
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

KnockoutJS	Blueprints

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

KnockoutJS	Blueprints

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	From	Idea	to	Realization

What	KnockoutJS	is	and	where	you	can	get	it

The	idea	of	this	chapter	–	Simple	Show	Case

The	bare	bone	code	of	a	KnockoutJS	application

Getting	jQuery	because	it	can	be	useful

Browser	compatibility

Understanding	MVVM,	MVP,	and	MVC	to	get	the	best

MVC	(Model-View-Controller)

MVVM	(Model-View-View	Model)	to	the	rescue

www.allitebooks.com

http://www.allitebooks.org

Model

View

View	Model

Data	binding

Getting	data	from	the	server

The	magic	of	KnockoutJS	unveiled

Filters	and	product	details

Product	details

Managing	a	Cart

Using	the	Cart	on	the	home	page

The	Cart	page

Contact	form

Paying	from	the	client-side	code

The	contact	form

Summary

2.	Starting	Small	and	Growing	in	a	Modular	Way

Analyzing	the	project	–	booking	online

Building	the	structure	of	our	application

Modularizing	with	the	component	binding	handler

AMD	and	RequireJS

Updating	starting	code	to	use	RequireJS

Component	binding	handler

Creating	the	bare	bones	of	a	custom	module

Creating	the	JavaScript	file	for	the	View	Model

Creating	the	HTML	file	for	the	template	of	the	View

Registering	the	component	with	KnockoutJS

Using	it	inside	another	View

Writing	the	Search	Form	component

Adding	the	AMD	version	of	jQuery	UI	to	the	project

Making	the	skeleton	from	the	wireframe

Realizing	an	Autocomplete	field	for	the	destination

www.allitebooks.com

http://www.allitebooks.org

The	what	and	why	about	binding	handlers

Binding	handler	for	the	jQuery	Autocomplete	widget

Improving	two	date	fields	by	applying	Date	Picker	widget

Transforming	already	done	code	into	a	reusable	one

Making	the	button	easy	to	customize

Communicating	with	other	components

Adding	the	Hotel	Cards

Summary

3.	SPA	for	Timesheet	Management

Analysing	the	project	briefly	–	Timesheet	SPA

The	SPA	feature	for	the	Timesheet	SPA

Choosing	the	right	tool	for	the	project

Choosing	between	DurandalJS	or	plain	KnockoutJS

Creating	a	new	project	starting	with	the	HTML	StarterKit

Building	Timesheet	SPA	with	DurandalJS

Components	of	this	project

Getting	the	code	for	the	Client-Server	interface

Checking	authentication	–	Login	component

Auto-redirecting	navigation	to	Login	page

Adding	a	logout	button

Making	a	dashboard	for	the	Employee

Transforming	a	table	into	a	grid	with	bells	and	whistles

Building	a	few	forms	to	update	data

Realizing	a	dashboard	for	the	Team	Manager

Summary

4.	Tracking	Expense	Using	PhoneGap

Understanding	hybrid	mobile	applications

Getting	PhoneGap/Cordova

Defining	what	Piggy	Bank	should	be

Creating	a	starting	environment	for	the	project

Building	the	application	with	jQuery	Mobile

www.allitebooks.com

http://www.allitebooks.org

Realizing	the	global	layout	of	the	application

Making	the	list	view	with	all	the	Accounts

Putting	the	tests	inside	the	bundle

Adding	the	Detail	page	view

Enhancing	the	application	with	the	unit	tests

Refactoring	and	working	on	the	missing	parts

Fixing	KnockoutJS	binding	handler	inside	jQuery	Mobile

Adding	the	contact	plugin

Publishing	the	application

Summary

5.	Wizard	for	the	Public	Administration

The	project,	a	real-world	web	application

Looking	at	the	big	picture	of	the	project

Reviewing	the	content	we	got	for	free

Analysing	and	developing	the	Relocate	module

Graceful	Degradation	versus	Progressive	Enhancement

Reasoning	against	Progressive	Enhancements

Making	the	form	for	the	first	child	route

Asking	for	personal	information

Fixing	a	hidden	bug

Adding	a	new	binding	handler	for	the	asynchronous	loading

Enhancing	the	selection	fields

Updating	the	code	to	be	accessible

A	few	words	about	accessibility

Making	the	gender	field	accessible

Updating	the	loading	binding	handler	for	accessibility

Working	to	make	the	app	SEO	crawlable

Using	a	NodeJS	server	to	return	SEO	pages

Caching	the	page	by	yourself

Summary

Index

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

KnockoutJS	Blueprints

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

KnockoutJS	Blueprints
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1190215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-084-0

www.packtpub.com

http://www.packtpub.com

Credits
Author

Carlo	Russo

Reviewers

Marko	Bojovic

Oscar	Finnsson

Marco	Franssen

Robert	Gaut

Commissioning	Editor

Taron	Pereira

Acquisition	Editor

Owen	Roberts

Content	Development	Editor

Anand	Singh

Technical	Editor

Ryan	Kochery

Copy	Editors

Puja	Lalwani

Merilyn	Pereira

Project	Coordinator

Akash	Poojary

Proofreaders

Jenny	Blake

Paul	Hindle

Julie	Jackson

Indexer

Tejal	Soni

Graphics

Abhinash	Sahu

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Carlo	Russo	works	as	a	consulting	software	architect	and	trainer	in	the	field	of	software
development.	He	started	working	with	computers	when	he	was	15.	His	dream	was	to	be
able	to	build	a	video	game	on	his	own	some	day.

He	has	worked	as	consultant	for	many	renowned	worldwide	companies;	in	his	spare	time,
he	develops	web	applications	and	learns	new	programming	languages.

In	the	last	3	years,	he	worked	as	a	web	developer,	learning	both	Angular	and	DurandalJS;
currently,	he	is	focusing	on	a	big	Single	Page	Application	built	with	DurandalJS	and
Knockout	3.2.

I	would	like	to	thank	my	wife,	Ester	Pia,	for	supporting	and	sustaining	me	throughout	my
life	and	while	writing	this	book.	She	is	my	life,	and	I	dedicate	this	book	to	her.

About	the	Reviewers
Marko	Bojovic	graduated	in	computer	science	at	the	University	of	Milano-Bicocca	while
building	his	career.	Through	the	years,	he	has	improved	his	skills	in	software	engineering
and	especially	in	enterprise	web	applications,	primarily	(but	not	only)	using	Java-based
technologies	for	backend	applications.	He	managed	to	achieve	this	by	always	being	in	the
mainstream	in	frontend	frameworks	and	best	practices.

He	worked	in	different	companies	where	he	had	the	possibility	to	experiment	with	specific
business	needs,	such	as	big	data	analysis	and	machine	learning	techniques.	As	for	his
current	position,	he	leads	projects	as	a	freelancer	while	keeping	in	mind	his	plan	to	start
his	own	company	in	the	near	future.

I,	for	sure,	would	like	to	thank	my	girlfriend,	Roberta,	for	supporting	me	in	this,	and	I	also
want	to	thank	Carlo	for	this	opportunity	to	which	I	dedicated	my	full	effort.

Oscar	Finnsson	is	a	software	development	consultant	at	Purepro	AB,	having	previously
worked	in	banking	and	with	payment	solutions.	He	has	degrees	in	engineering	physics	as
well	as	business	administration	and	economics	from	Uppsala	University.

He	is	the	developer	behind	pager.js—the	most	popular	Knockout.js	plugin	at	GitHub,
which	is	aimed	at	large	single	page	web	applications.

Marco	Franssen	is	a	very	passionate	developer	from	the	Netherlands.	During	his	career,
he	has	worked	on	various	types	of	software	projects.	These	projects	range	from	client
software	and	distributed	systems	to	web	applications	and	MS	Office	add-ins.	Some	of	the
techniques	and	languages	Marco	is	familiar	with	are	C#,	ASP.NET	MVC,	CQRS,	DDD,
JavaScript,	NodeJS,	SCRUM,	Agile,	and	so	on.

In	all	of	these	projects,	he	worked	as	a	lead	developer	or	architect.	Thanks	to	his	ability	to
think	in	terms	of	abstracts,	his	understanding	of	processes,	and	his	analytical	skills,	he	was
able	to	achieve	success	in	all	of	his	projects.

He	believes	that	when	you	master	the	software	design	patterns,	the	choice	of	programming
language	actually	doesn’t	matter	anymore,	since	you	will	be	able	to	learn	new
programming	languages	very	quickly.

Marco	also	has	a	personal	weblog	at	http://marcofranssen.nl,	where	he	shares	his
knowledge	with	the	community.

He	has	also	worked	on	the	book	jQuery	Flot	Visual	Data	Analysis.

Robert	Gaut	is	a	father,	husband,	musician,	photographer,	martial	artist,	and	software
developer.	He	began	his	career	teaching	application	and	database	development	at	a
technical	college.	After	several	years	of	teaching,	he	spent	more	than	a	decade	developing
web-based	content	management	systems	for	the	automotive	industry.	He	currently	works
for	a	large	public	school	district,	where	he	develops	business	applications	and	data
integration	processes	using	Microsoft	technologies.

http://marcofranssen.nl

www.PacktPub.com

www.allitebooks.com

http://www.allitebooks.org

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
In	the	past	five	years,	almost	everyone	working	on	web	applications	has	used	jQuery;	but
when	you	start	working	with	a	more	complex	app,	you	understand	how	difficult	it	is	to
work	in	such	a	low-level	way.	This	is	the	reason	behind	KnockoutJS—to	help	you	to	build
Rich	Web	Application	by	thinking	in	a	high-level	way,	with	models	and	not	worrying
about	the	DOM	anymore.	In	this	way,	you	can	think	about	products	to	show,	user	profiles,
and	working	days,	not	about	table	rows	and	columns,	and	you	can	scale	up	in	complexity
easily.

This	book	starts	with	a	simple	project	to	show	you	how	to	use	all	the	basic	features	of
KnockoutJS,	then	it	will	go	through	four	other	projects,	to	teach	you	how	to	use	this
library	in	different	contexts.

The	goal	of	this	book	is	to	teach	you	how	to	create	fully	testable	web	applications	from
real-world	solutions	with	the	powerful	data-binding	offered	by	KnockoutJS,	how	to	bind
all	the	components	of	a	web	application	together—no	matter	how	big	it	is,	how	to	create
new	reusable	components	by	yourself,	and	how	to	integrate	external	libraries	easily.

What	this	book	covers
Chapter	1,	From	Idea	to	Realization,	introduces	you	to	the	structure	of	a	basic	KnockoutJS
application.	It’s	a	good	introduction,	and	it	shows	how	KnockoutJS	implements	the	data-
binding.

Chapter	2,	Starting	Small	and	Growing	in	a	Modular	Way,	shows	you	how	to	realize	a
BookingOnline	website.	We’ll	see	how	to	realize	template	and	component,	and	we	will
use	RequireJS	to	modularize	our	code.

Chapter	3,	SPA	for	Timesheet	Management,	shows	how	you	to	realize	an	SPA	with
DurandalJS	(which	uses	KnockoutJS	as	a	data-binding	library).

Chapter	4,	Tracking	Expense	Using	PhoneGap,	goes	in	a	different	direction	by	using
Cordova	to	build	a	hybrid	mobile	application.	We	will	use	KnockoutJS	with	jQuery
Mobile	and	Jasmine	to	show	you	how	to	test	a	MVVM	application	realized	with
KnockoutJS.

Chapter	5,	Wizard	for	the	Public	Administration,	realizes	another	SPA,	keeping	in	mind
accessibility	and	SEO.

What	you	need	for	this	book
Since	this	book	is	mostly	about	client-side	code,	the	main	tools	required	are	a	text	editor
and	a	browser.	However,	the	realization	of	hybrid	mobile	application	with	Cordova	needs
a	working	Node.js	installation.

You’ll	have	to	install	Node.JS	(http://nodejs.org),	which	comes	with	npm,	the	Node
package	manager.

It	can	be	useful	to	use	http-server	(a	node	application)	to	serve	the	web	application	we
realize,	because	the	browsers	have	many	limitations	when	you	access	them	using	the	file://
protocol.

http://nodejs.org

Who	this	book	is	for
If	you	are	a	JavaScript	developer	and	already	know	the	basics	of	KnockoutJS	and	you
want	to	get	the	most	out	of	it,	then	this	book	is	for	you.	This	book	will	help	you	transition
from	a	small	site	to	a	large	web	application	that	is	easily	maintainable.

www.allitebooks.com

http://www.allitebooks.org

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

myViewModel.categories	=	ko.computed(function()	{

		var	results	=	myViewModel.allCategories(),

						filterByCategory	=	myViewModel.selectedCategory();

		if	(filterByCategory)	{

				results	=	ko.utils.arrayFilter(results,	function(category)	{

						return	category.name	===	filterByCategory;

				});

		}

		return	results;

});

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

var	myViewModel	=	{

		allCategories:	ko.observableArray([]),

		selectedCategory:	ko.observable(),

		selectedName:	ko.observable("")

};	

Any	command-line	input	or	output	is	written	as	follows:

#	npm	install	–g	http-server

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Here	we	get	the
starting	page,	with	an	Error	loading	page.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/0840OS_Graphics.pdf.

https://www.packtpub.com/sites/default/files/downloads/0840OS_Graphics.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

www.allitebooks.com

mailto:copyright@packtpub.com
http://www.allitebooks.org

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	From	Idea	to	Realization
In	this	chapter,	we	are	going	to	assume	that	your	experience	with	KnockoutJS	is	very
minimal;	here,	we	will	introduce	how	to	get	it	and	start	using	it.	We	will	also	learn	the
philosophy	behind	this	great	library	and	the	pattern,	Model-View-ViewModel	(MVVM).

We	will	learn	all	this	while	building	a	simple,	small	e-commerce	web	application	and	we
will	see	why	everything	is	easier	when	you	work	thinking	about	models	instead	of
document	object	model	(DOM)	nodes.

By	the	end	of	this	chapter	you’ll	know:

What	KnockoutJS	is
What	are	and	how	to	use	KnockoutJS	observables,	computed	observables,	and	data
binding
What	benefits	the	MVVM	design	pattern	gives	you
The	magic	behind	this	library
How	to	apply	MVVM	using	KnockoutJS

If	you	already	know	how	to	use	KnockoutJS,	you	can	take	a	quick	read	through	this
chapter.

What	KnockoutJS	is	and	where	you	can
get	it
KnockoutJS	is	a	JavaScript	library	that	helps	build	web	applications	easily.

It’s	not	a	framework,	so	it’s	wrong	to	try	to	compare	it	with	other	web	development
frameworks	like	Angular	or	Ember	or	Backbone;	with	KnockoutJS	you	don’t	find
anything	to	help	you	with	multiple-page	applications,	routing,	or	the	interface	your	server
should	have.

If	you	are	searching	for	a	framework	to	build	an	Single	Page	Application	(SPA),	you
could	have	a	look	at	DurandalJS,	which	extends	the	capability	of	KnockoutJS	with
features	(like	routing)	that	you	need	to	build	an	SPA.

KnockoutJS	is,	at	its	heart,	a	data-binding	library	for	the	web.

It	means	that	it	helps	you	to	keep	synchronized	your	web	pages	(written	in	HTML)	with
JavaScript	objects.	In	this	way,	you	can	think	about	the	models	you	want	to	show	and	how
they	interact	with	each	other,	instead	of	thinking	about	the	structure	of	the	page	and	how
to	get	the	information	from	there.

The	website	of	this	library	is	http://knockoutjs.com/.

You	can	download	the	KnockoutJS	library	from	this	link:
http://knockoutjs.com/downloads/index.html.

In	this	book,	we	are	going	to	use	the	latest	version	available	at	the	time	the	book	is	being
written,	so	here	is	the	direct	link	to	download	it:
http://knockoutjs.com/downloads/knockout-3.2.0.js.

The	library	we	use	is	the	minified	version.	You	can	find	also	a	non-minified	one,	but	use	it
only	if	you	want	to	learn	better	how	KnockoutJS	works	internally;	as	suggested	on	the
download	page,	don’t	use	it	for	normal	application	development,	because	it	exposes
additional	unsupported	private	APIs.

Note
Before	we	move	on,	if	you	haven’t	done	so	yet,	please	try	the	live	tutorial	on	using
KnockoutJS,	which	you	can	find	here:	http://learn.knockoutjs.com/.	You	will	learn	the
basic	usage	of	KnockoutJS,	and	you’ll	find	this	book	easier	to	understand.

http://knockoutjs.com/
http://knockoutjs.com/downloads/index.html
http://knockoutjs.com/downloads/knockout-3.2.0.js
http://learn.knockoutjs.com/

The	idea	of	this	chapter	–	Simple	Show
Case
You	have	a	couple	of	friends	who	enjoy	making	and	selling	jewelry,	and	they	want	your
help	creating	a	website	so	that	they	can	sell	online.

We	start	by	asking	them	what	they	really	need	to	give	us	an	idea	to	build	a	first	prototype.

They	want	to	show	all	products	together,	and	provide	a	way	to	filter	them	based	on	the
category	(for	example,	necklaces,	rings,	and	so	on),	or	by	name;	sorting	by	price	can	be	a
nice	addition	(but	we	will	decide	later	if	we	will	implement	this	feature	or	not).

Each	product	should	have	also	a	section	with	the	description,	with	one	or	more	big
images,	the	price,	and	a	buy	button.

They	want	also	a	contact	page,	and	a	page	with	the	list	of	the	items	the	customer	wants	to
buy.

If	it	were	possible,	they	would	also	like	to	sell	directly	from	the	website,	getting	the
payment	in	their	bank	account.

From	these	requirements	we	can	understand	that	we	have	to	realize:

A	starting	page	with	the	full	list	of	products	and	one/many	filter(s)
A	detailed	page	for	each	product
A	contact	page
A	cart

The	name	of	this	prototype	will	be	SimpleShowCase.

The	bare	bone	code	of	a	KnockoutJS
application
I’m	sure	you	have	seen	a	lot	of	web	applications	with	all	the	JavaScript	code	in	the	main
HTML	page.	As	a	web	developer,	I	suggest	you	avoid	this	kind	of	behavior.

Tip
A	good	practice	when	you	develop	any	web	application	is	to	divide	the	visual	code
(HTML)	from	the	scripting	code;	one	reason	is	that	HTML	pages	are	hard	to	test,	and	if
you	fill	them	with	inner	code	you	will	have	a	hard	time	fixing	bugs	caused	by	JavaScript.

There	are	different	ways	to	organize	your	code,	and	in	another	chapter,	we	will	look	at
how	can	you	use	the	RequireJS	library	to	modularize	it;	but	just	now,	for	this	first	simple
application,	we	don’t	need	the	overhead	that	library	introduces.

Here,	we	will	put	all	the	HTML	pages	in	the	root	folder,	the	style	sheet	files	in	a	folder
named	css,	and	all	the	JavaScript	inside	a	js	folder.

Let’s	start	making	a	folder	called	SimpleShowCase,	with	these	sub-folders:

js

images

Then,	in	the	SimpleShowCase	folder,	create	the	following	files:

index.html

js/index.js

You	can	save	empty	files	just	now,	or,	if	you	are	using	a	Unix-like	OS	you	can	use	the
program,	touch,	in	this	way:

touch	SimpleShowCase/index.html

You	must	also	put	the	downloaded	library,	knockout.js,	as
SimpleShowCase/js/knockout.js	(download	it	now	if	you	skipped	this	step	before).

On	Windows,	you	should	have	something	like	this:

If	you	have	a	Unix-like	system	(Linux,	Mac	OS	X),	you	should	have	a	structure	like	this:

Finally,	download	from	the	website	the	StartingPackage.zip	for	this	chapter,	and
decompress	it	in	the	SimpleShowCase	folder;	you’ll	get	all	the	images	and	a	style	sheet	file
realized	by	our	designer.

Now,	we	can	start	with	the	code	for	the	index	page;	put	this	starting	markup	into
index.html:

<!DOCTYPE	html>

<html>

<head>

		<title>Jewelry	Show	Case</title>

		<link	rel="stylesheet"	href="css/styles.css"	/>

</head>

<body>

		<h1>Welcome	to	our	Jewelry	collection.</h1>

		<h2>Can	you	find	anything	interesting?</h2>

		<div	data-bind="foreach:	jewels">

				<div	class="jewel">

						

						

				</div>

		</div>

		<script	type="text/javascript"	src="js/knockout.js"></script>

		<script	type="text/javascript"	src="js/index.js"></script>

</body>

</html>

Here,	we	are	asking	the	browser	to:

Load	the	stylesheet	file
Create	a	really	simple	DOM	structure
Load	the	KnockoutJS	library	and	js/index.js,	which	contains	our	application	code.

On	this	page,	we	put	three	different	kind	of	data-binding	attributes	from	the	standard
codebase	of	KnockoutJS:	foreach,	text,	and	attr.

The	details	about	these	binding	handlers	are	as	follows:

foreach:	This	is	used	with	an	array	property	and	replicates	the	DOM	structure	inside
the	node	it	is	applied	to;	it	creates	a	node	for	each	item	in	the	array	and	assigns	the
context	to	the	specific	item;	for	example,	in	our	application,	for	each	jewel	a	div
element	is	created
text:	This	binds	to	the	innerText	data	of	the	node
attr:	This	is	a	hash	map	and	binds	every	item	inside	it	to	the	property	of	the	node

Our	view	is	ready,	but	if	you	try	to	look	at	the	application	with	a	web	browser	you’ll	find

that	nothing	magical	is	going	on.	The	reason	is	that	we	need	another	major	step	to	get
everything	working:	applying	the	bindings.

So,	now	we	go	to	our	application	code	in	js/index.js	and	we	put	these	lines:

var	myViewModel	=	{

		jewels:	ko.observableArray([

				{	name:	"White	Bracelet",

						src:	"images/bracelet_1_big_1.png"	},

				{	name:	"Tear	Earring",

						src:	"images/earring_1_big_1.png"	},

				{	name:	"Gold	Necklace",

						src:	"images/necklace_1_big_1.png"	},

				{	name:	"Marriage	Ring",

						src:	"images/ring_2_big_1.png"	}

])

};

ko.applyBindings(myViewModel);

Here,	we	are	making	our	View	Model	object	(nothing	more	than	a	normal	JavaScript
object,	defined	with	the	object	literal	syntax)	with	only	one	property:	jewels.

The	value	of	the	property	is	ko.observableArray();	this	is	a	helper	inside	the	ko
namespace	that	KnockoutJS	gives	us	to	create	observable	properties	for	the	array	type.
You	can	get	much	more	information	about	it	at	this	link:
http://knockoutjs.com/documentation/observables.html.

The	value	you	pass	into	the	call	to	ko.observableArray	is	the	starting	value	of	this
object;	here,	we	are	creating	it	with	an	array	with	four	items.

Note
The	ko.observableArray	value	is	an	implementation	of	the	Decorator	design	pattern.	In
fact,	it	decorates	your	array	with	some	logic	to	detect	the	changes	(while	implementing	the
Observable	design	pattern).

Anyway,	the	true	magic	of	KnockoutJS	starts	with	the	next	row:

ko.applyBindings(myViewModel);

In	the	next	section,	we	will	see	what	this	function	does	in	depth,	but	now,	to	get	some	code
running,	we	can	simply	say	it	binds	the	view	model	object	with	the	DOM.

www.allitebooks.com

http://knockoutjs.com/documentation/observables.html
http://www.allitebooks.org

Getting	jQuery	because	it	can	be	useful
In	the	previous	section,	we	put	the	data	directly	inside	the	View	Model;	this	was	just	to
show	how	the	ViewModel	works.	In	any	normal	application	the	source	of	your	data	is
online	and	you	get	it	by	calling	a	remote	service.

Anyway,	as	you	can	see	if	you	look	at	the	documentation	of	KnockoutJS,	the	library
doesn’t	provide	you	any	help	to	take	the	data.	We	could	use	plain	JavaScript	to	do	this;	but
to	make	it	a	little	easier,	we	will	be	using	jQuery	to	deal	with	our	AJAX	request	in	the	rest
of	the	book.

Browser	compatibility
One	of	the	most	relevant	features	of	KnockoutJS	is	its	browser	compatibility;	it	even
works	on	ancient	browsers,	so	you	can	use	it	if	you	need	to	support	them.

When	you	develop	a	big	application	to	be	used	online	you	have	to	decide	which	browser
you’re	going	to	support;	the	main	reason	is	that	each	browser	you	decide	to	support
means:

Testing	on	it
Checking	if	your	code/style	sheet/HTML	page	can	be	supported,	and	how

For	this	reason,	many	big	companies	keep	an	eye	on	the	browser	market	share	data;	it
helps	you	to	decide	if	it’s	time	to	drop	support	for	a	particular	browser.

I	mentioned	this	here	because	we	are	going	to	use	jQuery.	This	library	is	different	from
KnockoutJS,	because	you	must	choose	between	two	branches:	1.x	and	2.x.

The	main	difference	here	is	the	compatibility;	if	you	want	to	support	all	the	browsers
KnockoutJS	supports	you	have	to	download	the	1.x	branch,	otherwise	you	can	choose	2.x.

Note
For	these	chapters,	we	will	use	the	1.x	branch	(we	will	use	1.11.1).	You	can	download	the
latest	jQuery	library	here:	http://code.jquery.com/jquery-1.11.1.min.js.

After	you	download	it,	save	it	as	SimpleShowCase/js/jquery.js.

Then	update	the	index	page	to	include	it	before	the	row	where	we	included	KnockoutJS:

				</div>

				<script	type="text/javascript"	src="js/jquery.js"></script>

				<script	type="text/javascript"	src="js/knockout.js"></script>

http://code.jquery.com/jquery-1.11.1.min.js

Understanding	MVVM,	MVP,	and	MVC
to	get	the	best
When	you	start	to	look	at	the	documentation	on	KnockoutJS,	before	getting	an
explanation	on	what	an	observable	is	and	how	it	works,	you	get	the	explanation	of	the
presentation	pattern	that	is	used	with	KnockoutJS.	You	can	live	without	this	explanation,
but	it	can	help	you	to	understand	why	we	are	using	it	and	how	you	should	organize	your
project	when	you	use	this	pattern.

As	you	can	read	on	the	KnockoutJS	website,	MVVM	is	a	design	pattern	for	building	user
interfaces.	Here,	you	can	find	a	short	description	about	this	pattern	and	what	each	term
means.	Instead	of	repeating	the	same	information,	I	suggest	you	check	this	URL	before
moving	on:
http://knockoutjs.com/documentation/observables.html#mvvm_and_view_models.

Let’s	discuss	this	design	pattern	in	more	detail	in	the	following	section.	To	understand
what	MVVM	is	and	why	someone	invented	this	pattern,	we	have	to	discuss	its	origin:
Model-View-Controller	(MVC).

http://knockoutjs.com/documentation/observables.html#mvvm_and_view_models

MVC	(Model-View-Controller)
MVC	is	an	architectural	design	pattern	that	enforces	separation	of	concern;	it	isolates
business	data	(models)	from	the	user	interface	(views)	using	a	third	component
(controllers)	which	manages	the	logic	and	the	user	input,	and	coordinates	the	models	and
the	views.

It	was	a	really	well-done	pattern,	but	then	we	changed	context,	and	we	needed	a	pattern
for	the	web.

There	are	a	few	server-side	implementations	of	MVC	for	the	web,	and	in	each	of	them	you
can	find	how	the	controllers	stay	on	the	server,	managing	the	user	input,	modifying	the
model,	and	then	sending	a	new	view	to	the	client.

The	main	drawback	of	this	kind	of	implementation	is	that	you	can	find	it	a	bit	static	and
not	so	responsive.

The	first	way	people	solved	this	problem	was	by	using	AJAX	heavily	to	update	the	client
without	refreshing	the	page;	in	this	way,	you	get	all	the	benefits	of	server	MVCs	in	the
context	of	the	web	development.

After	that,	a	new	kind	of	application	was	built:	SPA.	In	such	an	application,	you	use	a
client	router	which	manages	the	transition	between	pages	directly	on	the	client-side,
keeping	all	the	states	and	reusing	all	the	information	the	client	already	has,	avoiding	a	data
trip	from	the	server	to	the	client	for	each	request.

Then,	a	new	problem	arose:	too	much	complexity	and	spaghetti	code	to	keep	the	client
and	server	synchronized,	using	jQuery	and	AJAX.

So	a	large	number	of	new	client-side	MVC	frameworks	were	born,	mainly	done	with
JavaScript.

The	client-side	implementation	of	MVC	is	realized	in	this	way:

In	this	implementation,	the	Models	and	the	Controllers	are	JavaScript	objects,	and	the
Views	are	HTML.

The	Models	keep	the	data,	the	Views	show	the	information	to	the	user	getting	the	data
from	the	Models,	and	the	Controllers	manage	the	user	interaction	and	the	update	of	the
Models.

The	main	drawbacks	of	this	structure	are:

The	Views	know	about	the	Models;	they	listen	to	the	Models	to	show	the	most
updated	data.	This	means	we	are	tightly	coupling	Views	and	Controllers	(so	a	change
to	one	affects	the	other),	and	they	are	closely	coupled	to	the	Models	(a	change	to	the
Model	affects	both	the	View	and	the	Controller).
The	Controllers	have	to	register	the	interaction	of	the	Views	by	themselves,	so	they
are	full	of	interaction	code	instead	of	having	all	the	management	logic.
Another	consequence	of	the	previous	point;	the	Views	are	tightly	coupled	with	the
Controllers	because	the	most	commonly	used	way	to	reference	the	Views	element	is
by	ID	with	jQuery	selectors,	and	any	changes	to	the	DOM	structure	will	impact	the
relative	Controller.

I’m	not	saying	MVC	is	not	a	good	pattern,	but	that	maybe	we	can	find	something	better
for	web	development.

MVVM	(Model-View-View	Model)	to	the	rescue
And	then	John	Grossman	from	Microsoft	built	another	architectural	design	pattern	(as	a
specialization	of	Martin	Fowler’s	Presentation	Model	design	pattern):	MVVM.

The	main	idea	behind	this	pattern	is	that	in	the	MVC	the	View	knows	too	much	about	the
Model,	and	someone	should	manage	all	the	data	transformation.

Think	about	this:	in	our	database	we	keep	the	date	of	the	creation	of	a	product;	when	we
load	our	model	from	the	server	we	get	this	information,	as	a	Date	object.	In	the	view,
small.html,	we	want	to	show	this	date	with	a	short	format,	and	in	the	view	big.html	we
want	to	show	it	in	the	long	format;	where	do	you	put	all	this	information?

With	the	MVC	you	can	have	a	single	Date	object	and	the	View	can	have	a	code-behind
converter;	or	you	can	have	all	the	three	Dates	pre-formatted	inside	the	Model;	or	the
Controller	can	set	the	format	inside	the	View	when	it	decides	which	View	to	show	and
initialize.

As	you	can	see	in	this	example,	a	problem	with	MVC	is	that	all	the	View-related	data	not
directly	found	inside	the	Model	has	no	home.

The	MVVM	pattern	works	differently,	as	you	can	see	in	this	picture:

Here,	the	Model	keeps	the	data	from	your	business	logic	and	works	by	itself.

The	View	Model	knows	the	Model,	and	it	can	use	it	and	expose	it	(and	other	property	not
Model-related	like	a	date	pre-formatted,	or	the	color	of	the	theme	if	you	give	the	User	a
way	to	change	it)	to	whatever	View	want	to	use	it;	and	it	doesn’t	need	to	know	anything

about	the	View.

The	View	ignores	the	Model,	and	uses	the	View	Model	to	get	the	information	to	render
and	to	manage	the	user	interaction.

So,	briefly,	the	Views	and	the	Models	send	events	to	the	View	Model,	and	the	View	Model
updates	the	Views	and	the	Models	directly.

Let’s	review	all	the	components	of	this	pattern.

Model
The	models	are	the	domain	objects	that	we	are	going	to	use	in	the	web	application.

In	our	project,	we	need	to	represent	jewelry	products	with	description,	images,	and	so	on;
so	our	models	will	be	Product	(to	describe	the	name,	the	description,	the	images,	and	all
the	other	data	related	to	our	jewelry),	Category	(because	all	the	products	will	have	a
category,	and	each	category	should	have	a	name	and	other	information),	Cart	(because	it
will	be	the	container	of	the	product	the	customer	wants	to	buy).

In	a	more	generic	vision,	the	Models	are	all	the	objects	you	think	about	when	you	have	to
describe	your	product;	in	a	web	application	you	get	them	from	the	server,	maybe	in	a
database.

Another	kind	of	model	data	is	the	information	about	the	user.	Let’s	think	about	a	website
with	a	registration	form;	in	that	case	the	user	data	will	be	part	of	the	model,	and	probably
you’ll	create	a	model	class,	User.

View
The	interface	to	the	customer	is	the	View;	it	can	be	done	with	HTML	and	CSS,	or	it	can	be
the	user	interface	of	a	client	application.

When	you	use	KnockoutJS,	your	Views	will	be	done	with	HTML	and	you’ll	put	data-bind
attributes	to	relate	to	the	View	Model.

The	page,	index.html,	which	we	wrote	in	the	previous	section,	is	one	of	the	Views	we
will	make.

View	Model
The	View	Model	exposes	to	the	View	a	subset	of	the	data	of	the	Model	(but	often	it
exposes	the	entire	Model	object)	and	all	the	specific	data	for	the	View.

Try	to	think	about	index	view	and	product	detail	view.

We	have	the	same	Model	for	both	the	views,	but	in	index	view	we	show	only	a	thumbnail
of	the	product,	and	in	product	detail	view	we	show	only	the	big	images.

In	MVVM,	the	View	doesn’t	need	a	reference	to	the	View	Model,	nor	the	View	Model
should	know	there	is	a	View,	because	the	data	binding	library	will	keep	both
synchronized.

A	really	good	consequence	of	this	last	point	is	that	you	can	easily	test	the	View	Models

and	Models	without	having	to	mock	any	View.

www.allitebooks.com

http://www.allitebooks.org

Data	binding
When	you	use	this	pattern,	you	need	a	library	to	manage	the	data	binding;	it	gives	a	way	to
loose	couple	View	and	View	Model	and	to	keep	them	synchronized.

Data	binding	is	really	useful	and	simplifies	your	code	because	of	the	separation	of	the
concern;	the	main	drawback	of	this	functionality	is	that	it	generates	a	small	overhead;	let’s
understand	why.

You	have	a	View	Model	with	an	observable	property,	name.

Note
The	data	binding	design	pattern	is	deeply	bound	to	the	Observer	pattern;	KnockoutJS
maps	the	observables	using	the	data-bind	attribute,	and	the	observers	are	the	View	Model
properties.

When	you	define	this	property,	the	data	binding	system	must	keep	this	information:	List
of	observers

Now,	use	the	data	binding	inside	your	View	to	use	the	name	(data-bind="text:name");
the	system,	to	manage	this	binding,	must:

Create	a	context	object	(an	object	keeping	references	to	the	parent	context,	to	the	root
context,	and	to	the	data)
Evaluate	the	expression	inside	the	context	(in	this	case,	a	property,	but	it	can	be	a	full
expression)
Add	itself	to	the	list	of	observers	for	each	referred	observable	found	inside	the
expression

So,	just	for	this	binding,	we	are	adding:

Memory	occupation:	A	list	with	an	item	and	an	object	with	at	least	three	properties
(parent,	root,	and	data)
CPU:	The	creation	of	the	context	and	the	evaluation	of	the	binding

As	you	can	see,	when	you	build	really	big	application	you	must	start	thinking	about	which
object	should	be	observable,	to	optimize	the	system.

Let’s	recap	the	pros	and	the	cons	of	using	MVVM:

Pros:

Separated	concerns
Better	testability	of	business	and	application	code
Low	coupling	between	components,	which	gives	more	freedom	to	the	UI
designer	to	redesign	a	webpage	without	the	fear	of	breaking	everything

Cons:

Memory	occupation	and	CPU	overhead	caused	from	data	binding	logic.

I	hope	now	you	understand	this	pattern	better	and	how	to	use	it	in	the	best	way.

We	will	see	better	what	you	should	put	inside	each	component	during	development.

Getting	data	from	the	server
After	a	long	explanation	without	any	code,	before	you	get	really	bored,	let’s	update	our
code	to	use	a	real	data	source	for	the	product.

In	a	real	web	application,	we	probably	should	have	a	database	and	a	server-side	REST
API,	which	can	be	used	to	retrieve	the	data.

In	the	future,	we	may	give	your	friend	a	full	web	interface	to	update	the	product	data,	and
maybe	we	will	add	a	true	database	as	the	backend,	but	at	the	moment,	we	will	simply	use
a	JSON	file	with	all	the	products.

Tip
Pay	attention	when	you	want	to	use	the	jQuery	function,	getJSON;	many	browsers	(such	as
Chrome)	won’t	permit	you	to	load	JSON	from	the	local	file	system	because	they	need	a
web	server.

You	can	use	any	web	server	you	like,	but	if	you	plan	to	read	the	fifth	chapter,	I	suggest
you	to	try	to	use	NodeJS	and	the	package,	http-server.

Installing	NodeJS	is	really	simple	(you	can	use	the	installer);	then	you	can	get	the	http-
server	package	with	the	following	command	(in	the	command	line):

npm	install	–g	http-server

Then,	go	to	the	SimpleShowCase	folder	and	execute:

http-server

And	now,	you	have	a	working	web	server	(you	can	see	the	port	in	the	console	output)
serving	your	files	(at	http://localhost:port).	You	can	now	use	getJSON	without	any
problem.

You	will	find	a	file	named	products.json	inside	the	folder,	SimpleShowCase,	with	all	the
products	we	can	show	(with	descriptions	and	images);	check	it	to	see	the	structure	of	the
JSON.

Now,	we	can	update	our	View	Model	to	use	these	products;	we	will	remove	all	the	fake
data	we	put	inside	the	View	Model,	and	fill	it	with	the	data	from	the	external	JSON:

var	myViewModel	=	{

		categories:	ko.observableArray([])

};

$.getJSON("products.json",	function(data)	{

		myViewModel.categories(data.categories);

});

ko.applyBindings(myViewModel);

We	renamed	the	property	from	jewels	to	categories	because	now	we	are	showing
categories.

Here,	we	have	loaded	the	data	from	the	JSON	into	the	View	Model;	now	we	have	to
update	the	View	to	show	the	new	data.

Before	modifying	the	code,	open	the	page,	index.html,	with	a	web	browser;	you	should
see	only	the	category,	Necklaces.

This	not	a	problem	with	the	data,	but	with	the	data	binding;	you	have	no	idea	of	the
problem,	because	KnockoutJS	simply	stopped	working,	without	any	visual	information.
So,	open	the	developer	tool,	firebug,	or	any	console	you	have	in	your	browser.

Tip
Chrome,	Firefox,	and	the	latest	version	of	Internet	Explorer	give	you	the	console	using	the
F12	key,	if	you’re	using	Windows.	To	get	the	console	on	the	Mac	OS	X,	use	Alt+Cmd+I
for	Chrome	and	Alt+Cmd+K	for	Firefox.

You	should	have	something	like	this	(this	screenshot	was	taken	on	the	Mac	OS	X	with
Safari):

KnockoutJS	is	saying	it	tried	to	apply	the	binding,	and	it	died	trying	to	apply	it	to	the	data
bind,	attr:	function()	{	return	{	src:	src}	},	because	it	cannot	find	the	variable,
src,	inside	the	current	context	of	the	View	Model.

We	will	discuss	binding	context	in	detail	in	the	next	section,	when	we	will	reveal	how
KnockoutJS	works	internally.

Tip
Remember	to	check	the	browser	console	when	you	see	strange	behaviors	but	think	your
code	is	right;	KnockoutJS	logs	all	errors	with	the	console.error	function,	so	you’ll	find
them	there.

We	will	modify	the	code	we	rendered	for	each	item,	because	now	we	want	to	show	the
category,	then	the	list	of	products;	so,	we	will	replace	the	following	markup:

		<div	data-bind="foreach:	jewels">

				<div	class="jewel">

						

						

				</div>

		</div>

With	this	markup:

		<div	data-bind="foreach:	categories">

				<div	class="category">

						<h3>Category:	</h3>

						<div	data-bind="foreach:	products">

								<div	class="jewel">

										<div	data-bind="text:	title"></div>

										

								</div>

						</div>

				</div>

		</div>

Here,	we	have	two	foreach,	two	text,	and	an	attr	data	binding.	They	are	more	in
number	than	before,	but,	at	the	end,	we	are	using	the	same	kind	of	data	binding,	so	there’s
nothing	really	special	here.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

The	current	results	should	be	as	in	this	image,	right?

http://www.packtpub.com
http://www.packtpub.com/support

Your	results	can	be	different	if	you	didn’t	download	the	SimpleShowCase/products.json
file	and	the	content	of	the	SimpleShowCase/images	folder	from	the	website.

Now,	we	have	a	page	with	all	the	products	listed	under	the	categories.

We	could	improve	this	page	by	adding	filters,	or	maybe	we	could	learn	how	KnockoutJS
works	internally.	What	do	you	prefer?	Really?	Perfect,	let’s	start.

The	magic	of	KnockoutJS	unveiled
We	saw	that	all	the	magic	of	KnockoutJS	starts	with	the	call	to:

ko.applyBindings(myViewModel);

This	function	gets	two	parameters:	a	View	Model	and	a	DOM	element.	You	can	skip	the
second	parameter	and	it	will	default	to	the	document.body.

First	of	all,	it	takes	the	View	Model,	and	makes	a	ko.bindingContext	from	the	View
Model.

BindingContext	tracks	all	the	following	information:

$parent:	This	is	the	View	Model	of	the	parent	context;	for	example,	every	binding
inside	a	foreach	binding	will	have	the	foreach	view	model	as	$parent
$parents:	This	refers	to	an	array	with	all	the	parents	context;	empty	for	the	root
View	Model.	You	can	use	an	indexer	to	traverse	the	hierarchy	(for	deep-nesting);	for
instance,	$parents[1]	will	get	you	the	2nd	ancestor	and	so	on
$root:	This	is	the	View	Model	of	the	highest	parent;	itself	for	the	root	view	model.
$rawData:	This	is	the	original	View	Model,	before	unwrapping	(to	understand
“unwrapping”	better,	imagine	that	you	have	a	property,	x	=	ko.observable(12),	and
you	execute	x();	you	are	unwrapping	the	observable	to	get	the	value	12)
$data:	This	refers	to	the	unwrapped	View	Model.

Then,	it	starts	to	apply	the	bindings	to	the	node:

It	stores	the	bindingContext	inside	the	node	data	(but	only	if	the	current	context	is
different	from	the	context	inside	the	parent	node)
It	checks	if	the	current	node	contains	the	data-bind	attribute,	and	applies	the	binding
to	each	of	them
For	each	binding,	it	executes	the	init	function	inside	a	call	to
ko.dependencyDetection.ignore,	and	then	the	update	function	inside	a	call	to
ko.dependentObservable;	in	this	way,	the	update	function	of	each	binding	handler
works	as	a	computed	observable	(more	about	computed	observables	a	little	later)
It	executes	these	steps	recursively	for	each	descendant

Note
Binding	to	the	same	node	more	than	once	is	not	permitted;	when	you	call
ko.applyBindings	it	checks	if	the	node	is	already	bound	and	it	will	throw	an
exception.

When	you	think	you	need	to	apply	the	binding	again	(maybe	you	changed	the	DOM
structure	without	KnockoutJS)	to	the	same	node,	the	best	idea	is	to	rethink	why	you
should	do	it;	often	you	will	see	you	can	use	the	with	binding	handler	to	solve	this
problem	in	a	KnockoutJS	way.

Or,	if	you	are	absolutely	sure	this	is	the	best	solution,	you	can	use	ko.cleanNode	to
reset	the	element	to	its	previously	unbound	state.

The	change	of	the	bindingContext	is	done	inside	a	few	binding	handlers	(with,	foreach,
and	so	on)	because	they	create	a	child	bindingContext;	you	can	do	the	same	inside	your
custom	binding	handler’s	init	function	(for	more	information	visit	this	URL:
http://knockoutjs.com/documentation/custom-bindings-controlling-descendant-
bindings.html).

Note
Before	looking	at	a	practical	example,	let’s	understand	what	a	computed	observable	is.

ko.computed	is	the	third	kind	of	Observable	KnockoutJS	supports;	it’s	defined	by	a
function,	and	each	time	it	runs	it	registers	itself	as	subscriber	of	any	Observable	found
during	the	evaluation.

This	is	the	same	method	KnockoutJS	uses	for	the	binding	handler	you	find	in	the	View.

In	a	few	words,	a	computed	observable	is	an	observer	of	another	observer;	the	easiest
example	is	the	full	name	computed	observable,	defined	as	the	concatenation	of	the
observable,	name,	and	the	observable,	last	name:

var	firstName	=	ko.observable("Bob"),	

				lastName	=	ko.observable("Smith");

var	fullName	=	ko.computed(function()	{

				return	firstName()	+	"	"	+	lastName();	

});

The	property	fullName	here	gets	evaluated	each	time	one	of	its	internal	observables
changes.

Let’s	understand	step	by	step	what	happens	when	you	execute
ko.bindingHandler(viewModel)	in	the	current	document.

We	start	with	the	following	DOM	structure:

www.allitebooks.com

http://knockoutjs.com/documentation/custom-bindings-controlling-descendant-bindings.html
http://www.allitebooks.org

As	the	first	step,	it	takes	the	document.body	node	to	work	on,	as	you	can	see	in	the
following	picture:

It	creates	and	adds	to	the	data	of	the	node,	body,	a	new	BindingContext	like	this:

ko.bindingContext:	{

			$root:	obj,

			$rawData:	obj,

			$parents:	[],

			$data:	obj

}

Here	obj	is	the	parameter,	viewModel.

Then	it	walks	inside	the	descendants	searching	for	the	data-bind	attribute;	the	next	node
to	work	on	is	the	following	one:

Here	it	finds	a	foreach	binding,	so	it	executes	the	binding	handler;	the	init	function
returns	controlsDescendantBindings,	so	it	stops	descending.

The	function	init	of	foreach	saves	the	descendants	and	clears	the	DOM	structure,	so
now	we	have	this	structure:

After	this	step	it	ends,	because	all	the	descendants	of	document.body	are	bound	to	our
view	model.

When	the	code	updates	viewModel.jewels	with	the	content	of	the	category	list,	the	flow
continues.

Filters	and	product	details
Now	that	you	know	how	KnockoutJS	works,	we	can	continue	working	on	the	website.

The	next	step	in	the	requirements	is	to	add	a	way	to	filter	the	products	by	the	category	or
by	the	name.

At	the	moment,	we	are	showing	all	the	products;	to	show	only	filtered	products	we	have
to:

Save	the	data	from	the	server	in	a	new	variable	called	allCategories
Add	a	new	observable	to	keep	the	selected	category,	and	a	new	array	to	keep	the	list
of	the	names	of	categories;	we	will	add	the	“All”	value	using	the	optionsCaption
binding	handler	(a	binding	handler	dependent	on	the	selected	binding	handler).
Add	a	new	observable	to	keep	the	selected	name
Create	a	computed	observable	to	return	the	array	of	categories	based	on	the	selected
category	and	the	list	of	all	categories

Before	we	start	to	write	the	code,	I	want	to	point	out	that	there	are	two	different	ways	to
manage	the	last	point	in	the	preceding	list.	You	can:

Use	an	observable	array	and,	with	an	external	computed	observable,	update	that	array
Use	a	computed	observable	which	will	do	the	job	of	filtering	and	then	return	an	array

If	you	look	at	the	documentation	of	KnockoutJS	you	will	find:

Assuming	your	array	is	an	observable	array,	whenever	you	later	add,	remove,	or	re-order
array	entries,	the	binding	will	efficiently	update	the	UI	to	match	-	inserting	or	removing
more	copies	of	the	markup,	or	re-ordering	existing	DOM	elements,	without	affecting	any
other	DOM	elements.	This	is	far	faster	than	regenerating	the	entire	foreach	output	after
each	array	change.

The	first	observation	after	reading	this	is	that	the	foreach	binding	handler	uses	the
notification	from	the	observable	array	to	discover	what	changed.

But	if	you	check	the	code	of	the	binding,	you	will	be	astonished,	because	you	will	find	an
algorithm	to	check	the	difference	between	the	current	array	and	the	previous	one,	ignoring
all	the	notifications	from	the	observable	array.

For	this	reason,	the	previously	pointed	solutions	work	in	the	same	way.

Let’s	update	the	View	Model	(js/index.js)	with	all	the	changes	we	need	for	the	filters:

var	myViewModel	=	{

		allCategories:	ko.observableArray([]),

		selectedCategory:	ko.observable(),

		selectedName:	ko.observable("")

};

We	will	rename	the	old	observable	array,	categories,	as	allCategories,	and	also	add
two	observables	to	keep	the	new	filter	variable:	selectedCategory	and	selectedName.

Note

ko.observable	is	another	kind	of	Observable	KnockoutJS	gives	us;	when	you	declare	an
observable	it	keeps	a	list	of	observers,	subscribed	to	any	change	of	that	value.

Other	than	using	(getting	and	setting)	the	value	in	the	observable,	you	can	subscribe	(using
the	method	subscribe)	to	execute	a	callback	each	time	the	value	changes.	The	result	is
like	the	computed	observable,	but	you	are	responsible	for	deciding	when	to	dispose	the
subscription.

To	find	more	information	you	can	look	at	the	excellent	documentation	of	this
functionality.

Then,	we	will	create	our	computed	observable	to	return	the	filtered	array.	We	cannot	insert
this	code	directly	in	the	object	creation	because	KnockoutJS	will	execute	the	code	to	pre-
assign	the	value,	so	we	need	to	define	the	other	properties	before	this	one:

myViewModel.categories	=	ko.computed(function()	{

		var	results	=	myViewModel.allCategories(),

						filterByCategory	=	myViewModel.selectedCategory();

		if	(filterByCategory)	{

				results	=	ko.utils.arrayFilter(results,	function(category)	{

						return	category.name	===	filterByCategory;

				});

		}

		return	results;

});

Tip
A	good,	easy	way	to	improve	the	code,	solving	also	this	last	point,	is	the	use	of	the
JavaScript	Module	Pattern.	We	are	not	using	it	here	because	this	project	is	really	simple,
but	if	you	don’t	know	it,	now	is	a	good	time	to	study	it;	it	will	help	you	to	understand	the
next	chapter	better.

This	code	takes	the	list	of	categories	(allCategories)	and	the	selected	filter
(selectedCategory).

If	a	filter	was	selected,	we	assume	that	the	first	item	in	the	list	having	a	name	equal	to	the
selected	category	which	we	return.

Here,	you	can	see	we	are	using	the	function,	ko.utils.arrayFilter.	This	is	just	one	of
the	many	helper	functions	you	can	find	in	the	namespace,	ko.utils.	It	is	unlikely	that
they	are	not	documented	at	all,	so	you	can:

Search	information	on	the	web
Look	at	the	non-minified	source	file	(but	pay	attention,	a	few	functions	you	find	there
are	not	accessible	when	you	use	the	minified	version)

With	this	function,	we	get	a	filtered	array	with	any	item	having	a	name	the	same	as	our
selected	category.

Add	the	following	property	after	the	myViewModel.categories	definition:

myViewModel.categoryName	=	ko.computed(function()	{

		var	results	=	ko.utils.arrayMap(myViewModel.allCategories(),	

function(category)	{

				return	category.name;

		});

		return	results;

});

We	will	now	add	a	list	of	the	names	of	all	the	categories	using	the	mapping	function
(ko.utils.arrayMap	is	good	for	“flattening”	an	array	or	extracting	a	subset	of	data	into	an
array).

Then,	we	will	put	back	the	code	to	take	the	products	from	the	server,	but	this	time	we	will
save	them	in	the	allCategories	property.

$.getJSON("products.json",	function(data)	{

		myViewModel.allCategories(data.categories);

});

ko.applyBindings(myViewModel);

Now,	we	will	use	all	these	new	properties	in	our	View	(index.html).	We	will	add	these
rows	after	the	first	tag	H2,	to	keep	the	filter	on	the	top	of	the	page:

		<div	class="filter">

				<h2>Filter	by</h2>

				<div	class="category">

						Category:	

						<select	data-bind="options:	categoryName,

																									optionsCaption:	'All',	

																									value:	selectedCategory"></select>

				</div>

				<div	class="name">

						Name:

						<input	type="text"	data-bind="textInput:	selectedName"	/>

				</div>

		</div>

We	are	binding	three	handlers	to	the	select:

options:	categories:	A	new	option	tag	will	be	created	for	each	item	inside	the
array
optionsCaption:	'All':	Another	option	with	the	selected	text	and	undefined	value
will	be	added	as	first	child	of	the	select	tag
value:	selectedCategory:	The	value	of	the	selected	option	will	be	bound	to	that
property

We	also	bound	the	input	with	textInput:	selectedName;	this	binding	handler	is	a	new
introduction,	added	in	version	3.2.	In	the	previous	version,	you	used	a	combination	of
value	and	updateValue:'input'	but	in	the	current	version,	as	you	can	read	in	the
documentation,	this	is	the	best	way	to	get	a	two-way	binding	into	the	input	field.

Tip
When	you	use	the	options	binding	handler,	you	can	use	two	additional	useful	binding
handlers:	optionsText	and	optionsValue;	they	are	useful	when	the	items	inside	the	array

used	with	the	options	binding	handler	are	JavaScript	objects	and	you	want	to	choose	what
to	use	as	value	(optionsValue)	and	as	text	(optionsText)	of	the	option	tag.

To	complete	the	filtering	code,	we	will	change	the	following	row:

						<div	class="jewel">

By	adding	this	data	binding:

data-bind="visible:	title.indexOf($root.selectedName())	!==	-1"

Now,	it	will	hide	all	the	items	not	containing	the	text	of	the	selected	item	inside	the	name.

The	reason	we	are	using	$root	is	because	here	we	are	inside	the	foreach	context,	so	we
have	to	move	to	the	parent	context	to	find	the	property,	selectedName.

Everything	is	done,	so	we	can	continue	with	the	product	details,	right?

Wrong!

Look	again	at	the	last	data	bind:	visible:	title.indexOf($root.selectedName())	!==
-1.

What’s	the	problem	with	this	code?	I’m	sure	you	have	seen	it	many	times	in	the	past;	so,
why	am	I	telling	you	it	is	wrong?

Do	you	remember	when	I	suggested	to	you	to	avoid	putting	JavaScript	code	inside	the
HTML?	It’s	the	same	reason.

KnockoutJS	will	take	the	code	you	put	inside	the	binding	and	will	evaluate	it,	so	that	code
will	work;	but	now	it	will	become	hard	to	test.

A	good	practice	with	data	binding	is	to	keep	the	logic	inside	the	View	Model	(the	main
reason	we	have	it)	and	to	keep	the	View	as	dumb	as	you	can.

We	don’t	want	to	modify	all	the	products	to	keep	the	information,	and	our	models	are
simply	objects,	so	we	cannot	modify	the	prototype.	The	easiest	way	to	solve	the	problem
is	with	a	new	function	inside	the	View	Model,	referring	the	current	object;	we	use	it	inside
a	data-bind	context,	so	it	will	automatically	become	a	computed	one.

Let’s	change	the	data-bind	we	added	earlier	with	this	code:

data-bind="visible:	$root.shouldShow($data)"

Then,	we	add	this	function	in	the	object,	myViewModel:

shouldShow:	function(item)	{

		return	item.title.indexOf(myViewModel.selectedName())	!==	-1;

}

Now,	everything	should	work	again,	and	our	View	is	dumb	again	and	your	browser	should
show	something	like	this:

If	everything	is	working,	you	can	change	the	selected	category	and	the	category	sections
should	change.

We	used	the	indexOf	method	to	check	for	the	text;	if	you	want	to	make	it	case	un-sensitive
you	can	replace	the	following	code:

return	item.title.indexOf(myViewModel.selectedName())	!==	-1;

With	this	code:

return	new	RegExp(myViewModel.selectedName(),"gi").test(item.title);

Product	details
Now,	we	can	add	the	page	for	product	details.	To	keep	this	chapter	simple,	we	will	add	a
box	with	all	the	details,	and	we	will	show	it	when	the	customer	hovers	or	clicks	on	the
image	of	a	product.

In	this	box,	we	will	show	all	the	details	we	decided	earlier:	the	description,	one	or	more
big	images,	the	price,	and	a	button	to	add	it	to	the	cart.

First	of	all,	we	have	to	add	a	new	property	to	keep	the	selected	products.	Add	the
following	row	to	the	View	Model	(js/index.js),	after	the	allProducts	definition:

selectedProduct:	ko.observable(),

Then,	add	the	code	of	the	box	to	the	View	(index.html);	put	these	lines	before	the	first
script	tag:

<div	class="selectedProduct"	data-bind="with:	selectedProduct">

		Prodotto	selezionato:

		<div	class="jewel">

				<div	data-bind="text:	title"></div>

				<!--	ko	foreach:	images	-->

						

				<!--	/ko	-->

				<div	data-bind="text:	description"></div>

				<div	data-bind="text:	price"></div>

				<button>Add	to	cart</button>

		</div>

</div>

Here,	we	are	using	the	with	binding	handler.	This	binding	handler	checks	for	the
parameter,	and	creates	a	new	child	context	with	the	parameter,	only	if	the	parameter	is	not
null.	In	this	way,	we	can	be	sure	it	will	show	the	selected	product	only	if	we	select	one,
and	we	avoid	binding	errors	if	the	object	does	not	exist.

In	the	block,	we	show	the	title,	all	the	images,	the	description,	and	the	price	of	the	product.

With	this	code	we	can	render	the	selected	product,	but	we	didn’t	put	any	way	to	select	it.
To	do	that	we	will	add	a	new	function	in	the	View	Model	to	select	the	item,	another	two	to
show/remove	the	item	under	the	cursor,	a	click	binding,	a	mouseout	event	binding,	and	a
mouseover	event	binding	to	the	preview	tag	to	call	these	functions.

Let’s	add	all	these	functions	to	the	myViewModel	object:

selectProduct:	function(product)	{

		myViewModel.selectedProduct.current	=	product;

},

showProduct:	function(product)	{

		myViewModel.selectedProduct.current	=

				myViewModel.selectedProduct();

		myViewModel.selectedProduct(product);

},

hideProduct:	function()	{

		myViewModel.selectedProduct(

				myViewModel.selectedProduct.current);

}

Here,	we	are	adding	a	property	(named	current)	to	the	observable	property,
selectedProduct,	to	track	which	item	the	customer	clicked	on.	In	this	way,	each	time	the
customer	clicks	on	a	preview,	we	will	record	it,	and	we	will	show	it	in	the	detail	box;
when	the	customer	moves	the	cursor	over	a	preview	she/he	will	see	the	new	detail,	but	it
will	go	back	to	the	selected	one	when	the	mouse	exits	from	the	preview.

Now,	add	the	three	binding	handlers	to	the	preview.	Replace	the	following	row:

<div	class="jewel"	data-bind="visible:	$root.shouldShow($data)">

With	these	rows:

<div	class="jewel"

					data-bind="visible:	$root.shouldShow($data),

																click:	$root.selectProduct,

																event:	{	

																				mouseover:	$root.showProduct,

																				mouseout:	$root.hideProduct

																}">

The	click	binding	handler	registers	a	click	event	handler	and	when	the	event	is	fired	you
will	get	the	View	Model	and	the	event	as	parameters.	This	is	really	useful	when	we	are
working	in	a	child	context,	because	we	get	the	current	item.

We	should	add	here	the	click	handler	to	the	button,	Add	to	Cart,	but	we	will	do	this	in	the
next	section.

Now,	when	you	move	the	mouse	over	a	preview,	or	you	click	it,	your	browser	should
show	something	like	this:

Managing	a	Cart
When	you	realize	a	web	application,	you	can	follow	two	different	flows:

Classic	web	application
Single	Page	Application

If	you	realize	an	SPA,	you’ll	probably	need	something	like	a	library	to	manage	the	routing
client-side,	a	way	to	load	an	external	page	with	a	View	Model,	and	so	on.

The	best	library	you	can	find	at	the	moment	to	create	an	SPA	with	KnockoutJS	is
DurandalJS.	We	will	see	this	in	another	chapter.

If	you	go	to	the	classic	web	application,	you’ll	have	many	different	pages,	and	you	will
have	to	apply	the	binding	of	KnockoutJS	in	each	page	needing	it.

In	this	project,	we	will	follow	the	classic	web	application	flow,	so	we	will	add	two	new
pages	to	manage	the	Cart	and	the	Contact	form.

Using	the	Cart	on	the	home	page
The	modifications	we	make	in	the	index	page	include:

Showing	the	links	to	the	other	pages
Creating	a	basket
Adding	a	handler	to	the	Add	to	cart	button

Adding	a	link	to	the	other	pages	is	easy	to	do,	so	we	will	start	with	this.

Add	the	following	rows	as	the	first	child	of	the	body	(in	index.html):

<div	class="topbar">

		Home	page

		Cart

		Contact	us

</div>

Then,	to	have	a	cleaner	interface,	move	the	whole	following	block	before	the	H1	tag:

				<div	class="filter">…</div>

Now,	we	have	a	navigation	bar	at	the	top	with	the	link	to	the	three	pages	of	our
application.

To	keep	this	application	simple,	we	will	save	the	basket	in	the	local	storage.	We	are
building	a	really	simple	application,	but	this	is	not	a	good	reason	to	use	a	bad	pattern,	so
we	will	not	mix	the	model	of	the	basket	and	the	storage.

For	this	reason,	we	will	create	two	new	files:

js/basket.js

js/basket-localStorage.js

We	do	this	because	the	best	practice	with	Model	is	that	it	shouldn’t	have	knowledge	of	its
storage.

We	can	start	with	the	model	of	the	basket	(js/basket.js),	because	at	this	time	it	is	really
simple:

function	Basket()	{

		this.products	=	ko.observableArray([]);

}

Basket.prototype.addToCart	=	function(product)	{

		this.products.push(product);

};

Basket.prototype.removeFromCart	=	function(product)	{

		this.products.remove(product);

};

Here,	we	are	just	enclosing	an	observable	array	to	hide	the	implementation	from	outside.

Now,	we	will	create	the	local	storage	file	(js/basket-localStorage.js):

var	basketLocalStorage	=	(function()	{

		return	{

				fetch:	function(basket)	{

						var	json	=	localStorage.getItem("SimpleShowCase"),

										savedData	=	JSON.parse(json	||	"[]");

						ko.utils.arrayForEach(savedData,	function(product)	{

								basket.addToCart(product);

						});

				},

				save:	function(basket)	{

						var	data	=	ko.toJSON(basket.products);

						localStorage.setItem("SimpleShowCase",	data);

				}

		};	

}());

This	object	now	exposes	two	functions:

fetch:	This	takes	from	the	local	storage	the	array	of	products	and	adds	it	to	the
product	list
save:	This	puts	into	the	local	storage	the	product	list	using	the	JSON	format

A	few	notes	about	this	last	source	code:

We	are	using	localStorage;	it’s	an	easy	way	to	save	data	locally,	but	it	works	only	in
modern	browsers	(so	it’s	good	for	a	simple	project,	but	think	twice	about	using	it
when	you	want	to	support	IE6/IE7)
We	are	calling	push	on	an	observable	array	inside	a	loop;	a	better	solution	should	put
all	the	data	in	one	call,	because	each	call	to	push	notifies	all	the	observers,	resulting
in	poor	performance.

Now,	in	our	main	page	(index.html)	we	can	add	a	reference	to	these	two	new	scripts;	add
these	two	rows	just	before	the	tag	with	the	import	of	js/index.js:

<script	type="text/javascript"	src="js/basket-localStorage.js"></script>

<script	type="text/javascript"	src="js/basket.js"></script>

As	the	last	step	on	this	page,	we	have	to	bind	the	click	on	the	button,	Add	to	cart,	to	the
function.	Add	the	following	data	bind	to	the	button	Add	to	cart:

data-bind="click:	$root.addToCart"

We	have	to	make	two	modifications	to	the	View	Model,	js/index.js.	Add	these	two	rows
into	the	myViewModel	object:

basket:	new	Basket(),

addToCart:	function(product)	{

		myViewModel.basket.addToCart(product);

		basketLocalStorage.save(myViewModel.basket);

}

In	this	way,	we	keep	a	basket	ready	and	when	the	user	adds	an	item	to	the	cart	we	add	it	to
the	basket	and	then	save	changes	in	the	storage.

We	should	also	load	the	data	from	the	basket,	so	add	this	row	at	the	end	of	the	file:

basketLocalStorage.fetch(myViewModel.basket);

Here,	we	ask	the	storage	to	load	all	the	data	into	the	basket.

With	this	last	modification	our	main	View	is	completed,	managing	all	the	requirements	we
had	for	it.

The	Cart	page
The	cart	page	will	be	simpler	than	the	index	page.	We	will	show	all	the	elements	we	have
inside	the	basket,	and	a	button	will	give	the	user	the	option	to	remove	elements	from	the
cart.

Let’s	start	with	the	Cart	View	(cart.html):

<!DOCTYPE	html>

<html>

<head>

		<title>Jewelry	Show	Case	-	Cart</title>

		<link	rel="stylesheet"	href="css/styles.css"	/>

</head>

<body>

<div	class="topbar">

		Home	page

		Cart

		Contact	us

</div>

This	is	the	standard	boilerplate	code	for	the	View.

Let’s	continue	with	the	container	for	the	products:

<h1>Here	you	can	find	all	the	items	in	the	cart.</h1>

<div	data-bind="foreach:	products">

		<div	class="jewel"	

				<div	data-bind="text:	title"></div>

				

				<div	data-bind="text:	description"></div>

				<div	data-bind="text:	price"></div>

				<button	data-bind="click:	$root.removeFromCart">

						Remove	from	the	cart</button>

		</div>

</div>

Here,	we	are	showing	a	list	of	products	with	their	details,	and	a	button	to	remove	the
jewelry	from	the	cart.

<script	type="text/javascript"	src="js/jquery.js"></script>

<script	type="text/javascript"	src="js/knockout.js"></script>

<script	type="text/javascript"	src="js/basket-localStorage.js"></script>

<script	type="text/javascript"	src="js/basket.js"></script>

<script	type="text/javascript"	src="js/cart.js"></script>

</body>

</html>

Then,	we	will	add	all	the	scripts	we	need	(it’s	really	similar	to	the	index	page,	isn’t	it?).

Now,	let’s	see	the	View	Model,	js/cart.js.	Here,	you	can	find	a	few	similarities	to	the
other	one,	but	not	enough	to	justify	a	refactoring	of	the	common	code	into	a	parent	class:

var	myViewModel	=	{

		basket:	new	Basket(),

		removeFromCart:	function(product)	{

				myViewModel.basket.removeFromCart(product);

				basketLocalStorage.save(myViewModel.basket);

								

				if	(myViewModel.products().length	===	0)	{

						window.location.href	=	'index.html';

				}

		}

};

myViewModel.products	=	myViewModel.basket.products;

basketLocalStorage.fetch(myViewModel.basket);

ko.applyBindings(myViewModel);

Our	View	Model	references	a	Basket	and	exposes	a	removeFromCart	function.

In	this	function,	we	are	asking	the	basket	to	remove	the	product,	and	then	saving	the
modification	in	the	local	storage.	As	the	last	step,	when	we	empty	the	cart,	we	are
redirecting	the	user	to	the	home	page.

We	are	exposing	the	products	property	of	basket	inside	myViewModel	because	we	want	a
dumb	View;	so,	we	should	not	ask	the	View	to	know	the	internal	structure	of	the	basket
Model.

With	this,	we	finally	get	the	product	list	from	the	basket	storage,	with	the	call	to
basketLocalStorage.fetch.

Now	we	have	a	page	to	add	the	products	to	the	basket,	a	page	to	look	at	and	remove	them
from	the	basket.	We	are	only	missing	a	page	to	send	a	request	to	our	friends	to	buy	them.

Contact	form
Our	friends	asked	us	if	we	could	add	a	way	to	pay	from	the	website.	We	can	do	it	for	sure,
but	it	involves	code	in	the	backend.

For	this	first	project,	we	are	not	going	to	write	any	code	for	the	backend,	so	we	will	not
implement	this	functionality;	we	will	try	to	keep	the	flow	simple,	so	we	will	open	the
default	mail	program	with	pre-configured	text.

Paying	from	the	client-side	code
If	you	are	thinking,	why	do	I	need	a	backend	code	to	manage	all	of	this?	I	have	seen	on
the	PayPal	website	that	I	can	send	a	payment	request	using	only	JavaScript,	let’s	wait	a
moment	and	read	this	hint:

Never	use	a	Javascript-only	solution	to	manage	money.

Have	you	heard	about	XSS,	CSRF,	and	the	other	threats	you	can	face	with	website
programming?

You	can	find	many	good	resources	about	these	threats,	and	I	suggest	you	research	them
(any	good	web	developer	should	know	about	security).

I’ll	just	explain	the	simpler	reason	here.	JavaScript	is	a	client-side	language;	it	runs	within
the	browser,	so	any	one	can	hack	it	easily.

Let’s	try	to	imagine	this	scenario:

A	customer	puts	in	his	cart	three	products	that	are	worth	£60.	Then,	he	(he’s	smart,	isn’t
he?)	opens	the	developer	console	and	updates	the	localStorage,	setting	all	the	prices	to
negative	value.	Next,	he	navigates	to	the	contact	page,	and	we	ask	him	to	use	PayPal	to
pay	-£60.

What	happens	here?	It	depends	on	PayPal,	or	on	the	payment	system	you	are	trying	to
implement.

In	the	best	case,	it	stops	the	transaction	(but	what	if	the	customer	puts	£0?).	In	the	worst
case,	it	could	grab	the	money	from	your	account	to	give	it	to	the	customer.

If	the	system	blocks	a	negative	transaction,	it	can	change	all	the	prices	to	£0	(or	£0.01	if	it
wants	to	be	sure	that	everything	works).	The	system	will	accept	the	transaction,	and	your
friends	will	get	a	notification	that	they	have	to	send	a	few	products	to	someone	without
being	paid.

So,	try	to	remember	that	client-side	validation	is	helpful	to	improve	performance	and	give
the	user	a	better	experience.	But	at	the	end	of	the	day,	any	data	you	have	to	save	on	a
database	has	to	be	checked	on	the	server	side.

The	contact	form
We	are	going	to	realize	a	small	contact	form	to	send	to	our	friends	a	mail	with	the	list	of
products	the	customer	wants	to	buy.

We	cannot	send	email	using	only	JavaScript,	so	for	this	first	chapter,	we	will	build	the
mail	body	inside	our	page,	and	then	use	the	mailTo:	URL	to	ask	the	system	to	open	the
preferred	mail	application	with	the	data	we	collected.

The	customers	can	fill	their	email	address	and	the	body	of	the	mail,	and	we	will	add	to	the
mail	the	list	of	the	products	he	wants	to	buy.

This	page	will	be	similar	to	the	cart	page,	because	we	will	show	a	list	of	all	selected
products.	But	here,	we	will	not	give	the	user	a	way	to	remove	the	item;	we	will	give	him	a
way	to	send	the	email	with	the	items.

This	time	we	will	start	with	the	HTML	of	the	Cart	View,	and	then	modify	it;	copy
cart.html	into	contact_us.html.

Tip
Best	practices	with	programming	tell	us	that	copying	and	pasting	code	is	never	a	good
thing;	maybe	it’s	an	easy	way	to	solve	a	problem,	but	then	you	can	make	the	maintenance
hell.

For	this	reason,	when	you	see	you	have	to	put	the	same	code	in	more	than	one	place,	with
only	small	modifications,	try	to	change	the	structure,	use	the	inheritance	or	the
composition,	and	avoid	copy	and	paste!

The	only	time	you	cannot	do	this	easily	is	with	HTML,	because	if	you	load	the	markup
from	an	external	template	with	jQuery,	you	face	problems	with	binding	and	so	on.

In	the	next	chapter,	we	will	use	the	template	and	the	component	binding	handler,	and	we
will	find	how	to	solve	the	copy-paste	problem	in	HTML.

Then:

Update	the	title	to	Jewelry	Show	Case	–	Contact
Remove	the	H1:	<h1>Here	you	can	find	all	the	items	in	the	cart.</h1>
Add	the	form	to	get	the	email	address	and	a	message;	wrap	the	entire	block	<div
data-bind="foreach:	products">	in	this	way:

<form	data-bind="submit:	buy">

		<div	class="field">

				My	mail	address:

				<input	type="text"	data-bind="textInput:	email"/>

		</div>

		<div	class="field">

				Additional	details:

				<textarea	data-bind="value:	message"></textarea>

		</div>

		<h1>List	of	items	I	would	like	to	buy</h1>

		<div	data-bind="foreach:	products"></div>

		<div	class="clear-float"></div>

		<input	type="submit"	value="Send	the	buying	message"

									data-bind="enable:	canBuy"/>

</form>

We	don’t	want	to	give	the	user	a	way	to	remove	a	product	here,	so	remove	from	the
product	box	the	button,	<button	data-bind="click:
$root.removeFromCart">Remove	from	the	cart</button>

Update	the	script	tag	<script	type="text/javascript"	src="js/cart.js">
</script>	with	the	new	script	name	<script	type="text/javascript"
src="js/contact_us.js"></script>

Let’s	better	analyze	the	important	markup	(where	we	put	binding)	here:

<form	data-bind="submit:	buy">

In	this	way,	we	are	putting	all	the	data	inside	a	form,	and	we	will	execute	the	buy	function
when	the	user	submits	the	form	(either	by	clicking	on	the	submit	button	or	using	the	enter
key).

<input	type="text"	data-bind="textInput:	email"	/>

We	are	using	again	the	textInput	binding	handler	because	we	want	to	react	immediately
to	the	field	changes.

<textarea	data-bind="value:	message"></textarea>

We	are	using	the	value	binding	handler	here	for	the	message	because	we	are	not	putting
any	additional	logic	based	on	the	value	of	that	field.

<input	type="submit"	value="Send	the	buying	message"	

																					data-bind="enable:	canBuy"/>

We	are	adding	the	enable	binding	handler	to	enable/disable	the	submit	button,	to	be	sure
that	the	user	has	to	fill	the	required	email	field	before	trying	to	send	the	email.

Note
In	this	case,	the	only	difference	between	the	submit	binding	handler	and	the	click	binding
handler	attached	to	this	button	is	that	you	can	press	enter	when	you	are	in	the	email	field
and	the	form	will	be	submitted.

Obviously,	is	important	to	understand	when	it	is	better	to	use	one	and	when	the	other,
depending	on	the	specific	context	you	are	working	on.

Now,	we	can	work	on	the	Cart	View	Model	(js/cart.js).

This	View	Model	will	begin	similarly	to	the	Cart	View	Model	because	we	need	to	fetch
the	product	list	and	show	the	products	we	have	in	the	basket.

Then,	we	will	add	the	specific	code:	two	observables,	a	computed	observable,	and	a
function:

var	myViewModel	=	{

		basket:	new	Basket(),

		email:	ko.observable(""),

		message:	ko.observable(""),

		buy:	function()	{	/*	CODE	TO	SEND	THE	EMAIL	*/	}

};

myViewModel.products	=	myViewModel.basket.products;

myViewModel.canBuy	=	ko.computed(function()	{

		return	myViewModel.email()	&&

									myViewModel.products().length;

});

basketLocalStorage.fetch(myViewModel.basket);

ko.applyBindings(myViewModel);

The	canBuy	computed	observable	checks	that	the	email	is	not	empty	and	that	the	cart
contains	at	least	one	item.

Let’s	check	the	code	of	the	buy	function:

buy:	function()	{

		var	productList	=	

				ko.utils.arrayMap(myViewModel.products(),function(p)	{

						return	p.title;

				});

		var	additionalMessage	=	myViewModel.message()	&&	(

						"This	is	an	additional	message	I	want	to	send	you:	\n\t"	+

							myViewModel.message()

);

		var	body	=	"Hi,	I'm	"	+	myViewModel.email()	+	

													"	and	I	want	to	buy	these	products	from	you.\n"	+

													productList	+	"\n"	+

													additionalMessage;

		var	mail	=	"mailto:postmaster@example.com?"	+

													"subject="	+	encodeURIComponent("I	want	to	buy	these	items")	+

													"&body="	+	encodeURIComponent(body);

		window.location.href	=	mail;

}

Here,	we	are	taking	the	name	of	each	product	we	have	in	the	cart,	the	message,	and	the
email,	and	putting	it	into	an	encoded	string.	We	must	encode	it	because	otherwise	we
cannot	use	it	inside	a	URL.

Then,	we	will	use	this	string	with	the	protocol,	mailto,	and	update	the	current	URL	with
this	new	one.

When	we	do	this,	the	browser	will	try	to	open	the	default	mail	program	to	send	this	email.

Now,	the	Contact	Us	page	is	complete	and	you	can	use	it	to	create	the	email	with	the
messages	and	the	products	you	want	to	buy.

If	you	have	done	everything	like	I	have	suggested,	this	is	what	you	should	get	when	you
put	three	products	in	the	cart	and	you	are	ready	to	send	the	mail:

And	this	is	what	we	get	after	we	click	on	the	button	(having	Gmail	registered	as	the
default	mail	system,	with	Chrome	in	Windows):

Here,	it	opens	Gmail	with	the	information	we	entered	in	the	form,	as	we	expected.

Summary
In	this	chapter,	we	have	seen	what	the	MVVM	pattern	is	about	and	how	KnockoutJS
implements	this	pattern	to	provide	you	with	data-binding	capabilities.	We	realized	the
application	was	really	simple,	but	we	saw	many	features	of	KnockoutJS	regardless.

We	used	three	different	types	of	observables	(observable,	observableArray,	and
computed).	We	also	saw	many	different	binding	handlers	and	utility	functions.

Best	of	all,	we	learned	how	to	create	a	full-featured	application	using	View	Model	and
data	binding.	There	are	a	few	binding	handlers	we	haven’t	seen,	like	template	or
component,	but	we	will	see	them	in	the	next	chapter,	and	there	we	will	create	new	custom
binding	handlers	too.

Chapter	2.	Starting	Small	and	Growing	in
a	Modular	Way
Another	small	project	will	be	realized;	it	will	show	all	the	features	of	KnockoutJS	we
skipped	in	the	previous	chapter,	including	templates	and	components,	to	give	you	a	360
degree	view	of	this	great	library.

The	topics	that	will	be	covered	in	this	chapter	include:

Exploring	templates,	components,	and	all	the	other	binding	handlers
Making	new	and	useful	binding	handlers
Modularizing	what	we	realize,	looking	at	AMD	and	the	usage	of	RequireJS

At	the	end	of	this	chapter	you	should	be	able	to	create	a	modular	application	well
integrated	with	external	libraries.

Analyzing	the	project	–	booking	online
The	project	we	are	going	to	realize	in	this	chapter	is	an	online	booking	site.

Let’s	imagine	you	get	hired	by	a	company	doing	online	booking,	because	their	site	is
good,	but	they	know	you	can	make	it	superlative.

You	will	work	with	many	other	great	developers	so	you	will	have	all	the	backend
functionalities	you	need;	you	can	also	ignore	all	the	problems	with	the	styles,	because
other	people	will	take	care	of	them;	the	only	thing	they	need	from	you	is	a	good,	bug-free,
web	interface.

This	domain	is	new	for	us,	so	as	the	first	step,	we	will	go	around	looking	at	the	website	of
many	competitors,	to	get	an	idea	about	what	users	can	expect	from	such	sites.

This	is	the	list	of	the	competitors	we	are	studying	for	ideas:

Booking.com	(http://www.booking.com/)
AirBnB	(https://www.airbnb.it/)
Expedia	(http://www.expedia.it/)
Trivago	(http://www.trivago.it/)
Hotels.com	(http://www.hotels.com/)
Venere.com	(http://www.venere.com/)

You	can	see	that	all	of	them	share	the	same	structure,	only	with	many	visual	differences
between	them.

The	first	component	we	get	is	the	Search	Form.

After	that,	depending	on	the	searched	item,	you	get	a	big	list	of	cards,	with	the	details	of
the	hotel,	the	price,	and	the	availability	for	the	searched	dates;	we	will	show	them	as	a	list
of	Card.

This	is	a	wireframe	of	what	we	should	build	here:

http://www.booking.com/
https://www.airbnb.it/
http://www.expedia.it/
http://www.trivago.it/
http://www.hotels.com/
http://www.venere.com/

Building	the	structure	of	our	application
This	project	will	be	an	SPA-like	web	application;	it	will	not	be	a	true	SPA	because	we	will
not	use	a	client	router	for	a	different	state;	we	will	just	hide	and	show	the	components
depending	on	the	states	of	the	fields.

Let’s	start	making	a	folder	called	BookingOnline,	with	these	sub-folders	and	empty	files:

app

app/binding-handlers

app/components

app/index.js

index.html

In	the	previous	chapter,	we	used	a	folder	named	js,	but	this	time	we	are	going	to	name	it
app	because	we	will	put	inside	both,	the	JavaScript	and	the	templates.

In	this	chapter,	we	will	create	custom	binding	handlers	and	components;	for	this	reason,
we	are	creating	folders	for	them.

Finally,	download	from	the	Packt	Publishing	website	the	StartingPackage.zip	for	this
chapter,	and	decompress	it	inside	the	BookingOnline	folder;	you’ll	get	all	the	images	and
a	style	sheet	file	realized	from	our	designer.

We	will	now	create	the	following	boilerplate,	as	we	have	done	in	the	previous	chapter,
inside	the	BookingOnline	folder;	let’s	create	the	main	HTML	file
(BookingOnline/index.html)	with	this	starting	markup:

<!DOCTYPE	html>

<html>

<head>

		<title>Booking	Online	-	smaller	and	cheaper</title>

		<link	rel="stylesheet"	href="css/styles.css"	/>

</head>

<body>

		<h1>Why	should	you	choose	us?</h1>

		<h2>Just	because	we	are	a	really	small	startup,	so	we	can	do	really	

competitive	prices!!!</h2>

<script	src="app/jquery.js"></script>

<script	src="app/knockout.js"></script>

<script	src="app/index.js"></script>

</body>

</html>

This	starting	code	will	be	the	starting	page	for	our	shining	web	application.

Before	going	to	work	on	the	first	component,	the	Search	Form,	it’s	better	to	look	at	what	a
component	is,	and	how	describe	it	using	KnockoutJS.

Modularizing	with	the	component	binding
handler
In	this	section,	we	are	going	to	discuss	two	different	concepts:

AMD	and	RequireJS
KnockoutJS	binding	handler	called	component

The	reason	we	are	going	to	look	at	them	together	is	because	the	best	way	to	use	the	second
one	is	with	the	help	of	the	first	one.

AMD	and	RequireJS
Asynchronous	Module	Definition	(AMD)	is	a	way	to	modularize	JavaScript;	you	can	get
a	good	overview	of	what	AMD	is	and	why	it	is	a	good	idea	to	use	it	at	this	URL:
http://requirejs.org/docs/whyamd.html.

Before	the	use	of	AMD,	all	HTML	pages	were	full	of	script	tags	to	import	all	the	scripts
used.	You	have	seen	this	behavior	in	the	previous	chapter,	when	we	put	five	script	tags
into	each	HTML	page.

One	of	the	goals	of	AMD	is	to	improve	the	separation	of	JavaScript	and	HTML;	we	get
this	because	we	put	only	one	script	tag	in	the	HTML	file,	representing	the	main	entrance
to	our	client-side	application.	Inside	this	entrance	file	we	put	all	the	logic	to	load	the	other
components,	with	their	dependencies.

Another	goal	of	AMD	is	to	avoid	the	pollution	of	the	global	namespace.	Many	JavaScript
applications	and	libraries	put	all	the	variables	inside	the	global	namespace	(window,	if	you
are	working	within	the	browser).

When	you	use	AMD,	you	create	self-contained	modules	with	a	list	of	required
dependencies.

Tip
You	can	mix	modules	and	global	variables,	but	you	should	avoid	it,	because	it	is	evil.
Moreover,	there	is	no	way	to	be	sure	your	global	variable	will	not	be	overwritten,	or
modified,	from	external	code.

AMD	defines	two	functions:	define	and	require.

Use	define	to	declare	a	new	module;	look	how	a	simple	module	can	be	declared	with
dependencies	over	two	other	modules	(for	example,	jQuery	and	KnockoutJS):

define(["jquery",	"knockout"],	function($,	ko)	{

				...

});

In	this	case,	the	first	parameter	of	define	is	an	array	of	dependencies;	this	means	that	the
implementation	of	AMD	will	load	the	modules	with	name	jquery	and	knockout,	and	then
it	will	execute	the	function,	function($,	ko),	passing	the	modules	loaded	as	parameters
(dependency	injection).

Note
Pay	attention	to	the	order	of	the	parameters	and	the	items	inside	the	array;	AMD
associates	the	dependencies	by	position,	and	it	will	not	warn	you	if	you	put	more
parameters	than	dependencies	or	the	opposite,	nor	will	it	check	for	the	name	of	the
module.

The	second	function	we	have	is	require;	we	can	use	it	to	load	modules	dynamically	(like
a	module	dependent	on	a	previously	loaded	module)	or	to	get	reference	to	an	already
loaded	library;	this	is	how	we	can	use	it	in	the	first	way:

http://requirejs.org/docs/whyamd.html

define(["jquery",	"knockout"],	function($,	ko)	{

				...

				require(["jqueryui"],	function(ui)	{

								//do	something	with	dep3

				});

				...

});

In	this	way	you	can	postpone	the	loading	of	a	dependency.

Note
This	is	an	easy	way	to	lazy-load	a	resource-demanding	module	or	a	configuration-based
one;	for	example,	you	can	use	it	when	you	want	to	load	the	localization	module	for	a
library	(such	as	the	jQuery	DatePicker	Widget)	depending	on	the	current	locale.

Let’s	now	look	at	the	second	way	to	use	it.

Imagine	you	already	loaded	the	module	dep3	inside	the	previous	module;	then,	in	another
module	you	can	enter	the	following	code:

define(["jquery",	"knockout"],	function($,	ko)	{

				...

				ui	=	require("jqueryui");

				...

});

Pay	attention	that	in	this	way	we	are	making	a	synchronous	request,	because	AMD	will
use	the	already	loaded	module,	so	you	don’t	need	to	put	any	callback.

Tip
The	synchronous	version	of	the	require	function	uses	a	string	as	the	first	parameter,	while
the	asynchronous	version	uses	an	array.

In	this	book	we	are	going	to	use	RequireJS,	because	it	is	well	documented.	You	can	find	a
lot	of	documentation	on	the	optimizer	r.js,	and	how	you	can	mix	it	with	many	external
libraries.	Moreover,	you	can	find	a	quick	explanation	about	its	usage	with	KnockoutJS	on
the	KnockoutJS	website.

Note
AMD	is	just	a	specification,	so	if	you	want	to	use	it	inside	your	project	you	need	to	use	a
real	implementation;	you	can	find	many	by	searching	on	the	Internet	(for	example
curl.js,	RequireJS).

The	easiest	way	to	understand	how	it	works	is	by	using	it	with	real	code;	so	let’s	update
our	starting	code	to	use	this	new	library.

Updating	starting	code	to	use	RequireJS
The	starting	point	to	understand	how	to	use	RequireJS	with	KnockoutJS	is	at	this	URL:
http://knockoutjs.com/documentation/amd-loading.html.

As	the	first	step,	we	will	go	to	the	website	to	download	this	library;	you	can	get	the	latest
one	at	this	URL:	http://requirejs.org/docs/release/2.1.15/minified/require.js.

Save	it	inside	our	app	folder	as	BookingOnline/app/require.js.

A	really	useful	plugin	we	will	need	later	for	RequireJS	is	text;	get	it	from	this	URL
(http://raw.github.com/requirejs/text/latest/text.js)	and	save	it	as
BookingOnline/app/text.js.

This	plugin	is	great	for	loading	external	HTML	templates,	which	we	will	use	in	the	next
paragraph.

As	the	latest	step	to	integrate	the	library	with	our	project,	we	must	update	the	main	HTML
file	BookingOnline/index.html	to	use	it.

Substitute	these	rows:

<script	src="app/jquery.js"></script>

<script	src="app/knockout.js"></script>

<script	src="app/index.js"></script>

With	this	single	row:

<script	src="app/require.js"	data-main="app/index.js"></script>

What	does	this	mean?	Here,	we	are	loading	the	library	with	a	normal	script	tag,	but	we	are
using	a	custom	parameter;	when	the	library	will	be	loaded,	it	will	search	for	the	data-main
attribute	and	will	use	that	attribute	to	get	the	application	entry	point.

This	means	that	the	browser	will	load	RequireJS	inside	the	normal	browser	workflow,	and
RequireJS	will	start	the	loading	of	the	app/index.js	file	asynchronously.

Now,	we	can	put	inside	our	entry	point	the	code	required	to	load	KnockoutJS;	put	this
code	inside	app/index.js	as	follows:

define(["jquery",	"knockout"],	function	($,	ko)	{

				var	viewModel	=	{};

				$(function	()	{

								ko.applyBindings(viewModel);

				});

});

Here	we	are:

1.	 Asking	RequireJS	to	load	jquery	and	knockout.
2.	 Executing	the	following	function	passing	as	parameters,	the	return	value	from	the

two	modules	being	loaded.
3.	 Applying	the	binding	of	KnockoutJS	after	the	complete	loading	of	the	DOM.

http://knockoutjs.com/documentation/amd-loading.html
http://requirejs.org/docs/release/2.1.15/minified/require.js
http://raw.github.com/requirejs/text/latest/text.js

Tip
The	RequireJS	convention	about	module	loading	uses	the	name	to	find	the	file;	when
you	ask	for	the	jquery	module	it	will	search	for	a	file	called	jquery.js	inside	the
current	folder	(or	inside	the	baseUrl,	if	you	configured	it).

RequireJS	gives	us	a	simplified	format	to	require	many	parameters	and	to	avoid	parameter
mismatch	using	the	CommonJS	require	format;	for	example,	another	way	(use	this	or	the
other	one)	to	write	the	previous	code	is:

define(function(require)	{

				var	$	=	require("jquery"),

								ko	=	require("knockout"),

								viewModel	=	{};

				$(function()	{

								ko.applyBindings(viewModel);

				});

});

In	this	way,	we	skip	the	dependencies	definition,	and	RequireJS	will	add	all	the	texts
require('xxx')	found	in	the	function	to	the	dependency	list.

Note
The	second	way	is	better	because	it	is	cleaner	and	you	cannot	mismatch	dependency
names	with	named	function	arguments.

For	example,	imagine	you	have	a	long	list	of	dependencies;	you	add	one	or	remove	one,
and	you	miss	removing	the	relative	function	parameter.	You	now	have	a	hard-to-find	bug.

And,	in	case	you	think	that	r.js	optimizer	behaves	differently,	I	just	want	to	assure	you	that
it’s	not	so;	you	can	use	both	ways	without	any	concern	regarding	optimization.

Just	to	remind	you,	you	cannot	use	this	form	if	you	want	to	load	scripts	dynamically	or	by
depending	on	variable	value;	for	example,	this	code	will	not	work:

var	mod	=	require(someCondition	?	"a"	:	"b");

if	(someCondition)	{

				var	a	=	require('a');

}	else	{

				var	a	=	require('a1');

}

You	can	learn	more	about	this	compatibility	problem	at	this	URL:
http://www.requirejs.org/docs/whyamd.html#commonjscompat.

You	can	see	more	about	this	sugar	syntax	at	this	URL:
http://www.requirejs.org/docs/whyamd.html#sugar.

Now	that	you	know	the	basic	way	to	use	RequireJS,	let’s	look	at	the	next	concept.

http://www.requirejs.org/docs/whyamd.html#commonjscompat
http://www.requirejs.org/docs/whyamd.html#sugar

Component	binding	handler
The	component	binding	handler	is	one	of	the	new	features	introduced	in	Version	2.3	of
KnockoutJS.

Inside	the	documentation	of	KnockoutJS,	we	find	the	following	explanation:

Components	are	a	powerful,	clean	way	of	organizing	your	UI	code	into	self-contained,
reusable	chunks.	They	can	represent	individual	controls/widgets,	or	entire	sections	of	your
application.

A	component	is	a	combination	of	HTML	and	JavaScript.	The	main	idea	behind	their
inclusion	was	to	create	full-featured,	reusable	components,	with	one	or	more	points	of
extensibility.

Tip
A	component	is	a	combination	of	HTML	and	JavaScript.

There	are	cases	where	you	can	use	just	one	of	them,	but	normally	you’ll	use	both.

You	can	get	a	first	simple	example	about	this	here:
http://knockoutjs.com/documentation/component-binding.html.

The	best	way	to	create	self-contained	components	is	with	the	use	of	an	AMD	module
loader,	such	as	RequireJS;	put	the	View	Model	and	the	template	of	the	component	inside
two	different	files,	and	then	you	can	use	it	from	your	code	really	easily.

http://knockoutjs.com/documentation/component-binding.html

Creating	the	bare	bones	of	a	custom	module
Writing	a	custom	module	of	KnockoutJS	with	RequireJS	is	a	4-step	process:

1.	 Creating	the	JavaScript	file	for	the	View	Model.
2.	 Creating	the	HTML	file	for	the	template	of	the	View.
3.	 Registering	the	component	with	KnockoutJS.
4.	 Using	it	inside	another	View.

Note
We	are	going	to	build	bases	for	the	Search	Form	component,	just	to	move	forward
with	our	project;	anyway,	this	is	the	starting	code	we	should	use	for	each	component
that	we	write	from	scratch.

Let’s	cover	all	of	these	steps.

Creating	the	JavaScript	file	for	the	View	Model
We	start	with	the	View	Model	of	this	component.	Create	a	new	empty	file	with	the	name
BookingOnline/app/components/search.js	and	put	this	code	inside	it:

define(function(require)	{

		var	ko	=	require("knockout"),

						template	=	require("text!./search.html");

		function	Search()	{}

		return	{

				viewModel:	Search,

				template:	template

		};

});

Here,	we	are	creating	a	constructor	called	Search	that	we	will	fill	later.

We	are	also	using	the	text	plugin	for	RequireJS	to	get	the	template	search.html	from	the
current	folder,	into	the	argument	template.

Then,	we	will	return	an	object	with	the	constructor	and	the	template,	using	the	format
needed	from	KnockoutJS	to	use	as	a	component.

Creating	the	HTML	file	for	the	template	of	the	View
In	the	View	Model	we	required	a	View	called	search.html	in	the	same	folder.	At	the
moment,	we	don’t	have	any	code	to	put	inside	the	template	of	the	View,	because	there	is
no	boilerplate	code	needed;	but	we	must	create	the	file,	otherwise	RequireJS	will	break
with	an	error.

Create	a	new	file	called	BookingOnline/app/components/search.html	with	the
following	content:

<div>Hello	Search</div>

Registering	the	component	with	KnockoutJS
When	you	use	components,	there	are	two	different	ways	to	give	KnockoutJS	a	way	to	find
your	component:

Using	the	function	ko.components.register
Implementing	a	custom	component	loader

The	first	way	is	the	easiest	one:	using	the	default	component	loader	of	KnockoutJS.

To	use	it	with	our	component	you	should	just	put	the	following	row	inside	the
BookingOnline/app/index.js	file,	just	before	the	row	$(function	()	{:

ko.components.register("search",	{require:	"components/search"});

Here,	we	are	registering	a	module	called	search,	and	we	are	telling	KnockoutJS	that	it
will	have	to	find	all	the	information	it	needs	using	an	AMD	require	for	the	path
components/search	(so	it	will	load	the	file	BookingOnline/app/components/search.js).

You	can	find	more	information	and	a	really	good	example	about	a	custom	component
loader	at:	http://knockoutjs.com/documentation/component-loaders.html#example-1-a-
component-loader-that-sets-up-naming-conventions.

Using	it	inside	another	View
Now,	we	can	simply	use	the	new	component	inside	our	View;	put	the	following	code
inside	our	Index	View	(BookingOnline/index.html),	before	the	script	tag:

				<div	data-bind="component:	'search'"></div>

Here,	we	are	using	the	component	binding	handler	to	use	the	component;	another
commonly	used	way	is	with	custom	elements.

We	can	replace	the	previous	row	with	the	following	one:

				<search></search>

KnockoutJS	will	use	our	search	component,	but	with	a	WebComponent-like	code.

Tip
If	you	want	to	support	IE6-8	you	should	register	the	WebComponents	you	are	going	to	use
before	the	HTML	parser	can	find	them.	Normally,	this	job	is	done	inside	the
ko.components.register	function	call,	but,	if	you	are	putting	your	script	tag	at	the	end	of
body	as	we	have	done	until	now,	your	WebComponent	will	be	discarded.

Follow	the	guidelines	mentioned	here	when	you	want	to	support	IE6-8:
http://knockoutjs.com/documentation/component-custom-elements.html#note-custom-
elements-and-internet-explorer-6-to-8

Now,	you	can	open	your	web	application	and	you	should	see	the	text,	Hello	Search.

We	put	that	markup	only	to	check	whether	everything	was	working	here,	so	you	can
remove	it	now.

http://knockoutjs.com/documentation/component-loaders.html#example-1-a-component-loader-that-sets-up-naming-conventions
http://knockoutjs.com/documentation/component-custom-elements.html#note-custom-elements-and-internet-explorer-6-to-8

Writing	the	Search	Form	component
Now	that	we	know	how	to	create	a	component,	and	we	put	the	base	of	our	Search	Form
component,	we	can	try	to	look	for	the	requirements	for	this	component.

A	designer	will	review	the	View	later,	so	we	need	to	keep	it	simple	to	avoid	the	need	for
multiple	changes	later.

From	our	analysis,	we	find	that	our	competitors	use	these	components:

Autocomplete	field	for	the	city
Calendar	fields	for	check-in	and	check-out
Selection	field	for	the	number	of	rooms,	number	of	adults	and	number	of	children,
and	age	of	children

This	is	a	wireframe	of	what	we	should	build	(we	got	inspired	by	Trivago):

We	could	do	everything	by	ourselves,	but	the	easiest	way	to	realize	this	component	is	with
the	help	of	a	few	external	plugins;	we	are	already	using	jQuery,	so	the	most	obvious	idea
is	to	use	jQuery	UI	to	get	the	Autocomplete	Widget,	the	Date	Picker	Widget,	and	maybe
even	the	Button	Widget.

Adding	the	AMD	version	of	jQuery	UI	to	the
project
Let’s	start	downloading	the	current	version	of	jQuery	UI	(1.11.1);	the	best	thing	about	this
version	is	that	it	is	one	of	the	first	versions	that	supports	AMD	natively.

Note
After	reading	the	documentation	of	jQuery	UI	for	the	AMD	(URL:
http://learn.jquery.com/jquery-ui/environments/amd/)	you	may	think	that	you	can	get	the
AMD	version	using	the	download	link	from	the	home	page.	However,	if	you	try	that	you
will	get	just	a	package	with	only	the	concatenated	source;	for	this	reason,	if	you	want	the
AMD	source	file,	you	will	have	to	go	directly	to	GitHub	or	use	Bower.

Download	the	package	from	https://github.com/jquery/jquery-ui/archive/1.11.1.zip	and
extract	it.

Note
Every	time	you	use	an	external	library,	remember	to	check	the	compatibility	support.	In
jQuery	UI	1.11.1,	as	you	can	see	in	the	release	notes,	they	removed	the	support	for	IE7;	so
we	must	decide	whether	we	want	to	support	IE6	and	7	by	adding	specific	workarounds
inside	our	code,	or	we	want	to	remove	the	support	for	those	two	browsers.

For	our	project,	we	need	to	put	the	following	folders	into	these	destinations:

jquery-ui-1.11.1/ui	->	BookingOnline/app/ui
jquery-ui-1.11.1/theme/base	->	BookingOnline/css/ui

We	are	going	to	apply	the	widget	by	JavaScript,	so	the	only	remaining	step	to	integrate
jQuery	UI	is	the	insertion	of	the	style	sheet	inside	our	application.

We	do	this	by	adding	the	following	rows	to	the	top	of	our	custom	style	sheet	file
(BookingOnline/css/styles.css):

@import	url("ui/core.css");

@import	url("ui/menu.css");

@import	url("ui/autocomplete.css");

@import	url("ui/button.css");

@import	url("ui/datepicker.css");

@import	url("ui/theme.css");

Now,	we	are	ready	to	add	the	widgets	to	our	web	application.

You	can	find	more	information	about	jQuery	UI	and	AMD	at:
http://learn.jquery.com/jquery-ui/environments/amd/

http://learn.jquery.com/jquery-ui/environments/amd/
https://github.com/jquery/jquery-ui/archive/1.11.1.zip
http://learn.jquery.com/jquery-ui/environments/amd/

Making	the	skeleton	from	the	wireframe
We	want	to	give	to	the	user	a	really	nice	user	experience,	but	as	the	first	step	we	can	use
the	wireframe	we	put	before	to	create	a	skeleton	of	the	Search	Form.

Replace	the	entire	content	with	a	form	inside	the	file
BookingOnline/components/search.html:

<form	data-bind="submit:	execute"></form>

Then,	we	add	the	blocks	inside	the	form,	step	by	step,	to	realize	the	entire	wireframe:

		<div>

				<input	type="text"	placeholder="Enter	a	destination"	/>

				<label>	Check	In:	<input	type="text"	/>	</label>

				<label>	Check	Out:	<input	type="text"	/>	</label>

				<input	type="submit"	data-bind="enable:	isValid"	/>

		</div>

Here,	we	built	the	first	row	of	the	wireframe;	we	will	bind	data	to	each	field	later.

We	bound	the	execute	function	to	the	submit	event	(submit:	execute),	and	a	validity
check	to	the	button	(enable:	isValid);	for	now	we	will	create	them	empty.

Update	the	View	Model	(search.js)	by	adding	this	code	inside	the	constructor:

this.isValid	=	ko.computed(function()	{

		return	true;

},	this);

And	add	this	function	to	the	Search	prototype:

Search.prototype.execute	=	function()	{	};

This	is	because	the	validity	of	the	form	will	depend	on	the	status	of	the	destination	field
and	of	the	check-in	date	and	check-out	date;	we	will	update	later,	in	the	next	paragraphs.

Now,	we	can	continue	with	the	wireframe,	with	the	second	block.	Here,	we	should	have	a
field	to	select	the	number	of	rooms,	and	a	block	for	each	room.

Add	the	following	markup	inside	the	form,	after	the	previous	one,	for	the	second	row	to
the	View	(search.html):

		<div>

				<fieldset>

						<legend>Rooms</legend>

						<label>

								Number	of	Room

								<select	data-bind="options:	rangeOfRooms,

																											value:	numberOfRooms">

								</select>

						</label>

						<!--	ko	foreach:	rooms	-->

								<fieldset>

										<legend>

												Room	

										</legend>

								</fieldset>

						<!--	/ko	-->

				</fieldset>

		</div>

In	this	markup	we	are	asking	the	user	to	choose	between	the	values	found	inside	the	array
rangeOfRooms,	to	save	the	selection	inside	a	property	called	numberOfRooms,	and	to	show
a	frame	for	each	room	of	the	array	rooms	with	the	room	number,	roomNumber.

Tip
When	developing	and	we	want	to	check	the	status	of	the	system,	the	easiest	way	to	do	it	is
with	a	simple	item	inside	a	View	bound	to	the	JSON	of	a	View	Model.

Put	the	following	code	inside	the	View	(search.html):

<pre	data-bind="text:	ko.toJSON($data,	null,	2)"></pre>

With	this	code,	you	can	check	the	status	of	the	system	with	any	change	directly	in	the
printed	JSON.

You	can	find	more	information	about	ko.toJSON	at
http://knockoutjs.com/documentation/json-data.html

Update	the	View	Model	(search.js)	by	adding	this	code	inside	the	constructor:

this.rooms	=	ko.observableArray([]);

this.numberOfRooms	=	ko.computed({

		read:	function()	{

				return	this.rooms().length;

		},

		write:	function(value)	{

				var	previousValue	=	this.rooms().length;

				if	(value	>	previousValue)	{

						for	(var	i	=	previousValue;	i	<	value;	i++)	{

								this.rooms.push(new	Room(i	+	1));

						}

				}	else	{

						this.rooms().splice(value);

						this.rooms.valueHasMutated();

				}

		},

		owner:	this

});

Here,	we	are	creating	the	array	of	rooms,	and	a	property	to	update	the	array	properly.	If
the	new	value	is	bigger	than	the	previous	value	it	adds	to	the	array	the	missing	item	using
the	constructor	Room;	otherwise,	it	removes	the	exceeding	items	from	the	array.

To	get	this	code	working	we	have	to	create	a	module,	Room,	and	we	have	to	require	it	here;
update	the	require	block	in	this	way:

http://knockoutjs.com/documentation/json-data.html

				var	ko	=	require("knockout"),

								template	=	require("text!./search.html"),

								Room	=	require("room");

Also,	add	this	property	to	the	Search	prototype:

		Search.prototype.rangeOfRooms	=	ko.utils.range(1,	10);

Here,	we	are	asking	KnockoutJS	for	an	array	with	the	values	from	the	given	range.

Tip
ko.utils.range	is	a	useful	method	to	get	an	array	of	integers.	Internally,	it	simply	makes
an	array	from	the	first	parameter	to	the	second	one;	but	if	you	use	it	inside	a	computed
field	and	the	parameters	are	observable,	it	re-evaluates	and	updates	the	returning	array.

Now,	we	have	to	create	the	View	Model	of	the	Room	module.	Create	a	new	file
BookingOnline/app/room.js	with	the	following	starting	code:

define(function(require)	{

		var	ko	=	require("knockout");

		function	Room(roomNumber)	{

				this.roomNumber	=	roomNumber;

		}

		return	Room;

});

Now,	our	web	application	should	appear	like	so:

As	you	can	see,	we	now	have	a	fieldset	for	each	room,	so	we	can	work	on	the	template
of	the	single	room.

Here,	you	can	also	see	in	action	the	previous	tip	about	the	pre	field	with	the	JSON	data.

Note
With	KnockoutJS	3.2	it	is	harder	to	decide	when	it’s	better	to	use	a	normal	template	or	a
component.

The	rule	of	thumb	is	to	identify	the	degree	of	encapsulation	you	want	to	manage:

Use	the	component	when	you	want	a	self-enclosed	black	box,	or	the	template	if	you
want	to	manage	the	View	Model	directly.

What	we	want	to	show	for	each	room	is:

Room	number
Number	of	adults
Number	of	children
Age	of	each	child

We	can	update	the	Room	View	Model	(room.js)	by	adding	this	code	into	the	constructor:

this.numberOfAdults	=	ko.observable(2);

this.ageOfChildren	=	ko.observableArray([]);

this.numberOfChildren	=	ko.computed({

		read:	function()	{

				return	this.ageOfChildren().length;

		},

		write:	function(value)	{

				var	previousValue	=	this.ageOfChildren().length;

				if	(value	>	previousValue)	{

						for	(var	i	=	previousValue;	i	<	value;	i++)	{

								this.ageOfChildren.push(ko.observable(0));

						}

				}	else	{

						this.ageOfChildren().splice(value);						

this.ageOfChildren.valueHasMutated();

				}

		},

		owner:	this

});

this.hasChildren	=	ko.computed(function()	{

		return	this.numberOfChildren()	>	0;

},	this);

We	used	the	same	logic	we	have	used	before	for	the	mapping	between	the	count	of	the
room	and	the	count	property,	to	have	an	array	of	age	of	children.

We	also	created	a	hasChildren	property	to	know	whether	we	have	to	show	the	box	for	the
age	of	children	inside	the	View.

We	have	to	add—as	we	have	done	before	for	the	Search	View	Model—a	few	properties	to
the	Room	prototype:

Room.prototype.rangeOfAdults	=	ko.utils.range(1,	10);

Room.prototype.rangeOfChildren	=	ko.utils.range(0,	10);

Room.prototype.rangeOfAge	=	ko.utils.range(0,	17);

These	are	the	ranges	we	show	inside	the	relative	select.

Now,	as	the	last	step,	we	have	to	put	the	template	for	the	room	in	search.html;	add	this
code	inside	the	fieldset	tag,	after	the	legend	tag	(as	you	can	see	here,	with	the	external
markup):

						<fieldset>

								<legend>

										Room	

								</legend>

								<label>	Number	of	adults

										<select	data-bind="options:	rangeOfAdults,

																													value:	numberOfAdults"></select>

								</label>

								<label>	Number	of	children

										<select	data-bind="options:	rangeOfChildren,

																													value:	numberOfChildren"></select>

								</label>

								<fieldset	data-bind="visible:	hasChildren">

										<legend>Age	of	children</legend>

										<!--	ko	foreach:	ageOfChildren	-->

												<select	data-bind="options:	$parent.rangeOfAge,

																															value:	$rawData"></select>

										<!--	/ko	-->

								</fieldset>

						</fieldset>

						<!--	/ko	-->

Here,	we	are	using	the	properties	we	have	just	defined.

We	are	using	rangeOfAge	from	$parent	because	inside	foreach	we	changed	context,	and
the	property,	rangeOfAge,	is	inside	the	Room	context.

Tip
Why	did	I	use	$rawData	to	bind	the	value	of	the	age	of	the	children	instead	of	$data?

The	reason	is	that	ageOfChildren	is	an	array	of	observables	without	any	container.	If	you
use	$data,	KnockoutJS	will	unwrap	the	observable,	making	it	one-way	bound;	but	if	you
use	$rawData,	you	will	skip	the	unwrapping	and	get	the	two-way	data	binding	we	need
here.	In	fact,	if	we	use	the	one-way	data	binding	our	model	won’t	get	updated	at	all.

If	you	really	don’t	like	that	the	fieldset	for	children	goes	to	the	next	row	when	it	appears,
you	can	change	the	fieldset	by	adding	a	class,	like	this:

<fieldset	class="inline"	data-bind="visible:	hasChildren">

Now,	your	application	should	appear	as	follows:

Now	that	we	have	a	really	nice	starting	form,	we	can	update	the	three	main	fields	to	use
the	jQuery	UI	Widgets.

Realizing	an	Autocomplete	field	for	the	destination
As	soon	as	we	start	to	write	the	code	for	this	field	we	face	the	first	problem:	how	can	we
get	the	data	from	the	backend?

Our	team	told	us	that	we	don’t	have	to	care	about	the	backend,	so	we	speak	to	the	backend
team	to	know	how	to	get	the	data.

After	ten	minutes	we	get	three	files	with	the	code	for	all	the	calls	to	the	backend;	all	we
have	to	do	is	to	download	these	files	(we	already	got	them	with	the	Starting	Package,	to
avoid	another	download),	and	use	the	function	getDestinationByTerm	inside	the	module,
services/rest.

Before	writing	the	code	for	the	field	let’s	think	about	which	behavior	we	want	for	it:

When	you	put	three	or	more	letters,	it	will	ask	the	server	for	the	list	of	items
Each	recurrence	of	the	text	inside	the	field	into	each	item	should	be	bold
When	you	select	an	item,	a	new	button	should	appear	to	clear	the	selection
If	the	current	selected	item	and	the	text	inside	the	field	are	different	when	the	focus
exits	from	the	field,	it	should	be	cleared
The	data	should	be	taken	using	the	function,	getDestinationByTerm,	inside	the
module,	services/rest

The	documentation	of	KnockoutJS	also	explains	how	to	create	custom	binding	handlers	in
the	context	of	RequireJS.

The	what	and	why	about	binding	handlers
All	the	bindings	we	use	inside	our	View	are	based	on	the	KnockoutJS	default	binding
handler.

The	idea	behind	a	binding	handler	is	that	you	should	put	all	the	code	to	manage	the	DOM
inside	a	component	different	from	the	View	Model.	Other	than	this,	the	binding	handler
should	be	realized	with	reusability	in	mind,	so	it’s	always	better	not	to	hard-code
application	logic	inside.

The	KnockoutJS	documentation	about	standard	binding	is	already	really	good,	and	you
can	find	many	explanations	about	its	inner	working	in	the	Appendix,	Binding	Handler.

When	you	make	a	custom	binding	handler	it	is	important	to	remember	that:	it	is	your	job
to	clean	after;	you	should	register	event	handling	inside	the	init	function;	and	you	should
use	the	update	function	to	update	the	DOM	depending	on	the	change	of	the	observables.

This	is	the	standard	boilerplate	code	when	you	use	RequireJS:

define(function(require)	{

		var	ko	=	require("knockout"),

						$	=	require("jquery");

		ko.bindingHandlers.customBindingHandler	=	{

				init:	function(element,	valueAccessor,

																			allBindingsAccessor,	data,	context)	{

						/*	Code	for	the	initialization…	*/

						ko.utils.domNodeDisposal.addDisposeCallback(element,

								function	()	{	/*	Cleaning	code	…	*/	});

				},

				update:	function	(element,	valueAccessor)	{

						/*	Code	for	the	update	of	the	DOM…	*/

				}

		};

});

And	inside	the	View	Model	module	you	should	require	this	module,	as	follows:

require('binding-handlers/customBindingHandler');

ko.utils.domNodeDisposal	is	a	list	of	callbacks	to	be	executed	when	the	element	is
removed	from	the	DOM;	it’s	necessary	because	it’s	where	you	have	to	put	the	code	to
destroy	the	widgets,	or	remove	the	event	handlers.

Binding	handler	for	the	jQuery	Autocomplete	widget
So,	now	we	can	write	our	binding	handler.

We	will	define	a	binding	handler	named	autocomplete,	which	takes	the	observable	to	put
the	found	value.

We	will	also	define	two	custom	bindings,	without	any	logic,	to	work	as	placeholders	for
the	parameters	we	will	send	to	the	main	binding	handler.

Our	binding	handler	should:

1.	 Get	the	value	for	the	autoCompleteOptions	and	autoCompleteEvents	optional	data
bindings.

2.	 Apply	the	Autocomplete	Widget	to	the	item	using	the	option	of	the	previous	step.
3.	 Register	all	the	event	listeners.
4.	 Register	the	disposal	of	the	Widget.

We	also	should	ensure	that	if	the	observable	gets	cleared,	the	input	field	gets	cleared	too.

So,	this	is	the	code	of	the	binding	handler	to	put	inside	BookingOnline/app/binding-
handlers/autocomplete.js	(I	put	comments	between	the	code	to	make	it	easier	to
understand):

define(function(require)	{

		var	ko	=	require("knockout"),

						$	=	require("jquery"),

						autocomplete	=	require("ui/autocomplete");

		ko.bindingHandlers.autoComplete	=	{

				init:	function(element,	valueAccessor,	allBindingsAccessor,	data,	

context)	{

Here,	we	are	giving	the	name	autoComplete	to	the	new	binding	handler,	and	we	are	also
loading	the	Autocomplete	Widget	of	jQuery	UI:

var	value	=	ko.utils.unwrapObservable(valueAccessor()),

			allBindings	=	ko.utils.unwrapObservable(allBindingsAccessor()),

				options	=	allBindings.autoCompleteOptions	||	{},

				events	=	allBindings.autoCompleteEvents	||	{},

				$element	=	$(element);

Then,	we	take	the	data	from	the	binding	for	the	main	parameter,	and	for	the	optional
binding	handler;	we	also	put	the	current	element	into	a	jQuery	container:

autocomplete(options,	$element);

if	(options._renderItem)	{

			var	widget	=	$element.autocomplete("instance");

			widget._renderItem	=	options._renderItem;

}

for	(var	event	in	events)	{

			ko.utils.registerEventHandler(element,	event,	events[event]);

}

Now	we	can	apply	the	Autocomplete	Widget	to	the	field.

Note
If	you	are	questioning	why	we	used	ko.utils.registerEventHandler	here,	the	answer
is:	to	show	you	this	function.	If	you	look	at	the	source,	you	can	see	that	under	the	wood	it
uses	$.bind	if	jQuery	is	registered;	so	in	our	case	we	could	simply	use	$.bind	or	$.on
without	any	problem.

But	I	wanted	to	show	you	this	function	because	sometimes	you	use	KnockoutJS	without
jQuery,	and	you	can	use	it	to	support	event	handling	of	every	supported	browser.

The	source	code	of	the	function	_renderItem	is	(looking	at	the	file	ui/autocomplete.js):

_renderItem:	function(ul,	item)	{

		return	$("").text(item.label).appendTo(ul);

},

As	you	can	see,	for	security	reasons,	it	uses	the	function	text	to	avoid	any	possible	code
injection.

Tip
Web	development	and	security	is	a	really	big	argument	and	we	will	see	it	better	in	another
chapter;	at	the	moment,	it	is	important	that	you	know	that	you	should	do	data	validation
each	time	you	get	data	from	an	external	source	and	put	it	in	the	page.

In	this	case,	the	source	of	data	is	already	secured	(because	we	manage	it),	so	we	override
the	normal	behavior,	to	also	show	the	HTML	tag	for	the	bold	part	of	the	text.

In	the	last	three	rows	we	put	a	cycle	to	check	for	events	and	we	register	them.

Tip
The	standard	way	to	register	for	events	is	with	the	event	binding	handler.	The	only	reason
you	should	use	a	custom	helper	is	to	give	to	the	developer	of	the	View	a	way	to	register

events	more	than	once.

Then,	we	add	to	the	init	function	the	disposal	code:

//	handle	disposal

ko.utils.domNodeDisposal.addDisposeCallback(element,	function()	{

		$element.autocomplete("destroy");

});

Here,	we	use	the	destroy	function	of	the	widget.

Tip
It’s	really	important	to	clean	up	after	the	use	of	any	jQuery	UI	Widget	or	you’ll	create	a
really	bad	memory	leak;	it’s	not	a	big	problem	with	simple	applications,	but	it	will	be	a
really	big	problem	if	you	realize	an	SPA.

Now,	we	can	add	the	update	function:

				},

				update:	function(element,	valueAccessor)	{

						var	value	=	valueAccessor(),

										$element	=	$(element),

										data	=	value();

						if	(!data)

								$element.val("");

				}

		};

});

Here,	we	read	the	value	of	the	observable,	and	clean	the	field	if	the	observable	is	empty.

Tip
The	update	function	is	executed	as	a	computed	observable,	so	we	must	be	sure	that	we
subscribe	to	the	observables	required	inside.	So,	pay	attention	if	you	put	conditional	code
before	the	subscription,	because	your	update	function	could	be	not	called	anymore.

Now	that	the	binding	is	ready,	we	should	require	it	inside	our	form;	update	the	View
search.html	by	modifying	the	following	row:

				<input	type="text"	placeholder="Enter	a	destination"	/>

Into	this:

				<input	type="text"	placeholder="Enter	a	destination"

											data-bind="autoComplete:	destination,

																						autoCompleteEvents:	destination.events,

																						autoCompleteOptions:	destination.options"	/>

If	you	try	the	application	you	will	not	see	any	error;	the	reason	is	that	KnockoutJS	ignores
any	data	binding	not	registered	inside	the	ko.bindingHandlers	object,	and	we	didn’t
require	the	binding	handler	autocomplete	module.

So,	the	last	step	to	get	everything	working	is	the	update	of	the	View	Model	of	the

component;	add	these	rows	at	the	top	of	the	search.js,	with	the	other	require(…)	rows:

					Room	=	require("room"),

					rest	=	require("services/rest");

require("binding-handlers/autocomplete");

We	need	a	reference	to	our	new	binding	handler,	and	a	reference	to	the	rest	object	to	use
it	as	source	of	data.

Now,	we	must	declare	the	properties	we	used	inside	our	data	binding;	add	all	these
properties	to	the	constructor	as	shown	in	the	following	code:

this.destination	=	ko.observable();

this.destination.options	=	{

		minLength:	3,

		source:	rest.getDestinationByTerm,

		select:	function(event,	data)	{

				this.destination(data.item);

		}.bind(this),

		_renderItem:	function(ul,	item)	{

				return	$("").append(item.label).appendTo(ul);

		}

};

this.destination.events	=	{

		blur:	function(event)	{

				if	(this.destination()	&&	(event.currentTarget.value	!==

																																this.destination().value))	{

						this.destination(undefined);

				}

		}.bind(this)

};

Here,	we	are	defining	the	container	(destination)	for	the	data	selected	inside	the	field,	an
object	(destination.options)	with	any	property	we	want	to	pass	to	the	Autocomplete
Widget	(you	can	check	all	the	documentation	at:	http://api.jqueryui.com/autocomplete/),
and	an	object	(destination.events)	with	any	event	we	want	to	apply	to	the	field.

Here,	we	are	clearing	the	field	if	the	text	inside	the	field	and	the	content	of	the	saved	data
(inside	destination)	are	different.

Tip
Have	you	noticed	.bind(this)	in	the	previous	code?	You	can	check	by	yourself	that	the
value	of	this	inside	these	functions	is	the	input	field.

As	you	can	see,	in	our	code	we	put	references	to	the	destination	property	of	this,	so	we
have	to	update	the	context	to	be	the	object	itself;	the	easiest	way	to	do	this	is	with	a	simple
call	to	the	bind	function.

Remember	that	the	bind	function	doesn’t	work	with	IE6	and	IE7,	so	if	you	want	to	use	it,
try	the	jQuery	function	$.proxy.

This	is	a	screenshot	of	the	current	application:

http://api.jqueryui.com/autocomplete/

When	we	show	this	screenshot	to	our	boss	we	get	an	OK,	it’s	nice,	but	can	we	put	a	small
clearing	icon	after	the	user	selects	an	item?

Obviously	we	cannot	say	no;	and…	why?	With	KnockoutJS	it’s	so	easy	to	add.

We	start	to	do	it	in	the	easiest	way,	like	a	prototype:	code	inside	the	View	and	inside	the
ViewModel.

As	the	first	step,	we	update	the	View,	search.html,	adding	the	following	rows	after	the
input	field	for	the	destination:

<span	data-bind="visible:	destination.isNotEmpty,

																	click:	destination.clear">

		<i	class="ui-icon	ui-icon-circle-close"> </i>

It’s	simply	an	icon	(from	jQuery	UI,	inside	the	ui/theme.css)	with	a	binding	to	know
when	to	show	and	what	to	do	when	clicked.

Then	we	update	the	View	Model,	search.js,	adding	this	code	just	after	the	definition	of
destination.events:

this.destination.isNotEmpty	=	ko.computed(function()	{

		return	this.destination()	!==	undefined;

},	this);

								

this.destination.clear	=	function()	{

		this.destination(undefined);

};

Now	we	get	a	really	nice	icon	inside	the	field,	after	we	select	an	item,	with	the
functionality	of	clearing	the	selection.

We	can	also	update	the	validation	code	to	enable	the	button	for	the	search;	change	the

following	block:

this.isValid	=	ko.computed(function()	{

		return	true;

},	this);

Into	this	one:

this.isValid	=	ko.computed(function()	{

		return	this.destination();

},	this);

And	be	sure	you	have	this	computed	function	defined	after	the	definition	of	the	property,
destination,	or	you’ll	get	an	error.

With	this	code,	we	finish	all	the	code	for	the	destination	field.

Improving	two	date	fields	by	applying	Date	Picker
widget
If	you	followed	the	whole	previous	paragraph	you	will	have	seen	how	to	create	a	binding
handler	for	a	jQuery	Widget,	so	we	can	just	apply	what	we	learnt	in	the	previous
paragraphs.

Create	the	file,	BookingOnline/app/binding-handler/datepicker.js,	with	this	code:

define(function(require)	{

		var	ko	=	require("knockout"),

						$	=	require("jquery");

		require("ui/datepicker");

The	first	difference	with	the	previous	binding	is	with	the	module,	datepicker;	this	one	is
the	only	module	without	a	returned	value.	You	must	apply	it	starting	from	the	jQuery
selector:

		ko.bindingHandlers.datepicker	=	{

				init:	function(element,	valueAccessor)	{

						var	value	=	valueAccessor(),

										$element	=	$(element);

						$element.datepicker({

								onSelect:	function(dateText,	inst)	{

										value($element.datepicker("getDate"));

								},

								numberOfMonths:	2

						});

We	apply	the	datepicker	to	the	element,	and	we	register	the	behavior	of	the	selection.
Assign	the	selected	date	to	the	observable	used	as	a	parameter	for	the	binding:

//	handle	disposal

ko.utils.domNodeDisposal.addDisposeCallback(element,	function()	{

		$(element).datepicker("destroy");

});

Every	jQuery	Widget	has	the	same	disposal	code,	only	with	a	different	function	name
(here	it	is	datepicker;	the	previous	name	was	autocomplete).

Tip
You	could	write	object-oriented	code	here,	generalizing	the	name	with	a	string;	you	can
see	this	kind	of	logic	used	in	the	project	Knockout-jQueryUI	at:
http://gvas.github.io/knockout-jqueryui/

Then	we	close	the	init	and	continue	with	the	update	function:

				},

				update:	function(element,	valueAccessor)	{

						var	value	=	valueAccessor(),

										$element	=	$(element),

										data	=	value();

http://gvas.github.io/knockout-jqueryui/

						if	(!data)

								$element.datepicker("setDate",	undefined);

				}

		};

});

In	the	update	we	clear	the	field	if	the	observable	was	cleaned.

The	next	step	is	in	the	View,	search.html,	where	we	update	the	two	fields	for	the	date.
They	become:

<input	type="text"	readonly	data-bind="datepicker:	checkIn"	/>

And:

<input	type="text"	readonly	data-bind="datepicker:	checkOut"	/>

Finally,	we	update	the	View	Model,	search.js;	we	require	the	module	of	the	binding
handler,	after	the	starting	block	of	require(…)in	the	following	way:

require("binding-handlers/autocomplete");

require("binding-handlers/datepicker");

In	the	constructor,	we	add	the	two	observables	to	track	the	selected	dates:

this.checkIn	=	ko.observable();

this.checkOut	=	ko.observable();

And,	as	the	last	step,	we	update	the	validation	method.	It	becomes:

this.isValid	=	ko.computed(function()	{

		var	d	=	this.destination(),

						cIn	=	this.checkIn(),

						cOut	=	this.checkOut();

		return	d	&&	cIn	&&	cOut;

},	this);

Tip
There	is	a	big	difference	between	the	following	two	expressions:

var	v1	=	this.destination(),	v2	=	this.checkIn();

var	res	=	v1	&	v2;

And	this:

var	res	=	this.destination()	&&	this.checkIn();

The	main	difference	is	that	in	the	second	expression,	if	the	destination	is	false,	we’ll	never
check	the	checkIn	observable.

Normally,	this	is	not	a	big	problem,	but	if	any	function	has	important	side	effects
(otherwise	you	should	use	a	pure-computed	observable),	remember	that	you	should	use
the	first	expression	type,	not	the	second	one.

Transforming	already	done	code	into	a	reusable	one

When	the	boss	asks	again	for	the	closing	icon,	we	know	we	can	follow	two	different	ways:

Copy	and	paste	the	code	all	around,	for	each	field
Make	a	new	binding	handler	to	manage	this	functionality

This	book	is	a	blueprint,	so	we	must	choose	the	best	solution	to	show	the	best	practice.	So
we	take	the	piece	of	HTML	we	used	and	the	related	binding,	and	we	put	it	in	a	binding
handler.

Note
Why	a	binding	handler	instead	of	a	component?	It	depends.

In	this	case,	a	binding	handler	is	better	because	we	want	to	put	this	code	into	an	already
existing	data-bound	field.

Generally,	a	component	is	better	when	you	want	to	create	something	to	work	by	itself;	if
you	are	simply	adding	visual	changes	and	behavior	to	an	already	existing	component,	the
best	way	is	to	use	a	binding	handler.

This	new	binding	handler	should	manage	the	functionality	of	clearing	the	field,	and	a	way
to	know	whether	the	icon	should	be	shown;	it	should	also	add	a	template	HTML	into	the
View,	just	after	the	bound	element.

The	template	system	of	KnockoutJS	manages	two	kinds	of	templates:

Named	template	(using	a	script	tag	with	an	ID)
Anonymous	template	(the	children	of	a	DOM	element	are	the	template)

We	could	simply	put	in	the	document	the	template	we	want	to	use,	or	maybe	we	could
extend	the	template	system	by	adding	another	kind	of	template:

String-based	(a	string	from	the	View	Model	will	be	used	for	the	template)

To	implement	this	new	kind	of	template,	we	create	a	new	file,
BookingOnline/app/stringTemplateEngine.js,	with	the	following	code:

define(["knockout"],	function(ko)	{

		//private	template	source	that	is	simply	a	string

		var	StringTemplateSource	=	function(template)	{

				this.template	=	template;

		};

		StringTemplateSource.prototype.text	=	function()	{

				return	this.template;

		};

		var	stringTemplateEngine	=	new	ko.nativeTemplateEngine();

		stringTemplateEngine.makeTemplateSource	=	function(template)	{

				return	new	StringTemplateSource(template);

		};

		return	stringTemplateEngine;

});

This	code	creates	a	new	TemplateEngine	starting	from	the	ko.nativeTemplateEngine,
updating	it	to	use	as	source	the	template	string	itself	(encapsulated	into	a
stringTemplateSource	function).

Now	we	can	use	this	module	easily;	we	just	need	to	tell	KnockoutJS	that	we	want	to
render	a	template	using	this	engine;	look	at	how	we	can	do	so,	creating	a	new	source	file
named	BookingOnline/app/binding-handler/clearable.js	with	this	content:

define(function(require)	{

		var	ko	=	require("knockout"),

						$	=	require("jquery"),

						stringTemplateEngine	=	require("stringTemplateEngine"),

						template	=	require("text!./clearable.html");

Here,	we	are	requiring	the	template	engine,	and	defining	the	template	we	want	to	use;	if
you	see,	we	are	loading	the	HTML	from	an	external	template	to	follow	the	MVVM
pattern.	Let’s	see	the	markup	for	the	template	(clearable.html):

		<i	class="ui-icon	ui-icon-circle-close"> </i>

As	you	can	see,	it’s	almost	the	same	as	the	markup	we	used	before	for	the	icon,	but	here
we	are	not	using	any	specific	observable	name	because	we	are	going	to	inject	the	function
inside	the	binding	context.

Now,	we	can	continue	with	the	binding	handler:

		ko.bindingHandlers.clearable	=	{

				init:	function(element,	valueAccessor)	{

						var	value	=	valueAccessor(),

										bindingContext	=	{

												clear:	function()	{

														value(undefined);

												},

												isNotEmpty:	ko.computed(function()	{

														return	this();

												},	value)

										},

										options	=	{

												templateEngine:	stringTemplateEngine

										},

										span	=	document.createElement("SPAN");

						$(element).after(span);

						ko.renderTemplate(template,	bindingContext,	options,	span,	

"replaceNode");

				}

		};

});

The	binding	handler	clearable	creates	bindingContext	with	the	two	functions	we	used
before:	clear	and	isNotEmpty;	both	functions	use	the	observable	from	the	parameters.

Here,	you	can	see	how	we	can	tell	which	template	engine	to	choose	(the	third	parameter	of

ko.renderTemplate).	Then,	we	create	the	span	element	as	a	sibling	of	the	current
element,	and	apply	the	template	inside	that	node,	replacing	the	node.

Now	we	can	use	this	binding	handler	inside	our	components,	so	update	the	View	Model,
search.js,	adding	this	row	after	the	block	of	require,	in	this	way:

require("binding-handlers/datepicker");

require("binding-handlers/clearable");

Then,	remove	the	code	we	wrote	before	to	manage	this	functionality	for	the	destination;
remove	both	these	rows	because	we	don’t	need	them	anymore:

this.destination.isNotEmpty	=	ko.computed(function()	{	…	},	this);

this.destination.clear	=	function()	{	…	};

And	finally,	add	the	data-bind	inside	the	View	(search.html);	here,	there	is	the	full
block:

		<div>

				<input	type="text"	placeholder="Enter	a	destination"

											data-bind="autoComplete:	destination,

																						autoCompleteEvents:	destination.events,

																						autoCompleteOptions:	destination.options,

																						clearable:	destination"	/>

				<label>	Check	In:

						<input	type="text"	readonly

													data-bind="datepicker:	checkIn,

																								clearable:	checkIn"	/>	</label>

				<label>	Check	Out:

						<input	type="text"	readonly

													data-bind="datepicker:	checkOut,

																								clearable:	checkOut"	/>	</label>

				<input	type="submit"	data-bind="enable:	isValid"	/>

		</div>

And	now,	all	clearable	fields	are	ready.

Making	the	button	easy	to	customize
We	should	spend	a	bit	of	time	on	the	search	button	as	well.

This	binding	handler	for	the	button	is	the	easiest	realized	till	now,	so	I’m	leaving	this	as	an
exercise	for	you;	try	to	realize	it,	and,	as	the	last	resort,	use	the	following	explanation	to
check.

Create	a	binding	handler	named	BookingOnline/app/binding-handler/button.js	with
this	code:

define(function(require)	{

		var	ko	=	require("knockout"),

						$	=	require("jquery"),

						button	=	require("ui/button");

		ko.bindingHandlers.button	=	{

				init:	function	(element,	valueAccessor)	{

						button({},	element);

						ko.utils.domNodeDisposal.addDisposeCallback(element,

								function()	{

										$(element).button("destroy");

								}

);

				}

		};

});

Here,	we	are	just	applying	the	jQuery	Button	Widget	to	the	element,	and	then	we	will
manage	the	release	of	the	resource	when	the	button	gets	disposed.

Then,	we	will	update	the	View	Model,	search.js,	adding	the	require	code	inside	the
require	block,	in	this	way:

require("binding-handlers/clearable");

require("binding-handlers/button");

And,	as	the	last	step	we	will	update	the	View,	search.html,	modifying	the	button	code
into	this	one:

<input	type="submit"	data-bind="button:	true,

																																enable:	isValid"	/>

The	component	is	now	(almost)	ready.

Communicating	with	other	components
We	realized	the	form,	and	now	the	customer	can	search	for	hotels;	clicking	on	the	search
button	will	send	a	request	to	the	backend,	and	we	will	use	the	result	inside	other
components.

We	need	a	way	to	enable	communication	between	components	without	the	need	for	direct
referencing	each	other.

In	the	next	chapter,	we	will	look	at	the	concept	of	Publish/Subscribe,	but	now	we	will	go
with	a	simple	Event	Manager	module	(following	the	Mediator	design	pattern).

When	you	got	the	files	for	the	communication	with	the	backend,	you	download
BookingOnline/app/services/eventManager.js.

This	module	exposes	three	functions:

function	on	(event	name,	callback):	use	it	to	listen	for	named	event
function	off	(event	name,	callback):	use	it	to	stop	current	listening	for	a	named
event
function	trigger	(event	name,	parameters):	use	it	to	send	a	message	to	the
listeners

If	you	check	the	rest.js	module,	you	will	find	there	a	function	named
getHotelByDestination.	At	the	end	of	the	function	you	will	see	that	it	uses	the
eventManager	module	to	trigger	an	event	named	search:result	with	the	results	of	the
last	search.

We	can	use	it	to	get	the	results	inside	the	other	modules.	And,	best	of	all,	we	can	just	call
it	inside	our	Search	Form	button	event,	to	finally	finish	this	component.

Update	in	search.js	the	function	execute	in	this	way:

Search.prototype.execute	=	function()	{

		rest.getHotelByDestination(this.destination());

};

And	voila,	the	component	is	done.

Adding	the	Hotel	Cards
Now	we	can	develop	the	Hotel	Cards.

As	you	can	see	in	this	wireframe,	this	component	is	almost	self-contained,	so	it’s	normal
to	realize	it	with	another	component.

This	component	will	be	much	shorter	than	the	previous	one	because	we	are	not	going	to
put	too	much	effort	into	it;	the	main	reason	is	that	we	get	the	information	to	show	from	the
backend,	and	we	just	draw	it	here.

The	hardest	part	here	is	the	HTML	and	the	CSS	behind,	but	we	are	not	so	interested	in
such	code	in	this	case.

As	the	first	step,	we	will	create	the	View	Model	of	this	new	component,	putting	this	code
in	BookingOnline/app/components/hotelCard.js:

define(function(require)	{

		var	ko	=	require("knockout"),

						template	=	require("text!./hotelCard.html");

		require("binding-handlers/button");

We	will	use	the	button	binding	handler	to	improve	the	style	of	our	Booking	buttons:

		function	HotelCard(data)	{

				ko.utils.extend(this,	data);

We	will	then	extend	this	object	with	the	data	we	get	from	the	parameters;	we	don’t	need
any	observable	here	because	there	is	no	dynamicity	here:

				this.getThumb	=	function()	{

						return	this.image	||	"/images/default.jpg";

				};

We	will	now	define	a	function	(getThumb)	to	get	the	image	to	show,	taking	the	default
image	if	the	hotel	doesn’t	have	one:

				this.starRange	=	ko.utils.range(1,	this.stars);

				var	colors	=	['bad',	'normal',	'normal',	'good',	'good'];

				this.starType	=	colors[this.stars	-	1];

		}

These	last	three	rows	are	used	for	a	nice	effect,	like	the	one	you	find	inside	the	tutorial

section	of	KnockoutJS:	show	stars.

Here,	we	get	an	array	to	use	with	a	foreach	binding	handler,	and	a	kind	of	star	color
depending	on	the	number:	a	single	star	will	be	red,	two	or	three	stars	will	be	yellow,	and
four	or	five	stars	will	be	green:

		HotelCard.prototype.book	=	function()	{};

		return	{viewModel:	HotelCard,	template:	template};

});

We	will	put	the	remaining	code	to	manage	the	click	of	the	booking	button,	and	then	return
the	structure	required	from	KnockoutJS	to	use	a	component.

Easy,	isn’t	it?

The	code	of	the	View	(hotelCard.html)	is	easy	too;	you	can	see	there	is	more	structure
and	code	for	styling	than	markup	we	are	interested	in:

<div	class="hotel-center">

		<div	class="hotel-name"	data-bind="text:	hotel"></div>

		<div	class="hotel-description"

							data-bind="html:	description"></div>

</div>

<div	class="hotel-right">

		<div	class="hotel-star">

		<!--	ko	foreach:	starRange	-->

				<span	class="stars"

										data-bind="css:	$parent.starType">

		<!--	/ko	-->

		</div>

		<div	class="hotel-price"	data-bind="text:	price"></div>

		<div	class="hotel-book">

			<input	type="button"	value="Book"

										data-bind="button:	true,	click:	book"/>

				</div>

</div>

Here,	we	are	showing	an	image	choosing	the	attribute	source	from	the	function	we	defined
before;	then	the	name	of	the	hotel;	the	description;	and	a	number	of	span	equals	to	the
number	of	stars,	displaying	a	star	for	each	of	them.

Then	we	show	the	price	and	we	apply	the	button	binding	handler	to	the	booking	button.

Interesting	here	is	the	usage	of	the	html	binding	handler	for	the	description;	we	use	it
because	our	text	is	full	of	HTML	tags;	it’s	not	a	bad	choice,	but	remember	all	the	time	that
you	have	to	check	all	the	data	you	will	show	there	to	avoid	a	security	hole.

As	the	last	step,	we	will	update	our	main	View	to	use	this	new	component.	Update	the
View,	index.html,	putting	this	code	just	after	the	other	component	(in	this	way):

<div	data-bind="component:	'search'"></div>

<div	class="hotels">

<!--	ko	foreach:	hotels	-->

		<div	class="hotel-card"

							data-bind="component:	{	name:	'hotel-card',

																																params:	$data	}"></div>

<!--	/ko	-->

</div>

Here,	we	are	using	the	component	as	we	have	done	before,	but	we	pass	as	parameter	the
current	item	of	the	array;	this	is	the	reason	we	find	the	item	inside	the	data	parameter	in
the	constructor	of	the	Hotel	Card.

Now	we	will	fill	the	hotels	observable	inside	the	View	Model,	index.js;	add	a	reference
to	the	Event	Manager	(in	this	way):

		var	$	=	require("jquery"),

						ko	=	require("knockout"),

						eventManager	=	require("services/eventManager"),

						viewModel	=	{};

Then,	update	the	View	Model	property,	putting	the	new	observable	array:

viewModel	=	{		hotels:	ko.observableArray([])

};

As	the	next	step,	we	will	register,	to	get	the	list	of	Hotel	Cards,	for	the	event
search:result:

		eventManager.on("search:result",	function(data)	{

				viewModel.hotels(data);

		});

We	use	this	event	to	update	our	list	of	Hotel	Cards.

Last	but	not	least,	we	will	register	this	component;	add	this	code	after	the	registration	of
the	Search	Form:

ko.components.register("hotel-card",

																							{require:	"components/hotelCard"});

If	you	have	done	everything	till	now,	and	you	took	the	images	and	the	code	from	the
backend,	your	web	application	should	be	similar	to	this	one:

Summary
In	this	chapter,	we	have	seen	all	the	remaining	functionalities	of	KnockoutJS	(core),	which
we	skipped	in	the	previous	chapter.

The	application	we	realized	was	simple	enough,	but	we	used	it	to	learn	better	how	to	use
components	and	custom	binding	handlers.

If	you	think	we	put	too	much	code	for	such	a	small	project,	try	to	think	what	differences
you	have	seen	between	the	first	and	the	second	component:	the	more	component	and
binding	handler	code	you	write,	the	less	you	will	have	to	write	in	the	future.

The	most	important	point	about	components	and	custom	binding	handlers	is	that	you	have
to	realize	them	looking	at	future	reuse;	the	more	good	code	you	write,	the	better	it	will	be
for	you	later.

The	core	point	of	this	chapter	was	AMD	and	RequireJS;	how	to	use	them	inside	a
KnockoutJS	project,	and	why	you	should	do	it.

In	the	next	chapter,	we	will	look	at	how	to	realize	a	full-featured	SPA	with	the	help	of
DurandalJS,	a	framework	built	around	jQuery,	KnockoutJS,	and	RequireJS.

Chapter	3.	SPA	for	Timesheet
Management
In	this	chapter,	we	will	realize	a	full-featured	SPA	for	a	shifts-based	working	company.

We	will	create	a	login	form	to	give	access	to	two	different	kinds	of	people:	workers	and
team	managers;	we	give	them	a	dashboard	to	check	the	status	of	the	days,	and	a	grid	to
manage	rest	days,	holiday	assignation,	and	time-related	tasks.

By	the	end	of	this	chapter,	you’ll	know:

What	is	an	SPA,	which	kind	of	libraries/frameworks	we	can	use	to	realize	an	SPA,
and	how	to	choose	between	them.
What	is	DurandalJS,	and	how	can	we	use	it	for	our	project.
How	to	use	the	hash	mark	to	create	an	improved	navigation	experience	with	multiple
routes.
How	to	realize	dashboards	and	grids	(with	sorting,	paging,	and	asynchronous	data
loading).

Let’s	start	with	the	project.

Analysing	the	project	briefly	–	Timesheet
SPA
A	few	years	ago,	I	was	working	as	a	consultant	for	the	biggest	flying	company	in	my
country;	the	main	project	I	worked	on	was	the	time	management	system	for	the	workers.

These	kinds	of	applications	are	built	for	two	different	kinds	of	customers:

Employees:	These	are	the	people	working	inside	a	team;	they	work	inside	a	shift-
based	time	system	to	cover	the	whole	day	(or	a	big	part	of	it),	they	need	a	system	to
manage	permission,	holiday,	rest	days,	and	to	submit	requests	to	change	shifts	with
other	employees.
Team	managers:	They	have	many	people	working	for	them,	and	their	job	is	to
manage	all	the	shifts;	they	need	a	system	to	monitor	the	shifts	of	each	day,	and	a	way
to	accept/reject	requests	from	their	subordinates.

In	this	kind	of	system,	we	have	many	business	rules	to	respect,	such	as	the	minimum
hours	between	two	turns,	and	how	many	consecutive	days	can	be	worked	before	a	rest.

The	application	we	want	to	realize	in	this	chapter	will	ask	the	user	to	login,	and	then	it	will
show	a	dashboard	to	check	the	shifts,	functionalities	to	ask	permission,	free	days,	and	a
way	for	the	Team	Manager	to	accept	or	reject	them.

And	we	will	do	all	of	this	with	an	SPA.

The	SPA	feature	for	the	Timesheet	SPA
A	Single	Page	Application	is	a	web	application	realized	with	a	single	page,	giving	to	the
end	user	the	experience	of	a	desktop	application.

In	an	SPA,	when	the	user	lands	inside	the	application,	the	HTML,	CSS,	and	JavaScript	of
the	main	layout	get	downloaded;	then,	with	the	help	of	Ajax,	the	internal	view	is	loaded
based	on	the	state	of	the	application	and	the	user	actions	within	the	structure	of	the	main
layout.

Good	SPA	uses	hash	fragment	(or	the	new	HTML5	API	pushState/replaceState)	inside
the	URL	to	give	the	user	a	way	to	navigate	between	pages	keeping	browser	history,	using
the	back	and	forward	button	of	the	browser,	and	to	bookmark	the	URL	to	come	back	later
to	the	current	page.

Note
In	an	SPA,	the	concept	of	a	page	derives	from	the	current	status	of	the	system;	the	user
expects	that	different	URLs	give	different	pages,	and	we	normally	achieve	this	with	the
help	of	a	client	routing	manager.

Two	important	points	to	remember	when	you	realize	an	SPA	are	the	memory	usage	and	the
performances.

After	an	SPA	is	loaded,	the	JavaScript	and	page	will	keep	running	until	the	user	navigates
to	other	sites;	for	this	reason,	you	must	check	you	are	not	leaking	memory,	and	that	your
components	are	clean	after	their	destruction.	You	have	to	do	a	lot	of	performance	tests	(a
load	test	can	help	here).

Choosing	the	right	tool	for	the	project
We	already	built	an	SPA	in	the	previous	chapter.

The	component	feature	of	KnockoutJS	gives	us	a	way	to	make	SPA,	because	we	can	put
components	inside	a	page,	and	with	the	help	of	control	flow	binding	we	can	load	and
update	the	view	without	any	page	reload.

The	main	problem	with	this	solution	is	the	maintainability	of	the	application.

You	can	easily	see	that	it	should	be	really	hard	to	build	and	manage	a	big	complex
application	in	this	way.

Note
At	the	start	of	2014,	Steven	Sanderson	(main	maintainer	of	KnockoutJS)	started	a
conversation	with	the	team	about	the	new	features	component	and	custom	element.

Steven	Sanderson	explained	that	these	new	features	were	not	intended	to	move
KnockoutJS	into	a	fully	featured	SPA	framework	because	the	main	goal	of	this	library	is
doing	data-binding,	and	it	is	doing	it	really	well.

For	this	reason,	if	you	are	going	to	realize	an	SPA	it’s	better	to	use	a	framework	built	for
that,	instead	of	relying	only	on	KnockoutJS.

You	can	find	the	conversation	at	https://github.com/knockout/knockout/issues/1273.

If	you	looked	around	for	an	SPA	framework,	you	probably	already	heard	about	Angular,
Backbone,	and	Ember.

Another	important	SPA	framework	you	can	find,	based	on	KnockoutJS,	is	DurandalJS.

One	of	the	most	important	features	of	DurandalJS	(http://durandaljs.com/)	is	that	it	is	a
framework	built	over	jQuery,	KnockoutJS,	and	RequireJS.

This	means	you	can	reuse	all	the	knowledge	you	have	of	these	three	libraries,	and	you	can
have	an	SPA	with	the	same	features	of	the	others	frameworks.

Note
Maybe	you	never	heard	about	DurandalJS,	but	just	to	understand	the	importance	of	this
library,	the	creator	of	this	framework	is	now	working	together	with	the	team	behind
Angular	to	put	all	the	best	features	of	those	two	frameworks	into	what	will	be	Angular	2.0.

https://github.com/knockout/knockout/issues/1273
http://durandaljs.com/

Choosing	between	DurandalJS	or	plain
KnockoutJS
If	you	are	unsure	about	choosing	DurandalJS	instead	of	plain	KnockoutJS	for	an	SPA,
let’s	look	at	what	DurandalJS	can	give	us:

A	client	router	to	manage	navigation,	screen	state,	and	full	history	support
Full	control	of	application	lifecycle	with	a	point	of	extendibility
Great	composition	system	with	full	support	of	asynchronous	loading	of	the
components
Integrated	event	management
Message	boxes	(modal	or	not),	using	jQuery
Easy	testability	for	each	module	and	for	the	whole	application

Other	than	this,	it	suggests	a	convention	over	configuration	strategy,	so	you	can	start	using
it	easily,	as	you	will	see	in	a	few	moments.

The	main	difference	between	DurandalJS	and	KnockoutJS	is	the	goal	of	each	one:
KnockoutJS	is	a	data-binding	library	while	DurandalJS	is	an	SPA	framework.

In	Timesheet	SPA	project,	we	want	to	provide	various	views	depending	on	the	role	and	on
the	state	of	the	application,	so	it	should	be	good	to	have	a	client	router.

A	nice	way	to	show	the	forms	for	the	requests	is	within	a	modal	message	box,	which	is
also	included	in	DurandalJS.

For	all	these	reasons	we	are	going	to	use	it	for	this	web	application	(and	also	for	the	SPA
we	will	build	in	Chapter	5,	Wizard	for	the	Public	Administration).

Note
DurandalJS	was	built	before	KnockoutJS	3.2,	so	it	uses	its	own	version	of	compositions;
when	you	use	the	latest	version	of	both	libraries	you	can	use	the	component	of
KnockoutJS	as	you	have	seen	or	the	widget	of	DurandalJS	as	you	prefer.

For	this	chapter,	we	will	loosely	follow	the	Getting	started	guide	we	find	on	the
DurandalJS	website	at	http://www.durandaljs.com/get-started.html.

http://www.durandaljs.com/get-started.html

Creating	a	new	project	starting	with	the	HTML
StarterKit
As	the	first	step,	we	download	the	HTML	StarterKit	file	from	the	DurandalJS	website	(we
are	going	to	use	DurandalJS	2.1).Then	we	put	all	the	content	of	the	HTML	StarterKit.zip
file	into	a	new	folder	named	TimesheetSPA	to	be	the	root	of	our	project.

Let’s	look	at	the	folder	structure	of	our	starting	project:

Inside	the	root	folder	you	find	index.html,	the	starting	point	of	the	whole	application
The	two	other	files	here	(Changes.txt,	README.md)	are	useless	for	us,	so	you	can
remove	them
Inside	the	folder	lib	you	find	the	following	libraries:	jQuery	(1.9.1),	KnockoutJS
(3.1),	RequireJS	(2.1.11),	Font-Awesome	4.0.3,	and	Bootstrap	(3.1.1)
You	already	know	the	first	three	libraries,	but	as	you	can	see	we	are	not	using	the
latest	version	of	them;	replace	the	current	libraries	with	the	latest	one	we	used	in	the
previous	chapter	(jQuery	1.11.1	and	KnockoutJS	3.2);	this	requires	an	update	in
app/main.js,	which	we	will	see	in	detail	later

Note
The	main	reason	to	update	the	libraries	is	that	each	new	version	takes	with	it	many
new	features,	and	many	bug	fixes;	you	should	look	at	the	change	log	between
different	versions	before	updating,	but	normally	it’s	safe	to	update	between	different
minor	versions.

Font-Awesome	is	a	really	nice	library	of	icons,	not	required	from	DurandalJS	but
nice	to	have;	you	can	see	how	the	project	uses	it	inside	the	shell.html	file,	with	this
row:

<i	class="fa	fa-spinner	fa-spin	fa-2x"></i>

Bootstrap	is	a	framework	to	develop	responsive,	mobile	first	projects
Inside	app	you	find	all	the	code	used	for	the	application
app/main.js	is	the	starting	point	used	from	index.html	with	RequireJS;	you	find
there	the	configuration	of	RequireJS,	then	the	code	to	configure	DurandalJS	and	to
set	viewmodels/shell	as	root	view	model

Note
The	root	view	model	represents	the	main	View	Model	(and	the	related	View)	of	the
application;	if	you	think	in	the	same	way	as	KnockoutJS,	you	can	consider	this	the
$root	View	Model	used	to	start	the	binding	inside	the	page.

You	can	pass	a	third	parameter	inside	the	call	to	the	setRoot	function,	to	indicate
which	is	the	DOM	item	to	use	for	the	binding,	or	it	will	default	to
#applicationHost.

app/viewmodels/shell.js	and	app/views/shell.html	define	the	layout	of	the
page,	and	uses	the	client	router	to	define	which	module	to	show	depending	on	the

current	URL
Inside	app/viewmodels	you	find	all	the	View	Model	already	created	for	this
application,	and	inside	app/views	you	find	the	associated	View

Note
The	view	is	automatically	located	by	convention	(you	defined	to	use	them	with	this
code	inside	main.js:	viewLocator.useConvention();)	by	replacing	the	viewmodels
folder	path	with	views.	So	the	only	requirement	is	that	you	give	your	views	and
viewmodels	the	same	name.

DurandalJS	puts	the	configuration	of	RequireJS	inside	the	app/main.js	file,	and	you	have
to	update	it	to	point	to	the	right	name	of	the	libraries;	update	the	following	rows:

				'knockout':	"../lib/knockout/knockout-3.1.0",

				'bootstrap':	"../lib/bootstrap/js/bootstrap",

				'jquery':	"../lib/jquery/jquery-1.9.1"

Into:

				'knockout':	"../lib/knockout/knockout-3.2.0",

				'bootstrap':	"../lib/bootstrap/js/bootstrap",

				'jquery':	"../lib/jquery/jquery-1.11.2.min"

Here	I’m	assuming	you	put	the	jquery-1.11.2.min.js	file	inside	the	folder	lib/jquery
file	and	knockout-3.2.0.js	inside	lib/knockout.

Note
RequireJS	configuration	uses	the	path	as-is,	adding	.js	at	the	end	of	the	name;	so,	you
can	use	any	file	naming	you	like,	just	remember	to	put	the	full	path	there	with	only	the
trailing	.js	removed

Building	Timesheet	SPA	with	DurandalJS
Now	that	we	have	seen	which	tool	we	can	use,	we	can	start	analyzing	the	project	and	how
we	can	build	it	with	DurandalJS.

Before	looking	at	the	routes	and	the	components	we	should	update	the	loading	text	we	get
when	we	load	the	application.

Update	index.html,	changing	the	title	from	Durandal	to	Timesheet	SPA,	and	the	message
from	Durandal	Starter	Kit	to	Timesheet	SPA.

Then	update	main.js,	changing	the	app.title	value	into	Timesheet	SPA.

Now	the	title	of	the	starting	page	will	be	Welcome	|	Timesheet	SPA.

Components	of	this	project
To	build	an	SPA,	we	have	to	decide	which	routes	we	will	use	and	what	we	serve	for	each
route.

Let’s	list	the	routes	with	a	short	description:

/:	This	is	the	main	page	for	the	Employee.
/login:	This	is	the	login	page.
/team:	This	is	the	main	page	for	the	Team	Manager

We	update	app/viewmodels/shell.js	to	put	these	routes;	substitute	the	activate
function	into	this	one:

activate:	function()	{

		router.map([

				{route:	"",	title:	"User	Dashboard",	

					moduleId:	"viewmodels/employee",	authType:	"employee"},

				{route:	"login",	title:	"Login",	

					moduleId:	"viewmodels/login"},

				{route:	"manager",	title:	"Team	Manager	Dashboard",	

					moduleId:	"viewmodels/manager",	authType:	"manager"}

]).buildNavigationModel();

		return	router.activate();

}

For	each	route	we	use	hash	for	the	URL,	the	title,	the	moduleId,	and	the	field	authType,
which	we	will	use	later	to	check	if	the	logged	user	can	see	and	use	that	route.

Tip
Here	we	added	a	custom	field	named	authType,	because	we	want	to	discriminate	between
different	routes	and	user	types;	you	can	add	additional	parameters	to	the	routes,	if	you
think	you	need	them.

Now,	when	we	start	the	application,	the	router	will	try	to	load	the	View	Model
app/viewmodels/employee.js,	and	its	View	app/views/employee.html.

You	can	remove	the	old	modules	(welcome.js,	welcome.html,	flickr.js,	flickr.html,
and	detail.html)	because	now	there	are	no	routes	pointing	to	them.

Let’s	create	the	new	View	Models	and	the	new	Views;	put	this	boilerplate	code	for	the
View	Models	(employee.js,	login.js,	and	manager.js	inside	app/viewmodels/):

define(function(require)	{

		var	ko	=	require("knockout");

				

		function	Ctor()	{};

		return	Ctor;

});

With	this	code	DurandalJS	will	find	each	View	Model	and	you	avoid	getting	error
messages.

Note
When	you	write	a	module	you	can	return	an	object	or	a	constructor	function;	if	you	return
an	object	it	will	be	shared	(so,	it	will	be	a	Singleton);	if	you	return	a	function	the	requiring
code	could	use	it	to	instantiate	new	objects	of	that	class.

DurandalJS	uses	the	same	logic	inside	the	composition	logic:	if	you	compose	a	module
with	a	constructor	function	(like	the	boilerplate	code	we	wrote)	it	will	initialize	a	new
object	each	time.

So,	if	your	module	represents	a	day	with	its	data,	you	should	use	a	function;	you	should
return	an	object	if	you	are	representing	the	data	of	the	logged	user	(single	instance	in	all
the	web	applications).

For	the	boilerplate	code	of	the	Views	(employee.html,	login.html,	and	manager.html
inside	app/views/)	you	can	create	an	empty	file	with	only	this	markup:

<section></section>

Getting	the	code	for	the	Client-Server	interface
For	this	project,	we	need	to	get	data	from	the	backend;	KnockoutJS	is	a	pure	frontend
library,	so	the	development	of	the	code	for	the	server	side	would	be	really	out	of	the	scope
of	this	book.

For	this	reason,	I	put	all	the	code	for	the	interaction	with	the	server	into
app/services/rest.js,	like	you	have	seen	in	the	Chapter	2,	Starting	Small	and	Growing
in	a	Modular	Way.

Inside	the	server	folder,	I	have	put	all	the	additional	data	(such	as	JSON	and	image)	that
you	get	using	rest.js.

If	you	check	the	server/users.json	file,	you	can	find	all	the	users	and	passwords	that
you	can	use	to	login	to	the	system	we	are	going	to	realize.

So,	before	going	on,	get	the	StartingPackage.zip	file	for	this	chapter	from	the	Packt
Publishing	website	and	decompress	it	in	the	TimesheetSPA	folder.

Now	we	can	start	with	the	development,	and	we	start	it	with	the	first	component.

Checking	authentication	–	Login	component
The	first	module	we	build	is	the	Login	component.

We	use	it	to	send	the	credentials	to	the	backend,	to	check	if	the	user	is	authenticated,	and
which	module	it	should	use.

This	module	will	be	a	simple	form	with	two	fields:	user	ID	and	password.

Note
An	internal	project	for	big	companies	normally	doesn’t	need	any	registration	form;	people
with	permission	to	use	it	are	already	registered	into	DB/LDAP,	and	we	can	just	use	these
data;	this	is	the	reason	we	are	not	realizing	any	registration	form;	you	can	find	one	in
Chapter	5,	Wizard	for	the	Public	Administration.

Let’s	look	at	a	wireframe	of	the	Login	View:

Put	these	rows	into	the	login.html	View:

<section>

		<p	data-bind="text:	error"></p>

		<form	data-bind="submit:	login">

				<input	type="text"	placeholder="User	ID"	

											data-bind="textInput:	userId"	/>

				<input	type="password"	placeholder="Password"	

											data-bind="textInput:	password"	/>

				<input	type="submit"	value="Login"	

											data-bind="enable:	canLogin"	/>

		</form>

</section>

We	put	a	paragraph	to	show	error	messages	(text:error),	if	present.

Then	we	have	a	form	with	the	two	fields	for	userId	and	password;	we	use	the	textInput
data	binding	to	get	continuous	update	for	the	canLogin	computed	observable.

If	you	have	text	for	userId	and	password	the	button	gets	enabled,	and	if	you	submit	the
form,	it	executes	the	login	function.

The	code	for	the	View	Model	(login.js)	is	simple	too:

define(function(require)	{

		var	ko	=	require("knockout"),

						rest	=	require("services/rest"),

						router	=	require("plugins/router");

		function	Ctor()	{

				this.userId	=	ko.observable();

				this.password	=	ko.observable();

				this.error	=	ko.observable();

				this.canLogin	=	ko.computed(function()	{

						return	this.userId()	&&	this.password();

				},	this);

		};

Here	we	use	KnockoutJS,	a	reference	to	our	backend	interface,	and	a	reference	to	the
router;	we	need	it	to	navigate	to	the	other	pages	in	a	clean	way.

Then	we	define	the	observable	properties	we	used	inside	the	View:

		Ctor.prototype.login	=	function()	{

				var	result	=	rest.login(this.userId(),	this.password());

				this.error(result.error);

								

				var	options	=	{replace:	true	,	trigger:	true};

				if	(rest.isEmployee())	{

						router.navigate("",	options);

				}	else	if	(rest.isTeamManager())	{

						router.navigate("manager",	options);

				}

		};

		return	Ctor;

});

We	start	by	trying	to	login;	then	we	update	the	error	text	with	the	error	message	(or
undefined	if	there	is	no	error).

If	we	authenticate,	we	look	for	the	type	of	user,	and	navigate	to	that	page.

The	first	parameter	for	the	function	is	the	hash	to	navigate	to.

The	second	parameter	is	an	option	object;	in	this	case,	we	ask	DurandalJS	to	replace	the
current	hash	inside	the	browser	history	with	the	next	(so	it	will	remove	the	#login	tag
from	the	browser	history),	and	to	trigger	the	page	change	(otherwise	it	changes	only	the
URL	inside	the	browser).

Tip
The	user	expects	a	fluid	navigation	inside	the	application;	you	should	remove	all	the	hash

we	need	only	for	the	process;	remember	to	remove	all	the	useless	steps.

Now	if	you	navigate	to	/#login	you	get	the	Login	page;	you	can	try	to	login	with	the	user
ID	and	password	you	find	inside	server/users.js.

If	you	log	in	as	an	Employee,	you	get	redirected	to	/	and	if	you	log	in	as	a	Team	Manager
you	get	redirected	to	/manager.

Auto-redirecting	navigation	to	Login	page
Actually,	we	miss	two	features	to	complete	this	page:

A	guard	for	authenticated-only	page
A	logout	button

There	is	a	function	of	the	router	plugin	you	can	use	to	implement	the	first	feature:
router.guardRoute.

This	function	gets	called	each	time	there	is	a	navigation	step,	and	you	can	use	it	to	prevent
navigation	or	to	override	the	route.

Add	the	function	guardRoute	to	shell.js	in	this	way:

				activate:	function()	{

						router.guardRoute	=	function(instance,	instruction)	{

								if	(!rest.isAuthenticated()	&&

												instruction.config.moduleId	!==	"viewmodels/login")	{

										return	"login";

								}	else	if	(rest.isEmployee()	&&

																			instruction.config.authType	!==	"employee")	{

										return	"";

								}	else	if	(rest.isTeamManager()	&&

																			instruction.config.authType	!==	"manager")	{

										return	"manager";

								}

								return	true;

						};

				router.map([

Here	we	check	for	three	different	conditions:

If	user	is	not	authenticated	and	we	are	not	going	to	the	login	page	we	navigate	there
If	the	user	is	an	employee	he	can	navigate	only	to	the	page	for	employees
If	the	user	is	a	manager	he	can	navigate	only	to	the	page	for	managers

Tip
There	is	no	mention	of	this	method	inside	the	documentation	of	DurandalJS;	but	you
can	find	this	information	inside	the	source	of	the	plugin	router.js.

guardRoute	can	return	a	Boolean,	a	string,	or	a	promise:

A	Boolean	determines	whether	the	route	should	activate	or	be	cancelled
A	string	causes	a	redirect	to	the	specified	route
It	can	also	be	a	promise	for	either	of	these	value	types

Then	update	the	dependencies	of	this	module,	adding	rest.js	under	services	and
Knockout:

define(["plugins/router",	"knockout",	"services/rest"],

							function	(router,	ko,	rest)	{

With	this	code,	we	have	now	protected	the	pages	from	being	accessed	by	an	un-
authenticated	user.

Adding	a	logout	button
We	will	put	the	button	into	the	top	bar,	so	we	have	to	modify	the	Shell	module.

Add	these	functions	to	the	returning	object	inside	shell.js:

				canLogout:	function()	{

						var	activeInstruction	=	router.activeInstruction();

						return	activeInstruction	&&	

													activeInstruction.fragment	!==	"login";

				},

				logout:	function()	{

						rest.logout();

						router.navigate("login");

				},

The	first	function	is	there	because	we	want	to	show	the	button	only	if	the	user	is
authenticated	(and	we	put	a	guard	to	be	sure	that	un-authenticated	user	will	be	redirected
to	#login).

The	second	one	executes	the	logout	and	then	navigates	to	the	login	page.

We	are	going	to	update	the	shell.html	View,	so	it’s	a	good	time	to	clean	the	interface.

Substitute	the	whole	block:

<form	class="navbar-form	navbar-right"	role="search"	…>…</form>

With:

<div	class="navbar-form	navbar-right"

					data-bind="visible:	canLogout()">

		<button	data-bind="click:	logout">Logout</button>

</div>

Here	we	are	using	the	two	previous	functions.

And	now	we	have	a	working	login/logout	system,	so	we	can	continue	with	the	next
component.

Making	a	dashboard	for	the	Employee
Each	Employee	should	have	a	dashboard	with	information;	for	this	we	need:

A	main	section	with	details	of	the	user
A	section	with	the	shifts	for	the	next	three	days
A	table	with	the	shifts	of	the	week/month/year	(with	a	button	to	change	the	selected
view)
A	button	for	each	day	inside	the	table,	to	request	permission	for	that	day
A	button	to	create	a	leave	request
A	button	inside	each	day	having	a	shift	to	request	a	shift	change.

The	dashboard	should	be	like	this:

In	this	dashboard,	we	have	three	buttons	with	an	associated	modal	form;	we	will	look	at
their	wireframe	and	logic	later.

This	time	we	start	updating	the	View,	building	it	block	by	block;	put	this	markup	in
employee.html:

<section>

		<div>

				User	

				(ID)

				-	Department:	

		</div>

The	first	block	will	contain	the	basic	data	of	the	current	user;	we	show	the	name,	the
userId,	and	the	department.

We	cannot	change	this	data,	so	we	don’t	need	to	put	all	these	properties	inside	an
observable.

Here	is	the	initial	code	for	the	employee.js	View	Model:

define(function(require)	{

		var	ko	=	require("knockout"),

						rest	=	require("services/rest"),

						helper	=	require("services/helper"),

						app	=	require("durandal/app");

		function	Employee()	{

				var	user	=	rest.user();

				if	(!user)

						return;

							var	depId	=	user.departmentId,

								departments	=	rest.departments(),

								timesheet	=	rest.timesheet();

				this.name	=	user.name;

				this.userId	=	user.userId;

				this.department	=	departments[depId].department;

				this.timesheet	=	timesheet[user.id];

		};

		return	Employee;

});

Here	we	are	giving	the	View	all	the	fields	it	needs;	we	take	the	data	from	the	rest
component,	and	we	keep	them	as	normal	properties.

The	next	block	to	add	inside	the	View	is:

<div>

		<div>Shifts	of	the	next	three	days</div>

		<!--	ko	foreach:	next	-->

				<div>

						

						<span	data-bind="component:{name:'shift',params:$data}"

												class="w80	inline">

				</div>

		<!--	/ko	-->

		</div>

Here	we	show	a	number	of	items	we	find	inside	the	next	array,	and	we	want	to	show	the
day	and	shift;	at	the	moment	we	show	only	the	shift	number,	but	maybe	later	we	will	try
to	improve	it;	for	this	reason	we	build	it	as	a	component.

For	this	component,	we	create	the	folder	app/components;	then	we	put	the	View	of	the

component,	named	shift.html,	with	this	code:

The	shift.js	View	Model	is	simpler	than	ever:

define(function(require)	{

				var	ko	=	require("knockout"),

								template	=	require("text!./shift.html");

				function	Shift(data)	{

								this.shift	=	data.shift;

				}

				return	{viewModel:	Shift,	template:	template};

});

The	Shift	constructor	gets	the	actual	shifts	as	a	parameter,	and	we	store	it	to	use	in	the
View.

Now	we	go	back	to	the	Employee	module.

We	have	to	register	our	new	component,	so	we	put	this	code	before	the	Employee
(employee.js)	constructor:

ko.components.register("shift",	{require:	"components/shift"});

We	must	define	the	next	property	with	this	code	inside	the	constructor:

				this.next	=	helper.getTimesheetByDays(this.timesheet,	3);

Here,	we	delegate	to	another	function	(you	can	find	it	inside	the	Helper	module),	the
responsibility	to	give	us	the	shifts	for	a	number	of	days;	in	this	way,	we	can	reuse	it	later
for	the	grid.

Going	back	to	the	View,	the	next	block	contains	only	a	button,	so	it’s	really	short	and
simple:

		<div>

				<button	data-bind="click:	createLeaveRequest">

						Create	leave	request

				</button>

		</div>

We	want	to	bind	the	click	of	the	button	with	a	modal	dialog	with	the	form;	to	do	this	we
use	a	functionality	exposed	from	the	app	module,	adding	this	code	to	the	View	Model:

		Employee.prototype.createLeaveRequest	=	function()	{

				app.showDialog({

						viewUrl:	"views/form-leave-request"

				});

		};

As	you	can	see,	we	use	the	showDialog	function	to	use	the	dialog	plugin	of	DurandalJS.

Note

Sometimes	you	want	to	display	only	a	View	without	any	View	Model	related;	in	this	case,
you	can	use	a	variant	of	the	previous	code:

app.showDialog({

		viewUrl:	"views/form-leave-request"

});

You	will	not	find	any	mention	of	the	parameter	viewUrl	inside	the	documentation;	at	the
most	you	can	find	a	reference	to	this:

dialog.MessageBox.setViewUrl("path/to/your/custom/view")

Anyway,	the	code	with	the	parameter	is	easier	to	use,	and	it’s	applied	just	for	that	use.

We	will	look	later	at	the	code	of	the	modal,	because	we	have	to	finish	the	current	View.

We	can	go	with	the	latest	block	of	this	View:

		<div>

				<div>

						<button	data-bind="click:	showWeek">Week</button>

						<button	data-bind="click:	showMonth">Month</button>

						<button	data-bind="click:	showYear">Year</button>

				</div>

Here	we	put	three	different	visualizations	of	the	data	inside	the	grid	we	are	going	to
define.

The	code	inside	the	View	Model	to	bind	to	them	is	really	simple:

		Employee.prototype.showWeek	=	function()	{

				this.workDays(helper.getTimesheetByDays(this.timesheet,	7));

		};

		Employee.prototype.showMonth	=	function()	{

				this.workDays(helper.getTimesheetByDays(this.timesheet,	31));

		};

		Employee.prototype.showYear	=	function()	{

				this.workDays(helper.getTimesheetByDays(this.timesheet,	365));

		};

We	also	put	these	lines	at	the	end	of	the	constructor	to	initialize	the	workDays	array:

				this.workDays	=	ko.observableArray();

				this.showWeek();

Now	we	can	put	the	table	for	the	grid	into	the	View:

				<table>

						<thead>

								<tr>

										<th	class="w20">Day</th>

										<th	class="w60">Shift</th>

										<th	class="w10"></th><th	class="w10"></th>

								</tr>

						</thead>

						<tbody	data-bind="foreach:	workDays">

								<tr>

										<td	data-bind="text:	day"></td>

										<td	data-bind="component:	{	name:	'shift',	

																																					params:	$data	}"></td>

										<td><button	data-bind="click:	$parent.askPermission">

																Permission	</button></td>

										<td><button	data-bind="click:	$parent.askShiftChange">

																Change</button></td>

								</tr>

						</tbody>

				</table>

		</div>

</section>

This	really	long	piece	of	code	is	really	simple;	we	are	putting	a	table,	with	four	columns,
and	a	row	for	each	day	inside	the	workDays	array	with	the	name	of	the	day	(day),	the
component	for	the	shift	(component:{…})	and	two	buttons	to	open	two	more	dialogs	(we
will	look	at	their	code	later).

If	you	look	at	the	markup,	you	can	see	I	put	many	w*	classes;	we	can	find	the	definition
inside	the	file	starterkit.css	(you	got	from	StartingPackage.zip).

We	also	need	to	add	the	two	functions	(askPermission,	askShiftChange)	that	we	called
inside	the	View	to	the	View	Model;	add	these	lines	inside	the	View	Model:

		Employee.prototype.askPermission	=	function()	{

				app.showDialog("viewmodels/form-permission");

		};

		Employee.prototype.askShiftChange	=	function()	{

				app.showDialog("viewmodels/form-shift-change");

		};

Transforming	a	table	into	a	grid	with	bells	and	whistles
A	great	plugin	to	manage	a	table	with	JavaScript	is	the	jQuery	plugin	named	DataTables
(http://datatables.net).

We	are	going	to	use	the	version	1.10.3.

Download	it	and	put	the	whole	folder	(DataTables-1.10.3/media)	inside	our	project	as
TimesheetSPA/lib/datatables.

Every	time	you	download	a	new	library,	you	have	to	perform	two	steps	to	get	everything
working:

1.	 Update	the	configuration	of	RequireJS	(inside	app/main.js).
2.	 Update	the	main	View	(index.html)	to	use	the	new	style	sheet	you	get.

Now	add	the	following	line	inside	the	requirejs.config/paths	object	(main.js):

"datatables"	:	"../lib/datatables/js/jquery.dataTables.min"

Then	put	a	line	with	this	markup	inside	the	index.html	file:

http://datatables.net

<link	rel="stylesheet"	href="lib/datatables/css/jquery.dataTables.min.css"	

/>

Now	we	can	use	the	library	as	a	custom	binding	handler.

As	we	have	done	in	the	previous	chapter,	create	a	new	folder	inside	TimesheetSPA/app
named	binding-handlers,	then	create	a	new	file	datatable.js	with	the	following	code:

define(function(require)	{

				var	ko	=	require("knockout"),

								composition	=	require("durandal/composition"),

								$	=	require("jquery");

				require("datatables");

Here,	we	follow	the	same	pattern	we	used	in	the	last	chapter	to	create	the	binding	handler
using	AMD;	it’s	a	jQuery	plugin,	so	we	simply	get	it	without	putting	a	variable	inside.

composition.addBindingHandler("dataTable",	{

				init:	function(element,	valueAccessor,	allBindingsAccessor)	{

Here	we	use	a	different	way	to	define	the	binding	handler;	in	a	non-DurandalJS	project,
we	should	use	ko.bindingHandlers.dataTable,	but	here	we	use	a	method	of
composition.

DurandalJS	expose	this	method	to	create	delayed	binding	handler;	they	execute	only	after
the	composition	is	complete,	so	you	need	to	use	them	when	you	are	going	to	bind	with	a
property	of	the	currently	loading	module:

var	value	=	valueAccessor(),

			allBindings	=	ko.utils.unwrapObservable(allBindingsAccessor()),

				options	=	allBindings.dataTableOptions	||	{},

				$element	=	$(element);

$element.dataTable(options);

ko.utils.domNodeDisposal.addDisposeCallback(element,	function()	{

				$element.dataTable().fnDestroy();

});

I	think	you	know	how	this	code	works,	because	it	is	almost	the	same	as	the	previous
custom	binding	handler:

												value.subscribe(function(oldValue)	{

																$element.dataTable().fnDestroy();

																$element.find("tbody	tr").remove();

												},	null,	"beforeChange");

									

												value.subscribe(function()	{

																$element.dataTable(options);

												},	null);

								}

				});

});

The	main	problem	with	this	plugin	is	that	it	doesn’t	give	any	way	to	reload	the	table	after	a

modification	of	the	HTML	document.

For	this	reason,	in	this	implementation,	we	are	going	to	destroy	the	datatable	when	the
underlying	array	changes,	and	rebuild	it	after.

It’s	not	the	best	solution,	because	we	are	going	to	recreate	the	datatable	each	time,	but	is
a	simple,	easy,	and	quick	way	to	do	it,	so	it’s	ok	for	the	sake	of	simplicity.

If	you	want	to	implement	it	in	an	optimized	way,	you	can	follow	the	guide	you	find	at
http://datatables.net/dev/knockout/.

Now	we	can	add	the	reference	to	this	binding	handler	inside	our	View	Model
employee.js;	add	this	row	just	after	the	starting	require(…)	lines:

require("binding-handlers/datatable");

Now	we	can	use	it	inside	the	employee.html	View;	update	the	table	tag	into	this:

<table	data-bind="dataTable:	workDays">

With	this	last	step,	we	have	a	full	working	reading	dashboard;	now	we	can	build	the	forms
to	send	requests	to	the	Team	Manager.

Building	a	few	forms	to	update	data
In	this	dashboard,	we	have	three	buttons;	we	have	already	written	the	code	to	open	modal
forms.

The	first	form	we	will	create	is	the	Create	leave	request	form;	we	start	with	a	wireframe	of
what	we	should	build.

As	you	can	see	it’s	a	really	simple	form;	we	can	build	the	View	(views/form-leave-
request.html)	in	a	snap:

<div	class="modal-content	autoclose">

		<div	class="modal-header	center">

				<h3>Require	free	days</h3>

		</div>

		<div	class="modal-body">

				<form>

						From	<input	placeholder="Starting	Day"	

																		data-bind="datepicker:	start"	/>

						To	<input	placeholder="Ending	Day"	

http://datatables.net/dev/knockout/

																data-bind="datepicker:	end"	/>

						<div	class="w100	center">Selected

									day/s

						</div>

						<div	class='center'>

								<button	data-bind="click:	sendRequest

																								enable:	canSend">Send	Request</button>

						</div>

				</form>

		</div>

</div>

Here	we	have	two	fields	for	the	date	bound	to	a	datepicker	binding	handler	(we	got	from
the	StartingPackage.zip),	a	text	(numDay)	with	the	number	of	days	between	start	and
end,	and	a	button	to	send	the	request	(sendRequest)	to	the	Team	Manager.

To	use	this	binding	handler,	we	have	to	update	the	path	property	inside	main.js	with:

"ui":	"../lib/jqueryui"

Then	we	go	into	index.html	and	put	the	following	lines	before	the	link	to
css/starterkit.css	to	include	the	style	sheets:

<link	rel="stylesheet"	href="css/jqueryui/core.css"	/>

<link	rel="stylesheet"	href="css/jqueryui/datepicker.css"	/>

<link	rel="stylesheet"	href="css/jqueryui/theme.css"	/>

Now	we	look	at	the	code	for	the	viewmodels/form-leave-request.js	View	Model:

define(function(require)	{

		var	ko	=	require("knockout"),

						dialog	=	require("plugins/dialog"),

						helper	=	require("services/helper");

		require("binding-handlers/datepicker");

We	define	the	module	and	request	the	binding	handler	we	want	to	use	and	all	the
dependencies.

Here	we	require	dialog	because	we	will	use	it	to	close	the	modal	with	a	returning	value:

		function	FormFreeDays()	{

				this.start	=	ko.observable();

				this.end	=	ko.observable();

				this.numDays	=	ko.computed(function()	{

						var	start	=	this.start(),	end	=	this.end();

						return	helper.numDaysBetweenDates(end,	start);

				},	this);

				this.canSend	=	ko.computed(function()	{

						return	this.start()	&&	this.end()	&&	this.numDays()	>	0;

				},	this);

		}

Here	we	define	the	four	properties	we	bound	inside	the	View;	numDay	does	a	simple
calculus	based	on	the	difference	in	milliseconds	and	then	it	converts	to	days:

		FormFreeDays.prototype.sendRequest	=	function()	{

				dialog.close(this,	{

						start:	this.start(),	end:	this.end()

				});

		};

		return	FormFreeDays;

});

Look	at	dialog.close;	it	closes	the	modal,	then	it	returns	the	value	to	the	calling	function
inside	a	promise;	for	this	reason,	to	get	these	values,	we	have	to	update	the	calling	method
in	this	way:

		Employee.prototype.createLeaveRequest	=	function()	{

				app.showDialog("viewmodels/form-leave-request")

							.then(function(result)	{

										if	(result)	{

												rest.createLeaveRequest(result);

										}

								}.bind(this));

};

As	you	can	see,	we	register	a	callback	to	app.showDialog,	called	when	the	dialog	is
closed;	if	the	user	closes	the	dialog	by	clicking	outside,	the	result	will	be	undefined,
otherwise	we	have	an	object	with	start	and	end	dates;	we	send	them	to	our	rest	service,
to	send	to	the	backend.

I	leave	to	you	as	an	exercise,	the	job	to	build	the	other	two	forms;	here	are	the	two
wireframes	to	help	you.

The	Ask	permission	modal	form	should	be	like	this:

The	Ask	shift	change	modal	form	should	be	similar	to	this:

The	main	differences	between	these	two	forms	and	the	previous	one	is	the	passage	of
parameters;	let’s	look	at	how	to	do	it,	then	if	you	want,	you	can	find	my	code	for	these
forms	on	the	website;	or	you	can	do	it	by	yourself	as	an	exercise.

The	View	Model	of	the	caller	is	as	follows:

		Employee.prototype.askPermission	=	function()	{

				app.showDialog("viewmodels/form-permission");

		};

Now,	the	View	Model	changes	to	this:

		Employee.prototype.askPermission	=	function(shift,	event)	{

				app.showDialog("viewmodels/form-permission",	this)

							.then(function(result)	{

									if	(result)	{

											rest.requirePermission(result);

									}

								}.bind(this));

				};

The	second	parameter	is	passed	to	the	dialog,	as-is.

To	get	the	parameter	inside	the	View	Model	of	the	dialog	(form-permission.js),	you
have	to	define	the	activate	function;	the	first	parameter	of	this	function	will	be	the
parameter	you	passed	from	the	previous	code;	let’s	look	at	an	example:

		FormShiftChange.prototype.activate	=	function(shift)	{

				this.day	=	shift.day;

				this.shift	=	shift.shift;

		};

Now	you	can	try	to	realize	them	by	yourself.

With	these	forms,	we	have	finished	all	the	code	for	the	dashboard	for	the	Employee.

We	built	a	dashboard	with	all	the	data	acquired	from	the	backend,	with	a	few	points	of
interaction	and	a	grid	with	paging,	sorting,	and	loading	from	the	server	(yes,	we	skipped
the	loading	from	the	backend,	but	you	can	do	it	easily	if	you	use	the	ajax	and	the	data
functions	of	the	DataTables	plugin).

Now	we	can	go	to	the	Team	Manager	Dashboard.

Realizing	a	dashboard	for	the	Team	Manager
This	dashboard	will	be	really	similar	to	the	previous	one,	so	the	markup	between	the	two
modules	will	look	similar.

Let’s	look	a	wireframe	of	what	we	want	to	realize:

As	you	can	see,	the	user	details	should	be	the	same	as	the	previous	dashboard.

The	next	section,	about	the	pending	action,	will	be	a	grid	with	some	information	and	two
buttons	to	approve	or	reject	the	requests.

Then	we	have	the	table	with	the	shifts	of	each	employee,	with	the	same	logic	of	the
previous	grid.

I’m	going	to	show	you	the	markup	for	the	manager.html	View;	here	you	show	the	basic
data	of	the	current	user:

<section>

		<div>

				User	

				(ID)

				-	Department:	

		</div>

This	is	the	markup	for	the	pending	actions:

		<div>

				<div>Pending	action</div>		

						<table	cellspacing="0"	width="100%"	

													data-bind="dataTable:	gridPending">

								<thead>

										<tr>

												<th	class="w20">User	(ID)</th>

												<th	class="w30">Day	/	Shift</th>

												<th	class="w30">Request</th>

												<th	class="w10"></th>

												<th	class="w10"></th>

										</tr>

								</thead>

								<tbody	data-bind="foreach:	gridPending">

										<tr>

												<td	data-bind="text:	user"></td>

												<td	data-bind="text:	day"></td>

												<td	data-bind="text:	request"></td>

<td><button	data-bind="click:	$parent.accept">OK</button></td>

<td><button	data-bind="click:	$parent.reject">NO</button></td>

										</tr>

								</tbody>

						</table>

				</div>

Here	you	can	see	we	put	a	markup	similar	to	what	we	used	for	the	earlier	grid;	this	time
we	use	an	observable	array	named	gridPending	with	the	data	we	need:

				<div>

						<div>

								<button	data-bind="click:	showWeek">Week</button>

								<button	data-bind="click:	showMonth">Month</button>

								<button	data-bind="click:	showYear">Year</button>

						</div>

						<table	data-bind="dataTable:	workDays">

										<thead>

												<tr>

														<th	class="w20">Day</th>

														<th	class="w10">User	ID</th>

														<th	class="w20">Name</th>

														<th	class="w50">Shift</th>

												</tr>

										</thead>

										<tbody	data-bind="foreach:	workDays">

												<tr>

														<td	data-bind="text:	day"></td>

														<td	data-bind="text:	userId"></td>

														<td	data-bind="text:	userName"></td>

														<td	data-bind="component:	{	name:	'shift',	

																																							params:	$data	}"></td>

												</tr>

										</tbody>

								</table>

				</div>

</section>

And	here	you	can	see	the	logic	is	the	same	as	the	previous	grid;	we	put	more	markup	than
logic	in	these	grids,	right?

In	this	module,	we	are	going	to	use	the	Shift	module	again;	if	we	try	to	execute	the
registration	of	a	component	more	than	once,	we	get	an	error;	for	this	reason,	we	have	to
move	the	registration	of	the	components	into	the	main	View	Model.

For	this	reason,	after	the	registration	of	the	plugins,	move	the	following	line	from
employee.js	to	main.js:

ko.components.register("shift",	{require:	"components/shift"});

It’s	ok	to	move	it	there	because	that	code	is	executed	before	app.start,	which	is	before
the	execution	of	the	KnockoutJS	applyBinding	function.

Add	KnockoutJS	to	the	dependencies	(because	we	need	to	register	the	component):

define(["durandal/system",	"durandal/app",	"durandal/viewLocator",	

"knockout"],

							function	(system,	app,	viewLocator,	ko)	{

Now	let’s	look	at	the	source	of	the	new	module	(manager.js):

define(function(require)	{

		var	ko	=	require("knockout"),

						rest	=	require("services/rest");

		require("binding-handlers/datatable");

		function	Manager()	{

				var	user	=	rest.user(),

								depId	=	user.departmentId,

								departments	=	rest.departments(),

								pendingData	=	rest.getPendingForManager(depId);

Here	we	ask	the	backend	for	all	the	pending	data	for	this	manager;	almost	all	the	logic	of
this	block	is	inside	the	call	to	getPendingForManager:

				this.name	=	user.name;

				this.userId	=	user.userId;

				this.depId	=	depId;

				this.department	=	departments[depId].department;

				this.gridPending	=	ko.observableArray(pendingData);

				this.workDays	=	ko.observableArray();

				this.showWeek();

		}

Here	we	have	gridPending	and	workDays,	and	we	bind	both	to	the	datatable	binding
handler	in	the	View:

		Manager.prototype.showWeek	=	function()	{

				this.workDays(rest.getTimesheetForManager(this.depId,	7));

		};

		Manager.prototype.showMonth	=	function()	{

				this.workDays(rest.getTimesheetForManager(this.depId,	31));

		};

		Manager.prototype.showYear	=	function()	{

				this.workDays(rest.getTimesheetForManager(this.depId,	365));

		};

Here	we	ask	the	backend	for	the	data	of	all	the	departments’	shifts:

		Manager.prototype.accept	=	function()	{

				rest.accept(this);

		};

		Manager.prototype.reject	=	function()	{

				rest.reject(this);

		};

		return	Manager;

});

As	you	can	see,	we	are	delegating	many	calls	to	the	back	end.

Note
When	you	plan	the	architecture	of	your	web	application,	try	to	think	about	the	final	users;
if	they	will	use	it	with	mainly	mobile	devices,	try	to	move	the	weighty	business	logic
inside	the	server	side	and	leave	them	to	render	the	results;	otherwise,	you	can	move	most
of	the	logic	(but	remember	the	security	concern)	to	the	client	side	to	help	with	scalability.

Summary
In	this	chapter,	we	built	a	Single	Page	Application	with	DurandalJS.

We	have	seen	how	to	realize	an	SPA	easy	to	maintain,	with	all	the	features	of	KnockoutJS,
and	with	the	usage	of	a	new	external	library	(DataTables).

Now	you	can	build	a	small-to-large	application	without	adding	too	much	complexity,
because	all	the	logic	is	encapsulated	into	the	Models/View	Models,	which	are	testable.

We	left	out	a	few	interesting	points	about	testability	and	optimization	of	the	sources,	but
we	will	cover	them	in	Chapter	5,	Wizard	for	the	Public	Administration,	when	we	will
realize	another	SPA	with	DurandalJS.

In	the	next	chapter,	we	will	realize	an	application	to	manage	money,	which	is	fully
integrated	with	mobile	devices	using	PhoneGap,	to	see	what	we	can	get	from	touch
screen	devices	with	the	contact	list	and	other	additional	capabilities.

Chapter	4.	Tracking	Expense	Using
PhoneGap
In	the	previous	chapter,	we	built	a	full	SPA	using	the	framework	DurandalJS.

In	this	chapter,	we	will	realize	a	hybrid	mobile	application	to	track	expenses	and	plan	and
manage	the	budget.

At	the	end	of	this	chapter,	you’ll	know:

What	a	hybrid	mobile	application	is	and	which	kind	of	frameworks	we	can	use	to
make	one
What	PhoneGap	(or	Cordova)	is,	how	to	install	it,	and	which	benefits	it	can	give	us
How	to	integrate	KnockoutJS	with	jQuery	Mobile	for	this	application
How	to	get	the	most	from	the	user	environment:	using	the	contacts	to	get	the	data	for
the	application
What	kind	of	test	to	perform	with	these	kinds	of	applications

Understanding	hybrid	mobile	applications
Every	time	you	want	to	build	a	mobile	application	you	can	choose	between	three	kinds	of
development	options:

Native
Pure	HTML	5
Hybrid

Each	of	them	has	pros	and	cons	and	you	can	find	many	comparative	tables	on	the	Web.

The	main	reason	we	are	going	to	create	a	hybrid	application	instead	of	a	pure	HTML	5
application	is	that	we	want	to	access	device	features	(such	as	contacts	and	calendars)	and
we	cannot	do	it	with	a	pure	HTML	5	mobile	application.

Note
You	can	search	for	hybrid	mobile	application	on	Google	to	get	all	the	explanation	you
need;	I’ll	not	cover	more	here	because	it’s	really	out	of	topic.

The	most	popular	frameworks	to	realize	hybrid	mobile	applications	are:

Titanium	(http://www.appcelerator.com/titanium/)
PhoneGap/Cordova	(http://phonegap.com)

If	you	are	a	BackboneJS	developer	you	should	choose	Titanium,	because	they	integrate
really	well	using	Alloy.

Otherwise	you	should	go	to	PhoneGap.

There	are	many	different	popular	frameworks	used	with	PhoneGap,	such	as:

Ionic	(deeply	integrated	with	Angular)
Sencha	Touch	(from	the	same	company	as	ExtJS)
Bootstrap	(a	widely	used	responsive	web	framework)
jQuery	Mobile	(a	touch-optimized	web	framework)

For	our	application,	we	skip	the	first	two	(because	they	are	not	easy	to	integrate	with
KnockoutJS),	so	we	have	to	decide	between	the	last	two.

We	already	have	seen	Bootstrap	in	the	previous	project,	with	DurandalJS.

A	big	difference	between	these	two	frameworks	is	that	jQuery	Mobile	has	an	Ajax-based
internal	routing	system	and	Bootstrap	doesn’t	have	anything	like	this.

So,	for	this	application,	we	are	going	to	use	jQuery	Mobile	with	PhoneGap.

Note
It’s	just	an	arbitrary	decision	here,	because	you	could	take	Bootstrap,	a	client-side	router
like	pager.js	(http://pagerjs.com)	or	Crossroads.js
(http://millermedeiros.github.com/crossroads.js/)	and	you	could	build	almost	the	same
application.

http://www.appcelerator.com/titanium/
http://phonegap.com
http://pagerjs.com
http://millermedeiros.github.com/crossroads.js/

Getting	PhoneGap/Cordova
To	start	using	this	framework,	follow	this	guide:
http://cordova.apache.org/docs/en/4.0.0/guide_cli_index.md.html#The%20Command-
Line%20Interface_installing_the_cordova_cli

Note
PhoneGap	and	Cordova	are	two	different	names	for	the	same	framework;	in	October	2011
PhoneGap	was	donated	to	Apache	under	the	name	of	Apache	Cordova;	for	this	reason,
you	may	find	references	to	both	names,	but	the	framework	is	the	same.

During	the	development,	we	will	use	the	command-line	interface.

We	could,	ourselves,	build	the	application	to	be	distributed,	but	we	will	take	advantage	of
the	Adobe	PhoneGap	Build	system;	you	can	use	it	for	free,	for	any	open	source
application	and	for	private	applications	you	want	to	build.

To	get	Cordova	working,	you	need	to	install	NodeJS	and	a	Git	client;	then,	after	installing
Cordova,	we	use	it	to	create	our	new	application	with	this	command	(from	the	command
line):

cordova	create	PiggyBank	com.ko_blueprint.piggybank	"Piggy	Bank"

Cordova	will	create	a	new	project	inside	the	PiggyBank	folder,	with	all	the	code	needed	to
start.

The	easiest	way	to	test	the	application	without	a	device	is	with	the	browser	platform;	this
is	a	fake	platform	to	execute	the	application	inside	the	browser.

You	get	it	with	these	commands:

cd	PiggyBank

cordova	platform	add	browser

Now	when	you	want	to	look	at	your	application	you	can	use	this	command:

cordova	run	browser

This	command	will	copy	the	modified	assets	inside	the	www	folder	at	platforms/browser
and	will	open	a	browser	for	the	index.html	file	at	platforms/browser/www.

Tip
If	you	want	to	integrate	the	auto-reload	behavior	into	your	workflow,	you	can	use	the
command:

cordova	prepare	browser

It	updates	the	files	without	opening	any	browser.

If	you	use	Chrome,	you	may	get	an	error	because	it	cannot	read	a	local	file;	you	can	solve
this	problem	easily—close	the	browser,	then	execute:

cordova	run	browser

http://cordova.apache.org/docs/en/4.0.0/guide_cli_index.md.html#The%20Command-Line%20Interface_installing_the_cordova_cli

In	this	way,	it	will	open	the	browser	again,	using	a	flag	(--allow-file-access-from-
files)	that	fixes	the	problem.

Defining	what	Piggy	Bank	should	be
The	main	goal	of	this	application	is	the	management	of	the	budget.

With	an	easy-to-use	interface,	the	user	should	configure	the	account	he	wants	to	manage,
the	details	for	each	transaction	he	puts	inside,	and	the	budget	goal	based	on	categories.

We	could	expand	this	application	with	many	server-side	additions,	such	as	the	direct
download	of	information	from	the	bank	account,	or	the	synchronization	of	the	data	with
the	family	(in	this	case,	we	need	an	authentication	system).

To	keep	the	project	easy	and	make	it	doable	within	one	chapter,	we	have	to	decide	which
features	will	be	mandatory	for	our	Minimum	Viable	Product	(MVP).

Note
MVP	is	defined	as	the	product	with	only	those	core	features	that	allow	the	product	to	be
deployed,	and	no	more.

This	is	the	list	of	the	features	we	need	for	our	MVP:

The	application	is	for	a	single	user
A	user	can	create	many	accounts
A	user	puts	information	about	each	transaction	by	hand
A	transaction	is	represented	with	a	date,	an	account,	a	subject,	one	tag,	a	textual
description,	and	an	amount	of	money
There	is	no	currency	management;	every	transaction	will	be	made	in	dollars
A	user	can	get	a	list	of	all	accounts,	all	categories,	and	all	transactions;	he	can	also
get	a	filtered	list	of	transactions	depending	on	the	account	or	the	category
A	user	can	create,	update,	and	remove	any	transaction
For	each	tag,	the	user	can	put	as	much	money	as	he	would	use	in	a	defined	interval
(days,	weeks,	months,	or	years)

Creating	a	starting	environment	for	the
project
In	the	previous	chapter,	I	built	a	wireframe	of	each	View	before	the	real	code,	to	have	an
idea	of	what	we	were	going	to	build.

I’ll	do	the	same	here,	but	before	going	directly	to	the	code,	it’s	better	to	prepare	our
workspace.

We	already	created	the	starting	structure	of	the	application.	Cordova	built	many	folders	for
us	with	all	the	starting	code.	The	main	folder	of	the	project	is	www.	You	write	your	code
inside	that	folder,	because	it’s	the	container	of	our	assets.

When	you	are	ready	to	build	the	application	to	test	inside	the	device,	ask	Cordova	to	build
the	application	with	the	command:

cordova	build

This	will	create	an	application	package	for	each	platform	you	added	to	the	project	inside
the	folders	platforms/PLATFORM_NAME/build/.

We	already	decided	which	frameworks	we	are	going	to	use,	so	we	can	start	to	put	each
library	inside	the	www	folder.

Make	a	folder	named	lib	inside	the	www	folder,	then	download	the	following	libraries
inside	it:

jQuery	(1.11.1):	www/lib/jquery/jquery-1.11.1.min.js
KnockoutJS	(3.2.0):	www/lib/knockout/knockout-3.2.0.js
RequireJS	(2.1.15):	www/lib/require/require.js

Then	download	jQuery	Mobile	(1.4.4):	jquery.mobile-1.4.4.zip.

You’ll	get	a	ZIP	file	with	much	more	files	than	we	need;	copy	the	following	files/folders
into	a	new	folder	named	www/lib/jquery-mobile:

jquery.mobile-1.4.4.min.js

jquery.mobile-1.4.4.min.css

images/

Now	we	have	all	the	needed	libraries	to	begin	our	mobile	application.

It’s	really	easier	to	develop	the	application	with	a	well-organized	folder	structure,	so	we
try	to	replicate	the	logic	we	have	seen	in	the	previous	chapter	with	DurandalJS.

Create	the	following	folders:

www/app

www/app/viewmodels

www/app/views

Then	get	the	StartingPackage.zip	file	for	this	chapter	from	the	Packt	Publishing	website

and	decompress	it	inside	the	www	folder.

Remove	the	original	www/css/index.css	file	(because	we	got	all	the	styles	for	the	whole
application	with	the	Starting	Package).

As	the	last	step,	remove	www/js/index.js	and	then	remove	the	folder	www/js.

Building	the	application	with	jQuery
Mobile
From	the	specification,	we	have	four	kinds	of	entities:

Accounts
Categories
Customers
Transactions

We	will	track	all	of	them	inside	a	database,	and	our	interface	will	be	a	simple	CRUD	for
these	entities.

Note
Create,	read,	update,	and	delete	(CRUD)	is	the	basic	operation	you	can	perform	with	an
entity	of	a	persistent	storage	(such	as	the	WebSQL	we	use	with	Cordova).

Speaking	about	CRUD	and	user	interface,	you	should	build	the	interface	to	create	new
items,	to	list	them	all,	to	look	through	the	detail	of	a	single	item,	to	modify	and	save	the
changes,	and	finally,	to	delete	them.

For	this	reason,	this	will	be	the	layout	of	this	application:

We	put	a	few	buttons	in	the	footer	to	give	the	user	a	way	to	navigate	between	entities’
pages.

In	this	layout,	I	excluded	the	customer	view	because	we	will	use	this	application	with	a
mobile	device,	with	a	real	small	resolution,	so	we	cannot	put	too	much	text	in	the
header/footer.

Note

In	this	chapter,	we	will	build	only	the	Account	entity,	and	then	we	will	see	what	you	need
to	add	the	others	entities,	because	the	code	for	each	of	them	is	really	similar,	so	it	should
be	useless	to	put	all	of	them	here.

Realizing	the	global	layout	of	the	application
Before	going	to	the	single	pages	let’s	look	how	to	realize	the	previous	generic	layout.

We	will	use	the	index	page	to	render	the	basic	layout,	and	then	with	the	help	of	RequireJS
we	will	load	a	specific	page	(with	the	header	and	the	page	content)	and	apply	KnockoutJS
to	that	page.

The	main	reason	we	cannot	simply	put	all	the	script	inside	each	page	is	that	we	are	going
to	use	the	Ajax	navigation	system	of	jQuery	Mobile,	so	it	will	load	only	the	content	of	the
page,	skipping	all	the	headers	of	each	new	page	loaded.

This	means	that	we	can	put	the	full	page	inside	index.html,	and	then	we	put	only	the	page
content	inside	the	other	Views.

This	is	the	code	you	should	put	inside	index.html:

<!DOCTYPE	html>

<html>

<head>

		<meta	charset="utf-8"	/>

		<meta	name="format-detection"	content="telephone=no"	/>

		<meta	name="msapplication-tap-highlight"	content="no"	/>

		<meta	name="viewport"	content="user-scalable=no,	initial-scale=1,	

maximum-scale=1,	minimum-scale=1,	width=device-width,	height=device-height,	

target-densitydpi=device-dpi"	/>

		<link	href="lib/jquery-mobile/jquery.mobile-1.4.4.min.css"

								rel="stylesheet"	type="text/css"	/>

		<link	href="css/styles.css"

								rel="stylesheet"	type="text/css"	/>

		<title>Piggy	Bank</title>

</head>

<body>

		<div	data-role="header"	data-position="fixed"	data-theme="a">

				<h1>Piggy	Bank</h1>

		</div>

		<div	data-role="page"></div>

		<div	data-role="footer"	data-position="fixed"	data-theme="a">

				<div	data-role="navbar">

						

								<a	data-prefetch="true"	data-transition="flip"

															href="app/views/accounts.html">Accounts

								<a	data-prefetch="true"	data-transition="flip"

											href="app/views/categories.html">Categories

								<a	data-prefetch="true"	data-transition="flip"

						href="app/views/transactions.html">Transactions

						

				</div>

		</div>

		<script	src="lib/require/require.js"	

										data-main="app/main.js"></script>

</body>

</html>

As	you	can	see,	it	is	really	similar	to	the	standard	“basic	single	page	template”	from	the
documentation	(http://demos.jquerymobile.com/1.4.4/pages/),	with	the	prefetching	of	the
pages.

We	load	the	style	sheet	of	jQuery	Mobile	and	our	additional	style	sheet	styles.css.

We	put	a	fixed	header	and	a	fixed	footer,	with	three	links	to	the	list	page	for	each	entity.

Then	we	tell	RequireJS	to	load	main.js,.	which	is	in	app.

We	removed	the	script	to	load	cordova.js,	because	we	will	load	it	with	RequireJS	too.

Now	we	create	the	main	application	file	main.js	under	app	with	this	code	(a	bit	long,	so
I’ve	split	it	with	comments):

requirejs.config({

		baseUrl:	"app/",

		paths:	{

				"cordova":	"../cordova",

				"jquery":	"../lib/jquery/jquery-1.11.1.min",

		"jquery-mobile":	"../lib/jquery-mobile/jquery.mobile-1.4.4.min",

				"knockout":	"../lib/knockout/knockout-3.2.0"

		}

});

define(function	(require)	{

		var	$	=	require("jquery"),

						ko	=	require("knockout");

This	is	the	standard	starting	code	for	any	main	module	with	RequireJS.

Tip
The	application	inside	the	device	will	execute	from	the	/,	so	everything	will	work	if	you
put	/app	as	baseUrl.

When	you	develop	with	the	browser	plugin	you	should	change	the	baseUrl	to	the	folder
of	the	computer	you	are	using	for	the	development.

For	Windows	users,	if	your	code	is	inside	c:\KO\Ch4	you	should	use:

baseUrl:	"/KO/Ch4/platforms/browser/www/app/"

For	Linux/Mac	users,	if	your	code	is	inside	/opt/ch4	you	should	use:

baseUrl:	"/opt/ch4/platforms/browser/www/app/"

You	can	fix	the	problem	in	another	way;	use	the	following	code	for	the	requirejs.config
function:

requirejs.config({

		baseUrl:	"app/",

		paths:	{

				"cordova":	"../cordova",

				"jquery":	"../lib/jquery/jquery-1.11.1.min",

				"jquery-mobile":	

				"../lib/jquery-mobile/jquery.mobile-1.4.4.min",

http://demos.jquerymobile.com/1.4.4/pages/

				"knockout":	"../lib/knockout/knockout-3.2.0",

				"services":	"../../services",

				"binding-handlers":	"../../binding-handlers"

		}

});

In	this	way,	we	keep	app/	as	the	baseUrl,	and	RequireJS	can	find	the	services	and	the
binding-handlers	using	the	right	path.

		var	dd	=	$.Deferred(),	jqmd	=	$.Deferred();

		$(document).bind("mobileinit",	jqmd.resolve);

		document.addEventListener("deviceready",	dd.resolve,	false);

		$.when(dd,	jqmd).done(function()	{

We	want	to	be	sure	that	jQuery	Mobile	and	Cordova	have	loaded	before	we	redirect	to	the
first	page	because	inside	that	page	we	will	use	Cordova	plugins	and	functionalities	of
jQuery	Mobile.

We	wait	for	jQuery	Mobile	initialization	using	a	deferred	object
($(document).bind("mobileinit",	jqmd.resolve);)	,	and	another	deferred	object	for
Cordova	loading	(document.addEventListener("deviceready",	dd.resolve,
false););	the	resolution	of	both	deferred	will	trigger	the	following	application
initialization	code:

				var	pc	=	$.mobile.pageContainer;

				pc.on("pagecontainerload",	function	(event,	ui)	{

						var	url	=	ui.dataUrl.replace("views",	"viewmodels")

																										.replace(".html",	".js");

						require([url],	function	(vm)	{

								ko.applyBindings(new	vm(),	ui.page.get(0));

						});

				});

				var	startingUrl	=	"accounts";

				pc.pagecontainer("change",	

																					"app/views/"	+	startingUrl	+	".html",

																					{transition:	"none"});

				$("[data-role='navbar']").navbar();

				$("[data-role='header'],	[data-role='footer']").toolbar();

		});

Here	we	perform	three	actions:

1.	 Register	a	callback	on	page	change	events.
2.	 Navigate	from	the	current	page	(index)	to	the	first	view	(Account	List)	we	want	to

show.
3.	 Enhance	the	components	(header,	footer)	we	have	inside	the	index	page.

Any	time	the	page	changes,	we	get	the	new	URL;	take	the	View	Model	related	to	the
current	View	(we	use	the	same	convention	we	have	seen	with	DurandalJS)	and	apply	it	to
the	new	View:

				require(["cordova",	"jquery-mobile"]);

});

Then	we	use	RequireJS	to	load	both	Cordova	and	jQuery	Mobile	asynchronously.

Now	if	we	run	the	application	we	should	have	this:

This	is	the	ugly	page	we	get	before	jQuery	Mobile	applies	any	modification;	then	we	get
this:

Here	we	get	the	starting	page,	with	an	Error	loading	page	error,	because	it	cannot	find
www/app/views/account.html

Finally,	after	a	few	seconds,	the	error	message	disappears:

Let’s	fix	this	problem	by	creating	the	Account	Module.

Making	the	list	view	with	all	the	Accounts
Let’s	look	at	what	the	Account	List	page	should	look	like:

In	this	View,	we	overwrite	the	header	with	a	personalized	one,	keep	the	common	footer,
and	show	a	block	for	each	kind	of	account	type.

We	start	with	a	simplified	View;	put	this	markup	into	www/app/views/accounts.html:

<div	data-role="page">

		<div	data-role="header"	data-position="fixed">

				<h1>Accounts</h1>

				<button	class="ui-btn	ui-btn-right	ui-btn-inline	ui-mini	

																			ui-corner-all	ui-btn-icon-left	ui-icon-plus">

						Add

				</button>

		</div>

The	View	is	built	around	a	div	page,	with	a	first	block	for	the	header	(fixed	in	top).

Here	we	have	the	title	of	the	page	(inside	the	h1	tag)	and	a	button	on	the	right	to	add
accounts:

		<div	role="main"	class="ui-content">

				<ul	data-role="listview"	data-split-icon="gear"	

								data-inset="true"	data-divider-theme="a">

						<li	data-role="list-divider">

						<a>Edit

				

		</div>

</div>

Then	we	have	all	the	content	inside	the	main	block.

Here	we	put	a	listview	for	each	account	group,	with	a	first	line	with	the	title	of	the	group
and	a	row	for	each	account,	with	a	link	for	the	show	functionality	and	an	icon	for	the	edit
functionality.

Now	you	can	launch	the	application	again	and	you	should	get	a	working	page	(but	with
errors):

Tip
If	you	get	a	broken	page,	it’s	because	you	probably	have	a	problem	with	the	baseUrl;
recheck	what	I	suggested	before,	and	fix	it.

Now	we	write	the	code	of	the	tests	(using	a	Test-First	Programming	process)	and	then
we	write	the	View	Model;	finally	we	add	the	binding	inside	the	View.

Note

Here,	we	are	not	using	Test-Driven	Development,	just	Test-First	Programming.

Both	terms	refer	to	a	programming	process	where	you	start	writing	the	tests	before	the
production	code;	if	you	are	interested	in	TDD	you	can	find	many	great	books	about	the
argument.

TFP	is	named	in	this	way	because	we	are	going	to	write	the	specification	of	our	View
Model	before	the	View	Model	itself;	it	is	different	from	TDD	because	here	we	will	write
all	the	tests	before	any	View	Model	code,	to	use	them	as	specification	of	the	product	we
are	building.

If	you	look	at	the	View,	you	can	find	all	these	features:

Get	All:	This	feature	loads	the	list	of	all	the	accounts,	showing	a	message	to	the	user
Add:	This	feature	navigates	to	the	Account	Detail	page
Edit:	This	feature	navigates	to	the	Account	Detail	page	for	the	selected	item
Show:	This	feature	navigates	to	the	Transaction	List	page

It	should	be	a	really	bad	design	decision	to	put	the	code	for	the	data	loading	inside	a	View
Model,	so	we	will	use	a	AccountDAO	module	to	manage	the	request	to	the	data,	and	a
helper	module	for	the	navigation	code.

We	received	these	with	the	Starting	Package	(inside	www/app/services):

AccountDAO.js:	This	exposes	the	functions	to	get,	add,	update,	and	delete	any
account
Helper.js:	This	exposes	the	navigateTo	function,	a	getField	function	to	check
whether	a	parameter	is	inside	the	query	string,	and	also	the	showMessage	and
hideMessage	helper	functions

Putting	the	tests	inside	the	bundle
For	this	chapter,	we	are	going	to	use	the	development	framework	named	Jasmine	for
testing	(http://jasmine.github.io/2.0/introduction.html).

Note
There	are	many	different	frameworks	you	can	use	for	testing,	and	you	should	try	them	all
to	find	the	best	suited	to	your	needs.

A	(not	exhaustive)	list	contains:	QUnit,	JSTestDriver,	Jasmine,	and	Mocha.

Download	the	standalone	bundle	for	Jasmine	(Version	2.1.3	at	the	moment)	from	the
website,	and	you’ll	get	jasmine-standalone-2.1.3.zip.

Create	the	folder	test	under	www	and	decompress	the	ZIP	file	inside	this	folder.

We	can	safely	remove	all	the	content	of	spec	and	the	whole	src	folder.

Then	we	have	to	update	SpecRunner.html	at	www/test	to	use	RequireJS;	replace	the
source	files	and	the	spec	inclusion	tags	in	this	way:

		<script	src="lib/jasmine-2.1.3/boot.js"></script>

http://jasmine.github.io/2.0/introduction.html

		<script	src="../lib/require/require.js"></script>

		<script>

				requirejs.config({

						baseUrl:	"../app/",

						paths:	{

								"jquery":	"../lib/jquery/jquery-1.11.1.min",

								"jquery-mobile":

																			"../lib/jquery-mobile/jquery.mobile-1.4.4.min",

								"knockout":	"../lib/knockout/knockout-3.2.0"

				}

				});		</script>

		<!--	include	source	files	here…	-->

		<!--	include	spec	files	here…	-->

		<script	src="spec/accounts.spec.js"></script>

</head>

When	you	work	with	Jasmine	in	this	basic	way,	you	put	the	specification	inside	the	spec
folder	and	update	the	SpecRunner.html	adding	all	the	specifications	you	want	to	test.

Tip
You	can	see	this	way	to	work	is	not	the	best	one,	because	you	have	to	open	a	web	page	to
look	at	the	results	of	the	tests;	in	a	real-world	scenario	you	should	use	a	test-runner
watching	the	tests/productions	folder,	to	check	continuously	the	state	of	the	system.

A	really	good	system	(I	used	it	in	many	working	places)	is	the	usage	of	Grunt
(http://gruntjs.com);	it	has	many	plugins	to	watch	test	folders,	execute	tests,	and	so	on.

Now	we	can	write	the	specifications	in	www/test/spec/accounts.spec.js:

describe("Accounts",	function()	{

		var	$,	viewModel,	dao,	helper;

		it("should	load	the	AMD	module",	function(done)	{

				require(["jquery",	"viewmodels/accounts",

													"services/accountDAO",	"services/helper"],	

						function	(_$,	_viewModel,	_dao,	_helper)	{

								$	=	_$;

								viewModel	=	_viewModel;

								dao	=	_dao;

								helper	=	_helper;

								expect(viewModel).toBeDefined();

								done();

						});

		});

});

Here	we	are	loading	the	required	modules	with	the	help	of	asynchronous	test	execution.

Our	first	test	tries	to	load	jQuery,	and	also	the	three	modules	we	are	going	to	use	here;	the
main	module	is	viewModel.

http://gruntjs.com

Tip
Testing	with	RequireJS	can	be	tricky	because	you	have	to	be	sure	you	mock	up	all	the
unneeded	dependencies	before	you	use	the	module	itself.

One	of	the	best	qualities	of	MVVM	is	the	testability,	so	I	suggest	you	learn	how	to
develop	a	good	test,	what	is	TDD	and	BDD,	and	all	other	information	about	tests.

Here	we	load	the	accountDAO	module	and	the	helper	module	to	mock	them	for	our	tests.

Any	time	you	require	a	module,	RequireJS	caches	the	result;	for	this	reason,	each	time	you
load	the	AccountDAO	module	you	get	an	instance	of	the	AccountDAO	class	(using	the
Singleton	Design	Pattern).

We	are	loading	it	here	to	be	sure	we	mock	the	single	instance;	we	will	mock	it	later.

The	last	step	we	perform	is	to	check	whether	viewModel	is	different	than	null,	because	we
are	going	to	instantiate	it	in	the	next	tests.

If	we	were	developing	with	TDD,	we	should	now	create	the	starting	module	for
www/app/viewmodels/accounts.js	with	this	code	to	make	this	first	test	work:

define(function(require)	{

				return	{};

});

Now	we	add	more	tests,	just	after	the	first	function	it:

		describe("List",	function()	{

				beforeEach(function()	{

						spyOn(dao,	"getAll").and.callFake(function()	{

								return	$.when([]);

						});

						spyOn(helper,	"navigateTo").and.callFake(function(url)	{

								this.url	=	url;

						}.bind(this));

						this.vm	=	new	viewModel();

				});

Before	each	real	test,	we	ensure	we	have	a	new	instance	of	the	View	Model	we	are	testing
and	we	mock	the	loading	of	the	data	from	AccountDAO	and	the	navigation.

Now	we	can	start	with	all	the	test	functions:

				it("should	populate	property	'items'",	function()	{

						var	items	=	this.vm.items();

						for	(var	i	=	0;	i	<	items.length;	i++)

								expect(items[i].data().length).toEqual(0);

				});

The	first	test	is	to	be	sure	we	have	an	array	property	named	items,	with	an	element	for
each	kind	of	account	(cash,	bank,	and	so	on)	without	any	item	inside:

				it("should	navigate	to	'account'	on	add",	function()	{

						this.vm.add();

						expect(helper.navigateTo).toHaveBeenCalled();

						expect(this.url).toContain("account.html");

						expect(this.url).toContain("action=add");

				});

Here	we	execute	the	add	function,	and	we	expect	that	the	application	will	navigate	to	the
account.html	page	with	a	parameter	for	the	action	to	execute.

The	next	two	tests	are	really	similar	to	the	last	one,	because	when	you	edit	an	item	or	you
visit	one	you	should	be	redirected	to	other	pages:

				it("should	navigate	to	'account'	on	edit",	function()	{

						this.vm.edit({id:	1});

						expect(helper.navigateTo).toHaveBeenCalled();

						expect(this.url).toContain("account.html");

						expect(this.url).toContain("action=edit");

						expect(this.url).toContain("id=1");

				});

				it("should	navigate	to	'transactions'	on	show",	function()	{

						this.vm.show({id:	1});

						expect(helper.navigateTo).toHaveBeenCalled();

						expect(this.url).toContain("transactions.html");

						expect(this.url).toContain("source=account");

						expect(this.url).toContain("id=1");

				});

		});

Now	it’s	time	to	check	our	specification;	inside	a	browser,	open
www/test/SpecRunner.html:

Now	we	can	write	the	production	code	to	fulfill	all	the	tests,	so	edit	the	accounts.js	file
under	www/app/viewmodels/	into	this:

define(function	(require)	{

		var	ko	=	require("knockout"),

						helper	=	require("services/helper"),

						dao	=	require("services/accountDAO");

		function	Accounts()	{

				this.items	=	ko.observableArray([

						{	type:	"cash",	data:	ko.observableArray([]),	

								title:	"Cash"},

						{	type:	"bank",	data:	ko.observableArray([]),	

								title:	"Bank	account"},

						{	type:	"ccard",	data:	ko.observableArray([]),	

								title:	"Credit	Card"}

]);

				this.loadAll();

		}

We	are	adding	an	observable	array	name	items	to	this	View	Model,	to	keep	all	the	account
types.

For	each	account	type,	we	want	to	know	the	title	to	show	in	the	View,	the	type	to	load
the	Accounts	into	the	right	array,	and	the	list	of	items.

Then	we	load	all	the	Accounts	(loadAll):

		Accounts.prototype.loadAll	=	function	()	{

				helper.showMessage("Loading	Accounts");

				dao.getAll().done(function	(items)	{

						var	map	=	["cash",	"bank",	"ccard"];

						for	(var	i	=	0;	i	<	items.length;	i++)	{

								var	index	=	map.indexOf(items[i].type);

								this.items()[index].data.push(items[i]);

						}

						helper.hideMessage();

				}.bind(this)).fail(function	()	{

						helper.showMessage("Something	went	wrong…	");

				});

		};

The	loadAll	function	uses	the	DAO	function	to	get	all	the	Accounts,	and	then	it	puts	each
loaded	Account	DAO	into	the	data	arrays.

Here	we	used	the	promises	because	the	loading	from	the	DAO	is	asynchronous	(and	is
using	promises	internally);	we	also	need	to	use	the	.bind(this)	because	inside	the
promise	function	we	change	the	context	(so	this	is	not	referring	to	the	Account	anymore):

		Accounts.prototype.add	=	function	()	{

				helper.navigateTo("account.html?action=add");

		};

		Accounts.prototype.edit	=	function	(account)	{

				helper.navigateTo("account.html?action=edit"	+

																																		"&id="	+	account.id);

		};

		Accounts.prototype.show	=	function	(account)	{

				helper.navigateTo("transactions.html?source=account"	+

																																							"&id="	+	account.id);

		};

		return	Accounts;

});

These	three	functions	simply	navigate	to	the	right	page	with	additional	parameters.	If	you
look	again,	the	tests	we	wrote	previously	use	the	right	parameters.	You	can	launch	the
SpecRunner.html	test	(under	www/test)	again	and	you’ll	get	all	tests	passing:

Now	that	we	have	written	the	View	Model	and	the	tests,	we	can	update	the	View	with	data
binding;	change	accounts.html	(under	www/app/views)	in	this	way	(here	I	have	skipped
all	the	attributes	except	data-bind;	do	not	remove	them!):

<div>

		<div>

				<h1>Accounts</h1>

				<button	data-bind="click:	add">Add</button>

		</div>

		<div	data-bind="foreach:	items">

				<!--	ko	if:	data().length	-->

				

						<li	data-bind="text:	title">

						<!--	ko	foreach:	data	-->

							

								<a	data-bind="click:	$root.show.bind($root,	$data),

																						text:	name">

								<a	data-bind="click:	$root.edit.bind($root,	$data)">

										Edit	

								

						

						<!--	/ko	-->

				

				<!--	/ko	-->

		</div>

</div>

Let’s	review	all	the	changes.

Here	we	use	a	listview	for	each	account	group	(foreach:	items),	but	do	not	leave	it
empty	(if:	data().length),	with	the	first	line	as	the	title	of	the	group	(text:	title)	and
a	row	for	each	account	(foreach:	data)	with	a	link	for	the	show	functionality	and	an	icon
for	the	edit	functionality.

Now	you	can	launch	the	application	again	and	you	should	get	a	working	page:

Adding	the	Detail	page	view
The	Account	List	page	was	really	easy	to	build,	because	it	doesn’t	have	much	logic	inside.

Here	in	the	Account	Detail	page	we	will	manage	a	single	account,	so	we	have	to	show	all
the	information	for	a	single	account,	and	create/update	one	item.

Here,	there	is	the	wireframe	of	the	Account	Detail	page:

The	Account	Detail	page	is	shared	between	the	functionalities	add	and	edit.

Here,	there	are	the	differences	inside	the	Views	for	the	two	functionalities:

Page	type Add	Detail	page Edit	Detail	page

Title New	account Update	account

Button	in	the	header Create Save

Fields Empty Filled	with	data

Button	remove No After	the	fields

For	the	realization	of	this	module	we	will	follow	a	code-first	approach,	to	show	you	both
the	ways	you	can	test	web	applications.

We	start	with	the	View,	because	it’s	really	simple;	put	this	markup	inside	the
account.html	file	under	www/app/views:

<div	data-role="page">

		<div	data-role="header"	data-position="fixed">

				<a	href="#"	data-rel="back"

							class="ui-btn	ui-btn-left	ui-alt-icon	ui-nodisc-icon	

							ui-corner-all	ui-btn-icon-notext	ui-icon-carat-l">Back

				<!--	ko	if:	isNew	-->

						<h1>New	account</h1>

						<button	class="ui-btn-right	ui-btn	ui-btn-inline	ui-mini	

																					ui-corner-all	ui-btn-icon-left	ui-icon-check"

														data-bind="click:	create,	enable:	canCreate">

								Create

						</button>

				<!--	/ko	-->

				<!--	ko	ifnot:	isNew	-->

						<h1>Update	account</h1>

						<button	class="ui-btn-right	ui-btn	ui-btn-inline	ui-mini	

																					ui-corner-all	ui-btn-icon-left	ui-icon-check"

														data-bind="click:	save,	enable:	canSave">

								Save

						</button>

				<!--	/ko	-->

		</div>

Actually	we	are	showing	a	different	header	depending	on	the	functionality:	add	or	edit.

Tip
Here	we	used	the	<!--	ko	if:	isNew	-->	notation;	this	kind	of	notation	is	useful	when
you	can’t	use	a	container;	you	can	find	more	information	looking	at	the	documentation	for
Supporting	virtual	elements	at:	http://knockoutjs.com/documentation/custom-bindings-for-
virtual-elements.html

The	problem	with	this	code	is	the	duplication	of	almost	all	the	blocks;	here,	there	is
another	implementation	of	this	part:

		<div	data-role="header"	data-position="fixed">

				Back

				<h1>

						<!--	ko	if:	isNew	-->New<!--	/ko	-->

						<!--	ko	ifnot:	isNew	-->Update<!--	/ko	-->

						account

				</h1>

				<button	class="…"	data-bind="click:	act,	enable:	canAct">

						<!--	ko	if:	isNew	-->Create<!--	/ko	-->

						<!--	ko	ifnot:	isNew	-->Save<!--	/ko	-->

				</button>

		</div>

As	you	can	see	here,	we	have	less	tag	to	manage,	and	the	code	is	not	harder	than	before	to
read.

This	time	the	best	implementation	is	the	second	one;	we	avoid	duplicating	tags,	because
all	the	options	(isNew,	!isNew)	contain	the	same	tag	with	different	text.

You	should	go	with	the	first	implementation	when	you	have	different	markup	for	different
cases;	so,	for	example	this	is	bad	practice:

		<div	data-role="header"	data-position="fixed">

				Back

				<h1>

						<!--	ko	if:	isNew	-->New<!--	/ko	-->

http://knockoutjs.com/documentation/custom-bindings-for-virtual-elements.html

						account

				</h1>

				<button	class="…"	data-bind="click:	act,	enable:	canAct">

						<!--	ko	ifnot:	isNew	-->Save<!--	/ko	-->

				</button>

		</div>

It’s	bad	practice	because	here	you	need	to	look	at	all	the	markup	to	understand	which	tag
will	be	shown	depending	on	the	state	of	the	property	isNew.

Now	we	can	continue	with	our	View:

		<div	role="main"	class="ui-content">

				<label	for="account-type"	class="select">Type</label>

				<select	data-bind="options:	typesOfAccount,	

																							value:	type"	id="account-type"></select>

				<label	for="account-name">Name</label>

				<input	type="text"	id="account-name"	data-bind="value:	name">

				<!--	ko	ifnot:	isNew	-->

				<button	class="ui-shadow	ui-btn	ui-corner-all"	

												data-bind="click:	remove">Remove</button>

				<!--	/ko	-->

		</div>

</div>

The	main	content	shows	a	select	list	with	all	the	possible	types	of	Account	(options:
typesOfAccount),	and	a	field	for	the	account	name	(value:	name).

Then,	only	if	we	are	editing	an	existing	item,	we	show	the	button	to	remove	the	item.

The	View	Model	for	this	View	should	expose:	isNew,	act,	canAct,	typesOfAccount,	type,
name,	and	remove.

As	you	can	see,	it’s	a	really	simple	View	Model;	let’s	put	the	following	code	into
www/app/viewmodels/account.js:

define(function	(require)	{

		var	ko	=	require("knockout"),

						helper	=	require("services/helper"),

						dao	=	require("services/accountDAO");

		function	Account()	{

				this.id	=	ko.observable();

				this.name	=	ko.observable();

				this.type	=	ko.observable();

				this.isNew	=	(helper.getField("action")	===	"add");

				this.canAct	=	ko.computed(function	()	{

						return	(this.name()	&&	this.type())	&&	true	||	false;

				},	this);

				if	(!this.isNew)	{

						this.load(helper.getField("id"));

				}

		}

After	the	modules	have	loaded,	we	define	the	View	Model.

We	expose	the	properties	(id,	name,	and	type)	we	want	to	show	inside	the	fields	and	track
whether	we	are	adding	a	new	item	or	editing	an	existing	one	(isNew);	we	use	the
mandatory	properties	to	enable/disable	the	following	action	(canAct);	and	finally,	if	we
are	editing	an	existing	item	(!isNew),	we	ask	the	DAO	to	give	us	the	item	(load):

		Account.prototype.load	=	function	(id)	{

				helper.showMessage("Loading	Account");

				dao.getById(id).done(function	(account)	{

						this.id(account[0].id);

						this.name(account[0].name);

						this.type(account[0].type);

						helper.hideMessage();

				}.bind(this)).fail(function	(err)	{

						helper.showMessage("Something	went	wrong…	"	+	err);

				});

		};

The	logic	behind	the	loading	is	really	simple,	we	ask	the	DAO	to	give	us	the	item,	and	we
use	a	promise	to	manage	what	happens	later:

		Account.prototype.act	=	function()	{

				if	(this.isNew)	{

						this.create();

				}	else	{

						this.save();

				}

		};

We	updated	the	View	to	use	the	act	function,	so	we	have	to	redirect	the	execution	to	the
right	handler:

		Account.prototype.create	=	function	()	{

				dao.create(this.name(),	this.type()).done(function	()	{

						helper.showMessage("Account	created");

						helper.navigateTo("accounts.html");

				}).fail(function	(err)	{

						helper.showMessage("Something	went	wrong…	"	+	err);

				});

		};

		Account.prototype.save	=	function	()	{

				dao.updateById(this.name(),	this.type(),	this.id()

).done(function	()	{

						helper.showMessage("Account	updated");

						helper.navigateTo("accounts.html");

				}).fail(function	(err)	{

						helper.showMessage("Something	went	wrong…	"	+	err);

				});

		};

The	logic	behind	the	creation	and	the	saving	is	almost	the	same:	we	ask	the	DAO	to
perform	the	action,	and	then	we	show	a	message	to	the	user	and	go	back	to	the	Accounts
List	page.

The	last	action	we	have	is	the	removal	of	an	existing	item:

		Account.prototype.remove	=	function	()	{

				//You	should	open	a	modal	to	ask	to	the	user	confirmation

				dao.removeById(this.id()).done(function	()	{

						helper.showMessage("Account	removed");

						helper.navigateTo("accounts.html");

				}).fail(function	(err)	{

						helper.showMessage("Something	went	wrong…	"	+	err);

				});

		};

		Account.prototype.typesOfAccount	=	["cash","bank","ccard"];

		return	Account;

});

We	add	the	typesOfAccount	property	to	the	Account	prototype	because	it’s	a	shared
property.

Before	going	to	the	tests,	you	should	try	the	application,	to	see	whether	everything	is
working	as	expected:

Enhancing	the	application	with	the	unit	tests
Now	it’s	time	to	work	on	the	test	for	this	View	Model.

First	of	all	we	have	to	update	the	SpecRunner.html	file	under	www/test	by	adding	a	row
with	the	new	specification,	just	after	the	previous	one:

		<script	src="spec/account.spec.js"></script>

Then,	create	the	new	spec	account.spec.js	under	www/test/spec,	and	add	the	code	to
test	all	the	features	we	already	wrote:

describe("Account",	function()	{

		var	$,	viewModel,	dao,	helper;

		it("should	load	the	AMD	module",	function(done)	{

				require(["jquery",	"viewmodels/account",

													"services/accountDAO",	"services/helper"],	

						function	(_$,	_viewModel,	_dao,	_helper)	{

								$	=	_$;

								viewModel	=	_viewModel;

								dao	=	_dao;

								helper	=	_helper;

								expect(viewModel).toBeDefined();

								done();

				});

		});

});

Here	is	the	same	logic	we	put	in	the	previous	starting	test,	checking	for	the	dependencies.

Then	we	add	the	following	tests	after	the	previous	function	it:

		describe("Form	Add",	function()	{

				beforeEach(function()	{

						spyOn(helper,	"getField").and.callFake(function(param){

								return	"add";

						});

						spyOn(helper,	"navigateTo").and.callFake(function(url){

								this.url	=	url;

						}.bind(this));

						this.vm	=	new	viewModel();

				});

We	modify	the	behavior	of	the	functions	helper.getField	and	helper.navigateTo
(using	the	spyOn	function	of	Jasmine),	to	ensure	we	pass	the	parameter	add	to	the	page,
and	to	know	which	URL	the	application	is	navigating	to:

				it("should	have	empty	properties	on	load",	function()	{

						expect(this.vm.id()).toBeUndefined();

						expect(this.vm.name()).toBeUndefined();

						expect(this.vm.type()).toBeUndefined();

				});

We	test	the	initial	state	of	the	properties;	they	should	be	undefined:

				it("should	disable	creation	on	load",	function()	{

						expect(this.vm.canAct()).toEqual(false);

				});

				it("should	disable	creation	with	empty	name",	function()	{

						this.vm.type("cash");

						expect(this.vm.canAct()).toEqual(false);

				});

				it("should	enable	creation	otherwise",	function()	{

						this.vm.name("username");

						this.vm.type("cash");

						expect(this.vm.canAct()).toEqual(true);

				});

We	also	check	all	the	conditions	where	the	user	cannot	add	the	item,	and	when	all	the

mandatory	properties	are	filled.

Here,	I’m	writing	the	code	for	the	case	empty	name;	for	the	other	properties	I	leave	the
challenge	to	you	to	also	write	a	test	to	make	sure	those	are	not	empty:

				it("should	go	to	'accounts'	on	creation",	function()	{

						spyOn(dao,	"create").and.callFake(function()	{

								return	$.when(true);

						});

						this.vm.name("username");

						this.vm.type("cash");

						this.vm.create();

						expect(dao.create).toHaveBeenCalled();												

						expect(helper.navigateTo).toHaveBeenCalled();

						expect(this.url).toContain("accounts.html");

				});

		});

The	last	test	checks	what	happens	when	you	put	the	data	and	then	add	the	Account.

We	mock	the	call	to	the	DAO,	and	then	we	check	that	it	calls	the	create	function	and	then
redirects	to	the	Accounts	List	page.

I	leave	to	you,	as	an	exercise,	testing	the	code	for	this	page	when	we	are	in	editing	mode.

Refactoring	and	working	on	the	missing
parts
The	code	for	the	Account	CRUD	is	done	and	working,	right?	Or	maybe	there	is	something
not	working	perfectly,	caused	from	jQuery	Mobile	Widget	enhancement?

Fixing	KnockoutJS	binding	handler	inside	jQuery
Mobile
If	you	create	an	Account	with	the	type	bank,	and	then	you	try	to	edit	it,	you’ll	see	the	cash
type	selected	in	the	select	field.

The	reason	behind	this	bug	is	that	jQuery	Mobile	enhances	the	form	components
modifying	the	DOM	structure,	so	you	have	to	fix	how	the	KnockoutJS	binding	handlers
work	in	a	few	cases	(like	the	value).

In	this	case,	we	have	to	modify	the	binding	handler	value	to	make	it	work	with	select;
let’s	create	www/app/binding-handlers/selectValue.js:

define(function	(require)	{

		var	ko	=	require("knockout"),

						$	=	require("jquery");

		ko.bindingHandlers.selectValue	=	{

				init:	function	(element,	valueAccessor)	{

						var	value	=	valueAccessor(),

										$element	=	$(element);

						ko.bindingHandlers.value.init.apply(this,	arguments);

						value.subscribe(function	()	{

								$element.selectmenu("refresh");

						});

				},

				update:	ko.bindingHandlers.value.update

		};

});

With	this	binding	handler,	we	apply	the	standard	binding	handler	value	for	this	element,
then	we	subscribe	to	value	changes,	and	we	use	the	function	selectmenu.refresh	of
jQuery	Mobile	to	update	the	field	text.

We	have	to	update	the	View	Model	account.js,	adding	this	row	after	the	starting	block	of
require,	in	this	way:

				dao	=	require("services/accountDAO");

		require("binding-handlers/selectValue");

		function	Account()	{

We	also	have	to	update	the	account.html	View	by	changing	the	data-bind	attribute	of
the	select	from	value	to	selectValue;	we	change	this:

				<select	data-bind="options:	typesOfAccount,

																							value:	type"	id="account-type"></select>

In	this	way:

				<select	data-bind="options:	typesOfAccount,

																							selectValue:	type"	

				id="account-type"></select>

If	you	check	the	DOM	enhanced	from	jQuery	Mobile,	you	can	see	we	have	a	span	with
the	selected	text	drawn	over	the	select	field;	we	have	to	use	the	previous	custom	binding
handler	to	update	the	text	when	we	change	the	value	of	the	bound	property.

You	can	find	similar	problems	with	other	code,	such	as	the	enable	binding	handler	with
the	tag	a.

Tip
When	you	use	enhanced	Widget	with	jQuery	Mobile	you	should	check	whether	everything
is	working	properly.

For	each	kind	of	widget	you	use	with	a	binding	handler,	you	should	check	whether	the
DOM	structure	is	different	from	what	you	expect,	and	use	this	as	a	hint	to	know	where
you	should	perform	more	fruition	test.

Adding	the	contact	plugin
Before	going	on,	you	should	complete	the	missing	Views	or	View	Models:

Transaction
Transactions
Category
Categories

You	can	find	the	code	for	all	of	them	inside	the	additional_code	folder	under
www/app/views	and	additional_code	under	www/app/viewmodels;	move	them	into	the
parent	folder.

As	the	next	step,	you	should	add	the	Contacts	plugin	to	your	project;	go	to	the	PiggyBank
folder	inside	a	shell	and	execute	the	following	command:

cordova	plugin	add	org.apache.cordova.contacts

Now	we	can	use	the	plugin	from	our	application.

Note
If	you	try	to	access	the	contact	list	inside	the	browser	you	will	get	the	error	Missing
command	error,	so,	sorry	but	you	cannot	test	this	feature	using	the	Browser	plugin.

We	add	a	button	inside	the	transaction.html	View,	just	after	the	text	field	for	the
customer,	with	this	code:

								<button	type="button"	data-bind="click:	getContact">

												Get	Contact	from	Device</button>

Then	we	add	the	function	inside	the	transaction.js	View	Model;	add	the	following
code	inside	the	module:

				Transaction.prototype.getContact	=	function()	{

								navigator.contacts.pickContact(function(contact){

												this.customer(contact.displayName	||	

																										contact.name.formatted	||	

								(contact.name.givenName	+	"	"	+	contact.name.familyName));

								}.bind(this),	function(err)	{

												helper.showMessage(

																'Cannot	select	a	contact:	'	+	err,	2000);

								});

				};

If	the	Contact	Picker	gives	us	a	contact,	you	take	the	information	about	the	name;	iOS
doesn’t	support	the	displayName	well;	for	this	reason,	we	added	the	two	other	ways	to	get
the	name.

Now	you	should	try	this	feature	with	a	mobile	device,	because	there	is	no	way	to	check
within	your	desktop	browser.

Tip
The	only	way	you	can	test	the	application	is	with	your	mobile	device	after	you	build	the

application.

As	you	can	see,	it’s	really	easy	to	add	features	with	the	help	of	the	plugins.

You	can	find	many	other	plugins	at:
http://docs.phonegap.com/en/3.5.0/cordova_plugins_pluginapis.md.html

http://docs.phonegap.com/en/3.5.0/cordova_plugins_pluginapis.md.html

Publishing	the	application
We	are	not	going	to	see	how	to	publish	the	application,	but	you	can	follow	the	guide	at:
https://build.phonegap.com/

https://build.phonegap.com/

Summary
In	this	chapter,	we	built	a	full	hybrid	mobile	application.

We	used	jQuery	Mobile	for	the	internal	structure,	Cordova	to	get	the	additional	features	of
the	device	(such	as	the	contacts),	and	KnockoutJS	to	bind	them	all.

Most	of	all,	we	have	seen	how	to	test	a	KnockoutJS	application	with	code-first	and	test-
first	techniques.

Now	that	you	know	how	to	apply	tests	to	MVVM	applications,	you	should	do	it	in	each
web	application	you	make.

In	the	next	chapter,	we	will	see	another	SPA	built	with	DurandalJS,	how	to	manage	a
wizard,	and	what	we	should	do	for	the	SEO.

Chapter	5.	Wizard	for	the	Public
Administration
We	already	have	seen	how	to	build	an	SPA	with	DurandalJS,	in	Chapter	3,	SPA	for
Timesheet	Management.

In	this	chapter,	we	are	going	to	build	another	SPA,	but	this	time	the	main	goals	of	the
chapter	will	be	accessibility	and	SEO.

This	is	the	list	of	topics	we	will	cover	in	this	chapter:

How	to	realize	a	multipage	wizard	with	the	help	of	DurandalJS
Graceful	degradation,	Progressive	Enhancement,	and	what’s	best	for	an	SPA.
Which	kind	of	accessibility	rules	can	we	follow	if	we	plan	an	SPA?
Best	practice	to	do	a	good	SEO	when	you	have	a	highly	dynamic	web	application.
How	to	realize	a	fully	accessible,	search-engine-optimized,	and	responsive	Single
Page	Application.

We	will	see	all	the	best	practices	re-creating	a	deployed	real-world	application	used	in
Italy	to	simplify	all	the	paperwork	needed	to	relocate.

The	project,	a	real-world	web	application
This	project	will	follow	the	steps	to	create	the	web	application	you	can	find	at:
http://www.caprapido.it/en	(actual	redirection	of	http://www.caprapido.com).

When	you	want	to	relocate,	in	Italy,	you	have	to:

1.	 Fill	a	really	long	paper	module.
2.	 Take	it	to	the	public	office	of	the	new	municipality	you	want	to	relocate	to.
3.	 Wait	for	a	public	officer	to	come	to	your	house	to	check	whether	you	really	live	there.
4.	 And	then,	if	you	don’t	get	any	notification	before	the	45th	day,	it’s	done.

We	cannot	do	anything	for	the	third	and	fourth	step,	but	we	can	help	people	with	the	first
two.

The	web	application	you	can	find	online	contains	three	different	modules:

Relocate:	This	module	helps	people	with	the	paperwork	for	the	public	administration
Manage	addresses:	This	module	is	a	single	point	to	check	who	knows	your	address,
and	to	manage	auto-updating	after	a	change
Company	access:	This	module	is	a	portal	for	the	companies,	to	use	the	service

In	this	chapter,	we	are	going	to	see	how	to	develop	the	web	application	for	the	Relocate
module,	because	it	was	realized	respecting	the	best	practices	for	accessibility	and	SEO
with	KnockoutJS.

Note
The	reason	behind	the	three	modules	I	wrote	before	was:

The	Relocate	module	is	to	acquire	new	users
The	Manage	addresses	module	is	to	keep	them	engaged
The	Company	access	module	is	where	we	get	paid

So,	after	the	user	knows	the	web	application,	he	can	use	it	to	share	and	change	the	address
information	given	to	the	companies;	and	the	company	should	pay	us	for	our	always
updated	information.

For	this	reason,	we	need	to	get	a	really	good	ranking	inside	the	search	engines.

In	fact,	this	module	was	realized	respecting	all	the	following	requirements:

Fully	accessible	(WCAG	2.0)
Easy	to	use
Realized	with	SEO	in	mind,	to	have	a	good	ranking
Fluid	layout	(responsive)

http://www.caprapido.it/en
http://www.caprapido.com

Looking	at	the	big	picture	of	the	project
Let’s	start	checking	how	the	wireframe	of	the	whole	web	application	should	be	when	you
land	on	it:

You	can	see	that	the	Relocation	module	is	built	at	the	center	of	the	page,	after	the	section
with	the	logo	and	the	navigation	links	and	before	the	footer	with	the	links.

To	be	focused	on	the	topics	listed	at	the	beginning,	we	are	not	going	to	build	the	web
application	from	scratch;	it	would	be	really	too	extensive	for	a	single	chapter,	and	we
would	talk	about	out-of-topic	arguments	too	much.

So,	instead	of	downloading	all	the	libraries	(DurandalJS,	KnockoutJS,	RequireJS,	and	so
on)	as	you	have	done	in	Chapter	3,	SPA	for	Timesheet	Management,	let’s	download	the
StartingPackage.zip	file	from	the	Packt	Publishing	website,	unzipping	its	content	into	a
new	folder	for	the	project,	named	CAPrapido.

Reviewing	the	content	we	got	for	free
Inside	the	package,	you	can	find	a	full	starting	SPA	performed	with	DurandalJS.

You	can	easily	check	that	the	shell	module	(CAPrapido/app/views/shell.html)
contains	the	markup	to	render	the	following	wireframe:

If	you	check	the	source	code	of	the	shell	module	you	can	see	it’s	full	of	the	role	and
aria	attributes	and	semantic	tags.

Note
Accessible	Rich	Internet	Applications	(ARIA)	is	a	set	of	accessibility	attributes	used	to
make	HTML	more	accessible;	you	use	them	adding	aria	and	role	attributes	inside	the
markup.

There	is	more	to	discuss	about	accessibility,	but	so	as	to	not	become	boring,	we	now	start
with	the	Relocate	module,	and	we	will	discuss	and	add	all	the	accessibility	code	later.

Analysing	and	developing	the	Relocate
module
With	this	module,	we	want	to	transpose	the	module	for	the	relocation	from	the	paper	form
into	a	digital	web	form.

We	have	already	seen	the	steps	the	user	has	to	follow	to	perform	relocation;	we	will	define
three	steps	to	help	him	with	the	full	workflow:

1.	 Fill	the	form.
2.	 Sign	and	send.
3.	 Wait	45	days	and	then	manage	your	address.

Here	there	is	a	wireframe	of	these	steps:

Realizing	such	a	kind	of	interface	is	really	simple	with	DurandalJS,	with	the	help	of	the
child	router.

Tip
The	router	binding	handler	gives	us	a	way	to	modularize	the	contents	of	the	Views,
separating	them	from	the	layout	of	the	container.

We	can	go	further	with	this	modularization,	with	the	use	of	the	child	router;	inside	a
module,	we	define	the	children	routes	we	want	to	show	and	the	router	plugin	will	activate
all	the	modules	for	the	selected	path.

You	can	find	a	good	example	of	how	the	child	router	works	inside	the	examples	of
DurandalJS,	looking	at	the	ko	route.

Just	remember	that	you	have	to	set	the	baseUrl	inside	the	main.js	file	to	an	absolute	path
to	everything	working	with	the	pushState	enabled.

The	relocate	module	route	points	to	viewmodels/relocate/index;	we	will	put	the	logic
for	the	module	and	the	routing	information	for	the	inner	modules	here.

Let’s	start	updating	the	View	Model	viewmodels/relocate/index.js	putting	this	code:

define(["plugins/router",	"knockout"],	function	(router,	ko)	{

		var	childRouter	=	router.createChildRouter().makeRelative({

						moduleId:	"viewmodels/relocate",

						fromParent:	true

				}).map([

Here	we	create	a	new	child	router,	and	ask	DurandalJS	to	consider	all	the	routes	we	are
going	to	define	to	start	with	viewmodels/relocate.:

				{

						route:	["","fill-the-form"],	moduleId:	"fill-the-form",

						title:	"Insert	your	information",	nav:	true,

						hash:	"relocate/fill-the-form"	

				},	{

						route:	"sign-and-send",	moduleId:	"sign-and-send",

						title:	"Sign	the	module	and	send	it",	nav:	true

				},	{

						route:	"wait-45-days",	moduleId:	"wait-45-days",

						title:	"Check	your	new	address",	nav:	true

				}

We	now	define	the	three	routes;	here	you	cannot	find	any	difference	with	the	routes	from
the	main	router:

]).buildNavigationModel();

		return	{

				router:	childRouter

		}

});

We	expose	the	childRouter	as	router,	as	suggested	in	the	documentation	of	DurandalJS
(http://durandaljs.com/documentation/Using-The-Router.html).

Now	we	use	the	new	childRouter	function	inside	the	View
views/relocate/index.html:

<section	class="container-fluid	relocate">

		<header>

				<h2>CHANGE	ADDRESS	in	a	few	minutes,	with	your	email</h2>

				<ul	class="nav	nav-tabs"	role="tablist"

								data-bind="foreach:	router.navigationModel">

						<li	role="presentation"

										data-bind="css:	{	active:	isActive	}">

								<a	role="tab"	data-toggle="tab"

											data-bind="attr:	{	href:	hash	},	text:	title">

						

				

		</header>

Here,	we	are	using	the	same	code	you	can	find	in	the	header	of	the	page	for	the
navigation,	nothing	special:

		<main	class="page-host"	id="content"	role="main"

								data-bind="router:	{

																					transition:'entrance',

																					cacheViews:true

http://durandaljs.com/documentation/Using-The-Router.html

																			}">

		</main>

</section>

Here,	we	are	using	the	router	binding	again	to	show	the	internal	Views.

As	you	can	see,	here	we	have	code	for	the	classes	of	Bootstrap	(such	as	container-
fluid),	and	roles,	ARIA,	and	semantic	tags	(such	as	header,	main).

I	know	that	they	make	the	markup	harder	to	read,	but	they	are	here	to	help	you	to	see	how
to	make	real	code,	not	oversimplified	one;	I’ll	try	to	keep	it	simple	when	I	can,	but	be
prepared	to	see	many	classes	for	the	styles.

If	you	try	to	load	the	application	(the	best	way	is	using	http-server),	you	should	get	a
page	like	this	one:

As	you	can	see,	we	get	an	error	because	the	fill-the-form	module	doesn’t	exist.

Before	going	to	the	code	of	this	first	module,	let’s	quickly	discuss	which	is	the	best	way	to
realize	this	application.

Graceful	Degradation	versus	Progressive
Enhancement
When	you	start	to	realize	a	web	application	you	have	to	choose	which	direction	you	want
to	follow:

Graceful	Degradation:	Starting	from	the	best	website	you	can	realize,	and	then
applying	all	the	patches	you	need	to	get	an	acceptable	experience	for	the	older
browser
Progressive	Enhancement:	Starting	with	the	simpler	website	you	can	realize	with	all
the	mandatory	paths	covered,	and	then	adding	the	CSS	and	the	JavaScript	as	an
enhancement	for	the	modern	browser

The	main	benefits	of	the	Progressive	Enhancement	is	that	you	can	be	sure	all	users	will	be
able	to	fully	use	your	website,	it’s	easy	to	fulfill	the	accessibility	requirements,	and	the
page	is	best	suited	for	SEO.

So,	why	should	you	realize	a	website	differently	if	you	can	have	all	these	benefits?

Reasoning	against	Progressive	Enhancements
There	are	almost	two	good	reasons	why	you	can	choose	to	avoid	following	the
Progressive	Enhancement	path;	let’s	look	at	them.

First	of	all,	you	can	find	one	thought	on	this	path	from	KnockoutJS’s	main	contributor
(Steven	Sanderson)	at	the	following	URL:

https://groups.google.com/d/msg/knockoutjs/UahPJPzMuUU/kJLaTDuL9EYJ

Here	is	a	brief	quote	of	his	intervention	inside	the	thread:

To	expand	and	clarify	on	Alisson’s	point,	since	KO	is	all	about	MVVM-in-the-browser,	the
scenario	it	targets	always	involves	JavaScript.

In	this	case,	and	particularly	as	your	app	behaviors	get	more	sophisticated,	this	goes	way
beyond	what’s	possible	with	progressive	enhancement.	In	my	experience,	most	people	who
want	to	build	sophisticated	behaviors	quickly	find	that	trying	to	structure	the	code	in	a
progressive	enhancement	style	becomes	counter-productive.

…

I’m	not	against	progressive	enhancement	in	principle;	I	just	find	it	a	very	suboptimal
pattern	if	you’re	requiring	JavaScript	anyway.

Obviously,	we	shouldn’t	blindly	trust	what	he	says,	but	probably	he	knows	what	he	says
about	KnockoutJS	and	Progressive	Enhancement,	being	the	creator	of	KnockoutJS.

The	second	reason	against	that	path	is	relative	to	the	framework	we	are	going	to	use:
DurandalJS.

Applying	KnockoutJS	binding	to	an	already	built	web	application	is	not	so	hard	or
problematic	till	you	apply	focus	to	single	pages,	but	this	time	we	are	going	to	realize	an

https://groups.google.com/d/msg/knockoutjs/UahPJPzMuUU/kJLaTDuL9EYJ

SPA	with	DurandalJS.

As	you	already	saw	in	Chapter	3,	SPA	for	Timesheet	Management,	DurandalJS	uses	an
internal	client	router	to	manage	all	the	routes;	it	means	that	if	you	build	a	full	static	page,
when	you	apply	JavaScript	to	enhance	it,	it	will	drop	all	the	dynamic	parts	to	build	them
again	with	client	data.

For	this	reason,	you	will	build	a	nice	application	for	people	with	JavaScript	disabled,	but	a
really	bad	experience	to	all	the	other	users,	downloading	more	data	than	needed,	and
getting	a	double-rendered	page.

For	those	reasons,	we	are	not	going	to	follow	the	Progressive	Enhancement	path	for	this
project.

Making	the	form	for	the	first	child	route
The	first	route	will	contain	the	form;	the	module	is	really	long,	so	we	will	split	it	into
multiple	sections	(using	an	Accordion	widget).

We	also	try	to	follow	the	guidelines	you	can	find	at:
https://html.spec.whatwg.org/multipage/forms.html#forms

Let’s	begin	with	the	first	section.

Asking	for	personal	information
The	first	section	asks	the	user	for	personal	information;	here	is	the	extract	of	the	module:

As	you	can	see,	the	user	has	to	fill	many	fields.

Note
Let’s	define	a	convention	about	boilerplate	code	for	the	module.

Boilerplate	for	the	module	Person	(inside	the	relocate/fill-the-form	folder)	means:

Create	a	folder	relocate/fill-the-form	inside	both	the	views	and	viewmodels	folders;
then	create	the	View	Model	viewmodels/relocate/fill-the-form/person.js	with	this
content:

define(function(require)	{

		function	PersonViewModel()	{

		};

		return	PersonViewModel;

https://html.spec.whatwg.org/multipage/forms.html#forms

});

Finally	put	a	View	views/relocate/fill-the-form/person.html	with	this	markup:

<section></section>

Create	a	boilerplate	module	for	each	route	we	defined:	fill-the-form,	sign-and-send,
and	wait-45-days	inside	the	relocate	folder.

Then	update	the	View	fill-the-form.html	by	adding:

<form	class="form-horizontal"	role="form">

		<section	id="collapsePerson"	class="not-a-section">

				<header	class="section">

						<h3>SECTION	1	-	I,	THE	UNDERSIGNED</h3>

				</header>

				<!--	ko

											compose:	"viewmodels/relocate/fill-the-form/person"	

				-->	<!--	/ko	-->

		</section>

</form>

Here	we	have	a	section	with	the	header,	and	then	we’ll	show	you	the	Person	module.

Note
This	is	the	real	markup	you	find	in	the	website;	it	uses	the	accordion	widget	to	enhance
the	UX,	but	as	you	can	see,	the	markup	is	dirtier	and	harder	to	understand	than	the
previous	one:

<form	class="form-horizontal"	role="form">

		<section	class="panel-group"	id="mainModule">

				<section	class="panel	panel-default">

						<header	class="panel-heading	row">

								<a	class="panel-title"	data-toggle="collapse"

											data-parent="#mainModule"	

											href="#collapsePerson">

										<h3	class="col-sm-12">

												SECTION	1	-	I,	THE	UNDERSIGNED

										</h3>

								

						</header>

						<section	id="collapsePerson"	

															class="panel-collapse	collapse"

															data-bind='compose:

								"viewmodels/relocate/fill-the-form/person"'>

						</section>

				</section>

		</section>

</form>

Then	we	define	the	Person	module,	which	we	just	used,	to	manage	all	this	data;	so	we
create	the	boilerplate	for	this	module	(inside	a	new	folder	relocate/fill-the-form)	that
we	already	added	to	the	fill-the-form	View.

Now	that	we	show	the	Person	module,	we	should	think	about	it,	and	how	to	render	it	in

the	easiest	and	simple-to-use	way.

To	get	a	better	UX,	we	will	apply	three	ideas	to	this	form:

1.	 We	use	metaphors	from	the	real	world	to	render	the	visual	appearance	of	the	physical
card.

2.	 We	try	to	automate	the	filling	of	fields	if	possible	(such	as	the	Tax	Code).
3.	 We	transform	select-based	fields	into	a	more	visual	one,	with	the	help	of	images.

The	first	component	for	the	Person	we	realize	is	the	Identity	Card;	here	we	put	all	the
fields	for	personal	information.

We	start	creating	the	boilerplate	for	the	new	identity-card	module	(inside	the
relocate/fill-the-form	folder)	and	then	add	it	to	the	Person	View.

Change	person.html	by	adding	this:

<section	class="not-a-section">

		<!--	ko

			compose:	"viewmodels/relocate/fill-the-form/identity-card"	

				-->	<!--	/ko	-->

</section>

The	idea	here	is	that	this	will	be	a	container	for	the	whole	person	form,	so	we	should	add
any	other	additional	module	(such	as	the	marital-status,	or	the	driving-license
module)	here.	So	now	we	start	showing	the	first	new	component:	identity-card.

Now	we	can	build	the	identity-card	module.

Here	there	is	a	wireframe	of	this	component:

To	give	good	accessibility	to	this	module,	we	have	to	use	the	label	tags,	the
autocomplete	attribute,	and	placeholder	in	the	right	way.

Let’s	create	identity-card.html	following	all	these	points:

<section	class="section"	id="identity-section">

		<header	class="row">

				<h4	class="col-sm-12">IDENTITY	CARD</h4>

		</header>

Here	we	have	our	headers	with	an	h4	tag,	because	the	previous	header	was	an	h3:

Note

A	rule	about	accessibility	states	that	the	heading	tag	should	be	used	to	explain	the
information	hierarchy.

		<fieldset>

				<div	class="form-group">

						<label	for="first-name"	class="col-sm-2	control-label">

								First	Name

						</label>

						<div	class="col-sm-4">

								<input	type="text"	class="form-control"	id="first-name"	

															autocomplete="firstname"	placeholder="John"

															data-bind="textInput:	firstName">

						</div>

Inside	a	fieldset,	we	put	all	the	labels	with	the	relative	fields.

As	you	can	see,	for	our	firstname	field,	we	use	a	label	with	the	for	attribute	pointing	to
the	input	field;	for	this	reason,	we	need	to	add	an	id	to	the	field.

Note
Pay	attention	when	you	use	the	id	attribute,	inside	an	SPA;	the	id	attribute	must	be	unique
across	all	the	applications,	so	try	to	avoid	them	if	possible,	or	give	them	the	namespace
name.

For	example,	here	you	should	use	identity-first-name	or	something	similar.

We	also	use	the	autocomplete	attribute,	and	a	placeholder.

Tip
As	I	pointed	out	before,	writing	real	accessible	code	needs	many	more	lines	than	we	have
seen	in	previous	chapters;	try	to	adhere	to	this	kind	of	code	every	time	you	develop	for	the
Internet.

To	keep	the	code	here	clean,	I’ll	skip	all	the	attributes	for	the	accessibility	and	the	visual
aspect;	I’ll	keep	only	the	classes	for	the	column	number	(col-sm-x	as	you	can	see	in	the
Bootstrap	documentation);	you	can	use	this	first	example	to	add	them	by	yourself.

The	next	field	is	really	similar	to	this	first	one:

						<label	class="col-sm-2">Last	Name</label>

						<div	class="col-sm-4">

								<input	type="text"	data-bind="textInput:	lastName">

						</div>

				</div>

The	next	row	will	contain	two	different	kinds	of	fields:	a	dateinput	field	and	a	select
field:

				<div	class="form-group">

						<label	class="col-sm-2">Date	of	birth</label>

						<div	class="col-sm-3">

								<input	type="date"	data-bind="textInput:	birthDate">

						</div>

						<label	class="col-sm-3">Place	of	birth</label>

						<div	class="col-sm-4">

								<select	data-bind="options:	communes,

																											optionsText:	textForCommune,

																											value:	birthPlace,

																				optionsCaption:	'Place	of	birth'"></select>

						</div>

				</div>

Inside	the	View	Model	we	will	load,	with	a	call	to	the	server	API,	the	list	of	communes
(communes).

The	next	field	is	sex;	we	start	adding	it	as	a	normal	select	field,	then	we	will	enhance	to	a
nicer	one	using	icons:

				<div	class="form-group">

						<label	class="col-sm-1">Sex</label>

						<div	class="col-sm-2">

								<select	data-bind="options:	typeOfSex,

																											value:	sex,

																											optionsCaption:'Choose	a	sex'"></select>

						</div>

						<label	class="col-sm-2">Citizenship</label>

						<div	class="col-sm-7">

								<input	type="text"	data-bind="textInput:	citizenship">

						</div>

				</div>

The	sex	select	field	is	really	simple;	we	could	put	the	markup	for	the	values	directly
inside	the	form,	but	in	this	way	we	keep	all	the	select	fields	inside	the	form	uniform.

The	last	field	we’ll	show	you	is	a	computed	one,	dependent	on	each	other	field	here:

				<div	class="form-group">

						<label	class="col-sm-2">Tax	Code</label>

						<div	class="col-sm-10">

								<p	class="form-control-static"	

											data-bind="text:	taxCode"></p>

						</div>

				</div>

		</fieldset>

</section>

Look	how	many	lines;	I	hid	many	classes,	but	nonetheless	the	number	of	lines	is	bigger
than	the	code	for	our	binding	with	KnockoutJS.

I’m	remarking	on	this	point	because	in	the	previous	chapters	every	View	was	full	of
bindings;	it’s	OK	when	you	keep	all	the	code	simple,	but	in	a	real-life	code,	it	is	easier	to
find	code	such	as	this.

Let’s	write	the	View	Model	for	the	latest	view,	identity-card.js:

define(function	(require)	{

		var	ko	=	require("knockout"),

				personHelper	=	require("services/personHelper"),

				communeRepository	=	require("services/communeRepository");

We	require	two	modules,	personHelper	and	communeRepository.

The	first	module	contains	helper	methods	such	as	calculateTaxCode;	the	second	contains
the	findAll	method	to	get	access	to	the	commune	list:

		function	IdentityCardViewModel()	{

				this.firstName	=	ko.observable();

				this.lastName	=	ko.observable();

				this.birthDate	=	ko.observable();

				this.birthPlace	=	ko.observable();

				this.sex	=	ko.observable();

				this.citizenship	=	ko.observable();

				this.taxCode	=	ko.pureComputed(function	()	{

						return	personHelper.calculateTaxCode(

								this.firstName(),	this.lastName(),	this.sex(),	

								this.birthDate()	&&	new	Date(this.birthDate()),

								this.birthPlace());

				},	this);

		}

We	are	simply	defining	all	the	fields	we	used	in	the	View;	we	are	also	defining	the
taxCode	as	a	computable	observable,	depending	on	all	the	other	fields.

Tip
Here	we	use	a	pureComputed	function	instead	of	a	normal	one;	this	kind	of	computed	can
improve	the	performance,	but	we	can	use	this	only	if	the	function	it	decorates	has	no	side
effects,	as	in	this	case.

		IdentityCardViewModel.prototype.typeOfSex	=	["Male",	"Female"];

		IdentityCardViewModel.prototype.communes	=	[];

		communeRepository.findAll().then(function	(data)	{

				IdentityCardViewModel.prototype.communes	=	data;

		});

		IdentityCardViewModel.prototype.textForCommune	=	function(c)	{

				return	c.commune	+	"	("	+	c.province	+	")";

		};

					return	IdentityCardViewModel;

});

Here	we	define	the	class-level	properties,	typeOfSex	and	communes.

At	this	point,	without	applying	all	the	style,	id,	and	classes	that	we	should	apply,	the
application	should	look	like	this:

Fixing	a	hidden	bug
If	you	double-check	this	last	code	you	can	find	a	well-hidden	bug.

There	is	a	race	condition	inside	the	loading	of	the	communes.

Probably	during	the	development	you’ll	never	see	this	problem,	because	the	time	needed
to	load	the	JSON	inside	the	repository	is	relatively	smaller	than	the	time	needed	to	do	the
composition.

But	if	you	try	to	use	this	code	in	a	production	environment,	you’ll	see	this	kind	of
behavior:

The	problem	is	that	we	are	asynchronously	loading	the	list	of	communes	and	are	putting	it
inside	a	property;	here	we	have	a	normal	property,	not	an	observable	array,	so	KnockoutJS

doesn’t	know	that	it	should	update	the	View.

The	simpler	solution	is	the	wrapping	of	the	property	inside	an	observableArray,	such	as
the	following:

IdentityCardViewModel.prototype.communes	=	ko.observableArray([]);

communeRepository.findAll().then(function	(data)	{

		IdentityCardViewModel.prototype.communes(data);

});

While	we	are	fixing	it,	we	can	also	improve	the	behavior	to	give	the	user	a	better
experience:	let’s	show	a	loading	text	during	the	initialization	and	substitute	it	with	the
options	after	the	loading.

Adding	a	new	binding	handler	for	the	asynchronous	loading
This	kind	of	binding	handler	seems	reusable	in	many	contexts:	with	options,	with
foreach,	with	template,	and	so	on.

For	this	reason,	let’s	split	it	into	two	different	binding	handlers:

loading

optionsLoading

Let’s	use	the	folder	named	app/binding-handlers	by	adding	a	new	file	loading.js
inside	it	with	the	following	content:

define(function	(require)	{

		var	ko	=	require("knockout"),

				$	=	require("jquery"),

				composition	=	require("durandal/composition");

		ko.bindingHandlers["loading"]	=	{

We	need	KnockoutJS	and	jQuery,	and	this	time	we	also	get	the	composition	object	we
need	because	this	binding	handler	should	be	executed	after	the	compositionComplete
event:

				init:	function	(element)	{

						var	$element	=	$(element),

										loading	=	$("<div>Loading…	"	+	

													"<i	class='fa	fa-spinner	fa-spin	fa-2x'></i></div>"),

										position	=	$element.position(),

										$parent	=	$element.parent();

						loading.css({

								position:	"absolute",

								left:	position.left+2,	top:	position.top+2,

								width:	$parent.width()-4,	height:	$parent.height()-4,

								"text-align":	"center",	background:	"white"

						});

						$element.after(loading);

				},

We	create	a	new	div	with	the	spinning	icon,	and	put	it	after	the	current	element;	we

modify	the	dimension	of	this	div,	to	cover	the	components	of	the	binding.

We	cannot	use	a	simple	class	here	because	we	need	to	receive	the	position	of	the	bound
item:

				update:	function	(element,	valueAccessor)	{

						var	value	=	ko.utils.peekObservable(valueAccessor()),

								$element	=	$(element);

						if	(value.length	===	0)	{

								ko.utils.unwrapObservable(valueAccessor());

						}	else	{

								$element.next().remove();

						}

				}

		};

Here,	we	will	create	the	logic	for	the	once	update:	we	keep	the	loading	div	over	the
current	element	while	the	observableArray	is	empty.

We	used	two	KnockoutJS	helper	functions:

ko.utils.peekObservable:	This	function	gets	the	value	inside	the	observable
without	notifying	the	observer
ko.utils.unwrapObservable:	This	function	gets	the	value	inside	the	observable	(if
the	property	is	an	observable)	or	the	value	(if	it’s	not	an	observable)

Now	for	the	last	lines	of	the	module:

		composition.addBindingHandler("loading");

});

As	the	last	step,	we	ensure	this	binding	will	be	executed	after	the	attaching	of	the	View.

If	you	double-check	this	solution,	you	can	find	a	flaw	in	a	use	case:	if	we	get	zero
elements	from	the	server	during	the	update	of	the	observableArray,	we	will	never	remove
the	loading	text.

In	our	use	case,	this	is	not	a	problem,	but	if	you	find	it	a	problem	for	you,	you	should	put
an	additional	solution,	maybe	with	a	timer	to	manage	the	timeout.

Now	we	create	the	binding	handler	optionsLoading	(as	binding-
handlers/optionsLoading.js):

define(function	(require)	{

		var	ko	=	require("knockout"),

						$	=	require("jquery"),

						composition	=	require("durandal/composition");

		require("binding-handlers/loading");

		composition.addBindingHandler("optionsLoading",	{

				init:	function	()	{

						ko.bindingHandlers.loading.init.apply(this,	arguments);

						ko.bindingHandlers.options.init.apply(this,	arguments);

				},

We	are	reusing	the	loading	binding	handler	we	built	previously,	and	then	we	execute	the
options	binding	handler:

				update:	function	(element,	valueAccessor)	{

						var	value	=	ko.utils.peekObservable(valueAccessor()),

								$element	=	$(element);

						if	(value.length	===	0)	{

								ko.utils.unwrapObservable(valueAccessor());

						}	else	{

								ko.bindingHandlers.options.update.apply(this,	arguments);

								$element.next().remove();

						}

				}

		});

});

As	you	can	see,	the	logic	is	almost	the	same	of	the	previous	code,	but	here	we	execute	the
options.update	function	to	fill	the	select	with	the	data.

Tip
The	main	reason	I	didn’t	reuse	the	previous	code	here	is	because	I	didn’t	want	to	add
promises	or	callbacks	into	the	loading.update	function.

If	you	want	to	use	it,	consider	that	jQuery	give	us	promises;	just	remember	that	the	update
function	is	executed	more	and	more,	but	is	defined	just	once.

Now	we	can	update	the	View	Model	identity-card.js	adding	this	require	at	the
beginning	of	the	file,	after	the	other	require	calls:

		require("binding-handlers/optionsLoading");

Update	the	View	identity-card.html	also,	replacing	the	bind	options:communes	with
the	new	optionsLoading:communes	one;	let’s	update:

<select	data-bind="options:	communes,

																			optionsText:	textForCommune,

																			value:	birthPlace,

																			optionsCaption:	'Place	of	birth'"></select>

With:

<select	data-bind="optionsLoading:	communes,

																			optionsText:	textForCommune,

																			value:	birthPlace,

																			optionsCaption:	'Place	of	birth'"></select>

Now	the	page	should	look	like	this:

Now	we	can	continue	with	the	enhancement	of	the	field	for	the	selection	of	the	sex.

Enhancing	the	selection	fields
The	selection	field	is	a	good	standard	way	to	show	the	gender	selection;	but	here	we	want
to	give	the	user	a	better	UX,	so	we	change	the	select	field	with	two	images,	visually
describing	the	gender.

To	do	this,	replace	the	following	code	inside	identity-card.html:

						<label	class="col-sm-1>Sex</label>

						<div	class="col-sm-2">

								<select	data-bind="options:	typeOfSex,	value:	sex,

																						optionsCaption:	'Choose	a	sex'"></select>

						</div>

With	this	one:

						<label	class="col-sm-1	control-label">Gender</label>

						<div	class="col-sm-2">

								<!--	ko	foreach:	typeOfSex	-->

								<div	class="enhanced-radio	col-sm-6"	

													data-bind="css:	{	

																		active:	$parent.isActive($data,	$parent.sex)	

																								}">

										<button	type="button"	class="sex	text-center"

																		data-bind="attr:	{	

																															'aria-label':	label,	

																															'data-value':	label

																													},	

											click:	$parent.setActive.bind($data,	$parent.sex)">

												<i	class="fa	fa-2x"	data-bind="css:	icon"></i>

										</button>

								</div>

								<!--	/ko	-->

						</div>

In	this	way,	we	are	going	to	show	two	buttons	with	an	icon	inside;	we	add	the	active
class	for	the	selected	item,	and	an	action	(setActive)	to	update	the	current	selected	item.

Now	we	have	to	update	the	View	Model	to	reflect	the	changes	we	have	made;	update
identity-card.js	adding	these	lines:

		IdentityCardViewModel.prototype.isActive	=	function(vm,	p)	{

				return	p()	===	vm.value;

		};

		IdentityCardViewModel.prototype.setActive	=	function(p,	d)	{

				p(d.value);

		};

With	isActive,	we	check	whether	the	value	of	the	current	item	is	the	same	as	the	value	of
the	given	property;	with	setActive,	we	update	this	value.

Then	replace	the	definition	of	typeOfSex	with	the	following	code:

IdentityCardViewModel.prototype.typeOfSex	=	[

		{	value:	"male",			label:	"Male",			icon:	"fa-male"			},	

		{	value:	"female",	label:	"Female",	icon:	"fa-female"	}

];

The	code	for	the	rest	of	the	form	is	similar	to	what	we	have	seen	till	now,	so	I	leave	it	to
you	to	do	it;	so,	let’s	see	what	we	should	do	to	make	the	code	accessible.

Updating	the	code	to	be	accessible
In	this	section,	we	are	going	to	create	a	widget	to	substitute	the	code	for	the	gender	field.

Before	going	with	the	code,	let’s	see	what	you	should	know	about	accessibility.

A	few	words	about	accessibility
Before	starting	with	the	code,	I	just	wanted	to	point	out	to	you	some	information	about
accessibility.

You	can	find	the	most	important	guidelines	for	accessibility	at	these	URLs:

http://www.w3.org/TR/WCAG20/
http://www.w3.org/WAI/PF/aria-practices/#accessiblewidget

Tip
I	found	the	easiest	way	to	build	an	accessible	web	application	is	by	following	the	hints
found	at	the	Google	I/O	2011	presentation:

Use	clean	HTML	and	use	standard	tags	whenever	possible
Manage	focus
Add	key	handlers
Add	ARIA	for	screen	readers

Remember	also	to	download	and	use	additional	software	(such	as	the	ones	you	can	find	at:
http://www.w3.org/WAI/ER/tools/)	to	check	the	code	you	write	for	the	accessibility.

Tip
These	are	some	tools	I	suggest	you	use:

ChromeShades,	Wave	Toolbar,	and	HTML_CodeSniffer	are	good	tools	to	use	during
the	development	phase
ChromeVox	and	mouse	unplugging	can	be	useful	to	test	how	the	site	appears	to	people
with	disabilities

http://www.w3.org/TR/WCAG20/
http://www.w3.org/WAI/PF/aria-practices/#accessiblewidget
http://www.w3.org/WAI/ER/tools/

Making	the	gender	field	accessible
We	will	start	with	one	of	the	following	examples	from	this	URL:
http://test.cita.illinois.edu/aria/radio/index.php

We	are	going	to	use	the	radio	example	because	the	gender	field	should	be	represented
with	a	select	or	a	radio	role;	we	show	all	the	items	at	once,	so	the	radio	role	is	the
best	solution.

Update	the	identity-card.html	View	removing	the	label	and	the	div	with	the
enhanced-sex	id	and	put	these	rows:

<label	for="gender"	class="col-sm-1	control-label">Gender</label>

<ul	class="col-sm-2"	id="gender"	tabindex="0"	role="radiogroup"

				data-bind="radio-a11y:	sex">

		<!--	ko	foreach:	typeOfSex	-->

		<li	class="enhanced-radio	col-sm-6"	tabindex="-1"	role="radio"

						aria-checked="false"

						data-bind="attr:	{	

																			id:	'gender-'	+	value,	

																			'data-value':	value	

																	}">

				<i	class="fa	fa-2x"	role="presentation"	

							data-bind="css:	icon"></i>

				

		

		<!--	/ko	-->

Here	we	replace	the	container	div	with	an	ul,	and	apply	the	radio-a11y	binding	handler
to	it;	then	we	changed	the	buttons	with	li	tags,	and	we	added	id	and	data-value	to	be
used	inside	the	binding	handler.

We	show	the	icon	all	the	time,	and	we	hide	the	text	(text:	label)	except	for	the	screen
reader	(sr-only,	a	class	from	Bootstrap	to	be	shown	only	using	a	screen	reader).

I	put	the	binding	handler	inside	the	Starting	Package	because	it	is	really	big;	I	updated	it	to
use	jQuery,	so	you	should	be	able	to	read	and	understand	it.

Then	we	have	to	load	the	new	binding	handler	inside	the	identity-card.js	View	Model;
add	this	row	at	the	beginning	of	the	file:

require("binding-handlers/radio-a11y");

We	can	also	remove	both	the	functions	to	manage	the	active	class;	we	will	use	the	binding
handler	to	manage	it;	remove	both	the	functions	from	the	code:

IdentityCardViewModel.prototype.isActive	=	function(vm,	p)	{…};

IdentityCardViewModel.prototype.setActive	=	function(p,	d)	{…};

With	this	binding	handler	we	now	have	a	fully	accessible	ARIA-enabled	radio-group
widget.

http://test.cita.illinois.edu/aria/radio/index.php

Updating	the	loading	binding	handler	for
accessibility
The	loading	binding	handler	we	developed	a	few	paragraphs	ago	is	working	well	but	is
not	accessible.

Luckily,	it’s	easy	to	make	it	accessible,	we	just	need	to	add	the	right	aria	attributes.

We	start	updating	the	loading.js	binding	handler:

1.	 Add	the	role	progressbar	to	the	loading	div:

loading	=	$('<div	aria-label="Ajax	loading	data"	'+

																	'role="progressbar">Loading…	'+

															'<i	class="fa	fa-spinner	fa-spin	fa-2x"'+

																		'aria-hidden="true"></i></div>'),

2.	 After	the	$element.after(loading);	row,	add	the	following	code	with	the	aria
attributes:

$element.attr({

								"aria-busy":	true,

								"aria-live":	"polite",

								"aria-describedby":	$element.get(0).id

						});

3.	 Update	the	aria-busy	attribute	of	the	element	when	we	remove	the	loading	div;
after	the	$element.next().remove();	line,	append	the	following	code:

$element.attr("aria-busy",	false);

4.	 Execute	the	third	step	with	the	optionsLoading	binding	handler	again.

And	we	are	done.

In	this	way,	we	indicate	that	we	are	updating	the	field	when	we	show	the	loading	message
with	aria-busy=true;	then,	after	the	remote	loading	of	the	data,	we	use	it	again	in	aria-
busy=false	to	give	the	screen	reader	the	knowledge	of	the	change.

Here	we	have	seen	two	applications	of	accessibility	to	this	project;	we	should	do	this	for
each	custom	component	we	realize.

Now	that	we	have	seen	how	to	update	the	web	application	to	be	accessible,	we	can	finally
look	at	the	last	topic	of	this	chapter—making	the	web	application	SEO-crawlable.

Working	to	make	the	app	SEO	crawlable
If	you	think	that	making	an	SPA	crawlable	should	be	hard	to	accomplish,	it’s	time	to
change	your	mind.

If	you	look	at	the	documentation	of	DurandalJS	you	can	find	how	to	make	the	application
crawable	(at	least,	from	Google	Search).

For	this	section,	we	are	going	to	follow	the	guide	at:
http://durandaljs.com/documentation/Making-Durandal-Apps-SEO-Crawlable.html.

The	first	step	should	be	the	modification	of	our	page	to	contain	the	fragment	meta	tag.

Add	the	following	code	inside	the	head	tag	of	index.html:

<meta	name="fragment"	content="!">

For	the	second	step,	we	need	to	use	a	server-side	application	to	give	a	different	answer
based	on	query	string	parameters.

The	specifications	tell	you	how	to	give	a	full	snapshot	of	the	page	when	you	get	a	request
with	_escaped_fragment_	inside	the	query	string.

You	can	find	many	solutions	out	there,	but	depending	on	the	website	complexity	you	can
choose	between	two	different	paths:

Pre-render	the	pages	and	save	them	to	the	file	system,	and	serve	them	instead	of	the
normal	page
Pre-render	the	page	on	the	fly	(maybe	caching	them)	when	you	get	the	request	from
the	search	engine	bot

The	first	solution	is	easier	if	you	have	a	fewer	number	of	pages,	or	the	pages	are	not
updated	often;	you	avoid	managing	all	the	infrastructure	you	should	need	to	pre-render	on
the	fly.

For	our	project,	for	example,	we	need	to	get	only	the	main	page	indexed;	it	should	be
overwhelming	to	put	on	a	server	application	with	a	headless	browser	(such	as	a	NodeJS
application	using	PhantomJS)	to	manage	it.

The	second	option	is	the	best	when	you	have	a	very	big	website,	with	many	indexed
pages.

Anyway,	in	both	cases,	we	need	a	web	server	serving	different	response	pages	based	on
the	query	string.

Here	we	are	going	to	see	how	to	do	both	paths	with	NodeJS,	but	the	logic	behind	the
process	is	the	same	independent	of	the	web	server	you	use.

http://durandaljs.com/documentation/Making-Durandal-Apps-SEO-Crawlable.html

Using	a	NodeJS	server	to	return	SEO	pages
For	this	task,	we	need	a	web	server	to	serve	the	pages;	here	we	are	going	to	use	NodeJS;
download	it	from	http://nodejs.org/	and	install	it	globally.

Instead	of	reinventing	the	wheel,	we	will	use	a	package	built	for	this	reason:	Crawlme.

Go	to	the	CAPrapido	folder,	and	then	create	the	server	server.js	that	we	will	use	with
NodeJS:

var	express	=	require('express'),

				http	=	require('http'),

				crawlme	=	require('crawlme');

var	app	=	express()

				.use(crawlme({waitFor:	1000}))

				.use(express.static(__dirname));

http.createServer(app).listen(8080);

With	these	really	simple	rows	we	ask	NodeJS	to	load	the	three	modules	express,	http,
and	crawlme	for	use	and	create	a	server	listening	on	the	port	8080.

Use	means	that	for	each	request	the	logic	from	crawlme	will	inspect	the	URL	for	the	text	?
_escaped_fragment_=:

If	it	finds	that,	it	loads	the	page	with	zombie.js	(a	headless	browser),	then	puts	the
page	into	a	cache,	and	gives	an	answer	to	the	browser
Otherwise,	it	simply	lets	express	continue	with	the	next	middleware
(express.static),	which	will	return	any	resources	found	inside	the	folder	named
parameter	to	the	browser

We	are	almost	ready	to	test	the	web	application.

In	the	CAPrapido	folder,	execute	the	following	commands	inside	the	shell:

npm	install	crawlme	express	--save

node	server.js

Now	you	installed	the	dependencies	to	crawlme	and	express	and	started	your	server	by
executing	the	script	using	node,	so	you	can	try	it.

You	can	see	the	differences	between	the	following	two	URLS:

http://localhost:8080/

http://localhost:8080/?_escaped_fragment_=

As	you	can	see,	there	are	no	differences,	as	we	wanted.

Tip
If	you	double-check	the	behavior,	you	can	find	differences,	such	as	the	Gender	widget;	the
reason	is	that	the	page	for	the	crawler	skipped	all	the	JavaScript,	so	it	doesn’t	work	with
the	keyboard	like	the	normal	one.

http://nodejs.org/

If	you	get	differences	between	the	two	requests,	it	may	depend	on	the	loading	time	of	the
page;	as	you	can	see	at	https://github.com/OptimalBits/Crawlme,	the	function	crawlme
accepts	a	configuration	parameter	named	waitFor,	indicating	how	many	milliseconds	to
wait	before	considering	the	fully	loaded	page.

With	this	simple	code,	you	are	exposing	your	web	application	and	rightly	managing	the
crawling	for	the	SEO.

Let’s	check	how	to	do	the	same	when	you	want	to	pre-render	the	page	by	yourself.

https://github.com/OptimalBits/Crawlme

Caching	the	page	by	yourself
Create	a	new	server	file	server2.js	inside	the	CAPrapido	folder	with	this	code:

var	express	=	require('express'),

				http	=	require('http');

var	preload	=	function(req,	res,	next)	{

				if	('GET'	!==	req.method)	return	next();

				if	(req.url.indexOf('?_escaped_fragment_=')	===	-1)	

						return	next();

				req.url	=	'/SEO'	+	req.url;

				next();

};

var	app	=	express()

				.use(preload)

				.use(express.static(__dirname));

http.createServer(app).listen(8080);

Here	we	are	using	a	custom	function	to	manage	the	requests:	if	we	find	?
_escaped_fragment_=	inside	the	URL,	we	ask	resources	under	the	folder	SEO.

Now	we	can	simply	open	the	page	with	a	browser	by	ourselves	and	save	the	source	of	the
page	as	SEO/index.html.	Then,	we	start	the	server	as	we	have	done	before,	with:

node	server2.js

Simple,	isn’t	it?

Note
You	should	check	the	documentation	at	this	URL	to	better	understand	how	what	we	have
done	works:	https://developers.google.com/webmasters/ajax-crawling/docs/getting-started

Another	good	lecture	you	should	look	at	is	relative	to	a	polyfill	for	pushState,	because	we
are	using	it	inside	our	application,	and	we	lost	the	support	for	all	the	Internet	Explorer	8;	it
is	at:	https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-
Polyfills#html5-history-api-pushstate-replacestate-popstate

https://developers.google.com/webmasters/ajax-crawling/docs/getting-started
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills#html5-history-api-pushstate-replacestate-popstate

Summary
In	this	chapter,	we	built	a	Single	Page	Application	with	DurandalJS	looking	for
accessibility	and	SEO.

We	have	seen	how	to	use	router	and	child	router	to	better	organize	our	modules,	and	a	few
binding	handlers	to	improve	the	user	experience.

We	wrote	standard	markup	that	you	have	to	write	to	create	an	accessible	web	application,
and	applied	accessibility	best	practices	to	realize	a	widget.

Finally,	we	saw	how	to	make	the	application	crawlable	by	using	NodeJS	to	implement	the
server-side	logic	(you	could	also	have	done	this	using	any	other	server-side	programming
language).

Index
A

accessibility
about	/	A	few	words	about	accessibility
URL,	for	guidelines	/	A	few	words	about	accessibility
loading	binding	handler,	updating	for	/	Updating	the	loading	binding	handler	for
accessibility

Accessible	Rich	Internet	Applications	(ARIA)
about	/	Reviewing	the	content	we	got	for	free

AirBnB
URL	/	Analyzing	the	project	–	booking	online

AMD
about	/	AMD	and	RequireJS
define	function	/	AMD	and	RequireJS
require	function	/	AMD	and	RequireJS

Apache	Cordova	Documentation
URL	/	Getting	PhoneGap/Cordova

application
building,	with	jQuery	Mobile	/	Building	the	application	with	jQuery	Mobile
global	layout,	realizing	of	/	Realizing	the	global	layout	of	the	application

app	SEO	crawlable
making	/	Working	to	make	the	app	SEO	crawlable
URL	/	Working	to	make	the	app	SEO	crawlable
NodeJS	server,	used	for	returning	SEO	pages	/	Using	a	NodeJS	server	to	return
SEO	pages
page,	caching	/	Caching	the	page	by	yourself

attr	binding	handler	/	The	bare	bone	code	of	a	KnockoutJS	application
Autocomplete	Widget

URL	/	Binding	handler	for	the	jQuery	Autocomplete	widget

B
BindingContext

about	/	The	magic	of	KnockoutJS	unveiled
$parent	/	The	magic	of	KnockoutJS	unveiled
$parents	/	The	magic	of	KnockoutJS	unveiled
$root	/	The	magic	of	KnockoutJS	unveiled
$rawData	/	The	magic	of	KnockoutJS	unveiled
$data	/	The	magic	of	KnockoutJS	unveiled

binding	handlers
foreach	/	The	bare	bone	code	of	a	KnockoutJS	application
text	/	The	bare	bone	code	of	a	KnockoutJS	application
attr	/	The	bare	bone	code	of	a	KnockoutJS	application
about	/	The	what	and	why	about	binding	handlers
for	jQuery	Autocomplete	Widget	/	Binding	handler	for	the	jQuery	Autocomplete
widget

bindings
applying,	to	node	/	The	magic	of	KnockoutJS	unveiled

Booking.com
URL	/	Analyzing	the	project	–	booking	online

Bootstrap
about	/	Understanding	hybrid	mobile	applications

Bootstrap	(3.1.1)	/	Creating	a	new	project	starting	with	the	HTML	StarterKit
browser	compatibility,	KnockoutJS	/	Browser	compatibility
bundle

tests,	putting	inside	/	Putting	the	tests	inside	the	bundle

C
ChromeShades	/	A	few	words	about	accessibility
ChromeVox	/	A	few	words	about	accessibility
code,	updating	to	be	accessible

about	/	Updating	the	code	to	be	accessible
gender	field	/	Making	the	gender	field	accessible

Company	access	module
about	/	The	project,	a	real-world	web	application

compatibility	problem,	RequireJS
URL	/	Updating	starting	code	to	use	RequireJS

component
about	/	Building	the	structure	of	our	application
KnockoutJS,	registering	with	/	Registering	the	component	with	KnockoutJS
using,	inside	View	/	Using	it	inside	another	View

component	binding	handler
modularizing	with	/	Modularizing	with	the	component	binding	handler
about	/	Component	binding	handler
URL,	for	example	/	Component	binding	handler

components
about	/	Component	binding	handler

contact	form
about	/	Contact	form,	The	contact	form
paying,	from	client-side	code	/	Paying	from	the	client-side	code

contact	plugin
adding	/	Adding	the	contact	plugin

controlsDescendantBindings	/	The	magic	of	KnockoutJS	unveiled
Cordova

about	/	Getting	PhoneGap/Cordova
obtaining	/	Getting	PhoneGap/Cordova

crawlme
URL	/	Using	a	NodeJS	server	to	return	SEO	pages

Create,	read,	update,	and	delete	(CRUD)	/	Building	the	application	with	jQuery
Mobile
Crossroads.js

URL	/	Understanding	hybrid	mobile	applications
custom	bindings

URL	/	The	magic	of	KnockoutJS	unveiled
custom	bindings,	for	virtual	elements

reference	link	/	Adding	the	Detail	page	view
custom	component	loader

URL,	for	example	/	Registering	the	component	with	KnockoutJS
custom	module,	KnockoutJS	with	RequireJS

writing	/	Creating	the	bare	bones	of	a	custom	module

D
dashboard,	for	Employee

creating	/	Making	a	dashboard	for	the	Employee
table	transforming	into	grids,	with	bells	and	whistles	/	Transforming	a	table	into
a	grid	with	bells	and	whistles
forms,	building	for	updating	data	/	Building	a	few	forms	to	update	data

dashboard,	for	Team	Manager
realizing	/	Realizing	a	dashboard	for	the	Team	Manager

data
obtaining,	from	server	/	Getting	data	from	the	server

data	binding
about	/	Data	binding
using	/	Data	binding

DataTables
URL	/	Transforming	a	table	into	a	grid	with	bells	and	whistles

DurandalJS
about	/	What	KnockoutJS	is	and	where	you	can	get	it,	Choosing	the	right	tool
for	the	project
URL	/	Choosing	the	right	tool	for	the	project,	Choosing	between	DurandalJS	or
plain	KnockoutJS

E
Event	Manager	module

about	/	Communicating	with	other	components
function	on	(event	name,	callback)	/	Communicating	with	other	components
function	off	(event	name,	callback)	/	Communicating	with	other	components
function	trigger	(event	name,	parameters)	/	Communicating	with	other
components

Expedia
URL	/	Analyzing	the	project	–	booking	online

F
features,	View

Get	All	/	Making	the	list	view	with	all	the	Accounts
Add	/	Making	the	list	view	with	all	the	Accounts
Edit	/	Making	the	list	view	with	all	the	Accounts
Show	/	Making	the	list	view	with	all	the	Accounts

filters	and	product	detail
about	/	Filters	and	product	details
product	details	/	Product	details
Cart,	managing	/	Managing	a	Cart
Cart,	using	on	home	page	/	Using	the	Cart	on	the	home	page
Cart	page	/	The	Cart	page

Font-Awesome	4.0.3	/	Creating	a	new	project	starting	with	the	HTML	StarterKit
foreach	binding	handler	/	The	bare	bone	code	of	a	KnockoutJS	application
form,	making	for	first	child	route

about	/	Making	the	form	for	the	first	child	route
personal	information,	asking	/	Asking	for	personal	information
hidden	bug,	fixing	/	Fixing	a	hidden	bug
new	binding	handler,	adding	for	asynchronous	loading	/	Adding	a	new	binding
handler	for	the	asynchronous	loading
selection	fields,	enhancing	/	Enhancing	the	selection	fields

frameworks,	for	realizing	hybrid	mobile	applications
Titanium	/	Understanding	hybrid	mobile	applications
PhoneGap/Cordova	/	Understanding	hybrid	mobile	applications

frameworks,	used	with	PhoneGap
Ionic	/	Understanding	hybrid	mobile	applications
Sencha	Touch	/	Understanding	hybrid	mobile	applications
Bootstrap	/	Understanding	hybrid	mobile	applications
jQuery	Mobile	/	Understanding	hybrid	mobile	applications

G
global	layout

realizing,	of	application	/	Realizing	the	global	layout	of	the	application
Graceful	Degradation

versus	Progressive	Enhancement	/	Graceful	Degradation	versus	Progressive
Enhancement

Grunt
URL	/	Putting	the	tests	inside	the	bundle

H
Hotels.com

URL	/	Analyzing	the	project	–	booking	online
HTML	file

creating,	for	template	of	view	/	Creating	the	HTML	file	for	the	template	of	the
View

HTML_CodeSniffer	/	A	few	words	about	accessibility
hybrid	mobile	application

about	/	Understanding	hybrid	mobile	applications
Account	List	page,	adding	/	Making	the	list	view	with	all	the	Accounts
Detail	page	view,	adding	/	Adding	the	Detail	page	view
enhancing,	with	unit	tests	/	Enhancing	the	application	with	the	unit	tests

I
IE6-8

reference	link	/	Using	it	inside	another	View
init	function	/	The	magic	of	KnockoutJS	unveiled
Ionic

about	/	Understanding	hybrid	mobile	applications

J
Jasmine

URL	/	Putting	the	tests	inside	the	bundle
JavaScript	file

creating,	for	View	Model	/	Creating	the	JavaScript	file	for	the	View	Model
jQuery

obtaining	/	Getting	jQuery	because	it	can	be	useful
jQuery	(1.9.1)	/	Creating	a	new	project	starting	with	the	HTML	StarterKit
jQuery	library

URL,	for	downloading	/	Browser	compatibility
jQuery	Mobile

about	/	Understanding	hybrid	mobile	applications
application,	building	with	/	Building	the	application	with	jQuery	Mobile
URL,	for	demos	/	Realizing	the	global	layout	of	the	application
KnockoutJS	binding	handler,	fixing	against	/	Fixing	KnockoutJS	binding
handler	inside	jQuery	Mobile

jQuery	UI,	for	AMD
reference	link	/	Adding	the	AMD	version	of	jQuery	UI	to	the	project

K
Knockout-jQueryUI

URL	/	Improving	two	date	fields	by	applying	Date	Picker	widget
KnockoutJS

about	/	What	KnockoutJS	is	and	where	you	can	get	it
URL	/	What	KnockoutJS	is	and	where	you	can	get	it
URL,	for	downloading	/	What	KnockoutJS	is	and	where	you	can	get	it
URL,	for	downloading	latest	version	/	What	KnockoutJS	is	and	where	you	can
get	it
URL,	for	tutorial	/	What	KnockoutJS	is	and	where	you	can	get	it
component,	registering	with	/	Registering	the	component	with	KnockoutJS

KnockoutJS	(3.1)	/	Creating	a	new	project	starting	with	the	HTML	StarterKit
KnockoutJS	application

about	/	The	bare	bone	code	of	a	KnockoutJS	application
KnockoutJS	binding	handler

fixing,	inside	jQuery	Mobile	/	Fixing	KnockoutJS	binding	handler	inside	jQuery
Mobile

ko.computed	/	The	magic	of	KnockoutJS	unveiled
ko.dependencyDetection.ignore	/	The	magic	of	KnockoutJS	unveiled
ko.dependentObservable	/	The	magic	of	KnockoutJS	unveiled
ko.observable	/	Filters	and	product	details
ko.observableArray	value	/	The	bare	bone	code	of	a	KnockoutJS	application
ko.toJSON

URL,	for	information	/	Making	the	skeleton	from	the	wireframe
ko.utils.range	method	/	Making	the	skeleton	from	the	wireframe
ko	namespace	/	The	bare	bone	code	of	a	KnockoutJS	application

L
loading	binding	handler

updating,	for	accessibility	/	Updating	the	loading	binding	handler	for
accessibility

Login	component,	Timesheet	SPA
about	/	Checking	authentication	–	Login	component
navigation,	auto-directing	to	Login	page	/	Auto-redirecting	navigation	to	Login
page
logout	button,	adding	/	Adding	a	logout	button

M
Manage	addresses	module

about	/	The	project,	a	real-world	web	application
Minimum	Viable	Product	(MVP)

about	/	Defining	what	Piggy	Bank	should	be
features	/	Defining	what	Piggy	Bank	should	be

MVC	(Model-View-Controller)
about	/	MVC	(Model-View-Controller)
drawbacks	/	MVC	(Model-View-Controller)

MVVM	(Model-View-View	Model)
about	/	MVVM	(Model-View-View	Model)	to	the	rescue
Model	/	Model
View	/	View
View-Model	/	View	Model
pros	/	Data	binding
cons	/	Data	binding

N
NodeJS

URL	/	Using	a	NodeJS	server	to	return	SEO	pages
NodeJS	server

used,	for	returning	SEO	pages	/	Using	a	NodeJS	server	to	return	SEO	pages

O
observable

reference	link	/	The	bare	bone	code	of	a	KnockoutJS	application,	Understanding
MVVM,	MVP,	and	MVC	to	get	the	best

online	booking	site	project
analyzing	/	Analyzing	the	project	–	booking	online
structure,	building	/	Building	the	structure	of	our	application
Hotel	Cards,	developing	/	Adding	the	Hotel	Cards

optionsCaption	binding	handler
about	/	Filters	and	product	details

P
pager.js

URL	/	Understanding	hybrid	mobile	applications
PhoneGap

URL	/	Understanding	hybrid	mobile	applications
about	/	Getting	PhoneGap/Cordova
obtaining	/	Getting	PhoneGap/Cordova

Piggy	Bank
defining	/	Defining	what	Piggy	Bank	should	be

Plugin	APIs
reference	link	/	Adding	the	contact	plugin

Progressive	Enhancement
versus	Graceful	Degradation	/	Graceful	Degradation	versus	Progressive
Enhancement
reasoning	against	/	Reasoning	against	Progressive	Enhancements

project
starting	environment,	creating	for	/	Creating	a	starting	environment	for	the
project

R
real-world	web	application

about	/	The	project,	a	real-world	web	application
wireframe,	checking	/	Looking	at	the	big	picture	of	the	project
content,	reviewing	/	Reviewing	the	content	we	got	for	free

real-world	web	application,	modules
about	/	The	project,	a	real-world	web	application
Relocate	/	The	project,	a	real-world	web	application
Manage	addresses	/	The	project,	a	real-world	web	application
Company	access	/	The	project,	a	real-world	web	application

Relocate	module
about	/	The	project,	a	real-world	web	application
analyzing	/	Analysing	and	developing	the	Relocate	module
developing	/	Analysing	and	developing	the	Relocate	module

RequireJS
URL	/	AMD	and	RequireJS
about	/	AMD	and	RequireJS
URL,	for	downloading	latest	version	/	Updating	starting	code	to	use	RequireJS

RequireJS	(2.1.11)	/	Creating	a	new	project	starting	with	the	HTML	StarterKit
RequireJS,	with	KnockoutJS

URL	/	Updating	starting	code	to	use	RequireJS
RequireJS	usage

starting	code,	updating	for	/	Updating	starting	code	to	use	RequireJS
root	view	model	/	Creating	a	new	project	starting	with	the	HTML	StarterKit
router,	DurandalJS

URL,	for	documentation	/	Analysing	and	developing	the	Relocate	module

S
Search	Form	component

writing	/	Writing	the	Search	Form	component
AMD	version	of	jQuery	UI,	adding	to	project	/	Adding	the	AMD	version	of
jQuery	UI	to	the	project
skeleton,	creating	from	wireframe	/	Making	the	skeleton	from	the	wireframe
Autocomplete	field,	realizing	for	destination	/	Realizing	an	Autocomplete	field
for	the	destination
date	fields,	improving	by	applying	Date	Picker	Widget	/	Improving	two	date
fields	by	applying	Date	Picker	widget
code,	transforming	into	reusable	/	Transforming	already	done	code	into	a
reusable	one
button,	customizing	/	Making	the	button	easy	to	customize

Sencha	Touch
about	/	Understanding	hybrid	mobile	applications

SEO-crawlable	/	Updating	the	loading	binding	handler	for	accessibility
server

data,	obtaining	from	/	Getting	data	from	the	server
Simple	Show	Case

about	/	The	idea	of	this	chapter	–	Simple	Show	Case
Single	Page	Application	(SPA)

about	/	What	KnockoutJS	is	and	where	you	can	get	it
SPA	feature,	Timesheet	SPA

about	/	The	SPA	feature	for	the	Timesheet	SPA
starting	environment

creating,	for	project	/	Creating	a	starting	environment	for	the	project
sugar	syntax

URL	/	Updating	starting	code	to	use	RequireJS

T
Test-First	Programming	process	/	Making	the	list	view	with	all	the	Accounts
tests

putting,	inside	bundle	/	Putting	the	tests	inside	the	bundle
text	binding	handler	/	The	bare	bone	code	of	a	KnockoutJS	application
text	plugin

URL	/	Updating	starting	code	to	use	RequireJS
Timesheet	SPA

about	/	Analysing	the	project	briefly	–	Timesheet	SPA
SPA	feature	/	The	SPA	feature	for	the	Timesheet	SPA
tools,	selecting	/	Choosing	the	right	tool	for	the	project
selecting	between	DurandalJS,	or	plain	KnockoutJS	/	Choosing	between
DurandalJS	or	plain	KnockoutJS
new	project,	creating	with	HTML	StarterKit	/	Creating	a	new	project	starting
with	the	HTML	StarterKit

Timesheet	SPA,	building	with	DurandalJS
about	/	Building	Timesheet	SPA	with	DurandalJS
component,	of	project	/	Components	of	this	project
code,	obtaining	for	Client-Server	interface	/	Getting	the	code	for	the	Client-
Server	interface
authentication,	checking	/	Checking	authentication	–	Login	component
dashboard,	creating	for	Employee	/	Making	a	dashboard	for	the	Employee
dashboard,	realizing	for	Team	Manager	/	Realizing	a	dashboard	for	the	Team
Manager

Timesheet	SPA,	customers
employees	/	Analysing	the	project	briefly	–	Timesheet	SPA
team	managers	/	Analysing	the	project	briefly	–	Timesheet	SPA

Titanium
URL	/	Understanding	hybrid	mobile	applications

Trivago
URL	/	Analyzing	the	project	–	booking	online

U
update	function	/	The	magic	of	KnockoutJS	unveiled

V
Venere.com

URL	/	Analyzing	the	project	–	booking	online
View

component,	using	inside	/	Using	it	inside	another	View
View	Model

JavaScript	file,	creating	for	/	Creating	the	JavaScript	file	for	the	View	Model

W
Wave	Toolbar	/	A	few	words	about	accessibility
with	binding	handler	/	The	magic	of	KnockoutJS	unveiled

	KnockoutJS Blueprints
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. From Idea to Realization
	What KnockoutJS is and where you can get it
	The idea of this chapter – Simple Show Case
	The bare bone code of a KnockoutJS application
	Getting jQuery because it can be useful
	Browser compatibility
	Understanding MVVM, MVP, and MVC to get the best
	MVC (Model-View-Controller)
	MVVM (Model-View-View Model) to the rescue
	Model
	View
	View Model
	Data binding
	Getting data from the server
	The magic of KnockoutJS unveiled
	Filters and product details
	Product details
	Managing a Cart
	Using the Cart on the home page
	The Cart page
	Contact form
	Paying from the client-side code
	The contact form
	Summary
	2. Starting Small and Growing in a Modular Way
	Analyzing the project – booking online
	Building the structure of our application
	Modularizing with the component binding handler
	AMD and RequireJS
	Updating starting code to use RequireJS
	Component binding handler
	Creating the bare bones of a custom module
	Creating the JavaScript file for the View Model
	Creating the HTML file for the template of the View
	Registering the component with KnockoutJS
	Using it inside another View
	Writing the Search Form component
	Adding the AMD version of jQuery UI to the project
	Making the skeleton from the wireframe
	Realizing an Autocomplete field for the destination
	The what and why about binding handlers
	Binding handler for the jQuery Autocomplete widget
	Improving two date fields by applying Date Picker widget
	Transforming already done code into a reusable one
	Making the button easy to customize
	Communicating with other components
	Adding the Hotel Cards
	Summary
	3. SPA for Timesheet Management
	Analysing the project briefly – Timesheet SPA
	The SPA feature for the Timesheet SPA
	Choosing the right tool for the project
	Choosing between DurandalJS or plain KnockoutJS
	Creating a new project starting with the HTML StarterKit
	Building Timesheet SPA with DurandalJS
	Components of this project
	Getting the code for the Client-Server interface
	Checking authentication – Login component
	Auto-redirecting navigation to Login page
	Adding a logout button
	Making a dashboard for the Employee
	Transforming a table into a grid with bells and whistles
	Building a few forms to update data
	Realizing a dashboard for the Team Manager
	Summary
	4. Tracking Expense Using PhoneGap
	Understanding hybrid mobile applications
	Getting PhoneGap/Cordova
	Defining what Piggy Bank should be
	Creating a starting environment for the project
	Building the application with jQuery Mobile
	Realizing the global layout of the application
	Making the list view with all the Accounts
	Putting the tests inside the bundle
	Adding the Detail page view
	Enhancing the application with the unit tests
	Refactoring and working on the missing parts
	Fixing KnockoutJS binding handler inside jQuery Mobile
	Adding the contact plugin
	Publishing the application
	Summary
	5. Wizard for the Public Administration
	The project, a real-world web application
	Looking at the big picture of the project
	Reviewing the content we got for free
	Analysing and developing the Relocate module
	Graceful Degradation versus Progressive Enhancement
	Reasoning against Progressive Enhancements
	Making the form for the first child route
	Asking for personal information
	Fixing a hidden bug
	Adding a new binding handler for the asynchronous loading
	Enhancing the selection fields
	Updating the code to be accessible
	A few words about accessibility
	Making the gender field accessible
	Updating the loading binding handler for accessibility
	Working to make the app SEO crawlable
	Using a NodeJS server to return SEO pages
	Caching the page by yourself
	Summary
	Index

