
www.allitebooks.com

http://www.allitebooks.org

KnockoutJS Starter

Learn how to knock out your next app in no time
with KnockoutJS

Eric M. Barnard

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

KnockoutJS Starter

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2012

Production Reference: 1161112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-114-1

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Eric M. Barnard

Reviewer

Roy Jacobs

Acquisition Editor

Mary Nadar

Commissioning Editor

Yogesh Dalvi

Technical Editor

Vrinda Amberkar

Project Coordinator

Amigya Khurana

Proofreader

Mario Cecere

Graphics

Valentina D'Silva

Aditi Gajjar

Production Coordinator

Melwyn D'sa

Cover Work

Melwyn D'sa

Cover Image

Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the author
Eric Barnard is a Software Engineer in Champaign-Urbana, Illinois. He truly feels that a great
day starts with a fresh pot of coffee and a blank JavaScript file on his computer screen.

Eric grew up on a farm in central Indiana, where he attended Purdue University. After graduating
from Purdue, he sharpened his web development and startup skills as a Fellow in the Governor
Robert Orr Fellowship in Indianapolis. At the time of this writing, Eric has recently got married
and spends his free time attempting to keep his wife sane. He is the author of the Knockout
Validation plugin and "KoGrid" a JavaScript DataGrid completely built on top of Knockout.
You can find his blog at http://www.ericbarnard.com.

www.allitebooks.com

http://www.allitebooks.org

About the reviewer
Roy Jacobs is a Software Architect in Utrecht, the Netherlands. Wrangling C# and JavaScript
is just as interesting as moving an icon two pixels to the left to improve the user experience.

Roy received his Bachelor's in Computer Science from the Fontys Polytechnic in Eindhoven and
his Master's in Human-technology Interaction from the Technical University of Eindhoven. Apart
from the technical stuff he dabbled in directing and visual effects and enjoys spending time with
his girlfriend and their hamster.

He is the author of the Knockout Mapping plugin and his blog can be found at
http://www.royjacobs.org.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://www.allitebooks.org

www.PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 Ê Fully searchable across every book published by Packt

 Ê Copy and paste, print and bookmark content

 Ê On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
KnockoutJS Starter 1

So, what is Knockout? 3
Knockout – A JavaScript library 3
Knockout – A Model-View-ViewModel (MVVM) library 3

Installation 6
Step 1 – What do I need? 6
Step 2 – Create a starter site 6
Step 3 – Download Knockout 8
Step 4 – Create our main application JavaScript file 8
Step 5 – Run the application 9
Summary 11

Quick start 12
Business overview 12
Step 1 – Defining a namespace 12
Step 2 – Creating our Model 12
Step 3 – Creating a View for our Model 14
Step 4 – Creating a ViewModel to manage our Models 15
Step 5 – Working with Observable Arrays 15
Step 6 – Adding and removing Models from an Observable Array 16
Step 7 – Editing properties of a Model 18
Step 8 – Setting up a Master-Details view 19
Step 9 – Applying bindings 21
Summary 22

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Top features you need to know about 23
Subscribables 23
Observables 24
Observable Arrays 25
Computed Observables 27
Utilities 29
Data-bind statements 30
Applying bindings 31
Binding handlers 31
Summary 34

People and places you should get to know 35
Official sites 35
Articles and tutorials 35
Community 36
Blogs 36
Twitter 36

KnockoutJS Starter

Welcome to KnockoutJS Starter. This book focuses on giving the reader a firm
understanding of the core concepts of Knockout, such as MVVM and data binding,
and works through real-life app development scenarios. All core components of
Knockout’s amazing library are covered in detail, and strategies are outlined for
getting the best use of time when developing with Knockout.

This book contains the following sections:

 Ê So, what is Knockout?– In this section you will get to know what Knockout does
and how you might start to benefit from its functionality.

 Ê Installation – In five easy steps, you will see how you can be ready to start developing
with Knockout.

 Ê Quick start – In this section you will learn to use Knockout to build an often needed
business tool – an inventory management app.

 Ê Top features you need to know about – This section illustrates Knockout’s numerous
extension points and plethora of utilities to help smooth the process of building
your app.

 Ê People and places you should get to know – Knockout’s core development team is
continually adding features and resources to help developers. You will learn, in this
section, how to access Knockout’s community and stay up to date in the future.

3

KnockoutJS Starter

So, what is Knockout?
In this section you will get to know what Knockout does and how you might start to benefit
from its functionality.

Knockout – A JavaScript library
Knockout, at its core, is a simple JavaScript file that can be included in a website or a web
application to add JavaScript functionality, and provides the ability to enhance a user's
experience. By default, Knockout does nothing to your website or web application until
you specifically write code to utilize it. It is important to understand the difference between
Knockout and many other JavaScript "frameworks" or "libraries" as some frameworks actually
change how a website or web application works when included.

Knockout – A Model-View-ViewModel (MVVM) library
One of the reasons that Knockout was created was for the specific goal of enabling
Model-View-ViewModel (MVVM) style development for websites and web applications.
MVVM is a style of development where different object classes are designed to separate
user-interface logic from business functions for testability purposes.

We strive to write testable code for many reasons (which is a topic for an entire other book),
but the biggest reasons are maintainability of the code base and improved quality assurance.
As I've learned to write code in a testable way, I've seen my code bases become more idiomatic
and easier to maintain. If anything, building JavaScript applications with the MVVM pattern
has allowed me to deliver more reliable applications in a shorter time period compared to when
I was simply trying to sprinkle my HTML pages with DOM event handlers and unorganized
pieces of logic.

View

ViewModel

Model

4

KnockoutJS Starter

The preceding diagram illustrates the common components and communication flow of an
MVVM architecture. We can see that Models, Views, and ViewModels are the building blocks
that we have to understand in order to derive benefit from the MVVM pattern. The first principle
of a MVVM-style application is defining the business Models. A Model is an object that usually
most directly represents a real-world object in the business system you are working in. It contains
properties and functions that have business-like names and reactions. If you were to make a Model
that represented an automobile, it would have properties such as:

 Ê MaxSpeed (Number)

 Ê TireSize (Number)

 Ê ManufacturerName (String)

It would also have functions such as:

 Ê Honk

 Ê DriveForward

The second principle of a MVVM-style application is the View. A View is the HTML markup that
describes the layout, elements (buttons, textboxes), colors, and other visual pieces of a portion
of the user interface. It has no logic or code embedded in it, and it is completely declarative
(all needed parts of the view are described purely in the HTML markup).

The third part of a MVVM-style application is the ViewModel. The ViewModel provides the
connection between the View and the Model. If you were making a ViewModel for a View
that was designed to display automobiles, it might have properties such as:

 Ê AutomobileCollection (Array)

 Ê SelectedAutomobile (Object)

And it would have functions like:

 Ê AddAutomobile

 Ê SortAutomobiles

5

KnockoutJS Starter

The ViewModel really allows you to keep business logic in your Model objects and create
the logic needed to power the user interface inside itself. The term for this is "Separation
of Concerns" and is incredibly useful with large (and small) web application architectures.

The final principle of MVVM is the concept of Binding. Binding is the idea of connecting the
properties and events of user interface elements (such as HTML elements) to functions and
properties of an object such as a ViewModel. An example of a binding would be the need to
connect a AddAutomobile button in the user interface with the ViewModel's AddAutomobile
function, or perhaps even connecting many user interface buttons to the single AddAutomobile
function on the ViewModel.

As Views in an MVVM application are almost always declarative in nature, bindings are often
declared in the View markup. Knockout is no different, and heavily utilizes HTML-compliant
"data-bind" declarations on HTML elements to enable its binding system.

The beauty of a solid MVVM library such as Knockout is that you can focus on developing the
business logic and critical functionality that your application or website needs rather than
spending critical time writing code to attach/detach event handlers and manually update
textboxes when data values change.

6

KnockoutJS Starter

Installation
In five easy steps, you can be ready to start developing with Knockout!

Step 1 – What do I need?
At the very least you will need the following in order to keep up with the examples in this guide:

 Ê A web browser

 Ê A text editor

 Ê Roughly 2 megabytes (MB) of space on the computer of your choice

 Ê A basic web server (explained as follows)

Knockout development can be performed on most operating systems as long as you can install
and use the tools listed above.

For the purpose of this guide we will be using Google Chrome as my web browser. It is free and
can be installed on both, Windows and Mac operating systems. You can find it at http://www.
google.com/chrome. My text editor of choice will actually take care of both my need for a text
editor and a webserver. I will be using Microsoft's WebMatrix development tool. It is free and
works on Windows operating systems. It can be downloaded from http://www.microsoft.
com/web/webmatrix/. I will be using the IIS Express as the basic web server. It can be
downloaded from http://www.microsoft.com/en-us/download/details.aspx?id=1038.
If you have a Mac or Linux operating system, there are many great text editors and web servers
out there that you can download and install for free.

Step 2 – Create a starter site
Now that we have our tools, we need to create a workbench for our application. I use the term
"workbench" as we will be creating and editing many different files as we work through this
guide. Some will be used simply for learning, while others will be part of the final application.
To start, I generally recommend creating a folder in a well-known spot (such as your computer
Desktop) to contain all of the files and folders that we will be using. My folder will usually end up
looking something like the following diagram:

/Site

/css
(various css files)

/JS
(various js files)

Index.html

7

KnockoutJS Starter

The JS folder will house all of our JavaScript files, and the CSS folder will house any CSS files
that we use in our Knockout app. We can create this site structure in a number of ways, but my
favorite way is to just visit http://html5boilerplate.com/ and download their starter site.
It provides a site structure (or Boilerplate) that includes many of the things you wouldn't want
to try and remember how to do (such as including a robots.txt file for your site).

Once you've created your Site folder, make sure to create a Index.html file. For the purpose
of this guide, ours will start out looking like the following HTML:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Knockout Starter Guide</title>
 <!-- CSS Here-->
 </head>
 <body>
 <div id="content">
 <p>Hello World!</p>
 </div>
 <!-- JavaScript Files Here -->
 </body>
</html>

This will be the starting point for developing our app. We have left placeholders for our JavaScript
and CSS files, and we have created a "Content" area for the majority of our markup to be placed.

8

KnockoutJS Starter

Step 3 – Download Knockout
Now the magic starts. In order to build a Knockout app, we obviously need to have the Knockout
JavaScript library, and the best way to do that is to just download it from the Knockout website
at http://www.knockoutjs.com/.

Once you are on the Knockout website, just click on the Download / Install link at the top of the
page, and follow the instructions on that page.

For the purposes of this guide, we will want to use the Knockout-2.1.0.debug.js
JavaScript file, and we will want to put it in the JS folder that we created earlier.

Step 4 – Create our main application JavaScript file
Now we need to create a JavaScript file that will house all of the code for our application. We will
create a App.js JavaScript file and place it in the JS folder of our site. To start, this file will just
be an empty JavaScript as seen in the following sample:

// main application code here

Now that we have Knockout downloaded and our main application JavaScript file created, we
need to include them in our Index.html page. When including JavaScript files, we simply add
them to the HTML of our page using the traditional HTML script tag. The following HTML
example illustrates how we use these at the bottom of the page to reference our JavaScript files.

9

KnockoutJS Starter

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Knockout Starter Guide</title>
 <!-- CSS Here-->
 </head>
 <body>
 <div id="content">
 <p>Hello World!</p>
 </div>
 <!-- JavaScript Files Here-->
 <script type="text/javascript" src="/JS/knockout-2.1.0.debug.
js"></script>
 <script type="text/javascript" src="/JS/App.js"></script>
 </body>
</html>

We are referencing these scripts at the bottom of the page for a few reasons. The first reason
is that it allows the page to appear to render faster to the end user because the entire visual
markup is processed before the script references are, and thus will be displayed on the web
browser's screen while the referenced JavaScript files are downloading and being processed into
the browser's memory. Secondly, Knockout is a library that works with the browser's Document
Object Model (DOM), and in order to do so, the browser needs to have created and rendered the
content portions of the DOM before Knockout executes. Many other very good reasons exist as
to why JavaScript files are referenced at the bottom of an HTML page, but that discussion is a
bit out of scope for this guide. So, simply as a best practice we place our JavaScript files at the
bottom of the page in order to give our users the best experience possible.

Step 5 – Run the application
Now that we have our new site set up, let's run it and make sure everything works. As I am using
WebMatrix, I can just select the Index.html file and click on Run (on my Windows computer).
If you are using a different webserver, just start it with the root of the site being the site folder
that we created in the Step 2 – Create a starter site section, and then point your web browser at
the local URL your webserver is serving from.

www.allitebooks.com

http://www.allitebooks.org

10

KnockoutJS Starter

You can see in the preceding screenshot that WebMatrix has selected to use port 11790 to serve
my files from, and so it will likely depend on the machine that you are working with. The Hello
World! that is currently displayed is simply the contents of our Index.html page. Great! We
have a working JavaScript application!

In order to make sure that our JavaScript files actually loaded and did not create any errors, we
need to fire up the browser's debugging tool and do a little investigation. In Chrome, I can open
the debugger by clicking on the wrench icon (upper-right corner) and going to Tools | Developer
Tools. The debugger will then take the bottom half of your browser window and look something
like the following screenshot:

If we click on the Sources tab of the debugger, we see what JavaScript files were loaded by the
page, and the contents of those pages. In the following screenshot, we can see that both our App.
js file and our freshly downloaded Knockout library file are, in fact, loaded correctly by the page.
It is also important to note that there aren't any JavaScript errors on the page. We can see this by
noting that the lower-right corner of the debugger is free of any error alerts. If we did have some
errors on the page, you would see a red alert symbol with a number of errors inside of it.

11

KnockoutJS Starter

If you are not using Chrome, you can simply search your browser's documentation online
to determine how it handles and displays JavaScript files and errors in its own debugger
(or developer tools).

Summary
You now have a functioning workbench for doing Knockout development. Congratulations!
In this section we have learned how to:

 Ê Find, download, and install the basic tools needed to perform Knockout
(and general HTML/JavaScript) development

 Ê Create a basic website from an empty file directory

 Ê Download and install external JavaScript libraries, such as Knockout, into a website

 Ê Create our JavaScript files and install them into a website

 Ê Run a website locally on our machine for development and debugging purposes

12

KnockoutJS Starter

Quick start
Sometimes the best way to learn a library is to use it to solve real-world problems. In this
section we will learn to use Knockout to build an often needed business tool—an Inventory
Management app.

Business overview
Before we can begin building our app, we need to have a firm understanding of the business
needs that our application will solve. The app needs to be able to do the following things:

 Ê Track the Stock Keeping Unit (SKU) number and Description of each product that the
company sells

 Ê Assign a price, cost, and on-hand quantity to each product

 Ê Create new products when the company decides to sell them

 Ê Remove old products when the company decides to stop selling them

Step 1 – Defining a namespace
Now, before we begin to actually develop our app, it is important that we figure out how we
want to organize and separate our application code and logic from the rest of the browser's
objects and native functions. You might wonder why we care to do this in such a small example
application, but it is important to show JavaScript architecture best-practices whenever possible.
Using namespaces, even in a small app, ensures that if your application grows after if it is first
written (which many code-bases will), that it can remain easily maintainable and distinguishable
from third-party code (such as JavaScript plugins that you might use down the road).

We will define our namespace in the App.js file that we created previously. You can see in the
following code snippet, how we go about defining a namespace:

// Define the namespace
window.myApp = {};

Step 2 – Creating our Model
Our first step is to create a Model that will represent our company's Product object. We can
do this by adding a file called Product.js to our JS folder. The contents of this file will look
like the following:

(function (myApp) {

 // Product Constructor Function
 function Product() {
 var self = this;

13

KnockoutJS Starter

 // "SKU" property
 self.sku = ko.observable("");

 // "Description" property
 self.description = ko.observable("");

 // "Price" property
 self.price = ko.observable(0.00);

 // "Cost" property
 self.cost = ko.observable(0.00);

 // "Quantity" property
 self.quantity = ko.observable(0);
 }

 // add to our namespace
 myApp.Product = Product;

} (window.myApp));

In the preceding code snippet, we have defined a JavaScript function that will serve as the
constructor function for a Product class. As you can see, we have wrapped the definition
of our Product class in what is called an Immediately-Invoked Function Expression (IIFE).
We use this pattern for the following reasons:

 Ê It allows the concept of JavaScript scope to prevent us from polluting the global
namespace (where objects such as window and document hangout). This way when
we are debugging, it doesn't look like our Product constructor is a native function
like window.

 Ê It allows us to define private functions that aren't accessible by other code. If we
had defined the Product constructor, but never added it as a property to our myApp
namespace, then no code outside the IIFE wrapper would have access to our Product
constructor. This is ideal for creating functions that handle complex logic, but in a way
that prevents other objects from trying to utilize or overwrite that logic.

Inside the constructor function, each property is assigned to the self object. The self object
is just a variable that points back to the newly created Product instance. The this keyword in
JavaScript is very powerful, but sometimes confusing when it is used inside other functions, as it
can represent a number of objects (such as the global namespace, the function-calling object).
So to prevent confusion, we create a variable self, so that we can be sure it always points to
the correct instance of our object.

14

KnockoutJS Starter

Finally, each property is set to an instance of a Knockout Observable. Observable is simply
Knockout's way of creating properties that can raise events when they change (which is a core
concept of Knockout that we will go in depth into later). By passing an initial value into this
function, we are returning a function object that wraps our initial value. We can get and set
a property by simply invoking this wrapper function. The following code does a great job
of showing how we can use our new Product constructor and its properties:

// Usage

// create an instance of the Product class
var productA = new myApp.Product();

// "set" the 'sku' property
productA.sku('12345')

// "get" the 'sku' property value
var skuNumber = productA.sku();

Step 3 – Creating a View for our Model
Now that we have defined our Product class, we need to create a way to let a user visually see
the Product on the screen. We will do this by creating an HTML view for the product. We will
start with a very simple HTML layout meant to show the values of a Product instance:

<div id="productView">
 <p>
 SKU:
 </p>
 <p>
 Description:
 </p>
 <p>
 Cost:
 </p>
 <p>
 Price:
 </p>
 <p>
 Quantity:
 </p>
</div>

Here we are simply just showing the values of our product using Knockout's text binding. The
text binding sets the innerText property of an HTML element (usually a span element) to
the string value of whatever object you are binding it to.

15

KnockoutJS Starter

Step 4 – Creating a ViewModel to manage our Models
At this point, we know that we will need to create logic around adding and deleting products
to our master product list. We also know that we will need some sort of an array to use as our
master product list. So, at this point we need to introduce a class that will allow us to manage all
of these functions, arrays, and objects that we will want to bind to the user-interface. The class
we need (as described before) is the ViewModel!

As we are building this app a little bit at a time, we will only give our ViewModel one property—a
selectedProduct. This property will represent the single product that we want to view the
details of on the screen. We add file to our JS folder called ProductsViewModel.js and then
add the following contents to that file:

// Products ViewModel
(function (myApp) {

 // constructor function
 function ProductsViewModel() {
 var self = this;

 // the product that we want to view/edit
 self.selectedProduct = ko.observable();
 }

 // add our ViewModel to the public namespace
 myApp.ProductsViewModel = ProductsViewModel;

} (window.myApp));

Step 5 – Working with Observable Arrays
As we mentioned in our business needs, our company sells many different products, and so
we need to keep a list of these products. In JavaScript, the data structure used for maintaining
lists of objects or values is an Array. Knockout goes ahead and takes this one step farther by
providing us with an object called Observable Array. I will explain more on this object in the next
section, but this type of Array raises events when it changes (similar to Observable that we
described before). The events that the ObservableArray raises, allows Knockout to keep our
user-interface up-to-date whenever ObservableArray changes.

Knockout's ObservableArrays have all the standard native functions that normal JavaScript
arrays contain (push, pop, slice, splice), so they are very natural to work with if you have worked
with JavaScript Arrays before.

16

KnockoutJS Starter

In order to create a master list of products for our company's application, we need to give our
ViewModel a new property—productCollection.

// the product that we want to view/edit
 self.selectedProduct = ko.observable();

 // the product collection
 self.productCollection = ko.observableArray([]);

Step 6 – Adding and removing Models from an
Observable Array
Now that we have a master list of products for our company, we need to implement the logic
for adding and removing products from the master list.

The logic for adding products will stay relatively simple. It would be easy to add some
validation and other checks in this process, but I want to ensure it is as straightforward as
possible right now.

// creates a new product and sets it up
// for editing
self.addNewProduct = function () {
 // create a new instance of a Product
 var p = new myApp.Product();

 // set the selected Product to our new instance
 self.selectedProduct(p);
};

// logic that is called whenever a user is done editing
// a product or done adding a product
self.doneEditingProduct = function () {
 // get a reference to our currently selected product
 var p = self.selectedProduct();

 // ignore if it is null
 if (!p) {
 return;
 }

 // check to see that the product
 // doesn't already exist in our list
 if (self.productCollection.indexOf(p) > -1) {
 return;
 }

17

KnockoutJS Starter

 // add the product to the collection
 self.productCollection.push(p);

 // clear out the selected product
 self.selectedProduct(null);
};

In this code example, we plan for the user to invoke the addNewProduct function, which will
populate our selectedProduct property with a new product ready for editing. When the user
is done editing the product, we plan for them to invoke the doneEditingProduct function,
which will take care of checking for null values, and then add it to our productCollection.

The logic for removing a product is pretty simple. We simply check for null values and then pull it
out of the collection, as shown in the following code:

// logic that removes the selected product
// from the collection
self.removeProduct = function () {
 // get a reference to our currently selected product
 var p = self.selectedProduct();

 // ignore if it is null
 if (!p) {
 return;
 }

 // empty the selectedProduct
 self.selectedProduct(null);

 // simply remove the item from the collection
 return self.productCollection.remove(p);
};

Finally we need to provide some buttons in the user-interface so that our users can actually
invoke this logic. We will add some buttons, and then bind the click event of those buttons to
their corresponding functions on the ViewModel as in the following example:

<div id="content">
 <div id="productView" data-bind="with: selectedProduct">
 <p>
 SKU:
 </p>
 <p>
 Description:
 </p>

18

KnockoutJS Starter

 <p>
 Cost:
 </p>
 <p>
 Price:
 </p>
 <p>
 Quantity:
 </p>
 </div>
 <div id="buttonContainer">
 <button type="button" data-bind="click: addNewProduct">Add</
button>
 <button type="button" data-bind="click: removeProduct">Remove</
button>
 <button type="button" data-bind="click: doneEditingProduct">Done</
button>
 </div>
</div>

Step 7 – Editing properties of a Model
At this point we have no way of actually editing the properties of each product in our master list.
So we need to change our product view to utilize two-way bindings. Knockout's value binding
allows this, but we can only use this on input elements. So let's change the HTML of our
product view to be a little more like regular HTML forms:

<div id="productView">
 <form>
 <fieldset>
 <legend>Product Details</legend>
 <label>SKU:
 <input type="text" data-bind="value: sku"/>
 </label>

 <label>Description:
 <input type="text" data-bind="value: description"/>
 </label>

 <label>Cost:
 <input type="text" data-bind="value: cost"/>
 </label>

 <label>Price:
 <input type="text" data-bind="value: price"/>

19

KnockoutJS Starter

 </label>

 <label>Quantity:
 <input type="text" data-bind="value: quantity"/>
 </label>
 </fieldset>
 </form>
</div>

Our new form-based view now allows editing of selected product. I will mention at this point,
that you will definitely want to utilize some form of input validation to ensure that Cost and
Price are valid currency amounts, and that Quantity is a valid integer. However, that is a bit
out of scope of this guide and there are several great libraries out on the web for providing that
type of functionality.

Step 8 – Setting up a Master-Details view
Finally, we now have the logic and HTML pieces for creating a very nice user-interface for
managing our company's inventory. Let's go ahead and put some finishing touches to our
app to create a nice Master-Details experience for our user.

First, let's make sure that our product view is correctly bound to our selected product,
and that the product view is only visible when we have a valid product instance selected.
Knockout provides a "with" binding that allows us to do exactly that. We will discuss these
bindings in more detail later, but the "with" binding allows us to both perform a null check
on the selectedProduct observable and change the binding context of the html from the
ProductsViewModel to the selectedProduct (so that we can directly reference those
properties in our data-bind statements).

As the Remove and Done buttons only make sense to be visible when we have a product
selected, we will add a visible binding to those buttons that checks whether the
selectedProduct property has a value. We can also do the exact opposite with the
Add button. One way of accomplishing this is shown in the following code:

<div id="buttonContainer">
 <button type="button"
 data-bind="click: addNewProduct,
 visible: (selectedProduct() ? false : true)">Add</button>
 <button type="button"
 data-bind="click: removeProduct,
 visible: (selectedProduct() ? true : false)">Remove</button>
 <button type="button"
 data-bind="click: doneEditingProduct,
 visible: (selectedProduct() ? true : false)">Done</button>
</div>

www.allitebooks.com

V413HAV
Typewritten Text
V413HAV

http://www.allitebooks.org

20

KnockoutJS Starter

Finally, we need to provide our users with a way to view the master list of products that they are
managing. Often we see data grids, tables, unordered lists, or other widgets designed to display
lists of objects. Knockout is powerful enough, though, that we can actually just use raw HTML to
provide a view into our productCollection.

We are going to implement a basic list-view using a select element. Knockout provides a options
binding that allows us to bind an Observable Array to a select element. We will also set up a second
Observable in our ProductsViewModel to hold our new list-view's selected item. In order to
do that, we can simply use a value binding to bind the selected item of our select element to
this new property of our ProductsViewModel. The following code shows the added property,
listViewSelectedItem, along with a subscription that passes along any changes in the
listViewSelectedItem property to our main selectedProduct property:

// the product that we want to view/edit
self.selectedProduct = ko.observable();

// the product collection
self.productCollection = ko.observableArray([]);

// product list view selected item
self.listViewSelectedItem = ko.observable(null);

// push any changes in the list view to our
// main selectedProduct
self.listViewSelectedItem.subscribe(function (product) {
 if (product) {
 self.selectedProduct(product);
 }
});

Our list view is then implemented in HTML with the following code:

<div id="productListView">
 <select id="productList" size="10"
 style="min-width: 120px;"
 data-bind="options: productCollection,
 value: listViewSelectedItem,
 optionsText: 'sku'">
 </select>
</div>

You can see in the preceding code that we can specify a optionsText binding that specifies
which property of each element in our Observable Array we want to appear in the select
element's options. Initially I've set this property to just be the Sku property of our Product
class—but what if I wanted to see both the Sku property and the Description property? We
can accomplish this with a Computed Observable. Again, we will go into deeper details about

21

KnockoutJS Starter

Computed Observables, but for now we will simply add a Computed Observable that returns the
Sku property and the Description property of the Product class:

// "Quantity" property
self.quantity = ko.observable(0);

// Computed Observables

// simply combines the Sku and Description properties
self.skuAndDescription = ko.computed(function () {
 var sku = self.sku() || "";
 var description = self.description() || "";

 return sku + ": " + description;
});

After adding the skuAndDescription computed property to our Product class, we can
update our product list-view HTML. We just simply change the optionsText binding to now
point to the skuAndDescription property instead of the Sku property.

Step 9 – Applying bindings
In order for our app to actually run, we need to kick-off the Knockout binding process. We need
to make sure to wait and invoke this process after all of our scripts have been loaded, and after
our ViewModel has been initialized. My suggested way is to set up this logic in the App.js file
like the following:

// Define the namespace
window.myApp = {};

(function(myApp){

 // constructor functio for App
 function App(){

 // core logic to run when all
 // dependencies are loaded
 this.run = function(){

 // create an instance of our ViewModel
 var vm = new myApp.ProductsViewModel();

 // tell Knockout to process our bindings
 ko.applyBindings(vm);
 }

22

KnockoutJS Starter

 }

 // make sure its public
 myApp.App = App;

}(window.myApp));

After we have created my initialization logic in my App.js file, we will then create an instance
of the app, and call the run function at the very bottom of the page, as shown in the following
code snippet:

<script type="text/javascript">
 var app = new myApp.App();

 app.run();
</script>

For the purpose of this tutorial, I am placing this call at the very bottom of the page. We do have
other options, though, as to where we put this code. Another suggested option would be inside
of jQuery ready callback (a popular function in the jQuery library).

Summary
After completing the previous steps, you have successfully created the Knockout JS app!
Congratulations! In this section we covered the following Knockout concepts and objects:

 Ê Observables

 Ê Observable Arrays

 Ê Computed Observables

 Ê The text, value, options, visible, click, and with bindings

 Ê The ViewModel architecture

We quickly went through many of the core concepts of Knockout, and if you have
questions—that's OK—we will cover them in the following section.

23

KnockoutJS Starter

Top features you need to to know about
One of the best parts of Knockout is its extensibility. Knockout has numerous extension points and
contains a plethora of utilities for building your app. Many developers have built great Knockout
sites without any other JavaScript libraries (even jQuery) than the core Knockout library.

Subscribables
When creating our Inventory Management app, it was easy to see that a Knockout Observable
is one of the core objects that Knockout was built around. However, under the covers of
Observables, Observable Arrays, and Computed Observables is Subscribable. A Subscribable is
simply an object that has three methods and an array of Subscriptions. The three methods are:

 Ê subscribe: This adds a Subscription callback for a certain topic to be invoked when
subscriptions are "notified". The default topic is "changed".

 Ê notifySubscribers: This calls all subscriptions for a certain topic and passes one
argument to all the Subscription's callbacks.

 Ê extend: This applies an Extender to the Subscribable object.

The following code snippet shows an example of how the first two methods allow Subscribables
to perform basic Pub/Sub functionality:

var test = ko.observable();

// create a subscription for the "test-event"
test.subscribe(function (val) {
 console.log(val);
}, test, "test-event");

test.notifySubscribers("Hello World", "test-event");

One of the coolest abilities of a Knockout Subscribable is its ability to "mix-in" to any JavaScript
object. The following code example shows a great way that you can leverage the Knockout
Subscribable in some of your current code:

 // Dummy Subscribable
function PubSub(){

 // inherit Subscribable
 ko.subscribable.call(this);
}

// create an instance of our Subscribable
var pubsub = new PubSub();

24

KnockoutJS Starter

// make a subscription
var subscription = pubsub.subscribe(function (val) {
 console.log(val);
}, pubsub, 'test-topic');

pubsub.notifySubscribers("hello world", "test-topic");
// console: "hello world"

// clean up things
subscription.dispose();

Whenever we call the subscribe function of a Subscribable, we are returned a
Subscription. Often developers will ignore the Subscription that they are returned
from these calls, but it is important to understand that a Subscription allows you to
properly dispose of your Subscription's callback and also your app's other objects that are
referenced by that callback. Just simply calling dispose on your Subscription takes care of
this, and you can ensure that your app doesn't create memory leaks!

Now that you understand one of Knockout's absolute core building blocks, the Subscribable,
we can learn how Knockout extends its usage into other building blocks.

Observables
The Knockout Observable is one of the first objects that leverages the Subscribable functionality,
and is one of the most simple, yet powerful pieces of the Knockout library. The following shows
the very basic idea of implementation of Observable:

 // Very Simple Knockout Observable Implementation

// ko.observable is actually a function factory
ko.observable = function (initialValue) {

 // private variable to hold the Observable's value
 var _latestValue = initialValue;

 // the actual "Observable" function
 function observable() {

 // one or more args, so it's a Write
 if (arguments.length > 0) {

 // set the private variable
 _latestValue = arguments[0];

 // tell any subscribers that things have changed

25

KnockoutJS Starter

 observable["notifySubscribers"](_latestValue);

 return this; // Permits chained assignments
 }
 else { // no args, so it's a Read

 // just hand back the private variable's value
 return _latestValue;
 }
 }

 // inherit from Subscribable
 ko.subscribable.call(observable);

 // return the freshly created Observable function
 return observable;
};

Again, this is very basic example implementation of the Knockout Observable (the actual
implementation has much more robust logic, equality checking, and dependency detection).
You can see from its implementation that the ko.observable function is essentially a function
factory. When you call this factory method, it generates a function (simply called observable)
that provides a basic "get/set" API. If you invoke the returned function without an argument,
then it returns the _initialValue, but if you invoke the function with an argument, it sets the
_initialValue to that argument and notifies all subscribers.

Observables are useful for just about anything you can imagine when building your application as
they are event-driven. We can build an application architecture that only worries about reacting to
events (such as a button click, or an input element's change event), rather than a procedural, single
entry-point type of code base.

Observable Arrays
I briefly mentioned Observable Arrays earlier, and I promised that I would dig deeper into this
concept. While the previous example implementation of the Observable is relatively simple,
the Observable Array is even simpler, as shown in the following example implementation:

// Very Simple Knockout Observable Array Implementation

// function factory for observable arrays
ko.observableArray = function (initialValues) {

 // make sure we have an array
 initialValues = initialValues || [];

26

KnockoutJS Starter

 // create a Knockout Observable around our Array
 var result = ko.observable(initialValues);

 // add our Observable Array member functions
 // like "push", "pop", and so forth
 ko.utils.extend(result, ko.observableArray['fn']);

 // hand back the Observable we've created
 return result;
};

As you can see, it is really just an Observable, except that the value of Observable is an Array.
Functions have also been added to the Observable Array that match methods of a native Array.
The Knockout authors have done this in order to allow us as developers to be able to work with
an Observable Array in the same way we can work with normal Arrays.

A little known extensibility point is the fn property of the Observable Array constructing
function. You can add your own functions to this special property, and they will be included
on all Observable Arrays that your application uses. The following implementation shows
how we can easily add a function that filters items in the array:

ko.observableArray.fn['filter'] = function (filterFunc) {
 // get the array
 var underlyingArray = this();
 var result = [];

 for (var i = 0; i < underlyingArray.length; i++) {
 var value = underlyingArray[i];

 // execute filter logic
 if (filterFunc(value)) {
 result.push(value);
 }
 }
 return result;
};

var list = ko.observableArray([1, 2, 3]);

// filter down the list to only odd numbers
var odds = list.filter(function (item) {
 return (item % 2 === 1);
});

console.log(odds); // [1, 3]

27

KnockoutJS Starter

The use of a fn property on constructor functions is a common pattern that you see in many
libraries (including jQuery), and Knockout is no different. The fn property also exists on the
Observable, so you can extend its functionality the same way.

Computed Observables
Computed Observables are arguably the most powerful feature of Knockout. You may have
noticed that creating a ViewModel with nothing but Observables and Observable Arrays is a
huge step up from plain JavaScript, but it would be really nice to have other properties on your
ViewModel that simply depended upon other Observables and Observable Arrays and updated
themselves when their dependencies change.

Enter the Computed Observable (or in older versions of Knockout, the
dependentObservable). A Computed Observable looks to be very similar to a regular
Observable; however instead of holding a value, it contains a function that is used to evaluate
the return value of the Computed Observable. The evaluation function is only executed when the
Observables that it depends upon change. The following example shows a very basic example of
how this works.

var a = ko.observable(1);
var b = ko.observable(2);

var sum = ko.computed(function () {
 var total = a() + b();

 // let's log every time this runs
 console.log(total);
 return total;
});
// console: 3

a(2); // console: 4
b(3); // console: 5
b(3); // (nothing logged)

Computed Observables have an extremely interesting and ingenious implementation,
which you can dig into on your own. However, there are a few important things to note.

First, Computed Observables build up a list of dependencies (or Subscriptions to be precise)
when the evaluation function executes. If you want a certain Observable to be registered as
a subscription to your Computed Observable, then you need to ensure that the Observable is
always called in your evaluation function. The following example shows how you can set up a
changing dependency set for a Computed Observable:

var dep1 = ko.observable(1);
var dep2 = ko.observable(2);

28

KnockoutJS Starter

var skipDep1 = false;

var comp = ko.computed(function () {
 dep2(); // register dep2 as dependency

 if(!skipDep1) {
 dep1(); // register dep1 as dependency
 }

 console.log('evaluated');
});
// console: evaluated

dep1(99); // console: evaluated
skipDep1 = true;
dep2(98); // console: evaluated
dep1(97); // (nothing logged)

Generally, it is a bad idea to do something like the previous example. It is extremely hard to debug,
and is not intuitive for other developers to realize what is going on. Instead, the suggested pattern
is to retrieve the value of each of your dependencies at the beginning of the evaluation function,
and then perform any conditional logic on private scoped variables after that.

Secondly, and this applies to Observables in general, a subscription callback will only be called
if the Observable determines that the before and after values are different. Each Observable
has a property called equalityComparer which determines if the before and after values
of an Observable are in fact different. If you notice in the first example, the very last call to
set the value of b did nothing. This is because b was already 3 and had no reason to notify
its subscriptions. The default equalityComparer of each Observable is a function that
only compares JavaScript primitives. So to make that simple, if a Computed Observable's
dependencies are all objects, complex or not, the evaluator function will be re-executed every
time one of its dependencies change. The following example provides an illustration of this
important concept:

var depPrimitive = ko.observable(1);
var depObj = ko.observable({ val: 1 });

var comp = ko.computed(function () {
 // register dependencies
 var prim = depPrimitive();
 var obj = depObj();

 console.log("evaluated");
});

V413HAV
Typewritten Text
V413HAV

29

KnockoutJS Starter

// console: evaluated

depPrimitive(1); // (nothing logged)
var previous = depObj();
depObj(previous); // console: evaluated

It is important to understand this because many novice Knockout developers hurt themselves
by overusing Computed Observables and accidentally building long event chains that ultimately
lead to slow-performing applications.

Lastly, Computed Observables can have both an evaluation function for "setting" and "getting"
their values. This is incredibly useful, because it allows us to have private Observable fields on
our ViewModel that are protected through publicly exposed "get/set" functions and we also get
the power of a normal Observable. In the following code you can see an example of this
useful concept:

var _val = ko.observable(1);

var vm = {
 val: ko.computed({
 read: function () {
 return _val();
 },
 write: function (newVal) {
 _val(newVal);
 }
 })
};

vm.val(2);
console.log(_val()); // console: 2

_val(3);
console.log(vm.val()); // console: 3

Utilities
Knockout is full of many useful utilities that you can use in your application development.
You can find these by exploring the ko.utils namespace, but some of my favorite utilities
are as follows:

 Ê extend: This function "mashes" two objects together. Essentially all of the
properties and functions of the second argument to this function call are added
to the first argument.

www.allitebooks.com

http://www.allitebooks.org

30

KnockoutJS Starter

 Ê unwrapObservable: This function takes an object property and intelligently returns
its value, figuring out whether it is a Knockout Observable or just a simple property. It is
extremely useful if you have to write functions that might take an object, a primitive, or
an Observable as an argument and you need it to figure that out properly at runtime.

 Ê All of the Array utilities: Knockout has several Array-manipulation functions that allow
you to do filtering, mapping, and removing items. I usually add these utilities to the
special ko.observableArray.fn property when I first start a project.

The following shows some example usage of these utilities:

// extend usage
var a = { val: 1 },
 b = { val: 2 };

ko.utils.extend(a, b);

console.log(a.val); // console: 2

// unwrapObservable usage
var c = ko.observable(99),
 d = 98;

console.log(ko.utils.unwrapObservable(c)); // console: 99
console.log(ko.utils.unwrapObservable(d)); // console: 98

// array "map" utility function usage
var arr = [100, 101];

var mapped = ko.utils.arrayMap(arr, function (item) {
 return item + 50;
})

console.log(arr); // console: [150, 151]

Data-bind statements
So far, we've focused on quite a bit of the JavaScript components of the Knockout library.
However, Knockout was designed to make binding JavaScript objects and HTML extremely
easy. The API that is given to us to use is through the HTML5 compliant data-bind statement.

31

KnockoutJS Starter

From the examples in our previous app, you may think that all the data-bind statements
are simply matching an HTML element's attribute to a property of our ViewModel. In actuality,
though, the data-bind syntax supports quite a bit more. We can actually implement small bits
of JavaScript in these statements, and it will be evaluated correctly at runtime. The data-bind
statement also allows declaring a comma-separated list of binding declarations. The following
implementation shows some of the allowed syntaxes for data-bind statements on
HTML elements:

<div data-bind="visible: isVisible, with: someProp"></div>

<input data-bind="value: someVal,
 css: {
 'error': !someVal.isValid(),
 'success': someVal.isValid()
 }"/>

Applying bindings
The applyBindings function is where all of the Knockout magic gets kicked off. Many
examples show the applyBindings function being called with a ViewModel object being
passed in as the only argument, but you can also specify a DOM node as the second argument.
When passing a DOM node as the second argument, Knockout only binds your ViewModel to
that node and its children.

Most basic applications are fine with only having one ViewModel, and just simply calling
applyBindings with that single ViewModel. However, I've built several complex applications
where we used multiple ViewModels for one page. It is important to consider the advantages
of having a separate ViewModel in your application for, alerts, settings, and current user
information. In some cases, you can also gain performance benefits by limiting the number of
nodes that Knockout has to walk in order to finish its binding process. If you are only enhancing
a small portion of your HTML page with Knockout, don't call applyBindings blindly across the
entire DOM.

Binding handlers
I've mentioned Knockout's amazing extensibility points, and few are better than Knockout's
binding handler objects. Every Knockout binding that you see in a data-bind statement is
implemented as a binding handler, and Knockout allows us to define our own binding handlers
so that we can implement, or override, our own custom functionality.

32

KnockoutJS Starter

With MVVM-style application development, we have two types of bindings—one-way bindings
and two-way bindings. One-way bindings are simply read-only bindings, and are for pushing
a ViewModel's property updates through to the DOM. You can probably guess that two-way
bindings are bindings that take that one step further and allow DOM changes to be pushed
back through to a ViewModel's property. Knockout allows us to create both of these types of
bindings. The following shows a very basic template for a binding handler:

ko.bindingHandlers['myHandler'] = {

 init: function(element, valueAccessor, allBindingsAccessor,
viewModel, bindingContext){

 },

 update: function(element, valueAccessor, allBindingsAccessor,
viewModel, bindingContext){

 }
};

As we can see, we are provided two hooks for implementing our own logic—init and update
functions that have the same signature. The arguments for those functions are as follows:

 Ê element: The HTML element that the data-bind statement is declared on.

 Ê valueAccessor: A function that returns the ViewModel value to which the binding
is set. If the binding is set to an Observable property, then the Observable is returned
(and we'll need to unwrap within our logic).

 Ê allBindingsAccessor: Similar to the valueAccessor, but it returns an object
that contains all the bindings and their respective bound values.

 Ê viewModel: The ViewModel or root object that was passed into the
applyBindings statement.

 Ê bindingContext: A special object that has specific properties that represent the
data context of the current binding. The binding context has a $data property that
represents the currently bound context (which most often would be same as the
ViewModel argument). It also has $parent and $parents properties that represent
any data contexts that may be bound to elements higher in the DOM tree. We usually
only use the parent properties if we have used the with binding in our application.

You might be wondering, which functions we should implement our custom logic in since
they both look to do the same thing. The init function will be called only once when
applyBindings function has been called. Knockout walks the DOM, finds data-bind
statements, processes them, and calls the init method on each binding handler that is needed.
The update function is then called immediately after the init function is called, and then also
whenever the value it is bound to changes (if the value is a Subscribable).

33

KnockoutJS Starter

My rule-of-thumb for binding handlers is that I register all of my event handlers (change, blur,
focus) in the init function, then I perform my HTML manipulation in the update function.

The following code snippet shows a common one-way binding that I add to my projects.
It simply reverses the Boolean logic of the visible binding so that I can handle situations
where a ViewModel property makes more sense to be developed as vm.isHidden(); instead
of vm.isVisible();.

// invisible -> the inverse of 'visible'
ko.bindingHandlers['invisible'] = {
 update: function (element, valueAccessor) {
 var newValueAccessor = function () {
 // just return the opposite of the visible flag!
 return !ko.utils.unwrapObservable(valueAccessor());
 };
 return ko.bindingHandlers.visible.update(element,
newValueAccessor);
 }
};

The following code snippet shows a two-way binding that I use for ensuring I have a valid
number. It manually handles the updates from the UI and pushes those to the ViewModel,
and then also updates the UI when the ViewModel changes.

// simple number parsing
function parseNumber(strVal){
 return parseInt(strVal, 10);
}

// very basic two-way binding handler
ko.bindingHandlers['number'] = {
 init: function (element, valueAccessor, allBindingsAccessor) {

 //handle the input changing
 ko.utils.registerEventHandler(element, "change", function () {
 var observable = valueAccessor();
 var number = parseNumber(element.value);

 if (number !== NaN) {
 observable(element.value);
 }
 });
 },
 update: function (element, valueAccessor) {
 var value = ko.utils.unwrapObservable(valueAccessor());

34

KnockoutJS Starter

 var number = parseNumber(value);

 if (number !== NaN) {
 element.setAttribute("value", number);
 }
 }
};

Summary
All in all you can see that Knockout is a very mature and thorough JavaScript library.
In this section you have learned:

 Ê The core objects of Knockout and their usage

 Ê Knockout utilities

 Ê How to create and manage an app with multiple ViewModels

 Ê Custom Binding Handlers

Knockout has a lot of goodies under the hood. I've included many snippets of Knockout's actual
source code in this section so that you won't be afraid to look through the source code and learn
more about how you can take advantage of its APIs.

35

KnockoutJS Starter

People and places you should get to know
If you need help with KnockoutJS, here are some people and places which will prove useful.

Official sites
 Ê Homepage: http://www.knockoutjs.com/

 Ê Manual and documentation: http://www.knockoutjs.com/documentation/
introduction.html

 Ê Source code: https://www.github.com/SteveSanderson/knockout

Articles and tutorials
The top five Knockout resources are:

 Ê http://learn.knockoutjs.com/: This is a great tutorial and playground that the author
of Knockout (Steve Sanderson) has created to help folks get familiar with Knockout.

 Ê http://channel9.msdn.com/Events/MIX/MIX11/FRM08: The original Channel 9
video that created much of the fame around Knockout. It is still very applicable to
today's needs!

 Ê http://www.knockmeout.net/2011/08/simplifying-and-cleaning-up-views-

in.html: A great article about how to apply common sense and best practices to
beginner level Knockout code.

 Ê http://www.pluralsight.com/training/Courses/TableOfContents/spa:
This is an online tutorial that costs just a few dollars, but is an amazing walkthrough
of building real-life single-page applications in Knockout. It is also full of great tips on
how to organize and maintain a large JavaScript codebase.

 Ê http://knockoutjs.com/documentation/introduction.html: Yes, the Knockout
documentation page. It is one of the best done documentation sites I've been able
to use, and it does an incredible job of explaining every single API and function that
Knockout exposes. I visit this page at least three times a week.

36

KnockoutJS Starter

Community
 Ê Official mailing list: http://groups.google.com/group/knockoutjs

 Ê GitHub: https://www.github.com/SteveSanderson/knockout

 Ê Stack overflow tag: http://www.stackoverflow.com/questions/tagged/
knockout.js

Blogs
Blogs to watch:

 Ê Steve Sanderson: http://blog.stevensanderson.com/

 Ê Ryan Niemeyer: http://www.knockmeout.net/

Twitter
Knockout leaders on Twitter:

 Ê Steve Sanderson: @stevensanderson

 Ê John Papa: @john_papa

 Ê Ryan Niemeyer: @rpneimeyer

 Ê Me: @ericmbarnard

 Ê For more open source information, follow Packt at http://twitter.com/#!/
packtopensource

https://www.github.com/SteveSanderson/knockout
http://www.stackoverflow.com/questions/tagged/knockout.js
http://www.stackoverflow.com/questions/tagged/knockout.js
http://blog.stevensanderson.com/
http://www.knockmeout.net/

Thank you for buying
KnockoutJS Starter

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home to books
published on software built around Open Source licences, and offering information to anybody from
advanced developers to budding web designers. The Open Source brand also runs Packt's Open
Source Royalty Scheme, by which Packt gives a royalty to each Open Source project about whose
software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it
first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning jQuery, Third Edition
ISBN: 978-1-84951-654-9 Paperback: 428 pages

Create better interaction, design, and web development
with simple JavaScript techniques

1. An introduction to jQuery that requires minimal
programming experience

2. Detailed solutions to specific client-side problems

3. Revised and updated version of this popular jQuery
book

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with real-life
examples, walking you through the basic Ext JS features
to advanced application design using Sencha Ext JS

1. Learn how to build Rich Internet Applications with
the latest version of the Ext JS framework in a
cookbook style

2. From creating forms to theming your interface,
you will learn the building blocks for developing the
perfect web application

3. Easy to follow recipes step through practical and
detailed examples which are all fully backed up with
code, illustrations, and tips

Please check www.PacktPub.com for information on our titles

jQuery UI 1.8: The User Interface
Library for jQuery
ISBN: 978-1-84951-652-5 Paperback: 424 pages

Build highly interactive web applications with ready-to-
use widgets from the jQuery User Interface library

1. Packed with examples and clear explanations
of how to easily design elegant and powerful
front-end interfaces for your web applications

2. A section covering the widget factory including an
in-depth example on how to build a custom jQuery
UI widget

3. Updated code with significant changes and fixes to
the previous edition

jQuery for Designers: Beginner’s
Guide
ISBN: 978-1-84951-670-9 Paperback: 332 pages

An approachable introduction to web design in jQuery for
non-programmers.

1. Enhance the user experience of your site by adding
useful jQuery features

2. Learn the basics of adding impressive jQuery
effects and animations even if you've never written
a line of JavaScript

3. Easy step-by-step approach shows you everything
you need to know to get started improving your
website with jQuery

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Copyright
	Credits
	About the author
	About the reviewer
	www.PacktPub.com
	www.PacktLib.PacktPub.com
	Table of Contents
	KnockoutJS Starter
	So, what is Knockout?
	Knockout – A JavaScript library
	Knockout – A Model-View-ViewModel (MVVM) library

	Installation
	Step 1 – What do I need?
	Step 2 – Create a starter site
	Step 3 – Download Knockout
	Step 4 – Create our main application JavaScript file
	Step 5 – Run the application
	Summary

	Quick start
	Business overview
	1 – Defining a namespace
	2 – Creating our Model
	3 – Creating a View for our Model
	4 – Creating a ViewModel to manage our Models
	5 – Working with Observable Arrays
	6 – Adding and removing Models from an Observable Array
	7 – Editing properties of a Model
	8 – Setting up a Master-Details view
	Step 9 – Applying bindings
	Summary

	Top features you'll want to know about
	Subscribables
	Observables
	Observable Arrays
	Computed Observables
	Utilities
	Data-bind statements
	Applying bindings
	Binding handlers
	Summary

	People and places you should get to know
	Official sites
	Articles and tutorials
	Community
	Blogs
	Twitter

