
www.allitebooks.com

http://www.allitebooks.org

KnockoutJS Essentials

Implement a successful JavaScript-rich application with
KnockoutJS, jQuery, and Bootstrap

Jorge Ferrando

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

KnockoutJS Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1210215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78439-707-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Jorge Ferrando

Reviewers
Bhoomi Desai

Christian Droulers

Magesh Kuppan

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Owen Roberts

Content Development Editor
Shubhangi Dhamgaye

Technical Editor
Ruchi Desai

Copy Editors
Puja Lalwani

Laxmi Subramanian

Project Coordinator
Harshal Ved

Proofreaders
Simran Bhogal

Safis Editing

Paul Hindle

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Jorge Ferrando is a frontend developer at Uni Micro AS, Norway. He develops
economy systems using JavaScript. He has experience as a PHP and C# developer
working for companies such as Vigilant and Dreamstar Cash.

Jorge grew up in Callosa d'en Sarrià, Spain. He attended the University of Alicante
where he discovered that web applications are his passion. He started to develop
websites when he was 16 years old for a little company in his hometown. He then
started practicing at Vigilant as a junior PHP developer; there, he created his first full
web application and discovered the potential of JavaScript. Hard work lead him to
a bigger company, Dreamstar Cash, also as a PHP developer. There, he got to know
several good developers and began to work more and more with JavaScript; thanks
to the company, who wanted to use Node.js, Jorge fell in love with JavaScript and
frontend development. A few months later, he moved to Norway with his girlfriend
and began to work with a company that gave him new challenges every day,
working with KnockoutJS, AngularJS, and Twitter Bootstrap.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I can't believe how fortunate I was to work on this book with so many great people.
I would like to say thank you to Ellen Bishop, who gave me the opportunity to
write it, and Owen Roberts and Shubhangi Dhamgaye, who have led me in my first
adventure as a writer. Also to Christian Droulers, I have learned very much with his
reviews.

Firstly, I would like to say thank you to my family; they have always supported my
dreams and have given me the freedom to fail and succeed by myself, and they have
always been by my side taking care of me.

To my girlfriend, Teresa, who supported me in those hard days when I thought all
is going to fall because I had work all around and just 24 hours in a day. She is my
stone and my stability.

I would like to extend my gratitude to all the people I have learned something
from: Manuel Ciges, who gave me the responsibility of making a full production
application, and Marcos Fernández, my partner through that trip at Vigilant. Rafael
Crisanto from Rc Informática, who gave me my first opportunity as a web developer.
Pedro García, Pablo Deeleman, Javier Gómez, Fran Iruela, and Alfonso Fernández,
my partners at Dreamstar Cash. Guys you made that time the best of my life and you
have made me a better developer.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Bhoomi Desai is a technical enthusiast and is always keen to learn new technologies.
She specializes in providing solutions for the cloud and web stacks. She is a software
engineer by qualification and is yearning to become a software craftsman.

Bhoomi has strong technical expertise in coding standards, design patterns,
refactoring, and UI design. She is a specialist in the JavaScript stack, Windows
Azure, Amazon AWS, Node.js, and architectural patterns. Bhoomi is an early-curve
technology adopter and an enthusiast for Agile and Lean development practices.

I would like to thank my husband for always encouraging me to try
new things in life.

Christian Droulers is a young and dynamic software developer who started
programming in college and has not stopped since. Always on the lookout for
interesting techniques and new patterns to apply in his everyday work, he's
passionate about beautiful, clean, and efficient code.

He started his career developing key software applications for SherWeb, a renowned
Microsoft hosting partner. Christian's passion and ability to decompose systems
effectively led him to a software architect role, where he oversaw the complete
rewrite of SherWeb's main application with asynchronous messaging, distributed
systems, and recent frontend technologies.

www.allitebooks.com

http://www.allitebooks.org

Christian enjoys new challenges. In 2012, he joined up with three friends and
cofounded Invup, a start-up aiming to help organizations track and quantify
philanthropy. The start-up participated in the MassChallenge competition and came
in as a finalist for the quality and innovative nature of their start-up. The company
has now closed and the code is open sourced on Bitbucket.

He's currently working for the software consulting firm Vooban, heading a team of
six developers working on a new platform for insurance management. He's also the
author of a few public projects that are freely available at http://cdroulers.com/
projects/. For Christian, software developing is not just a job; it's also a hobby and
a way of life.

Magesh Kuppan is a freelance consultant and trainer on web technologies with
over 17 years of experience. Everything about technology excites him.

I am grateful to my parents, without whom I would not be what I am
today. I am also thankful to my wife for she has been instrumental in
all my efforts. Thanks to my little son who brings bliss to my life.

www.allitebooks.com

http://cdroulers.com/projects/
http://cdroulers.com/projects/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Refreshing the UI Automatically with KnockoutJS 7

KnockoutJS and the MVVM pattern 8
A real-world application – koCart 9
Installing components 9
The view-model 11

The view 11
The model 13

Observables to refresh the UI automatically 14
Managing collections with observables 17
Inserting elements in collections 18
Computed observables 22

Summary 25
Chapter 2: KnockoutJS Templates 27

Preparing the project 27
Creating templates 29

The header template 30
The catalog template 32
The add-to-cart-modal template 39
The cart-widget template 40
The cart-item template 41
The cart template 42
The order template 43
The finish-order-modal template 45

Handling templates with if and ifnot bindings 46
Managing templates with jQuery 51
Managing templates with koExternalTemplateEngine 52
Summary 54

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Custom Bindings and Components 55
Custom bindings 55

The toggle binding 57
The currency binding 59

Create a binding to debug – the toJSON binding 60
Being semantic with our bindings 62
Wrapping a jQuery plugin into a custom binding 62
Components – isolated view-models 65
Advanced techniques 68

Controlling descendant bindings 68
Using virtual elements 70
Preprocessing data before binding 71

Summary 71
Chapter 4: Managing KnockoutJS Events 73

Event-driven programming 73
The click event 74

Passing more parameters 75
Allowing the default click action 76
Event bubbling 76

Event types 77
Event binding 77
Unobtrusive events with jQuery 79
Delegation pattern 80
Building custom events 82
Events and bindings 84
Summary 87

Chapter 5: Getting Data from the Server 89
REST services 89
Defining CRUD 91
Singleton resources 91
Setting CRUD operations in the resource 91
Using resources in the view-model 94
Using Mockjax to mock HTTP requests 96
Generating mock data with MockJSON 97
Retrieving a product by ID 100
Creating a new product 102
Separation of concerns – behavior and data 104
Creating the product service 105
Creating the CartProduct service 106
Updating a product 107
Deleting a product 109

Table of Contents

[iii]

Sending the order to the server 111
Handling AJAX errors 115
Validating data 116
Extending the product model 116
Extending the customer model 118
Summary 120

Chapter 6: The Module Pattern – RequireJS 121
Installing the Knockout context debugger extension 122
The console 125
The module pattern 126
Creating the Shop module 128
The ViewModel module 128
The Models module 130
The Resources module 133
The Services module 136
Events, bindings, and Knockout components 137
Updating the add-to-cart-button component 137
Updating events 138
Using RequireJS to manage dependencies 139
Updating the template engine 141
Configuring RequireJS 141
Using RequireJS in our project 143
Defining the app.js file 144
Converting a normal module into an AMD module 145
Applying RequireJS to components 147
Applying RequireJS to mocks 147
Applying RequireJS to bindings 148
Applying RequireJS to events 148
The limits of the application 149
Summary 149

Chapter 7: Durandal – The KnockoutJS Framework 151
Installing Durandal 152

Durandal patterns 154
The index.html file 154
The main.js file 155

The shell view-model 158
The shell view 159

Durandal life cycle 159
The activation life cycle 160
The promise pattern 161

Table of Contents

[iv]

Compositions 163
Object composition 163
Visual composition 163

Router 166
Route parameters 168

Triggering navigation 168
Child routers 169
Events 170
Widgets 170

Setting up widgets 171
Writing the widget view 171
Writing the widget 172
Registering the widget 173

Building a page with Durandal 173
Summary 176

Chapter 8: Developing Web Applications with
Durandal – The Cart Project 177

Introduction 177
Setting up the project 178
Routing the project – the shell view-model 181
The navigation and shell templates 182

The catalog module 182
The catalog view 183
The catalog view-model 186

The cart service 189
The log service 192
Adding products to the catalog 193

The add product view 193
The edit view 194
The add product view-model 195
Making mocks real 196
The edit view-model 200

The cart module 201
The cart view 201
The cart view-model 203

The order module 204
The order view 205
The order view-model 207

Grouping code by feature – managing big projects 208
Summary 210

Index 211

Preface
One of the hardest problems to solve when we build the user interface is to
synchronize data that developers manage behind the scenes, in the code, and data
that is shown to the user. The first step that developers made was to separate the
presentation and the logic. That separation allowed developers to manage both sides
better and separately. But communication between these two layers still became
hard. That was because JavaScript was considered a non-important language and we
used to use it just for validation. Then jQuery gave us a clue about how powerful this
language could be. But still data was managed in the server and we just displayed
static presentations. That makes the user experience poor and slow.

Over the last few years, a new kind of architectural pattern has emerged. It is
called the MVVM pattern. Libraries and frameworks that use this kind of pattern
make it easy for developers to synchronize views and data. One of these libraries is
Knockout, and the framework that uses Knockout is named Durandal.

Knockout is a fast and cross-browser-compatible library that helps us to develop
client-side applications with a better user experience.

Developers don't need to worry any more about data synchronization. Knockout
binds our code to the HTML elements showing the state of our code to the user in
real time.

This dynamic binding makes us forget about coding synchronization, and we can
focus our effort on coding the important features of our application.

Nowadays, managing these kinds of frameworks is a must for front-end developers.
In this book, you will learn the basics of Knockout and Durandal and we will go into
the best design practices and patterns of JavaScript.

If you want to improve the user experience of your applications and create fully
operative frontend applications, Knockout and Durandal should be your choice.

Preface

[2]

What this book covers
Chapter 1, Refreshing the UI Automatically with KnockoutJS, teaches you about the
Knockout library. You will create observables and make your templates reactive
to changes.

Chapter 2, KnockoutJS Templates, shows how to create templates to reduce your HTML
code. Templates will help you keep your designs maintainable and they can be
adapted to your data.

Chapter 3, Custom Bindings and Components, shows how to extend the Knockout
library to make your code more maintainable and portable.

Chapter 4, Managing KnockoutJS Events, teaches you how to communicate with isolated
modules and libraries using jQuery events. Events will help you to send messages
between different components or modules.

Chapter 5, Getting Data from the Server, shows how to communicate with the server
from the client side using jQuery AJAX calls. You will also learn how to develop the
client side without a server behind it using mock techniques.

Chapter 6, The Module Pattern – RequireJS, teaches you how to write well-formed
modules using the module pattern and the AMD pattern to manage dependencies
between libraries.

Chapter 7, Durandal – The KnockoutJS Framework, teaches you how the best Knockout
framework works. You will learn about each part of the framework to have the
capacity to make big applications with less code.

Chapter 8, Developing Web Applications with Durandal – The Cart Project, migrates the
application built over the course of the book to Durandal. You will develop
the same app with a few lines and will be able to add new features.

What you need for this book
The following is the list of software applications that are required at different stages:

• To begin:
 ° Twitter Bootstrap 3.2.0
 ° jQuery 2.2.1
 ° KnockoutJS 3.2.0

• To manage advanced templates:
 ° Knockout External template engine 2.0.5

Preface

[3]

• A server to perform AJAX calls from the browser:
 ° Mongoose server 5.5

• To mock data and server calls:
 ° Mockjax 1.6.1
 ° MockJSON

• To validate data:
 ° Knockout validation 2.0.0

• To debug using the browser:
 ° Chrome Knockout debugger extension

• To manage file dependencies:
 ° RequireJS
 ° Require text plugin
 ° Knockout and helpers

• The KnockoutJS framework:
 ° Durandal 2.1.0 Starter Kit

• Others:
 ° iCheck plugin 1.0.2

Who this book is for
If you are a JavaScript developer who has been using DOM manipulation libraries
such as jQuery, MooTools, or Scriptaculous and you want to go further in modern
JavaScript development with a simple, lightweight, and well-documented library,
then this technology and book are for you.

Learning Knockout will be perfect as your next step towards building JavaScript
applications that respond to user interaction.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Preface

[4]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"For example, background-color will throw an error, so you should write
'background-color'."

A block of code is set as follows:

var cart = ko.observableArray([]);
var showCartDetails = function () {
 if (cart().length > 0) {
 $("#cartContainer").removeClass("hidden");
 }
};

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)
<button class="btn btn-primary btn-sm" data-bind="click:
 showCartDetails, enable: cart().length > 0">
 Show Cart Details
</button>

<button class="btn btn-primary btn-sm" data-bind="click:
 showCartDetails, disable: cart().length < 1">
 Show Cart Details
</button>

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Once we
have clicked on the Confirm Order button, the order should be shown to us to review
and confirm if we agree."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Refreshing the UI
Automatically with KnockoutJS
If you are reading this book, it is because you have discovered that managing
web user interfaces is quite complex. DOM (short for Document Object Model)
manipulation using only native JavaScript is very hard. This is because each
browser has its own JavaScript implementation. To solve this problem, different
DOM manipulation libraries have been born in the last few years. The library most
frequently used to manipulate the DOM is jQuery.

It is increasingly common to find libraries that help developers to manage more
and more features on the client side. As we have said, developers have obtained the
possibility to manipulate the DOM easily and therefore to manage templates and
format data. Also, these libraries provide developers with easy APIs to send and
receive data from the server.

However, DOM manipulation libraries don't provide us with mechanisms to
synchronize input data with the models in our code. We need to write code that
catches user actions and updates our models.

When a problem occurs frequently in most projects, in almost all the cases, it
can surely be solved in a similar way. It was then that libraries that manage the
connection between the HTML files and JavaScript code began to appear. The pattern
these libraries implement was named MV* (Model-View-Whatever). The asterisk
can be changed by:

• Controller, MVC (for example, AngularJS)
• ViewModel, MVVM (for example, KnockoutJS)
• Presenter (MVP) (for example, ASP.NET)

The library we are going to use in this book is Knockout. It uses view-models to bind
data and HTML, so it uses the MVVM pattern to manage the data binding issue.

www.allitebooks.com

http://www.allitebooks.org

Refreshing the UI Automatically with KnockoutJS

[8]

In this chapter, you will learn the basic concepts of this library and you will begin a
task to use Knockout in a real project.

KnockoutJS and the MVVM pattern
KnockoutJS is a very lightweight library (just 20 KB minified) that gives the ability
to objects to become the nexus between views and models. It means that you can
create rich interfaces with a clean underlying data model.

For this purpose, it uses declarative bindings to easily associate DOM elements with
model data. This link between data and presentation layer (HTML) allows the DOM
to refresh displayed values automatically.

Knockout set up chains of relationships between model data to transform and
combine it implicitly. Knockout is also trivially extensible. It is possible to implement
custom behaviors as new declarative bindings. This allows the programmer to reuse
them in a just few lines of code.

The advantages of using KnockoutJS are many:

• It's free and open source.
• It is built using pure JavaScript.
• It can work together with other frameworks.
• It has no dependencies.
• It supports all mainstream browsers, even ancient ones such as IE 6+,

Firefox 3.5+, Chrome, Opera, and Safari (desktop/mobile).
• It is fully documented with API docs, live examples, and interactive tutorials.

Knockout's function is specific: to join views and models. It doesn't manage DOM or
handle AJAX requests. For these purposes, I would recommend jQuery. Knockout
gives us the freedom to develop our code the way we want.

MVVM-pattern diagram

Chapter 1

[9]

A real-world application – koCart
In order to demonstrate how to use Knockout in a real application, we are going to
build a simple shopping cart called koCart.

First of all we are going to define the user stories. We just need a few sentences to
know what we want to achieve, which are as follows:

• The user should be able to view the catalog
• We should have the ability to search the catalog
• The user can click on a button to add items to the catalog
• The application will allow us to add, update, and delete items from

the catalog
• The user should be able to add, update, and delete items from the cart
• We will allow the user to update his personal information.
• The application should be able to calculate the total amount in the cart
• The user should be able to complete an order

Through user stories, we can see that our application has the following three parts:

• The catalog, which contains and manages all the products we have in
the shop.

• The cart, which has responsibility for calculating the price of each line and
the total amount of the order.

• The order, where the user can update his personal information and confirm
the order.

Installing components
To develop our real-world project, we need to install a few components and set up
our first layout.

These are all the components you need to download:

• Bootstrap: https://github.com/twbs/bootstrap/releases/download/
v3.2.0/bootstrap-3.2.0-dist.zip

• jQuery: https://code.jquery.com/jquery-2.1.1.min.js
• KnockoutJS: http://knockoutjs.com/downloads/knockout-3.2.0.js

https://github.com/twbs/bootstrap/releases/download/v3.2.0/bootstrap-3.2.0-dist.zip
https://github.com/twbs/bootstrap/releases/download/v3.2.0/bootstrap-3.2.0-dist.zip
https://code.jquery.com/jquery-2.1.1.min.js
http://knockoutjs.com/downloads/knockout-3.2.0.js

Refreshing the UI Automatically with KnockoutJS

[10]

Since we just work on the client side in the first chapters, we can mock data in the
client and will not need a server side for now. So we can choose any place in our
computer to start our project. I recommend you use the environment you usually
employ to do your projects.

To start, we create a folder called ko-cart and then create three folders and a file
inside it:

1. In the css folder, we will put all our css.
2. In the js folder, we will put all our JavaScript.
3. In the fonts folder, we will put all the font files needed by the Twitter

Bootstrap framework.
4. Create an index.html file.

Now you should set up your files the same way as shown in the following screenshot:

The initial folder structure

Then we should set the content of the index.html file. Remember to set all the links
to the files we will need using the <script> and <link> tags:

<!DOCTYPE html>
<html>
<head>
 <title>KO Shopping Cart</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" type="text/css"
 href="css/bootstrap.min.css">
</head>
<body>
 <script type="text/javascript" src="js/vendors/jquery.min.js">
 </script>
 <script type="text/javascript"
 src="js/vendors/bootstrap.min.js">
 </script>

Chapter 1

[11]

 <script type="text/javascript"
 src="js/vendors/knockout.debug.js">
 </script>
</body>
</html>

With these lines of code, we have all we need to start our application.

The view-model
The view-model is a pure code representation of the data and operations on a UI.
It isn't the UI itself. It doesn't have any concept of buttons or display styles. It's not
the persisted data model either. It holds the unsaved data the user is working with.
View-models are pure JavaScript objects that have no knowledge of HTML. Keeping
the view-model abstract in this way lets it stay simple, so you can manage more
sophisticated behaviors without getting lost.

To create a view-model, we just need to define a simple JavaScript object:

var vm = {};

Then to activate Knockout, we will call the following line:

ko.applyBindings(vm);

The first parameter says which view-model object we want to use with the view.
Optionally, we can pass a second parameter to define which part of the document we
want to search for data-bind attributes.

ko.applyBindings(vm, document.getElementById('elementID'));

This restricts the activation to the element with elementID and its descendants,
which is useful if we want to have multiple view-models and associate each with
a different region of the page.

The view
A view is a visible, interactive UI representing the state of the view-model. It
displays information from the view-model, sends commands to the view-model
(for example, when the user clicks on buttons), and updates whenever the state of the
view-model changes. In our projects, views are represented by the HTML markups.

To define our first view, we are going to build an HTML to display a product. Add
this new content to the container:

<div class="container-fluid">
 <div class="row">

Refreshing the UI Automatically with KnockoutJS

[12]

 <div class="col-md-12">
 <!-- our app goes here →
 <h1>Product</h1>
 <div>
 ID:

 Name:

 Price:

 Stock:

 </div>
 </div>
 </div>
</div>

Look at the data-bind attribute. This is called declarative binding. This attribute
isn't native to HTML, though it is perfectly correct. But since the browser doesn't
know what it means, you need to activate Knockout (the ko.applyBindings
method) to make it take effect.

To display data from a product, we need to have a product defined inside our
view-model:

var vm = {
 product: {
 id:1,
 name:'T-Shirt',
 price:10,
 stock: 20
 }
};
ko.applyBindings(vm);//This how knockout is activated

Add the view-model to the end of the script tags:

<script type="text/javascript" src="js/viewmodel.js"></script>

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[13]

This will be the result of our app:

Result of data binding

The model
This data represents objects and operations in your business domain (for example,
products) and is independent of any UI. When using Knockout, you will usually
make AJAX calls to some server-side code to read and write this stored model data.

Models and view-models should be separated from each other. In order to define our
product model, we are going to follow some steps:

1. Create a folder inside our js folder.
2. Name it models.
3. Inside the models folder, create a JavaScript file called product.js.

The code of the product.js file is as follows:

var Product = function (id,name,price,stock) {
 "use strict";
 var
 _id = id,
 _name = name,
 _price = price,
 _stock = stock
 ;

 return {
 id:_id,
 name:_name,
 price:_price,
 stock:_stock
 };
};

Refreshing the UI Automatically with KnockoutJS

[14]

This function creates a simple JavaScript object that contains the interface of the
product. Defining the object using this pattern, called the revealing module pattern,
allows us to clearly separate public elements from private elements.

To learn more about the revealing module pattern, follow the link
https://carldanley.com/js-revealing-module-pattern/.

Link this file with your index.html file and set it at the bottom of all the script tags.

<script type="text/javascript" src="js/models/product.js">
</script>

Now we can use the product model to define the product in the view-model:

var vm = {
 product: Product(1,'T-Shirt',10,20);
};
ko.applyBindings(vm);

If we run the code again, we will see the same result, but our code is more readable
now. View-models are used to store and handle a lot of information, because of this
view-models are commonly treated as modules and the revealing module pattern is
applied on them. This pattern allows us in a clear manner to expose the API (public
elements) of the view-model and hide private elements.

var vm = (function(){
 var product = Product(1,'T-Shirt', 10, 20);
 return {
 product: product
 };
})();

Using this pattern when our view-model begins to grow helps us to clearly see which
elements belong to the public part of the object and which ones are private.

Observables to refresh the UI
automatically
The last example shows us how Knockout binds data and the user interface, but it
doesn't show the magic of the automatic UI refresh. To perform this task, Knockout
uses observables.

Observables are the main concept of Knockout. These are special JavaScript
objects that can notify subscribers about changes, and can automatically detect
dependencies. For compatibility, ko.observable objects are actually functions.

https://carldanley.com/js-revealing-module-pattern/

Chapter 1

[15]

To read an observable's current value, just call the observable with no parameters.
In this example, product.price() will return the price of the product, and
product.name() will return the name of the product.

var product = Product(1,"T-Shirt", 10.00, 20);
product.price();//returns 10.00
product.name();//returns "T-Shirt"

To write a new value to the observable, call the observable and pass the new value
as a parameter. For example, calling product.name('Jeans') will change the name
value to 'Jeans'.

var product = Product(1,"T-Shirt", 10.00, 20);
product.name();//returns "T-Shirt"
product.name("Jeans");//sets name to "Jeans"
product.name();//returns "Jeans"

The complete documentation about observables is on the official Knockout website
http://knockoutjs.com/documentation/observables.html.

To show how observables work, we are going to add some input data into
our template.

Add these HTML tags over div that contain product information.

<div>
 ID:
 <input class="form-control" type="text"
 data-bind="value:product.id"/>

 Name:
 <input class="form-control" type="text"
 data-bind="value:product.name">

 Price:
 <input class="form-control" type="text"
 data-bind="value:product.price"/>

 Stock:
 <input class="form-control" type="text"
 data-bind="value:product.stock">

</div>

We have linked inputs to the view-model using the value property. Run the
code and try to change the values in the inputs. What happened? Nothing. This is
because variables are not observables. Update your product.js file, adding the
ko.observable method to each variable:

"use strict";
function Product(id, name, price, stock) {

http://knockoutjs.com/documentation/observables.html

Refreshing the UI Automatically with KnockoutJS

[16]

 "use strict";
 var
 _id = ko.observable(id),
 _name = ko.observable(name),
 _price = ko.observable(price),
 _stock = ko.observable(stock)
 ;

 return {
 id:_id,
 name:_name,
 price:_price,
 stock:_stock
 };
}

Notice that when we update the data inside the inputs, our product values are
updated automatically. When you change the name value to Jeans, the text binding
will automatically update the text content of the associated DOM element. That's
how changes to the view-model automatically propagate to the view.

Observable models are updated automatically

Chapter 1

[17]

Managing collections with observables
If you want to detect and respond to changes in one object, you'd use observables.
If you want to detect and respond to changes in a collection of things, use an
observableArray. This is useful in many scenarios where you're displaying or
editing multiple values and need repeated sections of the UI to appear and disappear
as items are added and removed.

To display a collection of products in our application, we are going to follow some
simple steps:

1. Open the index.html file and remove the code inside the <body> tag and
then add a table where we will list our catalog:
<h1>Catalog</h1>
<table class="table">
 <thead>
 <tr>
 <th>Name</th>
 <th>Price</th>
 <th>Stock</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td></td>
 <td></td>
 <td></td>
 </tr>
 </tbody>
</table>

2. Define an array of products inside the view-model:
"use strict";
var vm = (function () {

 var catalog = [
 Product(1, "T-Shirt", 10.00, 20),
 Product(2, "Trousers", 20.00, 10),
 Product(3, "Shirt", 15.00, 20),
 Product(4, "Shorts", 5.00, 10)
];

 return {
 catalog: catalog
 };
})();
ko.applyBindings(vm);

www.allitebooks.com

http://www.allitebooks.org

Refreshing the UI Automatically with KnockoutJS

[18]

3. Knockout has a binding to repeat a piece of code for each element in a
collection. Update the tbody element in the table:
<tbody data-bind="foreach:catalog">
 <tr>
 <td data-bind="text:name"></td>
 <td data-bind="text:price"></td>
 <td data-bind="text:stock"></td>
 </tr>
</tbody>

We use the foreach property to point out that all that is inside this tag should be
repeated for each item in the collection. Inside this tag we are in the context of each
element, so you can just bind properties directly. Observe the result in your browser.

We want to know how many items we have in our catalog, so add this line of code
above the table:

Items:

Inserting elements in collections
To insert elements in the products array, an event should occur. In this case, the user
will click on a button and this action will fire an action that will insert a new product
in the collection.

In future chapters, you will learn more about events. Now we will just need to know
that there is a binding property named click. It receives a function as a parameter,
and this function is fired when the user clicks on the element.

To insert an element, we need a form to insert the values of the new product. Write
this HMTL code just below the <h1> tag:

<form class="form-horizontal" role="form"
data-bind="with:newProduct">
 <div class="form-group">
 <div class="col-sm-12">
 <input type="text" class="form-control" placeholder="Name"
 data-bind="textInput:name">
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-12">
 <input type="password" class="form-control" placeholder="Price"
data-bind="textInput:price">
 </div>

Chapter 1

[19]

 </div>
 <div class="form-group">
 <div class="col-sm-12">
 <input type="password" class="form-control"
 placeholder="Stock" data-bind="textInput:stock">
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-12">
 <button type="submit" class="btn btn-default"
 data-bind="{click:$parent.addProduct}">
 <i class="glyphicon glyphicon-plus-sign">
 </i> Add Product
 </button>
 </div>
 </div>
</form>

In this template, we find some new bindings:

• The with binding: This creates a new binding context so that descendant
elements are bound in the context of a specified object, in this case
newProduct.
http://knockoutjs.com/documentation/with-binding.html

• The textInput binding: The textInput binding links a textbox (<input>)
or text area (<textarea>) with a view-model property, providing two-way
updates between the viewmodel property and the element's value. Unlike
the value binding property, textInput provides instant updates from the
DOM for all types of user input, including autocomplete, drag-and-drop, and
clipboard events. It is available from the 3.2 version of Knockout.
http://knockoutjs.com/documentation/textinput-binding.html

• The click binding: The click binding adds an event handler so that your
chosen JavaScript function is invoked when the associated DOM element is
clicked. When calling your handler, Knockout will supply the current model
value as the first parameter. This is particularly useful if you're rendering
UI for each item in a collection, and you need to know which item's UI was
clicked.
http://knockoutjs.com/documentation/click-binding.html

• The $parent object: This is a binding context property. We use it to refer to
data from outside the foreach loop.

http://knockoutjs.com/documentation/with-binding.html
http://knockoutjs.com/documentation/textinput-binding.html
http://knockoutjs.com/documentation/click-binding.html

Refreshing the UI Automatically with KnockoutJS

[20]

For more information about binding context properties, read the
Knockout documentation at http://knockoutjs.com/documentation/binding-
context.html.

Using with to set a context and parent to navigate through them

Now it is time to add the newProduct object to our view-model. First we should
define a new product with empty data:

var newProduct = Product("","","","");

We have defined a literal object that will contain the information we want to put
inside our new product. Also, we have defined a method to clear or reset the object
once the insertion is done. Now we define our addProduct method:

var addProduct = function (context) {
 var id = new Date().valueOf();//random id from time
 var newProduct = Product(
 id,
 context.name(),
 context.price(),

http://knockoutjs.com/documentation/binding-context.html
http://knockoutjs.com/documentation/binding-context.html

Chapter 1

[21]

 context.stock()
);
 catalog.push(newProduct);
 newProduct.clear();
};

This method creates a new product with the data received from the click event.

The click event always sends the context as the first argument. Note also that you
can use array methods such as push in an observable array. Check out the Knockout
documentation (http://knockoutjs.com/documentation/observableArrays.
html) to see all the methods available in arrays.

We should implement the private method that will clean data from the new product
once it is added to the collection:

var clearNewProduct = function () {
 newProduct.name("");
 newProduct.price("");
 newProduct.stock("");
};

Update the view-model:

return {
 catalog: catalog,
 newProduct: newProduct,
 addProduct: addProduct
};

If you run the code, you will notice that when you try to add a new product nothing
happens. This is because, despite the fact that our products have observable properties,
our array is not an observable one. For this reason, Knockout is not listening to the
changes. We should convert the array to an observableArray observable.

var catalog = ko.observableArray([
 Product(1, "T-Shirt", 10.00, 20),
 Product(2, "Trousers", 20.00, 10),
 Product(3, "Shirt", 15.00, 20),
 Product(4, "Shorts", 5.00, 10)
]);

Now Knockout is listening to what is going on with this array, but not what is
happening inside each element. Knockout just tells us about inserting or deleting
elements in the array, but not about editing elements. If you want to know what is
happening in an element, the object should have observable properties.

http://knockoutjs.com/documentation/observableArrays.html
http://knockoutjs.com/documentation/observableArrays.html

Refreshing the UI Automatically with KnockoutJS

[22]

An observableArray observable just tracks which objects it holds, and notifies
listeners when objects are added or removed.

Behind the scenes, the observableArray is actually an observable whose value
is an array. So you can get the underlying JavaScript array by invoking the
observableArray observable as a function with no parameters, just like any
other observable. Then you can read information from that underlying array.

Items:

Computed observables
It is not weird to think that some values we show in our interface depend on other
values that Knockout is already observing. For example, if we would like to search
products in our catalog by name, it is evident that the products in the catalog that
we show in the list are related to the term we have entered in the search box. In these
cases Knockout offers us computed observables.

You can learn in detail about computed observables in the Knockout documentation
at http://knockoutjs.com/documentation/computedObservables.html.

To develop the search function, define a textbox where we can write a term to search.
We are going to bind it to the searchTerm property. To update the value as we write,
we should use the textInput binding. If we use the value binding, the value will be
updated when the element loses the focus. Put this code over the products table:

<div class="input-group">

 <i class="glyphicon glyphicon-search"></i> Search
 <input type="text" class="form-control"
 data-bind="textInput: searchTerm">
</div>

To create a filtered catalog, we are going to check all our items and test if the
searchTerm is in the item's name property.

var searchTerm = ko.observable('');
var filteredCatalog = ko.computed(function () {
 //if catalog is empty return empty array
 if (!catalog()) {
 return [];
 }
 var filter = searchTerm().toLowerCase();
 //if filter is empty return all the catalog
 if (!filter) {
 return catalog();

http://knockoutjs.com/documentation/computedObservables.html

Chapter 1

[23]

 }
 //filter data
 var filtered = ko.utils.arrayFilter(catalog(), function (item) {
 var fields = ["name"]; //we can filter several properties
 var i = fields.length;
 while (i--) {
 var prop = fields[i];
 var strProp = ko.unwrap(item[prop]).toLocaleLowerCase();
 if (strProp.indexOf(filter) !== -1){
 return true;
 };
 }
 Return false;
 });
 return filtered;
});

The ko.utils object is not documented in Knockout. It is an object used by the
library internally. It has public access and has some functions that can help us with
observables. There are a lot of unofficial examples about it on the Internet.

One of its helpful functions is ko.utils.arrayFilter. If you look at line 13, we
have used this method to obtain a filtered array.

This function gets an array as the first parameter. Notice that we invoke the catalog
array observable to get the elements. We don't pass the observable itself, but the
contents of the observable.

The second parameter is the function that decides whether the item will be in the
filtered array or not. It will return true if the item has the conditions to be in the
filtered array. Otherwise it returns false.

On line 14 of this snippet, we can find an array called fields. This parameter will
contain the fields that should comply with the criteria. In this case, we just check that
the filter value is in the name value. If we are pretty sure that we are just going to
check the name field, we can simplify the filter function:

var filtered = ko.utils.arrayFilter(catalog(), function (item) {
 var strProp = ko.unwrap(item["name"]).toLocaleLowerCase();
 return (strProp.indexOf(filter) > -1);
});

The ko.unwrap function returns the value that contains the observable. We use
ko.unwrap when we are not sure if the variable contains an observable or not,
for example:

var notObservable = 'hello';
console.log(notObservable()) //this will throw an error.

Refreshing the UI Automatically with KnockoutJS

[24]

console.log(ko.unwrap(notObservable)) //this will display
'hello');

Expose the filtered catalog into the public API. Notice that now we need to use the
filtered catalog instead of the original catalog of products. Because we are applying
the revealing module pattern, we can keep the original API interface and just update
the value of the catalog with the filtered catalog. We don't need to alert the view
that we are going to use a different catalog or other element, as long as we always
maintain the same public interface:

return {
 searchTerm: searchTerm,
 catalog: filteredCatalog,
 newProduct: newProduct,
 addProduct: addProduct
};

Now, try to type some characters in the search box and see in your browser how the
catalog updates the data automatically.

Wonderful! We have completed our first three user stories:

• The user should be able to view the catalog
• The user should be able to search the catalog
• The user should be able to add items to the catalog

Let's see the final result:

Chapter 1

[25]

Summary
In this chapter, you have learned the basics of the Knockout library. We have created
a simple form to add products to our catalog. You have also learned how to manage
observable collections and display them in a table. Finally, we have developed the
search functionality using computed observables.

You have learned three important Knockout concepts:

• View-model: This holds the data that represents the state of the view. It is a
pure JavaScript object.

• Models: This contains data from the business domain.
• Views: This displays the data we store in the view-model in a given instant

of time.

To build reactive UIs, the Knockout library provides us with some important
methods:

• ko.observable: This is used to manage variables.
• ko.observableArray: This is used to manage arrays.
• ko.computed: They respond to changes from observables that are

inside them.

To iterate over the elements of an array, we use the foreach binding. When we use
the foreach binding, we create a new context. This context is relative to each item.
If we want to access out of this context we should use the $parent object.

When we want to create a new context relative to a variable, we can attach the with
binding to any DOM element.

We use the click binding to attach the click event to an element. Click on event
functions to always get the context as the first parameter.

To get values from a variable that we are not sure is an observable, we can use the
ko.unwrap function.

We can use the ko.utils.arrayFilter function to filter collections.

In the next chapter, we are going to use templates to keep our code maintainable and
clean. Template engines help us to keep our code arranged and allow us to update
views in an easy way.

There is a copy of the code developed in this chapter at:

https://github.com/jorgeferrando/knockout-cart/archive/chapter1.zip.

https://github.com/jorgeferrando/knockout-cart/archive/chapter1.zip

KnockoutJS Templates
Once we have built our Catalog, it is time to add a cart to our application. When our
code begins to grow, it's necessary to split it in several parts to keep it maintainable.
When we split JavaScript code, we are talking about modules, classes, function,
libraries, and so on. When we talk about HTML, we call these parts templates.

KnockoutJS has a native template engine that we can use to manage our HTML. It
is very simple, but also has a big inconvenience: templates, it should be loaded in
the current HTML page. This is not a problem if our app is small, but it could be a
problem if our application begins to need more and more templates.

In this chapter, we are going to design our templates with the native engine and then
we will speak about mechanisms and external libraries we can use to improve the
Knockout template engine.

Preparing the project
We can begin from the project we did in Chapter 1, Refreshing the UI Automatically
with KnockoutJS. First of all, we are going to add some style to the page. Add a file
called style.css into the css folder. Add a reference in the index.html file, just
below the bootstrap reference. The following is the content of the file:

.container-fluid {
 margin-top: 20px;
}
.row {
 margin-bottom: 20px;
}
.cart-unit {
 width: 80px;
}

www.allitebooks.com

http://www.allitebooks.org

KnockoutJS Templates

[28]

.btn-xs {
 font-size:8px;
}
.list-group-item {
 overflow: hidden;
}
.list-group-item h4 {
 float:left;
 width: 100px;
}
.list-group-item .input-group-addon {
 padding: 0;
}
.btn-group-vertical > .btn-default {
 border-color: transparent;
}
.form-control[disabled], .form-control[readonly] {
 background-color: transparent !important;
}

Now remove all the content from the body tag except for the script tags and paste in
these lines:

<div class="container-fluid">
 <div class="row" id="catalogContainer">
 <div class="col-xs-12"
 data-bind="template:{name:'header'}"></div>
 <div class="col-xs-6"
 data-bind="template:{name:'catalog'}"></div>
 <div id="cartContainer" class="col-xs-6 well hidden"
 data-bind="template:{name:'cart'}"></div>
 </div>
 <div class="row hidden" id="orderContainer"
 data-bind="template:{name:'order'}">
 </div>
 <div data-bind="template: {name:'add-to-catalog-modal'}"></div>
 <div data-bind="template: {name:'finish-order-modal'}"></div>
</div>

Let's review this code.

We have two row classes. They will be our containers.

Chapter 2

[29]

The first container is named with the id value as catalogContainer and it will
contain the catalog view and the cart. The second one is referenced by the id value as
orderContainer and we will set our final order there.

We also have two more <div> tags at the bottom that will contain the modal dialogs
to show the form to add products to our catalog (the one we built in Chapter 1,
Refreshing the UI Automatically with KnockoutJS) and the other one will contain a
modal message to tell the user that our order is finished.

Along with this code you can see a template binding inside the data-bind attribute.
This is the binding that Knockout uses to bind templates to the element. It contains a
name parameter that represents the ID of a template.

<div class="col-xs-12" data-bind="template:{name:'header'}"></div>

In this example, this <div> element will contain the HTML that is inside the
<script> tag with the ID header.

Creating templates
Template elements are commonly declared at the bottom of the body, just above the
<script> tags that have references to our external libraries. We are going to define
some templates and then we will talk about each one of them:

<!-- templates -->
<script type="text/html" id="header"></script>
<script type="text/html" id="catalog"></script>
<script type="text/html" id="add-to-catalog-modal"></script>
<script type="text/html" id="cart-widget"></script>
<script type="text/html" id="cart-item"></script>
<script type="text/html" id="cart"></script>
<script type="text/html" id="order"></script>
<script type="text/html" id="finish-order-modal"></script>

Each template name is descriptive enough by itself, so it's easy to know what we are
going to set inside them.

KnockoutJS Templates

[30]

Let's see a diagram showing where we dispose each template on the screen:

Notice that the cart-item template will be repeated for each item in the cart
collection. Modal templates will appear only when a modal dialog is displayed.
Finally, the order template is hidden until we click to confirm the order.

In the header template, we will have the title and the menu of the page. The catalog
template will contain the table with products we wrote in Chapter 1, Refreshing the
UI Automatically with KnockoutJS. The add-to-catalog-modal template will contain
the modal that shows the form to add a product to our catalog. The cart-widget
template will show a summary of our cart. The cart-item template will contain the
template of each item in the cart. The cart template will have the layout of the cart.
The order template will show the final list of products we want to buy and a button
to confirm our order.

The header template
Let's begin with the HTML markup that should contain the header template:

<script type="text/html" id="header">
 <h1>
 Catalog
 </h1>

 <button class="btn btn-primary btn-sm" data-toggle="modal"
 data-target="#addToCatalogModal">
 Add New Product
 </button>

Chapter 2

[31]

 <button class="btn btn-primary btn-sm" data-bind="click:
 showCartDetails, css:{ disabled: cart().length < 1}">
 Show Cart Details
 </button>
 <hr/>
</script>

We define a <h1> tag, and two <button> tags.

The first button tag is attached to the modal that has the ID #addToCatalogModal.
Since we are using Bootstrap as the CSS framework, we can attach modals by ID using
the data-target attribute, and activate the modal using the data-toggle attribute.

The second button will show the full cart view and it will be available only if the cart
has items. To achieve this, there are a number of different ways.

The first one is to use the CSS-disabled class that comes with Twitter Bootstrap.
This is the way we have used in the example. CSS binding allows us to activate or
deactivate a class in the element depending on the result of the expression that is
attached to the class.

The other method is to use the enable binding. This binding enables an element if
the expression evaluates to true. We can use the opposite binding, which is named
disable. There is a complete documentation on the Knockout website http://
knockoutjs.com/documentation/enable-binding.html:

<button class="btn btn-primary btn-sm" data-bind="click:
 showCartDetails, enable: cart().length > 0">
 Show Cart Details
</button>

<button class="btn btn-primary btn-sm" data-bind="click:
 showCartDetails, disable: cart().length < 1">
 Show Cart Details
</button>

The first method uses CSS classes to enable and disable the button. The second
method uses the HTML attribute, disabled.

We can use a third option, which is to use a computed observable. We can create
a computed observable variable in our view-model that returns true or false
depending on the length of the cart:

//in the viewmodel. Remember to expose it
var cartHasProducts = ko.computed(function(){
 return (cart().length > 0);

http://knockoutjs.com/documentation/enable-binding.html
http://knockoutjs.com/documentation/enable-binding.html

KnockoutJS Templates

[32]

});
//HTML
<button class="btn btn-primary btn-sm" data-bind="click:
 showCartDetails, enable: cartHasProducts">
 Show Cart Details
</button>

To show the cart, we will use the click binding in the same way we used it in the
previous chapter.

Now we should go to our viewmodel.js file and add all the information we need to
make this template work:

var cart = ko.observableArray([]);
var showCartDetails = function () {
 if (cart().length > 0) {
 $("#cartContainer").removeClass("hidden");
 }
};

And you should expose these two objects in the view-model:

 return {
 //first chapter
 searchTerm: searchTerm,
 catalog: filteredCatalog,
 newProduct: newProduct,
 totalItems:totalItems,
 addProduct: addProduct,
 //second chapter
 cart: cart,
 showCartDetails: showCartDetails,
 };

The catalog template
The next step is to define the catalog template just below the header template:

<script type="text/html" id="catalog">
 <div class="input-group">

 <i class="glyphicon glyphicon-search"></i> Search

 <input type="text" class="form-control" data-bind="textInput:
 searchTerm">

Chapter 2

[33]

 </div>
 <table class="table">
 <thead>
 <tr>
 <th>Name</th>
 <th>Price</th>
 <th>Stock</th>
 <th></th>
 </tr>
 </thead>
 <tbody data-bind="foreach:catalog">
 <tr data-bind="style:color:stock() < 5?'red':'black'">
 <td data-bind="text:name"></td>
 <td data-bind="text:price"></td>
 <td data-bind="text:stock"></td>
 <td>
 <button class="btn btn-primary"
 data-bind="click:$parent.addToCart">
 <i class="glyphicon glyphicon-plus-sign"></i> Add
 </button>
 </td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td colspan="3">
 Items:<span
 data-bind="text:catalog().length">
 </td>
 <td colspan="1">

 </td>
 </tr>
 </tfoot>
 </table>
</script>

This is the same table we built in the previous chapter. We have just added a few
new things:

<tr data-bind="style:{color: stock() < 5?'red':'black'}">...</tr>

KnockoutJS Templates

[34]

Now, each line uses the style binding to alert the user, while they are shopping, that
the stock is reaching the maximum limit. The style binding works the same way
that CSS binding does with classes. It allows us to add style attributes depending
on the value of the expression. In this case, the color of the text in the line must be
black if the stock is higher than five, and red if it is four or less. We can use other CSS
attributes, so feel free to try other behaviors. For example, set the line of the catalog
to green if the element is inside the cart. We should remember that if an attribute has
dashes, you should wrap it in single quotes. For example, background-color will
throw an error, so you should write 'background-color'.

When we work with bindings that are activated depending on the values of the
view-model, it is good practice to use computed observables. Therefore, we can
create a computed value in our product model that returns the value of the color
that should be displayed:

//In the Product.js
var _lineColor = ko.computed(function(){
 return (_stock() < 5)? 'red' : 'black';
});
return {
 lineColor:_lineColor
};
//In the template
<tr data-bind="style:lineColor"> ... </tr>

It would be even better if we create a class in our style.css file that is called
stock-alert and we use the CSS binding:

//In the style file
.stock-alert {
 color: #f00;
}
//In the Product.js
var _hasStock = ko.computed(function(){
 return (_stock() < 5);
});
return {
 hasStock: _hasStock
};
//In the template
<tr data-bind="css: hasStock"> ... </tr>

Chapter 2

[35]

Now, look inside the <tfoot> tag.

<td colspan="1">

</td>

As you can see, we can have nested templates. In this case, we have the cart-widget
template inside our catalog template. This give us the possibility of having very
complex templates, splitting them into very small pieces, and combining them, to
keep our code clean and maintainable.

Finally, look at the last cell of each row:

<td>
 <button class="btn btn-primary"
 data-bind="click:$parent.addToCart">
 <i class="glyphicon glyphicon-plus-sign"></i> Add
 </button>
</td>

Look at how we call the addToCart method using the magic variable $parent.
Knockout gives us some magic words to navigate through the different contexts we
have in our app. In this case, we are in the catalog context and we want to call a
method that lies one level up. We can use the magical variable called $parent.

There are other variables we can use when we are inside a Knockout context. There
is complete documentation on the Knockout website http://knockoutjs.com/
documentation/binding-context.html.

In this project, we are not going to use all of them. But we are going quickly explain
these binding context variables, just to understand them better.

If we don't know how many levels deep we are, we can navigate to the top of the
view-model using the magic word $root.

When we have many parents, we can get the magic array $parents and access
each parent using indexes, for example, $parents[0], $parents[1]. Imagine that
you have a list of categories where each category contains a list of products. These
products are a list of IDs and the category has a method to get the name of their
products. We can use the $parents array to obtain the reference to the category:

<ul data-bind="foreach: {data: categories}">
 <li data-bind="text: $data.name">
 <ul data-bind="foreach: {data: $data.products, as: 'prod'}>

http://knockoutjs.com/documentation/binding-context.html
http://knockoutjs.com/documentation/binding-context.html

KnockoutJS Templates

[36]

 <li data-bind="text:
 $parents[0].getProductName(prod.ID)">

Look how helpful the as attribute is inside the foreach binding. It makes code more
readable. But if you are inside a foreach loop, you can also access each item using
the $data magic variable, and you can access the position index that each element
has in the collection using the $index magic variable. For example, if we have a list
of products, we can do this:

<ul data-bind="foreach: cart">

 -

This should display:

 0 – Product 1

 1 – Product 2

 2 – Product 3

 ...

KnockoutJS magic variables to navigate through contexts

Now that we know more about what binding variables are, let's go back to our code.
We are now going to write the addToCart method.

Chapter 2

[37]

We are going to define the cart items in our js/models folder. Create a file called
CartProduct.js and insert the following code in it:

//js/models/CartProduct.js
var CartProduct = function (product, units) {
 "use strict";

 var _product = product,
 _units = ko.observable(units);

 var subtotal = ko.computed(function(){
 return _product.price() * _units();
 });

 var addUnit = function () {
 var u = _units();
 var _stock = _product.stock();
 if (_stock === 0) {
 return;
 }
 _units(u+1);
 _product.stock(--_stock);
 };

 var removeUnit = function () {
 var u = _units();
 var _stock = _product.stock();
 if (u === 0) {
 return;
 }
 _units(u-1);
 _product.stock(++_stock);
 };

 return {
 product: _product,
 units: _units,
 subtotal: subtotal,
 addUnit : addUnit,
 removeUnit: removeUnit,
 };
};

www.allitebooks.com

http://www.allitebooks.org

KnockoutJS Templates

[38]

Each cart product is composed of the product itself and the units of the product we
want to buy. We will also have a computed field that contains the subtotal of the line.
We should give the object the responsibility for managing its units and the stock of
the product. For this reason, we have added the addUnit and removeUnit methods.
These methods add one unit or remove one unit of the product if they are called.

We should reference this JavaScript file into our index.html file with the other
<script> tags.

In the view-model, we should create a cart array and expose it in the return
statement, as we have done earlier:

var cart = ko.observableArray([]);

It's time to write the addToCart method:

var addToCart = function(data) {
 var item = null;
 var tmpCart = cart();
 var n = tmpCart.length;
 while(n--) {
 if (tmpCart[n].product.id() === data.id()) {
 item = tmpCart[n];
 }
 }
 if (item) {
 item.addUnit();
 } else {
 item = new CartProduct(data,0);
 item.addUnit();
 tmpCart.push(item);
 }
 cart(tmpCart);
};

This method searches the product in the cart. If it exists, it updates its units, and
if not, it creates a new one. Since the cart is an observable array, we need to get it,
manipulate it, and overwrite it, because we need to access the product object to know
if the product is in the cart. Remember that observable arrays do not observe the
objects they contain, just the array properties.

Chapter 2

[39]

The add-to-cart-modal template
This is a very simple template. We just wrap the code we made in Chapter 1, Refreshing
the UI Automatically with KnockoutJS, to add a product to a Bootstrap modal:

<script type="text/html" id="add-to-catalog-modal">
 <div class="modal fade" id="addToCatalogModal">
 <div class="modal-dialog">
 <div class="modal-content">
 <form class="form-horizontal" role="form"
 data-bind="with:newProduct">
 <div class="modal-header">
 <button type="button" class="close"
 data-dismiss="modal">
 ×
 Close
 </button><h3>Add New Product to the Catalog</h3>
 </div>
 <div class="modal-body">
 <div class="form-group">
 <div class="col-sm-12">
 <input type="text" class="form-control"
 placeholder="Name" data-bind="textInput:name">
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-12">
 <input type="text" class="form-control"
 placeholder="Price" data-bind="textInput:price">
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-12">
 <input type="text" class="form-control"
 placeholder="Stock" data-bind="textInput:stock">
 </div>
 </div>
 </div>
 <div class="modal-footer">
 <div class="form-group">
 <div class="col-sm-12">
 <button type="submit" class="btn btn-default"
 data-bind="{click:$parent.addProduct}">

KnockoutJS Templates

[40]

 <i class="glyphicon glyphicon-plus-sign">
 </i> Add Product
 </button>
 </div>
 </div>
 </div>
 </form>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
 </div><!-- /.modal -->
</script>

The cart-widget template
This template gives the user information quickly about how many items are in the
cart and how much all of them cost:

<script type="text/html" id="cart-widget">
 Total Items:
 Price:
</script>

We should define totalItems and grandTotal in our view-model:

var totalItems = ko.computed(function(){
 var tmpCart = cart();
 var total = 0;
 tmpCart.forEach(function(item){
 total += parseInt(item.units(),10);
 });
 return total;
});
var grandTotal = ko.computed(function(){
 var tmpCart = cart();
 var total = 0;
 tmpCart.forEach(function(item){
 total += (item.units() * item.product.price());
 });
 return total;
});

Now you should expose them in the return statement, as we always do. Don't worry
about the format now, you will learn how to format currency or any kind of data in
the future. Now you must focus on learning how to manage information and how to
show it to the user.

Chapter 2

[41]

The cart-item template
The cart-item template displays each line in the cart:

<script type="text/html" id="cart-item">
 <div class="list-group-item" style="overflow: hidden">
 <button type="button" class="close pull-right" data-
bind="click:$root.removeFromCart">×</button>
 <h4 class="" data-bind="text:product.name"></h4>
 <div class="input-group cart-unit">
 <input type="text" class="form-control" data-
bind="textInput:units" readonly/>

 <div class="btn-group-vertical">
 <button class="btn btn-default btn-xs"
 data-bind="click:addUnit">
 <i class="glyphicon glyphicon-chevron-up"></i>
 </button>
 <button class="btn btn-default btn-xs"
 data-bind="click:removeUnit">
 <i class="glyphicon glyphicon-chevron-down"></i>
 </button>
 </div>

 </div>
 </div>
</script>

We set an x button in the top-right of each line to easily remove a line from the cart.
As you can see, we have used the $root magic variable to navigate to the top context
because we are going to use this template inside a foreach loop, and it means this
template will be in the loop context. If we consider this template as an isolated
element, we can't be sure how deep we are in the context navigation. To be sure, we
go to the right context to call the removeFormCart method. It's better to use $root
instead of $parent in this case.

The code for removeFromCart should lie in the view-model context and should look
like this:

var removeFromCart = function (data) {
 var units = data.units();
 var stock = data.product.stock();
 data.product.stock(units+stock);
 cart.remove(data);
};

KnockoutJS Templates

[42]

Notice that in the addToCart method, we get the array that is inside the observable.
We did that because we need to navigate inside the elements of the array. In this
case, Knockout observable arrays have a method called remove that allows us to
remove the object that we pass as a parameter. If the object is in the array, it will
be removed.

Remember that the data context is always passed as the first parameter in the
function we use in the click events.

The cart template
The cart template should display the layout of the cart:

<script type="text/html" id="cart">
 <button type="button" class="close pull-right"
 data-bind="click:hideCartDetails">
 ×
 </button>
 <h1>Cart</h1>
 <div data-bind="template: {name: 'cart-item', foreach:cart}"
 class="list-group"></div>
 <div data-bind="template:{name:'cart-widget'}"></div>
 <button class="btn btn-primary btn-sm"
 data-bind="click:showOrder">
 Confirm Order
 </button>
</script>

It's important that you notice the template binding that we have just below
<h1>Cart</h1>. We are binding a template with an array using the foreach
argument. With this binding, Knockout renders the cart-item template for each
element inside the cart collection. This considerably reduces the code we write in
each template and in addition makes them more readable.

We have once again used the cart-widget template to show the total items and the
total amount. This is one of the good features of templates, we can reuse content over
and over.

Observe that we have put a button at the top-right of the cart to close it when we
don't need to see the details of our cart, and the other one to confirm the order when
we are done. The code in our view-model should be as follows:

var hideCartDetails = function () {
 $("#cartContainer").addClass("hidden");
};

Chapter 2

[43]

var showOrder = function () {
 $("#catalogContainer").addClass("hidden");
 $("#orderContainer").removeClass("hidden");
};

As you can see, to show and hide elements we use jQuery and CSS classes from the
Bootstrap framework. The hidden class just adds the display: none style to the
elements. We just need to toggle this class to show or hide elements in our view.
Expose these two methods in the return statement of your view-model.

We will come back to this when we need to display the order template.

This is the result once we have our catalog and our cart:

The order template
Once we have clicked on the Confirm Order button, the order should be shown to
us, to review and confirm if we agree.

<script type="text/html" id="order">
 <div class="col-xs-12">
 <button class="btn btn-sm btn-primary"
 data-bind="click:showCatalog">
 Back to catalog
 </button>
 <button class="btn btn-sm btn-primary"
 data-bind="click:finishOrder">

KnockoutJS Templates

[44]

 Buy & finish
 </button>
 </div>
 <div class="col-xs-6">
 <table class="table">
 <thead>
 <tr>
 <th>Name</th>
 <th>Price</th>
 <th>Units</th>
 <th>Subtotal</th>
 </tr>
 </thead>
 <tbody data-bind="foreach:cart">
 <tr>
 <td data-bind="text:product.name"></td>
 <td data-bind="text:product.price"></td>
 <td data-bind="text:units"></td>
 <td data-bind="text:subtotal"></td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td colspan="3"></td>
 <td>Total:</td>
 </tr>
 </tfoot>
 </table>
 </div>
</script>

Here we have a read-only table with all cart lines and two buttons. One is to confirm,
which will show the modal dialog saying the order is completed, and the other gives
us the option to go back to the catalog and keep on shopping. There is some code we
need to add to our view-model and expose to the user:

var showCatalog = function () {
 $("#catalogContainer").removeClass("hidden");
 $("#orderContainer").addClass("hidden");
};
var finishOrder = function() {
 cart([]);
 hideCartDetails();

Chapter 2

[45]

 showCatalog();
 $("#finishOrderModal").modal('show');
};

As we have done in previous methods, we add and remove the hidden class from the
elements we want to show and hide. The finishOrder method removes all the items
of the cart because our order is complete; hides the cart and shows the catalog. It also
displays a modal that gives confirmation to the user that the order is done.

Order details template

The finish-order-modal template
The last template is the modal that tells the user that the order is complete:

<script type="text/html" id="finish-order-modal">
 <div class="modal fade" id="finishOrderModal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-body">
 <h2>Your order has been completed!</h2>
 </div>
 <div class="modal-footer">
 <div class="form-group">
 <div class="col-sm-12">
 <button type="submit" class="btn btn-success"
 data-dismiss="modal">Continue Shopping
 </button>
 </div>

KnockoutJS Templates

[46]

 </div>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
 </div><!-- /.modal -->
</script>

The following screenshot displays the output:

Handling templates with if and ifnot
bindings
You have learned how to show and hide templates with the power of jQuery and
Bootstrap. This is quite good because you can use this technique with any framework
you want. The problem with this type of code is that since jQuery is a DOM
manipulation library, you need to reference elements to manipulate them. This
means you need to know over which element you want to apply the action. Knockout
gives us some bindings to hide and show elements depending on the values of our
view-model. Let's update the show and hide methods and the templates.

Add both the control variables to your view-model and expose them in the
return statement.

var visibleCatalog = ko.observable(true);
var visibleCart = ko.observable(false);

Chapter 2

[47]

Now update the show and hide methods:

var showCartDetails = function () {
 if (cart().length > 0) {
 visibleCart(true);
 }
};

var hideCartDetails = function () {
 visibleCart(false);
};

var showOrder = function () {
 visibleCatalog(false);
};

var showCatalog = function () {
 visibleCatalog(true);
};

We can appreciate how the code becomes more readable and meaningful. Now,
update the cart template, the catalog template, and the order template.

In index.html, consider this line:

<div class="row" id="catalogContainer">

Replace it with the following line:

<div class="row" data-bind="if: visibleCatalog">

Then consider the following line:

<div id="cartContainer" class="col-xs-6 well hidden"
 data-bind="template:{name:'cart'}"></div>

Replace it with this one:

<div class="col-xs-6" data-bind="if: visibleCart">
 <div class="well" data-bind="template:{name:'cart'}"></div>
</div>

www.allitebooks.com

http://www.allitebooks.org

KnockoutJS Templates

[48]

It is important to know that the if binding and the template binding can't share
the same data-bind attribute. This is why we go from one element to two nested
elements in this template. In other words, this example is not allowed:

<div class="col-xs-6" data-bind="if:visibleCart,
 template:{name:'cart'}"></div>

Finally, consider this line:

<div class="row hidden" id="orderContainer"
 data-bind="template:{name:'order'}">

Replace it with this one:

<div class="row" data-bind="ifnot: visibleCatalog">
 <div data-bind="template:{name:'order'}"></div>
</div>

With the changes we have made, showing or hiding elements now depends on our
data and not on our CSS. This is much better because now we can show and hide any
element we want using the if and ifnot binding.

Let's review, roughly speaking, how our files are now:

We have our index.html file that has the main container, templates, and libraries:

<!DOCTYPE html>
<html>
<head>
 <title>KO Shopping Cart</title>
 <meta name="viewport" content="width=device-width,
 initial-scale=1">
 <link rel="stylesheet" type="text/css"
 href="css/bootstrap.min.css">
 <link rel="stylesheet" type="text/css" href="css/style.css">
</head>
<body>

<div class="container-fluid">
 <div class="row" data-bind="if: visibleCatalog">
 <div class="col-xs-12"
 data-bind="template:{name:'header'}"></div>
 <div class="col-xs-6"
 data-bind="template:{name:'catalog'}"></div>
 <div class="col-xs-6" data-bind="if: visibleCart">
 <div class="well" data-bind="template:{name:'cart'}"></div>
 </div>

Chapter 2

[49]

 </div>
 <div class="row" data-bind="ifnot: visibleCatalog">
 <div data-bind="template:{name:'order'}"></div>
 </div>
 <div data-bind="template: {name:'add-to-catalog-modal'}"></div>
 <div data-bind="template: {name:'finish-order-modal'}"></div>
</div>

<!-- templates -->
<script type="text/html" id="header"> ... </script>
<script type="text/html" id="catalog"> ... </script>
<script type="text/html" id="add-to-catalog-modal"> ... </script>
<script type="text/html" id="cart-widget"> ... </script>
<script type="text/html" id="cart-item"> ... </script>
<script type="text/html" id="cart"> ... </script>
<script type="text/html" id="order"> ... </script>
<script type="text/html" id="finish-order-modal"> ... </script>
<!-- libraries -->
<script type="text/javascript"
 src="js/vendors/jquery.min.js"></script>
<script type="text/javascript"
 src="js/vendors/bootstrap.min.js"></script>
<script type="text/javascript"
 src="js/vendors/knockout.debug.js"></script>
<script type="text/javascript"
 src="js/models/product.js"></script>
<script type="text/javascript"
 src="js/models/cartProduct.js"></script>
<script type="text/javascript" src="js/viewmodel.js"></script>
</body>
</html>

We also have our viewmodel.js file:

var vm = (function () {
 "use strict";
 var visibleCatalog = ko.observable(true);
 var visibleCart = ko.observable(false);
 var catalog = ko.observableArray([...]);
 var cart = ko.observableArray([]);
 var newProduct = {...};
 var totalItems = ko.computed(function(){...});
 var grandTotal = ko.computed(function(){...});
 var searchTerm = ko.observable("");

KnockoutJS Templates

[50]

 var filteredCatalog = ko.computed(function () {...});
 var addProduct = function (data) {...};
 var addToCart = function(data) {...};
 var removeFromCart = function (data) {...};
 var showCartDetails = function () {...};
 var hideCartDetails = function () {...};
 var showOrder = function () {...};
 var showCatalog = function () {...};
 var finishOrder = function() {...};
 return {
 searchTerm: searchTerm,
 catalog: filteredCatalog,
 cart: cart,
 newProduct: newProduct,
 totalItems:totalItems,
 grandTotal:grandTotal,
 addProduct: addProduct,
 addToCart: addToCart,
 removeFromCart:removeFromCart,
 visibleCatalog: visibleCatalog,
 visibleCart: visibleCart,
 showCartDetails: showCartDetails,
 hideCartDetails: hideCartDetails,
 showOrder: showOrder,
 showCatalog: showCatalog,
 finishOrder: finishOrder
 };
})();
ko.applyBindings(vm);

It is useful to debug to globalize the view-model. It is not good practice in production
environments, but it is good when you are debugging your application.

Window.vm = vm;

Now you have easy access to your view-model from the browser debugger or from
your IDE debugger.

In addition to the product model that we coded in the Chapter 1, Refreshing the UI
Automatically with KnockoutJS, we have created a new model called CartProduct:

var CartProduct = function (product, units) {
 "use strict";
 var _product = product,
 _units = ko.observable(units);

Chapter 2

[51]

 var subtotal = ko.computed(function(){...});
 var addUnit = function () {...};
 var removeUnit = function () {...};
 return {
 product: _product,
 units: _units,
 subtotal: subtotal,
 addUnit : addUnit,
 removeUnit: removeUnit
 };
};

You have learned how to manage templates with Knockout, but maybe you have
noticed that having all templates in the index.html file is not the best approach.
We are going to talk about two mechanisms. The first one is more home-made and
the second one is an external library used by lots of Knockout developers, created
by Jim Cowart, called Knockout.js-External-Template-Engine (https://github.com/
ifandelse/Knockout.js-External-Template-Engine).

Managing templates with jQuery
Since we want to load templates from different files, let's move all our templates to
a folder called views and make one file per template. Each file will have the same
name the template has as an ID. So if the template has the ID, cart-item, the file
should be called cart-item.html and will contain the full cart-item template:

<script type="text/html" id="cart-item"></script>

The views folder with all templates

https://github.com/ifandelse/Knockout.js-External-Template-Engine
https://github.com/ifandelse/Knockout.js-External-Template-Engine

KnockoutJS Templates

[52]

Now in the viewmodel.js file, remove the last line (ko.applyBindings(vm)) and
add this code:

var templates = [
 'header',
 'catalog',
 'cart',
 'cart-item',
 'cart-widget',
 'order',
 'add-to-catalog-modal',
 'finish-order-modal'
];

var busy = templates.length;
templates.forEach(function(tpl){
 "use strict";
 $.get('views/'+ tpl + '.html').then(function(data){
 $('body').append(data);
 busy--;
 if (!busy) {
 ko.applyBindings(vm);
 }
 });
});

This code gets all the templates we need and appends them to the body. Once all the
templates are loaded, we call the applyBindings method. We should do it this way
because we are loading templates asynchronously and we need to make sure that we
bind our view-model when all templates are loaded.

This is good enough to make our code more maintainable and readable, but is still
problematic if we need to handle lots of templates. Further more, if we have nested
folders, it becomes a headache listing all our templates in one array. There should be
a better approach.

Managing templates with
koExternalTemplateEngine
We have seen two ways of loading templates, both of them are good enough to
manage a low number of templates, but when lines of code begin to grow, we need
something that allows us to forget about template management. We just want to call
a template and get the content.

Chapter 2

[53]

For this purpose, Jim Cowart's library, koExternalTemplateEngine, is perfect. This
project was abandoned by the author in 2014, but it is still a good library that we
can use when we develop simple projects. In the next chapters, you will learn more
about asynchronous loading and module patterns and we will see other libraries that
are currently maintained.

We just need to download the library in the js/vendors folder and then link it in
our index.html file just below the Knockout library.

<script type="text/javascript" src="js/vendors/knockout.debug.js"></
script>
<script type="text/javascript"
 src="js/vendors/koExternalTemplateEngine_all.min.js"></script>

Now you should configure it in the viewmodel.js file. Remove the templates array
and the foreach statement, and add these three lines of code:

infuser.defaults.templateSuffix = ".html";
infuser.defaults.templateUrl = "views";
ko.applyBindings(vm);

Here, infuser is a global variable that we use to configure the template engine. We
should indicate which suffix will have our templates and in which folder they will be.

We don't need the <script type="text/html" id="template-id"></script>
tags any more, so we should remove them from each file.

So now everything should be working, and the code we needed to succeed was
not much.

KnockoutJS has its own template engine, but you can see that adding new ones is
not difficult. If you have experience with other template engines such as jQuery
Templates, Underscore, or Handlebars, just load them in your index.html file and
use them, there is no problem with that. This is why Knockout is beautiful, you can
use any tool you like with it.

You have learned a lot of things in this chapter, haven't you?

• Knockout gives us the CSS binding to activate and deactivate CSS classes
according to an expression.

• We can use the style binding to add CSS rules to elements.
• The template binding helps us to manage templates that are already loaded

in the DOM.

KnockoutJS Templates

[54]

• We can iterate along collections with the foreach binding.
• Inside a foreach, Knockout gives us some magic variables such as $parent,

$parents, $index, $data, and $root.
• We can use the binding as along with the foreach binding to get an alias for

each element.
• We can show and hide content using just jQuery and CSS.
• We can show and hide content using the bindings: if, ifnot, and visible.
• jQuery helps us to load Knockout templates asynchronously.
• You can use the koExternalTemplateEngine plugin to manage templates in

a more efficient way. The project is abandoned but it is still a good solution.

Summary
In this chapter, you have learned how to split an application using templates that
share the same view-model. Now that we know the basics, it would be interesting to
extend the application. Maybe we can try to create a detailed view of the product, or
maybe we can give the user the option to register where to send the order. You will
learn how to do these things in the coming chapters, but it would be interesting to
experiment just with the knowledge we have now.

In the next chapter, we are going to learn how to extend Knockout behaviors. This
will be useful to format data and to create code that we can reuse over and over. You
will learn what custom bindings and components are and how they help us write
reusable and elegant code.

The code of this chapter is on GitHub:

https://github.com/jorgeferrando/knockout-cart/archive/chapter2.zip

https://github.com/jorgeferrando/knockout-cart/archive/chapter2.zip

Custom Bindings and
Components

With all the concepts you have learned in the last two chapters, you can build most
of the applications you find in the real world. Of course, if you write code with just
the knowledge of these two chapters, you should be very tidy because your code will
become bigger and bigger and will be difficult to maintain.

Once a Google engineer was asked about how to build large applications. His answer
was short and eloquent: Don't. Don't write large applications. Instead, write small
applications, small pieces of isolated code that interact with each other, and build a
large system with them.

How can we write small, reusable, and isolated pieces of code that extend the
functionality of Knockout? The answer is by using custom bindings and components.

Custom bindings
We know what a binding is, it is everything we write inside the data-bind attribute.
We have some built-in bindings. Click and value are two of them. But we can write our
own custom bindings that extend the functionality of our application in a tidy way.

Writing a custom binding is very easy. It has a basic structure that we should always
follow to begin with:

ko.bindingHandlers.yourBindingName = {
 init: function(element, valueAccessor, allBindings, viewModel,
 bindingContext) {
 // This will be called when the binding is first applied to an
 element
 // Set up any initial state, event handlers, etc. here

Custom Bindings and Components

[56]

 },
 update: function(element, valueAccessor, allBindings, viewModel,
 bindingContext) {
 // This will be called once when the binding is first applied
 to an element,
 // and again whenever any observables/computeds that are
 accessed change
 // Update the DOM element based on the supplied values here.
 }
};

Knockout has an internal object called bindingHandlers. We can extend this object
with our custom binding. Our binding should have a name to refer to it inside the
bindingHandlers object. Our custom binding is an object that has two functions,
init and update. Sometimes you should use just one of them, sometimes both.

Inside the init method, we should initialize the state of our binding. Inside the
update method, we should set the code to update the binding when its model or
value is updated. These methods give us some parameters to undertake this task:

• element: This is the DOM element involved in the binding.
• valueAccessor: This is the value of the binding. It is usually a function or

an observable. It is safer if you use ko.unwrap to get the value, such as var
value = ko.unwrap(valueAccessor());.

• allBindings: This is an object that you can use to access other bindings. You
can get a binding using allBindings.get('name'), or ask if a binding exists
using allBindings.has('name');.

• viewModel: That is deprecated in Knockout 3.x. You should use
bindingContext.$data or bindigContext.$rawData instead.

• bindingContext: With the binding context, we can access familiar context
objets such as $root, $parents, $parent, $data, or $index to navigate
through different contexts.

We can use custom bindings for many things. For example, we can format data
automatically (currency or dates are clear examples) or increase the semantic
meaning of other bindings. It's more descriptive to have a binding that is called
toggle than just set click and visible bindings to show and hide an element.

Chapter 3

[57]

New folder structure with custom bindings and components

The toggle binding
To add new custom bindings to our application we are going to create a new
folder called custom inside our js folder. Then we are going to create a file called
koBindings.js and we are going to link it inside our index.html file, just below
our template engine:

<script type="text/javascript"
 src="js/vendors/koExternalTemplateEngine_all.min.js"></script>
<script type="text/javascript"
 src="js/custom/koBindings.js"></script>

Our first custom binding will be called toggle. We will use this custom binding
to change the value of a Boolean variable. With this behavior, we can show and
hide elements, in our case, our cart. Just write this code at the beginning of the
koBindings.js file.

ko.bindingHandlers.toggle = {
 init: function (element, valueAccessor) {
 var value = valueAccessor();
 ko.applyBindingsToNode(element, {
 click: function () {
 value(!value());
 }
 });
 }
};

www.allitebooks.com

http://www.allitebooks.org

Custom Bindings and Components

[58]

In this case, we don't need to use the update method because we set all the behavior
when we initialize the binding. We use the ko.applyBingidsToNode method to
link the click function to the element. The applyBindingsToNode method has
the same behavior as applyBindings but we set a context, a node from the DOM
where the bindings are applied. We can say that applyBindings is an alias of
applyBindingsToNode($('body'), viewmodel).

Now we can use this binding in our application. Update the showCartDetails
button inside the views/header.html template. Remove the following code:

<button class="btn btn-primary btn-sm"
 data-bind="click:showCartDetails,
 css:{disabled:cart().length < 1}">Show Cart Details
</button>

Update the code for the following button:

<button class="btn btn-primary btn-sm"
 data-bind="toggle:visibleCart,
 css:{disabled:cart().length < 1}">

 Cart Details
</button>

Now we don't need the showCartDetails and hideCartDetails methods any more
and we can attack the visibleCart variable directly with the toggle binding.

With this simple binding, we have removed two methods of our code and we have
created a reusable code that doesn't depend on our cart view-model. Because of that
you can reuse the toggle binding in every project you want, as it doesn't have any
external dependencies.

We should also update the cart.html template:

<button type="button" class="close pull-right"
 data-bind="toggle:visibleCart">×</button>

Once we have made this update, we realize that there is no need to use
hideCartDetails anymore. To remove it definitively, follow these steps:

1. In the finishOrder function, remove the following line:
hideCartDetails();

2. Add the following line:
visibleCart(false);

There is no need to keep a function that manages just a single line of code.

Chapter 3

[59]

The currency binding
The other useful utility that custom bindings offer is the option of formatting the
data of the node they are applied to. For example, we can format the currency fields
of our cart.

Add this binding just below the toggle binding:

ko.bindingHandlers.currency = {
 symbol: ko.observable('$'),
 update: function(element, valueAccessor, allBindingsAccessor){
 return ko.bindingHandlers.text.update(element,function(){
 var value = +(ko.unwrap(valueAccessor()) || 0),
 symbol = ko.unwrap(allBindingsAccessor().symbol !==
 undefined? allBindingsAccessor().symbol:
 ko.bindingHandlers.currency.symbol);
 return symbol +
 value.toFixed(2).replace(/(\d)(?=(\d{3})+\.)/g, "$1,");
 });
 }
};

Here we are not going to initialize anything because the initial state and the update
behavior is the same. As a must, when the init and the update method do the same
thing, just use the update method.

In this case, we are going to return the number with the format we want. First we use
the built-in binding called text to update the value of our element. This binding gets
the element and a function that indicates how to update the text inside this element. In
the local variable value, we are going to write the value that is inside valueAccessor.
Remember that valueAccessor can be an observable; this is why we use the unwrap
method. We should do the same with the symbol binding. The symbol is another
binding that we use to set the currency symbol. We don't need to define it because this
binding does not have a behavior and is just a write/read binding. We can access it
using allBindingsAccesor. Finally, we return the value of joining the two variables
and set a regular expression to convert the value in a formatted currency.

We can update the price binding in the catalog and the cart template:

<td data-bind="currency:price, symbol:'€'"></td>

Custom Bindings and Components

[60]

We can set the symbol we want and the price will be formatted as: €100, or if we set
the symbol $ or empty we will see $100 (if the price value is 100).

Currency custom binding

Notice how easy it is to add more and more useful bindings to increase the power
of Knockout.

Debug the container with the $root context displayed

Create a binding to debug – the toJSON
binding
When we develop our project, we make mistakes and we find unexpected behaviors.
The Knockout view-model is hard to read because we don't have plain objects,
we have observables. Because of this, maybe it's useful to have a method and a
container inside our application that shows us the state of the view-model during
the development process. This is why we are going to build a toJSON binding that
becomes our view-model into a plain JSON object that we can show into the screen
or in our console.

ko.bindingHandlers.toJSON = {
 update: function(element, valueAccessor){

Chapter 3

[61]

 return ko.bindingHandlers.text.update(element,function(){
 return ko.toJSON(valueAccessor(), null, 2);
 });
 }
};

We have used the ko.toJSON object to convert the value we get into a JSON object.

This function has the same interface that the native JSON.stringify function has.
It gets three parameters as arguments:

The first parameter is the object we want to convert into a plain JSON object.

The second one is the replacer parameter. It can be a function or an array. It should
return the value that should be added to the JSON string. For more information on
the replace parameter, please refer the following link:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_
native_JSON#The_replacer_parameter

The last one represents the spaces that should be applied to the prettified result. So
in this case, we are saying that we are going to convert the object contained in the
valueAccesor() method, using no replacement function and it will be indented
with two spaces.

To see it in action, we should put this line at the end of the element that has the
container-fluid class:

<pre class="well well-lg" data-bind="toJSON: $root"></pre>

Now inside this <div> tag, we can see the $root context as a JSON object. The $root
context is the top of our entire Knockout context, so we can see all our view-models
inside this box.

For this to work on older browsers that have no native JSON serializer (for example,
IE 7 or earlier), you must also reference the json2.js library.

https://github.com/douglascrockford/JSON-js/blob/master/json2.js

You can read more about how Knockout converts observables into plain JSON at this
link: http://knockoutjs.com/documentation/json-data.html

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_native_JSON#The_replacer_parameter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_native_JSON#The_replacer_parameter
https://github.com/douglascrockford/JSON-js/blob/master/json2.js
http://knockoutjs.com/documentation/json-data.html

Custom Bindings and Components

[62]

Being semantic with our bindings
Sometimes we write code that seems easy to us, but when we look closely at it, we
realize that it isn't. For example, in Knockout, we have the visible built-in binding.
It's easy to think that if we want to hide something, we just need to write: data-
bind="visible:!isVisible" and you write this every time we want to hide
something. That is not clear enough. What do we want to express? That this element
should be hidden by default? That it should be visible when the variable is not visible?

The best approach is to write a binding that is called hidden. If you have a hidden
binding, you can write data-bind="hidden: isHidden"; this seems clearer, doesn't
it? This binding is easy, let's have a look at the following code:

ko.bindingHandlers.hidden = {
 update: function (element, valueAccessor) {
 var value = ! ko.unwrap(valueAccessor());
 ko.bindingHandlers.visible.update(element, function () {
 return value;
 });
 }
};

We just use the visible type of bindingHandler to change the value of the
valueAccessor method. So we have built a more semantic binding.

Look how powerful and extensible Knockout is. We can build more and more
behaviors. For example, if we want to practice with custom bindings, we can create
our own image binding that receives an array of photos instead of just one and we
can create a carousel. We can create our own link binding that helps us to navigate
inside our application. The possibilities are endless.

Now, let's see how to integrate a jQuery plugin into our bindings.

Wrapping a jQuery plugin into a custom
binding
Knockout is compatible with jQuery. Actually, there is no need to wrap a jQuery
plugin into a binding. It will work because Knockout and jQuery are compatible
with each other. However, as we mentioned earlier, jQuery is a DOM manipulation
library, so we will need to set an ID to locate the element we want to apply the
plugin to, and this will create a dependency. If we wrap the plugin inside a
custom binding, we can access the element and its value with the element and
valueAccessor parameters and we can pass everything we need with the help of the
allBindings object.

Chapter 3

[63]

We are going to integrate a simple plugin called iCheck that will give us a cool
theme for our checkboxes.

First download the iCheck plugin and set the iCheck.js file inside the js folder.
Then save the skins folder inside the css folder. The download link for the iCheck
plugin is as follows:

https://github.com/fronteed/iCheck/archive/2.x.zip

Link both the css and javascript files with the index.html file:

<link rel="stylesheet" type="text/css"
 href="css/iCheck/skins/all.css"><!-- set it just below bootstap
 -->
<script type="text/javascript"
 src="js/vendors/icheck.js">
</script><!-- set it just below jquery -->

Now we need to initialize the plugin and update the value of the element. In this
case, the init and update methods are different. So we need to code what happens
when the binding starts working and what happens when the value is updated.

.

Add iCheck to our project

https://github.com/fronteed/iCheck/archive/2.x.zip

Custom Bindings and Components

[64]

The iCheck plugin works just giving a style to our checkboxes. Now the problem is
that we need to link this plugin with our element.

The basic behavior of iCheck is $('input [type=checkbox]').icheck(config).
When the value of the checkbox changes, we need to update the value of our
binding. Fortunately, iCheck has events to detect when the value changes.

This binding is going to manage just the iCheck behavior. This means that the value
of the observable is going to be handled by another binding.

It makes sense that we use the checked binding. Use these two bindings separately
so that the iCheck binding manages presentation and the checked binding manages
value behavior.

In the future, we can remove the icheck binding or use another binding for
presentation and the checkbox will still work properly.

Following the init convention we saw in the first part of the chapter, we are going
to initialize the plugin and set the events inside the init method. In the update
method, we are going to update the value of the checkbox when the observable
handled by the checked binding changes.

Notice that we use the allBindingsAccesor object to get the value of the
checked binding:

ko.bindingHandlers.icheck = {
 init: function (element, valueAccessor, allBindingsAccessor) {
 var checkedBinding = allBindingsAccessor().checked;
 $(element).iCheck({
 checkboxClass: 'icheckbox_minimal-blue',
 increaseArea: '10%'
 });
 $(element).on('ifChanged', function (event) {
 checkedBinding(event.target.checked);
 });
 },
 update: function (element,valueAccessor, allBindings) {
 var checkedBinding = allBindingsAccessor().checked;
 var status = checked?'check':'uncheck';
 $(element).iCheck(status);
 }
};

Now we can use this to create cool checkboxes in our app in an isolated way. We are
going to hide and show our search box with this plugin.

Chapter 3

[65]

Add this just below the Show Cart Details / Hide Cart Details button in the
header.html template:

<input type="checkbox" data-bind="icheck, checked:showSearchBar"/>
 Show Search options

Then go to the catalog.html file and add a visible binding in the search bar
as follows:

<div class="input-group" data-bind="visible:showSearchBar">

 <i class="glyphicon glyphicon-search"></i> Search

 <input type="text" class="form-control"
 data-bind="textInput:searchTerm">
</div>

Add the variable to the view-model, and also set it in the return statement, as we
have done with all the other variables:

var showSearchBar = ko.observable(true);

Now you can see a cool checkbox that allows the user to show and hide the
search bar:

Components – isolated view-models
Custom bindings are powerful but sometimes we need more powerful behaviors.
We want to create an isolated element that behaves as a black box for the rest of the
application. These kind of elements are called components. A component has its own
view-model and template. It also has its own methods and events also we can say
that it is an application by itself. Of course we can use dependency injection to link
our component with our main application view-model, but a component can work
with every application that gives it the right data.

Custom Bindings and Components

[66]

We can build complex components such as tables, charts, and everything you can
imagine. To learn how to build a component, you can build a simple one. We are
going to build an add-to-cart button. This is a component that links our catalog
and our cart, so that with this component we can isolate our catalog and our cart.
They will be linked through this component, which is just a button that receives
the cart and the item of the catalog and will have all the logic to insert the item to
the cart. This is very useful because the cart doesn't need to care about inserted
items and neither does the catalog. Also, if you need to do some logic before or after
inserting the item, you can do it in an isolated scope.

Components have isolated view-models that interact with the main application

The basic structure of a component is as follows:

ko.components.register('component-name', {
 viewModel: function(params) {
 // Data: values you want to initilaize
 this.chosenValue = params.value;
 this.localVariable = ko.observable(true);
 // Behaviors: functions
 this.externalBehaviour = params.externalFunction;
 this.behaviour = function () { ... }
 },

Chapter 3

[67]

 template:
 '<div>All html you want</div>'
});

With the help of this schema, we are going to build our add-to-cart button. Create
a file called components.js inside the custom folder and write this:

ko.components.register('add-to-cart-button', {
 viewModel: function(params) {
 this.item = params.item;
 this.cart = params.cart;

 this.addToCart = function() {
 var data = this.item;
 var tmpCart = this.cart();
 var n = tmpCart.length;
 var item = null;

 while(n--) {
 if (tmpCart[n].product.id() === data.id()) {
 item = tmpCart[n];
 }
 }

 if (item) {
 item.addUnit();
 } else {
 item = new CartProduct(data,1);
 tmpCart.push(item);
 item.product.decreaseStock(1);
 }

 this.cart(tmpCart);
 };
 },
 template:
 '<button class="btn btn-primary"
 data-bind="click:addToCart">
 <i class="glyphicon glyphicon-plus-sign"></i> Add
 </button>'
});

Custom Bindings and Components

[68]

We send the item we want to add to the cart and the cart itself as parameters and
define the addToCart method. This method is the one we use in our view-model but
is now isolated inside this component, so our code becomes cleaner. The template is
the button to add items that we had in our catalog.

Now we can update our catalog lines as follows:

<tbody data-bind="{foreach:catalog}">
 <tr data-bind="style:{color:stock() < 5?'red':'black'}">
 <td data-bind="{text:name}"></td>
 <td data-bind="{currency:price, symbol:''}"></td>
 <td data-bind="{text:stock}"></td>
 <td>
 <add-to-cart-button params=
 "{cart: $parent.cart, item: $data}">
 </add-to-cart-button>
 </td>
 </tr>
</tbody>

Advanced techniques
In this section, we are going to speak about some advanced techniques. We are not
going to add them to our project because there is no need, but it's good that we know
we can use these methods if our application requires it.

Controlling descendant bindings
If our custom binding has nested bindings, we can tell our binding whether
Knockout should apply bindings or we should control how these bindings will be
applied. We just need to return { controlsDescendantBindings: true } in the
init method.

ko.bindingHandlers.allowBindings = {
 init: function(elem, valueAccessor) {
 return { controlsDescendantBindings: true };
 }
};

Chapter 3

[69]

This code is telling Knockout that the binding called allowBindings is going to
handle all the descendant bindings:

<div data-bind="allowBindings: true">
 <!-- This will display 'New content' -->
 <div data-bind="text: 'New content'">Original content</div>
</div>
<div data-bind="allowBindings: false">
 <!-- This will display 'Original content' -->
 <div data-bind="text: 'New content'">Original content</div>
</div>

If we want to extend the context with new properties, we can extend the
bindingContext property with new values. Then we only need to use
ko.applyBindingsToDescendants to update the view-model of its children. Of
course we should tell the binding that it should control the descendant bindings. If
we don't, they will be updated twice.

ko.bindingHandlers.withProperties = {
 init: function(element, valueAccessor, allBindings, viewModel,
 bindingContext) {
 var myVM = { parentValues: valueAccessor, myVar: 'myValue'};
 var innerBindingContext = bindingContext.extend(myVM);
 ko.applyBindingsToDescendants(innerBindingContext, element);
 return { controlsDescendantBindings: true };
 }
};

Here we are not creating a child context. We are just extending the parent context. If
we want to create child contexts to manage descendant nodes and have the ability
to use the $parentContext magic variable to access our parent context, we need to
create a new context using the createChildContext method.

var childBindingContext = bindingContext.createChildContext(
 bindingContext.$rawData,
 null, //alias of descendant item ($data magic variable)
 function(context) {
 //manage your context variables
 ko.utils.extend(context, valueAccessor());
 });
ko.applyBindingsToDescendants(childBindingContext, element);
return { controlsDescendantBindings: true }; //Important to not
 bind twice

Custom Bindings and Components

[70]

Now we can use the magic variables inside our child nodes:

<div data-bind="withProperties: { displayMode: 'twoColumn' }">
 The outer display mode is <span data-bind="text:
 displayMode">.
 <div data-bind="withProperties: { displayMode: 'doubleWidth' }">
 The inner display mode is <span data-bind="text:
 displayMode">, but I haven't forgotten
 that the outer display mode is <span data-bind="text:
 $parentContext.displayMode">.
 </div>
</div>

By modifying binding contexts and controlling descendant bindings, you have a
powerful and advanced tool to create custom binding mechanisms of your own.

Using virtual elements
Virtual elements are custom bindings that are allowed to use Knockout comments.
You just need to tell Knockout that our binding is allowed to be virtual.

ko.virtualElements.allowedBindings.myBinding = true;
ko.bindingHandlers.myBinding = {
 init: function () { ... },
 update: function () { ... }
};

To add our binding to the allowed virtual elements, we write this:

<!-- ko myBinding:param -->
<div></div>
<!-- /ko

Virtual elements have an API to manipulate the DOM. You can use jQuery to
manipulate virtual elements because one of the advantages of Knockout is that
it is fully compatible with DOM libraries, but we have a complete API of virtual
elements in the Knockout documentation. This API allows us to perform the kinds
of transformations needed when implementing control flow bindings. For more
information on custom bindings for virtual elements, please refer the following link:

http://knockoutjs.com/documentation/custom-bindings-for-virtual-
elements.html

http://knockoutjs.com/documentation/custom-bindings-for-virtual-elements.html
http://knockoutjs.com/documentation/custom-bindings-for-virtual-elements.html

Chapter 3

[71]

Preprocessing data before binding
We are able to preprocess data or nodes before the binding will be applied. This
could be useful to format data before it is displayed or add new classes or behaviors
to our nodes. You can also set default values, for example. We just need to use
the preprocess and preproccessNode methods. Using the first method, we can
manipulate the value of our binding. With the second one, we can manipulate the
DOM element (template) of our binding as follows:

ko.bindingHandlers.yourBindingHandler.preprocess = function(value)
 {
 ...
};

We can manipulate DOM nodes using the hook preprocessNode. This hook is
thrown each time we process a DOM element with Knockout. It does not bind to a
concrete binding. It is fired to all processed nodes, so you need a mechanism to locate
the node you want to manipulate.

ko.bindingProvider.instance.preprocessNode = function(node) {
 ...
};

Summary
In this chapter, you have learned how to extend Knockout using custom bindings
and components. Custom bindings extend the options we can use inside the
data-bind attribute and give us the power to make our code more readable,
isolating DOM and data manipulation inside them. On the other hand, we have
components. Components have their own view-model. They are an isolated
application themselves. They help us to build complex applications through small
pieces of code that interact with each other.

Now that you know how to split applications into small pieces of code, in the next
chapter, you are going to learn how to use events in an unobtrusive way and how
to extend observables to increase the performance and capabilities of Knockout.

To download the code from this chapter, go to the GitHub repository at
https://github.com/jorgeferrando/knockout-cart/tree/chapter3.

https://github.com/jorgeferrando/knockout-cart/tree/chapter3

Managing
KnockoutJS Events

Interaction between our app and the user is the most important issue we need to
resolve. In the last three chapters, we have focused on the business requirements, so
now it is time to think about how to make it easy to use our app to the end user.

Event-driven programming is a powerful paradigm that allows us to isolate our
code better. KnockoutJS gives us several ways to work with events. We can use click
binding or event binding if we want to use the declarative paradigm.

There are two different paradigms to declare events. The declarative paradigm says
that we can write JavaScript and custom tags in our HTML. On the other hand, we
have the imperative paradigm that tells us that we should isolate JavaScript code
from HMTL markup. For this purpose, we can use jQuery to write unobtrusive
events and also custom ones. We can wrap custom events using bindingHandlers in
order to reuse them along our applications.

Event-driven programming
When we use sequential programming to write our apps, we know exactly how our
app is going to behave. We usually use this kind of programming paradigm when
our app has no interaction with external agents. In web development, we need to use
the event-driven programming paradigm because it is the end user who is going to
lead the flux of the application.

Even though we haven't talked about events earlier, we know what they are because
we have been using one of the most important events in web development, the
click event.

Managing KnockoutJS Events

[74]

There are many events that users can throw. A click event, as we mentioned earlier,
is where the user can press a key on the keyboard; we can also receive events from
the computer like the ready event to notify us that DOM elements are all loaded.
Nowadays we also have touch events, if our screen is touchable.

We can also define our custom events. This is useful if we want to communicate
to entities but we don't want to create a dependency between them. For example,
suppose we want to add items to our cart. Now the responsibility to add items to our
cart lies with the view-model. We can create a Cart entity that encapsulates all cart
behavior: add, edit, delete, show, hide, and so on. If we begin to write in our code:
cart.add, cart.delete or cart.show, our application will depend on the cart
object. If we create events inside our application, we just need to trigger them and
forget about what is going to happen, as the event handler will manage it for us.

Event-driven programming allows us to reduce coupling but also reduces cohesion.
We should choose in which grade you want to maintain your code readable. Event-
driven programming is sometimes a good solution, but there is one rule we should
always follow: KISS (Keep It Simple, Stupid). So if an event is an easy solution, get it.
If events just increase lines in the code and don't give us a better result, maybe you
should consider dependency injection as a better approach.

Event-driven programming workflow

The click event
We have been using the click binding in the last three chapters. In this one, you are
going to learn more about this event. The click event is the basic event that users use
to interact with an application since the mouse has been the peripheral par excellence
(also the keyboard).

Chapter 4

[75]

You must have learned that if you attach a function to the click binding, this function
is fired with the click event. The problem is that in Knockout the click event doesn't
accept parameters. The arguments of our click function are predefined, as far as
we know.

Passing more parameters
As we have mentioned, the function we bind to the click event has a predefined
signature: function functionName(data, event){...}, and both the parameters
are already assigned: data is the data bound to the element and event is the click
event object. So what happens if we want to pass more parameters? We have three
solutions, which are as follows:

• The first one is to bind the parameters in the view-model:
function clickEventFunctionWithParams(p1, p2, data, event) {
 //manageEvent
}

function clickEventFunction(data, event) {
 clickEventFunctionWithParams('param1', 'param2', data, event);
}

• The second option is to write the function inline. This is interesting if we
want to pass the parameters directly from context objects in the template.
<button data-bind="click: function(data, event) {
 clickEventFunctionWithParams($parent.someVariable,
 $root.otherVariable, data, event);
}">Click me</button>

• Our third and final solution is a variant of the second one but more elegant:

<button data-bind="
 click: clickEventFunctionWithParams.bind($data, 'param1',
 'param2')"
>Click me</button>

We can use the one that best approximates our needs. For example, if the parameters
we want to pass are constants or observables from the view-model, we can use the
first one. But if we need to pass context variables, such as $parent, we can use the
last one.

The bind function is native to JavaScript. It creates another function using $data as
its context and then applies the rest of the arguments to itself. You will find more
information at https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Function/bind.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind

Managing KnockoutJS Events

[76]

Allowing the default click action
By default, KnockoutJS prevents the default action on click. This means that if
you use the click action in an anchor tag (<a>), the browser will run the action
we have linked and will not navigate to the link's href. This default behavior is
useful because if you use a click binding, it is usually because you want to perform
a different action. If you want to allow the browser to run the default action, just
return true at the end of your function:

function clickEventFunction(data, event) {
 //run your code...

 //it allows to run the default behavior.
 //In anchor tags navigates to href value.
 return true;
}

Event bubbling
By default, Knockout allows the click event to continue to bubble up to any higher
level event handlers. If your element has a parent that also handles the click event,
you will fire both functions. To avoid the bubbling event, you need to include an
additional binding that is named clickBubble and you should set it to false.

<button data-bind="{
 click: clickEventFunction,
 clickBubble: false
}">Click me</button>

Event-bubbling workflow

Chapter 4

[77]

Event types
There are many types of events that a browser can throw. You can find a complete
reference at https://developer.mozilla.org/en-US/docs/Web/Events.

As we know, each browser has its own set of instructions; therefore, we can classify
events into the following groups:

• Standard events: These events are defined in official Web specifications, and
should be common across browsers.

• Non-standard events: These events are defined for each browser engine
specifically.

• Mozilla-specific events: These events are used in add-ons development and
include the following:

 ° Add-on-specific events
 ° XUL events

Event binding
To catch and handle all these different events, Knockout has the event binding. We
are going to use it to show and hide the debug panel when the mouse goes over and
out of text, with the help of the following code:

1. The first update of the index.html template is as follows. Replace the debug
div with this new HTML:
<div data-bind="event: {
 mouseover:showDebug,
 mouseout:hideDebug
}">
 <h3 style="cursor:pointer">
 Place the mouse over to display debug
 </h3>
 <pre class="well well-lg" data-bind="visible:debug,
 toJSON: $root"></pre>
</div>

This code says that when we set the mouse over the div element, we will
show the debug panel. Initially, only the h3 tag content will be displayed.

https://developer.mozilla.org/en-US/docs/Web/Events

Managing KnockoutJS Events

[78]

2. When we set the mouse over the h3 tag, we will update the debug variable
value and the debug panel will be displayed. To achieve this, we need to
update our view-model with this code:
var debug = ko.observable(false);

var showDebug = function () {
 debug(true);
};

var hideDebug = function () {
 debug(false);
};

3. Then we need to update our interface (the return value of our view-model).

return {
 debug: debug,
 showDebug:showDebug,
 hideDebug:hideDebug,
 searchTerm: searchTerm,
 catalog: filteredCatalog,
 cart: cart,
 newProduct: newProduct,
 totalItems:totalItems,
 grandTotal:grandTotal,
 addProduct: addProduct,
 addToCart: addToCart,
 removeFromCart:removeFromCart,
 visibleCatalog: visibleCatalog,
 visibleCart: visibleCart,
 showSearchBar: showSearchBar,
 showCartDetails: showCartDetails,
 hideCartDetails: hideCartDetails,
 showOrder: showOrder,
 showCatalog: showCatalog,
 finishOrder: finishOrder
};

Now when the mouse goes over the h3 tag, the debug panel will be showed. Try it!

Chapter 4

[79]

Unobtrusive events with jQuery
In the last few years, it has been a good practice to remove all JavaScript from HTML
templates. If we remove all JavaScript code from HTML templates and encapsulate
it in JavaScript files, we are doing imperative programming. On the other hand, if
we write JavaScript code or use components and bindings in HTML files, we are
using declarative programming. Many programmers don't like to use declarative
programming. They think this makes it more difficult for designers to work with
templates. We should note that designers are not programmers and they may not
understand JavaScript syntax. Besides, declarative programming splits related
code into different files and may make it difficult to understand how the entire
application works. Also, they point out that the two-way binding makes models
inconsistent because they are updated on the fly, without any validation. On the
other side, we have people who think that declarative programming makes code
more maintainable, modular, and readable, and say that if you use imperative
programming, you need to fill the markup with unnecessary IDs and classes.

There is no absolute truth. You should find the balance between both paradigms.
The declarative nature works great at removing regularly-used features and making
them simple. The foreach binding and its brothers, along with semantic HTML
(components), make the code easy to read and remove complexity. We'd have to
write on our own in JavaScript with selectors to interact with the DOM, and provide
a common platform for teams so they can focus on how the application works, and
not on how templates and models communicate with each other.

There are other frameworks such as Ember, React, or AngularJS that use declarative
paradigm with success, so it isn't such a bad idea after all. But if you feel more
comfortable defining events with jQuery, you are going to learn how to do it. We are
going to write the Confirm Order button in an unobtrusive way.

First of all, remove the data-bind attribute and add an ID to locate the button:

<button id="confirmOrderBtn" class="btn btn-primary btn-sm">
 Confirm Order
</button>

Now write this JavaScript code just over the applyBindings method:

$(document).on('click', '#confirmOrderBtn').click(function() {
 vm.showOrder();
});
ko.applyBindings(vm);

Both the methods are correct; it's the programmer who makes the decision about
which paradigm to choose.

Managing KnockoutJS Events

[80]

If we choose to write our events in a jQuery manner, it is also a good practice to join
all your events in files. If you don't have many events, you can have a file called
events.js, or if you have many events, you can have several files such as catalog.
events.js or cart.events.js.

Imperative paradigm versus declarative paradigm

Delegation pattern
When we work with a big amount of data, normal event handling can impact the
performance. There is a technique to improve the response time of the events.

When we link the event directly to the item, the browser creates an event for each
item. However, we can delegate the event to other elements. Usually, this element
can be the document or the parent of the element. In this case, we are going to
delegate it to the document that is the event for adding or removing one unit from a
product. The problem is that if we just define one event manager for all the products,
how do we set the product we are managing? KnockoutJS gives us some useful
methods to succeed in this, ko.dataFor and ko.contextFor.

1. We should update the cart-item.html file's add and remove buttons by
adding the add-unit and remove-unit classes respectively:

 <div class="btn-group-vertical">
 <button class="btn btn-default btn-xs add-unit">

Chapter 4

[81]

 <i class="glyphicon glyphicon-chevron-up"></i>
 </button>
 <button class="btn btn-default btn-xs remove-unit">
 <i class="glyphicon glyphicon-chevron-down"></i>
 </button>
 </div>

2. Then we should add two new events just below the Confirm Order event:
 $(document).on("click", ".add-unit", function() {
 var data = ko.dataFor(this);
 data.addUnit();
});

$(document).on("click", ".remove-unit", function() {
 var data = ko.dataFor(this);
 data.removeUnit();
});

3. Using the ko.dataFor method, we can get the same content we obtain
with $data if we were inside a KnockoutJS context. For more information
on unobstrusive event handlers, go to http://knockoutjs.com/
documentation/unobtrusive-event-handling.html

4. If we want to access the context, we should use ko.contextFor; as in this
example:

$(document).on("click", ".add-unit", function() {
 var ctx = ko.contextFor(this);
 var data = ctx.$data;
 data.addUnit();
});

http://knockoutjs.com/documentation/unobtrusive-event-handling.html
http://knockoutjs.com/documentation/unobtrusive-event-handling.html

Managing KnockoutJS Events

[82]

So if we have thousands of products, we continue to have only two event handlers
instead of thousands. The following diagram shows how the delegate pattern
improves performance:

The delegate pattern improves performance

Building custom events
Sometimes we need to make two or more entities of our application communicate
with each other, that are not related. For example, we want to keep our cart
independent of the application. We can create custom events to update it from
the outside and the cart will react to this event; applying the business logic that is
required.

We can split the event in two different events: the click and the action. So when we
click on the up arrow to add a product, we fire a new custom event that handles the
addition of a new unit, and the same to remove it. This give us more information about
what is happening in our application, and we realize that a general meaning event
such as click just gets the data and sends it to a more specialized event handler that
knows what to do with it. This means we can reduce the number of events to just one.

1. Create a click event handler at the end of the viewmodel.js file that throws
a custom event:
$(document).on("click", ".add-unit", function() {
 var data = ko.dataFor(this);
 $(document).trigger("addUnit",[data]);
});

Chapter 4

[83]

$(document).on("click", ".remove-unit", function() {
 var data = ko.dataFor(this);
 $(document).trigger("removeUnit, [data]);
});

$(document).on("addUnit",function(event, data){
 data.addUnit();
});
$(document).on("removeUnit",function(event, data){
 data.removeUnit();
});

Bold lines show how we should use the jQuery trigger method to emit a
custom event. Instead of focusing on the element that triggers an action,
custom events put the spotlight on the element being acted upon. That gives
us some benefits, such as clarity in the code because custom events have a
meaning about their behavior in their names (of course we can call an event
event1, but we don't like this practice, do we?).
You can read more about custom events and see some examples in
the jQuery documentation at http://learn.jquery.com/events/
introduction-to-custom-events/.

2. Now that we have defined our events, it is time to move all of them to an
isolated file. We call this file cart/events.js. This file will contain all the
events of our application.
//Event handling
(function() {
 "use strict";
 //Classic event handler
 $(document).on('click','#confirmOrder', function() {
 vm.showOrder();
 });
 //Delegated events
 $(document).on("click", ".add-unit", function() {
 var data = ko.dataFor(this);
 $(document).trigger("addUnit",[data]);
 });
 $(document).on("click", ".remove-unit", function() {
 var data = ko.dataFor(this);
 $(document).trigger("removeUnit, [data]);
 })
 $(document).on("addUnit",function(event, data){
 data.addUnit();

http://learn.jquery.com/events/introduction-to-custom-events/
http://learn.jquery.com/events/introduction-to-custom-events/

Managing KnockoutJS Events

[84]

 });
 $(document).on("removeUnit",function(event, data){
 data.removeUnit();
 });
})();

3. Finally, add the file to the end of the script section just below the
viewmodel.js script:
<script type="text/javascript"
 src="js/cart/events.js"></script>

We should notice that now the communication with the cart is done using events,
and we have no evidence that there is an object called cart. We just know that the
object we talk to has an interface that has two methods, addUnit and removeUnit.
We can change the object in the interface (HTML) and if we respect the interface, it
will work as we expect.

Events and bindings
We can wrap events and custom events inside bindingHandlers. Suppose we want
filter products just when we press the Enter key. This allows us to reduce the calls we
make to the filter method, and if we are making calls to the server, this practice can
help us reduce traffic.

Define the custom binding handler in the custom/koBindings.js file:

ko.bindingHandlers.executeOnEnter = {
 init: function (element, valueAccessor, allBindingsAccessor,
 viewModel) {
 var allBindings = allBindingsAccessor();
 $(element).keypress(function (event) {
 var keyCode = (event.which ? event.which : event.keyCode);
 if (keyCode === 13) {
 allBindings.executeOnEnter.call(viewModel);
 return false;
 }
 return true;
 });
 }
};

Chapter 4

[85]

Since this is an event, we should remember that event initialization can be set in the
init method itself. We catch the keypress event with jQuery and track the key that
has been pressed. The key code for the Enter key is 13. If we press the Enter key, we
will call the executeOnEnter binding value in the context of the view-model. That is
what allBindings.executeOnEnter.call(viewModel); does.

Then we need to update our view-model because our filtered catalog is a computed
observable that updates itself every time a key goes down. Now we need to
convert this computed observable into a simple observable array. So update your
filteredCatalog variable as follows:

//we set a new copy from the initial catalog
var filteredCatalog = ko.observableArray(catalog());

Realize the consequence of the following change:

var filteredCatalog = catalog();

We are not making a copy, but instead we are creating a reference. If we do it that
way, we will lose items when we filter the catalog, and we will not be able to get
them again.

Now we should create a method that filters the items of the catalog. The code for this
function is similar to the computed value we had in the previous version:

var filterCatalog = function () {
 if (!catalog()) {
 filteredCatalog([]);
 }
 if (!filter) {
 filteredCatalog(catalog());
 }
 var filter = searchTerm().toLowerCase();
 //filter data
 var filtered = ko.utils.arrayFilter(catalog(), function(item){
 var strProp = ko.unwrap(item["name"]).toLocaleLowerCase();
 if (strProp && (strProp.indexOf(filter) !== -1)) {
 return true;
 }
 return false;
 });
 filteredCatalog(filtered);
};

Managing KnockoutJS Events

[86]

Now add it to the return statement:

return {
 debug: debug,
 showDebug:showDebug,
 hideDebug:hideDebug,
 searchTerm: searchTerm,
 catalog: filteredCatalog,
 filterCatalog:filterCatalog,
 cart: cart,
 newProduct: newProduct,
 totalItems:totalItems,
 grandTotal:grandTotal,
 addProduct: addProduct,
 addToCart: addToCart,
 removeFromCart:removeFromCart,
 visibleCatalog: visibleCatalog,
 visibleCart: visibleCart,
 showSearchBar: showSearchBar,
 showCartDetails: showCartDetails,
 hideCartDetails: hideCartDetails,
 showOrder: showOrder,
 showCatalog: showCatalog,
 finishOrder: finishOrder
};

The last step is to update the search element inside the catalog.html template:

<div class="input-group" data-bind="visible:showSearchBar">

 <i class="glyphicon glyphicon-search"></i> Search

 <input type="text" class="form-control"
 data-bind="
 textInput: searchTerm,
 executeOnEnter: filterCatalog"
 placeholder="Press enter to search...">
</div>

Now, if you write in the search, the input items are not updated; however, when you
press Enter, the filter is applied.

Chapter 4

[87]

This is how our folder structure looks after inserting the new code:

Folder structure

Summary
In this chapter, you have learned how to manage events using Knockout and jQuery.
You have learned how to combine both technologies to apply different techniques
depending on the requirements of your project. We can use declarative paradigms
to combine event attaching, bindingHandlers and HTML markup, or we can isolate
events in the JavaScript code using jQuery events.

Managing KnockoutJS Events

[88]

In the next chapter, we will address the issue of communicating with the server. You
will learn how to validate the input from the user to be sure that we send clean and
proper data to the server.

Also we will go through mocking techniques to fake the data server-side. Using
mock libraries will help us to develop our frontend application without the necessity
for a full operative server. In order to send an AJAX request, we will get a very
simple server to run our application because browsers don't allow local
AJAX requests by default.

Remember that you can check the code for this chapter at GitHub:

https://github.com/jorgeferrando/knockout-cart/tree/chapter4

https://github.com/jorgeferrando/knockout-cart/tree/chapter4

Getting Data from the Server
We now have a cart application. To make it work as a real-world app, we need it to
get data from a server. However, this book is focused on how to develop a project
using KnockoutJS, not on how to configure and run a server.

Fortunately, this situation occurs in every project. Frontend developers begin to
work just with the data specification and without any backend servers.

In this chapter, we are going to build a fully-functional frontend communication
layer without a server at the backend. To succeed in this task, we are going to mock
our data layer with fake objects. When we remove the mock layer, our application
will be able to work with real data. This will help us to develop our applications
faster and safer: faster because we don't need to wait for a real server response, and
safer, because our data manipulation doesn't affect the real server.

REST services
In this chapter, you are going to learn how to make the frontend layer communicate
with the backend layer.

You are not building a simple web page. You are building a web application. This
means that your project does not only contain data to display to the user, along with
some anchors to click on and navigate. This web page also has a logic and model
layer behind, and this makes it more complex than a simple web page.

To communicate with the server the frontend uses web services. The W3C (short for
World Wide Web Consortium) defines a web service as a software system designed
to support interoperable machine-to-machine interaction over a network. There are
many protocols you can use to perform this interaction: SOAP, POX, REST, RPC, and
so on.

Getting Data from the Server

[90]

Nowadays in web development, RESTful services are most used. This is because the
REST (short for Representational State Transfer) protocol has some characteristics
that make it easy to use in such apps:

• They are based on URI
• Communication is made using internet media types (usually JSON, but it

could be XML or others)
• HTTP methods are standard: GET, POST, PUT, DELETE
• It is possible to use hyperlinks to reference the state of a resource

To understand these concepts, we are going to see some examples. Considering the
cart scenario, suppose you want to retrieve all your products, do the following:

1. Define the entry point to the API. RESTful protocol is URI based as:
http://mydomain.com/api/

2. Now you want to retrieve all your products, so define a URI that points to
this resource as:
http://mydomain.com/api/products

3. Since this is a retrieve operation, the HTTP header should contain the GET
method as follows:
GET /api/products HTTP/1.1

4. To take advantage of the HTTP protocol, you can send metadata in the
header; for example, the type of the data you are sending and the data you
want to receive, in the following manner:
'Content-Type': 'application/json' //what we send
Accept: 'application/json; charset=utf-8'//what we expect

5. The server will respond with some data in the expected format and some
information that usually comes within HTTP headers, like the status of the
operation: HTTP/1.1 200 OK. Following are the formats:

 ° 2xx, if all goes fine
 ° 4xx, if there is an error on the frontend
 ° 5xx, if there is an error on the server side

In case you want to update or delete an object, attach the ID of this object to the URI
and use the corresponding header. For example, to edit or delete a product, call this
URI using the proper method: PUT to edit and DELETE to remove. The server will
manage these requests properly looking for the information in the URI and headers,
for instance:

http://mydomain.com/api/products/1

Chapter 5

[91]

To know more about REST and RESTful services, refer to http://en.wikipedia.
org/wiki/Representational_state_transfer.

Defining CRUD
When you define a service to send and receive data, this object should usually
perform a minimum level of behavior. You can identify this behavior through the
acronym CRUD:

• Create (C): You need to send a message to the server with a new object to
persist it in a database. The HTTP POST verb is used for such requests.

• Retrieve (R): The service should be able to send a request to get a collection
of objects or just one specific object. The GET verb is used for such requests.

• Update (U): This is a request to update an object. By convention, the PUT verb
is used for such requests.

• Delete (D): This is a request to delete an object. The DELETE verb is used for
such requests.

More operations can be implemented, and sometimes you do not need to code all
CRUD methods. You should adapt your code to the application requirements and
define only operations that the application needs. Remember that writing more code
than the application needs means creating the possibility of writing more errors in
the code.

Singleton resources
In this application, we will refer to resources as objects that are related to the URI
contained in the API server. This means that to manage the /products URI we are
going to have a ProductResource object that will manage the CRUD operations for
this URI.

We will create this object as a singleton to guarantee that we have just one object
managing each URI in our application. For more information on singleton, refer to
http://en.wikipedia.org/wiki/Singleton_pattern.

Setting CRUD operations in the resource
We are going to define some services to define CRUD operations for our products
and orders. A common mistake that some developers make is setting CRUD
operations within model classes. Best practice says that it is better to separate models
and communication layers.

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Singleton_pattern

Getting Data from the Server

[92]

To prepare your project, create a folder called services. In this folder, store files that
will contain CRUD operations. Perform the following steps:

1. Create two files in the new folder. They represent two communication
services: OrderResource.js and ProductResource.js.

2. Open the ProductResource.js file and define basic CRUD operations
as follows:
var ProductResource = (function () {
 function all() {}
 function get(id) {}
 function create(product) {}
 function update(product) {}
 function remove(id) {}
 return {
 all: all,
 get: get,
 create: create,
 update: update,
 remove: remove
 };
})();

This is the skeleton of the CRUD service. You use the all and get methods
to define the retrieve operation. The all method will return all the products,
and get just the product with the ID passed as the parameter. The create
method will create a product and the update method will update a product.
The remove method will perform the delete operation. We call it remove
because delete is a reserved word in the JavaScript language.

3. To implement the body of these methods, use jQuery AJAX calls (http://api.
jquery.com/jquery.ajax/). Such requests to the server are asynchronous
and use a concept called promise (http://api.jquery.com/promise/). A
promise is just an object that will contain a value in the future. This value is
handled by using a callback function.

Promise diagram: a promise executes asynchronous code

http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/promise/

Chapter 5

[93]

4. To define the retrieve method, you need to define the configuration of the
AJAX request. Calling this method will return a promise. You can handle the
data contained inside this promise in the view-model in the following manner:
function all() {
 return $.ajax({
 dataType:'json',
 type: 'GET',
 url: '/products'
 });
}
function get(id) {
 return $.ajax({
 dataType:'json',
 type: 'GET',
 url: '/products/'+id
 });
}

5. Notice that you just need to define the type of response and endpoint that
the server has available to get the data (you can see more parameters in the
jQuery documentation provided earlier). Also complete the CREATE, UPDATE,
and DELETE methods. Remember to respect the verbs (POST, PUT, and DELETE).
function create(product) {
 return $.ajax({
 datatype:'json',
 type: 'POST',
 url: '/products',
 data: product
 });
}
function update(product) {
 return $.ajax({
 datatype:'json',
 type: 'PUT',
 url: '/products/'+product.id,
 data: product
 });
}
function remove(id) {
 return $.ajax({
 datatype:'json',
 type: 'DELETE',
 url: '/products/'+id
 });
}

Getting Data from the Server

[94]

Remember that you are building a REST API, so follow the conventions of the
architecture. This means that a URL for an entity should be named as a plural.

To get all products, use the /products URL. To get just one product, still use the
/products URL, but also add the ID of the product to the URI. For example, /
products/7 will return the product with the ID number 7. If the relationship
is deeper, for example, "the customer 5 has messages", define the route as /
customers/5/messages. If you want to read the message with ID 1 from user 5, use
/customers/5/message/1.

There are some cases where you can use singular names, such as /customers/5/
configuration/, because a user usually has just one configuration. It is up to you to
define when words should be pluralized. The only requirement is to be consistent.
If you prefer to use all names in the singular you can do so, there is no problem.
Pluralizing the name is just a convention, not a rule.

Using resources in the view-model
Now that we have created our product resource, we will use it in our view-model to
get our data back by following these steps:

1. First of all, link the ProductResource.js file in the index.html file,
as follows:
<script type='text/javascript'
 src='js/resources/ProductResource.js'></script>

Since the resource works asynchronously, you can't apply bindings at the
end of the file because the data may not be ready yet. Therefore, bindings
should be applied when the data has arrived.
To do this, create a method called activate. This method will be fired at the
end of the file, on the same line we called ko.applyBindings earlier, in the
following manner:

1. Take this line of code:
ko.applyBindings(vm);

2. Replace it with this one:
vm.activate();

2. Now define the activate method in the view-model:
var activate = function () {
 ProductResource.all().done(allCallbackSuccess);
};

Chapter 5

[95]

When you call the all method a jQuery promise is returned. To manage the
results of the promise, jQuery offers a promise API:

 ° .done(callback): This method is triggered when a promise is
resolved with success. This means that a status different from 5xx
or 4xx has been received.

 ° .fail(callback): You can use this method to handle a rejected
promise. It is triggered by 5xx and 4xx headers.

 ° .then(successCb, errorCb): This method gets two callbacks as
parameters. The first one is called if the promise is resolved and the
second one if the promise is rejected.

 ° .always(callback): The callback passed to this method runs in
both cases.

By using HTTP headers you avoid sending extra information in the body
response to know that you have got an error. It is important to know
about the protocol you are using (HTTP in this case) and try to use all its
advantages, in this case, the possibility of sending information in its header.

3. Now it is time to define the allCallbackSuccess method:
var allCallbackSuccess = function(response){
 catalog([]);
 response.data.forEach(function(item){
 catalog.push(
 Product (item.id, item.name, item.price, item.stock)
);
 });
 filteredCatalog(catalog());
 ko.applyBindings(vm);
};

A jQuery AJAX callback always has the response as the first parameter. In
this case, you get a JSON response with all the items in the catalog.
The first step is to initialize the catalog as an empty array. Once the catalog is
initialized, iterate over the collection of items. This collection is stored inside
a data object. It is a good practice to isolate data within other variables. This
is just in case you want to add metadata to the response. Once you have the
catalog ready, link it to the filteredCatalog method.

Getting Data from the Server

[96]

When you we have the initial data ready, that is the moment you can call the
ko.applyBindings method. If you call it outside the scope of callback you
can't be sure that the catalog will have all the items inside. This is because
resources perform operations asynchronously and that means that the code
is not executed sequentially. It is executed when the promise returned by the
resource has data available.

4. The last step is to run the activate method at the end of the file, as follows:
//ko External Template Settings
infuser.defaults.templateSuffix = '.html';
infuser.defaults.templateUrl = 'views';
vm.activate();

If we run our application, it will not work because there is no server to attend to our
requests. We will get a 404 error. To solve this problem, we are going to mock our
AJAX calls and data.

Making AJAX calls without a server behind will throw a 404 error

Using Mockjax to mock HTTP requests
Mocking data just means replacing the $.ajax calls with another function that
emulates its behavior. Mocking is a commonly-used technique when following a
test-driven development paradigm.

To mock jQuery AJAX calls, we are going to use a library called Mockjax. To install
Mockjax in the application, follow these steps:

1. Download the library from https://github.com/jakerella/jquery-
mockjax.

2. Save it into the vendors folder.
3. Add a reference in the index.html page, just after the jQuery library. To do

this, use the <script> tag, as shown here:
<script type='text/javascript'
 src='vendors/jquery.mockjax.js'></script>

https://github.com/jakerella/jquery-mockjax
https://github.com/jakerella/jquery-mockjax

Chapter 5

[97]

4. Create a folder called mocks and create a product.js file inside it.
5. In the product.js file, define a mock calling the $.mockjax function,

as follows:
$.mockjax({
 url: '/products',
 type: 'GET',
 dataType: 'json',
 responseTime: 750,
 responseText: []
});

In this definition, you are mocking the request called inside the
ProducResource.all() method. To define the mock you just need
to define these parameters:

 ° url: The URL you want to mock
 ° type: The type of request
 ° dataType: The kind of data you expect
 ° responseTime: The duration the response is going to take
 ° responseText: The body of the response

Generating mock data with MockJSON
Once you have mocked the HTTP call, you need to send some data in the response.
You have different possibilities:

• You can hand-write the data in the responseText attribute of the
$.mockjax call:
$.mockjax({
 url: '/products',
 type: 'GET',
 dataType: 'json',
 responseTime: 750,
 responseText: ['Here I can fake the response']
});

• You can use a function to generate the mock data:
$.mockjax({
 url: '/products',
 type: 'GET',
 dataType: 'json',
 responseTime: 750,

Getting Data from the Server

[98]

 response: function(settings) {
 var fake = 'We fake the url:'+settings.url;
 this.responseText = fake;
 }
});

• You can use a library that generates complex and random data in
the response.
This third option can be performed with a library called mockJSON. You
can download it from the GitHub repository at https://github.com/
mennovanslooten/mockJSON.
This library allows you to generate data templates to create random data.
This helps you to keep your fake data more realistic. You can see on the
screen many different kinds of data. This will help you to check more data
display possibilities, such as words that overflow inside containers or text
that is too long or too short and appears ugly on the screen.

 ° To generate a random element, define a mock template like this:

$.mockJSON.generateFromTemplate({
 'data|5-10': [{
 'id|1-100': 0,
 'name': '@PRODUCTNAME',
 'price|10-500': 0,
 'stock|1-9': 0
 }]
});

This template says that you want to generate between 5 and 10
elements that have the following structure:

 ° The ID will be a number between 1 and 100
 ° The product name will be a value stored in the PRODUCTNAME

array
 ° The price will be a number between 10 and 500
 ° The stock will be a number between 1 and 9
 ° To generate the product name array, you just need to add an

array or a function to the $.mockJSON.data object, as follows:

$.mockJSON.data.PRODUCTNAME = [
 'T-SHIRT', 'SHIRT', 'TROUSERS', 'JEANS',
 'SHORTS', 'GLOVES', 'TIE'
];

https://github.com/mennovanslooten/mockJSON
https://github.com/mennovanslooten/mockJSON

Chapter 5

[99]

You can generate any kind of data you can imagine. Just create a function
and return an array with the values you want to generate, or define a
function that generates a random result, a number, a unique ID,
and so on.

 ° To return this as a response, attach this template to the response text.
Your code should look like this:

$.mockJSON.data.PRODUCTNAME = [
 'T-SHIRT', 'SHIRT', 'TROUSERS', 'JEANS', 'SHORTS',
 'GLOVES', 'TIE'
];
$.mockjax({
 url: '/products',
 type: 'GET',
 dataType: 'json',
 responseTime: 750,
 status:200,
 responseText: $.mockJSON.generateFromTemplate({
 'data|5-5': [{
 'id|1-100': 0,
 'name': '@PRODUCTNAME',
 'price|10-500': 0,
 'stock|1-9': 0
 }]
 })
});

Add the mocks/product.js file at the end of the index.html file with the <script>
tag and see how you get new random data each time you refresh the web page.

When a mock call is done, we see this message in the console

Getting Data from the Server

[100]

Retrieving a product by ID
To obtain just one product from our API, we are going to fake the get method of
ProductResource. The ProductResource.get method will be fired when we click
on the name of the product in the catalog list.

This URI has the product's ID in the last segment of the URI. This means that a
product with ID=1 will generate a URI like /products/1. A product with ID=2
will generate a URI like /products/2.

This implies, therefore, that we can't set the URL as a fixed string. We need to use
a regular expression.

If you need more information about regular expressions check this link:

https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Regular_
Expressions

In order to complete the code to retrieve a product, follow these steps:

1. Add a mockjax call to mock the URI. It should use the GET HTTP method.
Attach the regular expression to the url attribute, as follows:
$.mockjax({
 url: /^\/products\/([\d]+)$/,
 type: 'GET',
 dataType: 'json',
 responseTime: 750,
 responseText: ''
});

2. Create a template that returns a single product object. To generate a random
description you can use the @LOREM_IPSUM magic variable that will return
random text. It works in the same way you built the @PRODUCTNAME variable.
Let's create a template using the following code:
$.mockJSON.generateFromTemplate({
 'data': {
 'id|1-100': 0,
 'name': '@PRODUCTNAME',
 'price|10-500': 0,
 'stock|1-9': 0,
 'description': '@LOREM_IPSUM'
 }
})

https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Regular_Expressions

Chapter 5

[101]

3. Attach the following template to the responseText variable:
//URI: /products/:id
$.mockjax({
 url: /^\/products\/([\d]+)$/,
 type: 'GET',
 dataType: 'json',
 responseTime: 750,
 responseText: $.mockJSON.generateFromTemplate({
 'data': {
 'id|1-100': 0,
 'name': '@PRODUCTNAME',
 'price|10-500': 0,
 'stock|1-9': 0,
 'description': '@LOREM_IPSUM'
 }
 })
});

4. In the viewmodel.js file, create a method that uses the ProductResource
object to retrieve the product. The method will display an alert box when the
data becomes available.
var showDescription = function (data) {
 ProductResource.get(data.id())
 .done(function(response){
 alert(response.data.description);
 });
};

5. Bind the showDescription method to the catalog.html template:
<td><a href data-bind='click:$parent.showDescription,
 text: name'></td>

6. Expose the showDescription method in the view-model interface:
return {
 …
 showDescription: showDescription,
 …
};

Getting Data from the Server

[102]

7. Test how you get a description in the alert box.

Clicking on the product name will display the product description

Creating a new product
To create a product, follow the same steps as in the previous section:

1. Add an AJAX mock call in the mocks/product.js file:
$.mockjax({
 url: '/products',
 type:'POST',
 dataType: 'json',
 responseTime: 750,
 status:200,
 responseText: {
 'data': {
 text: 'Product created'
 }
 }
});

Chapter 5

[103]

You should keep in mind some considerations:

 ° You should use the POST verb to create an object. Actually, you can
use any verb you want, but as per the RESTful API conventions, the
POST verb is the one you should use to create new objects.

 ° The response text is a message that provides some information about
the result.

 ° The result itself is managed by the headers:
 ° If you get a 2xx value in the status, the done method is fired.
 ° If you get a 4xx or 5xx error, the fail method is called.

2. Go to the modelview.js file and update the addProduct function:
var addProduct = function (data) {
 var id = new Date().valueOf();
 var product = new Product(
 id,
 data.name(),
 data.price(),
 data.stock()
);

 ProductResource.create(ko.toJS(data))
 .done(function (response){
 catalog.push(product);
 filteredCatalog(catalog());
 newProduct = Product(new Date().valueOf(),'',0,0);
 $('#addToCatalogModal').modal('hide');
 });
};

Obviously, you can't send Knockout observables to the server. To convert objects
that contain observables into plain JSON objects, use the ko.to JS function.
This function iterates over the objects and extracts the value of each observable.

You can find information about ko.to JS and other methods at
http://knockoutjs.com/documentation/json-data.html.

Maybe you have noticed that when you add a new product, the stock goes down by
one. This is because when you use the ko.toJS function in the product it executes all
functions it has. So, to use it you should avoid methods that manipulate the object and
can change its values internally. We are going to solve this issue in the next section.

http://knockoutjs.com/documentation/json-data.html

Getting Data from the Server

[104]

Test that the application sends data when you call the addProduct method.

Adding new products uses the AJAX call; pay attention to URL and type fields

Separation of concerns – behavior
and data
We have found a problem in our application. When we use the ko.toJS function, the
result is not as expected. This is a common scenario in software development.

We have made a bad choice setting some logic in our models and we need to fix it.
To solve this problem, we are going to separate the data and these behaviors. We are
going to use some classes that we will call services.

Services will manage the logic of our models. This means that each model will have
a related service that will manage its state.

Chapter 5

[105]

Creating the product service
If you look in the models/product.js file, you can see that the model contains
some logic:

var hasStock = function () {
 return _product.stock() > 0;
};
var decreaseStock = function () {
 var s = _product.stock();
 if (s > 0) {
 s--;
 }
 _product.stock(s);
};

We are going to move this logic and some more to a service with the following steps:

1. Create a folder called services.
2. Inside it, create a file called ProductService.
3. Create a singleton object and add the hasStock and decreaseStock

functions, as follows:
var ProductService = (function() {
 var hasStock = function (product) {
 return product.stock() > 0;
 };

 var decreaseStock = function (product) {
 var s = product.stock();
 if (s > 0) {
 s--;
 }
 product.stock(s);
 };

 return {
 hasStock:hasStock,
 decreaseStock:decreaseStock
 };
})();

Getting Data from the Server

[106]

4. Update the add-to-cart-button component:
this.addToCart = function() {
 ...
 if (item) {
 CartProductService.addUnit(item);
 } else {
 item = CartItem(data,1);
 tmpCart.push(item);
 ProductService.decreaseStock(item.product);
 }
 this.cart(tmpCart);
};

Notice that you need also to create a service to manage the cart item logic.

Creating the CartProduct service
The cart item service also extracts the logic of the CartProduct model. To create this
service, follow these steps:

1. Create a file called CartProductService.js in the service folder.
2. Remove the addUnit and removeUnit methods from the CartProduct model.
3. Update the service with these methods:

var CartProductService = (function() {

 var addUnit = function (cartItem) {
 var u = cartItem.units();
 var _stock = cartItem.product.stock();
 if (_stock === 0) {
 return;
 }
 cartItem.units(u+1);
 cartItem.product.stock(--_stock);
 };

 var removeUnit = function (cartItem) {
 var u = cartItem.units();
 var _stock = cartItem.product.stock();
 if (u === 0) {
 return;
 }
 cartItem.units(u-1);

Chapter 5

[107]

 cartItem.product.stock(++_stock);
 };

 return {
 addUnit:addUnit,
 removeUnit:removeUnit
 };
})();

Updating a product
In our catalog, we will want to update the value of our product. To complete this
action, follow these steps:

1. First, to update a product you need to mock the URI that handles the action:
$.mockjax({
 url: /^\/products\/([\d]+)$/,
 type:'PUT',
 dataType: 'json',
 responseTime: 750,
 status:200,
 responseText: {
 'data': {
 text: 'Product saved'
 }
 }
});

2. Add a button in each row in the catalog.html view, in the same cell you
have the add-to-cart-button component:
<button class='btn btn-info' data-bind='click:
 $parent.openEditModal'>
 <i class='glyphicon glyphicon-pencil'></i>
</button>

3. Now, open a modal with the data of this product:
var openEditModal = function (product) {
 tmpProduct = ProductService.clone(product);
 selectedProduct(product);
 $('#editProductModal').modal('show');
};

4. The tmpProduct will contain a copy of the object you are going to edit:
Var tmpProduct = null;

Getting Data from the Server

[108]

5. The selectedProduct will contain the original product you are going
to edit:
Var selectedProduct = ko.observable();

6. Create the clone function in the ProductService resource:
var clone = function (product) {
 return Product(product.id(), product.name(),
 product.price(), product.stock());
};

7. Create the refresh function in the ProductService resource. This method
allows the service to refresh the product without losing the reference into
the cart.
var refresh = function (product,newProduct) {
 product.name(newProduct.name());
 product.stock(newProduct.stock());
 product.price(newProduct.price());
};

8. Add both methods to the service interface:
return {
 hasStock:hasStock,
 decreaseStock:decreaseStock,
 clone:clone,
 refresh: refresh
};

9. Create the edit-product-modal.html template to display the edit modal.
This template is a copy of the create-product-modal.html template. You
just need to update the form tag line, as follows:
<form class='form-horizontal' role='form'
 data-bind='with:selectedProduct'>

10. You also need to update the button bindings:
<button type='submit' class='btn btn-default'
 data-bind='click: $parent.cancelEdition'>
 <i class='glyphicon glyphicon-remove-circle'></i> Cancel
</button>
<button type='submit' class='btn btn-default'
 data-bind='click: $parent.updateProduct'>
 <i class='glyphicon glyphicon-plus-sign'></i> Save
</button>

Chapter 5

[109]

11. Now, define the cancelEditon and the saveProduct method:
var cancelEdition = function (product) {
 $('#editProductModal').modal('hide');
};
var saveProduct = function (product) {
 ProductResource.save(ko.toJS(product)).done(
 function(response){
 var tmpCatalog = catalog();
 var i = tmpCatalog.length;
 while(i--){
 if(tmpCatalog[i].id() === product.id()){
 ProductService.refresh(tmpCatalog[i],product);
 }
 }
 catalog(tmpCatalog);
 filterCatalog();
 $('#editProductModal').modal('hide');
 });
};

12. Finally, add these methods to the view-model API.

Now you can test how to update different values of the product.

Deleting a product
To delete a product, follow some simple steps as you did with the CREATE and
UPDATE methods.

1. The first step is to create the mocks in the mocks/products.js file,
as follows:
$.mockjax({
 url: /^\/products\/([\d]+)$/,
 type:'DELETE',
 dataType: 'json',
 responseTime: 750,
 status:200,
 responseText: {
 'data': {
 text: 'Product deleted'
 }
 }
});

Getting Data from the Server

[110]

2. This method is quite easy. Just add a button like the edit button and then the
action to remove it.
var deleteProduct = function (product){
 ProductResource.remove(product.id())
 .done(function(response){
 catalog.remove(product);
 filteredCatalog(catalog());
 removeFromCartByProduct(product);
 });
};

3. Create a function to remove the product from the cart. This function iterates
over the cart items and locates the cart item which is related to the removed
product. Once this item is located, you can remove it as a normal item using
the removeFromCart function:
var removeFromCartByProduct = function (product) {
 var tmpCart = cart();
 var i = tmpCart.length;
 var item;
 while(i--){
 if (tmpCart[i].product.id() === product.id()){
 item = tmpCart[i];
 }
 }
 removeFromCart(item);
}

4. Add a button in the catalog template next to the edit button:
<button class='btn btn-danger'
 data-bind='click: $parent.deleteProduct'>
 <i class='glyphicon glyphicon-remove'></i>
</button>

Chapter 5

[111]

Edit and delete buttons

Sending the order to the server
Once you can communicate with the server to manage our products, it's time to send
the order. For this purpose, follow these instructions:

1. Create a file named resources/OrderResource.js with this content:
'use strict';
var OrderResource = (function () {
 function create(order) {
 return $.ajax({
 type: 'PUT',
 url: '/order',
 data: order
 });
 }
 return {
 create: create
 };
})();

Getting Data from the Server

[112]

2. Mock the call by creating a file called mocks/order.js and adding this code:
$.mockjax({
 type: 'POST',
 url: '/order',
 status: 200,
 responseTime: 750,
 responseText: {
 'data': {
 text: 'Order created'
 }
 }
});

3. Update the finishOrder method in the viewmodel.js file:
var finishOrder = function() {
 OrderResource.create().done(function(response){
 cart([]);
 visibleCart(false);
 showCatalog();
 $('#finishOrderModal').modal('show');
 });
};

One of the requirements of our application is that the user has the option to update
personal data. We are going to allow the user to attach personal data to the order.
This is important because when we send an order, we need to know who is going
to receive it.

1. Create a new file in the models folder called Customer.js. It will contain the
following function that will generate a customer:
var Customer = function () {
 var firstName = ko.observable('');
 var lastName = ko.observable('');
 var fullName = ko.computed(function(){
 return firstName() + ' ' + lastName();
 });
 var address = ko.observable('');
 var email = ko.observable('');
 var zipCode = ko.observable('');
 var country = ko.observable('');
 var fullAddress = ko.computed(function(){
 return address() + ' ' + zipCode() + ', ' + country();
 });
 return {

Chapter 5

[113]

 firstName:firstName,
 lastName: lastName,
 fullName: fullName,
 address: address,
 email: email,
 zipCode: zipCode,
 country: country,
 fullAddress: fullAddress,
 };
};

2. Link it to the view-model:
var customer = Customer();

3. Create also an observable array to store the countries that are available
to sell:
var countries = ko.observableArray(['United States',
 'United Kingdom']);

4. Create a form in the order template to show a form to complete the
customer data:
<div class='col-xs-12 col-sm-6'>
 <form class='form-horizontal' role='form'
 data-bind='with:customer'>
 <div class='modal-header'>
 <h3>Customer Information</h3>
 </div>
 <div class='modal-body'>
 <div class='form-group'>
 <div class='col-sm-12'>
 <input type='text' class='form-control'
 placeholder='First Name'
 data-bind='textInput:firstName'>
 </div>
 </div>
 <div class='form-group'>
 <div class='col-sm-12'>
 <input type='text' class='form-control'
 placeholder='Last Name'
 data-bind='textInput:lastName'>
 </div>
 </div>
 <div class='form-group'>
 <div class='col-sm-12'>

Getting Data from the Server

[114]

 <input type='text' class='form-control'
 placeholder='Address'
 data-bind='textInput:address'>
 </div>
 </div>
 <div class='form-group'>
 <div class='col-sm-12'>
 <input type='text' class='form-control'
 placeholder='Zip code'
 data-bind='textInput:zipCode'>
 </div>
 </div>
 <div class='form-group'>
 <div class='col-sm-12'>
 <input type='text' class='form-control'
 placeholder='Email'
 data-bind='textInput:email'>
 </div>
 </div>
 <div class='form-group'>
 <div class='col-sm-12'>
 <select class='form-control' data-bind='options:
 $parent.countries,value:country'></select>
 </div>
 </div>
 </div>
 </form>
</div>

5. Send this information with the order request using the finishOrder method:
var finishOrder = function() {
 var order = {
 cart: ko.toJS(cart),
 customer: ko.toJS(customer)
 };
 OrderResource.create(order).done(function(response){
 cart([]);
 hideCartDetails();
 showCatalog();
 $('#finishOrderModal').modal('show');
 });
};

Chapter 5

[115]

Our AJAX communication is complete. Now you can add and remove the mocks/*.
js files from your project to get fake data or real data. While using this method,
you don't need to have a server running behind your application when you are
developing frontend issues.

Once personal data is provided you can close the order

Handling AJAX errors
We have built the happy path of our application. But in the real world an error can
occur during communication with the server. To manage this there are two ways:

• The fail method of the AJAX promise:
ProductResource.remove()
.done(function(){...})
.fail(function(response){
 console.error(response);
 alert("Error in the communication. Check the console!");
});

• A global AJAX error handler:

$(document).ajaxError(function(event,response) {
 console.error(response);
 alert("Error in the communication. Check the console!");
});

If you have a consistent error format, the global handler is a very good choice to
handle errors.

Getting Data from the Server

[116]

To test an error, update the status attribute of one mock from 200 to 404 or 501:

$.mockjax({
 url: /^\/products\/([\d]+)$/,
 type:"DELETE",
 dataType: "json",
 responseTime: 750,
 status:404,
 responseText: {
 "data": {
 text: "Product deleted"
 }
 }
});

Validating data
Now you can send and receive data, but what happens if the user sets some data that
is not allowed on the server? You have no control over user input. It is important
that if some values are not allowed, you alert the user to it. To validate Knockout
data, there is a library called Knockout Validation (which can be found at https://
github.com/Knockout-Contrib/Knockout-Validation) that makes this very easy.

This library extends the observables with some values that allow you to validate
the data when it changes. We are now going to update our models to add some
kind of validation.

Extending the product model
To validate our models using the Knockout Validation library, we are going to
extend our model's attributes. Extenders are a basic feature of Knockout. Using
extenders we can add some properties to our observables to increase their behavior.
For more information on extenders, please refer to the following link:

http://knockoutjs.com/documentation/extenders.html

We are going to extend our product model with some properties that will allow us to
validate data by following these steps:

1. Go to the models/Product.js file.
2. Update the name field. It should have at least three letters and should contain

just letters, numbers, and dashes:
_name = ko.observable(name).extend({

https://github.com/Knockout-Contrib/Knockout-Validation
https://github.com/Knockout-Contrib/Knockout-Validation
http://knockoutjs.com/documentation/extenders.html

Chapter 5

[117]

 required: true,
 minLength: 3,
 pattern: {
 message: 'Hey this doesn\'t match my pattern',
 params: '^[A-Za-z0-9 \-]+$'
 }
})

3. Update the price to allow just numbers, and set a range (maximum and
minimum values) for it:
_price = ko.observable(price).extend({
 required: true,
 number:true,
 min: 1
}),

4. Do the same with the stock:
_stock = ko.observable(stock).extend({
 required: true,
 min: 0,
 max: 99,
 number: true
})

5. Create a validation group to know when the full object is valid:
var errors = ko.validation.group([_name, _price, _stock]);

This error variable will contain an observable array. When this array has no
elements, all observables have a correct value.

6. In the add-to-catalog-modal.html template, enable the create button only
if all values in the product are valid:
<button type='submit' class='btn btn-default'
 data-bind='click:$parent.addProduct,
 enable:!errors().length'>
 <i class='glyphicon glyphicon-plus-sign'></i> Add Product
</button>

7. Add the same button to the edit-product-modal.html template:
<button type='submit' class='btn btn-default'
 data-bind='enable:!errors().length, click:
 $parent.saveProduct'>
 <i class='glyphicon glyphicon-plus-sign'></i> Save
</button>

Getting Data from the Server

[118]

8. If you want to set a style for the error messages, you just need to define CSS
rules for the validationMessage class, as follows. A span element will be
shown next to the element that is bound with the validated observable:
.validationMessage { color: Red; }

Extending the customer model
You also need to validate the customer data. These are the rules for validation:

• A first name is required
• A last name is required and it needs a minimum of three characters
• An address is required and it needs a minimum of five characters
• An e-mail address is required and must match the built-in e-mail pattern
• The zip code is required and must contain five numbers

To achieve this task, make some updates in the code, as follows:

1. Extend the customer object in the models/Customer.js file:
var firstName = ko.observable('').extend({
 required: true
});
var lastName = ko.observable('').extend({
 required: true,
 minLength: 3
});
var fullName = ko.computed(function(){
 return firstName() + ' ' + lastName();
});
var address = ko.observable('').extend({
 required: true,
 minLength: 5
});
var email = ko.observable('').extend({
 required: true,
 email: true
});
var zipCode = ko.observable('').extend({
 required: true,
 pattern: {
 message: 'Zip code should have 5 numbers',
 params: '^[0-9]{5}$'
 }
});

Chapter 5

[119]

var country = ko.observable('');
var fullAddress = ko.computed(function(){
 return address() + ' ' + zipCode() + ', ' + country();
});
var errors = ko.validation.group([firstName, lastName,
 address, email, zipCode]);

2. Enable the buy button if the customer data is completed and valid in the
order.html template:
<button class='btn btn-sm btn-primary'
 data-bind='click:finishOrder,
 enable:!customer.errors().length'>
 Buy & finish
</button>

3. Show the user information in the finish-order-modal.html template:
<div class='modal-body'>
 <h2>Your order has been completed!</h2>
 <p>It will be sent to:</p>
 <p>
 Name: <span data-bind='text:
 customer.fullName'>

 Address: <span data-bind='text:
 customer.fullAddress'>

 Email: <span data-bind='text:
 customer.email'>

 </p>
</div>

Validation messages that appear if information in the fields is not valid

Getting Data from the Server

[120]

Now our models are validated and we know that the data we are sending has
a valid format.

To view the complete code of the application, you can download the code of this
chapter from https://github.com/jorgeferrando/knockout-cart/tree/
chapter5.

Summary
In this chapter, you learned how to communicate with our application using jQuery
to perform AJAX calls. You also learned how easy it is to apply validation to our
models using the Knockout Validation library, which uses the extend method native
to Knockout to increase the behavior of observables.

You experienced one of the problems that KnockoutJS has: you need to serialize the
objects to send them to the server and you need to wrap them in observables when
they come from the server. To solve this, you have the ko.toJS method, but this
implies having objects without code that allows them to update their values.

In the next chapter, you will learn how to manage dependencies between files using
RequireJS and the module pattern.

https://github.com/jorgeferrando/knockout-cart/tree/chapter5
https://github.com/jorgeferrando/knockout-cart/tree/chapter5

The Module Pattern –
RequireJS

We can say now that our application has all the functionality we mentioned in the
Chapter 1, Refreshing the UI Automatically with KnockoutJS. What we have done in the
last four chapters is a very good approach to solving code design in small projects.
The code is tidy and the folder structure is also cohesive. The code is easy to read
and follow.

However, when projects begin to grow this approach is not enough. You need to
keep the code tidy, not just in the file and folder structure, but logically as well.

In this chapter, we are going to modularize our code to keep the different parts of our
application isolated and reusable. We will also see how to keep our context cleaner.

Now the project begins to look more complex. It is important to know the tools that
help you to debug the code when you find an error. In the first part of the chapter,
you will learn about tools that can help you to inspect your KnockoutJS code. You
will use a browser plugin (Chrome Extension) to analyze the code.

In the second part of the chapter, you will convert your files into modules. That
will help you to keep each part of the application isolated from the others. You
will use a pattern called 'dependency injection' to solve dependencies between
modules. Learn more about this pattern at http://en.wikipedia.org/wiki/
Dependency_injection.

In the last part, you will learn how to create modules following the Asynchronous
Module Definition (AMD) specification. To create modules following the AMD
specification, you will use a library called RequireJS. This library will manage all
dependencies between the different modules. For more about AMD, refer to
http://en.wikipedia.org/wiki/Asynchronous_module_definition.

http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/Asynchronous_module_definition

The Module Pattern – RequireJS

[122]

Installing the Knockout context debugger
extension
In the previous chapters, you created a simple debugger to show the state of your
view-model. This is very useful to see the state of our application quickly. With
the debug binding, you don't need to open the extension tools to check what is
happening to your data. But you often isolate just a part of the application or see
what is happening with the models bound to a DOM element.

In Google Chrome, you have a very good extension called KnockoutJS
context debugger, which can be downloaded from https://chrome.
google.com/webstore/detail/knockoutjs-context-debugg/
oddcpmchholgcjgjdnfjmildmlielhof.

This extension allows you to view the bindings of each DOM node and trace online
the changes in your view-model through the console. Install it and restart the
Chrome browser.

Check in chrome://extensions whether KnockoutJS context debugger has been installed

To check the context bound to your models, open Chrome Developer Tools by
pressing F12 and opening the Elements tab. You will see two panels. The left one has
the DOM schema. The right panel has different tabs. By default, the Styles tab opens.
Select the tab that says Knockout context. There, you should see all the bindings
added to the root context.

How to show a KnockoutJS context that is bound to a DOM element

https://chrome.google.com/webstore/detail/knockoutjs-context-debugg/oddcpmchholgcjgjdnfjmildmlielhof
https://chrome.google.com/webstore/detail/knockoutjs-context-debugg/oddcpmchholgcjgjdnfjmildmlielhof
https://chrome.google.com/webstore/detail/knockoutjs-context-debugg/oddcpmchholgcjgjdnfjmildmlielhof

Chapter 6

[123]

If you select a <tr> element from your catalog, you will navigate deeper into the
context and be inside the catalog item scope. You will not be able to see the $root
context; you will see the $data context. You can navigate up through the $parent
element or change the element in the DOM panel.

You can easily inspect item context inside foreach bindings

You can also see the ko object. This is a good way to navigate through the
Knockout API.

You can access the Knockout API and see methods, bindings, components, and so on

The Module Pattern – RequireJS

[124]

Now locate the KnockoutJS tab (it is in the same collection as the Elements tab).
Press the Enable Tracing button. This function allows you to follow real-time
changes in the view-model. Changes are painted in the console.

If you enable tracing, you can capture changes in the view-model through the console

Also, you can measure time and performance using the Timeline tab. You can see
how much time the application uses to render DOM elements when a change is
made in the model.

With tracing enabled, you can record events and obtain useful information

Now that you have learned about this plugin, we can delete (or keep, it's your
choice) the debug binding we built before.

Chapter 6

[125]

The console
The console is one of the most important tools for developers. You can use it to check
the state of our application while it is in use.

You can locate the JavaScript code and set breakpoints to check what is happening at
a particular point. You can do this by locating the JavaScript file in the Sources tab.
Just click the line you want to stop at. Then you can check the value of the variables
and run the code step by step. Also, you can write the word debugger in the code to
stop the program at this place.

You can set breakpoints in the code and check the values of variables

If you navigate to the Console tab you will see the console itself. There, you can
show information using the console.log function or check the console object
documentation to see the best method you can use at each moment (https://
developer.mozilla.org/en-US/docs/Web/API/Console).

If you write the word window in the console, you will see all the objects that are in the
global scope.

With the console, you can access variables in the current and global context

https://developer.mozilla.org/en-US/docs/Web/API/Console
https://developer.mozilla.org/en-US/docs/Web/API/Console

The Module Pattern – RequireJS

[126]

You can write the word vm (the view-model) to see the vm object we have created.

All components are set in the global scope

But you can also write Product or ProductService or anything we have created
and you will see it. When you have a lot of information, to have all your objects at
the top level can be chaotic. Defining namespaces and keeping a hierarchy is a good
practice to keep your components isolated. You should keep just an entry point to
the application.

The module pattern
This pattern allows us to focus on which part of the code is exposed out of the class
(public elements) and which parts of the code are hidden to the final user
(private elements).

This pattern is commonly used in JavaScript software development. It is applied in
popular libraries like jQuery, Dojo, and ExtJS.

This pattern has a very clear structure and is very easy to apply once you know how
to use it. Let's apply the module pattern in our application:

1. First, define the name of your module. If you define the module in different
files, it is important to define and initialize it applying a pattern that allows it
to be extensible. Using the || operator in the initialization indicates that the
ModuleName value will be assigned to itself if it has a value. If it hasn't got a
value it means that this is the first time it has been created, so assign to it a
default value—in this case an empty object:
var ModuleName;
ModuleName = ModuleName || {};

2. Then, define each component of the module. It can be a function, a variable,
or another module:
ModuleName.CustomComponent = function () {
};
ModuleName.CustomProperty = 10;
ModeleName.ChildModule = OtherModule;

Chapter 6

[127]

3. Finally, insert the dependencies of the module using the dependency
injection pattern. This pattern passes all module dependencies as parameters
and invokes the function immediately:
ModuleName.CustomComponent = (function (dependency){
 //Component code
})(dependency);

4. This how a complete module looks:
var ModuleName;
var ModuleName = ModuleName || {};
ModuleName.CustomComponent = (function(dependency){
 //Component code
})(dependency);

5. To define a component, return the component object. The first pattern to
define your component is to use the revealing module pattern. It consists of
returning an object to the end of the function that contains only the public
interface. These are singleton objects:
ModuleName.CustomComponent = (function(dependency){
 var somePrivateProperty = 1;
 var method1 = function(){
 dependency.methodFromDependency();
 };
 return {
 method1:method1,
 method2:method2
 }
})(dependency);

You can also define objects that can be instantiated using the new
operator: ModuleName.CustomComponent = (function(dependency){
 var component = function (a,b,c) {
 var somePrivateProperty=1;
 this.someMethod = function(){
 dependency.methodFromDependency()
 }
 this.otherMethod(){
 return a+b*c;
 }
 return this;
 }

 return component;
})(dependency);
//We can instantiate the component as an object
//var instance = new ModuleName.CustomComponent(x,y,z);

The Module Pattern – RequireJS

[128]

Creating the Shop module
To modularize our application, we are going to create a module called Shop that
will contain our entire application. This module will contain other submodules and
components. This hierarchical structure will help you to keep coherence in
your code.

As the first approach, group your components by file and by type. This means that
each component of the modules will be in a file and the files will be grouped by
type in a folder. For example, there is a folder named services. This means that all
services will be in this folder, and each service will be completely defined in one file.
As a convention, the components will have the same name as the file in which they
are, without the extension of course.

Actually, the files are already grouped by type so this is a job you don't need to do
again. We are going to focus our efforts on converting our files into modules.

The ViewModel module
We have just one view-model in our application. This is a component where we can
apply the singleton module approach.

We are going to carefully create our first module step by step:

1. Open the viewmodel.js file.
2. Define the Shop module, which is the top module of our application:

var Shop;

3. Initialize the Shop module by applying the extension pattern:
Shop = Shop || {};

4. Define the ViewModel component:
Shop.ViewModel = (function(){})();

5. Set the code from the unmodularized view-model version inside the module:
Shop.ViewModel = (function(){
 var debug = ko.observable(false);
 var showDebug = function () {
 debug(true);
 };

 var hideDebug = function () {
 debug(false);
 };

Chapter 6

[129]

 var visibleCatalog = ko.observable(true);
 // ... the rest of the code
 return {
 debug: debug,
 showDebug:showDebug,
 hideDebug:hideDebug,
 searchTerm: searchTerm,
 catalog: filteredCatalog,
....
 };
})();

6. You have not converted other files into modules, but you are now going to
add dependencies into the module:
Shop.ViewModel = (function (ko, Models, Services,
 Resources){
 //code of the module
})(ko, Shop.Models, Shop.Services, Shop.Resources);

7. At the end of the file, outside the module, initialize the template, validation,
and objects:

$(document).ajaxError(function(event,response) {
 console.error(response);
 alert("Error in the communication. Check the console!");
});

//ko External Template Settings
infuser.defaults.templateSuffix = ".html";
infuser.defaults.templateUrl = "views";

ko.validation.init({
 registerExtenders: true,
 messagesOnModified: true,
 insertMessages: true,
 parseInputAttributes: true
});
var vm = Shop.ViewModel;
vm.activate();

You need to update two methods in our view-model: the activate method
and the allCallbackSuccess method. The reason you need to update these
methods is because in the allCallbackSuccess method you need to run the
ko.applyBindings method, and allCallbackSuccess has no access to the this
object because it is out of the scope.

The Module Pattern – RequireJS

[130]

To solve this, we are going to use the same technique we used with the click binding
to attach more parameters. We are going to use the bind JavaScript method to bind
the allCallbackSuccess method to the this object. Therefore, we will be able to run
the ko.applyBindings using the this object as done in the following code:

var allCallbackSuccess = function(response){
 catalog([]);
 response.data.forEach(function(item){
 catalog.push(Product(
 item.id,item.name,item.price,item.stock));
 });
 filteredCatalog(catalog());
 if (catalog().length) {
 selectedProduct(catalog()[0]);
 }
 ko.applyBindings(this);
};

var activate = function () {
 ProductResource.all()
 .done(allCallbackSuccess.bind(this));
};

Using this pattern you can convert any piece of code into an isolated and portable
module. The next step is to create the Models module, the Services module, and the
Resources module.

The Models module
As we have done with the view-model, we are going to convert each model into a
component and we are going to wrap it inside a module called Models, the following
steps:

1. Open the models/product.js file.
2. Define our top-level module, Shop, and initialize it:

var Shop;
Shop = Shop || {};

3. Then create the Models namespace. It will be an object or the value it has
before, in case it exists:
Shop.Models = Shop.Models || {};

Chapter 6

[131]

4. Define the product model with its dependencies. Remember, the first value
is the product itself. This allows us to extend the model in case we use many
files to define it. So, we define the product model as follows:
Shop.Models.Product = (function(){

})()

5. Pass the dependencies. This time you just need to use the Knockout
dependency to use observables. Knockout is a global object and there is no
need to add it to the dependencies, but it is a good practice to do it as in the
following code:
Shop.Models.Product = (function (ko){
}(ko)

6. Finally, set the code we had in the models/Product.js file earlier:

var Shop;
Shop = Shop || {};
Shop.Models = Shop.Models || {};
Shop.Models.Product = (function (ko){
 return function (id, name, price, stock) {
 _id = ko.observable(id).extend(...);
 _name = ko.observable(name).extend(...);
 _price = ko.observable(price).extend(...);
 _stock = ko.observable(error).extend(...);
 var errors = ko.validation.group([_name, _price, _stock]);
 return {
 id: _id,
 name: _name,
 price: _price,
 stock: _stock,
 errors: errors
 };
 };
})(ko);

Follow the same steps to convert the models/CartProduct.js and models/
Customer.js files into modules. Models are perfect candidates to apply the pattern
we use to generate instantiable objects.

It is important that you keep the consistency between components and file names.
Be sure that your files have the name of the component they contain with
the .js extension.

The Module Pattern – RequireJS

[132]

Here is the final result of converting the models/CartProduct.js file:

var Shop;
Shop = Shop || {};
Shop.Models = Shop.Models || {};
Shop.Models.CartProduct = (function(ko){

 return function (product,units){
 var
 _product = product,
 _units = ko.observable(units)
 ;

 var subtotal = ko.computed(function(){
 return _product.price() * _units();
 });

 return {
 product: _product,
 units: _units,
 subtotal: subtotal
 };
 }
})(ko);

Also take a look at the result of the models/Customer.js file:

var Shop;
Shop = Shop || {};
Shop.Models = Shop.Models || {};
Shop.Models.Customer = (function(ko){
 return function() {
 var firstName = ko.observable("John").extend({
 required: true
 });
 var lastName = ko.observable("Doe").extend({
 required: true,
 minLength: 3
 });
 var fullName = ko.computed(function(){
 return firstName() + " " + lastName();
 });
 var address = ko.observable("Baker Street").extend({
 required: true,
 minLength: 5

Chapter 6

[133]

 });
 var email = ko.observable("john@doe.com").extend({
 required: true,
 email: true
 });
 var zipCode = ko.observable("12345").extend({
 required: true,
 minLength: 3,
 pattern: {
 message: 'Zip code should have 5 numbers',
 params: '^[0-9]{5}$'
 }
 });
 var country = ko.observable("");
 var fullAddress = ko.computed(function(){
 return address() + " " + zipCode() + ", " + country();
 });
 var errors = ko.validation.group([firstName,
 lastName, address, email, zipCode]);
 return {
 firstName:firstName,
 lastName: lastName,
 fullName: fullName,
 address: address,
 email: email,
 zipCode: zipCode,
 country: country,

 fullAddress: fullAddress,

 errors: errors
 };
 };
})(ko);

The Resources module
In terms of code, building a module that contains a model and building one that
contains a resource is not so different. The module pattern applied is the same.
Nevertheless, you don't need to create instances of the resources. To apply CRUD
operations to the models, you just need an object that handles this responsibility.
Therefore, the resources will be singletons, as done in the following steps:

1. Open the resources/ProductResource.js file.

The Module Pattern – RequireJS

[134]

2. Create the top hierarchy module:
var Shop;
Shop = Shop || {};

3. Create the Resources namespace:
Shop.Resources = Shop.Resources || {};

4. Define ProductResource using the module pattern:
Shop.Resources.ProductResource = (function(){
})()

5. Set the dependencies. In this case, jQuery is the dependency you need.
jQuery is a global object and you don't need to pass it as a dependency, but
it's a good practice to do so.
Shop.Resources.ProductResource = (function($){
}(jQuery);

6. Finally, set the following code in the resources/ProductResource.js file.
Since in our application resources are singleton, extend the resource with the
methods used in the following code:
var Shop;
Shop = Shop || {};
Shop.Resources = Shop.Resources || {};
Shop.Resources.ProductResource = (function($){

 function all() {
 return $.ajax({
 type: 'GET',
 url: '/products'
 });
 }
 function get(id) {
 return $.ajax({
 type: 'GET',
 url: '/products/'+id
 });
 }
 function create(product) {
 return $.ajax({
 type: 'POST',
 url: '/products',
 data: product
 });
 }

Chapter 6

[135]

 function save(product) {
 return $.ajax({
 type: 'PUT',
 url: '/products/'+product.id,
 data: product
 });
 }
 function remove(id) {
 return $.ajax({
 type: 'DELETE',
 url: '/products/'+id
 });
 }
 return {
 all:all,
 get: get,
 create: create,
 save: save,
 remove: remove
 };
}(jQuery);

Now apply the same steps to the OrderResouce component. You can see the final
result in this piece of code:

var Shop;
Shop = Shop || {};
Shop.Resources = Shop.Resources || {};
Shop.Resources.OrderResource = (function ($) {
 function save(order) {
 return $.ajax({
 type: 'PUT',
 url: '/order',
 data: order
 });
 }
 return {
 save: save
 };
})(jQuery);

The Module Pattern – RequireJS

[136]

The Services module
Services are also singletons, like resources, so follow the same steps as the resources
module:

1. Open the services/ProductService.js file.
2. Create the top hierarchy module:

var Shop;
Shop = Shop || {};

3. Create the Resources namespace:
Shop.Services = Shop.Services || {};

4. Define ProductService:
Shop.Services.ProductService = (function(){
})();

5. In this case the service has no dependencies.
6. Finally, set the following code in the services/ProductService.js file.

Since in the application the resources are singleton, extend the resource with
the methods used in the following code:
var Shop;
Shop = Shop || {};
Shop.Services = Shop.Services || {};
Shop.Services.ProductService = (function(Product) {
 var hasStock = function (product) {
 return product.stock() > 0;
 };

 var decreaseStock = function (product) {
 var s = product.stock();
 if (s > 0) {
 s--;
 }
 product.stock(s);
 };

 var clone = function (product) {
 return Product(product.id(), product.name(),
 product.price(), product.stock());
 };

 var refresh = function (product,newProduct) {

Chapter 6

[137]

 product.name(newProduct.name());
 product.stock(newProduct.stock());
 product.price(newProduct.price());
 };

 return {
 hasStock:hasStock,
 decreaseStock:decreaseStock,
 clone:clone,
 refresh: refresh
 };
})(Shop.Models.Product);

Events, bindings, and Knockout
components
We are not going to modularize events, because they are specific to this application.
It makes no sense to isolate something that is not portable. We will not modularize
either bindings or components because they are injected into the Knockout object as
part of the library, so they are isolated enough and they aren't part of the modules,
but the Knockout object. But we need to update dependencies in all these files
because different parts of the application are now isolated in the Shop module and its
submodules.

Updating the add-to-cart-button
component
To update the component with new namespaces, update (overwrite) the references
to the dependencies, as follows:

ko.components.register('add-to-cart-button', {
 viewModel: function(params) {
 this.item = params.item;
 this.cart = params.cart;
 this.addToCart = function() {
 var CartProduct = Shop.Models.CartProduct;
 var CartProductService = Shop.Services.CartProductService;
 var ProductService = Shop.Services.ProductService;

 var data = this.item;

The Module Pattern – RequireJS

[138]

 var tmpCart = this.cart();
 var n = tmpCart.length;
 var item = null;

 if(data.stock()<1) {
 return;
 }
 while(n--) {
 if (tmpCart[n].product.id() === data.id()) {
 item = tmpCart[n];
 }
 }
 if (item) {
 CartProductService.addUnit(item);
 } else {
 item = CartProduct(data,1);
 tmpCart.push(item);
 ProductService.decreaseStock(item.product);
 }
 this.cart(tmpCart);
 };
 },
 template:
 '<button class="btn btn-primary"
 data-bind="click:addToCart">
 <i class="glyphicon glyphicon-plus-sign"></i> Add
 </button>'
});

Updating events
Update those lines of code that have dependencies from the new modules, as
follows:

(function() {
 "use strict";
 $(document).on("click","#confirmOrderBtn", function() {
 vm.showOrder();
 });
 $(document).on("click", ".add-unit", function() {
 var data = ko.dataFor(this);
 $(document).trigger("addUnit",[data]);
 });
 $(document).on("click", ".remove-unit", function() {

Chapter 6

[139]

 var data = ko.dataFor(this);
 $(document).trigger("removeUnit",[data]);
 });
 $(document).on("addUnit",function(event, data){
 Shop.Services.CartProductService.addUnit(data);
 });
 $(document).on("removeUnit",function(event, data){
 Shop.Services.CartProductService.removeUnit(data);
 });
})();

You have learned a very good pattern to manage dependencies without any external
tools. You can use it in almost all your projects. It will work better if you combine all
your files into one.

This book is not going to cover how to join and minify files to use them in a
production environment. Joining and minifying files improves the performance of
applications because minifying reduces the size of files and joining them reduces the
number of HTTP calls to one.

To do this you can use Node.js (http://nodejs.org/) and a build module like
Grunt (http://gruntjs.com/) or Gulp (http://gulpjs.com/). If you are interested
in learning about deployment practices like minification, combination of files, and so
on, there is a large bibliography about Node.js and deployment tools on the Internet.

To access the code of this part of the chapter, go to the GitHub repository at:

https://github.com/jorgeferrando/knockout-cart/tree/chapter6Part1.

Using RequireJS to manage dependencies
In the previous section, you learned how to isolate different parts of the code. You
also grouped the files by type and component names, which follow a consistent
pattern. However, you have not solved one important problem that grows in
proportion to the size of the project. To give you a clue about what this problem is,
let's see our index.html file. Look at the part of the <script> tags section:

<script type="text/javascript" src="js/vendors/jquery.min.js"></
script>
<script type="text/javascript" src="js/vendors/jquery.mockjax.js"></
script>
<script type="text/javascript" src="js/vendors/jquery.mockjson.js"></
script>
<script type="text/javascript" src="js/vendors/icheck.js"></script>
<script type="text/javascript" src="js/vendors/bootstrap.min.js"></

http://nodejs.org/
http://gruntjs.com/
http://gulpjs.com/
https://github.com/jorgeferrando/knockout-cart/tree/chapter6Part1

The Module Pattern – RequireJS

[140]

script>
<script type="text/javascript" src="js/vendors/knockout.debug.js"></
script>
...
...
...
<script type="text/javascript" src="js/resources/ProductResource.
js"></script>
<script type="text/javascript" src="js/resources/OrderResource.js"></
script>
<script type="text/javascript" src="js/viewmodel.js"></script>
<script type="text/javascript" src="js/events/cart.js"></script>

You need to keep dependencies between all these files manually. The complexity of
doing this grows as the project does. Therefore, there is a problem when you need to
know the dependencies of all your files. This can be handled easily in small projects,
but when working on big projects this can be a nightmare. Also, if you load all your
files at the beginning, starting your application can be penalized.

To solve this problem, there are multiple libraries that can help. We are going to use
RequireJS (refer to http://requirejs.org/ for more information), which is focused
on loading scripts asynchronously and managing dependencies. It follows AMD to
write different modules. This means it uses the define and require statements to
define and load different modules. AMD libraries are focused on the client side of
applications and help load JavaScript modules when needed. For more information
on AMD, please visit the following link:

http://en.wikipedia.org/wiki/Asynchronous_module_definition

This is very helpful because it optimizes the number of requests made. This enables
the application to start faster and load just the modules that the user needs.

There is another pattern to define asynchronous modules, called CommonJS (learn
more about it at http://requirejs.org/docs/commonjs.html), which is used by
default by Node.js modules. You can use this definition in the client-side application
using Node.js and a library called browserify (learn more about it at http://
browserify.org/).

In this book, we are going to focus on RequireJS, because it doesn't require Node.js or
any compilation and is commonly used in client-side applications.

http://requirejs.org/
http://en.wikipedia.org/wiki/Asynchronous_module_definition
http://requirejs.org/docs/commonjs.html
http://browserify.org/
http://browserify.org/

Chapter 6

[141]

Updating the template engine
Unfortunately, the ExternalTemplateEngine we have used until now is not AMD
compatible. This is why you should use other solutions. There is a KnockoutJS
extension called amd-helpers. You can download it from https://github.com/
rniemeyer/knockout-amd-helpers. Ryan Niemeyer is the author of this extension.
He is a very famous Knockout developer and has a large following in the Knockout
community. He has a blog called Knockmeout (http://knockmeout.net) which
has a large number of articles about Knockout and good examples of how the amd-
helpers library should be used. In this book, we are just going to use the template
engine. But this extension has many other features.

RequireJS just loads JavaScript files natively. To load HTML files asynchronously,
download the text extension from https://github.com/requirejs/text and add
it to the vendors folder. With this extension, you can load any kind of file as text.

Now, when we need to load a text file we just need to add the prefix text! before
the path of the file.

Configuring RequireJS
To configure RequireJS, create a file at the same level as the viewmodel.js file lies.
You can call it main.js, and follow these steps:

1. Define the basic config method:
require.config({

});

2. Then, define the base URL for the scripts. This is where RequireJS will look
for scripts:
Require.config({

 baseUrl:'js'
});

3. Now, define aliases for the paths of the vendor libraries in the paths
attribute. This helps you to avoid writing long paths in our module
dependencies. You don't need to define the extension. RequireJS adds the
extension for you:
require.config({
 baseUrl:'js',
 paths: {
 bootstrap:'vendors/bootstrap.min',
 icheck: 'vendors/icheck',

https://github.com/rniemeyer/knockout-amd-helpers
https://github.com/rniemeyer/knockout-amd-helpers
http://knockmeout.net
https://github.com/requirejs/text

The Module Pattern – RequireJS

[142]

 jquery: 'vendors/jquery.min',
 mockjax: 'vendors/jquery.mockjax',
 mockjson: 'vendors/jquery.mockjson',
 knockout : 'vendors/knockout.debug',
 'ko.validation':'vendors/ko.validation',
 'ko-amd-helpers': 'vendors/knockout-amd-helpers',
 text: 'vendors/require.text'
 }
});

4. Also, define dependencies inside the shim property. This tells RequireJS
which files must be loaded before a library is loaded:
require.config({
 baseUrl:'js',
 paths: {
 ...
 },
 shim: {
 'jquery': {
 exports: '$'
 },
 bootstrap: {
 deps:['jquery']
 },
 mockjax: {
 deps:['jquery']
 },
 mockjson: {
 deps:['jquery']
 },
 knockout: {
 exports: 'ko',
 deps:['jquery']
 },
 'ko.validation':{
 deps:['knockout']
 },
 'ko.templateEngine': {

Chapter 6

[143]

 deps:['knockout']
 }
 },
});

5. Define the file that should be called when the configuration is done. In this
case the file is app.js. This file will be the entry point of the application and
will trigger all the dependencies that load at the start of our project:
//write this inside main.js file
require.config({
 baseUrl:'js',
 paths: {...},
 shim: {...},
 deps: ['app']
});

6. Now, remove all the <script> tags from the index.html file and reference
the vendors/require.min.js file. This file uses a data-main attribute to
reference the config file (main.js).
<script type='text/javascript' src='vendors/require.min.js'
 data-main='main.js'></script>

Using RequireJS in our project
To convert our modules into RequireJS-compatible modules, we will define them
using the AMD specification. This specification says that to define a module you
need to call the define function. This function receives an array that contains
strings. These strings represent paths or aliases from the configuration file for each
dependency (files required in the module).

The second parameter that the define function needs is a function that will return
the module. This function will have dependencies from the array as arguments.
The good thing with this pattern is that code inside the define function will not
be executed until all dependencies are loaded. The following is what the define
function will look like:

define(['dependency1','dependendency2'],function(dependency1,depencen
cy2){
 //you can use depencencies here, not outside.
 var Module = //can be a literal object, a function.
 return Module;
});

The Module Pattern – RequireJS

[144]

The function should always return the module variable, or whatever the module
needs to return. If we don't set the return statement the module will return an
undefined value.

Defining the app.js file
When we defined the RequireJS configuration, we said that the entry point will be
the app.js file. The following are the steps to create the app.js file:

1. Create the app.js file.
2. Set the array of dependencies. Map these dependencies as arguments in

the function. There are some files that just execute code and they return an
undefined value. You don't need to map these files if they are at the end of
the list of dependencies.
define([
 //LIBRARIES
 'bootstrap',
 'knockout',
 'koAmdHelpers',
 'ko.validation',
 'icheck',

 //VIEWMODEL
 'viewmodel',

 //MOCKS
 'mocks/product',
 'mocks/order',

 //COMPONENTS
 'custom/components',

 //BINDINGS
 'custom/koBindings',

 //EVENTS
 'events/cart'
], function(bs, ko, koValidation, koAmdHelpers,
 'iCheck', 'ViewModel) {
});

3. Now define the body of the module. It will initialize global configurations
and global behaviors. Finally, it will return the view-model:
define([...],function(...){

Chapter 6

[145]

 //ko External Template Settings
 ko.amdTemplateEngine.defaultPath = "../views";
 ko.amdTemplateEngine.defaultSuffix = ".html";
 ko.amdTemplateEngine.defaultRequireTextPluginName =
 "text";
 ko.validation.init({
 registerExtenders: true,
 messagesOnModified: true,
 insertMessages: true,
 parseInputAttributes: true
 });

 $(document).ajaxError(function(event,response) {
 console.error(response);
 alert("Error in the communication. Check the console!");
 });

 vm.activate();

 return vm;
});

The first file has a lot of dependencies, which we should keep ordered. First we have
defined the libraries, then the view-model, mocks, components, and finally events.
Each of these files should also be defined as modules; when they are called, the
dependencies will be loaded.

Notice how we have updated the template engine definition: the defaultPath value
to define where the templates are, the deffaultSuffix value to define the extension
of the templates, and the library used to load the templates (in our case text). Now,
we should apply this pattern to the rest of the files.

Converting a normal module into an AMD
module
To convert a normal module, we will perform the following steps. Always apply the
same steps for all our modules. We need to wrap them into the define function, list
dependencies, and return the module we returned in our old one.

1. Open the viewmodel.js file.
2. Create the define function:

define([],function(){});

The Module Pattern – RequireJS

[146]

3. Add all dependencies:
define([
 'knockout',
 'models/Product',
 'models/Customer',
 'models/CartProduct',
 'services/ProductService',
 'services/CartProductService',
 'resources/ProductResource',
 'resources/OrderResource'
],function (ko, Product, Customer, ProductService,
 CartProductService, ProductResource, OrderResource) {
});

4. Export the module into the define function:
define([],function(){
 var debug = ko.observable(false);
 var showDebug = function () {
 debug(true);
 }
 ...
 var activate = function () {
 ProductResource.all()
 .done(allCallbackSuccess.bind(this));
 };
 return {
 debug: debug,
 showDebug:showDebug,
 hideDebug:hideDebug,
 ...
 };
});

When we write knockout as a dependency, RequireJS checks the configuration to
find the alias. If the alias doesn't exist, it looks in the path we have set in the
baseUrl attribute.

Now we should update all our files using this schema. Notice that elements that
should be set as dependencies are the same elements we have set using the
module pattern.

Chapter 6

[147]

Applying RequireJS to components
We didn't modularize our bindings and components in the second part of the
chapter. But this doesn't mean that we couldn't.

We can use RequireJS not just to create modules, but also to load files
asynchronously. In our case, bindings and components don't need to return an
object. When these files are loaded, they extend the ko object and their job is done. A
similar case occurs with events. We initialize events and the work is done. So these
files just need to be wrapped into the define function. Add dependencies and load
them in the app.js file as we did in the previous section.

In the case of the add-to-cart-button component, the code in the file will be
the following:

define([
 'knockout',
 'models/CartProduct',
 'services/CartProductService',
 'services/ProductService'
],function(ko, CartProduct,CartProductService,ProductService){
 ko.components.register('add-to-cart-button', {
 ...
 });
});

Applying RequireJS to mocks
In the case of mocks, we need to require the Mockjax and the Mockjson library, as
follows:

define([

 'jquery',

 'mockjson',

 'mockjax'

], function ($, mockjson, mockjax) {

 $.mockJSON.data.PRODUCTNAME = [

 'T-SHIRT', 'SHIRT', 'TROUSERS', 'JEANS', 'SHORTS',
 'GLOVES', 'TIE'

];

 ...

});

The Module Pattern – RequireJS

[148]

Applying RequireJS to bindings
Bindings are easy to convert. They just have jQuery and Knockout dependencies, as
shown in the following manner:

define(['knockout','jquery'],function(ko, $){
 //toggle binding
 ko.bindingHandlers.toggle = { ... };
 ...
});

Applying RequireJS to events
Finally, we need to update the events/cart.js file. The confirm order event needs
to update the view-model. We can require the viewmodel as a dependency and
access its public interface:

define([
 'jquery','viewmodel','services/CartProductService'
], function(vm, CartProductService) {
 "use strict";
 $(document).on("click","#confirmOrderBtn", function() {
 vm.showOrder();
 });

 $(document).on("click", ".add-unit", function() {
 var data = ko.dataFor(this);
 $(document).trigger("addUnit",[data]);
 });

 $(document).on("click", ".remove-unit", function() {
 var data = ko.dataFor(this);
 $(document).trigger("removeUnit",[data]);
 });

 $(document).on("addUnit",function(event, data){
 CartProductService.addUnit(data);
 });

 $(document).on("removeUnit",function(event, data){
 CartProductService.removeUnit(data);
 });
});

Chapter 6

[149]

The limits of the application
Finally we have a modularized application. Nevertheless, it has some limitations:

• What is the behavior of the browser's back and forward buttons? If we try to
use them our application doesn't work as it should.

• If we want to split our application into pages, do we always have to show
and hide templates in the same page?

As you can see, there is a lot of work to do. Knockout is good, but maybe it needs to
collaborate with other libraries to solve other issues.

There is a copy of the code developed in this chapter at https://github.com/
jorgeferrando/knockout-cart/tree/chapter6RequireJS.

Summary
In this chapter, you learned how to build modules in our projects and how to load
files on demand.

We talked about the module pattern and AMD specification to build modules. You
also learned how to debug KnockoutJS applications with the Chrome extension,
Knockout context debugger.

Finally, we saw that when the application becomes bigger, it will need many libraries
to cover all the requirements. RequireJS is a library that helps us with dependency
management. Knockout is a library that helps us to apply the MVVM pattern in
our projects in an easy way, but big applications need other features that Knockout
doesn't provide.

In the next two chapters, you are going to learn about a framework called Durandal.
This framework that uses jQuery, Knockout, and RequireJS to apply the MVVM
pattern. In addition, Durandal provides more patterns to solve other problems, like
routing and navigation, and enables the addition of new features using plugins and
widgets. We can say that Durandal is the big brother of KnockoutJS.

https://github.com/jorgeferrando/knockout-cart/tree/chapter6RequireJS
https://github.com/jorgeferrando/knockout-cart/tree/chapter6RequireJS

Durandal – The KnockoutJS
Framework

Through six chapters, we have built a complete frontend application with the basic
libraries.

We have used some libraries to achieve our objective:

• Bootstrap 3: To have a solid, responsive, and cross-browser base style
in CSS3

• jQuery: To manipulate the DOM and communicate with the server side
through AJAX

• Mockjax: To fake AJAX communication
• MockJSON: To create fake data
• KnockoutJS: To bind data and synchronize JavaScript data and views easily

We have also applied some design patterns to improve the quality of our code:

• The reveal pattern: To show the public interface of our objects and hide the
private properties and methods

• The module pattern: To isolate our code and make it portable
• The dependency injection pattern: To improve cohesion and

decrease coupling

Finally, we introduced a library that helps us to manage dependencies in our
project, RequireJS.

Durandal – The KnockoutJS Framework

[152]

In small projects you can work with just these libraries. When the project grows,
however, handling dependencies becomes harder. The more libraries and styles
you need, the more difficult it is to maintain all of them. Also, it becomes harder to
maintain the view-model, which begins to have too many lines of code. Splitting the
view-model results in writing more events to communicate them, and events make
code harder to debug.

To solve all these problems, Rob Eisenberg (http://eisenbergeffect.bluespire.
com/) and his team created Durandal (http://durandaljs.com/). Durandal is a
framework that joins all the libraries and good practices you will learn henceforth.

In this chapter, you are going to acquire knowledge of the basics to start working
with the Durandal framework. You are not going to work on your cart project in this
chapter. This will continue in the next chapter. This chapter is about understanding
how Durandal works and how it connects all the pieces to create web applications
fast and easily.

It is important to mention that Durandal has been one of the simplest and fastest
frameworks for building applications. When another good framework called
AngularJS (https://angularjs.org/) announced its version 2.0, Eisenberg
abandoned Durandal and became part of the AngularJS team. It was a big blow for
the Durandal and KnockoutJS community. But recently, Eisenberg left the AngularJS
2.0 project and announced new versions of Durandal. So we can say that we are
working with one of the best frameworks for developing modern, cross-browser, and
fully-compatible web applications.

Installing Durandal
To install Durandal, follow these steps:

1. Go to http://durandaljs.com/downloads.html.
2. Download the latest version of the starter kit: http://durandaljs.com/

version/latest/HTML%20StarterKit.zip.
3. Unzip it in your project folder.
4. Rename it as durandal-cart.
5. Add the Mongoose server to the project or use the server you feel

comfortable with.

The starter kit will give you a very good starting point to understand how Durandal
works. In the following projects we can start directly with the standalone Durandal
library, but here we are going to analyze the parts of this framework carefully.

http://eisenbergeffect.bluespire.com/
http://eisenbergeffect.bluespire.com/
http://durandaljs.com/
https://angularjs.org/
http://durandaljs.com/downloads.html
http://durandaljs.com/version/latest/HTML%20StarterKit.zip
http://durandaljs.com/version/latest/HTML%20StarterKit.zip

Chapter 7

[153]

To dig further into Durandal, download the HTML Samples.zip file (http://
durandaljs.com/version/latest/HTML%20Samples.zip), but it is up to you to test
these interesting samples. The following are the contents of the starter kit:

• The starter kit contains three folders and an HTML index file.
• The app folder contains the application itself. This contains two folders:

viewmodels and views.
• The viewmodels folder has all the view-models the application needs—

usually one view-model per page.
• The views folder contains the HTML bound to each view-model—usually

one view per view-model. However, you can compose views (you will see
that this is the actual power of Durandal).

• The lib folder contains the Durandal framework and all the libraries that the
framework depends on.

• Inside the durandal/js folder you will find a folder called plugins. You
can extend Durandal using plugins. You can also extend KnockoutJS using
components and bindingHandlers.

• There is another folder called transitions. Inside it you can add animations
that can be fired when a transition between two pages is complete. By
default, there is just one (entrance.js), but you can download more from
the Internet or build your own ones.

• The index.html file will be the entry point to the JavaScript application.

Durandal's folder structure

http://durandaljs.com/version/latest/HTML%20Samples.zip
http://durandaljs.com/version/latest/HTML%20Samples.zip

Durandal – The KnockoutJS Framework

[154]

Durandal patterns
Before learning more about Durandal, let's learn about some patterns and concepts
about the framework.

Durandal is a Single Page Application (SPA) framework. This means that:

• All web applications run on a single page (index page)
• There is no full-page refreshing; just the parts that change are updated
• Routing is not a server responsibility any more.
• AJAX is the basis of the communication with the server side

Durandal follows the Model-View-ViewModel (MVVM) pattern:

• Actually, it is called the MV* pattern because we can substitute the * with
anything we use: View-model (MVVM), Controller (MVC), or Presenter
(MVP). By convention, Durandal uses view-models.

• The MVVM pattern separates the view from the state (logic) of the application.
• The view comprises the HTML files.
• The view-models comprise JavaScript files bound to views.
• Durandal is focused on views and view-models. Models are not part of the

framework. We should decide how they are built.

The framework uses the Asynchronous Module Definition (AMD) pattern to
manage dependencies. It possesses the following characteristics:

• It uses RequireJS for this purpose.
• We should define one module per file.
• The name of the module will be the name of the file without the extension.

The index.html file
The index.html file is the entry point to the app. It should have a container with the
ID, applicationHost. The application will run inside this container, and views will
be interchanged:

<div id="applicationHost">
 <!-- application runs inside applicationHost container -->
</div>

You can define a splash element using the splash class. It shows when the
application has completely loaded.

Chapter 7

[155]

<div class="splash">
 <!-- this will be shown while application is starting -->
 <div class="message">
 Durandal Starter Kit
 </div>
 <i class="fa fa-spinner fa-spin"></i>
</div>

Finally, set the entry point of the Durandal application with RequireJS, as we set in
the previous chapter. Set the main.js file as the entry point to the JavaScript:

<script src="lib/require/require.js"
 data-main="app/main"></script>

The main.js file
The main.js file contains the RequireJS configuration. Here we can see which
libraries use Durandal to work:

• text: This is a RequireJS extension to load files that are not JavaScript files.
Durandal uses text to load templates.

• durandal: This is the core of the framework.
• plugins: In this folder, we can find parts of the framework that are not

required in all applications. These pieces of code can be loaded according to
project needs.

• transitions: This contains the different animations we can play between
page transitions. By default, we have just the entry animation.

• knockout: This is the library used to bind views and view-models.
• bootstrap: This is the design library related to the bootstrap.css library.
• jQuery: This is the DOM manipulation library.

You already have experience with RequireJS, since you converted files from your
application to follow the AMD specification. This is how the main.js file containing
the RequireJS configuration should look:

requirejs.config
({
 paths: {
 'text': '../lib/require/text',
 'durandal':'../lib/durandal/js',
 'plugins' : '../lib/durandal/js/plugins',
 'transitions' : '../lib/durandal/js/transitions',
 'knockout': '../lib/knockout/knockout-3.1.0',

Durandal – The KnockoutJS Framework

[156]

 'bootstrap': '../lib/bootstrap/js/bootstrap',
 'jquery': '../lib/jquery/jquery-1.9.1'
 },
 shim: {
 'bootstrap': {
 deps: ['jquery'],
 exports: 'jQuery'
 }
 }
});

Then define the main module. Define dependencies in the same way you used
RequireJS in your cart project:

define([
 'durandal/system',
 'durandal/app',
 'durandal/viewLocator'], function (system, app, viewLocator) {
 //main module code goes here
});

This module is where the application is configured. In the starter kit project, there is
a default configuration that helps you understand what you can do at this point:

• Activate the debug (or not):
system.debug(true);

• Set the application title. The application title will be concatenated with the
page title by default.
app.title = 'Durandal Starter Kit';

• Activate and configure plugins:
app.configurePlugins({
 router: true,
 dialog: true
});

• Start the application:

app.start().then(function() {
 //This code is executed when application is ready.

 //We can choose use framework conventions
 viewLocator.useConvention();
 app.setRoot('viewmodels/shell', 'entrance');
});

Chapter 7

[157]

When you start the application, you can choose to follow Durandal's conventions.
If you choose to follow them by default, Durandal will relate view-models with
views by looking for views in the views folder. They should have the same name
the view-model has. This means that if you have a view-model called viewmodel/
catalog.js, its associated view will be called views/catalog.js.

This is the file structure created by following Durandal conventions and is good for small and medium projects

This convention is good for small and medium projects. In big projects, it is
recommended not to use Durandal conventions. If we choose not to use these
conventions, Durandal will look for the view in the same folder that the view-model
is in. For example, if the view-model is called catalog/table.js, the view should
be named catalog/table.html. This allows us to group views and view-models
by feature.

By not using Durandal conventions, we group our files by feature, which is good for big and scalable projects

Durandal – The KnockoutJS Framework

[158]

Finally, indicate to the framework which view-model will start the application. By
default, the shell view-model does this.

The shell view-model
Shell is the entry point module. It is the module that wraps the other modules. It is
loaded just once and has the DOM elements that persist all the time.

To define a view-model, define a simple JavaScript object using the AMD pattern, as
done in the following steps:

1. Define dependencies, that is, the router and the Durandal app:
define(['plugins/router', 'durandal/app'], function
 (router, app) {
 return {
 //We complete this in next points
 };
});

2. Expose the router method. The router method will give us an object that
allows us to show the navigation bar easily.
return {
 router: router
};

3. Expose the search method. This is an optional method. It's part of the starter
kit application. It manages the global search.
return {
 router: router,
 search: function() {
 //easy way to show a message box in Durandal
 app.showMessage('Search not yet implemented...');
 },
};

4. Expose the activate method. This is an important method in Durandal
view-models. The activate method is fired when the view-model is ready.
Here, you can request data to bind it to the view. We will see more about
Durandal life-cycle methods soon.

define(['plugins/router', 'durandal/app'],
 function (router, app) {
 return {
 router: router,

Chapter 7

[159]

 search: function() { ... },
 activate: function () {
 router.map([{
 route: '',
 title:'Welcome',
 moduleId: 'viewmodels/welcome',
 nav: true
 }, {
 route: 'flickr',
 moduleId: 'viewmodels/flickr',
 nav: true
 }]).buildNavigationModel();
 return router.activate();
 }
 };
});

The shell view
The shell view contains the navigation bar: the search bar and an element with an
attached class called page-host. This element will be bound to the router, as in the
following code. You can configure an animation to make the transition between
pages cooler.

<div>
 <nav class="navbar navbar-default navbar-fixed-top"
 role="navigation">
 <!-- nav content we will explain then -->
 </nav>
 <div class="page-host" data-bind="router: {
 transition:'entrance' }"></div>
</div>

Durandal life cycle
It is important we understand clearly how a Durandal application works. This is a
schema of how your application starts:

1. The index.html page uses RequireJS to request the main.js file.
2. The main.js file configures require and defines the main module, which is

responsible for the application configuration, and launches the shell module.

Durandal – The KnockoutJS Framework

[160]

3. The shell module handles the global context of the application. It manages
components that will be persistent along the different life cycles. In the
starter kit application, it manages the search bar. But it can also manage
the log in and log out functionality, for example. The shell module is what
configures all routes.

4. Finally, the router configures the navigation along all the pages the
application has.

Durandal initialization life cycle

The activation life cycle
The activation life cycle controls the activation and the deactivation of the page.
Durandal allows us to use predefined methods to access different parts of the cycle.
Let's take a look at the Durandal methods:

• canDeactivate: This should return true, false, or as a redirect object. It is
fired when you try to abandon a page. If the result of the method is true,
you will be able to leave the page. If it is false, the routing process will be
interrupted. If you return a redirect object, you will be redirected.

• canActivate: When you arrive at a new page, you can evaluate if you are
able to see this page. For example, you can check if you are logged in to your
if you have enough admin rights to see the page. If you return canActivate
true, you will be able to see the page. If it returns false, the routing process
will be interrupted. You can also redirect the user to another page.

• deactivate: If canDeactivate returns true and you can activate the next
view, the deactivate method is fired. Here is a good place to clear timeouts
and events, if necessary.

• activate: If canActivate returns true and you can deactivate the last view,
the activate method is fired. Here is the place where you should load all
your data, bind your elements, and initialize events.

Chapter 7

[161]

Activation life cycle

There are other methods we can use in our life cycle:

• getView: With this you can build an observable to define the path of the view
that the view-model has bound.

• viewUrl: This returns a string that represents the path of the view attached
to the view-model. The difference between viewUrl and getView is that the
former is a string and the latter is an observable.

• binding: This is called before the binding between view and view-model
begins.

• bindingComplete: This is called immediately after the binding is completed.
• attached: This is called when the composition engine attaches the view

to the DOM. You can use this hook to manipulate elements using jQuery
selectors.

• compositionComplete: This is the last hook fired by the composition engine.
Here you can measure DOM elements.

• detached: This hook is fired when the view is detached from the DOM. We
can perform clean up work here.

You can read more about the composition life cycle at http://durandaljs.com/
documentation/Interacting-with-the-DOM.html.

The promise pattern
Durandal uses promises to manage asynchronous behaviors. A clear example is the
app.start() method which is in the main.js file.

A promise is an object that contains a value that can be used in the future, when the
prerequisites to obtain this value are accomplished. In this case, the then method
will not be fired until the result app.start() method is obtained.

http://durandaljs.com/documentation/Interacting-with-the-DOM.html
http://durandaljs.com/documentation/Interacting-with-the-DOM.html

Durandal – The KnockoutJS Framework

[162]

Internally, Durandal uses jQuery's promise implementation in order to minimize
third-party dependencies. However, other libraries you use may require Q, or you
may need more advanced asynchronous programming capabilities than jQuery can
provide. In these cases, you will want to plug Q's promise mechanism into Durandal
so that you can have a single consistent promise implementation throughout. To
integrate the Q library, follow these steps:

1. Add the Q library to the RequireJS config.
2. Add this code in the main.js file, just before the app.start() instruction:

system.defer = function (action) {
 var deferred = Q.defer();
 action.call(deferred, deferred);
 var promise = deferred.promise;
 deferred.promise = function() {
 return promise;
 };
 return deferred;
};

If you are using the HTTP Durandal plugin, this approach will not be enough if you
want to use Q promises. You need to wrap the jQuery promise into a Q promise, as
follows:

http.get = function(url, query) {
 return Q.when($.ajax(url, { data: query }));
}

You can read more about the Q library at http://durandaljs.com/
documentation/Q.html.

This is the basic interface of jQuery promises that we have available in Durandal:

• done(successFn): This will be fired if the promise is resolved successfully.
• fail(failFn): This will be fired if the promise is rejected.
• always(): This will be fired in both cases, success and failure.
• then(succesFn,failFn): This is an alias to join done and fail methods.
• when(valueOrFunction): This will create a promise with the value or

function passed as a parameter.

To know more about jQuery promises refer to the official documentation at http://
api.jquery.com/promise/.

http://durandaljs.com/documentation/Q.html
http://durandaljs.com/documentation/Q.html
http://api.jquery.com/promise/
http://api.jquery.com/promise/

Chapter 7

[163]

Compositions
Composition is the most powerful part of Durandal. While modules help to split the
application into small parts, compositions allows us to join them all again. There are
two types of composition, object composition and visual composition.

To apply visual composition, you need to use the compose binding. You can combine
KnockoutJS observables with the compose binding to achieve dynamic compositions.
Compose binding gives you a complete configuration interface to enhance the
flexibility and reusability of your components.

Object composition
You can achieve object composition by using just RequireJS and the AMD pattern.
The simplest case is that you have two modules: A and B. The B module requires the
functionality of A, so you request module A in module B using RequireJS, as follows:

//moduleA
define([],function(){
 var moduleA = {};

 //ModuleA code

 return moduleA;
});
//moduleB (in a different file)
define(['moduleA'],function(moduleA){
 //we can use ModuleA to extend moduleB, e.g:

 var moduleB = $.extend({}, moduleA);

 //Create moduleB unique functionality.
 return moduleB;
});

Visual composition
Visual composition allows you to break down your view into small pieces and
reconnect (or compose) them, making them reusable. This is a central and unique
function in Durandal and is managed by the Composition module. The most
common manner of composing views is using the compose binding handler.

Let's take a look at how the shell view is composed:

1. RequireJS is used to find the shell module. By convention, it knows that it is
in the shell.js file.

Durandal – The KnockoutJS Framework

[164]

2. The view locator locates the appropriate view for shell: shell.html.
3. The view engine creates a view from the markup in shell.html.
4. The shell module and the shell view are data-bound together using

KnockoutJS.
5. The bound shell view is inserted into the applicationHost div.
6. The "entrance" transition is used to animate the view.

Composition life cycle

Now take a look how you can do some visual composition. You can move the
navigation to its own view and compose the shell using the navigation view, by
following these steps:

1. Open shell.html file.
2. Cut the <nav></nav> element.
3. Paste it in a new file called navigation.html.
4. Add a <div> in the shell.html file and bind the compose element, as

follows:

<div>
 <div data-bind="compose: 'navigation.html'"></div>
 <div class="page-host" data-bind="router: {
transition:'entrance' }"></div>
</div>

You can also create a view-model called navigation.js linked to the view:

<div>
 <div data-bind="compose: 'viewmodel/navigation'"></div>
 <div class="page-host" data-bind="router:
 { transition:'entrance' }"></div>
</div>

Chapter 7

[165]

You also have the option to convert the compose variable into an observable that will
be generated in the view-model:

<div>
 <div data-bind="compose: navigationObservable"></div>
 <div class="page-host" data-bind="router:
 { transition:'entrance' }"></div>
</div>

This is a brief run-down about how the compose binding works:

• If it's a string value:
 ° If it has a view extension, locate the view and inject it into the DOM,

binding against the current context.
 ° If it is a module ID, locate the module, locate its view, and bind and

inject them into the DOM.

• If it's an object, locate its view and bind and inject them into the DOM.
• If it's a function, call the function with the new modifier, get its return value,

find the view for the return value, and bind and inject them into the DOM.

If you want to customize the composition, you can pass the view and the model data
directly to the composer binding, as follows:

data-bind="compose: { model:someModelProperty,
 view:someViewProperty }"

This allows you to combine different views with the same data, setting model or
view as observables.

You can also compose views with Knockout comments:

<!-- ko compose: activeItem--><!--/ko-->

You can increase the setting values of the compose binding:

• transition: You can indicate a transition when the composition changes.
• cacheviews: This will not remove views from the DOM.
• activate: This defines the activate function for this composition.
• perserveContext: If you set this to false you will detach the parent context.

This is useful when there is no model associated with the view. It improves
performance.

• activationData: This refers to the data attached to the activate function.
• mode: This could be inline or templated. Inline is the mode by default. The

templated mode is used with the data-part attribute and is often used
with widgets.

Durandal – The KnockoutJS Framework

[166]

• onError: You can bind an error handler function to fail gracefully when a
composition fails as shown in the following code:

div data-bind="compose: { model: model,
 onError: errorHandlerFunction }"></div>

You can find a complete explanation of composition in the Durandal documentation
at http://durandaljs.com/documentation/Using-Composition.html.

Router
Durandal provides a router plugin to make navigation quick and easy. The router
works in cooperation with the history plugin to handle the navigation state in
the browser.

To use the router plugin:

1. Activate the plugin in the main.js file:
app.configurePlugins({
 router: true,
});

2. Configure it in the shell.js file:
router.map([{...},{...}]).buildNavigationModel();
return router.activate();

Following is an example of how the router of our shopping cart application could be:

router.map([
 {route:[''/*default route*/,'catalog'], title:'catalog',
 moduleId:'viewmodels/catalog', nav: true},
 {route:'cart', title:'cart', moduleId:'viewmodels/cart',
 nav: true},
 {route:'product/:id', title:'Product detail',
 moduleId:'viewmodels/product-detail', nav:false},
 {route:'product/:id*action', moduleId:'viewmodels/product',
 nav:false, hash:'#product/:id'},
]).buildNavigationModel();
return router.activate();

Take a look at the shell.js file. The router is passed as an element of the
view-model. This allows you to update your navigation based on what the current
route is. Durandal provides a friendly interface to build a navigation menu from a
router object. Map routes in the shell activate hook and then, using the router fluent
API, build the navigation model.

http://durandaljs.com/documentation/Using-Composition.html

Chapter 7

[167]

Finally, return the router.activate() method which contains a promise from the
shell activate hook. Returning a promise means that the composition engine will wait
until the router is ready before displaying the shell.

Let's look at route mapping in more detail. A route has different patterns. Minimally,
you should provide a route and a moduleId value. When the URL hash changes, the
router will detect that and use the route pattern to find the correct route. Then it will
load the module with the moduleId value. The router will activate and compose
the view.

There are some optional parameters:

• nav: When you call the buildNavigationModel method, it will create an
observable array called navigationModel only with the routes that have this
property set to true.

• title: This is used to set the document title.
• hash: With this, you can provide a custom hash to use for data-binding to an

anchor tag. The router will generate a hash if none is provided.

There are four different types of routes:

• Default route is set as an empty string:
route.map([{route:''}]);

• Static routes have no parameters:
route.map([{route:'catalog'}]);

• Parametrized routes are routes with parameters:
 ° A parameter is defined with a colon:

route.map([{route: 'product/:id'}]);

 ° Optional parameters are wrapped between parentheses:

route.map([{route: 'product(/:id)'}]);

• Splat routes are used to build child routes. We can define them using an
asterisk:
route.map({route:'product/:id*actions'});

• Unknown routes are managed by the method:
mapUnknownRoutes(module,view):
route.mapUnknowRoutes(notfound,'not-found');

Durandal – The KnockoutJS Framework

[168]

If you look in the navigation.html file you will be able to see how the router works.

Notice that the foreach binding against the navigationModel property router
is built with the buildNavigationModel method. Each element of this array has
an isActive flag, which is set to true when the route is active. Finally, there is
a property called isNavigating that allows you to alert the user that navigation
between pages is happening as follows:

<ul class="nav navbar-nav"
 data-bind="foreach: router.navigationModel">
 <li data-bind="css: { active: isActive }">
 <a data-bind="attr: { href: hash }, text: title">

<ul class="nav navbar-nav navbar-right">
 <li class="loader" data-bind="css: {
 active: router.isNavigating }">
 <i class="fa fa-spinner fa-spin fa-2x"></i>

If you go back to the shell.html page, you will see that you attach a router binding
to the page-host element. This binding displays the active route inside page-host
container. This is just another demonstration of the power of Durandal composition.

Route parameters
Route parameters are set in the route using a colon. These parameters can be passed
to the canActivate and activate methods of each module. If the route has a query
string, it is passed as the last argument.

Triggering navigation
There are some ways to trigger navigation that have been enlisted here:

• Use an anchor tag:
<a data-bind="attrs:{href:'#/product/1'}">product 1

• Use the router.navigate(hash) method. This will trigger navigation to the
associated module.
router.navigate('#/product/1');

• If you want to add a new history entry but not invoke the module, just set the
second parameter to false:
router.navigate('#/product/1',false);

Chapter 7

[169]

• If you just want to replace the history entry, pass a JSON object with the
replace value true and trigger value false:

router.navigate('#/product/1',{ replace: true,
 trigger: false });

Child routers
In big applications, you must be able to handle maybe tens or hundreds of routes.
Your application can just have one main router, but there is the possibility of it
having multiple child routers. This provides Durandal a way to handle deep-linking
scenarios and encapsulate routes by feature.

Typically, the parent will map a route with a splat (*). The child router will work
relative to that route. Let's look at an example:

1. Require the application router.
2. Call the createChildRouter(). This will create a new router.
3. Use the makeRelative API. Configure the base moduleId and the

fromParent property. This property makes the routes relative to the parent's
routes.

This is how it works:

// product.js viewmodel
define(['plugins/router', 'knockout'], function(router, ko) {
 var childRouter = router.createChildRouter()
 .makeRelative({
 moduleId:'product',
 fromParent:true,
 dynamicHash: ':id'
 }).map([
 { route: 'create', moduleId: 'create',
 title: 'Create new product', type: 'intro', nav: true },
 { route: 'update', moduleId: 'update',
 title: 'Update product', type: 'intro', nav: true},
]).buildNavigationModel();
 return {
 //the property on the view model should be called router
 router: childRouter
 };
});

Durandal – The KnockoutJS Framework

[170]

First, it catches the product/:id*action pattern. This will cause navigation to
product.js. The application router will detect the presence of the child router and it
delegate control to the child.

When a child router works with parameters, activate the dynamicHash property
inside the makeRelative method.

Events
Events are used to communicate between modules. The event API is integrated into
the app module and is very simple:

• on: To subscribe the view-model to an event
app.on('product:new').then(function(product){
 ...
});

• off: To unsubscribe the view-model from an event
var subscription =
 app.on('product:new').then(function(product){
 ...
});
subscription.off();

• trigger: To trigger an event
app.trigger('product:new', newProduct);

You can pass all event names to listen to all type of events:

app.on('all').then(function(payload){
 //It will listen all events
});

Read more about events at http://durandaljs.com/documentation/Leveraging-
Publish-Subscribe.html.

Widgets
Widgets are another important part in the composition of Durandal. They are like
view-models, with one exception. View-models can be singletons, and we usually
prefer that they be singletons because they represent a unique page on the site.
On the other hand, widgets are mainly coded with a constructor, so they can be
instantiated as many times as we need. Therefore, when we build a widget we don't
return an object as it occurs in view-models. Instead, we return a constructor and
Durandal instantiates the widget.

http://durandaljs.com/documentation/Leveraging-Publish-Subscribe.html
http://durandaljs.com/documentation/Leveraging-Publish-Subscribe.html

Chapter 7

[171]

Save widgets in app/widgets/{widget_name}. The widget should have a
viewmodel.js file and a view.html file.

We are going to develop a widget called accordion to demonstrate how widgets
work. This widget will be based in the jQuery collapse plugin that comes with
Bootstrap.

Setting up widgets
Follow these steps to create a plugin:

1. Add the bootstrap library to the project. To achieve this, add it to the
dependencies of the main module:
define([
 'durandal/system',
 'durandal/app',
 'durandal/viewLocator',
 'bootstrap'
], function (system, app, viewLocator, bs) {
 //Code of main.js module
});

2. Install the plugin. Register the widget plugin in the main.js file:
app.configurePlugins({
 widget: true
});

3. Create a directory called widget inside the app folder.
4. Add a subdirectory named accordion.
5. Add a file named viewmodel.js inside the accordion directory.
6. Add a file named view.html inside the accordion directory.

If you don't like Durandal's conventions, you can read more about widget
configuration at http://durandaljs.com/documentation/api#module/widget.

Writing the widget view
To write the view, follow these steps:

1. Open the app/widgets/expander/view.html file.
2. Write this code following the bootstrap3 collapse template (http://

getbootstrap.com/javascript/#collapse):

<div class="panel-group" data-bind="foreach: {

http://durandaljs.com/documentation/api#module/widget
http://getbootstrap.com/javascript/#collapse
http://getbootstrap.com/javascript/#collapse

Durandal – The KnockoutJS Framework

[172]

 data: settings.items }">
 <div class="panel panel-default">
 <div class="panel-heading" data-bind="">
 <h4 class="panel-title">
 <a data-toggle="collapse" data-bind="attr:{
 'data-target':'#'+id}">
 <span data-part="header"
 data-bind="html: $parent.getHeaderText($data)">

 </h4>
 </div>
 <div data-bind="attr:{id:id}"
 class="panel-collapse collapse">
 <div class="panel-body">
 <div data-part="item"
 data-bind="compose: $data"></div>
 </div>
 </div>
 </div>
</div>

By writing the view first you can identify which variables you need to create in the
view-model to complete the view. In this case, you will need an array of items that
stores accordion elements. It will contain an ID for each collapsible element that will
auto-generate inside the widget, the header text and the body.

Writing the widget view-model
To write the widget view-model, open the viewmode.js file in the accordion widget
folder and write this code:

define(['durandal/composition','jquery'], function(composition, $) {
 var ctor = function() { };

 //generates a simple unique id
 var counter = 0;

 ctor.prototype.activate = function(settings) {
 this.settings = settings;
 this.settings.items.forEach(function(item){
 item.id=counter++;
 });
 };
 ctor.prototype.getHeaderText = function(item) {

Chapter 7

[173]

 if (this.settings.headerProperty) {
 return item[this.settings.headerProperty];
 }

 return item.toString();
 };

 return ctor;
});

As you can see, you return a constructor for the widget, not a view-model itself as
you do with pages.

In this case, to manage the life cycle you just need to define the activate method
to assign values and generate IDs. Remember that if you want to add some DOM
modification with code, the attached method would be a good place to do so.

Registering the widget
To register the widget, you just need to register it in the main module (main.js):

app.configurePlugins({
 widget: {
 kinds: ['accordion']
 }
});

Building a page with Durandal
Now that you have learned all the basics of the Durandal framework, let's create a
new page that will contain our widget and some basic data.

To define a new page in Durandal, always follow the same steps:

1. Define the route in the shell view-model:
router.map([
{ route: '', title:'Welcome', moduleId:
 'viewmodels/welcome', nav: true },
{ route: 'flickr', moduleId: 'viewmodels/flickr',
 nav: true },
{ route: 'accordion', moduleId: 'viewmodels/accordion',
 nav: true }
]).buildNavigationModel();

Durandal – The KnockoutJS Framework

[174]

2. Define the views/accordion.html file. Notice that inside the accordion
binding you can define the data-part templates. Here, you are using the
power of composition that Durandal gives you. By adding an add button,
you are giving the widget the possibility of adding new elements.
<div>
 <h2 data-bind="text:title"></h2>
 <div data-bind="accordion: {items:projects,
 headerProperty:'name'}">
 <div data-part="header">

 </div>
 <div data-part="item">

 </div>
 </div>
 <div class="btn btn-primary" data-bind="click:add">
 Add new project
 </div>
</div>

3. Define the viewmodels/accordion.js file. You have set projects as
an observable array and initialized it in the activate method. The view-
model is provided with an add function that triggers an event called
accordion:add. This sends a message with the new tab values. The widget
should listen to this event and create an action.
define(['plugins/http', 'durandal/app', 'knockout'],
 function (http, app, ko) {
 return {
 title: 'Accordion',
 projects: ko.observableArray([]),
 activate: function () {
 this.projects.push(
 {name:'Project 1',description:"Description 1"});
 this.projects.push(
 {name:'Project 2',description:"Description 2"});
 this.projects.push(
 {name:'Project 3',description:"Description 3"});
 },

Chapter 7

[175]

 add: function () {
 app.trigger('accordion:add',
 {name:'New Project',description:"New Description"});
 }
 };
});

4. Define the event in the widgets/accordion/viewmodel.js file, updating
the activate method:
ctor.prototype.activate = function(settings) {
 this.settings = settings;

 var _settings = this.settings;//save a reference to settings
 var items = this.settings.items();//get data from observable

 items.forEach(function(item){//manipulate data
 item.id=guid();
 });

 this.settings.items(items);//update observable with new data

 //listen to add event and save a reference to the listener
 this.addEvent =
 app.on('accordion:add').then(function(data){
 data.id = guid();
 _settings.items.push(data);
 });
};

5. Define the detached life cycle method to turn off add event once the widget
is not on the screen:
ctor.prototype.detached = function () {
 //remove the suscription
 this.addEvent.off();
}

6. Launch the application and test the widget.

Durandal – The KnockoutJS Framework

[176]

Summary
In this chapter, you were introduced to Durandal. Using a framework that has all
the pieces perfectly connected, instead of a bunch of libraries, helps you to avoid
rewriting the same code again and again. It means that thanks to Durandal, you can
follow one of the basic principles of developers (Don't Repeat Yourself – DRY) easily.

You learned useful concepts, such as how to install and bring up a Durandal project.
You also learned about how the life cycle of a Durandal application works.

One of the most powerful features of Durandal is the composition. You can compose
interfaces very easy and it is almost transparent for the developer.

You learned how Durandal manages promises. By default, it uses jQuery promises
but you saw that it is very easy to use other libraries like Q.

Finally, you developed a widget and integrated it into a view-model. While view-
models are singletons, widgets are elements that you can instantiate several times.
They are a powerful part of the Durandal composition.

In the next chapter, we will migrate step by step from our KnockoutJS cart into a
Durandal Single Page Application.

Developing Web Applications
with Durandal – The Cart

Project
Now that we know how Durandal works, it is time to migrate our old application
over to using our new framework. In this chapter, you will learn how to reuse the
code we have used in the book in other projects and also adapt part of the code to the
new environment.

Introduction
We are going to develop a completely new application in this chapter. However, we
are going to reuse most parts of the code we developed in the last chapter.

One of the disadvantages of working just with Knockout was that our application
needs to connect to many libraries as it grows. The application we have developed
during this book is very small, but has enough complexity and we haven't handled
an important problem like routing. Our application always lies on the same page. We
can't navigate between order and catalog or between cart and catalog. We have our
entire application on the same page, showing and hiding components.

Durandal connects some libraries you have learned in this book and makes it easy to
connect to new ones.

Along the chapter, we are going to see some schemas with non-standard UML
notation. Nowadays, agile methods do not recommend using UML deeply, but
these kinds of diagrams help us to get a global and clearer view of the structure
and requisites of our features. Also, to deploy views we will see some sketches and
mockups of how the HMTL should be done:

Developing Web Applications with Durandal – The Cart Project

[178]

The life cycle of our application

Setting up the project
To start the new project, we are going to follow some steps that will give us a good
starting point to develop our project:

1. Create a new project as we did with the Knockout cart.
2. Inside this project, copy the content of the Durandal Starter Kit project.
3. Now we should have three folders in our project:

 ° app: This contains our application
 ° css: This contains stylesheets
 ° lib: This contains third-party libraries

4. Migrate the following libraries from the Knockout cart project to the
Durandal cart project:

 ° icheck

 ° kovalidation

 ° mockjax

 ° mockjson

5. Install a new library called Toastr from http://codeseven.github.io/
toastr/.

6. Update the ko.validation.js file on line 19 with the following code:
define(["knockout", "exports"], factory);

7. Move the style.css file from the Knockout cart to the css folder in the
Durandal cart project.

http://codeseven.github.io/toastr/
http://codeseven.github.io/toastr/

Chapter 8

[179]

8. Move the models folder inside the app folder.
9. Move the services folder inside the app folder.
10. Create a file called bindings.js at the same level as the main.js file and

move all the bindings inside the koBindings.js file there.
11. Create a file called mocks.js at the same level as the main.js file and move

all mocks inside the mocks folder there.
12. Create a file called components.js at the same level as the main.js file and

move all the components that are in the components.js file there.
13. Update the knockout library. The Durandal starter kit comes with version

3.1 and we are going to use 3.2, which is the version we used in the Knockout
cart project. Version 3.2 allows us to use the inputText binding and
components. You can see differences between all the versions at this link:
https://github.com/knockout/knockout/releases.

14. Update the main.js file:
requirejs.config({
 paths: {
 'text': '../lib/require/text',
 'durandal':'../lib/durandal/js',
 'plugins' : '../lib/durandal/js/plugins',
 'transitions' : '../lib/durandal/js/transitions',
 'knockout': '../lib/knockout/knockout-3.1.0.debug',
 'bootstrap': '../lib/bootstrap/js/bootstrap.min',
 'jquery': '../lib/jquery/jquery-1.9.1',
 'toastr': '../lib/toastr/toastr.min',
 'ko.validation': '../lib/kovalidation/ko.validation',
 'mockjax': '../lib/mockjax/jquery.mockjax',
 'mockjson': '../lib/mockjson/jquery.mockjson',
 'icheck': '../lib/icheck/icheck'
 },
 shim: {
 'bootstrap': {
 deps: ['jquery'],
 exports: 'jQuery'
 },
 mockjax: {
 deps:['jquery']
 },
 mockjson: {

https://github.com/knockout/knockout/releases

Developing Web Applications with Durandal – The Cart Project

[180]

 deps:['jquery']
 },
 'ko.validation':{
 deps:['knockout']
 },
 'icheck': {
 deps: ['jquery']
 }
 }
});

define([
 'durandal/system',
 'durandal/app',
 'durandal/viewLocator',
 'mocks',
 'bindings',
 'components',
 'bootstrap',
 'ko.validation',
 'icheck',
], function (system, app, viewLocator,mocks,bindings,components)
{
 //>>excludeStart("build", true);
 system.debug(true);
 //>>excludeEnd("build");

 app.title = 'Durandal Shop';

 app.configurePlugins({
 router:true,
 dialog: true
 });

 app.start().then(function() {
 //Replace 'viewmodels' in the moduleId with 'views' to locate
the view.
 //Look for partial views in a 'views' folder in the root.
 viewLocator.useConvention();

 //Show the app by setting the root view model for our
application with a transition.

Chapter 8

[181]

 app.setRoot('viewmodels/shell', 'entrance');

 mocks();
 bindings.init();
 components.init();
 });
});

15. Set the project in your favorite server or copy the Mongoose executable in to
the folder where index.html lies.

16. Update index.html with the new css file:

<link rel="stylesheet" href="lib/toastr/toastr.min.css" />
<link rel="stylesheet" href="lib/icheck/skins/all.css" />
<link rel="stylesheet" href="css/style.css" />

Now our project is ready and it is time to migrate our cart step by step.

Routing the project – the shell view-model
Durandal gives us the possibility of managing the routes in our project. We are
going to split different parts of our project into pages. That will give a better user
experience because we will be focused on just one task at a time.

We will split the app into four parts:

• The catalog
• The cart
• The order
• The product CRUD

These parts will contain more or less the same code we built in the Knockout
application. Sometimes we will need to adapt small pieces of code.

To create these new routes, we will open the shell.js file and update the router:

router.map([
 { route: ['','/','catalog'], title:'Catalog',
 moduleId: 'viewmodels/catalog', nav: true },
 { route: 'new', title:'New product',
 moduleId: 'viewmodels/new', nav: true },
 { route: 'edit/:id', title:'Edit product',
 moduleId: 'viewmodels/edit', nav: false },
 { route: 'cart', title:'Cart',

Developing Web Applications with Durandal – The Cart Project

[182]

 moduleId: 'viewmodels/cart', nav: false },
 { route: 'order', title:'Order',
 moduleId: 'viewmodels/order', nav: true }
]).buildNavigationModel();

Let's review how the router works:

• route contains the relative URL. In the case of the catalog, there are three
URLs attached to this route. They are the empty route (''), the slash ('/') route,
and the catalog. To represent these three routes, we will use an array.

• title will contain the title attached in the <title> tag.
• moduleId will contain the view-model that handles this route. If we use

conventions, it will look for the view in the views folder, looking for the view
which has the same name as the view-model. In this case, it looks for views/
catalog.html. If we choose not to use conventions, Durandal will look in
the same folder as the view-model.

• If nav is true, a link will be shown in the navigation menu. If it is false, the
router doesn't display the link in the navigation menu.

The navigation and shell templates
As we did in Chapter 7, Durandal – The KnockoutJS Framework, we are going to
compose our shell.html view in two parts: shell.html and navigation.html.

The catalog module
In the Knockout cart, we have a view-model that manages all parts of the
application. Here we are going to split that big view-model into several parts.
The first part is the catalog.

Here we have a schema of how it should work:

The workflow of the catalog module

Chapter 8

[183]

Catalog will contain just the partial that includes the search bar and the table with its
actions. This makes the view-model smaller and therefore more maintainable.

Although files will be split into different folders, catalog is a module by itself. It
contains the view-model, the view, and some services that will only work inside
this module. Other components will be required, but they will be shared by more
modules along the live cycle of the application.

1. Create a file named catalog.js in the viewmodels folder and define a basic
reveal pattern skeleton to begin adding features:
define([],function(){
 var vm = {};
 //to expose data just do: vm.myfeature = ...
 return vm;
});

2. Create a file named catalog.html in the views folder:
<div></div>

By just doing this, our module is ready to work. Let's complete the code.

The catalog view
We are going to use composition to create this template. Remember that composition
is one of the powerful features of Durandal. To complete this feature, we will create
three new templates that contain different parts of the root view. By doing this,
we made our view more maintainable because we isolated different parts of the
template in different files that are smaller and easy to read.

Mockup of the catalog view

Developing Web Applications with Durandal – The Cart Project

[184]

Follow these steps to create the templates:

1. Open the catalog.html file and create the basic template:
<div class="container-fluid">
 <div class="row">
 <div class="col-xs-12">
 <h1>Catalog</h1>
 <div data-bind="compose:
 'catalog-searchbar.html'"></div>
 <div data-bind="compose:
 'catalog-details.html'"></div>
 <div data-bind="compose:'catalog-table.html'"></div>
 </div>
 </div>
</div>

2. Create a view called catalog-searchbar.html. We prefix child views with
the name of the root view, so if your editor orders files by name, they will be
displayed all grouped together. We can also group all of them inside a folder.
We can choose the way we feel more comfortable:
<input type="checkbox" data-bind="icheck:showSearchBar"/>
 Show Search options

<div class="input-group" data-bind="visible:showSearchBar">

 <i class="glyphicon glyphicon-search"></i>
 Search

 <input type="text" class="form-control"
 data-bind="value:searchTerm, valueUpdate: 'keyup',
 executeOnEnter:filterCatalog"
 placeholder="Press enter to search...">
</div>
<hr/>

3. Now it is time to define the view named catalog-details.html; it will
contain actions and cart details:
<div class="row cart-detail">
 <div class="col-lg-2 col-md-4 col-sm-4 col-xs-4">

 <i class="glyphicon glyphicon-shopping-cart"></i>
 Items in the cart:

 <span
 data-bind="text:CartService.cart().length">
 </div>

Chapter 8

[185]

 <div class="col-lg-2 col-md-4 col-sm-4 col-xs-4">

 <i class="glyphicon glyphicon-usd"></i>
 Total Amount:

 </div>
 <div class="col-lg-8 col-md-4 col-sm-4 col-xs-4
 text-right">
 <button data-bind="click:refresh"
 class="btn btn-primary btn-lg">
 <i class="glyphicon glyphicon-refresh"></i> Refresh
 </button>

 <i class="glyphicon glyphicon-shopping-cart"></i>
 Go To Cart

 </div>
</div>

4. Finally, we will define the catalog-table.html, which contains the table
we built in the Knockout cart project. Some data-bind elements should be
updated and the footer needs to be removed:
<table class="table">
 <thead>
 <tr>
 <th>Name</th>
 <th>Price</th>
 <th>Stock</th>
 <th></th>
 </tr>
 </thead>
 <tbody data-bind="{foreach:filteredCatalog}">
 <tr data-bind="style:{color:stock() < 5?'red':'black'}">
 <td data-bind="text:name"></td>
 <td data-bind="{currency:price}"></td>
 <td data-bind="{text:stock}"></td>
 <td>
 <add-to-cart-button params="{cart:
 $parent.CartService.cart, item: $data}">
 </add-to-cart-button>
 <button class="btn btn-info"
 data-bind="{click:$parent.edit}">
 <i class="glyphicon glyphicon-pencil"></i>

Developing Web Applications with Durandal – The Cart Project

[186]

 </button>
 <button class="btn btn-danger"
 data-bind="{click:$parent.remove}">
 <i class="glyphicon glyphicon-remove"></i>
 </button>
 </td>
 </tr>
 </tbody>
 <!-- FOOTER HAS BEEN REMOVED -->
</table>

The catalog view-model
Now it's time to define all the components we can identify along our templates. We
should begin defining the basic data we can locate inside the templates:

vm.showSearchBar = ko.observable(true);
vm.searchTerm = ko.observable("");
vm.catalog = ko.observableArray([]);
vm.filteredCatalog = ko.observableArray([]);

Once we define these variables, we realize that Knockout dependency is required.
Add it to the dependencies array and also as a parameter in the module function:

define(['knockout'],function(ko){ ... })

Now we should define the filterCatalog method. It's the same method that we
have in our view-model in the Knockout project:

vm.filterCatalog = function () {
 if (!vm.catalog()) {
 vm.filteredCatalog([]);
 }
 var filter = vm.searchTerm().toLowerCase();
 if (!filter) {
 vm.filteredCatalog(vm.catalog());
 }
 //filter data
 var filtered = ko.utils.arrayFilter(vm.catalog(),
 function (item) {
 var fields = ["name"]; //we can filter several properties
 var i = fields.length;
 while (i--) {
 var prop = fields[i];
 if (item.hasOwnProperty(prop) &&
 ko.isObservable(item[prop])) {

Chapter 8

[187]

 var strProp = ko.utils.unwrapObservable(
 item[prop]).toLocaleLowerCase();
 if (item[prop]() && (strProp.indexOf(filter) !== -1)) {
 return true;
 }
 }
 }
 return false;
 });
 vm.filteredCatalog(filtered);
};

The add-to-cart-button component was defined in the Knockout project and we
don't need to touch any piece of code this component. This is a clear example of how
good components are and the potential they have.

To edit a product from the catalog, we need to navigate to the edit route. This
creates a dependency with the router plugin. We should add the plugins/router
dependency to our module.

vm.edit = function(item) {
 router.navigate('#/edit/'+item.id());
}

To remove a product from the catalog, we will need to remove it from the server and
also from the cart. To speak with the server, we will use the services/product.
js file, and to speak with the cart, we will create a new service in a file named
services/cart. Define the remove method:

vm.remove = function(item) {
 app
 .showMessage(
 'Are you sure you want to delete this item?',
 'Delete Item',
 ['Yes', 'No']
).then(function(answer){
 if(answer === "Yes") {
 ProductService.remove(item.id()).then(function(response){
 vm.refresh();
 CartService.remove(item);
 })
 }
 });
}

Developing Web Applications with Durandal – The Cart Project

[188]

First we use the message component that Durandal has. It is very useful to handle
modal dialogs. We will ask the user whether the product should be removed. If yes,
we will remove it from the server and then refresh our view-model, and also remove
the product from the cart because it is not available any more.

We should add a dependency to durandal/app and dependencies to
ProductService and CartService.

ProductService was defined in the Knockout project. If we keep models and
services very simple, they will become portable and adapt themselves very well to
different projects.

Now is the time to implement the refresh method. We will call the
ProductService.all() method and display a message letting the user know that
the products are loaded. We will return the promise this method generates.

vm.refresh = function () {
 return ProductService.all().then(function(response){
 vm.catalog([]);
 response.data.forEach(function(item){
 vm.catalog.push(new
 Product(item.id,item.name,item.price,item.stock));
 });
 var catalog = vm.catalog();
 CartService.update(catalog);
 vm.catalog(catalog);
 vm.filteredCatalog(vm.catalog());
 LogService.success("Downloaded "+vm.catalog().length+"
 products", "Catalog loaded");
 });
};

Here, we use the same model for products that we used in the Knockout project. We
are seeing a lot of code, but most of it was done earlier in the book, so we just need to
move it from one project to the other.

The last step is to activate our view-model. When should a view-model be activated?
When our products come from the server and are ready to be shown:

vm.activate = function() {
 if(vm.catalog().length === 0) {
 app.on("catalog:refresh").then(function(){
 vm.refresh();
 });
 return vm.refresh();
 } else {

Chapter 8

[189]

 return true;
 }
}

The first time we load the application, we check to see whether the catalog has
products. If it has, we just return that the catalog is ready. If the catalog is empty, we
create an event that lets other services notify the catalog that it should be updated.
Then we refresh the catalog to get new data.

This is the final result of our catalog view-model; of course we still need to
implement the log service and the cart service:

define(['knockout','durandal/app','plugins/router',
 'services/log','services/product','services/cart',
 'models/product','models/cartproduct'
],function(ko, app, router, LogService, ProductService,
 CartService, Product, CartProduct){
 var vm = {};
 vm.showSearchBar=ko.observable(true);
 vm.searchTerm = ko.observable("");
 vm.catalog = ko.observableArray([]);
 vm.filteredCatalog = ko.observableArray([]);
 vm.CartService = CartService;

 vm.filterCatalog = function () {...};
 vm.edit = function(item) {...}
 vm.remove = function(item) {...}
 vm.refresh = function () {...}
 vm.activate = function() {...}
 return vm;
});

The cart service
The cart service will manage cart data for all modules. The services have persistent
data along the session, so they can help us to share data between view-models. In
this case, the cart service will share some pages with the cart: catalog, cart, and order.

The cart service will react to operations performed over the cart observable. The
add operation is managed by the add-to-cart-button component but it would
be interesting to integrate this behavior here. The refactoring of code can be a good
exercise. In this example, we will keep the component and we will implement the
other methods.

Developing Web Applications with Durandal – The Cart Project

[190]

The cart service also stores the total amount of the cart in the grandTotal observable.

The cart service updates the cart as well. This will be useful because when the
catalog is updated, product references stored in the cart are different from the new
products in the catalog, so we need to renew these references. It also updates the
catalog, decreasing the stock by the units of each product that are in the cart. We do
this because the server sends us the data it has. The server doesn't know that we are
shopping now. Maybe we decide not to shop, so the products we have in the cart are
not registered as sold. This is why we need to update the units in the client once we
get the products from the server. Here is the code of the cart service:

define(['knockout','durandal/app' ,'models/
cartproduct'],function(ko,app, CartProduct){
 var service = {};
 service.cart = ko.observableArray([]);
 service.add = function(data){
 if(!data.hasStock()) {
 LogService.error("This product has no stock available");
 return;
 }
 var item = null;
 var tmpCart = service.cart();
 var n = tmpCart.length;

 while(n--) {
 if (tmpCart[n].product.id() === data.id()) {
 item = tmpCart[n];
 }
 }

 if (item) {
 item.addUnit();
 } else {
 item = new CartProduct(data,1);
 tmpCart.push(item);
 item.product.decreaseStock(1);
 }

 service.cart(tmpCart);
 };
 service.subtract = function(data) {
 var item = service.find(data);
 item.removeUnit();
 }

Chapter 8

[191]

 service.grandTotal = ko.computed(function(){
 var tmpCart = service.cart();
 var total = 0;
 tmpCart.forEach(function(item){
 total+= (item.units() * item.product.price());
 });
 return total;
 });
 service.find = function (data) {
 var tmp;
 service.cart().forEach(function(item){
 if (item.product.id() === data.id()) {
 tmp = item;
 }
 });
 return tmp;
 }
 service.remove = function (data) {
 var tmp = service.find(data);
 var units = tmp.product.stock()+tmp.units();
 tmp.product.stock(units);
 service.cart.remove(tmp);
 };
 service.update = function (catalog){
 var cart = service.cart();
 var newCart = [];
 for(var i =0;i<catalog.length;i++){
 for(var j=0;j<cart.length;j++){
 var catalogItem = catalog[i];
 var cartItem = cart[j];
 if(cartItem.product.id() === catalogItem.id()){
 catalogItem.stock(catalogItem.stock() -
 cartItem.units());
 newCart.push(new
 CartProduct(catalogItem,cartItem.units()));
 }
 }
 }
 service.cart(newCart);
 }
 return service;
});

Developing Web Applications with Durandal – The Cart Project

[192]

The log service
The log service allows us to display messages to inform the user about what is
happening in our application. To do this, we use a library called Toastr. We can
use Toastr directly on the application, but a good practice is to always encapsulate
libraries to separate the code we should not touch. Also, wrapping the library in
another one makes it easy to extend and customize the behavior of the library. In this
case, we have also added the ability to log the message in the console:

define(["toastr"],function(toastr){
 //TOASTR CONFIG
 toastr.options.positionClass = 'toast-bottom-right';

 var error = function(text,title,log) {
 toastr.error(title,text);
 if (log) {
 console.error(title,text);
 }
 };
 var success = function(text,title,log) {
 toastr.success(title,text);
 if (log) {
 console.log(title,text);
 }
 };
 var warning = function(text,title,log) {
 toastr.warning(title,text);
 if (log) {
 console.warn(title,text);
 }
 };
 var info = function(text,title,log) {
 toastr.info(atitle,text);
 if (log) {
 console.info(title,text);
 }
 };
 return {
 error:error,
 success:success,
 warning:warning,
 info:info
 }
});

Chapter 8

[193]

Adding products to the catalog
The add feature is related with this route:

{ route: 'new', title:'New product', moduleId:
 'viewmodels/new', nav: true }

To create this module, we need to create the add view and the add view-model.
To do this, create two files called views/new and viewmodels/new.js and repeat
the template we used with the catalog module.

The add product workflow

The add product view
Creating or updating a product is more or less the same. The difference is that when
we edit a product, the fields have data, and when we add a new product, the fields of
this product are empty. This might make us wonder if maybe we can isolate views.

Let's define the new.html file as follows:

<div data-bind="compose:'edit.html'"></div>

Developing Web Applications with Durandal – The Cart Project

[194]

This means the new.html file is composed by the edit.html file. We just need to
define one template to manage both. Awesome, isn't it?

The add new product mockup

The edit view
We just need to copy and paste the edit form we had in the Knockout project. We
have updated the layout, but we have used the same form:

<div class="container-fluid">
 <div class="row">
 <div class="col-xs-6 col-xs-offset-3">
 <form class="form-horizontal" role="form"
 data-bind="with:product">
 <div class="modal-header">
 <h3 data-bind="text:$parent.title"></h3>
 </div>
 <div class="modal-body">
 <div class="form-group">
 <div class="col-sm-12">
 <input type="text" class="form-control"
 placeholder="Name" data-bind="textInput:name">
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-12">
 <input type="text" class="form-control"
 placeholder="Price" data-bind="textInput:price">
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-12">
 <input type="text" class="form-control"
 placeholder="Stock" data-bind="textInput:stock">

Chapter 8

[195]

 </div>
 </div>
 </div>
 <div class="modal-footer">
 <div class="form-group">
 <div class="col-sm-12">

 <button type="submit" class="btn btn-default"
 data-bind="{click:$parent.edit,
 enable:!errors().length}">
 <i class="glyphicon glyphicon-plus-sign"></i>

 </button>
 </div>
 </div>
 </div>
 </form>
 </div>
 </div>
</div>

There are some things that should be created dynamically, such as the title of the
layout and the button name. The edit method will say which method of the product
service should handle the product—ProductService.create or ProductService.
save.

The add product view-model
The add product view-model is coded in the viewmodels/new.js file. It will create
a new product. If all is successful, we notify the user and navigate to the catalog. To
show the new product in the catalog, we fire the catalog:refresh event:

define(["durandal/app","plugins/router","services/log","services/
uuid","services/product","models/product"
],function(app, router,LogService,uuid, ProductService,Product){
 var vm = {};
 vm.title = "New product";
 vm.btn = "Add product";
 vm.edit = function() {
 ProductService.create(vm.product.toObj()).then(function(response){
 LogService.success("Product added","New product "+vm.product.
name()+" added");
 router.navigate("#/catalog");
 app.trigger("catalog:refresh");
 });
 };

Developing Web Applications with Durandal – The Cart Project

[196]

 vm.activate = function () {
 vm.product = new Product();
 };
 return vm;
});

In the first version of our mocks, if we added a new project, our catalog wasn't
getting updated. It returned the same five products we got at the beginning. We are
going to improve our mock library to make it more realistic.

Making mocks real
Let's take a look at our mocks.js file, specifically the get products mock:

$.mockjax({
 url: "/products",
 type: "GET",
 dataType: "json",
 responseTime: 750,
 responseText: $.mockJSON.generateFromTemplate({
 "data|5-5": [{
 "id|1-100": 0,
 "name": "@PRODUCTNAME",
 "price|10-500": 0,
 "stock|1-9": 0
 }]
 })
});

Lets refactor this to:

$.mockjax({
 url: "/products",
 type: "GET",
 dataType: "json",
 responseTime: 750,
 responseText: updatedCatalog()
});

Now we are going to create the updatedCatalog function. We generate the array of
products at the beginning and then we always work with this copy:

var catalog = $.mockJSON.generateFromTemplate({
 "data|5-5": [{
 "id|1-100": 0,
 "name": "@PRODUCTNAME",

Chapter 8

[197]

 "price|10-500": 0,
 "stock|1-9": 0
 }]
});
var updatedCatalog = function () {
 return catalog;
}

In the old version of the mocks, when we got a product, we got one generated
randomly using a template. Now we are going to come back with the real one. We
will iterate along the catalog and return the product with the selected ID. Also, we
will update the mock object. Instead of writing a response text, we will create a
response function that will find the product and generate the correct response:

function findById(id){
 var product;
 catalog.data.forEach(function(item){
 if (item.id === id) {
 product = item;
 }
 });
 return product;
};
$.mockjax({
 url: /^\/products\/([\d]+)$/,
 type: "GET",
 dataType: "json",
 responseTime: 750,
 response: function(settings){
 var parts = settings.url.split("/");
 var id = parseInt(parts[2],10);
 var p = findById(id);
 this.responseText = {
 "data": p
 }
 }
});

We should update the POST and PUT mocks to add products to the mocked catalog
and update the ones that exist:

var lastId= 101; //Max autogenarated id is 100
$.mockjax({
 url: "/products",
 type:"POST",

Developing Web Applications with Durandal – The Cart Project

[198]

 dataType: "json",
 responseTime: 750,
 response: function(settings){
 settings.data.id = lastId;
 lastId++;
 catalog.data.push(settings.data);
 this.responseText = {
 "data": {
 result: "true",
 text: "Product created"
 }
 }
 }
});
$.mockjax({
 url: "/products",
 type:"PUT",
 dataType: "json",
 responseTime: 750,
 response: function (settings) {
 var p = findById(settings.data.id);
 p.name = settings.data.name;
 p.price = settings.data.price;
 p.stock = settings.data.stock;
 this.responseText = {
 "data": {
 result: "true",
 text: "Product saved"
 }
 }
 }
});

We should also remove products from our mock when the DELETE method is
invoked:

$.mockjax({
 url: /^\/products\/([\d]+)$/,
 type:"DELETE",
 dataType: "json",
 responseTime: 750,
 response: function(settings){
 var parts = settings.url.split("/");
 var id = parseInt(parts[2],10);
 var p = findById(id);

Chapter 8

[199]

 var index = catalog.data.indexOf(p);
 if (index > -1) {
 catalog.data.splice(index, 1);
 }
 this.responseText = {
 "data": {
 result: "true",
 text: "Product deleted"
 }
 }
 }
});

Finally, we should move the order mock to this file in order to share the catalog.
When an order is performed, the stock in the catalog should be updated:

$.mockjax({
 type: 'PUT',
 url: '/order',
 responseTime: 750,
 response: function (settings){
 var cart = settings.data.order();
 cart.forEach(function(item){
 var elem = findById(item.product.id());
 elem.stock -= item.units();
 });
 this.responseText = {
 "data": {
 orderId:uuid(),
 result: "true",
 text: "Order saved"
 }
 };
 }
});

The order mock will generate a unique ID that identifies the order. This must be sent
back to the user to identify the order in the future. In our application, this is the end
of the life cycle of our project.

This is the uuid function we use to generate unique IDs:

var uuid = (function uuid() {
 function s4() {
 return Math.floor((1 + Math.random()) * 0x10000)
 .toString(16)

Developing Web Applications with Durandal – The Cart Project

[200]

 .substring(1);
 }
 return function() {
 return s4() + s4() + '-' + s4() + '-' + s4() + '-' +
 s4() + '-' + s4() + s4() + s4();
 };
})();

We can leave this function in the mock module or create a new service that handles
unique ID generation.

Now our mock responds to the application in a more realistic way.

The edit view-model
Coming back to our modules, we now need to create the edit.js view-model. It will
have the same structure as the new.js file, but in this case the activation will retrieve
the product we are going to edit. Then we will save the product and the mock will
update it on the (fake) server:

define(["durandal/app","plugins/router","services/log","services/
uuid","services/product","models/product"
],function(app, router,LogService,uuid,ProductService,Product){
 var vm = {};
 vm.title = "Edit Product";
 vm.btn = "Edit product";
 vm.activate = function(id) {
 return ProductService.get(id).then(function(response){
 var p = response.data;
 if (p) {
 vm.product = new Product(p.id, p.name, p.price, p.stock);
 } else {
 LogService.error("We didn't find product with id: "+id)
 router.navigate('#/catalog');
 }
 });
 };
 vm.edit = function() {
 ProductService.save(vm.product.toObj()).then(
 function(response){
 LogService.success("Product saved","Product
 "+vm.product.name()+" saved");
 router.navigate("#/catalog");
 app.trigger("catalog:refresh");
 });

Chapter 8

[201]

 };
 return vm;
});

We should notice that in both add product and edit product, the model is validated.
We made this in the Knockout project and now we are reusing it in this project. Isn't
it amazing?

The cart module
The cart module will manage the partial that shows the cart. As we did in the
Knockout project, we should be able to update the quantity of the product. We will
remove items if we don't want them anymore. Also, we will only activate this view if
the cart has products in it, because it doesn't make sense to visit the cart if it is empty.
In that case, we will be redirected to the catalog.

The cart workflow

The cart view
The cart uses the same template we used in the Knockout project. Of course we have
adapted it a little bit to show it centered on the screen:

<div class="container-fluid">
 <div class="row">
 <div class="col-xs-8 col-xs-offset-2">
 <h1>Cart</h1>
 <div class="list-group" data-bind="foreach:cart">
 <div data-bind="compose: 'cart-item.html'"></div>
 </div>
 <button class="btn btn-primary btn-sm"

Developing Web Applications with Durandal – The Cart Project

[202]

 data-bind="enable:cart().length,click:toOrder">
 Confirm Order
 </button>
 </div>
 </div>
</div>

As we did with the cart item, we also compose the view here. The cart-item.html
file has the same code that is in the Knockout project. Just notice that addUnit and
removeUnit are now called by the parent:

<div class="list-group-item" style="overflow: hidden">
 <button type="button" class="close pull-right"
 data-bind="click:$parent.removeProduct">
 ×
 </button>
 <h4 class="" data-bind="text:product.name"></h4>
 <div class="input-group cart-unit">
 <input type="text" class="form-control"
 data-bind="textInput:units" readonly/>

 <div class="btn-group-vertical">
 <button class="btn btn-default btn-xs add-unit"
 data-bind="click:$parent.addUnit">
 <i class="glyphicon glyphicon-chevron-up"></i>
 </button>
 <button class="btn btn-default btn-xs remove-unit"
 data-bind="click:$parent.removeUnit">
 <i class="glyphicon glyphicon-chevron-down"></i>
 </button>
 </div>

 </div>
</div>

The cart view mockup

Chapter 8

[203]

The cart view-model
The cart view-model will talk to the cart service and will update the state of the cart.
Look how we are using the cart service to share information between modules. This
is because we have created the service as an object and it is a singleton. Once it is
loaded, it will persist during the application's life cycle:

define([
 'durandal/app','plugins/router','services/log',"services/cart"
],function(app, router, LogService, CartService){
 var vm={};
 vm.cart = CartService.cart;
 vm.addUnit = function(data){
 CartService.add(data.product);
 };
 vm.removeUnit = function(data) {
 if (data.units() === 1) {
 remove(data);
 } else {
 CartService.subtract(data);
 }

 };
 vm.removeProduct = function(data) {
 remove(data);
 };
 vm.toOrder = function() {
 router.navigate('#/order');
 }
 vm.canActivate = function () {
 var result = (vm.cart().length > 0);

 if(!result) {
 LogService.error("Select some products before",
 "Cart is empty");
 return {redirect:'#/catalog'};
 }

 return result;
 }
 function remove(data) {
 app
 .showMessage(
 'Are you sure you want to delete this item?',
 'Delete Item',

Developing Web Applications with Durandal – The Cart Project

[204]

 ['Yes', 'No']
).then(function(answer){
 if(answer === "Yes") {
 CartService.remove(data.product);
 LogService.success("Product removed");
 } else {
 LogService.success("Deletion canceled");
 }
 });
 }
 return vm;
});

There are two ways to communicate between components in Durandal, services
and events. To share information between view-models, the best practice is to use
services. If you want to send messages from one service to a view-model, or between
view-models, you should use events. This is because services can be required inside
a module and you can call them explicitly. Moreover, we can't access view-models
from other view-models or services, which is why we need to send messages to them
using events.

The order module
This module will manage the confirmation of our order. To complete an order, we
need to introduce our personal data. We can only access the order page if we have
something in our cart. Once we confirm our order, we will get a message from the
server with the order ID. The product's stock will be updated and we will be able to
continue shopping.

The order workflow

Chapter 8

[205]

The order view
The order view will be the same order view we built in the Knockout project. This
time we will use composition to make the view simpler.

The order.html file will contain the structure of the page and we will build some
partials to compose the entire view. These partials will be:

• order-cart-detail.html: This will contain the read-only cart
• order-contact-data.html: This will contain the personal data
• order-buttons.html: This will contain the action buttons of the page

The order.html file will contain this code:

<h1>Confirm order</h1>
<div class="col-xs-12 col-sm-6">
 <div class="modal-header">
 <h3>Order</h3>
 </div>
 <div data-bind="compose:'order-cart-detail.html'"></div>
</div>
<div class="col-xs-12 col-sm-6">
 <div data-bind="compose:'order-contact-data.html'"></div>
 <div data-bind="compose:'order-buttons.html'"></div>
</div>

The order-cart.html file will contain the read-only cart. It's the same markup you
can find in the order.html template in the Knockout cart project.

<table class="table">
 <thead>
 <tr>
 ...
 </tr>
 </thead>
 <tbody data-bind="foreach:cart">
 ...
 </tbody>
 <tfoot>
 <tr>
 <td colspan="3"></td>
 <td class="text-right">
 Total:
 </td>
 </tr>

Developing Web Applications with Durandal – The Cart Project

[206]

 </tfoot>
</table>

The order-contact.html file will contain the form that is in the view order.html
Knockout cart project:

<form class="form-horizontal" role="form" data-bind="with:customer">
 <div class="modal-header">
 <h3>Customer Information</h3>
 </div>
 <div class="modal-body">
 ...
 </div>
</form>

Finally, the order-buttons.html has the button to confirm the order. Of course, you
can find it in the order.html file we built in the Knockout cart project. We re-use as
much code as we are able to.

<div class="col-xs-12">
 <button class="btn btn-sm btn-primary"
 data-bind="click:finishOrder,
 enable:!customer.errors().length">
 Buy & finish
 </button>
 <span class="text-danger"
 data-bind="visible:customer.errors().length">
 Complete your personal data to receive the order.

</div>

The order mockup

Chapter 8

[207]

The order view-model
The order view will check whether our cart is empty to allow the activation.
Validation is managed by the customer model. This model was built in the Knockout
cart project. The rest of the code is partly from the big view-model we had in the
Knockout cart project:

define(["knockout","durandal/app","plugins/router","services/log",
 "services/cart","models/customer","services/order"],
 function(ko, app, router, LogService, CartService,
 Customer, OrderService){
 var vm = {};

 vm.countries = ko.observableArray(['United States','United
 Kingdom']);
 vm.cart = CartService.cart;
 vm.grandTotal = CartService.grandTotal;
 vm.customer = new Customer();
 vm.finishOrder = function () {
 OrderService.save({
 customer: vm.customer,
 order: vm.cart
 }).then(function(response){
 app.showMessage(
 "Your order id is:
 "+response.data.orderId+"",
 'Order processed successfully'
).then(function(){
 LogService.success("Order completed");
 CartService.cart([]);
 router.navigate("#/catalog");
 app.trigger("catalog:refresh");
 });
 });
 }

 vm.canActivate = function () {
 var result = (vm.cart().length > 0);

 if(!result) {
 LogService.error("Select some products before","Cart is
 empty");
 }

 return {redirect:'#/catalog'};
 }

 return vm;
});

Developing Web Applications with Durandal – The Cart Project

[208]

Finally, our project is done and we have reused most of the old code. After migrating
the project, we can see the advantages Durandal gives us. Notice also that we have
not used the full potential of Durandal and Knockout. We can iterate over this
project and improve all the parts again and again. We can create perfect isolated
components. We can split the catalog into even smaller pieces and add more
functionality, such as ordering and pagination. However, this project gives us a
quick global overview of what Durandal is capable of.

Grouping code by feature – managing big
projects
As you have seen in the main.js file, we are using Durandal conventions. This
means that all our view-models lie in the viewmodels folder and all our views lie in
the views folder. When we have a big project, having all the files in the same folder
can be difficult to manage.

In this case, we remove the viewLocator.useConvention(); statement from the
main.js file. This acts as an indication to Durandal that all the views are in the same
folder as the view-model.

We are going to group our project by features. We will define these features in our
project:

• catalog
• cart
• order
• product
• shell

They will contain the code for each feature. Services, models, and other components
will be as we had when we used conventions. Take a look at what the folders look like:

Files grouped by features

Chapter 8

[209]

We need to update some code. The first step is to update the main folder, setting the
new ID of the shell module:

app.setRoot('shell/shell', 'entrance');

Then we should do the same with the router inside the shell module:

router.map([
 { route: ['','/','catalog'], title:'Catalog',
 moduleId: 'catalog/catalog', nav: true },
 { route: 'new', title:'New product',
 moduleId: 'product/new', nav: true },
 { route: 'edit/:id', title:'Edit product',
 moduleId: 'product/edit', nav: false },
 { route: 'cart', title:'Cart',
 moduleId: 'cart/cart', nav: false },
 { route: 'order', title:'Order',
 moduleId: 'order/order', nav: true }
]).buildNavigationModel();

Finally, we need to update the compose paths. They should be full paths. This means
that where we have the following code:

<div data-bind="compose:'catalog-details.html'"/></div>

We will now have the following code:

<div data-bind="compose:'catalog/catalog-details.html"/></div>

Our code will be ready to go.

Notice that now it is easy to find where the code we are working on is. Usually, we
work on a feature and is more comfortable to have all the code of this feature in the
same place. Also, we can better see whether we are isolating our feature properly. If
we notice we are working too much out of the feature folder, maybe it means you are
doing something wrong.

To see the code for this chapter, you can download it from GitHub:

• Durandal project using conventions from https://github.com/
jorgeferrando/durandal-cart/tree/chapter8part1.

• Durandal project grouping files by feature from https://github.com/
jorgeferrando/durandal-cart/tree/master.

https://github.com/jorgeferrando/durandal-cart/tree/chapter8part1
https://github.com/jorgeferrando/durandal-cart/tree/chapter8part1
https://github.com/jorgeferrando/durandal-cart/tree/master
https://github.com/jorgeferrando/durandal-cart/tree/master

Developing Web Applications with Durandal – The Cart Project

[210]

Summary
Finally, we have developed a complete application that leads us to create Single Page
Applications using Durandal.

During this book, you have learned best practices to work with the JavaScript code.
These practices and patterns, such as the reveal pattern or the module pattern are
used in all frameworks and libraries.

Building isolated and small pieces of code helps us to migrate our code easily from
one environment to the other. In just one chapter, we have migrated our application
from a basic Knockout application to a Durandal one.

Now we have developed good skills with Knockout and Durandal, we can try to
improve this application by ourselves.

We can create a user module that enables users to log in and just allows
administrators to edit and delete projects from the catalog. Alternatively, we can
paginate our products and order them by price. We have acquired all the skills we
need to successfully develop all these features. We just need to follow the steps you
have learned during this book to complete these development tasks.

I hope that you have enjoyed this book as much I have. I would like to tell you that
you need to push yourself to learn more about JavaScript, Knockout, Durandal and
all the fantastic JavaScript frameworks that nowadays exist on the Internet. Learn the
best practices and follow the best patterns to keep your code KISS and SOLID.

Index
Symbol
$parent object

URL 19

A
add product view 193
add product view-model 195, 196
add-to-cart-button component

updating 137
add-to-cart-modal template 39
AJAX errors

handling 115, 116
AMD Module

normal module, converting to 145, 146
URL 121

AngularJS
URL 152

app.js file
defining 144, 145

application
life cycle 177
limitations 149

B
bindings

about 137
and events 84-86
creating, to debug 60, 61
data, preprocessing 71
descendant bindings, controlling 68, 69
RequireJS, applying 148
semantic binding 62
virtual elements, using 70

Bootstrap
URL 9

browserify
URL 140

C
cart-item template 41, 42
cart module

about 201
cart.html view 201, 202
cart view-model 203, 204

CartProduct service
creating 106

cart service 189
cart template 42, 43
cart-widget template 40
catalog module

about 182, 183
catalog view 183-185
catalog view-model 186-188
products, adding 193

catalog template 32-38
child routes 169, 170
click binding

URL 19
click event

about 74
default click action, allowing 76
parameters, passing 75

collections
elements, inserting 18-22
managing, observables used 17, 18

CommonJS
URL 140

[212]

components
about 65-68
installing 9, 10
RequireJS, applying 147

compositions
about 163
object composition 163
URL 166
visual composition 163-166

computed observables 22-24
console

about 125
URL 125, 126

CRUD
Create (C) 91
defining 91
Delete (D) 91
operations, setting in resource 91-94
Retrieve (R) 91
Update (U) 91

currency binding 59
custom bindings

about 55, 56
allBindings 56
bindingContext 56
currency binding 59
element 56
jQuery plugin, wrapping 62-65
toggle binding 57, 58
valueAccessor 56
viewModel 56

customer model
extending 118-120
URL 120

D
data

about 104
mock data generating, MockJSON

used 97-99
validating 116

declarative binding 12
delegation pattern 80, 81
dependencies

managing, RequireJS used 139, 140

dependency injection
about 151
URL 121

descendant bindings
controlling 68, 69

Document Object Model (DOM) 7
Durandal

Asynchronous Module Definition (AMD)
pattern 154

HTML Samples.zip file, URL 153
index.html file 154
installing 152, 153
jQuery promises 162
life cycle 159
main.js file 155-158
Model-View-ViewModel (MVVM)

pattern 154
page, building with 173-175
patterns 154
Single Page Application (SPA)

framework 154
starter kit, URL 152
URL 152

Durandal, life cycle
about 159
activate 160
activation, life cycle 160, 161
attached 161
binding 161
bindingComplete 161
canActivate 160
canDeactivate 160
compositionComplete 161
compositions 163
deactivate 160
detached 161
getView 161
navigation, triggering 168
promise pattern 161, 162
router 166, 167
viewUrl 161
widgets 170

E
edit view 194, 195
edit view-model 200, 201

[213]

elements
inserting, in collections 18-22

event binding 77, 78
event-driven programming 73, 74
events

about 137, 170
and bindings 84-86
bubbling 76
click event 74
custom events, building 82-84
Mozilla-specific 77
non standard events 77
RequireJS, applying 148
standard events 77
subscribing 170
triggering 170
types 77
unobtrusive events, with jQuery 79
unsubscribing 170
updating 138

extenders
about 116
URL 116

F
finish-order-modal template 45, 46

G
GitHub

URL 71, 88, 98
Grunt

URL 139
Gulp

URL 139

H
header template 30, 31
HTTP requests

mocking, Mockjax used 96, 97

I
ID

product, retrieving by 100, 101
index.html file, Durandal 154

J
JavaScript modules

URL 140
jQuery

about 151
documentation, URL 83
plugin, wrapping into custom binding 62-65
unobtrusive events 79
URL 9
used, for managing templates 51, 52

jQuery AJAX calls
URL 92

K
Knockmeout

URL 141
Knockout

components 137
custom bindings, URL 70
documentation, URL 22
JSON, URL 61
releases, URL 179
URL 15, 31, 35

Knockout context debugger
about 122-124
URL 122

KnockoutJS
about 8, 151
advantages 8
project, preparing 27-29
URL 9

Knockout Validation
URL 116

koCart 9
koExternalTemplateEngine

used, for managing templates 52, 53
ko.toJS

URL 103

L
log service 192

[214]

M
main.js file, Durandal

about 155-157
bootstrap 155
durandal 155
jQuery 155
knockout 155
plugins 155
text 155
transitions 155

Mockjax
about 151
URL 96
using, to mock HTTP requests 96, 97

MockJSON
about 151
used, for generating mock data 97-99

mocks
RequireJS, applying 147

model 13, 14
models module 130-132
module pattern 126, 127, 151

N
navigation

triggering 169
Node.js

URL 139
non-standard events 77
normal module

converting, into AMD module 145, 146

O
object composition 163
observables

about 14, 15
used, for managing collections 17, 18

order
sending, to server 111-115

order module
about 204
order view 205, 206
order view-model 207, 208

order template 43-45

P
page

building, with Durandal 173-175
product

adding, to catalog 193
add product view 193
add product view-model 195, 196
edit view 194, 195
edit view-model 200, 201
deleting 109, 110
mocks, making real 196-200
model, extending 116-118
new product, creating 102-104
retrieving, by ID 100, 101
service, creating 105, 106
updating 107-109

project
conventions, URL 209
grouping, by feature 208, 209
grouping files by feature, URL 209
routing 181, 182
setting up 178-181

promise API
.always(callback) method 95
.done(callback) method 95
.fail(callback) method 95
.then(successCb, errorCb) method 95
about 92
URL 92

promise pattern 161, 162

R
Representational State Transfer (REST)

about 90
URL 91

RequireJS
applying, to bindings 148
applying, to components 147
applying, to events 148
applying, to mocks 147
configuring 141-143
URL 140
used, for managing dependencies 139, 140
using, in project 143, 144

resources
CRUD operations, setting 92-94

[215]

using, in view-model 94-96
resources module 133-135
REST services 89, 90
revealing module pattern 24

URL 14
reveal pattern 151
router

about 166-168
hash parameter 167
moduleId 182
nav 182
nav parameter 167
parameters 168
route 182
splat routes 167
title 182
title parameter 167

routes
default route 167
parametrized route 167
static route 167

S
semantic binding 62
services module 136
shell template 182
shell view 159
shell view-model 158, 181
shop module 128
Singleton pattern

URL 91
Singleton resources 91
standard events 77

T
template engine

updating 141
templates

add-to-cart-modal template 39
cart-item template 41, 42
cart template 42, 43
cart-widget template 40
catalog template 32-38
creating 29, 30
finish-order-modal template 45, 46
handling, if bindings used 46-50

handling, ifnot bindings used 46-50
header template 30, 31
managing, jQuery used 51, 52
managing, koExternalTemplateEngine

used 52, 53
order template 43, 44

textInput binding
URL 19

Toastr
URL 178

toggle binding 57, 58
toJSON binding 60, 61

U
unobstrusive event handlers

URL 81

V
view 11, 12
view-model

about 11
resources, using 94-96
shell 158
widgets, writing 172, 173

ViewModel module 128-130
view, shell 159
view, widgets

writing 171
virtual elements

using 70
visual composition 163-166

W
widgets

about 170
registering 173
setting up 171
URL 171
view-model, writing 172, 173
view, writing 171

with binding
URL 19

World Wide Web Consortium (W3C) 89

Thank you for buying
KnockoutJS Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Mastering KnockoutJS
ISBN: 978-1-78398-100-7 Paperback: 270 pages

Use and extend Knockout to deliver feature-rich,
modern web applications

1. Customize Knockout to add functionality and
integrate with third-party libraries.

2. Create full web applications using binding
preprocessors, Node preprocessors, and the
Knockout Punches library.

3. In a step-by-step manner, explore the Knockout
ecosystem by looking at popular plugins as
well as the Durandal Framework.

KnockoutJS Starter
ISBN: 978-1-78216-114-1 Paperback: 50 pages

Learn how to knock out your next app in no time
with KnockoutJS

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Learn how to develop a deployable app as the
author walks you through each step.

3. Understand how to customize and extend
KnockoutJS to take your app to the next level.

4. Great examples showing how KnockoutJS can
simplify your code and make it more robust.

Please check www.PacktPub.com for information on our titles

Building a Single Page Web
Application with Knockout.js
[Video]
ISBN: 978-1-78328-405-4 Duration: 01:51 hrs

Create a complete and structured single page
application by doing more with less code using
Knockout.js

1. Create a well-structured and organized
application that you can build on and expand.

2. Learn how Knockout's data-binding can help
you do more with less code.

3. Make use of best practices to ensure a
maintainable code base.

Web App Testing Using
Knockout.JS
ISBN: 978-1-78398-284-4 Paperback: 154 pages

Design, implement, and maintain a fully tested
JavaScript web application using Knockout.JS

1. Test JavaScript web applications using
one of the most known unit testing
libraries—Jasmine.js.

2. Leverage the two way bindings and
dependency tracking mechanism to test
web applications using Knockout.js.

3. The book covers different JavaScript application
testing strategies supported by real-world
examples.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Refreshing the UI Automatically with KnockoutJS
	KnockoutJS and the MVVM pattern
	A real-world application – koCart
	Installing components
	The view-model
	The view
	The model

	Observables to refresh the UI automatically
	Managing collections with observables
	Inserting elements in collections
	Computed observables

	Summary

	Chapter 2: KnockoutJS Templates
	Preparing the project
	Creating templates
	The header template
	The catalog template
	The add-to-cart-modal template
	The cart-widget template
	The cart-item template
	The cart template
	The order template
	The finish-order-modal template

	Handling templates with if and ifnot bindings
	Managing templates with jQuery
	Managing templates with koExternalTemplateEngine
	Summary

	Chapter 3: Custom Bindings and Components
	Custom bindings
	The toggle binding
	The currency binding

	Create a binding to debug – the toJSON binding
	Being semantic with our bindings
	Wrapping a jQuery plugin into a custom binding
	Components – isolated view-models
	Advanced techniques
	Controlling descendant bindings
	Using virtual elements
	Preprocessing data before binding

	Summary

	Chapter 4: Managing
KnockoutJS Events
	Event-driven programming
	The click event
	Passing more parameters
	Allowing the default click action
	Event bubbling

	Event types
	Event binding
	Unobtrusive events with jQuery
	Delegation pattern
	Building custom events
	Events and bindings
	Summary

	Chapter 5: Getting Data from the Server
	REST services
	Defining CRUD
	Singleton resources
	Setting CRUD operations in the resource
	Using resources in the view-model
	Using Mockjax to mock HTTP requests
	Generating mock data with MockJSON
	Retrieving a product by ID
	Creating a new product
	Separation of concerns – behavior
and data
	Creating the product service
	Creating the CartProduct service
	Updating a product
	Deleting a product
	Sending the order to the server
	Handling AJAX errors
	Validating data
	Extending the product model
	Extending the customer model
	Summary

	Chapter 6: The Module Pattern – RequireJS
	Installing the Knockout context debugger extension
	The console
	The module pattern
	Creating the Shop module
	The ViewModel module
	The Models module
	The Resources module
	The Services module
	Events, bindings, and Knockout components
	Updating the add-to-cart-button component
	Updating events
	Using RequireJS to manage dependencies
	Updating the template engine
	Configuring RequireJS
	Using RequireJS in our project
	Defining the app.js file
	Converting a normal module into an AMD module
	Applying RequireJS to components
	Applying RequireJS to mocks
	Applying RequireJS to bindings
	Applying RequireJS to events
	The limits of the application
	Summary

	Chapter 7: Durandal – The KnockoutJS Framework
	Installing Durandal
	Durandal patterns
	The index.html file
	The main.js file

	The shell view-model
	The shell view

	Durandal life cycle
	The activation life cycle
	The promise pattern
	Compositions
	Object composition
	Visual Composition

	Router
	Route parameters

	Triggering navigation
	Child routers
	Events
	Widgets
	Setting up widgets
	Writing the widget view
	Writing the widget ViewModel
	Registering the widget

	Building a page with Durandal
	Summary

	Chapter 8: Developing Web Applications with Durandal – The Cart Project
	Introduction
	Setting up the project
	Routing the project – the shell view-model
	The navigation and shell templates
	The catalog module
	The catalog view
	The catalog viewmodel

	The cart service
	The log service
	Adding products to the catalog
	The add product view
	The edit view
	The add product view-model
	Making mocks real
	The edit view-model

	The cart module
	The cart.html view
	The cart view-model

	The order module
	The order view
	The order view-model

	Grouping code by feature – managing big projects
	Summary

	Index

