter 1: Cocoa Development Tools

Figure 1-3. Creating the project

5. Click Next to create the project. Leave the rest of the settings as shown in Figure 1-3.

6. Choose where to save the project; you’ll be asked where to put it. Choose a location
that suits you.

Once you’ve done this, Xcode will open the project and you can now start using the
entire Xcode interface (Figure 1-4).

The Xcode Interface
As mentioned, Xcode shows your entire project in one window, which is divided into
a number of sections. You can open and close each section at will, depending on what
you want to see.

Let’s take a look at each of these sections and examine what they do.

The editor

The Xcode editor (Figure 1-5) is where you’ll be spending most of your time. All source
code editing, interface design, and project configuration take place in this section of the
application, which changes depending on which file you currently have open.

If you’re editing source code, the editor is a text editor, with code completion, syntax
highlighting, and all the usual features that developers have come to expect from an
integrated development environment. If you’re modifying a user interface, the editor

Getting Around in Xcode | 7

Figure 1-4. The Xcode interface

Figure 1-5. Xcode’s editor

becomes a visual editor, allowing you to drag around the components of your interface.
Other kinds of files have their own specialized editors as well.

8 | Chapter 1: Cocoa Development Tools

The editor can also be split into a main editor and an assistant editor. The assistant shows
files that are related to the file currently open in the main editor. It will continue to show
files that have that relationship to whatever is open, even if you open different files.

For example, if you open an interface file and then open the assistant, the assistant will,
by default, show related code for the interface you’re editing. If you open another in‐
terface file, the assistant will show the code for the newly opened files.

You can also jump directly from one file in the editor to its counterpart—for example,
from an interface file to the corresponding implementation file. To do this, hit Control-
⌘-Up Arrow to open the current file’s counterpart in the current editor. You can also hit
Control-⌘-Option-Up Arrow to open the current file’s counterpart in an assistant pane.

The toolbar

The Xcode toolbar (Figure 1-6) acts as mission control for the entire interface. It’s the
only part of Xcode that doesn’t significantly change as you develop your applications,
and it serves as the place where you can control what your code is doing.

Figure 1-6. Xcode’s toolbar

From left to right, the toolbar features the following items:

Run button
Clicking this button instructs Xcode to compile and run the application.

Getting Around in Xcode | 9

Depending on the kind of application you’re running and your currently selected
settings, this button will have different effects:

• If you’re creating a Mac application, the new app will appear in the Dock and
will run on your machine.

• If you’re creating an iOS application, the new app will launch in either the iOS
Simulator or on a connected iOS device, such as an iPhone or iPad.

If you click and hold this button, you can change it from Run to another action,
such as Test, Profile, or Analyze. The Test action runs any unit tests that you
have set up; the Profile action runs the application Instruments (see Chap‐
ter 16); the Analyze action checks your code and points out potential problems
and bugs.

Stop button
Clicking this button stops any task that Xcode is currently doing—if it’s building
your application, it stops, and if your application is currently running in the de‐
bugger, it quits it.

Scheme selector
Schemes are what Xcode calls build configurations—that is, what’s being built and
how.

Your project can contain multiple targets, which are the final build products created
by your application. Targets can share resources like code, sound, and images, al‐
lowing you to more easily manage a task like building an iOS version of a Mac
application. You don’t need to create two projects, but rather have one project with
two targets that can share as much code as you prefer.

To select a target, click on the lefthand side of the scheme selector.

You can also choose where the application will run. If you are building a Mac ap‐
plication, you will almost always want to run the application on your current Mac.
If you’re building an iOS application, however, you have the option of running the
application on an iPhone simulator or an iPad simulator. (These are in fact the same
application that simply changes shape depending on the application that is run
inside it.) You can also choose to run the application on a connected iOS device if
it has been set up for development correctly.

Status display
The status display shows what Xcode is currently doing—building your application,
downloading documentation, installing an application on an iOS device, and so on.

If there is more than one task currently in progress, a small button will appear on
the lefthand side, which cycles through the current tasks when clicked.

10 | Chapter 1: Cocoa Development Tools

www.allitebooks.com

http://www.allitebooks.org

Editor selector
The editor selector determines how the editor is laid out. You can choose to display
either a single editor, the editor with the assistant, or the versions editor, which
allows you to compare different versions of a file if you’re using a revision control
system.

View selector
The view selector controls whether the navigator, debug, and detail views appear
on screen. If you’re pressed for screen space or simply want less clutter, you can
quickly summon and dismiss these parts of the screen by clicking each of the
elements.

The navigator

The lefthand side of the Xcode window is the navigator, which presents information
about your project (Figure 1-7).

Figure 1-7. The navigator pane

The navigator is divided into seven tabs:

• The project navigator gives you a list of all the files that make up your project. This
is the most commonly used navigator, as it determines what is shown in the editor.
Whatever is selected in the project navigator is opened in the editor.

Getting Around in Xcode | 11

• The symbols navigator lists all the classes and functions that exist in your project.
If you’re looking for a quick summary of a class or want to jump directly to a method
in that class, the Symbols navigator is a handy tool.

• The search navigator allows you to perform searches across your project if you’re
looking for specific text. (The shortcut is ⌘-Shift-F.)

• The issue navigator lists all the problems that Xcode has noticed in your code. This
includes warnings, compilation errors, and issues that the built-in code analyzer
has spotted.

• The test navigator shows all the unit tests associated with your project. Unit tests
used to be an optional component of Xcode, but since Xcode 5’s release, unit tests
are built into Xcode directly.

• The debug navigator is activated when you’re debugging a program, and it allows
you to examine the state of the various threads that make up your program.

• The breakpoint navigator lists all of the breakpoints that you’ve currently set for use
while debugging.

• The log navigator lists all the activity that Xcode has done with your project (such
as building, debugging, and analyzing). Because logs don’t get deleted, you can go
back and view previous build reports at any time.

Utilities

The utilities pane (Figure 1-8) shows additional information related to what you’re doing
in the editor. If you’re editing an interface, for example, the utilities pane allows you to
configure the currently selected user interface element.

The utilities pane is split into two sections: the inspector, which shows extra details and
settings for the currently selected item, and the library, which is a collection of items
that you can add to your project. The inspector and the library are most heavily used
when building user interfaces; however, the library also contains a number of useful
items such as file templates and code snippets, which you can drag and drop into place.

The debug area

The debug area (Figure 1-9) shows information reported by the debugger when the
program is running. Whenever you want to see what the application is reporting while
running, you can view it in the debug area.

The area is split into two sections. The left section shows the values of local variables
when the application is paused; the right section shows the ongoing log from the de‐
bugger, which includes any logging that comes from the debugged application.

12 | Chapter 1: Cocoa Development Tools

Figure 1-8. The utilities pane

Figure 1-9. The debug area

Getting Around in Xcode | 13

Developing a Simple Objective-C Application
Let’s jump right into working with Xcode. We’ll begin by creating a simple iOS appli‐
cation and then connect it together. If you’re more interested in Mac development, don’t
worry—the same techniques apply.

This sample application will display a single button that, when tapped, will pop up an
alert and change the button’s label to Test!. We’re going to build on the application we
created in the section “Getting Around in Xcode” on page 3, so make sure that you have
that project open.

It’s generally a good practice to design the interface first and then add code. This means
that your code is written with an understanding of how it maps to what the user sees.

To that end, we’ll start by designing the interface for the application.

Designing the Interface
When building an application’s interface for iOS, you have two options. You can either
design your application’s screens in a storyboard, which shows how all the screens link
together, or you can design each screen in isolation. This book covers storyboards in
more detail later; for now, this first application has only one screen, so it doesn’t matter
much either way.

Start by opening the interface file and adding a button:

1. Open the main storyboard. Because newly created projects use storyboards by de‐
fault, your app’s interface is stored in the file Main.storyboard.

Open it by selecting it in the project navigator. The editor will change to show the
application’s single, blank screen.

2. Drag in a button. We’re going to add a single button to the screen. All user interface
controls are kept in the object library, which is at the bottom of the Details pane on
the righthand side of the screen.

To find the button, you can either scroll through the list until you find Button, or

type button in the search field at the bottom of the library.

Once you’ve located it, drag it into the screen.

3. Configure the button. Every item that you add to an interface can be configured.
For now, we’ll only change the label.

Select the new button by clicking it, and select the Attributes inspector, which is
the third tab to the left at the top of the Utilities pane. You can also reach it by
pressing ⌘-Option-4.

Change the button’s Title to Hello!

14 | Chapter 1: Cocoa Development Tools

You can also change the button’s title by double-clicking it in the
interface.

Our simple interface is now complete (Figure 1-10). The only thing left is to connect it
to code.

Figure 1-10. The completed interface

Connecting the Code
Applications aren’t just interfaces—as a developer, you also need to write code. To work
with the interface you’ve designed, you need to create connections between your code
and your interface.

There are two kinds of connections that you can make:

• Outlets are variables that refer to objects in the interface. Using outlets, you can
instruct a button to change color or size, or hide itself. There are also outlet collec‐
tions, which allow you to create an array of outlets and choose which objects it
contains in the Interface Builder.

Developing a Simple Objective-C Application | 15

• Actions are methods in your code that are run in response to the user interacting
with an object. These interactions include the user touching a finger to an object,
dragging a finger, and so on.

To make the application behave as we’ve described above—tapping the button displays
a label and changes the button’s text—we’ll need to use both an outlet and an action.
The action will run when the button is tapped, and will use the outlet connection to the
button to modify its label.

To create actions and outlets, you need to have both the interface editor and its corre‐
sponding code open. Then hold down the Control key and drag from an object in the
interface editor to your code (or to another object in the interface editor, if you want to
make a connection between two objects in your interface).

The word interface has a double meaning in Cocoa programming. It
refers to both the GUI that you design and to the publicly exposed
methods and properties made available by Objective-C classes. For
more information on this second meaning, see “Interfaces and Im‐
plementations” on page 23.

We’ll now create the necessary connections:

1. Open the assistant. To do this, select the second tab in the editor selector in the
toolbar.

The assistant should show the corresponding code for interface ViewController.h.
If it doesn’t, click the small tuxedo icon (which represents the assistant) and navigate

to Automatic→ViewController.h.

2. Create the button’s outlet. Hold down the Control key and drag from the button

into the space between the @interface and @end lines in the code.

A pop-up window will appear. Leave everything as the default, but change the Name

to helloButton. Click Connect.

A new line of code will appear: Xcode has created the connection for you, which
appears in your code as a property in your class.

3. Create the button’s action. Hold down the Control key, and again drag from the

button into the space between the @interface and @end lines. A pop-up window
will again appear.

This time, change the Connection from Outlet to Action. Change the Name to

showAlert. Click Connect.

A second new line of code will appear. Xcode has created the connection, which is

a method inside the ViewController class.

16 | Chapter 1: Cocoa Development Tools

4. Open ViewController.m by selecting it in the project navigator. You might want to
close the assistant by selecting the leftmost tab in the editor selector in the toolbar.

5. Scroll down to the showAlert: method. You’ll find it at the bottom of the file.

6. Add in the new code. Select the entire method and delete it. Replace it with the
following code:

- (IBAction)showAlert:(id)sender {

 UIAlertView* alert = [[UIAlertView alloc] initWithTitle:@"Hello!"

 message:@"Hello, world!"

 delegate:nil

 cancelButtonTitle:@"Close"

 otherButtonTitles:nil];

 [alert show];

 [self.helloButton setTitle:@"Click" forState:UIControlStateNormal];

}

This code creates a UIAlertView, which displays a message to the user in a pop-up
window. It prepares it by setting its title to Hello and the text inside the window to “Hello,
world!” The alert is then shown to the user. Finally, the button has its title text changed
to “Click.”

The application is now ready to run. Click the Run button at the top-left corner. The
application will launch in the iPhone simulator.

If you happen to have an iPhone or iPad connected to your comput‐
er, Xcode will by default try to launch the application on the device
rather than in the simulator. To make Xcode use the simulator, go to
the Scheme menu at the top-left corner of the window and change
the currently selected scheme to the simulator.

When the app finishes launching in the simulator, tap the button. An alert will appear;
when you close it, you’ll notice that the button’s text has changed.

Using the iOS Simulator
The iOS Simulator (Figure 1-11) allows you to test out iOS applications without having
to mess around with devices. It’s a useful tool, but keep in mind that the simulator and
a real device behave very differently.

Using the iOS Simulator | 17

Figure 1-11. The iOS Simulator

For one thing, the simulator is a lot faster than a real device and has a lot more memory.
That’s because the simulator makes use of your computer’s resources—if your Mac has
4GB of RAM, so will the simulator, and if you’re building a processor-intensive appli‐
cation, it will run much more smoothly on the simulator than on a real device.

The iOS Simulator is able to simulate five different kinds of devices: retina-display 3.5
inch iPhone-sized devices; retina-display 4 inch iPhone-sized devices; retina-display,
64-bit 4 inch iPhone-sized devices; and nonretina and retina-display iPad-sized
devices.

To change the device, open the Hardware menu, choose Device, and select the device
you want to simulate. You can also change which simulator to use via the Scheme selector
in Xcode.

You can also simulate hardware events, such as the home button being pressed or the
iPhone being locked. To simulate pressing the home button, you can either click the

virtual button underneath the screen, choose Hardware→Home, or press ⌘-Shift-H. To

lock the device, press ⌘-L or choose Hardware→Lock.

18 | Chapter 1: Cocoa Development Tools

If there’s no room on the screen, the simulator won’t show the virtu‐
al hardware buttons. So if you want to simulate the home button being
pressed, you need to use the keyboard shortcut ⌘-Shift-H.

There are a number of additional features in the simulator, which we’ll examine more
closely as they become relevant to the various parts of iOS we’ll be discussing.

Using the iOS Simulator | 19

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2

Object-Oriented Programming
with Objective-C

Objective-C is an object-oriented programming language. In this chapter, you’ll learn
what this means, how the Objective-C language works, and how your objects exist in
the context of Objective-C applications.

Object-oriented programming is by no means a new thing, having shot to popularity
in the 1980s. It’s remained the most commonly used programming paradigm and is
particularly useful for applications that present some sort of interface to the user because
humans are used to thinking in terms of objects they can see and interact with.

Objective-C takes a fairly idiosyncratic approach to how it implements object-
orientation. This provides a number of benefits to you as a programmer at the slight
expense of having to understand a few more details about how it works and what Cocoa
expects from your code.

Object-Oriented Programming
When developing any application for any platform, your code should be divided into
different parts, where each part is responsible for a different area in your program. This
means that the logic for each task that your program performs should avoid interfering
with other tasks.

For example, code that talks to a database over the Internet should not be mixed with
the code that displays the results to the user. Instead, you should have one section of
code that does the database work and another that does the display. When these two
sections need to communicate, they should do so over clearly defined interfaces.

21

This means that your code becomes easier to write, maintain, and debug. It also allows
for easier modularity because it becomes more straightforward to drop in new code (or
replace code) without it affecting the rest of the program too much.

In addition to separating your logic based on its purpose, data in your program should
also be separated. To continue our example, data relevant to the display of information
(such as the font, color, and position on screen) should never be modified by the code
responsible for communicating with the database, and vice versa. In addition, your logic
should be able to work under the assumption that the data it’s working with will not be
modified by other parts of the program.

Object-oriented programming embraces and enforces these separations by introducing
the concept of an object.

Object-oriented programming has a lingo of its own, as most speci‐
alized fields do. Stand by for some important words that you’ll see
repeated quite often throughout this book.

Objects
Objects are chunks of data that come paired with code that operates on that data. Only
the object’s code is allowed to modify the data, but objects can communicate with each
other to share data.

This hiding of data from other objects is called encapsulation, and guarantees that an
object’s data can only be changed by that object’s functions.

Multiple copies of an object are allowed to exist at the same time. Each copy of an object
is known as an instance. The template from which every instance is created is called
the class. When writing object-oriented code, you write the classes, and your code creates
one or more instances of each class.

Data that belongs to an object is called an instance variable. A function that belongs to
an object is called a method.

In most object-oriented languages, it’s also possible for a method to belong to a class,
not just to an instance of the class. Objective-C calls these class methods, and they’re
most commonly used as methods that create instances of classes. For example, the class

method dataWithContentsOfFile: in the NSData class loads a file and returns an NS

Data object.

22 | Chapter 2: Object-Oriented Programming with Objective-C

Inheritance
Object-oriented languages allow you to define one class as a subclass of another. Sub‐
classes are identical to their superclass, but add additional methods and instance vari‐
ables.

Subclassing allows you to create more specific versions of a class. For example, you could

define a Server class, which handles tasks like accepting network connections, and then

create separate FTPServer and HTTPServer subclasses of the Server class, which are
more specialized.

In Objective-C, a class has only one superclass (unlike C++, which supports multiple
superclasses).

Subclasses can also override methods from their superclasses. This means that you can
write a class that replaces one or more methods of its superclass—and indeed, the ma‐
jority of your useful work when coding using Cocoa involves replacing certain methods.

Interfaces and Implementations
There are two sides to every object: a private side, and a public one.

The public side of a class is known as its interface. The interface lists all of the methods
that other classes can get at. (In Objective-C, there are no public instance variables.
Instead, you use properties, which are similar, but you have more control over how other
objects get at your object’s data.)

The private side of a class is known as its implementation. The implementation contains
the code for the class, as well as any private variables that belong to the class.

When you work with an object, you deal exclusively with its interface. This means that
each object has a strict separation between what other objects can do with its data and
what the object’s functions can do.

In Objective-C, you declare a class’s interface and implementation separately, and in
two different files. The file that contains a class’s interface is known as its header file (for
historical reasons), and the file that contains the implementation is known as its im‐
plementation file. Header files have a .h extension; implementation files have a .m ex‐
tension.

Here’s what a class interface looks like in Objective-C:

@interface MyObject : NSObject {

[instance variables]

}

[method declarations]

@end

Object-Oriented Programming | 23

The @interface line defines the name of the class, as well as that of its superclass.
Between the curly braces, you can include a list of instance variables that belong to the
class—however, this is optional, and you can choose to place the instance variables in
the implementation; see “Class Extensions” on page 30.

Its corresponding implementation looks like this:

@implementation MyObject

[method implementations]

@end

Methods
Methods are functions that belong to a class. Just like any other functions, they can take
parameters and return a value.

As mentioned above, methods can be either instance methods or class methods. In‐
stance methods belong to individual instances of a class, and have access to that in‐
stance’s variables. Class methods don’t have access to instance variables, because they
don’t belong to an instance.

Method declarations in Objective-C look like this:

- (void) launchPlane;

This is a method declaration for a method named launchPlane that takes no parameters

and returns no value. The - at the start of the method name indicates that this is an

instance method; class methods are declared with a + at the start.

One interesting thing that is rather unique to Objective-C is the fact that method pa‐
rameters are mixed in with the method name. The easiest way to explain this is to
demonstrate it.

Here, for example, is a method that takes a single parameter:

- (void) launchPlane:(NSString*)planeName;

This method takes a parameter that is a pointer to an NSString object named planeName.

Now compare this to a method that takes two parameters:

- (void) launchPlane:(NSString*)planeName fuelCapacity:(int)litresOfFuel;

This method takes an NSString pointer named planeName and an int named

litresOfFuel. The parameters are embedded in the method name itself.

24 | Chapter 2: Object-Oriented Programming with Objective-C

The full name (also known as the selector) for this method is launch

Plane:fuelCapacity: (note that the colons are included). When the
method is called, the parameters get inserted into the method name
after each colon. In Objective-C, the number of colons indicates how
many parameters a method accepts.

Objective-C’s syntax for calling the methods of an object is also rather different from
other languages. The syntax for calling a method on a hypothetical object named

planeLauncher looks like this:

[planeLauncher launchPlane];

In this syntax, the object that the method is being called on is on the lefthand side of
the square brackets, and the name of the method is on the right. For method calls with
parameters, the syntax is similar and embeds the parameters in much the same way as
in the method’s declaration:

[planeLauncher launchPlane:@"Boeing 747-300" fuelCapacity:183380];

Objective-C is designed to allow code to be read out loud from left to right and make
sense. For example, try reading that example in the previous paragraph out loud (omit‐
ting the punctuation). You could almost imagine it as an instruction being given: “Plane
launcher, launch plane Boeing 747-300, fuel capacity 183,380.”

The method declarations for a class are kept in its interface. Here’s an example of what
the interface for a class that defines some methods looks like:

@interface SomeObject : NSObject

- (void) launchPlane:(NSString*)planeName;

- (int) numberOfPlanesInTheAir;

@end

Messages
Objective-C is a message-passing language, much like Ruby. This is one of the key fea‐
tures that distinguishes it from early-bound method-calling languages like C++.

This means that when an object receives a method call, it does a runtime lookup to
determine what code to run. By contrast, C++ and many other compiled languages
perform this lookup at compile time.

When a method call is received by an Objective-C object, the Objective-C runtime
searches the list of methods that the object’s class implements. If it finds a method with
the same selector (Objective-C’s term for a method name) as that of the message that
the class received, it runs the code. If it does not find an appropriately named method,
it begins recursively searching the class’s superclasses until it either finds a method with

Object-Oriented Programming | 25

the right name, or runs out of places to look. At that point, the Objective-C runtime
throws an exception, which usually results in the application terminating. It does not
have to—you can catch this exception and deal with it yourself. Xcode is an example of
a Cocoa application that does this: if there’s an exception, Xcode displays an error mes‐
sage, and allows the user to ignore it or terminate the program.

This means that your objects are able to do some interesting tricks with the messages
they receive. You can, for example, take a method call and bundle it up into an object,
which you can keep around in memory and call later (this is known as an invocation).
You can also write your own logic for dealing with cases where your object receives a
message that it does not have a method for (this is often used in database code).

One useful feature of Objective-C is that sending a message to nil
results in no action being taken at all—the message is simply ignor‐
ed, and zero is returned. This means that you do not have to do any

null-checking before sending messages, since sending messages to nil
does not raise any exceptions. However, this can lead to some frus‐
trating bugs, such as features in your app not working because a

variable you assumed was a valid reference to an object was in fact nil.

Because Objective-C has this separation between method names and method code, it’s
a much more dynamic language than most other compiled ones. Much of Cocoa’s power
comes from this dynamic approach to programming. In your general day-to-day work,
this distinction between methods and messages isn’t hugely important. However, the
more you know about how Objective-C works and how Cocoa exploits it, the better.

Properties
In object-oriented programming, it’s considered bad practice for one object to directly
access another object’s data. Doing so breaks encapsulation, because it means that one
object’s code is now dependent on the data stored in another.

In order to access and change another object’s variables, you use a pair of instance
methods known as a setter and getter. The getter method returns the current value of
the variable, and the setter method changes the value.

In Objective-C, setter and getter method names must follow an established pattern. For

example, given an instance variable named planeName, the setter method would be

named setPlaneName: and the getter method would be named planeName.

26 | Chapter 2: Object-Oriented Programming with Objective-C

These naming conventions are used by the Objective-C runtime, and
are therefore semi-enforced. If you try to set a property named plane,
for example, the Objective-C compiler will generate code that calls a

setPlane: method; if this method doesn’t exist, your application will
throw an exception.

There are some cases where this rule varies slightly, such as boolean

instance variables, which may have a getter prefixed with is (so an

instance variable named active could have a getter method named

isActive).

Because instance variables aren’t allowed to be accessed directly by other objects, any
instance variable that an object wants to make available to other objects means that the
object’s class includes the getter and setter methods. Historically, this mean writing lots
of setter and getter methods by hand. However, since the release of Objective-C 2.0 in
2007, the language contains some features that simultaneously remove the need to write
these methods by hand and also make it easier to control how instance variables are
exposed to other classes.

When you declare a property, you are telling other objects that getter and setter methods
for accessing and changing one of the class’s instance variables exist.

Declaring a property in an Objective-C class looks like this:

@interface SomeClass : NSObject

@property (strong, nonatomic) NSObject* myProperty;

@end

Properties are declared in the interface of a class and begin with the keyword @property.
After this keyword, a list of property attributes appears in parentheses, followed by the
property’s type and finally its name.

Property attributes describe to other objects (and to the compiler) how the property
behaves. Here’s a list of the possible access specifiers that you can use.

strong

This property is a strong (owning) reference to an object; see “Object Graphs in

Objective-C” on page 34. Using strong and weak properties controls whether the
object referred to by the property stays in memory or not.

weak

This property is a weak (nonowning) reference to an object. When the object re‐

ferred to by this property is deallocated, this property is automatically set to nil.

Object-Oriented Programming | 27

assign

This property’s setter method simply assigns the property’s variable to whatever is
passed in, and performs no memory management.

copy

This property’s setter copies any object passed to it, creating a duplicate object.

readwrite

This property generates both getter and setter methods. (This attribute is set by
default—you need to explicitly use it only when overriding a superclass’s property.)

readonly

This property does not generate a setter method, rendering the property read-only
by other classes. (Your class’s implementation code can still modify the property’s
variable, however.)

nonatomic

This property’s setter and getter do not attempt to get a lock before making changes
to the variable, rendering it thread-safe.

When you declare a property, the compiler will synthesize it for you. This means that it
will create the instance variable that will store the property’s value, as well as the getter
and setter methods. The instance variable that the compiler creates will, by default, use
the same name as the property; if you’d prefer the instance variable to be called some‐

thing different, you can manually synthesize the property by using the @synthesize
directive:

@implementation MyClass

@synthesize myProperty = _myCustomVariableName;

// the rest of the class code goes here

@end

You can also tell the compiler to not synthesize the property and methods by using the

@dynamic directive.

If you do choose to mark a property as @dynamic, you need to implement the getter and
setter methods yourself:

@implementation MyClass

@dynamic myProperty;

- (int) myProperty {

 // this is the getter method for this property

 return 123;

}

28 | Chapter 2: Object-Oriented Programming with Objective-C

- (void) setMyProperty:(int)newValue {

 // this is the setter method for this property

}

@end

Protocols
A protocol is a list of methods that your class promises to implement. Protocols are used
to mark classes as having certain capabilities, like the ability to be copied, to be serialized
and deserialized, or to act as a data source for some other class.

To declare a protocol, you use this syntax:

@protocol SomeProtocol

[method declarations]

@end

You can mark a class as conforming to a protocol by declaring so in the class’s interface:

@interface SomeObject : NSObject <SomeProtocol>

@end

Doing this marks the SomeObject class as conforming to the SomeProtocol protocol.
This is not the same as subclassing a class, where your class inherits a number of methods
and can choose to override some or all of them. Rather, conforming to a protocol means
that you must implement all of the required methods that the protocol specifies.

This means that other objects can rely on the fact that your class knows how to act in
certain roles. Protocols are used quite heavily by Cocoa to allow it to work with classes
that it has never seen before; if a class conforms to a protocol, it’s guaranteed to imple‐
ment necessary methods for whatever task Cocoa needs it for.

When working with an object, you generally explicitly refer to its type:

NSString* aString;

However, in some cases, you may end up writing code that you don’t know the type of.
To make sure that the objects you are working with conform to a protocol, use the
following syntax:

id <SomeProtocol> someObjectConformingToAProtocol;

In Objective-C, the type id means “an object of any type.” You can

use id to refer to objects that you don’t know the type of.

Object-Oriented Programming | 29

In this example, the someObjectConformingToAProtocol object could be any class at
runtime, but you are guaranteed that it implements the methods listed in the protocol.

Class Extensions
Classes in Objective-C can have additional instance variables and methods appended
to them. This applies both to classes you write, and to system classes.

It’s possible, therefore, to add extra methods and instance variables to system classes

like NSString. Adding extra methods to a class means that all instances of that class
have those methods.

Class extensions can be declared and implemented anywhere in your code.

There are two reasons for extending a class:

1. You want to add extra behavior and logic to an existing class.

This is somewhat rare, but is used in some cases where you want to add some

functionality to Cocoa. For example, if you wanted to add a method to the NSString
class that inverts each letter’s case (“lIKE tHIS”), you could do so by adding that
method to a class extension.

2. You want to break up one of your own classes into separate components.

This is becoming increasingly common among developers, since it allows you to
put only your public methods and properties in your header file, and declare your
more private items elsewhere.

This is what a class extension looks like in Objective-C:

@interface SomeClass() {

 [additional instance variables]

}

[additional instance or class method declarations]

@end

This should look pretty familiar—it’s almost entirely identical to a class’s interface. The
only change is that instead of a superclass declaration, there is a pair of parentheses.
(The superclass declaration is missing because a class extension isn’t allowed to change
the class’s superclass.)

You can add as many class extensions as you like. As long as every method you add is

implemented in an @implementation block somewhere in your project, you can just
keep adding on to your classes.

To help you organize multiple extensions, you can name them in your code. Named
class extensions are called categories, and their first line looks like this:

30 | Chapter 2: Object-Oriented Programming with Objective-C

www.allitebooks.com

http://www.allitebooks.org

@interface SomeClass (SomeCategory)

The rest is all the same—the only extra thing is the extension’s name.

Class extensions allow you to minimize the number of things you expose to other classes
in your class’s .h file. Consider the following example. Here is a class’s .h file:

@interface SomeClass

- (void) doSomethingInteresting; // public, other classes can call this method

@end

And here is the class’s corresponding .m file:

#import "SomeClass.h"

@interface SomeClass() {

 NSString* privateInstanceVariable; // Only visible to this class

}

// No other class can see this method because it's not in the header

// file, and therefore private

- (void) doSomethingPrivate;

@end

@implementation SomeClass

[method implementation for both doSomethingInteresting and doSomethingPrivate]

@end

In this way, you can keep your header files tidy while still declaring everything that your
class needs to have.

Modules
Modules are a new means of including and linking files and libraries into your projects.
To understand how modules work and what benefits they have, it is important to look

back into the history of Objective-C and the #import statement

Whenever you want to include a file for use, you will generally have some code that
looks like this:

#import "someFile.h"

Or in the case of frameworks:

#import <SomeLibrary/SomeFile.h>

Object-Oriented Programming | 31

Because Objective-C is a superset of the C programming language, the #import state‐

ment is a minor refinement upon C’s #include statement. The #include statement is
very simple; it copies everything it finds in the included file into your code during
compilation. This can sometimes cause significant problems. For example, imagine you

have two header files: SomeFileA.h and SomeFileB.h; SomeFileA.h includes SomeFi

leB.h, and SomeFileB.h includes SomeFileA.h. This creates a loop, and can confuse
the coimpiler. To deal with this, C programmers have to write guards against this type
of event from occurring.

When using #import, you don’t need to worry about this issue or write header guards

to avoid it. However, #import is still just a glorified copy-and-paste action, causing slow
compilation time among a host of other smaller but still very dangerous issues (such as
an included file overriding something you have declared elsewhere in your own code.)

Modules are an attempt to get around this. They are no longer a copy-and-paste into
source code, but a serialised representation of the included files that can be imported
into your source code only when and where they’re needed. By using modules, code will

generally compile faster, and be safer than using either #include or #import.

Returning to the previous example of importing a framework:

#import <SomeLibrary/SomeFile.h>

To import this library as a module, the code would be changed to:

@import SomeLibrary;

This has the added bonus of Xcode linking the SomeLibrary framework into the project
automatically. Modules also allow you to only include the components you really need

into your project. For example, if you want to use the AwesomeObject component in the

AwesomeLibrary framework, normally you would have to import everything just to use
the one piece. However, using modules, you can just import the specific object you want
to use:

@import AwesomeLibrary.AwesomeObject;

For all new projects made in Xcode 5, modules are enabled by default. If you want to
use modules in older projects (and you really should) they will have to be enabled in

the project’s build settings. Once you do that, you can use both #import and @import
statements in your code together without any concern. At the time of writing, modules
only work for C and Objective-C, and only for Apple-provided libraries.

32 | Chapter 2: Object-Oriented Programming with Objective-C

Memory Management
One problem that has faced programmers since computers were invented is the issue
of storage. Simply put, it’s impossible to keep every single piece of data around forever,
which means that you need to remember to return memory back to the system when
you’re done using it. If you didn’t return this memory, the machine would simply run
out, and your computer wouldn’t work.

So now that we’ve moved past “Computers 101,” let’s talk about how Objective-C handles
memory management. Objective-C manages its memory through a system called ref‐
erence counting.

Reference Counting
Reference counting involves having each object store a reference count as one of its
variables. This reference count starts at 1 when the object is created, and can be incre‐
mented and decremented. When the reference count reaches zero, the object is deallo‐
cated, returning the memory back to the system.

When one object wants another object to stay around, it sends that object the retain
message, which increments the reference count. When the first object doesn’t want the
second around anymore (or simply doesn’t care—perhaps its usefulness to the first has

expired), it sends the release message, decrementing the reference count.

The advantage to this is that memory management is rather easily understood, doesn’t
suffer the random slowdowns of garbage collection, and is safer to do—instead of care‐
fully keeping track of when a block of memory is freed, an object will remove itself from
memory when there are no more references to it.

The disadvantage is that everything must be done manually by the programmer, who’s
only human. You can run into trouble if you forget to release an object that you have
retained (causing memory leaks, where memory is abandoned and never freed), or if
you release an object more times than it has been retained. (Sending a message to an
object that has been freed causes a crash, or worse, sometimes doesn’t—leading to all
sorts of tricky-to-diagnose behavior.)

Automatic Reference Counting
With the release of OS X Lion (10.7) and iOS 5, Apple introduced a new system based
on reference counting that aims to have all of the advantages and none of the disad‐
vantages of both. This system is called automatic reference counting, often abbreviated
as ARC.

Automatic reference counting is identical to manual reference counting except that the

programmer does not call retain and release on objects—the compiler does. The

Memory Management | 33

compiler is equipped with a source code analyzer, which is able to determine when and
where an object starts using another object, and when it stops. Based on this informa‐

tion, the compiler inserts retain and release method calls at the appropriate times.

This means that the programmer can work with memory without worrying about
memory leaks—effectively treating it as a garbage-collected environment without hav‐
ing to deal with the random pauses of garbage collection.

Object Graphs in Objective-C
One problem that exists in any memory management system is the issue of retain
cycles. To understand this problem, it’s worth considering under what circumstances
ARC will free memory.

The reference counting system will only free an object’s memory if that object’s retain
count is zero. ARC manages the retain count by watching when other objects make
references to that object and when those references go away.

The problem occurs when you have two or more objects that refer to each other, but
are not referred to anywhere else in the application. These objects can’t be reached by
the app, but because they each have an object referring to them, they cannot be freed.

To solve this problem, Objective-C has two different kinds of references: strong refer‐
ences and weak references.

• A strong reference (also called an owning reference) causes the referred object to stay
in memory.

• A weak reference still points to that memory, but does not count as a strong refer‐
ence, which means that ARC will not increment its reference count.

• Weak references have the additional benefit of automatically being set to nil when
the referred object is deallocated. This means that weak references are always safe,

since they are either a valid object or nil, and never refer to unallocated memory.

Because Objective-C allows sending messages to nil (which causes nothing to
happen), your program will continue functioning.

To declare a strong reference to an object, use the strong property attribute when de‐

claring a property. To declare a weak reference to an object, use the weak property
attribute.

Weak references are unavailable on OS X Snow Leopard (10.6) and
iOS 4, as well as any earlier versions. If you’re writing software that

runs on those platforms, use the assign property attribute, which

works identically to weak but does not cause the reference to be set

to nil when the object is deallocated. (So be careful!)

34 | Chapter 2: Object-Oriented Programming with Objective-C

The NSObject Lifecycle
Every object in Cocoa follows the same pattern, regardless of its type or purpose. To
wrap up this chapter, here are the life and times of an Objective-C object in Cocoa.

These methods are defined in the NSObject class, which is the root class for all objects
used in Cocoa (with some very rare exceptions).

Allocation and Initialization
Objects are created when the application allocates memory for them to exist in. This is

done by sending the alloc message to the class.

The alloc method simply reserves memory for the object, but does not render it ready
for use. To prepare an object for actual work, you must call its designated initializer
method. The designated initializer is the method that the class designer has indicated
must be called before the class is used.

The designated initializer for NSObject is init, which means that the majority of all

classes use init as their designated initializer. So, the majority of your objects are created
with this pattern:

SomeClass* anObject = [[SomeClass alloc] init];

Some classes use a different designated initializer, or have multiple initializers you can

use. For example, the NSString class has several—here are a few:

NSString* myString = [[NSString alloc]

 initWithFormat:@"here's a number: %i", 123];

NSString* anotherString = [[NSString alloc]

 initWithData:anNSDataObject encoding:NSUTF8Encoding];

NSString* oneMoreString = [[NSString alloc]

 initWithContentsOfFile:@"path to a file" encoding:NSUTF8Encoding

 error:someErrorPointer];

These all initialize an NSString object, but do it in different ways.

In addition to using the alloc and init methods, several classes provide class methods
that return initialized objects for you. These are known as factory methods, since you
can think of them as factories that generate objects for you. Here’s an example of re‐

writing the myString statement above using a factory method:

NSString* myString = [NSString stringWithFormat:@"here's a number: %i", 123];

The NSObject Lifecycle | 35

Retain and Release
Objects running in a reference-counting environment receive the retain and re

lease messages. These methods are implemented in the NSObject superclass and man‐
age the object’s reference count.

You as a programmer never call these methods. Indeed, under ARC, calling the re

tain or release methods will result in an error.

Finalization and Deallocation
Eventually (well, hopefully) all objects are removed from memory when they’re no
longer needed. However, objects have one last opportunity to run code immediately
before they’re removed from memory. This allows them to remove any references to
other objects, close any open files, and perform any other wrapping-up work.

When the object’s retain count drops to zero, the object is sent the dealloc method.
This is the last message an object receives, and is your opportunity to tidy up any re‐
maining work before the object is deallocated.

After dealloc has been called, the object’s memory is returned to the system.

36 | Chapter 2: Object-Oriented Programming with Objective-C

CHAPTER 3

Foundation

Foundation is the underlying library that supports all Objective-C development. It pro‐
vides basic support for data structures such as strings, arrays, dictionaries, and other
generic objects, as well as methods for working with them.

Foundation operates at a lower level of abstraction in your application than the higher-
level Cocoa libraries. While Cocoa and UIKit are concerned with applications, views,
and user input, Foundation is concerned with the lower-level task of organizing data.
In this chapter, you’ll work with several of the key classes that Foundation provides, and
learn about the design patterns that Cocoa and Cocoa Touch are based on.

Mutable and Immutable Objects
Almost every data storage class in Foundation comes in two flavors: mutable and im‐
mutable. Mutable objects are objects that you can modify after creating them; immutable
objects can’t be changed after they’re created.

As an example, let’s look at the NSArray class, which we’ll discuss in more detail later in

this chapter. NSArray stores objects as a list, but you can’t add, remove, or replace objects

in an existing NSArray because it’s immutable. If you want to be able to change the

contents, you need to work with the NSMutableArray class, which does allow you to
modify it.

Why do we have both immutable and mutable versions of an object? Two main reasons:

1. If an object is immutable, it knows that it will never have to change the way it’s laid
out in memory, and therefore is more efficient.

2. If you pass an immutable object to another object, you know for certain that its
contents will never be changed by that object.

37

It’s possible to create a mutable version of an existing object (and vice versa—you can
create an immutable version of a mutable object). For example, here’s how you can create

an NSMutableArray from an NSArray (both of which we’ll cover in more detail in this
chapter):

// here, 'someArray' is an NSArray

NSMutableArray* mutableArray = [NSMutableArray arrayWithArray:someArray];

Both mutable and immutable objects have their use. For the most part, you’ll work with
immutable objects when writing Mac and iOS applications; objects are passed around

a lot in Cocoa, and it helps to be sure that if you pass an NSArray to another method,
that method cannot change the contents of the array. If you come from a development
environment where objects are usually mutable, such as Java, this language-level dis‐
tinction between mutable and immutable objects might seem a little foreign. Over time,
though, you’ll likely find that it’s useful to differentiate between the two.

The mutable versions of classes are always subclasses of the immut‐

able versions. That is, NSMutableArray and NSMutableString are

subclasses of NSArray and NSString, respectively. This means that if

a method takes an NSArray as a parameter, you can provide your

NSMutableArray and it will work identically.

For the same reason, mutable objects have the exact same methods as
their immutable ancestors, as well as whatever methods are needed

to modify their contents. For example, both NSArray and NSMutable

Array have the objectAtIndex: method, but only NSMutableArray

has the addObject: method.

Strings
A string is a chunk of text. This is a simple definition, but strings are actually extremely
sophisticated things. In addition to simply storing text in strings, you can generate text
from a template, change the capitalization, work with file paths, and much more.

Whenever your application deals with text, you’ll work with an NSString, and because
almost all interaction with an application involves looking at some text on the screen,

NSString will become extremely familiar to you.

Because strings store text, they’re often used for storing written human language. This
means that strings store text written as Unicode, which is an encoding standard that’s
capable of representing (as best as we can tell) every single written character and glyph
ever invented and more. Foundation strings can handle right-to-left languages, Asian
languages, and more.

38 | Chapter 3: Foundation

The actual array of bytes that the NSString stores the text in isn’t
directly accessible by your code. If you need to get the raw bytes out

of the NSString, you can use the dataUsingEncoding: method, which

returns an NSData object that contains the bytes. When you call this
method, you provide information about what encoding you would

like the bytes to be returned in; examples include NSUTF8StringEn

coding for UTF-8, which is the 8-bit version of Unicode, and NSWin

dowsCP1252StringEncoding, which is the Windows Latin-1 encod‐
ing.

Creating Strings
Strings are stored in the NSString class, which makes them Objective-C objects just like
everything else. You can create an empty string with this code:

NSString* aString = [[NSString alloc] init];

Doing this isn’t terribly useful, because the NSString class is immutable [see “Mutable
and Immutable Objects” on page 37], so the above code creates a blank string that could
never be changed. It’s more useful to create a string in other ways, such as providing it
in code or loading it from a file.

Strings are so commonplace when working in Objective-C that there’s a shorthand

technique for creating them in your code. The following code creates an NSString object
that contains the text “Hello, world!”:

NSString* aString = @"Hello, world!";

Note the @ in front of the quotes. This tells the compiler to create an NSString object
instead of a standard C string, which is not an Objective-C object. Because this new
string is a full-fledged Objective-C object, it can receive messages and generally interact
with other objects in the application. For example, you can ask the new string how many
letters it has:

NSInteger sizeOfString = [@"Hello, world!" length];

NSString objects defined with this syntax are known as NSString literals.

Working with Strings
Strings are very flexible objects and support a wide variety of methods. For the most
part, strings are used for two purposes: human language and file paths. This means that

NSString has a large number of methods that you can use to work with these kinds of
data.

Strings | 39

NSString objects are usually created in one of three ways:

• Using string literals like @"this example"

• Loading strings from other data, like files

• Generating strings from existing strings

To use a string literal, you use this syntax:

NSString* constantString = @"Text of the string";

String literals don’t get memory-managed because their data is stor‐
ed in your compiled binary and they’re never modified.

Because string literals are objects, they can be added to arrays and dictionaries, which
are discussed later in this chapter.

Capitalization and working with paths

Because they contain text, strings are ideal for representing human languages. The

NSString class recognizes this, and provides a number of utility methods that transform
the text of the string.

To change the case (capitalization) of a string, you can send it one of several methods.
For example:

NSString* originalString = @"This is An EXAMPLE";

// "THIS IS AN EXAMPLE"

NSString* uppercaseString = [originalString uppercaseString];

// "this is an example"

NSString* lowerCaseString = [originalString lowercaseString];

// "This Is An Example"

NSString* capitalizedString = [originalString capitalizedString];

Note that calling these methods does not modify the original string, because strings are
immutable; instead, these methods return a new string. This applies to all methods that
work with the contents of a string—in all cases, because the string cannot be modified,
a new string object is returned.

Finding substrings

When using strings, it’s possible to extract substrings from them (for example, the string
“Hello world” contains the substring “Hello”).

40 | Chapter 3: Foundation

www.allitebooks.com

http://www.allitebooks.org

To extract a substring, you can either specify that you want it to start at a point in the
string and continue to the end of the string; to start from the beginning of the string
and continue to a specific point; or to consist of a certain range of characters in the
string.

To get the first five characters in a string, you do this:

NSString* startSubstring = [originalString substringToIndex:5]; // "This "

To get everything past the first five characters:

NSString* endSubstring = [originalString substringFromIndex:5]; // "is An EXAMPLE"

To get a substring of a range of characters, you first create an NSRange structure, which

defines the start point and length of the range. For example, to create an NSRange that
starts at the third character and is five characters long, you do this:

NSRange theRange = NSMakeRange(2, 5);

Note the lack of asterisk after NSRange. NSRange is not an Objective-
C class, but rather a plain old C structure.

Structures and Objects
There are two ways that data can be packaged in Objective-C: in structures and in
objects. We’ve covered objects already: they’re chunks of code and data that store infor‐
mation and can receive messages. Structures are similar, but contain only data—they
don’t have methods and can’t receive messages.

One example of a commonly used structure is CGPoint, which represents a point inside
a view. It’s defined as follows:

struct CGPoint {

 float x;

 float y;

};

To access the information inside a structure you use dot notation, much the same way
you use it to access a property in an Objective-C object:

CGPoint somePoint;

somePoint.x = 123;

somePoint.y = 456;

When referring to variables that contain structures, the variable contains the entire
structure, and not just a pointer to where that structure is in memory. For this reason,
you don’t use an asterisk when defining the type of the variable:

Strings | 41

// This is a variable that contains a pointer to an NSString

NSString* someString;

// This is a variable that contains a CGPoint

CGPoint somePoint;

Structures do not need to be initialized before they can be used.

Ranges have two variables: a location and a length. Locations start at 0, so a range with
a location of 2 and a length of 5 would start at the third character and continue for five
characters.

Once you have an NSRange, you can ask the NSString to return a substring:

NSRange theRange = NSMakeRange(2,5);

NSString* substring = [originalString substringWithRange:theRange]; // "is is"

Comparing Strings
It’s often useful to check whether two string objects are the same. However, the following
code does not accomplish this:

// firstString contains "one" and secondString is another object, also

// containing "one"

if (firstString == secondString) {

 // Do something

}

That’s because the == operator only compares the pointer values of the two variables.
Effectively, it’s checking to see if those two variables are at the same place in memory,
which they most likely are not.

To compare two strings, use the isEqualToString: method, like so:

if ([firstString isEqualToString:secondString]) {

 // Do something

}

The isEqualToString method returns TRUE when two strings are exactly the same, and

FALSE when they’re not. isEqualToString is case-sensitive (that is, “Hello” and “helLo”
are not the same because of differences in capitalization).

Many other Foundation classes provide similar isEqualTo methods.

For example, NSArray has isEqualToArray:, which checks to see if
two arrays contain the same set of objects.

42 | Chapter 3: Foundation

Searching Strings
In addition to determining whether two strings are identical, you can get more specific
information about what they contain. In Cocoa, you can search a string to see if it
contains a specific substring, or compare two strings to see how they would be ordered.

To determine whether a string contains a substring, you can use the rangeOfString

family of methods. These methods search a string for a substring, and return the NSRange
that the substring exists at. If the string does not contain the substring, the method

returns an NSRange whose location is the special value NSNotFound, which is a constant.
For example:

NSString* sourceString = @"Four score and seven years ago";

NSRange range = [sourceString rangeOfString:@"seven"];

if (range.location == NSNotFound) {

 // the string was not found

} else {

 // the string was found; 'range' variable contains info on where it is

}

You can also search for substrings while restricting the search to a specific range, or by
providing additional options for the search to take place under. For example, you can

choose to search for the substring while ignoring capitalization by using the rangeOf

String:options: method:

NSString* sourceString = @"Four score and seven years ago";

NSRange range = [sourceString rangeOfString:@"SEVEN"

 options:NSCaseInsensitiveSearch];

Arrays
An array is simply a list of objects. Arrays store a collection of objects in order, and
allow you to refer to a specific item in the collection or all of them at once.

Arrays are one of the fundamental container classes in Cocoa, since they can contain
anything from one object to as many as will fit in memory. Whenever a method wants

to work with one or more items, an NSArray object is almost always what’s used to store
them.

NSArray, like NSString, is immutable—once the array is created, objects cannot be

added to the array or removed from it. This means that when working with an NS

Array, you must provide the array’s contents when the object is created. This can be
done in a number of ways: you can create an array with specific objects with elements
from another array.

Arrays | 43

Mutable versions of NSArray exist; see “Mutable Arrays” on page 46 for
more information.

Arrays can contain objects of any type as long as they’re Objective-C objects. These

objects don’t have to be all the same type, either—you can store NSStrings in the same

array as an NSView. Arrays can also contain other arrays, because NSArray is itself an
Objective-C object.

Much like with NSString objects, you can create NSArray objects with special, built-in
syntax:

NSArray* myArray = @[@"one", @"two", @"three"];

Doing this creates a new, immutable NSArray that contains the NSString objects one,

two, and three.

Array objects can’t contain nil. If you want to include a value that

represents nil, use [NSNull null], which is the standard “null”
placeholder object.

This rule applies to all Foundation container classes.

You can also retrieve objects from an array, using syntax like this:

NSString* oneString = myArray[0];

NSString* twoString = myArray[1];

Some things to know about arrays:

• Don’t forget that NSArrays start counting at zero, so index 0 is the first object, index
1 is the second, and so on.

• If you ask an array for an invalid index, it will throw an exception and crash. For
example, if an array has three objects, and you ask for the object at index 3, the array
will throw an exception. (Recall that index 3 refers to the fourth object.)

• The syntax for accessing elements in an NSArray doesn’t work on iOS 5 and below.

Instead, you need to use the slightly wordier method objectAtIndex:, like so:

NSString* oneString = [myArray objectAtIndex:0];

This method also works on iOS 7, so if you’re writing code that needs to work on
both platforms, it’s best to go with this wordier syntax.

You can also ask an array how large it is by using the count property:

44 | Chapter 3: Foundation

int count = myArray.count;

// count now equals 3

Since NSArray objects are Objective-C objects, they can therefore be sent messages just

like any other object. For example, you can ask an NSArray object to tell you at what

index an object exists by using the indexOfObject: method. If the object is not in the

array, the method will return a special value of NSNotFound:

NSArray* myArray = @[@"one", @"two", @"three"];

int index = [myArray indexOfObject:@"two"]; // should be equal to 1

if (index == NSNotFound) {

 NSLog(@"Couldn't find the object!");

}

The indexOfObject: method only works if the object that you pass
to it is the exact same object that exists in the array. If you want to
look for an object that is equal to that object (for example, two string
objects that are different instances but contain the same text), then

you should use the indexOfObjectEqualTo: method.

To create an array that contains elements from another array, use the subArray

WithRange: method. This method takes an NSRange and returns a new array that con‐
tains objects within that range. No objects are copied when you create this new array—
an object that exists in two arrays doesn’t have two copies of it in memory. This means
that if an object is in two arrays and you modify one of its properties, those changes will
be present whether you get the object from one array or the other.

If you do want to make a copy of an object, you can send it the copy
method, which returns a duplicate of the original. Not all objects

support being copied; those that do conform to the NSCopying pro‐
tocol, which defines how an object should copy itself.

Here’s an example of creating a subarray from an existing array:

NSArray* myArray = @[@"one", @"two", @"three"];

NSRange subArrayRange = NSMakeRange(1,2);

NSArray* subArray = [myArray subArrayWithRange:subArrayRange];

// subArray now contains "two", "three"

Arrays | 45

The NSRange you provide must fit within the size of the array—for
instance, in the above example, trying to get a subarray with the
range {2,42} would not work because there are only three items in
the array. If you attempt to get an invalid subarray, the array will
throw an exception and your application will crash.

Fast Enumeration
With any collection, it’s often the case that you want to do some work with every object
that is contained in it. Objective-C includes a feature called fast enumeration, which all
container classes support. Fast enumeration allows you to very quickly and efficiently
loop over the collection, performing work on each object.

To loop over an array, you do this:

NSArray* myArray = @[@"one", @"two", @"three"];

for (NSString* string in myArray) {

 // this code is repeated 3 times, one for each item in the array

}

In the background, the compiler is generating low-overhead code that loops over each
item in the collection.

If you’re looping over an array of objects, the compiler won’t check
to see if the array contains objects of all the same type, or even of the
type you specify. Use caution!

Mutable Arrays
As discussed above, all NSArray objects are immutable—they cannot be changed once
they have been created. However, it’s often convenient to be able to add, remove, and

replace items in the array. When you want to do this, use the NSMutableArray class.

NSMutableArray is a subclass of NSArray, which means that everything that NSArray

can do, NSMutableArray can do as well. You can also pass in an NSMutableArray object

to any method that asks for an NSArray.

NSMutableArray allows you to add new objects to the array by using the addObject:

and insertObject:atIndex: methods. The first method simply adds a new object to
the end of the array, while the second inserts the object at a specific point:

NSMutableArray* myArray = [NSMutableArray arrayWithArray:@[@"One", @"Two"]];

// Add "Three" to the end

[myArray addObject:@"Three"];

46 | Chapter 3: Foundation

// Add "Zero" to the start

[myArray insertObject:@"Zero" atIndex:0];

// The array now contains "Zero", "One", "Two", "Three".

You can also remove objects from the array in much the same manner. The two main

methods for removing an object from an array are removeObject: and removeObject

AtIndex:. The first method removes the provided object from wherever it is in the array,
while the second removes whatever object is at that point in the array:

NSMutableArray* myArray = [NSMutableArray arrayWithArray:

 @[@"One", @"Two", @"Three"]];

[myArray removeObject:@"One"]; // removes "One"

[myArray removeObjectAtIndex:1]; // removes "Three", the second

 // item in the array at this point

// The array now contains just "Two"

Note that removeObject: removes all instances of an object from an

array. If the string @"One” were present twice in the array in the above

example, removeObject: would remove both instances.

You can also replace an object in a mutable array by using the replaceObjectAt

Index:withObject: method. This method takes the position of an object in the array,
removes it, and replaces it with the object that is passed in.

NSMutableArray* myArray = [NSMutableArray arrayWithArray:@[@"One", @"Two",

 @"Three"]];

[myArray replaceObjectAtIndex:1 withObject:@"Bananas"];

// myArray is now "One", "Bananas", "Three"

You can also ask the mutable array to set an object at a given index:

myArray[0] = @"Null";

You can only modify mutable arrays in this way; because a regular
array is immutable, using this syntax will cause an error at runtime.

You also can’t use this syntax to add new objects or remove objects
from the array—it’s only for replacing existing objects. If you want

to add objects, use addObject: or insertObject:atIndex:; if you

want to remove objects, use removeObject: or removeObjec

tAtIndex:.

Arrays | 47

Dictionaries
While arrays simply store a list of objects, dictionaries are more complex. Dictionaries
store objects that are mapped to keys, which are objects (usually strings, but they can
be any object that supports being copied) used to identify other objects.

Dictionaries can be thought of as tables. Suppose you want to store information about
a contact. You could represent this in a dictionary, as shown in (Table 3-1):

Table 3-1. Contact information

Key Value

Name Cave Johnson

Company Aperture Science

Likes Science

Dislikes Lemons

When you wanted to work out what the person’s company is, you would look up the

Company key and note that the corresponding value is Aperture Science.

NSDictionary works the same way. Much like NSArray, NSDictionary stores any
Objective-C object, and then maps it to a key. Keys can also be any Objective-C object.

When you create an NSDictionary, you provide both the keys and objects to it. An
object can’t exist without a key, so you must provide both.

The syntax for creating NSDictionary objects is similar to that for creating NSArrays:

NSDictionary* translationDictionary = @{

 @"greeting": @"Hello",

 @"farewell": @"Goodbye"

};

You can retrieve a value from the dictionary in a similar way to how you get objects out

of an NSArray:

NSDictionary* translationDictionary = @{@"greeting": @"Hello"};

NSString* greeting = translationDictionary[@"greeting"];

If a dictionary does not have an object for a given key, the dictionary returns nil.

You can also use fast enumeration on dictionaries. Doing so loops over every key in the

dictionary; for each key, you can use the dictionary’s objectForKey: method to get the
corresponding value, as seen in the following code:

// Here, aDictionary is an NSDictionary

for (NSString* key in aDictionary) {

 NSObject* theValue = aDictionary[key];

48 | Chapter 3: Foundation

 // do something with theValue

}

Like NSArrays, NSDictionary objects are immutable. If you want to create a dictionary

that you can add and remove items from, use the NSMutableDictionary class. This is

a subclass of NSDictionary in the same way that NSMutableArray is a subclass of NS

Array. It simply adds some methods that allow you to add and remove items from the
dictionary.

To set an object for a key in a mutable dictionary, you can use the same syntax as for
setting values in arrays. This inserts the object into the dictionary and maps it to the
provided key; if an object already exists for the given key, it is replaced.

NSMutableDictionary* aDictionary = @{};

aDictionary[@"greeting"] = @"Hello";

aDictionary[@"farewell"] = @"Goodbye";

NSValue and NSNumber
Container classes such as NSArray and NSDictionary can only contain Objective-C
objects. However, not everything that you work with in Objective-C is an object—
numbers, such as integers and boolean values, and structures, such as the previously

discussed NSRange, are not objects, and thus cannot be stored in arrays or dictionaries.

To solve this problem, Cocoa includes classes whose purpose is to store non-object
values in objects. These objects can then be stored in container classes.

The NSValue class allows you to store a wide variety of non-object types. NSNumber,

which is a subclass of NSValue, is specifically designed to store numbers.

To create an NSNumber from a number, simply put an @ in front of it. The compiler will
work out what kind of number it is (double, float, character, boolean, and so on) and

create an NSNumber for you:

NSNumber* theNumber = @123;

To retrieve the stored value, you simply query the object:

int myValue = [theNumber intValue];

This NSNumber instance can be included in any collection object:

// 'numbers' is an NSMutableArray

[numbers addObject:theNumber];

You can also set NSNumbers to the result of an expression. For example:

int a = 100;

NSNumber* number = @(a+1);

// 'number' contains 101

NSValue and NSNumber | 49

Data
When developing applications, you will often need to deal with chunks of arbitrary data.
In most cases, this is data that you’ve loaded from disk and are about to process into
Objective-C objects that you can work with, or it’s data that you’re about to write to disk.
For example, if you load an image file into memory, that data is just bytes—you must

convert it to a UIImage object before you can use it as an image.

The NSData class is designed to be a container for arbitrary data. It contains bytes, and
doesn’t make any assumptions about what kind of bytes they are. Whenever you deal
with file operations or operations that load information from the network (including

from the Internet), the information that you retrieve arrives in an NSData object, which
can be processed into useful objects.

NSData, like the other classes discussed in this chapter, is an immutable class—once

created, an NSData object cannot be modified. Likewise, there is also a mutable version:

NSMutableData. The NSMutableData class is useful for situations where you may be
progressively loading data where all of the bytes may not arrive at once, such as down‐
loading a file.

Loading Data from Files and URLs
While it’s possible to create an empty NSData object, it’s immutable so there is not much

purpose. In the vast majority of cases, you create NSData objects from other locations
—either by loading files from disk or via URLs, or by converting an Objective-C object

into an NSData object. This can then be written to disk, as discussed in more detail in
“Serialization and Deserialization” on page 51.

To load a file from disk, you must first have the file’s path, which specifies where the file
is on the disk. You can also load a file given a URL, which allows you to load a file from
disk or from a network location.

To load a text file into an NSData object, you can do the following:

// Assuming that there is a text file at /Examples/Test.txt:

NSString* filePath = @"/Examples/Test.txt";

NSData* loadedData = [NSData dataWithContentsOfFile:filePath];

Because an NSData object on its own is not very useful—such objects can do nothing
but store the data, retrieve specific bytes, and write the data out to disk—many classes

have methods designed to work with NSData objects.

For example, to convert an NSData object to an NSString, you can use the NSString

class’s initWithData:encoding: method, which takes an NSData object and an

NSStringEncoding value (which indicates to the class how it should interpret the bytes).

50 | Chapter 3: Foundation

www.allitebooks.com

http://www.allitebooks.org

NSString* loadedString = [[NSString alloc] initWithData:loadedData

 encoding:NSUTF8StringEncoding];

Character Encoding

In most cases, you will want to use NSUTF8StringEncoding when dealing with text—it’s
by far the most common way to represent human languages, and has the added advan‐
tage of being byte-compatible with ASCII, the American standard for storing English
text. UTF-8 is also useful because it’s able to represent any code point in the Unicode
standard, which covers almost every single written character from every human lan‐
guage in the world and more. Other encodings do exist, however, and it behooves you
to learn more about them, because your code might need to handle them some day. An
excellent primer is the Wikipedia article on character encoding.

This method of loading a string (loading a file into data, then con‐
verting that data into a string) is not the most efficient way to load

strings, but we show it as an example of how to use the NSData class.

A more direct way to load strings from disk is NSString’s string

WithContentsOfFile:encoding:error: method, which loads the
string from disk in one step.

You can write an NSData object to disk in a similar way by using the writeToFile:

atomically: method. This method takes a string that contains a path, as well as a BOOL
value that indicates whether the writing should be done atomically—that is, whether it

should either succeed completely or fail completely. If this flag is set to YES, NSData
writes the bytes out to a temporary file, and then moves that file into position when

done. If it’s set to NO, the file is written out directly to the destination file. Writing files
atomically is slightly slower, because the filesystem has the additional work of moving
the file at the end, but it avoids the problem of a program quitting or crashing halfway
through a long write and leaving a partially written file.

// Here, loadedData is an NSData object

NSString* filePath = @"/Examples/Test.txt";

[loadedData writeToFile:filePath atomically:YES];

Serialization and Deserialization
When working with objects whose classes you have designed, it is often extremely useful
to be able to store those objects on disk and load them back into memory. This is called

serialization, and is the process by which you can convert any object into an NSData

object and back again. Once you have an NSData, you can read and write it to disk, as

we have seen. Converting an NSData object back into an instance of one of your classes
is called deserialization.

Data | 51

http://bit.ly/TFo0Ty

Making your classes serializable is not something that you get for free. In order to be

converted to and from NSData objects, your classes must conform to the NSCoding
protocol. Coding is Apple’s term for serialization, whereby a coder object (usually an

instance of the NSKeyedArchiver class) encodes the relevant parts of your object into
writable bytes. Decoding is Apple’s term for deserialization, in which a decoder object
reads in the bytes and reconstructs that object.

The NSCoding protocol contains two key methods, which your class must implement
in order to be serializable:

• encodeWithCoder:

• initWithCoder:

The encodeWithCoder: method is called whenever the class is asked to encode itself.

The method takes an NSKeyedArchiver object, which your class’s implementation of
the method uses to encode the variables that you as the developer consider necessary
to be stored on disk.

The initWithCoder: method is called when an object is loaded from disk, and is your

object’s opportunity to re-create itself based on what was stored in the encode

Coder: method. initWithCoder: takes an NSKeyedUnarchiver object, which you can
query to recover the stored data.

The initWithCoder: method is called instead of the init method when loading an

object, which means that any setup that is done in the init method implementation

must also be done in the initWithCoder: method.

While there’s technically nothing stopping Cocoa from storing all of
a class’s variables on disk (which would obviate the need to imple‐
ment these methods yourself), doing so would be terribly wasteful—
in most cases, an object only needs to store a few key variables to disk,
and can re-create the rest of the variables based on those stored. The
more data is stored on disk, the more space is consumed, and the
more time is taken when reading and writing. Only store what you
need!

The NSKeyedArchiver object works very much like a mutable dictionary—you provide

keys and objects to it, using the encodeObject:forKey: method (along with related

methods like encodeInteger:forKey: and encodeFloat:forKey:). When the encode

WithCoder: method returns, anything stored inside the coder is serialized and can be
stored on disk.

Here is an example of an implementation of the encodeWithCoder: method:

52 | Chapter 3: Foundation

- (void) encodeWithCoder:(NSKeyedArchiver*)aCoder {

 // Store a string (or any other Objective-C object that supports coding)

 [aCoder encodeObject:myStringVariable forKey:@"myString"];

 // Store a number

 [aCoder encodeInteger:myIntegerVariable forKey:@"anInteger"];

}

Here is the corresponding initWithCoder: method, which sets up the object and loads
the encoded data:

- (id) initWithCoder:(NSKeyedUnarchiver*)aDecoder {

 self = [super init];

 myStringVariable = [aDecoder decodeObjectForKey:@"myString"];

 myIntegerVariable = [aDecoder decodeIntegerForKey:@"anInteger"];

 return self;

}

If you attempt to decode a value for a key that was not encoded in

encodeWithCoder:, the decoder will throw an exception and your
app will crash.

Many Cocoa objects support coding and decoding—for example, you can encode NS

Array, NSData, and NSDictionary objects in your encodeWithCoder: methods. Not all
objects provided by Cocoa do, however, so check the documentation for the class that

you’re working with to see if it conforms to the NSCoding protocol. If it does, you can
send it to the coder and load it back out of the decoder.

To actually convert an object to a usable NSData, you can do this:

// myObject is an object that

//conforms to NSCoding

NSData* object storedData =

 [NSKeyedArchiver archivedDataWithRootObject:myObject];

// storedData can now be written to a file

To load it back, you can do this:

// loadedData is an NSData loaded from somewhere, and SomeObject is

//a class that conforms to NSCoding

SomeObject* myObject = [NSKeyedUnarchiver unarchiveObjectWithData:loadedData];

Data | 53

Design Patterns in Cocoa
Cocoa is built around a number of design patterns, whose purpose is to make your life
as a developer more consistent and (one hopes) more productive. Three key patterns
are the model-view-controller (MVC) pattern, upon which most of Cocoa and Cocoa
Touch is built; the delegation pattern, which allows both your code and Cocoa to be
highly flexible in determining what code gets run by whom; and key-value observing,
which allows your code to watch for changes made by other objects without having to
check in on them.

Model-View-Controller
The model-view-controller design pattern is one of the fundamental design patterns in
Cocoa. It divides all objects into three categories: models, views, and controllers (hence
the name).

• Models are objects that contain data or otherwise coordinate the storing, manage‐

ment, and delivery of data to other objects. Models can be as simple as an NSString
or as complicated as an entire database—their purpose is to store data and provide
it to other objects. They don’t care what happens to the data once they give it to
someone else; their only concern is managing how the data is stored.

• Views are objects that work directly with the user, providing information to them
and receiving input back. Views do not manage the data that they display—they
only show it to the user. Views are also responsible for informing other objects when
the user interacts with them. Likewise with data and models, views do not care what
happens next—their responsibility ends with informing the rest of the application.

• Controllers are objects that mediate between models and views, and contain the
bulk of what some call the “business logic” of an application—the actual logic that
defines what the application is and how it responds to user input. At a minimum,
the controller is responsible for retrieving information from the model and pro‐
viding it to the view; it is also responsible for providing information to the model
when it is informed by the view that the user has interacted with it.

For an illustration of the model-view-controller design pattern in action, imagine a
simple text editor. In this example, the application loads a text file from disk and presents
its contents to the user in a text field. The user makes changes in the text field and saves
those changes back to disk.

54 | Chapter 3: Foundation

We can break this application down into model, view, and controller objects:

• The model is an object that is responsible for loading the text file from disk and

writing it back out to disk. It is also responsible for providing the text as an NSString
to any object that asks for it.

• The view is the text field, which asks another object for an NSString to display, and
then displays the text. It also accepts keyboard input from the user; whenever the
user types, it informs another object that the text has changed. It is also able to tell
another object when the user has told it to save changes.

• The controller is the object responsible for instructing the model object to load a
file from disk, and passes the text to the view. It receives updates from the view
object when the text has changed, and passes those changes to the model. Finally,
it is able to be told by the view that the user has asked to save the changes; when
that happens, it instructs the model to do the work of actually writing the file out
to disk.

By breaking the application into these areas of responsibility, it becomes easier to make
changes to the application.

For example, if the developer decides that the next version of the application should add
the ability to upload the text file to the Internet whenever the file is saved, the only thing
that must be changed is the model class—the controller can stay the same, and the view
never changes.

Likewise, by clearly defining which objects are responsible for which features, it’s easier
to make changes to an application while maintaining a clear structure in the project. If
the developer decides to add a spellchecking feature to the application, that code should
clearly be added to the controller, since it has nothing to do with how the text is presented
to the user or stored on disk. (You could, of course, add some features to the view that
would allow it to indicate which words are misspelled, but the bulk of the code would
need to be added in the controller.)

The majority of the classes described in this chapter, such as NSData, NSArray, and

NSDictionary, are model classes, since all they do is store and present information to

other classes. NSKeyedArchiver is a controller class, since it takes information and per‐

forms logical operations on it. NSButton and UITextField are examples of view objects,
since they present information to the user and do not care about how the data is man‐
aged.

The model-view-controller paradigm becomes very important when you start looking
at the more advanced features in Cocoa, like the document architecture (Chapter 12)
and bindings (Chapter 10).

Design Patterns in Cocoa | 55

Delegation
Delegation is Cocoa’s term for passing off some responsibilities of an object to another.

An example of this in action is the UIApplication object, which represents an appli‐
cation on iOS. This application needs to know what should happen when the application
moves to the background. Many other languages handle this problem by subclassing—

for example, in C++, the UIApplication class would define an empty placeholder

method for applicationDidEnterBackground, and then you as a developer would sub‐

class UIApplication and override the applicationDidEnterBackground method.

However, this is a particularly heavy-handed solution and causes additional problems
—it increases the complexity of your code, and also means that if you want to override
the behavior of two classes, you need two separate subclasses for each one. Objective-
C’s answer to this problem is built around the fact that an object is able to determine,
at runtime, whether another object is capable of responding to a message.

An object that wants to let another object know that something is going to happen, or
has happened, stores a reference to that object as an instance variable. This object is
known as the delegate. When the event happens, it checks to see if the delegate object

implements a method that suits the event—for delegates of the UIApplication class,

for example, the application delegate is asked if it implements the applicationDid

EnterBackground method. If it does, that method is called. An object can also be the
delegate for multiple objects.

Because of this loose coupling, it’s possible for an object to be the delegate for multiple
objects. For example, an object could become the delegate of both an audio playback
object and an image picker, and be notified both when audio playback completes and
when an image has been captured by the camera.

Because the model-view-controller pattern is built around a very loose coupling of ob‐
jects, it helps to have a more rigidly defined interface between objects so that your
application can know with more certainty about how one object expects others to be‐
have.

The specific messages used by delegates are often listed in protocols. For example, if

your object wants to be the delegate of an AVAudioPlayer object, it should conform to

the AVAudioPlayerDelegate protocol.

Key-Value Observing
Much of the model-view-controller paradigm relies on the controller providing timely
updates from the model to the view and vice versa. One way to do this is to periodically
check the model and ask it if anything has changed, and if it has, to provide the infor‐
mation to the view. However, this method (known as polling) is inefficient if the model
does not change frequently, and in the case of most OS X and iOS applications, the

56 | Chapter 3: Foundation

model does not change very frequently at all. In order to be highly responsive, therefore,
Cocoa implements a design pattern called key-value observing.

In this pattern, objects may register to be observers of properties on other objects. When
those other objects change the observed properties, those observers are notified.

Key-value observing becomes important when you want to separate views and model
objects, and we’ll discuss it in much more detail in “Key-Value Coding” on page 156.

Design Patterns in Cocoa | 57

CHAPTER 4

Applications on OS X and iOS

As far as users are concerned, applications are the only thing on their computers besides
their files. After all, a computer is defined by what it can do for the user, and what it can
do is defined by the applications that are installed.

As a developer, it’s easy to get drawn into the details of how an app is put together—the
individual classes, methods, and structures. However, the application as a whole is what’s
sold to the user, and that’s all users care about.

In this chapter, you’ll learn how applications are structured on OS X and iOS, how they
differ from other distributable code, what they can do on the system, and what they’re
prevented from doing by the built-in security measures provided by the OS.

What Is an Application?
Applications on iOS and OS X are packaged differently from applications on other
platforms, most notably Windows. On other platforms, the end result of compiling your
project is a binary file that contains the compiled code. It’s then up to you as a developer
to package that binary file up with the resources it needs. On Linux, you generate a
package file (which can vary depending on the distribution you’re using), and on Win‐
dows, it’s traditional to create an “installer,” which is an additional application that un‐
packs the binary and resources.

OS X and iOS take a different approach to applications. This approach stems from the
concept of a “package”—a folder that contains a number of items but is presented to the
user as a single file. Many document formats use packages as a convenient way to store
and organize their data, since storing different chunks of data as separate files means
that the program doesn’t have to implement logic that unpacks a single file.

59

If you’re coming from a Linux background, note that “package,” in
this context, means something different. A package file is just a fold‐
er that’s presented as a single file, while on Linux “package” means a
redistributable file used to install software. OS X also uses the word

“package” in this way—you can generate .pkg files that contain soft‐
ware, which when opened install the software onto your machine.
When you upload an app to the Mac App Store, for example, you
upload a package.

And just to add to the confusion, Cocoa doesn’t call these files pack‐
ages, but rather calls them “bundles.”

Applications, therefore, are actually folders that contain the compiled binary, plus any
resources they may need. The structure of applications differs slightly between OS X
and iOS, but the fundamental philosophy of how an application is packaged remains
the same. You can take a look inside an application by right-clicking one in the Finder
and choosing Show Package Contents.

When you compile a project in Xcode and generate an application, Xcode creates the
application package, and copies in any resources needed. If you’re creating a Mac ap‐
plication, you can then just zip it up and send it to anyone for them to run it. On iOS
it’s a little different, because apps must be code-signed and provisioned before being run
on the device.

One advantage to this is that applications are entirely self-contained and can be moved
anywhere on a Mac.

Because applications can be moved, it used to be commonplace to add
code to an application that detected if the app was not in the Appli‐
cations folder and offered to move itself there to keep the user’s
Downloads folder tidy.

This is less common in the days of the App Store, which installs all
applications directly into the Applications folder. However, if your
application is being distributed by means other than the Mac App
Store, it’s worthwhile to include this logic anyway.

Applications, Frameworks, Utilities, and More
Applications aren’t the only products that you can produce from Xcode. You can also
generate frameworks, which are loadable bundles of code and resources that other
applications (including your own) can use. Frameworks are actually very similar to
applications in structure—they contain a binary file and any resources—but they’re not
standalone and are designed to be used by other apps.

60 | Chapter 4: Applications on OS X and iOS

One prime example of a framework is AppKit.framework, which is used by every Mac

application. On iOS, the equivalent framework is UIKit.framework.

“Cocoa” is the term used by Apple to refer to the collection of libra‐
ries used by applications on OS X. On iOS, the equivalent term is
“Cocoa Touch,” as it’s adapted for touch-screen devices.

What Are Apps Composed Of?
In order to function as an application on iOS or OS X, an application must have two
things at a minimum:

• The compiled binary

• An information file describing the app to the system

The compiled binary is simply the end result of Xcode compiling all of your Objective-
C source code and linking it together.

Information describing the app to the system is saved in a file called Info.plist. Among
other things, Info.plist contains:

• The name of the application’s icon file

• What kinds of documents the application can open

• The name of the compiled binary

• The name of the interface file to load when the application starts up

• What languages the application supports (such as French, English, and so on)

• Whether the application supports multitasking (for iOS apps)

• The Mac App Store category the application is in (for OS X apps)

Info.plist is really important—in fact, if you remove it from the application bundle, the
app can’t launch.

Applications also contain every resource that was compiled in—all the images, files,
sounds, and other items that were added to the project via Xcode. The application is
able to refer to these resources at runtime.

You can take a look at the structure of an OS X application by following these steps:

What Is an Application? | 61

1. Open Xcode, and create a new OS X application. Don’t bother changing any settings
when Xcode asks—just name the app whatever you like and save it somewhere.

2. Build the application. Press ⌘-B, or choose Product→Build.

3. Open the Products group in the project navigator. It will now contain the .app, which
is the end result of the build process. Right-click it and choose Show in Finder. The
Finder will open, revealing where Xcode put the app.

4. Right-click the application and choose Show Package Contents. The Finder will show
the contents of the bundle.

The structures of OS X and iOS application bundles are different. On iOS, everything
is contained at the root of the package’s folder; on OS X, the structure is more rigorous.

The structure of a Mac application named MyApp looks like this:

MyApp.app
The top level of the package.

Contents
A folder that contains the application itself.

Info.plist
The file that describes the application to the system.

MacOS
A folder that contains the app’s compiled binary.

MyApp
The app’s compiled binary.

PkgInfo
A file included for legacy reasons that describes the app’s maker and what the app
is.

Resources
A folder that contains all of the compiled-in resources.

The structure of an iOS application named MyApp looks like this:

MyApp
The app’s compiled binary.

Info.plist
The file that describes the application to the system.

Default.png
The image that is shown while the app is launching.

62 | Chapter 4: Applications on OS X and iOS

Default@2x.png
The high-resolution version of Default.png.

embedded.mobileprovision
The provisioning profile that identifies the app as able to run on a device.

Entitlements.plist
A file that describes what the application may or may not do.

Because your application could be anywhere on the system, your code can’t use absolute
paths to determine the location of resources. Thankfully, Cocoa already knows all about
packages and how to work with them.

Using NSBundle to Find Resources in Applications
As far as your code goes, your application works the same regardless of which platform

it’s running on, thanks to a useful class called NSBundle. This class allows your code to
know where it is on the disk and how to get at the compiled resources.

This is especially important for iOS applications, since these apps are placed in arbitrary
folders by the OS when they’re installed. This means that your code cannot depend upon
being in a single place, and you can’t hardcode paths. Of course, doing that is a bad idea
anyway, but on iOS, it’s guaranteed to cause failures.

You can use NSBundle to determine the location of the application’s package on disk,
but most of the time you only need to know about the location of the individual re‐
sources.

NSBundle allows you to determine both URLs and plain file paths for resources on the
disk. All you need to know is the name and type of the resource.

For example, the following code returns an NSString that contains the absolute path
for a resource called SomeImage.png:

NSString* resourcePath = [[NSBundle mainBundle] pathForResource:@"SomeImage"

 ofType:@"png"];

// resourcePath is now a string containing the

// absolute path reference to SomeImage.png

Note that call to [NSBundle mainBundle]—it’s possible to have more than one bundle
around. (Remember, Cocoa refers to packages—that is, folders containing app resources
—as bundles.)

You can also get URLs to resources as well:

NSURL* resourceURL = [[NSBundle mainBundle] URLForResource:@"SomeImage"

 ofType:@"png"];

This method looks inside the Resources folder in the application bundle for the named
file. (On iOS, it looks inside the root folder of the application bundle.)

What Is an Application? | 63

Absolute paths and URLs are functionally the same when referring to files stored on
disk, but using URLs is preferred—a string could theoretically contain anything, where‐
as a URL always points to a location. This includes file URLs, which look like this:

file:///Applications/Xcode.app/. You can therefore use URLs in any case where
you’d normally use a file path.

If you add an image or other resource to your project, it is copied into the application

bundle when the project is built. For Mac apps, the resources are copied into the Re

sources folder, and for iOS apps, the resources are copied into the root folder of the
application.

The Application Lifecycle
Every program starts, runs, and quits. What’s interesting is what it does in between. For
the most part, applications on OS X and iOS behave similarly, with the exception that
iOS handles multitasking in a different way from standard desktop applications.

In this section, we’ll walk through the lifecycle of both kinds of applications, and discuss
what happens at various stages of an app’s life.

OS X Applications
When an application is launched, the first thing the system does is open the application’s
Info.plist. From this file, the system determines where the compiled binary is located,
and launches it. From this point on, the code that you write is in control.

In addition to the compiled code, applications almost always have a collection of objects
that were prepared at design time and bundled with the application. These are usually
interface objects—preprepared windows, controls, and screens—which are stored in‐
side a nib file when the application is built. When the application runs, these nib files
are opened, and the premade objects are loaded into memory.

For more information on nib files and how they’re built, see “Con‐
structing an Interface” on page 83.

The first thing an application does is open the nib file and deserialize its contents. This
means that the application unpacks the windows, controls, and anything else stored in
it and links them together. The main nib also contains the application delegate object,
which is unpacked with all the rest.

When an object is unpacked from a nib, it is sent the awakeFromNib message. This is
the moment at which that object can begin to run code.

64 | Chapter 4: Applications on OS X and iOS

Objects that are unpacked from a nib are not sent an init message
because they were already initialized when the developer dragged and
dropped them into the interface. When working with nib files, it’s
important to understand that when you add an object to a nib file,
that object is created at that moment, and “freeze-dried” when the nib
file is saved. When the nib file is opened, the object is “rehydrated”
and gets back to work. After the object is rehydrated, it is sent the

awakeFromNib message to let it know that it’s awake.

To summarize: objects that are loaded from a nib receive the awakeFromNib message.

Objects that are created by your code receive the init method.

At this point, the application is ready to start running properly. The first thing it does

is to send the application delegate the applicationDidFinishLaunching: method. Af‐
ter that method completes, the application enters the run loop.

The run loop is an infinite loop, managed by Cocoa that continues looping until the
application quits. The purpose of the run loop is to listen for events—keyboard input,
mouse movement and clicks, timers going off, etc.—and send those events to the rele‐
vant destinations. For example, say you have a button hooked up to a method that should
be run when the button is clicked. When the user clicks the button, the mouse-click
event is sent to the button, which then causes its target method to get run.

On OS X, applications continue to run when the user selects another app. When the

user changes applications, the application delegate receives the applicationWillRe

signActive: message, indicating that the application is about to stop being the active

one. Soon after, the app delegate receives the applicationDidResignActive: method.

The reason these two methods are separate is to let your code manage what happens to
the screen’s contents when the home button is tapped on iOS, or when the user switches

to another app on OS X. When applicationWillResignActive: is called, your appli‐
cation is still present on the screen. When the application is no longer visible, the ap‐

plication delegate receives applicationDidResignActive:.

When the user comes back to the app, the application delegate receives a pair of similar

methods: applicationWillBecomeActive: and applicationDidBecomeActive:. These
are sent immediately before and after the application returns to being the active one.

The event loop is terminated when the application quits. When this happens, the ap‐

plication delegate receives the applicationWillTerminate: message, which is sent
immediately before the app quits. This is the last opportunity an app has to save files
before quitting.

The Application Lifecycle | 65

iOS Applications
iOS applications behave in a broadly similar manner to OS X applications, with a few
differences. The main one is that iOS applications are presented differently from desktop
apps, and the tighter memory constraints on an iOS device mean that there are more
stringent rules about multitasking.

On iOS, only one application is on the screen at a time—any other applications are
completely hidden. The visible application is known as the foreground application, and
any apps also running are background applications. There are strict limits on how long
an application may run in the background, which we’ll discuss shortly.

When using an application on iOS, a user may be interrupted by something else—an
incoming phone call, for example, which replaces the app with which the user was
interacting. The application is still technically considered to be in the foreground, but
it is now inactive. If the user accepts the phone call, the phone application becomes the
foreground application, and the previous app moves to the background.

There are other methods by which an application can become inactive, such as when
the user pulls down the notifications tray (by swiping down from the top of the screen),
opens the task switcher (by double-tapping on the home button), or performs some
other action. When an application becomes inactive, it’s a signal that it may be exited,
so your app should make sure to save any work.

The iOS application lifecycle is almost identical to that of an OS X application. When
the app is launched, the Info.plist file is checked, the compiled binary is found and
loaded, and the application begins running code, starting by unpacking the contents of
the main nib.

When the application completes loading, the application delegate receives the applica

tionDidFinishLaunching:withOptions: method. This is similar to the OS X coun‐
terpart, but adds an additional parameter—a dictionary, which contains information
about why and how the application was launched.

Applications are most commonly launched directly by the user by tapping on the icon.
They can also be launched by other applications, such as when an app passes a file to

another. The options dictionary contains information that describes the circumstances
under which the application launched.

Just as with OS X applications, iOS applications also receive applicationWillResign

Active: and applicationDidBecomeActive: methods (with one difference—on OS X,

the parameter to these methods is an NSNotification object, whereas on iOS the pa‐

rameter is a UIApplication).

When an application is quit by the user on OS X, we have seen that the application

delegate receives the applicationWillTerminate: method. This was also the case for

66 | Chapter 4: Applications on OS X and iOS

iOS applications, until iOS 4. At this point, multitasking was introduced, and the lifecycle
of iOS applications changed.

Multitasking on iOS

Applications on iOS are permitted to run in the background, but only under certain
very limited conditions. That’s because iOS devices are much more constrained than
OS X devices in the areas of CPU power, memory space, and battery capacity. A Mac‐
Book Pro is expected to run for around 7 hours on battery, with a full set of applications
loaded and running—word processor, web browser, and so on. An iPhone 4S, by con‐
trast, is expected to last for 8 hours on WiFi while browsing the Internet—on a battery
with a fraction of the capacity of a full-size laptop battery. Additionally, a MacBook Pro
(at the time of writing) ships with 8 GB of memory, while an iPhone 5S has only 1 GB.

There’s simply no room to fit all the applications at once, so iOS is forced to make some
decisions about what applications can run in the background and for how long.

When an application exits (for example, when the user hits the home button or another
application launches), the application is suspended—it hasn’t quit, but it stops executing
code and its memory is locked. When the application resumes, it simply picks up where
it left off.

This means that the application remains in memory, but stops consuming the system’s
power-draining resources such as the CPU and location hardware. However, memory
is still tight on the iPhone, so if another app needs more memory, the application is
simply terminated without notice.

Note that an application that is suspended doesn’t get to run any code, and therefore
can’t get notified that it’s being terminated while suspended. This means that any critical
data must be saved when the application delegate is told that the application is being
moved to the background.

Applications are not told when they are suspended or when they are woken up. They
are told when they move into and out of the background, however, through the following
delegate methods:

- (void)applicationDidEnterBackground:(UIApplication *)application;

- (void)applicationWillEnterForeground:(UIApplication *)application;

applicationDidEnterBackground: is called immediately after the application has
moved to the background state. The application will be suspended after the method has
run, which means that the app needs to save any data it’s working on because it may be
terminated while suspended.

applicationWillEnterForeground: is called just before the application comes back
on screen, and is your application’s opportunity to get set up to work again.

The Application Lifecycle | 67

As mentioned above, applications that are suspended are candidates for termination if
the new foreground app needs more memory. As an application developer, you can
reduce the chances of this happening by reducing the amount of memory your appli‐
cation is using—by freeing large objects, unloading images, and so on.

If you are able, try to reduce the amount of memory being used to
under 16 MB. When the application is suspended and the memory
usage is under 16 MB, the system will store the application’s memo‐
ry on the flash chips and remove it from memory entirely. When the
application is resumed, the application’s memory state is reloaded
from the stored memory on the flash chips—meaning that the appli‐
cation won’t be evicted from memory due to another application’s
memory demands. We’ll look at how to measure memory usage in
Chapter 16.

An application can request to run in the background for a short period of time. This
background period can be no longer than 10 minutes, and it exists to allow your appli‐
cation to complete a long-running process—writing large files to disk, completing a
download, or some other lengthy process. At the end of the 10 minutes, your application
must indicate to the OS that it is done or it will be terminated (not suspended, but
terminated—gone from memory completely).

To run tasks in the background, you need to add code that looks like this to your ap‐
plication delegate:

- (void)applicationDidEnterBackground:(UIApplication *)application

{

 backgroundTask = [application beginBackgroundTaskWithExpirationHandler:^{

 // Stop performing the task in the background (stop calculations, etc)

 // This expiration handler block is optional, but recommended!

 // Then, tell the system that the task is complete.

 [application endBackgroundTask:backgroundTask];

 backgroundTask = UIBackgroundTaskInvalid;

 }];

 // Start running a block in the background to do the work.

 dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0),

 ^{

 // Start doing the background work: write, calculate, etc.

 // Once the work is done, tell the system

 // that the task is complete.

 [application endBackgroundTask:backgroundTask];

 backgroundTask = UIBackgroundTaskInvalid;

 });

}

68 | Chapter 4: Applications on OS X and iOS

In iOS 7, there is no guarantee that the extra time to perform background tasks will be
in one contiguous chunk; the time may be broken up into multiple chunks to improve
battery life. Also exclusive to iOS 7 are two new means of running tasks in the back‐
ground: background fetching and background notifications.

Background fetching is designed for applications that require periodic updates, such as
weather applications or social network applications like Twitter. With background
fetching enabled, an application can be woken up in the background to retrieve up-to-
date information in the background to have ready to immediately display when the user
brings the application to the foreground.

To use background fetching, there are a few things you need to do:

• Select the project in the Project Navigator, open the Capabilities tab, and enable
Background Fetch from the Background Modes section.

• In your code, you need to call setMinimumBackgroundFetchInterval: to let iOS
know approximately how often to wake your application so it can fetch updates. If
you do not set a minimum interval, iOS will default to never waking your application
for performing fetches.

To actually perform the fetching when iOS wakes your application, you will have to add
code to your application delegate that looks like this:

- (void)application:(UIApplication *)application

performFetchWithCompletionHandler:

(void (^)(UIBackgroundFetchResult))completionHandler

{

 // check for new data to fetch

 // then tell the system you are finished

 // what you tell the system changes if you found new data or not

 // newData is a BOOL representing here if there was new data fetched or not

 if (newData)

 completionHandler(UIBackgroundFetchResultNewData);

 else

 completionHandler(UIBackgroundFetchResultNoData);

}

Background notifications allow your application to receive notifications and process
them in the background. Background notifications could be used in an instant mes‐
saging application to automatically update the conversation while the application is in
the background or to alert your application when new content is available to be fetched.

Background notifications operate in a manner very similar to background fetching, and
require a similar setup before being available for use in your application. Your applica‐
tion will need to be able to handle Notifications, which are discussed in Chapter 17, and
your application will need to enable Remote notifications.

The Application Lifecycle | 69

To enable remote notifications, select the project in the project navigator, open the

capabilities tab, and enable Remote notifications from the "Background Modes sec‐
tion.

Much like background fetch, an application method that handles the notifications is
called whenever your application receives a notification. The code to receive this noti‐
fications looks this:

- (void)application:(UIApplication *)application didReceiveRemoteNotification:

(NSDictionary *)userInfo fetchCompletionHandler:(void (^)(UIBackgroundFetchResult

result))handler

This method functions in a manner very similar to the method for handling background
fetching and even requires the same results to be passed into the callback handler when

completed. The main difference is the userInfo parameter, which is a dictionary con‐
taining the data that the remote notification contained.

Keep in mind that despite letting you set a minimum interval for
fetching in the background, iOS will wake your application when it
determines is the best time without causing unnecessary drain on
the device’s battery. In a similar manner, Apple will limit how many
remote notifications are sent to the device for the same reasons. If
your application isn’t behaving exactly as you set it, this might be the
cause.

There are other cases in which an application can run in the background for longer
periods of time, all of which are geared toward more specialized applications:

• Applications that play audio in the background can remain active for as long as they
like, until the user starts playing audio from another app. For example, the Pandora
Internet radio app can run in the background until the user starts playing music
from the Music application.

• Applications that track the user’s location can run for as long as they like.

• Voice over IP (VoIP) applications like Skype are allowed to run periodically to check
in with their server, but aren’t allowed to run indefinitely except when a call is active.

In summary, if you’re writing an application for iOS, you can only expect to be running
on the device when the user is directly accessing your app. When the user can’t see your
application, it quite literally becomes a case of “out of sight, out of mind.”

70 | Chapter 4: Applications on OS X and iOS

The Application Sandbox
OS X and iOS implement a number of features to improve the overall level of security
for the user. One of these features is the application sandbox, a tool that restricts what
an application is allowed to do. The application exists inside the sandbox, and may not
try to access any system resources (hardware, user data, and so on) that is outside the
sandbox.

Sandboxes are somewhat optional for Mac applications, and mandatory for iOS appli‐
cations.

A sandbox improves the security of the system by preventing an app from doing some‐
thing that either Apple or the user does not want it to do. This is specifically useful for
improving the security of apps, because the majority of hacks take the form of exploiting
a bug in an existing application. Adobe’s Acrobat Reader and Microsoft’s Internet Ex‐
plorer 6 are two applications through which malicious people have been able to com‐
promise other users’ systems (install extra software, retrieve private data, and so on).
These exploits take the form of modifying the compromised application to make it
perform the intruder’s bidding.

Sandboxes solve this problem by preventing (at a kernel level) an application from
accessing user data, communicating with the network, accessing hardware like the
camera and microphone, and so on. Even if the software has an exploitable bug, the
intruder cannot access user data because the application is not permitted to reach out‐
side of its sandbox.

Applications that are downloaded from the iOS App Store are automatically placed in
a sandbox; we will discuss this in more detail in “Application Restrictions” on page 71.
Applications that are distributed via the Mac App Store require being sandboxed as well;
however, apps that you distribute yourself do not.

For more information on how the sandbox affects you as a developer, see “Working
with the Sandbox” on page 169 in Chapter 9.

Application Restrictions
As mentioned above, a sandbox restricts what an application can do. The restrictions
vary significantly between iOS and OS X, because applications on OS X have tradition‐
ally been less restricted in terms of what they’re allowed to do.

For example, a Mac application can request read/write access to any of the user’s files.
An iOS application can only work with its own documents, and can’t open any files
outside of it.

The Application Sandbox | 71

iOS application restrictions

When an iOS app is installed on the device, it’s placed in a folder that has a structure
like that shown in Figure 4-1.

Figure 4-1. iOS application structure

This folder contains the following items:

Documents
Stores all documents belonging to the application

Library
Stores all settings and configuration info

Caches
Contains data that is useful to have on disk, but could be regenerated; items in this
folder are deleted by the system if it needs to free some space

Preferences
Stores settings and preferences

tmp
Stores files temporarily; items in this folder are periodically deleted by the system

Application.app
The application package

72 | Chapter 4: Applications on OS X and iOS

An iOS application is not allowed to work with any file outside of its folder. This prevents
the bundle from reading private information (like phone call logs) or modifying any
system files.

This restriction on accessing files outside the folder is the only significant restriction
imposed on iOS apps. Mac applications have a much more fine-grained set of restric‐
tions.

Mac application restrictions

The idea of putting restrictions on what Mac apps can do only arrived with the release
of the Mac App Store, which means that Apple had quite a bit of time to decide how to
implement it.

When you decide to make your application sandboxed, Xcode presents you with a
number of options that determine what your application is allowed to do. These options
are called entitlements.

The available entitlements that your Mac application can request are:

Filesystem
You can determine whether the application has read/write, read-only, or no access
to the filesystem. You can also control whether the application can work with the
Downloads folder.

Network
You can determine whether the application is allowed to make outgoing connec‐
tions and accept incoming connections.

Hardware
You can determine whether the application is allowed to access the built-in camera
and microphone, communicate with devices via USB, and print.

App communication
You can determine whether the application is allowed to work with the data man‐
aged by the Address Book or Calendar, and whether it is allowed to work with the
user’s location information.

Music, movies, and pictures folder access
You can determine whether the application can work with the user’s music, photos,
and movies by controlling whether the app has read/write, read-only, or no access
to these folders. You can set each folder’s access permissions separately.

Private APIs

One of the rules that Apple imposes on applications that are sold via the iTunes App
Store or the Mac App Store is that apps are only allowed to communicate with the system

The Application Sandbox | 73

via the classes and methods that Apple has documented and indicated are for developer
use.

There are many “private” classes and methods that Apple uses behind the scenes. For
example, the code that determines whether an iOS device is locked with a passcode is
undocumented; Apple uses it (such as in the Find My Friends app), but developers like
us may not.

Apple scans all submitted applications as part of the App Store review process. This
happens automatically, before a human being sits down to review your application. If
your application is rejected for using a private API, you must remove the private API
usage and resubmit. If Apple notices that your app uses private APIs after the app has
gone live in the App Store, they’ll simply take down the app.

The point is clear: Apple does not like developers using undocumented APIs. This is
because documented APIs are known by Apple to be safe and (mostly) bug-free. Doc‐
umented APIs are also features that Apple has committed to, and won’t change under‐
neath you. Undocumented APIs, on the other hand, are often still under active devel‐
opment, or may provide access to parts of the OS that Apple considers out-of-bounds
for app developers.

74 | Chapter 4: Applications on OS X and iOS

CHAPTER 5

Graphical User Interfaces

The graphical user interface is one of the defining features of modern computers. No
personal computer sold to consumers these days lacks a GUI, and the only time people
work with a machine that doesn’t present information graphically is when they’re work‐
ing with a server, supercomputer, or other specialized tool. Displaying a graphical in‐
terface to your user is fundamental to developing with Cocoa, and understanding both
how to design an appealing and usable GUI and how to implement that GUI are critical
skills for Cocoa developers.

This chapter covers the user interface system available in Cocoa and Cocoa Touch, in
addition to implementing a UI. Designing a usable and pleasant UI is a huge topic that
wouldn’t fit in this chapter (let alone in this book!), so if you’re interested in learning
about what makes a user interface great, take a look at Tapworthy by Josh Clark (O’Reil‐
ly). You’ll also learn about Core Animation, the animation system on both OS X and
iOS.

Interfaces in OS X and iOS
While both iOS devices and OS X present their interfaces via a screen, the differences
in how they accept user input mean that these interfaces are quite different.

On OS X, the top-level object is the window. Windows contain controls, such as buttons,
labels, and text fields, and can be moved around the screen to suit the user. More than
one window is displayed on the screen at a time. Some windows can be resized, which
means that windows need to know how to present their layout when the window grows
larger or smaller. Finally, some windows can take up the entire screen; this feature has
become increasingly common in OS X since the introduction of OS X 10.7 (Lion), which
adds a standard way for windows to become fullscreen and for more than one window
to be fullscreen at once.

75

http://shop.oreilly.com/product/0636920001133.do

iOS also deals with windows, but presents them in a rather different way. In iOS, the
user only deals with one screenful of content at a time. Each screen is managed by an
object called a view controller, which manages the presentation of screen-sized views.
View controllers are embedded into the application’s window, and there is only one
window displayed on the screen at any one time. Almost every application on iOS only
ever has one window. Some exceptions include applications that display content on
multiple screens (such as when the device is connected to a television); in these cases,
each screen has a window.

As mentioned in “OS X Applications” on page 64, applications load their user interfaces
from files called nib files. Nib files take their name from an acronym that dates back to
the days when Cocoa was being designed by NeXT, the company that Steve Jobs founded
after leaving Apple in the late 1980s. NIB stands for “NeXT Interface Builder,” the name
of the program that designed the interfaces.

Interface Builder continued to be distributed as a separate application as part of the
developer tools until the release of Xcode 4, at which point it was embedded in Xcode.

MVC and Application Design
In Chapter 4, we discussed how the model-view-controller paradigm shapes a lot of the
design decisions in Cocoa. To recap, the MVC design pattern divides the responsibilities
of an app into three categories: the model, which handles data storage; the view, which
presents the user interface and accepts input such as mouse movement or touches on
the screen; and the controller, which mediates between the view and the model and
provides the main operating logic for the application.

The Interface Builder in Xcode deals exclusively with views. The rest of Xcode handles
the model and controller parts of your application, allowing you to concentrate on
building the interface in relative isolation.

However, because views and controllers are designed to communicate with each other,
the interface builder in Xcode allows you to determine where instances of classes that
you code go in your interface. This code is always invisible, but because the views (which
only exist in the interface) need to communicate with these other objects, you can work
with them in the interface builder.

Nib Files
At the broadest level, nib files are files that contain objects. In almost all cases, nib files
contain only interfaces (see Figure 5-1), but it’s possible to (mis)use nib files as a generic
container for objects.

76 | Chapter 5: Graphical User Interfaces

Nib files have the extension .nib or .xib. An .xib file is a nib file that’s
stored in an XML-based format.

Figure 5-1. Nib files contain user interfaces

Nib files work by “freeze-drying” (Apple’s terminology) objects and storing them in a
serialized form inside the file. All of the properties of the objects (e.g., in the case of a
button, its position, label text, and other information) are stored in the nib file. When
an application needs to display a window, it loads the nib file, “rehydrates” the stored
objects, and presents them to the user.

This means that, for all practical purposes, the views and screens that are assembled in
Xcode’s interface builder are the exact same objects that appear on screen.

Because nib files simply contain objects, they can also contain objects that are instances
of your own class. You can therefore create an instance of a class that is created when a
nib is loaded, and connect it to your views.

On their own, views aren’t terribly useful unless you want to create an application that
does nothing more than present some buttons that can be clicked on or a text field that
does nothing with the text that is entered. If you want to create an application that
actually responds to user input, you must connect the views to your controllers—that
is, your application code.

The interface builder provides two ways for connecting views to code: outlets and
actions. We will discuss both in more detail later in this chapter.

Structure of a Nib File
Nib files contain a tree structure of objects. This tree can have many roots—for example,
a nib file could contain two windows, each with its own collection of buttons and con‐
trols. These objects at the top level of the tree are known as “top-level objects.”

Nib Files | 77

Top-level objects are usually the visible things that are presented to users—windows on
OS X and view controllers on iOS. However, any object can be a top-level object in a
nib.

On OS X, anything that’s shown on screen is placed in a window. There are many dif‐
ferent kinds of windows available in the Interface Builder.

Standard windows
The common, garden-variety windows shown on the screen. They have a full-size
title bar, and are usually the primary window for an application.

Panel windows
These have a reduced-height title bar and are usually hidden when the application
is not active. “Inspector” windows and other accessory windows usually use panels.

Textured windows
Identical to standard windows, but have a different background color. These have
changed quite a bit over the years; they’ve been pin-striped, brushed-metal, and
now a plain gradient (as of OS X 10.7).

HUD (heads-up display)
These windows are dark grey, translucent, and designed to show information about
something that’s currently selected or to contain auxiliary controls for your appli‐
cations. These are most often seen in media applications like QuickTime, Logic,
and Final Cut.

Windows can contain any view at all. For more information on views, see Chapter 7.

On iOS, as previously mentioned, there is only one window on the screen at any one
time. In contrast to OS X, this window stays on the screen for as long as the app is in
the foreground, and replaces its contents when the user moves from one screen of con‐
tent to the next.

In order to manage the various screens of content, iOS uses a category of object called
a view controller. View controllers are classes that manage a single view as well as its
subviews. View controllers are discussed in more detail later in this chapter, but for
practical purposes you can think of them as screens.

View controllers also exist on OS X but their role is less important, as
multiple windows can be shown on the screen at once.

Much like OS X’s windows, view controllers on iOS come in a variety of different flavors.
These variations are more functionally different that the styles of windows on OS X,

78 | Chapter 5: Graphical User Interfaces

which are primarily cosmetic; on iOS, the different categories of view controllers define
the structure and behavior of the application.

Standard view controllers
These present a view, and nothing more. It is most often subclassed to add logic to
the screen—in fact, being subclassed is the primary purpose of this view controller.

Navigation controllers
These present a stack of view controllers, onto which the application can push
additional view controllers. When a new view controller is pushed onto the stack,
the navigation controller animates the view controller’s view into being visible with
a sideways scrolling motion. When the navigation controller is instructed to pop a
view controller from the stack, the view animates off with a reverse sliding motion.
A good example of this view controller is the Settings application.

Tab bar controllers
These present a set of view controllers, selectable through a tab bar at the bottom
of the screen. When a button on the tab bar is tapped by the user, the tab bar
controller hides the currently shown view controller and displays another. An ex‐
ample of this style of interface is the iPod application.

Page controllers
These present view controllers in a “page-turning” interface, similar to the iBooks
application on the iPad and iPhone. Each “page” in the book is a view controller,
and the user can drag a finger across the screen to turn the page.

GLKit controllers
These allow you to present 3D graphics to the user using OpenGL. These are a
particularly specialized kind of view controller and we won’t be discussing them
here—the topic of 3D graphics is way outside the scope of a book about Cocoa.

Each kind of view controller is designed for a different style of presenting information
to the user:

• Navigation controllers are great for presenting information that’s hierarchical,
where the user drills down into more specific information. For example, your ap‐
plication could have a main menu at the top level, with several view controllers for
each available option in the menu that are pushed into the navigation controller’s
stack when they are selected.

• Tab bar controllers are best for presenting multiple ways of viewing the application’s
interface. For example, the App Store app is all about finding applications and pur‐
chasing them, and the tabs presented to the user are simply different angles on the
same thing. Other applications may have more specific angles of presenting the key
info that the app is designed around. For example, a chat application could use a
tab bar that shows three different tabs: one that shows the list of contacts, one that

Nib Files | 79

shows the list of active chats, and one that shows information about the user’s pro‐
file.

• Page controllers are best for showing sequential information, as in a book or
magazine.

Windows and view controllers are simply containers that present controls to the user.
Controls are the visible items on the screen that the user interacts with: buttons, text
fields, sliders, and so forth. To build an interface in Xcode, you drag and drop the con‐
trols you want from the Object Library in the Utilities panel onto the window or view
controller. You can then reposition or resize the control.

View controllers can contain other view controllers on iOS. For ex‐
ample, a navigation controller is a view controller that manages the
appearance of the navigation bar at the top of the screen, as well as
one or more additional view controllers.

View controller containment can be a complex topic. For more in‐
formation, see “View Controller Basics” in the View Controller Pro‐
gramming Guide for iOS in the Xcode developer documentation.

Window Sizes
Windows can vary in size. On OS X, they can be any size at all, though you can limit
their dimensions using constraints [see “Guidelines and Constraints” on page 83]. On
iOS, windows always fill the entire screen.

The size of an iOS device’s screen can vary. On every model of the iPad, the screen is
1024 by 768 screen points (see “Pixels and Screen Points” on page 113 for an explanation
of screen points). On the iPhone and iPod touch, it’s a little more complicated: all devices
up to the iPhone 5 and iPod touch (5th generation) have a screen that’s 320 by 480. The
iPhone 5, 5c and 5s and iPod touch have a screen that’s 320 by 568 screen points—88
screen points taller.

Because of this change, iPhone and iPod touch applications have to deliberately opt in
to using the new screen size. If they don’t, the OS pretends to have the older, smaller
screen and displays the application’s window in the center of the screen.

To opt in to the taller display, your application simply needs to include a PNG image
called Default-568h@2x.png. This is the image that shows while the application is
launching; its presence also indicates to the system that it should be drawn on a fullscreen
window, not letterboxed.

80 | Chapter 5: Graphical User Interfaces

Storyboards
Introduced in iOS 5, storyboards are now the default way of creating your UI in Interface
Builder. When you create a new iOS application in Xcode, there will be a Main.story
board created automatically for you to use.

In a nutshell, a storyboard is a collection of view controllers all linked together via
Segues. It is easy enough to think of a storyboard as a collection of nibs inside a single
file. They are composed of the same elements and are interpreted by the system and
Xcode in basically the same way, the only significant difference is that a nib contains a
single view controller whereas a storyboard contains multiple view controllers (al‐
though it can only contain one if you want).

One of the nicest features of storyboards are segues, which can be thought of as a link
between two view controllers that allows you to transition, or segue, between view con‐
trollers without any code. Creating a segue is quite straightforward. Any element inside
a view controller that can perform an action (see “Outlets and Actions” on page 81) can
have its action turned into a segue. Simply Control-drag from the element inside the
first view controller onto the second view controller and an appropriate segue will be
created.

Once a segue has been created in the Interface Builder, it can also be triggered progra‐
matically through its identifier. If you select a segue and select the Attribute inspector,

you can set an identifier for that segue. Your view controller can then use the perform

SegueWithIdentifier: method to force that segue to run. Shortly before the segue

occurs, your view controller’s prepareForSegue:sender: method will be called giving
you a chance for final preparations before you transition into the next view controller.

Outlets and Actions
Objects can exist in isolation, but this means that they don’t participate in the application
as a whole. A button can look very pretty, but unless it knows what should happen when
it is clicked, it won’t do anything but look pretty.

In most cases, an object in an application needs to work with other objects in order to
do something useful. For example, a table view, which displays information in a list or
grid, needs to be able to contact another object in order to ask it what information should
be displayed. The table view does not store the information itself—to do so would violate
the model-view-controller pattern. (Views should not know anything about the data
they are presenting; they should ask their controller about it.)

Another kind of relationship is the one between a button and the application—when a
button is pressed or tapped, the application should be informed of it and then run code
as a response. If there are multiple buttons on the screen, which is rather common, the
application should know which code to run when a particular button is tapped.

Nib Files | 81

In Cocoa, this kind of relationship is known as a target-action relationship. When you
add a button to a window or view controller, you can specify two things: what object
should be contacted when the button is clicked or tapped, and what message the object
should receive when this happens. The object that is contacted is known as the target,
and the message that is sent is called the action. This is shown in Figure 5-2.

Figure 5-2. The target-action pattern

To allow these relationships between objects to be set up, Xcode allows you to make
connections between objects in the interface. There are two kinds of connections: outlets
and actions.

• Outlets are relationships in which one object “plugs in” to another to communicate.
An example is the table view that needs to contact another object to know what data
to display.

• Actions are relationships that describe what method another object should run
when an event occurs.

These connections are defined in the nib file, and are used when reconstructing the
objects as the nib file loads.

How Nib Files Are Loaded
When a nib file is loaded, usually as part of application startup, every object it contains
is re-created based on information stored in the nib: its class, position, label, size, and
all its other relevant properties.

Once all objects exist in memory, every outlet defined in the nib file is connected. A nib
file effectively describes a source object, a destination object, and the name of a property
on the destination object. To connect the objects together, then, the nib file loading
process sets the value of the destination object’s property to the source object.

After all outlets are connected, every single object that was loaded receives the awake

FromNib: message. By the time this method is called, every outlet has been connected,
and all relationships between the objects have been reestablished.

Actions are a slightly different matter. An action is represented as a target object and an
action message that is sent to that object. When a button is clicked, for example, it sends
the action message to the target object.

82 | Chapter 5: Graphical User Interfaces

Outlets and actions are independent of each other. Having an outlet connection doesn’t
imply that an action is sent, and vice versa. If you want to receive a message from a
button and also have a variable that points to that button, you’ll need both an outlet
and an action.

Constructing an Interface
All interfaces in the interface builder are built by dragging components out of the Object
Library and into a container. For windows, which have no container, you just drag them
out into the canvas.

The Objects Library is at the bottom-right corner of the Xcode window. It lists every
single object that can be dragged into an interface file—windows, controls, and hidden
objects like view controllers are all available. If you are building an OS X interface, Mac
controls appear; if you are building an iOS interface, iOS controls appear.

You can filter the list by typing in the text field at the bottom of the list. This filter searches
for the name of the object as well as its class name, so you can search for “NSButton” as
well as just “button”. If you know exactly what you’re searching for, searching by class
name is often faster—over time, you’ll come to recognize objects by class name and start
thinking in those terms.

Guidelines and Constraints
Cocoa tries to keep your views and windows laid out nicely. When you drag a button
into a view, for example, Cocoa will attempt to constrain its position to within some
standard of the window. If you drag in a button and place it next to another button,
Cocoa will help you line them up and place the right amount of space between them.
The same applies to resizing views—the interface builder will try to dissuade you from
creating a layout that doesn’t match up to Cocoa’s standard sizes and margins.

The relationships between a view, its container view, and the other views around it are
preserved in the form of constraints. You can view the constraints on an object by
clicking on it and noting the blue lines that extend from it to other views or to the
container view’s edges.

Prior to the release of Xcode 5, constraints were quite tricky to get correct, and very
easy to do incorrectly, leading to a variety of bizzare appearances and layouts in your
application. Since Xcode 5 however, constraints have been changed somewhat. Now
when an object is added to a view, it has no constraints and Xcode will invisibly create
constraints to glue that object at the exact position and size you placed it because most
objects won’t need to move or resize. This lets you ignore most objects and focus on
adding constraints only for the ones that actually need them.

Constructing an Interface | 83

Constraints are a new system of laying out a user interface, available
from OS X 10.7 Lion and iOS 6 onwards. They replace an earlier
model called springs and struts, sometimes referred to as autosizing
masks. For more information on this older system, see “Reposition‐
ing and Resizing Views” in the View Programming Guide, included
in the Xcode developer documentation.

A constraint defines a relationship between a property of a view, like its height or the
position of its left edge, and a property of another view. This means that you can define
constraints like this:

The left position of the Add button is equal to the left position of the table view above it.

You can also create constraints that are based on constant values:

The width of the Delete button is equal to 50 screen points.

Constraints can work together. If you have multiple constraints on a view, or constraints
that affect multiple views, the layout system will attempt to resolve them simultaneously:

The width of the Delete button is equal to 50 screen points, and its left edge is equal to 10
screen points from the right edge of the Add button.

Constraints allow you to create simple rules that define the position and size of all the
views on your screen. When the window that contains those views resizes, the layout
system will update to satisfy all of the constraints.

You can add your own constraints, called user constraints via the constraints menu at
the bottom-right of the interface builder (Figure 5-3) or through the Editor Menu.

Figure 5-3. The constraints menu

The constraints menu has four parts:

• Alignment defines how different views should line up relative to one another.

• Pinning defines width, height, and spacing.

• Resolve Auto Layout Issues, which provides some solutions to common constraint
issues.

• Resizing Behavior defines how constraints should be applied when resizing views.

84 | Chapter 5: Graphical User Interfaces

Building an App with Nibs and Constraints
To demonstrate how to work with nibs and constraints, let’s build a simple interface that
makes use of different kinds of constraints. This application won’t have any code—we’ll
only be looking at the constraint system.

This interface will be for an application that lists a bunch of text documents and provides
a text field for editing that text. We’ll also include some buttons to add, remove, and
publish these documents. Let’s jump right in.

1. Create a new Cocoa application.

Create a new Cocoa application and name it Constraints.

2. Open the interface file.

Open MainMenu.xib and select the window in the Outline pane to make it appear.

3. Add the UI elements.

Start by dragging an NSTableView into the window and placing it to take up most
of the space in the window.

Drag in three gradient buttons, place two beneath the lefthand side of the table side-
by-side, and the other on the bottom lefthand side.

4. Customize the UI elements.

Select the button at the bottom left, and open the Attributes inspector. Set the but‐
ton’s Title to nothing; that is, select all the text and delete it. Then change the Image

of the button to NSAddTemplate, which will make the button contain a plus image.

Do the same for the button immediately to the right, but set the image to NSRemo

veTemplate.

Finally, select the button at the bottom-right of the window, and set its Title to
Publish.

When you’re done, the window should look like Figure 5-4.

Building an App with Nibs and Constraints | 85

Figure 5-4. The constraints window, all set up with the controls

If you resize the window, the screen’s carefully constructed layout breaks, and it looks
ugly. So we’re going to add constraints that make the layout look good at any size.

1. Add constraints to the table view.

First, we’ll make the table view resize properly when the window is resized. For now
we want the view to resize to however large or small we make the window.

Select the table view and click the Pin menu, which is the second button inside the
constraints menu. A small window will pop up with a bunch of different controls
and options. To pin the position, select the small dotted red spacers for the Top and
Left distance positions and leave the default values.

86 | Chapter 5: Graphical User Interfaces

2. Add constraints to the + and - button.

We want the + and - buttons to remain pinned to the bottom left of the screen and
to keep their distance from the table view. Select the + button and click the Pin
menu. Select the spacers for the Left, Right, Top, and Bottom distance positions,
with the default values. Also check the Width and Height boxes to force the button
to remain its current size.

Select the the - button and click the Pin menu. Select the spacers for the Top and
Bottom distance positions, again leaving the default values. Also check the Width
and Height boxes to force the button to remain the same size.

Now both the + and - button are pinned to the bottom left corner, as well as main‐
taining the current sizes and distances away from each other and the table view.

3. Add constraints to the Publish button.

We want the Publish button to be aligned with the right edge of the window and to
maintain its spacing to the tableview and the window edge.

Select the Publish button and click the Pin menu. Select the spacers for the Top,
Bottom, and Right distance positions and also check the Height and Width to force
it to remain its current size.

Now if you run the app, the table will resize and all elements will maintain their correct
spacing. However, the app will also let you make the window so small that our careful
layout won’t look all that nice, so we will pin the minimum height and width of the
tableview to keep it from getting too small to be useful.

1. Select the tableview and click the Pin menu; check the Width and Height boxes.

2. Select the Height constraint on the tableview, and open the Attributes inspector. Set
the Relation to be Greater Than or Equal.

3. Select the Width constraint on the tableview, and open the Attributes inspector. Set
the Relation to be Greater Than or Equal.

The window will now resize correctly while preserving the layout and correct dimen‐
sions.

UI Dynamics
UI Dynamics are a new part of UIKit that provides physics-related capabilities and
animations to views in iOS, which lets you impart forces and physical properties to
views, allowing you to make your views bounce, swing, be affected by gravity, and more.

UI Dynamics | 87

UI and Gravity
To demonstrate some of the capabilities of UI Dynamics, let’s build a simple app with
some gravity applied to the views.

1. Create a new iPhone application.

Create a new Single View iPhone application and call it DynamicGravity.

2. Create the interface.

Open Main.storyboard and add an image view to the interface. Insert an image.

When you are done, the interface should look like Figure 5-5.

Figure 5-5. The completed interface for testing UI gravity

3. Create the image views outlet.

Open ViewController.h in the Assistant. Control-drag from the image view to the

ViewController, and name the outlet imageView.

4. Implement the dynamic behavior.

Replace ViewController.m with the following:

#import "ViewController.h"

88 | Chapter 5: Graphical User Interfaces

@interface ViewController ()

@property (nonatomic, strong)UIDynamicAnimator *animator;

@end

@implementation ViewController

- (void)viewDidAppear:(BOOL)animated

{

 [super viewDidAppear:animated];

 _animator = [[UIDynamicAnimator alloc] initWithReferenceView:self.view];

 UIGravityBehavior *gravity = [[UIGravityBehavior alloc]

 initWithItems:@[self.imageView]];

 [_animator addBehavior:gravity];

 UICollisionBehavior *collision = [[UICollisionBehavior alloc]

 initWithItems:@[self.imageView]];

 collision.translatesReferenceBoundsIntoBoundary = YES;

 [_animator addBehavior:collision];

}

@end

If you run the app, you should see the image drop down and hit the bounds of the screen.

Snapping UI
Gravity is pretty awesome, but it isn’t that often that we want our views to fall from the
virtual sky, but there are many situations where we want UI elements to move around
with a bit of physical momentum without having to manually animate that movement.
To quickly show this off, let’s create another iPhone app to demonstrate this.

1. Create a new iPhone application.

Create a new Single View iPhone application, and call it DynamicSnap.

2. Create the interface.

Open Main.storyboard and add an image view into the interface. Then add an im‐
age.

When you are done, the interface should look like similar to Figure 5-5.

3. Create the image views outlet.

Open ViewController.h in the Assistant. Control-drag from the image view to the

ViewController, and name the outlet imageView.

4. Create tap recognizer.

Open Main.storyboard and drag in a Tap Gesture Rcognizer.

UI Dynamics | 89

Open ViewController.h in the assistant, Control-drag from the tap recognizer to

the ViewController, select action from the menu, and name the action tapped.

5. Implement the snapping dynamic.

Replace ViewController.m with the following:

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, strong) UIDynamicAnimator *animator;

@property (nonatomic, strong) UISnapBehavior *snap;

@end

@implementation ViewController

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view, typically from a nib.

 _animator = [[UIDynamicAnimator alloc] initWithReferenceView:self.view];

}

- (IBAction)tapped:(id)sender

{

 UITapGestureRecognizer *tap = (UITapGestureRecognizer *)sender;

 CGPoint point = [tap locationInView:self.view];

 [self.animator removeBehavior:self.snap];

 UISnapBehavior *newSnap = [[UISnapBehavior alloc]

 initWithItem:self.imageView snapToPoint:point];

 self.snap = newSnap;

 [self.animator addBehavior:self.snap];

}

@end

Run the app and the little image will move around to wherever you tap.

Designing Interfaces for Both iOS 6 and 7
From a UI perspective, both iOS 6 and iOS 7 are very similar to each other, but they
also differ in some quite substantial ways. Possibly the single biggest difference between
iOS 6 and 7 is in how they handle individual UI elements. In iOS 6, almost every element
has a clearly defined border around it and often a texture designed to imitate a real
world object; whereas in iOS 7, the content itself is the focus point, with very few ele‐
ments being clearly delinieated, allowing controls and content to intermingle and flow
together.

90 | Chapter 5: Graphical User Interfaces

Take for example the standard UIButton. In iOS 6, it is a line of text inside a rounded
rectangle with a shadow around the outside to further emphasize that it is indeed a
button, whereas in 7 there is simply bold-colored text. Both approaches have their own
strengths and weaknesses and the iOS’s of the future will again be different.

Luckily for us, Apple realized that it will be quite a while before iOS 6 (and even 5 and
below) disappear so designing for both interfaces is generally straightforward. Almost
all of the UI elements, such as buttons, tableviews, and navigation bars, work (from a
programming perspective) exactly the same in both versions. Tools such as Autolayout
and Constraints (see “Building an App with Nibs and Constraints” on page 85) allow
you to define interface element spacing and sizes in ways that allow the operating system
to handle any changes, such as the navbar being a different size in iOS 6.

One of the nicest features in Xcode 5 to help develop UIs for both iOS 7 and 6 is the
Preview Assistant. To demonstrate how this works and how it helps, let’s jump straight
in.

1. Open an existing iOS application.

Open one of your existing iOS applications.

2. Open the Main.storyboard in the project and turn on the Assistant pane.

3. Configure the Assistant.

In the top jump bar for the Assistant, select the Preview in the drop-down list.

Now you should have a split window with two view controllers open.

4. Near the bottom-right corner of the Assistant view, there is a preview list Change the
preview to iOS 6.

Now you have an easy way of seeing how your changes apply across both versions
of iOS.

If you are not using Auto Layout and constraints, Xcode will also offer a delta option
in the Size Inspector allowing you to adjust the dimension difference for elements in
both versions of iOS.

Core Animation
At its most basic level, a view is a picture drawn in a rectangle, which is then displayed
to the user alongside other views. Prior to modern computing hardware’s ubiquitous
graphics acceleration hardware, this involved carefully calculating how views overlap‐
ped and making sure that they didn’t overlap or intersect other views. This made creating
smooth animations for interfaces a challenge.

Core Animation | 91

To address this, Apple developed Core Animation, which is a compositing and anima‐
tion system for interfaces. Originally devised for iOS, it was ported to OS X in version
10.5.

Core Animation, like many frameworks developed on iOS and later brought to OS X,
has an almost identical API on both platforms. This makes it straightforward to port
interface code that uses Core Animation between the platforms.

Despite its name, Core Animation is not simply an animation tool, though it is tre‐
mendously good at that. Core Animation also provides the rendering architecture for
displaying views, which allows for very fast transparency and effects.

Core Animation is optional, though recommended, on OS X. On iOS,
it’s integral, and therefore required—but you rarely need to deal with
it unless you want to.

Layers
Core Animation works with layers, which are rectangular regions of space rendered by
the graphics card. Layers are what the user actually sees; when a view needs to show
something, it renders it onto a layer.

Core Animation layers are instances of the CALayer class, and work like NSViews and

UIViews in that you can add a layer as a sublayer of another layer. Unlike the view classes,
however, a layer object does nothing more than display content.

View objects handle layers differently on OS X and iOS.

• On OS X, NSView objects manage a CALayer, which they keep separate from them‐
selves. This is because on OS X, views are optionally allowed to have layers.

• On iOS, UIView objects are actually just thin wrappers around CALayers. When you

set the position of a view on the screen, you’re actually moving its CALayer.

In the background, CALayers are actually just OpenGL quadrangles
and textures. The reason for Core Animation’s performance improve‐
ments is that OpenGL is very good at quickly drawing such quad‐
rangles.

To access a view’s layer, use the layer property (on both UIView and NSView):

// myView is an NSView or UIView

CALayer* layer = [myView layer];

92 | Chapter 5: Graphical User Interfaces

Animations
As its name suggests, Core Animation is useful for animating visual content. For the
most part, your animations will involve moving views around, or animating changes in
parameters like background color or opacity.

Animations work differently on iOS and OS X.

Animations on OS X

On OS X, if you want to animate a view, you first access the view’s layer and then change
a property on the layer. This is called an implicit animation—Core Animation will notice
that you’re modifying a property that can be animated, and implicitly create an anima‐
tion for you.

To change a layer’s position on the screen, you would do this:

aLayer.position = CGPointMake(20,20);

To configure the duration of this implied animation, you can create a transaction and
configure it. A transaction is a collection of state changes that are grouped together and

executed as part of an animation. Transactions are represented by the CATransaction
class.

To work with transactions, create one by calling [CATransaction begin], and end it

by calling [CATransaction commit]. When you call commit, the state changes that were
recorded when you changed the properties of the layer are grouped together as an

animation, and that animation begins. If you don’t create a CATransaction, one is cre‐
ated for you in the background.

You must always commit transactions that you begin. If you don’t,
Core Animation will throw exceptions or otherwise behave incor‐
rectly.

The following code demonstrates how to create a CATransaction that animates over 10
seconds:

[CATransaction begin];

[CATransaction setValue:[NSNumber numberWithFloat:10.0f]

 forKey:kCATransactionAnimationDuration];

aLayer.position = CGPointMake(20,20);

[CATransaction commit];

Core Animation | 93

Working with any of the CA classes requires that you import the

QuartzCore framework, and #import the QuartzCore/Quartz

Core.h header file in your code.

Animations on iOS

The animation API on iOS is based on blocks, which are discussed in more detail in

Chapter 6. To animate a view, call [UIView animateWithDuration:animations:], and
provide the duration of the animation and a block that contains the actual state changes
you want to have animated.

For example, to animate a change in position that lasts 0.25 seconds, you do this:

[UIView animateWithDuration:0.25 animations:^{

 aView.center = CGPointMake(20,20);

}];

When you call this code, an animation will be created for you that transitions from the
view’s current state to the state you specified.

Should you want to chain up a number of different animations to all occur within a
certain sequence and with specific timing, such as move a view’s position multiple times
over 1 second, you do this:

[UIView animateKeyframesWithDuration:1.0 delay:0

options:UIViewKeyframeAnimationOptionLayoutSubviews

animations:^{

 [UIView addKeyframeWithRelativeStartTime:0.0 relativeDuration:0.3

 animations:^{

 aView.center = CGPointMake(20,20);

 };

 [UIView addKeyframeWithRelativeStartTime:0.0 relativeDuration:0.3

 animations:^{

 aView.center = CGPointMake(40,20);

 };

 [UIView addKeyframeWithRelativeStartTime:0.0 relativeDuration:0.4

 animations:^{

 aView.center = CGPointMake(20,40);

 };

 }completion:^(BOOL finished){

 // Completion handler block!

 }];

Animation is another of those topics that’s large and complex, and as always the Apple
documentation on the subject is vast and comprehensive. To learn more about using
Core Animation, a great place to start is Core Animation Programming Guide, which is
included in the Xcode documentation.

94 | Chapter 5: Graphical User Interfaces

CHAPTER 6

Blocks and Operation Queues

Over the years, OS X and iOS have provided increasingly simple ways for developers to
manage their code. Two of these features are blocks, which allow you to store chunks of
code in variables and call them later, and operation queues, which dramatically simplify
how you write applications that do multiple things at once.

These two features are closely tied together, and, once mastered, quickly become in‐
dispensable in developing applications.

In this chapter, you’ll learn how to code with blocks, what they’re good for, and how to
use them in conjunction with operation queues, a powerful tool for performing tasks
in the background.

Blocks
It’s often useful to be able to store code in variables. Consider the following code sample:

int i = 53;

void (^someCode)() = ^{

 NSLog(@"The value of i is %i", i);

};

In Objective-C, this is called a block. Blocks store code, and can be assigned to variables,
passed to functions, and generally treated like any other value. The big feature is that
blocks can be called like functions, and they capture the state of things as they were
when the block was created.

Calling a block is identical to calling a function:

someCode(); // prints out "The value of i is 53".

Note that the block remembered that the variable i was 53 because it captured the state
of that variable when it was created. When a variable outside a block is referenced within

95

that block, the value of that variable at the moment of the block’s creation is captured
and is available for the block’s code to use.

This means that you can do some interesting things. For example, in iOS:

// Slide up a view controller, and then when the slide animation is

// finished, change its background color to yellow.

// The block captures the value of the "myViewController" variable,

// for use after the animation has completed (which will happen some

// time after this method finishes running)

SomeViewController* myViewController = [code omitted];

[self presentModalViewController:myViewController animated:YES completion:^{

 myViewController.view.backgroundColor = [UIColor yellowColor];

}];

Blocks allow you to defer the execution of something until you need it to actually happen.
This makes them very useful in the context of animations (“when the animation’s done,
do this thing”), for networking (“when the download’s done, do something else”), or in
general user interface manipulation (“when I return from this new screen, do some
work”).

They also allow you to keep related pieces of code close together. For example, before
the introduction of blocks, the only way that it was possible to filter an array was to
create a function elsewhere in your code that was called for each element in the array.
This made for a lot of scrolling around your source code. Now, you can do this:

// Filter an array of strings down to only strings that begin with the word

// "Apple"

NSPredicate* filterPredicate = [NSPredicate predicateWithBlock:^(id anObject) {

 NSString* theString = anObject;

 return [theString hasPrefix:@"Apple"];

}];

NSArray* filteredArray = [someArray filteredArrayWithPredicate:filterPredicate];

In this case, the code that actually performs the processing of the objects is very close
to the line that instructs the array to be filtered. This means that your code isn’t scattered
in as many places, which makes it clearer and less confusing. The less confusing your
code is, the less likely it is that bugs will be introduced.

Block Syntax
The syntax involved in declaring a block variable can look a little esoteric, particularly
since it involves several characters that aren’t often seen when writing C or Objective-
C. To that end, let’s take a closer look at how you define a variable that stores a block.

First, here is the definition of a block variable that takes no parameters and returns
nothing:

96 | Chapter 6: Blocks and Operation Queues

void(^myBlockVariable)(void);

Breaking down the syntax, here’s what each part means:

[Return Type] (^ [Variable Name]) ([Parameters]);

If a block has no parameters, you can omit the last void:

void(^myBlockVariable)();

If you want to define a block variable that takes some parameters, add them to the last
set of parentheses:

void(^myBlockVariable)(BOOL booleanParameter, NSString* objectParameter);

Blocks, like standard functions, can take any Objective-C data type as a parameter.

Once a block variable has been declared, it must have a block assigned to it before it can
be called.

When you define a block, you must again list the parameters that it accepts. For example,
a block that returns nothing and takes a single BOOL parameter is defined like so:

void(^myBlockVariable)(BOOL parameter);

myBlockVariable = ^(BOOL parameter) {

 // Code goes here.

};

If a block doesn’t have any parameters, you can omit the list of parameters between the

^ and opening brace ({):

void(^myBlockVariable)();

myBlockVariable = ^{

 // Code goes here.

};

You can also do the declaration and definition in a single line:

void(^myBlockVariable)() = ^{

 // Code goes here.

};

Once a block has been defined, you can call it in the same way you would with a function:

myBlockVariable();

Block Lifecycles
Blocks are Objective-C objects. This means that they can receive messages and they can

be retained, released, and copied. You can also send them the invoke message, which
causes them to be run.

Blocks | 97

However, blocks are stored in memory slightly differently from the way other objects
are stored. To understand this difference, it’s necessary to understand where objects can
be placed in memory.

There are two main locations in memory where data can be stored: the stack and the
heap. The stack is a chunk of memory designed for local working data. All local variables
in a method are stored on the stack, and when the function ends, those variables are
destroyed. The stack is a comparatively small, fast chunk of memory—because the
memory for it has already been allocated by the system, there are no additional costs in
creating a variable that is stored there.

Because the stack automatically wipes out a function’s local memory
when the function returns, there’s no need for you to perform mem‐
ory management on local variables. This is why, for example, when
you declare a local integer variable, you don’t need to indicate to the
system that you’re done with it before the function returns—it will be
removed from memory when the program returns to where your
function or method was called from.

By contrast, the heap is a much larger region of memory, which any
part of the program may allocate memory from. Memory allocated
from the heap stays allocated until it’s explicitly returned to the sys‐
tem, which is why memory management is needed. Unlike stack
memory, if you manually allocate memory from the heap and then
throw away the variable that stored the pointer to that memory, the
memory stays allocated and inaccessible. This is known as a memo‐
ry leak, and is a very bad thing. All Objective-C objects are stored on
the heap.

When you create a block, it is stored on the stack. However, if you were to create a block,
store it in an instance variable, and then return from the current method, the block
(which exists only on the stack) is removed from memory but the instance variable still
points to where it was. If you were to then call the block variable, your program would
crash—the block no longer exists.

To solve this problem, you must copy the block to the heap if you wish to keep it around

for longer than until the function returns. To do this, send the block the copy message,
in the same way you would send a message to any other Objective-C object. Once a
block has been copied to the heap, it can be safely stored anywhere. Of course, it must
later be deallocated to avoid a memory leak, but both the garbage collector and Auto‐
matic Reference Counting will handle this for you.

Here’s an example of how to store a block as an instance variable, and how not to:

// myBlockProperty is a property of this class that can store the block.

98 | Chapter 6: Blocks and Operation Queues

void(^myBlockVariable)() = ^{

 // code goes here

};

self.myBlockProperty = myBlockVariable; // INCORRECT! The block

// won't exist after this function returns, and calling it will crash.

self.myBlockProperty = [myBlockVariable copy]; // SAFE. The

// block will be copied and stored on the heap, and stick around.

Methods with Block Parameters
Methods can accept blocks as parameters. This is actually one of the key features of
blocks, since it allows callers of your methods to provide code at the moment they call
the method. We have already seen how this can be used to filter an array, but it has other
uses as well.

Blocks are useful for running code that will take place at a later time. This often occurs
when dealing with networked code—a network request will go out, and the data from
the network request will return at a later time. Because it is impractical to pause the
application until the request is complete (doing so would freeze up the app, which is a
very bad thing for the user), the program must be set up to run the code that handles
the returned data at a later time.

Blocks make this easy. For example, here is some code that downloads a file and reports
on when the download is complete—all without having to pause the application:

NSURL* location = [NSURL URLWithString:@"http://www.example.com/test.txt"];

NSURLRequest* request = [NSURLRequest requestWithURL:location];

[NSURLConnection sendAsynchronousRequest:request

 queue:[NSOperationQueue mainQueue]

 completionHandler:^(NSURLResponse* response,

 NSData* loadedData,

 NSError* error) {

 // This code runs when the data has completed downloading.

 // The NSURLResponse contains information from the server

 // about the request, the NSData contains the raw downloaded

 // bytes, and the NSError contains any error information, if

 // anything went wrong.

}];

To write a method that accepts a block as a parameter, you simply define the variable
type as you would any other parameter. For example, here is the declaration for a method
that takes a block as a parameter, which itself takes a single BOOL parameter:

- (void) someMethod:(void(^)(BOOL aParameter)) handler;

The implementation of this method would look something like this:

Blocks | 99

- (void) someMethod:(void(^)(BOOL aParameter)) handler {

 // Call the passed-in block:

 handler(YES);

}

You could then call this method like so:

[anObject someMethod:^(BOOL aParameter) {

 // The called method will call this method

}];

Because working with blocks leads to some rather thorny-looking syntax, it’s often useful
to create block types, and use them rather than list the entire block type definition over

and over. To do this, you use the typedef keyword, which allows you to define a data
type.

For example, here is code that defines a block data type, and then later creates a block
variable of that type:

// somewhere in your source code, outside of a function or method:

typedef void(^ABlockType)(BOOL aParameter);

// and later, in a function:

ABlockType myBlock = ^(BOOL aParameter) {

 // do some work

};

Using this technique reduces the amount of typing you need to do, and makes sure that
the blocks you are working with have the same type. You can also use these declared
types in your method declarations:

- (void) someMethod:(ABlockType)handler; // much tidier!

Blocks and Memory Management
We discussed above how blocks capture the values of variables that they reference.
However, Objective-C objects are too big to be copied in by value, and simply capturing
the pointer to their memory is unsafe. To solve this problem, any time you refer to an
Objective-C object in a block, it is retained by that block and released when the block
is released. This causes the object to stay around for as long as the block exists and
guarantees that the block can always be safely called, since the objects that it refers to
are still in memory.

Modifying Local Variables from Inside Blocks with __block
When you use a variable in a block that was defined outside of that block, you can access
that variable’s data as much as you like. For objects, the variable is retained, and for non-
objects, the data inside that variable is copied into the block at the moment the block is
created.

100 | Chapter 6: Blocks and Operation Queues

Sometimes, however, it’s useful for a block to be able to modify a variable that was defined

outside of it. When you want to do this, mark the variable with the __block keyword.
This lets you modify the variable inside the block.

For example, this code won’t work as you expect:

int i = 0;

void(^myBlock)() = ^{

 i = 4;

};

myBlock();

NSLog(@"i is now %i", i); // will print "0"

To fix it, you need to do this:

__block int i = 0;

void(^myBlock)() = ^{

 i = 4;

};

myBlock();

NSLog(@"i is now %i", i); // will print "4"

Concurrency with Operation Queues
In many cases, your application will need to do more than one thing at the same time.
At least one of those things is responding to the user and ensuring that the user interface
is responsive; other things could include talking to the network, reading and writing
large amounts of data, or processing a chunk of data.

The highest priority of your application is to be responsive at all times. Users are happy
to wait a few more seconds for a task to complete rather than to feel that the application
(and, by their logic, the expensive computer they bought) is slow.

The second priority of your application is to make sure that all of the resources available
are being used so that the task completes quickly.

Operation queues allow you to achieve both goals. Operation queues are Objective-C

objects; they are instances of the NSOperationQueue class. They manage a list, or queue,
of operations, which are Objective-C objects that know how to perform a chunk of work.

More than one operation queue can exist at the same time, and there is always at least
one operation queue, known as the main queue. So far, all the code in this book has been
run on the main queue. All work that is done with the GUI is done on the main queue,

Concurrency with Operation Queues | 101

and if your code takes up too much time in processing something, the main queue is
slowed down and your GUI starts to lag or freeze up.

Operation queues are not quite the same thing as threads, but they share some similar‐
ities. The operation queue system manages a pool of threads, which are activated when‐
ever work needs to be done. Because threads are a rather resource-intensive way of doing
work concurrently (to say nothing of the development complexity involved in managing
them properly), operation queues provide a much simpler and more efficient way of
dealing with them.

Operation queues are also aware of the computing resources available on whatever
hardware your application is running on. If you create an operation queue and add
operations to it, the operation queue will attempt to balance those operations across as
many CPU cores as are available on your computer. Every single device that Apple ships
now has two or more CPU cores, which means that code that uses operation queues
automatically gains an increase in speed when performing concurrent work.

Operation Queues and NSOperation
At its simplest, an operation queue runs operations in a first-in-first-out order. Oper‐

ations are instances of the NSOperation class, which define exactly how the work will

be done. NSOperations can be added to an NSOperationQueue; once they are added,
they will perform whatever task they have been designed to do.

The simplest way to add an operation to an operation queue is to provide a block to the

queue by sending the addOperationWithBlock: message to an NSOperationQueue
object:

NSOperationQueue* mainQueue = [NSOperationQueue mainQueue];

[mainQueue addOperationWithBlock:^{

 // Add code here

}];

There are other kinds of operations, including invocation operations and concrete sub‐

classes of the NSOperation base class, but they’re very similar to block operations—they
offer more flexibility and features at the cost of having to write more setup code.

If you don’t deliberately choose to run code on another queue, it will run on the main
queue. You can also explicitly instruct the main queue to perform an operation; when
you do this, the work for this operation is scheduled to take place at some point in the
future.

Performing Work on Operation Queues
To add things to an operation queue, you need an NSOperationQueue instance. You can
either ask the system for the main queue, or you can create your own. If you create your
own queue, it will run asynchronously. If you add multiple operations to a background

102 | Chapter 6: Blocks and Operation Queues

queue, the operation queue will run as many as possible at the same time, depending
on the available computing hardware.

// Getting the main queue (will run on the main thread)

NSOperationQueue* mainQueue = [NSOperationQueue mainQueue];

// Creating a new queue (will run on a background thread, probably)

NSOperationQueue* newQueue = [[NSOperationQueue alloc] init];

Queues aren’t the same as threads, and creating a new queue doesn’t
guarantee that you’ll create a new thread—the operating system will
reuse an existing thread if it can, since creating threads is expensive.
The only thing using multiple queues guarantees is that the opera‐
tions running on them won’t block each other from running at the
same time.

Once you have a queue, you can put an operation on it:

[mainQueue addOperationWithBlock:^{

 NSLog(@"This operation ran on the main queue!");

}];

[newQueue addOperationWithBlock:^{

 NSLog(@"This operation ran on another queue!");

}];

If your code is running on a background queue and you want to update the GUI, you
need to run the GUI updating code on the main queue. One way to do this is to add a
block to the main queue:

[newQueue addOperationWithBlock:^{

 // Do some work in the background

 // Schedule a block on the main queue

 [mainQueue addOperationWithBlock:^{

 // GUI work can safely be done here.

 }];

}];

Any work involving the GUI can only be done from the main queue.
If you access it from any other queue, your application will crash.

Concurrency with Operation Queues | 103

Putting It All Together
We’ll now write an application that downloads the favicons from a number of websites
asynchronously. It will also contact a server when the application exits. Follow the steps
below to create the new app:

1. Create a new iOS single-view application.

2. Add a table view to the view controller.

3. Change the table view’s prototype cell style to Basic.

4. Select the prototype cell and change its identifier to IconCell.

5. Change the table’s Selection style to No Selection.

6. Make the view controller the table view’s data source and delegate.

7. Open ViewController.h in the Assistant. Make ViewController conform to the

UITableViewDataSource and UITableViewDelegate protocols.

8. Control-drag from the table view into the ViewController’s interface. Make a new

outlet, and call it tableView.

9. Add the following code to the start of ViewController.m:

@interface ViewController () {

 NSArray* websites;

 NSMutableArray* websiteIcons;

}

@end

10. Add the following code to the end of viewDidLoad:

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Set up the list of websites that we want to get icons for.

 websites = [NSArray arrayWithObjects:@"google.com", @"amazon.com",

 @"microsoft.com", @"apple.com", @"oreilly.com", nil];

 websiteIcons = [[NSMutableArray alloc] init];

 // For each website in the 'websites' array, insert an NSNull into the

 // website icons array.

 // These NSNulls will be replaced when the images are loaded from the

 // network.

 for (NSString* website in websites) {

 [websiteIcons addObject:[NSNull null]];

 }

}

11. Add the following methods to ViewController.m:

104 | Chapter 6: Blocks and Operation Queues

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {

 return 1;

}

- (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section {

 // Number of cells = number of websites

 return [websiteIcons count];

}

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 // Get a cell from the table view.

 UITableViewCell* cell = [tableView

 dequeueReusableCellWithIdentifier:@"IconCell"];

 // Take the website name and give that to the cell

 NSString* websiteName = [websites objectAtIndex:indexPath.row];

 cell.textLabel.text = websiteName;

 // If we have an image for this website, give it to the cell

 UIImage* websiteImage = [websiteIcons objectAtIndex:indexPath.row];

 if ((NSNull*)websiteImage != [NSNull null]) {

 cell.imageView.image = websiteImage;

 }

 return cell;

}

12. Run the application. The app will show a list of websites.

Now let’s make it load the website icons in the background.

13. Add the following code to the end of viewDidLoad:

// Get a new operation queue.

NSOperationQueue* backgroundQueue = [[NSOperationQueue alloc] init];

int websiteNumber = 0; // for keeping track of which index to

 // insert the new image into

for (NSString* website in websites) {

 [backgroundQueue addOperationWithBlock:^{

 // Construct a URL for the website's icon

 NSURL* iconURL = [NSURL URLWithString:

 [NSString stringWithFormat:@"http://%@/favicon.ico", website]];

 // Construct a URL request for this URL

 NSURLRequest* request = [NSURLRequest requestWithURL:iconURL];

 // Load the data

 NSData* loadedData = [NSURLConnection

Putting It All Together | 105

 sendSynchronousRequest:request returningResponse:nil error:nil];

 if (loadedData != nil) {

 // We got image data! Convert it to an image.

 UIImage* loadedImage = [UIImage imageWithData:loadedData];

 // If the data wasn't able to be turned into an image, stop

 if (loadedImage == nil) {

 return;

 }

 // If it was, insert the image into the

 // table view on the main queue.

 [[NSOperationQueue mainQueue] addOperationWithBlock:^{

 [websiteIcons replaceObjectAtIndex:websiteNumber

 withObject:loadedImage];

 [self.tableView reloadData];

 }];

 }

 }];

 websiteNumber++;

}

14. Run the application. Website icons will be loaded in the background.

Finally, we’ll make the application run some code in the background when the appli‐
cation quits.

15. Open AppDelegate.m.

16. Replace applicationWillEnterBackground: with the following method:

- (void)applicationDidEnterBackground:(UIApplication *)application

{

 // Register a background task. This keeps the app from being

 // terminated until we tell the system that the task is complete.

 UIBackgroundTaskIdentifier backgroundTask =

 [application beginBackgroundTaskWithExpirationHandler:nil];

 // Make a new background queue to run our background code on.

 NSOperationQueue* backgroundQueue = [[NSOperationQueue alloc] init];

 [backgroundQueue addOperationWithBlock:^{

 // Send a notification to the server.

 // Prepare the URL

 NSURL* notificationURL = [NSURL

 URLWithString:@"http://www.oreilly.com/"];

 // Prepare the URL request

 NSURLRequest* notificationURLRequest = [NSURLRequest

 requestWithURL:notificationURL];

106 | Chapter 6: Blocks and Operation Queues

 // Send the request, and log the reply

 NSData* loadedData = [NSURLConnection

 sendSynchronousRequest:notificationURLRequest

 returningResponse:nil

 error:nil];

 // Convert the data to a string

 NSString* loadedString = [[NSString alloc] initWithData:loadedData

 encoding:NSUTF8StringEncoding];

 NSLog(@"Loaded: %@", loadedString);

 // Tell the system that the background task is done

 [application endBackgroundTask:backgroundTask];

 }];

}

Putting It All Together | 107

CHAPTER 7

Drawing Graphics in Views

The fundamental class for showing any kind of graphical image to the user is the view.
Graphical images are things like buttons, photos, and text—anything that the user can
see.

Cocoa and UIKit provide a wide variety of controls that suit almost all needs—you can
display text, images, buttons, and so on. However, some data needs to be drawn in a
specific way: you might want to draw a chart for data, or create a custom button class
that displays exactly the way you want it to. If you’re making a graphics app, you’ll need
to be able to display any kind of graphical content, which means that your code will
need to know how to draw it.

In this chapter, you’ll learn how to create custom view objects that display any kind of
image to the user. You’ll learn how to use the high-level Objective-C APIs for drawing,
and create a custom view class that will scale up to any size at all without losing quality.
Finally, you’ll learn how the Retina display works on both iOS and OS X.

How Drawing Works
Before we start writing code that draws content for the user to see, it’s helpful to review
how graphics work in OS X and iOS. Note that the same terminology and techniques
apply for both OS X and iOS, but the specific API is different.

When an application draws graphics, it does so by first creating a canvas for drawing
in. Cocoa calls this the graphics context. The context defines, among other things, the
size of the canvas and how color information is used (for example, you can have a black-
and-white canvas, a grayscale canvas, a 16-bit color canvas, and more).

Once you have a graphics context to draw in, you start asking Cocoa to begin drawing
content.

109

The fundamental drawing unit is the path. A path is just the name for any kind of shape:
circles, squares, polygons, curves, and anything else you can imagine.

Paths can be stroked or filled. Stroking a path means drawing a line around its edge
(Figure 7-1). Filling a path means filling the area that it contains with a color (Figure 7-2).

When you stroke or fill a path, you tell the drawing system which color you want to use.
You can also use gradients to stroke and fill paths. The color that you use to stroke and
fill can be partially transparent, which means that you can build up a complex graphic
by combining different paths and colors (Figure 7-3).

Figure 7-1. A stroked path

Figure 7-2. A filled path

110 | Chapter 7: Drawing Graphics in Views

Figure 7-3. A stroked and filled path

The Pixel Grid
Every display system in iOS and OS X is based on the idea of a grid of pixels. The specific
number of pixels on the display varies from device to device, as does the physical size
of each pixel. The trend is toward larger numbers of smaller pixels, since the smaller
the pixels get, the smoother the image looks.

When you create a graphics context, you indicate what size that context should be. So,
for example, if you create a context that is 300 pixels wide by 400 pixels high, the canvas
is set to that size. Any drawing that takes place outside the canvas is ignored, and doesn’t
appear on the canvas (Figure 7-4).

Creating a context defines a coordinate space where the drawing happens. This coordi‐
nate space puts the coordinate (0,0) in either the top-left corner (on iOS) or the bottom-
left corner (on OS X). When you build a path, you specify the points that define it. So,
for example, a line that goes from the top-left corner (on iOS) to 10 pixels below and to
the right looks like Figure 7-5.

Retina Displays
The newest devices sold by Apple feature a Retina display. A Retina display, according
to Apple, is a screen where the pixels are so small that you can’t make out the individual
dots. This means that curves and text appear much smoother, and the end result is a
better visual experience for the user.

At the time of publishing, Retina displays are available on the MacBook Pro with Retina
Display, iPod touch 4th generation and later, iPhone 4 and later, Retina iPad Mini and
iPad third-generation and later.

The Pixel Grid | 111

Figure 7-4. Content that is drawn outside of the context’s canvas doesn’t appear

Retina displays are so named because, according to Apple, a 300 dpi (dots per inch)
display held at a distance of about 12 inches from the eye is the maximum amount of
detail that the human retina can perceive.

Apple achieves this resolution by using displays that are the same physical size as more
common displays, but double the resolution. For example, the screen on the iPhone
3GS (and all previous iPhone and iPod touch models) measures 3.5 inches diagonally
and features a resolution of 320 pixels wide by 480 pixels high. When this resolution is
doubled in the iPhone 4’s Retina display, the resolution is 640 by 960.

This increase in resolution can potentially lead to additional complexities for application
developers. In all other cases where the resolution of a display has increased, everything
on the screen appears smaller (because the drawing code only cares about pixel distan‐
ces, not physical display size). However, on a Retina display, everything remains the
same size, because even though the pixels are twice as small, everything on the screen
is drawn twice as large. The net result is that the graphics on the screen look the same
size, but much smoother.

112 | Chapter 7: Drawing Graphics in Views

Figure 7-5. Drawing a line from (0,0) to (10,10) on iOS

Pixels and Screen Points
Of course, we application developers don’t want to write code for both Retina and non-
Retina displays. Writing a chunk of code twice for the two resolutions would lead to
twice the potential bugs!

To solve this problem, don’t think about pixels when you’re writing your graphics code
and thinking about the positions of the points your paths are constructed with. Instead,
think in terms of screen points.

A pixel is likely to change between different devices, but a screen point does not. When
you construct a path, you specify the position of each screen point that defines the path.
On a non-Retina display, one screen point is equal to one pixel. On a Retina display, one
screen point is equal to two pixels. This scaling is done for you automatically by the
operating system.

The end result is that you end up with drawing code that doesn’t need to be changed for
different resolutions.

The Pixel Grid | 113

Drawing in Views
As discussed earlier, objects that display graphics to the user are called views. Before we
talk about how to make your own view objects that display your pixels before the user’s
very eyes, let’s take a closer look at how views work.

A view is defined by a rectangle inside its content window. If a view isn’t inside a window,
the user can’t see it.

Even though only one app is displayed at a time on iOS, all views
shown on the screen are technically inside a window. The difference
is that only one window is shown on the screen at a time, and it fills
the screen.

Frame Rectangles
The rectangle that defines the view’s size and position is called its frame rectangle.

Views can contain multiple subviews. When a view is inside another view (its super‐
view), it moves when the superview moves. Its frame rectangle is defined relative to its
superview (Figure 7-6).

On OS X, all views are instances of NSView (or one of NSView ’s subclasses). On iOS,

they’re instances of UIView. There are some minor differences in how they work, but

nothing that affects what we’re talking about here. For now, we’ll talk about NSView, but

everything applies equally to UIView.

When the system needs to display a view, it sends the -drawRect: message to the view.

The drawRect method looks like the following:

- (void) drawRect:(NSRect)rect {

}

(This method is the same on iOS, but CGRect is used instead of NSRect.)

When this method is called, a graphics context has already been prepared by the OS,
leaving the method ready to start drawing. When the method returns, the OS takes the
contents of the graphics context and shows it in the view.

The single parameter that drawRect receives is the dirty rectangle. This eyebrow-raising
term is actually a lot more tame than it sounds—“dirty” is simply the term for “something
that needs updating.” The dirty rectangle is the region of the view that actually needs
updating. This concept becomes useful when you have cases where a view that was
previously covered by up another view—there’s no need to redraw content that was

114 | Chapter 7: Drawing Graphics in Views

Figure 7-6. The frame rectangle for the view defines its position and size relative to its
superview

previously visible, and so the dirty rectangle that’s passed to drawRect will be a reduced
size.

Bounds Rectangles
The frame rectangle defines the size and position of its view, but it’s also helpful for a
view to know about its size and position relative to itself. To support this, view objects
also provide a bounds rectangle. While the frame rectangle is the view’s size and position
relative to its superview’s coordinate space, the bounds rectangle is the view’s position
and size relative to its own coordinate space. This means that the (0,0) coordinate always
refers to the top-left corner on iOS (the bottom-left on OS X).

Drawing in Views | 115

While the bounds rectangle is usually the same size as the frame
rectangle, it doesn’t have to be. For example, if the view is rota‐
ted, the frame rectangle will change size and position, but the
bounds will remain the same.

Building a Custom View
We’ll now create a custom view that displays a solid color inside its bounds. This will

be a Mac application, so we’ll be using NSView. Later in the chapter, we’ll see how the

same techniques apply to iOS and the UIView class.

When we create the application, we’ll use the interface builder to include an NSView in

the app’s main window, and then make it use a custom NSView subclass that we’ll code.

Creating the Project
First, create your project by following these steps:

1. Create a new Cocoa application and name it CustomViews.

2. Leave the class prefix as blank, and leave Create Document-Based Application
turned off.

3. Create a new Objective-C subclass. Make it a subclass of NSView and call it Custom

View.

4. Open MainMenu.xib. We’re going to add a custom view to the main window, which
will use our newly created class.

5. Add a custom view. Locate Custom View in the Object Library, and drag it into the
main window. Resize it so that it fills the window.

6. Make the custom view use the CustomView class. Select the newly added view, and
go to the Identity inspector (the third button to the left at the top of the Inspector

pane). Change the view’s class from NSView to CustomView.

The application’s window should look like Figure 7-7.

116 | Chapter 7: Drawing Graphics in Views

Figure 7-7. The layout of the application’s window

Filling with a Solid Color
Now when the application displays the window’s content, your view code will be used
to draw the view. Let’s start by making the view fill itself with the color green. Afterward,
we’ll start making the view show more complex stuff.

Open CustomView.m, and replace the drawRect: method with the following code:

- (void)drawRect:(NSRect)dirtyRect

{

 NSBezierPath* path = [NSBezierPath bezierPathWithRect:self.bounds];

 [[NSColor greenColor] setFill];

 [path fill];

}

This view code creates an NSBezierPath object, which represents the path that you’ll

be drawing. In this code, we create the Bézier path with the bezierPathWithRect:
method, which creates a rectangular path. We use the view’s bounds to create a rectangle
that fills the entire view.

Building a Custom View | 117

Once the path is created, we can fill it. Before we do that, however, we tell the graphics

system to use green as the fill color. Colors in Cocoa are represented by the NSColor

class, which is capable of representing any color you can think of. NSColor provides a
number of convenience methods that return simple colors, like green, red, and blue,
which we use here.

So, we create the path, set the color, and then fill the path. The end result is a giant green
rectangle.

The exact same code works on iOS, with two changes: NSBezierPath be‐

comes UIBezierPath, and NSColor becomes UIColor:

- (void)drawRect:(NSRect)dirtyRect

{

 UIBezierPath* path = [UIBezierPath bezierPathWithRect:self.bounds];

 [[UIColor greenColor] setFill];

 [path fill];

}

Now run the application. The view you added will display as green, as shown in
Figure 7-8.

Working with Paths
We’ll now update this code and create a slightly more complex path: a rounded rectangle.
We’ll also stroke the path, drawing an outline around it.

Replace the drawRect method with the following code:

- (void)drawRect:(NSRect)dirtyRect

{

 NSRect pathRect = NSInsetRect(self.bounds, 1, 1);

 NSBezierPath* path = [NSBezierPath bezierPathWithRoundedRect:pathRect

 xRadius:10 yRadius:10];

 [[NSColor greenColor] setFill];

 [[NSColor blackColor] setStroke];

 [path fill];

 [path stroke];

}

The first change you’ll notice is a call to the NSInsetRect function. This function takes

an NSRect and shrinks it while preserving its center point. In this case, we’re insetting
the rectangle by one pixel on the X axis and one pixel on the Y axis. This causes the
rectangle to be pushed in by one pixel from the left and one pixel from the right, as well
as one pixel from the top and bottom.

118 | Chapter 7: Drawing Graphics in Views

Figure 7-8. A green view

We do this because when a path is stroked, the line is drawn around the outside—and
because the bounds are the size of the view, some parts of the line are trimmed away.
This can look ugly, so we shrink the rectangle a bit to prevent the problem.

We then create another NSBezierPath, this time using the newly shrunk rectangle. This

path is created by calling the bezierPathWithRoundedRect:xRadius:yRadius: meth‐
od, which lets you specify how the corners of the rounded rectangle are shaped.

The final change to the code is setting black as the stroke color, and then stroking the
path after it’s been filled.

Now run the application. You’ll see a green rounded rectangle with a black line around
it (Figure 7-9).

Building a Custom View | 119

Figure 7-9. A stroked rounded rectangle

All drawing operations take place in the order in which you call them.
In this code, we stroke the rectangle after filling it. If we instead

swapped the order of the calls to [path fill] and [path stroke],
we’d get a slightly different effect, with the green fill overlapping the
black stroke slightly.

Creating Custom Paths
Creating paths using rectangles or rounded rectangles is useful, but you often want to
create a shape that’s entirely your own—a polygon, perhaps, or an outline of a character.

The NSBezierPath class is capable of representing any shape that can be defined using
Bézier curves. You can create your own custom curves by creating a blank curve and
then adding the control points that define the curve. Once you’re done, you can use the

finished NSBezierPath object to fill and stroke, just like any other path.

120 | Chapter 7: Drawing Graphics in Views

To create a custom path, you first create an empty path, and then start issuing commands
to build it. As you build the path, you can imagine a virtual pen that you move around
the canvas. You can:

• Move the pen to a point

• Draw a line from where the pen currently is to another point

• Draw a curve from where the pen currently is to another point, using two additional
control points that define how the curve bends

• Close the path by drawing a line from where the pen currently is to the first point

We’ll now update our drawing code to draw a heart shape by replacing the drawRect
method with the code below. Because this shape depends on specifying the locations of
the various control points, there are quite a few numbers to type in here. Don’t worry
if you don’t get them perfect—the shape should remain largely correct.

- (void)drawRect:(NSRect)dirtyRect

{

 NSBezierPath* bezierPath = [NSBezierPath bezierPath];

 [bezierPath moveToPoint: NSMakePoint(145.97, 241.04)];

 [bezierPath curveToPoint: NSMakePoint(248.61, 293.5)

 controlPoint1: NSMakePoint(145.97, 241.04)

 controlPoint2: NSMakePoint(155.7, 293.64)];

 [bezierPath curveToPoint: NSMakePoint(145.97, 11.51)

 controlPoint1: NSMakePoint(341.51, 293.36)

 controlPoint2: NSMakePoint(257.52, 13.23)];

 [bezierPath curveToPoint: NSMakePoint(47.48, 290.78)

 controlPoint1: NSMakePoint(34.42, 9.78)

 controlPoint2: NSMakePoint(-46.75, 290.73)];

 [bezierPath curveToPoint: NSMakePoint(145.97, 241.04)

 controlPoint1: NSMakePoint(141.72, 290.83)

 controlPoint2: NSMakePoint(145.97, 241.04)];

 [bezierPath closePath];

 [[NSColor redColor] setFill];

 [bezierPath fill];

 [[NSColor blackColor] setStroke];

 [bezierPath stroke];

}

Now run the application. The window will show a red heart shape (Figure 7-10).

Building a Custom View | 121

Figure 7-10. A filled custom path, showing a heart shape

Multiple Subpaths
So far, the paths that we’ve been drawing have contained only one subpath. A subpath
is a connected series of points in a Bézier path. This means that you can have a path that
contains two circles—every time you issued a stroke or fill command, you would be
drawing those two circles.

Using subpaths is also a great way to create complex shapes. In this next example, we’ll
create a circle that contains a star-shaped hole in it. We’ll do this by first creating a

circular path, and then adding a star-shaped subpath. Replace the drawRect: method
with the following code:

- (void)drawRect:(NSRect)dirtyRect

{

 //// Bezier Drawing

 NSBezierPath* bezierPath = [NSBezierPath bezierPath];

 // Draw the star.

 [bezierPath moveToPoint: NSMakePoint(42.5, 77.5)];

 [bezierPath lineToPoint: NSMakePoint(30.51, 60)];

122 | Chapter 7: Drawing Graphics in Views

 [bezierPath lineToPoint: NSMakePoint(10.16, 54.01)];

 [bezierPath lineToPoint: NSMakePoint(23.1, 37.2)];

 [bezierPath lineToPoint: NSMakePoint(22.52, 15.99)];

 [bezierPath lineToPoint: NSMakePoint(42.5, 23.1)];

 [bezierPath lineToPoint: NSMakePoint(62.48, 15.99)];

 [bezierPath lineToPoint: NSMakePoint(61.9, 37.2)];

 [bezierPath lineToPoint: NSMakePoint(74.84, 54.01)];

 [bezierPath lineToPoint: NSMakePoint(54, 60)];

 [bezierPath lineToPoint: NSMakePoint(42.5, 77.5)];

 [bezierPath closePath];

 // Draw the circle outside it.

 [bezierPath moveToPoint: NSMakePoint(70.64, 71.64)];

 [bezierPath curveToPoint: NSMakePoint(70.64, 14.36)

 controlPoint1: NSMakePoint(86.45, 55.82)

 controlPoint2: NSMakePoint(86.45, 30.18)];

 [bezierPath curveToPoint: NSMakePoint(13.36, 14.36)

 controlPoint1: NSMakePoint(54.82, -1.45)

 controlPoint2: NSMakePoint(29.18, -1.45)];

 [bezierPath curveToPoint: NSMakePoint(13.36, 71.64)

 controlPoint1: NSMakePoint(-2.45, 30.18)

 controlPoint2: NSMakePoint(-2.45, 55.82)];

 [bezierPath curveToPoint: NSMakePoint(70.64, 71.64)

 controlPoint1: NSMakePoint(29.18, 87.45)

 controlPoint2: NSMakePoint(54.82, 87.45)];

 [bezierPath closePath];

 // Fill the path.

 [[NSColor darkGrayColor] setFill];

 [bezierPath fill];

}

In this code, we’re creating a new Bézier path and drawing a star by calling lineTo

Point: several times. We then close the subpath by sending the closePath message to
the path object, and begin constructing a circle around the star by moving to a new

point and issuing a bunch of curveToPoint: instructions. Once the circle is complete,
the subpath is closed again (Figure 7-11).

When two paths overlap, they cancel each other out. This means that you can create
negative shapes in a path rather easily, simply by overlapping several subpaths.

Building a Custom View | 123

Figure 7-11. Multiple subpaths combining to create a complex graphic

Shadows
Shadows are a great way to imply depth in your graphics. If a shape casts a shadow, it
appears “closer” than one that does not.

On OS X, shadows are drawn using the NSShadow class. [On iOS, the technique is similar

but not identical—see “Drawing shadows on iOS” on page 126.] An NSShadow object stores
all of the information needed to draw a shadow. Three pieces of information are needed:

• The color to use for the shadow (an NSColor)

• How many pixels the shadow should be offset by (an NSSize struct)

• How blurry the shadow should be (a CGFloat)

To draw a shadow, you create an NSShadow object, provide it with the drawing settings

you want to use, and then send it the set message:

NSShadow* shadow = [[NSShadow alloc] init]; // 1

[shadow setShadowColor: [NSColor blackColor]]; // 2

[shadow setShadowOffset: NSMakeSize(3, -3)]; // 3

124 | Chapter 7: Drawing Graphics in Views

[shadow setShadowBlurRadius: 5]; // 4

[shadow set]; // 5

This code does the following things:

1. Creates the shadow object.

2. Sets the color to black.

3. Sets the shadow offset to be drawn three pixels to the right, and three pixels down
from what’s drawn.

4. Sets the blur radius to be five pixels.

5. Sets the shadow. Anything drawn after this call will cast a shadow.

Saving and restoring graphics contexts

The set method causes the shadow to be applied to anything that you ask Cocoa to
draw. This lasts until another shadow is set or the context is closed by the graphics system

(which is what happens after the drawRect: call returns). This means that once you set
a shadow, it could stay around forever.

However, you might want to draw an object with a shadow followed by an object that
doesn’t have one. To support this, and to help deal with similar cases where the graphics
context itself is changed (such as when you set the stroke and fill color, or change the
current transformation matrix or CTM—more on that in the section “Transforms” on
page 131), the drawing system allows you to save the state of the context and restore it
later.

To save the graphics context, you send the saveGraphicsState message to the NSGra

phicsContext class. This saves all of your drawing settings and pushes the context state
onto a stack for you to retrieve later. It doesn’t affect the pixels you’ve drawn, though.

[NSGraphicsContext saveGraphicsState];

When you’re done, you retrieve the saved context state by sending the NSGraphicsCon

text class the restoreGraphicsState message. This pops the most recently saved state
from the stack, and restores its settings (such as the shadow and colors).

[NSGraphicsContext restoreGraphicsState];

Always make sure to balance every call to saveGraphicsState with

a call to restoreGraphicsState, or the usual behavior such as
crashes may occur.

Building a Custom View | 125

Drawing a shadow

We’ll now update the drawing code to draw a rectangle with a shadow. Replace the

drawRect: method with the following code:

- (void)drawRect:(NSRect)dirtyRect

{

 // Shadow Declarations

 NSShadow* shadow = [[NSShadow alloc] init];

 [shadow setShadowColor: [NSColor blackColor]];

 [shadow setShadowOffset: NSMakeSize(3, -3)];

 [shadow setShadowBlurRadius: 5];

 // Rectangle Drawing

 NSRect pathRect = NSInsetRect(self.bounds, 20, 20);

 NSBezierPath* rectanglePath = [NSBezierPath bezierPathWithRect: pathRect];

 [NSGraphicsContext saveGraphicsState];

 [shadow set];

 [[NSColor darkGrayColor] setFill];

 [rectanglePath fill];

 [NSGraphicsContext restoreGraphicsState];

}

This code starts by creating the NSShadow object and prepares it much like we saw above.

A rectangular NSBezierPath object is also created. The code then saves the graphics
state, sets the shadow, and fills the rectangle path. Once the drawing is done, the graphics
state is restored. Any further drawing that’s done won’t include a shadow.

Now run the application. You’ll see a box with a shadow (Figure 7-12).

Shadows are a tremendously useful tool for making your applica‐
tions look great, but they are easy to make ugly. This isn’t a design
book, but we can’t help but advise that you make your shadows look
subtle. Please.

Drawing shadows on iOS

The NSShadow class exists only in OS X. The techniques for drawing shadows on iOS
are similar, but instead of using Objective-C classes to draw the shadows, you use some
C functions that belong to Core Graphics, the C-based drawing API that Cocoa wraps.

Here’s the equivalent drawing code for drawing a shadow on iOS:

// General Declarations

CGContextRef context = UIGraphicsGetCurrentContext();

// Shadow Declarations

CGColorRef shadow = [UIColor blackColor].CGColor;

126 | Chapter 7: Drawing Graphics in Views

Figure 7-12. Drawing a shadow

CGSize shadowOffset = CGSizeMake(3, 3);

CGFloat shadowBlurRadius = 5;

// Rectangle Drawing

CGRect pathRect = CGRectInset(self.bounds, 20, 20);

UIBezierPath* rectanglePath = [UIBezierPath bezierPathWithRect: pathRect];

CGContextSaveGState(context);

CGContextSetShadowWithColor(context, shadowOffset, shadowBlurRadius, shadow);

[[UIColor lightGrayColor] setFill];

[rectanglePath fill];

CGContextRestoreGState(context);

You’ll note that instead of creating an Objective-C object, we instead store the settings

in separate variables and then call the CGContextSetShadowWithColor function. Also,

instead of calling saveGraphicsState and restoreGraphicsState like we do on OS X,

Building a Custom View | 127

we call CGContextSaveGState and CGContextRestoreGState. Otherwise, it’s almost
exactly the same.

One other thing to note is that the shadow offset used on iOS is (3,
3) while on OS X it’s (3, -3). That’s because the coordinate system on
iOS is flipped from that of OS X: on iOS, (0, 0) is the top-left corner
and positive Y values advance down the screen, while on OS X, (0, 0)
is the bottom-left corner and positive Y values advance up the screen.

Gradients
So far, we’ve worked entirely with solid colors when filling our shapes. However, the
human eye quickly tires of seeing large blocks of solid color, and adding a gradient
between two colors is a great way to add visual interest.

Drawing a gradient on OS X is much like drawing a shadow—you create an NSGradi

ent object, and then set it up. However, instead of setting the gradient as a color, you
instruct the gradient object to fill itself into a path object you provide. This is necessary
because the gradient needs to know precisely where to start blending.

A gradient has at least two colors; when the gradient is drawn into an area, the area is
filled with a smooth shade that blends between the gradient’s colors. Each color also has
a location, which controls how the blending is performed.

When you draw the gradient, you also specify the angle at which you want the gradient
to be drawn. If you provide an angle of zero, the gradient draws from left to right, using
each color you provide in sequence. If you provide an angle of 90 degrees, the gradient
draws from bottom to top.

Drawing gradients on iOS is different, because you use Core Graphics C functions in‐

stead of using the NSGradient class. See “Drawing gradients on iOS” on page 130.

When constructing the gradient, the only information you need to provide is the list of

colors and their positions. You do this with the initWithColorsAndLocations: meth‐

od, which takes a comma-separated list of NSColor objects and their locations, termi‐

nated with nil.

NSColor* gradientStartColor = [NSColor whiteColor];

NSColor* gradientEndColor = [NSColor blackColor];

NSGradient* gradient = [[NSGradient alloc] initWithColorsAndLocations:

 [NSColor blackColor], 0.0,

 gradientStartColor, 0.0,

 gradientEndColor, 1.0, nil];

128 | Chapter 7: Drawing Graphics in Views

Warning: Do not actually use these colors in a real app. Black-to-
white gradients look terrible.

Then, when you want to draw the gradient, give it the shape you want it to fill. (You can
also stroke shapes with gradients.)

[gradient drawInBezierPath: myPath angle: 90];

We’ll now update the code to draw a gradient inside the custom view. Replace the

drawRect: method with the following code:

- (void)drawRect:(NSRect)dirtyRect

{

 // Color Declarations

 NSColor* gradientStartColor = [NSColor colorWithCalibratedRed: 0.0

 green: 0.2

 blue: 0.7

 alpha: 1];

 NSColor* gradientEndColor = [NSColor colorWithCalibratedRed: 0.3

 green: 0.4

 blue: 0.8

 alpha: 1];

 // Gradient Declarations

 NSGradient* gradient = [[NSGradient alloc]

 initWithStartingColor: gradientStartColor

 endingColor: gradientEndColor];

 // Rounded Rectangle Drawing

 NSRect pathRect = NSInsetRect(self.bounds, 20, 20);

 NSBezierPath* roundedRectanglePath = [NSBezierPath

 bezierPathWithRoundedRect: pathRect xRadius: 4 yRadius: 4];

 [gradient drawInBezierPath: roundedRectanglePath angle: 90];

}

Now run the application. You’ll see a blue gradient (Figure 7-13).

Building a Custom View | 129

Figure 7-13. Drawing a gradient

Drawing gradients on iOS

On iOS, the process of drawing gradients is a little more verbose but conceptually the
same. You still create an object, but it’s done via the Core Graphics C function calls.

Instead of providing a path object to a gradient and asking the gradient to draw itself,
you instead clip the current graphics context, and then draw the gradient from one point
on the screen to another. Clipping means to restrict the drawing to a shape, which
prevents the view from being completely filled with the gradient.

In addition, instead of providing an angle at which the gradient should be drawn, you
pass in the coordinates converted into the coordinate space of the view that the gradient
should be drawn from and to.

Here’s the equivalent drawing code for iOS:

- (void) drawRect:(CGRect)dirtyRect {

 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

 CGContextRef context = UIGraphicsGetCurrentContext();

130 | Chapter 7: Drawing Graphics in Views

 //// Color Declarations

 UIColor* gradientStartColor = [UIColor colorWithRed: 0.0

 green: 0.2

 blue: 0.7

 alpha: 1];

 UIColor* gradientEndColor = [UIColor colorWithRed: 0.3

 green: 0.4

 blue: 0.8

 alpha: 1];

 // Gradient Declarations

 NSArray* gradientColors = [NSArray arrayWithObjects:

 (id)gradientStartColor.CGColor,

 (id)gradientEndColor.CGColor, nil];

 CGFloat gradientLocations[] = {0, 1};

 CGGradientRef gradient = CGGradientCreateWithColors(colorSpace,

 (CFArrayRef)gradientColors, gradientLocations);

 // Rounded Rectangle Drawing

 CGRect pathRect = CGRectInset(self.bounds, 20, 20);

 CGPoint topPoint = CGPointMake(self.bounds.size.width / 2, 20);

 CGPoint bottomPoint = CGPointMake(self.bounds.size.width / 2,

 self.bounds.size.height - 20);

 UIBezierPath* roundedRectanglePath = [UIBezierPath

 bezierPathWithRoundedRect: pathRect cornerRadius: 4];

 CGContextSaveGState(context);

 [roundedRectanglePath addClip];

 CGContextDrawLinearGradient(context, gradient, bottomPoint, topPoint, 0);

 CGContextRestoreGState(context);

 // Cleanup

 CGGradientRelease(gradient);

 CGColorSpaceRelease(colorSpace);

}

Transforms
Drawing shapes is fine, but sometimes you want to be able to handle something slightly
more complex, like rotating or stretching a shape. It’s certainly possible to simply create
a new path by providing a different set of coordinates, but it’s often better to just ask the
OS to do the rotation for you.

To do this, you use transforms, which are representations of transformation matrices.
We won’t go into the math of them in this book, but they’re tools that can be used to
translate, rotate, scale, skew, and generally perform any kind of distortion or manipu‐
lation of content.

Building a Custom View | 131

All drawing that’s done by your code is affected by the current transform matrix (CTM),
which transforms every path and drawing operation that’s performed. By default, the
transform matrix is the identity matrix—that is, it doesn’t do anything at all. However,
the CTM can be modified to affect your drawing.

To modify the CTM, you first need a reference to the low-level drawing context. This

context, which is set up for you by Cocoa before your drawRect: method is called, is a

CGContextRef pointer, and not an Objective-C object. On OS X, you get the context
with the following code:

CGContextRef context = [[NSGraphicsContext currentContext] graphicsPort];

On iOS, you get the context with this code:

CGContextRef context = UIGraphicsGetCurrentContext();

Once you have the context, you can change the CTM. In the following example, we’ll
change the CTM so that everything that gets drawn is rotated around the origin (the
lower-left corner on OS X) by a few degrees.

If you change the CTM, that change will stick around until the con‐
text’s state is restored. If you only want to rotate part of your draw‐
ing, save the context’s state before changing the CTM, and restore the
state when you’re done. See “Saving and restoring graphics con‐
texts” on page 125.

Replace the drawRect: method with the following code:

- (void) drawRect:(NSRect)dirtyRect

 NSRect pathRect = NSInsetRect(self.bounds, 125, 125);

 // Create a transform that rotates the drawing by a

 // small amount around the origin point.

 CGAffineTransform rotationTransform =

 CGAffineTransformMakeRotation(M_PI / 8.0);

 CGContextRef context = [[NSGraphicsContext currentContext] graphicsPort];

 NSBezierPath* path = [NSBezierPath bezierPathWithRoundedRect:pathRect

 xRadius:10 yRadius:10];

 // Save the context before we start drawing

 [NSGraphicsContext saveGraphicsState];

 // Rotate

 CGContextConcatCTM(context, rotationTransform);

 [[NSColor greenColor] setFill];

 [[NSColor blackColor] setStroke];

132 | Chapter 7: Drawing Graphics in Views

 [path fill];

 [path stroke];

 // Restore the context.

 [NSGraphicsContext restoreGraphicsState];

}

Now run the application. You’ll see a green rectangle that’s been rotated slightly
(Figure 7-14).

Figure 7-14. A rotated, stroked, filled rounded rectangle

SpriteKit
SpriteKit is a new framework included with iOS 7 and OSX 10.9, designed purposely
for creating games, and is heavily optimized for rendering and animating 2D graphics.

The core of SpriteKit is SKView, an object representing a view, which is managed by a

view controller. Inside the SKView, game content is organized into SKScene objects: you
might have a scene for the games menu and another for the main gameplay, and tran‐
sition between them as needed.

Each scene holds and automatically performs all the per-frame logic it needs. A scene

is always the root element of a SKNode, with each node object representing content in

SpriteKit | 133

the scene. Nodes generally hold sprites, but can hold video, labels, shapes, particle effects,
and a range of other content.

A node’s content is animated by an SKAction object, which lets you animate positions
and size, play sounds, and run code. Actions can be combined together to create se‐
quences of actions to occur one after another or groups of actions to occur all at once,
which lets you create some quite complex effects for your game. SpriteKit also contains
a bunch of other functionality including texture atlases, particles, physics bodies, and
joints.

This is a book about Cocoa and Objective-C; game development,
design, physics, and best practices are very complicated areas and well
beyond what we have time to cover in this book. For more about this,
take a look at The Sprite Kit Programming Guide by Apple as a start‐
ing point for your future game development.

To demonstrate SpriteKit, we’ll be creating a very simple iPhone app.

1. Create the project. Create a new SpriteKit application for the iPhone and name it

GameDemo.

If you run the app as it currently exists, you’ll see a framerate counter in the bottom
right corner, some Hello World text, and when you tap on the screen, a spaceship
will appear and start rotating. Xcode has already created a scene for us called My‐
Scene and added it to the viewcontroller.

2. Open MyScene.h and add a new SKSpriteNode property into the scene. Name it

spaceship.

3. Inside MyScene.m, replace the initWithSize: method with the following:

-(id)initWithSize:(CGSize)size

{

 if (self = [super initWithSize:size])

 {

 self.backgroundColor = [SKColor blackColor];

 // adding a ship at to the centre

 _ship = [SKSpriteNode spriteNodeWithImageNamed:@"Spaceship"];

 _ship.size = CGSizeMake(_ship.size.width/4, _ship.size.height/4);

 _ship.position = CGPointMake(self.size.width/2, self.size.height/2);

 [self addChild:_ship];

 }

 return self;

}

134 | Chapter 7: Drawing Graphics in Views

https://developer.apple.com/LIBRARY/IOS/documentation/GraphicsAnimation/Conceptual/SpriteKit_PG/Introduction/Introduction.html

This code creates a new SKSpriteNode and stores it in our previously defined
Spaceship property. The code then centers the node and adds it to the scene.

4. Next replace the touchesBegan:withEvent: method with the following:

-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

{

 for (UITouch *touch in touches)

 {

 CGPoint location = [touch locationInNode:self];

 CGFloat dx = location.x - _ship.position.x;

 CGFloat dy = _ship.position.y - location.y;

 CGFloat theta = atan2f(dx, dy);

 theta += M_PI;

 SKAction *rotateToTap = [SKAction rotateToAngle:theta duration:0.5

 shortestUnitArc:YES];

 SKAction *moveToTap = [SKAction moveTo:location duration:0.5];

 [_ship runAction:[SKAction sequence:@[rotateToTap,moveToTap]]];

 }

}

This method is doing a couple of things. When a touch is detected, we are calculating
the angle between that point and the current rotation of the spaceship. Then we

create a rotation SKAction to rotate the ship to that angle, and finally we are creating
a move action to move the ship to that point. Not the most exciting game, but it’s
a start! It isn’t generally that useful to only have predefined nodes, and most games
create new nodes during gameplay. One way of doing this in SpriteKit is with the

update: method, which is called in every frame. We’re going to update the app to
do this, but first we need to remove the spaceship.

5. Open MyScene.m and delete or comment out the line where we added the ship

property to the scene. Add in two properties, called lastSpawnInterval and las

tUpdateInterval, both of type NSTimeInterval. Finally, replace the update:
method with the following:

-(void)update:(CFTimeInterval)currentTime

{

 CFTimeInterval deltaTime = currentTime - self.lastUpdateInterval;

 self.lastUpdateInterval = currentTime;

 // if more than a second has passed

 if (deltaTime > 1)

 {

 deltaTime = 1 / 60.0;

 self.lastUpdateInterval = currentTime;

 }

 self.lastSpawnInterval += deltaTime;

SpriteKit | 135

 if (self.lastSpawnInterval > 0.5)

 {

 self.lastSpawnInterval = 0;

 SKSpriteNode *ship = [SKSpriteNode

 spriteNodeWithImageNamed:@"Spaceship"];

 ship.size = CGSizeMake(_ship.size.width/4, _ship.size.height/4);

 // spawning a ship randomly along the bottom of the screen

 CGFloat x = arc4random_uniform(self.size.width) + ship.size.width/2;

 ship.position = CGPointMake(x, 0);

 [self addChild:ship];

 // move the ship across space into the distance

 SKAction *moveShip =

 [SKAction moveToY:self.size.height + ship.size.height duration:2];

 SKAction *removeShip = [SKAction removeFromParent];

 [ship runAction:[SKAction sequence:@[moveShip,removeShip]]];

 }

}

This method does a few things. First it calculates how long it has been since we
added a spaceship to the scene; if it is greater than half a second, we add a ship to
the scene at a random position along the bottom of the scene. Then we schedule
two actions: the first moves the new ship up off the top of the screen, and the

removeFromParent action removes the new ship node from the scene. Shortly after,
the OS will delete the node instead of leaving them flying off alone where you can’t
see them.

If you run the app, you’ll see heaps of little spaceships flying up from the bottom of the
screen and off into the great unknown!

136 | Chapter 7: Drawing Graphics in Views

CHAPTER 8

Audio and Video

As we’ve seen, Cocoa and Cocoa Touch have a lot of support for displaying still images
and text. The APIs also have great support for displaying video and audio—either sep‐
arately or at the same time.

OS X and iOS have historically had APIs for displaying audiovisual (AV) content, but
only recently did Apple introduce a comprehensive API for loading, playing, and other‐
wise working with AV content. This API, AV Foundation, is identical on both OS X and
iOS, and is the one-stop shop for both AV playback and editing.

In this chapter, you’ll learn how to use AV Foundation to display video and audio. We’ll
demonstrate how to use the framework in OS X, but the same API applies to iOS as
well.

You’ll also learn how to access the user’s photo library on iOS, as well as how to capture
photos and videos using the built-in camera available on iOS and OS X.

AV Foundation is a large and powerful framework, capable of per‐
forming very complex operations with audio and video. Final Cut Pro,
Apple’s professional-level video editing tool, uses AV Foundation for
all of the actual work involved in editing video. Covering all the fea‐
tures of this framework is beyond the scope of this book, so we ad‐
dress only audio and video playback in this chapter. If you want to
learn about the more advanced features in AV Foundation, check out
the AV Foundation Programming Guide in the Xcode documentation.

AV Foundation
AV Foundation is designed to load and play back a large number of popular audiovisual
formats. The formats supported by AV Foundation are:

137

http://bit.ly/TQDmVg

• QuickTime

• MPEG4 audio (including .mp4, .m4a, and .m4v)

• 3GPP

• Wave, AIFF, and CAF audio

• MP3 and AAC audio

From a coding perspective, there’s no distinction between these formats—you simply
tell AV Foundation to load the resource and start playing.

AV Foundation refers to media that can be played as an asset. Assets can be loaded from
URLs—which can point to a resource on the Internet or a file stored locally—or they
can be created from other assets (content creation apps, like iMovie, do this). In this
chapter, we’ll be looking at media loaded from URLs.

When you have a file you want to play—such as an H.264 movie or an MP3 file—you

can create an AVPlayer to coordinate playback.

Playing Video with AVPlayer
The AVPlayer class is a high-level object that can play back any media that AV Foun‐

dation supports. AVPlayer is capable of playing both audio and video content, though
if you only want to play back audio, AV Foundation provides an object dedicated to

sound playback (AVAudioPlayer, discussed later). In this section, we talk about playing
videos.

When you want to play back media, you create an AVPlayer and provide it with the
URL of the video you want to play back:

NSURL* contentURL = /* an URL pointing to some video or audio */

AVPlayer* player = [AVPlayer playerWithURL:contentURL];

When you set up a player with a content URL, the player will take a moment to get ready
to play back the content. The amount of time needed depends on the content and where
it’s being kept. If it’s a video file, the decoder will take longer to get ready than for an
audio file, and if the file is hosted on the Internet, it will take longer to transfer enough
data to start playing.

AVPlayer acts as the controller for your media playback. At its simplest, you can tell the
player to just start playing:

[player play];

138 | Chapter 8: Audio and Video

In the background, the play method actually just sets the playback
rate to 1.0, which means that it should play back at normal speed. You

could also start playback at half-speed by saying [player setRate:

0.5]. In the same vein, setting the rate to 0 pauses playback—which

is exactly what the pause method does.

AVPlayerLayer
AVPlayer is only responsible for coordinating playback, not for displaying the video
content to the user. If you want video playback to be visible, you need a Core Animation
layer to display the content on.

AV Foundation provides a Core Animation layer called AVPlayerLayer that presents

video content from the AVPlayer. Because it’s a CALayer, you need to add it to an existing
layer tree in order for it to be visible. We’ll recap how to work with layers later in this
chapter.

You create an AVPlayerLayer with the playerLayerWithPlayer: method:

AVPlayerLayer* playerLayer = [AVPlayerLayer playerLayerWithPlayer:player];

(Yes, we are now in tongue-twister territory.)

Once created, the player layer will display whatever image the AVPlayer you provided
tells it to. It’s up to you to actually size the layer appropriately and add it to the layer tree:

CALayer* parentLayer = /* a layer, usually one owned by a view in your window */

[parentLayer addSublayer:playerLayer];

playerLayer.frame = parentLayer.bounds; // make it fill its superlayer

Once the player layer is visible, you can forget about it—all of the actual work involved

in controlling video playback is handled by the AVPlayer.

Putting It Together
To demonstrate how to use AVPlayer and AVPlayerLayer, we’ll build a simple video
player application for iOS.

The same API applies to iOS and OS X.

Before you start building this project, download the sample video from here.

Playing Video with AVPlayer | 139

http://examples.oreilly.com/0636920023203/

1. Create the application.

Create a new Cocoa application named VideoPlayer.

Once the project has been created, you need to add the required frameworks. Select
the VideoPlayer project at the top of the project navigator; the project information
will open in the main editor.

Click the + button under the list of frameworks in the Linked Frameworks and
Libraries section.

Add the AVFoundation, CoreMedia, and QuartzCore frameworks to the projects.

Drag the sample video into the project navigator.

The interface for this project will consist of an NSView, which will host the AVPlayer

Layer, as well as buttons that make the video play back at normal speed, play back
at one-quarter speed, and rewind.

In order to add the AVPlayerLayer into the view, that view must be backed by a CALay

er. This requires checking a checkbox in the Interface Builder—once that’s done, the

view will have a layer to which we can add the AVPlayerLayer as a sublayer.

2. Create the interface.

Open MainMenu.xib.

Drag a custom view into the main window. Make it fill the window, but leave some
space at the bottom. This view will contain the video playback layer.

Drag in three NSButtons and place them underneath the video playback view. Label

them Play, Play Slow Motion, and Rewind.

To add an AVPlayerLayer to the window, the view that it’s being inserted into must have

its own CALayer. To make this happen, you tell either the video playback view or any of

its superviews that it should use a CALayer. Once a view has a CALayer, it and all of its

subviews use CALayers to display their content.

3. Make the window use a CALayer.

Click inside the window and open the View Effects inspector, which is the last
button at the top of the inspector.

The Core Animation Layer section of the inspector will list the selected view. Check
the checkbox to give it a layer (Figure 8-1).

140 | Chapter 8: Audio and Video

Figure 8-1. The completed interface for this application, as laid out in the interface
builder.

4. Connect the code to the interface.

Now that the interface is laid out correctly, we’ll make the code aware of the view
that the video should be displayed in, and create the actions that control playback.

Open AppDelegate.h in the Assistant.

Control-drag from the video container view into AppDelegate’s interface. Create

an outlet called playerView.

Control-drag from each of the buttons under the video container view into App

Delegate’s interface, and create actions for each of them. Name these actions play,

playSlowMotion, and rewind.

Now we’ll write the code that loads and prepares the AVPlayer and AVPlayerLayer.
Because we want to control the player, we’ll keep a reference to it around by adding a

class extension that contains an instance variable to store the AVPlayer. We don’t need

to keep the AVPlayerLayer around in the same way, because once we add it to the layer

tree, we can forget about it—it will just display whatever the AVPlayer needs to show.

Playing Video with AVPlayer | 141

We’ll also need to import the AV Foundation and Quartz Core framework headers in
order to work with the necessary classes.

5. Import the headers.

Add the following code to the import statements at the top of AppDelegate.m:

#import <AVFoundation/AVFoundation.h>

#import <QuartzCore/QuartzCore.h>

6. Add the class extension.

Add the following code to AppDelegate.m above the @implementation line:

@interface AppDelegate () {

 AVPlayer* player;

}

@end

Next, we’ll create and set up the AVPlayer and AVPlayerLayer. To set up the AVPlay

er, you need something to play. In this case, we’ll make the application determine the
location of the test video that was compiled into the application’s folder, and give that

to the AVPlayer.

Once the AVPlayer is ready, we can create the AVPlayerLayer. The AVPlayerLayer
needs to be added to the video player view’s layer and resized to fill the layer. Setting the

frame property of the layer accomplishes this. As a final touch, we’ll also make the layer
automatically resize when its superlayer resizes.

Finally, we’ll tell the AVPlayer that it should pause when it reaches the end of playback.

7. Set up the AVPlayer.

Replace the applicationDidFinishLaunching: method in AppDelegate.m with
the following code:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

 NSURL* contentURL = [[NSBundle mainBundle] URLForResource:@"TestVideo"

 withExtension:@"m4v"];

 player = [AVPlayer playerWithURL:contentURL];

 AVPlayerLayer* playerLayer =

 [AVPlayerLayer playerLayerWithPlayer:player];

 [self.playerView.layer addSublayer:playerLayer];

 playerLayer.frame = self.playerView.layer.bounds;

 playerLayer.autoresizingMask = kCALayerWidthSizable |

 kCALayerHeightSizable;

 player.actionAtItemEnd = AVPlayerActionAtItemEndNone;

142 | Chapter 8: Audio and Video

}

The last step in coding the application is to create the control methods, which are run

when the buttons are clicked. These controls—play, play in slow motion, and rewind

—simply tell the AVPlayer to set the rate of playback. In the case of rewinding, it’s a
matter of telling the player to seek to the start.

8. Add the control methods.

Replace the play:, playSlowMotion:, and rewind: methods in AppDelegate.m with
the following code:

- (IBAction)play:(id)sender {

 [player play];

}

- (IBAction)playSlowMotion:(id)sender {

 [player setRate:0.25];

}

- (IBAction)rewind:(id)sender {

 [player seekToTime:kCMTimeZero];

}

@end

It’s time to test the app, so go ahead and launch it. Play around with the buttons and
resize the window. Video should be visible in the window, as seen in Figure 8-2.

AVPlayerView
The above example is a good way of loading media into a layer but it is also a little clunky,
especially with the controls, as your users are already used to a particular way of how
videos and audio and their controls should be displayed. Luckily, new in OSX 10.9 (and

OSX 10.9 only, unfortunately), there is a dedicated subclass of NSView called AVPlayer

View specifically designed for playing audio and video. AVPlayerView is the same view
that QuickTime Player.app uses when it wants to play audio or video and is part of the

new AVKit framework. It is designed to work with an AVPlayer and allows your code
to pass any messages to the AVPlayer it is displaying.

Hooking an AVPlayerView up to an existing AVPlayer is very straightforward. To
demonstrate, let’s make a few changes to our VideoPlayer app.

1. Adding the framework.

Select the VideoPlayer project in the project navigator.

Click the + button in the Linked Frameworks and Libraries section.

Playing Video with AVPlayer | 143

Figure 8-2. Playing back video

Add the AVKit framework.

2. Modify the interface.

Open MainMenu.xib.

Delete the custom view and all buttons.

Drag an AVPlayerView onto the main window, and resize it to be the full size of the
window.

At this stage, your interface should look similar to Figure 8-3.

144 | Chapter 8: Audio and Video

Figure 8-3. The updated VideoPlayer interface

3. Connect the code.

Open AppDelegate.h in the Assistant.

Control-drag from the AVPlayerView into the AppDelegate’s interface, and create

an outlet called aPlayerView.

Delete or comment out the previous playerView outlet.

4. Import the headers.

Add the following code to the top of AppDelegate.m:

#import <AVKit/AVKit.h>

5. Set up the AVPlayerView.

Replace the applicationDidFinishLaunching: method in AppDelegate.m with
the following code:

Playing Video with AVPlayer | 145

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

 NSURL* contentURL = [[NSBundle mainBundle] URLForResource:@"TestVideo"

 withExtension:@"m4v"];

 [self.aPlayerView setPlayer:[AVPlayer playerWithURL:contentURL]];

}

Now when you run the application, you should see an interface very similar to Quick‐
Time Player.app.

Finally, it would be good practice to delete the methods for handling the play, slow
motion, and rewind, and remove the unnecessary QuartzCore framework as it is no
longer needed.

Playing Sound with AVAudioPlayer
AVPlayer is designed for playing back any kind of audio or video. AV Foundation also

provides a class specifically designed for playing back sounds, called AVAudioPlayer.

AVAudioPlayer is a simpler choice than AVPlayer for playing audio. It’s useful for play‐
ing back sound effects and music in apps that don’t use video, and has a couple of

advantages over AVPlayer:

• AVAudioPlayer allows you to set volumes on a per-player basis (AVPlayer uses the
system volume)

• AVAudioPlayer is easier to loop

• You can query an AVAudioPlayer for its current output power, which you can use
to show volume levels over time

AVAudioPlayer works in the same way as AVPlayer. Given an NSURL that points to a

sound file that OS X or iOS supports, you create an AVAudioPlayer, set it up the way
you want (by setting balance, volume, and looping), and then play it.

NSURL* soundFileURL = /* a local or remote URL */

NSError* error = nil;

AVAudioPlayer* player = [[AVAudioPlayer alloc] initWithContentURL:soundFileURL

 error:error];

// if there was a problem, 'player' is nil and

// 'error' contains additional info

146 | Chapter 8: Audio and Video

You need to keep a strong reference to AVAudioPlayer, or it will be
removed from memory and stop playing. Therefore, you should keep
an instance variable around that stores a reference to the player to
keep it from falling out of memory.

Telling an AVAudioPlayer to play is a simple matter:

[player play];

You can also set the volume and indicate how many times the sound should loop. The
volume is a number between 0 and 1. The number of loops defaults to 0 (play once); if
you set it to 1, it will play twice. Set the number of loops to –1 to make the sound loop
until stopped.

player.volume = 0.5; // half-volume

player.numberOfLoops = -1; // loop forever

To seek to a point in the sound, set the currentTime property. This property is measured

in seconds, so to seek to the start of the sound, set currentTime to 0.

player.currentTime = 0; // seek to the start

Seeking to a point in the sound doesn’t affect whether the sound is playing or not. If you
seek while the sound is playing, the sound will jump.

Speech Synthesis
A new feature in iOS 7 within AVFoundation is the ability to synthesize speech: you can
now have your application say almost any text that you want. There are two main com‐

ponents to synthesizing speech. The first is an AVSpeechUtterance, which represents
the text you want to have synthesized. This includes the rate at which you want it to be
spoken, the volume, pitch, any delay, and the voice to use when synthesizing the text.

The second component, an AVSpeechSynthesizer, is the object responsible for actually
synthesizing, speaking, and controlling any utterances passed to it.

// creating a speech synthesizer

AVSpeechSynthesizer *speech = [[AVSpeechSynthesizer alloc] init];

// creating an utterance to synthesize

AVSpeechUtterance *utterance = [AVSpeechUtterance

 speechUtteranceWithString:@"I am the very model of a modern Major General!"];

// setting a rate for the utterance to run at

[utterance setRate:0.175];

// telling the synthesizer to synthesize and play the utterance.

[_speech speakUtterance:utterance];

Should you want to pause the utterance, call pauseSpeakingAtBoundary: on your AV

SpeechSynthesizer which takes in a AVSpeechBoundary as a parameter for controlling

Speech Synthesis | 147

when to pause the utterance. Passing in AVSpeechBoundaryImmediate will pause the

utterance immediately, whereas AVSpeechBoundaryWord will pause the utterance at the

completion of the current word. To continue the utterance, call continueSpeaking:.

To fully stop a speech synthesizer and all utterances associated with it, call stopSpea

kingAtBoundary:, which also takes in a speech boundary to inform the synthesizer
when to stop.

Working with the Photo Library
In addition to playing back video and audio, iOS and OS X allow you to access the built-
in camera system to capture video and audio. Similar hardware is available on both
systems—in fact, Apple refers to the front-facing camera on the iPhone, iPad, and all
Mac machines as the “FaceTime camera,” suggesting that users are meant to treat the
camera the same way across all devices. The camera can record still images as well as
video.

The APIs for accessing the camera are different on OS X and iOS. The camera was
introduced on the Mac well before iOS was released, and iOS’s implementation is some‐
what easier to use and cleaner, since the API benefited from several years of development
experience.

If you really need a consistent API for recording camera content
across both iOS and OS X, AV Foundation provides a set of classes

for capturing content—the key ones being AVCaptureSession, AVCap

tureInput, and AVCaptureOutput. However, this system is designed
for more finely grained control over data flows from the camera to
consumers of that data, and isn’t terribly convenient for simple uses
like recording video and saving it to a file. In this chapter, therefore,
we’ll only be covering the iOS implementation. For OS X develop‐
ers, please refer to the QTKit Application Tutorial included in the
Xcode documentation.

Capturing Photos and Video from the Camera
To capture video and photos from the camera on iOS, you use a view controller called

UIImagePickerController.

For more information on view controllers, see “Structure of a Nib
File” on page 77.

148 | Chapter 8: Audio and Video

At its simplest, UIImagePickerController allows you to present an interface almost
identical to the built-in camera application on the iPhone and iPad. Using this interface,

the user can take a photo that is delivered to your application as a UIImage object.

You can also configure the UIImagePickerController to capture video. In this case, the
user can record up to 30 minutes of video and deliver it to your application as an

NSString that contains the path to where the captured video file is kept.

UIImagePickerController can be set up to control which camera is used (front-side
or back-side camera), whether the LED flashlight is available (on devices that have
them), and whether the user is allowed to crop or adjust the photo he took or trim the
video he recorded.

UIImagePickerController works like this:

1. You create an instance of the class.

2. You optionally configure the picker to use the settings that you want.

3. You provide the picker with a delegate object that conforms to the UIImagePicker

ControllerDelegate protocol.

4. You present the view controller, usually modally, by having the current view con‐

troller call presentViewController:animated:completion:.

5. The user takes a photo or records a video. When he’s done, the delegate object

receives the imagePickerController:didFinishPickingMediaWithInfo: mes‐
sage.

This method receives a dictionary that contains information about the media that
the user captured, which you can query to retrieve data like the original or edited
photos, the location of the video file, and other useful information.

In this method, your view controller must dismiss the image picker controller, by

calling the dismissViewControllerAnimated:completion: method on the cur‐
rent view controller.

6. If the user chooses to cancel the image picker (by tapping the Cancel button that

appears), the delegate object receives the imagePickerControllerDidCancel:
message.

In this method, your view controller must also dismiss the image picker by calling

dismissViewControllerAnimated:completion:. If this doesn’t happen, the Cancel
button won’t appear to do anything when tapped, and the user will think that your
application is buggy.

When using UIImagePickerController, it’s important to remember that the hardware
on the device your app is running on may vary. Not all devices have a front-facing
camera, which was only introduced in the iPhone 4 and the iPad 2; on earlier devices,

Working with the Photo Library | 149

you can only use the rear-facing camera. Some devices don’t have a camera at all, such
as the early iPod touch models and the first iPad.

You can use UIImagePickerController to determine which features are available and
adjust your app’s behavior accordingly. For example, to determine if any kind of camera

is available, you use the isSourceTypeAvailable: class method:

if ([UIImagePickerController

 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]) {

 // a camera exists on this device

} else {

 // we can't use the camera

}

You can further specify if a front- or rear-facing camera is available by using the class

method isCameraDeviceAvailable::

if ([UIImagePickerController

 isCameraDeviceAvailable:UIImagePickerControllerCameraDeviceFront]) {

 // a front facing camera is available

}

if ([UIImagePickerController

 isCameraDeviceAvailable:UIImagePickerControllerCameraDeviceRear) {

 // a rear facing camera is available

}

The iOS simulator does not have a camera, and UIImagePicker

Controller reports this. If you want to test out using the camera, you
must test this your app on a device that actually has a camera built in.

This doesn’t stop you from using UIImagePickerController itself,
since you can still access the user’s saved photos library. We’ll be
talking about this in more detail in the next section.

Building a Photo Application
To demonstrate how to use UIImagePickerController, we’ll build a simple application
that allows the user to take a photo, which is then displayed on the screen. The image
picker will be configured to take only photos, and will use the front-facing camera if it’s
available and the rear-facing camera if it’s not.

1. Create the application. Create a single-view iPhone application and name it Photos.

The interface for this application will be deliberately simple: a button that brings
up the camera view, and an image view that displays the photo that the user took.

2. Create the interface. Open Main.storyboard.

150 | Chapter 8: Audio and Video

Drag a UIImageView into the main screen. Resize it so that it takes up the top half
of the screen.

Drag a UIButton into the main screen and place it under the image view. Make the

button’s label read Take Photo.

3. Connect the interface to the code. Open ViewController.h in the Assistant.

Control-drag from the image view into ViewController’s interface. Create an outlet

called imageView.

Control-drag from the button into ViewController’s interface. Create an action

called takePhoto.

4. Make the view controller conform to the UIImagePickerControllerDelegate and

UINavigationControllerDelegate protocols.

Update the @interface line in ViewController.h to look like the following code:

@interface ViewController : UIViewController

 <UIImagePickerControllerDelegate, UINavigationController>

5. Add the code that shows the image picker.

When the button is tapped, we need to create, configure, and present the image

picker view. Replace the takePhoto: method with the following code:

- (IBAction)takePhoto:(id)sender {

 UIImagePickerController* picker = [[UIImagePickerController alloc] init];

 if ([UIImagePickerController

 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]) {

 // We can use the camera.

 picker.sourceType = UIImagePickerControllerSourceTypeCamera;

 // Use the front-facing camera if available.

 if ([UIImagePickerController

 isCameraDeviceAvailable:

 UIImagePickerControllerCameraDeviceFront])

 picker.cameraDevice = UIImagePickerControllerCameraDeviceFront;

 else

 picker.cameraDevice = UIImagePickerControllerCameraDeviceFront;

 // Make this object be the delegate

 picker.delegate = self;

 [self presentViewController:picker animated:YES completion:nil];

 }

}

6. Add the UIImagePickerControllerDelegate methods.

Working with the Photo Library | 151

We now need to add the methods for UIImagePickerControllerDelegate—
specifically, the one called when the user finishes taking a photo, and the one called
when the user cancels taking a photo.

Add the following methods to ViewController.m:

- (void)imagePickerController:(UIImagePickerController *)picker

 didFinishPickingMediaWithInfo:(NSDictionary *)info {

 UIImage* image = [info

 objectForKey:UIImagePickerControllerOriginalImage];

 self.imageView.image = image;

 [picker dismissViewControllerAnimated:YES completion:nil];

}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker {

 [picker dismissViewControllerAnimated:YES completion:nil];

}

Now run the application and test it out on an iPhone or iPad. Take a photo of yourself,
and see that it appears in the image view.

If you try to test out the application on the iOS simulator, the button won’t appear to

do anything at all. That’s because the if statement in the takePhoto: method keeps the
image picker from trying to work with hardware that isn’t there.

If you ask UIImagePickerController to work with a camera and
there isn’t one present on the device, an exception will be thrown and
your application will crash.

The Photo Library
Capturing a photo with the camera is useful, but the user will likely also want to work
with photos that he’s previously taken or downloaded from the Internet. For example,
a social networking application should include some method of sharing photos from
the user’s photo collection.

To let the user access his photo library from within your app, you use UIImagePicker

Controller again. If you want to present the photo library instead of the camera, set

the sourceType property of the image picker to UIImagePickerControllerSourceTy

pePhotoLibrary or UIImagePickerControllerSourceTypeSavedPhotosAlbum.

152 | Chapter 8: Audio and Video

UIImagePickerControllerSourceTypePhotoLibrary makes the

UIImagePickerController display the entire photo library. UIImage

PickerControllerSourceTypeSavedPhotosAlbum makes the UIImage

PickerController display only the Camera Roll album on devices
that have a camera, or the Saved Photos album on devices that don’t.

When you present an image picker controller that has been set up to use a noncamera
source, the photo library interface used in the built-in Photos application appears. The
user then browses for and selects a photo, at which point the image picker’s delegate

receives the imagePickerController:didFinishPickingMediaWithInfo: message,
just like if the image picker had been set up to use the camera.

To demonstrate this, we’ll update the application to include a button that displays the
Saved Photos album.

1. Update the interface.

Add a new button to the application’s main screen and make its label read Photo

Library.

2. Connect the interface to the code.

Open ViewController.h in the Assistant again. Control-drag from the new button

into ViewController’s interface, and create a new action called loadFromLibrary.

3. Add the code.

Replace the loadFromLibrary: method in ViewController.m with the following
code:

- (IBAction)loadFromLibrary:(id)sender {

 UIImagePickerController* picker = [[UIImagePickerController alloc] init];

 picker.sourceType = UIImagePickerControllerSourceTypeSavedPhotosAlbum;

 picker.delegate = self;

 [self presentViewController:picker animated:YES completion:nil];

}

Test the application by running the app and tapping the Photo Library button. Select a
photo to make it appear on the screen.

Working with the Photo Library | 153

Adding Photos to the Simulator
If you’re testing this in the simulator, you’ll want to add photos to its built-in photo
library. However, there’s no built-in tool for adding photos to the “device” like there is
with a real device and iTunes. To add a photo to the simulator, you can use Safari:

1. Find the image file you want to use and drag it into the simulator’s window. The
image will open in Safari.

2. Tap and hold the image. A menu will appear; choose Save Image.

3. The image will be saved in the Saved Photos album, which you can then access in

your application via a UIImagePickerController.

154 | Chapter 8: Audio and Video

CHAPTER 9

Model Objects and Data Storage

Unless your application is a trivial one, it will need to work with data at some point.
This data could be as simple as a list of high scores that the user has achieved, or as
complex as a multimedia document like a presentation.

This information needs to be accessible to other parts of your application, such as the
controller objects, so that work can be done on it. The information needs to be stored
somewhere—either in memory, on disk, or on the network.

OS X and iOS provide tools for storing information on disk and on the network. One
of the more recent additions to the APIs available to developers is iCloud, a network-
based storage system that is designed to allow users to keep the same information on
all their devices, without having to do any work to enable this.

Additionally, Cocoa is designed to make the connection between the model, the view,
and the controller as flexible as possible, while at the same time reducing the amount
of code that you need to write. To this end, Cocoa uses features called key-value cod‐
ing, which allows you to refer to properties of objects by name rather than by hardcoding
method calls, and key-value observing, which allows you to have an object be notified
when another object changes the value of one of its properties.

In this chapter, you will learn how key-value coding and key-value observing work, why
they’re useful, and how to use them in your code. You will also learn how to work with
the filesystem to store your information on disk. You’ll learn how to work with iCloud
storage to store files in the cloud. Finally, you’ll learn how the sandbox works on OS X,
and how to use security-scoped bookmarks to allow your application to access data
outside its sandbox across multiple launches.

155

While iCloud provides the means for storing files and folders in the
cloud, you also need to know how to present documents to the user.
This chapter only covers the mechanics of storing the data; to learn
more about how to write a document-based application on OS X and
iOS, head to Chapter 12.

Key-Value Coding
Key-value coding is a feature of Cocoa that allows you to set and get values of objects
by name, rather than by explicitly calling the appropriate methods. As long as your
classes follow a few simple rules for naming your properties and methods, you can refer
to the data inside your classes using strings rather than by calling methods. This feature
is used by several other parts of Cocoa, most notably Core Data.

Let’s assume that you have an application that retrieves information about products
from somewhere (such as the network). This application represents each product as the
following class:

@interface Product : NSObject

@property (strong) NSString* productName;

@property (assign) float price;

@property (strong) NSString* stockCode;

@property (assign) int numberInStock;

@end

The application receives NSDictionaries, which it must then turn into instances of the

Product class. One such method of doing so would be this:

- (Product*) productWithDictionary:(NSDictionary*)dictionary {

 Product* aProduct = [[Product alloc] init];

 aProduct.productName = [dictionary objectForKey:@"productName"];

 aProduct.price = [[dictionary objectForKey:@"price"] floatValue];

 aProduct.stockCode = [dictionary objectForKey:@"stockCode"];

 aProduct.numberInStock = [[dictionary

 objectForKey:@"numberInStock"] intValue];

 return aProduct;

}

This method is quite repetitious, and if you wanted to add extra properties to the class,

you would need to add more code. Additionally, if the dictionary passed to the pro

ductWithDictionary: method happened to not contain one of the values—perhaps the

stockCode value was not set—the application would crash when objectFor

Key:@"stockCode" is called.

156 | Chapter 9: Model Objects and Data Storage

Another way of doing the same thing is this:

+ (Product*) productWithDictionary:(NSDictionary*)dictionary {

 Product* aProduct = [[Product alloc] init];

 for (NSString* key in dictionary) {

 NSObject* theValue = [dictionary objectForKey:key];

 [aProduct setValue:theValue forKey:key];

 }

 return aProduct;

}

By calling setValue:forKey:, you can set the value of any property by name, given as
a string. This is more flexible than directly calling the setter and getter methods because
strings can be constructed and modified at runtime.

Key-Value Coding Gotchas
Key-value coding has a few gotchas.

• If you try to set a value for a key that does not exist in your class, the key-value
coding system will throw an exception because the runtime won’t know where to
store the value.

• There is no access protection in key-value coding, and your class doesn’t even need
to expose a protocol for it to work—it still works when used on private variables.

It’s possible for another object to reach inside your class and change data inside it.
Note that doing so is a very bad idea for both objects involved because it bypasses
the usual compile-time checks. Use key-value coding with care!

To get the value of a property from an object, you can use the valueForKey: method:

// aProduct is a Product object

NSString* productName = [aProduct valueForKey:@"productName"];

// This is exactly the same as:

NSString* productName = aProduct.productName;

// Which is also the same as:

NSString* productName = [aProduct productName];

Key-value coding is not designed to replace accessor methods, but rather exists to pro‐
vide a more flexible way to set and get values in objects.

Key-Value Coding | 157

Key-Value Observing
Consider the following common scenario. You have a view on the screen—a text field,
for example—that displays some information that is drawn from the model. In the
model-view-controller design pattern, the controller is responsible for knowing when
information in the model changes and instructing the view to update its display to reflect
it. But how does the controller know when to update the view?

There are two options available: repeatedly checking the model to see if anything has
changed, or waiting for the model to inform the controller of changes. The first option
is the simplest to implement—create a timer that periodically gets the latest value from
the model, and provide that to the view. The problem with this technique, though, is
that it’s wasteful—if the model does not change often, most of the updates will be re‐
dundant, which wastes time and CPU resources. On a battery-powered device, using
the CPU more than you have to wastes the battery.

To solve this problem, Cocoa provides a feature called key-value observing. Key-value
observing allows an object to register to be notified when another object changes the
value of one of its properties. In the above scenario, the controller would ask the model
object for notification when the data changes; when the controller receives the message
from the model, the view is updated. This keeps the number of updates to the minimum.

Key-value observing helps to simplify the process of registering for notifications, and
for notifying any objects that need to be told of changes. Any property on any object
can be observed, as long as that property’s name is key-value coding compliant.

Registering for Change Notifications
When you register to be notified of changes, you tell the object you wish to observe
three things: the object that should be notified when the property changes, the name of
the property that should be observed, and the information the observer should be told
about when a change happens. Optionally, you can also include a pointer or object
reference that should be passed to the method that is run when the property changes
value.

Here’s an example of how to register to be notified when a Product object changes its
price:

// aProduct is a Product object

// Make this current object (self) be notified when the product

// changes its price; we want to be notified of both the old

// value and the new value

[aProduct addObserver:self

 forKeyPath:@"productName"

 options:(NSKeyValueObservingOptionNew |

158 | Chapter 9: Model Objects and Data Storage

 NSKeyValueObservingOptionOld)

 context:nil];

When an object is registered as an observer of another object, that object receives the

observeValueForKeyPath:ofObject:change:context: message. This message has as
its parameters:

• The key path of the property that changed

• The object whose property changed

• An NSDictionary that contains information about the change

• The context variable that was passed in when addObserver:forKeyPath:op

tions:context: was called

The NSDictionary contains different information depending on what options were

passed in when the observer was added. If the options included NSKeyValue

ObservingOptionNew, the dictionary contains a value with the NSKeyValueChange

NewKey key, whose object is the value that the property has been set to. Conversely, if

the NSKeyValueObservingOptionOld option was set when registering the observer, the

dictionary contains a value with the NSKeyValueChangeOldKey key, which you can use
to get the previous value of the property.

These aren’t the only keys that can exist in the change dictionary—

for example, if the property that you are observing is an NSArray or
other collection object, you can be notified when an object is added
or removed from the collection. For more information, refer to the
Key-Value Observing Guide in the Xcode documentation.

Here’s an example of how an object can handle a Product object changing its product

Name property:

- (void)observeValueForKeyPath:(NSString *)keyPath

 ofObject:(id)object

 change:(NSDictionary *)change

 context:(void *)context

{

 if ([keyPath isEqualToString:@"productName"]) {

 NSString* newName = [change objectForKey:NSKeyValueChangeNewKey];

 // tell the appropriate view to update, based on the newName variable.

 }

}

Key-Value Observing | 159

http://bit.ly/SGDWru

Notifying Observers of Changes
In order for the key-value observation system to work, objects need to notify their
observers when their properties change.

If you are using Objective-C properties (that is, you declare your properties with the

@property syntax and have the compiler synthesize the accessor methods), Cocoa will
automatically notify any registered observers when the setter methods are called.

If you aren’t using Objective-C properties, or if you override the setter methods for a
property, you need to manually notify the system of the changes that are being made.

To do this, you call the willChangeValueForKey: and didChangeValueForKey: meth‐

ods on the self object. This allows the key-value observing system to keep track of the
previous and new values of a property.

For example, here’s how to override the productName setter method while still allowing
key-value observing to work:

- (void) setProductName:(NSString*)newProductName {

 [self willChangeValueForKey:@"productName"];

 productName = newProductName;

 [self didChangeValueForKey:@"productName"];

}

Notifications with NSNotification
In addition to having objects be notified of changes in properties, it’s also often useful
to broadcast notifications to any interested application when something of relevance
happens.

For example, when the user presses the home button on an iOS device, the only object
that receives a notification by default is the application delegate, which receives the

applicationDidEnterBackground: message. However, objects in the application may
wish to be notified of events like this, and while it’s possible for the application delegate
to do something like maintain an array of objects to send messages to when an app-
wide event takes place, it can be cumbersome.

Enter the NSNotification class. NSNotification objects, or notifications for short, are
broadcast messages sent by an object to any other object that has registered to be notified

of such notifications. Notifications are managed by the NSNotificationCenter, which
is a singleton object that manages the delivery of notifications.

Notifications are created by the object that wants to broadcast, or post, the notification.

The NSNotification object is given to the notification center, which then delivers the
notification to all objects that have registered for that notification type.

160 | Chapter 9: Model Objects and Data Storage

When an object wants to start receiving notifications, it first needs to know the name
of the notification it wants to be told about. There are hundreds of different notification
types; to carry on our earlier example, the specific notification posted when the appli‐

cation enters the background is UIApplicationDidEnterBackgroundNotification.

Therefore, to register for this notification, all an object needs to do is this:

[[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(applicationEnteredBackground:)

 UIApplicationDidEnterBackgroundNotification object:nil];

Then, whenever a UIApplicationDidEnterBackgroundNotification is posted, the

object that registered with the notification center will run its applicationEnteredBack

ground: method. This method needs to be a part of that object—if it doesn’t exist, the
application will throw an exception.

Notification handler methods take one parameter: the NSNotification object that was

posted. This is useful because NSNotification objects can contain additional contextual
information about why they were posted:

- (void) applicationEnteredBackground:(NSNotification*)notification {

 // Application entered background, so do something about it!

}

Finally, when an object no longer wishes to receive notifications, it can contact the
notification center and remove itself:

[[NSNotificationCenter defaultCenter] removeObserver:self]

Preferences
Most applications need to store some information about the user’s preferences. For

example, if you open the Safari web browser and go to its preferences (by pressing ⌘-,

[comma] or choosing Safari→Preferences), you’ll see a rather large collection of settings
that the user can modify. Because these settings need to remain set when the application
exits, they need to be stored somewhere.

The NSUserDefaults class allows you to store settings information in a key-value based
way. You don’t need to handle the process of loading and reading in a settings file, and
preferences are automatically saved.

To access preferences stored in NSUserDefaults, you need an instance of the NSUser

Defaults class. To get one, you ask the NSUserDefaults class for the standardUserDe

faults:

NSUserDefaults* defaults = [NSUserDefaults standardUserDefaults];

Preferences | 161

It’s also possible to allocate and initialize a new NSUserDefaults ob‐
ject instead of using the standard user defaults. You only need to do
this if you want more control over exactly whose preferences are being
accessed. For example, if you are creating an application that man‐
ages multiple users on a Mac and accesses their preferences, you can

create an NSUserDefaults object for each user’s preferences.

Registering Default Preferences
When your application obtains a preferences object for the first time (that is, on the first
launch of your application), that preferences object is empty. In order to create default
values, you need to provide a dictionary containing the defaults to the defaults object.

The word default gets tossed around quite a lot when talking about
the defaults system. To clarify:

• A defaults object is an instance of the class NSUserDefaults.

• A default is a setting inside the defaults object.

• A default value is a setting used by the defaults object when no
other value has been set. (This is the most common meaning of
the word when talking about non-Cocoa environments.)

To register default values in the defaults object, you first need to create an NSDiction

ary. The keys of this dictionary are the same as the names of the preferences, and the
values associated with these keys are the default values of these settings.

You can create this dictionary using either the methods discussed in “Dictionaries” on
page 48 in Chapter 3, or by loading a dictionary from a file. Once you have the dictionary,

you provide it to the defaults object with the registerDefaults: method.

All items in a defaults object must be NSObjects. This means that

numbers and other non-object values need to be wrapped in NSNum

ber or NSValue objects.

// Create the default values dictionary

NSDictionary* defaultValues =

 [NSDictionary dictionaryWithObjectsAndKeys:

 @"hello", "greeting", [NSNumber numberWithInt: 1], @"numberOfItems"];

// Provide this dictionary to the defaults object

[[NSUserDefaults standardUserDefaults] registerDefaults:defaultValues];

162 | Chapter 9: Model Objects and Data Storage

Once this is done, you can ask the defaults object for values.

The defaults that you register with the registerDefaults: method
are not saved on disk, which means that you need to call this every
time your application starts up. Defaults that you set in your appli‐
cation [see “Setting Preferences” on page 164] are saved, however.

Accessing Preferences
Once created, an NSUserDefaults object can be treated much like a dictionary, with a

few restrictions. You can retrieve a value from the defaults object by using the object

ForKey: method:

// Retrieve a string with the key "greeting" from the defaults object

NSString* greeting = [[NSUserDefaults standardUserDefaults]

 objectForKey:@"greeting"];

However, unlike an NSDictionary, only a few kinds of objects can be stored in a defaults
object. The only objects that can be stored in a defaults object are property list objects,
which are:

• NSString

• NSArray

• NSDictionary

• NSData

• NSNumber

• NSDate

If you need to store any other kind of object in a defaults object, you should first convert

it to an NSData by archiving it (see “Serialization and Deserialization” on page 51 in
Chapter 3).

Everything stored in an NSUserDefaults needs to be an NSObject. That means that if

you want to get an integer from an NSUserDefaults, what you get back is an NSNum

ber object that contains the number:

// Get the NSNumber from the settings database

NSNumber* integerSetting = [[NSUserDefaults standardUserDefaults]

 objectForKey:@"integerSetting"];

// Extract the number from the NSNumber

int theInteger = [integerSetting intValue];

Preferences | 163

Because values stored in an NSUserDefaults object are often things like numbers or

Boolean values, NSUserDefaults provides a number of convenience methods for ac‐
cessing non-object values directly:

int integerSetting = [[NSUserDefaults standardUserDefaults]

 integerForKey:@"integerSetting"];

float floatSetting = [[NSUserDefaults standardUserDefaults]

 floatForKey:@"floatSetting"];

BOOL booleanSetting = [[NSUserDefaults standardUserDefaults]

 boolForKey:@"booleanSetting"];

Additional methods exist for retrieving values from an NSUser

Defaults object. For more information, see the Preferences and Set‐
tings Programming Guide, available in the Xcode documentation.

Setting Preferences
In addition to retrieving values from a defaults object, you can also set values. When

you set a value in an NSUserDefaults object, that value is kept around forever (until the
application is removed from the system).

To set an object in an NSUserDefaults object, you use the setObject:forKey: method,

just as you would with an NSMutableDictionary:

NSString* greeting = @"hello"

[[NSUserDefaults standardUserDefaults] setObject:greeting forKey:@"greeting"];

As noted above, you can only set NSObject values in an NSUserDefaults object. How‐

ever, NSUserDefaults provides a number of convenience methods for wrapping non-

object values in NSNumbers:

// yam count, saved as an integer

[[NSUserDefaults standardUserDefaults] setInteger:32 forKey:@"numberOfYams"];

// yam appreciation index, saved as a floating-point number

[[NSUserDefaults standardUserDefaults] setFloat:0.98 forKey:@"yamQuality"];

Working with the Filesystem
Most applications work with data stored on disk, and data is most commonly organized
into files and folders. With the introduction of iCloud, an increasing amount of data is
also stored in the cloud.

All Macs and iOS devices have access to iCloud, Apple’s data synchronization and stor‐
age service. The idea behind iCloud is that users can have the same information on all

164 | Chapter 9: Model Objects and Data Storage

http://bit.ly/SQznt7
http://bit.ly/SQznt7

the devices and computers they own, and don’t have to manually sync or update anything
—all synchronization and updating is done by the computer.

Because of iCloud, it’s now more and more the case that working with the user’s data
means working with one of potentially many copies of that data. This means that the
copy of the data that exists on the current machine may be out of date or may conflict
with another version of the data. iCloud works to reduce the amount of effort required
to solve these issues, but they’re factors that your code needs to be aware of.

Cocoa provides a number of tools for working with the filesystem and with files stored
in iCloud. iCloud is such a large topic that we’ve devoted an entire chapter to it, so for
more information, see Chapter 20.

This chapter deals with files in the filesystem, which is only half the
story of making a document-based application. To learn how to cre‐
ate an application that deals with documents, turn to Chapter 12.

Files may be stored in one of two places: either inside the application’s bundle or else‐
where on the disk.

Files that are stored in the application’s bundle are kept inside the .app folder and dis‐
tributed with the app. If the application is moved on disk (e.g., if you were to drag it to
another location on your Mac), the resources move with the app.

When you add a file to a project in Xcode, it is added to the current target (though you
can choose for this not to happen). Then, when the application is built, the file is copied
into the relevant part of the application bundle, depending on the OS—on OS X, the

file is copied into the bundle’s Resources folder, while on iOS, it is copied into the root
folder of the bundle.

Files copied into the bundle are mostly resources used by the application at runtime—
sounds, images, and other things needed for the application to run. The user’s docu‐
ments aren’t stored in this location.

If a file is stored in the application bundle, it’s part of the code-
signing process—changing, removing, or adding a file to the bundle
after it’s been code-signed will cause the OS to refuse to launch the
app. This means that files stored in the application bundle are read-
only.

Retrieving a file from the application’s bundle is quite straightforward, and is covered
in more detail in “Using NSBundle to Find Resources in Applications” on page 63. This
chapter covers how to work with files that are stored elsewhere.

Working with the Filesystem | 165

Some files are processed when they’re copied into the application
bundle. For example, .xib files are compiled from their XML source
into a more quickly readable binary format, and on iOS, PNG im‐
ages are processed so that the device’s limited GPU can load them
more easily (though this renders them unopenable with apps like
Preview). Don’t assume that files are simply copied into the bundle!

Using NSFileManager
Applications can access files almost anywhere on the system. The “almost anywhere”
depends on which OS your application is running on, and whether the application exists
within a sandbox.

As discussed in “The Application Sandbox” on page 71, sandboxes restrict what your
application is allowed to access. So even if your application is compromised by malicious
code, for example, it cannot access files that the user does not want it to.

By default, the sandbox is limited to the application’s private working space, and cannot
access any user files. To gain access to these files, you make requests to the system, which
handle the work of presenting the file-selection box to the user and open holes in the
sandbox for working with the files the user wants to let your application access (and
only those files).

Your interface to the filesystem is the NSFileManager object, which allows you to list
the contents of folders; create, rename, and delete files; modify attributes of files and
folders; and generally perform all the filesystem tasks that the Finder does.

To access the NSFileManager class, you use the shared manager object:

NSFileManager* fileManager = [NSFileManager defaultManager];

NSFileManager allows you to set a delegate on it, which receives mes‐
sages when the file manager completes operations like copying or
moving files. If you are using this feature, you should create your own

instance of NSFileManager instead of using the shared object:

NSFileManager* newFileManager = [[NSFileManager alloc] init];

// we can now set a delegate on this new file manager to be

// notified when operations are complete

newFileManager.delegate = self;

You can use NSFileManager to get the contents of a folder, using the following method:

contentsOfDirectoryAtURL:includingPropertiesForKeys:options:error:. This

method can be used to simply return NSURLs for the contents of a folder, but also to fetch
additional information about a file:

166 | Chapter 9: Model Objects and Data Storage

NSURL* folderURL = [NSURL fileURLWithPath:@"/Applications/"];

NSFileManager* fileManager = [NSFileManager defaultManager];

NSError* error = nil;

NSArray* folderContents = [fileManager contentsOfDirectoryAtURL:folderURL

 includingPropertiesForKeys:nil

 options:0

 error:error];

After this call, the NSArray variable folderContents contains NSURLs that point to each

item in the folder. If there was an error, the method returns nil, and the error variable

contains an NSError object that describes exactly what went wrong.

You can also ask the individual NSURL objects for information about the file that they

point to. You can do this via the -resourceValuesForKeys:error: method, which re‐

turns an NSDictionary that contains the attributes for the item pointed to by the URL:

// anURL is an NSURL object

// Pass in an NSArray containing the attributes you want to know about

NSArray* attributes = [NSArray arrayWithObjects:NSURLFileSizeKey,

 NSURLContentModificationDateKey, nil];

// In this case, we don't care about any potential errors, so we

// pass in 'nil' for the error parameter.

NSDictionary* attributesDictionary = [anURL resourceValuesForKeys:attributes

 error:nil];

// We can now get the file size out of the dictionary:

NSNumber* fileSizeInBytes = [attributesDictionary

 objectForKey:NSURLFileSizeKey];

// And the date it was last modified:

NSDate* lastModifiedDate = [attributesDictionary

 objectForKey:NSURLContentModificationDateKey];

Checking each attribute takes time, so if you need to get attributes for a large

number of files, it makes more sense to instruct the NSFileManager to pre‐
fetch the attributes when listing the directory’s contents:

NSArray* attributes = [NSArray arrayWithObjects:NSURLFileSizeKey,

 NSURLContentModificationDateKey, nil];

NSArray* folderContents = [fileManager contentsOfDirectoryAtURL:folderURL

 includingPropertiesForKeys:attributes

 options:0

 error:error];

Creating directories

Using NSFileManager, you can create and remove items on the filesystem. To create a
new directory, for example, use:

Working with the Filesystem | 167

[fileManager createDirectoryAtURL:anURL

 withIntermediateDirectories:YES

 attributes:nil

 error:nil];

Note that you can pass in an NSDictionary containing the desired attributes for the new
directory.

If you set a YES value for the withIntermediateDirectories param‐
eter, the system will create any additional folders that are necessary
to create the folder. For example, if you have a folder named Foo, and

want to have a folder named Foo/Bar/Bas, you would create an NSURL

that points to the second folder and ask the NSFileManager to cre‐
ate it. The system would create the Bar folder, and then create the Bas
folder inside that.

Creating files

Creating files works the same way. You provide a path in an NSString, the NSData that
the file should contain, and an optional dictionary of attributes that the file should have:

[fileManager createFileAtPath:aPath contents:someData attributes:nil];

Removing files

Given a URL, NSFileManager is also able to delete files and directories. You can only
delete items that your app has permission to delete, which limits your ability to write a
program that accidentally erases the entire system.

To remove an item, you do this:

[fileManager removeItemAtURL:anURL error:nil];

There’s no undo for removing files or folders using NSFile

Manager. Items aren’t moved to the Trash—they’re immediately de‐
leted.

Moving and copying files

To move a file, you need to provide both an original URL and a destination URL. You
can also copy a file, which duplicates it and places the duplicate at the destination URL.

To move an item, you do this:

[file moveItemAtURL:sourceURL toURL:destinationURL error:nil];

To copy an item, you do this:

168 | Chapter 9: Model Objects and Data Storage

[file copyItemAtURL:sourceURL toURL:destinationURL error:nil];

Just like all the other file manipulation methods, these methods return YES on success,

and NO if there was a problem.

File Storage Locations
There are a number of existing locations where the user can keep files. These include
the Documents directory, the Desktop, and common directories that the user may not
ever see, such as the Caches directory, which is used to store temporary files that the
application would find useful to have around but could regenerate if needed (like
downloaded images).

Your code can quickly determine the location of these common directories by asking

the NSFileManager class. To do this, you use the URLsForDirectory:inDomains: class

method in NSFileManager, which returns an array of NSURL objects that point to a di‐

rectory that matches the kind of location you asked for. For example, to get an NSURL
that points to the user’s Documents directory, you do this:

NSArray* URLs = [[NSFileManager defaultManager]

 URLsForDirectory:NSDocumentDirectory inDomains:NSUserDomainMask];

NSURL* documentURL = [URLs lastObject];

You can then use this URL to create additional URLs. For example, to generate a URL
that points to a file called Example.txt in your Documents directory, you can use

-URLByAppendingPathComponent:

NSURL* fileURL = [documentURL URLByAppendingPathComponent:@"Example.txt"];

Working with the Sandbox
An application that runs in a sandbox may only access files that exist inside that sandbox,
and is allowed to read and write without restriction inside its designated sandbox con‐
tainer. In addition, if the user has granted access to a specific file or folder, the sandbox
will allow your application to read and/or write to that location as well.

If you want to put your application in the Mac App Store, it must be
sandboxed. Apple will reject your application if it isn’t. All iOS apps
are automatically sandboxed by the system.

Enabling Sandboxing
To turn on sandboxing, follow these steps.

Working with the Sandbox | 169

1. Select your project at the top of the navigation pane.

2. In the Capabilities tab, scroll to App Sandbox.

3. Turn on App Sandboxing.

Your application will then launch in sandboxed mode, which means that it won’t be able
to access any resources that the system does not permit it to.

To use the sandbox, you need to have a Mac developer identity. To
learn more about getting one, see “Registering for a Developer Pro‐
gram” on page 2.

In the sandbox setup screen, you can specify what the application should have access
to. For example, if you need to be able to read and write files in the user’s Music folder,
you can change the Music Folder Access setting from None (the default) to Read Access
or Read/Write Access.

If you want to let the user choose which files and folders should be accessible, change
User Selected File Access to something other than None.

Open and Save Panels
One way that you can let the user indicate that your app is allowed to access a file is to

use an NSOpenPanel or NSSavePanel. These are the standard open and save windows
that you’ve seen before; however, when your application is sandboxed, the panel being
displayed is actually not being shown by your application, but rather by a built-in system
component called Powerbox. When you display an open or save panel, Powerbox han‐
dles the process of selecting the files; when the user chooses a file or folder, it grants
your application access to the specified location and then returns information about the
user’s selection to you.

Here’s an example of how you can get access to a folder that the user asks for:

NSOpenPanel* panel = [NSOpenPanel openPanel];

panel.canChooseFiles = NO;

panel.canChooseDirectories = YES;

[panel beginWithCompletionHandler:^(NSInteger result) {

 NSURL* chosenDirectory = panel.URL;

 // the application may now do something with chosenDirectory

}];

170 | Chapter 9: Model Objects and Data Storage

Security-Scoped Bookmarks
One downside to this approach of asking for permission to access files is that the system
will not remember that the user granted permission. It’s a potential security hole to
automatically retain permissions for every file the user has ever granted an app access
to, so OS X instead provides the concept of security-scoped bookmarks. Security-scoped
bookmarks are like the bookmarks in your web browser, but for files; once your appli‐
cation has access to a file, you can create a bookmark for it and save it. On application
launch, your application can load the bookmark and have access to the file again.

There are two kinds of security-scoped bookmarks: app-scoped bookmarks, which allow
your application to retain access to a file across launches, and document-scoped book‐
marks, which allow your app to store the bookmark in a file that can be given to another
user on another computer. In this book, we’ll be covering app-scoped bookmarks.

To use security-scoped bookmarks, you need to explicitly indicate that your app uses
them in its entitlements file. This is the file that’s created when you turn on the Enable
Entitlements option: it’s the file with the extension .entitlements in your project. To
enable app-scoped bookmarks, you open the Entitlements file and add the following

entitlement: com.apple.security.files.bookmarks.app-scope. Set this entitlement

to YES.

You can then create a bookmark file and save it somewhere that your application has
access to. When your application later needs access to the file indicated by your user,
you load the bookmark file and retrieve the URL from it; in doing this, your application
will be granted access to the location that the bookmark points to.

To create and save bookmark data, you do this:

// Get the location in which to put the bookmark

NSURL* bookmarkStorageURL = [[[NSFileManager defaultManager]

 URLsForDirectory:NSApplicationSupportDirectory

 inDomains:NSUserDomainMask] lastObject];

bookmarkStorageURL = [bookmarkStorageURL

 URLByAppendingPathComponent:@"saved_bookmark.bookmark"];

// Create the bookmark data itself

NSError* error = nil;

NSData* bookmarkData = [panel.URL

 bookmarkDataWithOptions:NSURLBookmarkCreationWithSecurityScope

 includingResourceValuesForKeys:nil relativeToURL:nil error:&error];

// Save the bookmark data

[bookmarkData writeToURL:bookmarkStorageURL atomically:YES];

To retrieve a stored bookmark, you do this:

// Get the location for where the bookmark was created

NSURL* bookmarkStorageURL = [[[NSFileManager defaultManager]

Working with the Sandbox | 171

 URLsForDirectory:NSApplicationSupportDirectory inDomains:NSUserDomainMask]

 lastObject];

bookmarkStorageURL = [bookmarkStorageURL

 URLByAppendingPathComponent:@"saved_bookmark.bookmark"];

// Load the bookmark data

NSData* bookmarkData = [NSData dataWithContentsOfURL:bookmarkStorageURL];

NSURL* bookmark = nil;

if (bookmarkData) {

 // Get the URL for the bookmark

 BOOL isStale = NO;

 NSError* error = nil;

 bookmark = [NSURL URLByResolvingBookmarkData:bookmarkData

 options:NSURLBookmarkResolutionWithSecurityScope

 relativeToURL:nil bookmarkDataIsStale:&isStale

 error:&error];

 [[NSUserDefaults standardUserDefaults] setURL:bookmark forKey:@"path"];

}

When you want to start accessing the file pointed to by the bookmarked URL, you need

to call startAccessingSecurityScopedResource on that URL. When you’re done, call

stopAccessingSecurityScopedResource.

You can find a full working project that demonstrates this behavior in this book’s source
code.

172 | Chapter 9: Model Objects and Data Storage

CHAPTER 10

Cocoa Bindings

So far in this book, we’ve talked at length about how the model-view-controller para‐
digm works in Cocoa and Cocoa Touch, and how dividing up your application’s code
into these separate areas of responsibility leads to easier-to-manage codebases.

However, sometimes it may seem like overkill to write separate models, views, and
controllers, especially when all the controller needs to do is pass information directly
from the model to the view and vice versa. In many cases, the only behavior you want
is for a label to display information stored in a model object.

To solve this problem, Apple introduced bindings in OS X. Bindings are connections
between views and objects, where the contents of the object are used to directly drive
what the view displays. Bindings mean you can write less code for the same excellent
features.

In this chapter, you’ll learn how to use bindings to connect your interface directly to
data. You’ll also learn how to use the built-in controller classes that Apple provides to
manage collections of objects. By the end of the chapter, you’ll have created a sophisti‐
cated note-taking application while writing minimal code.

Bindings are only available on OS X. Sorry, iOS developers!

Binding Views to Models
A binding is simply an instruction that you give to a view about where its content comes
from. Something like “OK, text field, the text that you should show comes from this

173

object over here. If it ever changes, update yourself. Likewise, when you change, tell the
object to update the text it’s storing.”

When a view is bound to an object, you indicate which property you wish to be bound.

For example, imagine that the app delegate has a property called myString. If you bound

a label to that object’s property, the two would be linked—whatever the myString prop‐
erty contains, the label would display.

Bindings know about what data to display. More importantly, they also know about
when that display should be updated. Bindings work through key-value observing, which
we discussed in detail in Chapter 9. When the value of a property is changed, the bind‐
ings system informs every view bound to it that they should update themselves.

Bindings also work in reverse. If you have an editable view, such as a text field, the
bindings system updates the object with updated content when the user makes changes.

You can bind many different properties of views to model object properties. The most
common property you bind is the view’s value, which in most cases is the text that the
view displays (for label, text, views, and so on). You can also bind properties to things
like whether the view should be enabled or hidden, what font or color the view should
use, which image should be used, and so on. The specific view properties that can be
bound vary from view to view.

Because bindings largely remove the work of mediating between your model code and
your views, you can focus on simply building the user-facing features of your app. Simply
put, using bindings means writing less code, which means that you get to make your
end product faster and with less potential for bugs.

A Single Bindings App
To demonstrate how to bind views directly to model objects, let’s build a simple appli‐
cation that connects a slider and a text field to a property that we’ll add to the app delegate
object.

1. Create the application.

Create a new Cocoa application and call it SimpleBindings.

2. Add the property to AppDelegate.

We’ll start by adding the property to the AppDelegate object. This property will
simply store a number. Open AppDelegate.h and add the following property to it:

property (assign) NSInteger numberValue;

We’re now ready to create the interface. This application will show both a text field and
a horizontal slider.

174 | Chapter 10: Cocoa Bindings

3. Open the interface and add the interface components.

Open MainMenu.xib and then open the main window.

Drag in a text field and place it on the lefthand side of the window.

Next, drag in a horizontal slider, and place it on the right of the text field.

4. Make both controls continuous.

We want both views to update the application as the user works with them. This
means that we want both controls to be continuous—that is, they’ll send their in‐
formation out to the application the moment the user moves the mouse or types a
key. If a control isn’t continuous, it waits until the user is done interacting with it
before sending its new value (which can save work for the application).

To make the controls continuous, select both the text field and the slider and then
open the Attributes inspector, which is the fourth tab from the left in the Inspector
pane. Turn the Continuous checkbox on.

Figure 10-1. The inital interface for this application, as laid out in the interface builder.

Now that the interface has been set up, it’s time to create bindings.

Remember that the AppDelegate object now has a property, called

numberValue, which stores an integer. We’re going to bind both of
these controls to this property, which will cause the property’s value
to be displayed in the controls. Having both controls bound to the
same thing also has the effect of making them control each other—
by dragging the slider from left to right, the text field will update.

5. Bind the text field to the app delegate. Select the text field and then the Bindings
inspector. (It’s the second tab from the right, at the top of the Inspector pane—its
icon looks like a little knot.)

A Single Bindings App | 175

The Bindings inspector displays the list of all possible bindable properties in the
text field. In this case, we want to bind the text field’s value, which is the text that is

displayed, so open the Value property.

When binding to an object, we need to provide two things: the object that we are
binding to, and the key that we want to bind to. The key is simply the name of the
property, method, or instance variable that has the content that we want to display.

In this case, the object that we want to bind to is the app delegate. The Bindings
inspector lists all top-level objects in the nib as things that you can bind to, which

means you can easily select it. The key that we want to bind to is numberValue,
because that’s the name of the property in the app delegate object.

You’ll notice that there are two “key” fields shown: the control‐
ler key and the model key path. The controller key refers to the
property exposed by the object that you’re binding to, while the
model key path refers to the property inside the object that’s
returned by accessing the controller key from the bound ob‐
ject. Because we’re not working with a controller object in this
case, we provide a model key path that points directly to the
property we want.

6. Bind the text field’s Value.

Select App Delegate in the Bind to drop-down list.

Set the model key path to numberValue.

A little red alert icon will appear next to the word numberValue. This

is because the text field usually expects an NSString to be provided,

and the numberValue property is an NSInteger. This is fine, because
the bindings system knows how to convert integers to strings. How‐
ever, if you see the red alert icon appear, double-check to make sure
that you’re binding properties of the correct data types.

7. Make the binding update continuously. Just as the text field updates continuously,
we want the binding to also update the rest of the application continuously.

To do this, turn on the Continuously Updates Value checkbox.

8. Bind the slider to the same property. Now that the text field has been bound, we’ll
do the same thing for the slider. Keep the Bindings inspector open and select the
horizontal slider.

Open the Value binding.

176 | Chapter 10: Cocoa Bindings

Select App Delegate in the Bind to drop-down list, and set the model key path to

numberValue.

You can now see the binding in action. Run the app, and note what happens when you
drag the slider back and forth—the text field updates to show the current value of

numberValue. If you change the text in the text field, the slider will update.

Binding to Controllers
In the previous example we’ve bound views directly to properties that are stored in an
object, bypassing a controller object. This works just fine for simple cases, but bindings
are also capable of much more powerful work.

For example, it’s possible to bind views to data stored in the user defaults system—that

is, within the NSUserDefaults database. This has a number of useful results, such as
being able to quickly and easily build a “settings” screen that binds the controls directly
to the data stored in the user preferences system.

However, NSUserDefaults is simply a data storage system, and you can’t bind directly
to it because its content isn’t directly observable by the key-value observing system that
bindings rely on. To work with it, you need an object mediating between your views
and the model. Sound familiar? That’s right—you need a controller object!

Apple provides just such an object to let you work with NSUserDefaults in bindings:

NSUserDefaultsController. This object provides mechanisms for binding views to

defaults stored in NSUserDefaults. It also provides a few more advanced features, such
as the ability to make changes and then let the user cancel or apply them—so if you want
the user to be able to cancel his changes in your preferences window, you can!

Because NSUserDefaultsController is such a common control, you don’t even need
to create one to start using it. Simply by binding a control to the defaults makes it appear
in the Interface Builder’s outline.

To demonstrate how you can use this controller in your app, we’ll adapt our application
to store user preferences.

1. Add a checkbox. First, we’ll add a checkbox whose value is stored in the user defaults
system, which will also control whether the text field and horizontal slider are en‐
abled (that is, whether the user can interact with them). To do this, simply add a

checkbox to the window and change its label to Enabled.

2. Bind the checkbox to the user defaults. Select the checkbox and open the Bindings
inspector.

Bind its value to the Shared User Defaults Controller, which appears in the list of
bindable objects.

Binding to Controllers | 177

Set the controller key to values and the model key path to controlsEnabled.

We haven’t set up a property in the code called controlsEnabled, but that’s OK—

remember, when you use NSUserDefaults, you just set values for preferences you
want to store.

3. Bind the Enabled property of both the slider and the text field.

Now that the checkbox has been set up, we’ll make the text field and horizontal

slider become enabled or disabled based on the value of the controlsEnabled

property stored in the user defaults. We’ll do this by binding the controls’ En

abled property.

To do this, select the text field and bind the Enabled property to the Shared User

Defaults Controller. Set the controller key to values and the model key path to

controlsEnabled.

Repeat this process for the horizontal slider.

Figure 10-2. The completed interface for this application, as laid out in the interface
builder

We can now see it in action. Launch the app, and note that changing the state of the
checkbox makes the text field and slider become enabled and disabled. Quit and re‐
launch the application, and note that the checkbox remembers its state.

Quietly marvel at the fact that you wrote no code at all for this feature!

Array and Object Controllers
As we’ve seen, controllers mediate between views and models, and allow you to make
bindings that keep you from having to write lots of laborious code.

178 | Chapter 10: Cocoa Bindings

We’ve just seen NSUserDefaultsController in action, which allows you to bind views

to the user preferences system. In this case, the model object is the NSUserDefaults
object.

Other controllers exist, which you can use to mediate access to other data in your ap‐
plication. If you want your application to display a collection of data, you need parts of
your interface to display the entire collection and other parts to display specific infor‐
mation about the currently selected item in the collection.

This is where NSArrayController comes in. NSArrayController is a controller object

that manages an array (either an NSArray or NSMutableArray) and provides access to
the contents of the array. The array controller also provides the concept of “selected”
objects, meaning that your code can display content relevant for only the items that have

been selected by the user. Finally, the NSArrayController is also capable of adding and
removing items from the array that it manages.

Another example of a controller object is NSObjectController, which acts as a con‐
troller for a single object. The typical use case for this class is where you bind your

interface to the NSObjectController, and then your code gives an object to that con‐
troller. The moment the content object of the controller changes, the interface updates.

A More Complex Bindings App
Controllers allow you to create extremely sophisticated applications with minimal code.
To demonstrate how this works, we’re going to create an application that lets the user
create, edit, view, and delete small text notes, all while doing most of the work with
bindings.

The application will work with a class that we’ll create called Note. This class will contain
a number of properties: the note’s title, the text contained within it, and the date and
time that the note was created and edited. The application will display a list of all notes
that the user has created, as well as displaying and allowing the user to edit notes. When
the user edits a note, the note will update itself to reflect the date and time that the note
was changed.

Let’s get started on our app.

1. Create the application. Create a new Cocoa application and call it ControllerBind

ings.

2. Create the Note class. Create a new class by choosing File→New→File or by pressing
⌘-N.

Create a new Objective-C class called Note. Make this class a subclass of NSObject.

A More Complex Bindings App | 179

3. Add properties to the Note class. Now that the class has been created, we’ll add the
following properties:

• title, an NSString

• text, an NSAttributedString

• created, an NSDate

• edited, an NSDate

NSAttributedString is an NSString subclass that also stores infor‐

mation like font, style, and color. You can use NSAttributedString
to store rich text.

Open Note.h and add the following code to Note’s @interface section:

@property (strong, nonatomic) NSString* title;

@property (strong, nonatomic) NSAttributedString* text;

@property (strong) NSDate* created;

@property (strong) NSDate* edited;

You’ll notice that the title and text properties have nonatomic in
the property descriptions. This is because we’ll be overriding the set‐
ters for these properties, and it’s helpful to let the compiler know that

the setters should not be considered thread-safe, which is what nona

tomic means.

4. Update the code for Note. When the object is created, we want the created property

to be set to the current date. Similarly, when the title or text properties are up‐

dated, we want the edited property to be updated to the current date. Finally, when

the object is created, the note’s title text should read “New note.”

We’ll do this by overriding the init, setText:, and setTitle: methods. Add the

following methods to Note.m, in Note’s @implementation section:

- (id)init {

 self = [super init];

 if (self) {

 self.title = @"New note";

 self.created = [NSDate date];

 }

 return self;

}

180 | Chapter 10: Cocoa Bindings

// If the title or text are modified, set the edited date to now

- (void)setTitle:(NSString *)title {

 _title = title;

 self.edited = [NSDate date];

}

- (void)setText:(NSAttributedString *)text {

 _text = text;

 self.edited = [NSDate date];

}

We’re now done with the Note class. It contains the data that we need it to, and will
behave the way we want when it’s created and updated.

We now need a place to store the instances of the Note class. Because we don’t want to
deal with the challenges of storing content on disk, this example project will simply store

the Notes in an NSMutableArray inside the application delegate object. This means that
no information will be kept around when the app exits.

The NSMutableArray will be stored in a property. This is important because it means
that the array controller object that we’ll create later will be able to bind to it.

To add the notes property to AppDelegate, open AppDelegate.h. Add the following code

to AppDelegate’s @interface section:

@property (strong) NSMutableArray* notes;

Finally, we need the notes property to be properly set up when the application starts

up. In the applicationDidFinishLaunching: method, add the following code:

self.notes = [NSMutableArray array];

We’re now completely done with all the code for this application. From here on out, it’s
bindings all the way.

The first thing that we want to do is display a list of notes that the user has created, and
provide a way to add and remove notes from the list. We need a way to provide access

to the Note instances. Unlike in our first application, we can’t bind the controls directly

to the notes property in the app delegate because that’s an array, and we want to be able
to display individual notes.

To enable this, we use an NSArrayController. This class acts as the gateway to the

contents of the array. It will be bound to the notes property, and other views will be
bound to it.

The list view itself will be an NSTableView. This class is traditionally tricky to set up and
requires that your code act as a data source, implementing several methods and pro‐
viding all kinds of information to the class. Not so with bindings—in this case, we’ll be

A More Complex Bindings App | 181

binding the table view’s contents directly to the array controller that manages the notes
collection.

First, let’s create and set up the array controller.

1. Open the interface and drag in the array controller.

Open MainWindow.xib. We’re going to start by adding the NSArrayController
instance, which lives in the Object Library. Search for array controller, and you’ll
find it. Drag one into the outline.

2. Bind the array controller to the app delegate. We’ll now instruct the array controller

to access the notes property when it wants to know where the data it’s managing
is stored.

Select the array controller, and open the Bindings inspector.

Open the Content Array property, and bind it to the App Delegate. Set the model

key path to notes.

3. Set the array controller’s class. We also need to let the array controller know about
what class of object the array will contain. This is important because when the array
controller is asked to add a new item to the array, it needs to know which class to
instantiate.

With the array controller selected, open the Attributes Inspector. Set the Class Name

to Note.

When you provide a content array to an array controller, the array controller is able
to be bound to other objects. Some useful bindable properties include:

• arrangedObjects: The total collection of objects in the array, arranged based on
the array controller’s settings (such as any filters or sorting options that may have
been applied)

• selection: The currently selected object

• canAdd and canRemove: BOOL properties that indicate whether the array con‐
troller is currently able to add or remove items.

These properties can be accessed by using them as controller keys in the Bindings
inspector.

The array controller is now set up, and we can start creating the interface. We’ll begin
by adding the table view that lists all notes, as well as buttons that allow adding and
removing items.

1. Add a table view. Drag in a table view and place it on the lefthand side of the window.
Resize it so that it’s about a third of the width of the window.

182 | Chapter 10: Cocoa Bindings

When you add a table view, it’s placed inside a scroll view. We’re going to want to
set up several different aspects of the table view, so expand the entire tree by holding
down the Option key and clicking the arrow next to Scroll View—Table View in
the outline. Select Table View in the items that appear.

Set the Columns counter in the Attributes inspector to 1.

2. Bind the table column to the array controller. We want the table view controller to
display note titles in the list. Select the Table Column in the outline and open the
Bindings inspector.

Bind the Value property to the array controller. Set the controller key to arrange

dObjects and the model key path to title.

The table view will now show the value of the title property for all items in the

notes array. Additionally, the table view will control which item is selected.

3. Add the add and remove buttons. We’ll now add two buttons to the view to allow
adding and removing items.

Drag in a gradient button from the object library. Resize it to a smallish square
shape, and place it underneath the table view.

In the Attributes inspector, set the button’s title to nothing (that is, delete all the

text). Set the image to NSAddTemplate, which will make the button show a plus icon.

Hold down the Option key and drag the button to the right. A copy will be made;

place it next to the first button. Set the image of this new button to NSRemove

Template, which shows a minus icon.

4. Connect the add and remove buttons to the array controller. We can now make these
buttons instruct the array controller to add and remove items.

Control-drag from the add button to the array controller. Choose add: from the
menu that appears.

Control-drag from the remove button to the array controller. Choose remove: from
the menu that appears.

Now when these buttons are clicked, the array controller will add a new item to the
array that it’s managing or delete the currently selected item.

5. Bind the remove button’s Enabled property to the array controller. For a finishing
touch, we’re going to disable the remove button if there’s nothing to remove or if

there’s no selected object. The array controller exposes a property called canRe

move, to which we can bind the button’s Enabled property.

Select the remove button and open the Bindings inspector.

Bind the Enabled property to the array controller, using the controller key can

Remove.

A More Complex Bindings App | 183

Figure 10-3. The completed interface for this application, as laid out in the interface
builder

You can now see this in action by launching the app. Clicking on the add and remove
buttons will add and remove items from the list, and when nothing is selected, the
remove button is disabled.

We’ll now make the notes work. All we need to do here is set up views and bind them
to the selected object, which is provided to us by the array controller.

1. Create the interface. Add a text field to the right side of the window and place it at

the top. This text field will show the title property in the notes.

Add a text view underneath the text field. Make it rather tall to allow for plenty of

room for adding text. This text view will show the text property.

2. Bind the controls. Select the text field and bind its value to the array controller. Set

the controller key to selection and the model key path to title. Turn Continu‐
ously Updates Value on.

184 | Chapter 10: Cocoa Bindings

Select the text view (note that it’s kept inside a scroll view, so you’ll need to expand
it in the outline to get to it), and bind its value to the array controller. Set the

controller key to selection and the model key path to text. Turn Continuously
Updates Value on here, too.

3. Create the date labels. Finally, we’ll create the interface that shows the date and bind
it.

Add a label to the window. Set its text to Created: and place it under the text view.

Add another label and set its text to Edited:. Place it under the Created label.

Add a third label and put it to the right of the Created label. Resize it to the right
edge of the window. This label will display the date that the note was created on.

Add a fourth label to the right of the Edited label. Resize it like the last one.

4. Bind the date labels. Select the empty label to the right of the Created label and bind

it to the array controller. Set the controller key to selection and the model key

path to created.

Select the other label and bind it similarly, but with the model key path set to edited.

We’re done. You can now see the entire app in action! You can add and remove
items, and store any text you like in the text field. Renaming the note updates live

in the list, and changing the note’s contents updates the Edited label.

A More Complex Bindings App | 185

CHAPTER 11

Table Views and Collection Views

One of the most common tasks for any app, regardless of platform, is displaying lists or
collections of data. iOS and OS X provide a number of tools for viewing data, and in
this chapter you’ll learn how to use them.

Both iOS and OS X feature table views and collection views. A table view is designed to
provide a list of data, while a collection view is designed to show a grid of data. Both
table views and collection views can be customized to provide different layouts.

Table views are used all over OS X—Finder and iTunes both use it to show lists of files
and songs. Table views are used even more heavily in iOS—any time you see a vertically
scrolling list, such as the list of messages in Messages or the options in Settings, you’re
seeing a table view.

Collection views are used a little less frequently, as they’re a newer addition to both
platforms. Collection views can be seen (again) in Finder and iTunes, as well as in
Launchpad. On the iPad, a collection view appears in the Clock application, which was
added in iOS 6.

Data Sources and Delegates
Despite their differences in layout, table and collection views have very similar APIs.
When a data display view prepares to show content, it has to know the answers to at
least two questions:

1. How many items am I showing?

2. For each item, what do I need to do to display it?

These questions are asked of the view’s data source, which is an Objective-C object that
conforms to the view’s data source protocol. The data source protocol differs based on
the type of view that you’re using.

187

There are other questions that a data view may need to know the answer to, including
“How tall should each row in the list be?” and “How many sections should the list
contain?” These questions are also answered by the data source, but the view can fall
back to some default values in case the data source isn’t able to provide this information.

Sometimes displaying information is all you want, but your application usually needs
to respond to the user interacting with the view’s content. The specific things that the
user can do vary depending on the platform, the kind of data view, and how you’ve
configured the view. Some possible interactions include:

• Clicking (or tapping) on an item

• Rearranging content

• Deleting or modifying content

These actions are sent by the view to its delegate.

Table Views
Table views are designed for showing lists of information. On OS X, a table view shows
data with multiple columns, which can be rearranged and resized, and is generally used
to show data. On iOS, table views only show one column and are useful for any kind of
vertically scrolling list, as seen in the Settings application.

UITableView on iOS
Table views are implemented on iOS using the UITableView class. This is one of the
most versatile view classes on iOS: with it, you can create interfaces that range from
simple lists of data to complex, multi-part, scalable interfaces.

On iOS, the term “table view” is somewhat of a misnomer. The word “table” usually
brings to mind a grid with multiple rows and columns, but on iOS the table view is
actually a single column with multiple rows. The reason for this is that the size of the
iPhone’s screen is too narrow for more than one column to make sense, but the API

design for UITableViewController was based on NSTableViewController, which we’ll
discuss later in this chapter.

Table views on iOS present a scrolling list of table view cells, which are views that can

contain any data you like. UITableView is designed for speed: one of the most common
gestures that the user performs on an iOS device is to flick a finger up and down a
scrolling list, which means that the application needs to be able to animate the scrolling
of that list at high frame rates (ideally, 60 frames per second, which is the maximum
frame rate of iOS).

188 | Chapter 11: Table Views and Collection Views

Sections and Rows
Table views can be divided into multiple sections, each of which contains one or more
rows. Sections allow you to divide your content in a manner that makes sense to you.
For example, the Contacts application uses a table view that divides rows by surname,
and the Settings application uses a table view that divides rows into categories.

Because table views are divided into sections, specific locations in the table view are
identified not by row, but by index path. An index path is nothing more complex than

a section number and a row number, and is represented using the NSIndexPath class:

NSIndexPath* indexPath = [NSIndexPath indexPathForRow:2 inSection:1];

(Note that you don’t usually create NSIndexPaths yourself—this example just shows
how they’re composed.)

Let’s imagine that we’ve got a table view that’s divided into two sections: the first section
has two rows, and the second section has three (Figure 11-1).

Figure 11-1. A table view, divided into sections

Using index paths, you can refer to the very first cell as section 0, row 0. The second cell
is section 0, row 1, and the third cell is section 1, row 0. This allows cells to be numbered
independently of their sections, which can be very handy indeed.

Table View Controllers
If you add a UITableView to an interface without doing any additional work, you’ll see

an empty list. By default, UITableViews rely on a data source object to provide them
with information on what content to show.

UITableView on iOS | 189

Any object can be a data source for a UITableView; the only requirement is that it must

conform to the UITableViewDatasource protocol (see “Protocols” on page 29).

The object is almost always a UIViewController, and almost always the view controller
of the view that contains the table view. There’s nothing stopping you from doing it
differently, though.

The two critical methods that the UITableViewDatasource protocol defines are:

-(NSInteger)numberOfRowsInSection:(NSInteger)section

-(UITableViewCell *)cellForRowAtIndexPath:(NSIndexPath *)indexPath

The first, numberOfRowsInSection:, returns the number of rows in the

specified table section (see “Sections and Rows” on page 189). The second, cellFor

RowAtIndexPath:, returns a UITableViewCell for the specified index path.

For example, here’s how to indicate that every section in the table has two rows:

- (NSInteger)numberOfRowsInSection:(NSInteger)section {

 return 2;

}

This method is the easier of the two. Here’s an example of an implementation of table

View:cellForRowAtIndexPath:; we’ll talk about exactly what it does in the next section.

- (UITableViewCell*) tableView:(UITableView*) tableView

 cellForRowAtIndexPath:(NSIndexPath*) indexPath {

 UITableViewCell* cell = [tableView

 dequeueReusableCellWithIdentifier:@"Cell"];

 cell.textLabel.text = @"Hello";

 return cell;

}

Table View Cells
A table view cell represents a single item in the table view. Table view cells are UITable

ViewCells, a subclass of UIView. Just like any other UIView, table view cells can have

any other UIViews included as subviews.

When the table view needs to show data, it needs the answer to two questions: how
many rows are there to show, and what should be shown for each row. The first question

is answered by the numberOfRowsInSection: method; the second is answered by ta

bleView:cellForRowAtIndexPath:.

cellForRowAtIndexPath: is called for every visible row in the table view as it comes
into view. This last part is important because it enables the table view to not have to
worry about displaying content that isn’t visible. If, for example, you have a table view

190 | Chapter 11: Table Views and Collection Views

that contains a thousand objects, fewer than ten of those objects are likely to be visible.
Because it makes no sense for the table view to attempt to display table view cells for

rows that may never be shown, tableView:cellForRowAtIndexPath: is called only as
a cell is about to come onto the screen.

tableView:cellForRowAtIndexPath: is responsible for returning a configured UI

TableViewCell. “Configured,” in this case, means making sure that the table view cell
is displaying the right content. That content depends on what the table view is being
used for: if you’re making a shopping list application, each table view cell would contain
an item in the shopping list.

Cell reuse

As the user scrolls the table view, some items in the list will go off screen while others
come on screen. When a table view cell in the list scrolls off screen, it is removed from

the table view and placed in a reuse queue. This reuse queue stores UITableViewCell
objects that have been created but are not currently visible. When a cell is scrolled into

view, the table view retrieves an already created UITableViewCell object from the reuse
queue.

The advantage of this method is that the time taken to allocate and set up a new object
is completely removed. All memory allocations take time, and if the user is quickly
scrolling through a long list, he would see a noticeable pause as each new cell appeared.

UITableViewCell objects are automatically placed into the reuse queue by the table view

as the cells scroll off screen; when the table view’s data source receives the table

View:cellForRowAtIndexPath: message, it fetches a cell from the reuse queue and
prepares that, rather than creating an entirely new cell.

A table view can have many different kinds of cells—for example, you might have a table
view with two sections that show entirely different cells in each section. However, there’s

only one tableView:cellForRowAtIndexPath: method, which is called for all rows in
all sections. To differentiate, you can use the index path that is passed to this method to
figure out which section and row the table view wants a cell for.

Anatomy of a UITableViewCell

A table view cell is a UIView, which can contain any additional UIViews that you want

to include. In addition to this flexibility, UITableViewCell objects also support a few
basic styles, which are similar to the table view cells seen in other parts of iOS. There
are four basic table view styles:

Default
A black, bold, left-aligned text label, with an optional image view. As the name
suggests, this is the default style for table view cells.

UITableView on iOS | 191

Right Detail
A black, left-aligned text label, with a smaller, blue-colored, right-aligned text label
on the righthand side. This cell style can be seen in the Settings application.

Left Detail
A blue, right-aligned label on the lefthand side, with a black, left-aligned label on
the righthand side. This cell style can be seen in the Phone and Contacts applica‐
tions.

Subtitle
A black, left-aligned label, with a smaller, gray label underneath it. This cell style
can be seen in the Music application.

The common theme is that all table view cells have at least one primary text label, and

optionally a secondary text label and an image view. These views are UILabel and

UIImageView objects, and can be accessed through the textLabel, detailTextLabel,

and imageView properties of the table view cell.

Preparing table views in Interface Builder

Prior to iOS 5, constructing table views and table view cells was a largely programmatic
affair, with developers writing code that manually instantiated and laid out the contents
of any nonstandard table view cells in code. This wasn’t a great idea, since layout code
can get tricky. So, from iOS 5 onward, table views and their cells can be designed entirely
in Interface Builder.

When you add a table view to an interface, you can also create prototype cells. The
contents of these cells can be designed by you and completely customized (from chang‐
ing the colors and fonts to completely changing the layout and providing a custom

subclass of UITableViewCell). These prototype cells are marked with a cell identifier,
which allows your code to create instances of the prototypes.

Analyzing tableView:cellForRowAtIndexPath:

With all of the above in mind, we can now take a closer look at the tableView:cell

ForRowAtIndexPath: implementation that we looked at earlier. Here it is again:

- (UITableViewCell*) tableView:(UITableView*) tableView

 cellForRowAtIndexPath:(NSIndexPath*) indexPath {

 // 1

 UITableViewCell* cell = [tableView

 dequeueReusableCellWithIdentifier:@"MyCell"];

 // 2

 cell.textLabel.text = @"Hello";

 // 3

192 | Chapter 11: Table Views and Collection Views

 return cell;

}

The method performs three actions:

1. The table view is asked to dequeue a table view cell that has a cell identifier of

MyCell. This causes the table view to either create an instance of the prototype cell
that has this identifier, or dequeue one from the reuse queue if a cell with this
identifier has been previously created and is not currently visible.

2. The cell’s primary text label is set to display the text Hello.

3. Finally, the cell is returned to the table view, which will display it to the user.

Responding to actions

The most common thing that the user does with table view cells is to tap them. When
this happens, the table view will contact its delegate and inform it that a cell was selected.

An object must conform to the UITableViewDelegate protocol in order to be a delegate.
The table view’s delegate can be different from its data source, but in practice the delegate
is the same object as the data source (that is, the view controller that manages the table

view conforms to both the UITableViewDelegate and UITableViewDatasource pro‐
tocols).

There are several methods that UITableViewDelegate specifies, all of which are

optional. The most important and commonly used method is tableView:didSe

lectRowAtIndexPath:, which is called when a row is tapped. This is the delegate’s op‐
portunity to perform an action like moving to another screen.

- (void)tableView:(UITableView *)tableView

 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 // The table view cell at 'indexPath' got selected

}

Implementing a Table View
To put it all together, we’ll build a simple table view application that displays the contents

of an array of NSString objects.

1. Create a new iOS application named iOSTableView. Make it a single-view applica‐
tion for the iPhone.

2. Delete the ViewController.h and ViewController.m files. We’ll be creating replace‐
ments for them shortly.

UITableView on iOS | 193

3. Create and set up the table view. In this example, the view controller will be a

UITableViewController, which is a subclass of UIViewController that manages

a single UITableView.

Open Main.storyboard and delete the existing view controller. Then drag in a Table
View Controller from the Objects Library.

4. Set up the prototype cell. By default, a UITableViewController that’s been dragged
into the storyboard contains a single prototype cell. We’re going to configure that
to be the cell that we want.

Select the single cell that appears at the top of the table view.

Make sure the Attributes inspector is open, and change its identifier to StringCell.

Change the cell’s style from Custom to Basic.

The table view is fully configured; it’s now time to write the code that will provide the
table view with the information it needs.

5. Create the new table view controller class. Create a new Objective-C class by choos‐

ing File→New→File… and selecting Objective-C class. Name it TableViewControl

ler and make it a subclass of UITableViewController.

6. Make the table view controller use the new class. Go back to the storyboard and
select the view controller.

Note that clicking on the table view won’t select the view controller—it’ll select the
table view. You can select the table view controller itself from the Outline view on
the lefthand side of the Interface Builder.

Go to the Identity inspector and change the class from UITableViewController to

TableViewController.

7. Open TableViewController.m and add the array of strings.

We can now write the code that drives the table view. First, we need to create an

NSArray that contains the NSString objects that will be displayed.

Make the class extension at the top of TableViewController.m look like this:

@interface TableViewController () {

 NSArray* data;

}

@end

Next, add the following line of code to the viewDidLoad method.

data = @[@"Once", @"upon", @"a", @"time"];

194 | Chapter 11: Table Views and Collection Views

8. Make the table view data source return one section. The table view will contain one

section, and this section will contain as many rows as there are entries in the data
array.

To determine how many sections are present, the table view sends its data source

object the numberOfSectionsInTableView: message. This method is already im‐
plemented in the template code, but returns zero. We just need to change this to
return 1.

Find the numberOfSectionsInTableView: method in TableViewController.m and
replace it with the following code:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

{

 return 1;

}

9. Make the table view data source indicate the correct number of rows for the sec‐
tion. We need to tell the table view that the section has as many rows as there are

objects in the data array. This is handled by the tableView:numberOfRowsInSec

tion: method.

Find the tableView:numberOfRowsInSection: method in TableViewControl
ler.m and replace it with the following code:

- (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section

{

 return data.count;

}

10. Implement the tableView:cellForRowAtIndexPath: method. We need to prepare
the table view cells for each of the rows that the table view will ask for.

Find the tableView:cellForRowAtIndexPath: method in TableViewControl
ler.m and replace it with the following code:

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

 static NSString *CellIdentifier = @"StringCell";

 UITableViewCell *cell = [tableView

 dequeueReusableCellWithIdentifier:CellIdentifier

 forIndexPath:indexPath];

 NSString* string = data[indexPath.row];

 cell.textLabel.text = string;

 return cell;

}

UITableView on iOS | 195

11. Implement the tableView:didSelectRowAtIndexPath: method. Finally, we’ll
make the code log the string corresponding to the text that was selected.

Find the tableView:didSelectRowAtIndexPath: method in TableViewControl
ler.m and replace it with the following code:

- (void)tableView:(UITableView *)tableView

 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

 NSLog(@"Selected %@", data[indexPath.row]);

}

NSTableView on OS X
The process of displaying tables of data on OS X is slightly more complex than on iOS.
Tables on OS X are capable of displaying multiple columns of data, which can be

rearranged and resorted by the user. Table views on OS X are instances of the NSTable

View class. However, the fundamental idea behind table views on OS X is the same as
on iOS—a table view uses a data source object to determine how many rows exist and
what content should be shown for each row.

The only significant difference in terms of programming for NSTableView is that the
method that returns the content that should be shown for a table view cell needs to take
into account both the row number and column for the data.

The method for returning the view that should be shown in a cell is tableView:view

ForTableColumn:row:. This method’s parameters are the NSTableView that wants to
show content, and the column and row number that are being displayed. The row

number is represented as a simple integer, while the table column is an NSTableCol

umn. This is because columns can be rearranged, and it therefore doesn’t make sense to

have “column numbers.” Rather, NSTableColumn objects have identifiers, which are used
by your code to figure out what specific piece of information needs to be shown.

To demonstrate how table views work on OS X, we’ll build an application that displays
multiple columns of data. This app will display a list of songs, along with their running
times.

1. Create the project. Create a new Cocoa application called CocoaTableView.

2. Create the Song class. The first thing we’ll do is create the data source. Each song

that the application displays will be an instance of the class Song, which we’ll create

ourselves. Each Song object has a title string, as well as a duration represented as

an NSTimeInterval (which is just another way of saying float—it’s a typedef de‐
fined by Cocoa).

196 | Chapter 11: Table Views and Collection Views

To create the class, go to File→New→File… and choose Objective-C class. Create a

new class called Song and make it a subclass of NSObject.

Once it’s been created, open Song.h and make its @interface look like the following
code:

@interface Song : NSObject

@property (strong) NSString* title;

@property (assign) NSTimeInterval duration;

@end

You don’t need to do anything in Song.m, because this class on‐
ly contains properties and no methods.

3. Add the songs and songsController properties to AppDelegate. Next, we’ll make

AppDelegate store a list of Song objects. This list will be an NSMutableArray, which

is managed by an NSArrayController. This controller will be used as part of the
bindings used to drive the table view.

Open AppDelegate.h and add the following properties to the @interface of App

Delegate:

@property (strong) NSMutableArray* songs;

@property (strong) IBOutlet NSArrayController *songsController;

4. Populate the songs list. Finally, we need to make the object populate this list when
it appears.

Open AppDelegate.m and add the following method to the @implementation of

AppDelegate:

@implementation AppDelegate

- (void)awakeFromNib {

 self.songs = [NSMutableArray array];

 Song* aSong;

 aSong = [[Song alloc] init];

 aSong.title = @"Gaeta's Lament";

 aSong.duration = 289;

 [self.songsController addObject:aSong];

NSTableView on OS X | 197

 aSong = [[Song alloc] init];

 aSong.title = @"The Signal";

 aSong.duration = 309;

 [self.songsController addObject:aSong];

 aSong = [[Song alloc] init];

 aSong.title = @"Resurrection Hub";

 aSong.duration = 221;

 [self.songsController addObject:aSong];

 aSong = [[Song alloc] init];

 aSong.title = @"The Cult of Baltar";

 aSong.duration = 342;

 [self.songsController addObject:aSong];

}

Bonus points for those who get the reference!

We’ll now prepare the interface for the application.

5. Add the array controller. Drag an array controller into the outline.

Open the Bindings inspector, and bind the content array to the app delegate. Set

the model key path to self.songs.

Hold down the Control key and drag from the app delegate to the array controller.

Choose songsController from the menu that appears.

6. Create the table view. Open MainMenu.xib and select the window. It’s empty, but
we’ll soon fix that.

Drag a table view from the Objects Library into the window. Make it fill the window.

Select the table header view at the top of the table view. Double-click the first col‐

umn’s header and rename it Title. Rename the second column header Duration.

7. Prepare the table columns. We now need to set up the columns to have the correct

identifiers, and to use NSViews as their content rather than old-style NSCells (which
was the previous method prior to OS X 10.7 Lion).

Select the Table Column—Title object in the outline. Switch to the Identity inspector
and set the identifier to Title.

198 | Chapter 11: Table Views and Collection Views

Then, select the Table Column—Duration object in the outline and change its
identifier to Duration.

Finally, select the Table View in the outline and change its content mode from Cell
Based to View Based.

8. Set up the table view’s data source and delegate.

Control-drag from the table view to the app delegate, and choose “datasource” from
the menu that appears. Then control-drag from the table view to the app delegate
again, and choose delegate.

9. Make AppDelegate conform to the protocols. The AppDelegate class needs to con‐

form to the NSTableViewDataSource and NSTableViewDelegate in order to satisfy
the compiler.

Open AppDelegate.m. Add the following class extension above the @implementa

tion of AppDelegate:

@interface AppDelegate () <NSTableViewDataSource, NSTableViewDelegate>

@end

10. Add the numberOfRowsInTableView: method. Add the following method to App

Delegate. This method indicates to the table view how many rows should appear:

- (NSInteger)numberOfRowsInTableView:(NSTableView *)tableView {

 return self.songs.count;

}

11. Add the tableView:viewForTableColumn:row: method. Add the following meth‐

od to AppDelegate. This method returns an NSView that will appear in the table
view cell, based on the row number and column used:

- (NSView *)tableView:(NSTableView *)tableView

 viewForTableColumn:(NSTableColumn *)tableColumn

 row:(NSInteger)row {

 NSTextField* textField = [tableView

 makeViewWithIdentifier:@"TextField" owner:self];

 Song* song = [self.songs objectAtIndex:row];

 if (textField == nil) {

 textField = [[NSTextField alloc] initWithFrame:NSZeroRect];

 [textField setBordered:NO];

 [textField setEditable:NO];

 [textField setDrawsBackground:NO];

 textField.identifier = @"TextField";

 }

 if ([tableColumn.identifier isEqualToString:@"Title"]) {

 textField.stringValue = song.title;

NSTableView on OS X | 199

 } else if ([tableColumn.identifier isEqualToString:@"Duration"]) {

 NSString* durationText =

 [NSString stringWithFormat:@"%i:%02i",

 (int)song.duration / 60,

 (int)song.duration % 60];

 textField.stringValue = durationText;

 }

 return textField;

}

In this method, the table view is asked to dequeue a reusable view with the identifier

TextField. If one doesn’t exist (and it won’t, for the first several rows), the method

returns nil and the view must be created manually.

Then, depending on the specific column, the text of the text field is set to either the
song’s title or a string representation of the song’s duration.

Finally, run the application. Behold the songs!

Sorting a Table View
When you click a table view header, you’re indicating to the table view that it should re-
sort the contents of the table. To do this, the table columns need to know what specific
property they’re responsible for showing.

This is implemented by providing sort keys to each of the columns. Sort keys indicate
what property should be used for sorting.

To add sort keys, select the Table Column—Title in the outline. Open the Attributes

inspector and set the sort key to title. Leave the selector as compare: and the order as
Ascending.

Then, select Table Column—Duration in the outline, and change the sort key to

duration.

When a table column header is clicked, the table view’s data source receives a table

View:sortDescriptorsDidChange: message. A sort descriptor is an instance of the

NSSortDescriptor class, which provides information on how a collection of objects
should be sorted.

The NSMutableArray class provides a method called sortUsingDescriptors:, which

takes an NSArray of NSSortDescriptors and uses them to re-sort the content.

To implement the tableView:sortDescriptorsDidChange: method, add the following

method to AppDelegate:

200 | Chapter 11: Table Views and Collection Views

- (void)tableView:(NSTableView *)tableView

 sortDescriptorsDidChange:(NSArray *)oldDescriptors {

 [self.songs sortUsingDescriptors:tableView.sortDescriptors];

 [tableView reloadData];

}

Now, launch the application. Click one of the headings, and note the table view re-
sorting.

NSTableView with Bindings
The NSTableView class is quite straightforward to use with a code-driven data source,
but it’s often a lot simpler to use Cocoa bindings (see Chapter 10). So to cap off our

coverage of NSTableView, we’re going to adapt the code to use Cocoa bindings.

When using bindings, we bind both the table view and the specific views in each table
view cell. The table view is bound to the array controller so that it knows how many
rows exist, and the views in the cells are bound to the specific property that should be
displayed.

To bind the table view to the array controller:

1. Select the table view in the outline. Go to the Connections inspector and remove the

dataSource and delegate links.

2. Go to the Bindings inspector, and bind the table view’s content to array controller.

3. Select the text field in the table view cell in the Title column. Bind its value to Table

Cell View and set the model key path to objectValue.title. This will make the

cell display the title of the Song object that this row is displaying.

4. Select the text field in the table view cell in the Title column. Bind its value to “Table

Cell View” and set the model key path to objectValue.durationString. This a
method that we’re about to create.

We want to display a human-readable representation of the Song object’s duration

property, and the best way to do that is to add a durationString method that formats

the underlying NSTimeInterval appropriately. To add this method to the Song class,
add the following to Song.m:

- (NSString*) durationString {

 return [NSString stringWithFormat:@"%i:%02i",

 (int)self.duration / 60, (int) self.duration % 60];

}

Now run the application; you can continue to see the songs.

NSTableView on OS X | 201

Collection Views
A collection view is a tool for displaying a collection of objects. While table views are
great for tabular displays of data, you often want to display a collection of items in a way
that isn’t a list.

Collection views exist on both iOS and OS X, though the implementation is better on

iOS. In this section, you’ll learn how to use UICollectionView, the iOS class that allows
you to display a collection of views.

We aren’t covering NSCollectionView, the OS X counterpart to UI

CollectionView, in this book, mostly because the API is a little cum‐
bersome and also because there aren’t as many use cases for it. If you’re

after more information on NSCollectionView, take a look at the Col‐
lection View Programming Guide, included as part of the Xcode de‐
veloper documentation.

UICollectionView on iOS
UICollectionView lets you present a collection of items in a way that doesn’t require

each item to know how it’s being positioned or laid out. UICollectionView behaves

rather like UITableView, but it doesn’t just lay content out in a vertical list—rather, it
supports customizable layout handlers called layout objects.

The UICollectionView class makes use of a data source and delegate, much like the

UITableView and NSTableView classes. The UICollectionView displays a collection of

UICollectionViewCell objects, which are UIViews that know how to be laid out in a
collection view. Generally, you create subclasses of these cells and fill them with content.

By default, a UICollectionView displays its content in a grid-like

fashion. However, it doesn’t have to—by creating a UICollection

ViewLayout subclass and providing it to the collection view, you can

lay out the UICollectionViewCell objects in any way you want. UI

CollectionViewLayout subclassing is a little beyond the scope of this
chapter, but there’s plenty of interesting discussion in the documen‐
tation for this class.

To demonstrate collection views in use, we’re going to create an application that displays
a collection of numbers in a grid.

1. Create the project. Create a single-view application for iPad called AwesomeGrid.

2. Create the collection view controller. Delete the ViewController.h and View
Controller.m files. We’ll be replacing them shortly.

202 | Chapter 11: Table Views and Collection Views

http://bit.ly/R1bMJk
http://bit.ly/R1bMJk

Create a new UICollectionViewController subclass by choosing

File→New→File… and creating a new Objective-C object named GridViewCon

troller. Make it a subclass of UICollectionViewController.

3. Prepare the collection view. Open Main.storyboard and delete the view controller.
Drag in a collection view controller. With the new view controller selected, open

the Identity inspector and change its class from UICollectionViewController to

GridViewController.

We’ll now create our own subclass of the UICollectionViewCell class, which will con‐

tain a label. Unlike UITableViewCell objects, the UICollectionViewCell doesn’t pro‐
vide standard styles for cells, as it doesn’t make assumptions about the content your
application will be showing.

The actual contents of the UICollectionViewCell will be designed in the Interface
Builder.

4. Create the collection view subclass and use it in the collection view. Create a new

UICollectionViewCell subclass by choosing File→New→File… and creating a new

Objective-C object named GridCell. Make it a subclass of UICollectionViewCell.

Go back to Main.storyboard and select the collection view cell at the top-left of the

collection view. Go to the Identity inspector and change its class from UICollec

tionViewCell to GridCell.

Go to the Attributes inspector and change the collection view item’s identifier to

GridCell.

Resize the cell to be about twice the size. Drag a label into the cell. Using the At‐
tributes inspector, make its font larger, and change its color to white. Resize the
label to fill the cell and make the text centered.

Open GridCell.h in the assistant. Control-drag from the label into the @inter

face of GridCell, and create a new outlet called label.

Having set up the collection view, we can now set up the view controller to display the
content. The actual “content” to be displayed will be the numbers from 1 to 200, which

will be stored as NSNumber objects in an NSArray. For each GridCell that the collection

view needs to display, the view controller will convert the number to an NSString and

display it in the UILabel.

The first step in this process is to store the array of numbers.

5. Prepare the data. Open GridViewController.m. Import GridCell.h at the top of the
file.

Collection Views | 203

Make the class extension above the @implementation of GridViewController look
like the following code.

@interface GridViewController () {

 NSArray* numbers;

}

@end

Next, replace the viewDidLoad method with the following code:

- (void)viewDidLoad

{

 [super viewDidLoad];

 NSMutableArray* numbersToAdd = [NSMutableArray array];

 for (int i = 1; i <= 200; i++) {

 [numbersToAdd addObject:@(i)];

 }

 numbers = numbersToAdd;

}

6. Add the methods that indicate the number of items in the collection view. The meth‐

ods for providing data to a UICollectionView are very similar to those for working

with a UITableView: you provide the number of sections, the number of items in

each section, and a UICollectionViewCell object for each item.

Add the following methods to GridViewController:

- (NSInteger)numberOfSectionsInCollectionView:

 (UICollectionView *)collectionView {

 return 1;

}

- (NSInteger)collectionView:(UICollectionView *)collectionView

 numberOfItemsInSection:(NSInteger)section {

 return numbers.count;

}

7. Implement the collectionView:cellForItemAtIndexPath: method. Displaying a
cell in a collection view is just as simple. Because we have already prototyped the

GridCell in the Interface Builder, the only thing that needs to happen is for the
view controller to prepare the cell when it appears in the collection view.

Add the following method to GridViewController:

- (UICollectionViewCell*) collectionView:(UICollectionView *)collectionView

 cellForItemAtIndexPath:(NSIndexPath *)indexPath {

 GridCell* cell = [collectionView

 dequeueReusableCellWithReuseIdentifier:@"GridCell"

204 | Chapter 11: Table Views and Collection Views

 forIndexPath:indexPath];

 NSNumber* number = numbers[indexPath.row];

 cell.label.text = [number description];

 return cell;

}

Run the application—you should see a scrolling grid of numbers.

Note that when you rotate the iPad (if you’re using the simulator, use the ⌘-← and ⌘-→
keys), the collection view lays itself out correctly.

Collection Views | 205

CHAPTER 12

Document-Based Applications

For the user, a computer and the applications that it runs are simply ways to access and
work with files. The designers of OS X and iOS understand this, and provide a number
of tools for making apps designed around letting the user create, edit, and work with
documents.

The idea of a document-based application is simple: the application can create docu‐
ments, and open previously created documents. The user edits the document and saves
it to disk. The document can then be stored, sent to another user, duplicated, or anything
else that a file can do.

While both OS X and iOS provide technologies that allow you to make document-based
applications, the way in which documents are presented to the user differs.

On OS X, as with other desktop-based OSes, users manage their documents through
the Finder, which is the dedicated file management application. The entire filesystem is
exposed to the user through the Finder.

On iOS, the filesystem is still there, but the user never sees it. Instead, all documents are
presented to the user and managed by the application. All the tasks involved in managing
documents—creating new files, renaming files, deleting files, copying files, and so on
—must be done by your application.

More than one application may be able to open a document. For example, JPEG images
can be opened by both the built-in Preview application and by Photoshop for different
purposes. Both OS X and iOS provide ways for applications to specify that they are able
to open certain kinds of documents.

In this chapter, you’ll learn how to work with documents on both iOS and OS X.

207

The NSDocument and UIDocument Classes
In both iOS and OS X, documents are represented in your application with the UIDocu

ment and NSDocument classes, respectively. These classes represent the document and
store its information. Every time a new document is created, a new instance of your

application’s NSDocument or UIDocument subclass is created.

Document Objects in MVC
Document objects participate in the model-view-controller paradigm. In your apps,
document objects are model objects—they handle the reading and writing of informa‐
tion to disk, and provide that information to other parts of the application.

All document objects, at their core, provide two important methods: one to save the
information to disk, and one to load the information from disk. The document object,
therefore, is in charge of converting the document information that’s held in memory
(that is, the Objective-C objects that represent the user’s data) into a data representation
that can be stored on disk.

For NSDocument, the methods are these:

- (NSData *)dataOfType:(NSString *)typeName error:(NSError **)outError;

- (BOOL)readFromData:(NSData *)data ofType:(NSString *)typeName

 error:(NSError **)outError;

And for UIDocument, the methods are these:

- (id)contentsForType:(NSString *)typeName error:(NSError **)outError;

- (BOOL)loadFromContents:(id)contents ofType:(NSString *)typeName

 error:(NSError **)outError;

The first set of methods is responsible for producing an Objective-C object that can be

written to disk, such as an NSData object. The second is the opposite—given an
Objective-C object that represents one or more files on the disk, the document object
should prepare itself for use by the application.

Kinds of Documents
OS X and iOS support three different ways of representing a document on disk:

• Flat files, such as JPEG images and text documents, which are loaded into memory
wholesale.

• File packages, which are folders that contain multiple files, but are presented to the
user as a single file. Xcode project files are file packages.

• Databases, which are single files that are partially loaded into memory as needed.

208 | Chapter 12: Document-Based Applications

All three of these methods are used throughout OS X and iOS, and there’s no single
“correct” way to represent files. Each one has strengths and weaknesses.

• A flat file is easy to understand from a development point of view, where you simply

work with a collection of bytes in an NSData object. They are also very easy to upload
to the web and send via email. However, flat files must be read entirely into memory,
which can lead to performance issues if the files are very large.

• File packages are a convenient way to break up a large or complex document into
multiple pieces. For example, Keynote presentations are file packages that contain
a single file describing the presentation’s contents (its slides, text, layout, and so on),
and include all images, movies, and other resources as separate files next to the
description file. This reduces the amount of data that must be kept in memory, and
allows your application to treat each piece of the document as a separate part.

The downside is that other operating systems besides OS X and iOS don’t have very
good support for file packages. Additionally, you can’t upload a file package to a
website without first converting it to a single file (such as by zipping it).

• Databases combine the advantages of single-file simplicity with the random-access
advantage of file packages. However, making your application work with databases
requires writing more complex code. Some of this is mitigated by the existence of
tools and frameworks like sqlite and Core Data, but your code will still be more
complex.

The current trend in OS X and iOS is toward flat files and databases, because these are
easier to archive and upload to iCloud.

In this book, we’ll be covering flat files. If you want to learn more
about file packages or databases, check out the Document-Based Ap‐
plications Overview in the Xcode documentation.

The Role of Documents
A document object—that is, a subclass of NSDocument or UIDocument—is both a model
and a model-controller in the model-view-controller paradigm. For simpler applica‐
tions, the document object is simply a model—it loads and saves data, and provides
methods to let controller objects access that information.

For more complex applications, a document object may operate as a model-controller
—that is, it would be responsible for loading information from disk and creating a
number of subobjects that represent different aspects of the document. For example, a
drawing and painting application’s documents would include layers, color profiles, vec‐
tor shapes, and so on.

The Role of Documents | 209

Document-Based Applications on OS X
OS X was designed around document manipulation, and there is correspondingly
strong support for building document-based applications in Cocoa and Xcode.

When you create a document-based application, you specify the name of the NSDocu

ment class used by your application. You also create a nib file that contains the user
interface for your document, including the window, controls, toolbars, and other views
that allow the user to manipulate the contents of the document.

Both the document class and the document nib file are used by the NSDocumentCon

troller to manage the document-related features of your app:

• When you create a new document, a new instance of your document class is created,
and copies of the view objects in the document nib file are instantiated. The new
document object is placed in charge of the view.

• When the user instructs the application to save the current document, the document
controller displays a dialog box that asks the user where she wants to save her work.
When the user selects a location, the document controller asks the frontmost docu‐

ment object to store its contents in either an NSData or NSFileWrapper object (for
flat files and file packages, respectively; if the document is a database, it saves its
contents via its own mechanisms). The document controller then takes this re‐
turned object and writes it to disk.

• When the application is asked to open a document, the document controller de‐
termines which class is responsible for handling the document’s contents. An in‐
stance of the document class is instantiated and asked to load its data from disk;
the controls are also instantiated from the nib as previously discussed, and the user
starts working on the document.

Autosaving and Versions
Starting with OS X 10.7 Lion and iOS 5, the system automatically saves users’ work as

they go, even if they haven’t previously saved it. This feature is built into the NSDocu

mentController class (and on iOS, the UIDocument class), which means that no addi‐
tional work needs to be done by your application.

Autosaving occurs whenever the user switches to another application, when the user
quits your application, and also periodically. From your code’s perspective, it’s the same
behavior as the user manually saving the document; however, the system keeps all pre‐
vious versions of the document.

210 | Chapter 12: Document-Based Applications

The user can ask to see all the previous versions, which the system handles for you
automatically. The user is then able to compare two versions of the document, and copy
and paste content from past versions.

Representing Documents with NSDocument
To demonstrate how to make a document-based application in OS X, we’ll make an
application that works with its own custom document format. This application will start
life as a simple text editor, and we’ll then move on to more sophisticated data manipu‐
lation.

The first thing to do is create a new Cocoa app for OS X. Make sure that Use Core Data
is off and Use Automatic Reference Counting is on.

Turn Create a Document-Based Application on, and set the document extension to

sampleDocument. When you create the application, it will load and save files named
along the lines of MyFile.sampleDocument.

When you create a document-based application in Xcode, the structure of the applica‐
tion is different from non-document-based applications. For example, Xcode assumes
that the majority of your application’s work will be done in the document class, and
therefore doesn’t bother to create or set up an application delegate class.

It does, however, create a Document class, which is a subclass of NSDocument. This is used

as the document class for the “sampleDocument” type. By default, the Document class
does nothing except indicate to the application that the interface for manipulating it

should be loaded from the Document nib file (see -windowNibName in Document.m),
which Xcode has also already created when setting up the application.

Stubs of -dataOfType:error: and -readFromData:ofType:error: are also provided,
although they do nothing (except throw an exception if you try to save the document,
to rather forcefully remind you that you haven’t implemented saving yet).

If you open Document.xib, you’ll find the window that contains the interface that will
represent each document that the user has open. If you select the file’s owner in the
outline and go to the Identity inspector (the third button from the left at the top of the

Utilities pane), you’ll note that the object that owns the file is a Document object

(Figure 12-1). This means that you can create actions and outlets between your Docu

ment class and the interface.

Document-Based Applications on OS X | 211

Figure 12-1. The class of the file’s owner object can be set using the Identity inspector

Saving Simple Data
The first version of this application will be a plain text editor. We’ll now modify the

interface for the document to display a text field, and make the Document class save and
load plain text.

1. Open Document.xib and delete the label in the window.

By default, the interface contains a window that has a label inside it. We’ll keep the
window, but lose the label.

2. Add a wrapping text field to the window.

Open the Objects Library and scroll until you find “Wrapping text field.” Alterna‐
tively, search for “wrapping” at the bottom of the library.

Drag the text field into the window and resize it to make it fill the entire window.

When you’re done, the interface should look like Figure 12-2.

3. Open the Assistant and connect the text field to the class.

Once the interface has been built, you need to connect the interface to the document
class.

Open the Assistant and Document.h should open. If it doesn’t, use the jump bar at
the top of the assistant editor to select it.

Control-drag from the text field into NSDocument ’s @interface. Create a new outlet

called textField.

In addition to having a variable that connects the document class to the text field, we
need a variable that contains the document’s text. This is because the document loading

and interface setup take place at different times—when your -readFromData

:ofType:error: method is called, the textField won’t yet exist, so you must store the
information in memory. This is also a better design as far as model-view-controller goes,
since it means that your data and your views are kept separate.

4. Add and synthesize an NSString property called text.

Add the following code to Document’s @interface:

212 | Chapter 12: Document-Based Applications

@property (strong) NSString* text;

Add the following code to Document’s @implementation:

@synthesize text;

Figure 12-2. The final UI for the document window

Now we’ll update the loading and saving methods, and make them load and save the

text. We’ll also update the -windowControllerDidLoadNib: method, which is called
when the interface for this document has been loaded and is your code’s opportunity to
prepare the interface with your loaded data.

5. Replace methods -dataOfType:error:, -readFromData:ofType:error:, and

-window ControllerDidLoadNib: with the following code:

- (void)windowControllerDidLoadNib:(NSWindowController *)aController

{

 [super windowControllerDidLoadNib:aController];

 if (self.text == nil)

 self.text = @"";

 textField.stringValue = self.text;

}

Document-Based Applications on OS X | 213

- (NSData *)dataOfType:(NSString *)typeName error:(NSError **)outError

{

 self.text = textField.stringValue;

 return [self.text dataUsingEncoding:NSUTF8StringEncoding];

}

- (BOOL)readFromData:(NSData *)data ofType:(NSString *)typeName

 error:(NSError **)outError

{

 if ([data length] > 0) {

 NSString* string = [[NSString alloc] initWithData:data

 encoding:NSUTF8StringEncoding];

 self.text = string;

 } else {

 self.text = @"";

 }

 return YES;

}

Now run the application and try creating, saving, and opening documents. You can also
use Versions to look at previous versions of the documents you work with. If you quit
the app and relaunch it, all open documents will reopen.

Saving More Complex Data
Simple text is easy to read and write, but more complex applications need more struc‐
tured information. While you could write your own methods for serializing and de‐
serializing your model objects, it’s often the case that the data you want to save is no
more complex than a dictionary or an array of strings and numbers.

JavaScript Object Notation (JSON) is an ideal method for representing data like this.
JSON is a simple, human-readable, lightweight way to represent arrays, dictionaries,
numbers, and strings, and both OS X and iOS provide tools for converting certain useful
objects into JSON and back.

The NSJSONSerialization class allows you to provide a property list class, and get back

an NSData object that contains the JSON data that describes that class. A property list
class is one of these classes or their mutable variants:

• NSDictionary

• NSArray

• NSString

• NSNumber

214 | Chapter 12: Document-Based Applications

In the case of the container classes (dictionaries and arrays), these objects are only
allowed to contain other property list classes.

To get JSON data for an object, you do this:

NSError* error = nil;

NSData* serializedData = [NSJSONSerialization dataWithJSONObject:dictionary

 options:NSJSONWritingPrettyPrinted error:&error];

// after this call, 'serializedData' is either nil or full of JSON data.

// if there was a problem, the 'error' variable is set to point to an

// NSError object that describes the problem.

You can pass other values for the options: parameter as well—check the documentation

for NSJSONSerialization. If you don’t want to pass an option in, you can pass 0.

To load JSON data in and get back an Objective-C object, you do this:

NSDictionary* loadedDictionary =

 [NSJSONSerialization JSONObjectWithData:serialisedData

 options:0

 error:error];

Note that the object that gets returned may not be the same class as what was saved. For
example, the following will result in an exception being thrown:

NSDictionary* someObject = [NSDictionary dictionaryWithObject:@"Hello!"

 forKey:@"greeting"];

NSData* data = [NSJSONSerialization dataWithJSONObject:someObject

 options:0 error:nil];

// .. and then later:

NSArray* anArray = [NSJSONSerialization JSONObjectWithData:data options:0

 error:nil];

NSString* firstObject = [anArray objectAtIndex:0];

// ERROR! anArray is actually an NSDictionary!

For this reason, you should check the loaded objects and make sure they’re the right
type (and if they’re dictionaries, contain the right keys; if they’re arrays, are of a length
that you expect):

if ([anArray isKindOfClass:[NSArray class]] [anArray count] >= 1) {

 // we know it's an array, and has at least 1 object in it

}

We’ll now modify the application to store both a block of text and a Boolean value in a
JSON-formatted document. To do this, we’ll include a checkbox control in the appli‐

cation’s UI, and a BOOL property in the Document.

1. Open Document.xib.

Document-Based Applications on OS X | 215

2. Resize the text field to make some room at the bottom of the window.

3. Drag a checkbox into the window. The interface should now look something like
Figure 12-3.

Figure 12-3. The updated interface, with the checkbox at the bottom of the window

4. Open Document.h in the assistant.

5. Control-drag from the checkbox into Document’s @interface, and create a new

outlet called checkbox.

6. Add and synthesize a BOOL property called checked to Document.

7. Replace the methods -dataOfType:error:, -readFromData:ofType:error:, and

-windowControllerDidLoadNib: with the following code:

- (void)windowControllerDidLoadNib:(NSWindowController *)aController

{

 [super windowControllerDidLoadNib:aController];

 if (self.text == nil)

 self.text = @"";

 textField.stringValue = self.text;

 checkbox.intValue = self.checked;

216 | Chapter 12: Document-Based Applications

}

- (NSData *)dataOfType:(NSString *)typeName error:(NSError **)outError

{

 self.text = textField.stringValue;

 self.checked = checkbox.intValue;

 NSMutableDictionary* dictionary = [NSMutableDictionary dictionary];

 [dictionary setValue:[NSNumber numberWithBool:self.checked]

 forKey:@"checked"];

 [dictionary setValue:self.text forKey:@"text"];

 NSError* error = nil;

 NSData* serializedData = [NSJSONSerialization

 dataWithJSONObject:dictionary options:NSJSONWritingPrettyPrinted

 error:error];

 if (serializedData == nil || error != nil)

 return nil;

 return serializedData;

}

- (BOOL)readFromData:(NSData *)data ofType:(NSString *)typeName

 error:(NSError **)outError

{

 NSDictionary* loadedDictionary;

 NSError* error = nil;

 loadedDictionary = [NSJSONSerialization JSONObjectWithData:data

 options:0 error:error];

 if (loadedDictionary == nil || error != nil)

 return NO;

 self.text = [loadedDictionary valueForKey:@"text"];

 self.checked = [[loadedDictionary valueForKey:@"checked"] boolValue];

 return YES;

}

This new saving code stores the document information in an NSDictionary, and returns

the JSON in the NSData.

Document-Based Applications on OS X | 217

If you’re curious, the JSON representation of this dictionary looks like
this:

{

 "checked" : true,

 "text" : "Hello!!"

}

The loading code does the same in reverse—it takes the NSData that contains the JSON,

and converts it to an NSDictionary. The loaded dictionary then has the data copied out
of it.

Now run the application and create, load, and save some new documents!

Document-Based Applications on iOS
In contrast to apps on OS X, apps on iOS generally only have one document open at a

time. This means that the document API is simpler, since an NSDocumentController is
not needed—the concept of “frontmost document” doesn’t apply.

In iOS, instead of using NSDocument, you use UIDocument. However, instead of users
selecting which document to open via the Finder, you instead present a list of the user’s
documents and allow the user to select a file. When she chooses a file, you create an
instance of your document class and instruct the document object to load from the
appropriate URL.

You also provide the interface for letting the user create a new document; when she does
so, you again create an instance of your document class and immediately save the new
document. Generally, you then immediately open the newly created file.

We’re going to create an application for iPhone that acts as a simple text editor. Creating
document-based applications on iOS is less automated than on OS X, but is still fairly
straightforward.

This application will present its interface with two view controllers: a master view con‐
troller that lists all available documents, and a detail view controller that displays the
contents of the currently open document and allows the user to edit it.

The built-in master-detail application template for iOS is ideal for this, and we’ll use

that. We’ll also have to create our UIDocument subclass manually.

1. Create a new master-detail app for iOS. Make this application designed for iPhone

and name it iOSDocuments.

We’ll start by creating the interface.

2. Open Main.storyboard and go to the master view controller.

3. Add a bar button item to the navigation bar.

218 | Chapter 12: Document-Based Applications

This button will be the “create new document” button. Select it
and set its identifier to Add to make it display a + symbol.

4. Open MasterViewController.h in the assistant.

5. Connect the button to the MasterViewController class.

Control-drag from the button to MasterViewController’s @interface.

Create an action named createDocument.

6. Update the prototype cell.

Select the prototype cell that now appears in the table view. Set its style to basic and

its identifier to FileCell.

Set its accessory to Disclosure Indicator.

7. Open the detail view controller and delete the label in the middle of the view.

8. Add a text view.

Drag a UITextView into the view controller’s view. Make the text view fill the entire
screen.

9. Open DetailViewController.h in the assistant.

10. Connect the text view to the detail view controller.

Control-drag from the text view into DetailViewController.h+’s +@interface sec‐
tion.

Create a new outlet called textView.

11. Add a Done button to the navigation bar in the detail view controller.

Drag a bar button item into the lefthand side of the navigation bar and set its iden‐

tifier to Done. (We’ll make the code not display the Back button.)

12. Make the view controller the delegate for the text view.

We want the detail view controller to be notified when the user makes changes.
Control-drag from the text view to the view controller, and select delegate from the
menu that pops up.

We’ll now make the code for our UIDocument subclass, called SampleDocument. This
document class will manage its data in a flat file, which means that it will work by loading

and saving its content in an NSData.

13. Create a new Objective-C class. Name the new class SampleDocument and make it a

subclass of UIDocument.

Document-Based Applications on iOS | 219

14. Update SampleDocument.h. Make SampleDocument.h look like the following code:

#import <UIKit/UIKit.h>

@interface SampleDocument : UIDocument

@property (nonatomic, strong) NSString* text;

@end

15. Update SampleDocument.m. Make SampleDocument.m look like the following
code:

#import "SampleDocument.h"

@implementation SampleDocument

// Called when a document is opened.

- (BOOL)loadFromContents:(id)contents ofType:(NSString *)typeName

 error:(NSError *__autoreleasing *)outError {

 // Cast the contents variable to an NSData, for convenience

 NSData* data = contents;

 if ([data length] > 0) {

 // The file isn't empty, so create a string from its contents

 self.text = [[NSString alloc] initWithData:data

 encoding:NSUTF8StringEncoding];

 } else {

 self.text = @"";

 }

 return YES;

}

// Called when the system needs a snapshot of the current state of

// the document, for autosaving.

- (id)contentsForType:(NSString *)typeName

 error:(NSError *__autoreleasing *)outError {

 if (self.text == nil)

 self.text = @"";

 return [self.text dataUsingEncoding:NSUTF8StringEncoding];

}

@end

We’ll now update the code for MasterViewController.m to display a list of files. Make it
look like the following:

#import "MasterViewController.h"

 #import "SampleDocument.h"

220 | Chapter 12: Document-Based Applications

 #import "DetailViewController.h"

 @interface MasterViewController () {

 NSArray *_objects;

 }

 @end

 @implementation MasterViewController

 - (void)awakeFromNib

 {

 [super awakeFromNib];

 }

 - (NSURL*)URLforDocuments

 {

 return [[[NSFileManager defaultManager]

 URLsForDirectory:NSDocumentDirectory

 inDomains:NSUserDomainMask] lastObject];

 }

 - (void) updateFileList

 {

 _objects = [[NSFileManager defaultManager]

 contentsOfDirectoryAtURL:[self URLforDocuments]

 includingPropertiesForKeys:nil options:0 error:nil];

 [self.tableView reloadData];

 }

 - (void)viewDidLoad

 {

 [super viewDidLoad];

 // Do any additional setup after loading the view, typically from a nib.

 }

 - (void)viewWillAppear:(BOOL)animated

 {

 [super viewWillAppear:animated];

 [self updateFileList];

 }

 - (void)didReceiveMemoryWarning

 {

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be re-created.

 }

 #pragma mark - Table View

 - (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

 {

 return 1;

Document-Based Applications on iOS | 221

 }

 - (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section

 {

 return _objects.count;

 }

 - (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath

 {

 UITableViewCell *cell =

 [tableView dequeueReusableCellWithIdentifier:@"FileCell"

 forIndexPath:indexPath];

 NSURL *url = [_objects objectAtIndex:indexPath.row];

 cell.textLabel.text = [url lastPathComponent];

 return cell;

 }

 - (void)tableView:(UITableView *)tableView

 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

 {

 NSURL *url = [_objects objectAtIndex:indexPath.row];

 SampleDocument *document = [[SampleDocument alloc] initWithFileURL:url];

 [document openWithCompletionHandler:^(BOOL success) {

 [self performSegueWithIdentifier:@"showDetail" sender:document];

 }];

 }

 - (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender

 {

 DetailViewController *detailViewController =

 segue.destinationViewController;

 if ([segue.identifier isEqualToString:@"showDetail"])

 {

 SampleDocument *document = sender;

 detailViewController.detailItem = document;

 }

 }

 - (IBAction)createDocument:(id)sender

 {

 NSDateFormatter* formatter = [[NSDateFormatter alloc] init];

 [formatter setDateFormat:@"yyyy-MM-dd HH:mm:ssZZZ"];

 NSString* fileName =

 [NSString stringWithFormat: @"Document %@.sampleDocument",

 [formatter stringFromDate:[NSDate date]]];

 NSURL* url = [[self URLforDocuments] URLByAppendingPathComponent:fileName];

222 | Chapter 12: Document-Based Applications

 SampleDocument* document = [[SampleDocument alloc] initWithFileURL:url];

 [document saveToURL:url

 forSaveOperation:UIDocumentSaveForCreating

 completionHandler:^(BOOL success) {

 [self performSegueWithIdentifier:@"showDetail" sender:document];

 }];

 }

 @end

Finally, we’ll update the code for DetailViewController to make it display the content

from the loaded SampleDocument object and send the user’s changes to the document.
The DetailViewController will also notice when the user taps the Done button that was
added earlier, and signal to the document that it should be saved and closed.

We also want to make the class conform to the UITextViewDelegate protocol, so that
we receive changes from the user as she types them.

To make DetailViewController conform to UITextController, go to DetailView

Controller.h and update the declaration of DetailViewController to look like the fol‐
lowing code:

@interface DetailViewController : UIViewController <UITextViewDelegate>

Finally, make DetailViewController.m look like the following code:

#import "DetailViewController.h"

#import "SampleDocument.h"

@interface DetailViewController ()

- (void)configureView;

@end

@implementation DetailViewController

@synthesize textView = _textView;

@synthesize detailItem = _detailItem;

@synthesize detailDescriptionLabel = _detailDescriptionLabel;

#pragma mark - Managing the detail item

- (void)setDetailItem:(id)newDetailItem

{

 if (_detailItem != newDetailItem) {

 _detailItem = newDetailItem;

 // Update the view.

 [self configureView];

 }

}

- (void)configureView

Document-Based Applications on iOS | 223

{

 // Update the user interface for the detail item.

 if (self.detailItem) {

 SampleDocument* document = self.detailItem;

 self.textView.text = document.text;

 }

}

- (void)textViewDidChange:(UITextView *)textView {

 SampleDocument* document = self.detailItem;

 document.text = self.textView.text;

}

#pragma mark - View lifecycle

- (void)viewDidLoad

{

 [super viewDidLoad];

 [self configureView];

 self.navigationItem.hidesBackButton = YES;

}

- (void)viewDidUnload

{

 [self setTextView:nil];

 [super viewDidUnload];

}

- (BOOL)shouldAutorotateToInterfaceOrientation:

 (UIInterfaceOrientation)interfaceOrientation

{

 // Return YES for supported orientations

 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);

}

- (IBAction)done:(id)sender {

 SampleDocument* document = self.detailItem;

 [document saveToURL:document.fileURL

 forSaveOperation:UIDocumentSaveForOverwriting

 completionHandler:^(BOOL success) {

 [self.navigationController popViewControllerAnimated:YES];

 }];

}

@end

In this code, the DetailViewController object has received the SampleDocument object

loaded by the MasterViewController, and makes the text view display the text that it

contains. Every time the user makes a change to the text field, the text in the Sample

224 | Chapter 12: Document-Based Applications

Document is updated; the SampleDocument will automatically save the document’s con‐
tents in order to prevent data loss if something bad happens (like a crash or the device
running out of battery).

When the Done button is tapped, the document is told to close, which saves any unsaved
changes. Once this process is complete, the view controller dismisses itself.

Document-Based Applications on iOS | 225

CHAPTER 13

Networking

Many chapters in books like this begin with something like, “The ability to talk to com‐
puters over the network is an increasingly popular feature.” We won’t bore you with
that. Suffice to say—it’s the 21st century, networking is huge, and your app needs to send
and receive data. Let’s learn how.

In this chapter, you’ll learn how to make connections over the network and access
resources with URLs. You’ll also learn how to use Bonjour to discover nearby network
services so that you can connect to them. Finally, you’ll learn how to create your own
network service and receive connections from other devices.

All of the content in this chapter applies to both OS X and iOS, with the exception of
the Multipeer Connectivity classes, which are iOS only.

Connections
At the lowest level, network connections in Cocoa are the same as in every other popular
OS. The Berkeley sockets API, the fundamental networking and connectivity API used
on Windows and almost every Unix OS (which includes OS X and iOS), is available,
allowing you to make connections to any computer on the network and send and receive
data.

However, working with such a low-level API can be cumbersome, especially when you
want to use popular, higher-level protocols like HTTP. To make things more fun for
developers like us, Cocoa provides a higher-level API that provides a simple interface
for accessing content via URLs on the Internet.

227

A URL is a Uniform Resource Locator. It’s a location on the Internet,
and specifies the location of the server to connect to, the protocol to
use, and the location of the resource on the server. Consider the
following URL:

 http://oreilly.com/iphone/index.html

In this case, oreilly.com is the location of the computer on the Inter‐
net, http is the scheme (here, HyperText Transfer Protocol), and /
iphone/index.html is the location of the specific resource hosted by
this computer.

When working with network requests, there are four primary classes that you interact

with: NSURL, NSURLRequest, NSURLConnection, and NSURLSession. NSURLSession is

exclusive to iOS 7 and OSX 10.9, designed as a replacement for NSURLConnection, and
is a generic do-everything for URL related tasks.

NSURL
The NSURL class represents a URL. NSURLs are just model objects—they contain infor‐
mation about the location of the resource they point to, and provide a number of useful
methods for retrieving specific components of the URL, as well as creating URLs relative
to other URLs.

The easiest way to create an NSURL is to create one with +URLWithString: like this:

NSURL* myURL = [NSURL URLWithString:@"http://oreilly.com"];

If you use URLWithString:, the string you provide must be a com‐
plete, well-formed URL. If it isn’t well-formed, the method will re‐

turn nil. This applies to any other method that creates new URLs—

if you ask NSURL to create a URL that doesn’t make sense, NSURL will

return nil.

You can also create URLs that are relative to other URLs:

// creates http://oreilly.com/resources/index.html

NSURL* relativeURL = [NSURL URLWithString:@"resources/index.html"

 relativeToURL:[NSURL URLWithString:@"http://oreilly.com/"]];

Once you have an NSURL, you can retrieve information about it. For example, to retrieve
the host (the computer name), you can do the following:

NSString* host = [relativeURL host]; // @"oreilly.com"

228 | Chapter 13: Networking

http://oreilly.com/iphone/index.html

NSURL is an immutable class. If you want to create a URL object that

you can later modify, use NSMutableURL.

URLs are also useful for indicating the location of a file or folder on the local disk, and
both iOS and OS X are increasingly trending toward using them instead of strings that
contain paths.

A file URL is a regular NSURL, but uses the scheme file:. A file URL, therefore, looks
like this:

file://localhost/Applications/

There are special methods in NSURL that make it easier to create file URLs. For example,

you can create one using the fileURLWithPath: method:

NSURL* myFileURL = [NSURL fileURLWithPath:@"/Applications/"];

NSURLRequest
Once you have an NSURL object that points to where your resource is located, you con‐

struct an NSURLRequest. While NSURL points to where the resource is on the network,

NSURLRequest describes how it should be accessed.

NSURLRequest takes an NSURL and adds information about things like how long the
request should go without an answer before timing out, whether (and how) to use

caching, and, if the request is an HTTP request, which request method (GET, POST, PUT
and so on) to use and what the HTTP request’s body should be.

For most cases, you can use the requestWithURL: method to create an NSURLRequest

given an NSURL:

NSURLRequest* request = [NSURLRequest requestWithURL:myURL];

If you want to have more control over how the request is performed, you can use

requestWithURL:cachePolicy:timeoutInterval:. This method is the same as the
previous one, but you specify how the request should cache content that it downloads
and how long the request should wait before giving up.

requestWithURL: creates a request that caches content according to
the default caching policy of the protocol you’re using (for example,
HTTP caches depending on whether the server instructs it to, while
FTP never caches) and times out after 60 seconds.

Connections | 229

If you want to send a POST request or make changes to the request, you can use NSMuta

bleURLRequest. This is the mutable version of the NSURLRequest class, and allows you

to configure the request after you create it. To create a POST request, for example, you

use the setHTTPMethod: method:

NSMutableURLRequest* mutableRequest = [NSMutableURLRequest

 requestWithURL:myURL];

[mutableRequest setHTTPMethod:@"POST"];

NSURLConnection
Once you have an NSURLRequest to use, you can go ahead and execute that request on
the network.

Because network requests aren’t instant, your code needs to be able to manage the life‐

cycle of the connection. This is done for you by the NSURLConnection object, which
represents a connection in progress.

NSURLConnection takes an NSURLRequest and goes off to the network to perform the
request. When the request is done, a block of code is run, which is passed the server’s
response, the loaded data, and any error that might have occurred. The data is provided

as an NSData object, so it’s up to you to convert it to something your application can
use, such as text or an image.

NSURLConnection, much like its replacement NSURLSession, is a slightly more complex

class than NSURL andNSURLRequest. We’ll go into more detail on how it works in the
sample code in the section “Building a Networked Application” on page 231.

NSURLSession
NSURLSession was introduced into OS X 10.9 and iOS 7 as a replacement for NSURLCon

nection and is the new and recommended way to handle any URL-related tasks, both

uploading and downloading. It is comprised of four major objects, NSURLSession,

NSURLSessionDelegate, NSURLSessionConfiguration, and NSURLSessionTask.

NSURLSessionConfiguration is the object representing a configuration to be used by

a session. An NSURLSessionConfiguration handles, among other things, cache, cookie
policy, proxies, and timeouts. Each configuration object created is mutable and designed
to be shared by multiple sessions. Apple has also provided some predefined configura‐
tions for common situations.

NSURLSessionTask represents an individual task to be handled by the session. In some

ways, it is the closest object to NSURLConnection in that it contains the state of the task

being performed. The NSURLSessionTask also has methods to let you cancel, suspend,
and resume the task.

230 | Chapter 13: Networking

Finally, NSURLSession and its delegate NSURLSessionDelegate is responsible for per‐

forming any tasks sent to it. In general, when using an NSURLSession you will not need
to deal with its delegate; just use completion blocks when the session finishes a task.

When you wish to use NSURLSession for background downloading in iOS in your ap‐
plication, you will have to handle the session delegate methods as well as implement the
application:handleEventsForBackgroundURLSession:completionHandler: in your appli‐
cations delegate.

NSURLSession is a large and complex class; however, to get it up and running is generally
quite straightforward. We’ll cover how it works in the sample code in section “Building
a Networked Application” on page 231.

NSURLResponse and NSHTTPURLResponse
The response classes describe the initial response from the server about the request.
This information includes the expected size of the downloaded file (in bytes) and the
suggested filename that the server wants to call it. If you’re making an HTTP request,

the server response is an instance of the NSHTTPURLResponse, which also includes the
HTTP status code and the headers that the server sends down.

You don’t generally create your own NSURLResponse instances, but rather get them from

an NSURLSession or NSURLConnection object when it first successfully gets a response
from the server and starts downloading content.

Building a Networked Application
To put all of this together, we’ll build a simple application that downloads an image from

the Internet and displays it in an NSImageView.

The exact same networking code will work on iOS, but using UIImageView rather than

NSImageView.

This application will download an image from Placekitten, the world’s
most adorable placeholder image service. Of course, web services
come and go, so if you’re living in the World of Tomorrow and Pla‐
cekitten is long since history, find another image URL to use in‐
stead. And then eat another meal in pill form and catch a space-taxi
to the moon.

1. Create the project. Make a new Cocoa application called Networking.

2. Build the interface. Open MainWindow.xib. Drag in an NSImageView.

3. Connect the interface. Open AppDelegate.h in the assistant.

Building a Networked Application | 231

Control-drag from the image view to AppDelegate’s interface. Create a new outlet

called imageView.

4. Add the code that performs the network request. Open AppDelegate.m and replace

the -applicationDidFinishLaunching: method with the following code:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

 // PlaceKitten.com URLs work like this:

 // http://placekitten.com/<width>/<height>

 int width = (int)self.imageView.bounds.size.width;

 int height = (int)self.imageView.bounds.size.height;

 NSString* urlString = [NSString

 stringWithFormat:@"http://placekitten.com/%i/%i", width, height];

 NSURL* url = [NSURL URLWithString:urlString];

 NSURLSession *session = [NSURLSession sessionWithConfiguration:

 [NSURLSessionConfiguration defaultSessionConfiguration]];

 [[session dataTaskWithURL:url

 completionHandler:^(NSData *data, NSURLResponse *response,

 NSError *error) {

 NSImage *image = [[NSImage alloc] initWithData:data];

 self.imageView.image = image;

 }] resume];

}

It is very important to call resume on any NSURLSessions after giv‐

ing them a task. As NSURLSession is designed to handle enqueing of
multiple tasks, it needs to be told to start.

This code creates a URL based on the size of the image view, and then creates and

configures an NSURLSession (using the predefined defaultSessionConfiguration

class) to handle the URL. Finally the code asks the NSURLSession to download the URL;

the completion block then takes the loaded data, converts it to an NSImage, and provides
the image to the image view.

Now test the application. Run the app, and feel free to squeal in delight when you see a
cute kitten.

If your application needs to support older versions of OS X and iOS than 10.9 and 7
respectively, to perform the same task, simply replace the above code with the following:

232 | Chapter 13: Networking

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

 int width = (int)self.imageView.bounds.size.width;

 int height = (int)self.imageView.bounds.size.height;

 NSString* urlString = [NSString

 stringWithFormat:@"http://placekitten.com/%i/%i", width, height];

 NSURL* url = [NSURL URLWithString:urlString];

 NSURLRequest* request = [NSURLRequest requestWithURL:url];

 [NSURLConnection sendAsynchronousRequest:request

 queue:[NSOperationQueue mainQueue] completionHandler:^(NSURLResponse *

 response, NSData * data, NSError * error) {

 NSImage* image = [[NSImage alloc] initWithData:data];

 self.imageView.image = image;

 }];

}

This code again creates an URL based on the size of the image view, and then creates

an NSURLRequest for that URL. It then asks the NSURLConnection class to go and per‐
form the request; the same as before, the completion block takes the loaded data, con‐

verts it to an NSImage, and provides the image to the image view. This code is remarkably

similar to the code for using NSURLSession, but wherever possible you should use the

newer NSURLSession.

Bonjour Service Discovery
If you’re writing networking code that deals with resources on the local network, your
code needs a way to figure out where they are.

Bonjour is a protocol based on multicast DNS that allows a network service to advertise
its presence on a network, and provides a method for clients to find services. Bonjour
doesn’t handle the actual connection, just the discovery.

When you want to find local services via Bonjour, you use an NSNetServiceBrowser
object. This object, once created and started, looks for network services that match the

description that you provide it. Because network services come and go, the NSNet

ServiceBrowser continuously notifies its delegate object when services become avail‐
able and when they stop being available.

Once NSNetServiceBrowser locates a network service, you can ask for additional in‐
formation about the service such as the hostname of the computer providing the service
and the port number that the service is running on. This is called resolving the service,
and takes a bit of extra time (which is why the service browser doesn’t do it for every

Bonjour Service Discovery | 233

service it discovers). When the service resolves (or fails to resolve), the NSNetService
object informs its delegate.

To be notified of when NSNetServiceBrowser notices when services appear and disap‐

pear, your object needs to conform to the NSNetServiceBrowserDelegate protocol. To

be notified of when an NSNetService resolves, your object also needs to conform to the

NSNetServiceDelegate protocol.

Browsing for Shared iTunes Libraries
If you have “Share my library on the local network” turned on in iTunes, iTunes will
broadcast the library via Bonjour. Specifically, it will advertise that your computer is
hosting a DAAP (Digital Audio Access Protocol) server.

To discover services of this type, you get an NSNetServiceBrowser to search for

_daap._tcp services. We’ll make a simple application that browses for, resolves, and
logs any shared iTunes libraries it finds.

All you need to do is create a new Cocoa application called iTunesDetector and update
AppDelegate.m so that it looks like the following code:

#import "AppDelegate.h"

@interface AppDelegate () <NSNetServiceBrowserDelegate, NSNetServiceDelegate> {

 NSNetServiceBrowser* browser;

 NSMutableArray* services;

}

@end

@implementation AppDelegate

@synthesize window = _window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

 services = [NSMutableArray array];

 browser = [[NSNetServiceBrowser alloc] init];

 browser.delegate = self;

 [browser searchForServicesOfType:@"_daap._tcp" inDomain:nil];

}

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser

 didFindService:(NSNetService *)aNetService moreComing:(BOOL)moreComing {

 [services addObject:aNetService];

234 | Chapter 13: Networking

 aNetService.delegate = self;

 [aNetService resolveWithTimeout:5];

 NSLog(@"Found a service: %@", aNetService);

}

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser

 didRemoveService:(NSNetService *)aNetService moreComing:(BOOL)moreComing {

 [services removeObject:aNetService];

 NSLog(@"A service was removed: %@", aNetService);

}

- (void)netServiceDidResolveAddress:(NSNetService *)sender {

 NSURL* serviceURL = [NSURL URLWithString:[NSString

 stringWithFormat:@"http://%@:%i", sender.hostName, sender.port]];

 NSLog(@"Resolved address for service %@: %@", sender, serviceURL);

}

-(void)netService:(NSNetService *)sender

 didNotResolve:(NSDictionary *)errorDict {

 NSLog(@"Couldn't resolve address for service %@: %@", sender, errorDict);

}

This code does the following things:

1. It adds a class extension to the AppDelegate class, which makes the class conform

to the NSNetServiceBrowserDelegate and NSNetServiceDelegate protocols, and

adds two instance variables: an NSNetServiceBrowser and an NSMutableArray.
The net service browser variable is needed to keep the net service browser in mem‐
ory while it does its work; the array will be used to keep the discovered network
services around.

2. In the applicationDidFinishLaunching: method, the NSNetServiceBrowser is

created and told to start browsing for _daap._tcp services.

3. The rest of the methods handle the cases of services being discovered, removed,
resolved, or failing to be resolved.

Now run the application and watch the log to see your iTunes library get discovered. If
you don’t see anything appear, make sure that iTunes is open and that you’re sharing
your library. Do this by opening Preferences, going to Sharing, and turning on “Share
my library on my local network.”

Bonjour Service Discovery | 235

Multipeer Connectivity
Multipeer Connectivity is a means of identifying and connecting services together, and
allows for very easy passing back and forth of data with minimal setup. If you are think‐
ing that this seems similar to Bonjour, you are correct; however, Bonjour is for service
discovery, not connection or transmission. Multipeer Connectivity handles everything
in one neat package.

Multipeer Connectivity is comprised of a few different components, but it works by
having applications advertise their services asking if anyone is available to connect. The
service browser listens for these advertisements and can request to create a connection
between the devices. If the connection is accepted, a session is created with every one
inside the session being represented by a peer object.

To demonstrate how this works, we’ll make a simple chat application.

1. Create a new Single View iPhone application called MultipeerChat.

2. Open the project in the project navigator and the add the MultipeerConnectivity
framework into the project from the Linked Frameworks and Libraries section.

3. Open the Main.storyboard, and add a UITextView.

Make it take up most of the space, and set its editable field to be false in the Atrributes
Inspector.

4. Add a UITextField and add two buttons. Label one Browse and the other Send.

5. Connect the UITextView up to a property called chatView.

6. Connect the UITextField up to a property called msgField.

7. Connect the browse button up to an action called showBrowser, and the Send button

up to an action called sendChat.

When complete, your interface should look like Figure 13-1.

236 | Chapter 13: Networking

Figure 13-1. The interface for your chat program

Modify the ViewController.m so that is looks like the following:

#import "ViewController.h"

#import <MultipeerConnectivity/MultipeerConnectivity.h>

@interface ViewController ()<MCBrowserViewControllerDelegate,MCSessionDelegate>

@property (strong) MCBrowserViewController *browser;

@property (strong) MCAdvertiserAssistant *assistant;

@property (strong) MCSession *session;

@property (strong) MCPeerID *peerID;

@end

@implementation ViewController

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view, typically from a nib.

 // configure the peerID and session

 _peerID = [[MCPeerID alloc] initWithDisplayName:

 [[UIDevice currentDevice]name]];

Multipeer Connectivity | 237

 _session = [[MCSession alloc] initWithPeer:_peerID];

 _session.delegate = self;

 // create the browser viewcontroller with a unique service name

 _browser = [[MCBrowserViewController alloc] initWithServiceType:@"LCOC-Chat"

 session:_session];

 _browser.delegate = self;

 _assistant = [[MCAdvertiserAssistant alloc] initWithServiceType:@"LCOC-Chat"

 discoveryInfo:nil session:_session];

 // tell the assistant to start advertising our fabulous chat

 [_assistant start];

}

- (void)didReceiveMemoryWarning

{

 [super didReceiveMemoryWarning];

 // Dispose of any resources that can be recreated.

}

- (IBAction)showBrowser:(id)sender

{

 [self presentViewController:_browser animated:YES completion:nil];

}

- (IBAction)sendChat:(id)sender

{

 NSData *msg = [_msgField.text dataUsingEncoding:NSUTF8StringEncoding];

 NSError *error;

 [_session sendData:msg toPeers:[_session connectedPeers]

 withMode:MCSessionSendDataUnreliable error:&error];

 [self updateChat:_msgField.text fromPeer:_peerID.displayName];

}

- (void)updateChat:(NSString *)msg fromPeer:(NSString *)peerName

{

 NSString *message = [NSString stringWithFormat:@"%@:%@\n",peerName,msg];

 _chatView.text = [_chatView.text stringByAppendingString:message];

}

- (void)browserViewControllerDidFinish:(MCBrowserViewController *)

 browserViewController

{

 [self dismissViewControllerAnimated:YES completion:nil];

}

- (void)browserViewControllerWasCancelled:(MCBrowserViewController *)

 browserViewController

{

 [self dismissViewControllerAnimated:YES completion:nil];

}

- (void)session:(MCSession *)session didReceiveData:(NSData *)data

 fromPeer:(MCPeerID *)peerID

{

 NSLog(@"received data");

 dispatch_async(dispatch_get_main_queue(), ^{

 NSString *msg = [[NSString alloc] initWithData:data

238 | Chapter 13: Networking

 encoding:NSUTF8StringEncoding];

 [self updateChat:msg fromPeer:peerID.displayName];

 });

}

-(void)session:(MCSession *)session didStartReceivingResourceWithName:

 (NSString *)resourceName fromPeer:(MCPeerID *)peerID withProgress:

 (NSProgress *)progress{}

-(void)session:(MCSession *)session didReceiveStream:(NSInputStream *)stream

 withName:(NSString *)streamName fromPeer:(MCPeerID *)peerID{}

-(void)session:(MCSession *)session peer:(MCPeerID *)peerID

 didChangeState:(MCSessionState)state{}

-(void)session:(MCSession *)session didFinishReceivingResourceWithName:

 (NSString *)resourceName fromPeer:(MCPeerID *)peerID atURL:(NSURL *)

 localURL withError:(NSError *)error{}

@end

This code does the following things:

1. It adds a class extension to the ViewController class, which makes it conform to

the MCBrowserViewControllerDelegate and MCSessionDelegate protocols, as
well as creating four new properties, including one to handle the Multicast Peer
components:

• The MCBrowserViewController is a prebuilt view controller for handling and
negotiating browsing for connections.

• The MCAdvertiserAssistant is another prebuilt class for both advertising and
negotiating creating a connection and session.

• The MCSession is the object holding the sessions once it has been negotiated.

• MCPeerID represents your peer id for the session.

2. In the viewDidLoad: method, the code initializes all the Multicast Peer objects be‐
fore telling the advertiser to start advertising its availability.

3. In the sendChat: method, the sendData:toPeers:error: message on the session
is the real meat of the application. This is the method used to send data—in our
application, a string from the text field.

4. Finally, session:didReceiveData:fromPeer: is the delegate method that is called
when the session receives any data—in the case of our application, it appends the
new data to the text view.

Now if you and another friend both run the application, you should have an amazing
chat app!

Multipeer Connectivity | 239

1. Unless, of course, you’re taking your iPhone to space.

CHAPTER 14

Working with the Real World

Desktops, laptops, iPhones, and iPads are all physical devices and exist in the real world
—either on your desk, on your lap, or in your hand. For a long time, your apps were
largely confined to your computer, and weren’t able to do much with the outside world
besides instructing a printer to print a document.

Starting with iOS and OS X 10.6, however, things began to change, and your code is
now able to learn about the user’s location, how the device is moving and being held,
and how far away the computer is from landmarks.

In this chapter, you’ll learn about how your programs can interact with the outside
world. Specifically, you’ll learn how to use Core Location to determine where your
computer or device is on the planet, how to use MapKit to show and annotate maps,
how to use Core Motion to learn about how the user is holding the device, how to use
the printing services available on OS X and iOS to work with printers, how to connect
game controllers into your apps, and how to manage the battery life of your device as
a developer.

Most of the technology discussed in this chapter works on both OS
X and iOS. Some of the technology has an identical API on both
platforms (Core Location, MapKit, and Game Controllers), some has
different APIs on the two platforms (print services), and some is only
available on iOS (Core Motion) or OS X (App Nap). We’ll let you
know which technology is available where.

Working with Location
Almost every user of your software will be located on Earth.1

241

http://bit.ly/TKgycl

Knowing where the user is on the planet is tremendously useful because it enables you
to provide more relevant information. For example, while the recommendations service
Yelp works just fine as a search engine for businesses and restaurants, it only becomes
truly useful when it limits its results to businesses and restaurants near the user.

Location awareness is a technology that is at its most helpful on a mobile device (like
an iPhone or iPad), as its location is more likely to change. However, it’s also applicable
to a more fixed-location device (like a desktop or, to a lesser extent, laptop) to know
where it is in the world. A great example of this is the time-zone system in OS X—if you
get off a plane, your time zone will have likely changed, and OS X uses its built-in location
systems to work out how to set the clock to local time.

The exercises we build in this section run on iOS, but the techniques apply equally well
to OS X.

Location Hardware
There are a number of different techniques for determining where a computer is on the
planet, and each requires different hardware. The ones in use by iOS and OS X are:

• GPS, the Global Positioning System

• WiFi base station lookups

• Cell tower lookups

• iBeacons

GPS

GPS devices became popular first as navigation assistants for cars, and later as features
built into smartphones. Initially developed by the US military, the GPS is a constellation
of satellites that contain extremely precise clocks and continuously broadcast time in‐
formation. A GPS receiver is able to listen for these time signals and compare them to
determine where the user is.

Depending on how many satellites the GPS receiver can see, GPS is capable of working
out a location to less than one meter of accuracy.

The GPS receiver is only included on the iPhone, and on iPad models that contain 3G
or 4G cellular radios. It’s not included on any desktop, laptop, or iPod touch, or on WiFi-
only iPads.

Since the introduction of the iPhone 4S and later models, iOS devices capable of re‐
ceiving GPS signals are also capable of receiving signals from GLONASS, the Globalnaya
navigatsionnaya sputnikovaya sistema, a Russian satellite navigation system, all trans‐
parently handled and combined with GPS to give you a better location.

242 | Chapter 14: Working with the Real World

WiFi base station lookups

While a device that uses WiFi to access the Internet may move around a lot, the base
stations that provide that connection generally don’t move around at all. This fact can
be used to determine the location of a user if a GPS receiver isn’t available.

Apple maintains a gigantic database of WiFi hotspots, along with rough coordinates
that indicate where those hotspots are. If a device can see WiFi hotspots and is also
connected to the Internet, it can tell Apple’s servers, “I can see hotspots A, B, and C.”
Apple’s servers can then reply, “If you can see them, then you must be near them, and
therefore you must be near location X.” The device keeps a subset of this database locally,
in case a WiFi lookup is necessary when the device has no access to the Internet.

Usually, this method of locating the user isn’t terribly precise, but it is able to get within
100 meters of accuracy. Because it uses hardware that’s built into all devices that can run
OS X and iOS, this capability is available on every device.

Cell tower lookups

If a device uses cell towers to communicate with the Internet, it can perform a similar
trick with the towers as with WiFi base stations. The exact same technique is used,
although the results are slightly less accurate—because cell towers are less numerous
than WiFi stations, cell tower lookups can only get within a kilometer or so of accuracy.

Cell tower lookups are available on any device that includes a cell radio, meaning the
iPhone and the 3G and 4G models of iPad.

iBeacons

iBeacons are a new means of determining location using low energy Bluetooth devices.
By constantly broadcasting their existence via a unique identifier, they can be detected
by an iOS 7 device, allowing you to determine where you are based on the iBeacon’s
location. iBeacon location and accuracy is much more subjective than any of the other
location methods: instead of telling you your position on the planet, iBeacons can tell
you when you are near or far from them. iBeacons are designed more to determine the
store you’re near in a shopping mall or the artwork you’re close to in a museum, rather
than to work out where you are for navigation or tracking.

iBeacons are available on any device capable of running iOS 7. Additionally, these de‐
vices can also be set up to act as an iBeacon themselves.

The Core Location Framework
As you can see, not every piece of location-sensing hardware is available on all devices.
Because it would be tremendously painful to have to write three different chunks of
code for three different location services and then switch between them depending on

Working with Location | 243

hardware availability, OS X and iOS provide a single location services API that handles
all the details of working with the location hardware.

Core Location is the framework that your applications use to work out where they are
on the planet. Core Location accesses whatever location hardware is available, puts the
results together, and lets your code know its best guess for the user’s location. It’s also
able to determine the user’s altitude and speed.

When you work with Core Location, you work with an instance of CLLocation

Manager. This class is your interface to the Core Location framework—you create a
manager, optionally provide it with additional information on how you want it to behave
(such as how precise you want the location information to be), and then provide it with
a delegate object. The location manager will then periodically contact the delegate object
and inform it of the user’s changing location.

CLLocationManager is actually a slightly incomplete name for the class, since it doesn’t
just provide geographic location information. It also provides heading information—
that is, the direction the user is facing relative to magnetic north or true north. This
information is only available on devices that contain a magnetometer, which acts as a
digital compass. At the time of writing, all currently shipping iOS devices contain one,
but devices older than the iPhone 3GS, iPod touch 3rd generation, and iPad 2 don’t.

To work with Core Location, you create the CLLocationManager delegate, configure it,

and then send it the startUpdatingLocation message. When you’re done needing to

know about the user’s location, you send it the stopUpdatingLocation message.

You should always turn off a CLLocationManager when you’re done,
since location technologies are CPU-intensive and can require the use
of power-hungry hardware. Think of the user’s battery!

To work with Core Location, you provide it with an object that conforms to the

CLLocationManagerDelegate protocol, which it uses as a delegate. The key method in

this protocol is -locationManager:didUpdateToLocation:fromLocation:, which is
sent periodically by the location manager.

This method receives both the user’s current location (as far as Core Location can tell)

and his previous location. These two locations are represented as CLLocation objects,
which contain information like the latitude and longitude, altitude, speed, and accuracy.

Core Location may also fail to get the user’s location at all. If, for example, GPS is un‐
available and neither WiFi base stations nor cell towers can be found, no location in‐

formation will be available. If this happens, the CLLocationManager will send its delegate

the –locationManager:didFailWithError: message.

244 | Chapter 14: Working with the Real World

Working with Core Location
To demonstrate Core Location, we’ll create a simple application that attempts to display
the user’s location. This will be an OS X application, but the same API applies to iOS.

1. To get started with Core Location, you first need to make your application use the
Core Location framework. Start by creating a new Cocoa application called

Location.

2. Next, select the project at the top of the project navigator. The project will appear

in the main editor. Select the Locations target, and click the + button at the bottom
of Linked Frameworks and Libraries. The frameworks window will appear.

3. Browse or search for “CoreLocation.framework”. When you find it, click the Add
button.

Now that the framework has been added to the application, we’ll build the interface.
The interface for this app will be deliberately simple—it will show the user’s latitude and
longitude coordinates, as well as the radius of uncertainty that Core Location has about
the user.

No location technology is completely precise, so unless you’re willing to spend millions
of dollars on (classified) technology, the best any consumer GPS device will get is about
5 to 10 meters of accuracy. If you’re not using GPS, which is the case when using a device
that doesn’t have it built in, Core Location will use less-accurate technologies like WiFi
or cell tower triangulation.

This means that Core Location is always inaccurate to some extent. When Core Location
updates its delegate with the location, the latitude and longitude provided are actually

the center of a circle that the user is in, and the value of the CLLocation property

horizontalAccuracy indicates the radius of that circle, represented in meters.

The interface of this demo application, therefore, will show the user’s location as well
as how accurate Core Location says it is:

1. Open MainMenu.xib and select the window.

2. Now add the latitude, longitude, and accuracy labels. Drag in three labels and make

them read Latitude, Longitude, and Accuracy. Lay them out vertically.

3. Drag in another three labels, and lay them out vertically next to the first three.

4. Finally, drag in a circular progress indicator and place it below the labels.

When you’re done, your interface should look like Figure 14-1.

Working with Location | 245

Figure 14-1. The finished interface

You’ll now connect the interface to the app delegate. Open AppDelegate.h in the assistant
and control-drag from each of the labels on the right. Create outlets for each of them

called latitudeLabel, longitudeLabel, and accuracyLabel, respectively. Control-

drag from the progress indicator, and create an outlet for it called spinner.

Now make the app delegate conform to the CLLocationManagerDelegate protocol and
import the Core Location framework header. When you’re done, AppDelegate.h should
look like the following code:

#import <Cocoa/Cocoa.h>

#import <CoreLocation/CoreLocation.h>

@interface AppDelegate : NSObject <NSApplicationDelegate,

 CLLocationManagerDelegate>

@property (assign) IBOutlet NSWindow *window;

@property (weak) IBOutlet NSTextField *latitudeLabel;

@property (weak) IBOutlet NSTextField *longitudeLabel;

@property (weak) IBOutlet NSTextField *accuracyLabel;

@property (weak) IBOutlet NSProgressIndicator *spinner;

@end

Create the CLLocationManager and make it start updating the user’s location by making
AppDelegate.m look like the following code:

#import "AppDelegate.h"

@interface AppDelegate () {

 CLLocationManager* _locationManager;

}

246 | Chapter 14: Working with the Real World

@end

@implementation AppDelegate

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

 _locationManager = [[CLLocationManager alloc] init];

 _locationManager.delegate = self;

 [_locationManager startUpdatingLocation];

}

- (void)locationManager:(CLLocationManager *)manager

 didUpdateLocations:(NSArray *)locations

{

 // collecting the most recent location from the array of locations

 CLLocation *newLocation = [locations lastObject];

 self.latitudeLabel.stringValue =

 [NSString stringWithFormat:@"%.2f",newLocation.coordinate.latitude];

 self.longitudeLabel.stringValue =

 [NSString stringWithFormat:@"%.2f",newLocation.coordinate.longitude];

 self.accuracyLabel.stringValue =

 [NSString stringWithFormat:@"%.1fm",newLocation.horizontalAccuracy];

 [self.spinner stopAnimation:nil];

}

- (void)locationManager:(CLLocationManager *)manager

 didFailWithError:(NSError *)error {

 self.latitudeLabel.stringValue = @"-";

 self.longitudeLabel.stringValue = @"-";

 self.accuracyLabel.stringValue = @"-";

 [self.spinner startAnimation:nil];

}

@end

This code does the following things:

1. Adds a class extension to the AppDelegate class that adds a variable for storing the

CLLocationManager.

The location manager object must be stored in an instance variable, or else it will
be removed from memory before it has a chance to update the app with the user’s
location.

2. In the applicationDidFinishLaunching: method, the CLLocationManager is cre‐
ated and given a delegate. It’s then told to start updating the user’s location.

Working with Location | 247

3. In the locationManager:didUpdateLocations: method, the labels are updated to
show the appropriate information, and the spinner is stopped.

4. In the locationManager:didFailWithError: method, the labels are updated to
show dashes, and the spinner is started again.

It’s possible for the location manager to successfully determine the user’s location and
then later fail (or vice versa). This means that a failure isn’t necessarily the end of the
line—the location manager will keep trying, so your application should keep this in
mind.

Now run the application. On its first run, it will ask the user if it’s allowed to access his
location. If the user grants permission, the application will attempt to get the user’s
location. If it can find it, the labels will be updated to show the user’s approximate
location, and how accurate Core Location thinks it is.

Geocoding
When you get the user’s location, Core Location returns a latitude and longitude coor‐
dinate pair. This is useful inside an application and great for showing on a map, but isn’t
terribly helpful for a human being. Nobody looks at the coordinates “-37.813611,
144.963056” and immediately thinks, “Melbourne, Australia.”

Because people deal with addresses, which are composed of a sequence of decreasingly
precise place names (“1 Infinite Loop,” “Cupertino,” “Santa Clara,” “California,” and so
on), Core Location includes a tool for converting coordinates to addresses and back
again. Converting an address to coordinates is called geocoding; converting coordinates
to an address is called reverse geocoding.

Core Location implements this via the CLGeocoder class, which allows for both forward
and reverse geocoding. Because geocoding requires contacting a server to do the con‐
version, it will only work when an Internet connection is available.

To geocode an address, you create a CLGeocoder and then use one of its built-in geo‐
coding methods. You can provide either a string that contains an address (like “1 Infinite
Loop Cupertino California USA”) and the geocoder will attempt to figure out where
you mean, or you can provide a dictionary that contains more precisely delineated
information. Optionally, you can restrict a geocode to a specific region (to prevent con‐
fusion between, say, Hobart, Minnesota and Hobart, Tasmania).

We’re going to add reverse geocoding to the application, which will show the user her

current address. To do this, we’ll add a CLGeocoder to the AppDelegate class. When
Core Location gets a fix on the user’s location, we’ll ask the geocoder to perform a reverse

geocode with the CLLocation provided by Core Location.

248 | Chapter 14: Working with the Real World

When you reverse geocode, you receive an NSArray that contains a number of CLPla

cemark objects. An NSArray is used because it’s possible for the reverse geocode to return

with a number of possible coordinates that your address may resolve to. CLPlacemark
objects contain a number of properties that contain address information. Note that not
all of the properties may contain information; for example, if you reverse geocode a
location that’s in the middle of a desert, you probably won’t receive any street informa‐
tion.

The available properties you can access include:

• The name of the location (for example, “Apple Inc”)

• The thoroughfare (for example, “1 Infinite Loop”)

• The locality (for example, “Cupertino”)

• The sublocality (the neighborhood or name for that area; for example, “Mission
District”)

• The administrative area (the state name or other main subdivision of a country; for
example, “California”)

• The subadministrative area (for example, “Santa Clara”)

• The postal code (for example, “95014”)

• The ISO country code (a two- or three-letter code for that country; for example,
“US”)

• The country name (for example, “United States”)

Some placemarks may contain additional data, if relevant:

• The name of the inland body of water that the placemark is located at or very near
to (for example, “Derwent River”)

• The name of the ocean where the placemark is located (for example, “Pacific
Ocean”)

• An NSArray containing any additional areas of interest (for example, “Golden Gate
Park”)

You can use this information to create a string that can be shown to the user.

We’ll start by creating a label that will display the user’s address.

Open MainMenu.xib and drag in a new label under the current set of labels. The updated
interface should look like Figure 14-2. Then open AppDelegate.h in the assistant and

control-drag from the new label into AppDelegate’s interface. Create a new outlet for

the label called addressLabel.

Geocoding | 249

Figure 14-2. The updated interface for the Locations application

Then add CLGeocoder to the app delegate by updating AppDelegate.m to make the class
extension at the top of the file look like the following code:

@interface AppDelegate () {

 CLLocationManager* _locationManager;

 CLGeocoder* _geocoder;

}

@end

Then add the following to the end of the applicationDidFinishLaunching: method:

_geocoder = [[CLGeocoder alloc] init];

When the user’s location is determined, perform a reverse geocode by adding the fol‐

lowing code to the end of the locationManager:didUpdateLocations: method:

[_geocoder reverseGeocodeLocation:newLocation

 completionHandler:^(NSArray *placemarks, NSError *error) {

 if (error != nil) {

 self.addressLabel.stringValue = @"Can't find address!";

 return;

250 | Chapter 14: Working with the Real World

 }

 CLPlacemark* placeMark = [placemarks lastObject];

 NSString* addressString = [NSString stringWithFormat:@"%@ %@, %@, %@ %@",

 placeMark.subThoroughfare,

 placeMark.thoroughfare,

 placeMark.locality,

 placeMark.administrativeArea,

 placeMark.country];

 self.addressLabel.stringValue = addressString;

}];

Now run the application. Shortly after the user’s location is displayed, the approximate
address of your location will appear. If it doesn’t, check to make sure that you’re con‐
nected to the Internet.

Region Monitoring and iBeacons
Depending on what your app’s goals are, it might be more useful to know when your
user enters an area as opposed to knowing their precise location. To help with this, Core
Location provides region monitoring.

There are two types of region monitors: geographical and iBeacon. Region monitoring
lets you set up virtual boundaries around the Earth and be informed via delegate call‐
backs when the user enters or exits one of the regions; iBeacon monitoring lets your
app be informed when a user is near an iBeacon region represented by a low energy
Bluetooth signal.

Monitoring when the user enters and exits a geographical region is quite straighforward.

All you need to do is add the following to the bottom of the applicationDidFinish

Launching: method:

CLLocationCoordinate2D location = CLLocationCoordinate2DMake

 (-42.883317, 147.328277);

CLCircularRegion *region = [[CLCircularRegion alloc] initWithCenter:location

 radius:1000 identifier:@"Hobart"];

[_locationManager startMonitoringForRegion:region];

This does several things: first, it creates a location to use as the center of the region (in
this case, the city of Hobart, in Australia). It then creates a region around this center
point with a radius of 1,000 meters, and gives it an identifier to help you dfferentiate it
later. Finally, it tells the location manager to start monitoring whether a user has entered
or exited a region.

To know when a user has entered or exited a region, there are two delegate methods:

locationManager:didEnterRegion: and locationManager:didExitRegion:. Both of

Region Monitoring and iBeacons | 251

these callbacks pass in a CLRegion with a string identifier property which you should
use to determine the region that the user has entered or exited.

iBeacon regions function a little bit differently with circular regions. Because of the
nature of Bluetooth radio devices, you will never be able to guarantee a radius for each
beacon. Additionally, a device might encounter multiple beacons within a single area
that might not all be relevant to your app. Therefore, a radius and an identifier are not
enough to be able to use iBeacons. Say you wanted to create an iBeacon region for a
particular painting in a gallery:

// uuid is of type NSUUID

CLBeaconRegion *beaconRegion = [[CLBeaconRegion alloc] alloc]

 initWithProximityUUID:uuid identifier:@"My Awesome Museum"];

beaconRegion.major = @1;

beaconRegion.minor = @2;

[_locationManager startMonitoringForRegion:beaconRegion];

This code does several things. First it creates a CLBeaconRegion with both an identifier
string that works exactly the same as it does in the circular region, and a proximity
UUID. The proximity UUID is a unique identifier to be used by all the beacons in your
app. In the case of a gallery, the UUID would be the same for all iBeacons in the gallery

or any other gallery that your app works in. The major and minor properties are NSNum

bers that can be used to help identify exactly which real world region the user is near.
In the case of a gallery, the major property could represent a section of the museum and
the minor property a particular artwork. Finally, we tell the location manager to start
monitoring for that region.

Just like with geographical regions, your app gets delegate callbacks upon entering and

exiting a region. Unlike geographical regions, however, your app can call startRan

gingBeaconsInRegion: once your app has entered an iBeacon region to further differ‐

entiate which iBeacon is closest. This will result in the delegate method locationMan

ager:didRangeBeacons:inRegion to be called, with all the beacons in range being

passed in as an NSArray called beacons. The closest beacon will have a proximity prop‐

erty equal to the system defined CLProximityNear value.

Locations and Privacy
The user’s location is private information, and your application must be granted explicit
permission by the user on at least the first occasion that it tries to access it.

People are understandably wary about software knowing where they are—it’s a privacy
issue and potentially a safety risk. To avoid problems, follow these guidelines in your
application:

• Be very clear about what your application is using location information for.

252 | Chapter 14: Working with the Real World

• Never share the user’s location with a server or other users unless the user has
explicitly given permission.

• The user can always see when an application is accessing location information be‐
cause a small icon appears at the top of the screen (on both iOS and OS X). Once
your app has performed the task that location information is needed for, turn off
Core Location—both to save power and to let the user know that he’s no longer
being tracked.

Maps
The MapKit framework provides an everything-but-the-kitchen-sink approach to
maps, allowing you to create, annotate, overlay, and adjust maps as needed for your
applications, and for good reasons, plays very well with the location tracking and region
monitoring technology that Apple provides.

Previously, MapKit was only available on iOS, but since the release of OS X 10.9, MapKit
is now available on OS X as well and the framework works virtually the same on both
platforms.

The base of all maps is the MKMapView, which is the actual view containing map data that
your application can use. The map data that the map view displays comes from Apple
Maps data, although in the past the view used Google Maps data.

Using Maps
Getting a map up and running is quite straightforward, so lets get cracking!

1. Create a new iPhone application.

Create a new Single View iPhone application, and call it Maps.

2. Create the interface.

Open the Main.storyboard file.

Drag in a MapView and make it take up the entire view.

3. Connect the interface.

Open ViewController.h in the Assistant.

Control-drag from the MapView to the view controller and make a new outlet for

the map view. Call it mapView.

4. Extend the view controller

Open ViewController.h, import the MapKit framework, and set the controller to be
a MapView delegate.

Maps | 253

Fnally, add the mapKit framework into the project.

When you are done, your ViewController.h should look like this:

#import <UIKit/UIKit.h>

#import <MapKit/MapKit.h>

@interface ViewController : UIViewController<MKMapViewDelegate>

@property (weak, nonatomic) IBOutlet MKMapView *mapView;

@end

5. Configure the map.

By default, the map view will be centered over Apple’s headquarters in Cupertino,
so we want to move that somewhere a bit different.

Open ViewController.m and replace it with following:

#import "ViewController.h"

@interface ViewController ()

@end

@implementation ViewController

- (void)viewDidLoad

{

 [super viewDidLoad];

 _mapView.delegate = self;

 // centering the map over Melbourne.

 _mapView.region =

 MKCoordinateRegionMake(CLLocationCoordinate2DMake

 (-37.813611, 144.963056), MKCoordinateSpanMake(2, 2));

}

@end

Now if you run the app, your map should be centered over Melbourne.

Annotating Maps
Just having a map all by itself isn’t a lot of fun. What if we want to see where something
interesting is? Luckily for us, Apple has included an easy way of annotating the map,
which you may have seen in the built-in Maps app as little red, green, and purple pins.
In iOS and OS X, these additions to the map are called annotations.

254 | Chapter 14: Working with the Real World

The annotations are broken up into two object types: MKAnnotation, which represents
the annotation data, including its location and any other data such as a name; and

MKAnnotationView, which will be the view that the map displays when needed.

Apple has provided a built-in annotation class for when all you need is a simple pin

called MKPointAnnotation. This class has built-in properties for a title and subtitle, and
will automatically draw a pin view when needed, making it very easy to use.

So let’s start dropping those little pins. Open ViewController.m and add the following

to the bottom of the viewDidLoad method:

// creating a new annotation

MKPointAnnotation *annotation = [[MKPointAnnotation alloc] init];

annotation.coordinate = CLLocationCoordinate2DMake(-37.813611, 144.963056);

annotation.title = @"Melbourne";

annotation.subtitle = @"How exciting!";

// adding the annotation to the map

[_mapView addAnnotation:annotation];

This code creates a new point annotation at Melbourne, sets a title and subtitle string,
and then finally adds it to the map. If you run the app, a red pin will be on top of
Melbourne and if you tap it, you’ll get a little window with the title and subtitle strings.

Maps and Overlays
Annotations are good and all, but sometimes you need a bit more than what a pin can
provide. This is where overlays come in handy. Unlike an annotation, they don’t rep‐
resent a single point but instead cover an area on the map.

Overlays, much like annotations, are broken up into two parts: an MKOverlay object

representing the data, and a view object called MKOverlayRender. Also much like an‐
notations, Apple has provided some prebuilt overlays to make life simpler, including
overlays and associated renderers for circles, lines, and polygons—and if you want, you
can build your own.

With that understood, let’s add a 100km circle around the pin we dropped before. Add

the following to the bottom of the viewDidLoad method:

// creating a new overlay

MKCircle *overlay = [MKCircle circleWithCenterCoordinate:

CLLocationCoordinate2DMake(-37.813611, 144.963056) radius:50000];

// adding the overlay to the map

[_mapView addOverlay:overlay];

This creates a circlar region with a radius of 50km around the same location where we
added the pin, and then it adds the overlay to the map. Nothing will be displayed, though,
until the maps delegate provides an appropriate renderer for that overlay.

Maps | 255

Add the following MapView delegate method to ViewController.m:

- (MKOverlayRenderer *)mapView:(MKMapView *)mapView

 rendererForOverlay:(id<MKOverlay>)overlay

{

 if ([overlay isKindOfClass:[MKCircle class]])

 {

 MKCircleRenderer *renderer = [[MKCircleRenderer alloc]

 initWithCircle:overlay];

 renderer.strokeColor = [UIColor greenColor];

 renderer.fillColor = [UIColor colorWithRed:0 green:1 blue:0 alpha:0.5];

 return renderer;

 }

 return nil;

}

Terra, as you might know, is a sphere and your screen is a rectangle,
so there are going to be some issues when trying to squish the plan‐
et into a rectangle. Apple has used what is known as the Mercator
projection to overcome this. The Mercator projection is just one of
many different projections and they all have their own strengths and
weaknesses.

One of the side effects of the Mercator projection is if you add a lot
of overlays spread all over Terra, they might look different if you zoom
the map all the way out than they do up close. Thankfully, most of
the time you are using maps, you will likely be zoomed close enough
in that you won’t notice this.

Now if you run the app, you should see a rather large green circle hovering ominously
over Melbourne.

Device Motion
An iOS device is often held in the user’s hands, which means that it’s subject to movement
and rotation. iOS allows your code to receive information about how the device is mov‐
ing, how it’s being rotated, and how it’s oriented. All of this information is available
through the Core Motion framework, which provides a unified interface to the various
relevant sensors built into the device.

256 | Chapter 14: Working with the Real World

Core Motion is only available on iOS, since laptops and desktops don’t
generally get shaken around while being used. While some Mac lap‐
tops include an accelerometer, it isn’t available to your code through
any publicly accessible APIs.

Core Motion provides device motion information to your application by measuring data
from the sensors available to the device:

• The accelerometer, which measures forces applied to the device

• The gyroscope, which measures rotation

• The magnetometer, which measures magnetic fields

The first iOS devices only included an accelerometer, which is actually sufficient for
getting quite a lot of information about device motion. For example, based on the forces
being applied to the device over time, you can determine the direction of gravity, which
gives you information about how the device is being held, as well as determine if the
device is being shaken. If a gyroscope is available, you can refine this information and
determine if the device is rotating around an axis of gravity. If a magnetometer is avail‐
able, it’s possible to determine a frame of reference.

Core Motion collects data from all the available sensors and provides direct access to
the sensor information. You can therefore ask Core Motion to give you the angles that
define the device’s orientation in space, as well as get raw accelerometer information.

Raw sensor data can lead to some very cool tricks. For example, the
magnetometer measures magnetic fields, which means that the de‐
vice can actually be used as a metal detector by measuring changes in
the magnetic field.

Working with Core Motion
Core Motion works in a very similar manner to Core Location: it provides a manager
object that provides periodic updates on device motion. However, the means by which

the manager object provides these updates differs from how CLLocationManager does
—instead of providing a delegate object, you instruct the motion manager to call a block
that you provide. In this block, you handle the movement event.

The iOS Simulator doesn’t simulate any of the motion hardware that
Core Motion uses. If you want to test Core Motion, you need to use
a real iOS device.

Device Motion | 257

The motion manager class is called CMMotionManager. To start getting motion infor‐
mation, you create an instance of this class and instruct it to begin generating motion
updates. You can also optionally ask for only accelerometer, gyroscope, or magneto‐
meter information.

You can also get information from the CMMotionManager by querying it at any time. If
your application doesn’t need to get information about device motion very often, it’s
more efficient to simply ask for the information when it’s needed. To do this, you send

the CMMotionManager object the startDeviceMotionUpdates method (or startAccel

erometerUpdates or startGyroUpdates), and then, when you need the data, you access

the CMMotionManager’s accelerometerData, gyroData, or deviceMotion properties.

The fewer devices that Core Motion needs to activate in order to give
you the information you need, the more power is saved. As always,
consider the user’s battery!

Forces and Orientation and Gravity, Oh My!
Core Motion separates out “user motion” from the sum total of forces being applied to
the device. There’s still only one accelerometer in there, though, so what Core Motion
does is use a combination of low- and high-pass filtering to separate out parts of the
signal, with the assistance of the gyroscope, to determine which forces are gravity and
which forces are “user motion”—forces like shaking or throwing your device. (Note:
The authors do not recommend throwing your device, no matter how much fun it is.
The authors specifically do not recommend making an awesome app that takes a photo
at the peak of a throw. You will break your phone.)

You can also configure how often the CMMotionManager updates the accelerometer and
gyro—the less often it uses it, the more power you save (and, as a trade-off, the more
imprecise your measurements become).

To work with Core Motion, you’ll need to add the Core Motion framework to your
project. We’ll now build a small iPhone app that reports on how it’s being moved and
how the device is oriented.

1. Create the project. Create a new single-view application for iPhone. Call it Motion.

2. Add the Core Motion framework. Select the project at the top of the project navigator.

The project settings will appear in the main editor; select the Motion target.

a. Scroll down to Linked Frameworks and Libraries, and click the + button.

258 | Chapter 14: Working with the Real World

b. The frameworks sheet will appear; browse or search for CoreMotion.frame
work and add it to the project.

3. Build the interface. Once the framework has been added, we’ll begin building the
interface for the app. This will be similar to the Core Location app: it will report on
the numbers being sent by Core Motion. However, you can (and should!) use the
information for all kinds of things—game controls, data logging, and more. The
authors once used Core Motion to build an app that tracks human sleeping activity.
It’s a tremendously flexible framework.

a. Open Main.storyboard.

b. First, we’ll create the labels that display the user motion.

c. Drag in three labels and lay them out vertically on the lefthand side of the screen.

Make their text X, Y, and Z, respectively.

d. Drag in another three labels and lay them out vertically to the right of the first
three.

e. Next we’ll create the labels that display orientation.

f. Drag in another three labels and lay them out vertically on the lefthand side of

the screen, under the existing set of labels. Make their text Pitch, Yaw, and

Roll, respectively.

g. Drag in a final set of three labels and lay them out vertically and to the right.

h. Once you’re done, your interface should look like Figure 14-3.

4. Connect the interface to the view controller. Open ViewController.h in the assistant.

a. Control-drag from each of the labels on the right and create outlets for each of
them.

b. From top to bottom, the labels should be called xLabel, yLabel, zLabel, pit

chLabel, yawLabel, and rollLabel.

c. While you have ViewController.h open, import <CoreMotion/CoreMotion.h>.

When you’re done, ViewController.h should look like the following:

#import <UIKit/UIKit.h>

#import <CoreMotion/CoreMotion.h>

@interface ViewController : UIViewController

@property (weak, nonatomic) IBOutlet UILabel *xLabel;

@property (weak, nonatomic) IBOutlet UILabel *yLabel;

@property (weak, nonatomic) IBOutlet UILabel *zLabel;

@property (weak, nonatomic) IBOutlet UILabel *pitchLabel;

@property (weak, nonatomic) IBOutlet UILabel *yawLabel;

@property (weak, nonatomic) IBOutlet UILabel *rollLabel;

@end

Device Motion | 259

Figure 14-3. The motion application’s interface

5. Add the code that starts, stops, and handles device motion updates. Now that the
view controller’s header file has been set up, we’ll write the code that actually creates
the motion manager and then starts updating the labels as device motion updates
arrive.

We’ll store a reference to the CMMotionManager as an instance variable in the class,
and start and stop the device motion updates when the view controller appears and
disappears.

Update ViewController.m so that it looks like the following code:

#import "ViewController.h"

@interface ViewController () {

 CMMotionManager* _motionManager;

}

@end

260 | Chapter 14: Working with the Real World

@implementation ViewController

- (void)viewDidLoad

{

 [super viewDidLoad];

 _motionManager = [[CMMotionManager alloc] init];

}

- (void)viewWillAppear:(BOOL)animated {

 [_motionManager startDeviceMotionUpdatesToQueue:

 [NSOperationQueue mainQueue]

 withHandler:^(CMDeviceMotion *motion, NSError *error) {

 self.xLabel.text = [NSString stringWithFormat:@"%.1f",

 motion.userAcceleration.x];

 self.yLabel.text = [NSString stringWithFormat:@"%.1f",

 motion.userAcceleration.y];

 self.zLabel.text = [NSString stringWithFormat:@"%.1f",

 motion.userAcceleration.z];

 // Convert the angles to degrees

 CGFloat pitchDegrees = motion.attitude.pitch * 180 / M_PI;

 CGFloat yawDegrees = motion.attitude.yaw * 180 / M_PI;

 CGFloat rollDegrees = motion.attitude.roll * 180 / M_PI;

 self.pitchLabel.text = [NSString stringWithFormat:@"%.1f",

 pitchDegrees];

 self.yawLabel.text = [NSString stringWithFormat:@"%.1f",

 yawDegrees];

 self.rollLabel.text = [NSString stringWithFormat:@"%.1f",

 rollDegrees];

 }];

}

- (void)viewWillDisappear:(BOOL)animated {

 [_motionManager stopDeviceMotionUpdates];

}

@end

Finally, connect an iOS device and run the application on it. Watch the numbers on the
screen change as you shake and rotate the device.

Printing Documents
Despite decades of promises, the “paperless office” has never really materialized. Users
like having documents on paper, and both OS X and iOS provide ways of getting stuff
printed on dead trees.

Printing Documents | 261

The APIs and methods for printing on OS X and iOS are completely different. On OS

X, individual NSViews are printed, either directly or via an intermediary system. On
iOS, you print via a separate system of print renderer and formatter objects.

We’ll build two demo apps that show how to print documents on OS X and iOS.

Printing on OS X
One of the happy quirks of OS X’s development is that the entire graphics system traces
its lineage to PostScript, the language of printers. On OS X, drawing graphics is very
easily translatable to printer commands—so much so, in fact, that the translation is done
for you by the OS.

Given any NSView, you can print it by sending it the print message. OS X takes over
from that point—the print panel appears, the user chooses which printer to use and
how, and the printer prints the document.

When a view is printed, its drawRect: method is called—however, the graphics context
that is prepared before the method is called is designed for generating printer commands

(specifically EPS or PDF content). This means that any custom NSView subclass that you
make is already set up for printing.

To demonstrate printing, we’ll build a small sample application that prints an NSText

View.

1. Create the project. Create a new Cocoa application named OSXPrinting.

2. Create the interface. Open MainMenu.xib.

a. Drag an NSTextView into the app’s main window. Make it fill the window, but
leave some room at the bottom.

b. Drag in an NSButton and place it at the bottom-right of the window. Change its

label to Print.

3. Connect the interface. We don’t need to write any code for this, since the button can

be directly connected to the print: of the view.

a. Control-drag from the print button to the text view.

b. Choose print: from the list that pops up.

4. Test the application. Run the application and type some text into the text view. Click
the Print button and try printing the document. (If you don’t want to waste paper,
you can print to PDF by choosing “Save as PDF” in the PDF menu, just like in all
applications on OS X.)

262 | Chapter 14: Working with the Real World

You can also choose Print from your application’s File menu, or press
⌘-P. The reason this works without having connected the views is that
the Print menu item is connected to the First Responder, which is the
object that corresponds to whichever view is currently responding to
user input.

Printing on iOS
While OS X machines are often connected to a computer (usually via USB, and some‐
times over the network), iOS printing is much more ad hoc and on-the-fly. In iOS, all
printing is done over AirPrint, the WiFi-based printer discovery system. When you
print a document, iOS shows you a list of printers nearby, and you send your print work
to the printer you want to use.

The printing system is more complex than on OS X, but more flexible. When you want

to print a document, you ask iOS for the shared instance of the UIPrintInteraction

Controller, which is a view controller that allows the user to configure the print job
and works in the same way as the print panel on OS X. You then provide the print
interaction controller with the items you want to have printed.

There are several ways you can indicate to the print interaction controller what should

be printed. If you have a UIImage, or an NSData that contains PDF or image data, you

can give it directly to the print controller. You can also provide an NSArray of these
objects if you have multiple things you want to print.

If you want to print content like text, markup, or custom views, you create a UIPrint

Formatter object for each piece of content. For example, if you have a block of text, you

can create an instance of UISimpleTextPrintFormatter, give it the NSString that con‐
tains your text, and then provide the print formatter to the print controller.

If you want to have total control over what gets printed, you can also use the UIPrint

PageRenderer class, which allows for advanced customization and drawing.

In this section, we’ll create a simple iOS application that does the same thing as the OS
X application in the previous section—a simple text box, plus a print button.

1. Create a new application. Create a new single-view application for iOS named

PrintingiOS.

2. Create the interface.

a. Open Main.storyboard.

b. Drag a UINavigationBar into the window and place it at the top.

c. Drag a UIBarButtonItem into the navigation bar. Change its label to Print.

d. Finally, drag in a UITextView and make it fill the rest of the space.

Printing Documents | 263

3. Connect the interface to the view controller.

a. Open ViewController.h in the assistant.

b. Control-drag from the text view into ViewController’s interface, and create an

outlet called textView.

c. Control-drag from the Print button into ViewController, and create an action

called print.

We’re done with the interface. The next step is to make the print button actually print.

4. Add the printing code. Open ViewController.m. Replace the print: method with
the following code:

- (IBAction)print:(id)sender {

 UIPrintInteractionController* printInteraction =

 [UIPrintInteractionController sharedPrintController];

 UISimpleTextPrintFormatter* textFormatter =

 [[UISimpleTextPrintFormatter alloc] initWithText:_textView.text];

 printInteraction.printFormatter = textFormatter;

 [printInteraction presentAnimated:YES

 completionHandler:^(UIPrintInteractionController

 *printInteractionController, BOOL completed, NSError *error) {

 }];

}

In order to test the printing system without using actual paper, Xcode provides a tool
called the Printer Simulator that simulates printers on the network. It’s not a substitute
for actually printing on paper—if you’re doing anything with graphics, for example, the
colors will likely be quite different, and a simulated printer won’t demonstrate effects
like ink bleed—but it’s sufficient for demonstrating that it actually works.

5. Launch the Printer Simulator. Open the iOS Simulator if it isn’t open already, and
choose Open Printer Simulator from the File menu. The Print Simulator will open.

6. Test the application. Launch the application and hit the Print button. Choose one
of the simulated printers and tap Print. The Print Simulator will simulate printing
and show you the final result.

Game Controllers
Game Controllers are another new framework included with the release of iOS 7 and
OS X 10.9 and the implementation is the same on both platforms. Each controller is

264 | Chapter 14: Working with the Real World

represented by a GCController object and the operating system handles the discovery
and connection of controllers automatically, leaving you free to just use them.

Apple requires you to make controllers an optional interface of a
game. You must provide a fallback option of mouse and keyboard in
OS X, or touch controls in iOS if the user doesn’t have a game con‐
troller.

There are two profiles of game controllers, called gamepad and extendedGamepad. The

standard gamepad has a four-way directional pad, four front facing buttons in a diamond

pattern, and two shoulder buttons. The extendedGamepad not only has all the elements

of a gamepad (and can be detected as one by the application), but also has a left and right
trigger to accompany the shoulder buttons and two joysticks to go along with the d-
pad.

To demonstrate how to connect to and use the controllers, we’ll create a simple OS X
application. Note that if you don’t have a controller, this app will be a little unexciting.

1. Create a new Cocoa application.

Create a new Cocoa application, and call it Controllers.

2. Include the framework.

Open the project inside the project navigator. In the General tab, scroll down to the
Linked Frameworks and Libraries section and add the GameController.frame
work into the project.

3. Connect to the controllers.

If you haven’t already done so, now would be a great time to connect any controllers
you have.

Open AppDelegate.m and replace it with the following:

#import "AppDelegate.h"

#import <GameController/GameController.h>

@interface AppDelegate()

@property (nonatomic,strong)GCController *myController;

@end

@implementation AppDelegate

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

 NSArray *controllers = [GCController controllers];

 if (controllers.count != 0)

Game Controllers | 265

 {

 // grabbing hold of the controller

 // setting it to have no playerindex

 self.myController = controllers[0];

 self.myController.playerIndex = GCControllerPlayerIndexUnset;

 if (self.myController.extendedGamepad)

 {

 NSLog(@"controller is an extended controller");

 // adding a callback handler when any element in the controller change

 GCExtendedGamepad *profile = self.myController.extendedGamepad;

 profile.valueChangedHandler =

 ^(GCExtendedGamepad *gamepad, GCControllerElement *element)

 {

 if (element == gamepad.rightTrigger)

 if (gamepad.rightTrigger.isPressed)

 NSLog(@"right trigger pressed");

 };

 profile.leftTrigger.valueChangedHandler =

 ^(GCControllerButtonInput *button,float value,BOOL pressed)

 {

 if(pressed)

 NSLog(@"left trigger pressed");

 };

 }

 else

 {

 NSLog(@"controller is a simple controller");

 }

 }

 else

 {

 NSLog(@"no controllers detected");

 // fallback to other control option

 }

}

@end

This code does a few things. First it creates a property to hold the controller as soon as

we can access one. Then applicationDidFinishLaunching: uses the class method on

GCController to get access to all currently connected controllers. We then store the first
controller in our previously defined property and set its player index to be unset as we
are not going to be using more than one player at a time.

Then we set up two callback handlers: one that responds to every element on the con‐
troller and one that responds only to the left trigger.

If you run the application and have an extended game controller connected when you
press in either of the triggers, you will get a log message.

266 | Chapter 14: Working with the Real World

App Nap
App Nap is a new feature in OS X 10.9 designed to improve battery life without im‐
pinging upon an app’s responsiveness. It accomplishes this through a bunch of different
heuristics to determine what apps should be suspended. The heuristics used to deter‐
mine if your app may be suspended by the OS are as follows:

• The app is not visible.

• The app is not making any noise.

• The app has not disabled automatic termination.

• The app has not made any power management assertions.

When asleep, your app is put in a scheduling queue that rarely gets any processing time.
Any user activity that brings your app to the foreground or the receipt of an OS event
will awaken your app and return it to normal processing priority. App Nap is essentially
trying to keep your computer’s CPU idling for a long as possible, only leaving the idle
state when necessary before returning to idle state as quickly as possible. Towards this
goal, Apple has provided three new APIs:

Application visibility
Application visibility is a simple idea: when your app isn’t visible, it is likely that it
doesn’t need to be doing as much as if it were in the foreground. Since the release
of 10.9, a new application delegate method is called when your app’s visibility
changes. To detect this change, add something similar to the following in your
application’s delegate:

- (void)applicationDidChangeOcclusionState:(NSNotification *)notification

{

 if ([NSApp occlusionState] & NSApplicationOcclusionStateVisible)

 NSLog(@"You are in the foreground, go nuts");

 else

 NSLog(@"You are in the background, slow down");

}

Timer tolerance
Timers are a great source of causing the system to leave idle state—even two timers
mere milliseconds apart cause the system to switch to normal running from idle.
Timer tolerances allows the OS to slightly shift your timers to be in sync with other
timers that are also running, which allows the system to keep itself idle longer.

To use timer tolerance, simply call the setTolerance: method on your timers be‐
fore starting them. Apple recommends a default of 10% of a timer’s interval, but
this will need to change on an app-by-app basis.

App Nap | 267

User actvities
User activities are a way of declaring to the system what you are doing and how
important it is. When your app declares these activities, the system can begin to
optimize the heuristics it uses to know when to nap apps.

To declare one of these activities, implement code similar to the following:

NSOperationQueue *queue = [NSOperationQueue mainQueue];

id token = [[NSProcessInfo processInfo]

 beginActivityWithOptions:NSActivityUserInitiated reason:@"Important stuff"];

[queue addOperationWithBlock:^{

 //do important stuff here

}];

[[NSProcessInfo processInfo] endActivity:token];

The option parameter allows you to declare to the system what kind of work it is.
The above example is saying that it is user-initiated activity, and as such is very
important and should stop the app from being napped while it is occurring. By

contrast, specifying the option NSActivityBackground indicates to the system that
it is low priorty, and napping the app won’t affect the user.

268 | Chapter 14: Working with the Real World

CHAPTER 15

Event Kit

The user’s life isn’t confined to the use of computers and phones, and many people even
use technology to interact with other human beings. One capability of Apple devices is
calendaring and scheduling, which is usually managed through built-in applications
(the Calendar app on iOS and OS X).

However, it can be very useful for third-party applications to be able to access the cal‐
endar, either to create new appointments or to view what the user has lined up for the
day. This information is exposed via Event Kit, the calendar data store API.

In this chapter, you’ll learn how to work with Event Kit to access the user’s calendar.
The same API applies to both OS X and iOS; in this chapter, the sample code will be
written for OS X.

Understanding Events
All of the information that relates to the user’s calendars comes from the Event Kit event

store. This object, which is an instance of the EKEventStore, acts as the database of all
calendars, which themselves contain events.

The event store stores multiple calendars, which are EKCalendar objects. Each calendar
has information like its name, whether it’s editable, whether it’s a subscribed calendar,
and so on.

An “event” is an entry in the user’s calendar, and is represented as an EKEvent object.
Events contain several key pieces of information, including:

269

• A text label describing what the event is

• The date and times that the event begins and ends

• The location of the event

• When the event was created and last modified

EKEvent is actually a subclass of the EKCalendarItem class. That’s because EKCalen

dars don’t only contain events—they can also contain reminders, which are scheduled
alerts.

Reminders are available only on OS X and iOS 6 and above.

Events can also be set to repeat, and the rules for this repetition can be complex. For
example, you can have an event that repeats every day, every second day, on the second
Tuesday of every month, and so on.

In addition to this repeating behavior, it’s possible to detach a specific instance of a
repeating event. For example, imagine you have an event on the calendar that repeats
every week on Monday morning, and one week you need to push it back. However, you
only want to move this one instance, not the entire repeating set. When you move the
event, your calendaring application asks if you want to move all future events, or just
the specific one you just moved. Your answer indicates to the system whether you want
to create a detached event or modify the entire repeating event.

Accessing the Event Store
To get access to the calendar system, you create an instance of EKEventStore, indicating
what kinds of calendar items you want to get from the store (either events or reminders).

To connect to the store and request access to events, you allocate an EKEventStore object

and initialize it with the initWithAccessToEntityTypes: method:

EKEventStore* store = [[EKEventStore alloc]

 initWithAccessToEntityTypes:EKEntityMaskEvent];

If the user hasn’t already granted permission to access calendar events of that type, an
alert box will pop up asking the user if it’s OK for your application to access the calendar.

Until the user grants permission, any requests for data will return nil.

The event store might not have permission at the moment you create the EKEvent

Store object, but it might gain permission later. When the user grants (or revokes)

270 | Chapter 15: Event Kit

permission, an EKEventStoreChangedNotification is broadcast by the object. This
notification is also sent when the contents of the event store changes; in both cases, it’s
a signal to refresh whatever views you have that are displaying the contents of the
calendar.

Once you have access to the data store, you can retrieve the list of calendars.

Accessing Calendars
To get the list of calendars available to the user, simply ask the event store. Because a
calendar can support only events, only reminders, or both, you need to specify what
you want the calendars that you get back to support.

To get the user’s calendars that support storing events, you use the calendarsForEnti

tyType: method, and pass in the EKEntityTypeEvent value as the type parameter:

[store calendarsForEntityType:EKEntityTypeEvent];

This returns an NSArray of EKCalendars, which you can get events out of.

Getting the array of calendars that support reminders is just as easy—you just pass in

the EKEntityTypeReminder parameter:

[store calendarsForEntityType:EKEntityTypeReminder];

Once you have a calendar, you can start working with events inside it.

Accessing Events
A calendar is a potentially infinitely large collection of data. If a calendar contains any
repeating events that don’t have an end date, such as a weekly meeting or someone’s
birthday, then it’s not possible to ask for “all events,” since that collection is of an infinite
size. Instead, you need to specify the date range that you’re interested in receiving events
for.

While you’re filtering based on date range, it’s also useful to filter based on other prop‐
erties as well, including time of day, event name, and so on. The standard filtering tool

in Cocoa and Cocoa Touch is NSPredicate, which allows you to specify parameters for
finding events in a data set.

NSPredicate is also useful outside of Event Kit. In “Blocks” on page

95, we talked about how to use NSPredicate to filter an NSArray to
only contain objects that match certain parameters.

To construct an event-finding predicate, ask your EKEventStore to provide you with a
predicate that finds events between a start date and an end date, as well as the calendars

Understanding Events | 271

that the events should be in. This is done with the predicateForEventsWithStart

Date:endDate:calendars: method:

NSDate* startDate = ...

NSDate* endDate = ...

NSPredicate* predicate = [store predicateForEventsWithStartDate:startDate

 endDate:endDate

 calendars:self.calendars];

Once you have this NSPredicate, you can give it back to the EKEventStore and it will
retrieve all matching calendar items:

NSArray* events = [store eventsMatchingPredicate:predicate];

This array contains all matching events, from which you can extract information.

Working with Events
Modifying an event or reminder is as simple as modifying its properties. For example,

to modify an event’s title, you just change its title property:

EKEvent* event = ...

event.title = @"Party Times";

title is actually a property on EKCalendarItem, EKEvent’s super‐

class. This means that it exists in both EKEvent and EKReminder.

However, changing properties on an event or reminder does not update the shared
calendar system immediately. When the calendar item has finished being modified, it

must be explicitly saved back to the event store. You do this by using the method save

Event:span:error:, which takes as its parameters the event that you’re saving, the span

of time that the changes should apply for, and a reference to an NSError variable that
the method will store error information in if anything goes wrong.

The span of time is represented as an EKSpan, which is simply an enumeration with two
options: this event or future events. When you modify a repeating event and choose to
make those changes apply only to one specific instance, the instance will become
detached:

EKEvent* event = ...

NSError* error = nil;

[store saveEvent:event span:EKSpanThisEvent error:&error];

272 | Chapter 15: Event Kit

The EKEventStore that you use to save the event needs to be the

same as the one you got the event from. If you get an EKEvent from

one EKEventStore and try to save it in a different one, your app will
throw an exception.

It’s possible that an EKEvent that you’re working with might have changed while your

code was modifying it. Whenever the calendar changes, the EKEventStore that you’re

working with posts an EKEventStoreChangedNotification to let you know that the

contents of the event store have been modified. To ensure that an EKEvent is up to date

with the most recent information inside the calendar, use the refresh method:

EKEvent* event = ...

[event refresh];

Refreshing an event means that properties that have changed since you got the event
from the event store will be updated to match the most recent version. Note that any
properties that you have changed will not.

For example, say you get an EKEvent and change its title to Excellent Party Times, but
don’t save it. You then modify the title of that same event using the Calendar application,

and then save your modified EKEvent object. In this case, it will be your version that is
written to the event store.

This means that if you want to revert any changes that you’ve made

to an EKEvent, all you have to do is not save them.

You can also call the reset method on your EKEventStore to reset
the entire event store to its last saved state.

You can also delete events. Removing an event is rather straightforward: all you need to

do is call the removeEvent:span:error: method on your EKEventStore. This behaves
much like the method used for saving events—you simply provide the event to be re‐
moved, indicate whether you want to remove a single event or all future events (if the

event is a repeating one), and provide a reference to a variable for an NSError to be
placed in if something goes wrong:

EKEvent* event =

NSError* error = nil;

[store removeEvent:event span:EKSpanFutureEvents error:&error];

Building an Events Application
To wrap things up, we’re going to build an app that displays events for the user, de‐
pending on which day they’ve selected.

Building an Events Application | 273

This app presents a date picker and a list of events. When the date picker’s selected date
changes, the list updates to show the user’s events for that day.

1. Create the project. Create a new Cocoa application called Events.

To work with Event Kit, we need to add the Event Kit framework.

2. Add EventKit.framework to the project. Select your project at the top of the project

navigator. The project will appear in the main editor. Select the Locations target
and click the + button at the bottom of Linked Frameworks and Libraries. The
frameworks window will appear.

Browse or search for EventKit.framework. Click the Add button.

First, we’ll write the code that will expose the calendar information. We’re going to create
several properties, some of which will be backed by instance variables and some of which
will not.

Specifically, the application will keep track of the following information:

• The currently selected date

• The event store used to access the calendar

• The available calendars

• The events for the currently selected date

The event store and date properties will be backed by an instance variable, while the
available calendars and events properties will be dynamically computed when needed
(based on the selected date and event store).

First, we’ll create the properties.

1. Open AppDelegate.m. Add the following code to the file, before the line

@implementation:

@interface AppDelegate () {

}

@property (nonatomic, strong) NSDate* date;

@property (readonly) EKEventStore* store;

@property (readonly) NSArray* calendars;

@property (readonly) NSArray* events;

@end

2. Implement the properties. Add the following code to AppDelegate’s
implementation:

274 | Chapter 15: Event Kit

@synthesize store = _store;

@synthesize date = _date;

@dynamic calendars;

@dynamic events;

The store property will be lazily loaded. That is, the first time the property is accessed,

an EKEventStore object will be created and assigned to the property. This keeps us from

having to do any deliberate setup in the application’s init or awakeFromNib methods.

3. Add the store method. Add the following code to AppDelegate’s implementation:

- (EKEventStore*) store {

 if (_store == nil) {

 _store = [[EKEventStore alloc]

 initWithAccessToEntityTypes:EKEntityMaskEvent];

 }

 return _store;

}

We can now add the calendars and events accessors. These don’t have any instance
variables, since all they’ll do is retrieve information from the event store.

4. Add the calendars and events methods. Add the following code to AppDelegate’s
implementation:

- (NSArray*) calendars {

 return [[self store] calendarsForEntityType:EKEntityTypeEvent];

}

- (NSArray *)events {

 NSDate* endDate = [self.date dateByAddingTimeInterval:24 * 60 * 60];

 NSPredicate* predicate = [self.store

 predicateForEventsWithStartDate:self.date

 endDate:endDate calendars:self.calendars];

 NSArray* events = [self.store eventsMatchingPredicate:predicate];

 return events;

}

The calendars method simply returns the array of calendars that support events.

The events method is a little more complex. Because a request to the event store requires
that we provide a start date and an end date for our query, we need to create an end date
that’s one day after our start date (which we’ll set up in a moment).

Because there are 24 hours in a day, 60 minutes in an hour, and 60 seconds in a minute,

we can create an NSDate that’s one day after the start date with the dateByAdding

Building an Events Application | 275

TimeInterval: method on NSDate. This method takes as its sole parameter the number
of seconds in the future that the new date should be; thus, we want a date that’s 86,400
seconds in the future, which is 24 times 60 times 60.

Given these two dates, we call predicateForEventsWithStartDate:endDate:predi

cate: and provide the start date, end date, and the calendars to check. We then get the
array of events that matched that predicate, and return it.

The final methods to set up are the methods for the date property. The getter method
will be another lazy loader—if there is no current date set, the current date should be
today.

Additionally, we want to disregard the time information from the date; when you ask

NSDate for the current date, it returns an NSDate corresponding to the current date and
time. We don’t want that, so we need to do some calendar calculation to make the time
value correspond to midnight on the provided day, thus ensuring that the time value is
consistent no matter which date we select.

5. Add the setDate: and date methods to AppDelegate. Add the following code to

AppDelegate’s implementation:

- (NSDate *)date {

 if (_date == nil) {

 [self setDate:[NSDate date]];

 }

 return _date;

}

- (void)setDate:(NSDate *)date {

 NSDateComponents* dateComponents =

 [[NSCalendar currentCalendar] components:NSDayCalendarUnit

 | NSMonthCalendarUnit | NSYearCalendarUnit fromDate:date];

 _date = [[NSCalendar currentCalendar] dateFromComponents:dateComponents];

}

NSDateComponents is a class that is able to perform calculations on dates, given a cal‐
endar. In this case, we’re asking the class to get the day, month, and year from a date,

and then create a date from that—thereby creating an NSDate object on the same date
as the provided one, but with a time value set to midnight on that day.

There’s one last method to create: one that will be used to indicate to the system that
when the date changes, the list of events will also change.

6. Add the keyPathsForValuesAffectingEvents method to AppDelegate. Add the

following code to AppDelegate’s implementation:

276 | Chapter 15: Event Kit

+ (NSSet *)keyPathsForValuesAffectingEvents {

 return [NSSet setWithObject:@"date"];

}

This method returns an NSSet containing the list of properties that, when modified,

cause the events property to change. This method is checked by the Cocoa bindings

system whenever a property changes on the AppDelegate object, and helps us bind the
code to the view with minimal additional work.

With all of that out of the way, it’s finally time to create the interface. Fortunately, because
of the work we’ve done in the code, it’s very simple to set up.

7. Open MainMenu.xib. Drag an array controller into the outline. Bind its content
array to the app delegate, with the model key path self.events. Open the Identity

inspector, and change its label to Events.

Drag in a date picker and a table view. Select the date picker, and change its style to
Graphical. This creates a nice calendar control.

When you’re done, the finished interface should look something like Figure 15-1.

Figure 15-1. The finished interface

Building an Events Application | 277

8. Bind the date picker. The date picker needs to control the date property on the app
delegate. To make this happen, select the date picker, open the Bindings inspector,

and bind the Value property to the app delegate, with the model key path self.date.

All we need to do now is bind the table view to the list of events for the selected

date. Because this is exposed as the events property on the app delegate, and this
property will automatically update its contents as the date is changed, the table view
will always show the events for the selected date, even as the user changes it.

9. Bind the table view. Select the table view in the outline (it’s inside the scroll view),
and bind its content to the Events array controller that you set up earlier. Set the

controller key to arrangedObjects.

Select the table column (inside the table view in the outline), and bind its Value to

the Events array controller. Set the controller key to arrangedObjects and the

model key path to self.title.

You’re done! Run the app, and try selecting different dates in the date picker.

If nothing is appearing in the table view, you should double-check to
make sure that there is actually an event on the date you’re trying to
look at. One of the authors, who shall remain nameless (although it
was Jon), spent more than 10 minutes trying to debug the app be‐
fore realizing his mistake.

On OS X 10.8 and below, if you’ve got any CalDAV delegates set up,
they won’t appear in the list of calendars returned from the event
store. They don’t appear to be exposed to apps using Event Kit. Your
guess is as good as ours.

User Privacy
Just like a user’s location (see Chapter 14) and contacts, the events on the user’s calendar
are considered private and sensitive information. Apps aren’t allowed to access the cal‐
endar unless the user explicitly grants them permission, and they are expected to behave
properly when they don’t receive this permission. Additionally, the user can revoke
access to the calendar (or any of the other private data stores) at any time.

This means that you can’t write code and assume that you’ll get access to the information
your application needs. Instead, your code needs to gracefully fail—if your app can get
any useful work done without access to the calendar, it should go ahead and do so, and
if it is rendered inoperable by not having access, it should tell the user in a friendly
manner (don’t pop up a scary “error!” dialog box).

278 | Chapter 15: Event Kit

If you’re writing an application to be submitted to the App Store, you can expect that
whoever reviews your application will disallow calendar access and see how the app
behaves. If your application doesn’t cope, expect it to be rejected.

User Privacy | 279

CHAPTER 16

Instruments and the Debugger

As anyone who’s written software knows, designing and implementing the features of
an application is only a fraction of the work. Once the app’s done and performs all the
tasks it’s meant to do, you need to make sure that it runs well.

Performance is a feature that many developers neglect, but it’s something that influences
people’s decisions to buy your software or not. Many of our friends and family prefer
to use Pages instead of Microsoft Word, because despite Page’s relative lack of features,
it’s a more nimble and zippy application.

Not paying attention to performance also has more tangible implications for your code.
For example, an application that is careless with memory will end up being force-quit
by the system on iOS, and an app that consumes lots of CPU time will exhaust your
user’s battery and make the system run hot. There are other resources as well that your
application needs to be careful with, including network bandwidth and disk space.

To help monitor your application’s performance and use of resources, the developer
tools include Instruments, an application that’s able to inspect and report on just about
every aspect of an application.

Instruments works by inserting diagnostic hooks into a running application. These
hooks are able to do things like analyze the memory usage of an application, monitor
how much time the app spends in various methods, and examine other data. This in‐
formation is then collected, analyzed, and presented to you, allowing you to figure out
what’s going on inside your application.

In this chapter, you’ll learn how to get around in Instruments, how to analyze an ap‐
plication, and how to spot and fix memory issues and performance problems using the
information that Instruments gives you. You’ll also learn how to use Xcode’s debugger
to track down problems and fix them.

281

Getting Started with Instruments
To get started with Instruments, we’ll load a sample application and examine how it
works.

The application that we’ll be examining is TextEdit, which is the built-in text editor that
comes with OS X. TextEdit is a great sample app to modify because it’s a rather complex
little app—it’s effectively an entire word processor, with support for images, Microsoft
Word import and export, and a lot more. You’ve probably used it before; if you haven’t,
you can find it by either searching Spotlight for “TextEdit” or by looking in the Appli‐
cations folder.

The source code to TextEdit is available from the Apple Mac Developer site and you can
find it by going to http://bit.ly/1gMPNC9.

The Developer site also contains a great deal of other example code and resources in
the Mac Developer Library available at http://bit.ly/1fHRMVr.

1. Open the TextEdit project. Double-click the TextEdit.xcodeproj file to open it in
Xcode.

2. Run the application. Click the Run button or press ⌘-R.

The app will launch. Play around with it by writing some text, and saving and
opening some documents.

We’ll now use Instruments to examine what TextEdit is doing in memory as it runs.

3. Quit TextEdit. You can do this by pressing ⌘-Q or choosing Quit from the TextEdit
menu.

4. Tell Xcode to profile the application. To do this, choose Profile from the Product
menu. You can also press ⌘-I.

Xcode will rebuild the application, and then launch Instruments. When Instru‐
ments launches, it presents a window that lets you choose which aspects of the app
you’d like to inspect (Figure 16-1).

5. Select the Allocations instrument, and click Choose. Instruments will launch
TextEdit, and start recording memory usage information from the application.

At this point, you’re in Instruments proper, so it’s worthwhile to stop and take a
look around (Figure 16-2).

The Instruments Interface
When you work with Instruments, you’re working with one or more individual
modules that are responsible for analyzing different parts. Each module is also called

282 | Chapter 16: Instruments and the Debugger

http://bit.ly/1gMPNC9
http://bit.ly/1fHRMVr

Figure 16-1. The Instruments template chooser

Figure 16-2. The Instruments window

an instrument—so, for example, there’s the Allocations instrument (for measuring
memory performance), the Time Profiler instrument (for measuring runtime perfor‐
mance), the VM Tracker instrument (for measuring memory consumption), and so on.

Getting Started with Instruments | 283

Each instrument is listed in the Instruments pane on the lefthand side of the window.
As an application runs, information from each instrument is shown in the Track pane.
If you select an instrument in the Instruments pane, more detailed information is shown
in the Detail pane at the bottom of the window. The Track pane is useful for giving you
a high-level overview of the information that is being reported, but the majority of useful
information is kept in the Detail pane.

The Detail pane shows different kinds of information, depending on the instrument.
To choose which information to present, you can use the navigation bar, which separates
the window horizontally.

To configure how an instrument collects its data, you can click the i button at the right
of each row of the Instruments pane. From there, you can set the various options that
affect what information the instrument collects.

By default, the Instruments pane and the Detail pane are visible. You can also bring up
a third pane, known as the Extended Detail pane. This pane, as its name suggests, dis‐
plays extended detail information on whatever is selected in the Detail pane. For
example, if you’re using the Allocations instrument, the Detail pane could be showing
the objects currently active in your application. You could then select a specific object,
and the Extended Detail pane would show exactly where that object was created in your
code.

You can also control what Instruments is doing through the Record buttons. The large
red button in the center is the main one that we care about—clicking on it will launch
the application that’s currently under investigation, and start recording data. Clicking
it again will quit the application and stop recording, though the data that was collected
remains. If you click Record again, a new set of data will be recorded—if you want to
see past runs, you can navigate among them by clicking on the arrows in the display in
the middle of the toolbar.

To open and close the various panes, click on the view buttons in the
toolbar.

Observing Data
We’ll now do some work inside TextEdit and watch how the data is collected.

1. Start recording, if the app isn’t open already. If TextEdit isn’t running, hit the Record
button to launch it again.

284 | Chapter 16: Instruments and the Debugger

When the application starts up, it immediately allocates some memory as it gets
going. When it needs to store more information, it allocates more. We’ll now cause
the app to start allocating more memory by adding text to the document.

2. Enter some text in the document. Go to the TextEdit window and start typing. Be‐
cause text isn’t very large, we won’t see much of a difference in what’s being displayed
unless we enter quite a lot of text.

So, to quickly enter lots of text, type something, select it all, copy, and paste. Then
select all again, and copy and paste again. Repeat until you’ve got a huge amount of
text in the document.

3. Observe the memory usage of TextEdit climbing. Go back to Instruments, and you’ll
notice that the amount of memory used by the application has increased quite a lot
(Figure 16-3).

Figure 16-3. Instruments records an increase in memory usage as the application is
used

Here, the consumption of memory is OK, because we deliberately stress-tested the ap‐
plication. However, if you see similar spikes in memory usage in your application from
regular use, you probably have a problem to solve.

Getting Started with Instruments | 285

Adding Instruments from the Library
While Instruments provides a selection of templates that you can use to get started (such
as the Allocations template we used earlier), you can add more instruments to your trace
to help hunt down issues.

To add an instrument to your trace document, select the instrument you want to use
from the Library. To open the Library, click the Library button, choose Library from
the Window menu, or press ⌘-L (Figure 16-4).

The Library lists all of the available instruments that you can use, as well as information
on what each one does. To add an instrument to your trace, drag and drop an instrument
into the Instruments pane, or double-click the instrument.

Not all instruments work on all platforms. For example, the Open‐
GL ES analyzer instrument only works on iOS.

Combining different kinds of instruments allows you to zoom in on specific problems.
For example, if your application is being slow and you think it’s because it’s loading and
processing lots of information at once, you can use a Reads/Writes instrument alongside
a Time Profiler. If the slowdowns occur while both of these instruments indicate heavy
activity, then your slowdowns are being caused by your application working the disk
too hard while using lots of CPU time.

Fixing Problems with Instruments
To demonstrate how to detect and solve problems with Instruments, we’ll create an
application that has a large memory problem, and then use Instruments to find and fix
it.

This iOS application will create and display a large gallery of images and let the user
smoothly scroll between them. We’ll develop and run it on the iOS Simulator, and then
see how well it does on a real device.

The application will consist of a single scroll view, which will have a number of image
views added to it. The user will be able to scroll around inside the view to see the different
images.

286 | Chapter 16: Instruments and the Debugger

Figure 16-4. The Instruments Library

Fixing Problems with Instruments | 287

1. Create a new single-view application for iOS. Call this application MemoryDemo. Make
it use storyboards and ARC, and make it run on the iPhone.

2. Open the main storyboard. Open MainStoryboard.storyboard in the project navi‐
gator.

3. Add a scroll view to the window. Make it fill the entire screen. While you have it
selected, turn Paging Enabled on. This means that the scroll view will behave much
like the home screen on the iPhone, where all scrolling snaps to the width of the
scroll view.

4. Connect the scroll view to the view controller class. Open the assistant, and control-

drag from the scroll view into ViewController’s interface. Create a new outlet called

imagesContainer.

5. Add the code that sets up the application. Add the following code to View

Controller.m, and remove the previous implementation of viewDidLoad:

- (UIImage*) imageWithNumber:(NSInteger)number {

 CGRect imageRect = self.imagesContainer.frame;

 UIGraphicsBeginImageContext(imageRect.size);

 // Inset the image by 30px so that we can see the rounded corners

 imageRect = CGRectInset(imageRect, 30, 30);

 // Draw a rounded rectangle

 UIBezierPath* path = [UIBezierPath bezierPathWithRoundedRect:imageRect

 cornerRadius:10];

 [path setLineWidth:20];

 [[UIColor blackColor] setStroke];

 [[UIColor scrollViewTexturedBackgroundColor] setFill];

 [path fill];

 [path stroke];

 // Draw the number

 NSString* label = [NSString stringWithFormat:@"%i", number];

 UIFont* font = [UIFont systemFontOfSize:50];

 CGPoint labelPoint = CGPointMake(50, 50);

 [[UIColor whiteColor] setFill];

 [label drawAtPoint:labelPoint withFont:font];

 // Get the finished image and return it

 UIImage* returnedImage = UIGraphicsGetImageFromCurrentImageContext();

 UIGraphicsEndImageContext();

288 | Chapter 16: Instruments and the Debugger

 return returnedImage;

}

- (void) loadPageWithNumber:(NSInteger) number {

 // If an image view already exists for this page, don't do anything

 if ([self.imagesContainer viewWithTag:number])

 return;

 // Get the image for this page

 UIImage* image = [self imageWithNumber:number];

 // Create and prepare the image view for this page

 UIImageView* imageView = [[UIImageView alloc] initWithImage:image];

 CGRect imageViewFrame = [self.imagesContainer bounds];

 imageViewFrame.origin.x = imageViewFrame.size.width * (number - 1);

 imageView.frame = imageViewFrame;

 // Add it to the scroll view

 [self.imagesContainer addSubview:imageView];

 // Mark this new image view with a tag so that we can

 // easily refer to it later

 imageView.tag = number;

}

- (void)viewDidLoad

{

 [super viewDidLoad];

 NSInteger pageCount = 1000;

 for (int i = 1; i < pageCount; i++) {

 [self loadPageWithNumber:i];

 }

 CGSize contentSize;

 contentSize.height = self.imagesContainer.bounds.size.height;

 contentSize.width = self.imagesContainer.bounds.size.width * pageCount;

 self.imagesContainer.contentSize = contentSize;

}

6. Run the application. The application runs fine on the simulator, but if you try to
run it on the device, it will appear to hang for a while and finally exit without
showing the app.

To find out why this happens, we’ll run this inside Instruments.

Fixing Problems with Instruments | 289

1. Set the Scheme to launch on your iOS device. We want Instruments to run on the
device, not the simulator. (If you don’t have an iOS device to test on, that’s OK—
you can still use the simulator, but the numbers won’t be representative of how it
would work on a real iPhone or iPad.)

2. Launch the application inside Instruments. Do this by choosing Profile from the
Product menu, or pressing ⌘-I.

3. Select the Allocations template. We want to keep an eye on how memory is being
used. Select the Allocations template, and click Choose.

4. When the Instruments window appears, stop the recording. We want to make some
adjustments to how the data is being collected.

The Allocations template includes two instruments: the Alloca‐
tions instrument, which keeps track of memory allocations made
by your application, and the VM Tracker instrument, which
monitors the total usage of memory. Some memory alloca‐
tions, such as images, don’t show up in the Allocations instru‐
ment because this memory is handled on the graphics card or in
other regions of memory.

Therefore, to keep a close eye on the total amount of memory used by the app, we’ll use
the VM Tracker instrument. The VM Tracker instrument scans all of the memory used
by the app, and reports on how much is being used and where. Normally, the VM Tracker
instrument will only scan memory when you explicitly tell it to, because performing a
memory scan causes the app to hang for a moment while the scan takes place. Because
we want to stay apprised of memory usage as the app launches, we’ll instruct the VM
Tracker to automatically scan the memory.

5. Select the VM Tracker in the Instruments pane. The Detail pane will update to show
information gathered by that instrument.

6. Turn on Automatic Snapshotting and set the Snapshot Interval to 1 second. This will
cause the instrument to scan the memory usage of the app every second.

7. Start recording. The application will launch, and the VM Tracker will show how
memory is consumed while it starts up.

As the application launches, you’ll notice that the amount of
memory used by the app steadily increase. After a while, the app
will start receiving memory warnings (you’ll see a bunch of black
flags pop up in the timeline), and will then quit.

290 | Chapter 16: Instruments and the Debugger

Clearly, the problem is that the application consumes too much memory. There’s an
additional problem—the number of images being drawn during startup is causing a
huge slowdown. The application is creating and inserting a thousand image views onto
the screen. Each image displayed by the image views needs to be kept in memory, which
means that the app rapidly runs out of space and is forced to exit.

A better way to handle this is to only display the images that the user is able to see, rather
than loading all of them at once. At minimum, there are only three images that need to
be present—the one currently being shown, and the two on either side of it. Because of
the size of the image views, it’s possible for this app to be showing one or two images at
the same time, but never three.

To fix the problem, therefore, we need to make the application update the image views
while the user is scrolling. If an image view isn’t visible by the user, the app should remove
it from the screen, which frees up memory.

To do this, we’ll add a method that makes sure that the image views for the previous,
current, and next pages are present, and then removes all other image views. This
method will be called every time the scroll view scrolls, meaning that as far as the user
is concerned, every image is on the screen when she needs to see it.

First, we’ll set up the view controller to be notified when the scroll view scrolls, and then

add the code that checks the image views. Finally, we’ll update the viewDidLoad method
to make it only display the first set of image views.

1. Open the storyboard and make the scroll view use the view controller as its delegate.

Control-drag from the scroll view onto the view controller’s icon. Choose “delegate”
from the list that pops up.

2. Open ViewController.h. We now need to make the class conform to the UIScroll

ViewDelegate protocol. Replace the class’s definition with the following line of
code:

@interface ViewController : UIViewController <UIScrollViewDelegate>

3. Add the additional methods to ViewController.m.

Finally, we’ll update the code to update the collection of image views when the scroll
view scrolls.

Add the following methods to ViewController.m, above the viewDidLoad method:

- (void) updatePages {

 int pageNumber = imagesContainer.contentOffset.x /

 imagesContainer.bounds.size.width + 1;

 // Load the image previous to this one

 [self loadPageWithNumber:pageNumber - 1];

 // Load the current page

Fixing Problems with Instruments | 291

 [self loadPageWithNumber:pageNumber];

 // Load the next page

 [self loadPageWithNumber:pageNumber+1];

 // Remove all image views that aren't on this page or the pages adjacent

 // to it

 for (UIImageView* imageView in imagesContainer.subviews) {

 if (imageView.tag < pageNumber - 1 || imageView.tag > pageNumber + 1)

 [imageView removeFromSuperview];

 }

}

- (void)scrollViewDidScroll:(UIScrollView *)scrollView{

 [self updatePages];

}

4. Replace the viewDidLoad method. Replace the method with the following code:

- (void)viewDidLoad

{

 [super viewDidLoad];

 NSInteger pageCount = 1000;

 [self updatePages];

 CGSize contentSize;

 contentSize.height = self.imagesContainer.bounds.size.height;

 contentSize.width = self.imagesContainer.bounds.size.width * pageCount;

 self.imagesContainer.contentSize = contentSize;

}

Once you’ve made these changes, try running the app on the device again. You’ll find
that its behavior is identical to how it used to run, with the added bonus that the appli‐
cation doesn’t run out of memory and crash on launch.

Retain Cycles and Leaks
The Automatic Reference Counting feature built into the compiler is great at reducing
problems caused by memory leaks, but it’s not foolproof. In this section, we’ll look at
using Instruments to detect a memory leak.

Automatic Reference Counting releases an object from memory when the last strong
reference to that object goes away. However, if two objects have strong references to
each other, the number of strong references to each object will never be zero, and the
objects will stay in memory—even if nothing else in the application has a reference to
those objects. This is called a retain cycle, so named because if you were to draw a graph
showing how each object refers to each other, you’d end up drawing a circle.

292 | Chapter 16: Instruments and the Debugger

You can use Instruments to detect leaked memory, again by using the Allocations in‐
strument. To demonstrate this, we’ll build a sample application that has a built-in retain
cycle.

This will be a master-detail application that has a custom UIView on the detail view
controller. This view uses the view controller as a delegate, whereby it asks which color
to use as the background.

1. Create a new master-detail application for iOS. Name the application RetainCycle.

2. Create a new file. Make a new Objective-C subclass, and make it a subclass of

UIView. Name it ExampleView.

3. Set up the ExampleView class. Make ExampleView.h look like the following code. In
this code, we’re creating a new delegate protocol for other classes to conform to,

and adding a property on the ExampleView class so that it has a delegate.

#import <UIKit/UIKit.h>

@class ExampleView;

@protocol ExampleViewDelegate <NSObject>

- (UIColor*)colorForView:(ExampleView*)view;

@end

@interface ExampleView : UIView

@property (strong) IBOutlet id <ExampleViewDelegate> delegate;

@end

4. Make the ExampleView class use its delegate when it’s loaded. Add the following
method to ExampleView.m:

- (void)awakeFromNib {

 self.backgroundColor = [self.delegate colorForView:self];

}

5. Add an ExampleView to the detail view controller. Open Main.storyboard and re‐
move the label.

Drag in a new UIView and open its Identity inspector (it’s the third button from the
left at the top of the Inspector pane).

Set its class to ExampleView.

6. Make the ExampleView use the view controller as its delegate.

Control-drag from the ExampleView to the view controller’s icon, and select “del‐
egate” from the menu that pops up.

The view will now use the view controller as its delegate, which means we need to
make the view controller function as the delegate.

Retain Cycles and Leaks | 293

7. Update DetailViewController.h. Make the file look like the following code. We’ve

modified it to make it conform to the ExampleViewDelegate protocol, which de‐

clares that it has a method called colorForView: for the ExampleView to call.

#import <UIKit/UIKit.h>

#import "ExampleView.h"

@interface DetailViewController : UIViewController <ExampleViewDelegate>

@property (strong, nonatomic) id detailItem;

@property (strong, nonatomic) IBOutlet UILabel *detailDescriptionLabel;

@end

8. Update DetailViewController.m. All we’re doing here is implementing the color

ForView: method. Add it to the file:

-(UIColor *)colorForView:(ExampleView *)view {

 return [UIColor greenColor];

}

Once this is done, we’re ready to test it.

9. Launch the application inside Instruments. Do this by choosing Profile from the
Product menu or pressing ⌘-I.

10. Select the Allocations template. We want to keep an eye on how memory is being
used. Select the Allocations template and click Choose.

This application contains a retain cycle. We’ll now use Instruments to figure out
what’s being leaked and where.

11. Add and Select a Detail row. Press the + button in the navigation bar to add a new

Detail row. A new row will be added to the tableview. Select the row and a Detail

ViewController will be created and added to the navigation stack.

12. Search for DetailViewController in Instruments. In Instruments, select the Allo‐

cations instrument and type DetailViewController in the search field at the top-
right corner of the screen.

The list of objects shown in the Detail pane will show only DetailView

Controller objects. Currently, there’s just one.

13. Tap the back button in the app. The DetailViewController is removed from the
screen, and should therefore be removed from memory because nothing else is
referring to it.

However, it doesn’t go away—it still shows up in the list of objects.

294 | Chapter 16: Instruments and the Debugger

Go back and forth between the detail view controller and the master view controller a
few times. Every time you open the detail view controller, a new one is created, and
when you close it, it’s not being removed from memory.

The DetailViewController class is being leaked. The problem lies in this line in Ex
ampleView.h:

@property (strong) IBOutlet id <ExampleViewDelegate> delegate;

The ExampleView has a strong reference to the view controller (its delegate) due to the

use of the strong keyword. The view controller also has a strong reference to the view,

because the view controller’s view has the ExampleView as a subview.

To solve this problem, change the line listed above to this:

@property (weak) IBOutlet id <ExampleViewDelegate> delegate;

A weak reference means that the ExampleView is still able to refer to its delegate, but the
view does not own the delegate and doesn’t need it to stay in memory. If the delegate

does get removed from memory, the reference is set to nil to avoid dangling pointers.

Using the Debugger
Xcode includes a source debugger called LLDB. Like all debuggers, LLDB allows you to
observe your code as it runs, set breakpoints and watchpoints, and inspect the contents
of memory.

The debugger is deeply integrated into Xcode, and Xcode lets you create very specific
actions to run when your code does certain things. You can, for example, ask Xcode to
speak some text the third time that a specific line of code gets run.

Setting Breakpoints
There are a few ways to set a breakpoint in Xcode. The most common method is to set
a breakpoint on a line of code—when execution reaches that point, the debugger stops
the program.

To set a breakpoint at a line, click the gray gutter at the left of the code editor. A blue
breakpoint arrow will appear (Figure 16-5).

It’s easier to add breakpoints, and navigate your code in general, if you
turn on line numbers in Xcode. To do this, open Preferences by
pressing ⌘-, and open the Text Editing tab. Turn on the Line Num‐
bers checkbox.

Using the Debugger | 295

Figure 16-5. A breakpoint

After a breakpoint has been added to your code, you can drag the arrow to move the
breakpoint. To remove the breakpoint, drag it out of the gutter.

When the program hits a breakpoint, Xcode shows the backtrace of all threads in the
debug navigator. From there, you can see how a breakpoint was hit, and what functions
were called that led to the program hitting that breakpoint.

Controlling program flow

When the program execution hits a breakpoint, you can choose to simply resume exe‐
cution, or step through the code line by line.

To control program flow, you use the buttons in the debugger bar. The debugger bar is
at the top of the debug area, which you can open and close by clicking the middle
segment of the View control, at the top-right of the toolbar (Figure 16-6).

Figure 16-6. The debugger bar

From left to right, the buttons in the debugger bar perform the following actions:

• Close the debug area

• Pause or resume execution

• Step Over (continue to the next line of code)

• Step Into (if the current line of code is a method call, continue into it)

• Step Out (continue until execution leaves the current method)

296 | Chapter 16: Instruments and the Debugger

When you add a breakpoint, it appears in the breakpoints navigator. From there, you
can see all of the currently set breakpoints—you can also jump directly to a breakpoint,
disable it, or delete it.

Custom breakpoints

Normally, a breakpoint just pauses execution when hit. However, you can customize
your breakpoints to perform specific actions.

To customize a breakpoint, right-click the arrow or the breakpoint’s entry in the break‐
points navigator, and choose Edit. The Edit Breakpoint window will appear
(Figure 16-7).

Figure 16-7. Editing a breakpoint

The Edit Breakpoint window allows you to customize when the breakpoint should trig‐
ger and what happens when it does. You can also indicate how many times the break‐
point should be ignored, what actions the breakpoint should run, and whether the
breakpoint should pause the execution of the program.

Adding actions to a breakpoint allows you to run some AppleScript, speak a line of text,
play a sound, or other actions. To add an action, click the “Click to add an action” button
and choose the action that should be run.

This is a tremendously flexible feature, as it allows you to get additional information
about how your program is running without the program stopping and starting.

Using the Debugger | 297

Special breakpoints

The breakpoints navigator also allows you to add special breakpoints for exceptions,
symbols, OpenGL ES Errors, and Test Failures.

An exception breakpoint stops the program when an Objective-C or C++ exception is

thrown. For example, if you have an NSArray with two items and you try to access the
third one, an exception is thrown and your program exits. Normally, Xcode stops the
program at the point where the exception is caught, which isn’t often the place where it
is thrown. This makes it difficult to work out where the problem is. To solve this problem,
you can add an exception breakpoint that stops the program at the instant the exception
is thrown.

A symbolic breakpoint stops the program when a specific, named function or Objective-
C method is entered. This is mostly useful when you want to stop execution at a function
that you might not have the source code for, and then view the backtrace.

An OpenGL ES Error breakpoint stops the program whenever an OpenGL ES error is
encountered. This is mostly useful when debugging graphics heavy iOS applications
such as games.

A Test Failure breakpoint stops the program when a test assertion fails. This breakpoint
is designed to be used in conjunction with unit tests, letting you see exactly when, where
and hopefully why, your tests are failing.

To add one of the special breakpoints, click the + button at the bottom-left of the break‐
points navigator. Then choose which type of breakpoint you want to add, and Xcode
asks you to configure the new breakpoint (Figure 16-8).

Figure 16-8. Configuring an exception breakpoint

298 | Chapter 16: Instruments and the Debugger

If you’re creating an exception breakpoint, you can choose whether you want to stop
on Objective-C exceptions, C++ exceptions, or both. You can also choose whether the
breakpoint should stop when the exception is thrown or caught.

Inspecting Memory Contents
When the program is stopped in the debugger, you can see the current state of objects
and variables in memory.

The variables view is the lefthand section of the debug area. When the program is stop‐
ped, the variables view shows the variables that exist at that point.

The variables view shows the value of the variables. If the variables are simple types like

integers or BOOLs, their values are shown; if the variables are things like NSStrings or

NSArrays, then summary information about them is shown, like the content of the string
or the number of items in the array.

If you use the flow control buttons while the program is stopped, the variables view
updates to show any changes. If a variable changes, it gets highlighted in blue.

The variables view also allows you to quickly send the description message to any
object and see the results. To do this, right-click on a variable and choose Print
Description.

Working with the Debugger Console
At the righthand side of the debug area is the console. The console is the command-line
interface to the debugger, and allows you to directly access some of the debugger’s pow‐
erful, lower-level features.

Working with LLDB via the console is a subject large enough to fill its own book, but
in this section we’ll talk about how to use the console for its arguably most powerful
purpose: running custom Objective-C code to work with your program’s variables.

Let’s assume that the debugger has stopped at a breakpoint in a method. In this method,

myArray is an NSArray, and you want to check its contents.

To see how many items are in myArray, you’d type this into the console:

print (int)[myArray count]

Note the lack of a semicolon. In the console, you don’t put a semicolon at the end of
lines.

Using the Debugger | 299

When you call an Objective-C method in the debugger, you must
specify what type of data the method will return. In the above exam‐

ple, count returns an int.

You can send arbitrary Objective-C messages to objects. For example, if you wanted to

get the second object in the myArray array, you’d do this:

print-object [myArray objectAtIndex:1]

The print-object command takes an Objective-C object and sends it a description
message. It then returns the string that comes back.

300 | Chapter 16: Instruments and the Debugger

CHAPTER 17

Sharing and Notifications

Just about every app these days deals with some kind of content—whether it’s business
documents written in an office suite, images created in an image editor, or even high
scores earned in a game. Users frequently want to be able to show this content to other
people, and while there’s a very good established system in place for sharing documents,
smaller snippets of content like URLs, individual photos, or other miscellany have fewer
well-defined and easy-to-use options.

Starting in OS X 10.8 and iOS 6, the OS provides built-in sharing APIs that let your
application send various kinds of content to services that can handle them. For example,
online services like YouTube and Vimeo can receive video files and share them over the
Internet, the Messages app can send text, photos, and videos, and email can send just
about any file.

In addition to sending content to other locations, the OS is also capable of receiving
notifications. These are short messages sent from a server to an iOS device, which are
received regardless of whether the app is running or the phone is awake.

In this chapter, you’ll learn how to share data from your application using the built-in
sharing APIs, and how to send and receive both push and local notifications.

Sharing
From the user’s perspective, the problem of data sharing can be rephrased as, “How can
I send this to someone else?” From your application’s perspective, however, the problem
of data sharing is really the question, “Where can I send this data?”

Different systems are capable of accepting different kinds of data. A video, for example,
cannot be sent to a printer, and plain text cannot be sent to a photo-hosting site like
Flickr. Fortunately, the sharing systems on both iOS and OS X already know what dif‐
ferent data types are supported by the sharing destinations that the OS knows about.

301

As of OS X 10.9 and iOS 7, the available sharing destinations are:

OS X

Email
Text, images, videos, and anything that can be copied and pasted

Messages
Same content as email

AirDrop
Files

Aperture
Photos

iPhone
Photos

Flickr
Photos

YouTube, Vimeo, Todou, Youku
Videos

Safari Reading List
URLs

Setting the Desktop background
Images

Setting a Twitter, LinkedIn, or Facebook profile picture
Images

Twitter, Facebook, LinkedIn, Tencent Weibo, and Sina Weibo
Text, images, videos, and URLs

iOS

Email
Text, images, videos, URLs (including URLs pointing to local files)

Messages
Text

AirDrop
Files

Twitter, Facebook, Tencent Weibo, and Sina Weibo
Text, images, videos, URLs

302 | Chapter 17: Sharing and Notifications

Copying to the pasteboard

Text, images, URLs, colors, NSDictionary objects

Saving to the camera roll
Images, videos

Printing

Text, images, and any of the UIPrintRenderer or related printing objects (see
“Printing on iOS” on page 263)

Assigning to a contact
Images

Sina Weibo and Tencent Weibo are social media services, similar to
Twitter and Facebook, based in the People’s Republic of China. You‐
ku and Tudou are video hosting services also based in the People’s
Republic of China.

As you can see, there are a number of different kinds of content that can be given to the
various sharing destinations. Fortunately, the method for actually sharing something is
rather straightforward:

1. Make an array containing all of the things you want to share.

This array should contain everything that you want to share—text, images, videos,
and so on.

2. Give this array to the sharing system.

The OS will figure out which sharing destinations can be used based on the content
that was provided. The greater the number of different kinds of content you provide,
the more sharing destinations will be offered to the user.

For example, if you provide both text and an image on iOS, both “Save to camera
roll” and “Send message” will appear, even though neither service supports both.
Only the supported content will be shared by the selected sharing destination.

3. Let the sharing system actually handle the sharing.

Depending on which sharing destination was selected, the user might be prompted
to provide a little more information. For example, if the user is posting an image
to Twitter, he’ll be presented with a Twitter share sheet, which allows him to add
some text before sending the tweet.

It’s a rather simple and elegant system, and can be a very positive thing for your apps.

To get our hands dirty, we’re going to take a look at the different sharing APIs that are
available on both iOS and OS X.

Sharing | 303

Sharing on iOS
Sharing content on iOS is handled by the UIActivityViewController. When you have

some content that you want to share—some text stored in an NSString, say—all you

need to do is create a new UIActivityViewController and provide it with an array
containing that object:

NSString* text = @"Hello, world!";

UIActivityViewController* activity = [[UIActivityViewController alloc]

 initWithActivityItems:@[text] applicationActivities:nil];

The second parameter, left nil in the previous example, can also take an NSArray of

UIActivity subclasses. These can be used if you want your app to provide custom
sharing destinations. Note, however, that any custom sharing destinations you include
will only show up inside your own app.

When that’s done, you just need to present the view controller modally just as you would
any other modal view controller:

[self presentViewController:activity animated:YES completion:nil];

From there, the OS takes over, allowing the user to select the sharing destination and
completing the share.

To show this in action, we’ll build a simple iOS application that supports sharing both
text and images.

1. Create the project. Create a new single-view iPhone application called iOSSharing.

2. Add an image to share. Find an image of some sort on your computer, or take one
with a camera. Drag it into the project.

3. Create the interface.

• Open Main.storyboard, and drag a text field into the top of the window.

• Drag in a UIButton just beneath the text field. Set its title to Share Text.

• Drag in a UIImageView beneath this button, and set its image to the one that you
added earlier.

• Finally, drag in a second UIButton and place it beneath the image view. Set its

title to Share Image.

4. Connect the interface. There are two actions to add: one for sharing text and one
for sharing an image. We’re going to connect these two actions to the appropriate
buttons; we’ll also use the text field and the image view as the sources for the content
that will be shared.

304 | Chapter 17: Sharing and Notifications

• Open ViewController.h in the assistant, and Control-drag from the top and bot‐

tom buttons into AppDelegate’s interface. The two actions you want to create are

shareImage and shareText.

• Once that’s done, Control-drag from the text field into AppDelegate’s interface,

and create a new outlet called textView. Then, control-drag from the image view

into AppDelegate’s interface and create a new outlet called imageView.

• Finally, because we want the keyboard to go away when the user taps the Return
button, Control-drag from the text field to the File’s Owner in the outline, and
choose “delegate” from the menu that pops up.

The final result should look like Figure 17-1:

Figure 17-1. The connected interface

The code for this is extremely simple. The two methods that are run when the share
buttons are tapped are only two lines each.

5. Add the image sharing method. Add the following code to shareImage:.

UIActivityViewController* activity = [[UIActivityViewController alloc]

 initWithActivityItems:@[self.imageView.image] applicationActivities:nil];

[self presentViewController:activity animated:YES completion:nil];

Sharing | 305

6. Add the text sharing method. Add the following code to shareText:.

UIActivityViewController* activity = [[UIActivityViewController alloc]

 initWithActivityItems:@[self.textView.text] applicationActivities:nil];

[self presentViewController:activity animated:YES completion:nil];

7. Finally, add the code to dismiss the keyboard when the Return button is tapped. Add

the following method to AppDelegate’s implementation.

- (BOOL)textFieldShouldReturn:(UITextField *)textField {

 [textField resignFirstResponder];

 return NO;

}

8. Run the app. Try sharing both text and images, and see what sharing services can
be used for each.

Sharing on OS X
Sharing content on OS X is very similar to sharing on iOS; the only real difference is in
how the list of sharing destinations is presented.

On OS X, you create an NSSharingServicePicker, which presents a menu of available
sharing destinations depending on what content you provide it. This pattern is very
similar to iOS’s model.

Creating an NSSharingServicePicker looks like this:

NSString* text = @"Hello, world!"

NSSharingServicePicker* picker = [[NSSharingServicePicker alloc]

 initWithItems:@[text]];

After the picker has been created, it needs to be presented to the user. Because the picker
shows a menu, it needs to know where the menu should appear on screen. This infor‐

mation is provided when you call the showRelativeToRect: ofView: preferre

dEdge: method. This method receives an NSRect and an NSView that the rectangle
should be considered to be in the coordinate space of, as well as information indicating
which edge of the rectangle the menu should appear on.

For example, if you have an NSView called myView, you can tell the menu to appear on
the far right edge of its bounds rectangle with the following call:

[picker showRelativeToRect:myView.bounds

 ofView:myView

 preferredEdge:NSMaxXEdge];

The behavior of the picker after this point is identical to UIActivityViewController
—the user is invited to choose which sharing service to use, and the OS will ask for
additional information as necessary.

306 | Chapter 17: Sharing and Notifications

Notifications
Notifications are a way for your app to send messages to the user, regardless of whether
the application is currently being used or even running. Originally introduced in iOS
3, they’ve become an indispensable tool for many apps. Starting with OS X 10.7, noti‐
fications are also available on the Mac.

There are two kinds of notifications: push notifications (also known as remote notifica‐
tions) and local notifications.

Push Notifications
Every iOS and OS X machine with notifications enabled maintains a permanent con‐
nection to Apple’s push notification service, which delivers short, infrequent messages
to applications.

Push notifications work by having a server make an SSL-secured TCP connection to
the Apple push notification service. When an application wants to receive push notifi‐

cations, it calls the registerForRemoteNotificationsOfType: method on the appli‐

cation’s global UIApplication or NSApplication object.

When registering for remote notifications, it’s important to know about the different
kinds that can be delivered. Notifications can:

• Set a badge (that is, a number) on the app’s icon, either in the Dock on OS X or on
the home screen in iOS

• Play a sound file included in the app

• Display an alert

All notifications on all platforms may also include additional application-specific
information.

What happens when a push arrives

When a remote notification arrives, your application may or may not be running. If it’s

running, your application delegate receives the application: didReceiveRemote

Notification: message, which contains as its second parameter an NSDictionary
containing any additional information in the notification. This is your app’s opportunity
to do something useful with the notification.

If the application isn’t running when the notification arrives, what it’s able to do depends
on the platform. On OS X, the only thing a notification can do if the app isn’t running
is to modify the app icon’s badge. This is less of a restriction than it seems, since an
application that’s currently running receives a message sent to its application delegate

Notifications | 307

when the notification arrives, and your application is able to run any code you want
when that happens.

On iOS, it’s another matter. Because only one app is allowed to be open at the same time
(all other apps are allowed to run in the background for a bit, but are eventually sus‐
pended or terminated—see “iOS Applications” on page 66), a notification is more likely
to arrive when the app isn’t running.

An iOS notification is able to contain an alert, which is a string of text that’s shown to
the user. When the notification arrives, if it contains an alert, that alert text appears on
the screen. (The specific presentation depends on the user’s preferences, but it’s generally
a banner at the top of the screen, or a pop-up box if the phone was locked when the
notification arrived.) When the user interacts with this alert, the application is launched
(or resumed if it was already launched). At this point, your application is informed that
it received a notification, and can then respond appropriately.

This is why iOS notifications can contain more than OS X applications—because an iOS
app is much less likely to be able to respond to a notification at the moment it arrives,
the system steps in to provide some minimal functionality (showing some text, playing
a sound, and so on). On OS X, that’s not necessary, since the application is much more
likely to be running in the background.

Sending Push Notifications
A push notification is nothing more than a JSON-formatted dictionary. When a push
notification is created, it can contain any valid JSON data that you want (that is, strings,
numbers, arrays, and dictionaries).

For more information on JSON-formatted data, see “Saving More
Complex Data” on page 214 in Chapter 12.

When your application receives the notification, it receives an NSDictionary containing
whatever was sent as the push notification.

In addition to the application-specific data that can be included in the JSON dictionary,

push notifications also contain a special aps dictionary. This dictionary contains infor‐
mation about how the push notification should be presented: its alert text, the number
to display in the application icon’s badge, and so on.

For example, here’s a sample push notification in JSON form:

{

 "aps":{

 "alert":"Hello, world!",

308 | Chapter 17: Sharing and Notifications

 "badge":1,

 "sound":"hello.wav"

 },

 "foo":"bar"

}

This push notification, when delivered to an iOS device, does the following things:

• Displays the alert text “Hello, world!” on the screen

• Sets the badge on the application’s icon to 1

• Plays the sound hello.wav [which must be inside the application’s bundle—see
“Working with the Filesystem” on page 164].

The maximum size for a push notification is 256 bytes, including the

aps dictionary. If you try to send a push notification larger than this,
it won’t be accepted by the Apple Push Notification Service.

Additionally, delivery of push notifications is not guaranteed. Ap‐
ple describes it as a “best effort” service, much like SMS. And the
delivery mechanism for push notifications cannot be considered
secure.

Therefore, your push notifications should never contain any sensi‐
tive information, and they shouldn’t be used as the primary way for
your application to receive data. Instead, use push notifications to
let your application know that new data is available and let the ap‐
plication itself do the work of actually retrieving that data.

Additionally, when the application receives the notification (either because the notifi‐
cation was opened by the user or the application was running when the notification was

received), the NSDictionary that the application receives will contain a value @"bar"

for the foo key.

This is a book on Cocoa, not server programming, so we’re not go‐
ing to go into a huge amount of detail on how to set up a server that
sends push notifications to Apple. For information on how to do this,
see “Apple Push Notification Service” in the Local and Remote Noti‐
fication Guide, included in the Xcode developer documentation.

Setting Up to Receive Push Notifications
Applications don’t receive push notifications automatically. That’s because push notifi‐
cations are considered a potential intrusion on the user’s device—if, as a user, you don’t
want an app to interrupt you, it shouldn’t be able to.

Notifications | 309

http://bit.ly/WDTjz7
http://bit.ly/WDTjz7

To make your app indicate to the push notification system that it wants to receive no‐

tifications, it needs to make a method call to the global UIApplication or NSApplica

tion object:

[[UIApplication sharedApplication]

 registerForRemoteNotificationTypes:UIRemoteNotificationTypeBadge];

registerForRemoteNotificationTypes: takes a single parameter, which indicates to
the system what types of notifications to receive. You can pass in the following valid
values on iOS and OS X:

iOS

UIRemoteNotificationTypeNone

No notifications

UIRemoteNotificationTypeBadge

Badges on the app icon

UIRemoteNotificationTypeSound

Sounds

UIRemoteNotificationTypeAlert

Text alerts

UIRemoteNotificationTypeNewsstandContentAvailability

A special notification that lets your application know to download content in the
background. This only applies to Newsstand applications, which we don’t cover in
this book, but see Newsstand Kit Framework Reference in the Xcode developer doc‐
umentation for more information.

OS X

NSRemoteNotificationTypeNone

No notifications

NSRemoteNotificationTypeBadge

Badges on the app icon

NSRemoteNotificationTypeSound

Sounds

NSRemoteNotificationTypeAlert

Text alerts

The first time your application ever makes a call to registerForRemoteNotification

Types:, the OS will present an alert box to the user, asking if he wants to receive noti‐

fications. If he chooses not to receive them, your application delegate receives the ap

310 | Chapter 17: Sharing and Notifications

https://developer.apple.com/newsstand/

plication:didFailToRegisterForRemoteNotificationsWithError: message to let
your code know about it:

- (void)application:(UIApplication *)application

 didFailToRegisterForRemoteNotificationsWithError:(NSError *)error {

 // Failed to register; the 'error' parameter contains info on why

}

Registering for push notifications can also fail if there’s no Internet connection, if the
push notification service is down, or if your code is running on a platform that doesn’t
support push notification.

If the user does want notifications, the OS contacts the Apple Push Notification service
(APNs), which registers the device and application as able to receive notifications. Once
this is done, the APNs sends a device token back to your application, which is a unique
ID that acts as a “telephone number” for push notifications. When a push notification
is created, the device token is included and sent to the APNs, which uses it to figure out
which of the millions of devices worldwide should receive the notification.

When the application successfully registers for push notifications, it receives the appli

cation:didRegisterForRemoteNotificationsWithDeviceToken: message, which

takes as a parameter an NSData object containing the device token:

- (void)application:(UIApplication *)application

 didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken {

 // Send the device token to a server that can send pushes

}

Once you have a device token, it needs to be sent to whatever server will actually be
sending the push notifications. Without the device token, it’s not possible to indicate
which device should receive a push.

If you don’t want to deal with setting up your own push server, there
are several existing services that can handle it for you. Most of them
are based on usage—that is, the number of push notifications you
send per month—and many include a free plan. We’ve used Urban
Airship and Parse.

Receiving Push Notifications
Remember that a push notification may arrive when your application is open, or when
it’s not.

Notifications | 311

http://urbanairship.com
http://urbanairship.com
http://parse.com

When your application is open and a push notification is received, your application

delegate receives the application:didReceiveRemoteNotification: message:

- (void)application:(NSApplication *)application

 didReceiveRemoteNotification:(NSDictionary *)userInfo {

 // Do something with the data contained in 'userInfo'

}

This method receives an NSDictionary that contains whatever information was con‐
tained inside the JSON bundle that was originally sent.

If your application is not running and is opened from a push notification, then your

application launches and your application delegate receives the application:didFi

nishLaunchingWithOptions: message (on iOS). This is the same message that’s sent

when an application normally launches, but when opening from a push, the launchOp

tions dictionary contains the contents of the JSON dictionary.

- (BOOL)application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 NSDictionary* remoteNotification =

 launchOptions[UIApplicationLaunchOptionsRemoteNotificationKey];

 // remoteNotification now contains the push notification info.

}

On OS X, the message received by the application delegate is a little different. On launch,

the application delegate receives the application:didFinishLaunching: message,

which takes an NSNotification object as a parameter. The equivalent to the iOS’s

launchOptions dictionary can be accessed thusly:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

 NSDictionary* remoteNotification =

 aNotification.userInfo[NSApplicationLaunchRemoteNotificationKey];

 // remoteNotification now contains the push notification info.

}

Finally, if your application ever needs to stop receiving push notifications, it can

unregister from the Apple Push Notification service by sending the unregisterFor

RemoteNotifications message to the global UIApplication or NSApplication object:

[[NSApplication sharedApplication] unregisterForRemoteNotifications];

If you unregister for notifications, you can alway register again later.

312 | Chapter 17: Sharing and Notifications

Local Notifications
While remote notifications require a complex setup involving a remote computer that
communicates with the Apple Push Notification service, local notifications are created
and presented entirely on the device.

Local notifications are only available on iOS—the concept doesn’t
make much sense on OS X.

A local notification looks the same as a remote notification to the user, but its delivery

is controlled by the application. Local notifications are represented by the UILocal

Notification class.

Local notifications can either be created and presented immediately (if the application
is currently running and is in the background), or scheduled to appear at a certain date
and time.

To construct a local notification, you simply create, configure, and schedule a UILocal

Notification:

UILocalNotification* notification = [][UILocalNotification alloc] init];

notification.fireDate = [NSDate dateWithTimeIntervalSinceNow:20];

notification.alertBody = @"Hello, world!";

[[UIApplication sharedApplication] scheduleLocalNotification:notification];

This example code creates a local notification that displays the text “Hello world!” in 20
seconds.

When a notification fires and the user chooses to open it, the application delegate re‐

ceives a message very similar to the one used when a remote notification arrives: ap

plication:didReceiveLocalNotification:.

- (void)application:(UIApplication *)application

 didReceiveLocalNotification:(UILocalNotification *)notification {

 // 'notification' is a copy of the UILocalNotification that was posted

}

Likewise, if the application isn’t running when the local notification fires and the user

opens the notification, the application is launched, and the launchOptions dictionary
contains the notification:

- (BOOL)application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

Notifications | 313

 UILocalNotification* localNotification =

 launchOptions[UIApplicationLaunchOptionsLocalNotificationKey];

 // localNotification now contains the local notification object

}

A local notification can also be presented immediately in the background. For example,
if you have an application that is performing some work in the background and you
want to let the user know that the work is complete, you can create a notification to that
effect:

UILocalNotification* notification = ...

[[UIApplication sharedApplication] presentLocalNotificationNow:notification];

Once a local notification has been scheduled, you can cancel it; you can also cancel all
scheduled notifications:

UILocalNotification* notification = ... // a scheduled notification

[[UIApplication sharedApplication] cancelLocalNotification:notification];

or:

[[UIApplication sharedApplication] cancelAllLocalNotifications];

314 | Chapter 17: Sharing and Notifications

CHAPTER 18

Nonstandard Apps

For the majority of this book, we’ve talked about GUI applications designed to run on
either OS X or iOS. These applications receive user input via the mouse, keyboard, or
touch screen, display information via the screen, and are launched by double-clicking
them on OS X or tapping them on iOS.

However, not every piece of software that you write is a traditional app. In some cases,
you might want to create something that the user doesn’t need to see—for example, a
background application that periodically talks to the Internet. Another case where you
don’t want to build a traditional app is when you want to create a preference pane, which
the user can access via the System Preferences application.

In this chapter, you’ll learn how to build apps for OS X that don’t fit the mold of standard
applications. Specifically, you’ll learn how to build command-line tools (which don’t
use a GUI), system preference panes, and applications that add an item to the system-
wide menu bar.

This chapter only applies to OS X—on iOS, you can only build apps
that the user accesses via the home screen and that display an inter‐
face. Command-line tools and daemons aren’t supported. The only
exception to this is the section on multiple window iOS apps dis‐
cussed in “iOS Apps with Multiple Windows” on page 323.

Command-Line Tools
The simplest possible application on OS X is a command-line tool. This kind of app
never presents a GUI to the user, but instead sends and receives output via the command
line.

315

The command line is the fundamental method of communication for computer pro‐
grams; every Unix-based system has one, and since OS X is a Unix OS, your applications
can use it.

In fact, this is a feature of the OS that you’ve already been using—whenever you use

NSLog to log some text, that text goes to the command line. (Xcode redirects it so that
you can view it in the IDE, but if you were to launch the app via the Terminal, you’d see
it there.)

To demonstrate how to build a command-line tool with Objective-C, we’ll create a
simple app that prints text out to the command line.

1. Create the project. Create a new command-line tool project named CommandLine.

Set the type of the project to Foundation.

Xcode will create a command-line application that uses the Foundation framework
and is written in Objective-C.

There are several types of command-line apps, which vary by the
framework that your code uses. If you use Foundation, which is
an Objective-C framework, you’ll be writing Objective-C. If you
create a Core Foundation application, you’ll write C.

2. Add the code. Replace the main method in main.m with the following code:

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])

{

 @autoreleasepool {

 for (int i = 10; i > 0; i--) {

 NSLog(@"%i green bottles, standing on the wall", i);

 NSLog(@"%i green bottles, standing on the wall", i);

 NSLog(@"And if one green bottle should accidentally fall");

 NSLog(@"There'll be %i green bottles, standing on the wall\n\n",

 i-1);

 }

 }

 return 0;

}

3. Test the application. Run the application and note what gets output in the log.

4. Test the application in the Terminal.

316 | Chapter 18: Nonstandard Apps

Open the Terminal application. In Xcode, scroll down to the Products group and

open the folder. You’ll see the CommandLine application. Drag it onto Terminal’s icon
in the Dock and watch the program run.

Preference Panes
For the most part, your applications should show their preferences inside the apps
themselves. For example, most apps that have preferences you can change have a Pref‐
erences window, accessible via the main menu (or by pressing ⌘-,).

However, some software doesn’t present a traditional interface where the preferences
can be displayed—for example, background applications or device drives. In these cases,
you create preference panes, which are small programs hosted by the System Preferences
application.

Preference panes are designed to allow the user to control features that affect the entire
system (as far as the user is concerned). For example, the video codec package Perian
adds additional functionality to the built-in QuickTime Player, and therefore doesn’t
have its own UI. To allow the user to configure how it works, therefore, Perian provides
a preference pane.

Preference panes are only available on OS X. On iOS, you use Set‐
tings Bundles, which are basically files that describe what settings to
show to the user. You don’t write any code to display them.

How Preference Panes Work
A preference pane is not a separate application, but is instead a bundle of code loaded
by the System Preferences application. The bundle contains code and whatever resour‐
ces it needs (such as images, nib files, and so on); when the preference pane is installed,
System Preferences displays it as an icon in the main window. When the user selects the
preference pane’s icon, the bundle is loaded, its main nib is displayed, and your code
begins running.

The preference pane bundle stays in memory after the user switches
to another pane, until the System Preferences application exits.

Preference Panes | 317

Because your preference pane is a bundle that’s loaded by another application, accessing

resources via NSBundle’s pathForResource:ofType: method or NSUserDefaults won’t
work the same way as in your applications. This is because these methods access the
application’s bundle and preference domain, not your bundle and preference domain.

If you want to set preferences, you need to specifically tell NSUserDefaults which do‐
main the preferences should be set in.

Preference Domains
Imagine that two applications exist, both of which set a preference called favoriteCol

or. These applications are by different authors and use the preference in different ways,
so each assumes that it’s the only one using the favoriteColor preference.

To prevent preferences colliding, OS X and iOS separate preferences by domain. When

you use NSUserDefault’s setValue:forKey: and valueForKey: methods (and related

methods like setBool:forKey:), it assumes that the preference domain you want to
work in is the one with the same name as your application’s bundle identifier.

So, to go back to our two example applications, as long as each has a different bundle
identifier—and it should, because Apple won’t allow it into the App Store unless a unique
one is set—the two applications will set and retrieve preferences in their own, separate
domains.

When you’re building a preference pane, however, the bundle identifier of the applica‐

tion is that of System Preferences. This means that calling methods like boolForKey:

won’t retrieve the settings you want. To solve this problem, you indicate to NSUser

Defaults exactly which preference domain you want to work with.

To retrieve the preferences for a specific domain, you use the NSUserDefaults class’s

persistentDomainForName: method. This method takes an NSString containing the

name of the domain, and returns an NSDictionary containing all of the keys and values
stored in that domain’s preferences.

To set the preferences for this domain, you use the NSUserDefaults’s setPersistent

Domain:forName: method. This works in much the same way: it takes an NSDiction

ary containing settings to apply, and an NSString containing the name of the domain
to set.

This means that, instead of working with preferences on an individual basis, you work
with a dictionary that contains all of the settings. When you set the values for a domain,
you replace all of the settings at once.

For example, imagine that you want to work with the preferences for the domain

com.oreilly.MyAmazingApplication.

318 | Chapter 18: Nonstandard Apps

To get the preferences as a mutable dictionary (so that you can modify it later), you do
this:

NSDictionary* preferences = [[NSUserDefaults standardUserDefaults]

 persistentDomainForName:@"com.oreilly.MyAmazingApplication"];

NSMutableDictionary* mutablePreferences = [NSMutableDictionary

 dictionaryWithDictionary:preferences];

You can then modify that dictionary as you like. When you’re done, you set the pref‐
erences for the domain by passing in the dictionary:

[[NSUserDefaults standardUserDefaults] setPersistentDomain:mutablePreferences

 forName:@"com.oreilly.MyAmazingApplication"];

Building a Sample Preference Pane
We’ll now build a simple preference pane that displays a single checkbox, which we’ll

store in the domain com.oreilly.MyAmazingApplication.

1. Create the project.

a. Create a new Preference Pane application for OS X. You’ll find the template in
the System Plug-in section.

b. Name the project PreferencePane.

2. Create the interface.

a. Open PreferencePane.xib. This is the nib file that contains the view that will be
shown when the preference pane is selected.

b. Drag in a checkbox and make its label read whatever you like.

3. Make the File’s Owner of the nib file use the PreferencePane class. By default, the
nib file created as part of the project template does not set the File’s Owner object
to use the main class of the project. We’ll change that first.

a. Select the File’s Owner in the Interface Builder, and open the Identity inspector.

b. Change the class from NSPreferencePane to PreferencePane (your class).

4. Connect the interface to the code.

a. Open PreferencePane.h in the assistant.

b. Control-drag from the checkbox into PreferencePane’s interface. Create an

outlet called checkbox.

5. Add the code that loads the current preference. We’ll first add the code that loads the
current value of the setting and turns the checkbox on or off. To do this, replace the

mainViewDidLoad method in PreferencePane.m with the following code. This meth‐
od is run when the preference pane finishes loading.

Preference Panes | 319

- (void)mainViewDidLoad

{

 NSDictionary* preferences = [[NSUserDefaults standardUserDefaults]

 persistentDomainForName:@"com.oreilly.MyAmazingApplication"];

 self.checkbox.state =

 [[preferences objectForKey:@"isChecked"] boolValue];

}

6. Add the code that sets the preference when the pane is closed.

Add the following method to PreferencePane.m. This method is called after the
preference pane has stopped being shown by the user—such as when the System
Preferences pane quits or the user clicks the Back, Forward, or Show All button.

- (void)didUnselect

{

 NSDictionary* preferences = [[NSUserDefaults standardUserDefaults]

 persistentDomainForName:@"com.oreilly.MyAmazingApplication"];

 NSMutableDictionary* mutablePreferences = [NSMutableDictionary

 dictionaryWithDictionary:preferences];

 [mutablePreferences setObject:[NSNumber

 numberWithBool:self.checkbox.state] forKey:@"isChecked"];

 [[NSUserDefaults standardUserDefaults]

 setPersistentDomain:mutablePreferences

 forName:@"com.oreilly.MyAmazingApplication"];

}

7. Test the application.

You can’t test preference panes like you can other applications,
because preference panes aren’t run like normal applications.
Instead, you build the application and load it into the System
Preferences application.

a. Build the preference pane by pressing ⌘-B or choosing Build from the Product
menu.

b. Launch the System Preferences application.

c. Open the Products group in the project navigator. Drag the PreferencePane.pre
fPane file onto the System Preferences application in the Dock. System Prefer‐
ences will ask how you want to install the preference pane.

Play around with the preference pane. If you check the checkbox, quit System Prefer‐
ences, and come back to your preference pane, the checkbox will remain checked.

320 | Chapter 18: Nonstandard Apps

Status Bar Items
Another example of applications that don’t present themselves with traditional GUIs
are applications that exist as status items—items that live in the top-right corner of the
screen. OS X has a number of built-in applications that live like this, such as the volume
changer and clock.

Status items can display any text, image, or view when clicked, and can display either a
menu or a custom view. You create a status item by asking the system’s status bar to
create one for you; you then customize the status item by setting its title text, image, or

view, and providing it with an NSMenu or other view to display when it’s clicked.

NSStatusItem* statusItem = [[NSStatusBar systemStatusBar]

 statusItemWithLength:NSVariableStatusItemLength];

statusItem.title = @"Test";

statusItem.menu = aMenu; // an NSMenu that contains the items you want to show

statusItem.highlightMode = YES; // should it change color when clicked?

You must keep a reference to the NSStatusItem object that you get

from the NSStatusBar class. If you don’t, the object will be released
from memory and removed from the status bar.

Status items allow you to work with an application’s features without requiring the ap‐
plication be the foreground application. For example, Twitter for Mac shows a status
item while the application is running that changes color when new messages arrive.

You can also create an application that only displays a status item. Such applications are
generally background utility apps such as Dropbox, which use the status item to indicate
the app’s current status and provide an easy way to access basic settings, as well as a
means to access a more complete settings UI for controlling the application.

If you’re writing an application that only shows a status item, you likely don’t want to

show the dock icon. To implement this, set the “Application is agent (UIEle

ment)” value in the application’s Info.plist file to YES, and the app will not show a dock
icon.

Building a Status Bar App
We’ll now demonstrate how to build a status bar application that doesn’t show a dock
icon.

1. Create the application. Create a Cocoa application named StatusItem.

Status Bar Items | 321

2. Create the interface. This application will have neither a menu bar nor a window to
show. The only UI will be the status item.

a. Open MainMenu.xib and delete both the main menu and the main window.

b. Drag in an NSMenu. It will contain three items—delete the second and third.

c. Make the single menu item’s label read Quit.

3. Connect the interface to the code.

a. Open AppDelegate.h.

b. Control-drag from the menu into AppDelegate’s interface, and create a new

outlet called menu.

c. Control-drag from the Quit menu item into AppDelegate’s interface, and create

an action named quit.

4. Add the variable and code. Next, we’ll create the status item and prepare it. We’ll
also add the code that gets run when the Quit menu item is chosen.

a. We’ll also need to add a class extension that has an instance variable that stores

the NSStatusItem object. Without this variable, the status item would be re‐
moved from memory, and therefore the status item would disappear immedi‐
ately after it was added.

b. Make AppDelegate.m look like the following code:

#import "AppDelegate.h"

@interface AppDelegate () {

 NSStatusItem* statusItem;

}

@end

@implementation AppDelegate

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

 statusItem = [[NSStatusBar systemStatusBar]

 statusItemWithLength:NSVariableStatusItemLength];

 statusItem.title = @"Test";

 statusItem.menu = self.menu;

 statusItem.highlightMode = YES;

}

- (IBAction)quit:(id)sender {

 [[NSApplication sharedApplication] terminate:nil];

}

@end

322 | Chapter 18: Nonstandard Apps

5. Make the application an agent. Finally, we’ll make the application not show a dock
icon. The status item will remain visible no matter which application is currently
active, so there’s always a way to access it.

a. To do this, you modify the application’s Info.plist file and indicate that it’s an
agent. “Agent” is Apple’s term for a background application that doesn’t present
a dock icon.

b. Select the project at the top of the project navigator. Open the Info tab at the top
of the main editor.

c. Add a new entry into the property list that appears: Application is agent

(UIElement). Set the value of this entry to YES.

6. Run the application. Nothing will appear in the dock, but the word “Test” will appear
at the top of the screen in the menu bar. You can open this menu and choose to quit
the app.

iOS Apps with Multiple Windows
Sometimes, you might want to run your iOS app on more than one screen. For example,
you might want to use the built-in touch screen to receive input from the user and
display the results on a television. Without the touch sensor or any of the other iOS
device hardware, any second screen will be for output only, but this doesn’t mean it isn’t
useful.

A window on an iOS device is represented by a UIWindow object. Inside this window are

two important properties. The rootViewController holds the root view controller to
be displayed; in the case of a standard iOS app, this will be the inital view controller
from the storyboard, and in the case of an external window, it can be anything you wish.

The second important property is the screen, which represents the actual physical

screen on which the window is going to be displayed. The screen has a bounds, which
holds its size, and also has additional properties such as brightness, meaning that you
can customize the second window to a degree.

To demonstrate how to use a second window in your iOS apps, we’ll create a demo app
with two different view controllers: one for the device and another for the external
monitor.

1. Create the app.

Create a new single view iPhone application, and call it MultipleWindows.

2. Create the interface.

iOS Apps with Multiple Windows | 323

Open the Main.storyboard and add a second view controller to the storyboard.
There is no need to hook it up to the inital view controller, but do make sure it looks
different so you can see it on the second window later.

Select the new view controller and open the identity inspector, set the Storyboard

id to secondWindowVC, and make sure the Use Storyboard id is checked.

3. Connect to the new window.

Replace the AppDelegate.m with the following:

#import "AppDelegate.h"

@interface AppDelegate()

@property (nonatomic,strong)UIWindow *secondWindow;

@end

@implementation AppDelegate

- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

 NSNotificationCenter *centre = [NSNotificationCenter defaultCenter];

 [centre addObserver:self selector:@selector(screenDidConnect:)

 name:UIScreenDidConnectNotification object:nil];

 [centre addObserver:self selector:@selector(screenDidDisconnect:)

 name:UIScreenDidDisconnectNotification object:nil];

 return YES;

}

- (void)screenDidConnect:(NSNotification *)notification

{

 UIScreen *screen = [notification object];

 if (!self.secondWindow)

 {

 self.secondWindow = [[UIWindow alloc] initWithFrame:screen.bounds];

 self.secondWindow.screen = screen;

 self.secondWindow.hidden = NO;

 UIStoryboard *storyboard = [UIStoryboard storyboardWithName:@"Main"

 bundle:nil];

 UIViewController *secondVC =

 [storyboard instantiateViewControllerWithIdentifier:@"secondWindowVC"];

 self.secondWindow.rootViewController = secondVC;

 }

}

- (void)screenDidDisconnect:(NSNotification *)notifcation

{

 if (self.secondWindow)

 {

 self.secondWindow.hidden = YES;

 self.secondWindow = nil;

324 | Chapter 18: Nonstandard Apps

 }

}

This code is registering to be notified when a second monitor is being connected
or disconnected from the device. When it detects a connection, it creates a new

UIWindow object to hold that screen and then it adds the second view controller
from the storyboard onto that window.

When it detects a window being disconnected, it simply clears out the window so
it doesn’t take up memory.

Now if you run the app and then plug in a second monitor to your device, you should
see the second view controller you created in the storybaord appearing while the initial
view controller is showing on the device.

It’s worth noting that if you start the application and the window is already connected
to the device, you won’t receive a notification. To find out what screens are connected

when the app launches, you can query the screens property of the UIScreen class, which

is a list of all UIScreens currently attached to the device:

NSArray* screens = [UIScreen screens];

UIScreen* primaryScreen = [screens firstObject];

UIScreen* secondaryScreen = nil;

if (screens.count > 1) {

 secondaryScreen = screens[1];

}

iOS Apps with Multiple Windows | 325

CHAPTER 19

Working with Text

Both OS X and iOS have tremendously powerful tools for working with text. Whether
it’s working with multiple languages, converting data into human-readable forms, or
detecting information in text, Cocoa and Cocoa Touch contain a wide variety of useful
tools for working with strings, text, and language.

In this chapter, you’ll learn how to use the system’s built-in internationalization and
localization features to easily translate strings in your code to whatever language the

user is running on. You’ll also learn how to use NSFormatter and its subclasses to format
data into strings, and how to use data detectors to detect URLs and dates in arbitrary
text.

Internationalization and Localization
Your primary language may not be the one spoken by your end user. When you write
strings embedded in your code for the user to see, those strings are hardcoded into the
compiled executable—so if something is written in English, the user will see it in English,
even if she doesn’t necessarily read English.

To address this problem, Cocoa has support for localized text, which is text that is re‐
placed at runtime with versions appropriate for your user. In your code, you use place‐
holder strings, and store the translated versions for every language that you support in
a separate file. When the code that displays the text runs, it checks to see which language
the user is using, and replaces the placeholder text with the appropriate version.

Strings Files
A strings file maps internal representations of text to localized representations. Strings
files look like this:

327

"welcome message" = "Welcome to OS X!";

"quit message" = "Goodbye! Come back soon!";

Strings files let you keep the text used in your application separate from your code. This
becomes especially useful when the text used in your application changes—for example,
when running in another language.

Strings files can be localized, which means that Xcode will create multiple versions of
the file based on language; at runtime, the application will use only the version of the
file appropriate to the user’s choice of language. If an appropriate version doesn’t exist,
the application will load the best one it can find.

Creating a Sample Localized Application
To demonstrate how localization works in Cocoa, we’ll build an application that makes
use of strings files to translate its interface.

1. Create the project. Create a new Cocoa application named Localized.

2. Create the interface. Open MainMenu.xib and drag a label into the window.

3. Connect the interface to the code. Open AppDelegate.h in the assistant. Control-drag

from the label into AppDelegate’s interface. Create a new outlet for the label called

languagesLabel.

4. Add the code. Replace the applicationDidFinishLaunching: method with the
following code:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

 NSString* currentLanguage = [[[NSUserDefaults standardUserDefaults]

 objectForKey:@"AppleLanguages"] objectAtIndex:0];

 NSString* labelFormat = NSLocalizedString(@"main language: %@", nil);

 self.languageLabel.stringValue = [NSString stringWithFormat:labelFormat,

 currentLanguage];

}

5. Run the application. The label will display the current language you’re using.

The NSLocalizedString function and its sibling functions load text from the Local

ized.strings file—specifically from the localized version of that file that fits the user’s
current language.

To localize this application, we’ll create the strings file, and then add both English and
French localizations.

328 | Chapter 19: Working with Text

6. Add the strings file. Create a new file in the project: a strings file. You’ll find this in
the Resource section of the file templates.

Name the file Localizable.strings.

It’s important to use this filename, since this file is the one the app
will look for if you don’t specify another name.

7. Add the English and French versions of the strings file. Select Localizable.strings.
Open the File inspector and scroll down to Localizations.

Click the Localize button. A menu will appear, choose Base and click Localize.

Now the localization option has changed, with two small checkboxes, one for Base,
the other for English.

8. Now it’s time to add French into the project.

Open the Project inside the Project Navigator. On the Info tab, scroll down to Lo‐
calizations.

Press the + button and choose French from the menu that appears.

Another menu will appear; untick everything except Localizable.strings.

Now you should have three versions of Localizable.strings: one for the Base lan‐
guage, one for English, and another for French.

9. Add the English text.

Open Localizable.strings (English) and add the following text:

"main language: %@" = "The main language is %@";

10. Add the French text.

Open Localizable.strings (French) and add the following text:

"main language: %@" = "La langue principale est %@";

It is also good practice to fill in the Base language, but in this case it is also English
so we will leave it blank.

11. Run the application. Now that the localized strings files have been written, test the
application in English mode.

The text of the label will change to the more accurately written English text.

Internationalization and Localization | 329

1. The authors, who are Australian, contend that this is superior.

Next, we’ll test the French version. To avoid having to change the language of the entire

system, we’ll make Xcode launch the application with an overridden AppleLanguages
preference.

To do this, we’ll edit the current scheme and add a parameter that is passed to the
application at start time.

1. Make the application launch using the French language. Click on the Scheme at the
top-left of the window. (It’s the drop-down list just to the right of the Stop button.)

Choose Edit Scheme… from the menu that appears.

Make sure that the Run Localized.app option is selected. Open the Arguments panel.

Click the + button at the bottom of the Arguments Passed on Launch list.

Add the following argument:

-AppleLanguages "('fr')"

2. Run the application like a Frenchman.

Run the app again. Note that the text appears in French. Quelle surprise!

You can continue adding more localized strings and more localizations to your
application. The more languages supported by your app, the more potential users
you have.

Formatting Data with NSFormatter
Many useful pieces of information need conversion to text before a human can read
them. Additionally, different people expect information to be presented in different ways
depending on where they live. For example, dates store date and time information, but
dates and times are displayed differently depending on the country. The differences
could be as simple as the order of numbers and punctuation—dates are written “MM-
DD-YY” in the US, and “DD-MM-YY”1 in Australia. However, sometimes the differ‐
ences are radical—your user could be using the Muslim calendar, in which case the same
point in time has a completely different date representation.

To solve this and other problems, Cocoa separates dates from their presentation. When

you want to work with date and time information, you use the NSDate class. When you
want to create text to display a representation of that date to the user, you use the

NSDateFormatter class.

Dates aren’t the only things that can be formatted. Numbers have different representa‐
tions in different cultures, as well as different representations in different contexts.

330 | Chapter 19: Working with Text

For example, in the US, the decimal marker is a period (.), while in many European
countries the marker is a comma (,). If you’re writing an application that displays mon‐
etary figures, it’s common to display negative figures in parentheses (()). Additionally,
the locale that your user is in will very likely have a different currency symbol than $.

NSNumberFormatter takes localization into account, and creates strings that suit what
your user expects to see to what your application needs to display.

To demonstrate how formatters work, we’ll create a simple application that displays the

current date to the user using NSDateFormatter.

1. Create the application. Create a new Cocoa application called TodaysDate.

2. Create the interface. The interface for this application will be as simple as the pre‐
vious one—we’ll simply show a label that renders the user’s current date.

Open MainMenu.xib and add a label to the main window. Resize the label to make
it fit the window’s width, and set its alignment to centered.

3. Connect the interface to the code. Open AppDelegate.h in the assistant.

Control-drag from the label into AppDelegate’s interface. Create an outlet for the

label called dateLabel.

4. Write the code.

Replace the applicationDidFinishLaunching: method with the following code:

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

 NSDateFormatter* dateFormatter = [[NSDateFormatter alloc] init];

 [dateFormatter setTimeStyle:NSDateFormatterNoStyle];

 [dateFormatter setDateStyle:NSDateFormatterLongStyle];

 NSString* dateString = [dateFormatter stringFromDate:[NSDate date]];

 self.dateLabel.stringValue = [NSString stringWithFormat:

 @"The current date is %@", dateString];

}

Creating an NSDateFormatter is a rather expensive operation. If you
need to format a large number of dates, create one and keep it around
rather than creating a new one for every time you need to format a
date.

Formatting Data with NSFormatter | 331

5. Run the application. The date will appear in the application, correctly formatted for
your user’s locale.

You can set the style of both the time and date in the formatter. Both setTimeStyle:

and setDateStyle: accept any of the following options (note that the precise format
will change depending on the user’s locale—read on if you want total control!).

NSDateFormatterNoStyle

Dates and times don’t appear at all.

NSDateFormatterShortStyle

A brief style. Usually, only numbers appear.

Dates appear like “10/24/86” and times appear like “5:05pm.”

NSDateFormatterMediumStyle

Slightly more detail appears in the medium style.

Dates appear like “Oct 24, 1986.” Times appear like the short style.

NSDateFormatterLongStyle

With the long style, almost every detail appears. Month names, for example,
are fully spelled out.

Dates appear like “October 24, 1986” and times appear like “5:05:23pm.”

NSDateFormatterFullStyle

Every detail is presented in the full style, including era and time zone infor‐
mation.

Dates appear like “Friday, October 24, 1986 AD” and times appear like
“5:05:23pm AEDT.”

NSDateFormatter also allows you to format dates with your own format string.
A format string defines which components of the date and time should appear.

For example, to render an NSDate to look like this: “17:05 October 24, 1986”
(regardless of locale), you do this:

NSDateFormatter* dateFormatter = [[NSDateFormatter alloc] init];

[dateFormatter setDateFormat:@"HH:mm, MMMM d"];

NSString* dateString = [dateFormatter stringFromDate:[NSDate date]];

All the different letters in the format string define what parts of the date and time appear,
and the number of times the symbol is repeated changes the format of the component.

For full details on the format patterns that can be used, see the Unicode specification
TR35, which is used by both OS X and iOS.

332 | Chapter 19: Working with Text

http://bit.ly/YAibhW
http://bit.ly/YAibhW

Detecting Data with NSDataDetector
As far as the system is concerned, text that it receives can be literally anything. However,
text frequently contains information that’s useful to both the user and to the app you’re
writing. For example, posts to Twitter often contain links to websites, and it’s a useful
feature for a Twitter app to be able to quickly open a link in the tweet’s text. Another
example is date and time information: an email could contain the date for a meeting,
and an app may want to extract that.

To extract information from text, you use the NSDataDetector class. This class reads
through a string and looks for whatever data you tell it to keep an eye out for.

You can use data detectors to detect the following kinds of data in strings:

• Dates

• Addresses

• Links

• Phone numbers

• Transit information (like flight information)

When you create an NSDataDetector, you provide it with the kinds of information that

you’re looking for. You then provide a string to the data detector, and get back an NSArray

that contains NSTextCheckingResult objects. Each NSTextCheckingResult contains
additional information about what type each result is—a date, URL, or other kind of
detectable data.

For example, if you were looking for URLs, you’d do this:

NSError *error = nil;

NSDataDetector *detector = [NSDataDetector

 dataDetectorWithTypes:NSTextCheckingTypeLink error:error];

Once the detector has been prepared, you can pass a string through it and get the number
of matches it finds. You also provide the range of the string that you want to check—if
you have a large string, you might want to search in sections.

NSString* string = @"Here is a link: http://oreilly.com!"

NSInteger numberOfMatches = [detector numberOfMatchesInString:string

 options:0

 range:NSMakeRange(0, [string length])];

// numberOfMatches is 1

You can use this technique to get a quick count of the number of detected items in a
string. If you want to get the detected results themselves, you do this:

Detecting Data with NSDataDetector | 333

NSArray *matches = [detector matchesInString:string

 options:0

 range:NSMakeRange(0, [string length])];

For each NSTextCheckingResult object in the returned array, you can get the relevant
information.

To demonstrate data detectors, we’ll build a simple application that allows users to type
in anything they want and see what the data detector finds.

The application will present a text field and a button. When the button is clicked, the
text will be checked and the results will be presented in a label.

1. Create the project. Create a new Cocoa application. Call it DataDetectors.

2. Create the interface. Open MainMenu.xib.

Drag in a multiline text field and place it in the top half of the window.

Drag in a button and place it under the text field. Change its label to Check.

Drag in a second multiline text field. Place it under the button in the bottom half
of the window.

3. Connect the interface to the code. Open AppDelegate.h in the assistant.

Control-drag from the top text field into AppDelegate’s interface. Create an outlet

called inputTextField.

Control-drag from the bottom text field into AppDelegate’s interface. Create an

outlet called outputTextField.

Control-drag from the button into AppDelegate’s interface. Create an action called

check.

4. Add the code. Replace the check: method with the following code:

- (IBAction)check:(id)sender {

 NSDataDetector* detector = [NSDataDetector

 dataDetectorWithTypes:NSTextCheckingAllTypes error:nil];

 NSString* inputString = self.inputTextField.stringValue;

 NSMutableString* resultsText = [NSMutableString string];

 NSArray* matches = [detector matchesInString:inputString

 options:0

 range:NSMakeRange(0, inputString.length)];

 for (NSTextCheckingResult* match in matches) {

 switch (match.resultType) {

 case NSTextCheckingTypeLink:

 [resultsText appendFormat:@"Found a link: %@\n", match.URL];

 break;

 case NSTextCheckingTypeDate:

334 | Chapter 19: Working with Text

 [resultsText appendFormat:@"Found a date: %@\n", match.date];

 break;

 case NSTextCheckingTypePhoneNumber:

 [resultsText appendFormat:@"Found a phone number: %@\n",

 match.phoneNumber];

 break;

 case NSTextCheckingTypeAddress:

 [resultsText appendFormat:@"Found an address: %@\n",

 match.addressComponents];

 break;

 default:

 break;

 }

 }

 self.outputTextField.stringValue = resultsText;

}

5. Run the application. Type in text like this:

Apple's doing an event at 4pm tomorrow!

and click the Check button. The app will display the date and time it detected.

TextKit
TextKit is a new text rendering engine for iOS 7 built on top of CoreText, replacing
WebKit as the text engine for iOS. Technically, everything that TextKit allows you do
was possible in the past through clever use of CoreText, but it was hard and very time
consuming. TextKit allows you to do a variety of different text-related manipulation
including kerning, ligatures, and letterpress effects, among others.

One of the most important features of TextKit is dynamic type, allowing your users to
increase or decrease the size of fonts on the fly to better suit their own needs. Users of
your app will start expecting dynamic font to be implemented and obeyed inside your
app from the beginning, so be wary of ignoring it! At its most basic, dynamic fonts

simply adds a new method to UIFont called preferedFontForTextStyle: to allow for
the user’s system-wide preferred font to be determined. The different text styles available
are:

• Headings

• Subheadings

• Body

• Footnotes

• Captions

TextKit | 335

As a quick demonstration of TextKit and dynamic fonts, we’ll create a simple iPhone
app that responds to the updates in dynamic fonts.

1. Create a new Single View iPhone application, and call it TextKitDemo.

2. Create the interface. Open Main.Storyboard.

Drag in a text view, and place it to fill the entire view.

Select the text view, and inside the Attributes inspector, untick Editable.

3. Connect the interface. Open ViewController.h in the Assistant.

Control-drag from the text view into the ViewController’s interface. Create an outlet

called textView.

4. Add the code. Replace ViewController.m with the following.

#import "ViewController.h"

@interface ViewController ()

@end

@implementation ViewController

- (void)viewDidLoad

{

 [super viewDidLoad];

 self.textView.font =

 [UIFont preferredFontForTextStyle:UIFontTextStyleBody];

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(dynamicFontChanged:)

 name:UIContentSizeCategoryDidChangeNotification object:nil];

}

- (void)dynamicFontChanged:(NSNotification *)notification

{

 self.textView.font =

 [UIFont preferredFontForTextStyle:UIFontTextStyleBody];

}

@end

Now if you run the app, it will dynamically change and update to the user’s preferred
dynamic font!

336 | Chapter 19: Working with Text

CHAPTER 20

iCloud

Introduced in iOS 5, iCloud is a set of technologies that allow users’ documents and
settings to be seamlessly synchronized across all the devices that they own.

iCloud is heavily promoted by Apple as technology that “just works”—simply by owning
a Mac, iPhone, or iPad, your documents are everywhere that you need them to be. In
order to understand what iCloud is, it’s worth taking a look at Apple’s advertising and
marketing for the technology. In the ads, we see users working on a document, and then
just putting it down, walking over to their Macs, and resuming work. No additional
effort is required on the part of the user, and users are encouraged to think of their
devices as simply tools that they use to access their omnipresent data.

This utopian view of data availability is made possible by several very large data centers
that Apple constructed in the early 2010s, and a little extra effort on the part of you, the
developer.

iCloud also supports syncing Core Data databases. However, Core
Data and iCloud syncing is a huge issue, and implementing and han‐
dling this is beyond what we could cover in this chapter. If you’re
interested in learning more about this, take a look at Marcus S. Zar‐
ra’s excellent Core Data, 2nd Edition (O’Reilly).

In this chapter, you’ll learn how to create applications that use iCloud to share settings
and documents across the user’s devices.

What iCloud Stores
Simply put, iCloud allows your applications to store files and key-value pairs on Apple’s
servers. Apps identify which file storage container or key-value pair database they want
to access, and the operating system takes care of the rest.

337

http://shop.oreilly.com/product/9781937785086.do

In the case of files, your application determines the location of a container folder, the
contents of which are synced to the network. When you copy a file into the container
or update a file that’s already in the container, the operating system syncs that file across
all other applications on devices that have access to the same container.

For settings, you access an instance of NSUbiquitousKeyValueStore, which works al‐

most identically to NSUserDefaults with the exception that it syncs to all other devices.

The word “ubiquitous” appears a lot when working with iCloud. So often, in fact, that
it’s used instead of the marketing term “iCloud.” This is intended to reinforce what
iCloud should be used for—it’s not a storage space on the Internet, like Box.net or similar
“cloud file storage” services, but rather a tool for making users’ data ubiquitous, so they
can access it from anywhere.

Users are limited in the amount of data they can store. By default, iCloud users get 5GB
of space for free, and can pay for more. There aren’t any per-application limits on the
amount of data that your application can store, but the user isn’t allowed to exceed their
total limit (though they can purchase more space). For the key-value store, you can store
64KB of information per application.

This means that when you’re working out how iCloud fits into your application, you
have to choose where you’re going to put the data. Storing files in an iCloud container
is a good option if your application works with documents—image editors or word
processors are good examples. Files are also useful for storing more structured infor‐
mation, such as to-do lists or saved game files. If you want to store simple, application-
wide state, such as the most recently opened document, then the key-value store works
well.

More than one application can access the same iCloud container or key-value store. All
that’s required is that the same developer writes both, and that the bundle IDs have the
same team prefix.

iCloud does not work in the iOS Simulator. It does work on the Mac
and on iOS devices. If you want to make an app for the iPhone or
iPad that uses iCloud, you’ll need to have a device that you can test
on.

Setting Up for iCloud
In order to use any of Apple’s online services, an application needs to identify itself and
the developer who created it. This means that if you want to work with iCloud, you must
have a paid developer account for each platform that you want to develop on. So if you
want to make iCloud apps for the Mac, you need a paid Mac developer account. And if
you want to make iOS apps at all, of course, you need a paid iOS developer account.

338 | Chapter 20: iCloud

To access iCloud, your application’s bundle ID (the unique application identifier that

looks like this: com.oreilly.MyiCloudApp) must be registered with Apple as one that
is enabled for iCloud. To get ready to build an iCloud app for the Mac, we’re going to
set up an application ID that’s ready for iCloud.

Let’s get started. For this example, we’re going to assume that you’ve already set up your
certificate and have registered your computer as a development device.

1. Go to the Mac Dev Center.

2. Sign in with your account.

3. Open the Developer Certificate Utility.

4. Click Register Mac App ID.

5. Provide your app ID. This needs to be a string that looks like a reverse domain

name. For example, the app ID that we’ve made here is com.oreilly.LearningCo

coa.iCloudMac. Take a domain name, reverse it, and add your application name to
the end. You’re also asked to give the app ID a name; name it whatever you like.

6. The new app ID will appear in the list, and will appear as configurable for iCloud.
Click Configure.

7. Check the Enable for iCloud box.

The developer portal will notify you that any new provisioning profiles you make with
this app ID will be enabled for iCloud, but that if you want to make existing provisioning
profiles use iCloud, you need to manually regenerate them. This only matters if you’re
adding iCloud to an existing app.

8. Next, create a provisioning profile for this app ID by clicking Provisioning Profiles.

9. Click Create Profile. Create a new development provisioning profile that uses the
new app ID.

10. Download the new provisioning profile and drag it onto Xcode’s icon in the dock
to add it.

Once you’ve done this, Apple knows that an application with the bundle identifier you
provide is allowed to access the iCloud services. When you create your application, its
bundle identifier needs to be the same as the one you just registered and the application
must be code-signed. If it’s not, it won’t be allowed to use iCloud.

We’ll now set up the project in Xcode. To tell the OS that the application wants to use
iCloud, we need to create an Entitlements file that indicates exactly what in iCloud we
want to access. This file is created and managed for us by Xcode.

1. Create a new Cocoa application and name it what you like. When you create the
application, make its bundle identifier the same as the app ID you created earlier.

Setting Up for iCloud | 339

http://bit.ly/RbMsjY

2. When Xcode has finished creating the application, select the project at the top of
the project navigator. In the application’s Summary tab, scroll down to Entitlements.

3. Choose Enable Entitlements. An Entitlements file will be created in the project.

To access iCloud storage and store files, you indicate which iCloud container your ap‐
plication should use. The examples in this chapter will cover both the key-value store
and iCloud file containers, and both are identified with the same style of identifier.

4. We need to add an iCloud container ID. Click the + button, and a new container
will be added.

5. We also want access to the iCloud key-value store, so check the iCloud Key-Value
Store checkbox and make sure that its name is the same as the iCloud container ID.

The application is now set up to use iCloud. To get started working with the system,
we’ll first make sure that everything’s working as it’s supposed to.

Testing Whether iCloud Works
In order to determine whether the application has access to iCloud, we’ll run a quick

test to make sure that our setup is working. To do this, we’ll ask the NSFileManager class
for the “ubiquity container” URL. This is the location on the filesystem that is used for

storing iCloud files; if the system returns the URL, we’re in business. If it returns nil,
then the app hasn’t been set up for iCloud properly.

To add the test, replace applicationDidFinishLaunching: in AppDelegate.m with the
following code:

 - (void)applicationDidFinishLaunching:(NSNotification *)aNotification

 {

 NSLog(@"Ubiquity Container URL: %@", [[NSFileManager defaultManager]

 URLForUbiquityContainerIdentifier:nil]);

 }

Run the application. Take a look at the console output. If you see a URL, then iCloud is

configured correctly. If the app reports that the ubiquity container URL is nil, then
iCloud isn’t set up correctly, and you should double-check your code signing and set‐
tings.

Storing Settings
The first thing that we’ll do is use the key-value store to cause a setting to be stored in
iCloud, which will be accessible via both an iOS application and a Mac application.

The key-value store, accessed via NSUbiquitousKeyValueStore, works very much like

the NSUserDefaults object. You can store strings, numbers, arrays, and dictionaries in

340 | Chapter 20: iCloud

the store. As we mentioned before, the total amount of data that you can store in the
key-value store is 64KB, and each item can be no larger than 64KB.

In this example, we’re going to start by storing a single string in iCloud. First, we’ll

update the AppDelegate object to store and retrieve this value from the key-value store.

1. Open AppDelegate.h and add the following code to AppDelegate’s @interface
section:

@property (strong) NSString* cloudString;

We’ll now create the setters and getters. Unlike other properties, which store their con‐
tent in instance variables, for this property we’ll create our own setter and getter methods
that store and fetch the data from iCloud.

2. Open AppDelegate.m and add the following code to the start of AppDelegate’s

@implementation section:

@dynamic cloudString;

This directive tells the compiler that you’re going to handle creating the setter and
getter methods, and that it shouldn’t worry about creating an instance variable for
the property.

3. Create the setter and getter methods by adding the following methods to App
Delegate.m:

- (NSString *)cloudString {

 return [[NSUbiquitousKeyValueStore defaultStore]

 stringForKey:@"cloud_string"];

}

- (void)setCloudString:(NSString *)cloudString {

 [[NSUbiquitousKeyValueStore defaultStore] setString:cloudString

 forKey:@"cloud_string"];

 [[NSUbiquitousKeyValueStore defaultStore] synchronize];

}

The first method, cloudString, asks the default NSUbiquitousKeyValueStore object

for the value stored in iCloud associated with the key cloud_string. The second meth‐

od, setCloudString:, takes a string and puts it in iCloud under the same key. It then
immediately syncs the local copy of the key-value store to disk.

This method here works fine when we’re the only application accessing the data, but
the whole point of iCloud is that it’s designed for multiple applications accessing the
same data. It’s therefore possible that, while the application is running, another instance
of the application (perhaps running on another device that the user owns) changes the
same value. Our application needs to know that the change has taken place, so that both
apps show the same information.

Storing Settings | 341

When the key-value store is changed externally—that is, by another application—the

notification NSUbiquitousKeyValueStoreDidChangeExternallyNotification is pos‐

ted. So to be informed of these changes, we’ll make the AppDelegate class receive this

notification, and then let the rest of the application know that the cloudString property
changed (which will in turn make the UI update).

First, we’ll register for the notifications, and then we’ll add the method that gets run
when the key-value store is changed.

4. Add the following code to the end of applicationDidFinishLaunching::

[[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(keyValueStoreDidChange:)

 name:NSUbiquitousKeyValueStoreDidChangeExternallyNotification

 object:[NSUbiquitousKeyValueStore defaultStore]];

5. Add the following method to AppDelegate.m:

- (void) keyValueStoreDidChange:(NSNotification*)notification {

 [self willChangeValueForKey:@"cloudString"];

 [self didChangeValueForKey:@"cloudString"];

}

We’re now done with the code. It’s time to create the interface, which will consist of a

text field that’s bound to the application delegate’s cloudString property. This way,

whenever the user changes the contents the text field, the setCloudString: method
will be run, which stores the new string in iCloud. Additionally, because we’ll be using

bindings, the fact that the keyValueStoreDidChange: method calls the willChange

ValueForKey and didChangeValueForKey methods to indicate a change in the "cloud

String" property will cause the text field to update if another application makes a
change.

1. Open MainWindow.xib, and open the window.

2. Drag in an NSTextField.

3. With the text field selected, open the Bindings inspector, which is the second tab
to the right at the top of the Utilities pane.

4. Open the Value property and choose App Delegate in the Bind To drop-down

menu. Set the Model Key Path to self.cloudString.

We’re all set—the interface is prepared and will show the value stored in iCloud. Go
ahead and run the app: you can enter text, and it will be saved.

This is all well and good, but iCloud only gets impressive when there’s more than one
device that has access to the same information. We’ll now create an iOS application that
shows what you type in the Mac application; the app will also allow you to make changes,
which will automatically show up in the Mac app.

342 | Chapter 20: iCloud

A reminder: the iOS Simulator doesn’t support iCloud, and you’ll
need to use a real iPhone, iPod touch, or iPad to test iCloud.

To make an iOS app that uses iCloud, you need to create an application ID for it that’s
registered to use the iCloud service, just like with the Mac app.

1. Open the iOS Developer Center.

2. Click iOS Provisioning Portal.

3. Create a new app ID by following the same steps you did for the Mac app ID. The
layout of the web app is different, but the steps are the same.

You can’t use the same app ID for your iOS application as you did for your Mac app, but
that’s OK—as long as your team ID remains the same, they’ll be able to access the same
data.

When you’re done, you should have a new app ID that can use iCloud.

To keep the project manageable, we’re going to make the iOS app be an additional part
of the Mac app’s project. Instead of creating a new project, we’ll create a new target for
the iOS app. This will keep everything in the same window, and has some additional
advantages like making it easier to share source code between the two apps.

4. Create a new target by choosing File→New→Target.

5. Make the new target a single-view iOS application. Make sure the bundle identifier
is the same as the app ID that you just created for the iOS application.

When the project is created, the application needs to be configured to use iCloud, just
like the Mac application. Specifically, the iOS app must be configured to use the same
iCloud resources as the Mac app, which will make it possible for the two apps to share
data.

6. Select the project at the top of the project navigator. Open the Summary tab.

7. Scroll down to Entitlements and turn on Use Entitlements.

8. Turn on iCloud Key-Value Store. Make the store identifier the same as the one used
for the Mac application.

9. Add an iCloud container. Again, make the identifier the same as the Mac applica‐
tion.

The iOS application is now ready to work with iCloud, just like the Mac app. We’ll now
set up its interface, which will consist of a single text field.

Storing Settings | 343

http://developer.apple.com/ios

In order to be notified of when the user is done editing, we’ll make the view controller

used in this iOS application a UITextFieldDelegate. When the user taps the Return
key (which we’ll convert to a Done button), the application will store the text field’s
contents in iCloud.

10. Open MainStoryboard.storyboard. Drag in a UITextField and place it near the top
of the screen.

11. Select the text field and open the Attributes inspector. Scroll down to the “Return
key” drop-down item, and choose Done.

The interface is done, but we still need to make the view controller be notified when the
user taps the Done button.

12. Control-drag from the text field to the view controller, and choose “delegate” from
the pop-up menu that appears.

13. Open ViewController.h in the inspector.

14. Control-drag from the text field into ViewController’s @interface section. Create

a new outlet called textField.

15. Make the class conform to UITextFieldDelegate by changing its @interface line
to look like this:

@interface ViewController : UIViewController <UITextFieldDelegate>

Now we can make the application draw its data from iCloud. We’ll do this by setting the

text of the textField to whatever’s in the iCloud key-value store when the view loads.

We’ll also register the ViewController class as one that receives notifications about
when the key-value store is updated externally.

iCloud updates its contents both when the application is running and
when it’s not. This means that if you make a change to a setting in the
key-value store on your iPhone and then later open the same app on
your iPad, the data will have likely already arrived.

16. Update the viewDidLoad method to use the following code:

- (void)viewDidLoad

{

 [super viewDidLoad];

 [[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(keyValueStoreDidChange:)

 name:NSUbiquitousKeyValueStoreDidChangeExternallyNotification

 object:[NSUbiquitousKeyValueStore defaultStore]];

344 | Chapter 20: iCloud

 self.textField.text = [[NSUbiquitousKeyValueStore defaultStore]

 stringForKey:@"cloud_string"];

}

Next, we’ll add the method that runs when the user taps the Done button. This works

because the class is the delegate of the text field; textFieldShouldReturn: is called by
the text field to find out what happens when the Return button is tapped.

In this case, we’ll make the keyboard go away by making the text field resign first-
responder status, and then store the text field’s contents in iCloud.

17. Add the following method to ViewController:

 (BOOL)textFieldShouldReturn:(UITextField *)textField {

 [self.textField resignFirstResponder];

 [[NSUbiquitousKeyValueStore defaultStore] setString:self.textField.text

 forKey:@"cloud_string"];

 return NO;

}

Finally, we’ll add the method that runs when another application updates the key-value
store. All it will do is get the latest value from the key-value store and make the text field
display it.

18. Add the following method to ViewController:

- (void) keyValueStoreDidChange:(NSNotification*)notification {

 self.textField.text = [[NSUbiquitousKeyValueStore defaultStore]

 stringForKey:@"cloud_string"];

}

We can now see this in action! Run the iOS app and the Mac app together. Change a
value on one of the apps and watch what happens.

Be patient—it might take a few seconds before the change appears on
the other device.

iCloud Storage
Storing keys and values in iCloud is extremely useful for persisting user preferences
across all their devices, but if you want to make the user’s files just as ubiquitous, you
need to use iCloud storage.

iCloud Storage | 345

In this section, we’ll make an app that allows the user to store stuff in iCloud storage.
The Mac app will let you add items to iCloud and list everything in storage. Its iOS
counterpart will be simpler and show a list of files currently in iCloud storage, which
updates as files are added or removed.

Before we can get to work, we need to give the Mac application permission to access the
user’s files. By default, when you enable iCloud, Xcode helpfully marks the application
as sandboxed.

Sandboxing an application restricts what it’s allowed to access. Before sandboxing, all
applications were allowed to access any file that belonged to the user, which caused
problems if the app was compromised by a remote attacker. Apple requires any appli‐
cation that’s submitted to the Mac App Store to be sandboxed. (All iOS applications are
sandboxed—it’s a requirement of running on the device.)

By default, the application will be sandboxed to the point where it can’t access any user
files at all. Because we’re making an application that lets the user take files and move
them into iCloud, we’ll need access to those files.

1. Open the project settings for the Mac application and scroll down to Entitlements.

2. Make sure that Enable App Sandboxing is turned on, and then scroll down to User
Selected File Access. Set this to Read/Write Access.

With that out of the way, we can begin working with iCloud storage in the Mac app.

The way that our implementation will work is this: we’ll have a property on the App

Delegate class that is an NSArray containing NSStrings of each path of the files in the
storage container. This array will be displayed in a table view so that you can see what’s
included. We’ll also add a button that, when clicked, will prompt the user for a file to
move into iCloud storage.

In real life, you’d likely do something more interesting with the files than just show that
they’re there, but this will get us started.

3. Open AppDelegate.h and add the following code to AppDelegate’s @interface
section:

@property (strong) NSArray* filesInCloudStorage;

4. Open AppDelegate.m and add the following code to AppDelegate’s @implementa

tion section:

@synthesize filesInCloudStorage = _filesInCloudStorage;

Next, we’ll create and set up the table view that displays the list of files. To keep things
simpler, we’ll use bindings to make the table view show its content.

346 | Chapter 20: iCloud

5. Open MainWindow.xib and drag in an NSTableView into the main window. Make
it fill the rest of the window.

6. Select the table view and make it have one column.

7. Drag in an NSButton and change its label to Add File….

With the interface laid out, we can begin to connect it to the code. We’ll start by making
the button run an action method when clicked, and then bind the table view to the
application. Because we’re working with an array, we’ll use an array controller to manage
the link between the array of files stored in the app delegate and the table view.

8. Open AppDelegate.h in the assistant.

9. Control-drag from the button into AppDelegate’s @interface section, and create

a new action called addFile.

We’ll now bind the table to the app delegate via an array controller.

10. Drag an array controller into the outline.

11. Select the array controller and open the Bindings tab.

12. Open the Content Array property, and choose App Delegate from the Bind To drop-
down menu.

13. Set the Model Key Path to self.filesInCloudStorage.

14. Select the table view column, and bind its Value to the Array Controller. Set the

controller key to arrangedObjects and the model key path to description.

We’re using description because it’s a convenient way to simply display a string version
of the contents of the array.

Next, we need to load the list of files that are in iCloud into the array, and then keep an
eye out for new things arriving. To check the contents of the iCloud container, we first
get its URL with this code:

NSURL* documentsDirectory = [[[NSFileManager defaultManager]

 URLForUbiquityContainerIdentifier:nil]

 URLByAppendingPathComponent:@"Documents" isDirectory:YES];

The ubiquity container is the folder that contains all of the information that’s synced to
iCloud. Inside this is another folder called Documents, which is where your application
should put all synced documents. It’s technically possible to store information outside
this folder, but the advantage of using the Documents folder is that, on iOS, the user is
able to delete individual documents in order to free space, whereas anything outside
that folder is considered internal data and can’t be individually deleted by users—they
can only remove it by deleting the entire iCloud container.

iCloud Storage | 347

To work out what’s inside the iCloud container and to be informed of when its contents

change, we use the NSMetadataQuery class. This class, once configured with information
about what you’re looking for, runs continuously and sends notifications whenever its
contents change.

To use this, we’ll add an instance variable to store the query object, and when the ap‐
plication launches, we’ll configure and start the query.

15. Open AppDelegate.m and modify the class extension at the top of the file so that it
looks like the following:

@interface AppDelegate () {

 NSMetadataQuery* metadataQuery;

}

@end

16. Add the following code to the end of the applicationDidFinishLaunching:
method:

metadataQuery = [[NSMetadataQuery alloc] init];

[metadataQuery

 setSearchScopes:

 [NSArray arrayWithObject:NSMetadataQueryUbiquitousDocumentsScope]];

[metadataQuery setPredicate:

 [NSPredicate predicateWithFormat:@"%K LIKE '*'",

 NSMetadataItemFSNameKey]];

[[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(queryDidUpdate:)

 name:NSMetadataQueryDidUpdateNotification object:metadataQuery];

[[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(queryDidUpdate:)

 name:NSMetadataQueryDidFinishGatheringNotification object:metadataQuery];

[metadataQuery startQuery];

This code starts by creating the metadata query object, and instructs it to limit its results
to only include items found inside the Documents folder in the ubiquity container. We
also give it a predicate, which is a description of what to look for—in this case, we’re
saying “find all objects whose filenames are anything,” which translates to “all files in
the Documents folder.”

We then register the app delegate to receive notifications whenever the metadata finishes
its initial sweep of the folder, and also whenever the folder changes contents. In both
cases, the same method will be called.

Finally, the query is started.

348 | Chapter 20: iCloud

We now need to add the queryDidUpdate: method, which will prepare the filesIn

CloudStorage property and fill it with the paths that it found.

17. Add the following method to AppDelegate:

- (void) queryDidUpdate:(NSNotification*)notification {

 NSMutableArray* files = [NSMutableArray array];

 for (NSMetadataItem* item in metadataQuery.results) {

 NSURL *filename = [item valueForAttribute:NSMetadataItemPathKey];

 [files addObject:filename];

 }

 self.filesInCloudStorage = files;

}

This code loops over every result in the query and retrieves the path for it. The paths

are then stored in an array, which is used to update the filesInCloudStorage property.
Because we’re using bindings, the act of updating this property will update the contents
of the table view.

Next, we add the method that actually adds an item to iCloud storage. This method
presents a file-open panel that lets the user choose which item to move into storage.

The process of moving a file into storage is the following. First, you work out the URL

of the file you want to move. Then, you ask the NSFileManager to generate a destination
URL. Finally, you perform the move by asking the file manager to make the file ubiq‐
uitous, passing in the source and destination URLs.

Moving files into storage is just that—moving the file. If you want to
copy a file into storage, duplicate it and move the copied file.

18. Add the following method to AppDelegate:

- (void)addFile:(id)sender {

 NSOpenPanel* panel = [NSOpenPanel openPanel];

 [panel beginSheetModalForWindow:self.window

 completionHandler:^(NSInteger result) {

 if (result == NSOKButton) {

 NSURL* containerURL = [[NSFileManager defaultManager]

 URLForUbiquityContainerIdentifier:nil];

 containerURL = [containerURL

 URLByAppendingPathComponent:@"Documents" isDirectory:YES];

 NSURL* sourceURL = panel.URL;

 NSURL* destinationURL = [containerURL

 URLByAppendingPathComponent:[panel.URL lastPathComponent]];

iCloud Storage | 349

 NSError* error = nil;

 if ([[NSFileManager defaultManager] setUbiquitous:YES

 itemAtURL:sourceURL

 destinationURL:destinationURL

 error:&error] == NO) {

 NSLog(@"Couldn't make the file ubiquitous: %@",

 [error localizedDescription]);

 }

 }

 }];

}

Run the app. You can now add stuff to iCloud.

Now we’ll make the same thing work on iOS. First, we’ll update the UI to include a text

field that displays the list of files, and then we’ll add the same NSMetadataQuery that lets
the app know what’s in the container.

1. Open the main storyboard and add a text view. Make it not editable.

2. Open ViewController.h in the Assistant.

Control-drag from the text field into ViewController’s @interface section, and

connect it to a new outlet in ViewController called fileList.

Now we’ll make the code work. This is almost identical to the Mac version—we create
the metadata query, prepare it, and set it running. When the query finds files, we’ll
update the text field and display the list of items.

3. Replace the viewDidLoad method with the following code:

- (void)viewDidLoad

{

 [super viewDidLoad];

 [[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(keyValueStoreDidChange:)

 name:NSUbiquitousKeyValueStoreDidChangeExternallyNotification

 object:[NSUbiquitousKeyValueStore defaultStore]];

 self.textField.text = [[NSUbiquitousKeyValueStore defaultStore]

 stringForKey:@"cloud_string"];

 metadataQuery = [[NSMetadataQuery alloc] init];

 [metadataQuery setSearchScopes:[NSArray

 arrayWithObject:NSMetadataQueryUbiquitousDocumentsScope]];

 [metadataQuery setPredicate:[NSPredicate

 predicateWithFormat:@"%K LIKE '*'", NSMetadataItemFSNameKey]];

350 | Chapter 20: iCloud

 [[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(queryDidUpdate:)

 name:NSMetadataQueryDidUpdateNotification

 object:metadataQuery];

 [[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(queryDidUpdate:)

 name:NSMetadataQueryDidFinishGatheringNotification

 object:metadataQuery];

 [metadataQuery startQuery];

 self.fileList.text = @"";

}

This code is pretty much identical to the Mac version. The only difference is that we’re
directly updating the text view instead of using bindings.

Next, we’ll add the method that updates when the metadata query finds files.

4. Add the following method to ViewController:

- (void) queryDidUpdate:(NSNotification*)notification {

 NSMutableArray* files = [NSMutableArray array];

 for (NSMetadataItem* item in metadataQuery.results) {

 NSURL *filename = [item valueForAttribute:NSMetadataItemPathKey];

 [files addObject:filename];

 }

 self.fileList.text = [files description];

}

Now run the app, and add a file to iCloud via the Mac app. It’ll appear in the iOS app.

It’s important to note that items that show up in the iCloud container aren’t necessarily
fully downloaded, particularly if the file is large. Likewise, an item that’s uploading to
iCloud might take some time.

You can determine the status of a file at a given URL by using NSURL’s valueForAttri

bute: key. For example, to work out if a file is completely available, you do this:

// anURL is an NSURL pointing at an item in the ubiquity container

BOOL isDownloaded = [[anURL

 valueForAttribute:NSMetadataUbiquitousItemIsDownloadedKey]

 boolValue];

In order to be a good citizen in iCloud, there are a number of things that your application
should do in order to provide the best user experience:

iCloud Storage | 351

• Don’t store some documents in iCloud and some outside. It’s easier for users to
choose to store all their data in iCloud or to not store anything there.

• Only store user-created content in iCloud. Don’t store caches, settings, or anything
else—iCloud is meant for storing things that cannot be re-created by the app.

• If you delete an item from iCloud, the file is removed from all the user’s devices
and computers. This means that you should confirm a delete operation with the
user before performing it, as users might not understand the implications and may
think that they’re only deleting the local copy of the file.

352 | Chapter 20: iCloud

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
* (asterisk), 41
: (colon), 24
@ (at sign), 39, 49
[] (square brackets), 25

A
absolute paths, 64
Acrobat Reader (Adobe), 71
actions

connecting views to code, 77
creating, 16
defined, 16, 82
outlets and, 83
sending messages to nil, 26
target-action relationship, 82

Adobe Acrobat Reader, 71
alerts, scheduled, 270
animation (see Core Animation)
APIs, undocumented, 73
app-scoped bookmarks, 171
Apple Developer Forums, 2
Apple ID, 2
application delegates (see NSApplicationDele‐

gate protocol)
application sandboxes

about, 71
enabling, 169

open and save panels, 170
restrictions for, 71–74, 169
security-scoped bookmarks and, 171

applications, 59
(see also document-based applications)
about, 59
background, 66, 68
building for events, 273–278
building with nibs and constraints, 85–87
bundle IDs for, 5
buttons in, 81
compiled binary in, 61
composition of, 61–63
connecting code in, 15–17
creating, 5, 14
designing interfaces for, 14–15, 76
entitlements for, 73, 171
favicon example, 104–106
finding resources in, 63
foreground, 66
frameworks and, 61
inactive, 66
iOS structure, 72
lifecycle for iOS, 66–70
lifecycle for OS X, 64–65
multitasking, 67–70
OS X structure, 73
photo, 150–152
private APIs and, 73

353

run loop in, 65
security considerations, 71
suspended, 67
viewing structure of, 61–63

array controllers, 178
arrays

about, 43–45
fast enumeration and, 46
mutable, 46

ASCII encoding, 51
assign property, 28
asterisk (*), 41
at sign (@), 39, 49
Attributes inspector, 14
audiovisual content

about, 137
AV Foundation and, 137–138
playing sound with AVAudioPlayer, 146–147
playing video with AVPlayer, 138–143
working with photo library, 148–153

automatic reference counting
about, 33
blocks and, 98
strong references and, 292

autosaving feature, 210
autosizing masks model, 83
AV content (see audiovisual content)
AV Foundation, 137, 137
AVAudioPlayer class

about, 146
currentTime property, 147
delegation and, 56

AVAudioPlayerDelegate protocol, 56
AVCaptureInput class, 148
AVCaptureOutput class, 148
AVCaptureSession class, 148
AVPlayer class

about, 138
play method, 138
video player example, 139–143

AVPlayerLayer class
about, 139
playerLayerWithPlayer: method, 139
video player example, 139–143

awakeFromNib: message, 64, 82

B
background applications, 66, 68
Berkeley sockets API, 227

bindings
about, 173
complex app example, 179–185
to controllers, 177
NSTableView class and, 201
simple app example, 174–177
views to models, 173

Bindings inspector, 182, 342
__block keyword, 101
blocks

about, 95–96
calling, 95
lifecycles for, 97–98
memory management and, 98, 100
parameters and, 97, 99
syntax for, 96

Bonjour protocol, 233
BOOL parameter, 97, 99
bounds rectangles, 115
breakpoint navigator, 12, 298
breakpoints

customizing, 297
exception, 298
setting, 295–299
symbolic, 298

build configurations, 10
bundle IDs, 5
bundles, defined, 59, 63
buttons

about, 81
adding, 14

C
CALayer class

about, 92, 139
video player example, 140

calendars
accessing, 271
events and, 269
privacy considerations, 278

capitalization in strings, 40
CATransaction class

about, 93
begin method, 93
commit method, 93

cell tower lookups, 243
CGContextRef type, 132
CGContextRestoreGState function, 128
CGContextSaveGState function, 128

354 | Index

CGContextSetShadowWithColor function, 127
CGFloat structure, 124
CGPoint structure, 41
CGRect structure, 114
Clark, Josh, 75
class extensions, 30–31
class methods, 22, 24
class prefixes, 5
classes

conforming to protocols, 29
container, 49
defined, 22
implementing, 23
inheritance and, 23
interfaces and, 23
model-view-controller paradigm and, 54–55
property list, 214

CLGeocoder class, 248
CLLocation class

about, 248
horizontalAccuracy property, 245

CLLocationManager class
about, 244
locationManager:didFailWithError: method,

244
locationManager:didUpdateToLoca‐

tion:fromLocation: method, 250
startUpdatingLocation method, 244
stopUpdatingLocation method, 244

CLLocationManagerDelegate protocol
about, 246
locationManager:didUpdateToLoca‐

tion:fromLocation: method, 244
CMMotionManager class

about, 258
accelerometerData property, 258
deviceMotion property, 258
gyroData property, 258
startAccelerometerUpdates method, 258
startDeviceMotionUpdates method, 258
startGyroUpdates method, 258

Cocoa Touch, defined, 61
Cocoa, defined, 61
coding, defined, 52
collection views

about, 202
data sources and delegates, 187
defined, 187
UICollectionView class, 202–205

colon (:), 24
com.apple.security.files.bookmarks.app-scope

entitlement, 171
command-line tools, 315–317
compiled binary in applications, 61
concurrency with operation queues, 101–103
Connections inspector, 201
constraints

about, 83
building apps with, 85–87
viewing for objects, 83

container classes, 49
context, defined, 109
controller classes, 55
controller objects, 177, 179
controllers

array, 178
binding to, 177
defined, 54
MVC pattern and, 54, 76
object, 178
table view, 189
view, 76, 78–80, 82

coordinate space, 111
copy property, 28
Core Animation

about, 91, 93
iOS platform and, 94
layers in, 92, 139
OS X platform and, 93

Core Location
about, 241, 243–248
geocoding and, 248–251

Core Motion, 241, 256–261
count property, 44
CTM (current transformation matrix), 125, 132
custom breakpoints, 297
custom paths, 120–121
custom views

about, 116
creating custom paths, 120–121
creating projects, 116
filling with solid color, 117–118
gradients in, 128–129
multiple subpaths, 122–123
shadows in, 124–128
transforms, 131–133
working with paths, 118

Index | 355

D
data management

about, 50
deserialization process, 51–53
detecting data, 333–335
loading data from files and URLs, 50
serialization process, 51–53

data sharing, 301–306
data source protocol, 187
data sources

collection views and, 202
defined, 187
objects as, 190
table view controllers and, 189

databases, defined, 208
dates, formatting, 331–332
debug area (Xcode window), 12
debug navigator, 12
debuggers

about, 295
debugger console, 299
inspecting memory contents, 299
setting breakpoints, 295–299

decoding, defined, 52
default value, 162
defaults object

accessing preferences, 163
defined, 162

delegates
collection views and, 202
table views and, 188, 193

delegation design pattern, 56
deserialization process, 51–53
design patterns

about, 54
delegation, 56
key-value observing, 56
model-view-controller, 54–55

designated initializers, 35
developer programs

about, 1
Apple supported, 1
registering, 2

device motion, 241, 256–261
dictionaries, 48–49
digital signing certificates, 2
directories

creating, 167
deleting, 168

dirty rectangle, 114
document objects, 208, 209
document-based applications

about, 207
document objects in MVC, 208
iOS platform and, 218–225
kinds of documents, 208
NSDocument class and, 208
OS X platform and, 210–218
role of documents, 209
saving complex data, 214–218
saving simple data, 212–214
UIDocument class and, 208

document-scoped bookmarks, 171
documents

printing, 261–264
representing on disks, 208
representing with NSDocument, 211
representing with UIDocument, 218–225
role of, 209
viewing previous versions, 211

downloading Xcode, 3
drawing graphics

about, 109–110
building custom views, 116–133
gradients, 130
pixel grid, 111–113
shadows, 126–126
in views, 114–115

@dynamic directive, 28

E
editor (Xcode window), 7
EKCalendar class, 269
EKCalendarItem class, 270, 272
EKEvent class, 269
EKEventStore class

about, 269
calendarsForEntityType: method, 271
EKEventStoreChangedNotification, 271, 273
event-finding predicates, 271
initWithAccessToEntityTypes: method, 270
predicateForEventsWithStartDate:end‐

Date:calendars: method, 271
EKSpan class, 272
encapsulation, 22
entitlements, application, 73, 171
Event Kit, 269
Event Kit event store, 269

356 | Index

event-finding predicates, 271
events

about, 269, 272
accessing, 271
building applications for, 273
privacy considerations, 278
repeating, 270

exception breakpoints, 298

F
factory methods, 35
fast enumeration, 46
favicon application example, 104–106
file packages, 208
file: scheme, 229
files

copying, 168
creating, 168
deleting, 168
flat, 208
loading data from, 50
moving, 168
storing, 165, 169, 337
strings, 327

filesystem
NSFileManager class and, 166–169
storing files, 169
user access to, 207
working with, 164

filing paths, 110
Finder

looking inside applications, 60
opening, 3

flat files, 208
foreground applications, 66
formatting text, 330–332
Foundation framework

about, 37
arrays, 43–47
container classes, 49
data management, 50–53
design patterns, 54–57
dictionaries, 48
immutable objects, 37
mutable objects, 37
strings, 38–43

frame rectangles, 114
frameworks, 60
freeze-dried objects, 64, 77

G
geocoding, 248–251
getter methods, 26
GLKit controller, 79
GPS devices, 242
gradients, 128–129
graphical images

about, 109
building custom views, 116–133
drawing, 109–110
drawing gradients, 130
drawing in views, 114–115
drawing shadows, 126–126
pixel grid, 111–113

graphical user interfaces
about, 75
building apps with nibs and constraints, 85–

87
constructing, 83–84
Core Animation, 91–94
in iOS, 75
MVC and application design, 76
nib files and, 76–83
in OS X, 75

H
.h file extension, 23
header files, 23
heads-up display (HUD) windows, 78
heap, defined, 98
HTTP (HyperText Transfer Protocol), 228
http scheme, 228
HUD (heads-up display) windows, 78
HyperText Transfer Protocol (HTTP), 228

I
iCloud

about, 155, 337–338
setting up for, 338–340
storing key-value pairs, 345–352
storing settings, 340–345
testing, 340
working with, 164

Identity inspector, 203
identity matrix, 132
immutable objects, 37
@implementation directive, 24, 30

Index | 357

implementation files, 23
implementation, defined, 23
implicit animations, 93
importing QuartzCore framework, 93
inactive applications, 66
index paths, 189
Info.plist file

about, 61
iOS applications, 66
OS X applications, 64

inheritance, defined, 23
init method, 65
inspector (utilities pane), 12
installing Xcode, 3
instance methods

about, 24
setter and getter, 26

instance variables
defined, 22
setter and getter methods and, 27
storing blocks as, 98

instances, defined, 22
Instruments

about, 281
adding from library, 286
fixing problems with, 286–292
getting started with, 282–284
observing data, 284

Interface Builder
about, 76
connecting views to code, 77
outlet collections and, 15
table views and, 192
views and, 76
windows supported, 78

@interface directive, 23, 151
interfaces, 16

(see also graphical user interfaces)
connecting code to, 15–17
defined, 16, 23
designing for applications, 14–15, 76
good design practices, 14

internationalization, 327
Internet Explorer 6 (Microsoft), 71
invocation operations, 102
invocation, defined, 26
invoke message, 97
iOS developer program, 1, 2

iOS platform
animations on, 94
application lifecycle, 66–70
application sandboxes, 71–74
approach to applications, 59–64
bindings and, 173
connecting code between interfaces and

apps, 15–17
creating applications for, 5
data sharing and, 302, 304–306
designing interfaces for, 14–15
document-based applications and, 218–225
drawing gradients on, 130
drawing shadows on, 126
graphical user interfaces in, 75
multitasking on, 67–70
printing documents, 263–264
setting up to receive push notifications, 310
transforms on, 132
UICollectionView class and, 202–205
UITableView class and, 188–196
video player example, 139–143
views and, 114

iOS Simulator, 10, 17–19, 257
issue navigator, 12
iTunes App Store

bundle IDs and, 5
developer programs and, 1
private APIs and, 73

iTunes libraries, shared, 234–235

J
JavaScript Object Notation (JSON), 214, 308
Jobs, Steve, 76
JSON (JavaScript Object Notation), 214, 308

K
key-value coding, 155–157
key-value observing

about, 155, 158
binding support, 174
design patterns for, 56
notifying observers of changes, 160
registering for change notifications, 158

key-value pairs, storing, 345–352

358 | Index

L
layer property, 92
layers (Core Animation), 92, 139
layout objects, 202
library (utilities pane), 12
Linux platform, applications on, 59
LLDB debugger

about, 295
debugger console, 299
inspecting memory contents, 299
setting breakpoints, 295–299

local notifications, 307, 313
localized text, 327–330, 331
location awareness

about, 241
Core Location and, 241, 243–248
geocoding and, 248–251
hardware considerations, 242
privacy and, 252

log navigator, 12

M
.m file extension, 23
Mac App Store

application sandboxes and, 71
bundle IDs and, 5
developer programs and, 1
private APIs and, 73

Mac developer program, 1, 2, 2
(see also OS X platform)

main queue, 101
memory leaks, 98, 292–295
memory management

about, 33
automatic reference counting, 33, 98
blocks and, 98, 100
inspecting memory contents, 299
memory leaks, 98, 292–295
OS X applications, 64
reference counting, 33
retain cycles and, 34, 292–295
suspended applications and, 68

messages
about, 25
awakeFromNib:, 64, 82
invoke, 97
sending to nil, 26

methods, 24
(see also specific types of methods)
block parameters and, 99
calling, 25
defined, 22, 24
overriding, 23
setter and getter, 26

Microsoft Internet Explorer 6, 71
model classes, 55
model-view-controller (MVC) pattern

about, 54–55
application design and, 76, 81
document objects in, 208, 209

models
autosizing masks, 83
binding to views, 173
controllers and, 178
defined, 54
document objects as, 209
MVC pattern and, 54, 76
springs and struts, 83

motion, device, 241, 256–261
multimedia content (see audiovisual content)
multitasking applications, 67–70
mutable arrays, 46
mutable objects, 37
MVC (model-view-controller) pattern

about, 54–55
application design and, 76, 81
document objects in, 208, 209

N
navigation controllers, 79
navigator (Xcode window), 11
networking

building networked applications, 231
discovering nearby services, 233–235
making conections, 227
NSHTTPURLResponse class and, 231
NSURL class and, 228
NSURLConnection class and, 230
NSURLRequest class and, 229
NSURLResponse class and, 231

.nib file extension, 76
nib files

about, 64, 76, 76–77
building apps with, 85–87
document-based applications, 211
loading, 82

Index | 359

structure of, 77–80
nonatomic property, 28
notifications

defined, 160, 301
kinds of, 307
local, 307, 313
NSNotification class and, 160
push, 307–312
registering for, 158

NS prefix, 5
NSApplication class

application:didRegisterForRemoteNotifica‐
tionsWithDeviceToken: method, 311

registerForRemoteNotificationTypes: meth‐
od, 307, 310

unregisterForRemoteNotifications method,
312

NSApplicationDelegate protocol
applicationDidBecomeActive: method, 65,

66
applicationDidFinishLaunching: method, 65,

142, 181
applicationDidFinishLaunching:withOp‐

tions: method, 66
applicationDidResignActive: method, 65
applicationWillBecomeActive: method, 65
applicationWillResignActive: method, 65, 66
applicationWillTerminate: method, 65, 66

NSArray class
about, 37, 43, 46
defaults object and, 163
geocoding example, 249
indexOfObject: method, 45
indexOfObjectEqualTo: method, 45
isEqualToArray: method, 42
key-value observing and, 159
objectAtIndex: method, 38, 44
pointing to folder items, 167
as property list class, 214
subArrayWithRange: method, 45

NSArrayController class, 179, 181
NSAttributedString class, 180
NSBezierPath class

bezierPathWithRect: method, 117
bezierPathWithRoundedRect:xRadius:yRa‐

dius: method, 119
closePath method, 123
creating custom paths, 120
curveToPoint: method, 123

drawing shadows, 126
lineToPoint: method, 123

NSBundle class
finding resources in applications, 63
pathForResource:OfType: method, 318

NSButton class, 140, 262
NSCoding protocol

about, 52
encodeWithCoder: method, 52
initWithCoder: method, 52

NSCollectionView class, 202
NSColor class

colors for shadows, 124
constructing gradients, 128
filling views with solid colors, 118

NSCopying protocol, 45
NSData class

about, 38, 50
dataWithContentsOfFile method, 22
defaults object and, 163
document-based applications and, 210
flat files and, 209
writeToFile:atomically: method, 51

NSDataDetector class, 333–335
NSDate class

about, 330
dateByAddingTimeInterval: method, 275
defaults object and, 163

NSDateComponents class, 276
NSDateFormatter class, 330–332
NSDictionary class

about, 49
defaults object and, 162, 163
key-value observing and, 159
objectForKey: method, 48, 156
pointing to attributes, 167, 168
as property list class, 214
push notifications and, 307

NSDocument class
about, 208
dataOfType:error: method, 211, 213
document-based applications and, 210
method supported, 208
readFromData:ofType:error: method, 211,

213
representing documents with, 211
role of documents and, 209
windowControllerDidLoadNib: method, 213
windowNibName method, 211

360 | Index

NSDocumentController class, 210
NSError class, 167
NSFileManager class

about, 166–167
contentsOfDirectoryAtURL:includingPro‐

pertiesForKeys:options:error: method,
166

copying files, 168
creating directories, 167
creating files, 168
deleting files, 168
iCloud storage and, 349
moving files, 168
ubiquity container URL, 340
URLsForDirectory:inDomains: method, 169

NSFileWrapper class, 210
NSFormatter class, 330–332
NSGradient class

about, 128
initWithColorsAndLocations: method, 128

NSGraphicsContext class
restoreGraphicsState method, 125, 127
saveGraphicsState method, 125, 127

NSHTTPURLResponse class, 231
NSImageView class, 231
NSIndexPath class, 189
NSJSONSerialization class, 214, 215
NSKeyedArchiver class

about, 52
encodeFloat:forKey: method, 52
encodeInteger:forKey: method, 52
encodeObject:forKey: method, 52

NSKeyValueCoding protocol
setValue:forKey: method, 157
valueForKey: method, 157

NSKeyValueObserving protocol
addObserver:forKeyPath:options:context:

method, 159
didChangeValueForKey: method, 160
observeValueForKeyPath:ofOb‐

ject:change:context: method, 159
willChangeValueForKey: method, 160

NSLocalizedString function, 328
NSLog class, 316
NSMenu class, 321
NSMetadataQuery class, 348
NSMutableArray class

about, 37, 46
addObject: method, 38, 46, 47

bindings app example, 181
controller objects and, 179
insertObject:atIndex: method, 46
network services example, 235
objectAtIndex: method, 38
removeObject: method, 47
removeObjectAtIndex: method, 47
replaceObjectAtIndex:withObject: method,

47
sortUsingDescriptors: method, 200

NSMutableData class, 50
NSMutableDictionary class, 49
NSMutableString class, 38
NSMutableURL class, 228
NSMutableURLRequest class

about, 230
setHTTPMethod: method, 230

NSNetService class, 234
NSNetServiceBrowser class, 233, 234
NSNetServiceBrowserDelegate protocol, 234,

235
NSNetServiceDelegate protocol, 234, 235
NSNotFound constant, 45
NSNotification class, 66, 160
NSNotificationCenter class, 160
NSNull class, 44
NSNumber class

about, 49
defaults object and, 162, 163
as property list class, 214

NSNumberFormatter class, 331
NSObject class

about, 35
alloc method, 35
dealloc method, 36
defaults object and, 162, 163
init method, 35
retain and release messages, 36

NSObjectController class, 179
NSOpenPanel class, 170
NSOperation class, 102
NSOperationQueue class

about, 101
addOperationWithBlock: method, 102

NSPredicate class, 271
NSPreferencePane class, 319
NSRange structure, 41
NSRect structure, 114, 118
NSSavePanel class, 170

Index | 361

NSShadow class
about, 124
drawing shadows, 126
set method, 125

NSSharingServicePicker class, 306
NSSize structure, 124
NSSortDescriptor class, 200
NSStatusItem class, 321, 322
NSString class

about, 38, 38
application example, 194
class extensions and, 30
creating strings, 39
dataUsingEncoding: method, 38
defaults object and, 163
designated initializers, 35
initWithData:encoding: method, 50
isEqualToString: method, 42
printing documents, 263
as property list class, 214
rangeOfString:options: method, 43
stringWithContentsOfFile:encoding:error:

method, 51
NSStringEncoding enumeration, 50
NSTableColumn class, 196
NSTableView class

about, 196–200, 202
application example, 181
bindings and, 201

NSTableViewDataSource protocol
application example, 199
numberOfRowsInTableView: method, 199
tableView:sortDescriptorsDidChange: meth‐

od, 200
NSTableViewDelegate protocol

application example, 199
tableView:viewForTableColumn:row: meth‐

od, 196, 199
NSTextField class, 342
NSTextView class, 262
NSUbiquitousKeyValueStore class

about, 338, 340
NSUbiquitousKeyValueStoreDidChangeEx‐

ternallyNotification, 342
NSURL class

about, 228
fileURLWithPath: method, 229
iCloud storage and, 351
pointing to folder items, 167

pointing to sound files, 146
resourceValuesForKeys:error: method, 167
startAccessingSecurityScopedResource:

method, 172
stopAccessingSecurityScopedResource:

method, 172
URLByAppendingPathComponent: method,

169
URLWithString: method, 228

NSURLConnection class, 230, 233
NSURLRequest class

about, 229
requestWithURL: method, 229
requestWithURL:cachePolicy:timeoutIn‐

terval: method, 229
NSURLResponse class, 231
NSUserDefaults class

about, 161, 177
objectForKey: method, 163
persistentDomainForName: method, 318
preference panes and, 318
registerDefaults: method, 162
setBool:forKey: method, 318
setObject:forKey: method, 164
setPersistentDomainForName: method, 318
setValue:forKey: method, 318
standardUserDefaults: method, 161
valueForKey: method, 318

NSUserDefaultsController class, 177
NSUTF8StringEncoding constant, 51
NSValue class, 49, 162
NSView class

about, 114
arrays and, 44
building custom views, 116
CALayer class and, 92
drawRect: method, 117, 262
print: method, 262

O
object controllers, 178
Object Library, 83
object-oriented programming

about, 21
class extensions in, 30–31
inheritance in, 23
interfaces and implementations in, 23
memory management and, 33–34
messages in, 25

362 | Index

methods in, 24
NSObject lifecycle and, 35
objects in, 22
properties in, 26–28
protocols in, 29

Objective-C language
about, 21
class extensions in, 30–31
interfaces and implementations in, 23
memory management and, 33–34
messages in, 25
methods in, 24
NSObject lifecycle and, 35
object-oriented programming and, 21–31
objects in, 22
properties in, 26–28, 160
protocols in, 29

objects
about, 22, 41
arrays and, 43
binding to views, 173
as data sources, 190
document, 208, 209
freeze-dried, 64, 77
immutable, 37
interfaces and, 23
layout, 202
mutable, 37
nib files and, 76
property list, 163
rehydrated, 64, 77
viewing constraints on, 83

observing data, 284
operation queues

concurrency with, 101–103
defined, 95, 101
NSOperation class and, 102
performing work on, 102

options dictionary, 66
OS X platform

animations on, 93
application lifecycle, 64–65
application sandboxes, 71–74
approach to applications, 59–64
binding support, 173
data sharing and, 302, 306
document-based applications and, 210–218
downloading Xcode, 3
graphical user interfaces in, 75

Mac developer program and, 1, 2
NSTableView class and, 196–201
printing documents, 262
setting up to receive push notifications, 310
views and, 114

outlet collections, 15
outlets

actions and, 83
connecting views to code, 77
creating, 16
defined, 15, 82

overriding methods, 23
owning references, 34

P
packages

defined, 59
determining location of, 63
file, 208

page controllers, 79
panel windows, 78
paths

absolute, 64
creating custom, 120–121
custom views example, 118
defined, 110
filling, 110
index, 189
multiple subpaths, 122–123
stroking, 110

photo library
about, 148, 152
building photo apps, 150–152
capturing photos and video from cameras,

148–150
pixel grid

about, 111
Retina displays, 111–112
screen points and, 113

.pkg file extension, 59
polling technique, 56
Powerbox, 170
predicates, event-finding, 271
preference domains, 318
preference panes

about, 317, 317
building sample, 319–320
preference domains and, 318

Index | 363

preferences
about, 161
accessing, 163
registering default, 162–163
setting, 164

Print Simulator, 264
print-object command, 300
printing documents, 261–264
privacy, location and, 252, 278
private APIs, 73
program flow, debugger and, 296
project navigator, 11
project templates, creating, 4
projects

compiling, 60
creating, 3–7, 116
storyboards and, 14
targets and, 10
viewing in Xcode, 7–12

properties
accessing, 26
constraint considerations, 84
declaring, 27–28, 160
defined, 23

property attributes, 27
@property directive, 27, 160
property list classes, 214
property list objects, 163
protocols

classes conforming to, 29
declaring, 29
defined, 29

push notification service, 307, 309
push notifications

about, 307
receiving, 311
sending, 308
setting up to receive, 309–311

Q
QuartzCore framework, 93
queues

operation, 95, 101–103
reuse, 191
threads and, 103

R
readonly property, 28

readwrite property, 28
reference counting, 33
registering

for change notifications, 158
default preferences, 162–163
for developer programs, 2

rehydrated objects, 64, 77
release messages, 33
reminders in events, 270
remote notifications (see push notifications)
resolving service, 233
resources, finding in applications, 63
retain cycles, 34, 292–295
retain messages, 33
Retina displays, 111–112
reuse queues, 191
reverse geocoding, 248
rows in table views, 189
Run button, 9
run loop in applications, 65

S
sandboxes (see application sandboxes)
scheduled alerts, 270
schemes, defined, 10
screen points, 113
search navigator, 12
searching strings, 43
sections in table views, 189
security, application sandboxes and, 71, 169–

172
security-scoped bookmarks, 171–172
selector, defined, 25
serialization process, 51–53
service, resolving, 233
setter methods, 26
shadows

about, 124–125
drawing, 126–126
saving and restoring graphics contexts, 125

sharing data, 301–306
simulators (see iOS Simulator)
sort descriptors, 200
sorting table views, 200
sound content (see audiovisual content)
Spotlight, opening, 3
springs and struts model, 83
square brackets [], 25
stack, defined, 98

364 | Index

status bar items, 321–323
Stop button, 10
storing

files, 165, 169, 337
key-value pairs, 345–352

storyboards, projects and, 14
string literals, 39
strings

capitalization in, 40
comparing, 42
creating, 39
defined, 38
finding substrings, 40–42
searching, 43
working with, 39–42

strings files, 327
stroking paths, 110
strong property, 27
strong references, 34, 292
structures

defined, 41
iOS applications, 72
of nib files, 77–80
OS X applications, 73
viewing for applications, 61–63

subclasses, defined, 23
subpaths

about, 122
multiple, 122–123

substrings, finding, 40–42
subviews, 114
superclasses, 23
superviews, 114
suspended applications, 67
symbolic breakpoints, 298
symbols navigator, 12
@synthesize directive, 28

T
tab bar controllers, 79
table view cells, 188, 190–193
table view controllers, 189
table views

about, 188
data sources and delegates, 187
defined, 187
implementing, 193–196
Interface Builder and, 192
NSTableView class and, 196–201

sections and rows, 189
sorting, 200
UITableView class and, 188–196

target-action relationship, 82
targets

defined, 10
target-action relationship, 82

test navigator, 12
testing

iCloud, 340
text

detecting data, 333–335
formatting, 330–332
localized, 327–330, 331

textured windows, 78
threads, queues and, 103
toolbar (Xcode window)

about, 9
editor selector, 11
Run button, 9
scheme selector, 10
status display, 10
Stop button, 10
view selector, 11

transactions
creating, 93
defined, 93

transforms, 131–133
typedef keyword, 100

U
ubiquity container URL, 340
UIActivity class, 304
UIActivityViewController class, 304, 306
UIAlertView class, 17
UIApplication class

about, 56, 66
application:didRegisterForRemoteNotifica‐

tionsWithDeviceToken: method, 311
applicationDidEnterBackground: method,

56, 67
applicationWillEnterBackground: method,

106
applicationWillEnterForeground: method,

67
registerForRemoteNotificationTypes: meth‐

od, 307, 310
UIApplicationDidEnterBackgroundNotifica‐

tion, 161

Index | 365

unregisterForRemoteNotifications method,
312

UIBarButtonItem class, 263
UIBezierPath class, 118
UIButton class, 151, 304
UICollectionView class, 202–205
UICollectionViewCell class, 202
UICollectionViewController class, 203
UICollectionViewDataSource protocol, 204
UICollectionViewLayout class, 202
UIColor class, 118
UIDocument class

about, 208, 218
methods supported, 208
representing documents with, 218–225
role of documents and, 209

UIImage class, 50, 263
UIImagePickerController class

about, 148
building photo apps, 150
isCameraDeviceAvailable: method, 150
isSourceTypeAvailable: method, 150
sourceType property, 152

UIImagePickerControllerDelegate protocol
building photo apps, 151
imagePickerController:didFinishPickingMe‐

diaWithInfo: method, 149, 153
imagePickerControllerDidCancel: method,

149
UIImageView class, 151, 231, 304
UILabel class, 203
UILocalNotification class, 313
UINavigationBar class, 263
UINavigationControllerDelegate protocol, 151
UIPrintFormatter class, 263
UIPrintInteractionController class, 263
UIPrintPageRenderer class, 263
UIPrintRenderer class, 303
UIScrollViewDelegate protocol, 291
UISimpleTextPrintFormatter class, 263
UITableView class

about, 188, 202
application example, 194–196
sections and rows, 189
table view cells and, 190–193
table view controllers, 189

UITableViewCell class
detailTextLabel property, 192
imageView property, 192

textLabel property, 192
UITableViewController class, 188, 194
UITableViewDataSource protocol

about, 190
application example, 104
numberOfSectionsInTableView: method,

195
tableView:cellForRowAtIndexPath: method,

190–193, 195
tableView:numberOfRowsInSection: meth‐

od, 190, 195
UITableViewDelegate protocol

about, 193
application example, 104
tableView:didSelectRowAtIndexPath: meth‐

od, 193, 196
UITextFieldDelegate class, 344
UITextView class, 219, 263
UITextViewDelegate protocol, 223
UIView class

about, 114
animateWithDuration:animations: method,

94
CALayer class and, 92
drawRect: method, 114

UIViewController class
about, 190
application example, 194
dismissViewControllerAnimated:comple‐

tion: method, 149
presentViewController:animated:comple‐

tion: method, 149
Unicode standard, 51
URLs (Uniform Resource Locators)

about, 228
absolute paths and, 64
loading data from, 50
ubiquity container, 340

user preferences (see preferences)
UTF-8 encoding, 51
utilities pane (Xcode window)

about, 12
Attributes inspector, 14

V
video content (see audiovisual content)
view controllers

about, 76, 78–80
target-action relationship, 82

366 | Index

View Effects inspector, 140
views, 187

(see also table views)
binding to models and, 173
binding to objects, 173
bound rectangles in, 115
building custom, 116–133
collection, 187, 187, 202–205
connecting code to, 77
constraints in, 83
controllers and, 178
data source protocol, 187
defined, 54
drawing in, 114–115
frame rectangles in, 114
Interface Builder and, 76
MVC pattern and, 54, 76, 81

W
weak property, 27
weak references, 34
WiFi base station lookups, 243
windows

constraints in, 83

defined, 75
Interface Builder supported, 78
sandboxes and, 170
size considerations, 80
target-action relationship, 82

Windows platform, applications on, 59

X
Xcode application

about, 1, 3
compiling projects, 60
downloading, 2, 3
installing, 3

Xcode window
debug area, 12
editor component, 7
getting around in, 3–7
navigator section, 11
toolbar section, 9–11
utilities pane, 12
viewing projects in, 7–12

.xib file extension, 76

Index | 367

About the Authors
Jon Manning is the co-founder of Secret Lab, an independent game development studio
based in Hobart, Tasmania, Australia. He’s worked on apps of all sorts, ranging from
iPad games for children to instant messaging clients. He’s a Core Animation demigod,
and frequently finds himself gesticulating wildly in front of classes full of eager-to-learn
iOS developers. Jon can be found on Twitter as @desplesda.

Paris Buttfield-Addison is the other co-founder of Secret Lab, which remains an in‐
dependent game development studio based in Hobart, Tasmania, Australia. He’s also
worked on all sorts of apps, ranging from one of the most popular iPad cooking apps
to home-automation tools. He’s an OS X developer from the very beginning, and has a
surprisingly deep knowledge of Australian taxation law. Paris can be found on Twitter
as @parisba. Secret Lab can be found on Twitter as @thesecretlab.

Tim Nugent pretends to be a mobile app developer, game designer, PhD student, and
now he even pretends to be an author. When he isn’t busy avoiding being found out as
a fraud, he spends most of his time designing and creating little apps and games he won’t
let anyone see. Tim spent a disproportionately long time writing this tiny little bio, most
of which was spent trying to stick a witty sci-fi reference in before he simply gave up.
Tim can be found as @The_McJones on Twitter.

Colophon
The animal on the cover of Learning Cocoa with Objective-C, Fourth Edition, is an Irish
setter. Bred as a sporting dog in the 19th century, the Irish setter’s agility and energy
made it a prime companion for pheasant and quail hunters. By the 1890s, the dog’s
attractive, silky red coat and elegant build boosted its popularity as a show dog. For the
past century, breeders have created a larger dog with a longer coat, with deep chestnut
red or patches of red and white hair. The Irish setter is also popular as a family dog.
Described as loyal, gentle, energetic, and happy, this breed gets along well with children.
Some hospitals, nursing homes, and rehabilitation centers also adopt the Irish setter as
a therapy dog.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion
Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

http://www.secretlab.com.au

	Copyright
	Table of Contents
	Preface
	Audience
	Organization of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Cocoa Development Tools
	The Mac and iOS Developer Programs
	Registering for a Developer Program
	Downloading Xcode from Apple Developer

	Getting Around in Xcode
	Creating Your First Cocoa Project
	The Xcode Interface

	Developing a Simple Objective-C Application
	Designing the Interface
	Connecting the Code

	Using the iOS Simulator

	Chapter 2. Object-Oriented Programming with Objective-C
	Object-Oriented Programming
	Objects
	Inheritance
	Interfaces and Implementations
	Methods
	Messages
	Properties
	Protocols
	Class Extensions
	Modules

	Memory Management
	Reference Counting
	Automatic Reference Counting
	Object Graphs in Objective-C

	The NSObject Lifecycle
	Allocation and Initialization
	Retain and Release
	Finalization and Deallocation

	Chapter 3. Foundation
	Mutable and Immutable Objects
	Strings
	Creating Strings
	Working with Strings
	Comparing Strings
	Searching Strings

	Arrays
	Fast Enumeration
	Mutable Arrays

	Dictionaries
	NSValue and NSNumber
	Data
	Loading Data from Files and URLs
	Serialization and Deserialization

	Design Patterns in Cocoa
	Model-View-Controller
	Delegation
	Key-Value Observing

	Chapter 4. Applications on OS X and iOS
	What Is an Application?
	Applications, Frameworks, Utilities, and More
	What Are Apps Composed Of?
	Using NSBundle to Find Resources in Applications

	The Application Lifecycle
	OS X Applications
	iOS Applications

	The Application Sandbox
	Application Restrictions

	Chapter 5. Graphical User Interfaces
	Interfaces in OS X and iOS
	MVC and Application Design
	Nib Files
	Structure of a Nib File
	Storyboards
	Outlets and Actions
	How Nib Files Are Loaded

	Constructing an Interface
	Guidelines and Constraints

	Building an App with Nibs and Constraints
	UI Dynamics
	UI and Gravity
	Snapping UI

	Designing Interfaces for Both iOS 6 and 7
	Core Animation
	Layers
	Animations

	Chapter 6. Blocks and Operation Queues
	Blocks
	Block Syntax
	Block Lifecycles
	Methods with Block Parameters
	Blocks and Memory Management
	Modifying Local Variables from Inside Blocks with __block

	Concurrency with Operation Queues
	Operation Queues and NSOperation
	Performing Work on Operation Queues

	Putting It All Together

	Chapter 7. Drawing Graphics in Views
	How Drawing Works
	The Pixel Grid
	Retina Displays
	Pixels and Screen Points

	Drawing in Views
	Frame Rectangles
	Bounds Rectangles

	Building a Custom View
	Creating the Project
	Filling with a Solid Color
	Working with Paths
	Creating Custom Paths
	Multiple Subpaths
	Shadows
	Gradients
	Transforms

	SpriteKit

	Chapter 8. Audio and Video
	AV Foundation
	Playing Video with AVPlayer
	AVPlayerLayer
	Putting It Together
	AVPlayerView

	Playing Sound with AVAudioPlayer
	Speech Synthesis
	Working with the Photo Library
	Capturing Photos and Video from the Camera
	Building a Photo Application
	The Photo Library

	Chapter 9. Model Objects and Data Storage
	Key-Value Coding
	Key-Value Observing
	Registering for Change Notifications
	Notifying Observers of Changes

	Notifications with NSNotification
	Preferences
	Registering Default Preferences
	Accessing Preferences
	Setting Preferences

	Working with the Filesystem
	Using NSFileManager
	File Storage Locations

	Working with the Sandbox
	Enabling Sandboxing
	Open and Save Panels
	Security-Scoped Bookmarks

	Chapter 10. Cocoa Bindings
	Binding Views to Models
	A Single Bindings App
	Binding to Controllers
	Array and Object Controllers
	A More Complex Bindings App

	Chapter 11. Table Views and Collection Views
	Data Sources and Delegates
	Table Views
	UITableView on iOS
	Sections and Rows
	Table View Controllers
	Table View Cells
	Implementing a Table View

	NSTableView on OS X
	Sorting a Table View
	NSTableView with Bindings

	Collection Views
	UICollectionView on iOS

	Chapter 12. Document-Based Applications
	The NSDocument and UIDocument Classes
	Document Objects in MVC
	Kinds of Documents
	The Role of Documents
	Document-Based Applications on OS X
	Autosaving and Versions
	Representing Documents with NSDocument
	Saving Simple Data
	Saving More Complex Data

	Document-Based Applications on iOS

	Chapter 13. Networking
	Connections
	NSURL
	NSURLRequest
	NSURLConnection
	NSURLSession
	NSURLResponse and NSHTTPURLResponse

	Building a Networked Application
	Bonjour Service Discovery
	Browsing for Shared iTunes Libraries

	Multipeer Connectivity

	Chapter 14. Working with the Real World
	Working with Location
	Location Hardware
	The Core Location Framework
	Working with Core Location

	Geocoding
	Region Monitoring and iBeacons
	Locations and Privacy
	Maps
	Using Maps
	Annotating Maps
	Maps and Overlays

	Device Motion
	Working with Core Motion

	Printing Documents
	Printing on OS X
	Printing on iOS

	Game Controllers
	App Nap

	Chapter 15. Event Kit
	Understanding Events
	Accessing the Event Store
	Accessing Calendars
	Accessing Events

	Working with Events
	Building an Events Application
	User Privacy

	Chapter 16. Instruments and the Debugger
	Getting Started with Instruments
	The Instruments Interface
	Observing Data
	Adding Instruments from the Library

	Fixing Problems with Instruments
	Retain Cycles and Leaks
	Using the Debugger
	Setting Breakpoints
	Inspecting Memory Contents
	Working with the Debugger Console

	Chapter 17. Sharing and Notifications
	Sharing
	Sharing on iOS
	Sharing on OS X

	Notifications
	Push Notifications
	Sending Push Notifications
	Setting Up to Receive Push Notifications
	Receiving Push Notifications
	Local Notifications

	Chapter 18. Nonstandard Apps
	Command-Line Tools
	Preference Panes
	How Preference Panes Work
	Preference Domains
	Building a Sample Preference Pane

	Status Bar Items
	Building a Status Bar App

	iOS Apps with Multiple Windows

	Chapter 19. Working with Text
	Internationalization and Localization
	Strings Files
	Creating a Sample Localized Application

	Formatting Data with NSFormatter
	Detecting Data with NSDataDetector
	TextKit

	Chapter 20. iCloud
	What iCloud Stores
	Setting Up for iCloud
	Testing Whether iCloud Works
	Storing Settings
	iCloud Storage

	Index
	About the Authors

