
www.allitebooks.com

http://www.allitebooks.org

JAVASCRIPT & JQUERY
Interactive Front-End Web Development

JON DUCKETT

Addit ional material by:

GILLES RUPPERT & JACK MOORE

WI.LEY

www.allitebooks.com

http://www.allitebooks.org

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard

Indianapolis, IN 46256
www.wiley.com

'')2014 by John W iley & Sons, Inc., Indianapolis, Indiana

ISBN:978-l-118-53164-8
Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Th.e ttxt stock is SFI ctr1il1~

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical.

photocopying, recording, scanning or otherwise, except as permitted under Sections 107or108 of the 1976 United States Copyright Act,

without either the prior written permission of the Publisher. or authorization through payment of the appropriate per-copy fee to the

Copyright Clearance Center. 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for

permission should be addressed to the Permissions Department, John Wiley & Sons, Inc .. 111 River Street. Hoboken, NJ 07030, (201) 748·

6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties w ith respect to the accuracy

or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for

a particular purpose. No warranty may be created or extended by sales or promotional materiais. The advice and strategies contained

herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,

accounting, or other professional services. If professional assistance is required, the services of a competent professional person should

be sought Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is

referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses

the information the organization or website may provide or recommendations it may make. Further. readers should be aware that Internet

websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877)

762·2974. outside the United States at (317) 572·3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of

this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the

version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit

www.wiley.com.

Library of Congress Control Number: 2013933932

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United

States and other countries, and may not be used without written permission. JavaScript is a registered trademark of Oracle America, Inc. All

other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned

in this book.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

CREDITS

For John Wiley & Sons, Inc.

Executive Editor

Carol Long

Project Editor

Kevin Kent

Product ion Editor
Daniel Scribner

Editorial M anager

Mary Beth Wakefield

Associate Director of Marketing

David Mayhew

Marketing Manager
Lorna Mein

Business Manager

Amy Knies

Vice President and Executive
Group Publisher

Richard Swadley

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Todd Klemme

For Wagon Ltd.

Author

Jon Duckett

Co-Authors
Jack Moore
(Chapters 11 & 12)

Gilles Ruppert
(Chapter 13)

Technical Review

Mathias Bynens

Review Team
Chris Ullman

David Lean
Harrison Thrift

Jay Bursky
Richard Eskins

Scott Robin
Stachu Korick

Thank you

Annette Loudon
M ichael Tomko

M ichael Vella Zarb

Pam Coca
Rishabh Pugalia

Cover Design

Emme Stone

Design
Emme Stone
Jon Duckett

Photography
John Stewardson

johnstewardson. com

Illustration
Matthew Cencich

(Hotel in Chapter 3)

Emme Stone
(Teacher in Chapter 4)

Additional Photography

Electronics in Chapters 8 & 9:
Aaron Nielsen
Arkadiusz Jan Sikorski

Matt Mets
Mirsad Dedovic
Steve Lodefink

javascriptbook. com/credits

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

This book explains how JavaScript can be used
in browsers to make websites more interactive,
interesting, and user-friendly. You will also learn about
jQuery because it makes writing JavaScript a lot easier.

To get the most out of this book, you wil l need to know how to bui ld web pages using HTML

and CSS. Beyond that. no prior experience with programming is necessary. Learning to
program with JavaScript involves:

1
Understanding some basic

programming concepts and

the terms that JavaScript
programmers use to
describe them.

2
Learning the language itself,

and, like all languages, you

need to know its vocabulary
and how to structure your
sentences.

3
Becoming famil iar with how
it is applied by looking at

examples of how JavaScript

is commonly used in
websites today.

The only equipment you need to use this book are a computer with a modern web browser

installed, and your favorite code editor, (e.g., Notepad, TextEdit. Sublime Text. or Coda).

0 INTRODUCTION

www.allitebooks.com

http://www.allitebooks.org

.....,. __ .. _..,._ ,, ______... __ .,..
==---'"'""· --·

Introduction pages come at the beginning of each

chapter. They introduce the key topics you wil l learn

about.

ACCESSING ELEMENTS

-----... _ --...... , -·-··-··--... __ ..,_,,,_,._
~~~E-:;:.:~ ~·§.?= .. ~ 

.. -----··· -·- -... ---·--------_____ .. 
------------

: 

-----.. --------
~~;,:?~ 

-·-·-.-.. -... ----·---........... __ -- .. ·-··-·----
-·---·-.... _ .. _ ........ __ _ --.. -··-·- ·--

E"":::.:::=:,,;...-==--.... _ .. _,_ ....... ~-__ .,. ____ _ ____ .... _,._ -----__ ,.._,_ .. __ _ 
---·----

Background pages appear on white. They explain 

the context of the topics covered that are discussed 

in each chapter. 

EXAMPLE 
~6.iSO"· 

.. -------... ... .;-••• ··-

.... ___ ..... ·--· ___ .. ..._ .. _ .... _ 
.. ·--- .......... . -!-= ........ :..:;-_-:,:-;--· 

.... -----·--·-... ·--·-... - .. __ _ ,, ____ ..... _ 

Example pages bring together the topics you have 

learned in that chapter and demonstrate how they 

can be applied. 

CREATING OBJECTS USING 
LITERAL NOTATION 

-- -------

-
-

CREATING MORE 
OBJECT LITERALS 

.. 
Reference pages introduce key pieces of JavaScript. 

HTML code is shown in blue, CSS code in pink, and 

JavaScript in green. 

Diagram and infographics pages are shown on a 

dark background. They provide a simple, visual 

reference to topics discussed. 

Summary pages come at the end of each chapter. 

They remind you of the key topics that were covered 

in each chapter. 

INTRODUCTION 0 
www.allitebooks.com

http://www.allitebooks.org


1 
ACCESS CONTENT 
You can use JavaScript to select any 

element, attribute, or text from an 

HTML page. For example: 

• Select the text inside all of the <hl> 

elements on a page 

• Select any elements that have a 

c 1 ass attribute with a value of note 

• Find out what was entered into a 

text input whose id attribute has a 

value of ema i 1 

2 
MODIFY CONTENT 
You can use JavaScript to add 

elements, attributes, and text to the 

page, or remove them. For example: 

• Add a paragraph of text after the 

first <hl> element 

• Change the value of c 1 ass 

attributes to trigger new CSS rules 

for those elements 

• Change the size or position of an 

<i mg> element 

www.allitebooks.com

http://www.allitebooks.org


3 
PROGRAM RULES 
You can specify a set of steps for 
the browser to follow (like a recipe), 

which allows it to access or change the 
content of a page. For example: 

• A gallery script could check which 
image a user clicked on and display 

a larger version of that image. 

• A mortgage calculator could collect 
values from a form, perform a 
ca lculation, and display repayments. 

• An animation could check the 
dimensions of the browser window 
and move an image to the bottom 
of the viewable area (also known as 

the viewport). 

4 
REACT TO EVENTS 
You can speci fy that a script should run 

when a specific event has occurred. For 
example, it could be run when: 

• A button is pressed 
• A link is clicked (or tapped) on 
• A cursor hovers over an element 

• Information is added to a form 
• An interval of time has passed 

• A web page has finished loading 

www.allitebooks.com

http://www.allitebooks.org


EXAMPLES OF JAVASCRIPT 
IN THE BROWSER 

Being able to change the content of an HTML page while it is loaded in 
the browser is very powerful. The examples below rely on the ability to: 

Access the content of the page 
Modify the content of the page 
Program rules or instructions the browser can follow 
React to events triggered by the user or browser 

SLIDESHOWS 
Shown in Chapter 11 

At IH~t OUf dlfb d Jlit~lt1111 
~·'l"h.tl.,kt .. )ttllt)• 
tfff•fllr•4difk)oMllict .. 
i:Ml.-ldulll)'., ... 11 .... 
....... nltnrrollr:•\ 

Slideshows can display a number of different images 
(or other HTML content) w ithin the same space 

on a given page. They can play automatically as 
a sequence, or users can click through the slides 

manually. They allow more content to be displayed 
within a limited amount of space. 

React: Script triggered when the page loads 

Access: Get each slide from the slideshow 
Modify: Only show the first slide (hide others) 

Program: Set a timer: when to show next sl ide 
Modify: Change which slide is shown 

React: When user clicks button for different sl ide 
Program: Determine which slide to show 

Modify: Show the requested slide 

0 INTRODUCTION 

FORMS 
Shown in Chapter 13 

Validating forms (checking whether they have been 
filled in correctly) is important when information is 
supplied by users. JavaScript lets you alert the user 

if mistakes have been made. It can also perform 
sophisticated calculations based on any data entered 

and reveal the results to the user. 

React: User presses the submit button when they 

have entered their name 
Access: Get value from form field 
Program: Check that the name is long enough 

Modify: Show a warning message if the name is not 
long enough 



The examples on these two pages give you a taste of 
what JavaScript can do within a web page, and of the 

techniques you will be learning throughout this book. 

Roll up! Roi up! It's the maker bus-

---
... ......... 

°"""'._ .......... _ ....... 
""")OotPf'llfl,,_... .. _.., 

=::.-::-...:.::.~ ,..._.......,. .............. 
=-~ .... --:.--:.:.:::· _.._. .... ~ ..... ---

RELOAD PART OF PAGE 
Shown in Chapter 8 

You might not want to force visitors to reload the 

content of an entire web page, particularly if you 
only need to refresh a small portion of a page. 

Just reloading a section of the page can make a 
site feel like it is faster to load and more like an 

application. 

React: Script triggered when user clicks on link 

Access: The link that they clicked on 
Program: load the new content that was requested 
from that link 

Access: Find the element to replace in the page 
Modify: Replace that content with the new content 

In the coming chapters, you will learn how and when 
to access or modify content, add programming rules, 

and react to events. 

< .... ,. .. rolk • 

FILTERING DATA 
Shown in Chapter 12 

If you have a lot of information to display on a page, 

you can help users find information they need by 
providing filters. Here, buttons are generated using 
data in the attributes of the HTML <img> elements. 

When the user clicks on one of the buttons, they are 
only shown the images with that keyword. 

React: Script triggered when page loads 
Program: Collect keywords from images 
Program: Turn the keywords into buttons the user 

can click on 
React: User clicks on one of the buttons 

Program: Find the relevant subset of images that 
should be shown 

Modify: Show the subset of images that use that tag 

INTRODUCTION 0 



THE STRUCTURE O F 
TH IS BOOK 

In order to teach you JavaScript, this book is divided into two sections: 

CORE CONCEPTS 

The first nine chapters introduce you to the basics 

of programming and the JavaScript language. Along 

the way you will learn how it is used to create more 

engaging, interactive, and usable websites. 

Chapter 1 looks at some key concepts in computer 

programming, showing you how computers create 

models of the world using data, and how JavaScript 

is used to change the contents of an HTML page. 

Chapters 2-4 cover the basics of the JavaScript 

language. 

Chapter 5 explains how the Document Object Model 

(DOM) lets you access and change a document's 

contents while it is loaded into the browser. 

Chapter 6 discusses how events can be used to 

trigger code. 

Chapter 7 shows you how jQuery can make the 

process of writing scripts faster and easier. 

Chapter 8 introduces you to Ajax, a set of 

techniques that allow you to just change part of a 

web page without reloading the entire page. 

Chapter 9 covers Application Programming 

Interfaces (APls), including new APls that are part of 

HTMLS and those of sites like Google Maps. 

0 INTRODUCTION 

PRACTICAL A PPLICATIONS 

By this point you will already have seen many 

examples of how JavaScript is used on popular 

websites. This section brings together all of the 

techniques you have learned so far, to give you 

practical demonstrations of how JavaScript is used 

by professional developers. Not only will you see a 

selection of in-depth examples, you will also learn 

more about the process of designing and writing 

scripts from scratch. 

Chapter 10 deals with error-handling and debugging, 

and explains more about how JavaScript is processed. 

Chapter 11 shows you techniques for creating 

content panels-such as sliders, modal windows, 

tabbed panels, and accordions. 

Chapter 12 demonstrates several techniques for 

filtering and sorting data. This includes fil tering a 

gallery of images, and re-ordering the rows of a table 

by clicking on the column headings. 

Chapter 13 deals with form enhancements and how 

to val idate form entries. 

Unless you are already a confident programmer, you 

will probably find it helpful to read the book from 

start to finish the first time. However, once you have 

grasped the basics, we hope it will continue to be a 

helpful reference as you create your own scripts. 





BROWSER SUPPORT 

Some early examples in this book do not work with Internet Explorer 8 
and earlier (but alternative code samples that work in IE8 are available to 
download from http:// j avascri pt book. com). We explain techniques 
for dealing with older browsers in later chapters. 

Each version of a web browser adds new features. 

Often these new features make tasks easier, or are 

considered better, than using older techniques. 

But, website visitors do not always keep up with 

the latest browser releases, so website developers 

cannot always rely upon the latest technologies. 

As you will see, there are many inconsistencies 

between browsers that affect JavaScript developers. 

jQuery will help you deal with cross-browser 

inconsistencies (it is one of the major reasons why 

jQuery rapidly gained popularity amongst web 

developers). But, before you learn jQuery, it helps to 

know what it is helping you to achieve. 

8 INTRODUCTION 

To make JavaScript easier to learn, the first few 

chapters use some features of JavaScript that are 

not supported in IE8. But: 

• You will learn how to deal with IE8 and older 

browsers in later chapters (because we know that 

many clients expect sites to work in IE8). 

It just requires knowledge of some extra code 

or requires you to be aware of some additional 

issues. 

• Online, you w ill find alternatives available for 

each example that does not work in IE8. 

But please check the comments in those code 

samples to make sure you know about the about 

issues involved in using them. 





Before you learn how to read and write the JavaScript 

language itself, you need to become familiar with some key 

concepts in computer programming. They will be covered in 

three sections: 

A B C 
What is a script and how do I How do computers fit in with How do I write a script for a 

create one? the world around them? web page? 

Once you have learned the basics, the fo llowing chapters wi ll show how the JavaScript 

language can be used to tell browsers what you want them to do. 

0 THE ABC OF PROGRAMMING 



THE ABC OF PROGRAMMING 0 



A SCRIPT IS A SERI ES OF 
INSTRUCTIONS 

A script is a series of instructions that a 

computer can follow to achieve a goal. 

You could compare scripts to any of the following: 

RECIPES 

By fo llowing the instructions in a 

recipe, one-by-one in the order 

set out, cooks can create a dish 

they have never made before. 

Some scripts are simple and only 

deal with one individual scenario, 

like a simple recipe for a basic 

dish. Other scripts can perform 

many tasks, like a recipe for a 

complicated three-course meal. 

Another similarity is that, if 
you are new to cooking or 

programming, there is a lot of 

new terminology to learn. 

G THE ABC OF PROGRAMMING 

HANDBOOKS 

Large companies often provide 

handbooks for new employees 

that contain procedures to fo llow 

in certain situations. 

For example, hotel handbooks 

may contain steps to follow in 

different scenarios such as when 

a guest checks in, when a room 

needs to be tidied, when a f ire 

alarm goes off, and so forth. 

In any of these scenarios, the 

employees need to follow 

only the steps for that one 

type of event. (You would not 

want someone going through 

every single step in the entire 

handbook while you were 

waiting to check in.) Similarly, 

in a complex script, the browser 

might use only a subset of the 

code available at any given time. 

MANUALS 

Mechanics often refer to car 

repair manuals when servicing 

models they are not familiar 

with. These manuals contain a 

series of tests to check the key 

functions of the car are working, 

along with details of how to fix 

any issues that arise. 

For example, there might be 

details about how to test the 

brakes. If they pass this test, the 

mechanic can then go on to the 

next test without needing to fix 

the brakes. But, if they fail, the 

mechanic will need to follow the 

instructions to repair them. 

The mechanic can then go back 

and test the brakes again to see 

if the problem is fixed. If the 

brakes now pass the test, the 

mechanic knows they are fixed 

and can move onto the next test. 

Similarly, scripts can allow the 

browser to check the current 

si tuation and only perform a 

set of steps if that action is 

appropriate. 



www.allitebooks.com

http://www.allitebooks.org


WRITING A 
SCRIPT 

To write a script, you need to first 
state your goal and then list the 
tasks that need to be completed in 
order to achieve it. 

Humans can achieve complex goals without thinking 
about them too much, for example you might be 
able to drive a car, cook breakfast, or send an email 

without a set of detailed instructions. But the first 
time we do these things they can seem daunting. 

Therefore, when learning a new skill, we often break 

it down into smaller tasks, and learn one of these at 
a time. With experience these individual tasks grow 
familiar and seem simpler. 

Some of the scripts you wil l be reading or writing 
when you have fin ished this book will be quite 

complicated and might look intimidating at 

first. However, a script is just a series of short 

instructions, each of which is performed in order 
to solve the problem in hand. This is why creating a 

script is like writing a recipe or manual that allows a 
computer to solve a puzzle one step at a time. 

It is worth noting, however, that a computer doesn' t 

learn how to perform tasks like you or I might; it 
needs to follow instructions every time it performs 

the task. So a program must give the computer 

enough detail to perform the task as if every time 

were its first time. 

0 THE ABC OF PROGRAMMING 



Start with the big picture of what 

you want to achieve, and break 
that down into smaller steps. 

1: DEFINE THE GOAL 

First, you need to define the task you want to 
achieve. You can think of this as a puzzle for the 
computer to solve. 

2: DESIGN THE SCRIPT 

To design a script you split the goal out into a series 
of tasks that are going to be involved in solving this 

puzzle. This can be represented using a flowchart. 

You can then write down individual steps that the 

computer needs to perform in order to complete 
each individual task (and any information it needs to 

perform the task), rather like writing a recipe that it 
can follow. 

3: CODE EACH STEP 

Each of the steps needs to be written in a 

programming language that the compu ter 
understands. In our case, this is JavaScript. 

As tempting as it can be to start coding straight 

away, it pays to spend time designing your script 
before you start writing it. 

THE ABC OF PROGRAMMING 0 







FROM STEPS 
TO CODE 

Every step for every task shown 

in a flowchart needs to be written 

in a language the computer can 

understand and follow. 

In this book, we are focussing on the JavaScript 
language and how it is used in web browsers. 

Just like learning any new language, you need 
to get to grips with the: 

• Vocabulary: The words that computers 
understand 

• Syntax: How you put those words together to 
create instructions computers can follow 

Along with learning the language itself, if you are 
new to programming, you will also need to learn how 

a computer achieves different types of goals using 
a programmatic approach to problem-solving. 

Computers are very logical and obedient. They need 

to be told every detail of what they are expected to 

do, and they will do it w ithout question. Because 
they need different types of inst ructions compared 

to you or I, everyone who learns to program makes 
lots of mistakes at the start. Don't be disheartened; 

in Chapter 10 you will see several ways to discover 
what might have gone wrong - programmers cal l 
this debugging. 

e THE ABC OF PROGRAMMING 

• l'l o\. 

I 



You need to learn to "think" like 
a computer because they solve 
tasks in different ways than you or 
I might approach them. 

Computers solve problems programmatically; they 
follow series of instructions, one af ter another. The 

type of instructions they need are often different to 
the type of instructions you might give to another 
human. Therefore, throughout the book you will not 

only learn the vocabulary and syntax that JavaScript 

uses, but you will also learn how to write instructions 

that computers can follow. 

For example, when you look at the picture on the 

left how do you tell which person is the tallest? 
A computer would need explicit, step-by-step 
instructi0ns, such as: 

1. Find the height of the first person 
2. Assume he or she is the "tallest person" 

3 . Look at the height of the remaining people one

by-one and compare their height to the "tallest 
person" you have found so far 

4. At each step, if you find someone whose height is 

greater than the current "tallest person", he or she 
becomes the new "tallest person" 

5. Once you have checked all the people, tell me 

which one is the tallest 

So the computer needs to look at each person in 
turn, and for each one it performs a test ("Are they 

taller than the current tallest person?"). Once it has 

done this for each person it can give its answer. 

THE ABC OF PROGRAMMING G 



DEFINING A GOAL & 
DESIGNING THE SCRIPT 

Consider how you might approach a different type of script. 
This example calculates the cost of a name plaque. 
Customers are charged by the letter. 

The first thing you should do is detail your goals for 

the script (what you want it to achieve): 

Customers can have a name added to a plaque; each 

letter costs $5. When a user enters a name, show 

them how much it will cost. 

Next, break it into a series of tasks that have to be 

performed in order to achieve the goals: 

1. The script is triggered when the button is clicked. 

2. It collects the name entered into the form field. 

3. It checks that the user has entered a value. 

4. If the user has not entered anything, a message 

wi ll appear telling them to enter a name. 

5. If a name has been entered, calculate the cost of 

the sign by multiplying the number of letters by 

the cost per letter. 

6. Show how much the plaque costs. 

(These numbers correspond with the flowchart on 

the right-hand page.) 

@ THE ABC OF PROGRAMMING 

CUSTOM S I GNAG E 

Enter name: 

CU STOM SIGNAG E 

Enter name: Please enter a name below ... 

( THOMAS 

11!.iild·E* 

CUSTOM S I GNAG E 

Ill 



SKETCHING OUT THE 
TASKS IN A FLOWCHART 

Often scripts will need to perform different tasks in different situations. 
You can use flowcharts to work out how the tasks fit together. 
The flowcharts show the paths between each step. 

0 

e 

e 

When the button has been clicked 

I 
Get the name entered into the form 

' I 
• I 

Is there a 
name to get? 

0 Ask user the user to enter a name 

0 Calculate the cost of the sign (letters x price) 

• I 

9 Show the cost of the sign on the screen 

Arrows show how the script moves from one task 

to the next. The different shapes represent diff€rent 

types of tasks. In some places there are decisions 

which cause the code to fol low different paths. 

You wil l learn how to turn this example into code in 

Chapter 2. You w ill also see many more examples of 

different flowcharts throughout the book, and you 

w ill meet code that helps you deal w ith each of these 

types of situations. 

Some experienced programmers use more complex 

diagram styles that are specifically designed to 

represent code - however, they have a steeper 

learning curve. These informal flowcharts will help 

you understand how scripts work whi le you are in 

the process of learning the language. 

FLOWCHART KEY 

Generic step Event 

Input or output Decision 

THE ABC OF PROGRAMMING @ 



A script is a series of instructions that the computer 

can follow in order to achieve a goal. 

Each time the script runs, it might only use a subset of 

all the instructions. 

Computers approach tasks in a different way than 

humans, so your instructions must let the computer 

solve the task prggrammatically. 

To approach writing a script, break down your goal into 

a series of tasks and then work out each step needed 

to complete that task (a flowchart can help). 



THE ABC OF PROGRAMMING @ 
www.allitebooks.com

http://www.allitebooks.org


COMPUTERS CREATE 
MODELS OF THE WORLD 
USING DATA 

Here is a model of a hotel, along with some model trees, model people, 

and model cars. To a human, it is clear what kind of real -world object 

each one represents. 

--· 
QUAY 
H 0 T E L 

@ THE ABC OF PROGRAMMING 



A computer has no predefined 

concept of what a hotel or car is. 

It does not know what they are 

used for. Your laptop or phone 

will not have a favorite brand of 

car, nor will it know what star 

rating your hotel is. 

So how do we use computers 

to create hotel booking apps, 

or video games where players 

can race a car? The answer 

is that programmers create a 

very different kind of model, 

especially for computers. 

OBJECT TYPE: HOTEL 

Programmers make these 

models using data. That is not 

as strange or as scary as it 

sounds because the data is all 

the computer needs in order to 

fol low the instructions you give it 

to carry out its tasks. 

OBJECT TYPE: CAR 

THE ABC OF PROGRAMMING 0 



OBJECTS & PROPERTIES 

If you could not see the picture of the hotel and cars, the data in the 
information boxes alone would still tell you a lot about this scene. 

OBJECTS (TH INGS) 

In computer programming, each physical thing in 

the world can be represented as an object. There are 

two different types of objects here: a hotel and a car. 

Programmers might say that there is one instance of 

the hotel object, and two instances of the car object. 

Each object can have its own: 

• Properties 

• Events 

• Methods 

Together they create a working model of that object. 

PROPERTIES (CHARACTERISTICS) 

Both of the cars share common characteristics. 

In fact, all cars have a make, a color, and engine 

size. You could even determine their current 

speed. Programmers call these characteristics the 

properties of an object. 

Each property has a name and a value, and each of 

these name/value pairs tells you something about 

each individual instance of the object. 

The most obvious property of this hotel is its name. 

The value for that property is Quay. You can tell the 

number of rooms the hotel has by looking at the 

value next to the rooms property. 

The idea of name/value pairs is used in both HTML and CSS. In HTML, an attribute is like a property; different 

attributes have different names, and each attribute can have a value. Similarly, in CSS you can change the color 

of a heading by creating a rule that gives the col or property a specific value, or you can change the typeface it is 
written in by giving the font-family property a specific value. Name/value pairs are used a lot in programming. 

@ THE ABC OF PROGRAMMING 



HOTEL OBJECT 

The hotel object uses property names and values 
to tell you about this particular hotel, such as the 

hotel's name, its rating, the number of rooms it has, 
and how many of these are booked. You can also tell 

whether or not this hotel has certain facilities. 

OBJECT TYPE: HOTEL 

PROPERTIES 

name Quay 

rating 4 

rooms 42 

bookings 21 

gym false 

pool true 

PROPERTIES 

BMW 

currentSpeed 30mph 

silver 

CAR OBJECTS 

The car objects both share the same properties, but 

each one has different values for those properties. 
They tell you the make of car, what speed each car is 
currently traveling at, what color it is, and what type 

of fuel it requires. 

PROPERTIES 

make Porsche 

currentSpeed 20mph 

color silver 

gasoline 

THE ABC OF PROGRAMMING § 



EVENTS 

In the real world, people interact with objects. These interactions can 
change the values of the properties in these objects. 

WHAT IS AN EVENT? 

There are common ways in which people interact 
with each type of object. For example, in a car a 
driver will typically use at least two pedals. The car 

has been designed to respond differently when the 
driver interacts with each of the different pedals: 

• The accelerator makes the car go faster 

• The brake slows it down 

Similarly, programs are designed to do different 
things when users interact with the computer in 

different ways. For example, clicking on a contact 
li nk on a web page could bring up a contact 

form, and entering text into a search box may 

automatically trigger the search functionality. 

An event is the computer's way of sticking up its 
hand to say, "Hey, this just happened!" 

@ THE ABC OF PROGRAMMING 

WHAT DOES AN EVENT DO? 

Programmers choose which events they respond to. 
When a specific event happens, that event can be 

used to trigger a specific section of the code. 

Scripts often use different events to trigger different 

types of functionality. 

So a script will state which events the programmer 
wants to respond to, and what part of the script 

should be run when each of those events occur. 



HOTEL OBJECT 

A hotel will regularly have bookings for rooms. Each 
time a room is reserved, an event called book can 

be used to trigger code that will increase the value 
of the bookings property. Likewise, a cancel event 
can trigger code that decreases the value of the 
bookings property. 

OBJECT TYPE: HOTEL 

EVENT happens when: 

book reservat ion is made 

cancel reservat ion is cancelled 

happens when: 

· driver slows down 

CAR OBJECTS 

A driver will accelerate and brake throughout any car 
journey. An accelerate event can trigger code to 

increase the value of the currentSpeed property and 
a brake event can trigger code to decrease it. You 

will learn about the code that responds to the events 
and changes these properties on the next page. 

happens when: 

driver slows down 

driver speeds up 

THE ABC OF PROGRAMMING G 



METHODS 

Methods represent things people need to do with objects. They can 
retrieve or update the values of an object's properties. 

WHAT IS A METHOD? 

Methods typical ly represent how people (or other 
things) interact with an object in the real world. 

They are like questions and instructions that: 

• Tell you something about that object (using 

information stored in its properties) 

• Change the value of one or more of that object's 

properties 

@ THE ABC OF PROGRAMMING 

WHAT DOES A METHOD DO? 

The code for a method can contain lots of 
instructions that together represent one task. 

When you use a method, you do not always need to 
know how it achieves its task; you just need to know 

how to ask the question and how to interpret any 

answers it gives you. 



HOTEL OBJECT 

Hotels will commonly be asked if any rooms are free. 

To answer this question, a method can be written 
that subtracts the number of bookings from the 
total number of rooms. Methods can also be used 

to increase and decrease the value of the bookings 
property when rooms are booked or cancelled. 

CAR OBJECTS 

The value of the currentSpeed property needs 

to go up and down as the driver accelerates and 
brakes. The code to increase or decrease the value 

of the currentSpeed property could be written 
in a method, and that method could be called 
changeSpeed (). 

OBJECT TYPE: HOTEL 

METHOD 

METHOD what it does: 

makeBooking() increases value of bookings property 
............ .... .... . . .............................. .,_,,,......... .... .... . ............. . 
cancel Booking() i decreases value of bookings property 

checkAvailabi lity() subtracts value of bookings property 
from value of rooms property and 
returns number of rooms available 

what it does: METHOD what it does: 

changeSpeed() ; increases or decreases value 
of currentSpeed property 

changeSpeed() · increases or decreases value 
of currentSpeed property 

THE ABC OF PROGRAMMING @ 



PUTTING IT ALL TOGETHER 

Computers use data to create models of things in the real world. 
The events, methods, and properties of an object all relate to each other: 

Events can trigger methods, and methods can retrieve or update an 
object's properties. 

EVENT happens when: 

reservation is made 

method called: 

make Booking() 

cancel reservation is cancelled ' cancel Booking() 

METHOD what it does: 

f) ' increases value of bookings property 

cancel Booking() !. ?ecreases value of .~ooking:. P.ropert·y·· 

checkAvailabilityO : subtracts value of bookings property 
l from value of rooms p roperty and 

returns number of rooms available 

@ THE ABC OF PROGRAMMING 

PROPERTIES 

name Quay 

rating 4 

rooms 42 

1·1·1·1:11.r-n 22 
.. '-·-·-······· 

gym false 

pool true 

QUAY 
H 0 T E L 



HOTEL OBJECT 

1. When a reservation is made, the book event fires. 
2 . The book event triggers the makeBooki ng () 

method, which increases the value of the 
bookings property. 

3. The value of the bookings property is changed to 

reflect how many rooms the hotel has available. 

CAR OBJ ECTS 

1. As a driver speeds up, the accel erate event fires. 
2 . The accelerate event calls the changeSpeed () 

method. which in turn increases the value of the 
currentSpeed property. 

3. The value of the currentSpeed property reflects 
how fast the car is traveling. 

OBJECT TYPE: CAR 

EVENT happens when: method called: 

driver slows down ' changeSpeed() 

fii§§§t§tit!i driver speeds up \ changeSpeed() 

METHOD 

changeSpeed() 

what it does: 

i increases or decreases value 
: of currentSpeed property 

PROPERTIES 

make 

current Speed 

color 

fuel 

BMW 

45mph 

silver 

diesel 

e 

THE ABC OF PROGRAMMING @ 
www.allitebooks.com

http://www.allitebooks.org


WEB BROWSERS ARE 
PROGRAMS BUILT 
USING OBJECTS 

You have seen how data can be used to create a model of a hotel or a car. 

Web browsers create similar models of the web page they are showing 

and of the browser window that the page is being shown in. 

WINDOW OBJECT 

On the right-hand page you can see a model of a 

computer with a browser open on the screen. 

The browser represents each window or tab using a 

window object. The location property of the window 

object w ill tell you the URL of the current page. 

@ TH E ABC OF PROGRAMMING 

DOCUMENT OBJECT 

The current web page loaded into each window is 
modelled using a document object. 

The title property of the document object tells you 
what is between the opening <t; t le> and closing 

</title> tag for that web page, and the 

l astModi f i ed property of the document object 

tells you the date this page was last updated. 



OBJECT TYPE: WINDOW 

PROPERTIES 

location http://www.javascriptbook.com/ 

PROPERTIES 

http://www.javascriptbook.com/ 

lastModified 09/04/2014 15:33:37 

Learn JavaScript & jQuery -
A book that teaches you 
in a nicer way 

• 



THE DOCUMENT OBJECT 
REPRESENTS AN HTML 
PAGE 

Using the document object, you can access and change what content 

users see on the page and respond to how they interact with it. 

Like other objects that represent real-world things, 

the document object has: 

PROPERTIES 

Properties describe characteristics of the current 

web page (such as the t itle of the page). 

METHODS 

Methods perform tasks associated with the 

document currently loaded in the browser (such 

as getting information from a specified element or 

adding new content). 

EVENTS 

You can respond to events, such as a user clicking or 

tapping on an element. 

@ THE ABC OF PROGRAMMING 

Because all major web browsers implement the 

document object in the same way, the people who 

create the browsers have already: 

• Implemented properties that you can access to 

find out about the current page in the browser 

• Written methods that achieve some common 

tasks that you are likely to want to do with an 

HTML page 

So you will be learning how to work with this object. 

In fact, the document object is just one of a set of 

objects that all major browsers support. When the 

browser creates a model of a web page, it not only 

creates a document object , but it also creates a 

new object for each element on the page. Together 

these objects are described in the Document Object 

Model, which you will meet in Chapter 5. 



PROPERTIES 

http://www.javascriptbook.com/ 

lastModified 09/04/2014 15:33:37 

Learn JavaScript & jQuery -
A book that teaches you 
in a nicer way 

EVENT happens when: 

METHOD 

page and assets have finished loading 

user clicks the mouse over the page 

, user presses down on a key 

what it does: 

adds new content to the document 

getElementByld() accesses an element when you 
state its id attribute 



HOW A BROWSER 
SEES A WEB PAGE 

In order to understand how you can change the content of an HTML 
page using JavaScript, you need to know how a browser interprets the 
HTML code and applies styling to it. 

1: RECEIVE A PAGE AS 
HTML CODE 

Each page on a website can be 
seen as a separate document . 
So, the web consists of many 

sites, each made up of one or 

more documents. 

2: CREATE A MODEL OF 
THE PAGE AND STORE 
IT IN MEMORY 

The model shown on the right 
hand page is a representation 

of one very basic page. Its 
structure is reminiscent of a 

family tree. At the top of the 

model is a document object, 

which represents the whole 
document. 

Beneath the document object 

each box is called a node. Each 

of these nodes is another object. 
This example features three 

types of nodes representing 

elements, text within the 
elements, and attribute. 

3: USE A RENDERING 
ENGINE TO SHOW THE 
PAGE ON SCREEN 

If there is no CSS, the rendering 
engine will apply default styles 

to HTML elements. However, 

the HTML code for this example 
links to a CSS style sheet, so the 

browser requests that file and 
displays the page accordingly. 

When the browser receives 
CSS rules, the rendering engine 

processes them and applies 

each rule to its corresponding 
elements. This is how the 

browser positions the elements 

in the correct place, with the 
right colors, fonts, and so on. 

All major browsers use a JavaScript interpreter to translate your 
instructions (in JavaScript) into instructions the computer can follow. 

When you use JavaScript in 

the browser, there is a part of 
the browser that is called an 

interpreter (or scripting engine). 

4 0 THE ABC OF PROGRA MMIN G 

The interpreter takes your 

instructions (in JavaScript) and 
translates them into instructions 

the browser can use to achieve 
the tasks you want it to perform. 

In an interpreted programming 
language, like JavaScript. each 

line of code is translated 
one-by-one as the script is run. 



Constructive & Co. 
'EJl9.Kl A~CHlffCTUUI MOOEIS 

l'or •ll order• an4 iAquirioa 
pleaee call 5SS-l3tt 





THE ABC OF PROGRAMMING @ 



HOW HTML, CSS, 
& JAVASCRIPT FIT 
TOGETHER 

Before diving into the JavaScript language, you 

need to know how it will fit together with the 

HTML and CSS in your web pages. 

Web developers usually talk 

about three languages that 

are used to create web pages: 

HTML, CSS, and JavaScript. 

<html> 

CONTENT LAYER 

. html files 

This is where the content of 

the page lives. The HTML gives 

the page structure and adds 

semantics. 

Where possible, aim to keep the 

three languages in separate fi les, 

with the HTML page linking to 

CSS and JavaScript files. 

{css} 

PRESENTATION LAYER 

. css files 

The CSS enhances the HTML 

page with rules that state how 

the HTML content is presented 

(backgrounds, borders, box 

dimensions, colors, fonts, etc.). 

Programmers often refer to this as a separation of concerns. 

8 THE ABC OF PROGRAMMING 

Each language forms a separate 

layer with a different purpose. 

Each layer, from left to right. 

builds on the previous one. 

j avascri pt() 

BEHAVIOR LAYER 

.js files 

This is where we can change 

how the page behaves, adding 

interact ivity. We will aim to keep 

as much of our JavaScript as 

possible in separate files. 



As more and more web-enabled 

devices come onto the market, 

this concept is becoming more 

widely adopted. 

Constructive & Co. 
For all orders and inquiries please 
call 555-3344 

HTML ONLY 

Starting with the HTML layer 

allows you to focus on the most 

important thing about your site: 

its content. 

Being plain HTML, this layer 

should work on all kinds of 

devices, be accessible to all 

users, and load quite quickly on 

slow connections. 

PROGRESSIVE 
ENHANCEMENT 

These three layers form the basis of a popular 

approach to building web pages called 

progressive enhancement. 

It's not just screen sizes that are 

varied - connection speeds and 

capabilities of each device can 

also differ. 

Constructive & Co. 
tflrOKE AICHtJf CTU•Al MOQEU 

ror a.11 order• and J.nquirie s 
please call 555-3364 

HTML+CSS 

Adding the CSS rules in a 

separate fi le keeps rules 

regarding how the page looks 

away from the content itself. 

You can use the same style sheet 

with all of your site, making your 

sites faster to load and easier 

to maintain. Or you can use 

different style sheets with the 

same content to create different 

views of the same data. 

Also, some people browse wi th 

JavaScript turned off, so you 

need to make sure that the page 

stil l works for them. 

Constructive & Co. 
IUPOJCC AICHlf fClUIAl MODEU 

GOOD AFTERNOON! 
ror al.l orde rs a.ad iaquiri•• 

pl•••• call 555- 31•• 

HTML+CSS+JAVASCRIPT 

The JavaScript is added last 

and enhances the usability of 

the page or the experience of 

interact ing with the si te. 

Keeping it separate means 

that the page still works if the 

user cannot load or run the 

JavaScript. You can also reuse 

the code on several pages 

(making the site faster to load 

and easier to maintain). 

THE ABC OF PROGRAMMING @ 
www.allitebooks.com

http://www.allitebooks.org


CREATING A BASIC 
JAVASCRIPT 

JavaScript is written in plain text, just like HTML and CSS, so you do not 

need any new tools to write a script. This example adds a greeting into an 

HTML page. The greeting changes depending on the time of day. 

0 Create a folder to put the 
example in cal led cOl, then start 
up your favorite code editor, and 

enter the text to the right. 

A JavaScript fi le is just a 

text file (like HTML and CSS 

files are) but it has a . j s file 
extension, so save this file with 

the name add-content . j s 

Don't worry about what the code 
means yet. for now we will focus 

on how the script is created and 

how it fits with an HTML page. 

8 Get the CSS and images for 
this example from the website 

that accompanies the book: 
www.javascriptbook. com 

To keep the files organized, in 

the same way that CSS files 

of ten live in a folder called 

styles or css, your JavaScript 
files can live in a folder called 
scripts,javascript,orjs. 

In this case, save your file in a 

folder called j s 

8 THE ABC OF PROGRAMMING 

var today= new Date(); 
var hourNow = today.getHours(); 
var greeting; 

if (hourNow > 18) { 
greeting= 'Good evening!'; 

else if (hourNow > 12) { 
greeting = ' Good afternoon!'; 

else if (hourNow > 0) { 
greeting = 'Good morni ng!'; 

else { 
greeting = 'Welcome! ' ; 

document .write( ' <h3>' +greeting + ' </ h3> '); 

t_ add-content.htmt 
• WI css 

!! COi.CU 
• QI images 

..:. construalw -backdrop.Jpg 
:.... construalve-1090.yif 

• lndtx.html 
.. ~ jS 

HTMl 
Folder 
css 
Folder 
JPEC lmoge 
GIFl~t 

HTML 
Folder 

Here you can see the file structure that you will end up with when you 
finish the example. Always treat file names as being case-sensitive. 



LINKING TO A JAVASCRIPT 
FILE FROM AN HTML PAGE 

When you want to use JavaScript with a web page, you use the HTML 
<script> element to tell the browser it is coming across a script. 
Its s re attribute tells people where the JavaScript file is stored. 

<!DOCTYPE html> 
<html> 

<head> 
<title>Constructive &amp; Co. </ title> 
<link rel ="stylesheet " href="css/ cOl.css" /> 

</ head> 
<body> 

<hl>Constructive &amp ; Co. </ hl> 
<script src="js/ add-content.js"></ script> 
<p>For all orders and i nquiries please cal l 

<em>SSS-3344</ em></ p> 
</ body> 

</html> 

Constructive & Co. 
1urogc t'!CHIUCTy t .tl MOPEU 

GOOD AFTERNOON! 
ror all ocders a.a.cl loqu.irle a 

pl•••• call 555-33 44 

9 In your code editor, enter the 
HTML shown on the left. Save 

this file with the name 
add-content.html 

The HTML <script> element is 

used to load the JavaScript file 
into the page. It has an attribute 

called src, whose value is the 
path to the script you created. 

This tells the browser to find and 
load the script file ( just like the 
src attribute on an <i mg> tag). 

0 Open the HTML file in your 

browser. You should see that the 
JavaScript has added a greeting 
(in this case, Good Afternoon!) to 

the page. (These greetings are 

coming from the JavaScript file; 
they are not in the HTML file.) 

Please note: Internet Explorer 

sometimes prevents JavaScript 
running when you open a page 

stored on your hard drive. If this 
affects you, please try Chrome, 

Firefox, Opera, or Safari instead. 

THE ABC OF PROGRAMMING @ 



THE SOURCE CODE 
IS NOT AMENDED 

If you look at the source code for the example 

you just created, you will see that the HTML is 
still exactly the same. 

Show Web Inspector 
Show Error Console 

f) Once you have tried the 

example in your browser, view 

the source code for the page. 

( This option is usually under the 

View, Tools or Develop menu of 

the browser.) 

Show Page Source '\:XU 

0 The source of the web page 

does not actually show the new 

element that has been added 

into the page; it just shows the 

link to the JavaScript file. 

As you move through the book, 

you wil l see most of the scripts 

are added just before the closing 

</body> tag (this is often 

considered a better place to 

put your scripts). 

@ THE ABC OF PROGRAMMING 

Show Page Ruourcu 'CXA 

Show Snippet Editor 
Show Extension Bullder 

Start Proflllng JavaScript -.;: oXP 
Start TimtliM Recording 'COXT 

Constructive & Co. 
mrou AlCH!!fCIU&A! MOQEIS 

WELCOME! 

P'or al.1 orde.rs and io.qu.iriea 
pl.ease call 555-334• -

Conskudive & Co. 
mi .. ,.. e- . . S.....Codc 

l "'''It•\ .. 
1 <t1eN> 

ct.U le,.(onsuvcdve "-P; Co. <Ii i.tlt-> 

EmPIY caches 
Dluble Caches 

DIHblt lnw19u 
Dlsablt Slyks 
Dlnble )av.script 
Disable Sltt-•i>t<lflc ~dts 

cUr1k re \ • - sty\.esl'l«t• type--text/ut" 1'rtf• "U&/U'f\•&.<U" I• 
</ft.Ud1' ....,.. 

d\l.>COMt ructtve 4-":>; Co. c/l'I\> 
.rscript tni-c• "'tvct/J.,...S<:rUlt" Jte• • Jtl•dd•<Gnttnt. Jt'">e/~Cf'lOt• 
<p,.for el\ ordel''i end el'lqYlt'lH J\H.H eel\ ot~U,..J>44ot/..,.,.«/p;i> 

«/bffp 
cttnal> 

'CXE 

t lt l 



PLACING THE SCRIPT 
IN THE PAGE 

You may see JavaScript in the HTML between 
opening <script> and closing </script> tags 
(but it is better to put scripts in their own files). 

<!DOCTYPE html > 
<html > 

<head> 
<title>Constructive &amp; Co.</title> 
<li nk rel ="stylesheet" href="css/ cOl . css" / > 

</ head> 
<body> 

<hl>Constructive &amp; Co.</hl> 
<script>document.write(' <h3>Welcome !</h3>'); 
</script> 
<p>For all orders and inquiries please call 

<em>555-3344</ em></ p> 
</ body> 

</ html > 

Constructive & Co. 
IEStOl(E AICHITCCTUf.U MODUS 

WELCOME! 
P'or all order• and i.nqui_riea 

pl..•••• call 555- 33'' 

f) Finally, try opening the 

HTML file, removing the src 
attribute from the opening 

<script> tag, and adding the 
new code shown on the left 

between the opening <script> 

tag and the closing </script> 
tag. The s re attribute is no 

longer needed because the 
JavaScript is in the HTML page. 

As noted on p44, it is better 
not to mix JavaScript in your 

HTML pages like this, but it is 

mentioned here as you may 

come across this technique. 

0 Open the HTML file in your 
web browser and the welcome 
greeting is written into the page. 

As you may have guessed, 
document. write() writes 
content into the document (the 
web page). It is a simple way 

to add content to a page, but 

not always the best. Chapter 
5 discusses various ways to 

update the content of a page. 

THE ABC OF PROGRAMMING 8 





JAVASCRIPT RUNS WHERE 
IT IS FOUND IN THE HTML 

When the browser comes across a <script> element, it stops to 

load the script and then checks to see if it needs to do anything. 

<! DOCTYPE html> 
<html > 

<head> 
<title>Constr ucti ve &amp; Co.</title> 
<link rel ="stylesheet" href="css/cOl.css" /> 

</head> 
<body> 

<hl>Constructive &amp; Co.</hl> 

<p>For all orders and inquiries please call <em>555-3344</em></p> 
= = <script src="j s/ add-content .j s "></script> 

</body> 
</html> 

Note how the <script> element can be moved 
below the first paragraph, and this affects where 
the new greeting is written into the page. 

• • 

ror all orders and inquiries 
pleas e call 555- 3344 

GOOD AFTERNOON! / 
/ 

This has implications for where <scri pt> elements 
should be placed, and can affect the loading time of 
pages (see p356) . 



It is best to keep JavaScript code in its own JavaScript 

file. JavaScript files are text files (like HTML pages and 

CSS style sheets), but they have the . j s extension. 

The HTML <script> element is used in HTML pages 

to tell the browser to load the JavaScript file (rather like 

the <link> element can be used to load a CSS file). 

If you view the source code of the page in the browser, 

the JavaScript will not have changed the HTML, 

because the script works with the model of the web 

page that the browser has created. 





In this chapter, you will start learning to read and write 
JavaScript. You wil l also learn how to give a web browser 
instructions you want it to follow. 

THE LANGUAGE: 
SYNTAX AND GRAMMAR 

like any new language, there are new 

words to learn (the vocabulary) and rules 

for how these can be put together (the 

grammar and syntax of the language). 

GIVING INSTRUCTIONS: 
FOR A BROWSER TO FOLLOW 

Web browsers (and computers in general) 

approach tasks in a very different way than 

a human might. Your instructions need to 

reflect how computers get things done. 

We will start with a few of the key building blocks of the language and look at how they can 

be used to write some very basic scripts (consisting of a few simple steps) before going on to 

look at some more complex concepts in subsequent chapters. 

@ BASIC JAVASCRIPT INSTRUCTIONS 



www.allitebooks.com

http://www.allitebooks.org


STATEMENTS 

A script is a series of instructions that a computer can follow one-by-one. 
Each individual instruction or step is known as a statement. 
Statements should end with a semicolon. 

We will look at what the code on the right does 

shortly, but for the moment note that: 

• Each of the lines of code in green is a statement. 

• The pink curly braces indicate the start and end 
of a code block. (Each code block could contain 
many more statements.) 

• The code in purple determines which code 
should run (as you will see on p149). 

JAVASCRIPT IS CASE SENSITIVE 

JavaScript is case sensitive so hourNow means 

something different to HourNow or HOURNOW. 

STATEMENTS ARE INSTRUCTIONS AND 
EACH ONE STARTS ON A NEW LINE 

A statement is an individual instruction that the 

computer should follow. Each one should start on a 

new line and end with a semicolon. This makes your 

code easier to read and follow. 

The semicolon also tells the JavaScript interpreter 

when a step is over, indicating that it should move 

to the next step. 

@ BASIC JAVASCRIPT INSTRUCTIONS 

var today= new Date{); 
var hourNow = today.getHours{) ; 
var greeting; 

if (hourNow > 18) { 
greeting= 'Good evening'; 
else if (hourNow > 12) { 
greeting= 'Good afternoon'; 
else if (hourNow > O) { 
greeting 'Good morning'; 
else { 
greeting 'Welcome'; 

document.write(greeting) ; 

STATEMENTS CAN BE ORGANIZED 
INTO CODE BLOCKS 

Some statements are surrounded by curly braces; 

these are known as code blocks. The closing curly 

brace is not followed by a semicolon. 

Above, each code block contains one statement 

related to what the current time is. Code blocks 

will often be used to group together many more 

statements. This helps programmers organize their 

code and makes it more readable. 



COMMENTS 

You should write comments to explain what your code does. 

They help make your code easier to read and understand. 

This can help you and others who read your code. 

I * Th i s script displays a greeting to the user based upon the current time. 
It is an example from JavaScript & jQuer y book *I 

var today= new Date(); 
var hour Now = today.getHours(); 
var greeting; 

// Create a ne1~ dat e object 
II Fi nd the current hour 

JI Display the appropriate greeti ng based on the current time 
if (hourNow > 18) { 

greet ing = 'Good evening ' ; 
else if (hourNow > 12) { 
greeting = 'Good afternoon'; 
else if (hourNow > 0) { 
greeting= ' Good morning'; 
else { 
gr eeting = 'Welcome'; 

} 
document.write(greeting) ; 

MULTI-LINE COMM ENTS 

To write a comment that stretches over more than 

one line, you use a multi-line comment, starting with 

the /* characters and ending with the * / characters. 

Anything between these characters is not processed · 

by the JavaScript interpreter. 

M ulti-l ine comments are often used for descriptions 

of how the script works, or to prevent a section of 

the script from running when testing it. 

JavaScript codeis green 

M ulti-line comments are pink 

Single-line comments are gray 

SINGLE-LINE COMMENTS 

In a single-line comment, anything that follows the 

two forward slash characters I/ on that line will not 

be processed by the JavaScript interpreter. Single

line comments are often used for short descriptions 

of what the code is doing. 

Good use of comments will help you if you come 

back to your code after several days or months. 

They also help those who are new to your code. 

BASIC JAVASCRIPT INSTRUCTIONS 0 



WHAT IS A VARIABLE? 

A script w ill have to temporarily 
store the bits of information it 
needs to do its job. It can store this 
data in variables. 

When you write JavaScript, you have to tell the 
interpreter every individual step that you want it to 

perform. This sometimes involves more detail than 
you might expect. 

Think about calculating the area of a wall; in math 

the area of a rectangle is obtained by multiplying two 
numbers: 

width x height = area 

You may be able to do calculations like this in 
your head, bu t when writing a script to do this 

calculat ion, you need to give the computer very 
detailed instructions. You might tell it to perform the 
following four steps in order: 

1. Remember the value for width 
2. Remember the value for height 
3. Multiply width by height to get the area 
4. Return the result to the user 

In this case, you would use variables to "remember" 

the values for width and height. (This also illustrates 

how a scrip( contains very explicit instructions about 
exactly what you want the computer to do.) 

You can compare variables to short-term memory, 
because once you leave the page, the browser will 
forget any information it holds. 

@ BASIC JAVASCRIPT INSTRUCTION S 



A variable is a good name for this 
concept because the data stored 
in a variable can change (or vary) 
each time a script runs. 

No matter what the dimensions of any individual 

wal l are, you know that you can find its area by 

multiplying the width of that wal l by its height. 
Similarly, scripts often need to achieve the same 

goal even when they are run with different data, so 

variables can be used to represent values in your 

scripts that are likely to change. The result is said to 

be calculated or computed using the data stored in 

the variables. 

The use of variables to represent numbers or other 

kinds of data is very similar to the concept of algebra 

(where le.tters are used to represent numbers). 

There is one key difference, however. The equals 

sign does something very different in programming 

(as you will see on the next two pages). 

BASIC JAVASCRIPT INSTRUCTIONS @ 







DATA TYPES 

JavaScript distinguishes between numbers, 

strings, and true or false values known as 
Booleans. 

NUMERIC DATA TYPE 

The numeric data type handles 
numbers. 

0.75 
For tasks that involve counting 
or calculating sums, you will 

use numbers 0-9. For example, 

five thousand, two hundred and 
seventy-two would be written 

5272 (note there is no comma 
between the thousands and 

the hundreds). You can also 
have negative numbers (such 

as -23678) and decimals (three 

quarters is written as 0.75). 

Numbers are not only used for 

things like calculators; they 
are also used for tasks such 

as determining the size of the 
screen, moving the position of 

an element on a page, or setting 
the amount of time an element 

should take to fade in. 

@ BASIC JAVASCRIPT INSTRUCTIONS 

STRING DATA TYPE 

The strings data type consists of 
letters and other characters. 

'H. 
1 ' Ivy! 1 

Note how the string data type is 
enclosed within a pair of quotes. 

These can be single or double 
quotes, but the opening quote 
must match the closing quote. 

Strings can be used when 

working with any kind of text. 

They are frequently used to add 
new content into a page and they 

can contain HTML markup. 

BOOLEAN DATA TYPE 

Boolean data types can have one 
of two values: true or false. 

true 
It might seem a little abstract at 
first, but the Boolean data type is 

actually very helpful. 

You can think of it a little like a 
light switch - it is either on or off. 

As you will see in Chapter 4, 

Booleans are helpfu l when 
determining which part of a 

script should run. 

In addition to these three data types, JavaScript also has others (arrays, 
objects, undefined, and null) that you will meet in later chapters. 

Unlike some other programming languages, when declaring a variable in 
JavaScript, you do not need to specify what type of data it will hold. 



USING A VARIABLE TO 
STORE A NUMBER 

JAVASCRIPT 

var price; 
var quantity; 
var total; 

price = 5; 
quantity = 14; 
total = price * quantity; 

c02/j s/numeri c-vari ab 1 e .j s 

var el = document.getElementByid( ' cost ' ) ; 
el . textContent = '$' +total; 

W:ii.§11 

<hl>Elderflower</hl> 
<div id="content"> 

<h2>Custom Signage</h2> 

c02/numeric-vari able .html 

<div id="cos t ">Cost: $5 per tile</ div> 
<i mg src="images/preview. jpg" alt="Sign" /> 

</div> 
<scri pt src="js/numeric-variable . js"></script> 

CUSTOM SIGNAGE:: 

Preview: m 
IM I O ~ N I T AIG u E ~ 1 H olu s E 

Here, three variables are created 
and values are assigned to them. 

• price holds the price of an 
individual tile 

• quantity holds the number 
of tiles a customer wants 

• to ta 1 holds the total cost of 
the tiles 

Note that the numbers are not 
written inside quotation marks. 
Once a value has been assigned 

to a variable, you can use the 
variable name to represent that 

value (much like you might have 
done in algebra). Here, the total 

cost is calculated by multiplying 

the price of a single tile by the 

number of ti les the customer 
wants. 

The result is then writ ten into 
the page on the final two lines. 

You see this technique in more 

detail on p194 and p216. 

The first of these two lines finds 
the element whose id attribute 
has a value of cost, and the final 

line replaces the content of that 
element with new content. 

Note: There are many ways to 

write content into a page, and 

several places you can place 
your script. The advantages and 

disadvantages of each technique 
are discussed on p226. This 

technique will not work in IE8. 

BASIC JAVASCRIPT INSTRUCTIONS @ 



USING A VARIABLE TO 
STORE A STRING 

For the moment, concentrate on 

the first four lines of JavaScript. 
Two variables are declared 
(username and message), and 

they are used to hold strings (the 
user's name and a message for 
that user). 

c02/js/string-variable.js JAVA SCRIPT 

The code to update t he page 
(shown in the last four lines) 

is discussed fully in Chapter 5. 
This code selects two elements 
using the values of their id 

attributes. The text in those 
elements is updated using the 

values stored in these variables. 

Note how the string is placed 

inside quote marks. The quotes 

can be single or double quotes, 
but they must match. If you start 
with a single quote, you must end 

with a single quote, and if you 

start with a double quote, you 
must end with a double quote: 

0 "hello" 0 "hello' 

0 'hello' 0 'hello" 

Quotes should be straight (not 
curly) quotes: 

0 1111 0 "" 
0 I I 0 (' 

Strings must always be written 

on one line: 

O 'See our upcoming range' 

0 'See our 
upcoming range' 

@ BASIC JAVASCRIPT INSTRUCTIO NS 

var username; 
var message; 
username = 'Molly'; 
message = 'See our upcoming range'; 

var elName = document.getElementByld{'name'); 
elName . textContent = username; 
var elNote = document .getElementByld( 'note'); 
elNote . textContent = message; 

c02/ string-variable.html 

<hl>Elderflower</ hl> 
<div id="content"> 

<div id="title">Howdy 
<span id="name">friend</span>!</div> 

<div id="note">Take a l ook around . . . </div> 
</ div> 
<script src= "js/string-v~riable . js"></script> 

W:ii&ll 



USING QUOTES 
INSIDE A STRING 

JAVASCRIPT 

var title; 
var message; 

c02/ js/ string-with-quotes.js 

title= "Molly's Special Offers" ; 
message = '<a href=\"sale .html\">25% off l</a>' ; 

var elTitle = document.getElementByld('title') ; 
elTitle.innerHTML =title ; 
var elNote = document.getElementByid ('note') ; 
elNote.innerHTML =message; 

M:ii&fl 

<hl>Elderflower</hl> 
<div id="content"> 

c02/ string-with-quotes .html 

<di v id=" t i t le">Special Offers</div> 
<di v id="note">Sign-up to receive personalized 

offers! </div> 
</div> 
<sc ri pt src="js/string-wi t h-quotes. j s"></scri pt> 

lijJiliil 

Sometimes you will want to use 

a double or single quote mark 

within a string. 

Because strings can live in single 

or double quotes, if you just 

want to use double quotes in the 

string, you could surround the 

entire string in single quotes. 

If you just want to use single 

quotes in the string, you could 

surround the string in double 

quotes (as shown in the third line 

of this code example). 

You can also use a technique 

called escaping the quotation 

characters. This is done by 

using a backwards slash (or 

"backslash") before any type of 

quote mark that appears within 

a string (as shown on the fourth 

line of this code sample). 

The backwards slash tells the 

interpreter that the following 

character is part of the string, 

rather than the end of it. 

Techniques for adding content to 

a page are covered in Chapter 5. 

This example uses a property 

called i nnerHTML to add HTML 

to the page. In certain cases, this 

property can pose a security risk 

(discussed on p228 - p231). 

BASIC JAVASCRIPT INSTRUCTIONS @ 
www.allitebooks.com

http://www.allitebooks.org


USING A VARIABLE TO 
STORE A BOOLEAN 

A Boolean variable can only have 
a value of true or fa 1 se, but this 
data type is very helpful. 

In the example on the right, the 
values true or fa 1 se are used 
in the cl ass attributes of HTML 
elements. These values trigger 
different CSS class rules: true 
shows a check, fa 1 se shows a 
cross. (You learn how the class 
attribute is set in Chapter 5.) 

It is rare that you would want to 
write the words true or false 
into the page for the user to read, 
but this data type does have two 
very popular uses: 

First, Booleans are used when 
the value can only be true/ 
fa 1 se. You could also think of 
these values as on/off or 0/1: 
true is equivalent to on or 1, 
fa 1 se is equivalent to off or 0 

Second, Booleans are used when 
your code can take more than 
one path. Remember, different 
code may run in different 
circumstances (as shown in the 
flowcharts throughout the book). 

' I 
test is performed 

' I The path the code takes depends 
on a test or condition. 

@ BASIC JAVASCRIPT INSTRUCTIONS 

c02/js/boolean-variable. js 

var i nStock; 
var shipping; 
inStock = true; 
shipping= fa l se; 

JAVASCRIPT 

var elStock = document.getElementByld('stock'); 
elStock.className = inStock; 

var el Ship = document .getElementByid('shipping'); 
elShip.className = sh ipping ; 

c02/boolean-variable.html lllli~l!!il 

<hl>Elderflower</hl> 
<div id="content"> 

<div class="message">Available: 
<span id="stock"></span></div> 

<div class="message">Shipping: 
<span id="shipping">~/span></div> 

</div> 
<script src="js/boolean-variable.js"></script> 

Available: O 
Shipping: 0 



SHORTHAND FOR 
CREATING VARIABLES 

JAVASCRIPT 

CD var price = 5; 
var quantity = 14; 
var total = price * quantity; 

(3) var price, quantity, total ; 
price = 5; 
quanti ty = 14 ; 
total = pr ice * quantity; 

@ var price 
var total 

5, quantity = 14; 
price * quantity; 

c02/js/shorthand-variable.js 

@) // Write total into the element with i d of cost 
var el = document .getElementBy ld( ' cost'); 
el . textCont ent = '$' +total; 

l;!Jiliii 

CUS T OM SIG NAGt 

m 
IM 0 N T A G !L E ~ 1H 0 u s E 

Programmers sometimes use 

shorthand to create variables. 

Here are three variations of how 

to declare variables and assign 

them values: 

1. Variables are declared and 

values assigned in the same 

statement. 

2 . Three variables are declared 

on the same line, then values 

assigned to each. 

3. Two variables are declared 

and assigned values on the same 

line. Then one is declared and 

assigned a value on the next line. 

(The third example shows two 

numbers, but you can declare 

variables that hold different 

types of data on the same line, 

e.g., a string and a number.) 

4 . Here, a variable is used to 

hold a reference to an element in 

the HTML page. This allows you 

to work directly with the element 

stored in that variable. (See 

more about this on p190.) 

While the shorthand might save 

you a little bit of typing, it can 

make your code a little harder 

to follow. So, when you are 

starting off, you will find it easier 

to spread your code over a few 

more lines to make it easier to 

read and understand. 

BASIC JAVASCRIPT INSTRUCTIONS @ 



CHANGING THE VALUE 
OF A VARIABLE 

Once you have assigned a value 

to a variable, you can then 

change what is stored in the 
variable later in the same script. 

Once the variable has been 

created, you do not need to 
use the var keyword to assign 

it a new value. You just use the 
variable name, the equals sign 

(also known as the assignment 
operator), and the new value for 
that attribute. 

For example, the value of a 

shipping variable might start 
out as being false. Then 

something in the code might 

change the ability to ship the 

item and you could therefore 
change the value to true. 

In this code example, the values 
of the two variables are both 

swapped from being true to 

false and vice versa. 

@ BASIC JAVASCRIPT INSTRUCTIONS 

c02/js/update-variable.js 

var inStock; 
var shipping; 

inStock = true; 
shipping = false; 

JAVASCR I PT 

/* Some other processing might go here and , as 
a resul t , the script might need to change t hese 
values */ 

inStock = false; 
shipping = true; 

var elStock = document.getElementByld('stock'); 
elStock .className = inStock; 
var elShip = document .getElementByld('shipping'); 
elShip .className = shipping; 

19Jillil 



RULES FOR NAMING 
VARIABLES 

Here are six rules you must always follow when giving a variable a name: 

1 
The name must begin with 

a letter, dollar sign ($),or an 

underscore (_). It must not start 

with a number. 

4 
All variables are case sensitive, 

so score and Score would be 

different variable names, but 

it is bad practice to create two 

variables that have the same 

name using different cases. 

2 
The name can contain letters, 

numbers, dollar sign ($), or an 

underscore (_). Note that you 

must not use a dash(-) or a 

period (.) in a variable name. 

5 
Use a name that describes the 

kind of information that the 

variable stores. For example, 

fi rstName might be used to 

store a person's first name, 

l astNarne for their last name, 

and age for their age. 

3 
You cannot use keywords or 

reserved words. Keywords 

are special words that tell the 

interpreter to do something. For 

example, var is a keyword used 

to declare a variable. Reserved 

words are ones that may be used 

in a future version of JavaScript. 

ONLINE EXTRA 

View a full list of keywords and 

reserved words in JavaScript. 

6 
If your variable name is made 

up of more than one word, use a 

capital letter for the first letter of 

every word after the first word. 

For example, f i rstName rather 

than fi rstnarne (this is referred 

to as camel case). You can also 

use an underscore between each 

word (you cannot use a dash). 

BASIC JAVASCRIPT INSTRUCTIONS @ 



ARRAYS 

An array is a special type of variable. It doesn't 

just store one value; it stores a list of values. 

You should consider using an 

array whenever you are working 

with a list or a set of values that 

are related to each other. 

Arrays are especially helpful 

when you do not know how 

many items a list will contain 

because, when you create the 

array, you do not need to specify 

how many values it will hold. 

If you don't know how many 

items a list will contain, rather 

than creating enough variables 

for a long list (when you might 

only use a small percentage 

of them), using an array is 

considered a better solution. 

For example, an array can be 

suited to storing the individual 

items on a shopping list because 

it is a list of related items. 

Additionally, each time you write 

a new shopping list, the number 

of items on it may differ. 

As you will see on the next page, 

values in an array are separated 

by commas. 

In Chapter 12, you will see that 

arrays can be very helpful when 

representing complex data. 



CREATING AN ARRAY 

JAVA SCRIPT c02/js/array-li teral .js 

var colors; 
colors ['white', 'black', ' custom ']; 

var el document.getElementByld('col ors'); 
el . textContent = col ors[O]; 

1;1Jill51 

JAVASCRIPT 

var colors 

c02/ js/array-constructor.js 

new Array('white ' , 
'black', 
'custom ' ); 

var el = document.getElementByid( ' co lors ' ); 
el.innerHTML = colors.item(O); 

The array literal (shown in the first code sample) is preferred over the 

array constructor when creating arrays. 

You create an array and give it 

a name just like you would any 

other variable (using the var 

keyword followed by the name of 

the array). 

The values are assigned to the 

array inside a pair of square 

brackets, and each value is 

separated by a comma. The 

values in the array do not need 

to be the same data type, so you 

can store a string, a number and 

a Boolean all in the same array. 

This technique for creating 

an array is known as an array 

literal. It is usually the preferred 

method for creating an array. 

You can also write each value on 

a separate line: 

colors= ['white', 

'black', 

'custom']; 

On the left, you can see an 

array created using a different 

technique called an array 

constructor. This uses the new 

keyword fo llowed by Array(); 

The values are then specified 

in parentheses (not square 

brackets), and each value is 

separated by a comma. You can 

also use a method called i tern() 

to retrieve data from the array. 

(The index number of the item is 

specified in the parentheses.) 

BASIC JAVASCRIPT INSTRUCTIONS G 



VALU ES IN ARRAYS 

Values in an array are accessed as if they are in 
a numbered list. It is important to know that the 

numbering of this list starts at zero (not one). 

NUMBERING ITEMS IN 
AN ARRAY 

Each item in an array is 
automatically given a number 
called an index. This can be used 

to access specific items in the 
array. Consider the following 

array which holds three colors: 

var col ors ; 

colors= ['whi te ' , 
'black ' , 

' custom ']; 

Confusingly, index values start at 
0 (not 1), so the following table 

shows items from the array and 

their corresponding index values: 

INDEX VALUE 

o 'white ' 

'bl ack' 

2 ' custom' 

ACCESSING ITEMS IN 
AN ARRAY 

To retrieve the third item on the 
list, the array name is specified 

along with the index number in 
square brackets. 

Here you can see a variable 
called i temThree is declared. 

Its value is set to be the third 

color from the co 1 ors array. 

var itemThr ee; 

itemThree = col ors [2] ; 

0 BASIC JAVASCRIPT INSTRUCTIONS 

NUMBER OF ITEMS IN 
AN ARRAY 

Each array has a property called 

length, which holds the number 
of items in the array. 

Below you can see that a variable 
called numCo 1 ors is declared. Its 

value is set to be the number of 

the items in the array. 

The name of the array is 
followed by a period symbol (or 

full stop) which is then followed 
by the 1 ength keyword. 

var numColors ; 
numColors =col ors. length ; 

Throughout the book (especially 
in Chapter 12) you meet more 
features of arrays, which are 

a very flexible and powerful 

feature of JavaScript. 



ACCESSING & CHANG ING 
VALUES IN AN ARRAY 

JAVASCRIPT 

II Create the array 
var colors = ['white', 

'black' , 
'custom']; 

c02/ js/ update-array.js 

II Update the third item in the array 
colors[2] = 'beige ' ; 

II Get the element with an id of col ors 
var el = document .getElementByid(' colors') ; 

II Replace with third item from the array 
el . textContent = colors[2]; 

l;IJiiJll 

Color: beige 

The first lines of code on the left 

create an array containing a list 

of three colors. (The values can 

be added on the same line or on 

separate lines as shown here.) 

Having created the array, the 

third item on the list is changed 

from 'custom' to 'beige'. 

To access a value from an array, 

after the array name you specify 

the index number for that value 

inside square brackets. 

You can change the value of an 

item an array by selecting it and 

assigning it a new value just as 

you would any other variable 

(using the equals sign and the 

new value for that item). 

In the last two statements, the 

newly updated third item in the 

array is added to the page. 

If you wanted to write out all of 

the items in an array, you would 

use a loop, which you wil l meet 

on p170. 

BASIC JAVASCRIPT INSTRUCTIONS @ 



EXPRESSIONS 

An expression evaluates into (results in) a single value. Broadly speaking 

there are two types of expressions. 

1 
EXPRESSIONS THAT JUST ASSIGN A 
VALUE TO A VARIABLE 

In order for a variable to be useful, it needs to be 

given a value. As you have seen, this is done using 

the assignment operator (the equals sign). 

var color = 'beige'; 
The value of co 1 or is now beige. 

When you fi rst declare a variable using the var 

keyword, it is given a special value of undefined. 

This wi ll change when you assign a value to it. 

Technically, undefined is a data type like a number, 

string, or Boolean. 

@ BASIC JAVASCRIPT INSTRUCTIONS 

2 
EXPRESSIONS THAT USE TWO OR 
MORE VALUES TO RETURN A 
SINGLE VALUE 

You can perform operations on any number of 

individual values (see next page) to determine a 

single value. For example: 

var area = 3 * 2; 
The value of area is now 6. 

Here the expression 3 * 2 evaluates into 6. This 

example also uses the assignment operator, so the 

result of the expression 3 * 2 is stored in the variable 

called area. 

Another example where an expression uses two 

values to yield a single value would be where two 

strings are joined to create a single string. 



OPERATORS 

Expressions rely on things called operators; they allow programmers to 

create a single value from one or more values. 

Covered in this chapter: 

ASSIGNMENT OPERATORS 

A ssign a value to a variable 

color = 'beige'; 
The value of co 1 or is now beige. 

(See p61) 

ARITHMETIC OPERATORS 

Perform basic math 

area = 3 * 2; 
The value of area is now 6. 

(See p76) 

STRING OPERATORS 

Combine two strings 

greeting= 'Hi 1 + 'Mol ly'; 
The value of greeting is now Hi Molly. 
(See p78) 

Covered in Chapter 4: 

COMPARISON OPERATORS 

Compare two values and return true or fa 1 se 

buy = 3 > 5; 
The value of buy is fa 1 se. 

(See p150) 

LOGICAL OPERATORS 

Combine expressions and return true or fa 1 se 

buy= (5 > 3) && (2 < 4); 
The value of buy is now true. 

(See p156) 

BASIC JAVA SCRIPT INSTRUCTIONS @ 



ARITHMETI C OPERATORS 

JavaScript contains the following mathematical 
operators, which you can use with numbers. 
You may remember some from math class. 

NAME OPERATOR PURPOSE & NOTES 

ADDITION + Adds one value to another 

SUBTRACTION Subtracts one value from another 

DIVISION I Divides two values 

EXAMPLE RESULT 

10 + 5 15 

10 - 5 5 

10 I 5 2 

MULTIPLICATION * 
Multiplies two values using an asterisk 
(Note that this is not the letter x) 10 * 5 50 

INCREMENT + + Adds one to the current number 
i = 10; 

11 
i++; . . . . ... ······-······ ........... ... ....................................... .. ... . ................................. .................................................. . 

DECREMENT 

MODULUS % 

ORDER OF EXECUTION 

Several arithmetic operations 
can be performed in one 

expression, but it is important 
to understand how the result 

will be calculated. Multiplication 

and division are performed 

before addition or subtraction. 
This can affect the number that 
you expect to see. To illustrate 

this effect, look at the following 
examples. 

G BASIC JAVASCRIPT INSTRUCTIONS 

i--; 
Subtracts one from the current number 

i = 10; 
9 

Divides two values and returns the 
remainder 

Here the numbers are calculated 

left to right, so the total is 16: 
total = 2 + 4 + 10; 

But in the following.example the 

total is 42 (not 60): 
total = 2 + 4 * 10; 

This is because multiplication 

and division happen before 
addition and subtraction. 

10 % 3 1 

To change the order in which 

operations are performed, place 
the calculation you want done 

first inside parentheses. So for 
the following, the total is 60: 
total = (2 + 4) * 10; 

The parentheses indicate that 
the 2 is added to the 4, and then 
the resulting figure is multiplied 

by10. 



USING ARITHMETIC 
OPERATORS 

JAVASCRIPT c02/js/arithmetic-operator.js 

var subtotal (13 + 1) * 5; II Subtotal is 70 
var shipping 0.5 * (13 + 1) ; II Shipping i s 7 

var total subtotal + shipping ; II Total is 77 

var el Sub document .getElementByid(' subtotal ') ; 
elSub . textContent =subtotal ; 

var elShip = document .getElement Byid('shi ppi ng ') ; 
elShip.textContent =shipping; 

var elTotal = document .getElementByid('total '); 
elTotal . textContent =total; 

•0•1111• 

Subtotal: $70 
Shipping: $7 
Grandtotal: $77 

This example demonstrates how 

mathematical operators are used 

with numbers to calculate the 
combined values of two costs. 

The first couple of lines create 
two variables: one to store the 
subtotal of the order, the other 

to hold the cost of shipping 

the order; so the variables are 
named accordingly: subtotal 

and shipping. 

On the third line, the total is 

calculated by adding together 
these two values. 

This demonstrates how the 

mathematical operators can 

use variables that represent 
numbers. (That is, the numbers 
do not need to be written 

explicitly into the code.) 

The remaining six lines of code 

write the results to the screen. 

BASIC JAVASCRIPT INSTRUCTIONS G 



STRING OPERATOR 

There is just one string operator: the+ symbol. 
It is used to join the strings on either side of it. 

There are many occasions where 
you may need to join two or 

more strings to create a single 
value. Programmers call the 
process of joining together two 
or more strings to create one 

new string concatenation. 

For example, you might have a first and last name in two separate 

variables and want to join them to show a ful l name. In this example, the 
variable called full Name would hold the string 'Ivy Stone'. 

var firstName = 'Ivy ' ; 

var lastName = ' Stone' ; 
var ful l Name = f irstName + l astName ; 

MIXING NUMBERS AND STRINGS TOGETHER 

When you place quotes around 

a num~er, it is a string (not 
a numeric data type), and 

you cannot perform addition 
operations on strings. 

var cost l = '7'; 
var cost2 = '9 ' ; 

var total = costl + cost2 ; 

You would end up with a string 

saying '79'. 

If you try to add a numeric data 

type to a string, then the number 
becomes part of the string, e.g., 

adding a house number to a 
street name: 

var number = 12; 

var street= 'Ivy Road'; 
var add = number + street ; 

You would end up with a string 
saying '12Ivy Road' . 

@ BASIC JAVASCRIPT INSTRUCTIONS 

If you try to use any of the other 
arithmetic operators on a string, 

then the value that results is 
usually a value called NaN. This 

means "not a number." 

var scor e= ' seven '; 
var score2 = ' nine'; 

var total = score * score2 ; 

You would end up with the value 

NaN. 



USING S'TRING OPERATORS 

JAVASCRIPT 

var greeting= 'Howdy '; 
var name= 'Mol ly' ; 

c02/js/string-opera tor.js 

var welcomeMessage = greeting+ name+ '!'; 

var el = document.getElementByld('greeting'); 
el .textContent = welcomeMessage; 

W:iiMfi 

<hl>Elderflower</ hl> 
<div id="content"> 

c02/string-operator.html 

<div id="greeting" class="message">Hello 
<span id="name">friend</ span>! 

</div> 
</div> 
<scri pt src="js/string-operator .js"></script> 

l;IJillii 

Howdy Molly! 

This example will display a 
personalized welcome message 
on the page. 

The first line creates a variable 
called greeting, which stores 
the message for the user. He~e 
the greeting is the word Howdy. 

The second line creates a 
variable that stores the name of 
the user. The variable is called 
name, and the user in this case is 
Molly. 

The personal welcome message 
is created by concatenating (or 
joining) these two variables, 
adding an exclamation mark, and 
storing them in a new variable 
called we 1 comeMessage. 

Look back at the greeting 
variable on the first line, and 
note how there is a space 
after the word Howdy. If the 
space was omitted, the value 
of we 1 comeMessage would be 
"HowdyMol ly!" 

BASIC JAVASCRIPT INSTRUCTIONS @ 



Howdy Molly, please check your order: 

Custom sign: 
Total tiles: 
Subtotal : 
Shipping: 
Grand total : 

M-Ontague House 
14 
$70 
$7 
$77 



EXAMPLE 
BASIC JAVASCRIPT INSTRUCTIONS 

c02/example.html 

<!DOCTYPE html> 
<html> 

<head> 

1111., .• , 

<title>JavaScript &amp; jQuery - Chapter 2: Basic JavaScript Instructions -
Example</ title> 

<link rel="stylesheet" href="css/c02.css" / > 
</head> 
<body> 

<hl>Elderflower</hl> 
<div id="content"> 

<div id="greeting" class="message">Hello! </div> 
<table> 

<tr> 
<td>Custom sign: </ td> 
<td id="userSign"></ td> 

</ tr> 
<tr> 

<td>Total tiles: </td> 
<td id="ti l es "></td> 

</tr> 
<tr> 

<td>Subtotal: </td> 
<td id="subTotal">$</ td> 

</ tr> 
<tr> 

<td>Shipping: </ td> 
<td id="shipping">$</td> 

</tr> 
<tr> 

<td>Grand total: </td> 
<td id="grandTotal ">S</td> 

</tr> 
</ table> 
<a href="D" class="action">Pay Now</ a> 

</div> 
<script src="js/ example.js"></ script> 

</body> 
</html> 

@ BASIC JAVASCRIPT INSTRUCTIONS 



EXAMPLE 
BASIC JAVASCRIPT 

INSTRUCTIONS 

This example combines several techniques that 

you have seen throughout this chapter. 

You can see the code for this example on the next two pages. Single line 

comments are used to describe what each section of the code does. 

To start. three variables are created that store information that is used 

in the welcome message. These variables are then concatenated (joined 
together) to create the full message the user sees. 

The next part of the example demonstrates how basic math is 
performed on numbers to calculate the cost of a sign. 

• A variable called sign holds the text the sign will show. 

• A property called length is used to determine how many characters 
are in the string (you will meet this property on p128). 

• The cost of the sign (the subtotal) is calculated by multiplying the 
number of tiles by the cost of each one. 

• The grand total is createq by adding $7 for shipping. 

Finally, the information is written into the page by selecting elements 

and then replacing the content of that element (using a technique you 

meet fully in Chapter 5). It selects elements from the HTML page using 
the value of their id attributes and then updates the text inside those 

elements. 

Once you have worked your way through this example, you should have 
a good basic understanding of how data is stored in variables and how to 

perform basic operations with the data in those variables. 

BASIC JAVASCRIPT INSTRUCTIONS e 



EXAMPLE 
BASIC JAVASCRIPT INSTRUCTIONS 

c02/example.htm1 

<!DOCTYPE html> 
<html> 

<head> 

llli&ll 

<title>JavaScript &amp; jQuery - Chapter 2: Basic JavaScript Instructions -
Example</ title> 

<link rel="stylesheet" href="css/c02.css" /> 
</head> 
<body> 

<hl>Elder fl ower</hl> 
<div id="content"> 

<div i d="greeti ng" cl ass="message">Hell o! </di v> 
<table> 

<tr> 
<td>Custom sign: </td> 
<td id="userSign"></td> 

</tr> 
<tr> 

<td>Total tiles: </td> 
<td i d="ti l es"></td> 

</tr> 
<tr> 

<td>Subtotal: </td> 
<td id="subTotal">$</td> 

</tr> 
<tr> 

<td>Shipping: </td> 
<td id="shipping">$</td> 

</tr> 
<tr> 

<td>Grand total : </td> 
<td id="grandTotal ">$</td> 

</tr> 
</table> 
<a href="#" class="action">Pay Now</ a> 

</div> 
<script src="js/ example.js"></ script> 

</body> 
</html> 

@ BASIC JAVASCRIPT INSTRUCTIONS 



A script is made up of a series of statements. Each 

statement is like a step in a recipe. 

Scripts contain very precise instructions. For example, 

you might specify that a value must be remembered 

before creating a calculation using that value. 

Variables are used to temporarily store pieces of 

information used in the script. 

Arrays are special types of variables that store more 

than one piece of related information. 

JavaScript distinguishes between numbers (0 -9), 

strings (text), and Boolean values (true or false). 

Expressions evaluate into a single value. 

Expressions rely on operators to calculate a value. 



EXAMPLE 
BASIC JAVASCRIPT INSTRUCTIONS 

JAVASCRIPT 

II Create variables for the welcome message 
var greeting = 'Howdy '; 
var name = 'Molly'; 
var message= ', please check your order: ' ; 

c02/ js/example.js 

II Concatenate the three variables above to creat e t he welcome message 
var welcome = greeting + name + message; 

II Create variables to hold details about the sign 
var sign = 'Montague House' ; 
var tiles= sign.length; 
var subTotal = tiles * 5; 
var shipping = 7; 
var grandTotal = subTotal + shipping; 

II Get the element that has an id of greeti ng 
var el = document .getElementByid('greeting') ; 
II Replace the content of that element with the personal ized welcome message 
el .textContent = welcome; 

II Get the el ement that has an id of userSign then update its contents 
var el Sign = document .getElementByld('userSign ' )) 
elSign . textContent = sign ; 

II Get the element that has an id of ti l es then update its contents 
var elTiles = document .getElementByid('tiles'); 
elTiles . textContent = tiles ; 

II Get the element that has an id of subTotal then update its contents 
var elSubTotal = document.getElementByid('subTotal ' ); 
el SubTotal . textContent = ' $' + subTotal; 

II Get the element that has an id of shipping then update its contents 
var elSubTotal = document .getElementByid('shipping') ; 
elSubTotal . textContent = '$' +shipping; 

II Get the element that has an id of grandTotal then update its contents 
var elGrandTotal = document.getElementByid( 'grandTotal ') ; 
elGrandTotal . textContent = '$ ' + grandTotal; 

BA SIC JAVASCRIPT INSTRUCTIONS @ 



A script is made up of a series of statements. Each 

statement is like a step in a recipe. 

Scripts contain very precise instructions. For example, 

you might specify that a value must be remembered 

before creating a calculation using that value. 

Variables are used to temporarily store pieces of 

information used in the script. 

Arrays are special types of variables that store more 

than one piece of related information. 

JavaScript distinguishes between numbers (0 -9), 

strings (text), and Boolean values (true or false). 

Expressions evaluate into a single value. 

Expressions rely on operators to calculate a value. 

. . . . . 





Browsers require very detailed instructions about what 
we want them to do. Therefore, complex scripts can run 
to hundreds (even thousands) of lines. Programmers use 

functions, methods, and objects to organize their code. 
This chapter is divided into three sections that introduce: 

FUNCTIONS & OBJECTS BUILT-IN 
METHODS OBJECTS 

Functions consist of a In Chapter 1 you saw that The browser comes with 
series of statements programmers use objects a set of objects that act 
that have been grouped to create models of the like a toolkit for creating 

together because they world using data, and that interactive web pages. 
perform a specific task. objects are made up of This section introduces 
A method is the same as a properties and methods. you to a number of built- in 

function, except methods In this section, you learn objects, which you wi ll 
are created inside (and are how to create your own then see used throughout 
part of) an object. objects using JavaScript. the rest of the book. 

@ FUNCTIONS, METHODS & OBJECTS 

.. 



FUNCTIONS, METHODS & OBJECTS 



WHAT IS A FUNCTION? 

Functions let you group a series of statements together to perform a 
specific task. If different parts of a script repeat the same task, you can 
reuse the function (rather than repeating the same set of statements). 

Grouping together the The steps that the function On the right, there is an example 

statements that are required to needs to perform in order to of a function in the JavaScript 

answer a question or perform a perform its task are packaged file. It is called updateMessage () . 

task helps organize your code. up in a code block. You may 

remember from the last chapter Don't worry if you do not 

Furthermore, the statements in a that a code block consists of one understand the syntax of the 

function are not always executed or more statements contained example on the right; you will 

when a page loads, so functions within curly braces. ( And you do take a closer look at how to wri te 

also offer a way to store the steps not write a semicolon after the and use functions in the pages 

needed to achieve a task. The closing curly brace - like you do that follow. 

script can then ask the function after a statement.) 

to perform all of those steps as Remember that programming 

and when they are required. Some functions need to be languages often rely upon on 

For example, you might have provided with information in name/value pairs. The function 

a task that you only want to order to achieve a given task. For has a name, updateMessage, 

perform if the user clicks on a example, a function to calculate and the value is the code block 

specific element in the page. the area of a box would need (which consists of statements). 

to know its width and height. When you call the function by its 

If you are going to ask the Pieces of information passed name, those statements will run. 

function to perform its task to a function are known as 

later, you need to give your parameters. You can also have anonymous 

function a name. That name functions. They do not have a 

should describe the task it is When you write a function and name, so they cannot be called. 

performing. When you ask it to you expect it to provide you Instead, they are executed as 

perform its task, it is known as with an answer, the response is soon as the interpreter comes 

calling the function. known as a return value. across them. 

@ FUNCTIONS, METHODS & OBJECTS 

... 

... 



A BASIC FUNCTION 
In this example, the user is 

shown a message at the top of 

the page. The message is held 

in an HTML element whose id 

attribute has a value of message. 
The message is going to be 

changed using JavaScript. 

+:ii.\11 

<!DOCTYPE html> 
<html> 

<head> 

Before the closing </body> 

tag, you can see the link to the 

JavaScript file. The JavaScript 

fi le starts with a variable used 

to hold a new message, and is 

followed by a function called 

updateMessage(). 

<ti t l e>Basic Function</title> 
<l i nk rel ="stylesheet" href="css/ c03.css" / > 

</head> 
<body> 

<hl>TravelWorthy</ hl> 
<div id="message">We lcome to our site! </ div> 
<script src="js/ basic-function .js"></ script> 

</ body> 
</ html> 

JAVASCRIPT 

You do not need to worry about 

how this function works yet - you 

will learn about that over the 

next few pages. For the moment, 

it is just worth noting that inside 

the curly braces of the function 

are two statements. 

c03/basic-function .html 

c03/js/basi c-function .js 

var msg = 'Sign up to receive our newsletter for 10% off!'; 
function updateMessage() { 

var el = document.getElementByld('message'}; 
el .textContent = msg; 

} 
updateMessage(}; 

l;IJiilil 

Sign up to receive our 
newsletter for 10% offl 

. .JJl.'ft.711111/r 

These statements update the 

message at the top of the page. 

The function acts like a store; it 

holds the statements that are 

contained in the curly braces 

until you are ready to use them. 

Those statements are not run 

until the function is called. The 

function is only called on the last 

line of this script. 

FUNCTIONS, METHODS & OBJECTS @ 













GETTING MULTIPLE VALUES 
OUT OF A FUNCTION 

Functions can return more than one value using an array. 
For example, this function calculates the area and volume of a box. 

First, a new function is created 

called get Size() . The area of 

the box is calculated and stored 
in a variable called area. 

The volume is calculated and 
stored in a variable called 

vo 1 ume. Both are then placed 
into an array called shes. 

This array is then returned to the 

code that called the getSize() 

funct ion, allowing the values to 
be used. 

function getSize (width, height, depth) { 
var area = width * height; 

} 

var volume = width * height * depth; 
var sizes= [area , volume]; 
return sizes; 

var areaOne = getSize (3, 2, 3)[0]; 
var volumeOne = getSize (3, 2, 3)[1]; 

The ar eaOne variable holds 

the area of a box that is 3 x 2. 

The area is the first value in the 
sizes array. 

The vo 1 umeOne variable holds 

the volume of a box that is 3 x 
2 x 3. The volume is the second 

value in the si zes array. 

FUN CTIONS, METHODS & OBJECTS @ 



ANONYMOUS FUNCTIONS 
& FUNCTION EXPRESSIONS 

Expressions produce a value. They can be used where values are expected. 

If a function is placed where a browser expects to see an expression, 

(e.g., as an argument to a function), then it gets treated as an expression. 

FUNCTION DECLARATION 

A function declaration creates a function that you 
can call later in your code. It is the type of function 

you have seen so far in this book. 

In order to call the function later in your code, you 

must give it a name, so these are known as named 

functions. Below, a function called area() is 
declared, which can then be called using its name. 

function area (width, height ) 
return width * height; 

}; 

var size= area (3, 4) ; 

As you will see on p456, the interpreter always 

looks for variables and function declarations before 
going through each section of a script, line-by-line. 

This means that a function created with a function 

declaration can be called before it has even been 
declared. 

For more information about how variables and 
functions are processed first, see the discussion 

about execution context and hoisting on 
p452 - p457. 

§ FUNCTIONS, METHODS & OBJECTS 

FUNCTION EXPRESSION 

If you put a function where the interpreter would 

expect to see an expression, then it is treated as an 
expression, and it is known as a function expression. 
In function expressions, the name is usually omitted. 

A function with no name is called an anonymous 
function. Below, the function is stored in a variable 

called area. It can be called like any function created 

with a function declaration. 

var ar ea = f unction(width, height ) { 

r eturn width * height; 
} ; 

var size = area (3, 4) ; 

In a function expression, the function is not 

processed until the interpreter gets to that 
statement. This means you cannot cal l this function 

before the interpreter has discovered it. It also means 
that any code that appears up to that point could 

potentially alter what goes on inside this function. 



IMMEDIATELY INVOKED 
FUNCTION EXPRESSIONS 

This way of writing a function is used in several different situations. 
Often functions are used to ensure that the variable names do not conflict 
with each other (especially if the page uses more than one script). 

IMMEDIATELY INVOKED FUNCTION 
EXPRESSIONS (llFE) 

Pronounced "iffy," these functions are not given 
a name. Instead, they are executed once as the 

interpreter comes across them. 

Below, the variable called area will hold the value 

returned from the function (rather than storing the 

function itself so that it can be called later). 

var area = (ltunct i on() 
var wi dth = 3; 

var height = 2; 

return widt h * height; 

}DI); 

The final parentheses (shown on green) after 

the closing curly brace of the code block tell the 
interpreter to call the function immediately. 

The grouping operators (shown on pink) are 

parentheses there to ensure the intrepreter treats 
this as an expression. 

You may see the final parentheses in an llFE 

placed after the closing grouping operator but it 

is commonly considered better practice to place 
the final parentheses before the closing grouping 

operator, as shown in the code above. 

WHEN TO USE ANONYMOUS 
FUNCTIONS AND ll FES 

You will see many ways in which anonymous 
function expressions and llFEs are used throughout 

the book. 

They are used for code that only needs to run once 

within a task, rather than repeatedly being called by 
other parts of the script. For example: 

• As an argument when a function is called 
(to calculate a value for that function). 

• To assign the value of a property to an object. 

• In event handlers and listeners (see Chapter 6) 

to perform a task when an event occurs. 

• To prevent conflicts between two scripts that 
might use the same variable names (see p99). 

llFEs are commonly used as a wrapper around a 

set of code. Any variables declared within that 
anonymous function are effectively protected from 

variables in other scripts that might have the same 
name. This is due to a concept called scope, which 

you meet on the next page. It is also a very popular 

technique with jQuery. 

FUNCTIONS, METHODS & OBJECTS 8 



VARIABLE SCOPE 

The location where you declare a variable will affect where it can be used 

within your code. If you declare it within a function, it can only be used 
within that function. This is known as the variable's scope. 

LOCAL VARIABLES 

When a variable is created inside a function using the 

var keyword, it can only be used in that function. 
It is called a local variable or function-level variable. 
It is said to have local scope or function-level scope. 

It cannot be accessed outside of the function in 
which it was declared. Below, area is a local variable. 

The interpreter creates local variables when the 

function is run, and removes them as soon as the 

function has finished its task. This means that: 

• If the function runs twice, the variable can have 

different values each time. 

• Two different functions can use variables with the 
same name without any kind of naming conflict. 

GLOBAL VARIABLES 

If you create a variable outside of a function, then it 
can be used anywhere within the script. It is called a 
global variable and has global scope. In the example 

shown, wa 11 Size is a global variable. 

Global variables are stored in memory for as long 

as the web page is loaded into the web browser. 
This means they take up more memory than local 

variables, and it also increases the risk of naming 
confl icts (see next page). For these reasons, you 

should use local variables wherever possible. 

If you forget to declare a variable using the var 
keyword, the variable will work, but it will be treated 

as a global variable (this is considered bad practice). 

function getArea(width, height) 

var area = width * height; 
return area ; 

var wallSize = getArea(3, 2); 

document. write(wa 11 Si ze); 

• LOCAL (OR FUNCTION-LEVEL) SCOPE 

• GLOBAL SCOPE 

@ FUNCTIONS, METHODS & OBJECTS 



HOW MEMORY & 
VARIABLES WORK 

Global variables use more memory. The browser has to remember them 
for as long as the web page using them is loaded. Local variables are only 
remembered during the period of time that a function is being executed. 

CREATING THE VARIABLES IN CODE 

Each variable that you declare takes up memory. 

The more variables a browser has to remember, 
the more memory your script requires to run. 
Scripts that require a lot of memory can perform 

slower, which in turn makes your web page take 
longer to respond to the user. 

var wi dth = 15; 

var height = 30; 
var isWal l = true; 
var canPaint = true; 

A variable actually references a value that is stored 

in memory. The same value can be used with more 

than one variable: 

var width= 15 ; ------~ 

var height = 30 ;--------7 

var isWall = true ; 8 
----~ true · var canPaint = true ; 

Here the values for the width and height of the wall 

are stored separately, but the same value of true 
can be used for both i sWa 11 and can Pa int. 

NAMING COLLISIONS 

You might think you would avoid naming collisions; 

after all you know which variables you are using. 
But many sites use scripts written by several people. 
If an HTML page uses two JavaScript files, and both 

have a global variable with the same name, it can 
cause errors. Imagine a page using these two scripts: 

II Show size of the building plot 
function showPlotSize(){ 

var width = 3; 
var height = 2; 

return ' Area: " + (width* height); 

var msg = showArea() 

II Show size of the garden 
funct i on showGardenSize() { 

var width = 12; 

var height = 25; 

return width * height; 

var msg = showGardenSize(); 

e Variables in global scope: have naming conflicts. 

e Variables in function scope: there is no conflict 
between them. 

FUNCTIONS, METHODS & OBJECTS 8 



WHAT IS AN OBJECT? 

Objects group together a set of variables and functions to create a model 

of a something you would recognize from the real world. In an object, 

variables and functions take on new names. 

IN AN OBJECT: VARIABLES BECOME 
KNOWN AS PROPERTIES 

If a variable is part of an object, it is called a 

property. Properties tell us about the object, such as 

the name of a hotel or the number of rooms it has. 

Each individual hotel might have a different name 

and a different number of rooms. 

@ FUNCT IONS, METHODS & OBJECTS 

IN AN OBJECT: FUNCTIONS BECOME 
KNOWN AS METHODS 

If a function is part of an object, it is called a method. 

Methods represent tasks that are associated with 

the object. For example, you can check how many 

rooms are available by subtracting the number of 

booked rooms from the total number of rooms. 



This object represents a hotel. It has five properties and one method. 

The object is in curly braces. It is stored in a variable called hotel . 

Like variables and named functions, 

properties and methods have a 

name and a value. In an object, 

that name is called a key. 

An object cannot have two keys 

with the same name. This is 

because keys are used to access 

their corresponding values. 

The value of a property can be a 

st ring, number, Boolean, array, or 

even another object. The value of a 

method is always a function. 

var hotel = { . KEY 

• VALUE 
................................................................................................................................................... 
~ name : 1 Quay 1 

, ~ 
r······r:o·0·n;·5··~ · · · ··4"Q ·~··················· · ···················· ············· ····················································1 

r••••••bo•o•k•e-ci•~•••••2•5 •~•••0•000•••••••••••••••••••••• U •• ••••••••••••• ••••••••••••••••••••••••••••ooooooooooooo•o• • >•• ••••••1 
PROPERTIES 

These are variables 1·······~iym·~·· · ··i·r:u ·e·~········································ ................................................................. 1 

r:::::·_~?.:?.:~t.Y.:P.:~:~::~::::::c::~~~::~:::·:;.::::::·::~:?.~:~:~: :~::::: ;.::::::·::~:~:~::!:~::·::r;.J 

' :~::~~:~ ; ::~: '. ::::sf~~:~~~~'.::::~; i } METHOD 

This is a funct ion 

} ; 

Above you can see a hotel object. The object 

contains the following key/value pairs: 

PROPERTIES: KEY VALUE 

name string 

rooms number 

booked number 

gym Boolean 

room Types array 

METHODS: checkAva i l ability function 

As you will see over the next few pages, this is just 

one of the ways you can create an object. 

Programmers use a lot of name/value pairs: 

• HTML uses attribute names and values. 

• CSS uses property names and values. 

In JavaScript: 

• Variables have a name and you can assign them a 

value of a string, number, or Boolean. 

• Arrays have a name and a group of values. (Each 

item in an array is a name/value pair because it 

has an index number and a value.) 

• Named functions have a name and value that is a 

set of statements to run if the function is called. 

• Objects consist of a set of name/value pairs 

(but the names are referred to as keys). 

FUNCTIONS, METHODS & OBJECTS 8 







CREATING· OBJECTS USING 
LITERAL NOTATION 

This example starts by creating 

an object using literal notation. 

This object is called hotel which 
represents a hotel called Quay 

with 40 rooms (25 of which have 
been booked). 

Next, the content of the page 

is updated with data from this 
object. It shows the name of the 

hotel by accessing the object's 
name property and the number 
of vacant rooms using the 

checkAvail ability() method. 

To access a property of this 
object, the object name is 

followed by a dot (the period 

symbol) and the name of the 
property that you want. 

Similarly, to use the method, 
you can use the object name 

followed by the method name. 

hotel .checkAvailability() 

If the method needs parameters, 

you can supply them in the 
parentheses (just like you can 

pass arguments to a funct ion). 

8 FUNCTIONS, METHODS & OBJECTS 

c3/ j s/obj ect-1itera1 . j s 

var hote l = { 
name: 'Quay', 
rooms : 40, 
booked : 25, 
checkAvailability: function() { 

return this.rooms - this.booked; 
} 

} ; 

JAVASCRIPT 

var el Name = document .getElementByld('hotelName'); 
elName.textContent =hotel .name; 

var elRooms = document.getElementByid{'rooms'); 
elRooms .textContent = hotel .checkAvailability(); 

• . 

.. · 



CREATING MORE 
OBJECT LITERALS 

JAVASCRIPT 

var hotel = { 
name: 'Park', 
rooms : 120, 
booked : 77, 

c03/js/ object-l iteral2.js 

checkAvailabi lity : function() { 
return this . rooms - th i s.booked; 

} 
} ; 

var elName = document .getElementByid('hotelName') ; 
elName . textContent =hotel .name ; 

var el Rooms = document .getElementByid( ' rooms') ; 
e 1 Rooms . text Content = hote 1 . checkAvai l abi lity(); 

l;IJiiJ51 

Here you can see another object. 

Again it is cal led hote 1, but this 

time the model represents a 

different hotel. For a moment, 

imagine that this is a different 

page of the same travel website. 

The Park hotel is larger. It has 

120 rooms and 77 of them are 

booked. 

The only things changing in the 

code are the values of the hot e 1 

object's properties: 

• The name of the hotel 

• How many rooms it has 

• How many rooms are booked 

The rest of the page works in 

exactly the same way. The name 

is shown using the same code. 

The checkAvai 1 abi l ity() 

method has not changed and is 

cal led in the same way. 

If this site had 1,000 hotels, 

the only thing that would 

need to change would be the 

three properties of this object. 

Because we created a model for 

the hotel using data, the same 

code can access and display the 

details for any hotel that follows 

the same data model. 

If you had two objects on the 

same page, you would create 

each one using the same 

notation but store them in 

variables with different names. 

FUNCTIONS, METHODS & OBJECTS 9 







CREATING MANY OBJECTS: 
CONSTRUCTOR NOTATION 

Sometimes you will want several objects to represent similar things. 
Object constructors can use a function as a template for creating objects. 
First, create the template with the object's properties and methods. 

A function called Hotel will be used as a template 

for creating new objects that represent hotels. Like 
all functions, it contains statements. In this case, 
they add properties or methods to the object. 

The function has three parameters. Each one sets 

the value of a property in the object. The methods 
will be the same for each object created using this 
function. 

function Hotel (name, rooms, booked) { 
........................................................................................... } 
l th i s . name = name ; l .............................................................................................. 
~ th is. rooms = rooms; ~ . . ............................................................................................... 
~this . booked = booked; ~ 
: ......................................................................................... : . 

........................................................................................... } 
l this . checkAvailability = function() { l . . 
l return this.rooms - this . booked; l . . . } . . . . . . 
: ' : . . ............................................................................................ 

} 

PROPERTIES 

METHOD 

.KEY 

• VALUE 

The this keyword is used instead of the object 
name to indicate that the property or method 

belongs to the object that this function creates. 

The name of a constructor function usually begins 
with a capital letter (unlike other functions, which 

tend to begin with a lowercase character). 

Each statement that creates a new property or 

method for this object ends in a semicolon (not a 
comma, which is used in the literal syntax). 

108 FUNCTIONS, METHODS & OBJECTS 

The uppercase letter is supposed to help remind 

developers to use the new keyword when they create 
an object using that function (see next page). 





CREATING OBJECTS USING 
CONSTRUCTOR SYNTAX 

On the right, an empty object 

cal led hote 1 is created using the 
constructor function. 

Once it has been created, three 

properties and a method are 
then assigned to the object. 

( If the object already had any 

of these properties, this would 

overwrite the values in those 
properties.) 

To access a property of this 
object, you can use dot notation, 

just as you can with any object. 

For example, to get the hotel's 

name you could use: 
hotel .name 

Similarly, to use the method, 
you can use the object name 

followed by the method name: 

hotel.checkAvailability() 

e FUNCTIONS, METHODS & OBJECTS 

c3/js/object-constructor.js 

var hotel = new Object(); 

hotel.name= 'Park'; 
hotel.rooms = 120; 
hotel .booked = 77; 
hotel .checkAvailability = function() 

return this . rooms - this.booked; 
} ; 

JAVASCRIPT 

var elName = document.getElementByid('hotelName'); 
elName.textContent = hotel . name; 

var elRooms = document .getElementByid('rooms'); 
elRooms . textContent = hotel .checkAvailability(}; 

1;1Jiil51 

" 

: 

.., 



CREATE & ACCESS OBJECTS 
CONSTRUCTOR NOTATION 

JAVASCRIPT c03/js/mul tipl e-objects . js 

function Hotel (name, rooms, booked) { 
this .name = name; 
this.rooms = rooms; 
this.booked = booked; 
this.checkAvailability = function() 

return this.rooms - this.booked; 
} ; 

var quayHotel 
var parkHotel 

new Hotel('Quay', 40, 25); 
new Hotel( ' Park', 120, 77); 

var details!= quayHotel .name + ' rooms : '; 
detailsl += quayHotel.checkAvailability(); 

var elHotell = docurnent.getElementByid('hotell'); 
elHotell.textContent =details!; 

var details2 = parkHotel .name+ ' rooms: '; 
detai l s2 += parkHotel.checkAvailability(); 

var e1Hote l2 = document.getEl ementByid('hotel2'); 
elHotel2.textContent = details2; 

l;IJiiJil 

To get a better idea of why you 
might want to create mult iple 

objects on the same page, here 

is an example that shows room 
availability in two hotels. 

First, a constructor function 
defines a template for the hotels. 

Next, two different instances 

of this type of hotel object are 
created. The first represents 

a hotel called Quay and the 
second a hotel called Park. 

Having created instances of 
these objects, you can then 

access their properties and 

methods using the same dot 

notation that you use with all 
other objects. 

In this example, data from both 
objects is accessed and written 

into the page. (The HTML 

for this example changes to 
accommodate the extra hotel.) 

For each hotel, a variable is 
created to hold the hotel name, 
followed by space, and the word 

rooms. 

The line after it adds to that 

variable with the number of 
available rooms in that hotel. 

(The+= operator is used to add 
content to an existing variable.) 

FUNCTIONS, METHODS & OBJECTS 8 



ADDING AND REMOVING 
PROPERTIES 

Once you have created an object 

(using literal or constructor 
notation), you can add new 

properties to it. 

You do this using the dot 

notation that you saw for adding 
properties to objects on pl03. 

In this example, you can see that 
an instance of the hotel object 

is created using an object literal. 

Immediately after this, the 

hotel object is given two 
extra properties that show the 

facilities (whether or not it has 

a gym and/or a pool). These 
properties are given values that 

are Booleans (true or false). 

Having added these properties 

to the object, you can access 

them just like any of the objects 
other properties. Here, they 

update the value of the cl ass 

attribute on their respective 
elements to show either a check 

mark or a cross mark. 

To delete a property, you use 

the keyword delete, and then 
use dot notation to identify the 

property or method you want to 

remove from the object. 

In this case, the booked property 
is removed from the object. 

@ FUNCTIONS, METHODS & OBJECTS 

c3/ js/ adding-and-removing-properti es.js JAVASCRIPT 

var hotel = { 
name : 'Park' , 
rooms : 120, 
booked : 77. 

} ; 

hotel .gym = t rue; 
hotel .pool = fal se; 
delete hotel .booked; 

var elName = document .getEl ementByld('hotelName ' ); 
elName.textContent = hotel . name; 

var el Pool = document .getElementByid ('pool ') ; 
elPool.c l assName = ' Pool: ' + hotel. pool ; 

var elGym = document .getEl ementByld('gym ' }; 
elGym.className = 'Gym: ' + hotel .gym; 

l;IJillii 

If an object is created using a constructor function, this syntax only adds 
or removes the properties from the one instance of the object (not all 
objects created with that function). 



RECAP: WAYS TO 
CREATE OBJECTS 

CREATE THE OBJECT, THEN ADD PROPERTIES & METHODS 

In both of these examples, the object is created on 
the first line of the code sample. The properties and 
methods are then added to it afterwards. 

LITERAL NOTATION 

var hotel = {} 

hotel .name= 'Quay'; 
hotel .rooms = 40; 
hotel.booked = 25; 
hotel.checkAvailabil ity =function() 

return this . rooms - this .booked; 
} ; 

Once you have created an object, the syntax for 
adding or removing any properties and methods 
from that object is the same. 

OBJECT CONSTRUCTOR NOTATION 

var hotel = new Object(); 

hotel.name = 'Quay'; 
hotel .rooms = 40 ; 
hotel . booked= 25; 
hotel.checkAvailability =function() 

return this .rooms - this .booked; 
} ; 

CREATING AN OBJECT WITH PROPERTIES & METHODS 

LITERAL NOTATION 

A colon separates the key/value pairs. 
There is a comma between each key/value pair. 

var hotel = { 
name: 'Quay' , 
rooms: 40, 
booked: 25, 
checkAvailability: function() { 

return this.rooms - this .booked; 
} 

} ; 

OBJECT CONSTRUCTOR NOTATION 

The function can be used to create multiple objects. 
The this keyword is used instead of the object name. 

function Hotel(name, rooms, booked) { 
this.name = name; 
th i s.rooms = rooms; 
this.booked = booked; 
this.checkAvailability = function() 

return this . rooms - this.booked; 
} ; 

var quayHotel =new Hotel('Quay', 40 , 25); 
var parkHotel =new Hotel('Park', 120, 77); 

FUNCTIONS, METHODS & OBJECTS @ 



THIS (IT IS A KEYWORD) 

The keyword this is commonly used inside functions and objects. 
Where the function is declared alters what this means. It always refers 

to one object, usually the object in which the function operates. 

A FUNCTION IN GLOBAL SCOPE 

When a function is created at the top level of a script 
(that is, not inside another object or function), then it 

is in the global scope or global context. 

The default object in this context is the window 

object. so when this is used inside a function in the 
global context it refers to the window object. 

Below, this is being used to return properties of the 

window object (you meet these properties on p124). 

function windowSize() { 
var width= this . innerWidth; 

var height = this .innerHeight; 

return [height, width]; 

Under the hood, the this keyword is a reference to 
the object that the function is created inside. 

e FUNCTIONS, METHODS & OBJECTS 

GLOBAL VARIABLES 

All global variables also become properties of the 

window object. so when a function is in the global 
context, you can access global variables using the 
window object, as wel l as its other properties. 

Here, the showWi dth () function is in global scope, 

and this.width refers to the width variable: 

var width = .~QQ; -----~ 

var shape = {width: 300}; 

var showWidth-= function() 

document .write <.~.~.i .. ~.:.~j·~·~·~) ; 
}; 

showWidth(); 

Here, the function would write a value of 600 into the 
page (using the document object's write() method). 



As you can see, the value of this changes in 

different situations. But don't worry if you do not 
follow these two pages on your first read through. 

As you write more functions and objects. these 

concepts will become more familiar, and if-thi s is 
not returning the value you expected, these pages 
will help you work out why. 

A METHOD OF AN OBJECT 

When a function is defined inside an object, it 

becomes a method. In a method, this refers to the 
containing object. 

In the example below, the getArea () method 

appears inside the shape object, so t his refers to 

the shape object it is contained in: 

var shape = { 
width : .~9.9. • ~--------

height : ~9.9 .• (-<----~1 
getArea : function() -J., 

} 
}; 

re turn .t. .h..~.~ .. :.~.~-~.!.~. * .t..h..~.~-=-~-~.~ .9.~.!. ; 

Because the this keyword here refers to the shape 

object, it would be the same as writing: 

return shape .width * shape.height ; 

If you were creating several objects using an 

object constructor (and each shape had different 
dimensions), this would refer to the individual 

instance of the new object you are creating. 

When you called getArea() , it would calculate the 
dimensions of that particular instance of the object. 

Another scenario to mention is when one function 

is nested inside another function. It is only done in 
more complicated scripts, but the value of this can 

vary (depending on which browser you are using). 
You could work around this by storing the value of 
this in a variable in the first function and using the 

variable name in child functions instead of this. 

FUNCTION EXPRESSION AS METHOD 

If a named function has been defined in global 
scope, and it is then used as a method of an object, 

this refers to the object it is contained within. 

The next example uses the same showWi dth () 

function expression as the one on the left-hand 

page, but it is assigned as a method of an object. 

var width = 600; 

var shape= {width : 19.Q}; 

var showWidth = function() 

document .wri te Ct..h..i .. ~ .. :.~~-~.!N 
} ; 

shape.getWidth = showWidth; 
shape .getWidth(); 

The last but one line indicates that the showWi dth () 

function is used as a method of the shape object. 
The method is given a different name: getWi dth (). 

When the getWidth() method is cal led, even though 

it uses the showWi dth () function, this now refers to 

the shape object, not the global context (and 
this.width refers to the width property of the 

shape object). So it writes a value of 300 to the page. 

FUNCTIONS, METHODS & OBJECTS e 



RECAP: STORING DATA 

In JavaScript, data is represented using name/value pairs. 

To organize your data, you can use an array or object to group a set of 

related values. In arrays and objects the name is also known as a key. 

VARIABLES 

A variable has just one key (the variable name) 

and one value. 

Variable names are separated from their value by an 

equals sign (the assignment operator): 

var hotel= 'Quay' ; 

To retrieve the value of a variable, use its name: 

II This ret r i eves Quay: 

hotel ; 

W hen a variable has been declared but has not yet 

been assigned a value, it is undefined. 

If the var keyword is not used, the variable is 

declared in global scope (you should always use it). 

e FUNCTIONS, METHODS & OBJECTS 

ARRAYS 

Arrays can store multiple pieces of information. 

Each piece of information is separated by a comma. 

The order of the values is important because items 

in an array are assigned a number (called an index). 

Values in an array are put in square brackets, 

separated by commas: 

var hotel s = [ 

' Quay ' , 

' Park' , 

' Beach' , 

'Bloomsbury' 

] 

You can think of each item in the array as another 

key/value pair, the key is the index number, and the 

values are shown in the comma-separated list. 

To retrieve an item, use its index number: 

II Thi s retrieves Park: 

hote 1 s [l] ; 

If a key is a number, to retrieve the value you must 

place the number in square brackets. 

Generally speaking, arrays are the only times when 

the key would be a number. 



Note: This recap speci fically relate to storing data. 

You cannot store rules to perform a task in an array. 
They can only be stored in a function or method. 

If you want to access items via a property name or key, use an object 
(but note that each key in the object must be unique). 
If the order of the items is important, use an array. 

INDIVIDUAL OBJECTS 

Objects store sets of name/value pairs. They can be 
properties (variables) or methods (functions). 

The order of them is not important (unlike the array). 
You access each piece of data by its key. 

In object literal notation, properties and methods of 

an object are given in curly braces: 

var hotel = { 
name: ' Quay', 
rooms: 40 

}; 

Objects created with literal notation are good: 

• W hen you are storing I t ransmitting data 
between applications 

• For global or configuration objects that set up 
information for the page 

To access the propert ies or methods of the object, 

use dot notation: 

II Thi s r et r i eves Quay: 

hotel.name; 

MULTIPLE OBJECTS 

When you need to create multiple objects within the 

same page, you should use an object constructor to 
provide a template for the objects. 

function Hotel (name, rooms) 

this .name = name; 

this.rooms = rooms; 

You then create instances of the object using the new 
keyword and then a call to the constructor function. 

var hotell =new Hote l ( ' Quay', 40); 
var hotel2 = new Hotel ( ' Park ' , 120); 

Objects created with constructors are good when: 

• You have lots of objects used with similar 
functionality (e.g., multiple sl ideshows I media 
players/ game characters) within a page 

• A complex object might not be used in code 

To access the properties or methods of the object, 

use dot notation: 

II Thi s ret r ieves Park : 

hotel2.name; 

FUNCTIONS, METHODS & OBJECTS 8 





room2 items[460, 20, 20) 

room3 items[230, 0, 0] 

{accom: 460, food: 20, phone: 20} 

2 {accom: 230, food: 0 , phone: 0} 



WHAT ARE BUILT-IN 
OBJECTS? 

Browsers come with a set of built-in objects that represent things like the 
browser window and the current web page shown in that window. These 

built-in objects act like a toolkit for creating interactive web pages. 

The objects you create w ill usually be specifical ly 

written to suit your needs. They model the data 

used within, or contain functionali ty needed by, 
your script. Whereas, the built-in objects contain 

functional ity commonly needed by many scripts. 

As soon as a web page has loaded into the browser, 

these objects are available to use in your scripts. 

@ FUNCTIONS, METHODS & OBJECTS 

These built-in objects help you get a wide range 

of information such as the width of the browser 
window, the content of the main heading in the page, 

or the length of text a user entered into a form fie ld. 

You access their properties or methods using dot 
notation, just like you would access the properties or 
methods of an object you had written yourself. 



The first thing you need to do is get to know what tools are available. 
You can imagine that your new toolkit has three compartments: 

1 
BROWSER OBJECT 

MODEL 

The Browser Object Model contains 

objects that represent the current 

browser window or tab. It contains 

objects that model things like 

browser history and the 

device's screen. 2 

3 
GLOBAL JAVASCRIPT 

OBJECTS 

The global JavaScript objects 

represent things that the JavaScript 

language needs to create a model 

of. For example, there is an 

object that deals only with 

dates and times. 

DOCUMENT OBJECT 
MODEL 

The Document Object Model uses 

objects to create a representation of 

the current page. It creates a new 

object for each element (and each 

individual section of text) 

within the page. 

WHAT DOES THIS SECTION COVER? 

You have already seen how to access the properties 

and methods of an object, so the purpose of this 

section is to let you know: 

• What built-in objects are available to you 

• What their main properties and methods do 

There will be a few examples in the remaining part 

of this chapter to ensure you know how to use them. 

Then, throughout the rest of the entire book, you will 

see many practical examples of how they are used in 

a range of situations. 

WHAT IS AN OBJECT MODEL? 

You have seen that an object can be used to create a 

model of something from the real world using data. 

An object model is a group of objects, each of 

which represent re lated things from the real world. 

Together they form a model of something larger. 

Two pages back, it was noted that an array can hold 

a set of objects, or that the property of an object 

could be an array. It is also possible for the property 

of an object to be another object. When an object 

is nested inside another object, you may hear it 

referred to as a child object. 

FUNCTIONS, METHODS & OBJECTS @ 







THE BROWSER 
OBJECT MODEL: 
THE WINDOW OBJECT 

The window object represents the current 
browser window or tab. It is the topmost object 
in the Browser Object Model, and it contains 

other objects that tell you about the browser. 

Here are a selection of the 
window object's properties and 

methods. You can also see 
some properties of the screen 
and hi story objects (which are 

children of the window object). 

PROPERTY 

window . innerHeight 

window.innerWidth 

window.pageXOffset 

window . pageYOffset 

window.screenX 

window . screenY 

window.location 

window.document 

window.history 

DESCRIPTION 

Height of window (excluding browser chrome/user interface) (in pixels) 

Width of window (excluding browser chrome/user interface) (in pixels) 

Distance document has been scrolled horizontally (in pixels) 

Distance document has been scrolled vertically (in pixels) 

X-coordinate of pointer, relative to top left corner of screen (in pixels) 

Y-coordinate of pointer, relative to top left corner of screen (in pixels) 

Current URL of window object (or local file path) 

Reference to document object, which is used to represent the current page 
contained in window 

Reference to history object for browser window or tab, which contains details 
of the pages that have been viewed in that window or tab ............................................................................................................................................................................................................................................................................................. 

window. hi story . length Number of items in hi story object for browser window or tab 

window.screen Reference to screen object 

window.screen .width Accesses screen object and f inds value of its width property (in pixels) 

window. screen.height Accesses screen object and finds value of its height property (in pixels) 

METHOD DESCRIPTION 

window . a 1 ert () Creates dialog box with message (user must cl ick OK button to close it) 

window. open () Opens new browser window with URL specified as parameter (if browser has 

............................................................................ ~?P..:.~.~-~-1?.~~i-~.?-~.~.!.!~~.~=--~~.:~a..~.1.:~'. .. ~~~.: .. ~.:.!.~.?~ .. ~~t.~.~~.~.?.~.~L ............................................. . 
window.print() Tells browser that user wants to print contents of current page (acts like user has 

clicked a print option in the browser's user interface) 

8 FUNCTIONS, METHODS & OBJECTS 



USING THE BROWSER 
OBJECT MODEL 

Here, data about the browser is 
col lected from the window object 

and its children, stored in the msg 
variable, and shown in the page. 

The+= operator adds data onto 
the end of the msg variable. 

1. Two of the window object's 
properties, i nnerWi dth and 

i nnerHei ght, show width and 

height of the browser window. 

JAVASCRIPT 

2. Child objects are stored as 

properties of t heir parent object. 
So dot notation is used to access 
them, just like you would access 
any other property of that object. 

In turn, to access the properties 

of the child object, another dot is 

used between the chi ld object's 
name and its properties, 

e.g., window. history . length 

3. The element whose id 
attribute has a value of info is 

selected, and the message that 
has been built up to this point is 
written into the page. 

See p228 for notes on using 

i nnerHTML because it can be 
a security risk if it is not used 

correctly. 

c03/ js/window-obj ect .js 

~var msg = '<h2>browser window</h2><p>wi dth : ' + window. innerWi dth + ' </p>' ; 

~msg += '<p>height: ' + wi ndow. i nnerHeight + '</p>'; 

msg += ' <h2>hi story</h2><p>items : ' + window.h i story. l ength+ 1 </p> 1
; 

msg += ' <h2>screen</h2><p>width : ' +window. screen . width+ 1 </ p> ' ; 
msg += ' <p>heigh t : ' + wi ndow . screen . height+ '</p>'; 

~var el = document.getElementByld(' i nfo ' ); 
~el .i nnerHTML = msg; 

© al ert (' Current page : ' +wi ndow. locati on); 

4 . The window object's alert() 

method is used to create a dialog 
box shown on top of the page. 

It is known as an alert box. 
Although this is a method of the 
window object, you may see it 

used on its own (as shown here) 

because the window object is 
treated as the default object if 

none is specified. (Historically, 
the alert () method was used to 

display warnings to users. These 
days there are better ways to 

provide feedback.) 

FUNCTION S, METHODS & OBJ ECTS @ 



THE DOCUMENT 
OBJECT MODEL: 
THE DOCUMENT OBJ ECT 

The topmost object in the Document Object Model (or DOM) is the 
document object. It represents the web page loaded into the current 
browser window or tab. You meet its child objects in Chapter 5. 

Here are some properties of the 
document object, which tel l you 

about the current page. 

PROPERTY 

document.title 

document. l astModified 

document .URL 

document.domain 

The DOM is vital to accessing 
and amending the contents of 

the current web page. 

METHOD 

document.write() 

document . getElementByld() 

As you will see in Chapter 5, the 
DOM also creates an object for 

each element on the page. 

DESCRIPTION 

Title of current document 

Date on which document was last modified 

Returns string containing URL of current document 

Returns domain of current document 

The following are a few of the 
methods that select content or 

update the content of a page. 

DESCRIPTION 

Writes text to document (see restrictions on p226) 

Returns element, if there is an element with the value of the id attribute 
that matches (fu ll description see p195) 

document. querySe 1ectorA11 () Returns list of elements that match a CSS selector, which is specified as 
a parameter (see p202) 

•••••"•••••••••••••••••••••o•••-•• .. "'''"-''''"''''"''''''''"'''''''"'''''''''' '''''' ·•••••••••"'''''""*''''' ' '''''''''' ' ''''''''''''''''''''''''''''' .. '''' ' '''''''''' ' '''' ' '''''''"' ' ' ''' ' ' ' ' ''' ' ' ' ' ' '''''''''' '"'''''''''''''''''''''''''''_.,_,,_.,,,,, ,,.,,,,,,,.,,.,,,,,,,,, 

document.createElement() Creates new element (see p222) 

document.createTextNode() Creates new text node (see p222) 

s FUNCTIONS, METHODS & OBJECTS 

' 



USING THE DOCUMENT 
OBJECT 

This example gets information 

about the page, and then adds 

that information to the footer. 

1. The details about the page are 

collected from properties of the 

document object. 

JAVASCRIPT 

These details are stored inside 

a variable called msg, along 

with HTML markup to display 

the information. Again, the += 

operator adds the new value 

onto the existing content of the 

msg variable. 

2. You have seen the document 
object's get El ementByid () 

method in several examples so 

far. It selects an element from 

the page using the value of its 

id attribute. You will see this 

method in more depth on p195. 

c03/ j s/document -obj ect . js 

var msg = '<p><b>page ti t l e: </b>' + document.title + '<br /> ' ; 
msg += '<b>page address: </b>' +document.URL+ '<br />'; 
msg += '<b>last modifi ed : </b> ' + document. l astModified + ' </p>' ; 

~var el = document .getElementByld('footer'); 
~el . i nnerHTML = msg ; 

l;IJjiJSI 

page title: TravelWorthy 
page address: http://javascriptbook.com/code/co3/document-object.html 
last modified: 03'10/2014 14:46:23 

See p228 tor notes on using 

i nnerHTML because it can be 

a security risk if it is not used 
correctly. 

The URL w ill look very different 

if you run this page locally rather 

than on a web server. It wi ll likely 

begin with fi 1 e: ///rather than 

w ith ht tp: I/. 

FUN CTIONS, METHODS & OBJECTS @ 



GLOBAL OBJECTS: 
STRING O BJECT 

Whenever you have a value that is a string, you can use the properties 

and methods of the String object on that value. This example stores the 

phrase "Home sweet home " in a variable. 

. var saying 

These properties and methods 

are often used to work with text 
stored in variables or objects. 

On the right-hand page, note 
how the variable name (saying) 

is followed by a dot, then the 
property or method that is being 

demonstrated (like the name of 
an object is fo llowed by a dot 

and its properties or methods). 

This is why the String object is 

known as both a global object , 

because it works anywhere 
within your script, and a wrapper 

object because it acts like a 

wrapper around any value that 
is a string - you can use this 

object's properties and methods 

on any value that is a string. 

The length property counts 
the number of "code units" in a 

string. In the majority of cases, 

one character uses one code 
unit, and most programmers use 

it like this. But some of the rarely 
used characters take up two 

code units. 

e FUNCTIONS, METHODS & OBJECTS 

'Home sweet home • 
' 

PROPERTY 

length 

DESCRIPTION 

Returns number of characters in the string 
in most cases (see note bottom-left) 

METHOD DESCRIPTION 

toUpperCase () Changes string to uppercase characters 

tolowerCase () Changes string to lowercase characters 

charAt () 

i ndexOf() 

lastlndexOf() 

substring() 

split() 

trim() 

replace() 

Takes an index number as a parameter, and returns 
the character found at that position 

Returns index number of the first time a character or 
set of characters is found within the string 

Returns index number of the last time a character or 
set of characters is found within the string 

Returns characters found between two index 
numbers where the character for the first index 
number is included and the character for the last 
index number is not included 

When a character is specified, it spli ts the string 
each t ime it is found, then stores each individual part 
ih an array 

Removes whitespace from start and end of string 

Like find and replace, it takes one value that should 
be found, and another to replace it (by default, it only 
replaces the fi rst match it finds) 



Each character in a string is automatically given a number, called an index 
number. Index numbers always start at zero and not one (just like for 
items in an array). 

Home sweet home 
eoeeoooeoeeeeeoe 

EXAMPLE RESULT 

saying. 1 ength; Home sweet home 16 

EXAMPLE RESULT 

saying . toUpperCase(); Home s weet home 'HOME SWEET HOME I 

saying . tolowerCase(); Home s weet home 'home sweet home ' 

saying.charAt(12); Home sweet h o me 'o' 

saying.indexOf('ee'); H o m e s w e e t h o m e 7 

saying.lastlndexOf('e'); Home sweet hom e 14 

saying.substring(8,14); Home swe et h om e 'et horn ' 

saying.split(' ') ; H om e s w·e e t h om e ['Home' , 'sweet' , 'home' , ' '] 

saying.trim(); H o m e s w e e t h o m e 'Home sweet home' 

saying.replace('me','w'); Ho me sweet home 'How sweet home ' 

FUNCTIONS, METHODS & OBJECTS 8 



WORKING WITH STRINGS 

This example demonstrates the 
1 ength property and many of the 
st ring object's methods shown 

on the previous page. 

1. This example starts by storing 
the phrase "Home sweet home " 
in a variable called saying. 

JAVASCRIPT 

2. The next line tells you how 

many characters are in the string 
using the 1 ength property of the 

String object and stores the 

result in a variable called msg. 
3. This is followed by examples 
showing several of the Stri ng 
object's methods. 

G) var saying= 'Home sweet home '; 
~ var msg = '<h2>length</h2><p> ' +saying.length+ '</p>'; 

The name of the variable 

(saying) is followed by a dot, 

then the property or method that 
is being demonstrated (in the 

same way that the other objects 

in this chapter used the dot 
notation to indicate a property or 
method of an object). 

c03/ js/string-object .js 

msg += '<h2>uppercase</ h2><p>' + saying .toUpperCase() + '</ p>'; 
msg += ' <h2>l owercase</ h2><p>' + saying.tolowerCase() + '</ p>'; 
msg += ' <h2>character index : 12</h2><p>' + saying.charAt(l2) + '</p>'; 

3 msg += '<h2>first ee</h2><p>' + saying.indexOf( ' ee ') + '</p> '; 
msg += '<h2>last e</h2><p>' + saying.lastlndexOf('e') + '</ p>'; 
msg += '<h2>character index: 8-14</ h2><p>' + saying.substring(8, 14) + '</ p>'; 
msg += '<h2>replace</ h2><p>' + saying.replace('me', 'w') + '</ p>' ; 

~var el = document .getElement Byld('info' ) ; 
~el .innerHTML = msg; 

@ FUNCTIONS, METHODS & OBJECTS 

4. The final two lines select the 

element with an id attribute 
whose value is info and then 

add the value of the msg variable 

inside that element. 

(Remember, security issues with 

using the i nnerHTML property 
are discussed on p228.) 



DATA TYPES REVISITED 

In JavaScript there are six data types: 

Five of them are described as simple (or primitive) data types. 

The sixth is the object (and is referred to as a complex data type). 

SIMPLE OR PRIMITIVE DATA TYPES 

JavaScript has five simple (or primitive) data types: 

1. String 

2. Number 

3. Boolean 

4 . Undefined (a variable that has been declared, but 

no value has been assigned to it yet) 

5. Null (a variable with no value - it may have had 

one at some point, but no longer has a value) 

As you have seen, both the web browser and the 

current document can be modeled using objects 

(and objects can have methods and properties). 

But it can be confusing to discover that a simple 

value (like a string, a number, or a Boolean) can have 

methods and properties. Under the hood, JavaScript 

treats every variable as an object in its own right. 

St ring: If a variable, or the property of an object, 

contains a string, you can use the properties and 

methods of the String object on it. 

Number: If a variable, or property of an object, 

stores a number, you can use the properties and 

methods of the Number object on it (see next page). 

Boolean: There is a Boo 1 ean object. It is rarely used. 

(Undefined and null values do not have objects.) 

COMPLEX DATA TYPE 

JavaScript also defines a complex data type: 

6 .0bject 

Under the hood, arrays and functions are considered 

types of objects. 

ARRAYS ARE OBJECTS 

As you saw on p118, an array is a set of key/value 

pairs (just like any other object). But you do not 

specify the name in the key/value pair of an array - it 

is an index number. 

like other objects, arrays have properties and 

methods. On p72 you saw that arrays have a 

property called 1 ength, which tells you how many 

items are in that array. There is also a set of methods 

you can use with any array to add items to it, remove 

items from it, or reorder its contents. You wil l meet 

those methods in Chapter 12. 

FUNCTIONS ARE OBJECTS 

Technically, functions are also objects. But they 

have an additional feature: they are callable, which 

means you can tell the interpreter when you want to 

execute the statements that it contains. 

FUNCTIONS, METHODS & OBJECTS @ 



GLOBAL OBJECTS: 
NUMBER OBJECT 

Whenever you have a value that is a number, 

you can use the methods and properties of the 
Number object on it. 

These methods are helpful 

when dealing with a range of 
applications from financial 

calculations to animations. 

METHOD 

i sNaN () 

M any calculat ions involving 

currency (such as tax rates) will 

need to be rounded to a specific 
number of decimal places. 

DESCRIPTION 

Checks if the value is not a number 

Or, in an animation, you might 
want to specify that certain 

elements. should be evenly 
spaced out across the page. 

toFi xed() Rounds to specified number of decimal places (returns a string) 

toPreci s i on() Rounds to total number of places (returns a st ring) 

toExponen ti a 1 () Returns a string representing the number in exponential notation 

COMMONLY USED TERMS: 

• An integer is a whole number (not a fraction). 
• A real number is a number that can contain a fractional part. 

• A floating point number is a real number that uses decimals to represent a fraction. The term floating point 

refers to the decimal point. 

• Scientific notation is a way of writing numbers that are too big or too small to be convenient ly written in 
decimal form. For example: 3,750,000,000 can be represented as 3.75 x109 or 3.75e+12. 

§ FUNCTIONS, METHODS & OBJECTS 

' 

' 



WORKING WITH 
DECIMAL NUMBERS 

As with the String object the 

properties and methods of the 
Number object can be used with 
with any value that is a number. 

JAVASCRIPT 

1. In this example, a number 
is stored in a variable called 

ori ginalNumber, and it isthen 
rounded up or down using two 
different techniques. 

G) var originalNumber = 10.23456; 
3 ~<..~mo-.\ ~\...,C:.C.S 

In both cases, you need to 
indicate how many digits 
you want to round to. This is 

provided as a parameter in the 
parentheses for that method. 

c03/ js/ number-object.js 

var msg = '<h2>original number</h2><p> ' + ori ginalNumber + ' </p>'; 
~ msg += '<h2> ()</h2><p>' + origina1Number.toFixed(3); + '</p> ' ; 
~ msg += '<h2> ()</h2><p> ' + original Number.toPrecision(3) + ' </p>'; 

var el = document.getElementByld( 'i nfo'}; 
el . innerHTML = msg ; 3 di~i~s 

i;IJiiJ51 2.originalNumber.toFixed(3) 

wi ll round the number stored 
in the variable ori gi na l Number 
to three decimal places. (The 

number of decimal places is 
specified in the parentheses.) 

It will return the number as a 

string. It returns a string because 
fractions cannot always be 

accurately represented using 
floating point numbers. 

2.toPrecision(3) uses the 

number in parentheses to 
indicate the total number of 

digits the number should have. 

It wi ll also return the number 
as a string. ( It may return a 
scientific notation if there are 

more digits than the specified 
number of positions.) 

FUNCTIONS, METHODS & OBJECTS @ 



GLOBAL OBJECTS: 
MATH OBJECT 

The Math object has properties and methods 

for mathematical constants and functions. 

PROPERTY DESCRIPTION 

Math.PI Returns pi (approximately 3.14159265359) 

METHOD DESCRIPTION 

Math. round() Rounds number to the nearest integer 

Mat h. sqrt (n) Returns square root of positive number, e.g., Math. sqrt (9) returns 3 
................................................................................................................................... ............................................................................. ........................................ ······ ························· 
Math. cei 1 () Rounds number up to the nearest integer 

Ma th. floor() 

Math. random() 

Because it is known as a global 
object, you can just use the 

name of the Math object followed 

by the property or method you 

want to access. 

Rounds number down to the nearest integer 

Generates a random number between 0 (inclusive) and 1 (not inclusive) 

Typically you will then store the 
resulting number in a variable. 

This object also has many 

trigonometric functions such as 
si n(), cos () , and tan(). 

The trigonometric functions 
return angles in radians which 

can then be converted into 

degrees if you divide the number 
by (pi/ 180). 

9 FUNCTIONS, METHODS & OBJECTS 



MATH OBJECT TO CREATE 
RANDOM NUMBERS 

This example is designed to 

generate a random whole 
number between 1 and 10. 

The Math object's random() 
method generates a random 

number between 0 and 1 (with 

many decimal places). 

JAVASCRIPT 

To get a random whole number 
between 1 and 10, you need to 
multiply the randomly generated 

number by 10. 

This number wi ll still have many 
decimal places, so you can round 

it down to the nearest integer. 

The floor() method is used 
to specifically round a number 
down (rather than up or down). 

This will give you a value 

between 0 and 9. You then add 
1 to make it a number between 1 

and 10. 

c03/js/math-object.js 

var randomNum = Math.floor((Math.random() * 10) + l); 

var el = document.getElementByid('info'); 
el .innerHTML = '<h2>random number</h2><p>' + randomNum + 1 </p>'; 

l:jJiiJSI If you used the round () method 
instead of the floor() method, 
the numbers 1 and 10 would 

be chosen around half of the 

number of times that 2-9 would 
be chosen. 

Anything between 1.5 and 1.999 
would get rounded up to 2, and 

anything between 9 and 9.5 
would be rounded down to 9. 

Using the floor () method 

ensures that the number is 
always rounded down to the 

nearest integer, and you can 

then add 1 to ensure the number 
is between 1and10. 

FUNCTIONS, METHODS & OBJECTS @ 





GLOBAL OBJECTS: 
DATE OBJECT (AND TIME) 

Once you have created a Date object, the following methods let you set 

and retrieve the time and date that it represents. 

METHOD DESCRIPTION 

getDate() setDate() Returns I sets the day of the month (1-31) 
··•······················································· ...................................................... . 
getDay () Returns the day of the week (0-6) 

getFul 1 Year() setFul 1 Year () Returns I sets the year (4 digits) 

getHours () setHours () Returns I sets the hour (0-23) 

getMi 11 i seconds () setMi 11 i seconds () Returns I sets the milliseconds (0-999) 
oooo .. OoOOoOOOOOOOOOOOOOOoO OOo-+o oooo+o .. + .. ooo·• ·ooo o+ooooOoo00000000>00000+0000000000000000000000000000000-0000-0000 .. 00000HOOOO+O>Ooo·Ooo ooooooooooo 00000000000000 ............................ , •• _,,, ............... - •• 00000000 .... 0*000 ... 000 .. 0 .. 0000 .. 00 .. 000000•0•>+ooo ooooo ooooo+oo+ o o 

getMi nutes () setMi nutes () Returns I sets the minutes (0-59) 
............................. . ..................... . ......... . ......................................................................................... u ................................................... ......................... . ................................. - ................... . 

getMonth () setMonth () Returns/ sets the month (0-11) 

getSeconds() setSeconds() Returns I sets the seconds (0-59) 

Number of milliseconds since January 1, 1970, 
get Ti me() setTi me() 00:00:00 UTC (Coordinated Universal Time) 

and a negative number for any t ime before ........................................... ...................................................................... ................................................................................................................................................................. 
getTi mezoneOffset () Returns time zone offset in mins for locale 
............................................................................................................................................................................................................................................................................................. 
toDateStri ng () Returns "date" as a human-readable string 

to Ti meStri ng () Returns "time" as a human-readable string 
................................................................................................................. -........................................................................................................................................................................... . 
to String() Returns a string representing the specified date 

The toDateStri ng () method 

will display the date in the 

fo llowing format: 
Wed Apr 16 1975. 

If you want to display the date in 
another way, you can construct 

a different date format using the 
individual methods listed above 

to represent the individual parts: 
day, date, month, year. 

toTimeStri ng () shows the time. 

Several programming languages 
specify dates in milliseconds 

since midnight on Jan 1, 1970. 
This is known as Unix time. 

A visitor's location may affect 
time zones and language spoken. 

Programmers use the term 
locale to refer to this kind of 

location-based information. 

The Date object does not store 
the names of days or months as 

they vary between languages. 

Instead, it uses a number from 

0 to 6 for the days of the week 
and 0to11 for the months. 

To show their names, you need 

to create an array to hold them 
(see p143). 

FUNCTIONS, METHODS & OBJECTS 8 



CREATING A DATE OBJ ECT 

1. In this example, a new Date 

object is created using the 

Date {) object constructor 

It is called today. 

JAVASCRIPT 

CD var t oday = new Date(); 

If you do not specify a date 
when creating a Date object, it 

w ill contain the date and t ime 
when the JavaScript interpreter 

encounters that line of code. 

(3) var year = today .getFullYear(); 

~var el = document .getElementByld('footer' ); 
~el .innerHTML = '<p>Copyright &copy;' +year+ '</p>'; 

•ati•H• 
j 

Copyright © 2014 

@ FUNCTIONS, METHODS & OBJECTS 

Once you have an instance of the 

Date object (holding the current 
date and time), you can use any 

of its properties or methods. 

c03/js/date-object . js 

2. In this example, you can see 
that getFull Year() is used to 

return the year of the date being 

stored in the Date object. 

3. In this case, it is being used 
to write the current year in a 
copyright statement. 

' 

., 



WORKING WITH 
DATES & TIMES 

To specify a date and time, you 
can use this format: 

YYYY, MM, OD, HH, MM, SS 
1996, 04, 16, 15, 45 , 55 

This represents 3:45pm and 55 
seconds on Apri l 16, 1996. 

JAVASCRIPT 

var today= new Date(); 

The order and syntax for this is: 

Year four digits 
Month 0-11 (Jan is 0) 

Day 1-31 
Hour 0-23 

M inutes 0-59 
Seconds 0-59 
Milliseconds 0-999 

var year= today.getFullYear(); 
var est= new Oate('Apr 16, 1996 15:45:55 ' ); 

11) var difference= today.getTime() - est.getTime(); 
Q) difference= (difference/ 31556900000); 

var elMsg = document.getElementByid('message'); 

Another way to format the date 

and time is like this: 

MMM 00, YYYY HH:MM:SS 
Apr 16, 1996 15 :45:55 

You can omit the time portion if 

you do not need it. 

c03/js/date-object-difference.js 

elMsg.textContent = Math.floor(difference) + ' years of online travel advice'; 

•4!i'l5' 1. In this example, you can see a 

date being set in the past. 

2. If you try to find the difference 
between two dates, you will end 

up with a result in milliseconds. 

3. To get the difference in 

days/weeks/years, you divide 
this number by the number of 

milliseconds in a day/week/year. 

Here the number is divided by 
31,556,900,000 - the number 

of milliseconds in a year (that is 
not a leap year). 

FUNCTIONS, METHODS & OBJECTS @ 



METHODS & OBJECTS 



EXAMPLE 
FUNCTIONS, 

METHODS & OBJECTS 

This example is split into two parts. The first 

shows you the detai ls about the hotel, room 

rate, and offer rate. The second part indicates 
when the offer expires. 

All of the code is placed inside an immediately invoked function 
expression (llFE) to ensure any variable names used in the script do not 

clash with variable names used in other scripts. 

The first part of the script creates a hot el object; it has three properties 
(the hotel name, room rate, and percentage discount being offered), plus 
a method to calculate the offer price which is shown to the user. 

The details of the discount are written into the page using information 

from this hote 1 object. To ensure that the discounted rate is shown with 
two decimal places (like most prices are shown) the . to Fixed () method 

of the Number object is used. 

The second part of the script shows that the offer will expire in seven 

days. It does this using a function called offerExpi res(). The date 
currently set on the user's computer is passed as an argument to the 
offerExpi res() function so that it can calculate when the offer ends. 

Inside the function, a new Date object is created; and seven days is 

added to today's date. The Date object represents the days and months 
as numbers (starting at 0) so - to show the name of the day and month -
two arrays are created storing all possible day and month names. When 

the message is written, it retrieves the appropriate day/month from 

those arrays. 

The message to show the expiry date is built up inside a variable called 

ex pi ryMsg.The code that calls the offerExpi res () function and 

displays the message is at the end of the script. It selects the element 

where the message should appear and updates its content using the 
i nnerHTML propert y, which you will meet in Chapter 5. 

FUNCTIONS, METHODS & OBJECTS 8 



EXAMPLE 
FUNCTIONS, METHODS & OBJECTS 

c03/j s/example.js JAVA SC RIPT 

I* The scr i pt is placed i nside an immediately invoked function expression 
which helps prot ect the scope of variab les *I 

-(function() { 

II PART ONE : CREATE HOTEL OBJECT AND WRITE OUT THE OFFER DETAILS 

II Create a hotel obj ect using object l i t eral syntax 
var hotel = { 

name: 'Park', 
roomRate: 240, II Amount in dollars 
discount : 15, II Percentage di scount 
offerPrice : function() { 

var offerRate = this . roomRate * ((100 - this .discount) I 100); 
return offerRate; 

II Wri te out the hotel name , standard rate, and the special rat e 
var hotel Name, roomRate, specialRate ; I I Declare variables 

hotelName = document .getElementByid('hotelName'); 
roomRate = document.getElementByid('roomRate'); 
specialRate = document .getElementByld('specialRate'); 

II Get el ement s 

hotelName.textContent = hotel .name; I I Write hotel name 
roomRate.textContent = '$ ' + hotel . roomRate . toFixed(2) ; II Write room rate 
specialRate . textContent = '$' +hotel .offerPrice(); II Write offer pri ce 

If you read the comments in the code, you can see how this example works. 

8 FUNCTIONS, METHODS & OBJECTS 

' 



EXAMPLE 
FUNCTIONS, METHODS & OBJECTS 

JAVASCRIPT c03/j s/example. j s 

II PART TWO: CALCULAT E ANO WRITE OUT THE EX PIRY DETAILS FOR THE OFFER 
var expiryMsg; II Message displ ayed t o users 
var today ; II Today's dat e 
var el Ends ; II The element that shows the message about the offer endi ng 

function of ferExpires (today) { 
II Decl are variables within the functi on for l ocal scope 
var weekFromToday, day, date, month, year, dayNames , monthNames; 
II Add 7 days time (added i n mi l li seconds) 
weekFromToday =new Dat e(today .getTi me () + 7 * 24 * 60 * 60 * 1000) ; 
I I Create arrays to hol d t he names of days I months 
dayNames = [ ' Sunday' , ' Monday' , 'Tuesday ' , 'Wednesday ', 'Thursday' , 

0 ' Friday', 'Saturday ' ] ; 
mont hNames =[' January', ' February', 'March', 'Apri l ', 'May ' , ' June ' , 

0 ' Jul y' , 'August ' , 'September' , 'October' , ' November' , 'December ' ] ; 
II Collect the parts of the dat e t o show on t he page 
day = dayNames [weekFromToday . getOay ()]; 
date= weekFromToday .getOate(); 
month= mont hNames[wee kFromToday.getMonth()] ; 
year= weekFromToday .getFullYear() ; 
I I Create the message 
expi ryMsg = 'Offer expires next ' ; 
expi ryMsg += day + ' <br I>( ' +date+ ' ' +month+ ' ' +year + ')'; 
retu rn expiryMsg; 

today= new Date() ; 
elEnds = document .getEl ementByid( 'off erEnds'); 
elEnds .i nnerHTML = offerExpires(today) ; 

II Put t oday's date in vari able 
II Get t he offerEnds el ement 
II Add t he expi ry message 

II Finish the immediately i nvoked functi on exp ression 
} () ) ; 

0 This symbol indicates that 
the code is wrapping from the 

previous line and should not 
contain line breaks. 

This is a good demonstration of several concepts relating to date, but if 
the user has the wrong date on their computer (perhaps their clock is set 

incorrectly), it wi ll not show a date seven days from now - it wil l show a 
date seven days from the time the computer thinks it is. 

FUNCTIONS, METHODS & OBJECTS 8 



Functions allow you to group a set of related 

statements together that represent a single task. 

Functions can take parameters (informatio rJ required 

to do their job) and may return a value. 

An object is a series of variables and functions that 

represent something from the world around you . 

In an object, variables are known as properties of the 

object; functions are known as methods of the object. 

Web browsers implement objects that represent both 

the browser window and the document loaded into the 

browser window. 

JavaScript also has several built-in objects such as 

String, Number, Math, and Date. Their properties and 

methods offer functionality that help you write scripts. 

Arrays and objects can be used to create complex data 

sets (and both can contain the other). 





Looking at a flowchart (for all but the most basic scripts), 

the code can take more than one path, which means the 
browser runs different code in different situations. In this 
chapter, you will learn how to create and control the flow of 

data in your scripts to handle different situations. 

Scripts often need to behave differently depending upon how the user interacts with the web 

page and/or the browser window itself. To determine which path to take, programmers often 
rely upon the following three concepts: 

EVALUATIONS 
You can analyze values in 

your scripts to determine 
whether or note they 

match expected results. 

9 DECISIONS & LOOPS 

DECISIONS 
Using the results of 
evaluations, you can 

decide which path your 
script should go down. 

LOOPS 
There are also many 

occasions where you will 
want to perform the same 

set of steps repeatedly. 

.. 
j 



ruP E ... ... 













USING 
COMPARISON OPERATORS 

JAVASCRIPT c04/ js/ compar ison-operator.js 

var pass = 50; II Pass mark 
var score = 90; II Score 

II Check if t he user has passed 
var hasPassed = score >= pass ; 

II Write the message i nt o the page 
var el = document .getEl ementByld(' answer '); 
e 1 . t extContent = 'Leve 1 passed: ' + has Passed; 

Level passed: true 

-

At the most basic level, you can 

evaluate two variables using a 

comparison operator to return a 
t rue or f al se value. 

In this example, a user is taking a 

test, and the script tells the user 
whether they have passed this 
round of the test. 

The example starts by setting 
two variables: 

1. pass to hold the pass mark 
2 . score to hold the users score 

To see if the user has passed, 

a comparison operator checks 
whether scor e is greater than or 

equal to pass. The result wi ll be 

true or false, and is stored in 
a variable called has Passed. On 
the next line, the result is written 

to the screen. 

The last two lines select the 
element whose id attribute 

has a value of answer, and then 

updates its contents. You will 
learn more about this technique 

in the next chapter. 

DECI SIONS & LOOPS s 





COMPARI NG 
TWO EXPRESSIONS 

In this example, there are two 

rounds to the test and the 

code will check if the user has 

achieved a new high score, 

beating the previous record. 

The script starts by storing the 

user's scores for each round 

in variables. Then the highest 

scores for each round are stored 

in two more variables. 

The comparison operator checks 

if the user's total score is greater 

than the highest score for the 

test and stores the result in a 

variable cal led comparison. 

JAVASCRIPT c04/js/comparison-operator-continued.js 

var scorel = 90; 
var score2 = 95; 
var highScorel 75; 
var highScore2 = 95; 

II Round 1 score 
II Round 2 score 
II Round 1 high score 
II Round 2 high score 

II Check if scores are higher than current high scores 
var comparison= (score!+ score2) > (highScorel + highScore2); 

II Write the message into the page 
var el = document.getElementByid( 'answer'); 
el . textContent =' New high score:'+ comparison; 

New high score: true 

In the comparison operator, the 

operand on the left calculates 

the user's total score. The 

operand on the right adds 

together the highest scores for 

each round. The result is then 

added to the page. 

When you assign the result of 

the comparison to a variable, 

you do not strictly need the 

containing parentheses (shown 

in white on the left-hand page). 

Some programmers use them 

anyway to indicate that the code 

evaluates into a single value. 

Others only use containing 

parentheses when they form 

part of a condition. 

DECISIONS & LOOPS @ 







USING LOGICAL AND 

In this example, a math test 

has tworounds.Foreach round 

there are two variables: one 

holds the user's score for that 

round; the other holds the pass 

mark for that round. 

The logical AND is used to see 

if the user's score is greater 

than or equal to the pass mark 

in both of the rounds of the test. 

The result is stored in a variable 

called passBoth. 

The example fin ishes off by 

letting the user know whether 

or not they have passed both 

rounds. 

c04/js/ logical-and .js 

var scorel = 8; II Round 1 score 
var score2 = 8; II Round 2 score 
var passl 6; II Round 1 pass mark 
var pass2 = 6; II Round 2 pass mark 

II Check whether user passed both rounds , store result in variable 
var passBoth = (scorel >= passl) && (score2 >= pass2); 

II Create message 
var msg = 'Both rounds passed: ' + passBoth; 

II Write the message i nto the page 
var el = document.getElementBy!d( 'answer') ; 
el.textContent = msg; 

It is rare that you would ever 

write the Boolean result into the 

page (like we are doing here). 

As you w ill see later in the 

chapter, it is more likely that you 

would check a condition, and if it 

is true, run other statements. 

s DECISIONS & LOOPS 

r. 

II 

Both rounds passed: 
true 

I 

JAVASCRIPT 

i;IJiiJll 

1 
I 

.. 

. 
". 



USING LOGICAL OR 
& LOGICAL NOT 

Here is the same test but this 

time using the logical OR operator 

to find out if the user has passed 

at least one of the two rounds. 

If they pass just one round, they 

do not need to retake the test. 

JAVASCRIPT 

Look at the numbers stored in 

the four variables at the start 

of the example. The user has 

passed both rounds, so the 

mi nPass variable will hold the 

Boolean value of true. 

var scorel = 8; 
var score2 = 8; 
var passl 6; 
var pass2 = 6; 

II Round 1 score 
II Round 2 score 
II Round 1 pass mark 
II Round 2 pass mark 

Next, the message is stored 

in a variable called msg. At the 

end of the message, the logical 

NOT w ill invert the result of the 

Boolean variable so it is false. 

It is then written into the page. 

c04/j s/logi cal -or-logical-not .j s 

II Check wh ethe r user passed one of the two rounds. store result in vari able 
var minPass = ((scorel >= passl) I I (score2 >= pass2)); 

II Create message 
var msg = 'Resit required: ' + !(minPass); 

II Write the message into the page 
var el = document.getElementByld('answer'); 
el .textContent = msg; 

1;1Ji1Jil 

DECISIONS & LOOPS s 





USING IF STATEMENTS 

JAVASCRIPT c04/js/if-statement.js 

var score 75; II Score 
var msg; II Message 

if (score>= 50) { II If score is 50 or higher 
msg = 'Congratulations!'; 
msg += ' Proceed to the next round . ' ; 

var el = document.getElementByld('answer ' ) ; 
el .textContent = msg; 

IQJiilil 

Congratulations! 
Proceed to the next 

round. 

JAVASCRIPT c04/js/if-statement-with-function . js 

var score = 75; 
var msg = ' ' ; 

II Score 
II Message 

dfunction congratulate() { L} msg += ' Congratulations! ' ; 

CD 
® 

if (score>= 50) { II If score is 50 or more 
congratulate(); 
msg += 'Proceed to the next round . ' ; 

var el = document.getElementByld('answer' ) ; 
el . i nnerHTML = msg; 

In this example, the i f statement 
is checking if the value currently 
held in a variable called score is 
50 or more. 

In this case, the statement 
evaluates to true (because the 
score is 75, which is greater than 
50). Therefore, the contents 
of the statements within the 
subsequent code block are 
run, creating a message that 
congratulates the user and tells 
them to proceed. 

After the code block, the 
message is written to the page. 

If the value of the score variable 
had been less than 50, the 
statements in the code block 
would not have run, and the code 
would have continued on to the 
next line after the code block. 

On the left is an alternative 
version of the same example 
that demonstrates how lines of 
code do not always run in the 
order you expect them to. If the 
condition is met then: 
1. The first statement in the code 
block calls the congratulate() 
function. 
2. The code within the 
congratulate() function runs. 
3. The second line within the if 
statement's code block runs. 

DECISIONS & LOOPS 8 





USING IF ... ELSE 
STATEMENTS 

JAVASCRIPT c04/js/if-el se-statement.js 

var pass = 50; 
var score = 75; 
var msg; 

II Pass mark 
II Current score 
II Message 

II Select message to write based on score 
if (score >= pass) { 

msg = 'Congratulations, you passed!'; 
} else { 

msg = 'Have another go!'; 

var el = document .getElementByld('answer'); 
el . textContent = msg; 

l;IJiilil 

Congratulations! 
Proceed to the next 

round. 

Here you can see that an 

if ... e 1 se statement al lows you 

to provide two sets of code: 

1. one set if the condition 

evaluates to true 

2. another set if the condition is 

false 

In this test, there are two 

possible outcomes: a user can 

either get a score equal to or 

greater than the pass mark 

(which means they pass), or 

they can score less than the pass 

mark (which means they fail). 

One response is required for 

each eventuality. The response is 

then written to the page. 

Note that the statements inside 

an if statement should be 

followed by a semicolon, but 

there is no need to place one 

after the closing curly brace of 

the code blocks. 

An if statement only runs a set of statements if the 

condition is true: 

An if ... e 1 se statement runs one set of code if the 

condition is true or a different set if it is fa 1 se: 

' 
Is score >= 50? 

' ' 
Is score>= 50? 

' I I I 
You passed! Try again ... You passed! 

continue script ... continue script ... 

DECISIONS & LOOPS s 



SWITCH STATEMENTS 

A switch statement starts with a 
variable called the switch value. 
Each case indicates a possible 
value for this variable and the 
code that should run if the 

variable matches that value. 

Here, the variable named 1 eve l is the switch value. 
If the value of the l eve 1 variable is the string One, 

then the code for the first case is executed. If it is 
Two, the second case is executed. If it is Three, the 

third case is executed. If it is none of these, the code 
for the defaul t case is executed. 

The entire statement lives in one code block (set 
of curly braces), and a colon separates the option 
from the statements that are to be run if the case 
matches the switch value. 

At the end of each case is the break keyword. It tells 

the JavaScript interpreter that it has finished with 

this switch statement and to proceed to run any 
subsequent code that appears after it. 

IF ... ELSE 

• There is no need to provide an el se 
option. (You can just use an if 
statement.) 

• With a series of if statements, they are 

all checked even if a match has been found 
(so it performs more slowly than switch). 

164 DECISIONS & LOOP_S 

vs. 

0 

switch (level) { 

case 'One ': 
title= 'Level 1 ' ; 
break; 

case 'Two': 
tit 1 e = ' Level 2 ' ; 
break; 

case ' Three' : 
title = 'Level 3' ; 
break ; 

default : 
title= 'Test'; 
break; 

SWITCH 

• You have a default option that is run if 

none of the cases match. 

• If a match is found, that code is run; then 
the break statement stops the rest of 

the switch statement running (providing 
better performance than multiple i f 
statements). 



USING SWITCH 
STATEMENTS 

JAVASCRIPT 

var msg; 
var level = 2; 

II Message 
11 Level 

c04/js/switch-statement .js 

/I Determine message based on level 
switch (level) { 
case 1: 

msg = 'Good luck on the first test ' ; 
break; 

case 2: 
msg = 'Second of three - keep going!'; 
break; 

case 3: 
msg = ' Final round, al most there!'; 
break; 

default : 
msg = 'Good l uck!'; 
break; 

var el = document.getEl ementByld('answer ' ); 
el . textContent = msg; 

•0•11151 

Second of thre~
keep going! 

~ 

In this example, the purpose 

of the switch statement is to 

present the user with a different 
message depending on which 

level they are at. The message is 
stored in a variable called msg. 

The variable called l eve 1 
contains a number indicating 

which level the user is on. This 

is then used as the switch value. 
(The switch value could also be 

an expression.) 

In the following code block 

(inside the curly braces), there 
are three options for what the 

value of the 1eve1 variable might 

be: the numbers 1, 2, or 3. 

If the value of the 1eve1 variable 
is the number 1, the value of the 
msg variable is set to 'Good luck 

on the first test'. 

If the value is 2, it will read: 

'Second of three - keep going! · 

If the value is 3, the message 
will read: 'Final round, almost 

t here! ' 

If no match is found, then the 
value of the msg variable is set to 

'Good l uck! ' 

Each case ends with the break 

keyword which will tell the 
JavaScript interpreter to skip 

the rest of this code block and 
continue onto the next. 

DECISIONS & LOOPS s 



TYPE COERCION 
& WEAK TYPING 

If you use a data type JavaScript did not expect, 
it tries to make sense of the operation rather 
than report an error. 

JavaScript can convert data 

types behind the scenes to 
complete an operation. This is 

known as type coercion. For 
example, a string 'l ' could be 
converted to a number 1 in the 

following expression:(' 1' > 0). 

As a result, the above expression 
would evaluate to true. 

JavaScript is said to use weak 

typing because the data type 
for a value can change. Some 

other languages require that you 
specify what data type 

each variable will be. They are 
said to use strong typing. 

Type coercion can lead to 
unexpected values in your 

code (and also cause errors). 
Therefore, when checking if two 

values are equal, it is considered 

better to use strict equals 
operators ===and ! == 
rather than == and ! = as these 

strict operators check that the 
value and data types match. 

8 DECISIONS & LOOPS 

DATA TYPE PURPOSE 

string Text 

number Number 

Boolean true or false 

nul 1 Empty value 

undefined Variable has been declared but not yet assigned a value 

NaN is a value that is counted as a number. You may see it when a 

number is expected, but is not returned, e.g .. ('ten' /2) results in NaN. 

.. 



FALSY VALUES 

VALUE 

var highScore = f alse ; 

TRUTHY & FALSY 
VALUES 

Due to type coercion, every value in JavaScript 

can be treated as if it were true or false; and 

this has some interesting side effects. 

DESCRIPTION 

The traditional Boolean fa 1 se 

Falsy values are treated as if they 

are fa 1 se. The table to the left 

shows a hi ghScore variable with 
a series of values, all of which 

are falsy. 
var hi ghScore = O; The number zero 

~-~;··h·~ -~i;$·~·~;~···~·· ·;·;·;·· ··· ···· · · · · · · ···· ·· ···N~N-(N~·~·~· ·N·~~-~······~)·· ··:· '"······ ······· ···· · ··· ···· · 
.. ..... ....... .......... . .... ... . ....... .... ... . .... ... .... .... ... . .... ....... .... .... ... . ••ljij; .. .................................. . 

var highScore = 10/'score ' ; Empty value~ 

var highScore; A variable with no value assigned to it 

Almost everything else evaluates to truthy ... 

TRUTHY VALUES 

VALUE DESCRIPTION 

var hi ghScore = true ; The traditional Boolean true 

var highScore = l; Numbers other than zero 

var highScore = 'carr ot ' ; Strings with content 

var highScore = 10/5; Number calculations 

var highScore = 'true'; true written as a string 

var hi ghScor e = ' O' ; Zero written as a string 

var highScore = ' fa l se'; fa 1 se written as a string 

Falsy values can also be treated 

as the number 0 . 

Truthy values are treated as if 
they are true. Almost everything 
that is not in the falsy table can 

be treated as if it were true. 

Truthy values can also be treated 

as the number 1. 

In addition, the presence of an 
object or an array is usually 

considered truthy, too. This is 
commonly used when checking 

for the presence of an element 
in a page. 

The next page will explain more 

about why these concepts are 

important. 

DECISIONS & LOOPS 8 



CHECKING EQUALITY 
& EXISTENCE 

Because the presence of an object or array can 

be considered truthy, it is often used to check 

for the existence of an element within a page. 

A unary operator returns a 
result with just one operand. 

Here you can see an if 
statement checking for the 
presence of an element. If the 

element is found, the result is 
truthy, so the first set of code is 

run. If it is not found, the second 
set is run instead. 

if (document .getElementByid('header')) 

II Found: do something 
else { 

II Not found: do somethi ng else 

Those new to JavaScript often think the fol lowing would do the same: 
if (document .getElementByld('header') ==true) 

but document.getEl ementByld ('header ') would return an object 

which is a truthy value but it is not equal to a Boolean value of true. 

Because of type coercion, the strict equality operators ===and ! == result 

in fewer unexpected values than ==and ! = do. 

If you use == the fo llowing values 
can be considered equal: 

false, 0, and ' ' (empty string). 

However, they are not equivalent 
when using the strict operators. 

EXPRESSION 

(false == 0) 

(false === 0) 

RESULT 

true 

false 

(false== ") true 

(false === ' ') false 

(0 :: I I) 

(O === II) 

8 DECISIONS & LOOPS 

true 
false 

Although null and undefined are 

both falsy, they are not equal to 

anything other than themselves. 
Again, they are not equivalent 

when using strict operators. 

EXPRESSION RESULT 

(undefined ==null) true 

(null == false) false 

(undefi ned == false) fa l se 
(null == 0) false 

(undefined == O) false 

(undefined === null) false 

Although NaN is considered falsy, 
it is not equivalent to anything; 

it is not even equivalent to itself 

(since NaN is an undefinable 
number, two cannot be equal). 

EXPRESSION 

(Nan == null) 

(NaN == NaN) 

RESULT 

false 

false 



SHORT CIRCUIT VALUES 

Logical operators are processed left to right. 
They short-circuit (stop) as soon as they have a 
result - but they return the value that stopped 
the processing (not necessarily true or fa 1 se). 

On line 1, the variable artist is given a value of Rembrandt. 

On line 2, if the variable a rt i st has a value, then art i stA will be 
given the same value as artist (because a non-empty string is truthy). 

var art i st = 'Rembrandt ' ; 
var art i stA = (artist 11 ' Unknown') ; 

If the string is empty (see below), arti stA becomes a string 'Unknown' . 

var artist = ' ' ; 

varartistA= (ar tist I I ' Un known'); 

You could even create an empty object if artist does not have a value: 
var artist= ''; 

var artistA = (arti st I I {}) ; 

Here are three values. If any one of them is considered truthy, the code 

inside the if statement will execute. When the script encounters val ueB 

in the logical operator, it will short circuit because the number 1 is 
considered truthy and the subsequent code block is executed. 

valueA = O; 
valueB = 1; 

valueC = 2; 

if (valueA I I valueB II valueC) { 
// Do somet hi ng here 

This technique could also be used to check for the existence of elements 

within a page, as shown on p168. 

Logical operators will not always 

return true or false, because: 

• They return the value that 
stopped processing. 

• That value might have been 
treated as truthy or fa lsy 

although it was not a Boolean. 

Programmers use this creatively 

(for example, to set values for 
variables or even create objects). 

As soon as a truthy value is 

found, the remaining options 
are not checked. Therefore, 

experienced programmers often: 

• Put the code most likely 
to return true first in OR 

operations, and false answers 
first in AND operations. 

• Place the options requiring 

the most processing powe.r 

last, just in case another 
value returns true and they 

do not need to be run. 

DECISIONS & LOOPS s 











KEY LOOP CONCEPTS 

Here are three points to consider when you 

are working with loops. Each is illustrated in 

examples on the following three pages. 

KEYWORDS 

You will commonly see these 
two keywords used with loops: 

break 
This keyword causes the 

termination of the loop and tells 
the interpreter to go onto the 

next statement of code outside 
of the loop. (You may also see it 

used in functions.) 

continue 
This keyword tells the interpreter 

to continue with the current 

iteration, and then check the 
condition again. (If it is true, the 

code runs again.) 

8 DECISIONS & LOOPS 

LOOPS & ARRAYS 

Loops are very helpful when 
dealing with arrays if you want to 

run the same code for each item 
in the array. 

For example, you might want 

to write the value of each item 
stored in an array into the page. 

You may not know how many 

items will be in an array when 

writing a script, but. when the 
code runs, it can check the total 

number of items in a loop. That 
figure can then be used in the 

counter to control how many 

times a set of statements is run. 

Once the loop has run the right 
number of t imes, the loop stops. 

PERFORMANCE ISSUES 

It is important to remember 
that when a browser comes 

across JavaScript, it will stop 
doing anything else until it has 

processed that script. 

If your loop is dealing with only 
a small number of items, this 

will not be an issue. If, however, 

your loop contains a lot of items, 
it can make the page slower to 

load. 

If the condition never returns 
fa 1 se, you get what is commonly 

referred to as an infinite loop. 
The code will not stop running 

until your browser runs out of 
memory (breaking your script). 

Any variable you can define 
outside of the loop and that 

does not change within the loop 
should be defined outside of it. 

If it were declared inside the 

loop, it would be recalculated 
every time the loop ran, 

needlessly using resources. 



USING FOR LOOPS 

JAVASCRI PT c04/js/for-loop .js 

var scores= [24. 32, 17]; //Array of scores 
var arraylength scores .l ength; // Items in array 
var roundNumber = O; //Current round 
var msg ''; //Message 
var i ; // Counter 

//Loop through the items in the array 
for (i = O; i < arraylength; i++) { 

//Arrays are zero based (so 0 is round 1) 
//Add 1 to the current round 
roundNumber = (i + l); 

// Write the current round to message 
msg += 'Round ' + roundNumber + ' : '; 

//Get the score from the scores array 
msg += scores[ i] + '<br / >' ; 

document .getElementByid( 'answer') .i nnerHTML msg; 

i;ff>iiiil 

Round 1: 24 
Round 2: 32 
Round 3: 17 

The counter and array both start from 0 (rather than 1). So, within the loop, 

to select the current item from the array, you use the counter variable i to 
specify the item from the array, e.g., scores [ i]. But remember that it is a 
number lower then you might expect (e.g., f irst iteration is 0, second is 1). 

A for loop is often used to loop 

through the items in an array. 

In this example, the scores for 

each round of a test are stored in 
an array called scores. 

The total number of items in 
the array is stored in a variable 

cal led arrayl ength. This 

number is obtained using the 
l ength property of the array. 

There are three more variables: 
roundNumber holds the round of 

the test; msg holds the message 

to display; i is the counter 
(declared outside the loop). 

The loop starts with the for 

keyword, then contains the 
condition inside the parentheses. 

As long as the counter is less 
than the total number of items 

in the array, the contents of the 

curly braces will continue to 
run. Each time the loop runs, the 

round number is increased by 1. 

Inside the curly braces are rules 
that write the round number and 

the score to the msg variable. The 
variables declared outside of the 

loop are used within the loop. 

The msg variable is then written 

into the page. It contains HTML 
so the i nnerHTML property is 

used to do this. Remember, 
p228 will talk about security 

issues relat ing to this property. 

DECISIONS & LOOPS e 



USING WHILE LOOPS 

Here is an example of awhil e 

loop. It writes out the 5 times 

table. Each time the loop is run, 

another calculation is written 
into the variable cal led msg. 

This loop will continue to run 
for as long as the condition in 

the parentheses is true. That 
condition is a counter indicating 

that, as long as the variable 
i remains less than 10, the 

statements in the subsequent 
code block should run. 

Inside the code block there are 
two statements: 

The first statement uses the+= 
operator, which is used to add 

new content to the msg variable. 
Each time the loop runs, a new 

calculation and line break is 
added to the end of the message 

being stored in it. So+" works as 
a shorthand for writing: 

msg = msg + 'new msg' 

(See bottom of the next page for 
a breakdown of this statement.) 

The second statement 
increments the counter variable 

by one. (This is done inside 
the loop rather than with the 

condition.) 

When the loop has finished, the 

interpreter goes to the next line 
of code, which writes the msg 

variable to the page. 

8 DECISIONS & LOOPS 

c04/ j s/while-1oop.js JAVASCRIPT 

var i = l ; 

var msg = ' ' ; 
I I Set counter to 1 

II Message 

II Store 5 times tabl e in a variable 
while (i < 10) { 

msg += i + ' x 5 = ' + (i * 5) + '<br I >'; 
i++; 

document .getE l ementByid( ' answer') . innerHTML = msg; 

lxS=S 
2 x s = 10 
3 x 5 = 15 . 
4 x 5 = 20 
s x s = 25 
6 x s = 30 
7 x 5 = 35 
8 x s = 40 
9 x 5 = 45 

l ;IJjiJll 

In this example, the condition specifies that the code should run nine 

times. A more typical use of awhi le loop would be when you do not 
know how many times you want the code to run. It should continue to 

run as long as a condition is met. 

'\ 

... 



USI NG DO WHILE LOOPS 

JAVASCR I PT c04/ js/ do-while-loop. j s 

var i = l; 
var msg : I I • 

• 
II Set counter to 1 
II Message 

II Store 5 ti mes table in a variable 
do { 

msg += i + ' x 5 = ' + (i * 5) + '<br I>' ;s 
i++ ; 

} wh il e ( i < 1) ; 

II Note how this is already 1 and it still runs 

document .getEl ementByld(' answer').innerHTML = msg; 

lijJiiJ51 

lxS=S 

Breaking down the first statement in these examples: 

1 2 3 4 5 6 

1. Take variable called msg 4. Write out the string x 5 = 
2. Add to the following to its value 5. The counter multiplied by 5 

3. The number in the counter 6 . Add a line break 

The key difference between 

a whi 1 e loop and a do whi 1 e 

loop is that the statements in 

the code block come before the 

condition. This means that those 

statements are run once whether 

or not the condition is met. 

If you take a look at the 

condition, it is checking that the 

value of the variable cal led i is 

less than 1, but that variable has 

already been set to a value of 1. 

Therefore, in this example the 

result is that the 5 times table is 

written out once, even though 

the counter is not less than 1. 

Some people like to write while 

on a separate line from the 

closing curly brace before it. 

DECISIONS & LOOPS e 





EXAMPLE 
DECISIONS & LOOPS 

In this example, the user can either be shown 
addition or multiplication of a given number. 

The script demonstrates the use of both 
conditional logic and loops. 

The example starts with two variables: 

1. number holds the number that the calculations will be performed with 

(in this case it is the number 3) 
2. operator indicates whether it should be addition or multiplication 

(in this case it is performing addition) 

An if ... else statement is used to decide whether to perform addition 

or multiplication with the number. If the variable called operator has the 
value addition, the numbers will be added together; otherwise they will 

be multiplied. 

Inside the conditional statement, a whi 1 e loop is used to calculate the 

results. It will run 10 times because the condition is checking whether 

the value of the counter is less than 11. 

DECISIONS & LOOPS 8 



EXAMPLE 
DECISI ONS & LOOPS 

c04/ example .html 

<!DOCTYPE html> 
<html> 

<head> 
<title>Bullseye! Tutoring</title> 
<link rel ="stylesheet" href="css/c04.css" / > 

</ head> 
<body> 

<section id="page2"> 
<hl>Bullseye</ hl> 
<img src="images/teacher.png" id="teacher2" alt="" /> 
<section id="blackboard"></ section> 

</ section> 
<script src="js/ example . js"></script> 

</body> 
</html> 

The HTML for this example is very slightly different 

than the other examples in this chapter because 

there is a blackboard which the table is written onto. 

s DECISIONS & LOOPS 

You can see the script is added to the page just 

before the closing </body> tag. 



JAVASCRIPT 

var table = 3; 
var operator= 'addition'; 
var i = 1; 
var msg = ' ' ; 

if (operator=== 'addition') 
whi l e (i < 11) { 

msg += i + ' + ' + table + ' 
i++; 

} 
else { 
while ( i < 11) { 

msg += i + ' x ' + table + ' 
i++; 

EXAMPLE 
DECISIONS & LOOPS 

c04/js/ example.js 

II Unit of table 
II Type of calculation (defaults to addition) 
II Set counter to 1 
II Message 

II If the operator variable says addition 
II While counter is less than 11 

= ' + (i +table)+ '<br I>'; II Calculation 
II Add 1 to the counter 

II Otherwise 
II Whi le counter is less than 11 

= ' + (i *table) + '<br I> '; II Calculation 
II Add 1 to the counter 

II Write the message into the page 
var el = document.getElementByid{'bl ackboard'); 
el .innerHTML = msg; 

If you read the comments in the code, you can 

see how this example works. The script starts by 
declaring four variables and setting values for them. 

Then, an if statement checks whether the value of 
the variable called operator is addition. If it is, it 

uses awhile loop to perform the calculations and 
store the results in a variable called msg. 

If you change the value of the operator variable 

to anything other than addition, the conditional 

statement will select the second set of statements. 
These also contain awhile loop, but this time it will 

perform multiplication (rather than addition). 

When one of the loops has finished running, the last 

two lines of the script select the element whose id 
attribute has a value of blackboard, and updates the 

the page with the content of the msg variable. 

DECISIONS & LOOPS 8 



Conditional statements allow your code to make 

decisions about what to do next. 

Comparison operators (===, ! ==, ==, ! =, <, >, <=, =>) 

are used to compare two operands. 

Logical operators allow you to combine more than one 

set of comparison operators. 

if ... else statements allow you to run one set of code 

if a condition is true, and another if it is false. 

switch statements allow you to compare a value 

against possible outcomes (and also provides a default 

option if none match). 

Data types can be coerced from one type to another. 

All values evaluate to either truthy or falsy. 

There are three types of loop: for, while, and 

do ... while. Each repeats a set of statements. 





The Document Object Model (DOM) specifies 

how browsers should create a model of an HTML 

page and how JavaScript can access and update the 

contents of a web page while it is in the browser window. 

The DOM is neither part of HTML, nor part of JavaScript; it is a separate set of rules. 

It is implemented by all major browser makers, and covers two primary areas: 

MAKING A MODEL OF THE 
HTM L PAGE 

When the browser loads a web page, it 

creates a model of the page in memory. 

The DOM specifies the way in which the 
browser should structure this model using 

a DOM tree. 

The DOM is called an object model 
because the model (the DOM tree) is 

made of objects. 

Each object represents a different part of 

the page loaded in the browser window. 

s DOCUMENT OBJECT MODEL 

ACCESSING AND CHANG ING 
THE HTML PAGE 

The DOM also defines methods and 
properties to access and update each 

object in this model, which in turn updates 
what the user sees in the browser. 

You will hear people call the DOM an 

Application Programming Interface (API). 

User interfaces let humans interact with 
programs; APls let programs (and scripts) 

talk to each other. The DOM states what 
your script can "ask the browser about the 

current page, and how to tell the browser 

to update what is being shown to the user. 

1 

I 
I 
~ 



In each example of this 

chapter, the JavaScript 

will amend the HTML list 



THE DOM TREE IS A 
MODEL OF A WEB PAGE 

As a browser loads a web page, it creates a model of that page. 

The model is called a DOM tree, and it is stored in the browsers' memory. 

It consists of four main types of nodes. 

BODY OF HTML PAGE 

<html> 
<body> 

<di v id="page"> 
<hl id="header">List</hl> 
<h2>Buy groceries</h2> 
<ul > 

<li id="one" class="hot"><em>fresh</em> figs</li> 
<li id="two" class="hot">pine nuts</l i> 
<l i id="three" class="hot">honey</l i > 
<l i id="four">balsamic vinegar</l i> 

</ ul > 
<script src="js/l i st. js "></scri pt> 

</ div> 
</ body> 

</ html > 

THE DOCUMENT NODE 

Above, you can see the HTML code for a shopping 

list, and on the right hand page is its DOM tree. 

Every element, attribute, and piece of text in the 

HTML is represented by its own DOM node. 

At the top of the tree a document node is added; it 

represents the entire page (and also corresponds to 

the document object, which you first met on p36). 

When you access any element, attribute, or text 

node, you navigate to it via the document node. It is 
the starting point for al l visits to the DOM tree. 

s DOCUMENT OBJECT MODEL 

ELEMENT NODES 

HTML elements describe the structure of an HTML 

page. (The <h l > - <h6> elements describe what 

parts are headings; the <p> tags indicate where 

paragraphs of text start and finish; and so on.) 

To access the DOM tree, you start by looking for 

elements. Once you find the element you want, then 
you can access its text and attribute nodes if you 

want to. This is why you start by learning methods 

that allow you to access element nodes, before 

learning to access and alter text or attributes. 

.. 



Note: We wi ll continue to use this list example 

throughout t his chapter and the next two chapters 

so that you can see how different techniques allow 

you to access and update the web page (which is 

represented by this DOM tree). 

Relationships between the document and all of 

the element nodes are described using the same 

terms as a fami ly tree: parents, children, siblings, 

ancestors, and descendants. (Every node is a 

descendant of the document node.) 

Each node is an object with methods and properties. 
Scripts access and update this DOM tree (not the source HTML file). 

Any changes made to the DOM tree are reflected in the browser. 

DOM TREE document 
I 

html 
I 

body 
I 

di v - attribute 

h 1 ~ attribute h2 

t ext text 

I 
1 i - attribute 

em text 
I 

text 

ATTRIBUTE NODES 

I 
1 i - attribute 
I 

text 

The opening tags of HTML elements can carry 

attributes and these are represented by attribute 

nodes in the DOM tree. 

Attribute nodes are not children of the element thar 

carr ies them; they are part of that element. Once 

you access an element, there are specific JavaScript 

methods and properties to read or change that 

element's attributes. For example, it is common to 

change the values of cl ass attributes to trigger new 
CSS rules that affect their presentation. 

ul 

1 i 
I 

text 

script - attribute 

attribute 
I 

l i - attribute 
I 

text 

TEXT NODES 

Once you have accessed an element node, you 

can then reach the text within that element. This is 

stored in its own text node. 

Text nodes cannot have children. If an element 

contains text and another child element, the child 

element is not a chi ld of the text node but rather 

a child of the containing element. (See the <em> 

element on the first <l i > item.) This illustrates how 

the text node is always a new branch of the DOM 
tree, and no further branches come off of it. 

DOCUMENT OBJECT MODEL 8 



WORKING WITH 
THE DOM TREE 

Accessing and updating the DOM tree involves two steps: 
1: Locate the node that represents the element you want to work with. 
2: Use its text content, child elements, and attributes. 

STEP 1: ACCESS THE ELEMENTS 
Here is an overview of the methods and properties that access elements covered on p192 - p211. 

The first two columns are known as DOM queries. The last column is known as traversing the DOM. 

SELECT AN INDIVIDUAL 
ELEMENT NODE 

.. 
Here are three common ways to 
select an individual element: 

get El ement Byld () 

Uses the value of an element's 

id attribute (which should be 
unique within the page). 

See p195 

querySe 1 ector () 

Uses a CSS selector, and returns 
the first matching element. 

See p202 

You can also select individual 

elements by traversing from one 
element to another within the 
DOM tree (see third column). 

s DOCUMENT OBJECT MODEL 

SELECT MULTIPLE 
ELEMENTS (NODELISTS) 

....... 
There are three common ways to 
select multiple elements. 

getElementsByClassName() 

Selects all elements that have 
a specific value for their cl ass 

attribute. 

See p200 

getElementsByTagName() 

Selects all elements that have the 

specified tag name .. 
See p201 

querySelectorAll() 

Uses a CSS selector to select all 

matching elements. 
See p202 

TRAVERSING BETWEEN 
ELEMENT NODES 

You can move from one element 

node to a related element node. 

parentNode 

Selects the parent of the current 

element node (which will return 

just one element). 
See p208 

previousSibl ing / nextSibl ing 

Selects the previous or next 
sibling from the DOM tree. 

See p210 

firstChild / lastChild 

Select the first or last child of the 
current element. 

See p211 



Throughout the chapter you will see notes where DOM methods only work in certain browsers or are buggy. 

Inconsistent browser support for the DOM was a key reason why jQuery became so popular. 

The terms elements and element nodes are used interchangeably 

but when people say the DOM is working with an element, 
it is actually working with a node that represents that element. 

STEP 2: WORK W ITH THOSE ELEMENTS 
Here is an overview of methods and properties that work with the elements introduced on p186. 

ACCESS/ UPDATE 
TEXT NODES 

l i - attribute 

The text inside any element is 

stored inside a text node. To 
access the text node above: 

1. Select the <l i >element 

2. Use the fi rstChi l d property 
to get the text node 

3. Use the text node's only 

property (nodeVa l ue) to get 

the text from the element 

nodeValue 
This property lets you access or 

update contents of a text node. 

See p214 

The text node does not include 
text inside any child elements. 

WORK W ITH HTML 
CONTENT 

One property allows access to 

child elements and text content: 
innerHTML 
See p220 

Another just the text content: . 

textContent 
See p216 

Several methods let you create 

new nodes, add nodes to a t ree, 
and remove nodes from a tree: 

create Element() 

createTextNode() 

appendChi l d () / removeChi l d () 
This is called DOM manipulation. 
See p222 

ACCESS OR UPDATE 
ATTRIBUTE VALUES 

li +1&@§ 
I 

text 

Here are some of the properties 

and methods you can use to 
work with attributes: 

className /id 
Lets you get or update the value 
of the cl ass and id attributes. 

See p232 

hasAttr i bute() 
getAttribute() 

setAttri bute() 

removeAttribute( ) 
The first checks if an attribute 

exists. The second gets its value. 
The third updates the value. 

The fourth removes an attribute. 

See p232 

DOCUMENT OBJECT MODEL @ 







ACCESSING ELEMENTS 

DOM queries may return one element, or they may return a Nodelist, 
which is a collection of nodes. 

Sometimes you will just want to access one 

individual element (or a fragment of the page that 

is stored within that one element). Other times you 

may want to select a group of elements, for example, 

every <hl> element in the page or every <1 i> 

element within a particular list. 

hl h2 

l i l i 

GROUPS OF ELEMENT NODES 

If a method can return more than one node, it wil l 

always return a Nodelist , which is a collection of 

nodes (even if it only finds one matching element). 

You then need to select the element you want from 

this list using an index number (which means the 

numbering starts at 0 like the items in an array). 

For example, several elements can have the same 

tag name, so get El ementsByTagName () will always 

return a Nodel i st. 

§ DOCUMENT OBJECT MODEL 

body 

div 

Here, the DOM tree shows the body of the page of 

the list example. We focus on accessing elements 

first so it only shows element nodes. The diagrams 

in the coming pages highlight which elements a 

DOM query would return. (Remember, element 

nodes are the DOM representation of an element.) 

ul script 

1 i l i 

FASTEST ROUTE 

Finding the quickest way to access an element 

w ithin your web page w ill make the page seem 

faster and/or more responsive. This usually means 

evaluating the minimum number of nodes on the 

way to the element you want to work w ith. For 

example, getEl ementByld () will quickly return one 

element (because no two elements on the same 

page should have the same value for an id attribute), 

but it can only be used when the element you want 

to access has an id attribute. 

., 

.. 



METHODS THAT RETURN A SINGLE ELEMENT NODE: 

getElementByld( 1 id 1
) 

Selects an individual element given the value of its i d attribute . 
The HTML must have an id attribute in order for it to be selectable. 

First supported: IE5.5, Opera 7, all versions of Chrome, Firefox, Safari. 

querySel ector( 1 css selector ') 
Uses CSS selector syntax that would select one or more elements . 
This method returns only the first of the matching elements. 

First supported: IE8, Firefox 3.5, Safari 4 . Chrome 4, Opera 10 

... 
get ElementByld('one') 

... 
querySelector('l i . hot ' ) 

METHODS THAT RETURN ONE OR MORE ELEMENTS (AS A NODELIST): 

getEl ementsByClassName( 1c lass 1
) 

Selects one or more elements given the value of their cl ass attribute. 

The HTML must have a cl ass attribute for it to be selectable. 
This method is faster than querySe 1ectorA11 () . 

First supported: IE9, Firefox 3, Safari 4 , Chrome 4, Opera 10 
(Several browsers had partial I buggy support in earlier versions) 

getEl ementsByTagName( 1 tagName 1
) 

Selects all elements on the page with the specified tag name. 
This method is faster than querySe 1ectorA11 (). 

First supported: IE6+, Firefox 3, Safari 4, Chrome, Opera 10 
(Several browsers had partial I buggy support in earlier versions) 

querySelectorAll ( 1 css select or •) 
Uses CSS selector syntax to select one or more elements and returns all 

of those that match. 

First supported: IE8, Firefox 3.5, Safa ri 4, Chrome 4, Opera 10 

... ...... 
getElementsByCl assName (' hot ' ) 

... ......... 
getEl ementsByTagName(' l i ') 

......... 
querySelector Al l ( ' li . hot ') 

DOCUMENT OBJ ECT MODEL ~ 





SELECTING ELEMENTS 
USING ID ATTRIBUTES 

llllifullll c05/get-element-by-id.htm1 

<hl id="header">List King<lhl> 
<h2>Buy groceries<lh2> 
<ul> 

<li id="one" class="hot"><em>fresh<lem> 
figs<lli> 

<li id="two" class="hot">pine nut s<lli> 
<li id="three" class="hot">honey<lli> 
<li id="four">balsamic vi negar<ll i> 

</ul> 

JAVASCRIPT c05/js/get-element-by-id.js 

II Select the element and store it in a variable. 
var el = document.getElementByid('one'); 

II Change the value of the class attribute. 
el.className ='cool ' ; 

This result window shows the example after the script has updated 
the first list item. The original state, before the script ran, is shown on 

p185. 

get El ementByi d () allows you 
to select a single element node 
by specifying the value of its 
id attribute. 

This method has one parameter: 
the value of the id attribute on 
the element you want to select. 
This value is placed inside quote 
marks because it is a string. The 
quotes can be single or double 
quotes, but they must match. 

In the example on the left, the 
first line of JavaScript code finds 
the element whose id attribute 
has a value of one, and stores 
a reference to that node in a 
variable called e 1. 

The code then uses a property 
called c l assName (which you 
meet on p232) to update the 
value of the cl ass attribute 
of the element stored in this 
variable. Its value is coo 1, and 
this triggers a new rule in the 
CSS that sets the background 
color of the element to aqua. 

Note how the c 1 assName 
property is used on the variable 
that stores the reference to the 
element. 

Browser Support: This is one of 
the oldest and best supported 
methods for accessing elements. 

DOCUMENT OBJECT MODEL s 



NODELISTS: DOM QUERIES 
THAT RETURN MORE THAN 
ONE ELEMENT 

When a DOM method can return more than one element, it returns a 
Nodelist (even if it only finds one matching element). 

A Nodelist is a collection of element nodes. Each 

node is given an index number (a number that starts 
at zero, just like an array). 

The order in which the element nodes are stored in a 
Node List is the same order that they appeared in the 

HTML page. 

When a DOM query returns a Nodelist, you may 
want to: 

• Select one element from the NodeList. 

• Loop through each item in the Nodelist and 
perform the same statements on each of the 
element nodes. 

LIVE & STATIC NODELISTS 

There are times when you wil l want to work with 

the same selection of elements several times, so 
the Nodelist can be stored in a variable and re-used 

(rather than collecting the same elements again). 

In a live Nodelist, when your script updates the 

page, the Nodelist is updated at the same time. 
The methods beginning getEl ementsBy_ return live 

Node lists. They are also typically faster to generate 
than static Nodelists. 

s DOCUMENT OBJECT MODEL 

Nodelists look like arrays and are numbered like 

arrays, but they are not actually arrays; they are a 
type of object called a collection. 

Like any other object, a Nodelist has properties and 
methods, notably: 

• The l ength property tells you how many items 
are in the Nodelist. 

• The i tern() method returns a specific node from 

the Nodelist when you tell it the index number 
of the item that you want (in the parentheses). 

However, it is more common to use array syntax 
(with square_brackets) to retrieve an item from a 
Nodelist (as you will see on p199). 

In a static Nodelist when your script updates the 
page, the NodeList is not updated to reflect the 

changes made by the script. 

The new methods that begin querySe 1 ector._ 

(which use CSS selector syntax) return static 
Nodelists. They reflect the document when the 

query was made. If the script changes the content 
of the page, the Nodelist is not updated to reflect 

those changes. 

.... 

: 



Here you can see four different DOM queries that all return a Nodelist. 
For each query, you can see the elements and their index numbers in the 

Nodelist that is returned. 

millllill ...... 

millililil ... 

millililil ...... 

getElementsByTagName('hl ' ) 

Even though this query only 
returns one element. the method 

sti ll returns a Nodelist because 
of the potential for returning 
more than one element. 

INDEX NUMBER & ELEMENT 

0 <hl> 

getElementsByTagName('li ') 

This method returns four 

elements, one for each of the 
<l i> elements on the page. 

They appear in the same order 

as they do in the HTML page. 

I NDEX NUMBER & ELEMENT 

0 <li i d•"one" class="hot"> 

1 <1 i i d="two" cl ass="hot"> 

2 <l i id="three" class• "hot"> 

3 <li id="four"> 

getElementsByClassName('hot') 

This Nodelist contains only 
three of the <l i >elements 

because we are searching for 

elements by the value of their 
cl ass attribute, not tag name. 

INDEX NUMBER & ELEMENT 

O <li id="one" cl ass="hot"> 

l <li id=" two" class="hot"> 

2 <l i id=" three" class="hot"> 

querySe l ectorA 11 ( ' l i [id] ' ) 

This method returns four 

elements, one for each of the 
<l i> elements on the page that 

have an id attribute (regardless 
of the values of the id attributes). 

INDEX NUMBER & ELEMENT 

O <l i id="one" class="hot"> 

1 c ] j id="two" class="hot"> 

2 <li id=" three" class="hot"> 

3 <li id•"four"> 

DOCUMENT OBJECT MODEL 8 



SELECTING AN ELEMENT 
FROM A NODELIST 

There are two ways to select an element from a Nodelist: 
The item() method and array syntax. 
Both require the index number of the element you want. 

THE ;tern{) METHOD 

Nodelists have a method 

called item() which will return 
an individual node from the 

Node list. 

You specify the index number 

of the element you want as a 

parameter of the method (inside 
the parentheses). 

Executing code when there are 
no elements to work with wastes 
resources. So programmers 

often check that there is at least 

one item in the Nodelist before 
running any code. To do this, 

use the 1 ength property of the 
Nodelist - it tells you how many 

items the Nodelist contains. 

Here you can see that an if 
statement is used. The condition 
for the if statement is whether 

the 1 ength property of the 

Nodelist is greater than zero. 
If it is, then the statements inside 

the if statement are executed. 

If not, the code continues to run 
after the second curly brace. 

var elements = document.getElementsByClassName('hot') 
if (elements.length>= 1) { 

var firstltem = elements.item(O); 
} 

1 
Select elements that have a 

cl ass attribute whose value is 

hot and store the Nodelist in a 
variable called e 1 ements. 

198 DOCUMENT OBJECT MODEL 

2 
Use the 1 ength property to 

check how many elements were 

found. If 1 or more are found, run 
the code in the if statement. 

3 
Store the first element from the 

Node List in a variable called 
fi rstitem. (It says 0 because 

index numbers start at zero.) 





SELECTI NG ELEMENTS 
USING CLASS ATTRIBUTES 
The get El ementsByCl ass Name() 

method allows you to select 

elements whose c 1 ass attribute 

contains a specific value. 

c05/js/get-elements-by-class-name . js 

The method has one parameter: 

the class name which is given 

in quotes within the parentheses 

after the method name. 

Because several elements can 

have the same value for their 

cl ass attribute, this method 

always returns a Nodelist. 

JAVASCRIPT 

var elements = document .getEl ementsByClassName('hot'); II Find hot items 

if (e lements .l ength> 2) { 

var el = elements[2]; 
el.className = 'cool'; 

This example starts by looking 

for elements whose cl ass 

attribute contains hot. (The value 

of a c 1 ass attribute can contain 

several class names, each 

separated by a space.) The result 

of this DOM query is stored 
in a variable called element s 

because it is used more than 

once in the example. 

An if statement checks if the 

query found more than two 

elements. If so, the third one is 

selected and stored in a variable 

called e 1. The cl ass attribute of 

that element is then updated to 

say c 1 ass. (In turn, this triggers 

a new CSS style, changing the 

presentation of that element.) 

Browser Support: IE9, Firefox 3, 

Chrome 4, Opera 9.5, Safari 3.1 

8 DOCUMENT OBJECT MODEL 

II If 3 or more are found 

II Select the th i rd one from the Nodelist 
II Change the value of its class attribute 

... 

• 



SELECTING ELEMENTS 
BY TAG NAME 

The get El ementsByTagName () 

method allows you to select 

elements using their tag name. 

JAVASCRIPT 

The element name is specified 

as a parameter, so it is placed 

inside the parentheses and is 

contained by quote marks. 

Note that you do not include the 

angled brackets that surround 

the tag name in the HTML (just 
the letters inside the brackets). 

c05/ js/get-elements-by-tag-name.js 

var elements = document.getElementsByTagName('li '); /I Find <li> elements 

if (elements.length> O) { 

l;IJiliii 

var el = elements[O]; 
el.className = 'cool'; 

II If 1 or more are found 

II Select the first one using array syntax 
II Change the value of the class attribute 

This example looks for any <1 i> 
elements in the document. It 

stores the result in a variable 

called elements because the 

result is used more than once in 

this example. 

An if statement checks if any 

<1 i> elements were found. As 

with any element that can return 

a NodeL i st, you check that there 

w ill be a suitable element before 

you try to work with it. 

If matching elements were 

found, the first one is selected 

and its cl ass attribute is 

updated. This changes the color 

of the list item to make it aqua. 

Browser Support: Very good - it 

is safe to use in any scripts. 

DOCUMENT OBJECT MODEL 8 



SELECTING ELEMENTS 
USING CSS SELECTORS 
querySe 1 ector() returns 

the first element node that 
matches the CSS-style selector. 

querySe 1ectorA11 () returns a 
Nodelist of all of the matches. 

cOS/j s/ query-sel ector.j s 

Both methods take a CSS 
selector as their only parameter. 

The CSS selector syntax offers 

more flexibility and accuracy 
when selecting an element than 

II querySel ector() only retur ns the fi rst match 
var el = document .querySel ector('li .hot ' }; 
el .cl assName = 'cool' ; 

II querySel ectorAll returns a Nodeli st 

just specifying a class name 
or a tag name, and should also 

be familiar to front-end web 

developers who are used to 
targeting elements using CSS. 

JAVASCRIPT 

II The second matching element (the t hird list item) i s selected and changed 
var el s = document .querySelectorAll('li .hot') ; 
els[l] .className = ' cool' ; 

These two methods were 

introduced by browser 
manufacturers because a lot 

of developers were including 

scripts like jQuery in their 
pages so that they could select 
elements using CSS selectors. 

(You meet jQuery in Chapter 7.) 

If you look at the final line of 

code, array syntax is used to 

select the second item from 
the Nodelist, even though that 

Nodelist is stored in a variable. 

8 DOCUMENT OBJECT MODEL 

Browser Support: The drawback 

with these two methods is that 
they are only supported in more 

recent browsers. 

lijJj!ISI 

IE8+ (released Mar 2009) 
Firefox 3.5+ (released Jun 2009) 
Chrome 1+ (released Sep 2008) 

Opera 10+ (released Sep 2009) 

Safari 3.2+ (released Nov 2008) 

... 

" 



JavaScript code runs one line at 

a time, and statements affect 
the content of a page as the 

interpreter processes them. 

If a DOM query runs when a 

page loads, the same query 

could return different elements if 
it is used again later in the page. 

1: WHEN THE PAGE FIRST LOADS 

W:ii1~il cOS/query-selector. html 

<ul> 
<li id="one" class="hot"> 

<em>fresh</em> figs</li> 
<li id="two" class="hot">pine nuts</li> 
<li id="three" cl ass="hot">honey</li> 
<li id="four">balsamic vinegar</li> 

</ul> 

2: AFTER THE FIRST SET OF STATEMENTS 

1111$11 c05/query-selector . html 

<ul> 
<li id="one" class=" cool "> 

<em>fresh</em> figs</li> 
<li id="two" class="hot">pine nuts</li> 
<li id="three" class="hot">honey</l i > 
<li id="four">balsamic vinegar</li> 

</ul> 

3: AFTER THE SECOND SET OF STATEMENTS 

W:iief.11 cOS/query-selector.html 

<ul> 
<li id="one" cl ass=" cool "> 

<em>fresh</em> figs</li> 
<li id="two" class="hot">pine nuts~/li> 
<l i id="three" cl ass="cool ">honey</l i> 
<l i id="four">bal samic vi negar</l i> 

</ul> 

Below you can see how the 
example on the left-hand page 

(query- selector .js) changes 

the DOM tree as it runs. 

1. This is how the page starts. 

There are three <l i >elements 

that have a cl ass attribute 

whose value is hot. The 
querySe l ector() method finds 
the first one, and updates the 

value of its cl ass attribute from 
hot to cool. This also updates 

the DOM tree stored in memory 
so - after this line has run -

only the second and third <l i > 
elements have a cl ass attribute 

with a value of hot. 

2. When the second selector 
runs, there are now only two 

<l i > elements whose cl ass 

attributes have a value of hot 
(see left), so it just selects these 

two. This time, array syntax is 
used to work with the second of 

the matching elements (which 
is the third list item). Again the 

value of its cl ass attribute is 

changed from hot to coo 1. 

3. When the second selector has 
done its job, the DOM tree now 

only holds one <l i> element 
whose c 1 ass attribute has a 

value of hot. Any further code 
looking for <l i> elements whose 

cl ass attribute has a value of 
hot would find only this one. 

However, if they were looking 

for <l i >elements whose cl ass 
attribute has a value of coo 1, 

they would find two matching 
element nodes. 

DOCUMENT OBJECT MODEL 8 





LOOPING THROUGH 
A NODELIST 

If you want to apply the same 

code to numerous elements, 

looping through a Nodelist is a 

powerful technique. 

JAVASCRIPT 

It involves finding out how many 
items are in the Nodelist, and 

then setting a counter to loop 

through them, one-by-one. 

Each time the loop runs, the 

script checks that the counter 

is less than the total number of 

items in the Nodelist. 

c05/ js/ node- list.js 

var hotl t ems = document .querySelectorAl l (' l i . hot') ; II Store Nodel i st i n ar ray 

if (hot l tems.length > O) { II If it conta ins i t ems 

for (var i=O; i<hotl tems.length; i++) { II Loop through each i t em 
hotltems[i ] .className = 'cool'; II Change val ue of class at tri bute 

In this example, the 

Nodelist is generated using 
querySelectorAl l (),and it is 

looking for any <l i >elements 
that have a cl ass attribute 

whose value is hot. 

The Nodelist is stored in a 
variable called hot Items, and the 

number of elements in the list is 

found using the length property. 

For each of the elements in the 
Nodelist, the value of the cl ass 

attribute is changed to cool . 

DOCUMENT OBJECT MODEL 8 







TRAVERSING THE DOM 

When you have an element node, you can select 
another element in relation to it using these five 
properties. This is known as traversing the DOM. 

parentNode 

This property finds the element 

node for the containing (or 
parent) element in the HTML. 

(1) If you started with the 
first <l i >element, then its 

parent node would be the one 

representing the <ul >element. 

These are properties of the 
current node (not methods to 

select an element); therefore, 
they do not end in parentheses. 

8 DOCUMENT OBJECT MODEL 

1 ; 

previousSibling 
nextSibling 
These properties find the 

previous or next sibling of a node 
if there are siblings. 

If you started with the first <1 i > 

element, it would not have a 
previous sibling. However, its next 
sibling (2) would be the node 

representing the second <l i >. 

1 ; 1 ; 

If you use these properties and 

they do not have a previous/next 

sibling, or a f irst/last chi ld, the 
result wi ll be nu 11. 

1 ; 

f i rstChil d 
lastChild 
These properties find the first or 

last child of the current element. 

If you started with the <u 1 > 

element, the first child would be 
the node representing the first 
<l i> element, and (3) the last 
child would be the last <1 i >. 

These properties are read-only; 

they can only be used to select 
a new node, not to update a 

parent, sibling, or chi ld. 



WHITESPACE NODES 

Most browsers, except IE, treat 

whitespace between elements 

(such as spaces or carriage 

returns) as a text node, so the 

properties below return different 

elements in different browsers: 

previousSibling 

nextSiblfng 

firstChild 

lastChild 

1 i 

Traversing the DOM can be difficult because 
some browsers add a text node whenever they 
come across whitespace between elements. 

Below, you can see all of the 

whitespace nodes added to the 

DOM tree for the list example. 

Each one is represented by a 

green square. You could strip 

all the whitespace out of a page 

before serving it to the browser. 

This would also make the page 

smaller and faster to serve/load. 

However, it would also make the 

code much harder to read. 

ul 

1 i 1 i 

Another way around this 

problem is to avoid using these 

DOM properties altogether. 

One of the most popular ways to 

address this kind of problem is 

to use a JavaScript library such 

as jQuery, which helps deal with 

such problems. These types of 

browser inconsistencies were a 

big factor in jQuery's popularity. 

1 i 

Internet Explorer (shown above) ignores whitespace and does not create extra text nodes. 

ul 

li • l i ii l i • l i • 
Chrome, Firefox, Safari, and Opera create text nodes from whitespace (spaces and carriage returns). 

DOCUMENT OBJECT MODEL 8 



PREVIOUS & NEXT SIBLING 

You have just seen that 

these properties can return 

inconsistent results in different 

browsers. However, it is safe 

to use them when there is no 

whitespace between elements. 

cos/sibling . html 

For this example, all spaces 

between the HTML elements 

have been removed. In order to 

demonstrate these properties, 

the second list item is selected 

using getEl ementByld (). 

From this element node, the 

previ ousSi b 1 i ng property will 

return the first <1 i> element, 

and the next Sib 1 i ng property 

will return the third <1 i> 

element. 

""*'' <ul><li id="one" class="hot"><em>fresh<l em> figs<l li><li id="two" 
class="hot">pine nuts<l li><li id="three" class="hot">honey<l li><li 
id="four">balsamic vinegar<lli><lul> 

c05/ js/sibling.js 

II Select the starting point and find its siblings 
var startltem = document.getElementByid('two'); 
var prevltem startltem.previousSibling; 
var next l tem = startitem.nextSibling; 

II Change the values of the siblings' class attributes 
prevltem.className 'complete ' ; 
nextltem.className 'cool'; 

JAVASCRIPT 

u 1 i ;IJiiJll 

H!' li 
• START 

• PREVIOUS SIBLING 

• NEXT SIBLING 

Note how references to sibling 

nodes are stored in new 

variables. This means properties 

such as cl assName can be used 

on that node by adding the dot 

notation between the variable 
name and the property. 

8 DOCUMENT OBJECT MODEL 



Fl RST & LAST CH I LD 

These properties also return 
inconsistent results if there is 
whitespace between elements. 
In this example, a slightly 
different solution is used in the 
HTML - the closing tags are put 

""*'' 
<ul 

next to the opening tags of 
the next element, making it 
a little more readable. The 
example starts by using the 
getElementsByTagName() 
method to select the <ul> 

><li id="one" class="hot"><em>fresh<lem> figs <lli 
><l i id="two" class="hot">pine nuts<lli 
><li id="three" cl ass="hot">honey<lli 
><li id="four">balsamic vinegar<lli 

><l ul> 

JAVASCRIPT 

II Select the starting point and find its children 
var startltem = document.getElementsByTagName('ul ') [OJ ; 
var firstltem = startltem. firstChild; 
var lastltem = startitem.lastCh i ld; 

II Change the values of the children's class attributes 
firstltem.setAttribute('class ' , 'complete'); 
lastitem.setAttribute('class', ' cool'); 

element from the page. From this 
element node, the fi rstChi 1 d 
property will return the first <1 i > 
element, and the 1 as tChi 1 d 
property will return the last <l i > 
element. 

c05/child.html 

c05/js/child .j s 

• I I 

l i l i 

• START 

• FIRST CHILD 

• LASTCHILD 

DOCUMENT OBJECT MODEL e 



HOW TO GET/UPDATE 
ELEMENT CONTENT 

So far this chapter has focused on finding elements in the DOM tree. 

The rest of this chapter shows how to access/update element content. 
Your choice of techniques depends upon what the element contains. 

Take a look at the three examples of <1 i> elements 

on the right. Each one adds some more markup and, 

as a result, the fragment of the DOM tree for each 
list item is very different. 

• The first (on this page) just contains text. 
• The second and third (on the right-hand page) 

contain a mix of text and an <em> element. 

You can see that by adding something as simple as 

an <em> element, the DOM tree's structure changes 
significantly. In turn, this affects how you might work 

with that list item. When an element contains a mix 
of text and other elements, you are more likely to 

work with the containing element rather than the 
individual nodes for each descendant. 

To work with the content of elements you can: 

• Navigate to the text nodes. This works best 

when the element contains only text, no other 

elements. 
• Work with the containing element. This allows 

you to access its text nodes and child elements. 

It works better when an element has text nodes 
and child elements that are siblings. 

e DOCUMENT OBJECT MODEL 

<li id="one">figs</ l i> 

Above, the <l i > element has: 

• One child node holding the word that you can see 
in the list item: figs 

• An attribute node holding the id attribute. 

TEXT NODES 

Once you have navigated from an element to its text 
node, there is one property that you will commonly 

find yourself using: 

PROPERTY 

nodeValue 

DESCRIPTION 

Accesses text from node (p214) 



<l i i d="one"><em>fresh</ em> figs</ li> 

l i - at t ribute 

text: 
figs 

An <em> element is added. It becomes the first child. 

• The <em> element node has its own child text 
node which contains the word fresh. 

• The original text node is now a sibling of the node 
that represents the <em> element. 

CONTAINING ELEMENT 

When you are working wi th an element node (rather 

than its text node), that element can contain markup. 
You have to choose whether you want to retrieve 

(get) or update (set) the markup as well as t he text. 

PROPERTY 

innerHTML 
textContent 
innerText 

DESCRIPTION 

Gets/sets text & markup (p220) 
Gets/sets text only (p216) 

Gets/sets text only (p216) 

<l i id="one">six <em>fresh</em> figs</l i > 

l i attribute 

Ii em text: 
I figs 

text: 
fresh 

When text is added before the <em> element: 

• The first child of the <l i >element is a text node, 

which contains the word six. 
• It has a sibling which is an element node for the 

<em> element. In turn, that <em> element node 

has a child text node containing the word fresh. 

• Finally, there is a text node holding the word 
figs, which is a sibling of both the text node for 

the word "six" and the element node, <em>. 

When you use these properties to update the 

content of an element, the new content w ill 
overwrite the entire contents of the element (both 

text and markup). 

For example, if you used any of these properties to 

update the content of the <body> element. it would 

update the entire web page. 

DOCUMENT OBJECT MODEL § 



ACCESS & UPDATE A TEXT 
NODE WITH NODEVALUE 

When you select a text node, you can retrieve or amend the content of it 

using the node Va 1 ue property. 

<li id="one"><em>fresh</em> figs</li> 

l i - attribute 

e~ ;n -
t ext: 
fresh 

The code below shows how you access the second text node. It will return the result: figs 

document.getElementByid( 1 one 1 ).firstChild.nextSibling. nodeValue ; 
: {,\ " /::;'\ " @ :: © : ; ....................................... 0 ······ .. ··············"'""'''"'""' '""••••"""0 ''""''"""""''"''""''"'•••"· 3 ······· .......... .;; ............... 4 ............... ; 

In order to use node Va 1 ue, you 
must be on a text node, not the 
element that contains the text. 

This example shows that 
navigating from the element 
node to a text node can be 
complicated. 

If you do not know whether there 
will be element nodes alongside 
text nodes, it is easier to work 
with the containing element. 

§ DOCUMENT OBJECT MODEL 

1. The <1 i >element node is selected using the get El ementByid () method. 
2. The first child of <1 i > is the <em> element. 
3. The text node is the next sibling of that <em> element. 
4. You have the text node and can access its contents using node Va 1 ue. 

.. 



ACCESSING & CHANGI NG 
A TEXT NODE 

To work with text in an element, 

first the element node is 
accessed and then its text node. 

JAVASCRIPT 

The text node has a property 

called node Value which returns 

the text in that text node. 

var itemTwo document.getElementByld('two'); 

var elText itemTwo.firstChild .nodeValue; 

elText = elText.replace( ' pine nuts', ' kal e ' ); 

itemTwo . firstChi ld.nodeValue = elText; 

19JilJ51 

You can also use the node Va 1 ue 

property to update the content 

of a text node. 

c05/js/node-value.js 

/I Get second l ist item 

II Get its text content 

II Change pine nuts to ka le 

II Update the li st item 

This example takes the text 

content of the second list item 
and changes it from pine nuts 

to kale. 

The first line collects the second 

list item. It is stored in a variable 
called i tern Two. 

Next the text content of that 

element is stored in a variable 

called elText. 

The third line of text replaces 
the words 'pine nuts' with 
'kale' using the String object's 

replace() method. 

The last line uses the node Va 1 ue 

property to update the content 

of the text node with the 
updated value. 

DOCUMENT OBJECT MODEL § 



ACCESS & UPDATE TEXT 
WITH TEXTCONTENT 
(& INN ERTEXT) 

The textContent property allows you to 
collect or update just the text that is in the 
containing element (and its children). 

textContent 
To collect the text from the 

<l i> elements in our example 
(and ignore any markup inside 
the element) you can use the 

textContent property on the 

containing <l i > element. In this 
case it would return the value: 

fresh figs. 

You can also use this property 
to update the content of the 

element; it replaces the entire 
content of it (including any 

markup). 

innerText 

<li id="one"><em>fresh</ em> figs</ l i> 

l i - attribute 

document .getElementByid('one') . textContent; 

One issue with the textContent property is that Internet Explorer did 
not support it until IE9. (All other major browsers support it.) 

You may also come across a property called i nner Text, but you should generally avoid it for three key reasons: 

SUPPORT 

Although most browser 

manufacturers adopted the 

property, Firefox does not 
because i nnerText is not part of 

any standard. 

e DOCUMENT OBJECT MODEL 

OBEYS CSS 

It will not show any content 

that has been hidden by CSS. 
For example, if there were a CSS 
rule that hid the <em> elements, 

the i nnerText property would 
return only the word figs. 

PERFORMANCE 

Because the i nnerText property 

takes into account layout rules 

that specify whether the element 
is visible or not, it can be slower 

to retrieve the content than the 
textContent property. 



ACCESSING TEXT ONLY 

In order to demonstrate the 
difference between textContent 
and i nnerText, this example 
features a CSS rule to hide the 
contents of the <em> element. 

J AVASCRIPT 

The script starts off by getting 
the content of the first list item 
using both the textContent 
property and i nnerText. It then 
writes the values after the list. 

Finally, the value of the first 
list item is then updated to say 
sourdough bread. This is done 
using the textContent property. 

c05/ js/ inner- text-and-text-content.js 

var firstltem = document.getElementByld('one'); 
var showTextContent = firstitem.textContent; 
var showinnerText = firstitem.innerText; 

II Find first list item 
II Get value of textContent 
II Get value of innerText 

II Show the content of these two properties at the end of the list 
var msg = '<p>textContent: ' + showTextContent + '<Ip>' ; 

msg += '<p>innerText: ' + showinnerText + '<Ip>'; 
var el = document.getElementByid('scriptResults'); 
el .innerHTML = msg; 

firstitem . textContent 'sourdough bread'; 

•;Iii"'' 

textContent: fresh figs 

innerText: figs 

II Update the first list item 

In most browsers: 
• textContent collects 

the words fresh figs. 
• i nnerHTML just shows figs 

(because fresh was hidden 
by the CSS). 

But: 
• In IE8 or earlier, the 

textContent property 
does not work. 

• In Firefox, the innerText 
property will return 
undefined because the it was 
never implemented in Firefox. 

DOCUMENT OBJECT MODEL § 







ACCESS & UPDATE TEXT & 
MARKUP WITH INNERHTML 

Using the i nnerHTML property, you can access 

and amend the contents of an element, 

including any child elements. 

i nnerHTML 
When getting HTML from an 
element, the i nnerHTML property 

will get the content of an 
element and return it as one long 
string, including any markup that 

the element contains. 

When used to set new content 

for an element, it will take a 
string that can contain markup 

and process that string, adding 

any elements within it to the 
DOM tree. 

When adding new content using 

i nnerHTML, be aware that one 
missing closing tag could throw 

out the design of the entire page. 

Even worse, if i nnerHTML is used 

to add content that your users 

created to a page, they could add 
malicious content. See p228. 

@ DOCUMENT OBJECT MODEL 

<li id="one"><em>fresh</ em> figs</ li> 

1 i - attribute 

GET CONTENT 

The following line of code collects the content of the list item and adds it 
to a variable called e 1 Content: 
var elContent = document.getElementByld('one').innerHTML; 

The e 1 Content variable would now hold the string: 
' <em>fresh</ em> figs' 

SET CONTENT 

The following line of code adds the content of the e 1 Content variable 
(including any markup) to the f irst list item: 
document .getElementByld('one').innerHTML = elContent; 

.. 
1 



UPDATE TEXT & MARKUP 

This example starts by storing 
the first list item in a variable 

called fi rstltem. 

JAVASCRIPT 

It then retrieves the content of 
this list item and stores it in a 
variable called i temContent. 

II Store the f i rst list item in a variable 
var firstitem = document.getElementByid( ' one'); 

II Get the content of the first list item 
var itemContent = firstltem.innerHTML; 

Finally, the content of the list 
item is placed inside a link. Note 

how the quotes are escaped. 

c05/js/inner-html.js 

II Update the content of the first list i tem so it is a link 
firstitem.innerHTML = '<a href=\"http:llexample.org\">' + i t emContent + '<la> ' ; 

l;lii'll' As the content of the string 
is added to the element using 

the i nnerHTML property, the 
browser wi ll add any elements 

in the string to the DOM. In 

this example, an <a> element 
has been added to the page. 

(Any new elements will also be 
available to other scripts in the 

page.) 

If you use attributes in your 
HTML code, escaping the 

quotation using the backslash 

character \ can make it clearer 
that those characters are not 

part of the script. 

DOCUMENT OBJECT MODEL @ 



ADDING ELEMENTS USING 
DOM MANIPULATION 

DOM manipulation offers another technique 

to add new content to a page (rather than 

i nnerHTML). It involves three steps: 

1 
CREATE THE ELEMENT 

createEl ement () 

You start by creating a new 

element node using the 

createElement() method. 

This element node is stored 

in a variable. 

When the element node is 

created, it is not yet part of the 

DOM t ree. It is not added to 

the DOM tree unti l step 3. 

In the example at the end of the 

chapter, you w ill see another 

method that can be used to 

insert an element into the DOM 

tree. The i nsertBefore () 

method is used to add a new 

element before the selected 

DOM node. 

@ DOCUMENT OBJECT MODEL 

2 3 
GIVE IT CONTENT ADD IT TO THE DOM 

createTextNode() appendChild() 

createTextNode() creates a Now that you have your element 

new text node. Again, the node (optionally with some content 

is stored in a variable. It can be in a text node), you can add 

added to the element node using it to the DOM tree using the 

the appendChi l d () method. appendChi 1 d () method. 

This provides the content for the The appendChi 1 d () method 

element, although you can skip allows you to specify which 

this step if you want to attach an element you want this node 

empty element to the DOM tree. added to, as a chi ld of it. 

DOM manipulation and i nnerHTML both have uses. You will see a 

discussion of when to choose each method on p226. 

Note: You may see developers leave an empty element in their HTML 

pages in order to attach new content to that element, but this practice is 

best avoided unless absolutely necessary. 



ADDING AN ELEMENT TO 
THE DOM TREE 

createEl ement () creates an 

element that can be added to the 

DOM tree, in this case an empty 

<l i >element for the list. 

JAVASCR I PT 

This new element is stored 

inside a variable called newEl 

until it is at tached to the DOM 

tree later on. 

II Create a new element and st ore it in a variable. 
var newEl document .createEl ement( ' li ' ); 

II Create a text node and store it in a variable. 
var newText document.createTextNode( 'quinoa ' ); 

II Attach the new t ext node to t he new element. 
newEl .appendChi ld(newText); 

createTextNode() allows you to 

create a new text node to attach 

to an element. It is stored in a 

variable called newText. 

c05/j s/ add-element . js 

II Find t he pos i ti on where the new element shoul d be added. 
var position = document.getElementsByTagName('ul ')[OJ; 

II Inser t t he new element into its pos i t ion . 
position .appendChi l d(newEl); 

i;IJiiiSI The text node is added to 

the new element node using 

appendChi l d (). 

The get El ementsByTagName () 

method selects the position in 

the DOM tree to insert the new 

element (the first <u l >element 

in the page). 

Finally, appendChi 1 d () is used 

again - this time to insert the 

new element and its content into 

the DOM tree. 

DOCUMENT OBJ ECT MODEL @ 



REMOVING ELEMENTS VIA 
DOM MANIPULATION 

DOM manipulation can be used to remove 
elements from the DOM tree. 

1 
STORE THE ELEMENT 
TO BE REMOVED IN A 
VARIABLE 

You start by selecting the 

element that is going to be 
removed and store that element 

node in a variable. 

You can use any of the methods 
you saw in the section on DOM 

queries to select the element. 

When you remove an element 

from the DOM, it will also 

remove any child elements. 

8 DOCUMENT OBJECT MODEL 

2 
STORE THE PARENT OF 
THAT ELEMENT IN A 
VARIABLE 

Next, you find the parent element 
that contains the element you 

want to remove and store that 
element node in a variable. 

The simplest way to get this 
element is to use the parentNode 
property of this element. 

The example on the right is quite 

simple, but this technique can 
significantly alter the DOM tree. 

3 
REMOVE THE ELEMENT 
FROM ITS CONTA INING 
ELEMENT 

The removeChi ld() method is 

used on the containing element 

that you selected in step 2. 

The removeChi ld() method 

takes one parameter: the 
reference to the element that 
you no longer want. 

Removing elements from the 

DOM will affect the index 

number of siblings in a Nodelist. 



REMOVING AN ELEMENT 
FROM THE DOM TREE 

This example uses the 
removeCh i 1 d () method to 

remove the fourth item from the 
list (along with its contents). 

JAVASCRIPT 

The first variable, removeEl, 

stores the actual element you 

want to remove from the page 
(the fourth list item). 

The second variable, 

cont a i nerEl, stores the <u 1 > 

element that contains the 
element you want to remove. 

c05/js/remove-element.js 

var removeEl = document.getElementsByTagName('li ')[3]; II The element to remove 

var containerEl = removeEl .parentNode; 

containerEl.removeChild(removeEl); 

l;IJi'Jii 

II Its containing element 

II Removing t he element 

The removeChild() method is 
used on the variable that holds 

the container node. 

It requires one parameter: the 

element you want to remove 
(which is stored in the second 

variable) . 

• I I 

l i l i l i 

• CONTAINER ELEMENT 

• ELEMENT TO BE REMOVED 

DOCUMENT OBJECT MODEL @ 



COMPARING TECHNIQUES: 
UPDATING HTML CONTENT 

So far, you have seen three techniques for adding HTML to a web page. 

It's time to compare when you should use each one. 

In any programming language, there are often 

several ways to achieve the same task. In fact, if you 

asked ten programmers to write the same script, you 

may well find ten different approaches. 

Some programmers can be rather opinionated and 

believe that their way is always the "right" way to do 

things - when there are often several right ways. If 

you understand why people prefer some approaches 

over others, then you are in a strong position to 

decide whether it meets the needs of your project. 

8 DOCUMENT OBJECT MODEL 

document.write() 
The document object's write () method is a simple 

way to add content that was not in the original 

source code to the page, but its use is rarely advised. 

ADVANTAGES 

• It is a quick and easy way to show beginners how 

content can be added to a page. 

DISADVANTAGES 

• It only works when the page initially loads. 

• If you use it after the page has loaded it can: 

1. Overwrite the whole page 

2. Not add the content to the page 

3. Create a new page 

• It can cause problems with XHTML pages that 

are strictly validated. 

• This method is very rarely used by programmers 

these days and is generally frowned upon. 



You can choose different techniques depending on the task (and keep in 
mind how the site might be developed in the future). 

eZement.innerHTML 

The i nnerHTML property lets you get/update the 

entire content of any element (including markup) as 

a string. 

ADVANTAGES 

• You can use it to add a lot of new markup using 

less code than DOM manipulation methods. 

• It can be faster than DOM manipulation when 

adding a lot of new elements to a web page. 

• It is a simple way to remove all of the content 

from one element (by assigning it a blank string). 

DISADVANTAGES 

• It should not be used to add content that has 

come from a user (such as a username or blog 

comment), as it can pose a significant security 

risk which is discussed over the next four pages. 

• It can be difficult to isolate single elements 

that you want to update within a larger DOM 
fragment. 

• Event handlers may no longer work as intended. 

DOM MANIPULATION 

DOM manipulation refers to using a set of methods 

and properties to access, create, and update 

elements and text nodes. 

ADVANTAGES 

• It is suited to changing one element from a DOM 
fragment where there are many siblings. 

• It does not affect event handlers. 

• It easily allows a script to add elements 

incrementally (when you do not want to alter a lot 

of code at once). 

DISADVANTAGES 

• If you have to make a lot of changes to the 

content of a page, it is slower than i nnerHTML. 

• You need to write more code to achieve the same 

thing compared with i nnerHTML. 

DOCUMENT OBJECT MODEL @ 



CROSS-SITE SCRIPTING 
(XSS) ATTACKS 

If you add HTML to a page using i nnerHTML (or several jQuery methods), 

you need to be aware of Cross-Site Scripting Attacks or XSS; otherwise, 
an attacker could gain access to your users' accounts. 

This book has several warnings about security issues 

when you add HTML to a page using i nnerHTML. 
(There are also notes about it when using jQuery.) 

HOW XSS HAPPENS 

XSS involves an attacker placing malicious code into 
a site. Websites often feature content created by 
many different people. For example: 

• Users can create profiles or add comments 
• Multiple authors may contribute articles 

• Data can come from third-party sites such as 
Facebook, Twitter, news tickers, and other feeds 

• Files such as images and video may be uploaded 

Data you do not have complete control over is known 
as untrusted data; it must be handled with care. 

The next four pages describe the issues you need 

to be aware of, and how to make your site secure 

against these kinds of attacks. 

WHAT CAN THESE ATTACKS DO? 

XSS can give the attacker access to information in: 

• The DOM (including form data) 

• That website's cookies 

• Session tokens: information that identifies you 
from other users when you log into a site 

This could let the attacker access a user account and: 

• Make purchases with that account 

• Post defamatory content 
• Spread their malicious code further I faster 

EVEN SIMPLE CODE CAN CAUSE PROBLEMS: 

Malicious code often mixes HTML and JavaScript (although URLs and CSS can be used to trigger XSS attacks). 

The two examples below demonstrate how fairly simple code could help an attacker access a user's account. 

This first example stores cookie data in a variable, which could then be sent to a third-party server: 

<script>var adr= 'http : //example .com/xss .php?cookie=' + escape(document .cookie);</script> 

This code shows how a missing image can be used with an HTML attribute to trigger malicious code: 

<img src="http://nofile" onerror="adr='http: //example.com/ xss .php?'+escape(document.cookie)";> 

Any HTML from untrusted sources opens your site to XSS attacks. But the threat is only from certain characters. 

@ DOCUMENT OBJECT MODEL 



DEFENDING AGAINST 
CROSS-SITE SCRIPTING 

VALIDATE INPUT GOING TO THE SERVER 

1. Only let visitors input the kind 

of characters they need to when 

supplying information. This is 

known as validation. Do not 

allow untrusted users to submit 

HTML markup or JavaScript. 

REQUESTS PAGES FROM 
AND SENDS FORM DATA 
TO WEB SERVER 

•• c 

BROWSER 

PROCESSES HTML, CSS, 
AND JAVASCRIPT FILES 
SENT FROM WEB SERVER 

2. Double-check val idation on 

the server before displaying user 

content/storing it in a database. 

This is important because users 

could bypass validation in the 

browser by turning JavaScript off. 

COLLECTS INFORMATION 
FROM BROWSER AND 
PASSES IT TO DATABASE 

WEB SERVER 

GENERATES PAGES USING 
DATA FROM DATABASE AND 
INSERTS IT INTO TEMPLATES 

3. The database may safely 

contain markup and script 
from trusted sources (e.g., your 

content management system). 

This is because it does not t ry to 

process the code; it just stores it. 

STORES INFORMATION 
CREATED BY WEBSITE 
ADMINS AND USERS 

DATABASE 

RETURNS CONTENT NEEDED 
TO CREATE WEB PAGES 

ESCAPE DATA COMING FROM THE SERVER & DATABASE 

6. Do not create DOM fragments 

containing HTML from untrusted 

sources. It should only be added 

as text once it has been escaped. 

5. Make sure that you are only 

inserting content generated by 

users into certain parts of the 

template files (see p230). 

4 . As your data leaves the 

database, all potentially 

dangerous characters should be 

escaped (see p231). 

So, you can safely use i nnerHTML to add markup to a page if you have written the code - but content from any 

untrusted sources should be escaped and added as text (not markup), using properties like textContent. 

DOCUMENT OBJECT MODEL @ 



XSS: VALIDATION 
& TEMPLATES 

Make sure that your users can only input characters they need to use 
and limit where this content will be shown on the page. 

FILTER OR VALIDATE INPUT 

The most basic defense is to prevent users from 

entering characters into form fie lds that they do not 
need to use when providing that kind of information. 

For example, users' names and email addresses 
will not contain angled brackets, ampersands, or 

parentheses, so you can validate data to prevent 
characters like this being used. 

This can be done in the browser, but must also be 
done on the server (in case the user has JavaScript 

turned off). You learn about validation in Chapter 13. 

You may have seen that the comment sections on 

websites rarely allow you to enter a lot of markup 
(they sometimes allow a limited subset of HTML). 

This is to prevent people from entering malicious 
code such as <script> tags, or any other character 

with an event handling attribute. 

Even the HTML editors used in many content 

management systems will limit the code that you are 

allowed to use within them, and will automatically 
try to correct any markup that looks malicious. 

§ DOCUMENT OBJECT MODEL 

LIMIT WHERE USER CONTENT GOES 

Malicious users wil l not just use <script> tags to 

try and create an XSS attack. As you saw on p228, 

malicious code can live in an event handler attribute 
without being wrapped in <script> tags. XSS can 
also be tr iggered by malicious code in CSS or URLs. 

Browsers process HTML, CSS, and JavaScript in 

different ways (or execution contexts), and in each 

language different characters can cause problems. 
Therefore, you should only add content from 

untrusted sources as text (not markup), and place 
that text in elem·ents that are visible in the viewport. 

Never place any user's content in the fol lowing 

places without detailed experience of the issues 

involved (which are beyond the scope of this book): 

Script tags: 
HTML comments: 

Tag names: 
Attributes: 

CSSvalues: 

<scr ipt>not here</script> 

<!-- not here --> 

<notHere href=" / test" / > 
<div notHere="norHere" / > 

{color: not here} 



XSS: ESCAPING & 
CONTROLLING MARKUP 

Any content generated by users that contain characters that are used 

in code should be escaped on the server. You must control any markup 

added to the page. 

ESCAPING USER CONTENT 

All data from untrusted sources should be escaped 

on the server before it is shown on the page. 

Most server-side languages offer helper funct ions 

that will strip-out or escape malicious code. 

HTML 

Escape these characters so that they are displayed 

as characters (not processed as code). 

& &amp ; &#x27; (not &apos;) 

< &lt ; &quot; 
> &gt ; I &#x2F ; 

&#x60 ; 

JAVASCRIPT 

Never include data from untrusted sources in 

JavaScript. It involves escaping all ASCII characters 

with a value less than 256 that are not alphanumeric 

characters (and can be a security risk). 

URLS 

If you have links containing user input (e.g., links to 

a user profile or search queries), use the JavaScript 

encodeURIComponent () method to encode the user 

input. It encodes the following characters: 

, I ? : @ & = + $ # 

ADDING USER CONTENT 

When you add untrusted content to an HTML page, 

once it has been escaped on the server, it should still 

be added to the page as text. JavaScript and jQuery 

both offer tools for doing this: 

JAVASCRIPT 

DO use: textContent or i nnerText (see p216) 

DO NOT use: i nnerHTML (see p220) 

JQUERY 

DO use: . text () (see p316) 

DO NOT use: . html() (see p316) 

You can sti ll use the i nnerHTML property and jQuery 

• html() method to add HTML to the DOM, but you 

must make sure that: 

• You control all of the markup being generated 

(do not allow user content that could contain 

markup). 

• The user's content is escaped and added as text 

using t he approaches noted above, rather than 

adding the user's content as HTML. 

DOCUMENT OBJECT MODEL @ 





CHECK FOR AN ATTRIBUTE 
AND GET ITS VALUES 

Before you work with an 
attribute, it is good practice to 

check whether it exists. This will 
save resources if the attribute 

cannot be found. 

JAVASCRIPT 

The hasAttri bute() method 

of any element node lets you 
check if an attribute exists. The 

attribute name is given as an 

argument in the parentheses. 

var firstitem = document.getElementByid( 'one'); 

if (firstitem.hasAttribute('class')) { 
var attr = firstltem.getAttribute(' class'); 

Using hasAttribute() in an if 
statement like this means that 

the code inside the curly braces 
will run only if the attribute 

exists on the given element. 

c05/js/get-attribute . js 

II Get fi rst l is t item 

II If it has class attri bute 
II Get the att ri but e 

I I Add the value of the attribute after the l ist 
var el = document .getElementByid( ' scriptResults'); 

iijJiiJil 

el .innerHTML = '<p>The firs t i tem has a class name : ' + attr + '<Ip>'; 

In this example, the DOM query 
getEl ementByld () returns the 

element whose id attribute has 

a value of one. 

The hasAtt ribute() method 

is used to check whether this 

element has a class attribute, 
and returns a Boolean. This 

is used with an if statement 
so that the code in the curly 

braces will run only if the cl ass 

attribute does exist. 

ThegetAttribute() method 

returns the value of the cl ass 
attribute, which is then written 

to the page. 

Browser Support: Both of these 

methods have good support in 
all major web browsers. 

DOCUMENT OBJECT MODEL 8 



CREATING ATTRIBUTES & 
CHANGING THEIR VALUES 
The cl assName property allows 

you to change the value of the 

cl ass attribute. If the attribute 

does not exist, it wil l be created 

and given the specified value. 

cOS/js/set-attribute. js 

You have seen this property 

used throughout the chapter 

to update the status of the 

list items. Below, you can see 

another way to achieve the task. 

The setAttri bute() method 

allows you to update the value 

of any attribute. It takes two 

parameters: the attribute name, 

and the value for the attribute. 

JAVASCRIPT 

var firs tltem = document.getElementByld('one'); II Get the first item 
firstltem .className = 'complete '; II Change its class attribute 

var fourthlt em = document.getElementsByTagName('li ').item(3);ll Get fourth item 
el2.setAttribute('class' , ' cool'); II Add an attribute to it 

When there is a property (like 

the c 1 ass Name or id properties), 

it is generally considered better 

to update the properties rather 

than use a method (because, 

behind the scenes, the method 

would just be sett ing the 

properties anyway). 

When you update the value 

of an attribute (especially the 

c 1 ass attribute) it can be used 

to trigger new CSS rules, and 

therefore change the appearance 

of the elements. 

@ DOCUMENT OBJECT MODEL 

i;jJiij§I 

Note: These techniques override the entire value of the cl ass attribute. 

They do not add a new value to the existing value of the cl ass attribute. 

If you wanted to add a new value onto the existing value of the c 1 ass 

attribute, you would need to read the content of the attribute first, then 

add the new text to that existing value of the attribute (or use the 

jQuery . addCl ass () method covered on p320). 



REMOVING ATTRI BUTES 

To remove an attribute from an 

element, first select the element, 
then cal l removeAtt r i bute () . 

It has one parameter: the name 

of the attribute to remove. 

JAVASCRIPT 

Trying to remove an attribute 

that does not exist w ill not cause 
an error, but it is good practice 

to check for its existence before 
attempting to remove it. 

In this example, the 
get El ementByld () method is 

used to retrieve the first item 
from this list, which has an id 

attribute with a value of one. 

c05/ j s/ remove-at tri bute.js 

var firstltem = document .getElementByld{'one ' ) ; // Get the first i tem 
if (firstltem.hasAttribute('class ')) { // 

firstl t em. removeAttri bute( ' cl ass' ) ; // 
If it has a class attri bute 
Remove its cl ass attribute 

The script checks to see if the 

selected element has a c 1 ass 
attribute and, if so, it is removed. 

DOCUMENT OBJECT MODEL @ 



EXAM INING THE DOM 
IN CHROME 

Modern browsers come with tools that help 
you inspect the page loaded in the browser 
and understand the structure of the DOM tree. 

In the screenshot to the right, the 

<l i> element is highlighted and 
the Properties panel (1) indicates 

that this is an: 

• 1 i element with an id 
attribute whose value is one 
and cl ass whose value is hot 

• an HTMLLIElement 

• an HTMLElement 

• an element 

• a node 
• an object 

Each of these object names has 

an arrow next to it which you can 
use to expand that section. 

It will tell you what properties 
are available to that kind of node. 

They are separated because 
some properties are specific 

to list item elements, others 

to element nodes, others to all 
nodes, and others to all objects, 

and the different properties are 
listed under the corresponding 

type of node. But they do remind 

you of which properties you can 

access through the DOM node 
for that element. 

8 DOCUMENT OBJECT MODEL 

e e e / D i.vaScrlp< , JQutry - Ch• x '\u 
~ ~ c D file:/ I/initial- page.html 

01 - 1 Resources N- SOUf CC:S Timtlln< 

v•• . 
T<ht1tl> 

... <head>-</he•d> 
• <body> 

• <div id="pagt"> 
<hl id="l'leader">List King</hl> 
<h2>8uy grocer ies</h2> 

• <ut> 

<e1a>f resh</ttt> 
.. figs" 

</\1> 
<\i i d•"two" c l ass• "hot">pine nuts</\i> 
<li i d="three'' c\ass•"hot '">l\oney</U> 
<\i id•'•four .. >batsamic vinegar</ti> 

</u\> 
</div> 

</body> 
</ht.ml> -
~ >:: Q. html body divl~~ ul ll!!'lml!!!I 

To get the developer tools in 

Chrome on a Mac, go to the 
View menu, select Developer and 

then Developer Tools. On a PC, 
go to Tools (or M ore Tools) and 

select Developer Tools. 

Or right-click on any element 

and select Inspect Element. 

Select Elements from the menu 

that runs across the top of this 
tool. The source of the page will 

be shown on the left and several 
other options to the right. 

.,.• 
~ 

~ 

- -
't[_, = 

Profiles Audiu Consol• 

.-Computed Style O Show inheritec 

.,Styles + •i;; 0· 
,. Metrics 

!i"Propenles \. 1 .I 
• \itlone. hot 

• KTMLl.lE te11ent 

• KTMLEte11ent 

• E\nent 
•Node 

!.- Obje<t 

.- DOM Breakpoints 
,. Event Listeners 

-

Any element that has child 

elements has an arrow next 

to it that lets you expand and 
collapse the item to show and 

hide its content. 

'il· 

0 

The Properties panel (on the 
right) tells you the type of object 

the selected element is. (In some 
versions of Chrome this is shown 

as a tab.) When you highlight 

different elements in the main 
left-hand window, you can see 

the values in the Properties panel 

on the right reflect that element. 



EXAMINING THE DOM 
IN FIREFOX 

Firefox has similar built-in tools, but you can 
also download a DOM inspector tool that 

shows the text nodes. 

(} 0 0 ~pc & jQ;nty .. Chap< t r S; Ooa.mtnt Obj~t Modet • l'*iti.af P*9f: If you search online for "DOM 

Inspector", you will find the tool 

designed for Firefox shown on 

the left. In the screen shot, you 

can see a similar tree view to 

the one shown in Chrome, but 

it also shows you where there 

are whitespace nodes (they are 

shown as # text). In the panel to 

the right, you can see the value 

in the nodes; whitespace nodes 

have no value in this panel. 

Q A Ofk./11~·~ --
• HM. . """ -• IOOV 

. "' -. "' 
. "' 

• u .... 
• u 

.... 

.. .. 

Firefox also has a 3D view of 

the DOM, where a box is drawn 

around each element, and you 

can change the angle of the 

page to show which parts of it 

stick out more than others. The 

further they protrude the further 

into chi ld elements they appear. 

This can give you an interesting 

(and quick) glimpse into the 

complexity of the markup used 

on a page and the depth to which 
elements are nested. 

-............ 

Another Firefox extension worth 

trying is called Firebug. 

DOCUMENT OBJECT MODEL @ 





EXAMPLE 
DOCUMENT OBJECT MODEL 

This example brings together a selection of 
the techniques you have seen throughout the 

chapter to update the contents of the list. 
It has three main aims: 

1: Add a new item to the start and end of the list 
Adding an item to the start of a list requires the use of a different method 

than adding an element to the end of the list. 

2: Set a cl ass attribute on all items 
This involves looping through each of the <l i >elements and updating 

the value of the c 1 ass attribute to coo 1. 

3: Add the number of list items to the heading 
This involves four steps: 

1. Reading the content of the heading 

2 . Counting the number of <:l i >elements in the page 

3. Adding the number of items to the content of the heading 

4 . Updating the heading with this new content 

DOCUMENT OBJECT MODEL § 



EXAMPLE 
DOCUMENT OBJECT MODEL 

c05/ js/ example. js JAVASCR IPT 

II ADDING ITEMS TO START AND ENO OF LIST 
var list = document .get El ementsByTagName( ' ul ')[OJ; II Get the <u l > el ement 

II ADD NEW ITEM TO END OF LIST 
var newitemLast = document . createElement('li '); II Create element 

II Create text node var newTextLast = document .createTextNode{'cream'); 
newitemLast.appendChild(newTextLast); 
list.appendChild(newitemLast); 

II Add text node to element 
II Add element end of lis t 

II ADD NEW ITEM START OF LIST 
var newitemFirst = document . createElement('li ') ; 
var newTextFirst = document.createTextNode('kale'); 
newitemFirst.appendChild(newTextFirst); 
list . insertBefore(newitemFirst, list . firstChild); 

II Create element 
II Create text node 
II Add text node t o element 
II Add element to list 

This part of the example adds two new list items to 

the <ul> element: one to the end of the list and one 
to the start of it. The technique used here is DOM 

manipulation and there are four steps to creating a 

new element node and adding it to the DOM tree: 

1. Create the element node 
2. Create the text node 

3. Add the text node to the element node 
4 . Add the element to the DOM tree 

To achieve step four, you must first specify the 

parent that will contain the new node. In both cases, 
this is the <ul> element. The node for this element 

is stored in a variable called 1 i st because it is used 
many times. 

8 DOCUMENT OBJECT MODEL 

The append Child () method adds new nodes as a 

child of the parent element. It has one parameter: 
the new content to be added to the DOM tree. If the 

parent element already has child elements, it will be 

added after the tast of these (and will therefore be 
the last child of the parent element). 

paren t .appendChild(newltem) ; 

(You have seen this method used several times both 

to add new elements to the tree and to add text 

nodes to element nodes.) 

To add the item to the start of the list, the 
i nsertBefore () method is used. This requires one 

extra piece of information: the element you want to 
add the new content before (the target element). 

parent . insertBefore(newltem, target) ; 
.. 



EXAMPLE 
DOCUMENT OBJECT MODEL 

JAVASCRIPT c05/js/example.js 

var list Items = document.querySelectorAl l (' l i '); /!All <l i> elements 

//ADD A CLASS OF COOL TO ALL LIST ITEMS 
var i; 
for (i = 0; i < listltems . length; i++) { 
listltems[i] .className = 'cool'; 

} 

//Counter variable 
// Loop through elements 
//Change class to cool 

// ADD NUMBER OF ITEMS IN THE LIST TO THE HEADING 
var heading = document .querySelector('h2'); // h2 element 

// h2 text var headingText = heading.firstChild.nodeValue; 
var totalltems = listitems. l ength ; //No. of <li> elements 

+ '</span>'; // Con tent 
//Update h2 

var newHeading = headingText + '<span>' + totalitems 
heading.textContent = newHeading; 

The next step of this example is to loop through all of 

the elements in the list and update the value of their 
c 1 ass attributes, setting them to coo 1. 

This is achieved by fi rst collecting all of the list 
item elements and storing them in a variable called 

1 i st I t ems. A for loop is then used to go through 
each of them in turn. In order to tell how many times 

the loop should run, you use the length property. 

Finally, the code updates the heading to include 

the number of list items. It updates it using the 

i nnerHTML property as opposed to the DOM 
manipulation techniques used earlier in the script. 

This demonstrates how you can add to the content 

of an existing element by reading its current value · 

and adding to it. You could use a similar technique if 
you needed to add a value to an attribute - without 

overwriting its existing value. 

To update the heading with the number of items in 

the list, you need two pieces of information: 

1. The orig inal content of the heading so that 
you can add the number of list items to it. It is 

collected using the node Value property (although 

i nnerHTML or text Content would do the same). 
2. The number of list items, which can be found 

using the l ength property on the l ist Items 

variable. 

W ith this information ready, there are two steps to 

updating the content of the <h2> element: 

1. Creating the new heading and storing it in a 
variable - the new heading wi ll be made up of the 

original heading content, followed by the number 

of items in the list. 
2. Updating the heading, which is done by updating 

the content of the heading element using the 

i nnerText property of that node. 

DOCUMENT OBJECT MODEL @ 



The browser represents the page using a DOM tree. 

DOM trees have four types of nodes: document nodes, 

element nodes, attribute nodes, and text nodes. 

You can select element nodes by their id or cl ass 

attributes, by tag name, or using CSS selector syntax. 

Whenever a DOM query can return more than one 

node, it will always return a Nadel i st. 

From an element node, you can access and update its 

content using properties such as textContent and 

i nnerHTML or using DOM manipulation techniques. 

An element node can contain multiple text nodes and 

child elements that are siblings of each other. 

In older browsers, implementation of the DOM is 

inconsistent (and is a popular reason for using jQuery). 

Browsers offer tools for viewing the DOM tree . 

•• 





8 EVENTS 

W hen you browse the web, your browser registers different 

types of events. It 's the browser's way of saying, "Hey, this 

just happened." Your script can then respond to these events. 

Scripts often respond to these events by updating the content of the web page (via the 

Document Object Model) which makes the page feel more interactive. In this chapter, you 
wil l learn how: 

INTERACTIONS EVENTS TRIGGER CODE RESPONDS 
CREATE EVENTS CODE TO USERS 
Events occur when users When an event occurs, In the last chapter, you 
click or tap on a link, hover or fires, it can be used saw how the DOM can 
or swipe over an element, to trigger a particular be used to update a page. 
t ype on the keyboard, funct ion. Different code The events can trigger the 
resize the w indow, or can be tr iggered when -kinds of changes the DOM 
when the page they users interact with is capable of. This is how a 
requested has loaded. different parts of the page. web page reacts to users. 

l 
~ 

I 

1 
' 

j 
I 
1 





DIFFERENT EVENT TYPES 

Here is a selection of the events that occur in the browser while you are 

browsing the web. Any of these events can be used to trigger a function 
in your JavaScript code. 

UIEVENTS Occur when a user interacts with the browser's user interface (UI) rather than the web page 

EVENT DESCRIPTION 

load W eb page has finished loading 

unload Web page is unloading (usually because a new page was requested) 

error Browser encounters a JavaScript error or an asset doesn't exist 

resize Browser window has been resized 

scroll User has scrolled up or down the page 

KEYBOARD EVENTS Occur when a user interacts with the keyboard (see also input event) 

EVENT DESCRIPTION 

keydown User first presses a key (repeats while key is depressed) 

keyup User releases a key 

keypress Character is being inserted (repeats while key is depressed) 

MOUSE EVENTS Occur when a user interacts with a mouse. trackpad, or touchscreen 

EVENT DESCRIPTION 

click User presses and releases a button over the same element 

dbl click User presses and releases a button twice over the same element 

moused own User presses a mouse button while over an element 

mouseup User releases a mouse button while over an element 

mousemove User moves the mouse (not on a touchscreen) 

mouseover User moves the mouse over an element (not on a touchscreen) 

mouseout User moves the mouse off an element (not on a touchscreen) 

8 EVENTS 

.. 

.. 



TERMINOLOGY 

EVENTS FIRE OR ARE RAISED 

When an event has occurred, it is often described as having fir ed or 

been raised . In the diagram on the right, if the user is tapping on a link, a 

cl ick event would fire in the browser. 

EVENTS TRIGGER SCRIPTS 

Events are said to t rigger a function or script. When the click event 

fires on the element in this diagram, it could trigger a script that enlarges 

the selected item. 

0 

FOCUS EVENTS Occur when an element (e.g., a link or form field) gains or loses focus 

EVENT 

focus / focus in 

blur / focusout 

FORM EVENTS 

EVENT 

input 

change 

submit 

reset 

cut 

copy 

paste 

select 

MUTATION EVENTS* 

EVENT 

DOMSubtreeModified 

DOMNodelnserted 

DOMNodeRemoved 

OOMNodelnsertedlntoDocument 

DOMNodeRemovedFromOocument 

DESCRIPTION 

Element gains focus 

Element loses focus 

Occur when a user interacts with a form element 

DESCRIPTION 

Value in any <input> or <textarea> element has changed (IE9+) 

or any element with the contented i table attribute 

Value in select box, checkbox, or radio button changes ( IE9+) 

User submits a form (using a button or a key) 

User clicks on a form's res~t button (rarely used these days) 

User cuts content from a form fie ld 

User copies content from a form fie ld 

User pastes content into a form fie ld 

User selects some text in a form field 

Occur when the DOM structure has been changed by a script 

• To be replaced by mutation observers (see p284) 

DESCRIPTION 

Change hc;is been made to document 

Node has been inserted as a direct child of another node 

Node has been removed from another node 

Node has been inserted as a descendant of another node 

Node has been removed as a descendant of another node 

EVENTS 8 



HOW EVENTS TRIGGER 
JAVASCRIPT CODE 

When the user interacts with the HTML on a web page, there are three 

steps involved in getting it to trigger some JavaScript code. 

Together these steps are known as event handling. 

1 
Select t he element 
node(s) you want the 
script to respond to. 

For example, if you want to 

trigger a function when a user 

cl icks on a specific link, you need 

to get the DOM node for that 

link element. You do this using a 

DOM query (see Chapter 5). 

The UI events that relate to the 

browser window (rather than the 

HTML page loaded in it) work 

with the window object rather 

than an element node. Examples 

include the events that occur 

when a requested page has 

f inished loading, or when the 

user scrolls. You will learn about 

using these on p272. 

8 EVENTS 

2 
Indicate which event on 
the selected node(s) will 
trigger the response. 

Programmers call this binding an 

event to a DOM node. 

The previous two pages showed 

a selection of the popular events 

that you can monitor for. 

Some events work with most 

element nodes, such as the 

mouseover event, which is 

triggered when the user rolls 

over any element. Other events 

only work w ith specific element 

nodes, such as the submit event, 

which only works w ith a form. 

3 
State the code you want 
to run when the event 
occurs. 

W hen the event occurs, on a 

specified element, it will trigger 

a function. This may be a named 

or an anonymous function. 



Here you can see how event handling can be used to provide feedback to 

users filling in a registration form. It will show an error message if their 

username is too short. 

1 2 
SELECT ELEMENT SPEC! FY EVENT 

The element that users are 

interacting with is the text input 
where they enter the username. 

When users move out of the 
text input, it loses focus, and the 

blur event fires on this element. 

e 

0 
Event : blur on username 

FUNCTION: checkUsername() 
Check the username is long enough 

' I 
Get username 

+ 
I 

Is username 
less than five 
characters? ' I Clear message Show error message 

3 
CALL CODE 

When the blur event fires 
on the username input, it 

will trigger a function called 
chec kUsername ().This function 

checks if the username is less 

than 5 characters. 

If there are not enough 
characters, it shows an error 

message that prompts the user 
to enter a longer username. 

If there are enough characters, 

the element that holds the error 

message should be cleared. 

This is because an error 
message may have been shown 

to the user already and they 
subsequently corrected their 

mistake. (If the error message 
was still visible when they had 

filled in the form correctly, it 

would be confusing.) 

EVENTS 8 



THREE WAYS TO BIND AN 
EVENT TO AN ELEM ENT 

Event handlers let you indicate which event you 
are waiting for on any particular element. 
There are three types of event handlers. 

HTML EVENT 
HANDLERS 

See p251 

This is bad practice, but you 

need to be aware of it because 
you may see it in older code. 

Early versions of HTML included 

a set of attributes that could 
respond to events on the 

element they were added to. 

The attribute names matched 
the event names. Their values 

called the function that was to 
run when that event occurred. 

For example, the following: 

<a onclick="hide()"> 

indicated that when a user 

clicked on this <a> element, the 
hi de () function would be called. 

This method of event handling 

is no longer used because it is 
better to separate the JavaScript 

from the HTML. You should use 

one of the other approaches 

shown on this page instead. 

§ EVENTS 

TRADITIONAL DOM 
EVENT HANDLERS 

See p252 

DOM event handlers were 

introduced in the original 
specification for the DOM. 

They are considered better than 
HTML event handlers because 

they let you separate the 
JavaScript from the HTML. 

Support in all major browsers is 
very strong for this approach. 

The main drawback is that you 
can only attach a single function 

to any event. For example, the 
submit event of a form cannot 

trigger one function that checks 

the contents of a form, and a 

second to submit the form data if 
it passes the checks. 

As a result of this limitation, if 

more than one script is used on 
the same page, and both scripts 

respond to the same event, then 
one or both of the scripts may 

not work as intended. 

DOM LEVEL 2 EVENT 
LISTENERS 

See p254 

Event listeners were introduced 

in an update to the DOM 
specification (DOM level 2, 

released in the year 2000). 
They are now the favored way of 

handling events. 

The syntax is quite different and, 

unlike traditional event handlers, 
these newer event listeners allow 

one event to trigger mult iple 
functions. As a result, there 

are less likely to be conflicts 
between different scripts that 

run on the same page. 

This approach does not work 

with IE8 (or earlier versions of 
IE) but you meet a workaround 

on p258. Differences in 
browser support for the DOM 

and events helped speed 

adoption of jQuery (but you 
need to know how events work 

to understand how jQuery uses 
them). 



HTML EVENT HANDLER 
ATTRIBUTES (DO NOT USE) 
Please note: This approach is 

now considered bad practice; 

however, you need to be aware 

of it because you may see it if 

you are looking at older code. 

(See previous page.) 

In the HTML, the first <input> 

element has an attribute called 

onb l ur (triggered when the user 

leaves the element). The value of 

the attribute is the name of the 

function that it should trigger. 

The value of the event handler 

attributes would be JavaScript. 

Often it would cal l a function 

that was written either in the 

<head> element or a separate 

JavaScript file (as shown below). 

""*'' c06/ event-attributes.html 

<form method="post" action="http://www.example.org/register"> 
<label for="username">Create a username: </l abel> 
<input type="text" i d="username" onbl ur="checkUsername()" / > 
<div id="feedback"></div> 

<label for="password">Create a password: </label> 
<input type="password" id="password" / > 

<input type="submit" value="Sign up!" / > 
</ fonn> 

<script type="text/javascript" src="js/event-attributes .js "></script> 

JAVASCRIPT c06/ js/ event-attributes.js 

function checkUsername() { / / Dec lare funct ion 
var elMsg = document .getElementByi d('feedback') ; // Get feedback element 
var elUsername = document .getEl ementByld('username ' ); // Get username input 
if (el Username .value . length < 5) { / / If username too short 

elMsg.textContent ' Username must be 5 characters or more'; // Set msg 
else { //Otherwise 
elMsg.textContent = ''; //Clear message 

For example: 

• <a> elements can have one lick, onmouseover, onmouseout 

• <form> elements can have onsubmi t 

The names of the HTML event 

handler attributes are identical 

to the event names shown on 

p246 - p247, preceded by • <input> elements for text can have onkeypress, on focus, onb l ur 

the word "on." 

EVENTS 0 



TRADITIONAL DOM 
EVENT HANDLERS 

All modern browsers understand this way of creating an event handler, 

but you can only attach one function to each event handler. 

Here is the syntax to bind an event to an element using an event handler, 

and to indicate which funct ion should execute when that event fires: 

element .onevent functionName ; 

ELEMENT EVENT CODE 

DOM element Event bound to node(s) Name of function to cal l (with 

node to target preceded by word "on" no parentheses following it) 

Below, the event handler is on 

the last line (after the function 
has been defined and the DOM 

element node(s) selected). 

When a function is called, the 

parentheses that fo llow its name 
tell the JavaScript interpreter to 
"run this code now." 

We don't want the code to 
run until the event fires, so the 

parentheses are omitted from 
the event handler on the last line. 

function checkUsername() { I 
A reference // code to check the length of username 
to the DOM 
element node -[var el = document. getElementByld('username') ; 
isoftenstored el . onblur = checkUsername; -----------
in a variable. 

The event name is preceded by the word "on." 

An example of an anonymous function and a function with parameters is shown on p256. 

§ EVENTS 

The code starts 
by defining the 
named function. 

The function 
is called by the 
event handler on 
the last line, but 
the parentheses 
are omitted. 



USING DOM EVENT 
HANDLERS 

In this example, the event 

handler appears on the last line 

of the JavaScript. Before the 

DOM event handler, two things 

are put in place: 

JAVASCRIPT 

function checkUsername() { 

1. If you use a named function 

when the event fires on your 

chosen DOM node, write that 

function first. (You could also 

use an anonymous function.) 

var elMsg = document .get El ementByld('feedback'); 
if (this .value .l ength< 5) { 

elMsg . textContent 'Username mus t be 5 characters 
else { 
elMsg.textContent I I • 

' 

2. The DOM element node is 

stored in a variable. Here the text 

input (whose id attribute has a 

value of username) is placed into 

a variable called e 1 Username. 

c06/ js/ event-handler.js 

II Declare funct ion 
II Get feedback element 
II If username too short 
or more'; II Set msg 
II Otherwise 
II Clear message 

@) var elUsername = document. getElementByld('username') ; II Get username input 
G) elUsername.onblur = checkUsername; II When it l oses focus call checkuserName() 

When using event handlers, the 

event name is preceded by the 

word "on" (onsubmi t , on change, 

onfocus, onbl ur, onmouseover, 

onmouseout, etc). 

3. On the last line of the code 

sample above, the event handler 

e 1 Username. onb 1 ur indicates 

that the code is waiting for the 

b 1 ur event to fire on the element 

stored in the variable called 

e 1 Username. 

This is followed by an equal sign, 

then the name of the function 

that will run when the event 

fires on that element. Note that 

there are no parentheses on the 

function name. This means you 

cannot pass arguments to this 

function. (If you want to pass 

arguments to a function in an 

event handler, see p256.) 

The HTML is the same as that 

shown on p251 but without 

the onb 1 ur event attribute. This 

means that. the event handler is 

in the JavaScript, not the HTML. 

Browser support: On line 3, 

the checkUsername() function 

uses the this keyword in the 

conditional statement to check 

the number of characters the 

user entered. It works in most 

browsers because they know 

this refers to the element the 

event happened on. 

However, in Internet Explorer 

8 or earlier, IE would treat this 

as the wi ndow object. As a 

result, it would not know which 

element the event occurred on 

and there would be no value 

that it checked the length of, so 

it would raise an error. You will 

learn a solution for this issue on 

p264. 

EVENTS@ 



EVENT LISTENERS 

Event listeners are a more recent approach to handling events. 

They can deal with more than one function at a time 
but they are not supported in older browsers. 

Here is the syntax to bind an event to an element using an event listener, 
and to indicate which function should execute when that event fires: 

Adds an event listener to the DOM element node(s) 

METHOD 

element .addEventlistener('event', functionName [, Boolean]) ; 

ELEMENT 

DOM element 

node to target 

EVENT CODE 

Event to bind node(s) Name of function 
to in quote marks to call 

EVENT FLOW 

Indicates something called 
capture, and is usually set 

to f al se (see p260) 

The code starts 

II code to check the length of username named function. 
function checkUsername() { }-- bydefiningthe 

A reference 
t th DOM The function 

e~em:nt node -{var el = document . get El ementByld ( 'username') ; is caltlel~tby the 
. even 1s ener on 
1softenstored el. addEventlistener('blur', checkUsername, false) ; the lastline,but 
in a variable. l...-..r--1 

1 the parentheses 
The event name is enclosed in quotation marks. are omitted. 

An example of an anonymous function and a function with parameters is shown on p256. 

8 EVENTS 



USING EVENT LISTENERS 

In this example, the event 

listener appears on the last 

line of the JavaScript. Before 
you write an event listener, two 

things are put in place: 

JAVASCRIPT 

function chec kUsername() { 

1. If you use a named function 
when the event fi res on your 

chosen DOM node, write that 
function first. (You could also 

use an anonymous function.) 

var elMsg = document .get ElementByld('feedback'); 
i f (t hi s .value.lengt h< 5) { 

elMsg .textContent 'Username must be 5 characters 
el se { 
el Msg .textContent I I, , 

2. The DOM element node(s) is 
stored in a variable. Here the text 

input (whose id attribute has a 

value of username) is placed into 
a variable called el Username. 

c06/ js/ event-l istener.js 

II Declare function 
II Get feedback element 
II If username too short 
or more'; II Set msg 
II Otherwise 
II Clear msg 

~ var elUsername = document .get El ementByld(' username') ; II Get username i nput 
II When i t loses focus call checkUsername() 
elUsername.addEventlistener('blur' , checkUsername , false) ; 

The addEventli stener () 

method takes three properties: 

i) The event you want it to listen 
for. In this case, the b 1 ur event. 

ii) The code that you want it 
to run when the event fires. 
In this example, it is the 
checkUsername (} function. Note 
that the parentheses are omitted 
where the function is called 
because they would indicate that 
the function should run as the 
page loads (rather than when the 
event fires). 

iii) A Boolean indicating how 
events flow, see p260. (This is 
usually set to false.) 

CD ® ® 
BROWSER SUPPORT 

Internet Explorer 8 and earfier 
versions of IE do not support the 

addEventli stener() method, 
but they do support a method 

called attachEvent(} and 
you will see how to use this on 

p258. 

Also, as with the previous 

example, IE8 and older versions 
of IE would not know what this 

referred to in the conditional 
statement. ·An alternative 

approach for dealing with it is 
shown on p270. 

EVENT NAMES 

Unlike the HTML and traditional 

DOM event handlers, when you 
specify the name of the event 
that you want to react to, the 

event name is not preceded by 

the word "on". 

If you need to remove an event 

listener, there is a function called 
removeEventL i stener(} which 
removes the event listener from 

the specified element (it has the 
same parameters). 

EVENTS@ 



USING PARAMETERS WITH 
EVENT HANDLERS 
& LISTENERS 

Because you cannot have parentheses after the 

function names in event handlers or listeners, 

passing arguments requires a workaround. 

Usually, when a function needs 
some information to do its job, 

you pass arguments within the 
parentheses that follow the 

function name. 

When the interpreter sees the 
parentheses after a function call, 

it runs the code straight away. 
In an event handler, you want it 

to wait until the event triggers it. 

Therefore, if you need to pass 
arguments to a function that is 

called by an event handler or 
listener, you wrap the function 

call in an anonymous function. 

Event name Start of anonymous function 

The named function .-Li 
includes parentheses el .add Event Listener(' blur' , function() 

The anonymous 
function is used 

containing the -- chec kUsername ( 5) ; 
parameter after the } f l ) , a se ; 
function name. 

I ~nd of statement 
End of addEventl i stener() method 

Event flow Boolean (see p260) 

End of anonymous function 

The named funct ion that 
requires the arguments lives 

inside the anonymous function. 

8 EVENTS 

Although the anonymous 
function has parentheses, it only 

runs when the evenUs triggered. 

as the second 
argument. It "wraps 
around" the named 
function. 

The named function can use 
arguments as it only runs if the 

anonymous function is called. 



USING PARAMETERS WITH 
EVENT LISTENERS 

The first line of this example shows the updated 

checkUsername() function. The mi nlength 

parameter specifies the minimum number of 

characters that the username should be. 

JAVASCRI PT 

The value that is passed into the checkUsername() 

function is used in the conditional statement to 

check if the name is long enough, and provide 

feedback if the username name is too short. 

c06/ js/ event-li st ener -with-parameters.js 

var elUsername = document .getElementByid('username') ; 
var el Msg = document .getElementByid('feedback') ; 

II Get username i nput 
II Get feedback element 

function checkUsername(mi nleng t h) { II Declare function 
II If username too short if (elUsername.val ue.length < minlength) 

II Set the error message 
elMsg . textContent = 'Username must be ' + minlength + ' characters or more'; 

II Otherwi se } else { 
elMsg . innerHTML 

} 

I I • , II Clear msg 

elUsername. addEventListener( 'bl ur ' , funct ion() { 
checkUsername (S); 

II When it loses focus 
II Pass arguments here 

}, false) ; 

The event listener on the last three lines is longer 

than the previous example because the call to the 

checkUsername () function needs to include the 

value for the mi nlength parameter. 

To receive this information, the event listener uses 

an anonymous function, which acts like a wrapper. 

Inside that wrapper the checkUsername() function is 

called, and passed an argument. 

Browser support: On the next page you also see 

how to deal with the lack of support for event 

listeners in IE8 and earlier. 

EVENTS 8 



SUPPORTING OLDER 
VERSIONS OF IE 

IES-8 had a different event model and did not support 
addEventL i stener() but you can provide fallback code 
to make event listeners work with older versions of IE. 

IE5-IE8 did not support the addEventL i stener() 

method. Instead, it used its own method called 
attachEvent () which did the same job, but was 

only available in Internet Explorer. If you want to use 
event listeners and need to support Internet Explorer 
8 or earlier, you can use a conditional statement as 

illustrated below. 

Using an if ••• else statement, you can check if the 
browser supports the addEventL i stener() method. 

The condition in the if statement will return true 

if the browser supports the addEventL i stener() 
method, and you can use it. If the browser does not 
support that method, it returns false, and the code 

will try to use the attachEvent () method. 

If the browser supports 
addEventlistener() : if (el .addEventlistener) { 

Run the code inside 
these curly braces 

If it doesn't, do 
something else: 

Run the code inside 
these curly braces 

el .addEventlistener('blur', function() { 
checkUsername(5); 

}, false); 

} else { 

} 

el .attachEvent('onblur', function() { 
checkUsername(5); 

} ) ; 

When attachEvent () is used, the event name should be preceded by the word "on" (e.g., blur becomes onb l ur). 
You will see another approach to supporting the older IE event model in Chapter 13 (using a utility file). 

8 EVENTS 



FALLBACK FOR USING 
EVENT LISTENERS IN I E8 

The event handling code builds on the last example, 
but it is a lot longer this time because it contains the 
fal lback for Internet Explorer 5-8. 

After the checkUsername {) function, an if 
statement checks whether addEventL i stener() is 
supported or not; it returns true if the element node 
supports this method, and fa 1 se if it does not. 

JAVASCRIPT 

If the browser supports the addEventL i stener() 
method, the code inside the first set of curly braces 
is run using add Event Listener() . 

If it is not supported, then the browser will use the 
attachEvent () method that older versions of IE will 
understand. In the IE version, note that the event 
name must be preceded by the word "on." 

c06/ js/event-l istener-with-ie-fal lback.js 

var el Username = document . getElementByld('username') ; 
var e l Msg = document . getElementByl d('feedback'); 

// Get username in put 
// Get feedback element 

function checkUsername(minlength) { // Declare function 
if (elUsername.value.length < minlength) // If username too short 

II Set message 
elMsg . innerHTML 
else { 

'Username must be ' + minlength + ' charact ers or more ' ; 

el Msg . i nnerHTML ' ' ; 

if (elUsername.addEventListener) { 
elUsername . addEventlistener('bl ur' , 

checkUsername(S) ; 
}, false); 

// Otherwise 
/ / Clear message 

- // If event listener supported 
function( ) {// When username loses focus 

// Call checkUsername() 
// Capture duri ng bubbl e phase 
// Otherwise else { 

elUsername . attachEvent('onblur' , 
checkUsername(S); 

} ) ; 

function(){ // IE fal l back: onblur 
// Cal l checkUsername() 

If you need to support I E8 (or older), instead of 
writing this fallback code for every event you are 
responding to, it is better to write your own function 
(known as a helper function) that creates the 
appropriate event handler for you. You wi ll see a 
demonstration of this in Chapter 13, which covers 
form enhancement and validation. 

It is, however, important to understand this syntax, 
used by IE8 (and older) so that you know why the 
helper function is used and what it is doing. 

As you wi ll see in the next chapter, this is another 
type of cross-browser inconsistency that jQuery can 
take care of for you. 

EVENTS 8 





JavaScript 

rr .. h ~gs 

JavaScript 

<.t id• 'llnk">fresh 'ig.s</~> 

JavaScript 



THE EVENT OBJECT 

When an event occurs, the event object tells 
you information about the event, and the 

element it happened upon. 

Every time an event fires, the The event object is passed to 
event object contains helpful any function that is the event 

data about the event, such as: handler or listener. 

• Which element the event 
happened on If you need to pass arguments 

• Which key was pressed for a to a named function, the event 

keypress event object will first be passed to the 

• What part of the viewport the anonymous wrapper function 

user clicked for a c 1 i ck event (this happens automatically); 
(the viewport is the part of then you must specify it as a 

the browser window that parameter of the named function 

shows the web page) (as shown on the next page). 

When the event object is 

passed into a function, it is of ten 
given the parameter name e 

(for event). It is a widely used 
shorthand (and you see it 

adopted throughout this book). 

Note, however, that some 

programmers also use the 
parameter name e to refer to the 

error object; so e may mean 
event or error in some script s. 

Not only did IE8 have a different syntax for event listeners (as shown on p258), the event object in IES-8 also 

had different names for the properties and methods shown in the tables below, and the example on p265. 

PROPERTY 

target 

type 

cancel able 

METHOD 

IES-8 EQUIVALENT PURPOSE 

srcElement The target of the event (most specific element interacted with) 

type Type of event that was fired 

not supported Whether you.can cancel the default behavior of an element 

IES-8 EQUIVALENT PURPOSE 
PROPERTY 

preventOefault() returnValue Cancel default behavior of the event (if it can be canceled) 

stopPropagation() cancelBubble Stops the event from bubbling or capturing any further 

@ EVENTS 

1 

.. 



EVENT LISTENER WITH NO PARAMETERS 

function checkUsername(e) { 
Q) var target = e. target ; //get target of event 
} 

var el = document.getElementByid('username'); 
el.addEventlistener('blur', checkUsername , false); 

1. Without you doing anything, 

a reference to the event object 
is automatically passed from 

the number 1, where the event 
listener calls the function ... 

2. To here, where the function 

is defined. At this point, the 
parameter must be named. 

It Is often given the name e for 
event. 

EVENT LISTENER WITH PARAMETERS 

3. This name can then be used 
inside the function as a reference 

to the event object. You can now 

use the properties and methods 
of the event object. 

function checkUsername(e, minlength) { 
@) var target = e . target ; //get target of event 
} 

var el = document.getElementByid('username ') ; 
el .addEventlistener( 1 blur 1

, function(e){ 1 

checkUsername(e, 5); 
} , false); 

1. The reference to the event 
object is automatically passed 

to the anonymous function, 

but it must be named in the 
parentheses. 

2. The reference to the event 
object can then be passed onto 

the named function. It is given as 

the first parameter of the named 
function. 

3. The named function receives 

the reference to the event object 

as the first parameter of the 
method. 4 . It can now be used by 

this name in the named function. 

EVENTS@ 



THE EVENT OBJECT 
IN IES-8 

Below you can see how you get the event object in IES-8. 

It is not passed automatically to event handler/listener functions; 

but it is available as a child of the window object. 

On the right, an if statement 

checks if the event object has 
been passed into the function. 

As you saw on p168, the 
existence of an object is 

treated as a truthy value, so the 
condition here is saying "if the 
event object does not exist..." 

In IE8 and less, e will not hold 
an object, so the following code 

block runs and e is set to be the 
event object that is a child of the 

wi ndow object. 

GETTING PROPERTIES 

Once you have a reference to 

the event object you can get its 

properties using the technique 
on the right. This works on short 

circuit evaluation (see p169). 

function checkUsername(e) 
if (! e) { 

e = window.event ; 

var target; 
target = e.target I I e.srcElement; 

A FUNCTION TO GET THE TARGET OF AN EVENT 

lfyouneedtoassignevent function getEventTarget(e) { 
listeners to several elements, i f ( ! e) { 
here is a function that will return 
a reference to the element the 

event happened on. 

9 EVENTS 

e = window.event ; 
} 
return e .target I I e .srcElement; 



USING EVENT LISTENERS 
WITH THE EVENT OBJECT 

Here is the example that has been used throughout 

the chapter so far w ith some modifications: 
1. The function is called check Length() rather than 
checkUsername (). It can be used on any text input. 

2. The event object is passed to the event listener. 

The code includes fallbacks for IES-8(Chapter13 
demonstrates using helper functions to do this). 

3. In order to determine which element the user 
was interacting with, the function uses the event 
object's target property (and for IES-8 it uses the 

equivalent s rcEl ement property). 

JAVASCRIPT 

function checklength(e, minlength) { 
var el , elMsg ; 
if (le) { 

e = window.event; 
} 
el = e . target II e.srcElement; 
elMsg =el .nextSibling; 

if (el . va l ue . length< minlength) 
elMsg . innerHTML 'Username must be ' 
else { 
elMsg . innerHTML ' '; 

This function is now far more flexible than the 

previous code you have seen in this chapter because: 
1. It can be used to check the length of any text 

input so long as that input is directly followed by an 

empty element that can hold a feedback message 
for the user. (There should not be space or carriage 

returns between the two elements; otherwise, some 
browsers might return a whitespace node.) 
2. The code will work with IES-8 because it tests 

whether the browser supports the latest features (or 
whether it needs to fal l back to use older techniques). 

c06/ js/ event-1istener-with-event-object.js 

II Declare function 
II Declare variables 
II If event object doesn't exist 
II Use IE fallback 

II Get target of event 
II Get its next sibling 

II If length is too short set msg 
+ minlength + ' cha racters or more'; 

II Otherwise 
II Clear message 

var el Username = document .getEl ement Byid('username ' ); ll Get username input 
if (el Username .addEventlistener) { II If event listener supported 

elUsername.addEventlistener ('b l ur ', function(e) { II On blur event 
checkUsername(e, 5); II Call checkUsername() 

}, false); II Capture in bubble phase 
el se { II Otherwise 
elUsername . attachEvent('onblur', function(e){ II IE fallback onblur 

checkUsername(e, 5); II Call checkUsername() 
} ) ; 

EVENTS 8 



EVENT DELEGATION 

Creating event listeners for a lot of elements 
can slow down a page, but event flow allows 

you to listen for an event on a parent element. 

If users can interact with a lot of 

elements on the page, such as: 

• a lot of buttons in the UI 
• a long list 

• every cell of a table 

adding event listeners to each 

element can use a lot of memory 

and slow down performance. 

Because events affect containing 

(or ancestor) elements (due 

to event flow - p260), you 

can place event handlers on a 

containing element and use the 

event object's target property 

to find which of its children the 

event happened on. 

By attaching an event listener 

to a containing element, you are 

only responding to one element 

(rather than having an event 

handler for each child element). 

You are delegating the job of the 

event listener to a parent of the 

elements. In the list shown here, 

if you place the event listener 

on the <u 1 > element rather than 

on links in each <1 i >element, 

you only need one event listener. 

This gives better performance, 

and if you add or remove items 

from the list it would still work 

the same. (The code for this 

example is shown on p269.) 

ADDITIONAL BENEFITS OF EVENT DELEGATION 

WORKS WITH NEW 
ELEMENTS 

If you add new elements to the 

DOM tree, you do not have to 

add event handlers to the new 

elements because the job has 

been delegated to an ancestor. 

@ EVENTS 

SOLVES LIM ITATIONS 
WITH this KEYWORD 

Earlier in the chapter, the this 

keyword was used to identify an 

event's target, but that technique 

did not work in IE8, or when a 

function needed parameters. 

SIMPLIFIES YOUR 
CODE 

It requires fewer functions 

to be written, and there are 

fewer ties between the DOM 

and your code, which helps 

maintainability. 



CHANGING DEFAULT 
BEHAVIOR 

preventDef au 1t () 

Some events, such as clicking on 

links and submitting forms, take 
the user to another page. 

To prevent the default behavior 
of such elements (e.g., to keep 

the user on the same page 
ra ther than following a link 

or being taken to a new page 
after submitting a form), you 

can use the event object's 
preventoefault() method. 

IES- 8 have an equivalent 
property called return Va 1 ue 

which can be set to fa 1 se. A 
conditional statement can check 

if the prevent Def au 1t () method 

is supported, and use IE8's 

approach if it isn't: 

if (event .preventDefault) 

event.preventDefaul t (); 

else { 
event .returnVa l ue = false ; 

The event object has methods that change: 

the default behavior of an element and how 

the element's ancestors respond to the event. 

stopPropagation() 

Once you have handled an 
event using one element, you 

may want to stop that event 
from bubbling up to its ancestor 

elements (especially if there 
are separate event handlers 

responding to the same events 
on the containing elements). 

To stop the event bubbling up, 

you can use the event object's 

stopPropogation() method. 

The equivalent in IE8 and earlier 
is the cance 1 Bubble property 
which can be set to true. Again, 

a conditional statement can 

check if the stopPropogati on() 

method is supported and use 
IE8's approach if not: 

if (event . stopPropogation) 

event.stopPr opogation(); 
else { 

event.cancel Bubbl e = t r ue; 

USING BOTH METHODS 

You will sometimes see the 

following used in similar 
situations that are in a function: 
r eturn false; 

It prevents the default behavior 

of the element, and prevents 
the event from bubbling up or 

capturing further. It also works in 

all browsers, so it is popular. 

Note, however, when the 
interpreter comes across the 
return false statement, it stops 

processing any subsequent code 
within that function and moves 

to the next statement after the 

function was called. 

Since this blocks any further 

code within the function, 
it is often better to use the 
preventDefaul t () method of 

the event object rather than 

return false. 

EVENTS @ 



USING EVENT DELEGATION 

This example will put together a lot of what you have 

learned in the chapter so far. Each list item contains 
a link. When the user clicks on that link (to indicate 
they have completed that task), the item will be 

removed from the list. 

• There is a screen grab of the example on p266. 

• On the right there is a flowchart that helps 
explain the order in which the code is processed. 

• The right-hand page has the code for the example 

1. The event listener will be added to the <ul > 
element, so this needs to be selected. 

2 . Check whether or not the browser supports 

addEventListener() . 
3 . If so, use it to call the i temOone() function when 
the user clicks anywhere on that list. 

4 . If not, use the attachEvent () method. 
5. The i temDone () function will remove the item 
from the list. It requires three pieces of information. 

6 . Three variables are declared to hold the info. 
7. t ar get holds the element the user clicked on. 

To obtain this, the getTarget () function is called. 

This is created at the start of the script, and shown 

at the bottom of the flowchart. 
8 . el Par ent holds that element's parent (the <l i >) 

9. el Grandparent holds that element's grandparent 

10. The <l i >element is removed from the <ul > 

element. 
11 . Check if the browser supports preventDefaul t () 
to prevent the link taking the user to a new page. 

12. If so, use it. 

13. If not, use the older IE return Value property. 

In the HTML, the links would take you to 
i temDone . php if the browser did not support 

JavaScript. (The PHP file is not supplied with the 

code download because server-side languages are 
beyond the scope of this book.) 

@ EVENTS 

0 

8 

e 
0 

Get <ul> element for shopping list 

+ 
I 

' 
Is 

addEventl istener() 
supported? ' lo el 

Use att achEvent () Use addEvent li stener() 

+ 
I 

Event: click on any llnk In llst 

I 

FUNCTION:; temDone() 
Removes an Item when completed 

Create varlables: 
target: the element that was clicked on 
e 1 Parent: the parent of that element 
e 1 Grandparent: the grandparent of it 

I 

+ 
I 

Get element clicked on; call getTarget() 
I 

Get its parent (the <1 i> element) 

I 
Get its grandparent (the <ul> element) 

+ 
I 

Remove <1 i> from <ul> element 

+ I 

ls preventDefault() 
supported? 

use return Va 1 ue pr eventDefaul t() 

FUNCTION: get Target () 
Gets element user clicked on 

' I Get target 
of event 

Is there 
no 

event object? ' I Get target of event using 
old IE event object 



lliiiMllll c06/event-delegation.htm1 

<ul id="shoppinglist"> 
<li class="complete"><a href=" itemDone.php?id=l"><em>fresh<lem> figs<la><lli> 
<li class="complete"><a href="itemDone.php?id=2 ">pine nuts<la><ll i> 
<li class=" complete"><a href="itemDone.php?id=3">honey<la><lli> 
<li class="complete"><a href="itemDone .php?id=4">balsamic vinegar<la><ll i> 

<lul> 

JAVASCRIPT c06/js/event-del egation.js 

function get Target(e) 
if (le) { 
e = window.event; 

} 
return e. target I I e.srcEl ement; 

® function itemDone(e) { 
II Remove item from t he list 

~ var target, elParent, elGrandparent; 
0 target = getTarget(e); 
~ elParent = target.parentNode; 
~ elGrandparent = target.parentNode.parentNode; 
Q9) el Grandparent.removeChi ld(elParent); 

® 
® 

II Prevent the link from taking you elsewhere 
i f (e.preventDefaul t) { 

e.preventDefault(); 
else { 
e.returnValue = false; 

II Declare function 
II If there i s no event object 
II Use old IE event object 

II Get the t arget of event 

II Declare function 

II Declare variabl es 
II Get the item cli cked link 
II Get its l ist item 
I I Get its list 
II Remove list item f rom list 

II If prevent Defaul t() works 
-II Use preventDefault() 
II Otherwi se 
II Use old IE version 

II Set up event listeners to call itemDone() on click 
G) var el = document.getElementByld('shoppinglist');ll Get shopping list 
~ if (el .addEventlistener) { II If event listeners work 
~ el .addEventlistener('click ' , funct i on(e) { II Add listener on click 

itemDone(e); II It calls itemDone() 
}, false); II Use bubbling phase for flow 
else { 11 Otherwise 

@) el.attachEvent('onclick' , function(e){ II Use old IE model : onclick 
itemDone (e) ; II Call itemDone() 

} ) ; 

EVENTS @ 



WH ICH ELEMENT DID AN 
EVENT OCCUR ON? 

When calling a function, the event object's target property is the best 

way to determine which element the event occurred on. But you may see 
the approach below used; it relies on the this keyword. 

THE this KEYWORD 

The this keyword refers to the 
owner of a function. On the right, 

this refers to the element that 

the event is on. 

This works when no parameters 

are being passed to the function 
(and therefore it is not called 

from an anonymous function). 

USING PARAMETERS 

If you pass parameters to the 

function, the this keyword no 

longer works because the owner 
of the function is no longer 

the element that the event 

listener was bound to, it is an 
anonymous function. 
You could pass the element the 

event was called on as another 

parameter of the function. 

In both cases, the event object is 

the preferred approach. 

8 EVENTS 

function checkUsername() { 
var elMsg = document.getElementByld('feedback'); 
if (this .value.length< 5) { 

elMsg.innerHTML = 'Not long enough'; 
else { 
elMsg . innerHTML = ''; 

var el = document.getElementByld('username'); 
el .addEventlistener('blur', checkUsername, false); 

It's like the function had been 
written here rather than higher up 

function checkUsername(el , minlength) { 
var elMsg = document .getElementByld('feedback'); 
if (el .value.l ength< minlength) { 

elMsg .innerHTML = 'Not long enough ' ; 
else { 
elMsg.innerHTML = ''; 

var el = document.getElementByld('username'); 
el.addEventlistener('blur', function() { 

checkUsername(el , 5); 
}, false); 



Events are defined in: 

• The W3C DOM specification 
• The HTMLS specification 

• In Browser Object Models 

W3C DOM EVENTS 

The DOM events speci fication is 

managed by the W3C (who also 
look after other specifications 

including HTML, CSS, and XML). 
Most of the events you will meet 

in this chapter are part of this 

DOM events specification. 

Browsers implement all the 
events using the same event 

object that you already met. 
It also provides feedback such 

as which element the event 

occurred on, which key a user 

pressed, or where the cursor is 
positioned). 

There are, however, some events 

that are not covered in the DOM 
event model - in particular those 

that deal with form elements. 

(They used to be part of the 

DOM, but got moved to the 
HTMLS specification.) 

DIFFERENT TYPES 
OF EVENTS 

In the rest of the chapter, you learn about the 
different types of events you can respond to. 

Most are a result of the user 
interacting with the HTML, but 

there are a few that react to the 
browser or other DOM events. 

HTM LS EVENTS 

The HTMLS specification 
(that is still being developed) 

details events that browsers are 

expected to support that are 
specifically used with HTML. 

For example, events that are 
fired when a form is submitted 

or form elements are changed 
(which you will meet on p282): 

submit 
input 

change 

There are also new events 

introduced with the HTMLS 
specification that are only 

supported ~Y more recent 
browsers. Here are a few (which 

you will meet on p286): 

readystatechange 

DOMContentloaded 
hashchange 

We do not show every event, 
but the examples you see should 

teach you enough so that you 

can work with all types of events. 

SOM EVENTS 

Browser manufacturers also 

implement some events as part 

of their Browser Object Model 
(or BOM). Typically these are 
events not (yet) covered by 

W3C specifications (although 

some will be added to W3C 
specifications in the future). 

Several of these events dealt 
with touchscreen devices: 

touchstart 

touchend 
touchmove 

orientationchange 

Other events are being added 

to capture gestures and take 
advantage of accelerometers. 

Care is needed using such 
features, as different browsers 

often create different 

implementations of similar 
functionality. 

EVENTS 0 



USER INTERFACE EVENTS 

User interface CUI) events occur as a result of interaction with the 

browser window rather than the HTML page contained within it, 

e.g., a page having loaded or the browser window being resized. 

The event handler I listener for 
UI events should be attached to 

the browser window. 

In old HTML code, you may see these events used as attributes on the 
opening <body> tag. (For example, older code used the on 1 oad attribute 

to trigger code that would run when the page had loaded.) 

EVENT TRIGGER 

load Fires when the web page has finished loading. 

lt can also fire on nodes of other elements that 
load, such as images, scripts, or objects. 

un 1 oad Fires when the web page is unloading (usually 

because a new page has been requested). 
See also the beforeun 1 oad event (on p286) 

which fires before the user leaves a page. 

BROWSER SUPPORT 

The DOM Level 2 (Nov 2000) states that it fires 

on the document object, but prior to this it fired 
on the window object. Browsers support both for 

backwards compatibility, and developers often 
st ill attach 1 oad event handlers to the window (not 

document) object. 

The DOM Levei 2 states that it fires on the node 
for the <body> element, but in older browsers it 

fired on the window object (this is often used for 
backwards compatibility). 

error Fires when the browser encounters a JavaScript Support for this event is inconsistent across 

error or an asset doesn't exist. browsers and so it is not reliable for error handling, 

a topic you learn more about in Chapter 10. 

resize Fires when the browser window has been resized. Browsers repeatedly fire the resize event as the 

window is being resized, so avoid using this event 
to trigger complicated code because this might 

make the page appear less responsive. 

scro 11 Fires when the user has scrolled up or down the 

page. It can relate to the entire page or a specific 

element on the page (such as a <textarea> that 
has scrollbars). 

@ EVENTS 

Browsers repeatedly fire the event as the window is 

scrolled, so avoid running complicated code as the 
user scrolls. 



The load event is commonly 

used to trigger scripts that 

access the contents of the page. 

In this example, a function called 

setup() gives focus to the text 

input when the page has loaded. 

JAVASCRIPT 

function setup() { 
var textlnput; 

The event is automatically raised 

by the window object when a 

page has finished loading the 

HTML and all of its resources: 

images, CSS, scripts (even third 

party content e.g .. banner ads). 

LOAD 

The setup() function would not 

work before the page has loaded 

because it relies on finding the 

element whose id attribute has 

a value of username, in order to 

give it focus. 

c06/js/load.js 

II Declare function 
II Create variable 

textl nput = document .getEl ementByid('username'); 
text lnput.focus(); 

II Get username input 
II Gi ve username focus 

window.addEventli st ener('load' , setup , fal se); II When page loaded call setup{) 

l;IJiiJil 

Because the load event only 

fires when everything else on the 

page has loaded (images, scripts, 

even ads), the user already have 

started to use the page before the 

script has started to run. 

Users particularly notice when a 

script changes the appearance 

of the page, changes focus, or 

selects form elements after they 

have started to use it. (It can 
make a site look slower to load.) 

Note that the event listener is 

attached to the window object 

(not the document object - as 

this can cause cross-browser 

compatibility issues). 

If the <script> element is at the 

end of the HTML page, then the 

DOM would have loaded the 

form elements before the script 

runs, and there would be no 

need to wait for the load event. 

(See also: the DOMContentloaded 

event on p286 and jQuery's 

document. r eady () method on 

p312.) 

Imagine this form had more 

inputs; the user may be fil ling 

in the second or third box when 

the script fi res - moving focus 

back to the first box too late and 

interrupting the user. 

EVENTS@ 



FOCUS & BLUR EVENTS 

The HTML elements you can interact with, such as links and form 

elements, can gain focus. These events fire when they gain or lose focus. 

If you can interact with an HTML element, then it 
can gain (and lose) focus. You can also tab between 

the elements that can gain focus (a technique often 
used by those with visual impairments). 

In older scripts, the focus and b 1 ur events were 
often used to change the appearance of an element 

as it gained focus, but now the CSS : focus pseudo
class is a better solution (unless you need to affect 

an element other than the one that gained focus). 

EVENT TRIGGER 

The focus and b 1 ur events are most commonly used 
on forms. They can be particularly helpful when: 

• You want to show tips or feedback to users as 
they interact with an individual element within a 
form (the tips are usually shown in other elements 

and not the one they are interacting with) 

• You need to trigger form validation as a user 
moves from one control to the next (rather than 
waiting for them to submit the entire form first) 

FLOW 

focus When an element gains focus, the focus event fires for that DOM node. Capture 

blur When an element loses focus, the b 1 ur event fires for that DOM node. Capture 

focus in Same as focus (see above but not supported in Firefox at time of writing) Bubble & capture 

focusout Same as b 1 ur (see above but not supported in Firefox at time of writing) Bubble & capture 

8 EVENTS 



In this example, as the text input 

gains and loses focus, feedback 

is shown to the user in the <div> 

element under the text input. 

The feedback is given using two 

functions. 

JAVASCRIPT 

function checkUsername() { 
var username =el.value; 

FOCUS & BLUR 

ti pUsername () is triggered 

when the text input gains focus. 

It changes the cl ass attribute 

of the element containing the 

message, and updates the 

contents of the element. 

checkUsername () is triggered 

when the text input loses focus. 

It adds a message and changes 

the cl ass if the username is less 

than 5 characters; otherwise, it 

clears the message. 

c06/js/focus-blur. js 

// Declare function 

if (username.length < 5) { 
elMsg.className = 'warning'; 
elMsg . textContent ' Not l ong enough , 

// Store username in variable 
// If username < 5 characters 
//Change cl ass on message 

yet .. . ' ;// Update message 
//Otherwise 
// Clear the message 

else { 
elMsg.textContent I I• 

• 

function tipUsername() { 
el Msg.className 'tip' ; 
elMsg.innerHTML = 'Username must be at least 

//Declare funct i on 
//Change class for message 

5 characters ' ;// Add message 

var el = document.getElementByld('username'); // Username input 
var el Msg = document.getElementByid('feedback');- / /Element to hold message 

//When the username input ga ins / loses focus cal l functions above : 
el .addEventlistener( ' focus', tipUsername, false) ; // focus call tipUsername() 
el.addEventlistener('blur' , checkUsername, false) ;// blur call checkUsername() 

l;IJi'li' 

EVENTS 8 



MOUSE EVENTS 

The mouse events are fired when the mouse is moved and also when its 

buttons are clicked. 

All of the elements on a page support the mouse 
events, and all of these bubble. Note that actions are 

different on touchscreen devices. 

EVENT TRIGGER 

Preventing a default behavior can have unexpected 

results. E.g., a click event only fires when both the 
mousedown and mouseup event have fired. 

TOUCH 

click Fires when the user clicks on the primary mouse button A tap on the touchscreen will be 

(usually the left button if there is more than one). The c 1 i ck treated like a single left-click. 
event w ill fire for the element that the mouse is currently 

over. It will also fire if the user presses the Enter key on the 
keyboard when an element has focus. 

db 1c1 i ck Fires when the user clicks the primary mouse button twice A double-tap wi ll be t reated as a 

in quick succession. double left click. 

mousedown Fires when the user clicks down on any mouse button. 
(Cannot be triggered by keyboard.) 

mouseup Fires when the user releases a mouse button. (Cannot be 
triggered by keyboard.) 

mouseover Fires when the cursor was outside an element and is then 
moved inside it. (Cannot be triggered by keyboard.) 

You can use the touchstart event. 

You can use the touchend event. 

Fires when the cursor is moved over 
an element. 

mouseout Fires when the cursor is over an element, and then moves Fires when the cursor is moved off an 
onto another element - outside of the current element or a element. 

child of it (Cannot be triggered by keyboard.) 

mousemove Fires when the cursor is moved around an element. This Fires when the cursor is moved. 
event is repeatedly fired. (Cannot be triggered by keyboard.) 

WHEN TO USE CSS 

The mouseover and mouseout events were often 

used to change the appearance of boxes or to switch 
images as the user rolls over them. To change the 

appearance of the element, a preferable technique 

would be to use the CSS : hover pseudo-class. 

e EVENTS 

WHY SEPARATE MOUSEDOWN & UP? 

The mousedown and mouseup events separate 

out the press and release of a mouse button. 

They are commonly used for adding drag and 

drop functionality, or to add controls in game 
development. 



The aim of this example is to use 

the c 1 i ck event to remove the 

big note that has been added to 

the middle of the page. But first, 

the script has to create that note. 

JAVASCRIPT 

Because the note is over the 

top of the page, we only want 

to show it to users who have 

JavaScript enabled (otherwise 

they could not hide it). 

II Create the HTML fo r the message 

CLICK 

When the c 1 i ck event fires on 

the close link the di smi ssNote() 

function is called. This function 

wi ll remove the note that was 

added by the same script. 

c06/js/cl ick . js 

var msg = '<div class=\"header\"><a id=\"close\" href=" #">close X</a><ldiv>'; 
msg += '<div><h2>System Maintenance</h2>'; 
msg += 'Our servers are being updated between 3 and 4 a.m. ' ; 
msg += 'Duri ng this t ime, there may be minor disrupt i ons to service.</div> ' ; 

var elNote = document.createElement( 'div'); 
elNote.setAttribute( 'i d' , 'note'); 
elNote . innerHTML = msg; 
document.body.appendChi l d{elNote); 

function dismissNote() { 
document.body. removeChi l d{elNote); 

// Create a new el emen t 
//Add an id of note 
//Add the message 
II Add it to the page 

// Declare functi on 
II Remove the note 

var el Close = document.getElementByid('close ' ); // Get the close button 
elClose .addEvent l istener( ' click', dismissNote, false);// Cl ick cl ose-clear note 

l;IJiiJil 

SYSTEM MAINTENANCE 

Our servers are being updated between 
3 and 4 a.m. Ouringthis time, there may 
be minor disruptions to service. 

ACCESSIBILITY 

The c 1 i ck event can be applied 

to any element, but it is better 

to only use it on items that are 

usually clicked or it wi ll not be 

accessible to people who rely 

upon keyboard navigation. 

You may also be tempted to use 

the c 1 i ck event to run a script 

when a user clicks on a form 

element, but it is better to use 

the focus event because that 

fi res when the user accesses 
that control using the tab key. 

EVENTS@ 





DETERMINI NG POSITION 

In this example, as you move 
your mouse around the screen, 
the text inputs across the top of 
the page are updated with the 
current mouse position. 

This demonstrates the three 
different positions you can 
retrieve when the mouse is 
moved or when one of the 
buttons is clicked. 

JAVASCRIPT 

var sx document.getElementByid(' sx '); II 
var sy document.getElementByid( ' sy ' }; II 
var px document.getElementByid( ' px ' ); II 
var py document.getElementByld ('py ') ; II 
var ex document.getElementByid( 'cx' ) ; II 
var cy document.getElementByid(' cy ' ) ; II 

Element 
Element 
Element 
Element 
Element 
Element 

Note how showPosition() is 
passed event as a parameter, 
which refers to the event object. 
The positions are all properties 
of this event object. 

c06/ js/ position .j s 

to hold screenX 
to hol d sc reenY 
to hold pageX 
to hold pageY 
to hold cl ientX 
to hold clientY 

function showPosition(event) II Declare function 
sx.value event.screenX; II Update element with screenX 
sy.value event.screenY; II Update element with screenY 
px.value event .pageX; II Update element with pageX 
py.value event. pageY; II Update element with pageY 
ex.val ue event.cl ientX; II Update element wi t h cli entX 
cy.value event.c l i entY; II Update element wi t h cli entY 

var el = document.getElementByid('body'} ; II Get body element 
el.addEventlistener('mousemove'. showPosition, false}; II Move updates position 

l ;IJiliil 

EVENTS@ 



KEYBOARD EVENTS 

The keyboard events are fired when a user interacts with the keyboard 

(they fire on any kind of device with a keyboard). 

EVENT TRIGGER 

input Fires when the value of an <input> or <textarea> element changes. First supported in IE9 (although 

it does not fire when deleting text in IE9). For older browsers, you can use keydown as a fallback. 

keydown Fires when the user presses any key on the keyboard. If the user holds down a key, the event 

continues to fire repeatedly. This is important because it mimics what would happen in a text input 

if the user holds down a key (the same character would be added repeatedly while the key is held 

down). 

keypress Fires when the user presses a key that would result in a character being shown on the screen. For 

example, this event would not fire when the user presses the arrow keys, whereas the keydown event 

would. If the user holds down a key, the event continues to fire repeatedly. 

keyup Fires when the user releases a key on the keyboard. The keydown and keypress events fire before a 

character shows on screen, whereas keyup fires after it appears. 

The three events that begin key ... fire in this order: 

1. keydown - user presses key down 

2 . keypress - user has pressed or is holding a key 

that adds a character into the page 

3. keyup - user releases key 

@ EVENTS 

WHICH KEY WAS PRESSED? 

When you use the keydown or keypress events, the 

event object has a property cal led keyCode, which 

can be used to tell which key was pressed. However, 

it does not return the letter for that key (as you might 

expect); it returns an ASCII code that represents the 

lowercase character for that key. You can see a table 

of the characters and their ASCII codes in an online 

· extra on the website accompanying this book. 

If you want to get the letter or number as it would 

be displayed on the keyboard (rather than an ASCII 

equivalent), the String object has a built-in method 

called fromCharCode() which will do the conversion 

foryou: String.fromCharCode(event.keycode} ; 



WHICH KEY WAS PRESSED 

In this example, the <textarea> 
element should only have 180 
characters. When the user 

enters text, the script will show 

them how many characters they 
have left available to use. 

JAVASCRIPT 

var el ; 

function charCount(e) { 

The event listener checks for 
the keypr ess event on the 
<textarea> element. Each time 

it fires, the charCount () function 

updates the character count and 
shows the last character used. 

The input event would work wel l 

to update the count when the 
user pastes in text or uses keys 

like backspace, but it does not 
tell you which key was the last to 

be pressed. 

c06/js/ keypress.js 

II Decl are variabl es 

var textEntered, charDisplay, counter, lastKey; 
textEntered = document.getElementByld('message').value; 
charDisplay = document.getElementByld('charactersleft'); 
counter = (180 - (textEntered.length)); 
charDisplay.textContent = counter; 

II Decl are function 
II Decl are variables 
II User's text 
II Counter element 
II Num of chars left 
II Show chars left 

lastkey = document .getElementByid ('lastkey'); 
lastkey.textContent = 'Last key in ASCII code : 

II Get last key used 
' + e.keyCode; II Create msg 

el = document.getElementByld('message'); 
el.addEventlistener('keypress', charCount, false); 

l;li.Jllli 

II Get msg element 
II keypress event 

EVENTS @ 



FORM EVENTS 

There are two events that are commonly used with forms. 
In particular you are likely to see submit used in form validation. 

EVENT TRIGGER 

submit When a form is submitted, the submit 

event fires on the node representing the 
<form> element. It is most commonly 

used when checking the values a user has 
entered into a form before sending it to the 

server. 

change Fires when the status of several form 
elements change. For example, when: 

• a selection is made from a drop-down 
select box 

• a radio button is selected 
• a checkbox is selected or deselected 

It is often better to use the change event 

rather than the c 1 i ck event because 
clicking is not the only way users interact 
with form elements (for example, they 

might use the tab, arrow, or Enter keys). 

input The i nput event. which you saw on the 

previous page is commonly used with 
<input> and <textarea> elements. 

FOCUS AND BLUR 

The focus and b 1 ur events (which you met on 
p274) are often used with forms, but they can also 

be used in conjunction with other elements, such as 

links (so they are not specifically related to forms). 

@ EVENTS 

VALIDATION 

Checking form values is known as validation. 
If users miss required information or enter incorrect 

information, checking it using JavaScript is faster 

than sending the data to the server for it to be 
checked. Validation is covered in Chapter 13. 



USING FORM EVENTS 

When a user interacts w ith 
the drop-down select box, the 
change event will trigger the 

packageHi nt () function. This 

shows messages below the 
select box that reflect the choice. 

JAVASCRIPT 

When the form is submitted, the 
checkTer ms () function is called. 

This tests to see if the user has 
checked the box that indicates 

they agree to the terms and 

conditions. 

var elForm, elSelectPackage, elPackageHint, elTerms; 

If not, the script will prevent 

the default behavior of the 
form element (and stop it from 

submitting the form data to the 
server) and it will show an error 

message to the user. 

c06/js/fonn.js 

el Form document .getElementByld('formSignup'); 
/I Declare variables 
/ /Store elements 

elSelectPackage document.getElementByid{'package'); 
el PackageHin t document.getElementByld('packageHint'); 
el Terms document.getElementByid('terms'); 
elTermsHint document.getElementByid('termsHint'); 

function packageHint() { 
var package = this.options[this.selectedindex] .value; 
if (package == 'monthly') { 

elPackageHint. i nnerHTML = 'Save $10 if you pay for 
else { 
elPackageHint.innerHTML = 'Wise choice!'; 

II Declare function 
II Get selected option 
II If monthly package 

1 year! ';//Show this msg 
II Otherwise 
II Show this message 

function checkTerms(event) { 
if (!elTerms.checked) { 

elTermsHint.innerHTML = 'You must agree to the 
event.preventDefault(); 

II Declare function 
II If checkbox ticked 

terms.'; II Show message 
II Don't submit form 

//Create event l isteners: submit calls checkTerms(), change calls packageHint() 
elForm.addEventlistener( ' submit ' , checkTerms, false); 
elSelectPackage.addEventlistener('change', packageHint, false); 

EVENTS @ 



MUTATION EVENTS & 
OBSERVERS 

Whenever elements are added to or removed from the DOM, its 

structure changes. This change triggers a mutation event. 

When your script adds or removes content from a 

page it is updating the DOM tree. There are many 

reasons why you might want to respond to the DOM 

tree being updated, for example, you might want to 

tell the user that the page had changed. 

EVENT TRIGGER 

Below are some events that are triggered when 

the DOM changes. These mutation events were 

introduced in Firefox 3, IE9, Safari 3, and all versions 

of Chrome. But they are already scheduled to be 

replaced by an alternative called mutation observers. 

DOMNodelnserted Fires when a node is inserted into the DOM tree. 

e.g. using appendChi 1 d (), rep 1aceChi1 d (}, or i nsertBefore (} . 

DOMNodeRemoved Fires when a node is removed from the DOM tree. 

e.g. using removeChi 1 d (} or rep l aceChil d (}. 

DOMSubtreeModified Fires when the DOM structure changes. 

It fires after the two events listed above occur. 

DOMNodelnsertedlntoDocument Fires when a node is inserted into the DOM tree as a descendant of another 

node that is already in the document. 

DOMNodeRemovedFromDocument Fires when a node is removed from the DOM tree as a descendant of another 

node that is already in the document. 

PROBLEMS WITH MUTATION EVENTS 

If your script makes a lot of changes to a page, you 

end up with a lot of mutation events firing. This can 

make a page feel slow or unresponsive. They can 

also trigger other event listeners as they propagate 

through the DOM, which modify other parts of the 

DOM, triggering more mutation events. Therefore 

they are being replaced by mutation observers. 

Browser support: Chrome, Firefox 3, IE 9, Opera 9, 

Safari 3 

9 EVENTS 

NEW MUTATION OBSERVERS 

M utation observers are designed to wait until a 

script has finished its task before reacting, then 

report the changes as a batch (rather than one at 

a time). You can also specify the type of changes 

.to the DOM that you want them to react to. But at 

the time of writing, the browser support was not 

widespread enough to use them on public websites. 

Browser support: IE 11, Firefox 14, Chrome 27 

(or 18 with webkit prefix), Safari 6.1, Opera 15 

On mobile: Android 4.4, Safari on iOS 7. 

.. 



USING MUTATION EVENTS 
In this example, two event listeners each trigger 

their own function. The first is on the last but one 
line, and it listens for when the user clicks the link to 

add a new list item. It then uses DOM manipulation 
events to add a new element (changing the DOM 
structure and triggering mutation events). 

JAVASCRIPT 

The second event listener waits for the DOM tree 
within the <ul> element to change. When the 
DOMNodelnserted event fires, it calls a function 

called updateCount ().This function counts how 
many items there are in the list, and then updates 

the list count at the top of the page accordingly. 

c06/js/mutation.js 

var ellist. addlink, newEl, newText, counter, listltems; II Declare variables 

ellist document .getElementByid('list ' ); II Get list 
addlink document.querySelector('a'); II Get add item button 
counter document .getElementByid('counter'); II Get item counter 

function addltem(e) { 
e.preventDefault(); 
newEl = document.createElement('li '); 
newText = document.createTextNode('New list item'); 
newEl .appendChild{newText); 
elList .appendChild(newEl); 

function updateCount() { 
listitems = list.getElementsByTagName(' l i').len_gth; 
counter .innerHTML = listitems; 

II Declare function 
II Prevent link action 
II New <li> element 
II New text node 
II Add text to <li> 
II Add <li> to list 

II Declare function 
II Get total of <l i>s 
II Update counter 

addlink.addEventlistener('click'. addltem. false); II Click on button 
ellist.addEventlistener('DOMNodeinserted ', updateCount, false); II DOM updated 

i;IJiii§i 

EVENTS @ 



HTM LS EVENTS 

Here are three page-level events that have been 

included in versions of the HTMLS spec that 

have become popular very quickly. 

EVENT TRIGGER BROWSER SUPPORT 

DOMContentLoaded Event fires when the DOM tree is formed (images, CSS, and Chrome 0 .2, Firefox 1, 

hashchange 

beforeun load 

JavaScript might sti ll be loading). Scripts start to run earlier than IE9, Safari 3.1, Opera 9 

using the load event which waits for other resources such as 

images and advertisements to load. This makes the page seem 

faster to load. However, because it does not wait for scripts to 

load, the DOM tree w ill not contain any HTML that would have 

been generated by those scripts. It can be attached to the window 

or document objects. 

Event fires when the URL hash changes (without the entire 

window refreshing). Hashes are used on links to specific parts 

(sometimes known as anchors) within a page and also on pages 

that use AJAX to load content. The hashchange event handler 

works on the window object, and after firing, the event object will 

have o 1 dURL and newURL properties that hold the url before and 

after the hashchange. 

Event fires on the window object before the page is unloaded. It 

should only be used to help the user (not to encourage them to 

stay on a website if they are trying to leave). For example, it can be 

helpful to let a user know that changes on a form they completed 

have not been saved. You can add a message to the dialog box 

that is shown by the browser, but you do not have control over the 

text shown before it or on the buttons the user can press (which 

can vary slightly between browsers and operating systems). 

IE8, Firefox 20, Safari 

5.1, Chrome 26, and 

Opera 12.1 

Chrome 1, Firefox 1, 

IE4, Safari 3, Opera 12 

There are also several other events that are being introduced to support more recent devices (such as phones 

and tablets). They respond to events such as gestures and movements that are based upon an accelerometer 

(which detects the angle at which a device is being held). 

8 EVENTS 



USING HTMLS EVENTS 

In this example, as soon as the 

DOM tree has been formed, 

focus is given to the text input 

with an id of username. 

, JAVASCRIPT 

function setup() { 
var textlnput; 

The OOMContentloaded event 

fires before the load event 

(because the latter waits for all 

of the page's resources to load). 

textlnput = document .getElementByld( 'message ' ); 
textlnput . focus(); 

If users try to leave the page 

before they press the submit 

button, the beforeun load event 

checks that they want to leave. 

06/ j s/html5-event s . j s 

window.addEventlistener('DOMContentloaded' , setup, false); 

window.addEventlistener('beforeunload', function(event){ 
return ' You have changes that have not been saved •.• ' ; 

}. false); 

i;IJiiJll 

JavaScript 

Are you sure you want to INve this page? 

You have changes that have not been saved •.• 

( Stay on Page ] ~ 1' z!!llP • II! J 

On the left, you can see the 

dialog box that is shown when 

you try to navigate away from 

the page. 

The text before your message 

and on the buttons may change 

from browser to browser (you 

have no control over this). 

EVENTS 8 





EXAMPLE 
EVENTS 

This example shows an interface for a user to 

record voice notes. The user can enter a name 

which is displayed in the heading, and they can 

press record (which changes the image that is 

shown). 

When the user starts typing a name into the text box, the keyup event 

will trigger a function called wri telabe 1 () which copies the text from 
the form input and writes it into the main heading under the logo for List 

King, replacing the words 'AUDIO NOTE'. 

The record/ pause button is a bit more interesting. The button has an 

attribute called data-state. When the page loads, its value is record. 
When the user presses the button, the value of this attribute changes to 
pause (this triggers a new CSS rule to indicate that it is now recording). 

If you have not used HTMLS's data- attributes, they allow you to store 
custom data on any HTML element. (The name of the attribute can be 

anything starting with data- as long as the name is lowercase.) 

This demonstrates a new technique based upon event delegation. 
The event listener is placed upon the containing element whose i d 

is buttons. The event object is used to determine the value of the id 
attribute on the element that was used. The value from that id attribute 

is then used in a switch statement to decide which function to call 

(depending on whether the button is in record state or pause state). 

This is a good way to handle many buttons because it reduces the 
number of event listeners in your code. 

The event listeners are written at the bottom of the page, and they have 

fallbacks for users who are running IE8 or less (which has a different 

event model). 

EVENTS @ 



EXAMPLE 
EVENTS 

The script starts by defining the 
variables that it will need to use, 

and then collecting the element 

nodes that are needed. 

The player functions (shown 
on the right-hand page) would 

appear next, and at the bottom 

of this page you can see the 
event listeners. 

The event listeners live inside 
a conditional statement so that 
the attachEvent () method can 

be used for visitors who have IE8 

or less. 

c06/ js/exampl e.js 

var username, noteName, textEntered, target; 

noteName = document.getElementByld('noteName'); 

function writelabel(e) 
if (le) { 

e = window .event; 

target =event . target I I event . srcElement; 
textEntered = e.target .value; 
noteName.textContent = textEntered ; 

JAVASCRIPT 

II Declare variables 

II Elemen t that holds note 

II Declare function 
II If event object not present 
II Use IES-8 fallback 

II Get target of event 
II Value of that el ement 
II Update note text 

II This is where the record I pause controls and functions go ... 
II See right hand page 

II If event listener support ed if (document .addEventlistener) 
document.addEventlistener('click', function(e){ ll For any click document 

recorderControls(e); 
}, false) ; 
II If input event fi res on username i nput call 
username .addEventlistener('input', writelabel, 

II Call recorderControl s() 
II Capture during bubbl e phase 
wr itelabel () 
false); 
II Otherwi se else { 

document .attachEvent('onclick' , 
recorderControls(e); 

} ) ; 

function(e){ II IE fall back: any cl ick 
II Calls recorderControl s() 

II If keyup event f ires on username input call wr itelabel() 
username.attachEvent('onkeyup', writelabel, false); 

8 EVENTS 

... 

j 
I , 
1 
~ 
t 



The recorderContro 1 s () function is automatically 
passed the event object. Not only does this offer 

code to support older versions of IE, but also stops 

the link from performing its default behavior (of 
taking the user to a new page). 

JAVASCRIPT 

function recorderControls(e) 
if (!e) { 

e = window.event; 

EXAMPLE 
EVENTS 

The switch statement is used to indicate which 
function to run depending on whether the user 

is trying to record or stop the audio note. This 
technique of delegation is a good way to cope with 

multiple buttons in the UI. 

c06/ js/ exampl e .j s 

II Declare recorderControls() 
II If event object not present 
II Use IE5-8 fallback 

target = event .target I I event.srcElement;ll Get the t arget el ement 
if (event.preventDefault) { II If preventDefault() supported 

e.preventDefault(); II Stop default action 
else { II Otherwise 
event.returnValue = false; II IE fa l lback: stop default act i on 

switch(target .getAttribute('data-state')) 
case ' record' : 

record(target); 
break; 

case 'stop': 
stop(target); 
break; 

} 
} ; 

II More buttons coul d go here ... 

{ II Get the data-state attribute 
II If its val ue is record 
II Cal l the record() funct i on 
II Exit function to where called 
II If i ts value i s stop 
II Cal l t he stop () fun ction 
II Exit function to where called 

function record(target) { II Declare function 
target.setAttribute('data-state'. ' stop') ; II Set data-st ate attr to stop 
target . textContent = 'stop'; II Set text to 'stop' 

function stop(target) { 
target . setAttribute('data-state ' . ' record ' ); llSet data-stat e attr to record 
target . textContent = 'record'; II Set text t o 'record' 

EVENTS s 



Events are the browser's way of indicating when 

something has happened (such as when a page has 

finished loading or a button has been clicked). 

Binding is the process of stating which event you are 

waiting to happen, and which element you are waiting 

for that event to happen upon. 

When an event occurs on an element, it can trigger a 

JavaScript function. When this function then changes 

the web page in some way, it feels interactive because 

it has responded to the user. 

You can use event delegation to monitor for events 

that happen on all of the children of an element. 

The most commonly used events are W3C DOM 

events, although there are others in the HTMLS 

specification as well as browser-specific events. 





8 JQUERY 

jQuery offers a simple way to achieve a variety of common 

JavaScript tasks quickly and consistently, across all major 

browsers and without any fallback code needed. 

SELECT ELEMENTS PERFORM TASKS HANDLE EVENTS 

It is simpler to access jQuery's methods let you jQuery includes methods 
elements using jQuery's update the DOM tree, that allow you to attach 
CSS-style selectors than it animate elements into event listeners to selected 
is using DOM queries. The and out of view, and loop elements without having 

selectors are also more through a set of elements, to write any tailback code 
powerful and flexible. all in one line of code. to support older browsers. 

This chapter assumes that you have read the book up to this point or are familiar with the 

basics of JavaScript. As you will see, jQuery is powerful when combined with traditional 

JavaScript techniques, but you need to understand JavaScript to make full use of jQuery. 

... 

I 

' 

l 
~ 

, 

• I 

1 

j . 
I 

j 









A BASIC JQUERY EXAMPLE 

The examples in this chapter 

revisit the list application used in 

the previous two chapters, and 
they will use jQuery to update 

the content of the page. 

c07/ basic-exampl e.html 

<body> 
<div i d="page" 

1. In order to use jQuery, the first 

thing you need to do is include 
the jQuery script in your page. 

You can see that it is included 

before the closing </body> tag. 

<hl id=" header">Li st</hl> 
<h2>Buy groceries</h2> 
<ul> 

<li id="one" class="hot"><em>fresh</em> figs</li> 
<li id="two" class="hot">pine nuts</ li> 
<li id="three" class="hot">honey</ li> 
<l i id="four">balsamic vinegar</ li> 

</ ul> 
</div> 

G) <script src="j s/ jquery-1 .11. 0 .js "></script> 
@ <script src="j s/basic-example.js"></scr i pt> 

</body> 

WHERE TO GET JQUERY AND WHICH VERSION TO USE 

Above, jQuery is included before 

the closing </ body> tag just like 
other scripts. (Another way to 

include the script is shown on 

p355.) A copy of jQuery is 

included with the code for this 
book, or you can download it 

from http://jquery. org. 
The version number of jQuery 

should be kept in the file name. 
Here, it isjquery- 1.11.0.js, 

but by the time you read this 

book, there may be a newer 
version. The examples should 

still work w ith newer versions. 

@ JQUERY 

You often see websites use a 
version of the jQuery file with 

the file extension .min . js. 

It means unnecessary spaces 
and carriage returns have been 

stripped from the file. e.g .. 

jquery-1.11.0.js becomes 
jquery-1 . 11.0 .mi n. js. 

It is done using a process called 
minificat ion (hence min is used 

in the file name). The result is a 

much smaller file which makes it 

faster to download. But minified 
files are much harder to read. 

2. Once jQuery has been added 
to the page, a second JavaScript 

fi le is included that uses jQuery 
selectors and methods to update 

the content of the HTML page. 

lliif,11 

If you want to look at the 
jQuery file, you can open it 
with a text editor - it is just 

text like JavaScript, albeit very 

complicated JavaScript. 

Most people who use jQuery do 
not try to understand how the 

jQuery JavaScript file achieves 
what it does. As long as you 

know how to select elements 
and how to use its methods and 

properties, you can reap the 

benefits of using jQuery without 

looking under the hood. 

.. 



Here, the JavaScript file uses the 
$ () shortcut for the jQuery () 

function. It selects elements and 
creates three jQuery objects that 

hold references to the elements. 

JAVASCRIPT 

The methods of the jQuery 
object fade the list items in, and 

remove them when they are 
clicked on. Don't worry if you 

don't understand the code yet. 

G) $(' :header').addClass('headline'); 
@ $(' l i : lt(3) ').hide(). fadeln(lSOO); 

$('li').on('click', function() { 
$(this) . remove(); 

} ) ; 

1. The first line selects all of the 
<hl> - <h6> headings, and adds 

a value of headline to their 
cl ass attributes. 

l;IJiiJSI 

2. The second line selects the 
first three list items and does 
two things: 

• The elements are hidden (in 
order to allow the next step). 

• The elements fade into view. 

First, you will learn how to select 

elements using jQuery selectors, 
and then how to update those 

elements using the methods and 
properties of the jQuery object. 

c07/ js/ basic-example .js 

3. The last three lines of the 

script set an event listener on 
each of the <l i >elements. When 

a user clicks on one, it triggers an 
anonymous function to remove 

that element from the page. 

Here is a reminder of the colors 

used to convey the priority and 
status of each list item: 

JQUERY 8 



WHY USE JQUERY? 

jQuery doesn't do anything you cannot achieve with pure JavaScript. 

It is just a JavaScript file but estimates show it has been used on over a 
quarter of the sites on the web, because it makes coding simpler. 

1: SIMPLE SELECTORS 

As you saw in Chapter 5, which introduced the 

DOM, it is not always easy to select the elements 

that you want to. For example: 

• Older browsers do not support the latest 

methods for selecting elements. 

• IE does not treat whitespace between elements 

as text nodes, while other browsers do. 

Such issues make it hard to select the right elements 

on a page across all major browsers. 

Rather than learn a new way to select elements, 

jQuery uses a language that is already familiar to 

front-end web developers: CSS selectors. They: 

• Are much faster at selecting elements 

• Can be a lot more accurate about which elements 

to select 

• Often require a lot less code than older DOM 

methods 

• Are already used by most front-end developers 

jQuery even adds some extra CSS-style selectors 

which offer additional functionality. 

Since jQuery was created, modern browsers 

have implemented the querySe 1 ector () and 

querySe 1ectorA11 () methods to let developers 

select elements using CSS syntax. However, these 

methods are not supported in older browsers. 

9 JQUERY 

2: COMMON TASKS IN LESS CODE 

There are some tasks that front-end developers 

need to do regularly, such as loop through the 

elements that have been selected. 

jQuery has methods that offer web developers 

simpler ways to perform common tasks, such as: 

• loop through elements 

• Add I remove elements from the DOM tree 

• Handle events 

• Fade elements into I out of view 

• Handle Ajax requests 

jQuery simplifies each of these tasks, and allows you 

to write less code to achieve them. 

jQuery also offers chaining of methods (a technique 

which you will meet on p311). Once you have 

selected· some elements, this allows you to apply 

multiple methods to the same selection. 



jQuery's motto is "Write less, do more," because it allows you to achieve 

the same goals but in fewer lines of code than you wou ld need to write 

with plain JavaScript. 

3: CROSS-BROWSER COMPATIBILITY 

jQuery automatically handles the inconsistent ways 
in which browsers select elements and handle 

events, so you do not need to write cross-browser 
fa llback code (such as that shown in the previous 
two chapters). 

To do this, jQuery uses feat ure detection to find 
the best way to achieve a task. It involves the use 

of many condit ional statements: if the browser 
supports the ideal way to achieve a task, it us.es that 

approach; otherwise, it tests to see if it supports the 

next best option to achieve the same task. 

This was the technique used in the last chapter to 

determine whether or not the browser supported 

event listeners. If event listeners were not supported, 
an alternat ive approach was offered (aimed at users 

of Internet Explorer 8 and older versions of IE). 

Is 

' 
query Sel ector () 

supported? ' I 
Test if browser supports 

the next best option 

I 
Great! Use this feature 
as it is the best option 

Here, a conditional statement checks if the browser 

supports querySe 1 ector() . If it does, that method 

is used. If it doesn't, it checks to see if the next best 
opt ion is supported and uses that instead. 

JQUERY 1.9.X+ OR 2.0.X+ 

As jQuery developed, it built up a lot of code to 
support IE6, 7, and 8; which made the script bigger 

and more complicated. As version 2.0 of jQuery 

was approaching, the development team decided to 
create a version that would drop support for older 

browsers in order to create a smaller, faster script. 

The jQuery team was, however, aware that many 
people on the web still used these older browsers, 

and that developers therefore needed to support 
them. For this reason, they now maintain two 

parallel versions of jQuery: 

jQuery 1.9+: Encompasses the same features as 
2.0.x but sti ll offers support for IE6, 7, and 8 

jQuery 2.0+: Drops support for older browsers to 

make the script smaller and faster to use 

The functionality of both versions is not expected to 
diverge significantly in the short term. 

The jQuery file name should contain the version 
number in it (e.g., jquery-1.11.0.js or 

jquery-1.11.0 .min .j s). If you don't do this, a 

user's browser might t ry to use a cached version of 
the file that is either older or newer - which could 

prevent other scripts from working correctly. 

JQUERY 8 



FINDING ELEMENTS 

Using jQuery, you usually select elements 
using CSS-style selectors. It also offers some 

extra selectors, noted below with a 'jQ'. 

Examples of using these 

selectors are demonstrated 
throughout the chapter. The 

syntax will be familiar to those 
who have used selectors in CSS. 

BASIC SELECTORS 

* 
element 
#id 
.class 
selectorl, selector2 

HIERARCHY 

ancestor descendant 
parent > child 

previous + next 

previous - s ib Zings 

BASIC FILTERS 

: not (selector) 
:first 
: last 
:even 
:odd 
:eq(index) 
:gt(index) 
: lt(index) 
:header 
:animated 
:focus 

302 JQUERY 

jQ 
jQ 
jQ 
jQ 
jQ 
jQ 
jQ 
jQ 
jQ 

All elements 

All elements with that element name 

Elements whose id attribute has the value specified 
Elements whose cl ass attribute has the value specified 
Elements that match more than one selector (see also the .add() 

method, which is more efficient when combining selections) 

An element that is a descendant of another element (e.g., 1 i a) 

An element that is a direct child of another element (you can use* in 
the place of the child to select all child elements of the specified parent) 

Adjacent sibling selector only selects elements that are immediately 
followed by the previous element 

Sibling selector will select any elements that are a sibling of the 
previous element 

All elements except the one in the selector (e.g., div: not ('#summary')) 

The first element from the selection 

The last element from the selection 
Elements with an even index number in the selection 

Elements with an odd index number in the selection 
Elements with an index number equal to the one in the parameter 

Elements with an index number greater than the parameter 
Elements with an index number less than the parameter 

All <hl> - <h6> elements 

Elements that are currently being animated 

The element that currently has focus 



CONTENT FILTERS 

:contains('text ') 
:empty 
:parent 
: has (se lector) 

VISIBILITY FILTERS 

:hidden 
:vi sible 

CHILD FILTERS 

: nth-child (expr) 
:first-child 
: last -child 
:only-child 

ATTRIBUTE FILTERS 

[attribute] 
[attribute=' value '] 

jQ 
jQ 

jQ 
jQ 

[attribute! ='value'] jQ 
[attributeA= 'va lue'] 
[attribute='value'] 
[attribute*= ' value '] 
[at tribut el= ' value'] 
[attribut e-= 'value'] 
[attribute] [a t tribute2] 

FORM 

: input 
:text 
:password 
:radio 
: checkbox 
:submit 
: image 
:reset 
:button 
: file 
: selected 
:enabled 
:disabled 
:checked 

jQ 
jQ 
jQ 
jQ 
jQ 
jQ 
jQ 
jQ 
jQ 
jQ 
jQ 

Elements that contain the specified text as a parameter 

All elements that have no children 
All elements that have a child node (can be text or element) 

Elements that contain at least one element that matches the selector 
(e.g., d; v: has (p) matches all d; v elements that contain a <p> element) 

All elements that are hidden 
All elements that consume space in the layout of the page 
Not selected if: d; sp 1 ay: none; he; ght I w; dth: O; ancestor is hidden 

Selected if: v; s; bi U ty : hidden; opacity : 0 because they would 

take up space in layout 

The value here is not zero-based e.g. ul 1i:nth- ch;1 d (2) 

First child from the current selection 
Last child from the current selection 
When there is only one child of the element (d; v p:only-ch; ld) 

Elements that carry the specified attribute (with any value) 
Elements that carry the specified attribute with the specified value 

Elements that carry the specified attribute but not the specified value 
The value of the attribute begins with this value 

The value of the attribute ends with this value 
The value should appear somewhere in the attribute value 

Equal to given string, or starting with string and followed by a hyphen 

The value should be one of the values in a space separated list 

Elements that match all of the selectors 

All input elements 

All text inputs 

All password inputs 
All radio buttons 

All checkboxes 

All submit buttons 
All <img> elements 

All reset buttons 
All <button> elements 

All file inputs 
All selected items from drop-down lists 

All enabled form elements (the default for all form elements) 

All disabled form elements (using the CSS d; sabled property) 

All checked radio buttons or checkboxes 

JQUERY 303 



DOING THINGS WITH 
YOUR SELECTION 

Once you have seen the basics CONTENT FILTERS FINDING ELEMENTS 
of how jQuery works, most of Get or change content of Find and select elements to 
this chapter is dedicated to elements, attributes, text nodes work with & traverse the DOM 
demonstrating these methods. 

These two pages both offer an 
GET/ CHANGE CONTENT GENERAL 

overview to the jQuery methods . html() p316 . f;nd() p336 

and will also help you find the . text() p316 .closest() p336 

methods you are looking for .replaceWith() p316 . parent() p336 

once you have read the chapter. . remove() p316 .parents() p336 
.children() p336 

You often see jQuery method ELEMENTS .sibHngs() p336 

names written starting with a . before() p318 . next() p336 

period (.) before the name. . after() p318 . nextAll () p336 

This convention is used in this .prepend() p318 .prev() p336 

book to help you easily identify .append() p318 . prevAll () p336 

those methods as being jQuery . remove() p346 
methods rather than built-in .clone() p346 FILTER/ TEST 

JavaScript methods, or methods .unwrap() p346 . f;lter() p338 
of custom objects. . detach() p346 . not() p338 

.empty() p346 .has() p338 
When you make a selection, the .add() p338 .h() p338 
j Query object that is created :contains () p338 
has a property called length, ATTRIBUTES 

which wil l return the number of .attr () p320 ORDER IN SELECTION 

elements in the object. . removeAttr () p320 .eq() p340 
.addClass() p320 . lt() p340 

If the jQuery select ion did not . removeCl ass() p320 . gt() p340 
find any matching elements, you .css() p322 
will not get an error by calling 
any of these methods - they j ust FORM VALUES 
won't do or return anything. 

. val() p343 

There are also methods that are 
. i sNumer i c () p343 

specifically designed to work 
with Ajax (which lets you refresh 

part of the page rather than an 

entire page) shown in Chapter 8. 

304 JQ UERY 



Once you have selected the elements you want to work with (and they 
are in a j Que ry object), the jQuery methods listed on these two pages 

0 

perform tasks on those elements. 

DIMENSION/ POSITION EFFECTS & ANIMATION EVENTS 

Get or update the dimensions or Add effects and animation to Create event listeners for each 

position of a box parts of the page element in the selection 

DIMENSION BASIC DOCUMENT / Fl LE 

.height() p348 .show() p332 .ready() p312 

.width() p348 .hide() p332 • load() p313 

• i nnerHei ght () p348 .toggle() p332 
• i nnerWi dth () p348 USER INTERACTION 

• outerHei ght () p348 FADING .on() p326 
.outerWidth() p348 • fadeln() p332 
$(document).height()p350 .fadeout() p332 There used to be methods for 
$(document).width() p350 . fadeTo() p332 individual types of event, so 
$(window).height() p350 • fadeToggle() p332 you may see methods such as 
$(window).width() p350 .click() , . hover() , .submit(). 

SLIDING However, these have been 
POSITION • s 1i deDown () p332 dropped in favour of the • on() 

.offset() p351 • sl ideUp() p332 method to handle events . 

• position() p351 . slideToggl e() p332 
• scro l lleft () p350 
.scrol lTop() p350 CUSTOM 

.delay() p332 

.stop() p332 

.animate() p332 

JQUERY 305 











LOOPING 

In plain JavaScript, if you wanted 

to do the same thing to several 

elements, you would need to 

write code to loop through all of 

the elements you selected. 

c07/ j s/ looping . js 

With jQuery, when a selector 

returns multiple elements, you 

can update all of them using the 

one method. There is no need to 

use a loop. 

$('l i em') .addClass('seasonal ') ; 
$( ' li .hot') .addClass('favorite'); 

In this example, the first selector 

applies only to one element and 

the cl ass attribute's new value 

triggers a CSS rule that adds a 

calendar icon to the left of it. 

The second selector applies to 

three elements. The new value 

added to the cl ass attribute for 

each of these elements t riggers 

a CSS rule that adds a heart icon 

on the right-hand side. 

The abil ity to update all of the 

elements in the jQuery selection 

is known as implicit iteration. 

When you want to get 

information from a series of 

elements, you can use the 

. each () method (which you 

meet on p324) rather than 

writing a loop. 

e JQUERY 

In this code, the same value is 

added to the c l ass attribute for 

all of the elements that are found 

using the selector. It doesn't 

matter if there are one or many. 

JAVASCRIPT 

19Jillii 

.. 

... 



If you want to use more than 

one jQuery method on the same 
select ion of elements, you can 
list several methods at a time 

using dot notation to separate 

each one, as shown below. 

JAVASCRIPT 

In this one statement, three 

methods act on the same 
selection of elements: 
hi de() hides the elements 

delay ( ) creates a pause 

fade In () fades in the elements 

$( 'l i [i d!="one"] ') . hide() .delay(SOO) . fadeln(1400); 

l;li.JIJ51 

CHAINING 

The process of placing several 
methods in the same selector is 

referred to as chaining. As you 
can see, it results in code that is 

far more compact. 

c07/js/chaining . j s 

To make your code easier to 

read, you can place each new 
method on a new line: 

$('li[id!="one"] ') 

.hide() 

.delay(500) 

. fadeln(1400); 

Each line starts with the dot 

notation, and the semicolon 
at the end of the statement 

indicates that you have finished 
working with this selection. 

Most methods used to update 

the jQuery selection can be 

chained. However the methods 
that retrieve information from 

the DOM (or about the browser) 

cannot be chained. 

It is worth noting that if one 

method in the chain does not 
work, the rest will not run either. 

JQUERY @ 







GETTING ELEMENT 
CONTENT 

The • htm 1 () and • text () methods both retrieve and update the content 

of elements. This page will focus on how to retrieve element content. To 
learn how to update element content, see p316 . 

. html() 
W hen this method is used to retrieve information 

from a jQuery selection, it retrieves only the HTML 
inside the first element in the matched set, along 

with any of its descendants. 

For example, $ (' u l ' ) • html () ; will return this: 

<li id="one"><em>fresh</em> figs</li> 
<l i id="two">pine nuts</li> 

<li id="three">honey</li> 

<l i id="four">balsamic vinegar</l i> 

Whereas $ ( 'l i ') .html (); will return this: 

<em>fresh</em> figs 

Note how this returns only the content of the first 

<1 i> element. 

If you want to retrieve the value of every element. 
you can use the . each () method (see p324). 

8 J QUERY 

. text() 
W hen this method is used to retrieve the text from 

a jQuery selection, it returns the content from every 
element in the jQuery selection, along with the text 

from any descendants. 

For example, $ ( ' u l ') . text () ; will return this: 

fresh figs 
pine nuts 

honey 

balsamic vint;!gar 

Whereas $ ( 'l i ') . text () ; will return this: 

fresh figspine nutshoneybalsamic vinegar 

Note how this returns the text content of all <1 i > 

elements ( including spaces between words), but 

there are no spaces between the individual list items. 

To get the content from <input> or <textar ea> 
elements, use the . va 1 () method shown on p343. 

, 

-
' 

.. 



GETTING AT CONTENT 

On this page you can see variations on how the . html() and . text() 

methods are used on the same list (depending on whether <ul >or <l i > 
elements are used in the selector). 

JAVASCRIPT c07/ js/ get-html-fragment. js 

var $listHTML = ${'ul') . html(}; 
$ ( 'ul '). append($1 i stHTML); 

The selector returns the <u l > element. The • html () method gets all the 
HTML inside it (the four <1 i> elements). This is then appended to the 

end of the selection, in this case after the existing <1 i >elements. 

JAVASCRIPT c07/ js/get-t ext-f ragment .j s 

var $1istText = $('ul').text(); 
${'ul ') . append('<p>' + $listText + 1 </ p>'); 

The selector returns the <u 1 > element. The . text() method gets the 

text from all of the <ul >element's children. This is then appended to the 
end of the selection, in this case after the existing <ul >element. 

JAVASCRIPT c07/ js/ get -html-node. js 

var $1 i stltemHTML = $ ( '1 i ') . html() ; 

$('1i ') . append{'<i>' + $1istltemHTML + '</ i>') ; 

The selector returns the four <1 i >elements, but the • html () method 
returns only the contents of the first one. This is then appended to the 

end of the selection, in this case after each existing <1 i> element. 

JAVASCRIPT c07/j s/get-text-node .js 

var $1istltemText = $('1i ').text(); 
${'li ').append('<i>' + $1istltemText + '</ i>'); 

The selector returns the four <l i > elements. The . text () method gets 

the text from these. This is then appended to each of the <l i > elements 
in the selection. 

Please note: The . append (} 
method (covered on p318) lets 

you add content to the page. 

fresh figs trcshnzipc1•cn•tshmrb>lum1 .. 1 

pine nuts ,,.,.,,zspin1 .. 1...,..,,,,1n .. ;.r1 

honey trrsthppm,.rt$/lo•trbllum1cr1oezzr 

balsamic vinegar lrcil>n1s1»_ocnulshm 

J QUERY § 



UPDATING ELEMENTS 

Here are four methods that update the content 

of all elements in a jQuery selection . 

When the • htm 1 () and . text () 

methods are used as setters (to 
update content) they will replace 

the content of each element in 
the matched set (along with any 

content and child elements). 

The . rep 1 aceWith () and 
. remove () methods replace and 

remove the elements they match 
(as well as their content and any 

child elements). 

The .html(),. text(), and 

. rep 1 aceWi th () methods can 
take a string as a parameter. 

The string can: 

• Be stored in a variable 

• Contain markup 

When you add markup to the 
DOM, be sure to escape all 

untrusted content properly on 
the server. Both the . htm 1 () and 

• rep 1 aceWi th () methods carry 

the same security risks as using 
the DOM's i nnerHTML property. 

See p228 - p231 on XSS. 

@ JQUERY 

. html() 
This method gives every element 

in the matched set the same new 

content. The new content may 
include HTML. 

.replaceWith() 
This method replaces every 

element in a matched set with 

new content. It also returns the 

replaced elements. 

. text() 
This method gives every element 

in the matched set the same new 
text content. Any markup would 

be shown as text. 

. remove() 
This method removes all of the 

elements in the matched set. 

USING A FUNCTION TO UPDATE CONTENT 

If you want to use and amend the content of the current selection, 
these methods can take a function as a parameter. The funct ion can be 

used to create new content. Here the text from each element is placed 

inside <em> tags. 

$(' l i . hot' ) .html( function() 

return '<em>' + $(this) . text() + '</ em> '; 

} );~~~~ 

1. return indicates that content should be returned by the function. 

2. <em> tags are placed around the text content of the list item. 

3. this refers to the current list item. $ (this) places that element in a 
new jQuery object so that you can use jQuery methods on it. 



CHANGING CONTENT 

JAVASCRIPT 

$(function() { 

In this example, you can see 

three met hods that allow you to 

update the content of the page. 

CD 

@{ 
$ ( ' l i :contains ("pine") ' ). text(' al monds'); 
$ ( ' l i. hot'). html (funct i on() { 

return 1 <em> ' + $(th i s).text() + 1</ em>' ; 
} ) ; 

® $( ' li #one ' ).remove(); 
} ) ; 

1. This line selects any list items 

that contain the word pine. It 

then changes the text of the 

matching element to a 1 mends 

using the • text() method. 

iijJiiiSI 

2. These lines select al l list items 

whose cl ass attribute contains 

the word hot, and uses the 

• htm 1 () method to update the 

content of each of them. 

When updating the content of 

an element, you can use a string, 

a variable, or a function. 

c07/js/changi ng-content.js 

The . html ( ) method uses a 

function to place the content 

of each element inside an <em> 

element. (See the bottom of the 

left-hand page for a closer look 

at the syntax.) 

3. This line selects the <l i > 

element that has an i d attr ibute 

whose value is one, then uses 

the remove() method to remove 

it. (This does not require a 

parameter.) 

When specifying new content, 

carefully choose when to use 

single quotes and when to use 

double quotes. If you append a 

new element that has·attributes, 

use single quotes to surround 

the content. Then use double 

quotes for the attribute values 

themselves. 

JQUERY e 



INSERTING ELEMENTS 

Inserting new elements involves two steps: 

1: Create the new elements in a jQuery object 
2: Use a method to insert the content into the page 

You can create new jQuery 

objects to hold text and markup 

that you then add to the DOM 
tree using one of the methods 

listed in step 2 on the right. 

If you create a selection that 

returns multiple elements, these 

methods will add the same 

content to each of the elements 

in the matched set. 

When adding content to the 

DOM, make sure you have 

escaped all untrusted content 

properly on the server. (See 

p228 - p231 on XSS.) 

.before() • after() 
... 
<l i > i tern </1 i > 

.prepend() . append() 

e JQUERY 

1: CREATING NEW ELEMENTS IN A JQUERY OBJECT 

The fo llowing statement creates a variable cal led $newFragment and 

stores a jQuery object in it. The jQuery object is set to contain an empty 

<l i>element:var $newFragment = $('<li>'}; 

The following statement creates a variable called $newl tern and stores a 

jQuery object in it. This jQuery object in turn contains an <1 i> element 

with a cl ass attribute and some text: 

var $newltem = $('<li class="new">item</ li>'); 

2: ADDING THE NEW ELEMENTS TO THE PAGE 

Once you have a variable holding th~ new content, you can use the 

following methods to add the content to the DOM tree: 

.before() 
This method inserts content 

before the selected element(s) . 

.prepend() 
This method inserts content 

inside the selected element(s), 

after the opening tag. 

.after() 
This method inserts content 

af ter the selected element(s). 

.append() 
This method inserts content 

inside the selected element(s), 

before the closing tag. 

There are also . prependTo() and . appendTo() methods. They work the 

other way around from • prepend () and • append () . So: 

a. prepend (b) adds b to a 

a.prependTo{b) adds a to b 

a. append (b) adds b to a 

a.appendTo(b) adds a to b 



ADDING NEW CONTENT 

JAVASCRIPT 

$(function() { 

In this example, you can see 
three jQuery selections are 

made. Each selection uses a 
different method to amend the 

content of the list. 

<D $('ul') . before('<p class="notice">Just updated</p>'); 
@ $ ( ' l i. hot') . prepend ( '+ ') ; 

The first adds a new notice 
before the list, the second 
adds a + symbol before the hot 

items, and the third adds a new 
element to the end of the list. 

c07/ js/adding-new-content .js 

~ var $newlistltem = $('<li><em>gluten-free</em> soy sauce</li>'}; 
~ $('li:last').after($newlistltem); 

} ) ; 

1. The <ul >element is selected, 
and the • before() method is 

used to insert a new paragraph 
before the list. 

i;IJiiJil 

2. Selects all <l i> elements 
whose class attribute contains 

a value of hot and uses the 
. prepend () method to add a 

plus symbol(+) before the text. 

3. A new <l i> element is created 
and stored in a variable. Then 

the last <l i >element is selected, 
and the new element is added 

using the .after() method. 

JQUERY e 



GETTING AND SETTING 
ATTRIBUTE VALUES 

You can create attributes, or access and update 

their contents, using the following four methods. 

You can work with any attribute 

on any element using the attr() 
and r emoveAttr() methods. 

If you use the at tr() method to 

update an attribute that does not 
exist, it will create the attribute 

and give it the specified value. 

The value of the cl ass attribute 
can hold more than one class 
name (each separated by a 

space). The addCl ass() and 

removeCl ass() methods are 
very powerful because they let 

you add or remove an individual 
class name within the value of 

the cl ass attribute (and they 
do not affect any other class 

names). 

.attr() 
This method can get or set a 

specified attribute and its value. 
To get the value of an attribute, 

you specify the name of the 
attribute in the parentheses. 

$( ' li#one').attr('id'); 

To update the value of an 
attribute, you specify both the 

attribute name and its new value. 

$('li#one').attr('id' , 'hot ' ); 

. addCl ass() 
This method adds a new value 

to the existing value of the cl ass 

attribute. It does not overwrite 
existing values. 

. removeAttr() 
This method removes a specified 

attribute (and its value). You just 

specify the name of the attribute 
that you want to remove from the 
element in the parentheses. 

$('1 i #one') . removeAttr (' i d' }; 

.removeClass() 
This method removes a value 

from the cl ass attribute, leaving 

any other class names within 
that attribute intact. 

These two methods are another good example of how jQuery adds 

helpful functionality commonly needed by web developers. 

@ JQUERY 



WORKING WITH 
ATTRIBUTES 

The statements in this example 

use jQuery methods to change 

the c 1 ass and i d attributes of 

the specified HTML elements. 

JAVASCRIPT 

$ (function() { 

When the values of these 

attributes change, new CSS rules 

are applied to the elements, 

changing how they look. 

CD $('li#three').removeClass('hot ' ); 
~ $( ' 1i.hot').addClass(' favori te'); 
@ $( ' ul').attr( ' id', 'group ' ); 

} ) ; 

1. The first statement finds 

the third list item (it has an id 

attribute with a value of t hree) 

and removes hot from the cl ass 

attribute on that element. This 

is important to note because it 

affects the next statement. 

i;IJiiJ51 

2. The second statement selects 

all <1 i > elements whose c 1 ass 

attribute has a value of hot. It 

adds a new class name called 

favor ite. Because step 1 updated 

the third list item, this statement 

affects only the first two. 

Using events to t rigger changes 

to attribute values that apply 

new CSS rules is a popular way 

to make a web page interactive. 

c07/ js/ attributes. j s 

3. The third statement selects 

the <u 1 >element and adds an 

id attribute, giving it a value of 

group (which triggers a CSS rule 

that will add a margin and border 

to the <u 1 >element). 

JQUERY@ 



GETTING & SETTING 
CSS PROPERTIES 

The . css () method lets you retrieve 

and set the values of CSS properties. 

To get the value of a CSS 
property, you indicate which 

property you want to retrieve in 
parentheses. If the matched set 

contains more than one element, 
it will return the value from the 

first element. 

To set the values of a CSS 
property, you specify the 
property name as the first 

argument in the parentheses, 

then a comma, followed by its 
value as the second argument. 

This w ill update every element 
in the matched set. You can also 

speci fy multiple properties in the 
same method using object literal 

notat ion. 

Note: In the method used to 
set an individual propert y. the 

property name and its value are 
separated by a comma (because 

all parameters in a method are 
separated by a comma). 

In the object literal notation, 

properties and their values are 

separated by a colon. 

@ JQUERY 

HOW TO GET A CSS PROPERTY 

This w ill store the background color of the first list item in a variable 

called backgroundCo l or. The color will be returned as an RGB value. 

var backgroundColor = $( ' li ' ) . css( 'background-color' ); 

HOW TO SET A CSS PROPERTY 

This wi ll set the background color of all list items. Note how the CSS 
property and its value are separated using a comma instead of a colon. 

$( 'li ') .css( 'background- color' , '1272727' ); 

When dealing with dimensions that are specified in pixels. you can 

increase and decrease the values using the+= and-= operators. 

${'li ' ).css( 'padding-left', '+=20' ); 

SETTING MULTIPLE PROPERTIES 

You can set multiple properties using object literal notation: 

• Properties and values are placed in curly braces 
• A colon is used to separate property names from their values 
• A comma separates each pair (but there is not one after the last pair) 

This sets the background color and typeface for all list items. 

$('1 i ') .css( { 

' background- col or' : ' #272727' , 

' font-family' : 'Courier' 
} ) ; 

.. 



CHANGING CSS RULES 

This example demonstrates how 
the • css () method can be used 

to select and update the CSS 

properties of elements. 

JAVASCRIPT 

$(function() { 

The script checks what the 
background color of the first list 

item is when the page loads and 

then writes it after the list. 

G) var backgroundCo l or = $ ( 'l i ' ). css ('background-col or'); 

Next, it updates several CSS 

properties in all list items using 
the same . css () method with 

object literal notation. 

c07/js/css.js 

@ $('ul').append('<p>Color was: ' + backgroundColor + 1 </p>'); 
$( ' li ') .css({ 

'background-col or' : 'Hc5a996 ' , 
'border': 'lpx solid Hfff', 

3 'color': '#000', 
'font-family': 'Georgia', 
I padding-left I : I +=75 I 

} ) ; 
} ) ; 

1. The backgroundCo 1 or variable 

is created. The jQuery selection 
contains all <1 i >elements, and 

the . css () method returns the 
value of the background-co 1 or 

property of the first list item. 

•a11111• 

2. The background color of 

the first list item is written into 
the page using the . append"() 

method (which you met on 
p318). Here, it is used to add 

content after the <u l >element. 

Color was: rgb(215, 102, 107) 

3. The selector picks all <l i > 

elements, and then the • css () 

method updates several 

properties at the same time: 

• The background color is 
changed to brown 

• A white border is added 

• The color of the text is 
changed to black 

• The typeface is changed to 
Georgia 

• Ext ra padding is added on 
the left 

Note: It is better to change the 
value of a cl ass attribute (to 

trigger new CSS rules in the style 

sheet) rather than to change 

CSS properties from within the 
JavaScript file itself. 

JQUERY 8 



WORKING WITH EACH 
ELEMENT IN A SELECTION 

jQuery allows you to recreate the functionality 
of a loop on a selection of elements, using the 
• each () method. 

You have already seen several 
jQuery methods that update all 

of the elements in a matched set 
without the need for a loop. 

There are, however, times when 

you wi ll want to loop through 
each of the elements in the 

selection. Often this will be to: 

• Get information from each 
element in the matched set. 

• Perform a series of actions on 
each of the elements. 

The • each() method is provided 

for this purpose. The parameter 
of the • each () method is a 

function. This could be an 

anonymous function (as shown 

here) or a named function. 

8 JQUERY 

• each() 
Allows you to perform one or 
more statements on each of 

the items in the select ion of 
elements that is returned by a 

selector - rather like a loop in 
JavaScript. 

It takes one parameter: 
a function containing the 

statements you want to run on 

each element. 

r-(i)---, r@--i 

this or $(this) 
As the . each() method goes 
through the elements in a 

selection, you can access the 
current element using the this 

keyword. 

You also often see $ (thi s) , 
which uses the this keyword to 

create a new jQuery selection 

containing the current element. 
It allows you to use jQuery 

methods on the current element. 

var ids= th is . id; 
$( ' li').each( function() { t 

${this).append(' <em class="order">' +ids+ '</ em>'); 
3 

) ) ; 

1. The jQuery selection contains all of the <l i > elements. 
2 .. each () applies the same code to each element in the selection. 

3. An anonymous function is run for each of the items in the list. 

Since this refers to the current 
node, if you want to access a 

property of that node, e.g .. that 

element's id or c 1 ass attributes, 
it is better to use plain JavaScript 

to access those attributes: 
ids= this . id ; 

It is more efficient than writing 
ids= ${this) .attr('id'); 

because this would involve 
the interpreter creating a new 

jQuery object, and then using 

a method to access info that is 
available as a property. 



This example creates a jQuery 
object containing all of the list 

items from the page. 

JAVASCRIPT 

$(function() { 
CD $( '1 i ') .each(functi on() 
@ var ids = this.id; 

USING .EACH() 

The . each() method is then 
used to loop through the list 

items and run an anonymous 
function for each of them. 

The anonymous function takes 
the value from the id attribute 

on the <1 i >element and adds it 

to the text in the list item. 

c07/ js/ each.js 

® $(this).append(' <span cl as s="order">' +ids+ ' </span>') ; 
} ) ; 

} ) ; 

1. The selector creates a jQuery 

object containing all <l i > 
elements. The • each() method 
calls an anonymous function 

for each of the list items in the 

matched set. 

i;IJiiJil 

2. The this keyword refers to 
the current element node in the 

loop. It is used to access the 
value of the current element's 
id attribute, which is stored in a 

variable called ids. 

3. $(this) is used to create a 

jQuery object that contains the 
current element in the loop. 

Having the element in a jQuery 

object enables you to use jQuery 

methods on that element. In 
this case the • append () method 

is used to add a new <span> 
element to the current list item. 

The content of that element 
is the value of its id attribute, 

which was obtained in step 2. 

JQUERY@ 



EVENT METHODS 

The • on ( ) method is used to handle all events. 

Behind the scenes, jQuery handles all of the 

cross-browser issues you saw in the last chapter. 

Using the . on () method is no 

different than using any other 
jQuery method; you: 

• Use a selector to create a 
jQuery selection. 

• Use . on() to indicate which 
event you want to respond to. 

It adds an event listener to 
each element in the selection. 

. on() was introduced in v 1.7 

of jQuery. Prior to that. jQuery 

used separate methods for 
each event, e.g., . c 1 i ck () 
and . focus (). You may come 

across them in older code, but 
you should only use the . on() 

method now. 

9 JQUERY 

r-(i)---, r@ir-@--. 
$('li') .on('click', function() { + 

$(this) .addClass( ' complete'); 4 

} ) ; 

1. The jQuery selection contains all of the <1 i >elements. 

2. The . on() method is used to handle events. It needs two parameters: 
3. The first parameter is the event you want to respond to. Here it is the 

c 1 i ck event. 
4 . The second parameter is the code you want to run when that event 

occurs on any element in the matched set. This could be a named 
function or an anonymous function. Above, it is an anonymous function 

that adds a value of complete to the cl ass attribute . 

You will see more advanced options for this method on p330. 

JQUERY EVENTS 

Some of the most popular events that • on () deals w ith are listed below. 
jQuery also added some extras to make life easier, such as ready, which 

fires when the page is ready to be worked with. These are noted with a 

pink asterisk: * 

UI focus , blur, change 

KEYBOARD input, keydown, keyup, keypress 

MOUSE 

FORM 

click, dblclick, mouseup, mousedown, 

mouseover, mousemove, mouseout, hover* 

submit, select , change 

DOCUMENT ready* , load , unload* 

BROWSER error, resize , scro 11 



In this example, when the 
mouse moves over a list item, 
the content of its id attribute is 

written into the list item. 

JAVASCRIPT 

$(function() { 
var ids="; 

G) var $1istitems = $( '1i'); 

The same happens if the user 
clicks on a list item (because 

mouseover does not work on 
touchscreen devices). 

$listltems.on('mouseover click', function() 
ids= this.id; 
$listltems.children('span').remove(); 

EVENTS 

The mouseout event also 

removes this extra information 
from the page to prevent the 

added content building up. 

c07/js/events.js 

$(this).append(' <span class="priori ty">' +ids+ '</span>'); 
} ) ; 

$listltems.on('mouseout', function() 
$(this).children( ' span').remove(); 

} ) ; 

} ) ; 

1. The selector finds all list 
items on the page. The resulting 

jQuery object is used more than 
once, so it is stored in a variable 

cal led $1 i st Items. 

lijJilJ51 

2. The • on() method creates an 

event listener, which waits for 
when the user moves a mouse 

over a list item or clicks on it. It 
triggers an anonymous function. 

Note how the two events are 

specified in the same set of 
quote marks, with a space 
between them. 

The anonymous function: 

• Gets the value of the id 
attribute on that element. 

• Removes <span> elements 
from all of the list items. 

• Adds the value of the id 
attribute to the list item in 
a new <span> element. 

3. The • mouseout () method 

triggers the removal of any child 

<span> elements to prevent 
build-up of added values. 

JQUERY@ 



THE EVENT OBJECT 

Every event handling function receives an event object. 

It has methods and properties related to the event that occurred. 

Just like the JavaScript event 
object, the jQuery event object 

has properties and methods that 
tell you more about the event 

that took place. 

If you look at the function that 
is called when the event occurs, 
the event object is named in 

the parentheses. Like any other 
parameter, this name is then 

used within the funct ion to refer 

to the event object. 

The example on the right uses 
the letter e as shorthand for 

the event object. However, as 
noted in the previous chapter, 

you should be aware that this 

shorthand is also often used for 
the error object. 

9 JQUERY 

(!) 
$( ' li ') . on( ' c l ick' function(e) 

eventType = e. type ; 

}) ; @® 

1. Give the event object a parameter name. 

2. Use that name in the function to reference the event object . 
3. Access the properties and methods of the object using the fami liar 
dot notation (the member operator). 

PROPERTY 

type 

which 

data 

target 

pageX 

pageY 

timeStamp 

DESCRIPTION 

Type of event, (e.g., click, mouseover) 

Button or key that was pressed 

An object literal containing extra information 
passed to the function when the event fi res 
(See right-hand page for an example) 

DOM element that initiated the event 

Mouse position from left edge of viewport 

Mouse position from top of viewport 

Number of milliseconds from Jan 1st, 1970, 
to when the event was triggered (this is known 

as Unix Time). Does not work in Firefox. 

METHOD DESCRIPTION 

• preventOef au 1 t () Prevents the default (e.g., submitting a form) 

• stopPropagati on() Stops the event bubbling up to ancestors 



EVENT OBJ ECT 

In this example, when users click 
on a list item, the date that the 

event happened on is written 

next to that item, along wi th the 
type of event that triggered it. 

JAVASCRIPT 

$(funct ion() { 

To achieve this, two properties of 
t he event object wi ll be used: 

t i meStamp states when the 
event occurred; type states the 

kind of event that triggered it. 

CD 
$(' l i ') .on('cli ck' funct i on(e) 

$( ' l i span').remove () ; 

©[ var dat e = new Date() ; 
date.setTime(e . timeStamp); 
va r clicked= dat e . t oDat eStri ng() ; 

To prevent the list from 
becoming cluttered with multiple 
date entries, whenever a list item 

is clicked, any <span> elements 

wil l be removed from the list. 

c07/ js/event-object.js 

® 
© $(this) .append('<span class="date"> ' +clicked+ ' ' + e.type + '</ span>' ); 

} ) ; 

} ) ; 

1. Any <span> elements that 

already exist inside the <l i > 

elements are removed. 

i;IJiiJSI 

2. A new Date object is created, 

and its time is set to the time at 

which the event was clicked. 

3. The time the event was 
clicked is then converted into a 

date that can be read. 

4. The date that the list item 

was clicked is written into the 
list item (along with the type of 
event that was used). 

Note that the timeStamp 
property does not display in 

Firefox. 

JQUERY 8 



ADDITIONAL PARAMETERS 
FOR EVENT HANDLERS 

The • on () method has two optional properties that let you: 

Filter the initial jQuery selection to respond to a subset of the elements; 
Pass extra information into the event handler using object literal notation. 

Here you can see two additional 

properties that can be used with 
the • on() method. 

1. This is the event(s) that you 

want to respond to. If you want 
to respond to more than one 

event, you can provide a space

separated list of event names, 
e.g., 'focus click ' will work on 

both focus and click . 

When square brackets are used 

inside a method, they signify that 
the parameter is optional. 

2 . If you just want to respond 

to the event happening on a 

subset of the elements in the 
initial jQuery selection, you can 

provide a second selector that 
w ill fi lter its descendants. 

Leaving out a parameter written 
in square brackets w ill not stop 
the method working. 

3. You can pass extra 

information to the function 

that is called when the event 

is triggered. This information 
is passed along with the event 
object (e). 

. on(events[, selector][, data], function(e) ); 
~·@ ·~~ ® 

4. This is the func tion that 
should be run when the specified 

events occur on one of the 
elements in the matched set. 

9 JQUERY 

5. The function is automatically 
passed the event object as a 

parameter, as you saw on the 
previous two pages. (Remember, 

if you use it you must give it a 

name in the parentheses.) 

Older jQuery scripts may use 
the . de 1 ega te () method for 

delegation. However, since 
jQuery 1.7 • on() is the preferred 

approach to delegation. 



DELEGATING EVENTS 

In this example, the event 
handler wi ll run when users click 

or mouseover items in the list, 
except for the last list item. 

JAVASCRIPT 

$(function() { 

It writes out the content of the 

element the user interacted wi th, 
a status message (using the data 
property), and the event type. 

var listltem, itemStatus , eventType; 

CD 
@ 
® 

$( 'ul ').on( 

' click rnouseover', 
': not(#four) ', 
{status: 'important'}, 
function(e) { 

The information passed in the 

data property here uses object 
literal notation (so it could 
handle multiple properties). 

c07/ js/ event-delegation.js 

4 

listltem = 'Item: ' + e.target .textContent + '<br />'; 
itemStatus = 'Status: ' + e.data .status + ' <br />'; 
eventType = 'Event : ' + e.type; 
$('#notes').html(listltem + itemStatus + eventType); 

} 
) ; 

} ) ; 

19411111 

There is an extra element in the HTML for this example to hold the data 
that appears under the list. 

1. The event handler is triggered 
by cl ick and mouseover events. 

2. The selector parameter 

filters out the element whose id 
attribute has a value of four. 

3. Additional data that wi ll be 
used by the event handler is 

passed in as an object literal. 

4. The event handler uses the 

event object to display the 
content of the element the user 

interacts with, the informat ion 

from the data that was passed 
into the function, and the event 

type, under the list in a white box. 

JQUERY@ 



EFFECTS 

When you start using jQuery, the effects methods can enhance your web 
page with transitions and movement. 

Here you can see some of the 

jQuery effects that show or hide 
elements and their content. You 

can animate them fading in and 
out, or slide them up and down. 

When an element that was 

previously hidden is shown, 
faded in, or slides into view, the 

other elements on the page may 
move to make space for it. 

When an element is hidden, has 
been faded out, or has slid out of 

view, the other elements on the 

page can move into the space 
these elements took up. 

Methods with toggle in their 

name will look at the current 
state of the element (whether 

it is visible or hidden) and will 

switch to the opposite state. 

Increasingly it is possible to 

create animations using CSS3. 
They are often faster than their 

jQuery counterparts, but they 
only work in recent browsers. 

§ JQUERY 

BASIC EFFECTS 

METHOD DESCRIPTION 

. show() Displays selected elements 

.hi de() Hides selected elements 

. togg 1 e () Toggles between showing and hiding selected elements 

FADING EFFECTS 

METHOD DESCRIPTION 

. fadeln() Fades in selected elements making them opaque 

. fadeout() Fades out selected elements making them transparent 

. fade To() Changes opacity of selected elements 

. fade Togg 1 e (} Hides or shows selected elements by changing their 

opacity (the opposite of their current state) 

SLIDING EFFECTS 

METHOD DESCRIPTION 

. s l i deUp () Shows selected elements with a sliding motion 

. s 1 i de Down() Hides selected elements with a sliding motion 

. s 1 i deTogg l e() Hides or shows selected elements with a sliding 

motion (in the opposite direction to its current state) 

CUSTOM EFFECTS 

METHOD DESCRIPTION 

.delay() Delays execution of subsequent items in queue 

. stop() Stops an animation if it is currently running 

. animate() Creates custom animations (see p334) 



BASIC EFFECTS 

In this example, it appears as 
if list items are faded into view 
when the page loads. Each item 

is faded out when it is clicked on. 

JAVASCRIPT 

In fact, the items are loaded 
normally along with the rest of 
the page, but then immediately 

hidden using JavaScript. 

$(function() { 
$('h2').hide().slideDown(); 
var $li = $('li'); 
$li.hide().each{function(index) { 

2 $(this).delay(700 * index) . fadeln(?OO); 
} ) ; 

3 

$li.on('click', function() 
$(this) . fade0ut(700); 

} ) ; 
} ) ; 

1. In the first statement, the 
selector picks the <h2> element 

and hides it so that it can be 
animated in. The chosen effect 

to show the heading is the 
• s l i deDown () method. Note 

how the methods are chained; 

there is no need to make a new 
selection for each of the tasks. 

i;IJiiiii 

2. The second part causes the 
list of items to appear one by 

one. Again, before they can be 
faded in, they must be hidden. 

Then the • each () method is 
used to loop through each of 

the <l i> elements in turn. You 

can see that this triggers an 
anonymous function. 

Once hidden, only then are they 
faded into view. This is so they 
wi ll still be visible in browsers that 

do not have JavaScript enabled. 

c07/js/effects.js 

Inside the anonymous function, 
the index property acts as a 

counter indicating which <l i > 
element is the current one. 

The .delay() method creates 

a pause before the list item 
is shown. The delay is set, 
multiplying the index number by 
700 ms (otherwise all of the list 

items would appear at the same 
time). Then it is faded in using 

the fade In() method. 

3. The final part creates an event 
listener that waits for the user to 
click on a list item. When they 

do, it will fade that item out to 
remove it from the list (the fade 

will take 700 milliseconds). 

JQUERY 8 



ANIMATING CSS 
PROPERTIES 

The .animate() method allows you to create 

some of your own effects and animations by 

changing CSS properties. 

You can animate any CSS 

property whose value can be 
represented as a number, e.g., 

height, width, and font-size. 
But not those whose value would 

be a string, such as font-family 
or text-transfonn. 

The CSS properties are written 
using camelCase notation, so the 

first word is all lowercase and 
each subsequent word starts 

with an uppercase character, e.g.: 
border-top-1 eft-radi us would 

become borderTopleftRadi us . 

. animate({ 

The CSS properties are specified 
using object literal notation (as 
you can see on the right-hand 

page). The method can also 

take three optional parameters, 
shown below. 

II Styles you want to change 
}[,speed][, easing][, complete] ); 
~~I @>-----------' 

1. speed indicates the duration of 
the animation in milliseconds. (It 

can also take the keywords slow 
and fast.) 

2. easing can have two values: 

linear (the speed of animation 
is uniform); or swing (speeds up 

in the middle of the transition. 

and is slower at start and end). 

3. complete is used to call a 

function that should run when 
the animation has finished. This 

is known as a callback function. 

EXAMPLES OF JQUERY EQUIVALENTS OF CSS PROPERTY NAMES 

bottom left right top backgroundPositionX backgroundPositionY height width 

maxHeight minHeight maxWidth minWidth margin marginBottom marginleft marginRight 

marginTop outlineWidth padding paddingBottom paddingleft paddingRight paddingTop 

fontSi ze l etterSpaci ng wordSpaci ng l i neHei ght text Indent borderRadi us borderWi dth 

borderBottomWidth borderleftWidth borderRightWidth borderTopWidth borderSpacing 

8 JQUERY 



In this example, the .animate() 
method is used to gradually 

change the values of two CSS 
properties. Both of them have 
numerical values: opacity and 

paddi ng-1 eft. 

JAVASCRIPT 

$(function() { 

USING ANIMATION 

When the user clicks on a list 
item, it fades out and the text 

content slides to the right. 
(This takes 500ms.) Once 
that is complete, a callback 

function removes the element. 

You can increase or decrease 
numeric values by a specific 
amount. Here, +=80 is used to 

increase the padding property 
by 80 pixels. (To decrease it by 

80 pixels, you would use -=80.) 

c07/ js/an imate.js 

d $(' l i').on( 'click', function() { 
~ $(this).animate({ 
~r opacity : 0.0, 
~ paddingleft: '+=80' 
@ } , 500, function() { 
~ $(this).remove(); 

} ) ; 
} ) ; 

} ) ; 

1. All list items are selected and, 

when a user clicks on one of 
them, an anonymous function 

runs. Inside it, $(this) creates 

a new jQuery object holding 

the element the user clicked on. 
The .animate() method is then 
called on that jQuery object. 

l;IJiiJil 

2. Inside the .animate() 

method, the opacity and 

paddi ngleft are changed. 
The value of the paddi ngleft 

property is increased by 80 

pixels, which makes it look like 
the text is sliding to the right as it 

fades out. 

3. The . animate() method has 

two more parameters. The first 

is the speed of the animation 
in milliseconds (in this case, 

500ms). The second is another 

anonymous function indicating 
what should happen when the 

animation finishes. 

4 . When the animation has 

finished, the callback function 

removes that list item from 

the page using the . remove() 
method. 

If you want to animate between 
two colors, rather than using the 

.animate() method, there is a 

helpful jQuery color plugin here: 

https://github.com/jquery/ 
jquery-co 1 or 

JQUERY @ 



TRAVERSING THE DOM 

When you have made a jQuery selection, you 

can use these methods to access other element 
nodes relative to the initia l selection. 

Each method finds elements 
that have a different relationship 
to those that are in the current 

selection (e.g., parents or 
children of the current selection). 

The . find() and .closest() 
methods both require a CSS
style selector as an argument. 

For the other methods, the CSS

style selector is optional. But if 

a selector is provided, both the 
method and selector must match 

in order for the element to be 
added to the new selection. 

For example, if you start with 

a selection that contains one 
list item, you could create a new 

selection containing the other 

items from the list using the 

.siblings() method. 

If you added a selector into the 
method such as this: 

• siblings(' .important ') 
then it would find only siblings 

with a cl ass attribute whose 

value included important. 

8 JQUERY 

SELECTOR REQUIRED 

METHOD DESCRIPTION 

• find() All elements within current selection that match selector 

. closest() Nearest ancestor (not just parent) that matches selector 

SELECTOR OPTIONAL 

METHOD DESCRIPTION 

.parent() Direct parent of current selection 

.parents() All parents of current selection 

.children() All children of cur.rent selection 

. siblings() All siblings of current selection 

. next() Next sibling of current element 

. nextAll () All subsequent siblings of current element 

.prev() Previous sibling of current element 

.prevAll () All previous siblings of current element 

If the original selection contains multiple elements, these methods will 
work on all of the elements in the selection (which can result in quite an 
odd selection of elements). You may need to narrow down your initial 

selection before traversing the DOM . 

Behind the scenes, jQuery will handle the cross-browser inconsistencies 

involved in traversing the DOM (such as whitespace nodes being added 

by some browsers). 



TRAVERSING 

When the page loads, the list is 

hidden, and a link is added to the 

heading that indicates the users 

can display the list if they wish. 

JAVASCRIPT 

$(function() { 
var $h2 = $('h2'); 

The link is added inside the 

heading and, if the user clicks 

anywhere on the <h2> element, 

the <ul> element is faded in. 

$ ( I U l I ) •hi de() ; 
$h2 . append('<a>show</a>'); 

CD $h2.on('click', function() 
~ $h2.next() 
@ . fadeln(SOO) 
~ .children( ' .hot') 
~ .addClass('complete'); 
(§) $h2.find( 'a').fade0ut(); 

} ) ; 

} ) ; 

1. A click event anywhere in 

the <h2> element will trigger an 

anonymous function. 

2 . The • next() method is used 

to select the next sibling after 

the <h2> element, which is the 

<u 1 > element. 

lijJjilil 

3. The <u l > is faded into view. 

4 . The .children() methoo 

then selects any child elements 

of the <u 1 > element, and the 

selector indicates that it should 

pick only those whose cl ass 

attribute has a value of hot. 

Any chi ld <1 i >elements that 

have a cl ass attribute whose 

value is hot are also given an 

extra value of comp 1 ete. 

c07/j s/ travers ing.js 

5. The . addClass() method 

is then used on those <l i > 

elements to add a class name of 

complete. This shows how you 

can chain methods and traverse 

from one node to another. 

6. In the last step, the • find() 

method can be used to select 

the <a> element that is a child 

of the <h2> element and fade it 

out because the list is now being 

shown to the users. 

JQUERY § 



ADD & FILTER ELEMENTS 
IN A SELECTION 

Once you have a jQuery selection, you can add more elements to it, 

or you can filter the selection to work with a subset of the elements. 

The • add() method allows you 
to add a new selection to an 

existing one. 

The second table on the right 
shows you how to find a subset 

of your original selection. 

The methods take another 
selector as a parameter and 
return a filtered matched set. 

The items in this table that 
begin with a colon can be used 

wherever you would use a CSS
style selector. 

The : not() and : has() selectors 

take another CSS-style selector 

as a parameter. There is also 

a selector called : contains () 
that lets you find elements that 

contain specific text. 

The . is () method lets you 
use another selector to check 

whether the current selection 

matches a condition. If it does, it 
will return true. This is helpful in 

conditional statements. 

@ JQUERY 

ADDING ELEMENTS TO A SELECTION 

METHOD 

.add() 

DESCRIPTION 

Selects all elements that contain the text specified 

(parameter is case sensitive) 

FILTERING W ITH A SECOND SELECTOR 

METHOD / SELECTOR DESCRIPTION 

. fi 1 ter() Finds elements in matched that in turn match 

. find() 

. not() / : not () 

. has() / :has() 

: contains() 

a second selector 

Finds descendants of elements in matched set 

that match the selector 

Finds elements that do not match the selector 

Finds elements from the matched set that 

have a descendant that matches the selector 

Selects all elements that contain the text 
specified (parameter is case sensitive) 

The following two selectors are equivalent: 

$('1i') .not('.hot ') .addClass('cool'); 
$ (' l i: not ( .hot)'). addCl ass ('coo 1 '); 

In browsers that support querySe l ector () / querySe l ectorA 11 () , 
: not() is faster than • not() and : has() is faster than . has() 

TESTING CONTENT 

METHOD DESCRIPTION 

. ; s () Checks whether current selection matches a condition 

(returns Boolean) 



FILTERS IN USE 

This example selects all list 

items and then uses different 
filters to select a subset of the 
items from the list to work with. 

JAVASCRIPT 

var $listltems = $('li'); 

The example uses both the 
filtering methods as well as 
the CSS-style pseudo-selector 

:not() . 

G) $listltems.filter( ' .hot:last').removeClass('hot'); 
@ $(' l i :not(.hot) ') .addClass( 'cool'); 
(]) $listitems.has('em ' ).addClass('complete ' ); 

$listitems.each(function() 
var $this= $(this) ; 

4 
if ($this.is('.hot')) { 

$this . prepend('Priority item: '); 
} 

} ) ; 

® $( ' li :contains("honey")').append(' (local) ' ); 

1. The . filter() method finds 

the last list item with a c 1 ass 

attribute whose value is hot. 
It then removes that value from 

the c 1 ass attribute. 

ljJiiiil 

2. The : not() selector is used 

within the jQuery selector to find 
<l i >elements without a va1ue of 

hot in their cl ass attribute and 
adds a value of coo 1. 

Once the filters have selected 
a subset of the list items, other 

jQuery methods are used to 
update them. 

c07/js/ fi l ters.js 

3. The • has() method finds the 

<l i >element that has an <em> 

element within it and adds the 

value comp 1 ete to the c 1 ass 
attribute. 

4 . The • each() method loops 
through the list items. The 

current element is cached in 
a jQuery object. The • is () 

method looks to see if the <l i > 

element has a cl ass attribute 
whose value is hot. If it does, 

'Priority item: ' is added to 
the start of the item. 

S. The : contains selector 

checks for <l i >elements that 

contain the text "honey" and 
appends the text " ( 1oca1)" to 

the end of those items. 

JQUERY s 



FINDING ITEMS BY ORDER 

Each item returned by a jQuery selector is given 
an index number, which can be used to filter 

the selection. 

The jQuery object is sometimes 
referred to as being an array-like 

object because it assigns a 
number to each of the elements 

that is returned by a selector. 
That number is an index number, 

which means it starts at 0. 

You can filter the selected 
elements based on this number 

using methods or these 
additional CSS-style selectors 

that jQuery has added. 

Methods are applied to the 

jQuery selection, whereas 
selectors are used as part of the 

CSS-style selector. 

On the right, you can see a 

selector which picks all of the 

<l i> elements from the list 
example used throughout this 

chapter. The table shows each 
list item and its corresponding 

index number. The example 
on the next page will use these 

numbers to select list items and 

update their cl ass attributes. 

8 JQUERY 

FINDING ELEMENTS BY INDEX NUMBER 

METHOD/ SELECTOR DESCRIPTION 

. eq () The element that matches the index number 
........................................................................................................................................... 
: l t () Elements with an index less than the number 

specified 

:gt() 

$( 1 li 1
) 

INDEX HTML 

Elements with an index greater than the 

number specified 

0 <li i d= "one" cl ass="hot "><em>fresh</em> figs</l i > 

1 <li id="two" class="hot">pine nuts</li> 

2 <li id="three" class="hot">honey</li> 

3 <li id="four">balsamic vinegar</l i> 

.. 

c 



USING INDEX NUMBERS 

This example demonstrates how 

jQuery gives an index number 
to each of the elements in the 
jQuery selection. 

JAVASCRIPT 

$(function() { 

The : lt () and : gt() selectors 
and the • eq () method are used 
to find elements based on their 

index numbers. 

G) $ ( ' l i: l t (2) '). removeCl ass ('hot'); 
@ $( ' li ') . eq(O) .addClass('complete'); 
@ $( ' l i :gt(2) ') .addClass( 'cool'); 

} ) ; 

1. The : l t () selector is used in 

the selector to pick list items 

with an index number less than 
2. It removes the value hot from 

their cl ass attribute. 

•aH111• 

2. The • eq () method selects 

the first item (using the number 
0 because the index numbers 

start at zero). It adds the value of 
comp 1 ete to the cl ass attribute. 

For each of the matching 
elements, the value of the c 1 ass 

attributes are changed. 

c07/ js/i ndex-numbers. j s 

3. The : gt() selector is used in 

the jQuery selector to pick the 

list items with an index number 
higher than 2. It adds a value of 
coo 1 to their cl ass attribute. 

JQUERY 8 



SELECTING FORM 
ELEMENTS 

jQuery has selectors that are 

designed specifically to work 
with forms, however, they are 

not always the quickest way to 

select elements. 

If you use one of these selectors 
on its own, jQuery will examine 

each element in the document to 
find a match (using code in the 

jQuery file, which is not as quick 
as CSS selectors). 

Therefore, you should narrow 

down the part of the document 
the script needs to look through 
by placing an element name or 

other jQuery selector before 
using the selectors shown on 

this page. 

You can also access elements in 
a form using the same selectors 

used to pick any element in 

jQuery. This will often be the 
faster option. 

It is also worth noting that. 

because jQuery handles 

inconsistencies in the way 

browsers treat whitespace, it is 
easier to traverse between form 

elements using jQuery than 
it is when you are using plain 

JavaScript. 

8 JQUERY 

SELECTORS FOR FORM ELEMENTS 

SELECTOR DESCRIPTION 

:button <button> and <input> elements whose type attribute has 

a value of button 

:checkbox <input> elements whose type attribute has a value of 

checkbox. Note that you get better performance with 
$('(type="checkbox"]') 

:checked Checked elements from checkboxes and radio buttons 

(see : selected for select boxes) 

: disabled All elements that have been disabled 

:enabled 

: focus 

All elements that are enabled 

Element that currently has focus. Note that you get better 
performance with$ (document. acti veEl ement) 

: file All elements that are file inputs 

: image 

: input 

All image inputs. Note that you get better performance 

using (type= 11 image"] 

All <button>, <input>. <select>, and <texta rea> 

elements. Note that you get better performance from 

selecting elements, then using • filter ( 11
: input 11

) 

: password All password inputs. Note that you get better performance 
using$ ('input: password') 

: radio 

:reset 

All radio inputs. To select a group of radio buttons, you can 

use$(' input (name="gender"] : radio') 

All inputs that are reset buttons 

: selected All elements that are selected. Note that you get better 

performance using a CSS selector inside the • filter() 
method, e.g .. . filter(" : selected") 

: submit <button> and <input> elements whose type attribute 

has a value of submit. Note that you will get better 

performance using (type=" submit"] 

: text Selects <input> elements with a type attribute whose 

value is text, or whose type attribute is not present. You 
will likely get better performance from ('input: text') 



FORM METHODS 
& EVENTS 

RETRIEVE THE VALUE OF ELEMENTS 

METHOD DESCRIPTION 

. va 1 () Primarily used with <input>, <se 1 ect>, and <text area> 

elements. It can be used to get the value of the first element 

in a matched set, or update the value of all of them. 

OTHER METHODS 

METHOD 

.filter() 

. i s() 

DESCRIPTION 

Used to filter a jQuery selection using a second 
selector (especially form-specific filters) 

Often used with fi lters to check whether a form input is 
selected/checked 

$. i sNumeri c () Checks whether the value represents a numeric value 

and returns a Boolean. It returns true for the fo llowing: 
$.isNumeric(l) $.isNumeric(-3) 

$.isNumeric("2") $.isNumeric(4.4) 
$.isNumeric(+2) $.isNumeric{OxFF) 

EVENTS 

METHOD DESCRIPTION 

. on() Used to handle all events 

EVENT DESCRIPTION 

bl ur When an element loses focus 

change When the value of an input changes 

focus When an element gains focus 

select When the option for a <se 1 ect> element is changed 

submit When a form is submitted 

When submitting a form, there is also a helpful method called 

• seri a 1 i ze () which you will learn about on p394-p395. 

The . va 1 () method gets the 

value of the first <input>, 

<select>,or<textarea> 

element in a jQuery selection. 
It can also be used to set the 

value for all matching elements. 

The . filter() and . is() 

methods are commonly used 

with form elements. You met 
them on p338. 

$. i sNumeri c () is a global 

method. It is not used on a 
jQuery selection; rather, the 
value you want to test is passed 

as an argument. 

A ll of the event methods on the 
left correspond to JavaScript 

events that you might use 

to trigger functions. As with 
other jQuery code, they handle 

the inconsistencies between 
browsers behind the scenes. 

jQuery also makes it easier to 
work with a group of elements 

(such as radio buttons, 

checkboxes, and the options 

in a select box), because, once 
you have selected the elements, 
you can simply apply individual 

methods to each of them 
without having to write a loop. 

There is an example using forms 

on the next page, and there are 

more examples in Chapter 13 . 

JQUERY@ 



WORKING WITH FORMS 

In this example, a button and 
form have been added under the 

list. When the user clicks on the 
button to add a new item, the 

form will come into view. 

c07 /form. html 

The form lets users add a new 
item to the list with a single text 
input and a submit button. 

(The new item button is hidden 
when the form is in view.) 

<!-- li st goes here --> ... </ul > 

When the user presses the 
submit button, the new item is 
added to the bottom of the list. 

(The form is also hidden and the 
new item button is shown again.) 

llHJ1il 

<div id="newitemButton"><butt on href= "#" id="showFonn">new item</ button></div> 
<form id="newitemForm"> 

<input type="text" i d="itemDescr iption" placeholder="Add description . . . " /> 
<input type="submit" id="addButton" val ue"'"add" / > 

</form> 

l;IJillil 

8 JQUERY 



1. New jQuery objects are 
created to hold the new item 
button, the form to add new 
items, and the add button. 
These are cached in variables. 

JAVASCRIPT 

${function() { 

2. When the page loads, the 
CSS hides the new item button 
(and shows the form), so jQuery 
methods show the new item 
button and hide the form. 

var $newitemButton = $('#newitemButton'); 

© 
® 
© 
0 

@{ 

var $newitemForm $('#newitemForm') ; 
var $textlnput = $('input:text') ; 

$newitemButton.show(); 
$newitemForm.hide{); 

$( 1 #showForm') .on('click'. function() { 
$newltemButton . hide(); 
$newitemForm. show{); 

}) ; 

$newitemForm.on( ' submit'. function(e){ 
e . preventDefault(); 
var newText = $('input:text') . val (); 
$( ' li : last') . after(' <li> ' + newText + '</li>') ; 
$newitemForm. hide{) ; 
$newltemButton.show{); 
$textlnput . val( ' ' ); 

} ) ; 

} ) ; 

4. When the form is submitted, 
an anonymous function is called. 
It is passed the event object. 

6. The : text selector picks the 
<input> element whose type 
attribute has a value of text, 
and the • va 1 () method gets the 
value the user entered into it. 
This value is stored in a variable 
called newText. 

5. The . preventOefault() 
method can stop the form being 
submitted. 

3. If a user clicks on the new item 
button (the <button> element 
whose id attribute has a value of 
showForm), the new item button is 
hidden and the form is shown. 

c07 / js/ form.js 

7. A new item is added to 
the end of the list using the 
.after() method. 
8. The form is hidden, the new 
item button is shown again, and 
the content of the text input is 
emptied (so the user can add a 
new entry if they want to). 

JQUERY 8 



CUTTING & COPYING 
ELEM ENTS 

Once you have a jQuery selection, you can use 

these methods to remove those elements or 

make a copy of them. 

The . remove () method deletes 
the matched elements and all 

of their descendants from the 
DOM tree. 

The . detach() method also 

removes the matched elements 
and all of their descendants 
from the DOM tree; however, it 

retains any event handlers (and 
any other associated jQuery 

data) so they can be inserted 

back into the page. 

The . empty () and • unwrap () 
methods remove elements in 

relation to the current selection. 

The . cl one () method creates 

a copy of the matched set of 
elements (and any descendants). 

If you use this method on HTML 

that contains id attributes, the 
value of the id attributes would 

need updating otherwise they 
would no longer be unique. 

If you want to pass any event 
handlers, you should add true 

between the parentheses. 

8 JQUERY 

CUT 

METHOD DESCRIPTION 

. remove() Removes matched elements from DOM tree (including any 

descendants and text nodes) 

. detach () Same as . remove () but keeps a copy of them in memory 

. empty () Removes child nodes and descendants from any elements 

in matched set 

. unwrap () Removes parents of matched set, leaving matched elements 

COPY 

METHOD DESCRIPTION 

. cl one () Creates a copy of the matched set (including any 

descendants and text nodes) 

PASTE 
You saw how to add elements into the DOM tree on p318. 



CUT, COPY, PASTE 

In this example, you can see 
parts of the DOM tree being 

removed, duplicated, and placed 
elsewhere on the page. 

JAVASCRIPT 

$(function() { 
CD var $p = $('p'); 

The HTML has an extra <p> 

element after the list, which 
contains a quote. It is moved to a 
new position under the heading. 

Q) var $clonedQuote = $p .clone(); 
Q) $p.remove(); 
@) $clonedQuote . insertAfter('h2'); 

~ var $moveltem = $( '#one') .detach(); 
@) $moveltem.appendTo('ul '); 

} ) ; 

l;IJillil 

In addition, the first list item 

is detached from the list and 
moved to the end of it. 

c07/ js/cut-copy-paste .js 

1. A jQuery selection is made 
containing the <p> element at 

the end of the page, and this is 
cached in a variable called $p. 

2. That element is copied 
using the . cl one() method 

(along with its content and 
child elements). It is stored in a 

variable called $cl onedQuote. 

3. The paragraph is removed. 

4 . The cloned version of the 

quote is inserted after the <h2> 
element at the top of the page. 

5. The first list item is detached 
from the DOM tree and stored 

in a variable called $move Item 
(effectively removing it from the 

DOM tree). 

6. That list item is then 
appended to the end of the list. 

JQUERY 8 



BOX DIMENSIONS 

These methods allow you to discover or update 
the width and height of all boxes on the page. 

CSS treats each element on a 

web page as if it were in its own 
box. A box can have padding, a 

border, and a margin. If you set 
the width or height of the box 

in CSS, it does not include any 
padding, border, or margin - they 

are added to the dimensions. 

The methods shown here allow 

you to retrieve the width and 

height of the first element in 
the matched set. The first two 

also allow you to update the 

dimensions of all boxes in the 
matched set. 

The remaining methods give 
different measurements 

depending on whether you 

want to include padding, 

border, and a margin. Note 
how the . outerHei ght () and 

• outerWi dth () methods take a 
parameter of true if you want 

the margin included. 

When retrieving dimensions, 

these methods return a number 

in pixels. 

8 JQUERY 

RETRIEVE OR SET BOX DIMENSIONS 

METHOD DESCRIPTION 

. height() Height of box (no margin, border, padding) 

.width() Width of box (no margin, border, padding) (1) 

RETRIEVE BOX DIMENSIONS ONLY 

METHOD DESCRIPTION 

. i nnerHei ght () Height of box plus padding 

. i nnerWi dth () Width of box plus padding (2) 

.outerHeight()' Height of box plus padding and border 

.outerWi dth () Width of box plus padding and border (3) 

. outerHei ght (true) Height of box plus padding, border, and margin 

.outerWi dth(true) Width of box plus padding, border, and margin (4) 

PADDING • BORDER MARGIN 

.width() 

. i nnerWi dth () 

. outerWi dth () 

.outerWidth(true) 



CHANGING DIMENSIONS 

JAVASCRIPT 

$(funct ion() { 

This example demonstrates how 
the .height() and .width() 

methods can be used to retrieve 
and update box dimensions. 

G) var listHeight = $('#page ' ).height(); 
@ $( ' ul ').append( '<p>Height: '+ listHeight + 'px</p>'); 
® $ (I 1 i I) •width ( J 50% I ) ; 
~ 5( ' 1i #one').width(125); 
~ $('1i #two').width( ' 75%'); 

} ) ; 

1. A variable called l is tHei ght 

is created to store the height of 
the page container. It is obtained 
using the . height() method. 

lflj1J51 

2. The height of the page is 

written at the end of the list 
using the . append () method and 

may vary between browsers. 

The page displays the height of 
the container. It then changes 

the width of the list items using 
percentages and pixels. 

c07/js/d imens ions.js 

3. The selector picks all the <l i> 

elements and sets their width to 

50% of their current width using 
the . width() method. 

4. These two statements set 
the width of the first list item to 

125 pixels and the width of the 

second list item to be 75% of 
the width it was when the page 

loaded . 

Measurements in percentages or 
ems should be given as a string, 

w ith the suffix% or em. Pixels do 
not require a suffix and are not 

enclosed in quotes. 

JQUERY 8 



W INDOW & PAGE 
DIMENSIONS 

The • height() and • width() methods can be used to determine the 

dimensions of both the browser window and the HTML document. 
There are also methods to get and set the position of the scrol l bars. 

On p348, you saw that you can 

get and set the height or width of 
a box using the . height () and 

. width() methods. 

These can also be used on a 
jQuery selection containing the 

window or document objects. 

The browser can display scroll 

bars if the height or width of: 

• A box's content is larger than 
its allocated space. 

• The current page represented 
by the document object is 

larger than the dimensions 
of the browser window's 
viewable area (viewport). 

The . scro 11 Left() and 

• scro l lTop () methods allow 

you to get and set the position of 
the scroll bars. 

When retrieving dimensions, 

these methods return a number 
in pixels. 

8 JQUERY 

METHOD DESCRIPTION 

. height() Height of the jQuery select ion 

.width() Width of the jQuery selection 

. scro 11 Left () Gets the horizontal position of the scroll bar for the first 

element in the jQuery selection, or sets the horizontal 
scroll bar position for matched nodes 

. scrollTop() 

... 
oc: 

Gets the vertical position of the scroll bar for the first 

element in the jQuery selection, or sets the vertical 
scroll bar position for matched nodes 

$(window).height(); 

~~=====:=:==~=~=~:::J This method will often 

$(document) . height{); 

return the incorrect 
value unless a DOCTYPE 
declaration is specified 
for the HTML page. 

1 

! 



POSITION OF ELEMENTS 
ON THE PAGE 

The .offset() and .position() methods can 

be used to determine the position of elements 
on the page. 

METHOD 

. offset () 

DESCRIPTION 

Gets or sets coordinates of the element relative to the top 
left-hand corner of the document object (1) 

. position ( ) Gets or sets coordinates of the element rela tive to any 
ancestor that has been taken out of normal flow (using 

CSS box offsets). If no ancestor is out of normal flow, it 
will return the same as .offset() (2) 

••• • ~ ...------------------, c: 

. of fset() 

t---- <D 

l 
. pos i ti on() 

To get the offset or position, store the object that is returned by these 
methods in a variable. Then use the l eft or r i ght properties of the object 

to retrieve their position. 

var off set = $( 'di v ' ) .offset (); 

var text = ' Left : ' + off set .l eft + ' Right: ' + offset.right; 

The two methods on the left help 

you to determine the position of 
an element: 

• Within the page . 
• In rela t ion to an ancestor that 

is offset from normal flow. 

Each of them returns an object 

that has two properties: 

top - the position from the top 

of the document or containing 

element. 

1 eft - the position from the left 

of the document or containing 
element. 

As with other jQuery methods, 
when used to retrieve 

information, they return the 

co-ordinates of the first element 

in the matched set. 

If they are used to set the 
position of elements, they 

will update the position of all 
elements in the matched set 

(putting them in the same spot). 

JQUERY@ 



DETERMINING POSITION 
OF ITEMS ON THE PAGE 

In this example, as the user 

scrolls down the page, a box 

slides into view if they get within 

500 pixels of the footer. 

We will call this part of the page 

the end zone, and you need to 

work out the height at which the 

endZone starts. 

Every t ime the user scrolls, you 

then check the position of the 

scroll bar from the top of the 

page. 

If the scroll bar is further down 

the page than the start of the 

end zone, the box is animated 

into the page. If not, then the box 

is hidden. 

The HTML for this example 

contains an extra <div> element 

at the end of the page containing 

the advert. A lot of items have 

been added to the list to create a 

long page that scrolls. 

§ JQUERY 

c07/pos i t ion.html lllii@i!!ii 

... <li>quinoa</li> 
</ul> 
<p id="footer">&copy; Li stKi ng</p> 
<div id="slideAd"> 

Buy ListKing Pro for only $1.99 
</div> 

</div> 
<script src=" j s/jquery-1.9.1.min.js"></script> 
<script src="js/position.js"></script> 

llH'i'"' 

~lA BUY LISTKING PRO 
~ FOR ONLY $1.99 



1. Cache the window and advert. 

2. The height of the end zone 

is calculated, and stored in a 
variable called endZone. 

3. The scro 11 event triggers an 

anonymous function every time 
the user scrolls up or down. 

JAVASCRIPT 

$(function() { 
d var $window = $(window) ; 

4. A conditional statement 

checks if the user's position is 
further from the top of the page 

than the start of the end zone. 

S. It the condition returns true, 
the box slides in from the right

hand edge of the page. This 

takes 250 milliseconds. 

~ var $slideAd = $( ' #slideAd') ; 

6. If the condition is fa lse or the 

box is in the middle of animating, 

it is stopped using the • stop () 
method. The advert then slides 

off the right-hand edge of the 
page. Again, this animation will 

take 250 milliseconds. 

c07/ js/ posi t ion. j s 

~ var endZone = $('#footer').offset().top - $window.height() - 500; 

~ $window.on('scroll ',function() { 

@) if ( (endZone) < $window.scro1 1Top() ) { 

® $s l ideAd . animate(I 'right ' : 'Opx ' }, 250); 
else { 

® $sl i deAd.stop(true).ani mate({ 'right': '-360px'}, 250); 

} ) ; 

} ) ; 

CALCULATING THE END ZONE 

Calculate the height at which the 
box should come into view by: 

a) Getting the height from the 

top of the page to the top of the 
footer (the gray bar) in pixels. 

b) Subtracting the height of the 

viewport from this result. 

c) Subtracting a further SOOpx 

for the area where the box will 

come into view (shown in pink). 

You can tell how far the user has 
scrolled down the page using: 

$(window) . scrol 1Top(); 

If the distance extends down 
further than the height at which 

the end zone should show, the 
box should be made visible. 

If not, then the box should move 
off the page. 

JQUERY@ 





When a page loads jQuery from 

a CDN, you will often see a 

syntax like the one shown below. 
It starts with a <script> tag that 

tries to load the jQuery file from 
the CDN. But note that the URL 
for the script starts with two 

forward slashes (not http:). 

liillfill 

LOADING JQUERY 
FROM A CDN 

This is known as a protocol 
relative URL. If the user is 

looking at the current page 
through https, then they will not 

see an error that tells them there 

are unsecure items on the page. 
Note: This does not work locally 

with the f i l e:// protocol. 

This is often followed by a 

second <script> tag that 

contains a logical operator, 
which checks to see if jQuery 

has loaded. If it has not loaded, 
the browser tries to load the 

jQuery script from the same 
server as the rest of the websi te. 

<script src=" //ajax .googl eapi s . com/ ajax/l i bs/ jquery / 1.10 . 2/ jquery .min. js "> 
</ script> 

<script> 
window .jQuery 11 document. write (' <script src=" j s/j query- 1.10 . 2 . j s 11 ><\jscri pt> ' ) 
</script> 

The logical operator looks for 

the jQuery object that the 
jQuery script makes available. 

If it exists, then a truthy value is 
returned and the logical operator 

short circuits (see p157). 

If jQuery has not loaded, then 
the document .write () method 

is used to add a new <script> 
tag into the page. This will load a 

version of jQuery from the same 
server as the rest of the website. 

The fallback option is important 

because the CDN may be 
unavailable, the file may have 

moved, and some countries ban 
some domain names (such as 
Google). 

JQUERY 9 



WHERE TO PLACE YOUR 
SCRIPTS 

The position of <scri pt> elements can affect 

how quickly a web page seems to load. 

SPEED 

In the early days of the web, developers were told to 

place the <script> tags in the <head> of the page 

as you do with style sheets. However, this can make 

pages seem slower to load. 

Your web page may use fi les from several different 

locations (e.g., images or CSS files might be loaded 

from one CDN, jQuery could be loaded from the 

jQuery or Google CDNs, and fonts might be loaded 
from another third party). 

Usually a browser will col lect up to two fi les at a time 

from each different server. However, when a browser 

starts to download a JavaScript file, it stops all other 

downloads and pauses laying out the page until the 

script has finished loading and been processed. 

Therefore, if you place the script at the end of the 

page before the closing </body> tag, it will not affect 

the rendering of the rest of the page. 

HTML LOADED INTO THE DOM TREE 

Whenever a script is accessing the HTML within a 

web page, it also needs to have loaded that HTML 

into the DOM tree before the script can work. (This 

is often referred to as the DOM having loaded.) 

You can use the load event to trigger a function so 

that you know the HTML has loaded. However, it 

fires only when the page and all of its resources load. 

You can also use the HTMLS DOMContentLoaded 

event, but it does not work in older browsers. 

I 
l ; l ; 

ul 
I 

+iii 
LOADED 

• NOTYET 
LOADED 

If the script tries to access an element before it has 

loaded, it causes an error. In the diagram above, the 

script could access the first two <l i >elements, but 

not the third or fourth. 

Where possible, do consider 

using alternatives to scripts. For 

example, use CSS for animations 

or HTMLS's autofocus attribute 

rather than using the load event 

to bring focus to an element. 

If your page is slow to load and 

you only want to include a small 

amount of code before the rest 

of the page has loaded, you can 

place a <script> tag within the 

body of the page. 

At the time of writing, this 

technique was commonly used 

by Google for speed advantages, 

but it is acknowledged that it 

makes code much harder to 

maintain. 

8 JQUERY 

. 
/ 

< 

i 
! 

.. 

1 
I , 
I 
I 
1 

I 
1 
I 

1 , 
1 





JQUERY 
DOCUMENTATION 

For an exhaustive list of the functionality 

provided in jQuery, visi t http ://api . j query . com 

It is not possible to teach you everything about 

jQuery in one (albeit long) chapter. But you have 

seen many of the most popular features, and 

you should now know enough about jQuery to 

understand how it works and how to make use of it 

in your scripts. 

Throughout the remaining chapters of this book, you 

will see many more examples that use jQuery. 

HOW THE DOCUM ENTATION WORKS 

On the left-hand side of the page, you w ill see the 

different types of functionalit y that you can explore. 

W hen you click on any of the methods in the main 

column, you w ill see a list of the parameters that it 

can take. When parameters are optional, they are 

shown in square brackets. 

You will also find deprecated methods. This 

means that you are no longer advised to use this 

markup because it is likely to be removed from 

future versions of jQuery ( if it has not already been 

removed). 

s JQUERY 

W hat you have learned should also give you enough 

experience to work with the comprehensive jQuery 

documentation available online at: 

http: //api .jquer y .com 

This site lists each method and property available to 

you, along with new functionality added in the latest 

versions, and notes that indicate which features are 

scheduled to be dropped. 

' bocoup ~-

-----...., __ -..-_ ... ........._ 

---·--..... -·---··---.. 
..,. ___ ,,, __ ._..._._ ... 

-



EXTENDING JQUERY 
WITH PLUGINS 

Plugins are scripts that extend the functionality of the jQuery library. 

Hundreds have been written and are available for you to use. 

Plugins offer funct ionality that is not included 

in the jQuery library. They usually deal with a 

particular task such as creating slideshows or video 

players, performing animations, transforming data, 

enhancing forms, and displaying new data from a 

remote server. 

To get an idea of the number and range of plugins 

available, see http: //plugins . jquery.com. 

All of these are free for you to download and use on 

your own sites. You may also find other sites listing 

jQuery plugins for sale (such as codecanyon. net). 

::::..."':.."'::' --___ ...,. _ _ _.. ____ _ _ _,.. .. ___ _ 
::::..:=:::::: - --

t:!l llt•h•\llMl11i.• 

:.::...°':':". 
~ ==--=·-. 
===l~ 

--·· 

Plugins are written so that new methods extend 

the jQuery object and can, therefore, be used on a 

jQuery selection. As long as you know how to do the 

following with jQuery: 

• Make a selection of elements 

• Call a method and use parameters 

You can use a lot of the functionalit y of these plugins 

without having to write the code yourself. In Chapter 

11, you wil l see an example of how to create a basic 

jQuery plugin. 

HOW TO CHOOSE A PLUGI N 

When you are choosing a plugin to work with, it can 

be worth checking that it is still being maintained or 

whether other people have experienced problems 

using it. Finding out the following can help: 

• When was the plugin last updated? 

• How many people are watching the plugin? 

• What do the bug reports say? 

If you ask a question or find a bug in a script. bear in 

mind that their authors may have a day job and only 

maintain these plugins in their spare time to help 

others and to give back to the community. 

JQUERY s 



JAVASCRIPT LIBRARIES 

jQuery is an example of what programmers call a JavaScript library. 

It is a JavaScript file that you include in your page, which then lets you 
use the functions, objects, methods, and properties it contains. 

The concept of a library is that it 
al lows you to borrow code from 

one file and use its functions, 
objects, methods, and properties 

in another script. 

Once you have included 
the script in your page, its 
functionality is available to use. 

The documentation for the 
library w ill tel l you how to use it. 

DOM & EVENTS 

Zepto.js 

YUi 
Dojo.js 

M ooTools.js 

TEMPLATING 

Mustache.js 

Handlebars.js 
jQuery Mobile 

9 JQUERY 

jQuery is the most widely used 
library on the web, but when 

you have learned it. you might 

like to explore some of the other 
libraries listed below. 

Popular libraries have the 

advantage that they will be well
tested, and some have a whole 

team of developers who work on 
them in their spare time. 

USER INTERFACE 

jQuery UI 
jQuery Mobile 

Twitter Bootstrap 

YUi 

WEB APPLICATIONS 

Angular.js 

Backbone.js 
Ember.js 

One of the main drawbacks with 
a library is that they will usually 

contain functionality that you 
will not need to use. This means 

users have to download code 
that will not be needed (which 

can slow your site down). You 
may find that you can strip out 

the subset of the library you 
need or indeed write your own 

script to do that job. 

GRAPHICS & CHARTS 

Chart.js 
03.js 

Processing.js 
Raphael.js 

COMPATIBILITY 

Modernizr.js 
YepNope.js 

Require.js 



PREVENTING CONFLICTS 
WITH OTHER LIBRARIES 

Earlier in the chapter, you saw that $ () was shorthand for j Query (). 
The $ symbol is used by other libraries such as prototype.js, MooTools, 
and YUi. To avoid conflicts with those scripts, use these techniques. 

INCLUDING JQUERY 
AFTER OTHER LIBRARIES 

Here, jQuery's meaning of$ takes precedence: 

<script src="other . js"></script> 
<script src="jquery . js"></script> 

You can use the . noConfl i ct() method at the start 
of your script, to tell jQuery to release the$ shortcut 
so that other scripts can use it. Then you can use the 
full name rather than the shortcut: 

jQuery.noConflict(); 
jQuery(function() { 

jQuery('div') . hide(); 
} ) ; 

You can wrap your script in an llFE and still use$: 

jQuery . noConflict{); 
(function($) { 

$( 'd.i v') . hide(); 
} )(jQuery); 

Or you can specify your own alias instead, e.g., $j: 

var $j = jQuery . noConflict(); 
$j{document) .ready(function() 

$j('div') . hide(); 
} ) ; 

INCLUDING JQUERY 
BEFORE OTHER LIBRARIES 

Here, the other scripts' use of $ takes precedence: 

<script src=" jquery . js"></script> 
<script src="other.js"></ script> 

$ will have the meaning defined in the other library. 
There is no need to use the . noConfl i ct() method 
because it will have no effect. But you can continue 
to use the ful l name jQuery: 

jQuery(document ).ready( function () 
jQuery('div') .hide(); 

} ) ; 

You can pass$ as an argument to the anonymous 
function called by the . ready() method like so: 

j Query(document) .ready(function($) 
$('div') . hide(); 

} ) ; 

This is equivalent to the code shown above: 

jQuery(function($) { 
$('div') .hide(); 

} ) ; 

JQUERY 8 





EXAMPLE 
JQUERY 

This example brings together a number of the 

techniques you have seen in this chapter to 

create a list that users can add items to and 
remove items from. 

• Users can add new list items. 

• They can also cl ick to indicate that an item is complete (at which 

point it is moved to the bottom of the list and marked as comp 1 et e). 

• Once an item is marked as comp 1 ete, a second click on the item will 

remove it from the list. 

An updated count of the number of items there are in the list will be 

shown in the heading. 

As you will see, the code using jQuery is more compact than it would 

be if you were writ ing this example in plain JavaScript. and it w ill work 

across browsers even though there is no expl icit tailback code. 

Because new items can be added to the list, the events are handled using 

event delegation. When the user clicks anywhere on the <u 1 >element. 

the . on () event method handles the event. Inside the event handler, 

there is a conditional statement to check whether the list item is: 

• Not complete - in which case, the click is used to change the item to 

complete, move it to the bottom of the list, and update the counter. 

• Complete - in which case, the second cl ick on the item fades it out 

and removes it from the list altogether. 

The use of conditional statements and custom functions (used for the 

counter) illustrate how jQuery techniques are used in combination with 

traditional JavaScript that you have been learning throughout the book. 

The appearance and removal of the elements is also animated, and 

these animations demonstrate how methods can be chained together to 

create complex interactions based on the same selection of elements. 

JQUERY @ 



EXAMPLE 
JQUERY 

c07/ js/ example.js 

$(fun ct ion() 

II SETUP 
var $list, $newltemFonn, $newltemButton; 
var item = ''; 
$list= $('ul'); 
$newitemForm = $('#newltemForm') ; 
$newltemButton = $('#newltemButton') ; 

$( 'l i ').hide() .each (function(i ndex) { 
$(this).delay(450 * index) . fade ln( l600); 

} ) ; 

I I ITEM COUNTER 
function updateCount() { 

} 

var items = $('li[class!=complete]') .length; 
$( ' #counter').text(items); 

updateCount (); 

II SETUP FORM FOR NEW ITEMS 
$newltemButton .show{); 
$newltemFonn.hide(); 
$(' #showFonn') .on('click', function() { 

$newltemButton.hide{); 
$newltemFonn.show(); 

} ) ; 

JAVASCR I PT 

II item is an empty string 
II Cache the unordered list 
II Cache form to add new items 
II Cache button to show form 

II Hide list items 
II Then fade them in 

II Oeclare function 
II Number of items in list 
II Added into counter circle 

II Call the function 

II Show the button 
II Hide the fonn 
II When new item clicked 
II Hide the button 
II Show the fonn 

The entire script wil l wait until 

the DOM is ready before running, 

because it is inside the shorthand 
for the document. ready () method. 
Variables are created that wi ll be 

used in the script, including jQuery 
selections that need to be cached. 

The updateCounter() function 

checks how many items are in the 
list and writes it into the heading. It 

is called straight away to calculate 
how many list items are on the 

page when it loads, and then write 
that number next to the heading. 

The form to add new items is 

hidden when the page loads, and 

is shown when the user cl icks on 
the add button. When the user 
cl icks on the add button a new 

item is added to the form and the 
updateCounter() is called. 

8 JQUERY 

. 
• 



EXAMPLE 
JQUERY 

JAVASCRIPT c07/ js/ example.js 

II ADDING A NEW LIST ITEM 
$newitemForm. on ('submit', func t ion ( e) 

e.preventDefault(); 
var text= $('input:text').val() ; 
$list.append('<li> ' +text+ '<lli>'); 
$( 'input:text ' ) .val ( 11

); 

II When a new item i s submitted 
II Prevent form being submitted 
II Get val ue of text i nput 
II Add item to end of the l ist 
II Empty t he text input 

updateCount () ; II Update t he count 
} ) ; 

II CLICK HANDLI NG - USES DELEGATION ON <ul> ELEMENT 
$list.on(' cl i ck', 'li ', function() { 

var $this= $(this); II Cache t he el ement i n a j Query object 
var complete= $this.hasCl ass( ' complete'); II Is item complete 

if (complete === true) 
$this.animate({ 

opacity : 0.0, 
paddingLeft: '+=180' 

}, 500, 'swing', function() 
$this. remove() ; 

} ) ; 

II Check if i tem i s complete 
II If so, an imate opacity+ padd i ng 

II Use callback when animati on complet es 
II Then completely remove this i t em 

else { II Otherwise indi cate i t is complete 
i tem= $th i s.text(); II Get t he t ext from t he l ist i t em 
$thi s.remove(); II Remove the list item 
$list II Add back t o end of l ist as complete 

.append('<li cl ass=\"complete\">' +item + '<ll i>' ) 

.hide().fadein(300); II Hide i t so it can be faded i n 

} 
} ) ; 

updateCount(); II Update t he count er 
II End of el se option 
II End of event handler 

} ) ; 

The • on() event method listens 

for the user cl icking anywhere on 

the list because this script uses 

event delegation. When they do, 

the element that was clicked on 

is stored in a jQuery object and 

cached in a variable called $this. 

Next, the code checks if that 

element has a class name of 

comp 1 ete. If it does, then the list 

item is animated out of view and 

removed. If it was not already 

complete, then it is moved to the 
end of the list. 

When it is added to the end of the 

list, its c 1 ass attribute is given a 

value of comp 1 ete. 

Finally, updateCount () is called to 

update the number of items left to 

do on the list. 

JQUERY 8 



jQuery is a JavaScript file you include in your pages. 

Once included, it makes it faster and easier to write 

cross-browser JavaScript, based on two steps: 

Using CSS-style selectors to collect one or more 

nodes from the DOM tree. 

Using jQuery's built-in methods to work with the 

elements in that selection. 

jQuery's CSS-style selector syntax makes it easier to 

select elements to work with. It also has methods that 

make it easier to traverse the DOM. 

jQuery makes it easier to handle events because the 

event methods work across all browsers. 

jQuery offers methods that make it quick and simple to 

achieve a range of tasks that JavaScript programmers 

commonly need to perform. 





Ajax is a technique for loading data into part of a page 
without having to refresh the entire page. The data is often 
sent in a format called JavaScript Object Notation (or JSON). 

The ability to load new content into part of a page improves the user experience because 

the user does not have to wait for an entire page to load if only part of it is being updated. 

This has led to a rise in so-called single page web applications (web-based tools that feel 

more like software applications, even though they run in the browser). This chapter covers: 

WHAT AJAX IS 

Ajax allows you to request 

data from a server and 

load it without having to 

refresh the entire page. 

8 AJAX&JSON 

DATA FORMATS 

Servers typically send 

back HTML, XML, or 

JSON, so you will learn 

about these formats. 

JQUERY & AJAX 

jQuery makes it easier 

to create Ajax requests 

and process the data the 

server returns. 





WHAT IS AJAX? 

You may have seen Ajax used on many websites, 

even if you were not aware that it was being used. 

multimoog 

multimoog 
multimoog for sale 
multimodal 

Live search (or autocomplete) commonly uses Ajax. 

You may have seen it used on the Google website. 

When you type into the search bar on the home 

page, sometimes you w ill see results coming up 

before you have finished typing. 

esig .. 

mm ~ 1 item added to cart 
view cart 

$4,995. 

.._~~~~~~~~~~~~~~pg 
odel D. Fat osc llators and warm Moog filters give it that 

Sometimes when you are shopping online and add 

items to your shopping cart, it is updated without 

you leaving the page. At the same time, the site may 

display a message confirming the item was added. 

Moog Music Inc. @moogmusicinc 

Born today in 1896: Leon Theremin, 
physicist, spy & inventor of one of the 
earliest electronic musical instruments. 
pic.twitter.com/theremin 

Websites with user-generated content (such 

as Twitter and Flickr) may allow you to display 

your information (such as your latest tweets or 

photographs) on your own website. This involves 

collecting data from their servers. 

Choose your username 

I minimoog 

This username is taken. Try another? 
Available: minimoog70 

If you are registering for a website, a script may 

check whether your username is available before 

you have completed the rest of the form. 

Sites may also use Ajax to load data behind the scenes so that they can use or show that data later on. 

e AJAX&JSON 



WHY USE AJAX? 

Ajax uses an asynchronous processing model. This means the user can 

do other things while the web browser is waiting for the data to load, 

speeding up the user experience. 

USING AJAX WH ILE 
PAGES ARE LOADING 

When a browser comes across a <script> tag, it will 

typically stop processing the rest of the page until it 

has loaded and processed that script. This is known 

as a synchronous processing model. 

When a page is loading, if a script needs to collect 

data from a server (e.g., if it collects financial 

exchange rates or status updates), then the browser 

would not just wait for the script to be loaded and 

processed; it would also have to wait for a server to 

send the data that the script is going to display. 

W ith Ajax, the browser can request some data from 

a server and - once that data has been requested -

continue to load the rest of the page and process the 

user's interactions with the page. It is known as an 

asynchronous (or non-blocking) processing model. 

The browser does not wait for the third party data in 

order to show the page. When the server responds 

w ith the data, an event is fired ( like the load event 

that f ires when a page has loaded). This event can 

then call a function that processes the data. 

USING AJAX WHEN 
PAGES HAVE LOADED 

Once a page has loaded, if you want to update what 

the user sees in the browser window, typically you 

would refresh the entire page. This means that the 

user has to wait for a whole new page to download 

and be rendered by the browser. 

With Ajax, if you only want to update a part of 

the page, you can just update the content of one 

element. This is done by intercepting an event (such 

as the user cl icking on a link or submitting a form) 

and requesting the new content from the server 
using an asynchronous request . 

While that data is loading, the user can continue 

to interact w ith the rest of the page. Then, once 

the server has responded, a special Ajax event will 

trigger another part of the script that reads the new 

data from the server and updates just that one part 

of the page. 

Because you do not have to refresh the whole page, 

the data will load faster and the user can still use the 

rest of the page while they are waiting. 

Historically, AJAX was an acronym for the technologies used in asynchronous requests like this. It stood for 

Asynchronous JavaScript And XML. Since then, technologies have moved on and the term Ajax is now used to 
refer to a group of technologies that offer asynchronous ·functionality in the browser. 

AJAX&JSON@ 



·----·-----:==-

===-·-----

·----·----·--- -·-----
·----·----·-----



HANDLING AJAX 
REQUESTS & RESPONSES 

To create an Ajax request, browsers use the XMLHttpRequest object. 

When the server responds to the browser's request, the same 

XMLHt tpReques t object will process the result. 

THE REQUEST 

G) var xhr = new XMLHttpRequest () ; 
@ xhr . open ( 'GET', 'datal test.json', true); 

® xhr . send ( ' search=ardui no ' ); 

1. An instance of the 
XMLHttpRequest object is 

created using object constructor 
notation (which you met on 
p106). It uses the new keyword 

and stores the object in a 
variable. The variable name xhr 

is short for XMLHttpRequest (the 

name of the object). 

THE RESPONSE 

G) xhr . onload = funct i on() 
@ if (xhr.status === 200) 

2. The XMLHttpRequest object's 
open () method prepares the 

request. It has three parameters 
(which you meet on p379): 
i) The HTTP method 

ii) The url of the page that wil l 
handle your request 

iii) A Boolean indicating if if 

should be asynchronous 

II Code to process the resul ts from the server 

1. When the browser has 
received and loaded a response 
from the server, the on l oad 

event wi ll fire. This will trigger 

a function (here, it is an 
anonymous function). 

2 . The function checks the 
status property of the object. 

This is used to make sure the 

server's response was okay. 
( If this property is blank, check 

the setup of the server.) 

3. The send() method is the one 
that sends the prepared request 

to the server. Extra information 
can be passed to the server in 

the parentheses. If no extra 
information is sent, you may see 

the keyword null used (although 

it is not strictly needed): 
xhr.send(null). 

Note that IE9 was the first 
version of IE to support this way 

of dealing with Ajax responses. 

To support older browsers, you 

can use jQuery (see p388). 

AJAX&JSON 8 



DATA FORMATS 

The response to an Ajax request usually comes in one of three formats: 

HTML, XML, or JSON. Below is a comparison of these formats. 

XML and JSON are introduced over the next three pages. 

HTML XML JSON 
You are probably most familiar XML looks similar to HTML, JavaScript Object Notation 

with HTML, and, when you want but the tag names are different (JSON) uses a similar syntax 

to update a section of a web because they describe the data to object literal notation (which 

page, it is the simplest way to that they contain. The syntax is you met on p102) in order to 

get data into a page. also more strict than HTML. represent data. 

BENEFITS BENEFITS BENEFITS 

• It is easy to write, request. • It is a flex ible data format • It can be called from any 
and display. and can represent complex domain (see JSON-P/CORS). 

• The data sent from the server structures. • It is more concise (less 

goes straight into the page. • It works wel l with different verbose) than HTML/XML . 

There's no need for the platforms and applications. • It is commonly used with 

browser to process it (as with • It is processed using the same JavaScript (and is gaining wider 

the other two methods). DOM methods as HTML. use across web applications). 

DRAWBACKS DRAWBACKS DRAWBACKS 

• The server must produce • It is considered a verbose • The syntax is not forgiving. 

the HTML in a format that is language because the tags A missed quote, comma, or 

ready for use on your page. add a lot of extra characters colon can break the file. 

• It is not well-suited for use in to the data being sent. • Because it is JavaScript, it can 

applications other than web • The request must come from contain malicious content 

browsers. It does not have the same domain as the rest (see XSS on p228). 

good data portability. of the page* (see below). Therefore, you should only 

• The request must come from • It can require a lot of code to use JSON that has been 

the same domain* (see below). process the result. produced by trusted sources. 

• Browsers only let Ajax load HTML and XML from the same domain name as the rest of the page 

(e.g., if the page is on www. example. com, the Ajax request must return data from www. example. com). 

8 AJAX&JSON 

-; 

r 



XML: EXTENSIBLE 
MARKUP LANGUAGE 

XML looks a lot like HTML, but the tags contain different words. 

The purpose of the tags is to describe the kind of data that they hold. 

<?xml version="l .O" encoding="utf-8" ?> 
<events> 

<event> 

<location>San Francisco , CA</locat ion> 

<date>May l </date> 

<map>img/map-ca . png</map> 
</ event> 
<event> 

<location>Austin, TX</ location> 
<date>May 15</ date> 

<map>img/ map-tx.png</ map> 
</ event> 
<event> 

<location>New York, NY</location> 
<date>May 30</ date> 

<map>img/map-ny . png</ map> 
</ event> 

</events> 

You can process an XM L file using the same DOM methods as HTML. 
Because different browsers deal with whitespace in HTML/XML 
documents in different ways, it is easier to process XML using jQuery 

rather than plain JavaScript (just as it can be with HTML): 

In the same way that HTML is 
a markup language that can be 

used to describe the structure 

and semantics of a web page, 
XML can be used to create 

markup languages for other 
types of data - anything from 

stock reports to medical records. 

The tags in an XML file should 

describe the data they contain. 

As a result, even if you have 
never seen the code to the 

left. you can see that the data 

describes information about 
several events. The <events> 
element contains several 

individual events. Each individual 
event is represented in its own 

<event> element. 

XML works on any platform and 

gained wide popularity in the 
early 2000s because it made it 

easy to transfer data between 
different types of applications. 

It is also a very flexible data 
format because it is capable 

of representing complex data 

structures. 

AJAX&JSON 8 



JSON: JAVASCRIPT 
OBJECT NOTATION 

Data can be formatted using JSON (pronounced "Jason"). 
It looks very similar to object literal syntax, but it is not an object. 

JSON data looks like the object 

literal notation which you met on 
p102; however, it is just plain 

text data (not an object). 

The distinction may sound small 

but remember that HTML is 
just plain text, and the browser 

converts it into DOM objects. 

You cannot transfer the actual 
objects over a network. Rather, 

you send text which is converted 
into objects by the browser. 

"location": "San Francisco, CA" , 
"capacity": 270 , 
11 booking 11

: true 

KEY VALUE 

(in double quotes) 

KEYS 
In JSON, the key should be 

placed in double quotes (not 

single quotes). 

The key (or name) is separated 

from its value by a colon. 

Each key/ value pair is separated 
by a comma. However, note that 

there is no comma after the last 

key/value pair. 

s AJAX&JSON 

VALUES 
The value can be any of the following data types (some of these are 

demonstrated above; others are shown on the right-hand page): 

DATA TYPE DESCRIPTION 

stri ng Text (must be written in quotes) 

number Number 

Boolean Either true or false 

array Array of values - this can also be an array of objects 

object JavaScript object - this can contain child objects or arrays 

null This is when the value is empty or missing 



WORKING W ITH 
JSON DATA 

JavaScript's JSON object can turn JSON data into a JavaScript object. 

It can also convert a JavaScript object into a string. 

"events": [ 

}, 

{ 

}, 

{ 

"location": "San Francisco, CA", 
"date": "May 111

, 

"map": "img/map-ca.png" 

"locat ion": "Austin, TX", 
"date": "May 15", 
"map": "img/map-tx.png" 

"location": "New York, NY", 
"date": "May 30", 
"map": "img/map-ny.png" 

• OBJECT • ARRAY 

An object can also be written on one line, as you can see here: 

"events" : [ 

The object on the left represents 
a series of three events, stored in 
an array called events. The array 
uses square bracket notation, 
and it holds three objects (one 
for each event). 

JSON . stringify() converts 
JavaScript objects into a string, 
formatted using JSON. This 
allows you to send JavaScript 
objects from the browser to 
another application. 

JSON . parse() processes a 
string containing JSON data. It 
converts the JSON data into a 
JavaScript objects ready for the 
browser to use . 

Browser s upport: Chrome 3, 
Firefox 3.1, IE8, and Safari 4 

"location": "San Francisco, CA", "date": "May l", "map": "img/map-ca.png" }, 

"location" : "Austin, TX", "date" : "May 15", "map": "img/map-tx.png" }, 

"location": "New York, NY ", "date": "May 30", "map": "img/ map-ny.png" } 

AJAX&JSON @ 



LOADING HTML 
WITH AJAX 

HTML is the easiest type of data to add into a page using Ajax. 

The browser renders it just like any other HTML. 

The CSS rules for the rest of the page are applied to the new content. 

Below, the example loads data 
about three events using Ajax. 
(The result will look the same for 

the next four examples.) 

THE MAKER BUS 

The bus stops here. 

Ausdr>. Tl( 
May1S 

The page users open does not 
hold the event data (highlighted 

in pink). Ajax is used to load it 

into the page from another file. 

NewYorl<,NY 
May30 

HIGHLIGHTED AREA LOADED USING AJAX 

W hen a server responds to any request, it should send back a status 

message, to indicate if it completed the request. The values can be: 

200 The server has responded and all is ok 
304 Not modified 

404 

500 

Page not found 
Internal error on the server 

If you run the code locally, you will not get a server status property, so 

this check must be commented out, and return true for the condition. 

If a server fails to return a status property, check the server setup. 

8 AJAX&JSON 

Browsers wi ll only let you use 
this technique to load HTML that 

comes from the same domain 
name as the rest of the page. 

Whether HTML, XML, or JSON 

is being returned from the 
server, the process of setting up 

the Ajax request and checking 
whether the file is ready to be 

worked with is the same. What 
changes is how you deal with the 

data that is returned. 

In the example on the right-hand 

page, the code to display the 
new HTML is placed inside a 

conditional statement. 

Please note: These examples do 

not work locally in Chrome. 
They should work locally in 

Firefox and Safari. IE support is 
mixed until IE9. 

Later in the chapter, you will see 

that jQuery offers better cross
browser support for Ajax. 

.. 



1. An XMLHttpRequest object is 

stored in a variable called xhr. 

2. The XMLHttpRequest object's 

open() method prepares the 
request. It has three parameters: 
i) Either HTTP GET or POST to 

specify how to send the request 
ii) The path to the page that will 

handle the request 
iii) Whether or not the request is 

asynchronous (this is a Boolean) 

JAVASCRIPT 

3. Up to this point, the browser 
has not yet contacted the server 

to request the new HTML. 

This does not happen until 
the script gets to the last line 

that calls the XMLHttpRequest 
object's send() method. The 

send() method requires an 
argument to be passed. If there 

is no data to send, you can just 
use null. 

4 . The object's on load event wi ll 

fire when the server responds. It 

triggers an anonymous function. 

5. Inside the function, a 
conditional statement checks 

if the status property of the 
object is 200, indicating the 
server responded successfully. 

If the example is run locally, 

there will be no response so you 
cannot perform this check. 

c08/js/data-html .js 

CD var xhr = new XMLHttpRequest(); II Create XMLHttpRequest object 

~ xhr.onload = function() { II When response has loaded 
II The foll owing conditional check will not work locally - only on a server 

® if(xhr.s t atus === 200) { // If server status was ok 
@) document .getElementByid('content') . innerHTML = xhr. responseText ; //Update 

} 
} ; 

~ xhr .open('GET', 'data/ data.html' , true); 
(]) xhr .send(nul l ); 

II Prepare the request 
II Send the request 

6. Finally, the page is updated: document . get El ementByid ('content'). i nnerHTML = xhr. response Text; 

'--------t@ ~ ©i--~ 

A) The element that will contain 

the new HTML is selected. 
(Here it is an element whose id 

attribute has a value of content.) 

8) The i nnerHTML property 

replaces the content of that 

element with the new HTML that 
has been sent from the server. 

C) The new HTML is retrieved 

from the XMLHttpRequest 
object's responseText property. 

Remember that i nnerHTML should only be used when you know that the server will not return malicious content. 
All content that has been created by users or third parties should be escaped on the server (see p228). 

AJAX& JSON 8 



LOADING XML 
WITH AJAX 

Requesting XML data is very similar to requesting HTML. However, 
processing the data that is returned is more complicated because the 

XML must be converted into HTML to be shown on the page. 

On the right-hand page, you can 2. This is followed by the 4 . Inside the for loop, you 

see that the code to request an declaration of a new variable w ill see the getNodeVa l ue () 

XM L file is almost identical to called events, which holds all of function is called several times. 

the code to request an HTML the <event> elements from the Its purpose is to get the contents 

file shown on the previous page. XML document. (You saw the from each of the XML elements. 

What changes is the part inside XML file on p375.) It takes two parameters: 

the conditional statement that 

processes the response (points 3. The XML file is then i) obj is an XML fragment. 

1- 4 on the right-hand page). The processed using the DOM ii) tag is the name of the tag you 

XML must be turned into HTML. methods you learned about want to collect the information 

The structure of the HTML for in Chapter 5. First, the for from. 

each event is shown below. loop goes through each of the 
<event> elements, collecting The function looks for the 

1. When a server responds with the data stored in their child matching tag within the XML 

XML, it can be obtained using elements, and placing it into new fragment (using the DOM's 

the responseXML property of the HTML elements. getElementsByTagName() 

XMLHttpRequest object. Here, method). It then gets the text 

the XML returned is stored in a Each of those HTML elements is from the first matching element 

variable cal led response. then added into the page. within that fragment. 

The XML for each event is being transformed into the following HTML structure: 

<div class="event"> 

<img src="file.png " alt="Location" /> 
<p><b>Location</ b><br / >Event date</ p> 

</ div> 

9 AJAX&JSON 

.... 

.. 



JAVASCRIPT c08/js/data-xml . js 

var xhr =new XMLHttpRequest(); II Create XMLHttpRequest object 

xhr.onload = function() { II When response has l oaded 
II The fo l lowing conditional check wi l l not work l ocal ly - only on a server 
if (xhr.st atus === 200) { II If server status was ok 

II THIS PART IS DIFFERENT BECAUSE IT IS PROCESSING XML NOT HTML 
G) var response= xhr.responseXML; II Get XML from the server 
~ var events = response.getElementsByTagName('event'); II Find <event> elements 

for (var i = 0; i <events . l ength ; i++) { 
var container, image, location , city, newline; 
container= document.createElement('div ' ); 
container.className = 'event'; 

II Loop through t hem 
II Declare variables 
II Create <div> container 
II Add class attr ibute 

image= document.createElement('i mg'); II Add map image 
image . setAttribute('src', getNodeValue(events[ i] , 'map ' )); 
image.appendChi l d(document.createTextNode(getNodeValue(events[i], 'map'))); 
container.appendChild(image); 

3 location = document .createElement( 'p'); II Add l ocat i on data 
city = document .createElement('b' ) ; 
newl ine= document.createElement('br') ; 
city.appendChi ld(document.createTextNode(getNodeValue(events[i], 'location'))); 
location.appendChi l d(newline); 
location .i nsertBefore(city, newline); 
location.appendChild(document .createTextNode(getNodeValue(event s[i] , 'date'))); 
contai ner.appendChi ld(location); 

document.getEl ementByid('content').appendChild(contai ner); 
} 

~function getNodeValue (obj, tag) { II Gets content 
~}return obj .getElementsByTagName(tag)[O] .fi rstChild.nodeValue; 

from XML 

II THE FINAL PART IS THE SAME AS THE HTML EXAMPLE BUT IT REQUESTS AN XML FILE 
} 

} ; 
xhr.open('GET', 'dataldata.xml ', true); 
xhr.send(null); 

II Prepare the request 
II Send the request 

AJAX& JSON@ 



LOADING JSON 
WITH AJAX 

The request for JSON data uses the same syntax you saw in the requests 

for HTML and XML data. When the server responds, the JSON will be 

converted into HTML. 

When JSON data is sent from 
a server to a web browser, it is 

transmitted as a string. 

When it reaches the browser, 
your script must then convert 

the string into a JavaScript 
object. This is known as 
deserializing an object. 

This is done using the parse () 

method of a built-in object called 

JSON. This is a global object, so 
you can use it without creating 

an instance of it first. 

Once the string has been parsed, 
your script can access the data 
in the object and create HTML 

that can be shown in the page. 

The HTML is added to the page 

using the i nnerHTML property. 
Therefore, it should only be used 

when you are confident that it 
will not contain malicious code 
(see XSS on p228). 

This example will look the same 
as the last two examples when 

you view it in a web browser. 

Here you can see the JSON data that is being processed again ( it was 

introduced on p377). Note how it is saved with the . j son fi le extension. 

c08/data/data.j son 

"events": [ 

The JSON object also has a 
method called st ringify(), 
which converts objects into a 

string using JSON notation so 

it can be sent from the browser 
back to a server. This is also 

known as serializing an object. 

This method can be used when 

the user has interacted with the 
page in a way that has updated 

the data held in the JavaScript 

object (e.g., filling in a form), 

so that it can then update the 
information stored on the server. 

JAVASCRIPT 

"location" : "San Francisco, CA" , "date" : "May l ", "map" : " img/map- ca.png" } , 
"location": "Austin , TX", "date": "May 15", "map" : "img/ map-tx .png" } , 

"location" : "New York, NY", "date" : "May 30", "map" : "img/map-ny.png") 

] 

@ AJAX&JSON 

... 



1. The JSON data from the server 

is stored in a variable called 

responseObject. It is made 

available by the XMLHttpRequest 

object 's responseText property 

When it comes from the server, 

the JSON data is a string, so it 

is converted into a JavaScript 

object using the JSON object's 

parse() method. 

JAVASCRIPT 

2. The newContent variable is 

created to hold the new HTML 

data. It is set to an empty string 

outside the loop so that the code 

in the loop can add to the string. 

3. Loop through the objects that 

represent each event using a for 

loop. The data in the objects are 

accessed using dot notation, just 

like you access other objects. 

Inside the loop, the contents 

of the object are added to the 

newContent variable, along 

w ith their corresponding HTML 

markup. 

4 . When the loop has finished 

running through the event 

objects in responseObj ect, the 

new HTML is added to the page 

using the i nnerHTML property. 

c08/js/data-json.js 

var xhr =new XMLHttpRequest(); //Create XMLHttpRequest object 

xhr.onload =function() { //When readystate changes 
if(xhr.status === 200) { // If server status was ok 

CD responseObject = JSON . parse(xhr. responseText); 

// BUILD UP STRING WITH NEW CONTENT (could also use DOM manipulation) 
G) var newContent = ''; 

3 

for (var i = O; i < responseObject.events . l ength; i++) {//Loop through object 
newContent += '<div class= 11 event 11 >1

; 

newContent += 
newContent += 
newContent += 
newContent += 
newContent += 

' <img src=11
' + responseObject :events[i] .map + 111 

'; 

' alt=" ' + responseObject.events[i] . location + 1 11 / >' ; 
' <p><b>' + responseObject .events[i] .location+ '</b><br>'; 
responseObject.events[i] .date+ '</p>' ; 
'</div>'; 

//Update the page with the new content 
@) document. getElementByid('content ' ).innerHTML newContent ; 

} 
} ; 

xhr.open( 'GET', 'data/data.json' , true); 
xhr .send(null); 

//Prepare the request 
//Send the request 

AJAX&JSON 8 



WORKING WITH DATA 
FROM OTHER SERVERS 

Ajax works smoothly with data from your own server but - for security 

reasons - browsers do not load Ajax responses from other domains 
(known as cross-domain requests). There are three common workarounds. 

A PROXY FILE ON THE 
W EB SERVER 

The first way to load data from 

a remote server is to create a 

file on your server that collects 

the data from the remote server 

(using a server-side language 

such as ASP.net, PHP, NodeJS, or 

Ruby). The other pages on your 

site then request the data from 

the file on your server (which 

in turn gets it from the remote 

server). This is called a proxy, 

because it acts on behal f of the 

other page. 

Because this rel ies upon creating 

pages in server-side languages, it 

is beyond the scope of this book. 

9 AJAX&JSON 

JSONP (JSON WITH 
PADDING) 

JSONP (sometimes written 

JSON-P) involves adding a 

<scr ipt> element into the page, 

which loads the JSON data 

from another server. This works 

because there are no rest rict ions 

on the source of script in a 

<script> element. 

The script contains a call to 

a function, and the JSON-
formatted data is provided as an 

argument to that function. The 

function that is called is defined 

in the page that requests the 

data, and is used to process and 

display the data. See next page. 

ALTERNATIVES 

Many people use jQuery when 

making requests for remote data, 

as it simplifies the process and 

handles backward compat ibility 

for older browsers. As you can 

see in the next column, support 

for new approaches is an Issue. 

CROSS-ORIGIN 
RESOURCE SHARI NG 

Every t ime a browser and 

server communicate, they 

send information to each other 

using HTTP headers. Cross-

Origin Resource Sharing or 

CORS involves adding extra 

information to the HTTP headers 

to let the browser and server 

know that they should be 

communicating with each other. 

CORS is a W 3C speci fication, 

but is only supported by the 

most recent browsers and -

because it requires setting up of 

HTTP headers on the server - is 

beyond the scope of this book. 

CORS SUPPORT 

Standard support is as follows: 

Chrome 4, FF 3.5, IE10, Safari 4 

Android 2.1, iOS 3.2 

IE8+9 used a non-standard 

XDomai nRequest object to 
handle cross-origin requests. 



HOW JSONP WORKS 

First, the page must include a 
function to process the JSON data. 

It then requests the data from the 
server using a <script> element. 

BROWSER 

The HTML page wil l use two pieces of JavaScript: 

1. A function that will process the JSON data that the 

server sends. In the example on the next page, the 
function is called showEvents () . 

2. A <script> element whose src attribute will 
request the JSON data from the remote server. 

<script> 
function showEvents(data) 

// Code to process data and 

// display it in t he page here 

</ script> 

<script sr c="http : //example.or g/jsonp"> 

</ script> 

The server returns a file that calls 
the function that processes the 

data. The JSON data is provided 
as an argument to that function. 

SERVER 

When the server responds, the script contains a 
call to the named function that will process the data 

(that function was defined in step 1). This function 
call is the "padding" in JSONP. The JSON-formatted 

data is sent as an argument to this function. 

So, in this case, the JSON data sits inside the call to 
the showEvents () function. 

showEvents({ 

"events" : [ 

] 
} ) ; 

{ . 

" l ocation " : " San Franc i sco , CA", 

"date": "May 1", 
"map" : 11 i mg/ map- ca . png" 

} ... 

It is important to note that there is no need to use the JSON object's parse() or stri ngi fy () methods when 
working with JSONP. Because the data is being sent as a script file (not as a string), it will be treated as an object. 

The file on the server is often written so that you can specify the name of the function that will process the data 

that is returned. The name of the function is usually given in the query string of a URL: 

http://example.org/upcomingEvents.php?cal l back=showEvents 

AJAX&JSON 8 



USING JSONP 

This example looks the same as 

the JSON example, but the event 

details come from a remote 
server. Therefore, the HTML 
uses two <script> elements. 

c08/data-jsonp.html 

The first <script> element loads 
a JavaScript file that contains the 

the showEvents () function. This 
will be used to display the deals 

information. 

<script src="js/ data-jsonp.js"></ script> 

The second <script> element 

loads the information from a 
remote server. The name of the 
function that processes the data 

is given in the query string. 

""*'' 
<script src="http ://deciphered.com/ js/jsonp .js?callback=showEvents"></script> 

</body> 
</ html> 

c08/js/data-jsonp.js 

function showEvents(data) 
var newContent = ''; 

JAVASCRIPT 

//Callback when JSON loads 
II Variable to hold HTML 

// BUILD UP STRING WITH NEW CONTENT (could also use DOM man ipulation) 
for (var i = O; i <data.events . length; i++) { //Loop through data 

newContent += '<div cl ass="event"> ' ; 
newContent += '<img src="' + data.events[i].map + '"'; 
newContent += 
newContent += 
newContent += 

' alt="' + data .events[i].location + '" />'; 
' <p><b> ' + data .events[i].location + -, </b><br>'; 
data.events[i].date + '</p>'; 

newContent += '</div>'; 

//Update the page with the new content 
document.getElementByid('content') . innerHTML newContent; } 

1. The code in the for loop 
(which is used to process the 

JSON data and create the 
HTML) and the line that writes it 

into the page are the same as the 
code that processed the JSON 

data from the same server. 

8 AJAX&JSON 

There are three key differences: 
i) It is wrapped in a function 

cal led showEvents (). 
ii) The JSON data comes in as an 

argument of the function call. 
iii) The data does not need to be 

parsed with JSON.parse(). In 

the for loop, it is just referred to 
by the parameter name d(!ta. 

Instead of using a second 
<script> element in the HTML 

pages, you can use JavaScript 
to write that <script> element 
into the page (just like you would 

add any other element into the 

page). That would place all the 

functional ity for the external 
data in the one JavaScript file. 



JSONP loads JavaScript, and 

any JavaScript data may contain 

malicious code. For this reason, 

you should load data only from 

trusted sources. 

Since JSONP is loading data from 

a different server, you might add 

timer to check if the server has 

replied within a fixed time (and, 

if not, show an error message). 

You will see more about handling 

errors in Chapter 10, and there is 

an example of a timer in Chapter 

11 (where you create a content 

slider). 

JAVASCRIPT http://htmlandcssbook.com/js/jsonp.j s 

showEvents({ 
"events" : [ 

] 
} ) ; 

l;IJjiHI 

{ 

}, 
{ 

}, 
{ 

"location": "San Francisco, CA", 
"date": "May 1", 
"map": "irng/map-ca.png" 

"location": "Austin, TX", 
"date": "May 15", 
"map": "img/map-tx.png" 

"location" : "New York, NY", 
"date": "May 30", 
"map": "img/map-ny . png" 

The bus stops here. 

\ ~-:.\' ·.· ""'-. -
~ · I ,.., '; 
~ · 

t ;, ' 

San frllndfcO. CA ...,., Austin. TX 
MlylS 

The file that is returned from 

the server wraps the JSON

formatted data inside the call 

to the showEvents () function. 

So the showEvents () function 

is only called when the browser 

has loaded this remote data. 

AJAX&JSON s 



JQUERY & AJAX: 
REQUESTS 

jQuery provides several methods that handle Ajax requests. 

Just like other examples in this chapter, the process involves two steps: 

making a request and handling the response. 

Here you can see the six ways 

jQuery lets you make Ajax 

requests. The first five are all 

shortcuts for the $. aj ax () 

method, which you meet last. 

The • 1 oad () method operates 

on a jQuery selection (like most 

jQuery methods). It loads new 

HTML content into the selected 

element(s). 

You can see that the other five 

methods are written differently. 

They are methods of the global 

jQuery object, which is why 

they start with $. They only 

request data from a server; they 

do not automatically use that 

data to update the elements of 

a matched set, which is why the 

$ symbol is not fo llowed by a 

selector. 

When the server returns data, 

the script needs to indicate what 

to do with it. 

e AJAX&JSON 

METHOD/ SYNTAX DESCRIPTION 

• 1 oad () Loads HTML fragments into an element 

$ .get() 

$.post() 

$.getJSON() 

$. getScri pt() 

$. ajax() 

It is the simplest method for retrieving data 

Loads data using the HTTP GET method 

Used to request data from the server 

Loads data using the HTTP POST method 

Used to send data that updates data on server 

Loads JSON data using a GET request 

Used for JSON data 

Loads and executes JavaScript data using GET 

Used for JavaScript (e.g., JSONP) data 

This method is used to perform all requests 

The above methods all use this under the hood 



JQUERY & AJAX: 
RESPONSES 

When using the • load() method, the HTML returned from the server is 
inserted into a jQuery selection. For the other methods, you specify what 

should be done when the data that is returned using the j qXHR object. 

JQXHR PROPERTIES DESCRIPTION 

response Text 

responseXML 

status 

status Text 

JQXHR METHODS 

.done() 

. fail() 

.al ways() 

. abort() 

RELATIVE URLS 

Text-based data returned 

XML data returned 

Status code 

Status description (typically used to display 
information about an error if one occurs) 

DESCRIPTION 

Code to run if request was successful 

Code to run if request was unsuccessful _ 

Code to run if request succeeded or failed 

Halt the communication 

If the content you load via Ajax 1. This HTML fi le uses Ajax to 

contains relative URLs (e.g., load content from a page in the 
images and links) those URLs folder shown in step 2. 

get treated as if they are relative 2. The page in the this fo lder has 
to the original page that was an image whose path is a relative 

loaded. link to the second fo lder: 

<img src=" img/box .gif" /> 
If the new HTML is in a different 3. The HTML fi le cannot find the 

folder from the original page, the image as the path is no longer 

relative paths could be broken. correct - it is not in a child folder. 

jQuery has an object called 
jqXHR, which makes it easier to 

handle the data that is returned 
from the server. You wil l see its 

properties and methods (shown 

in the tables on the left) used 
over the next few pages. 

Because jQuery lets you 
chain methods, you can use 

the .done(), . fail(}, and 
. al ways() methods to run 

different code depending on the 

outcome of loading the data . 

[i CD 
. 

0 

® 

AJAX&JSON s 



LOADING HTML INTO A 
PAGE WITH JQUERY 

The • 1 oad () method is the simplest of the jQuery Ajax methods. 
It can only be used to load HTML from the server, but when the server 
responds, the HTML is then loaded into the jQuery Selection for you . 

JQUERY SELECTOR 

You start by selecting the 

element that you want the 

HTML code to appear inside. 

URL OF THE PAGE 

Then you use the . 1 oad () 

method to specify the URL of the 

HTML page to load. 

SELECTOR 

You can specify that you want to 

load only part of the page (rather 

than the whole page). 

$( 1 #content 1 ) . load( 1 jq-ajax3 . html #content'); 
~ @ ~ 

1. This creates a jQuery object 

with the element whose id 
attribute has a value of content. 

Here, links in the top right corner 

take the user to other pages. If 

the user has JavaScript enabled, 

when they click on a link, code 

inside the • on () event method 

stops it from loading a whole 

new page. Instead, the . 1 oad () 

method will replace the area 

highlighted in pink (whose i d 
attribute has a value of content) 

with the equivalent area from 

the page that the user just 

requested. Only the pink area is 

refreshed - not the whole page. 

8 AJAX&JSON 

2. This is the URL of the page 

you want to load the HTML from. 

There must be a space between 

the URL and the selector in step 3. 

3. This is the fragment of the 

HTML page to show. Again, it is 

the section whose id at tribute 

has a value of content. 

-·~............. --..---...... ---~ _..,._...,_ 
_......,____ _ _ _,_ ___ _ -------· .... ,,_,,,,,.,. ..... -____ ...........,_ ~--.... 

---

_ _,,...._ ____ _ 
............. __ ...,.., ___ __ 
==:--.:=.:.-. 
--~ ........... __ __ ......_ .... -.. ..--....--·--------------- ..,_,..._ .. ,,...._ _.,.,__ ::-.:n-::4·:": _ "" __ .., ___ . _.... ......... --................ .....,.,.. .. ...... ,.. ........ _....,,______ _.,._ .. ___ _ 
............ - --..-

-- -

__ .,, ... "' ........... ..... .....,,.._,..._ ..... ...... ...., ....... _____ ..., __ 
----...-· ...... ~--....... -.. ...._ _____ _ 



LOADING CONTENT 
When users dick on any of the 
links in the <nav> element, one 

of two things will occur: 

If they have JavaScript enabled, 

a click event will trigger an 

anonymous function that loads 
new content into the page. 

If they do not have JavaScript 

enabled, they will move from 
page to page as normal. 

JAVASCRIPT 

Inside the anonymous function, 
five things happen: 

1. e.preventDefault() stops 

the link taking users to a new 
page. 

2. A variable called url holds the 

URL of the page to load. This is 

collected from the href attribute 
of the link the user clicked on. It 
indicates which page to load. 

$( ' nav a').on('click ' , funct ion(e) { 
CD e.preventOefault(); 
@ var u r 1 = th i s . h ref ; 

@{ $('nav a.current').removeClass( ' current'); 
$(this).addClass('current'); 

3. The cl ass attributes on the 
links are updated to indicate 

which page is the current page. 

4 . The element holding the 

content is removed. 

5. The container element is 

selected and . load () fetches 

new the new content. It is hidden 
straight away using . hi de() so 
that fade In() can fade it in. 

c08/js/jq-load.js 

II User clicks nav link 
II Stop loading new link 
II Get va l ue of href 

II Clear current indicator 
/I New current indicator 

© 
® 

$('#container').remove(); 
$('#content'). load(url + ' 

} ) ; 

II Remove old content 
#content').hide().fadein( 's low '); II New content 

""*'' 
<nav> 

<a href="jq-load.html " class="cur rent">Home</a> 
<a href="jq- load2.html">Route<la> 
<a href="jq-load3.html ">Toys</a> 

</nav> 
<section id="content"> 

<div id="container"> 
<!-- Page content li ves here --> 

</ div> 
</section> 

c08/jq-load.html 

The links still work if JavaScript is not enabled. If JavaScript is enabled, jQuery w ill load content into the <div> 
whose id has a value of content from the target URL. The rest of the page does not need to be reloaded. 

AJAX&JSON@ 



JQUERY'S AJAX 
SHORTHAND METHODS 

jQuery provides four shorthand methods to 

handle specific types of Ajax requests. 

The methods below are all 

shorthand methods. If you 

looked at the source code for 

jQuery, you would see that they 

all use the $.ajax() method. 

You will meet each one over the 

next few pages because they 

introduce key aspects of the 

$. aj ax() method. 

These methods do not work on 

a selection like other jQuery 

methods, which is why you prefix 

them with only the$ symbol 

rather than a jQuery selection. 

They are usually triggered by an 

event, such as the page having 

loaded or the user interacting 

with the page (e.g., clicking on a 

link, or submitting a form). 

METHOD/ SYNTAX DESCRIPTION 

$.get(urZ [, data][, callback][, type]) HTTPGETrequestfordata-

With an Ajax request, you wil l 

often want to send data to the 

server, which will in turn affect 

what the server sends back to 

the browser. 

As with HTML forms (and the 

Ajax requests you met earlier in 

the chapter), you can send the 

data using HTTP GET or POST. 

$ .post (url [, data] [, callback] [, type]) HTTP POST to update data on the server 

$ . getJSON(urZ [, data][, callback] ) Loads JSON data using a GET request 

$.getScript(urZ [, callback] ) Loads and executes JavaScript (e.g., JSONP) using a GET request 

The parameters in square brackets are optional. 

$ shows that this is a method of the jQuery object. 

url specifies where the data is fetched from. 

data provides any extra information to send to the server. 

callback indicates that the function should be called when data is returned (can be named or anonymous). 

type shows the type of data to expect from the server. 

Note: The examples in this section only work on a web server (and not on local fi le systems). Server-side 

languages and server setup are beyond the scope of this book, but you can try out the examples on our website. 

PHP files have been included with the download code, but they are for demonstration purposes only. 

8 AJAX&JSON 



REQUESTING DATA 

Here, users vote for their favorite 
t-shirt without leaving the page. 
1. If users click on a t-shirt an 
anonymous function is triggered. 
2. e.PreventDefault() stops 
the link opening a new page. 
3. The user's choice is the value 
of the id attribute on the image. 
It is stored in a variable called 
queryStri ng in the format of a 
query string, e.g .. vote=gray 

JAVASCRIPT 

4 . The $.get() method is called 
using three parameters: 
i) The page that will handle the 
request (on the same server). 
ii) The data being sent to the 
server (here it is a query string, 
but it could be JSON). 
iii) The function that handles 
the result the server sends back; 
in this case it is an anonymous 
function. 

G) $('#sel ect or a ' ).on('click ', function (e) { 
@ e . preventDef au lt () ; 
~ var queryString = 'vote=' +event . target . id; 
@) $.get('votes.php' , queryString , function(data) 
(ID $(' #selector') . html(data) ; 

} ) ; 
} ) ; 

When the server responds, the 
anonymous callback funct ion 
handles the data. In this case, 
the code in that function selects 
the element that the held the 
t-shirts and replaces it with the 
HTML sent back from the server. 
This is done using jQuery's 
.html() method. 

c08/js/jq-get .j s 

""·'·'' (Thi s HTM~ is created by code inside the JS fi l e.) 

<d i v class="third"><a href="vote.php?vote=gray"> 
<img src="img/ t-gray.png" id="gray" al t ="gray" / ></ a></ div> 

<di v class="th i rd"><a href="vote.php?vote=yellow"> 
<i mg src="img/ t-yell ow. png " i d="ye 11 ow" a lt="ye 11 ow" / ></ a></ div> 

<div class="third"><a href="vote.php?vote=green"> 
<img src="img/t-green.png" id="green" alt="green" / ></ a></ div> 

l;IJilJii The t-shirt links are created 
in the JavaScript file to ensure 
they only show if the browser 
supports JavaScript (the 
resulting HTML structure is 
shown above). When the server 
responds, it does not have to 
send back HTML; it can return 
any kind of data that the browser 
can process and use. 

AJAX& JSON s 



SENDING FORMS 
USING AJAX 

To send data to the server, you are likely to use the . pos t() method. 
jQuery also provides the • seriali ze () method to collect form data. 

SENDING FORM DATA 

The HTTP POST method is often used when sending 

form data to a server and it has a corresponding 

function, the . post() method. It takes the same 

three parameters as the . get() method: 

i) The name of the file on the (same) server that will 

process the data from the form 

ii) The form data that you are sending 

iii) The callback function that will handle the 

response from the server 

On the right-hand page you can see the $.post () 

method used with a method called • seri a 1 i ze (), 

which is very helpful when working with forms. 

Together they send the form data to the server. 

SERVER-SIDE 

When a server-side page handles a form, you might 

want the same page to work whether: 

• It was a normal request for a web page (in which 

case you would send the whole page); or 

• It was an Ajax request (where you might respond 

with just a fragment of the page) 

8 AJAX&JSON 

COLLECTING FORM DATA 

jQuery's • seri a 1 i ze ( ) method: 

• Selects all of the information from the form 

• Puts it into a string ready to send to the server 

• Encodes characters that cannot be used in a 

query string 

Typically it will be used on a selection containing 

a <fonn> element (although it can be used on 

individual elements or a subsection of a form). 

It wi ll only send successful form controls, which 

means it will nol send: 

• Controls that have been disabled 
• Controls where no option has been selected 

• The submit button 

On the server. you can check whether a page is 

being requested by an Ajax call using the 

X-Requested-Wi th header. 

If i t is set and has a value of XMLHttpRequest, you 

know that the request was an Ajax request. 



SUBMITTING FORMS 
1. When users submit the form, 
an anonymous function runs. 

2. e. Preventoef au 1t () stops 
the form from submitting. 

3. The form data is col lected by 
the . seri a 1 i ze () method and 

stored in the details variable. 

JAVASCRIPT 

4. The $.post () method is 
called using all three parameters: 

i) The url of the page that the 

data is being sent to 
ii) The data that was just 

collected from the form 
iii) A callback function that will 

display the results to the user 

5. When the server responds, 
the content of the element 

whose id attribute has a value 
of register is overwritten with 
new HTML sent from the server. 

c08/ js/ jq-post .js 

G) $('#register') .on('submit', function(e) { 
~ e.preventOefault(); 
~ var details = $( ' #register ' ).serial ize(); 

// When form i s submi t t ed 
/ / Prevent it being sent 
// Serial ize form data 

~ $.post('register.php', details, function(data) 
([) $('#register').html(data); 

} ) ; 
} ) ; 

+:HMM 

{ // Use $.post() to send i t 
//Where to di splay result 

c08/ jq-post .html 

<form id="register" action="register.php" method="post"> 
<h2>Register</h2> 
<label for="name">Username</label><input type="text" id="name" name="name" /> 
<label for="pwd"> Password</ label><input type="password" id="pwd" name="pwd" / > 
<l abel for="emai 1">Emai1</ label><input type="email" id="emai 1" name="emai l" / > 
<input type="submit" va l ue="Join" / > 

</ form> 

Register 

-

This example needs to be run 

on a web server. The server-side 
page wil l return a confirmation 

message (but it does not 
validate the data submitted nor 
send a confirmation email). 

AJAX&JSON@ 



LOADING JSON & 
HANDLING AJAX ERRORS 

You can load JSON data using the$. getJSON () method. 
There are also methods that help you deal with the response if it fails. 

LOADING JSON 

If you want to load JSON data, there is a method 
cal led$ . getJSON () which will retrieve JSON from 

the same server that the page is from. To use JSONP 
you should use the method called $. getScri pt (). 

AJAX AND ERRORS 

Occasionally a request for a web page will fail 
and Ajax requests are no exception. Therefore, 

jQuery provides two methods that can trigger code 
depending on whether the request was successful or 

unsuccessful, along with a third method that w ill be 

triggered in both cases (successful or not). 

Below is an example that will demonstrate these 
concepts. It loads fictional exchange rates. 

Exchange Rates 

a UK: 20.00 
US:35.99 

a AU:39.99 

Last update: 15:34 

9 AJAX&JSON 

SUCCESS/ FAILURE 

There are three methods you can chain after 

$ .get(), $.post() , $.getJSON(), and $.ajax() to 

handle success I failure. These methods are: 

.done() - an event method that fires when the 

request has successfully completed 

. fai 1 () - an event method that fires when the 
request did not complete successfully 
. al ways () - an event method that fires when the 

request has completed (whether it was successful or 
not) 

Older scripts may use the • success() , • error(), 
and . comp 1 ete () methods instead of these methods. 

They do the same thing, but these newer methods 
have been the preferred option since jQuery 1.8. 

Exchange Rates 

Sorry, we cannot load rates. 



JSON & ERRORS 

1. In this example, JSON data 

representing currency exchange 

rates is loaded into the page by a 

function called l oadRates (). 

2. On the first line of the script 

an element is added to the page 

to hold the exchange rate data. 

3. The function is called on the 

last line of the script. 

JAVASCRIPT 

4. Inside loadRates(), the 

$.getJSON method tries to load 

some JSON data. There are 

three methods chained after this 

method. They do not all run. 

5 .. done() only runs if the 

data is retrieved successfully. It 

contains an anonymous function 

that shows exchange rates and 

the time they were displayed. 

6 .• fail () only runs if the server 

cannot return the data. Its job is 

to display an error message to 

the user. 

7 .• al ways() will run whether 

or not the answer was returned. 

It adds a refresh button to 

the page, along with an event 

handler that triggers the 

l oadRates () function again. 

c08/js/jq-getJSON.js 

@ $ ( '#exchangerates') . append ('<div id=" rates 11 ></d i v><di v id= "rel oad"></di v> ' ); 

CD function l oadRates () { 
~ $.getJSON('data/rates .json') 
~ .done( function(data){ 

var d =new Date(); 
var hrs= d.getHours(); 
var mins = d.getMinutes(); 
var msg = '<h2>Exchange Rates</h2> ' ; 
$.each(data, function(key, val) { 

msg +='<div class="'+ key+ 111>1 +key +-•: 
} ) ; 

//SERVER RETURNS DATA 
//Create date object 
//Get hours 
//Get mins 
//Start message 
// Add each rate 

' +val + '</div>'; 

msg += '<br>Last update: ' + hrs + ':' + mins + '<br> ' ; // Show update time 
$('#rates').html (msg); //Add rates to page 

@ }).fail( function() { //THERE IS AN ERROR 
$('aside').append( 'Sor ry, we cannot load rates. '); //Show error message 

CZ) }) .always( function() { //ALWAYS RUNS 
var reload"' '<a id="refresh" href="#">' ; //Add refresh link 
reload+= '<img src=" img/refresh .png" alt= "refresh" /></a>' ; 
$( '#reload ' ).html (re load); //Add refresh link 
$('#refresh ' ).on('click ' , function(e ) //Add click handler 

e.preventDefault(); //Stop link 
l oadRates (); // Ca 11 l oadRates () 

} ) ; 
} ) ; 

® l oadRates (); //Call loadRates() 

AJAX&JSON s 



AJAX REQUESTS WITH 
FINE-GRAIN ED CONTROL 

The $. aj ax () method gives you greater control over Ajax requests. 

Behind the scenes, this method is used by all of jQuery's Ajax 

shorthand methods. 

Inside the jQuery file, the$ :ajax () method is used 
by the other Ajax helper methods that you have seen 

so far (which are offered as a simpler way of making 
Ajax requests). 

This method offers greater control over the entire 
process, with over 30 different settings that you 

can use to control the Ajax request. You can see a 
selection of these settings in the table below. These 
settings are provided using object literal notation 

(the object is referred to as the settings object). 

SETTING DESCRIPTION 

The example on the right-hand page looks and works 

like the one that demonstrated the • 1 oad () method 
on p390. But it uses the$. aj ax () method instead. 

• The settings can appear in any order, as long as 
they use valid JavaScript literal notation. 

• The settings that take a function can use a named 
function or an anonymous function written inline. 

• $. aj ax () does not let you load just one part of 
the page so the jQuery . find() method is used 
to select the required part of the page. 

type Can take values GET or POST depending on whether the request is made using HTTP GET or POST 

url The page the request is being sent to 

data The data that is being sent to the server with the request 

success A function that runs if the Ajax request completes successfully (similar to the • done () method) 

error A function that runs if there is an error with the Ajax request (similar to the . fa i 1 () method) 

befor eSend A function (anonymous or named) that is run before the Ajax request starts 

In the example on the right, this is used to trigger a loading icon 

compl ete Runs after success/error events 
In the example on the right, this removes a loading icon 

t i meout The number of milliseconds to wait before the event should fail 

s AJAX&JSON 



CONTROLLING AJAX 

When the user clicks on a link in 
the <nav> element, new content 
is loaded into the page. This is 
very similar to the example on 
p390 for the . load () method, 
but that shorthand method only 
required one line. 

1. Here the click event handler 
triggers the $. aj ax() method. 

JAVASCRIPT 

This example sets seven settings 
for the $.ajax() method. 
The first three are properties, 
the final four are anonymous 
'functions triggered at different 
points in the Ajax request. 

2. This example sets the timeout 
property to wait two seconds for 
the Ajax response. 

CD $('nav a').on( ' click', function(e) { 
e.preventDefault(); 
var url = this.href; 
var $content = $('#content'); 

$('nav a.current').removeClass('current'); 
$(this).addClass('current'); 
$('#container').remove(); 

$. aj ax ( { 
type: "POST", 
url: url, 
timeout: 2000, 
beforeSend: funct i on() 

$content.append('<div id="load">Loading<ldi v>'); 
}, 
compl ete: funct i on() { 

$('#loading').remove(); 
} , 

3. The code also adds elements 
into the page to show that data 
is loading. You may not see them 
appear if the request is handled 
quickly, but you will see them if 
the page is slower to load. 

4 . If the Ajax request fai ls, then 
an error message will be shown 
to the user. 

c08/ js/ jq-aj ax. j s 

II URL to load 
II Cache sel ection 

II Update links 

II Remove content 

II GET or POST 
II Pat h to fi l e 
II Waiting time 
11 Before Ajax 
II Load message 

II Once finished 
II Clear mes sage 

success : function(data) { II Show content 
$content.html( $(data).find( ' #cont ainer') ).hide() . fadeln(400); 

}, 
fail: funct i on() { II Show e r ror msg 

} 
}) ; 

} ) ; 

$(' #panel ' ).html('<div class="loading">Please try again soon.<l div> ' ); 

A JAX&JSON s 



- IGU1! llJ!S 0111.1111 

,_-...... ---~ ... 'Iii'#' 

>n '""'''··~·-- ..... ,-.. ~ ..... ,,~--· 
--....-~-..,.......-' 
~- .............. .WO ____ 

w---...irne-.:1 .... 
~......__:c.~4' .. _, "''"" ..... U~tllO----· ,...,,.,...,,UM~P'O'~\.<~~ ....... _.,...........,_ .. """',.,_ 
( .. -IQ .. 1..Ctl'l<e.>IMll~lllllhr'""'"' 
~·•u~\~nn.uvlt""""•' 
-~111\IOll(~, 

• 



EXAMPLE 
AJAX & JSON 

This example shows information about three 

events. The data used comes from three 

different sources. 

1) When the page loads, event locations are coded 
into the HTML. Users click on an event in the left-hand 
co lumn; it updates the timetable in the middle co lumn. 

In the left column, the links have an id attribute whose value is a two

letter identifier for the state the event is in: 

<a id=" tx " href="tx.html"> ... Austin , TX</a> 

2) The timetables are stored in a JSON object, in an 
external fi le collected when the DOM has loaded. 
When users click on a session in the middle column, its 
description is shown in the right-hand column. 

In the middle column showing timetables, the tit le of each session is 

used inside a link that will show the description for the session. 
<a href="descript i ons.html#Circuit- Hacking"> 

Circuit Hacki ng</ a> 

3) Descriptions of all sessions are stored in one HTML 
file. Individual descriptions are selected using jQuery's 
• 1 oad () method (and the # selector shown on p390). 

In the right column, the session description is taken from an HTML file. 
Each session is stored in an element whose id attribute contains the title 

of the session (with spaces replaced by dashes). 

<div id="Intro- to-30-Modeling"> 

<h3>Intro to 30 Modeling</h3> 
<p>Come learn hm~ to create 30 models of ... </ p> 

</ div> 

Because links are added and removed, event delegation is used. 

AJAX&JSON 8 



EXAMPLE 
AJAX & JSON 

This example uses data from three separate 

sources to demonstrate Ajax techniques. 

In the left-hand column you can 

see three locations for an event. 

These are written into the HTML 

for the timetable page. Each one 

is a link. 

1. Clicking on an event loads the 

session times for that event. 

They are stored in a file cal led 

ex amp 1 e . j son, which is collected 

when the DOM has loaded. 

2. Clicking on a session w ill load 

it s description. They are stored 

in descriptions .ht ml, which is 

loaded when a user clicks on a 

session ti tle. 

/!)~ HOME ROUTE TOYS TIMETABLE 

THE MAKER BUS 

Roll up! Roll up! Ifs the maker bus ... 

• SAHllAHCISCO,CA I 9:00 

CD 
Arduino Antics 

·Mnn~U 
10:00 Brain Hacking 

11:30 Intro to 30 Modeling 

1, NEWYORUl 

1:00 The Printed lunch 

2:00 Droning On 

3:00 Circuit Hacking 

4:30 Make The Future 

8 AJAX&JSON 

Arduino Antics 
Learn how to program and use an 
Arduino! This easy-to-learn open source 
microcontroller board takes all sorts of 
sensor inputs, follows user-generated 
programs, and outputs data and power. 
Ardulnos are commonly used ln 
robotics, mechatronics, and all manners 
of electronics projects around the world . 
Taught by Elsie Denney, professional 
software developer with a long previous 
career as a technical artist in the video 
game industry, electronics enthusiast 
and instructor. 



EXAMPLE 
AJAX & JSON 

W:H,•.11 c08/example . html 

<body> 
<header> 

<hl>THE MAKER BUS</hl> 
<nav> 

<a href="jq-load.html">HOME</a> 
<a href="jq-load2 . html">ROUTE</a> 
<a href="jq-load3.html">TOYS</a> 
<a href="example.html" class="current">TIMETABLE</a> 

</nav> 
</header> 

<section id="content"> 
<div id="container"> 

<div class="third"> 
<div id="event"> 

<a id="ca" href="ca.html"> 
<img src="img/map-ca .png" alt="SF, CA" />San Francisco, CA</a> 

<a id= "tx" href="tx.html"> 
<img src="img/map-tx . png" alt="Austin, TX" />Austin, TX</a> 

<a id="ny" href="ny.html"> 
<img src="img/map-ny.png" alt="New York, NY" />New York, NY</a> 

</div> 
</div> 
<div class="third"> 

<div id="sessions">Select an event from the left</div> 
</div> 
<div class="third"> 

<div id= "details>Detai ls</div> 
</div> 

</div><!-- #container --> 
</section><!-- #content --> 

<script src="js/jquery-1.11.0 .min.js"></scri pt> 
<script src="js/example.js"></script> 

</body> 

Left column: list of the events Here you can see the HTML page. It has a header, 

followed by three columns. Two scripts appear 

before the closing </body> tag. 

Middle column: timetable of the sessions 

Right column: description of the sessions 

AJAX&JSON 8 



EXAMPLE 
AJAX & JSON 

cNN/data/example.json JAVASCRIPT 

"CA": [ 

} ' 
{ 

} ' 
{ 

} ... 

"ti me": "09 .00", 
"title": "Intro to 30 Model ing " 

"time": "10.00", 
"title": "Circuit Hacking" 

"time": "11 .30", 
"title": "Arduino Antics" 

c08/descri ptions.html 

<div id=" Intro-to-30-Modeling"> 
<h3>Intro to 30 Modeling</h3> 
<p>Come learn how to create 30 models of parts you can then make ... </ p> 

</ div> 
<div id="Circuit-Hacking"> 

<h3>Circuit Hacking</h3> 
<p>Head to the Electro-Tent for a free introductory so ldering ... </p> 

</div> 
<div i d="Arduino-Antics"> 

<h3>Arduino Antics</ h3> 
<p>Learn how to program and use an Arduino! This easy-to-learn ... </ p> 

</div> 

""*'' 

When the script is run, the 1oadTimetab1 e () function 

loads the timetables for all three events from a file 

formatted using JSON, stored in example. j son. 

The data is cached in a variable called ti mes. 

Events are identified by a two-letter code for the 

state. You can see a sample of the JSON-formatted 

data above and a sample of the HTML that will be 

created using that data. 

8 AJAX&JSON 

.. 



JAVASCRIPT 

G) $(function() 

var times; 
$.ajax( { 

beforeSend : function(xh r ){ 

EXAMPLE 
AJAX & JSON 

c08/js/example. js 

II When the DOM is ready 

II Declare global variable 
II Setup request 

if (xhr.overrideMimeType) { 
xhr.overrideMimeType("applicat i onl json"); 

II Before requesting data 
II If supported 
II set MIME to prevent errors 

} 
}) ; 

© 
II FUNCTION THAT COLLECTS DATA FROM THE JSON 
function loadTimet able() { 

$.getJSON( 'datal example.json') 

FILE 
II Declare function 
II Try to collect JSON data 
II If successful .done( function(data){ 

times = data; II Store it in a variable 
} ) . fai 1 ( function() { 

$('#event').html ('Sorry! 
} ) ; 

We could not 
II If a problem: show message 

load t he timetable at the moment'); 

(i) loadTimetable(); 

1. The script that does all the work is in example. j s. 

It runs when the DOM has loaded. 

2. The ti mes variable will be used to store the 

session timetables for all of the events. 

3. Before the browser requests the JSON data, 

the script checks if the browser supports the 

overrideMimeType() method. This is used to 

indicate that the response from the server should be 

treated as JSON data. This method can be used in 

case the server is accidentally set up to indicate that 

the data being returned is in any other format. 

II Call the function 

4. Next you can see a function called 

l oadTi met able(), which is used to load the 

timetable data from a f ile called example . json. 

5. If the data loads successfully, the data for the 

timetables w ill be stored in a variable called times. 

6. If it fails to load, an error message will be shown 

to the users. 

7. The l oadTimetab 1 e () function is then called to 

load the data. 

AJAX & JSON 8 . 



EXAMPLE 
AJAX & JSON 

c08/js/example.js JAVASCRIPT 

//CLICK ON THE EVENT TO LOAD A TIMETABLE 
G) $('#content') . on('click', '#event a', function(e) // User cl icks on place 

(]) e.preventDefault{); 
® var loc = this. id . toUpperCase(); 

// Prevent loading page 
//Get value of id attr 

© var newContent = '' ; //To build up timetable 
for (var i = O; i < times[loc] . length; i++) { // loop th rough sessions 

® newContent += '<li><span class="time">' + times[loc][i].time +'</span>'; 
@ newContent += '<a href="descriptions . html#'; 
0 newContent += times[loc][i].title.replace(/ /g , '-') + 111> 1

; 

@ newContent += times[loc][i].tit l e + ' </a></li>'; 

(2) $('#sessions').html('<ul>' + newContent + 1 </ul>') ; //Display t i me 

$('#event a.current') . removeClass( ' current'); 
$(this).addClass('current'); 

//Update selected l i nk 

® $ ( ' #details' ) . text (' ' ) ; 
} ) ; 

1. A jQuery event helper method waits for users 

to click on the name of an event. It w ill load the 
timetable for that event into the middle column. 

2. The preventDefaul t () method prevents the link 

from opening a page (because it is w ill show the 
AJAX data instead). 

3. A variable called l oc is created to hold the name 

of the event location. It is collected from the id 
attribute of the link that was clicked. 

4. The HTML for the timetables will be stored in a 
variable cal led newContent. It is set to a blank string. 

5. Each session is stored inside an <l i> element, 

which starts by displaying the time of the session. 

8 AJAX&JSON 

//Clear third column 

6. A link is added to the timetable, which will be 

used to load the description. The link points to the 
descriptions . html file. It is followed by a# symbol 
so it links to the correct part of the page. 

7. The session title is added after the I symbol. 

The • rep 1 ace () method replaces spaces in the title 

with a dash to match the value of the id attribute in 

the descriptions. html file for each session. 

8. Inside the link you can see the title of the session. 

9. The new content is added into the middle column. 

10. The cl ass attributes on the event links are 
updated to shows which event is the current event. 

11. The third column is emptied if it had content. 

" 

.. 



EXAMPLE 

JAVASCRIPT 

CD 
@ 
® 

@ 
® 

7 

II CLICK ON A SESSION TO LOAD THE DESCRIPTION 
$(' #content') .on('click', '#sessions li a' , function(e) 

e.preventDefault(); 
var f ragment = this.href; 

fragment= fragment.replace('#', ' #'); 
$( ' #details').load(fragment); 

$('#sessions a.current').removeClass('current '); 
$(this).addClass('current'); 

} ) ; 

II CLICK ON PRIMARY NAVIGATION 
$('nav a').on( ' click', function(e) 

e.preventDefault(); 
var url = this.href; 

$('nav a . current ').removeCl ass('current' ); 
$(this).addClass('current'); 

AJAX & JSON 

c08/js/example.js 

( II Click on session 
II Prevent loading 
II Title is in href 

II Add space after# 
II To l oad info 

II Updat e selected 

II Cli ck on nav 
II Prevent loadi ng 
II Get URL to load 

II Update nav 

$('#container').remove() ; 
$(' #content'). load(url + ' 

} ) ; 

II Remove old 
#container') .hide().fadeln('slow'); II Add new 

} ) ; 

1. Another jQuery event helper method is set up 
to respond when a user clicks on a session in the 
middle column. It loads a description of the session. 

2. preventoefaul t () stops the link opening. 

3. A variable called fragment is created to hold the 
link to the session. This is collected from the href 
attribute of the link that was clicked. 

4. A space is added before the # symbol so that it is 
the correct format for the jQuery 1 oad () method to 
collect part (not all) of the HTML page, e.g., 
description.html #Arduino-Antics 

5. A jQuery selector is used to find the element 
whose id attribute has a value of deta i 1 s in the third 
column. The . 1 oad () method is then used to load 
the session description into that element. 

6. The links are updated so that they highlight the 
appropriate session in the middle column. 

7. The main navigation is set up as shown on p391. 

AJAX&JSON 8 



Ajax refers to a group of technologies that allow you to 

update just one part of the page (rather than reload a 

whole page). 

You can incorporate HTML, XML, or JSON data into 

your pages. (JSON is becoming increasingly popular.) 

To load JSON from a different domain, you can use 

JSONP but only if the code is from a trusted source. 

jQuery has methods that make it easier to use Ajax . 

. load() is the simplest way to load HTML into your 

pages and allows you to update just a part of the page . 

. aj ax () is more powerful and more complex. (Several 

shorthand methods are also offered.) 

It is important to consider how the site will work if the 

user does not have JavaScript enabled, or if the page is 

not able to access the data from a server. 





@APIS 

User interfaces allow humans to interact with programs. 
Application Programming Interfaces (APls) let programs 
(including scripts) talk to each other. 

Browsers, scripts, websites, and other applications frequently open up some of their 

funct ionality so that programmers can interact with them. For example: 

BROWSERS SCRIPTS PLATFORMS 

The DOM is an APL lt allows jQuery is a JavaScript file Sites such as Facebook, 
scripts to access and update with an APL It allows you to Google, and Twitter open up 

the contents of a web page select elements, then use their platforms so that you . 
while loaded in the browser. its methods to work with can access and update data 

ln this chapter you will meet those elements. lt is just one they store (via websites and 

some HTMLS JavaScript of many scripts that let you apps). In this chapter you 
APls that provide access to to perform powerful tasks see how Google lets you to 
other browser features. using their code. add their maps to your sites. 

You do not need to know how the other script or program achieves its task; you only need 
to know what it does. how to ask it to do something, and how to understand its replies. 

Therefore, this chapter will familiarize you with the form in which APls are described. 

.. 

.., 
I 

1 

j 

I 
~ 

' ' I 

I ,, , 

r . 

l .. 



I 

~ ~ '1 ~I 
- O;>: 

- I 



PLAYING NICELY 
WITH OTHERS 

You do not always need to know how a script or program works, as long 

you know how to ask it to do something, and how to process its response. 

The questions you can ask and the format of the answers form the API. 

WHAT THE API CAN DO 

If there is a script or program 

that offers functionality you 

need, consider using it rather 

than writing something from 

scratch. 

Because each script, program, or 

platform has different features, 

the first thing you need to do is 

understand what the API allows 

you to do. For example: 

• The DOM and jQuery APls 

allow you to access and 

update a web page that is 

loaded in the browser and 

respond to events. 

• Facebook, Google+, and 

Twitter APls let you to access 

and update profiles and 

create status updates on their 

platforms. 

When you know what the API 

allows you to do, you can decide 

if it is the right tool for the job. 

@APIS 

HOW TO ACCESS IT 

Next you need to know how to 

access the functionality of the 

API in order to use it. 

The DOM's functionality is built 

into the JavaScript interpreter in 

the browser. 

With jQuery you need to include 

the jQuery script from your 

server or a CDN in your pages. 

Facebook, Google+, Twitter, and 

other sites provide various ways 

to access the functionality of 

their platforms using APls. 

THE SYNTAX 

Finally, you need to learn how to 

ask the API to do something and 

the format in which you should 

expect any replies. 

As long as you know how to 

call a function, create an object, 

and access the properties and 

methods of an object, you wi ll be 

able to use any JavaScript API. 

This chapter introduces you to 

a range of APls so you gain the 

confidence to learn more about 

them and other APls. 

l 



HTML5 JAVASCRIPT APIS 

First, we wil l look at some of the new HTMLS APls. 

Along with the markup in the HTMLS specification, a set of APls define 
that describe how to interact with features of web browsers. 

WHY HTMLS HAS APIS WHAT THEY COVER WHAT YOU'LL LEARN 

As technologies evolve, so does Each of the HTMLS APls focuses There is not space for an 
the browsing experience. For on one or more objects that exhaustive reference of each of 
example, smartphones may browsers implement to deliver the HTMLS APls (there have 
have smaller screens and less specific functionality. been whole books dedicated to 
power than the latest desktop these new HTMLS features). 
computers; but they include For example, the geolocation API But you will meet three of the 
features that are rarely found describes a geo 1 ocat ion object APls and see examples of how to 
on desktop machines such as that lets you ask users for their work w ith them. 
accelerometers and GPS. location and two objects that 

handle the browsers response. This should get you used to using 
The HTMLS specification has the HTMLS APls so that you can 
not only added new markup, There are also APls that offer then go on and learn more about 
but also includes a new set of improvements over existing them as you need them. You will 
JavaScript APls that standardize functionality. For example, the also learn how you can test to 
how you can make use of these web storage API lets you store see whether or not a browser 
new features in any device that information within the browser supports the functionality in any 
implements them. without relying on cookies. of the APls. 

API DESCRIPTION 

geolocat i on How to tell where the user is located p418 

1oca1 Storage Store information in the browser (even when user closes tab/window) p420 

sess i onStorage Store information in the browser while a tab/window is open 

history How to access items from the browser's history p424 

APIS 8 



FEATURE DETECTION 

When you write code that uses the HTMLS APls (or any other new 
feature in a web browser), you may need to check if the browser supports 

that feature before your code tries to use it. 

The HTMLS APls describe objects that browsers use 
to implement new functionality. For example, you 

are about to meet an object called the geo location 
object that is used to determine a user's location. 
However, this object is only supported in modern 

browsers, so you need to check whether a browser 

supports this it before trying to use the object. 

' I 
Is 

navigator.geolocation 
supported? ' I Run statements that do 

not use geolocation 
Run statements that 

use geolocation 

You may not be surprised to hear that there are 

some cross-browser issues with feature detection. 

For example, in the case of the code above, there 
was a bug in IE9 which could result in a memory leak 

when you check for the geo location object. This 

could slow down your pages. 

8 APIS 

It is possible to check whether a browser supports 

an object using a conditional statement. 

If the browser supports the object, then the 

condition wil l return a truthy value and the first set 

of statements are run. If it is not implemented, the 
second set of statements is run. 

if (navigator .geolocation) { 

II ReturRs truthy so it is supported 
II Run statements in this code block 

} else { 

II Not supported I turned off 
II Or user rejected request 

Luckily, there is a library called Modernizr, which 

takes away the hassles of cross-browser issues (l ike 
jQuery for feature detection). It is a better way to 

check if the browser supports recent features. 
The script is regularly updated and refined to deal 

with cross-browser issues as they are discovered, so 

they are less likely to affect you. 



MODERNIZR 

Modernizr is a script you can use in your pages to tell whether the 

browser supports features of HTML, CSS, and JavaScript. 

It will be used in the coming HTMLS API examples. 

HOW TO GET MODERNIZR 

First, you need to download the script from the 
Modernizr.com website, where you wil l see: 

• A development version of the script. 
It is uncompressed and features every check that 

the script is capable of performing. 
• A tool (see screenshot below) that lets you select 

which features you want to test for. 

You can then download a custom version of the 
script that only contains the checks you need. 
On a live site, you should not test for features that 

you do not use as it would slow your site down. 

In our examples, Modernizr is used near the end 
of the page just before the script that uses it. But 

you may see Modernizr included in the <head> of 
an HTML page (if the content of the page is uses 

features that you are testing for). 

HOW MODERNIZR WORKS 

When you include the Modernizr script in your page, 

it adds an object called Moderni zr, which tests 
whether the browser supports the features that you 

specified that it should test for. Each fea ture you 

want it to test becomes a property of the Moderni zr 
object. Their values are a Boolean (true or false) 

that tell you if a feature is supported. 

You can use Modernizr as a condition like this: 
If Moderni zr's geo l ocation property returns true 
run the code in the curly braces: 

if (Modernizr .geolocation) { 

II Geolocation is supported 

MODERNIZR PROPERTIES 

In the screenshot on the left, you can see some of 

the features that Modernizr can check for. To see a 
full list of Moderni zr's properties, visit: 

modernizr.github.io/Modernizr/test/index.html 

APIS @ 



GEOLOCATION API: 
FINDING USERS' 
LOCATIONS 

An increasing number of sites offer extra functionality to users who 
disclose their location. The users' location can be requested using the 

geolocation API. 

WHAT THE GEOLOCATION API DOES 

Browsers that implement the geolocation API 

let users share their location with websites. The 

location data is provided in the form of longitude 

and latitude points. There are several ways for 

the browser to determine its location, including 

using data from its IP address, wireless network 

connection, cell towers, or GPS hardware. 

In some devices, the geolocation API can give you 

more data along with longitude and latitude. But, we 

focus on these features because they have the most 

support. Having seen how to use them, if you need 

to work with the other features, you will be able to. 

CHROME ON MAC 

HOW TO ACCESS GEOLOCATION 

The geolocation API is available by default in any 

browser that supports it (just like the DOM is). 

It was first supported in IE9, Firefox 3.5, Safari 5, 

Chrome 5, Opera 10.6, iOS3, and Android 2. 

Browsers that support geolocation allow users to 

turn the feature on and off. If it is on, the browser 

will ask users if they want to share data for each 

individual web site that requests that information. 

The way in which the browser asks the user if they 

will share location data differs from one browser to 

the next and one device to the next. 

®' javascriptbook.com wants to use your computer's location. Learn more 

8 APIS 

"http://javascriptbook.com" 
Would Like To Use Your 

Current Location 

Don't Allow OK 

105 ON I PHONE 

Would you like to share your location with 
javascriptbook.com7 

Learn More ... 

j Shire Location I • I 

x 

FIREFOX ON PC 



REQUESTING A USER'S LOCATION 

0 

' 
Is 

' 
navigator.geolocation 

supported? 

e I I e 
Run statements that do 

not use geolocation 
Call method: 

navigator.geolocation 
.getCurrentPosi tion() 

The geolocation API relies on an object cal led 
geo 1 ocat ion. If you want to try and make use of the 

user's location, first you need to check if the browser 
supports this object. This example wil l use the 

Modernizr script is used to perform this check. 

1. A conditional statement is used to check whether 

the browser supports geolocation. 

2. If geolocation is supported, the browser returns a 
truthy value and the first set of statements run. They 
request the user's location using the geo 1 ocat ion 

object's getCurrentPosi ti on() method. 

3. If geolocation is not supported, then a second set 

of statements is run. 

i f {Moder nizr . geolocati on) 
II Returns truthy so it is supported 

II Run statements i n this code block 

else { 

II Not supported I turned off 
II Or user rejected request 

PROCESSING THE RESPONSE 

When the browser responds, 
t here are t wo possible outcomes: 

getCurrentPosition() 
did not get a location 

• I 

Call funct ion: 
fai 1 () 

Returns object: 
PositionError 

getCurrentPosition() 
got a location 

• I 

Call function: 
success() 

Returns objects: 
Position and 

Position.coords 

Once you call the getCurrentPos i t ion () method, 

the code cont inues onto the next line because it is 
an asynchronous request ( like the Ajax cal ls in the 

last chapter). The request is asynchronous because 
the browser wi ll take a while to determine the user's 

location (and you do not want the rest of the page to 

stop loading while the browser works out where the 
user is). Therefore, the method has two parameters: 

getCur rentPositi on{success, f ail ) 

success is the name of a function to call if the 
longitude and latitude are successfully returned. This 

method will automatically be passed an object cal led 

position, which holds the user's location. 

fail is the name of a function cal led if the details 
cannot be obtained. This method will automatically 
be passed an object called Position Error 

containing details about the error. 

So in all, there are three new objects you need 

to use in order to work with the geolocation API: 

geolocation, position, and PositionError. 
Their syntax is shown on the next page. 

APIS e 



THE GEOLOCATION API 

There are three objects involved in adding geolocation to your web page. 
The tables demonstrate how API documentation typically describes the 
objects, properties, and the methods you can use. 

geolocation OBJECT 

The geo 1 ocati on object is used to request location data. It is a child of the navigator object. 

METHOD RETURNS 

getCurrentPos it i on (success , fail) Requests the position of the user and, if the user permits, returns the 

user's latitude I longitude plus other location information 

Position OBJECT 

success is the name of a function to call if coordinates are retrieved 

fail is the name of a function to call if coordinates are not returned 

If a user's location is found, a Position object is sent to the callback function. It has a child object called coords 
whose properties hold the user's location. If a device supports geo 1 ocati on, it must provide a minimum amount 

of data (see the required column); other properties are optional (they may depend on the device's capabilities). 

PROPERTY RETURNS REQUIRED 

Position.coords . latitude Latitude in decimal degrees Yes 

Position.coords . longitude Longitude in decimal degrees Yes 

Position . coords.accuracy Accuracy of latitude and longitude in meters Yes 

Position.coords.altitude Meters above sea level Yes (value can be nu 11) 

Position. coords. a 1 ti tudeAccuracy Accuracy of altitude in meters Yes (value can be nu 11) 

Position .coords.heading Degrees clockwise from north No (up to device) 

Position.coords.speed Speed traveling in meters per second No Cup to device) 

Position.coords.timestamp Time since created (formatted as Date object) No (up to device) 

PositionError OBJECT 

If location is not determined, the callback function is passed the Position Error object. 

PROPERTY RETURNS REQUIRED 

PositionError.code An error number with the following values: Yes 

1 Permission denied 2 Unavailable 3 Timeout 

PositionError.message A message (not intended for the end user) Yes 

e APIS 

, 



WORKING WITH LOCATION 

1. In this example, Modernizr checks if geolocation is 
supported by the browser and enabled by the user. 
2. When getCurrentPos i t ion() is called, the user 
will be asked for permission to share their location. 
3. If the location is gained, the user's latitude and 
longitude are written into the page. 

4 . If it is not supported, then the user will see a 
message that shows their location could not be 
found. 
5. If the location is not gained (for any reason), again 
the message will say that a location cannot be found. 
The error code is logged to the browser console. 

JAVASCRIPT 

var elMap = document.getElementByld( ' loc'); 
var msg = 'Sorry, we were unable to get your l ocation. ' ; 

CD i f (Modernizr.geolocation) { 
@:) navigator .geolocation.getCurrentPosition(success, fail); 

elMap.textContent ' Checking location ... ' ; 
else { 

@) elMap . textContent msg; 

function success(position) { 
msg = '<h3>Longitude:<br>'; 
msg += position.coords.lat i tude + '<lh3>'; 

3 msg += '<h3>Latitude:<br>'; 
msg += position .coords.longitude + ' <lh3>'; 
el Map.innerHTML = msg; 

function fail (msg) { 
elMap . textContent = msg; 

} console.log(msg.code); 

<script src="jslgeolocation.js"><lscript> 

c09/ js/geolocat ion.js 

II HTML element 
II No loca ti on msg 

II Is geo supported 
II Ask for locat ion 
II Say checking . . . 
II Not supported 
II Add manual entry 

II Got location 
II Create message 
II Add latitude 
II Creat e message 
II Add l ongitude 
II Show location 

II Not got location 
II Show text input 
II Log the error 

c09/geolocation.html 

If you are unable to see a result on a desktop browser, try the example on a smart phone. 
You can try all examples directly from the website for the book, http://www.javascriptbook.com/. 
To support older browsers, search fo r a script called geoPos it ion . j s 

APIS 8 



WEB STORAGE API: 
STORING DATA IN 
BROWSERS 

Web storage (or HTMLS storage) lets you store data in the browser. 
There are two different types of storage: local and session storage. 

HOW TO ACCESS THE STORAGE API 

Before HTMLS, cookies were the main mechanism 

for storing information in the browser. But cookies 

have several limitations, most notably they are: 

• Not able to hold much data. 

• Sent to the server every time you request a page 

from that domain. 

• Not considered secure. 

Therefore, HTMLS introduced a storage object. 

There are two different flavors of the storage object, 

1oca1 Storage and sess i onStorage. Both use the 

same methods and properties. The differences are 

how long the data is stored for and whether all tabs 

can access the data that is being stored. 

STORAGE LOCAL SESSION 

Is the data stored when you ~ 0 
close a window/tab? 

Can all open windows/tabs 
access the data? 0 

Commonly, browsers store SMB of data per domain 

in a storage object. If a site tries to store more than 

Smb of data, the browser will usually ask the user 

whether they want to allow this site to store more 

information (never rely on users agreeing to give a 

site more space). 

8 APIS 

The data is stored as properties of the storage 

objects (using in key/value pairs). The value in the 

pair is always a string. To protect the information that 

a website stores in these storage objects, browsers 

employ a same origin policy, which means data can 

only be accessed by other pages in the same domain. 

http://www.google .com: 80 
L\I)--J@ ~© 

These four parts.of the URL must match: 

1. Protocol: The protocol must be a match. If data 

was stored by a page that starts http, the storage 

object cannot be accessed via https. 

2. Subdomain: The subdomain name must match. 

For example, maps . googl e. com cannot access 

data stored by www. goog 1 e. com. 

3. Domain: The domain name must match. 

For example, googl e. com cannot access local 

storage from facebook. com. 

4 . Port: The port number must match. Web servers 

can have many ports. Usually a port number is not 

specified in a URL, and the site uses port 80 for 

web pages, but the port number can be changed. 

The storage objects are just one of the new HTMLS 

APls for storing data. Others include access to the 

file system (through the FileSystem API) and client 

side databases such as the Web SQL database. 



HOW TO ACCESS THE STORAGE API 

Both of these objects are implemented on the 
window object, so you do not need to prefix the 
method names with any other object name. 

To save an item into the storage object, you use the 
setltem() method, which takes two parameters: the 
name of the key and the value associated with it. 

To retrieve a value from the storage object you use 
the get Item() method, passing it the key. 

II Store information 
1oca1 Storage. set Item ('age' , '12') ; 
local Storage. setltem(' col or ' , 'blue'); 
II Access information and store in variable 
var age = localStorage.getltem('age'); 
var color= localStorage .get!tem('color'); 
II Number of items stored 
var items= localStorage.length; 

Data for the storage objects is stored and accessed 
in a synchronous manner: all other processing 
stops while the script accesses or saves the data. 
Therefore, if a lot of data is regularly accessed or 
stored, the site can appear slower to use. 

METHOD DESCRIPTION 

setltem(key, value) Creates a new key/value pair 

You can also set and retrieve keys and values of the 
storage objects as you might with other objects 
using dot notation. 

The storage objects are commonly used to store 
JSON-formatted data. The JSON object's: 
• parse() method is used to turn the JSON

formatted data into a JavaScript object 
• stri ngify() method is used to transform 

objects into JSON-formatted strings 

II Store information (object notation) 
local Storage. age 12; 
localStorage.color = 'blue ' ; 
II Access information (object notation) 
var age = localStorage.age; 
var color = localStorage.color; 
II Number of items stored 
var items= loca lStorage.length; 

Below, you can see a table that shows the methods 
and property of the storage objects. This table is 
very similar to the one you saw for the geolocation 
API and is indicative of the types of tables you see in 
documentation for APls. 

get Item( key) Gets the value for the specified key 

remove Item(key) Removes the key/value pair for the specified key 

clear() Clears all information from that storage object 

PROPERTY DESCRIPTION 

length Number of keys 

A PIS @ 



LOCAL STORAGE 

The examples on this page and the right-hand page 

store what the user enters into text boxes, but both 
examples store it for different lengths of time. 

3 . The script checks to see if the storage object 

has a value for either of these elements using 

1. A conditional statement is used to check if the 

browser supports the relevant storage APL 

the get I tern() method. If so, it is written into the 
appropriate input by updating its va 1 ue property. 

4. Each time an input event fires on one of 

the inputs, the form will save the data to the 
1oca1 Storage or sess i onStorage object. It will 

automatically be shown if you refresh the page. 

2. References to the inputs for the username and 

answer are stored in variables. 

c09/js/local-storage.js JAVASCRIPT 

G) if (window.localstorage) 

4 

var txtUsername = document .getElementByid('username');// Get form elements 
var txtAnswer = document.getElementByld('answer'); 

txtUsername.value = localStorage .getitem('username'); //Elements populated 
txtAnswer .value = localStorage.getitem( 'answer ' ) ; // by localStorage data 

txtUsername.addEventlistener('input', function () { // Data saved 
localStorage.setitem('username ' , txtUsername .value); 

}, false); 

txtAnswer.addEventListener('input', function () { 
localStorage.setltem('answer', txtAnswer.val ue); 

} , false); 

// Data saved 

c09/local-storage.html (The only difference in session-storage.html is the link to the script.) 11111$1111 

<div class="two-thirds"> 
<form i d="appl i cation" action="apply.php"> 

<label for="username">Name</label> 
<input type="text" id="username" name="username" / ><br> 
<label for="answer">Answer</label> 
<textarea id="answer" name="answer"></textarea> 
<input type="submit" /> 

</ form> 
</ div> 
<script src="js/local -storage.js"></script> 

8 APIS 

.. 



SESSION STORAGE 

sess i onStorage is more suited to information that: 1oca1 Storage is best suited to information that: 

• Changes frequently (each time t he user visit s 

the site - such as whether they are logged in or 

location data). 

• Only changes at set intervals (such as timetables 

I price lists), which can be helpful to store offline. 

• Is personal and should not be viewed by other 

users of the device. 

• The user might want to come back and use again 

(such as saving preferences I settings). 

JAVASCRI PT c09/ js/ session-storage.js 

G) if (window.sessionstorage) { 

var txtUsername = document.getElementBy!d('username ' ); II Get form element s 
var txtAnswer = document.getElementByld('answer'); 

txtUsername.value = sessionStorage .getltem('username ' ); II Elements popul ated 

4 

txtAnswer.value = sessionStorage.getltem('answer'); II by sessionSt orage 

txtUsername.addEventl ist ener('input ' , function () { II Save data 
sess i onStorage.setltem('username', txtUsername. val ue); 

}, false) ; 

txtAnswer.addEventlistener('input', function () { 
sessionStorage.set!tem('answer', txtAnswer.value); 

}, false); 

II Save da t a 

i;jJiiJil 

What would you like to make? 

Name 

Answer 

11!1M 

APIS @ 



HISTORY API 
& PUSHSTATE 

If you move from one page to another, the browser's history remembers 

which pages you visited. But Ajax applications do not load new pages, 
so they can use the hi story API to update the location bar and history. 

WHAT THE HISTORY API DOES 

Each tab or window in the browser keeps its own 

history of pages you have viewed. When you visit a 

new page in that tab or window, the URL is added to 
the list of pages you have visited in the history. 

Because of this, you can use the back and forward 

buttons in a browser to move between pages you 
have visited in that tab or w indow. However, on sites 

that use Ajax to load information, the URL is not 
automatically updated (and the back button might 
not show the last thing that the user was viewing). 

FIRST LINK: SECOND LINK: 

one.html two.html 

ONE TWO THREE O NE TWO THREE 

HTMLS's history API can help fix this problem. It lets 

you interact with the browser's hi story object: 

• You can update the browser history stack using 

the pushState () and r ep l aceState () methods. 

• Extra information can be stored with each item. 

As you will see, information can be added to the 
history object when an Ajax request is made, and 

the user can be shown the right content when they 

press back or forward buttons. 

THIRD LINK: 

three.html 

O NE TWO THREE 

BACK BUTTON: 

0 two.html 

ONE TWO THREE 

The first page you visit is 

added to history stack 

Click a link: that page goes Click a link: that page goes Pressing back takes you 

to the top of history stack to the top of history stack down the history stack 

one.html 

Browsing pages: 

two.html 

one.html 

As you browse, the URL in your web browser's 

address bar updates. The page is also added to the 

top of something called the history stack. 

9 APIS 

three.html 

two.html 

one.html 

three.html 

two.html 

one . html 

Pressing back: takes you back down the stack 

Pressing forward: takes you up the stack (where possible) 

New page: if you request a new page, it will replace 
anything above the current page in the stack 



State refers to the condition that something is in at a particular time. The browser history is like a pile (or stack) 

of states, one on top of the other. The three methods on this page allow you to manipulate the state in browsers. 

ADDING INFORMATION TO THE HISTORY OBJECT 

pushState() adds an entry to the hi story object. 

replace State () updates. the current entry. 
Both take the same three parameters (below), each 

of which updates the hi story object. 

Because the hi story object is a child of the window 
object, you can use its name directly in the script; 

you can write hi story. pushState () , you do not 

need to write wi ndow. hi story. pushState (). 

history.pushState(state , title , url ); 
L .... G} .... ! L ..... ~}- .. ! '·®·' 

1. The hi story object can store 

information wi th each item in 

the history. This is provided in 
the state parameter and can be 
retrieved when you go back to 

that page. 

2. Currently unused by most 
browsers, the title parameter 

is intended to change the title 
of the page. (You can specify a 

string for this value, ready for 
when browsers support it.) 

3. The URL that you want the 
browser to show for this page. 

It must be on the same origin as 

the current URL and it should 
show the correct content if the 
user goes back to that URL. 

GETTING INFORMATION FROM THE HISTORY OBJECT 

Adding content to the browser history is only 

part of the solution; the other half is loading the 
right content when the user presses the back or 
forward buttons. To help show the right content, the 

onpopstate event fires whenever the user requests 

a new page. 

This onpopstate event is used to trigger a function 

that will load the appropriate content into the page. 
There are two ways to determine what content 

should be loaded into the page: 

• The location object (which represents the 
browser's location bar) 

• The state information in the hi story object 

The 1 ocat ion object: 

If the user presses back or forward, the address bar 
will update itself, so you can get the URL for the page 
that should be loaded using 1 ocat ion. pathname 

(the 1 ocati on object is a child of the window object 

and its pathname property is the current URL). This 
works well when you are updating an entire page. 

The state: 
Because the first parameter of the pushState () 
method stores data with the hi story object for 

that page, you can use it to store JSON-formatted 
data. That data can then be loaded directly into the 

page. (This is used when the new content loads data 

rather than a traditional web page.) 

APIS@ 



THE HISTORY OBJECT 

The HTMLS history API describes the functionality of the hi story object 
in modern web browsers. It lets you access and update the browser 
history (but only for pages the user visited on your site). 

Even if the visitor is not taken to a new page in the browser window (for example, when only a part of the page 
is updated using Ajax), you can modify the hi story object to ensure that the back and forward buttons work as 

the user would expect them to on non-Ajax pages. 

Again, the table below is indicative of the kind you might see in API documentation. As you become comfortable 

using the methods, properties, and events of an object you will find it easier to work with all kinds of APls. 

hi story OBJECT 

METHOD 

history .back() 

history.forward() 

hi story .go() 

history.pushState() 

DESCRIPTION 

Takes you back in the history, like the browser's back button 

Takes you forward in the history, like the browser's forward button 

Takes you to a specific page in the history. It is an index number, starting at 0 . 

• go(l) is like clicking the forward button and . go (-1) is like clicking back 

Adds an item to the history stack 
(Clicking on a relative link in a page usually triggers a hashchange event, rather than 

1 oad, but no event fires if you use pushState () and the url contains a hash) 

history. rep 1 aceState () Does the same as pus hState () except it modifies the current history entry 

PROPERTY DESCRIPTION 

length Tells you how many items are in the hi story object 

EVENT DESCRIPTION 

window .onpopstate Used to handle the user moving backwards or forwards 

8 APIS 



WORKING WITH HISTORY 

1. The l oadContent () function uses jQuery's . load() 
method (see p390) to load content into the page. 
2. If a link is clicked on, an anonymous function runs. 
3. The page to load is held in a variable called href. 

JAVASCRIPT 

$(function() { 

4. The current links are updated. 
5. The l oadContent () function is called (see step 1). 
6. The pushState() method of the hi story object 
updates the history stack. 

c09/js/history.js 

//DOM has loaded 
~ function loadContent(url){ 
~ $( ' #content').load(url + ' 

// Load new content into page 
#container ').hide{).fadeln('slow'); 

@ 

® 

@{ 
® 
© 

(j) 
® 
® 

@{ 

$( ' nav a').on('click ' , funct ion(e) II Click handler 
e.preventOefault(); II Stop link loading new page 
var href = this.href; II Get href attri bute of link 
var $this = $(th i s); II Store l ink in jQuery object 
$('a') . removeClass('current'); II Remove current from links 
$this.addClass('current'); II Update current link 
loadContent(href); II Ca 11 function : loads content 
history.pushState(' ', $this.text, href); II Update history 

} ) ; 

window.onpopstate = function() { //Handle back/forward buttons 

} ; 
} ) ; 

var path= location.pathname; //Get the fi le path 
loadContent{path); 11 Call function to l oad page 
var page= path.substring(location.pathname.lastindexOf("/") + 1); 
$('a').removeClass('current'); //Remove current f rom links 
$('[href='" +page+ 111

]
1 ).addClass( ' current'); //Update current link 

l;IJiiJil 7. When the user clicks backwards or forwards, 
the onpopstate event fires. This is used to trigger 
an anonymous function. lST 2ND 3RD 

First prize is t he OJI Phantom· a small, all-in one 

quadcopter designed for aerial photography enthusiasts. 11 

comes fully configured and ready to fly. Both compact and 

stylish, the highly integrated design means that it's easy to 

carry wherever you go, ready at a moment's notice. 

8. The browser's location bar will display the 
corresponding page from the history stack, so 
l ocation.pathname is used to obtain the path fo r 
the page that needs to be loaded. 
9. The 1 oadContent () function (in step 1) is called 
again, to retrieve the specified page. 
10. The fi le name is retrieved so that the current 
link can be updated. 

APIS 8 



SCRIPTS WITH APIS 

There are hundreds of scripts available for free on the web. 

Many have an API you need to use to get them to work for you. 

SCRIPT APIS 

Lots of developers share their 

scripts through a range of 

websites. Some are relatively 

simple scripts with a single 

purpose (such as sliders, 

lightboxes, and table sorters). 

Others are far more complicated 

and can be used for a range of 

purposes (such a·s jQuery). 

In this section, you wi ll meet two 

different types of scripts whose 

code you can make use of when 

you have learned their API: 

• A set of jQuery plugins 

known as jQuery UI. 

• A script that makes it easier 

to create web apps called 

Angular JS. 

THIRD-PARTY SCRIPTS 

Before writing your own script 

it can pay to check if someone 

else has already done the hard 

work for you (there is no point 

reinventing the wheel). 

@APIS 

JQUERY PLUGINS 

Many developers have 

written code that adds extra 

functionality to jQuery. These 

scripts add methods to extend 

the jQuery object, which are 

known as jQuery plugins. 

When you use these plugins, 

first you include the jQuery 

script, followed by the plugin 

script. Then, when you select 

elements (as you do with 

standard in jQuery methods), 

the plugin allows you to apply 

new methods that it has defined 

to that selection, offering new 

func tionality that was not in the 

original jQuery script. 

It is always a good idea to check: 

• Whether it has been updated 
fairly recently 

• That the JavaScript is 

separate from the HTML 

• Reviews of the script if they 

are available 

ANGULAR 

Angular.js is another JavaScript 

library, but it is very different 

from jQuery. Its purpose is to 

make it easier to develop web 

applications. 

One of the most striking things 

is that it allows you to access 

and update the contents of a 

page without writing code to 

handle events, select elements, 

or update the content of an 

element. We only have space to 

provide a very basic introduction 

to Angular in this chapter, but 

it does help demonstrate the 

variety of scripts available. 

This helps to ensure that the 

script uses modern practices 

and is still being updated. 

It is also worth noting that the 

instructions for using a script are 

not always called an API. 



JQUERY UI 

The jQuery foundation maintain its own set of jQuery plugins called 

jQuery UI. They help create user interfaces. 

WHAT JQUERY UI DOES 

jQuery UI is a suite of jQuery 
plugins that extends jQuery with 

a set of methods to create: 

• Widgets (such as accordions 
and tabs) 

• Effects (that make elements 
appear and disappear) 

• Interactions (such as drag 
and drop functionality) 

jQuery UI not only provides 
JavaScript you can use, but it 

also comes with a set of themes 
that help control how the plugins 

look on the page. 

If you want fine-grained control 
over how the jQuery plugins look 

in the browser, you can also use 

the theme roller, which gives you 

more precise control over the 
appearance of the elements. 

HOW TO ACCESS IT 

To use jQuery UI, first you must 
include jQuery in your page; then 

you must include the jQuery UI 
script (after the jQuery file). 

Versions of jQuery UI are 
available on the same CONs as 

the main jQuery file. But, if you 
only need part of the jQuery 
UI functionality, you can just 

download the relevant parts 

from the jqueryui. com website. 

This creates a smaller JavaScript 
file. which in turn makes the 

script faster to download. 

SYNTAX 

Once you have included the 

jQuery and jQuery UI scripts 
in the page, the syntax is very 

similar to using other jQuery 

methods. You create a jQuery 
selection and then call a method 
that will be defined in the plugin. 

As you will see, the jQuery UI 

documentation not only has to 
explain the JavaScript methods 

and properties it uses, but also 

how to structure your HTML 
if you want to use many of its 

widgets and interactions. 

----... - .. ----·-- ---..... -.. - ----·-----.. --..... -..-.-- ·-----

------------- --·---· _______ _ _ ...__ .. _ ___ • ..,_ 0 

APIS@ 



JQUERY UI ACCORDION 

Creating an accordion with 
jQuery UI is very simple. You 

only need to know: 

• How to structure your HTML 

• What element(s) should be 
used in the jQuery selector 

• The jQuery UI method to call 

t. In this example, the HTML for 
an accordion is contained within 
a <div> element ( its id attribute 

has a value of prizes, which will 
be used in the script). Each panel 

of the accordion has: 

2. An <h3> element for the 
clickable heading 

3. A <div> element for the 
content of that panel 

4 . Before the closing </body> tag 

the jQuery and jQuery UI scripts 

are both included in the page. 

5. Finally, you can see a third 
<script> element containing an 

anonymous function that runs 
when the page has loaded. 

6. Inside that function, a 

standard jQuery selector 
picks the containing <div> 

element that contains the 
accordion (using the value of 

its id attribute). The accordion 
functionality is triggered by 

call ing the . accordion() 

method on that selection. 

8 APIS 

c09/ jqui-accordion .html ""*'' 
G) 
@ 
® 

® 
© 

<body> 
<div id="prizes"> 

<h3>lst Prize</h3> 

<div><p>First prize is the OJI ... </ p></ div> 

<h3>2nd Prize</ h3> 
<div><p>Second pri ze is the ••• </p></div> 
<h3>3rd Prize</h3> 

<div><p>Third prize is a • • • </p></div> 
</div> 

<script s re=" j s/ j query- I. 9 .1. j s 11 ></scri pt> 
<script src=" j s/ 1.10. 3/ jquery-ui • j s "></script> 
<script> 

$(function() { 

$('#prizes').accordion() ; 
} ) ; 

</script> 
</body> 

• 1st Pr1D 

First prize ts your wry own OJI Phantom • a small, oU·tn-one 
quadcoptor~ for aerial photosral>hVenthustuts. It c:anes 
fully confltlnd and reMly b> fly. Both~ and .tylbll, the 
hith!Yfnt~ ~ ---.s that it'seay b> carry~ )IOU 
ao, ready at a moment's notlcr. 

2ndPr1ze 

3rd Prize 

l;IJillii 

You do not need to know how 
the jQuery plugin achieves this, 

as long as you know how to: 

Note: On a live site, the 
JavaScript should be kept in 

an external file to maintain a 
separation of concerns. It is 

shown here for convenience and 

to show how little work needs to 

be done to achieve this effect. 

• Structure your HTML 
• Create the jQuery selection 

• Call the new method defined 
in the jQuery plugin · 



JQUERY UI TABS 

""*'' c09/jqui-tabs.html 

CD )<div id="prizes"> 

2 

<li><a href="#tab-l">lst 
<li><a href="#tab-2">2nd 
<li><a href="#tab-3">3rd , 

<ul> 

Prize</a></l i> 
Prize</a></li > 
Prize</a></li> 

® 

© 

</ul> 
<div id="tab- l "><p>First prize is . .. </p></div> 
<div id="tab-2"><p>Second prize is ... </p></div> 
<div id="tab-3"><p>Third prize is ... </p></div> 

</div> 
<script src="js/jquery-1. 9.1.js"></scri pt> 
<script src="js/jquery-ui .js"></script> 
<script> 

$(function() { 
$('#pri zes') . tabs(); 

} ) ; 
</script> 

l;IJiiJll 

1st Prize 2nd Prize 3rd Prize 

First prize is the OJI Phantom · a small, all-in-one quadcopter designed 
for aerial photography enthusiasts. It comes fully configured and ready 
to fly. Both compact and stylish, the highly integrated design means 
that ifs easy to carry wherever you go, ready at a moment's notice. 

This structure is common in 

most jQuery plugins: 

1. jQuery is loaded . 
2. The plugin is loaded. 

3. An anonymous function runs 

when the page is ready. 

The anonymous function will 
create a jQuery selection and 

applies the method defined 
in the jQuery plugin to that 

selection. Some methods will 

also require parameters in order 

to do their job. · 

The tabs are a similar concept to 

the accordion. 

1. They are kept in a containing 
<d i v> element that will be used 

in the jQuery selector. The 

content, however, is slightly 

different. 

2. The tabs are created using an 
unordered list. The link inside 

each list item points to a <div> 
element lower down the page 

that holds content for that tab. 

3. Note that the id attributes on 

the <div> elements must match 
the value of the href attribute on 

the tabs. 

Once you have included jQuery 
and jQuery UI in the page, there 

is a third script tag with an 

anonymous function that runs 
when the DOM has loaded. 

4 . A jQuery selector picks the 
element whose id attribute has 

a value of prizes (this is the 

containing element for the tabs). 
Then it calls the • tabs () method 

is called on that selection. 

On a live site, the JavaScript 
should be kept in an external 

file to maintain a separation of 
concerns, but it is shown here for 

convenience and to show how 

little work needs to be done to 

achieve this effect. 

APIS@ 



JQUERY UI FORM 

jQuery UI introduces several 
form controls that make it 
easier tor people to enter 
data into forms. This example 
demonstrates two of them: 

Slider input: This allows people 
to select a numeric value using 
a draggable slider. This slider 
has two handles that allow the 
user to set a range between two 
numbers. As you can see on the 
right, the HTML tor the slider is 
made up of two components: 
1. A normal label and text input 
that would allow users to enter a 
number. 
2. An extra <div> element used 
to hold the slider that you see on 
the page. 

Date picker: This allows people 
to pick a date from a pop-up 
calendar, which helps ensure 
that users provide the date in the 
correct format that you need. 
3. It is just a text input, and does 
not need any additional markup. 

Before the closing </body> tag, 
you can see that there are three 
<script> elements: the first is 
the jQuery script, the second is 
jQuery UI, and the third contains 
the instructions to setup these 
two form controls (see right
hand page). If JavaScript is not 
enabled, these controls look like 
normal form controls without the 
jQuery's enhancements. 

e APIS 

c09/ jqui-fonn.html 

® 

<body> •. • 
<h2>Fi nd Accommodation</h2> 
<p id="price"> 

<label for="amount">Price range : </ label > 
<input type="text" id="amount" / > 

</ p> 
<div id="price-range"></ div> 
<p> 

<label for="arrival">Ar rival date:</label> 
<input type="text" id="arrival" / > 

</ p> 
<input type="submit" val ue="Find a hotel " / > 

<script src="js/ jquery- 1. 9.1.js"></ scri pt> 
<script src="js/jquery-ui.js"></script> 
<script s re=" j s/ form-i nit .j s "></script> 

</ body> 

Pr'lct l'ange: 
J17S-UOO 

• t 
, 4 s 6 1 • t 

,. 11 1J U H U t6 

" It ,, 10 11 u u 
UDUUUH» 

II 

W:H$fi 

i;IJiiJii 

Most jQuery scripts live within 
the . ready() function or its 
shortcut (used on the next 
page). As you saw in Chapter 7, 
this ensures that the script only 
runs when the DOM has loaded. 

If you include more than one 
jQuery plugin, each of which 
uses the. ready() method, you 
do not repeat the function - you 
combine the code from inside 
both functions into the one. 

.. 

' 

.. 



1. The JavaScript is contained 
within the shortcut for the 
jQuery • ready() method. It 
contains the setup instructions 
for both of the form controls. 

JAVA SCRIPT 

CD $(function() { 

2. To turn a text input into a 
date picker, all you need to do 
is select the text input and then 
call the datepi cker () method 
on that selection. 

3. Cache the inputs for price. 

4. The slider uses an object 
literal to set the properties of the 
. s 1 i der () method (see below). 

c09/js/form-init.js 

@ 

® 

$(' #arrival ').datepicker(); II Turn input to JQUI datepicker 

var $amount = $(' #amount ' ); II Cache the price input 
var $range = $( ' 1price-range'); II Cache the <div> for the price range 

$('#price-range').slider({ 
range: true, 

II Turn price-range input into a slider 
II If i t is a range it gets two handles 
II Minimum value min: 0, 

max: 400, II Maximum value 
4 values: [175, 300], II Values to use when the page loads 

slide : function(event, ui) { 
$amount.val('$ ' + ui . values[O] 

II When slider used update amount element 
+' - $ ' + ui.values[l]); 

} 
} ) ; 
$amount II Set initial values of amount element 

.val( ' $' + $range.slider('values', O) II A$ sign then lower range 
+ ' - $' + $range.slider( ' values', l)); II A$ sign then higher range 

} ) ; 

5. When the form loads, the text 
input that shows the amount as 
text needs to know the initial 
range for the slider. The value of 
that input is made up of: 

a) A dollar sign: $ followed by 
the lower range value. 

b) A dash and dollar sign: - $ 
followed by the higher range 
value. 

The script is called form-i nit. 
js. Programmers often use init 
as a shorthand for initialize; and 
this script is used to set an initial 
state for the form. 

When a jQuery plugin has settings that vary each time it is used, it is 
common to pass the settings in an object literal. You can see this with 
the • s 1 i der() method; it is passed several parameters and a method: 

PROPERTY DESCRIPTION 

range A Boolean to give the slider two handles 
(not just a single value) 

min The minimum value for the slider 

max The maximum value for the slider 

values An array containing two values to specify an initial range 
in the slider when the page first loads 

METHOD 

slider() 

DESCRIPTION 

Updates the text input which shows the text values for the 
slider (the documentation shows examples for this) 

APIS 8 



ANGULARJS 

AngularJS is a framework that makes it easier to create web apps. 

In particular, it assists in creating apps that write, read, update, 

and delete data in a database on a server. 

Angular is based on a software 

development approach cal led 
model view controller or MVC. 
(It is actually variant on MVC, 

not strict MVC). To use Angular, 

first you include the angular.js 
script in your page, and then it 

makes a set of tools available to 
you (just like jQuery does). 

VIEW 

The View is what the user sees. 

In a web app, it is the HTML 

page. Angular lets you create 
templates with spaces for 

particular types of content. If the 
user changes values in the view, 

commands (1) are sent to up the 
chain to update the model. 

There can be different views of 

the same data, e.g., users and 
administrators. 

8 APIS 

The point of MVC is that it separates out parts of a web application, 

in the same way that front-end developers should separate content 
(HTML), presentation (CSS), and behavior (JavaScript). 

We do not have space to go into Angular in detail, but it introduces 

another example of a very different script with an API, as well as 

concepts such as the MVC approach, templat ing, and data binding. You 
can download Angular and view the full API at http: //angul arjs. org. 

-{!)- ................................. - - -

~ 

This ViewModel (or controller) 

will update the view if there are 

changes to the model, and will 

update the model if there are 
changes in the view. The task 
of keeping data synchronized 

between the two is known as 
data binding (2). 

For example. if a form in the 

view is updated, it reflects the 

changes and updates the server. 

MODEL 

In a web app, the Model is 
usually stored in the database, 

and managed by server-side 

code that can access and update 
the model. 

When the model has been 
updated, change notifications 

(3) are sent to the ViewModel. 

This info can be passed onto the 

View to keep it updated. 



USING ANGULAR 

W:lifull 

<!DOCTYPE html> 
<html ng- app> 
<head> ... 

c09/ angular-introducti on.html 

<script src="https://aj ax.googleapi s . com/ajax/ 
l i bs/angularjs/1 .0.2/angular.min.js"></scri pt > 

</head> 
<body> ... 

<form> 
To :<br> 
<input ng-model =" name" type="text"/><br> 
Message :<br> 
<textarea ng-model ="message"></textarea> 
<input type="submit" value="send message" /> 

</form> ... 
<div class="postcard"> 

<div>{{ name }} </div> 
<p> {{ message }} </p> 

</div> 
</body> 
</html> 

+;jJiiJ51 

//)~ 
THE MAKER. BUS 

Ttll)'OVf fric-nds t0 join us for an 
aW'tSOO'le day of Unbrif'lg with The 
Maker Bus... 

To: 
Sophie 

Message: 

Le~s go make some 
robots ... 

iJ§ri.l1114¥f!JJ 

This example takes the content 
of the <input> and <textarea> 

elements and writes it into 

another part of the page (where 
you can see the double curly 

braces in the HTML file). 

First, include the Angular script 

in your page. You can store 
it locally or use the version 
on Google's CON. Unt il you 

understand more about Angular, 
place it in the <head> element. 

Note the new markup in the 
HTML. There are attributes that 
start with ng- (which is short 

for Angular). These are called 
directives. There is one on the 

opening <html> tag and one on 
each of the form elements. 

The value of the ng-mode l 

attribute on the text inputs 
matches the values inside the 

double curly braces. Angular 
automatically takes the content 
of the form elements and writes 

it into the page where the 
corresponding curly braces are. 

No more JavaScript is needed to 

achieve this, whereas in jQuery, 
this would involve four steps: 
1. Writing an event handler for 

the form elements 
2. Using that to trigger code to 

get the elements' content 
3. Selecting new element nodes 

that represent the postcard 
4 . Writ ing the data into the page· 

APIS 8 



VIEW & VIEWMODEL 

Below, look at the angul ar-contro 11 er .j s file. 

It uses a a constructor function to create an object 
called BasketCtrl . This object is known as a 

controller or ViewModel. It is passed another object 
called $scope as an argument. Properties of the 

$scope object are set in the constructor function. 

1. Note the object's name (BasketCtrl) matches the 

value of the ng-contro 11 er attribute on the opening 

<tab 1 e> tag. In this example, there is no database, 
so the controller will also act as the model: sharing 

data with the view. 

c09/angular-controller .html 

<!OOCTYPE html> 
<html ng-app> 

<head> 

The HTML file (the view) gets its data from the 
BasketCtr l object in the JavaScript controller. 
In the HTML, note how the names in curly braces, 

e.g., { { cost } } and { { qty } } , match the 
properties of the $scope object in the JavaScript. 

The HTML file is now called a template because it 

will display whatever data is in the corresponding 

controller. The names in curly braces are like 
variables that match the data in the object. If the 

JavaScript object had different values, the HTML 
would show those values. 

""Mi' 

<title>JavaScript &amp; jQuery - Chapter 9 ... </ title> 
<script src="https ://ajax .googleapis .com/ ... / angular.min .js"></ script> 
<script src="js/angular-controller.js"></script> 
<link rel ="stylesheet" href="css/c09.css"> 

</ head> 
<body> .. . 

<table ng-controller="BasketCtrl"> 
<tr><td>Item:</td><td>{{ description }} </td></tr> 
<tr><td>Cost:</td><td>${{ cost }}</ td></ tr> 
<tr><td>Qty: </ td><td><i nput type="number" ng-model="qty" ></ td></ tr> 
<tr><td>Subtotal: </td><td>{{qty *cost I currency}} </td></tr> 

</ table> 
</ body> 

</ html> 

c09/j s/angular-controll er.js 

G) functi on BasketCtrl ($scope) 
$scope .descripti on = 'Single 
$scope.cost = 8; 
$scope .qty = 1; 

@ } 

9 APIS 

JAVASCRIPT 

t i ck et I; 



DATA BINDING & SCOPE 

2. It is also possible to evaluate expressions inside 

the curly braces. In step 3, the subtotal is calculated 
in the template. This is then formatted as a currency. 
Furthermore, if you update the quantity in the form, 

the underlying data model ( in the JavaScript object) 
is updated along with the subtotal. Try updating 

the values in the JavaScript file, then refreshing the 

HTML to see the connection. This is an example of 
something programmers call data binding; the data 

in the JavaScript file is bound to the HTML and vice
versa. If the ViewModel changes, the view updates. 
If the view changes, the View Model updates. 

•aii•JS• 

THE MAKER BUS 

Buy tickets 

• I ... 
•1111• ·--.. Ism•\ o~ ·- ·•• I 
()- -I I --

As this shows, Angular is particularly helpful when 
you load data from a separate file into the view. 
A page can have multiple controllers, each of which 

has its own scope. In the HTML, the ng- contro 11 er 
attribute is used on an element to define the scope 

of that controller. This is similar to variable scope. 
For example, a different element might have a 

different controller (e.g., StoreCtr 1 ), and both 

controllers would be able to have a property called 
description. Because the scope is only within that 

element, each controller's description property 
would only be used within that controller's scope. 

Item: Single ticket 

Cost: $8 

Qty: 1 

Subtotal: $8.00 

APIS 8 



GETTING EXTERNAL DATA 
Here, the controller (the JavaScript file) collects the 

model (the JSON data) from a fi le on the server. ( In a 
web app, the JSON data would usually come from a 

database.) This updates the view in the HTML. 

To collect the data, Angular uses what it calls the 
$http service. Inside the angular .js file, the code 

uses the XMLHttpRequest object to make Ajax 
requests (like those you saw in Chapter 8). 

c09/angular-external -data . html 

1. The path to the JSON file is relative to the HTML 

template, not the JavaScript file (even though the 

path is written in the JavaScript). 

Just like jQuery's . aj ax () method, the $http service 

has several shortcuts to make it easier to create 

some requests. To fetch data it uses get(), post(), 
and j sonp ();to delete data it uses delete ();and to 

create new records: put (). This example uses get (). 

1111&11 

<table ng-controller="TimetableCtrl"> 
<tr><th>time</th><th>title</th><th>detai l </th></tr> 

® <tr ng-repeat="session in sessions"> 
<td>{{ session . time }} </td> 
<td>{{ session.title }}</td> 
<td>{{ session.detail }}</td> 

</tr> 
</tabl e> 

c09/js/angular-external -data.js 

f un cti on Timetabl eCtrl ($scope, $http) { 
G) $http .get ( ' j s/ i t ems . json ' ) 
@ .success(function(data) { $scope .sessions data . sessions ; }) 
~ .error(funct ion(data) { console . log(' error') }) ; 

// The er ror could show a f r i endly message to users ... 

c09/js/items.json 

"sessi ons" : [ 

JAVASCRIPT 

JAVASCR I PT 

{"time": "09. 00" , "title" : "Intro to 30 Modeling", "detail" : "Come .. . "} 
{"time" : "10.00", "title" : "Circuit Hacking", "detail" : "Head t o the . .. "} 
{"time" : "11 . 30" , "t i tle": "Arduino Antics" , "detail" : "Learn how ... "} 

] 

9 APIS 

.. 

'l 



LOOP THROUGH RESULTS 
2. If the request successfully fetches data, the code 

in the success() function runs. In this case, if it is 
successful the $scope object is passed the data from 

the JSON object. This allows the template to display 
the data. 

3. If it fa ils, the error () function is run instead. This 
would to show an error message to users. Here it 

writes to the console (which you meet on p464). 

l;lii'li' 

Session Times 

4. The JSON data contains several objects, each 
of which is displayed in the page. Note, there is no 

JavaScript loop written in the controller. Instead, the 
HTML template (or view) is where the loop occurs. 

5. The ng-repeat directive on the opening <tr> tag 

indicates that the table row should act like a loop. It 
should go through each object in the sessions array 

and create a new table row for each of them. 

TIME TITLE DETAIL 
~~~~~~~~--~~~~~~~~~~~ 

09.00 Intro to 30 Modeling Come learn how to create 30 models of parts
you can then make on our bus! You'll get to
know the same 30 modeling software that
used worldwide in professional settings like
engineering, product design, and more.
Develop and test ideas in a fun and
informative session hosted by Bella Stone.
professional roboticist.

1 o.oo Circuit Hacking Head to the Electro-Tent for a free
introductory soldering lesson. There will be
electronics kits on hand for those who wish to
make things. and experienced hackers and
engineers around to answer all your

In the HTML, the value of the ng- repeat directive is:
session in sessions

This is just a very high-level int roduction to Angular,
but does demonstrate some popular techniques

when using JavaScript to develop web apps, such as:
• sessions matches the JSON data; it corresponds

with the object name.

• session is the identifier used in the template to
indicate the name of each individual object within
the sessions object.

If the ng-r epeat attribute used different names than

sessi on, the value in the curly braces in the HTML
would have to change to reflect that name. For

example, if it said 1 ectur e in sessi ons, then the

curly braces would change to reflect that:
{ { lectur e. time}},{{ l ect ure. title }},etc.

• The use of templates that take content from
JavaScript and update the HTML page.

• The rise in MVC-influenced frameworks for web
based application development.

• The use of libraries to save developers having to
write so much code.

For more on Angular, see http: //angul arj s . or g

Another very popular alternative is Backbone

http : //backbonejs .org •

APIS@

PLATFORM APIS

Many large websites expose their APls that allow you to access and

update the data on their sites, including Facebook, Google, and Twitter.

WHAT YOU CAN DO

Each site offers different

capabilities, for example:

• Facebook offers features such

as allowing people to like

sites or add comments and

discussion to the bottom of a

web page.

• Google Maps lets you to

include various types of maps

in your pages.

• Twitter allows you to display

your latest tweets on your

web pages or send new

tweets.

By exposing some of the

functionality of their platforms

these companies are advertising

their sites and encouraging

people back to them. This in turn

increase their total amount of

activity (and their revenue).

Be aware that companies can

change either how you access

APls or change what you are
allowed to use the APls for.

8 APIS

HOW TO ACCESS

On the web, you can access

several of these platform APls

by including a script they provide

in your page. That script will

typically create an object (just

like the jQuery script adds a

jQuery object). In turn, that

object will have methods and

properties that you can use to

access (and sometimes update)

the data on that platform.

Most si tes that offer an API will

also provide documentation that

explains how to use its objects,

methods, and properties (along

with some basic examples).

Some of the larger sites provide

pages where you can get code

that you can copy and paste into

your site without even needing

to understand the APL

Facebook, Google, and Twitter

have all made changes to both

how you access their APls and
what you can use them for.

THE SYNTAX

The syntax of an API will vary
from platform to platform. But

they will be documented using

tables of objects, methods, and

properties like those you saw in

the first section of this chapter.

You may also see sample code

that demonstrates tasks people

commonly use the API for (like

the examples you have seen in

this chapter).

Some platforms offer APls in

multiple languages, so that you

can interact with them using

server-side languages such

as PHP IC# as well as using

JavaScript.

In the rest of this chapter we wil l

be focusing on the Google M aps

API as an example of what you

can do with platform APls.

If you work on a site for a client.

make them aware that APls can

change (and that could result in

recoding pages that use them).

GOOGLE MAPS API

Currently, one of the most popular APls in use on the web is the Google

Maps API, which allows you to add maps to web pages.

WHAT IT DOES

The Google Maps JavaScript API

allows you to show Google maps

in your web pages. It also allows

you to customize the look of the

maps and what information is

shown on them.

You may find it helpful to look

at the documentation for the

Google Maps API while going

through this example. It will

show you other things that you

can do with the API. https: //

developers.google.com/maps/

(~ I If '*" ""
. -. ,.....,, '• - -- - •""'-""

-
o.,..._.,.,,. .. -..... ,,,. __ ... __ ... ___ ..,...,.,,.,

,1,..,_.,...,,....~ .. , ,

,..,~, .. o

.... o .• o

"'""'"''"'()
1•ll•._,,,.11t)

ltl ,.,tJHO...C)

..d,~-rit\...()

WHAT YOU'LL SEE

We only have space to show a

few of the features of the Google

Maps API, as it is very powerful

and contains a lot of advanced

features. But the examples in

this chapter will get you used to

working with its API.

You will start by seeing how to

add a map to your web pages,

then you will see how to change

the controls, and finally how

to change the colors and add

markers on top of the map.

-
u.u._._. _. __ _ --·----....... - ... " -.... ~ ... -.... .,.. _ ... _ Ml_

...u ,"""""
WW_. .. _.,_...,..,...., .. _.., __

~l•ltll\I

1.. .. i..c wu. ... -----.

......... -.-......,.Tlol-.
-w11.-..-.~-t ~,...

PtutiuJM ~ .. _... jlfttt..... •wr---•· -.-i~
... ... iw-••Nit._ ... _.."""~·
ll'•)ft~ _. _ _ _

"'...,,...,.._ ,.._ ,.! .. f\lt ___ ...,.. . .. _ _.. .. ,. _ ,._
....... _."4•-w'.-C) °'-.
tV"1~1",., _, __ _

API KEY

Some APls require that you

register and request an API

key in order to get data from

their servers. An API key is a

set of letters and numbers that

uniquely identify you to the

application so the owners of the

site can track how much you use

the API and what you use it for.

At the time of writing, Google

allowed websites to call their

maps API 25,000 times per

day for free without an API key,

but sites that consistently make

more requests are required to

use a key and pay for the service.

If you run a busy site, or the map

is part of the core application,

it is good practice to use an API

key with Google Maps because:

• You can see how many times

your site requests the API

• Google can contact you if

they change terms of service

or charge for use

To get a Google API key, see

https://cloud .google.com/

console

APIS 8

BASIC MAP SETTINGS

Once you have included the Google Maps script in your page, you can

use their maps object. It lets you display Google maps in your pages.

CREATING A MAP

The maps object is stored w ithin an object called

googl e. This creates scope for al l Google objects.

To add a map to your page, you create a new map

object using a constructor: Map () . The constructor is

part of the maps object, and it has two parameters:

• The element into which you want the map drawn

• A set of map options that control how it is

displayed given using object literal notation

Zoom level is typically set using a number between

0 (the full earth) and 16. (Some cities can go higher.)

ZOOM LEVEL: 0 ZOOM LEVEL: 4 ..:-.:::::::_. _

.. ZOOM LEVEL: 16

8 APIS

MAP OPTIONS

The settings that control how the map should look

are stored inside another JavaScript object called

mapOpti ons. It is created as an object literal before

you call the Map() constructor. In the JavaScript on

the right, you can see that the mapOpt ions object

uses three pieces of data:

• Longitude and latitude of the center of the map

• The zoom level for the map

• The type of map data you want to show

The images that_ make up the map are called tiles.

Four map types each show a different style of map.

A BASIC GOOGLE MAP

""*'' c09/google-map. html

<div id="map"></div>
<script src="js/google-map . j s"></ script>

</body>

JAVASCRIPT c09/ js/ google-map .js

function in i t() {

,

var mapOpt ions = { // Set up the map options
center: new google .maps .Latlng(40 . 782710,-73 .965310),
mapType!d: google .maps .MapType ld.ROADMAP,
zoom: 13

} ;
~ var venueMap; // Map() draws a map
~ venueMap =new google .maps .Map(document .getElementByld('map'), mapOptions} ;

2

}

function l oadScript() {
va r scri pt document . createEl ement('script ') ; // Create <script> element
scri pt . src = 'http: //maps .goog l eapis. com/maps/api/j s?

sensor=fal se&callback= i nit ial ize ' ;
document.body. appendChi l d(scri pt) ; //Add element to page

G) window. on 1 oad 1 oadScri pt; // Onload cal l

m
THE HAKER BUS

1. Starting at the bottom of the script, when the

page has loaded, the on load event wi ll call the
l oadScri pt () function.

2. l oadScri pt() creates a <script> element to load

the Google Maps API. W hen it has loaded, it calls
i nit () , to initialize the map.
3. i nit() loads the map into the HTML page. First it

creates a mapOpti ons object with three properties.
4. Then it uses the Map () constructor to create

a map and draw the map into the page. The

constructor takes two parameters:

• The element that the map will appear inside

• The mapOpt ions object

APIS e

CHANGING CONTROLS

VISIBILITY OF MAP CONTROLS POSITION OF MAP CONTROLS

TOP_LEFT TOP_CENTER TOP_RIGHT

LEFT_TOP RIGHT_TOP

CENTER_LEFT CENTER_RIGHT

LEFT_BOTTOM RIGHT_BOTTOM

BOTTOM_LEFT BOTTOM_ CENTER BOTTOM_ RIGHT

To show or hide the controls, use the control name followed by a value of tr_ue (to show it) or fa 1 se (to hide it).

Although Google Maps tries to prevent overlaps, use judgement to position controls on your map.

CONTROL

zoomControl (1)

panControl (2)

scaleControl (3)

mapTypeControl (4)

DESCRIPTION DEFAULT

Sets the zoom level of the map. It uses a slider (for large On

maps)"+/-" buttons (for small maps)

Allows panning across the map On for non-touch devices

Shows the scale of the map Off

Switch map types (e.g., ROADMAP and SATELLI TE) On

streetVi ewControl (5) A Pegman icon that can be dragged and dropped onto On

the map to show a street view

rotateControl Rotates maps that have oblique imagery (not shown) On when available

overviewMapControl A thumbnail showing a larger area, that reflects where On when map is

the current map is within that wider area (not shown) collapsed, e.g., street view

8 APIS

GOOGLE MAP WITH
CUSTOM CONTROLS

APPEARANCE OF CONTROLS POSITION OF TH E CONTROL

To alter the appearance and position of map
controls, you add to the mapOpt ions object.

1. To show or hide a control, the key is the name of
the control, and the value is a Boolean (true will

show the control; fa 1 se will hide it).

2 . Each control has its own options object used to

control its style and position. The word Options

follows the control name, e.g., zoomControlOptions.
Styles are discussed below. The diagram on the left

hand page shows options for the position property.

JAVASCR I PT c09/ js/google-map-controls.js

var mapOptions = {
zoom: 14,
center: new googl e.maps.Latlng(40.782710 , -73.965310),
mapTypeid: google.maps.MapTypeid .ROADMAP,

G) panControl: false,
G) zoomControl: true,

zoomControlOptions:
.® style: google.maps .ZoomControlStyl e.SMALL,
(l) position: google.maps .Cont rol Position .TOP_RIGHT

},
G) mapTypeControl: true,

mapTypeControlOptions:
~ style : google .maps.MapTypeControl Styl e. DROPDOWN_MENU,
(l) position : google .maps.ControlPos i t i on.TOP_LEFT

},
G) scaleControl: true,

scaleControl Options :
(l) position: googl e.maps .ControlPosition .TOP_CENTER

},
CD streetViewControl : false ,
CD overviewMapControl: false

} ;

STYLE OF MAP CONTROLS
3. You can change the appearance of the zoom and map type controls using the following options:

zoomControlStyle: MapTypeControlStyle:

SMALL Small +/ - buttons HORIZONTAL_BAR Buttons side-by-side

LARGE Vertical slider
DEFAULT The default for that device

DROPDOWN MENU

DEFAULT

Dropdown select box

The default for that device

APIS 8

STYLING A GOOGLE MAP

To style the map you need to specify three things:
• feature Types: the map feature you want to style:

e.g., roads, parks, waterways, public transport.

The first sty 1 ers property alters the colors of the
map as a whole. It, too, contains an array of objects.
• hue property adjusts color, its value is a hex code

• e 1 ementTypes: the part of that feature you want
to style, such as its geometry (shapes) or labels.

• stylers: properties that allow you to adjust the
color or visibility of items on the map.

The st yles property in the mapOptions object sets
the map style. It's value is an array of objects.
Each object affects a different feature fo the map.

c09/js/google-map-styled.js

styles: [
{

8 APIS

stylers : [

J
}, {

{hue: "100ff6f" },
{ saturation : -50 }

featureType: "road",
elementType : "geometry",
stylers: [

{ lightness: 100 },
{ visibility : "simplified"

]
}, {

featureType: "transit",
el ementType : "geometry",
stylers: [

]
}, {

{ hue: "#ff6600" },
{ saturation : +80 }

featureType: "transit",
elementType: "labels",
stylers : [

]

{ hue : "#ff0066" },
{ saturation: +80 }

• 1 ightness or saturation can take a value from
- 100 to 100

Then each feature that shows up on the map can
have its own object, and its own stylers property.
In it, the vi si bi 1 i ty property can have three values:
• on to show the feature type

\ • off to hide it
• simplified to show a more basic version

JAVASCRIPT

II styles property is an array of objects

II stylers property holds array of objects
II Overall map colors
II Overall map saturation

II Road features
II Their geometry {lines)

II Lightness of roads
II Level of road detail

II Public transport features
II Their geometry (lines)

II Color of public transport
II Saturation of public transport

II Public transport features
II Their labels

II Label color
II Label saturation

II More ~tylers shown in the code download

"' .
..

I

ADDING MARKERS

Here you can see how to add a marker to a map. The
map has been created, and its name is venueMap.

1. Create a Latlng object to store the position of the
marker using object constructor syntax. Below that

object is called pi nlocat ion.
2. The Marker() constructor creates a marker

object. It has one parameter: an object that contains

settings using object literal notation.

JAVA SCRIPT

The settings object contains three properties:

3 . position is the object storing the location of the
marker (pi nlocati on).

4 . map is the map that the marker should be added to
(because a page can have more than one map).

5. icon is the path to the image that should be
displayed as the marker on the map (this should be

provided relative to the HTML page).

c09/js/google-map-styled.js

CD var pinlocation = new google .maps . Latlng(40 .782710,-73 .965310);

~ var startPosition = new google .maps.Marker({
a:> position: pinlocation,
@) map: venueMap,
® icon : "imglgo.png"

}) ;

THE MAKER BUS

Naumberg 8ondsh•ll
Centr•I Park
Now Yorlc. NY 10019

,
"'

UPP(R
WfSl

11HOC

€

I
l

II Create a new marker
II Set its position
II Specify the map
I I Path to image from HTML

l•~. f:.~~ ..

<.U.-.U.c.-u~ ,.. ___, ,..,..., • .._. __

APIS 8

APls are used in browsers, scripts, and by websites

that share functionality with other programs or sites.

APls let you write code that will make a request,

asking another program or script to do something.

APls also specify the format in which the response will

be given (so that the response can be understood).

To use an API on your website, you will need to include

a script in the relevant web pages.

An APl's documentation will usually feature tables of

objects, methods, and properties.

Providing you know how to create an object and call

its methods, access its properties, and respond to its

events, you should be able to learn any JavaScript API.

JavaScript can be hard to learn and everyone makes
mistakes when writing it. This chapter will help you learn

how to find the errors in your code. It will also teach you how
to write scripts that deal with potential errors gracefully.

When you are writing JavaScript, do not expect to write it perfectly the fi rst time.

Programming is like problem solving: you are given a puzzle and not only do you have to solve

it, but you also need to create the instructions that allow the computer to solve it. too.

When writing a long script, nobody gets everything right in their first attempt. The error

messages that a browser gives look cryptic at fi rst, but they can help you determine what
went wrong in your JavaScript and how to fix it. In this chapter you will learn about:

THE CONSOLE &
DEV TOOLS

Tools built into the browser

that help you hunt for errors.

9 ERROR HANDLING & DEBUGGING

COMMON
PROBLEMS

Common sources of errors,

and how to solve them.

HANDLING
ERRORS

How code can deal with

potential errors gracefully.

,•

\ \ ~ \ \ \ \ \

\ \\\\\\\
\ \\\\\\
\ \\ .\\\\
\ \\\\\\

_ \ \ \

ERROR HANDLING & DEBUGGING @

ORDER OF EXECUTION

To find the source of an error, it helps to know how scripts are processed.

The order in which statements are executed can be complex; some tasks
cannot complete until another statement or function has been run:

function greetUser () {
O return 'He 11 o ' + getName ();

0

function getName() {
var name= 'Molly ' ;
return name;

_, var greeting= greetUser();
e al ert(greeting);

This script above creates a greeting message, then
writes it to an alert box (see right-hand page). In

order to create that greeting, two functions are used:
greetUser () and getName () .

You might think that the order of execution (the
order in which statements are processed) would be

as numbered: one through to four. However, it is a

little more complicated.

To complete step one, the interpreter needs the
results of the functions in steps two and three

(because the message contains values returned by
those functions). The order of execution is more like

this: 1, 2, 3, 2, 1, 4.

8 ERROR HANDLING & DEBUGGING

1. The greeting variable gets its value from the

greetUser () function.

2. greetUser() creates the message by combining
the string 'He 11 o ' with the result of getName ().

3. getName () returns the name to greetUser() .

2. greetUser() now knows the name, and combines
it with the string. It then returns the message to the

statement that called it in step 1.

1. The value of the greeting is stored in memory.

4. This greeting variable is written to an alert box.

EXECUT.ION CONTEXTS

The JavaScript interpreter uses the concept of execution contexts.

There is one global execution context; plus, each function creates a new

new execution context. They correspond to variable scope.

EXECUTION CONTEXT

JavaScript

Hello Molly

Every statement in a script lives in one of three

execution contexts:

Q GLOBAL CONTEXT

Code that is in the script, but not in a function.

There is only one global context in any page.

FUNCTION CONTEXT

Code that is being run within a function.

Each function has its own function context.

Q EVAL CONTEXT (NOT SHOWN)

Text is executed like code in an internal func tion

called eva l {) (which is not covered in this book).

VARIABLE SCOPE

The first two execution contexts correspond with the
notion of scope (which you met on p98):

Q GLOBAL SCOPE

If a variable is declared outside a function, it can

be used anywhere because it has global scope.

If you do not use the var keyword when creating

a variable, it is placed in global scope.

FUNCTION-LEVEL SCOPE

When a variable is declared within a function,
it can only be used within that function. This is

because it has function-level scope.

ERROR HANDLING & DEBUGGING e

Creates greeting
variable and calls

greetUser () to get
the value

greetUser() returns
1 He11 o 1 and the

result of getName ()

Waiting ...

get Name () returns
the value ' Mo 11 y ' to

greetUser()

Waiting ...

Waiting ...

function greetUser() {
return 'Hello ' + getName{);

}

function getName() {
var name = 'Molly ' ;
return name;

}

greetUser() returns
1 He 11 o Molly' to

the greeting variable

Waiting ...
greeting holds the

value 'Hello Molly'

EXECUTION CONTEXT
& HOISTING

Each time a script enters a new execution context, there are two phases

of activity:

1: PREPARE
• The new scope is created
• Variables, functions, and arguments are created
• The value of the this keyword is determined

Understanding that these two phases happen helps

with understanding a concept called hoisting. You
may have seen that you can:

• Call functions before they have been declared
(if they were created using function declarations

- not function expressions, see p96)

• Assign a value to a variable that has not yet been
declared

This is because any variables and functions within

each execution context are created before they are
executed.

The preparation phase is often described as taking

all of the variables and functions and hoisting them
to the top of the execution context. Or you can think

of them as having been prepared.

Each execution context also creates its own

vari ab 1 es object . This object contains details of all

of the variables, functions, and parameters for that
execution context.

8 ERROR HANDLING & DEBUGGING

2: EXECUTE
• Now it can assign values to variables

• Reference functions and run their code
• Execute statements

You may expect the following to fail, because
greetuser() is called before it has been defined:

var greeting= greetUser{);
function greetUser() {

II Create greet ing

It works because the function and first statement are

in the same execution context, so it is treated like this:

function greetUser()
II Create greeting

}
var greeting= greetUser{);

The following would would fai l because greetuser()
is created within the getName () function's context:
var greeting= greetUser();
function getName() {

function greetUser()
II Create greeting

}
II Return name with greeting

::

UNDERSTANDING
SCOPE

In the interpreter, each execution context has its own va ri ables object.

It holds the variables, functions, and parameters available within it.

Each execution context can also access its parent's v a ri ables object.

Functions in JavaScript are said to have lexical scope.
They are linked to the object they were defined within.
So, for each execution context, the scope is the
current execution context's variables object, plus the
variables object for each parent execution context.

var greeting = (function()
var d =new Date();
var time= d.getHours();
var greeting= greetUser{);

function greetUser() {
if (time < 12) {

var msg
else {
var msg

'Good morning ';

'Welcome ' ;

return= msg + getName();

funct i on getName() {
var name = 'Molly';
return name;

}) ;
alert(greeting);

Imagine that each function is a nesting doll.

The children can ask the parents for information in
their variables. But the parents cannot get variables

from their chi ldren. Each child will get the same
answer from the same parent.

If a variable is not found in the variables object
for the current execution context, it can look in the

variables object of the parent execution context.
But it is worth knowing that looking further up the

stack can affect performance, so ideally you create
variables inside the functions that use them.

If you look at the example on the left, the inner
functions can access the outer functions and their

variables. For example, the greetUser() function
can access the time variable that was declared in the
outer greeting() function.

Each time a function is called, it gets its own

execution context and va r i ables object.

Each time an outer function calls an inner function,

the inner function can have a new variables object.
But variables in the outer function remain the same.

Note: you cannot access this variables object from
your code; it is something the interpreter is creating

and using behind the scenes. But understanding

what goes on helps you understand scope.

ERROR HANDLING & DEBUGGING 8

UNDERSTANDING ERRORS

If a JavaScript statement generates an error, then it throws an exception.

At that point, the interpreter stops and looks for exception-handl ing code.

If you are anticipating that something in your code
may cause an error, you can use a set of statements

to handle the error (you meet them on p480).
This is important because if the error is not handled,

the script will just stop processing and the user will

not know why. So exception-handling code should
inform users when there is a problem.

function greetUser()
4 • 11 Interpreter 1 ooks here

}

function getName() {

4
• II Imagine this had an error

II It was caused by greetUser()
}

t» var greeting= greetUser();
C» al ert(greeting);

9 ERROR HANDLING & DEBUGGING

Whenever the interpreter comes across an error,
it wi ll look for error-handling code. In the diagram

below, the code has the same structure as the code
you saw in the diagrams at the start of the chapter.

The statement at step 1 uses the function in step 2,

which in turn uses the function in step 3. Imagine
that there has been an error at step 3.

When an exception is thrown, the interpreter
stops and checks the current execution context for

exception-handling code. So if the error occurs in the
getName () function (3), the interpreter starts to look

for error handling code in that function.

If an error happens in a function and the function
does not have an exception handler, the interpreter

goes to the line of code that called the function.
In this case, the get Name () function was called by

greetUser(), so the interpreter looks for exception

handling code in the greetUser() function (2).

If none is found, it continues to the next level,
checking to see if there is code to handle the error

in that execution context. It can continue until it
reaches the global context, where it would have to it
terminate the script, and create an Error object.

So it is going through the stack looking for error

handling code until it gets to the global context.

If there is stil l no error handler, the script stops

running and the Error object is created.

ERROR OBJECTS

Error objects can help you find where your mistakes are

and browsers have tools to help you read them.

When an Er ror object is created, it will contain the
following properties:

PROPERTY DESCRIPTION

name Type of execution

message Description

fi l eNumber Name of the JavaScript file

l i neNumber Line number of error

When there is an error, you can see all of this
information in the JavaScript console I Error console

of the browser.

You wil l learn more about the console on p464, but

you can see an example of the console in Chrome in
the screen shot below.

There are seven types of buil t-in error objects in
JavaScript. You'l l see them on the next two pages:

OBJECT

Error

Syntax Error

DESCRIPTION

Generic error - the other errors

are all based upon this error

Syntax has not been followed

Ref erenceError Tried to reference a variable that is

not declared/within scope

TypeError

Range Error

URI Error

EvalEr r or

An unexpected data type that

cannot be coerced

Numbers not in acceptable range

encodeURI ().decodeURI(),and

similar methods used incorrectly

eva l () function used incorrectly

Q. Elements Network Sources Timeline Profiles Resources Audits I ~I 0 1 >:: 0 d;I ~ ><

6) ? <top frame> ~

O Uncaught SyntaxError: Unexpected token ILLEGAL
>

1. In the red on the left, you can see this is a
SyntaxError. An unexpected character was found.

errors.js:4

2. On the right, you can see that the error happened

in a file called errors .js on line 4.

ERROR HANDLING & DEBUGGING 9

ERROR OBJECTS
CONTI NUED
Please note that these error messages are from the Chrome browser. Other browsers' error messages may vary.

Syntax Error
SYNTAX IS NOT CORRECT

This is caused by incorrect use of the rules of the
language. It is often the result of a simple typo.

MISMATCHING OR UNCLOSED QUOTES

document .write ("Howdyl);

SyntaxError: Unexpect ed EOF

MISSING CLOSING BRACKET

document .getElementByid('page' I

SyntaxErr or : Expected token ') '

MISSING COMMA IN ARRAY

Would be same for missing] at the end

var l ist = ['Item 1', 'Item 2 ' l 'rtem 3'];

SyntaxError : Expected token ']'

MALFORMED PROPERTY NAME

It has a space but is not surrounded by quote marks

user = { f i rst l name: "Ben", lastName: "Lee"};

Synt axError: Expected an identifier but

found 'name ' instead

EvalError
INCORRECT USE OF eval() FUNCTION

The eva l () function evaluates text through the
interpreter and runs it as code (it is not discussed

in this book). It is rare that you would see this type
of error, as browsers often throw other errors when

they are supposed to throw an Eva 1 Error.

8 ERROR HANDLING & DEBUGGING

Ref erenceError
VARIABLE DOES NOT EXIST

This is caused by a variable that is not declared or is

out of scope.

VA RIABLE IS UNDECLARED

var wi dth = 12 ;

var area = width * llt!ftNU! ;
ReferenceError: Can ' t find vari able:
height

NAMED FUNCTION IS UNDEFINED

document.write () ; randomFunction()

ReferenceError : Can't find variable :
randomFunction

UR I Error
INCORRECT USE OF URI FUNCTIONS

If these characters are not escaped in URls, they will

cause an error: / ? & I : ;

CHARACTERS ARE NOT ESCAPED

decodeURI('http : //bbc . com/ news . phplla=l') ;

URlError : URI error

These two pages show JavaScript's seven different types of error objects

and some common examples of the kinds of errors you are likely to see.

As you can tell, the errors shown by the browsers can be rather cryptic.

Type Error
VALUE IS UNEXPECTED DATA TYPE

This is often caused by trying to use an object or
method that does not exist.

INCORRECT CASE FOR document OBJECT

l!Jocument.wri te ('Oops! ');

TypeError: 'undefined' is not a funct ion
(eval uating 'Document.write('Oops! ')')

INCORRECT CASE FOR write() METHOD

document. eJrite('Oops ! ') ;

TypeError: 'undefined' is not a function
(evaluating 'document.Write('Oops! ') ')

METHOD DOES NOT EXIST

var box = {};
box . @Mi}id ;

II Create empty object
II Try to access getArea()

TypeError: 'undefined ' is not a function
(evaluating 'box.getArea()')

DOM NODE DOES NOT EXIST

var el = document .getElementByid(llll) ;
el.innerHTML = 'Mango';

TypeError: 'null' is not an object
(evaluating 'el .innerHTML = 'Mango'')

Error
GENERIC ERROR OBJECT

The generic Error object is the template (or
prototype) from which all other error objects are
created.

RangeError
NUMBER OUTSIDE OF RANGE

If you call a function using numbers outside of its
accepted range.

CANNOT CREATE ARRAY WITH -1 ITEMS

var anArray = new Array(~);

RangeError : Array si ze is not a smal l
enough positive integer

NUMBER OF DIGITS AFTER DECIMAL IN
tofhed() CAN ONLY BE 0-20
var price = 9.99;
price.toFixed(fJI);

RangeError : toFixed() argument must be
between 0 and 20

NUMBER OF DIGITS IN toPrecision() CAN
ONLY BE 1-21
num = 2.3456;
num.toPrecisi on(flJ) ;

RangeError: toPrecision() argument must
be between 1 and 21

NaN
NOT AN ERROR

Note: If you perform a mathematical operation using
a value that is not a number, you end up with the
value of NaN, not a type error.

NOT A NUMBER

var total = 3 * lilllJil ;

ERROR HANDLING & DEBUGGING @

HOW TO DEAL WITH
ERRORS

Now that you know what an error is and how the browser treats them,
there are two things you can do with the errors.

1: DEBUG THE SCRIPT TO FIX ERRORS

If you come across an error while writing a script
(or when someone reports a bug), you will need to

debug the code, track down the source of the error,

and fix it.

You wi ll find that the developer tools available in
every major modern browser will help you with
this task. In this chapter, you will learn about the

developer tools in Chrome and Firefox. (The tools in
Chrome are identical to those in Opera.)

IE and Safari also have their own tools (but there is
not space to cover them all).

@ ERROR HANDLING & DEBUGGING

2: HANDLE ERRORS GRACEFULLY

You can handle errors gracefully using try, catch,

throw, and f i na 1 ly statements.

Sometimes, an error may occur in the script for a

reason beyond your control. For example, you might
request data from a third party, and their server

may not respond. In such cases, it is particularly
important to write error-handling code.

In the latter part of the chapter, you will learn how to

gracefully check whether something will work, and
offer an alternative option if it fails.

A DEBUGGING
WORKFLOW

Debugging is about deduction: eliminating potential causes of an error.
Here is a workflow for techniques you will meet over the next 20 pages.

Try to narrow down where the problem might be, then look for clues.

WHERE IS THE PROBLEM?

First, should try to can narrow down the area where

the problem seems to be. In a long script, this is

especially important.

1. Look at the error message, it tells you:

• The relevant script that caused the problem.

• The line number where it became a problem for

the interpreter. (As you will see, the cause of

the error may be earlier in a script; but this is the

point at which the script could not continue.)

• The type of error (although the underlying cause

of the error may be different).

2. Check how far the script is running.

Use tools to write messages to the console to tell

how far your script has executed.

3. Use breakpoints where things are going wrong.

They let you pause execution and inspect the values

that are stored in variables.

If you are stuck on an error, many programmers

suggest that you try to describe the situation (talking

out loud) to another programmer. Explain what

should be happening and where the error appears

to be happening. This seems to be an effective way

of f inding errors in all programming languages. (If

nobody else is available, try describing it to yourself.)

WHAT EXACTLY IS THE PROBLEM?

Once you think that you might know the rough area

in which your problem is located, you can then try to

find the actual line of code that is causing the error.

1. When you have set breakpoints, you can see if the

variables around them have the values you would

expect them to. If not, look earlier in the script.

2. Break down I break out parts of the code to test

smaller pieces of the functionality.

• Write values of variables into the console.

• Calrfunctions from the console to check if they

are returning what you would expect them to.

• Check if objects exist and have the methods I
properties that you think they do.

3. Check the number of parameters for a function, or

the number of items in an array.

And be prepared to repeat the whole process if the

above solved one error just to uncover another ...

If the problem is hard to find, it is easy to lose track

of what you have and have not tested. Therefore,

when you start debugging, keep notes of what you

have tested and what the result was. No matter

how stressful the circumstances are, if you can,

stay calm and methodical, the problem wi ll feel less

overwhelming and you will solve it faster.

ERROR HANDLING & DEBUGGING 9

BROWSER DEV TOOLS &
JAVASCRIPT CONSOLE

The JavaScript console will tell you when there is a problem with a script,
where to look for the problem, and what kind of issue it seems to be.

These two pages show instructions for opening the

console in all of the main browsers (but the rest of

this chapter will focus on Chrome and Firefox).

CHROME/ OPERA

On a PC, press the F12 key or:

1. Go to the options menu (or three line menu icon)

2. Select Toots or More tools.
3. Select JavaScript Console or Developer Tools
On a Mac press A lt + Cmd + J. Or:

4. Go to the View menu.

5. Select Developer.
6. Open the JavaScript Console or Developer Tools
option and select Console.

INTERNET EXPLORER

Press the F12 key or:

1. Go to the settings menu in the top-right.

2. Select developer tools.

8 ERROR HANDLING & DEBUGGING

Browser manufacturers occasionally change how

to access these tools. If they are not where stated,

search the browser help files for "console."

Fil<

Zoom(100%)

Safdy

Add sit• to St.rt Scr«n

Vie.t downlo•ds Ctrl•J

Managtadd·o_n•----~
F12 devtloper tools ___ __.

Go to pinned sites

The JavaScript console is just one of severa l developer tools that are

found in all modern browsers.

When you are debugging errors, it can help if you

look at the error in more than one browser as they

can show you different error messages.

•
Hide Wtb Inspector \'.Kl

Show Page Sour(e \'.ICU
Show Page Resources \'.ICA

Show Snippet Editor
Show Extension Bulld-er

Start Profiling Jav.SCrlpt \'.()KP
St1rtTimelint Recording ~OICT

\'.ICE

If you open the errors . html file from t he sample

code in your browser, and then open the console,

you will see an error is displayed.

FIREFOX

On a PC, press Ctrl + Shift + Kor:

1. Go to the Firefox menu.

2. Select Web Developer.
3. Open the Web Console.
On a Mac press Alt + Cmd + K. Or:

1. Go to the Tools menu.

2. Select Web Developer.
3. Open the Web Console.

SAFARI

Press Alt + Cmd + C or:

1. Go to the Develop menu.

2. Select Show Error Console.
If the Develop menu is not shown:

1. Go to the Safari menu.

2. Select Preferences.
3. Select Advanced.
4. Check the box that says "Show Develop menu in

menu bar."

ERROR HANDLING & DEBUGGING 8

HOW TO LOOK AT ERRORS
IN CHROME

The console will show you when there is an

error in your JavaScript. It also displays the line

where it became a problem for the interpreter.

e 0 0 D JavaScript & jQuery - Chn1 x

+- -i C [j javascriptbook.com/code/clO/errors.html

Find the area of a wall:

+-+ width

l height

Calculate area ...

Q. Elements Network Sources Timeline Profiles Resources Audits I Console I O 1 >= 0 ~ .. x

<S> 'if' <top frame> • -0-
O Uncaught SyntaxError: Unexpected token ILLEGAL
> e

1. The Console option is selected.

2 . The type of error and the error

message are shown in red.

3. The file name and the line

number are shown on the

right-hand side of the console.

e ERROR HANDLING & DEBUGGING

Note that the line number does

not always indicate where the

error is. Rather, it is where the

interpreter noticed there was a

problem with the code.

errors.js :4

e
If the error stops JavaScript from

executing, the console will show

only one error - there may be

more to troubleshoot once this

error is fixed.

HOW TO LOOK AT ERRORS
IN FIREFOX

8 0 0 JavaScript & jQuery - Chapter 10: Error Handling & Debugging - Console Errors
.--~~~~~~~~~~~

»

1. The Console option is selected.

2. Only the JavaScript and

Logging options need to be

turned on. The Net, CSS, and

Security options show other

information.

+

Find the area of a wall:

+-+ width

! height

Calculate area ...

3. The type of error and the error

message are shown on the left.

4. On the right-hand side of the

console, you can see the name

of the JavaScript file and the line

number of the error.

Note that when debugging any

JavaScript code that has been

minified, it will be easier to

understand if you expand it first.

ERROR HANDLING & DEBUGGING 9

TYPING IN THE CONSOLE
IN CHROME

You can also just type code into the console

and it will show you a result.

8 0 6 C) JavaScript & JQvery - Ch31 x

~ -+ C ID javascriptbook.com/code/clO/

Find the area of a wall:

+-+ w idth

! height

Calculate area ...

e. <Ci' -

Timeline Profiles Resources Audits I Console I
~ l(<top frame> T

> width = 3;
3

> height = 5;
5

> area = width * height ;
15

>

Above, you can see an example

of JavaScript being written

straight into the console. This

is a quick and handy way to test

your code.

8 ERROR HANDLING & DEBUGGING

Each time you write a line, the

interpreter may respond. Here,

it is writing out the value of each

variable that has been created.

Any variable that you create in

the console will be remembered

until you clear the console.

1. In Chrome, the no-entry sign is

used to clear the console.

TYPING IN THE CONSOLE
IN FIREFOX

6 0 0 JavaScript & jQuery - Chapter 10: Error Handling & Debugging
,.-~~~~~~~~~~~...---..

»

.. area = width * height;

... 15

1. In Firefox, the Clear button will

clear the contents of the console.

+

Find the area of a wall:

..+ width

! height

Calculate area ...

This tells the interpreter that it

no longer needs to remember
the variables you have created.

2. The left and right arrows show

which lines you have written, and

which are from the interpreter.

ERROR HANDLING & DEBUGGING 8

WRITING FROM THE
SCRIPT TO THE CONSOLE

Browsers that have a console have a console object, which has several

methods that your script can use to display data in the console.

The object is documented in the Console API.

e 0 0 D ,lwlScripC & JQIJery - Chai x ~

+- ~ C I[] javascriptbook.com/code/clO/console-tog.html

>

You entered 4
Clicked submit •••
Width 3
Height 4
12

1. The console.log() method
can write data from a script

to the console. If you open

console- l og. html, you wil l
see that a note is written to the

console when the page loads.

Find the area of a wall:

Calculate area ...

Timeline Profiles Resources Audits

2 . Such notes can tell you how

far a script has run and what
values it has received. In this

example, the blur event causes

the value entered into a text
input to be logged in the console.

8 ERROR HANDLING & DEBUGGING

console-too . is;l
console-tog.js;6
console-log . js;6

consote-tog.js: ll
console--tog , js:14
consote--loq . js;17
consote-tog . js:20

3. Writing out variables lets you

see what values the interpreter
holds for them. In this example,

the console wil l write out the
values of each variable when the

form is submitted.

-·

LOGGING DATA
TO THE CONSOLE

This example shows several uses

of the console . log () method.

1. The first line is used to indicate
the script is running.

2. Next an event handler waits

for the user leaving a text input,
and logs the value that they
entered into that form field.

JAVASCRIPT

When the user submits the form,
four values are displayed:

3. That the user cl icked submit

4. The value in the width input
5. The value in the height input

6 . The value of the area variable

They help check that you are
getting the values you expect.

The console . log() method

can write several values to the
console at the same t ime, each

separated by a comma, as shown
when displaying the height (5).

You should always remove this

kind of error handling code from
your script before you use it on

a live site.

clO/ js/ console- log.js

G) console.log('And we\'re off ... ');
var $form, width, height, area ;
$form = $('#calculator');

II Indicates script is running

$('form i nput[type="text"]').on(' blur ' , function() { II When input l oses focus
console . log('You entered ', this.value); II Write va l ue to console

}) ; .

$(' #calculator').on('submit', function(e)
e.preventDefault();

~ console.log('Clicked submit . . . ') ;

width = $('#width').val();
© console.log('Width ' +width} ;

height= $('#height').val();
~ console.log('Height ', height);

area = width * height;
@ console. log(area);

$form.append('<p> ' +area+ ' <Ip>')
}) ;

II When the user clicks submit
II Prevent the form submitting
II Indicat e but ton was cl i cked

II Write width to consol e

II Write height t o console

II Wri te area to console

ERROR HANDLING & DEBUGGING e

MORE CONSOLE METHODS

To differentiate between the
types of messages you write

to the console, you can use
three different methods. They

use various colors and icons to
distinguish them.

clO/ js/ console-methods .js

1. con so 1 e . info() can be used
for general information
2. consol e .warn() can be used

for warnings
3. console .er ror () can be used

to hold errors

G) console.info('And we\'re off ... ');

var $form, width, height, area;
$form = $('#calculator ') ;

$(' form input[type="text"]').on('blur', function()
console .warn(' You entered ', this .value);

}) ;

$(' #calculator') .on('submi t', function(e) {
e.preventDefault();

wid t h = $('#width').val ();
height= $('#height').val();

area = width * height;
~ console.error(area);

$form.append('<p class="result">' + area + '<I p>');
}) ;

This technique is particularly

helpful to show the nature of the
information that you are writ ing

to the screen. (In Firefox, make
sure you have the logging option

selected.)

JAVASCRIPT

II Info: scr ipt running

II On blur event
II Warn: what was ent ered

II When form is submitted

II Error: show area

°' Elements Network Sources Timeline Profiles Resources Audits »

~ 'ii <top frame> T

C> And we're off ,,,
You entered 12
You ent ered 14

0 • 168
>

@ ERROR HANDLING & DEBUGGING

console-methods . is ;l
console-methods. js :7
console- met hods . is;?

console-met hods . js ;17
..,

GROUPING MESSAGES

1. If you want to write a set of

related data to the console, you

can use the console. group ()

method to group the messages

together. You can then expand

and contract the results.

It has one parameter; the name

that you want to use for the

group of messages. You can

then expand and collapse the

contents by cl icking next to the

group's name as shown below.

2. When you have finished

writing out the results for the

group, to indicate the end of the

group the console .groupEnd ()

method is used.

JAVASCRIPT

var $form = $('#calculator');

$form.on('submit', function(e)
e.preventDefault();
con so 1e .1 og ('Cl i eked submit. . . ') ;

var width, height, area;
width= $('#width') .val();
height= $(' #height') .val();
area = width * height;

CI) console .group('Area calculations');
console .i nfo('Width ' , width);
console .info('Height ', height);
consol e. l og(area);

cY console.groupEnd();

$form.append('<p>' +area+ '<I p> ');
}) ;

clO/ j s/ console-group.js

II Runs when submit is pressed

II Show the button was clicked

II Start group
II Write out the width
II Write out the height
.II Write out the area
II End group

Q. Elements Network Sources Timeline Profiles Resources Audits) Console I
(Si) 'i' <top frame> T

Clicked submit ...
"' Area calculations

l 0 Width 12
0 Height 14

168
>

console-gcoup,js ;S
conso\e-group. is;l2
coosole-group,js:13
conso\e=group . 1s;14
cooso\e-gcouo . js:lS

ERROR HANDLING & DEBUGGING 8

WRITING TABULAR DATA

In browsers that support it, the
console. table () method lets

you output a table showing:

• objects
• arrays that contain other

objects or arrays

clO/ js/ console-table. j s

The example below shows data
from the contacts object. It

displays the city, telephone
number, and country. It is
particularly helpful when the

data is coming from a third party.

The screen shot below shows
the result in Chrome (it looks the

same in Opera). Safari will show
expanding panels. At the time

of writing Firefox and IE did not
support this method.

JAVASCRIPT

var contacts = {
"London": {

II Store contact info in an object literal

"Tel": "+44 (0)207 946 0128",
"Country": "UK"},

"Sydney": {
"Tel" : "+61 (0)2 7010 1212",
"Country": "Australia"},

"New York" : {
"Tel": "+1 (0)1 555 2104",
"Country": "USA"}

G) console.table(contacts); II Write data to console

var city, contactDetails;
contactDetails = '';

II De~lare variabl es for page
II Hol d details written t o page

$.each(contacts , function(city, contacts) { II Loop t hrough data to
contactDetails += city+ ': ' +contacts.Tel + '<br I>' ;

}) ;
$('h2').after('<p>' + contactDetails + '<Ip>'); II Add data to the page

0. Elements Network Sources Tlmeline Profiles Resources Audits I Console I
& 'ii' <top frame> ...

(index)
London
Sydney
New York

Tel
"+44 (0)207 946 0128"
"+61 (0)2 7010 1212"
"+l (0)1 SSS 2104"

Country
"UK"
"Aust ralia"
"USA"

>:: 0 i!;;I x ..

console-table.js:l3
)

8 ERROR HANDLING & DEBUGGING

WRITING ON A CONDITION

Using the console. assert()

method, you can test if a

condition is met, and write to the

console only if the expression

evaluates to false.

JAVASCRIPT

1. Below, when users leave an

input, the code checks to see if

they entered a value that is 10

or higher. If not, it will write a

message to the screen.

var $fonn, width, height, area;
$form= $('#calculator');

$('form input[type="text"] ') . on('bl ur', function() {

2. The second check looks to

see if the calculated area is a

numeric value. If not, then the

user must have entered a value

that was not a number.

clO/ js/ console-assert . j s

II The message only shows if user has entered number less than 10
CD console.assert(this.value > 10, 'User entered less than 10');

}) ;

$('#calculator') .on('submit', function(e)
e.preventDefault();
console.log('Clicked submit ... ');

width= $('#width').val();
height= $('#height').val() ;
area = width * height;
II The message on ly shows if user has not entered a number

~ console.assert($.isNumeric(area), 'User entered non-numeric value');

$form.append('<p>' +area+ '<I p>');
}) ;

Q. Elements Network Sources Timeline Profiles Resources Audits I Console I 0 2 >:: 0 d;I,. x

(5) U' <top frame> .,

f) ., Assertion failed: User entered less than 10
(anonymous function)
x.event.dispatch
v.handle

Clicked subm.it • ••
)

consol e-assert.js:6
conso\e-assert . js:6

iguerv. i s:5095
jguery.j s :4766

coosole-assert. js:ll

ERROR HANDLING & DEBUGGING 8

BREAKPOINTS

You can pause the execution of a script on any
line using breakpoints. Then you can check the

va lues stored in variables at that point in time.

lso ... co. .. s~
-. ~ Jav .. criptbook.com

-. c:J code/clO
•D ess
-. D Js

~ breakpoints.

• ~ ajax.googlupls.c
• 0 fonts.google•pls.co

8 ERROR HANDLING & DEBUGGING

CHROME

1. Select the Sources option.

2. Select the script you are
working with from the left-hand

pane. The code will appear to

the right.
3. Find the line number you want
to stop on and click on it.

4 . When you run the script, it
wi ll stop on this line. You can

now hover over any variable to

see its value at that time in the

script's execution.

FIREFOX

1. Select the Debugger option.
2 . Select the script you are

working with from the left-hand

pane. The code will appear to

the right.
3. Find the line number you want
to stop on and click on it.

4 . When you run the script, it
will stop on this line. You can

now hover over any variable to

see its value at that time in the

script's execution.

STEPPING THROUGH CODE

When you have set breakpoints,

you will see that the debugger
lets you step through the code
line by line and see the values

or variables as your script

progresses.

When you are doing this, if
the debugger comes across a
function, it will move onto the

next line after the function.
(It does not move to where

the function is defined.) This

behavior is sometimes called
stepping over a function.

If you want to, it is possible

to tell the debugger to step
into a function to see what is

happening inside the function.

If you set multiple breakpoints, you can step
through them one-by-one to see where values

change and a problem might occur.

Chrome and Firefox both have very similar tools for letting you step

through the breakpoints.

II ...
•

@ ©

1. A pause sign shows until the interpreter comes across a breakpoint.
When the interpreter stops on a breakpoint, a play-style button is then

shown. This lets you tell the interpreter to resume running the code.

2. Go to the next line of code and step through the lines one-by-one
(rather than running them as fast as possible).

3. Step into a function call. The debugger will move to the first line in

that function.

4. Step out of a function that you stepped into. The remainder of the
function will be executed as the debugger moves to its parent function.

ERROR HANDLING & DEBUGGING 8

CONDITIONAL
BREAKPOINTS

You can indicate that a breakpoint should be
triggered only if a condition that you specify is

met. The condition can use existing variables.

f • Jd ,) .~ •

C.: 9 ilr<!il • I ,.ldt~ ot ~el-

<.) 0

8 ERROR HANDLING & DEBUGGIN G

CHROME

1. Right-click on a line number.
2 . Select Add Conditional

Breakpoint...

3. Enter a condition into the
popup box.

4 . When you run the script , it
wi ll only stop on this line if the

condition is true (e.g., if area is
less than 20).

FIREFOX

1. Right-cl ick on a line of code.

2. Select Add conditional
breakpoint.

3. Enter a condition into the

popup box.
4. W hen you run the script, it

w ill stop on this line only if the
condition is true (e.g., if area is
less than 20).

DEBUGGER KEYWORD

You can create a breakpoint

in your code using just the
debugger keyword. When the
developer tools are open, this

wi ll automatically create a
breakpoint.

You can also place the debugger
keyword within a conditional
statement so that it only triggers

the breakpoint if the condition is
met. This is demonstrated in the

code below.

It is particularly important to
remember to remove these
statements before your code

goes live as this could stop
the page running if a user has

developer tools open.

JAVASCRIPT clO/ js/ breakpoints .js

var $form, width, height, area;
$form = $(' #calculator') ;

$(' #calculator ').on('submi t' , functi on(e)
e.preventDefault();
consol e. log('Clicked submit. . . ') ;

width = $('#width').val ();
height = $('#height').val() ;
area = (width* he ight);

if (area < 100) {
debugger; II A breakpoint is set i f the devel oper tools are open

$form .append('<p> ' +area+ '<I p>');
}) ;

0. Elements Network I Sources I Timeline Profiles Resources Audits Console

[1!]1 breakpoints.JS x [Ell Ill 111> ~
11 - ~-.--.-----------------! ~

... • . .
31
~---.,,..-....,.,,,,;q ~"'"'""~

~ch ~pression_s _
4 $('#calcul ator ') . on(' submit' , function(e) { ll> CallStack ----
5 console. log(' Clicked submit • •• ');
6
7 a,
9

width = $('#width '). val();
height = $('#height '). val();
area = (width * height);

- -
II> Scope Variables -----------!
II> Breakpoints

... DOM Breakpoints

11> XHR Breakpoints + 181
11 if (area < 100) {
12 1U1=:~~-~r:=:::~==]/'j_,/]AUb~.g~!(:u~:isetii:]1;ffJt~hei:!dll~IM~tY-li~11>1E~vent Lis_.Eener Breakpoints
13 [} ; II> Workers
14 ··~~~-1-~~~~~~~~~~----i

{} Line 12, Column 1

If you have a development server, your debugging code can be placed in conditional statements that check

whether it is running on a specific server (and the debugging code only runs if it is on the specified server).

ERROR HA NDLING & D EBUGGING @

HANDLING EXCEPTIONS

If you know your code might fail, use try, catch, and finally.
Each one is given its own code block.

try {
II Try to execute this code
catch (exception) {
II If there is an exception, run this code
fina ll y {
II This always gets executed

TRY

First, you specify the code
that you think might throw an

exception within the try block.

If an exception occurs in this

section of code, control is
automatically passed to the

corresponding catch block.

The try clause must be used in
this type of error handling code,

and it should always have either
a catch, fi na 1 ly, or both.

If you use a continue, break, or

return keyword inside a try, it
will go to the f i na 11 y option.

8 ERROR HANDLING & DEBUGGING

CATCH
If the try code block throws an

exception, catch steps in with an
alternative set of code.

It has one parameter: the error

object. Although it is optional,
you are not handling the error if

you do not catch an error.

The ability to catch an error can
be very helpful if there is an issue

on a live website.

It lets you tell users that

something has gone wrong
(rather than not informing them

why the site stopped working).

FI NALLY
The contents of the fi na 11 y

code block wil l run either

way - whether the try block
succeeded or failed.

It even runs if a return keyword
is used in the try or catch block.

It is sometimes used to clean up
after the previous two clauses.

These methods are similar
to the .done() , . fail() , and

. a 1 ways() methods in jQuery.

You can nest checks inside each
other (place another t ry inside a

catch), but be aware that it can

affect performance of a script.

TRY, CATCH, FINALLY

This example displays JSON data
to the user. But, imagine that the
data is coming from a third party
and there have been occasional
problems with it that could
cause the page to fail.

This script checks if the JSON
can be parsed using a try block
before trying to display the
information to the users.

JAVASCRIPT

If the try statement throws an
error (because the data cannot
be parsed), the code in the catch
code block will be run, and the
error will not prevent the rest of
the script from being executed.

The catch statement creates
a message using the name and
message properties of the Error
object.

The error will be logged to the
console, and a friendly message
will be shown to the users of
the site. You could also send
the error message to the server
using Ajax so that it could
be recorded. Either way, the
f i na 11 y statement adds a link
that allows users to refresh the
data they are seeing.

clO/ js/ try-catch-finally.js

response= ' {"deals" : [{"title" : "Farrow and Ball", . . . 'II JSON data

if (response) {
try{

var dealOata = JSON . parse(response);
showContent (dealData);

}cat ch(e) {
var errorMessage = e.name + ' ' + e .me ssage;
console . log(errorMessage);
feed.innerHTML = 'Sorry, cou l d not l oad

finally {

II Try to par se J SON
II Show J SON dat a

II Crea t e error msg
II Show devs msg

dea ls' <lem>; II Users msg

var l i nk= document . creat eEl ement('a'); II Add r efresh l i nk
l ink. i nnerHTML = ' rel oad<la>';
f eed.appendChi l d{link);

Q. Elements Network Sources Timeline Profiles Resources Audits I Console I
~ 'tr' <top frame> T

SyntaxError Unexpected end of input try-catch- f inally. js:l4
>

ERROR HANDLING & DEBUGGING s

THROWING ERRORS

If you know something might cause a problem for your script, you can
generate your own errors before the interpreter creates them.

To create your own error, you use the following line:

throw new Error(1 message 1
) ;

Being able to throw an error at the time you know
there might be a problem can be better than letting

that data cause errors further into the script.

If you are working with data from a third party, you
may come across problems such as:

• JSON that contains a formatting error

• Numeric data that occasionally has a non
numeric value

• An error from a remote server

• A set of information with one missing value

Bad data might not cause an error in the script
straight away, but it could cause a problem later on.

In such cases, it helps to report the problem straight
away. It can be much harder to find the source of the

problem if the data causes an error in a different part

of the script.

@ ERROR HANDLING & DEBUGGING

This creates a new Error object (using the default
Error object). The parameter is the message you

want associated with the error. This message should
be as descriptive as possible.

For example, if a user enters a string when you

expect a number, it might not throw an error
immediately.

However, if you know that the application will try to
use that value in a mathematical operation at some

point in the future, you know that it wi ll cause a
problem later on.

If you add a number to a string, it will result in a

string. If you use a string in any other mathematical

calculations, the result would be NaN. In itself, NaN is
not an error; it is a value that is not a number.

Therefore, if you throw an error when the user enters

a value you cannot use, it prevents issues at some
other point in the code. You can create an error that

explains the problem, before the user gets further

into the script.

THROW ERROR FOR NaN

If you try to use a string in a
mathematical operation (other
than in addition), you do not get
an error, you get a special value
called NaN (not a number).

JAVASCRIPT

var width = 12;
var height = 'test';

In this example, a try block
attempts to calculate the area of
a rectangle. If it is given numbers
to work with. the code will run.
If it does not get numbers, a
custom error is thrown and the
catch block displays the error.

By checking that the results
are numeric, the script can fail
at a specific point and you can
provide a detailed error about
what caused the problem (rather
than letting it cause a problem
later in the script).

clO/j s/throw. j s

II width var i able
II height va r iable

function calculateArea(width, height)
try {

var area = width * height;
if (!isNaN(area)) {

return area;
else {

II Try to calculate area
II If it is a number
II Return the area

throw new Error('cal culateArea() received
II Otherwise th row an error

i nvalid number');
}
catch(e) {
consol e. l og(e.name +' ' + e.message);
return 'We were unable to calculate the

II If the re was an error
II Show error in console

area.'; II Show users a message

I/ TRY TO SHOW THE AREA ON THE PAGE
document.getElementByld(' area ').innerHTML calculateArea(width, height);

There are two different errors
shown: one in the browser
window for the users and
another in the console for the
developers.

This not only catches an error
that would not have been thrown
otherwise, but it also provides a
more descriptive explanation of
what caused the error.

Ideally, form validation, which
you learn about in Chapter 13,
would solve this kind of issue. It
is more likely to occur when data
comes from a third party.

ERROR HANDLING & DEBUGGING 9

DEBUGGING TIPS

Here are a selection of practical tips that you
can try to use when debugging your scripts.

ANOTHER BROWSER
Some problems are browser

specific. Try the code in another
browser to see which ones are

causing a problem.

ADD NUMBERS

Write numbers to the console
so you can see which the items

get logged. It shows how far your
code runs before errors stop it.

STRIP IT BACK

Remove parts of code, and strip

it down to the minimum you
need. You can do this either by

removing the code altogether, or
by just commenting it out using

multi-line comments:

/* Anything between these

characters is a cofllllent */

EXPLAINING THE CODE

Programmers often report

finding a solution to a problem
while explaining the code to

someone else.

8 ERROR HANDLING & DEBUGGING

SEARCH
Stack Overflow is a Q+A site for
programmers.

Or use a traditional search

engine such as Google, Bing, or
DuckDuckGo.

CODE PLAYGROUNDS

If you want to ask about

problematic code on a forum, in

addition to pasting the code into

a post, you could add it to a code
playground site (such as

JSBin.com, JSFiddle. com, or
Dabbl et. corn) and then post a
link to it from the forum.

(Other popular playgrounds

include CSSDeck. com and

Code Pen. com - but these sites

place more emphasis on show
and tell.)

VALIDATION TOOLS
There are a number of on line
validation tools that can help you

try to find errors in your code:

JAVASCRIPT

http://www.jslint.com
http://www.jshint . com

JSON

http:// www.jsonlint.com

JQUERY

There is a jQuery debugger
plugin available for Chrome

which can be found in the
Chrome web store.

GO BACK TO BASICS

JavaScript is case sensitive so

check your capitalization.

If you did not use var to declare

the variable, it w ill be a global
variable, and its value could be
overwritten elsewhere (either in

your script or by another script
that is included in the page).

If you cannot access a variable's
value, check if it is out of scope,

e.g., declared within a function

that you are not w ithin.

Do not use reserved words or

dashes in variable names.

Check that your single I double
quotes match properly.

Check that you have escaped
quotes in variable values.

Check in the HTML that values
of your id attributes are unique.

COMMON ERRORS

Here is a list of common errors you might find

with your scripts.

MISSED/ EXTRA
CHARACTERS

Every statement should end in a

semicolon.

Check that there are no

missing closing braces } or
parentheses) .

Check that there are no commas
inside a , } or ,) by accident.

Always use parentheses to

surround a condition that you

are testing.

Check the script is not missing
a parameter when call ing a

function.

undefined is not the same

as nu 11 : nu 11 is for objects,

undefi ned is for properties,
methods, or variables.

Check that your script has
loaded (especially CDN fi les).

Look for conflicts between

different script files.

DATA TYPE ISSUES

Using= rather than == will assign

a value to a variable, not check

that the values match.

If you are checking whether
values match, try to use strict

comparison to check datatypes
at the same time. (Use ===

rather than ==.)

Inside a switch statement. the

values are not loosely typed (so

their type will not be coerced).

Once there is a match in a switch

statement, all expressions will be
executed until the next br eak or

return statement is executed.

The replace() method only

replaces the first match. If you
want to replace all occurrences,

use the global flag.

If you are using the parse Int()
method, you might need to pass

a radix (the number of unique

digits including zero used to
represent the number).

ERROR HANDLING & DEBUGGING 8

If you understand execution contexts (which have two

stages) and stacks, you are more likely to find the error

in your code.

Debugging is the process of finding errors. It involves a

process of deduction.

The console helps narrow down the area in which the

error is located, so you can try to find the exact error.

JavaScript has 7 different types of errors. Each creates

its own error object, which can tell you its line number

and gives a description of the error.

If you know that you may get an error, you can handle

it gracefully using the try, catch, finally statements.

Use them to give your users helpful feedback.

& DEBUGGING

Content panels allow you to showcase extra information
within a limited space. In this chapter, you will see several
examples of content panels that also give you practical

insight into creating your own scripts using jQuery.

In this chapter, you will see how to create many types of content panels: accordions, tabbed

panels, modal windows (also known as a lightboxes), a photo viewer, and a responsive slider.

Each example of a content panel also demonstrates how to apply the code you have learned

throughout the book so far in a practical setting.

Throughout the chapter, reference w ill be made to more complex jQuery plugins that extend

the functionality of the examples shown here. But the code sampies in this chapter also show

how it is possible to achieve techniques you will have seen on popular websites in relatively

few lines of code (without needing to rely on plugins written by other people).

8 CONTENT PANELS

ACCORDION

An accordion features titles which, when clicked,

expand to show a larger panel of content.

MODAL W INDOW

When you cl ick on a link for a modal window (or

"l ightbox"), a hidden panel wi ll be displayed.

RESPONSIVE SLIDER

The slider allows you to show panels of content that

sl ide into view as the user navigates between them.

THEY SAY NO TWO
MARSHMALLOWS

ARE THE SAME ...

A.I k~t our (he()" at iMciroicor
~do. Thain &«lust they
crafl Qeb dd.ldoo, Wtdt
inJMduall)' Ly hand 11slo1t
a.ll·nat11ral ;nsrrecliwts.

TABBED PANEL

Tabs automatically show one panel, but when you

click on another tab, the panel is changed.

PHOTO VIEWER

Photo viewers display different images within the

same space when the user clicks on the thumbnails.

THE FLOWER SE RIES

•

!At,....~,...

ftH"CWtl>
~.-...,,.
-~~toe~ ---__ _,,ilo;o'ol

::-.:.~I')'.--- · .. ___ _,,..,
~."""'" ,,_,.,,..
._......,,~-

~ -
)s.1$/ lhc.~

CREATING A JQUERY PLUGIN

The final example revisits the accordion (the first

example) and turns it into a jQuery plugin.

CONTENT PANELS 8

SEPARATION
OF CONCERNS

As you saw in the introduction to this book, it is considered good practice
to separate your content (in HTML markup), presentation (in CSS rules),

and behaviors (in JavaScript).

In general, your code should reflect that:

• HTML is responsible for structuring content

• CSS is responsible for presentation

• JavaScript is responsible for behavior

Enforcing this separation produces code that is

easier to maintain and reuse. While this may already

be a familiar concept to you, it's important to

remember as it is very easy to mix these concerns in

w ith your JavaScript. As a rule, edit ing your HTML

templates or stylesheets should not necessitate

editing your scripts and vice versa.

9 CONTENT PANELS

You can also place event listeners and cal ls to

functions in JavaScript files rather than adding them

to the end of an HTML document.

If you need to change the styles associated with an

element, rather than having styles written in the

JavaScript, you can update the value of the cl ass

attributes for those elements. In turn, they can

trigger new rules from the CSS file that change the

appearance of those elements.

W hen your scripts access the DOM, you can

uncouple themJrom the HTML by using cl ass

selectors rather than tag selectors.

ACCESSIBILITY
& NO JAVASCRIPT

When writing any script, you should think about those who might be
using a web page in different situations than you.

ACCESSIBILITY

Whenever a user can interact with an element:
• If it is a link, use <a>

• If it acts like a button, use a button

Both can gain focus, so users can move between

them focusable elements using the Tab key (or other
non-mouse solution). And although any element can
become focusable by setting its tabi ndex attribute,

only <a> elements and some input elements fire a
click event when users press the Enter key on their

keyboard (the ARIA ro 1e= 11 button 11 attribute will
not simulate this event).

W:iilftll

<!DOCTYPE html><html class= 11 no-js"> •••
<body>

NO JAVASCRIPT

This chapter's accordion menu, tabbed panels,
and responsive slider all hide some of their content

by default. This content would be inaccessible to
visitors that do not have JavaScript enabled if we

didn't provide alternative styling. One way to solve

this is by adding a c 1 ass attribute whose value is
no-js to the opening <html> tag. This class is then
removed by JavaScript (using the repl ace() method

of the String object) if JavaScript is enabled.
The no-j s class can then be used to provide styles

targeted to visitors who do not have JavaScript
enabled.

cll/no-js.html

<div class= 11 js-warning 11 >You must enable JavaScript to buy from us</ div>

<!-- Turn off your JavaScript to see the di f f erence -->
<scri pt src="js/ no-js.js"></script>

</body>

</ html >

JAVASCRIPT

var el Oocument = document.documentElement;

cll/js/no-js. js

elDocument . className = el Document .c lassName.replace(/ (Al\s)no- js(\s l $) / , '$1');

CONTENT PANELS e

ACCORDION

When you click on the title of an accordion, its corresponding panel

expands to reveal the content.

An accordion is usually created
within an unordered list (in
a <u l >element). Each <l i >

element is a new item in the

accordion. The items contain:

• A visible label (in this
example, it is a <button>)

• A hidden panel holding the
content (a <div>)

Clicking a label prompts the
associated panel to be shown

(or to be hidden if it is in view).

To just hide or show a panel,
you could change the value

of the cl ass attribute on the
associated panel (triggering a
new CSS rule to show or hide it).

But, in this case, jQuery will be

used to animate the panel into

view or hide it.

HTMLS introduces <details>

and <sumary> elements to
create a similar effect. but (at the

time of writing) browser support
was not widespread. Therefore,

a script like this would still be

used for browsers that do not

support those features.

8 CONTENT PANELS

Other tabs scripts include liteAccordion and zAccordion.

They are also included in jQuery UI and Bootstrap.

ACCORDION WITH ALL PANELS CO LLAPSED

LABEL 1

LABEL 2

LABEL 3

COLLAPSED

COLLAPSED

COLLAPSED

ACCORDION WITH SECOND PANEL EXPANDED

LABEL 1 .

LABEL 3

COLLAPSED

CONTENT 2
EXPANDED

COLLAPSED

AN IMATING CONTENT WITH SHOW, HIDE, AND TOGGLE

jQuery's .show(}, .hide{}, and

• toggle () methods animate the

showing and hiding of elements.

jQuery calculates the size of the
box, including its content, and
any margins and padding. This

helps if you do not know what
content appears in a box.

(To use CSS animat ion, you

would need to calculate the box's

height, margin and padding.)

I BOX HEOGHT

• MARGIN • BORDER • PADDING

• togg 1 e () saves you writ ing
conditional code to tell whether

the box is already being shown

or not. (If a box is shown, it hides
it, and if hidden, ·it will show it.)

When the page loads, CSS rules

are used to hide the panels.

Clicking a label prompts the

hidden panel that follows it to
animate and reveal its full height.

This is done using jQuery.

Clicking on the label again would

hide the panel.

The three methods are all
shorthand for the animate ()

method. For example, the

show() method is shorthand for:

$(' . accor di on-panel ')
. animate({

}) ;

height : 'show ' ,
paddingTop: ' show ' ,
paddi ngBott om: 'show',
mar ginTop : 'show',
marginBottom: ' show '

CONTENT PANELS 8

CREATING AN ACCORDION

Below you can see a diagram, rather like a f lowchart.

These diagrams have two purposes. They help you:

i) Follow the code samples; the numbers on the
diagram correspond with the steps on the right,
and the script on the right-hand page. Together, the
diagrams, steps, and comments in the code should
help you understand how each example works.

ii) Learn how to plan a script before coding it.

This is not a "formal" diagram style, but it gives you

a visual idea of what is going on with the script.
The diagrams show how a collection of small,
individual instructions achieve a larger goal, and

if you follow the arrows you can see how the data
flows around the parts of the script.

0

e
e
0

Event: c 1 i ck on tab

J

ANONYMOUS FUNCTION:
Shows/hides the corresponding panel

Prevent default action of button

I
Get button user clicked on

I
Get accordion panel after that button

' l
' I Show panel

+
I

Is panel being
animated?

\

Is panel visible?

' I Hide panel

Some programmers use Unified Modeling Language

or class diagrams - but they have a steeper learning

curve, and these flowcharts are here to help you see
how the interpreter moves through the script.

0 CONTENT PANELS

Now let's take a look at how the diagram is

translated into code. The steps below correspond
to the numbers next to the JavaScript code on the
right-hand page and the diagram on the left.

1. A jQuery col lection is created to hold elements

whose cl ass attribute has a value of accordion.

In the HTML you can see that this corresponds to
the unordered list element (there could be several

lists on the page, each acting as an accordion).
An event listener waits for the user to click on one
of the buttons whose cl ass attribute has a value of

accordion-control . This triggers an anonymous
function.

2. The preventDefault () method prevents

browsers treating the the button like a submit

button. It can be a good idea to use the
preventDefaul t () method early in a function so

that anyone looking at your code knows that the
form element or link does not do what they might
expect it to.

3. Another jQuery selection is made using the

this keyword, which refers to the element the user

clicked upon. Three jQuery methods are applied to

that jQuery selection holding the element the user
clicked on.

4 •• next (' • accordion-panel ') selects the next

element with a class of accordion-panel .

5 .. not (':animated') checks that it is not in the
middle of being animated. (If the user repeatedly

clicks the same label, this stops the . s 1 i deToggl e ()
method from queuing multiple animations.)

6 . • s l i deToggl e() will show the panel if it is

currently hidden and will hide the panel if it is
currently visible.

1111$11

<ul class="accordion">

<button class="accordion-control">Classics<lbutton>
<div class="accordion-panel">Panel content goes here ... <ldiv>

<lli>

<button class="accordion-control">The Flower Series<lbutton>
<div class="accordion-panel">Panel content goes here ... <ldiv>

<lli>

<button class="accordion-control">Salt O' the Sea<lbutton>
<div class="accordion-panel">Panel content goes here ... <ldiv>

<lli>
<lul>

el l/accordion.html

cl l/css/accordion.css

.accordion-panel {
display: none; }

JAVASCRIPT

G) $(' .accordion ') . on('cl i ck',
@ e.preventDefault() ;
® $(this)

cll/js/accordi on.js

' .accordion-control', funct i on(e){ II When clicked
II Prevent def ault action of button

~ .next('. accordion-panel ')
II Get the element the user clicked on
II Select following panel

~ .not(' :animated ') II If it is not currently animating
© .sl ideToggl e() ; II Use slide toggle to show or hide it

}) ;

Note how steps 4, 5, and 6 are chained off the same jQuery selection.

You saw a screenshot of the accordion example on p492, at the start of this section.

CONTENT PANELS 8

TABBED PANEL

When you click on one of the tabs, its corresponding panel is shown.

Tabbed panels look a little like index cards.

You should be able to see all of

the tabs, but:

• Only one tab should look

active.

• Only the panel that

corresponds to the act ive tab

should be shown (all other

panels should be hidden).

The tabs are typically created

using an unordered list. Each

<l i > element represents a tab

and within each tab is a link.

The panels follow the unordered

list that holds the tabs, and each

panel is stored in a <div>.

To associate the tab to the panel:

• The link in the tab, like all

links, has an href attribute.

• The panel has an id attribute.

Both attributes share the same

value. (This is the same principle

as creating a link to another

location within an HTML page.)

8 CONTENT PANELS

Other tabs scripts include Tabslet and Tabulous.

They are also included in jQuery UI and Bootstrap.

FIRST TAB SELECTED

SECOND TAB SELECTED

- TAB 1 HIGHLIGHTED

CONTENT

PANELl

SHOWING

PANEL 2 HIDDEN
PANEL 3 HIDDEN

*H:fH *M='* - TAB 2 HIGHLIGHTED

PANEL 1 HIDDEN

CONTENT

PANEL 2
SHOWING

When the page loads, CSS is

used to make the tabs sit next to
each other and to indicate which
one is considered active.

CSS also hides the panels, except
for the one that corresponds

with the active tab.

When the user clicks on the
link inside a tab, the script uses

jQuery to get the value of the
href attribute from the link. This

corresponds to the id attribute

on the panel that should be
shown.

The script then updates the

values in the cl ass attribute
on that tab and panel, adding a

value of active. It also removes
that value from the tab and panel

that had previously been active.

If the user does not have
JavaScript enabled, the link in

the tab takes the user to the
appropriate part of the page.

CONTENT PANELS 8

CREATING TAB PAN ELS

0 Select all sets of tabs on page The flowchart shows the steps that are involved

• in creating tabs when they are found in the HTML.

'i·'·l!"'iMll§iil.ijifii'·JIU+I Below, you can see how these steps can be
(1 translated into code:

ANONYMOUS FUNCTION:
Setup this group of tabs 1. A jQuery selection picks all sets of tabs w ithin

Create variables:
the page. The . each () method calls an anonymous

$thi s: current list function that is run for each set of tabs (like a loop).

e $tab: current ly act ive tab The code in the anonymous function deals with
$1 ink: link element in act ive tab
$panel: value of href attribute on link one set of tabs at a time, and the steps would be

• repeated for each set of tabs on the page.
I

f) Event : cl i ck on tab control 2. Four variables hold details of the active tab:

I i) $this holds the current set of tabs.

ANONYMOUS FUNCTION
ii) $tab holds the currently active tab.

Show this tab and hide others The . find() method selects the active tab.

0
iii) $1 ink holds the <a> element within that tab.

Prevent default action of link
iv) $panel holds the value of the href attribute for

I
Create variables: the active tab (this variable will be used to hide the e $1 i nk: jQuery object containing link panel if the user selects a different one). e id: value of href attribute from tab

3. An event listener is set up to check for when the user just clicked

• user clicks on any tab w ithin that list. When they do,
I

it runs another anonymous function.

0 '
Is this item 4 . e. preventDef au 1 t () prevents the link that users

active? clicked upon taking them to that page.

l 5. Creates a variable called $1 ink to hold the current

~ link inside a jQuery object.
Remove active from cl ass on tab 6. Creates a variable called i d to hold the value of e I the href attribute from the tab that was clicked. It is

Remove active from cl ass on panel
called id because it is used to select the matching

I
Set tab user clicked on as active

content panel (using its id attribute).

0 I 7. An if statement checks whether the id variable

Set corresponding panel as active contains a value, and the current item is not active.

• If both conditions are met:
I

8 . The previously act ive tab and panel have the Update $panel & $t ab variables
cl ass of act i ve removed (which deactivates the tab

and hides the panel).

GO TO NEXT SET O F TABS
) 9. The tab that was clicked on and its corresponding

panel both have active added to their cl ass

attributes (which makes the tab look act ive and

displays its corresponding panel, which was hidden).

At the same time, references to these elements are

stored in the $pane 1 and $tab variables.

8 CONTENT PANELS

IHIMI ell/ tabs . html

<ul class="tab-list">
<li class="acti ve">Descri ption<la><lli>
Ingredients<la><lli>
Del i very<la><lli>

<l ul>
<div class="tab- panel active" id="tab-l">Content l . .. <ldiv>
<div class="tab-panel" id="tab-2">Content 2 . . . <ldiv>
<d iv class="tab-panel" id="tab-3">Content 3 . . . <ldiv>

.tab-panel
display: none;}

. tab-panel.active {
display: block;}

cl l/css/tabs . css

JAVASCRIPT cll/j s/tabs . j s

G) $(' . tab-1 ist') .each(function() { II Find l ists of t abs
II Store this l ist

®
@
®
©

(j)

@{

@{

var $this = $(this);
var $tab $this . find('li .active');
var $link $tab.find('a');
var $panel = $($link.attr('href'));

$thi s.on(' click ' , ' .tab-control', function(e)
e.preventDefault();
var $link $(this);
var id = this.hash;

if (id && !$link.is('. active'))
$panel . removeClass('active');
$tab.removeClass('active');

II Get the active list item
II Get link from active tab
II Get active panel

{ II When click on a tab
II Prevent li nk behavior
II Store the current link
II Get href of clicked tab

II If not currently active
II Ma ke panel i nact ive
II Make tab inactive

$panel = $(id).addClass(' active'); II Make new panel act ive

}
}) ;

}) ;

$tab = $l i nk . parent() .addClass('active '); II Make new tab active

CONTENT PANELS 9

MODAL WINDOW

A modal window is any type of content that appears "in front of" the rest
of the page's content. It must be "dosed" before the rest of the page can
be interacted with.

In this example, a modal window
is created when the user clicks

on the heart button in the top
left-hand corner of the page.

The modal window opens in

the center of the page, allowing
users to share the page on social

networks.

The content for the modal

window will typically sit within
the page, but it is hidden when

the page loads using CSS.

JavaScript then takes that
content and displays it inside
<div> elements that create the

modal window on top of the
existing page.

Sometimes modal w indows

will dim out the rest of the
page behind them. They can

be designed to either appear
automatically when the page has

finished loading or they can be
triggered by the user interacting

with the page.

9 CONTENT PANELS

Other examples of modal window scripts include Colorbox (by Jack L.

Moore), Lightbox 2 (by Lokesh Dhakar), and Fancybox (by Fancy Apps).
They are also included in jQuery UI and Bootstrap.

A design pattern is a term

programmers use to describe a
common approach to solving a

range of programming tasks.

This script uses the module
pattern. It is a popular way to

write code that contains both
public and private logic.

<div class•"modal">

Once the script has been
included in the page, other

scripts can use its public
methods: open () , cl ose() , or

center() . But users do not need

to access the variables that
create the HTML, so they remain

private (on p505 the private
code is shown on green).

</div>

<button rol e•"button" class• "modal-c l ose ">close</button>

Users of this script only need to

know how the open() method

works because:

• c 1 ose () is called by an event
listener when the user clicks

on the close button.

• center() is called by the
open() method and also by

an event listener if the user

resizes the window.

When you call the open()

method, you specify the content

that you want the modal window
to contain as a parameter (you

can also specify its width and
height if you want).

In the diagram, you can see that

the script adds the content to the

page inside <div> elements.

Using modules to build parts of
an application has benefits:

• It helps organize your code.

• You can test and reuse the
individual parts of the app.

• It creates scope, preventing
variable /method names

clashing with other scripts.

This modal window script

creates an object (called moda 1),
which, in turn, provides three

new methods you can use to

create modal windows:

open () opens a modal window
cl ose() closes the window

center() centers it on the page

Another script would be used
to call the open() method and

specify what content should

appear in the modal window.

div .mod a 1 acts as a frame

around the modal window.

div. mod a I - content acts as a
container for the content being

added to the page.

button . mod a 1- cl ose allows the

user to close the modal window.

CONTENT PANELS 8

CREATING MODALS

The modal script needs to do two things:
1. Create the HTML for the modal window

2. Return the modal object itself, which consists of
the open(), close(), and center () methods

Including the script in the HTML page does not have

any visible effect (rather like including jQuery in your
page does not affect the appearance of the page).

But it does allow any other script you write to use the
functionality of the mod a 1 object and call its open ()

method to create a modal window (just like including
jQuery script includes the jQuery object in your
page and allows you to use its methods).

This means that people who use the script only need

to know how to call the open () method and tell it
what they want to appear in the modal window.

The mod a 1-i nit . j s fi le removes the share content
from the HTML page. It then adds an event handler

to call the modal object's open () method to open

a modal window containing the content it just
removed from the page. i nit is short for initialize

and is commonly used in the name of files and
functions that set up a page or other part of a script.

0 Create variable:
$content: part of page to appear In m odal

I
Hide that part of page by d etaching i t

+ I

Event: click o n share button
I

ANONYMOUS FUNCTION:
Show content in modal window

Call open () method of moda 1 object, then
pass it t he $content variable as a parameter,

alo ng w ith the modai's w idt h and height

@ CONTENT PANELS

In the example on the right, the modal window is
called by a script called mod a 1-i ni t.j s. You wi ll see

how to create the mod a 1 object and its methods on
the next double page spread, but for now consider
that including this script is the equivalent of adding

the following to your own script. It creates an object

called modal and adds three methods to the object:

var modal = {
center : function() {

II Code for center() goes here
},
open: function(sett ings) {

II Code for open() goes here
} .
close: function() {

}
} ;

II Code for close() goes here

1. First the script gets the contents of the element

that has an id attribute whose value is share-

opt ions. Note how the jQuery • detach () method
removes this content from the page.
2. Next an event handler is set to respond to when

the user clicks on the share button. When they do,
an anonymous function is run.

3. The anonymous function uses the open() method
of the moda 1 object. It takes parameters in the form

of an object literal:

• content: the content to be shown in the modal

window. Here it is the content of the element
whose id attribute has a value of share-options.

• width: the width of the modal window.
• height: the height of the modal window.

Step 1 uses the . detach() method because it keeps

the elements and event handlers in memory so they
can be used again later. jQuery also has a . remove ()
meth.od but it removes the items completely.

USING TH E MODAL SCRIPT

iiiiMI cll/moda 1-wi ndow. html

<D <di v i d="share-opt i ons ">
<!-- This i s where the message and sharing buttons go -->

</div>
<s cript s r e=" j s/ j que ry . j s 11 ></scri pt>

@ <s cript s r c="j s/modal-wi ndow. j s"></ sc r ipt>
@ <script src="js/moda l- in i t . j s "></sc r i pt>

</body>
</html>

In the HTML above, you should note three things:
1. A <div> that contains the sharing options.
2. A link to the script that creates the moda l object

(modal -window.js~

3. A link to the script that will open a modal window
using the modal object (moda 1-i nit. j s), using it
to display the sharing options.

JAVASCRIPT

(function() {

The modal - in it. j s fi le below opens the modal
window. Note how the open() method is passed
three pieces of information in JSON format:
i) content for modal (required)
ii) width of modal (optional - overrides default)
iii) height of modal (optional - overrides default)

cll/js/modal-init.js

<D
@
®

var $content= $('#share-options').detach(); //Remove modal from page

//Cli ck handler to open modal
height:300});

$('#share') .on('click' , function() {
modal .open({content : $content, width:340,

}); CD ®
} ()) ;

The z-i ndex of the modal window must be very high
so that it appears on top of any other content. . .,..

.modal
position: absolute;
z-index: 1000;}

@)

These styles ensure the modal window sits on top of
the page (there are more styles in the fu ll example).

cl l/css/modal-window.css

CONTENT PANELS 8

MODAL OBJECT

Create HTML for modal window:
$window: the window object

A $mod a 1: modal window element
V $content: modal window content

$close: close button

0

e
0

Add $content and $close to $modal

Event: click on close button

I

ANONYMOUS FUNCTION:
Used to close t he modal window

Prevent default action of link

Call close() function

FUNCTION: center()
Center the modal window

Get height of viewport & subtract
height of modal, halve that figure to get

distance modal should be from top of
window, then do same for widths

I
Set CSS for modal using these values

FUNCTION: open(settings)
Show/hide the modal window

Empty modal window & add new content

I
Use CSS to set height & width of modal

I
Add modal window to <body>

I
Center window using center()

+ I

Event: resize o n browser w indow

FUNCTION: close{)
Close the modal window

Remove content from modal window

I
Detach modal and its event handlers

@ CONTENT PANELS

Below are the steps for creating the mod a 1 object.
Its methods are used to create modal windows.

1. The moda 1 object is declared. The methods of

this object are created by an Immediately Involved
Function Expression or llFE (see p97). (This step

is not shown in the flowchart.)
2. Store the current window object in a jQuery

selection, then create the three HTML elements
needed for the modal window. Assemble the modal

window and store it in $modal .
3 . Add an event handler to the close button which

calls the moda 1 object's close() method.
4. Following the return keyword, there is a code

block in curly braces. It creates three public methods
of the modal object. Please note: This step is not

shown in the flowchart.
5. The center() method creates two variables:

i) top: takes the height of the browser window and

subtracts the height of the modal window. This
number is divided by two, giving the distance of the
modal from the top of the browser window.

ii) 1 eft: takes the width of the browser window and
subtracts the width of modal w indow. This number

is divided by twE>, giving the distance of the modal

from the left of the browser window.
6 . The jQuery . css () method uses these variables

to position the modal in the center of the page.
7. open () takes an object as a parameter; it is

referred to as settings (the data for this object was
shown on the previous page).

8 . Any existing content is cleared from the modal,
and the content property of the settings object is

added to the HTML created in steps 1 and 2.

9. The width and height of the modal are set using
values from the settings object. If none were given,

auto is used. Then the modal is added to the page
using the appendTo(} method.
10. center() is used to center the modal window.

11. If the window is resized, call center(} again.

12. close() empties the modal, detaches the HTML

from the page, and removes any event handlers.

In the code below, the lines that are highlighted in

green are considered private. These lines of code

When this script has been included in a page, the

center(), open(), and c 1 ose () methods in steps

5-12 are available on the modal object for other

scripts to use. They are referred to as public.

are only used within the object. (This code cannot be

accessed directly from outside the object.)

JAVASCRIPT cll/js/modal-window.js

G) var modal = (function() {
var $window= $(window);

II Decl are modal object

2

0
@

(@
®

var $modal =$('<div class="modal"I>'); II Create markup for modal
var $content = $('<div class="modal-content"I>');
var $close= $('<button role="button" class="modal-close">close<l button>');

$modal .append($content, $close};

$close.on('click ' , function(e)
e.preventDefault();
moda 1 . c 1 ose () ;

}) ;

II Add close button to modal

II If user clicks on close
II Prevent link behavior
II Close t he modal window

return 11 Add code to modal
center: function() { II Define center() method

}.

II Calculate distance from top and l eft of window to center the modal
var top = Math.max($window.height() - $modal .outerHeight(), O) I 2;
var left = Math.max($window.width{) - $modal.outerWidth(), 0) I 2;
$modal .css({ II Set CSS for the modal

top: top+ $window.scrol 1Top(), II Center vertical ly
l eft: l eft + $window .scrollleft() II Center horizontally

}) ;

open: function(settings) {
$content.empty(} .append(settings.content);

II Define open() method
II Set new content of modal

},

$modal .css({
width : settings.width 11 ' auto' ,
height: settings.height 11 'auto '

}).appendTo('body'};

modal . center();
$(window) .on('resize', modal .center);

close: function() {

}
} ;

} ()) ;

$content.empty();
$mod a 1 . detach() ;
$(window).off('resize', modal.center);

II Set modal dimensions
II Set width
II Set height
II Add it to the page

II Cal l center() method
II Call it if window resized

II Define close() method
II Remove content from modal
II Remove modal from page
II Remove event handler

CONTENT PANELS 8

PHOTO VIEWER

The photo viewer is an example of an image gallery. When you click on a

thumbnail, the main photograph is replaced with a new image.

In this example, you can see
one main image with three

thumbnails underneath it.

The HTML for the photo viewer

consists of:

• One large <div> element that
will hold the main picture.
The images that sit in the

<div> are centered and
scaled down if necessary to

fit within the allocated area.

• A second <div> element that
holds a set of thumbnails that
show the other images you

can view. These thumbnails
sit inside links. The href

attribute on those links point

to the larger versions of their

images.

8 CONTENT PANELS

r•~~'°'',...,..,......,...,,...,...... __ -,_ __ -w .. _ _.,,,,...,.
CllpbOIW.: 04~,ticny
a.y....c..._
-....i .. ~
........ . NJwllhwe,_.,..,.._..._
...-.i...~

U.1S IU°'p.a..

Other gallery scripts include Galleria, Gallerific, and TN3Gallery.

FIRST PHOTO SELECTED

PHOTO 1

SHOWING

. 1111- THUMBNAIL 1 HIGHLIGHTED

SECOND PHOTO SELECTED

PHOT02

SHOWING

111111- THUMBNAIL 2 HIGHLIGHTED

When you cl ick on a thumbnail,
an event listener triggers an

anonymous funct ion that:
1. Looks at the value of the href

attribute (which points to the
large image)

2 . Creates a new element

to hold that image
3. Makes it invisible
4. Adds it to the big <div>

element

Once the image has loaded, a

func tion cal led cross fade()

is used to fade between the
existing image and the new one
that has been requested.

CONTENT PANELS 8

USING THE PHOTO VIEWER
In order to use the photo viewer,
you create a <div> element to

hold the main image. It is empty,
and its id attribute has a value of

photo-v i ewer.

ell/photo-viewer.html

The thumbnails sit in another

<div>. Each one is in an <a>
element with three attributes:

• href points to the larger
version of the image

• cl ass always has a value of

thumb and the current main
image has a value of active

• title describes the image (it
will be used for al t text)

<div id="photo-viewer"></ div>
<div id="thumbnails">

</div>

The script comes before the
closing </body> tag. As you will
see, it simulates the user clicking

on the first thumbnail.

The <div> that holds the main
picture uses relative positioning.

This removes the element from

normal flow, so a height for the
viewer must be specified.

While images are loading, a

cl ass of i s-1 oadi ng is added
to them (it displays an animated

loading gif). When the image has

loaded, i s-1 oadi ng is removed.

If the images are larger than
the viewer the max-width and

max-height properties will scale
them to fit. To center the image

within the viewer a mix of CSS

and JavaScript will be used. See

p511 for detailed explanation.

8 CONTENT PANELS

cll/ css/photo-viewer.css

#photo-viewer {
position: relative;
height: 300px;
overflow: hidden; }

#photo-viewer. is-loading:after {
content: url (images/ load.gif);
position: absolute;
top: 0;
right: O; }

#photo-viewer img
posit ion: absolute;
max-widt h: 100%;
max-height : 100%;
top: 50%;
left : 50%;}

a.active {
opacity : 0.3; }

ASYNCHRONOUS LOADING
& CACH ING IMAGES

This script (shown on the next page) shows two interesting techniques:
1. Dealing with asynchronous loading of content

2. Creating a custom cache object

SHOWING THE RIGHT IMAGE WHEN
LOADING IMAGES ASYNCHRONOUSLY

PROBLEM:

The larger images are only loaded into the page

when the user clicks on a thumbnail, and the script

waits for the image to fully load before displaying it.

Because larger images take longer to load, if a user

cl icks on two different images in quick succession:

1. The second image could load faster than the first

one and be displayed in the browser.

2 . It would be replaced by the first image the user

cl icked on when that image had loaded. This could

make users think the wrong image has loaded.

SOLUTION:

When the user clicks on a thumbnail:

• A function- level variable called src stores the

path to this image.

• A global variable called request is also updated

w ith the path to this image.

• An event handler is set to call an anonymous

function when this image has loaded.

When the image loads, the event handler checks if

the src variable (which holds the path to this image)

matches the request variable. If the user had clicked

on another image since the one that just loaded, the

request variable would no longer match the src

variable and the image should not be shown.

CACHING IMAGES THAT HAVE
ALREADY LOADED IN THE BROWSER

PROBLEM:

When the user requests a big image (by clicking on

the thumbnail), a new element is created and

added to the frame.

If the user goes back to look at an image they have

already selected, you do not want to create a new

element and load the image all over again.

SOLUTION:

A simple object is created, and it is called cache.

Every time a new element is created, it will be

added to the cache object.

That way, each time an image is requested, the code

can check if the corresponding <i mg> element is

already in the cache (rather than creating it again).

CONTENT PANELS @

PHOTO VIEWER SCRIPT (1)

This script introduces some new concepts, so it will

be spread over four pages. On these two pages you

see the global variables and cross fade() function.

Store In variables:
request: last Image that was requested

0 $current: Image currently being shown
cache: object to remember loaded Images

e

0

e
e

$frame: container for image
$thumbs: container for thumbnails

FUNCTION: crossfade($img)
Fades to new image (passed as a parameter)

'
Is there a

current image?

Stop animation
& fade out old

image

Center new image using CSS
I

Fade in new image
I

Store new image in $current

THE CACHE OBJECT

The idea of a cache object might sound complicated,

but all objects are just sets of key/value pairs. You

can see what the cache object might look like on

the right. When an image is requested by cl icking

on a new thumbnail, a new property is added to the

cache object:

• The key added to the cache object is the path to
the image (below this is referred to as s re).
Its value is another object w ith two properties.

• src. $ i mg holds a reference to a jQuery object that

contains the newly created element.
• src. i sloadi ng is a property indicating whether or

not it is currently loading (its value is a Boolean).

@ CONTENT PANELS

1. A set of global variables is created. They can

be used throughout the script - both in the

cross fade () function (on this page) and the event

handlers (on p512).

2. The crossfade() function will be called when the

user has clicked on a thumbnail. It is used to fade

between the old image and the new one.

3. An if statement checks to see if there is an image

loaded at the moment. If there is, two things happen:

the • stop () method will stop any current animation

and then • fadeout() will fade the image out.

4 . To center the image in the viewer element, you

set two CSS properties on the image. Combined

w ith the CSS rules you saw on p508, these CSS

properties will center the image in its container.

(See the diagrams on the bottom of p511 .)

i) margin 1 eft: gets the width of the image using the

• width () method, divides it by two, and uses that

number as a negative margin.

ii) margi nTop: gets the height of the image, using the

• height () method, divides it by two, and makes that

number a negative margin.

5. If the new image is currently being animated, the

animation is stopped and the image is faded in.

6. Finally, the new image becomes the current image

and is stored in the $current variable.

var cache = {
"cll/img/photo- 1. j pg " :

" $i mg " : jQuery object,
" isload i ng" : f al se

} .
" cll/img/photo-2 . jpg" :

"$img": jQuery object,
"isloading" : false

},

"cll/ img/ photo-3 . jpg" :

"$img" : jQuery object ,
" isloading" : f al se

).

JAVASCRIPT

,

var request;
var $current;
var cache = {};
var $frame =$('#photo-viewer ') ;
var $t humbs = $(' .thumb ');

@ function crossfade($img)

if ($current) {
$current.stop() . fade0ut('slow ') ;

$img.css({
marginleft: -$i mg.width() I 2,
marginTop : -$ img.height() I 2

}) ;

G) $img . stop().fadeTo('slow', 1) ;

(§) $current = $img;

CENTERING THE IMAGE

cll/js/photo-viewer.js

II Latest image to be requested
II Image currently being shown
II Cache object
II Container for image
II Container for image

II Function to fade between images
II Pass in new image as parameter
II If there is currently an image showing
II Stop animation and fade it out

II Set the CSS margins for the image
II Negati ve ma rgi n of half image ' s width
II Negat ive margin of half image's he ight

II Stop ani mation on new i mage & fade in

II New image becomes current image

_J
i) Centering the image involves
three steps. In the style sheet,
absolute positioning is used to
place it in the top-left corner of
the containing element.

ii) In the style sheet, the image is
moved down and right by 50% of
the container's width and height:
width: 800px + 2 = 400 px
height: 500px + 2 = 250 px

i
iii) In the script, negative margins
move the image up and left by
half the image's width and height:
width: 500 px + 2 = 250 px
height: 400px + 2 = 200 px

CONTENT PANELS @

PHOTO VIEWER SCRIPT (2)
e
0

8
e
0

0

•
0

G>

e

Event: c 1 i ck on thumbnail

• I

Simulate user clicking on first thumbnail

ANONYMOUS FUNCTION

Create variables: Simg: to load Image, src:
path to image, request: path to latest image
Prevent default action of link

I
Update active thumbnail

• I

' In the cache?
Is this Image~

'
Is this image
still loading?

I
Call function: cross fade()

Create element & store in Si mg

I
Update cache & set isloading to true

• I

Event: load on new image

• I

Add i s-1 oadi ng class to frame
I

Update src & alt of Image

ANONYMOUS FUNCTION

Hide image
I

Remove 'loading' & add image
I

Update cache & set is Loading to fa 1 se

• I

'
is Image still

latest wanted?

Call function: cross fade(} ' I

'

9 CONTENT PANELS

1. The thumbnails are wrapped in links. Every time

users click on one, the anonymous function will run .

2 . Three variables are created:

i) $img will be used to create new elements

that will hold the larger images when they load.

ii) src (a function-level variable) holds the path to

the new image (it was in the href attribute of the link).

iii) request (a global variable) holds the same path.

3. The link is prevented from loading the image.

4 . The active class is removed from all the thumbs

and is added to the thumb that was clicked on.

5. If the image is in the cache object and it has

finished loading, the script calls cross fade().

6 . If the image has not yet loaded, the script creates

a new element.

7. It is added to the cache. is Loading is set to true.

8 . At this point, the image has not loaded yet (only

an empty element was created). When the

image loads, the 1 oad event triggers a function

(which needs to be written before the image loads).

9. First, the function hides the image that just loaded.

10. It then removes the i s-1 oadi ng class from the

frame and adds the new image to the frame.

11. In the cache object, is Loading is set to fa 1 se (as

it w ill have loaded when this function runs).

12. An if statemei:it checks if the image that just

loaded is the one the user last requested. To see how

this is done, look back at step 2 again:

• The src variable holds the path to the image that
just loaded. It has function-level scope.

• The request variable is updated each time the

user clicks on an image. It has global scope.

So, if the user has clicked on an image since this one,

the request and src variables will not be the same

and nothing should be done. If they do match, then:

cross fade() is called to show the image.

13. Having set all of this in place, it is time to load the

image. The i s-1 oadi ng class is added to the frame.

14. Finally, by adding a value to the src attribute on

the image, the image will start to load. Its alt text is

retrieved from the title attribute on the link.

15. The last line of the script simulates the user

clicking on the first thumbnail. This will load the first

image ·into the viewer when the script first runs.

JAVASCRIPT cll/js/photo-viewer.js

CD $(document} .on('click ' , '.thumb', function(e}{ II When a thumb is clicked on
II Create local variable called $img
II Store path to image 2

var $img;
var src = this.href;
request = src; II Store path again in request

(]) e.preventDefault(); II Stop default link behavior

®
®

@)
®

@

$thumbs.removeClass('active'};
$(this).addClass('active');

II Remove active from al l thumbs
II Add active to clicked thumb

i f (cache.hasOwnProperty(src)) { II If cache contains this image

}) ;

if (cache[src] .is loading ===false) { II And if isloading is false
crossfade(cache[src].$img); II Call crossfade() function

}
else {
$img = $('<imgl>');
cache[src] = {

$img: $img,
isloading: true

} ;

II Otherwise it is not in cache
II Store empty <imgl> element in $img
II Store this image in cache
II Add the path to the image
II Set isloading property to true

II Next few lines will run when image has loaded but are prepared first
$img.on('load', function() { II When image has loaded

$img.hide(); II Hide it
II Remove is-loading class from frame & append new image to it
$frame.removeClass('is-loading').append($img);
cache[src] . isloading =false; II Update isloading in cache
II If still most recently requested image then
i f (request === src) {

crossfade($img);
}

}) ;

$frame.addClass('is-loading');

$img.attr({
'src': src,
'alt': this.tit le I I ''

}) ;

II Call crossfade(} function
II Solves asynchronous loading issue

II Add is-loading class to frame

II Set attributes on element
II Add src attribute to load image
II Add title if one was given in link

II Last line runs once (when rest of script has loaded) to show the first image
<!§> $(' . thumb').eq(O}.click(}; · II Simulate click on first thumbnail

CONTENT PANELS e

RESPONSIVE SLIDER

A slider positions a series of items next to each other, but only shows one
at a time. The images then slide from one to the next.

This slider loads several panels,
but only shows one at a time. It

also provides buttons that allow
users to navigate between each

of the slides and a timer to move
them automatically after a set

interval.

In the HTML, the entire sl ider
is contained within a <div>
element whose cl ass attribute

has value of s 1 i der-vi ewer. In
turn, the slider needs two further

<div> elements:

• A container for the slides.
Its cl ass attribute has a value
of s 1 i de-group. Inside this

container, each individual
slide is in another <div>

element.

• A container for the buttons.
Its c 1 ass attribute has a
value of slide- buttons. The
buttons are added by the
script.

If the HTML contains markup for
more than one slider, the script

will automatically transform all

of them into separate sliders.

8 CONTENT PANELS

THEY SAY NO TWO
MARSHMALLOWS

ARE THE SAME ...

At least our cheb at Monsieur
P~ do. Th1t's lo«ause they
tflft elth deUdOUt batch
tndMifo•lly 'r h.tnd Wint
&Ll"ftttural ln,redtitnU.

Other sl ider scripts include Unslider, Anything Slider, Nivo Slider, and

WOW Slider. Sliders are also included in jQuery UI and Bootstrap.

1

..

When the page first loads, the CSS hides all of the

slides, which takes them out of normal flow.

The CSS then sets the di sp 1 ay property of the first

slide block to make it visible.

The script then goes through each slide and:

• Assigns an index number to that slide

• Adds a button for it under the slide group

For example, if there are four slides, when the page

first loads, the first slide will be shown by default,

and four buttons will be added underneath it.

••••

The index numbers allow the script to identify

each individual slide. To keep track of which slide

is currently being shown, the script uses a variable

called current Index (holding the index number of

the current slide). When the page loads, this is 0, so

it shows the first slide. It also needs to know which

slide it is moving to, which is stored in a variable

called newSl i de.

When it comes to moving between the slides (and

creating the sliding effect), if the index number of

the new slide is higher than the index number of the

current slide, then the new slide is placed to the right
of the group. As the visible slide is animated to the

left, the new slide automatically starts to come into

view, taking its place.

••••
If the index number of the new slide is lower than the

current index, then the new slide is placed to the left
of the current slide, and as it is animated to the right,

the new slide starts to come into view.

••••
After the animation, the hidden sl ides are placed

behind the one that is currently active.

CONTENT PANELS §

USING THE SLIDER

As long as you include the script w ithin your page,

any HTML that uses the structure shown here will

get transformed into a slider.

ell/ slider.html

<div class="sl ide-viewer">
<div class="s lide-group">

<div class="slide slide-1"><!-
<div class="slide slide-2"><!-
<div class="slide slide-3"><!-
<div class="slide slide-4"><! - -

</div>
</div>
<div class="slide-buttons"></div>

slide
slide
slide
slide

The width of the s 1 i de-vi ewer is not fixed, so it

works in a responsive design. But a height does need

to be specified because the slides have an absolute

position (this removes them from the document flow

and without it they could only be 1px tall).

cl l/ css/ slider.css

slide-viewer {
position: relative;
overflow: hidden ;
height: 300px;}

.slide-group {
width: 100%;
height: 100%;
position: relative;}

.slide {
width: 100%;
height: 100%;
display: none;
position : absolute;}

.slide:first-child
display : block; }

8 CONTENT PA N ELS

There could be several sliders on the page and each

one wil l be transformed using the same script that

you see on the next double-page spread.

content --></ div>
content --></ div>
content --></div>
content --></div>

Each slide is shown at the same width and height as

the viewer. If the content of a slide is larger than the

viewer, the overflow property on the s 1 i de- vi ewer

hides the parts of the sl ides that extend beyond the

frame. If it is smaller it is positioned to the top-left.

. .

SLIDER SCRIPT OVERVIEW

A jQuery selector finds the sliders within the HTML markup.
An anonymous function then runs for each one to create the slider.

There are four key parts to the function.

1: SETUP

Each slider needs some variables, they are in

function-level scope so they:

• Can have different values for each slider

• Do not conflict with variables outside of the script

3: A TIMER TO SHOW THE NEXT SLIDE
AFTER 4 SECONDS: advance()

A timer will call move () after 4 seconds.

To create a timer, JavaScript's window object has a

setTimeout () method. It executes a function after a

number of milliseconds. The timer is often assigned
to a variable, and it uses the following syntax:

var timeout = setTimeout(function, delay);

• timeout is a variable name that will be used to

identify the timer.

• function can be a named function or an

anonymous function.
• delay is the number of milliseconds before the

function should run.

To stop the timer, cal l cl earTimeout ().It takes one

parameter: the variable used to identify the timer:

clearTimeout(timeout);

2: CHANGING SLIDE: move()

move() is used to move from one slide to another,
and to update the buttons that indicate which sl ide

is currently being shown. It is cal led when the user
clicks on a button, and by the advance() function.

4: PROCESSING EACH OF THE SLIDES
THAT APPEAR WITHIN A SLIDER

The code loops through each of the slides to:

• Create the slider
• Add a button for each slide with an event handler

that calls the move() function when users clicks it

CONTENT PANELS e

SLIDER SCRIPT

0 - - LOOP THROUGH EACH SLIDER

0

0

0

0

ANONYMOUS FUNCTION:
Create slider for this set of markup

Store In varlab lH: Sthi s: current slider,
$group: slides container, $slides: all slides,
buttonArray: buttons, currentindex:
current slide, timeout: stores the timer

ANONYMOUS FUNCTION:
Create button for each slide

Create a button for this item

+
I

'
Is this the

' current slide?

l
I

Add class:
active

)
y

Event: click on this radio element

+
I

Add button to
container & array

Cali move()
(see p520)

---- GO TO NEXT SLIDE ----

Call advance() function

FUNCTION: advance()
Clear and reset the timer

Call clearTimeout() & setTimeout()

+

' I Cali move()
to next slide

I

Is this the
last slide? ' I Call move()

to first slide

3 CONTENT PANELS

1. There may be several sliders on a page, so the

script starts by looking for every element whose
cl ass attribute has a value of s 11 der. For each one,

an anonymous function is run to process that slider.
2. Variables are created to hold:
i) The current slider

ii) The element that wraps around the slides
iii) All of the slides in this slider

iv) An array of buttons (one for each slide)
v) The current slide
vi) The timer

3. The move() function appears next; see p520.

Please note: This is not shown in the flowchart.
4 . The advance() function creates the timer.

5. It starts by clearing the current timer. A new timer
is set and when the t ime has elapsed it will run an
anonymous function.

6 . An i f statement checks whether or not the

current slide is the last one.

If it is not the last slide then it calls move() with a
parameter that tells it to go to the next slide.
Otherwise it tells move() to go to the first slide.

7. Each slide is processed by an anonymous function.
8 . A <button> element is created for each slide.

9. If the index nurriber of that slide is the same as the

number held in the current Index variable, then a
class of active is added to that button.

10. An event handler is added to each button. When
clicked it calls the move() function. The slide"s index
number indicates which slide to move to.

11. The buttons are then added to the button
container, and to the array of buttons.

This array is used by the move () function to indicate

which slide is currently being shown.
12. advance() is called to start the timer.

...

JAVASCRIPT ell/ j s/s 11 der . j s

<D $('.slider') .each(functi on(){
var $this =$(this),

II For every slider
II Get the current slider

2

®

©

~
,
(j)

®

@{
@{
@{

@

var $group =$thi s.find (' .slide-group '),
var $slides = $thi s.find('.slide'),

II Get the slide-group (container)
II jQuery object to hold all slides
II Create array to hold nav buttons
II Index number of current slide

var buttonArray = [],
var currentlndex = 0,
var ti meout; II Used to store the timer

II move() - The function to move the slides goes here (see next page)

function advance() {
clearTimeout(timeout) ;

II Sets a timer between slides
II Clear timer stored in timeout

function every 4 seconds II Start timer to run an anonymous
timeout= setTimeout(functi on (){

if (currentlndex < ($slides . length -
move(currentlndex + l);
else {
move(O);

}
}, 4000);

II
1)) { II If not the last slide
II Move to next slide
II Otherwise
II Move to the first slide

II Milliseconds timer will wait

$.each($slides, funct i on(index){
II Create a button element for the button
var $button= $('<button type="button'' class="sl i de-btn">&bul l ;<lbutton>');
if (index === currentlndex) { II If index is the current item

$button .addCl ass('active') ; II Add the active class
}
$button.on('click ' , funct i on(){

move(index);
}) . appendTo (' . sl ide-buttons');
buttonArray .push($butt on);

II Create event handler for the button
II It calls the move() function
II Add to the buttons holder
II Add it to the button array

}) ;

advance();

}) ;

PROBLEM: GETTING THE RIGHT GAP

BETWEEN SLIDES USING A TIMER

SOLUTION: RESET THE TIMER WHENEVER A

BUTTON IS CLICKED

Each slide should show for four seconds (before the

timer moves it on to the next slide). But if the user
clicks a button after two seconds, then the new slide

might not show for four seconds because the timer

is already counting down.

The advance() function clears the timer before
setting it off again. Every t ime the user clicks on a

button the move () function (shown on the next two

pages) it calls advance() to ensure the new slide is

shown for four seconds.

CONTENT PANELS 8

SLIDER MOVE() FUNCTION

0

0

FUNCTION: move{ index)
Slides to the image specified

Create variables:
animateleft: animate from left/ right
s l i del eft: position new slide to left/right

+ I

Call advance() funct ion

• I

' l
Is sllder moving
OR is new image
current image? '

Update buttons to show which Is active

• I

' I
Is Index number
of new image >
current image? ' I Set variable:

sl i deleft: position
new sl ide to left

I
Set variable:
ani mateleft:

animate current
slide to right

Set variable:
s 1 i del eft: position
new slide to right

I
Set variable:
ani mateleft:

animate current
slide to lef t

Update CSS of new slide to posit ion it
to right or left of current slide

I
Animate current slide to position set in
variable above (t his reveals new slide)

I
Hide sllde that Just moved out of view

I
Posit ion new item Cl eft prope.rty set to 0>

I
Reposit ion all items Cleft property set to 0)

I
Set $currentlndex to index no. of new slide

9 CONTENT PANELS

1. The move() function will create the animated
sliding movement between two slides. W hen it is

called, it needs to be told which slide to move to.

2. Two variables are created that are used to control

whether the slider is moving to the left or right.

3. advance () is called to reset the timer.

4 . The script checks if the slider is currently

animating or if the user selected the current slide. In
either case, nothing should be done, and the r eturn

statement stops the rest of the code from running.

5 . References to each of the buttons were stored in

an array in step 11 of the script on the previous page.
The array is used to update which button is act ive.

6 . If the new item has a higher index number, then
the slider will need to move from right to left. If the

item has a lower index number, the slider wi ll need
to move from left to right. These variable values are
set first and are then used in step 7.

s 1 i de left posit ions the new slide in relation to the
current slide. (100% sits the new slide to the right of

it and - 100% si ts the new slide to the left of it.)

animat elef t indicates whether the current slide
should move to the left or the right, letting the new

slide take its place. (- 100% moves the current slide to
the left, 100% moves the current slide to the right.)

7. The new slide is positioned to the right or the left

of the current slide using the value in the s 1 i deleft
variable and its di sp 1 ay property is set to b 1 ock so
that it becomes visible. That new slide is identified

using new Index, which was passed into the funct ion.

8. The current sl ide is then moved to the left or right

using the value stored in the animatel eft variable.
That slide is selected using the cur rentlndex

variable, which was defined at the start of the script.

JAVASCRIPT cll/js/slider.js

II Setup of the script shown on the previous page

G) function move(newindex) {
~ var animateleft, slideleft;

Q) advance();

II Creates the slide from old to new one
II Declare variables

II When slide moves, call advance() again

II If current slide is showing or a slide is animating, then do nothing
if ($group. is (':animated') II currentindex === new Index) {

return;

buttonArray[currentindex] .removeClass('active'); II Remove class from item
buttonArray[newindex] .addClass('active'); II Add class to new item

6

if (newindex > currentindex)
slideleft = '100%';
animateleft = '-100%';
else {
slideleft = '-100%';
animateleft = '100%';

II If new item> current
II Sit the new slide to the right
II Animate the current group to the left
II Otherwise
II Sit the new slide to the left
II Animate the current group to the right

II Position new slide to left (if less) or right {if more) of current
(J) $slides.eq(newindex).css({left: slideleft, display: 'block'});
® $group.animate({left: animateleft} , function() { I I Animate slides and
(2) $slides.eq(currentindex) .css({display: 'none'}); II Hide previous slide
Q9> $slides.eq(newindex).css({l eft: O}); II Set position of the new item
QD $group.css({left : O}); /I Set position of group of slides
~ current index = newindex; /I Set currentindex to new image

}) ;

II Hand ling the sl ides shown on p519

Once the slide has finished animating, an
anonymous function performs housekeeping tasks:

9. The slide that was the current Index is hidden.

10. The position of the left-hand side of the new slide
is set to 0 (left-aligning it).

11. The position of all of the other slides is set so the
left-hand side is 0 (left-aligning them).

12. At this point, the new slide will be visible, and
the transition is complete, so it is time to update the
current Index variable to hold the index number
of the slide that has just been shown. This is easily
done by giving it the value that was stored in the
newlndex variable.

Now that this function has been defined, as you saw
on the p519, the code creates a timer and goes
through each slide adding a button and an event
handler for it. (Steps 4-12 on the page p519.)

CONTENT PANELS @

CREATING A
JQUERY PLUGIN

jQuery plugins allow you to add new methods
to jQuery without customizing the library itself.

jQuery plugins have benefits over plain scripts: You can turn any function into a plugin if it:

• You can perform the same task on any elements
that match jQuery's flexible selector syntax

• Once the plugin has done its job, you can chain

other methods after it (on the same selection)

• They faci litate re-use of code (either within one
project or across multiple projects)

• They are commonly shared within the JavaScript
and jQuery community

• Namespace collisions (problems when two
scripts use the same variable name) are

prevented by placing the script is placed in an llFE
(immediately invoked function expression, which

you met on p97)

• Manipulates a jQuery selection

• Can return a jQuery selection

The basic concept is that you:

• Pass it a set of DOM elements in a jQuery
selection

• Manipulate the DOM elements using the jQuery
plugin code

• Return the jQuery object so that other functions
can be chained off it

This final example shows you
how to create a jQuery plugin.

It takes the accordion example
you saw at the start of the
chapter and turns it into a plugin.

The earlier version applied to all
matching markup on the page;

the plugin version requires that
users call the accordion(}
method on a jQuery selection.

Here a jQuery selection is made
collecting elements with a class
of menu.The .accordion()

method is called; once that has
run, . fade In(} is called.

$(' .menu').accordion(500).fadeln();
'--~~~~---'" · ~· ~~~~~~

Cb ct ®
1. A jQuery selection is made

containing any elements which

have the class of menu.

@ CONTENT PANELS

2. The . accordion() method

is called on those elements. It
has one parameter; the speed of

animation (in milliseconds).

3. The . fadeln() method is
applied to the same selection of

elements once . accordion(}

has done its job.

BASIC PLUGIN STRUCTURE

1) ADDING A METHOD TO JQUERY

jQuery has an object called • fn
which helps you extend the

functionality of jQuery.

$.fn .accordion = function{speed)
II Plugin will go here

Plugins are written as methods
that are added to the • fn object.

Parameters that can be passed

to the function are placed inside
the parentheses on the first line:

2) RETURNING THE JQUERY SELECTION TO CHAIN METHODS

jQuery works by collecting a set

of elements and storing them
in a jQuery object. The jQuery

object's methods can be used to
alter the selected elements.

Because jQuery lets you chain
multiple methods to the same

selection, once the plugin has

done its job it should return the
selection for the next method.

$.fn.accordion = function(speed)
II Plugin will go here
return this;

3) PROTECTING THE NAMESPACE

jQuery is not the only JavaScript
library to use $ as a shorthand,

so the plugin code lives in an
llFE, which creates function-level

scope for the code in the plugin.

(function($){

On the first line below, the llFE
has one named parameter: $. On

the last line, you can see that the
jQuery selection is passed into

the function.

$. fn.accordion = function(speed)
II Pl ugin code will go here

}
}) (jQuery);

If you want to pass in more

values, it is typically done using a
single parameter called options.

When the function is called, the

options parameter contains an
object literal. ·

The selection is returned using:
1. The return keyword (sends a

value back from a funct ion)

2. this (refers to the selection
that was passed in)

Inside the plugin, $ acts like a
variable name. It references the

j Query object containing the set
of elements that the plugin is

supposed to be working with.

The object can contain a set of
key/value pairs for the different

options.

CONTENT PANELS @

THE ACCORDION PLUG IN

0
0

e

e
0

e
0

0

llFE:
Pass in the jQuery selection ($)

FUNCTION: accordion()
Created on fn object

Event: click on tab

ANONYMOUS FUNCTION:
Shows/hides corresponding panel

Prevent default action of button

Get button user clicked on

I
Get corresponding panel

• I

'
Is panel being

animated?

~
'\

'
Is panel visible?

I ' I Show panel Hide panel

Return jQuery object

To use the plugin, you create a jQuery selection that

contains any elements that hold an accordion.
In the example on the right, the accordion is in a

element that has a class name of menu (but

you could use any name you wish). You then call the

. accordion() method on that selection, like so:

$(' .menu') . accordion(500);

This code could be placed in the HTML document
(as shown on the right-hand page), but it would

be better placed in a separate JavaScript file that

runs when the page loads (to keep the JavaScript
separate from the HTML).

8 CONTENT PANELS

You can see the full code for the accordion plugin

on the right. The parts in orange are identical to the
accordion script at the start of the chapter.

1. The plugin is wrapped in an llFE to create function
level scope. On the first line, the function is given

one named parameter: $ (which means you can use
the $ shortcut for jQuery in the function).

10. On the last line of code, the jQuery object is
passed into the function (using its full name jQuery

rather than its shortcut $). This jQuery object

contains the selection of elements that the plugin is
working with. Together, points 1and10 mean that in
the llFE, $ refers to the jQuery object and it will not

be affected if other scripts use $ as a shorthand, too.

2. Inside the llFE, the new . accordion() method is

created by extending the fn object. It takes the one
parameter of speed.

3. The this keyword refers to the jQuery selection
that was passed into the plugin. It is used to create

an event handler that will listen for when the user
clicks on an element w ith a c 1 ass attribute whose

value is accordi an-contra 1. When the user does,

the anonymous function runs to animate the
corresponding panel into or out of view.

4 . The default action of the link is prevented.

5. In the anonymous function, $ (this} refers to a
jQuery object containing the element that the user

clicked upon.
6. 7. 8. The only difference between this anonymous

function and the one used in the example at the start

of the chapter is that the • s 1 i deToggl e () method
takes a parameter of speed to indicate how fast the

panel should be shown or hidden. (It is specified
when the • accordion() method is called.)

9. When the anonymous function has done its work,

the jQuery object containing the selected elements

is returned from the function, allowing the same set

of elements to be passed to another jQuery method.

JAVASCRIPT cll/js/accordion-plugin.js

<D (function($){ II Use$ as variable name
~ $.fn.accordion = function(speed) {
@ this .on('click', ' .accordi on-control',

II Return the jQuery selection
function(e){

~ e.preventDefault();
® $(this)
© . next (' . accordion-panel ')
0 .not(':animated')
(ID . slideToggle(speed);

}) ;

® return this ; II Return the jQuery selection
}

@) }}(jQuery) ; II Pass in jQuery object

Note how the filename for

the jQuery plugin starts with
jquery. to indicate that this

script relies upon jQuery.

W:HMI

<ul class="menu">
<l i>

After the accordion plugin

script has been included, the

accordion() method can be
used on any jQuery selection.

Below you can see the HTML
for the accordion. This time it

includes both the jQuery script
and the jQuery accordion script.

cll/accordi on-p 1 ugi n. html

<h3>Classics</h3>
<div class="accordion-panel">If you like your flavors traditional . . . <ldiv>

<l li>

<h3>The Fl ower Series<lh3><1a>
<div class="accordion-panel">Take your tastebuds for a gentle ... <ldiv>

<lli>

<h3>Salt o' the Sea</h3><1a>
<div class="accordion-panel">Ahoy! If you long for a taste of ... </div>

<l li>

<script src="js/ jquery.js"></ script>
<script src="js/ jquery.accordion. js"></ scri pt>
<script>

$(' .menu').accordion(SOO);
</ script>

CONTENT PANELS ~

Content panels offer ways to show more content

within a limited area.

Popular types of content panels include accordions,

tabs, photo viewers, modal windows, and sliders .

As with all website code, it is advisable to separate

content (HTML), presentation (CSS), and behavior

(JavaScript) into different files.

You can create objects to represent the functionality

you want (as with the modal window).

You can turn functions into jQuery plugins that allow

you to re-use code and share it with others.

Immediately invoked function expressions (llFEs) are

used to contain scope and prevent naming collisions.

If your pages contain a lot of data, there are tree techniques

that you can use to help your users to find the content they

are looking for.

FILTERING

Filtering lets you reduce a

set of values, by selecting

the ones that meet stated

criteria.

SEARCH

Search lets you show the

items that match one

or more words the user

specifies.

SORTING

Sorting lets you reorder a

set of items on the page

based on criteria (for

example, alphabetically).

Before you get to see how to deal with filtering, searching, and sorting, it is important to

consider how you are going to store the data that you are working with. In this chapter many

of the examples will use arrays to hold data stored in objects using literal notation.

§ FILTERING, SEARCHING & SORTING

•

JAVASCRIPT ARRAY
METHODS

An array is a kind of object. All arrays have the methods listed below;
their property names are index numbers. You will often see arrays used
to store complex data (including other objects).

Each item in an array is sometimes cal led an element. It does not mean that the array holds HTML elements;

element is just the name given to the pieces of information in the array. *Note some methods only work in IE9+.

ADDING ITEMS push() Adds one or more items to end of array and returns number of items in it

unsh i f t() Adds one or more items to start of array and returns new length of it

REM O VING ITEMS pop () Removes last element from array (and returns the element)

shift () Removes first element from array (and returns the element)

ITERATING forEach () Executes a function once for each element in array*

some() Checks if some elements in array pass a test specified by a function*

every() Checks if all elements in array pass a test specified by a function*

CO M BI NIN G concat () Creates new array containing this array and other arrays/values

FILTERING filter() Creates new array with elements that pass a test specified by a function*

REORDERING sort () Reorders items in array using a function (called a compare function)

reverse() Reverses order of items in array

MODIFYING map() Calls a function on each element in array & creates new array with results

§ FILTERING, SEARCHING & SORTING

,

..

JQUERY METHODS FOR
FILTERING & SORTING

jQuery collections are array-like objects representing DOM elements.
They have similar methods to an array for modifying the elements.

You can use other jQuery methods on the selection once they have run.

In addition to the jQuery methods shown below, you may see animation methods chained after fi ltering and

sorting methods to create animated transitions as the user makes a selection .

ADDI NG OR
COMBINING
ITEMS

• add() Adds elements to a set of matched elements

REMOVING ITEMS .not() Removes elements from a set of matched elements

ITERATI NG

FI LTERING

CONVERTING

. each () Applies same function to each element in matched set

• fi l ter() Reduces number of elements in matched set to those that either match

a selector or pass a test speCified by a function

. toArray () Converts a jQuery collect ion to an array of DOM elements, enabling the
use of the array methods shown on the left-hand page

F ILTERING, SEARCHING & SORTING @

SUPPORTING OLDER
BROWSERS

Older browsers do not support the latest methods of the Array object.
But a script called the ECMAScript 5 Shim can reproduce these methods.
ECMAScript is the standard that modern JavaScript is based upon.

A BRIEF HISTORY OF JAVASCRIPT

1996 Jan

Feb

Mar ····· Netscape Navigator 2 contains the

Apr first version of JavaScript written

May by Brendan Eich

Jun
Jul

Aug ····· Microsoft created a compatible

Sep scripting language called JScript

Oct

Nov ····· Netscape gave JavaScript to the

Dec ECMA standards body so that its

development could be standardized

1997 Jan

Feb

Mar

Apr

May

Jun ····· ECMAScript 1 was released

Jul

Aug

Sep

Nov

Dec

2014 May ····· Time of writing: ECMAScript 6 is

close to being finalized

8 FILTERING, SEARCHING & SORTING

ECMAScript is the official name for the standardized

version of JavaScript, although most people still call

it JavaScript unless they are discussing new features.

ECMA International is a standards body that looks

after the language, just like the W3C looks after

HTML and CSS. And, browser manufacturers often

add features beyond the ECMA specs (just as they

do with HTML & CSS).

In the same way that the latest features from the

HTML and CSS specifications are only supported

in the most rec_ent browsers, so the latest features

of ECMAScript are only found in recent browsers.

This wi ll not affect much of what you have learned

in this book (and jQuery helps iron out issues with

backwards compatibility), but it is worth noting for

the techniques you meet in this chapter.

The following methods of the Array object were

all introduced in ECMAScript version 5, and they

are not supported by Internet Explorer 8 (or older):

forEach(), some(), every(), filter() , map() .

For these methods to work in older browsers

you include the ECMAScript 5 Shim, a script that

reproduces their functionality for legacy browsers:

https: //github.com/es-shims/es5-shim

ARRAYS VS. O BJECTS
CHOOSING THE BEST

DATA STRUCTURE

In order to represent complex data you might need several objects.
Groups of objects can be stored in arrays or as properties of other objects.

When deciding wh ich approach to use, consider how you w ill use the data.

OBJECTS IN AN ARRAY

When the order of the objects is important, they

should be stored in an array because each item in
an array is given an index number. (Key-value pairs

in objects are not ordered.) But note that the index

number can change if objects are added/removed.
Arrays also have properties and methods that help

when working with a sequence of items, e.g.,

• The sort() method reorders items in an array.
• The 1 ength property counts the number of items.

var peopl e = [
{name : 'Casey ' , rate: 70, acti ve: true},
{name : 'Camille ', rate: 80, active: true},

{name: ' Gordon', r ate: 75, active : false},

{name : 'Nigel ' , rate : 120, active: true}

To retrieve data from an array of objects, you can
use the index number for the object:

II This retri eves Cami l l e's name and rate
person [1] . name ;

person [l] . rate ;

To add/remove objects in an array you use array
methods.

To iterate over the items in an array you can use

forEach().

OBJECTS AS PROPERTIES

When you want to access objects using their name,

they work well as properties of another object
(because you would not need to iterate through all

objects to find that object as you would in an array).

But note that each property must have a unique

name. For example, you could not have two
properties both called Casey or Cami 11 e within the

same object in the fol lowing code.

var peopl e = {

Casey= {rate: 70, active: true},

Camille = {rate : 80, act i ve : true},
Gordon= { rate: 75, active : false} ,

Nigel = {rate: 120, active : true }

To retrieve data from an object stored as a property
of another object, you can the object's name:

II Thi s retrieves Casey ' s r ate
people.Casey.rate;

To add/remove objects to an object you can use the

de 1 ete keyword or set it to a blank string.

To iterate over child objects you can use

Object. keys.

F ILTERING, SEARCHING & SORTING 0

FILTERING

Filtering lets you reduce a set of values.

It allows you to create a subset of data that meets certain criteria.

To look at filtering, we will start with data about
freelancers and their hourly rate. Each person is
represented by an object literal (in curly braces).

The group of objects is held in an array:

var people = [
{

name: 'Casey ',
rate: 60

},
{

name: 'Camille',
rate: 80

),
{

name: ' Gordon',
rate : 75

} .
{

name : 'Nigel',
rate: 120

}
] ;

NAME

camllle

Gordon

8 FILTERING, SEARCHING & SORTING

The data will be fi ltered before it is displayed. To do
this we wi ll loop through the objects that represent

each person. If their rate is more than $65 and less
than $90, they are put in a new array called results.

'
Is rate>= 65~

'
Is rate <= 90?

' I Add person to results array

t _____ GO TO NEXT PERSON _ _ __,J

HOURLY RATE ($)

80

75

DISPLAYING THE ARRAY

On the next two pages, you will see two different
approaches to filtering the data in the people array,

both of which involve using methods of the Array
object: • forEach () and . filter().

Both methods will be used to go through the data in
the people array, find the ones who charge between
$65 and $90 per hour and then add those people to

a new array called results.

Once the new results array has been created, a for

loop will go through it adding the people to an HTML

table (the result is shown on the left-hand page).

JAVASCRIPT

CD $(function() {

Below, you can see the code that displays the data

about the people who end up in the results array:
1. The entire example runs when the DOM is ready.

2. The data about people and their rates is included

in the page (this data is shown on left-hand page).
3. A function will filter the data in the people array

and create a new array called results (next page).
4. A <tbody> element is created.

5. A for loop goes through the array and uses
jQuery to create a new table row for each person
and their hourly rate.

6. The new content is added to the page after the

table heading.

c12/ js/filter-foreach.js + c12/ js/ f i lter-filter.js

~ II DATA ABOUT PEOPLE GOES HERE (shown on left-hand page)

Q) II FILTERING CODE (see p537) GOES HERE - CREATES A NEW ARRAY CALLED results

II LOOP THROUGH NEW ARRAY AND ADD MATCHING PEOPLE TO THE RESULTS TABLE
@) var $tableBody = $('<tbody><l tbody>'); II New content jQuery

for (var i = 0; i <results .l ength; i++) { II Loop through matches
var person= results[i]; II Store current person
var $row= $('<tr><l tr>'); II Create a row for them

s $row.append($('<td><ltd>').text(person.name)); II Add their name
$row.append($('<td><ltd>').text(person.rate)); II Add their rate
$tableBody .append($row); II Add row to new content

II Add the new content after the body of the page
@ $('thead ').after($tableBody); II Add t body after thead

}) ;

FILTERING, SEARCHING & SORTING 8

USING ARRAY METHODS
TO FILTER DATA

The array object has two methods that are very useful for filtering data.
Here you can see both used to filter the same set of data.

As they filter the data, the items that pass a test are added to a new array.

The two examples on the right both start with an
array of objects (shown on p534) and use a filter

to create a new array containing a subset of those
objects. The code then loops through the new array

to show the results (as you saw on the previous page).

• The first example uses the forEach() method.

• The second example uses the filter() method.

forEach ()
The forEach () method loops through the array and

applies the same function to every item in it.

forEach() is very flexible because the function can
perform any kind of processing with the items in an

array (not just filtering as shown in this example).
The anonymous function acts as a filter because

it checks if a person's rates are within a specified
range and, if so, adds them to a new array.

1. A new array is created to hold matching results.

2. The people array uses the forEach () method to
run the same anonymous funct ion on each object

(that represents a person) in the people array.
3. If they match the criteria, they are added to the

results array using the push () method.

8 FILTERING, SEARCHING & SORTING

Note how person is used as a parameter name and

acts as a variable inside the functions:

• In the forEach () example it is used as a
parameter of the anonymous function.

• In the filter() example it is used as a parameter

of the pri ceRange (} function.

It corresponds to the current object from the people
array and is used to access that object's properties.

filter()
The filter(} method also applies the same

function to each item in the array, but that function
only returns true or false. If it returns true, the

filter(} method adds that item to a new array.

The syntax is slightly simpler than forEach (), but is

only meant to be used to filter data.

1. A function called pri ceRange (} is declared; it

will return true if the person's wages are within the

specified range.
2. A new array is created to hold matching results.

3. The filter() method applies the pri ceRange(}
function to each item in the array. If pri ceRange ()

returns true, that item is added to the results array.

STATIC FILTERING OF DATA

JAVASCRIPT cl2/js/filter-foreach.js

$(function() {
II DATA ABOUT PEOPLE GOES HERE (shown on p534)

II CHECKS EACH PERSON AND ADDS THOSE IN RANGE TO ARRAY
var results= []; II Array for people in range
people.forEach(function(person) { II For each person

if (person . rate>= 65 && person.rate<= 90) { II Is rate in range

}
}) ;

resul t s.push{person); II If yes add to array

II LOOP THROUGH RESULTS ARRAY AND ADD MATCHING PEOPLE TO THE RESULTS TABLE
}) ;

JAVASCRIPT cl2/js/filter-filter.js

@
®

$(function() {
II DATA ABOUT PEOPLE GOES HERE (shown on p534)

II THE FUNCTION ACTS AS A FILTER
function priceRange(person) { II Declare priceRange()

return {person.rate>= 65) && (person.rate<= 90) ; II In range returns true
} ;
II FI LTER THE PEOPLE ARRAY & ADD MATCHES TO THE RESULTS ARRAY
var results= []; II Array for matching people
results= people.fi l ter(priceRange); II filter() calls priceRange()

II LOOP THROUGH RESULTS ARRAY AND ADD MATCHING PEOPLE TO THE RESULTS TABLE
}) ;

The code that you saw on the p535 to show the table results could live in the • forEach () method, but it is

separated out here to illustrate the different approaches to filtering and how they can create new arrays.

FILTERI NG, SEARCHING & SORTING e

DYNAMIC FILTERING

If you let users filter the contents of a page, you can build all of the HTML
content, and then show and hide the relevant parts as the user interacts

with the filters.

Imagine that you were going to provide the user with
a sl ider so that they could update the price that they

were prepared to pay per hour. That slider would
automatically update the contents of the table based

upon the price range the user had specified.

If you built a new table every time the user interacts

with the slider (like the previous two examples that
showed filtering), it would involve creating and
deleting a lot of elements. Too much of this type of

DOM manipulation can slow down your scripts.

A far more efficient solution would be to:

1. Create a table row for every person.

2. Show the rows for the people that are w ithin the

specified range, and hide the rows that are outside

the specified bounds.

Below, the range slider used is a jQuery plugin called

noUiSlider (written by Leon Gerson).

http://refreshless.com/nouis l ider/

Creath:eFolk find t<i 1enteo people for your cre~t1ve projects

Min: I Gs @I Max:l 9o @I

•
NAME HOURLY RATE ($)

Camille 80

Gordon 75

8 FILTERING, SEARCHING & SORTING

Before you see the code for this example, take a
moment to think about how to approach this script...

Here are the tasks that the script needs to perform:

i) It needs to go through each object in the array and

create a row for that person.

ii) Once the rows have been created, they need to be
added to the table.

iii) Each row needs to be shown I hidden depending
on whether that person is w ithin the price range

shown on the slider. (This task happens each time
the slider is updated.)

In order to decide which rows to show/ hide, the

code needs to cross-reference between:

• The person object in the people array
(to check how much that person charges)

• The row that corresponds to that person in the
table (which needs to be made visible or hidden)

To build this cross-reference we can create a new

array called rows. It will hold a series of objects with
two properties:

• person: a reference to the object for this person
in the people array

• $element: a jQuery collection containing the

corresponding row in the table

In the code, we create a function to represent each

of the tasks identified on the left. The new cross
reference array will be created in the first function:

makeRows () will create a row in the table for each

person and add the new object into the rows array

append Rows() loops through the rows array and

adds each of the rows to the table

update () w ill determine which rows are shown or
hidden based on data taken from the sl ider

In addition, we will add a fourth function: i nit()
This function contains all of the information that

needs to run when the page first loads (including
creating the slider using the plugin).

i nit is short for initialize; you will often see

programmers using this name for functions or
scripts that run when the page first loads.

Before looking at the script in detail, the next two
pages are going to explain a little more about the

rows array and how it creates the cross-reference
between the objects and the rows that represent

each person.

FILTERING, SEARCHING & SORTING 8

STORING REFERENCES TO
OBJECTS & DOM NODES

The rows array contains objects with two properties, which associate:
1: References to the objects that represent people in the people array
2: References to the row for those people in the table (jQuery collections)

You have seen examples in this book where

variables were used to store a reference to a DOM
node or jQuery selection (rather than making the

same selection twice). This is known as caching.

ROWS ARRAY

INDEX: OBJECT:

0
person

$element <tr>

1
person people[1]

$element <tr>

2
person people[2]

$element <tr>

3
person people[3]

$element <tr>

0 rate

1
name

rate 80

2
name

rate

3
name

DYNAMIC FILTERING

1. Place the script in an llFE (not shown in flowchart).

The 11 FE starts with the peop 1 e array.

2. Next, four global variables are created as they are

used throughout the script:

rows holds the cross-referencing array .

$min holds the input to show the minimum rate.

$max holds the input to show the maximum rate.

$tab 1 e holds the table for the results.

3. makeRows () loops through each person in the

peop 1 e array calling an anonymous function for each

object in the array. Note how per son is used as a

parameter name. This means that within the function,

per son refers to the current object in the array.

4 . For each person, a new jQuery object called $r ow

is created containing a <tr> element.

5. The person's name and rate are added in <td>s.

6. A new object with two properties is added to the

rows array: person stores a reference to their object,

$e 1 ement stores a reference to their <tr> element.

7. appendRows () creates a new jQuery object called

$t body containing a <tbody> element.

8. It then loops through all of the objects in the rows

array and adds their <tr> element to $tbody.

9. The new $tbody selection is added to the <tab 1 e>.

10. update() goes through each of the objects in

the rows array and checks if the rate that the person

charges is more than the minimum and less than the

maximum rate shown on the slider.

11. If it is, jQuery's show() method shows the row.

12. If not, jQuery's hi de() method hides the row.

13. i nit () starts by creating the slide control.

14. Every time the slider is changed, the update()

function is called again.

15. Once the slider has been set up, the makeRows () ,

appendRows () , update() functions are called.

16. The i nit () function is called (which will in turn

call the other code).

e FILTERING, SEARCHING & SORTING

Creat e v ariables:
a rows: an array linking people with rows
V $min & $max: m inimum and maximum rate Inputs

$tab 1 e: stores the table that holds the results

e

0 e

FUNCTION: make Rows()
Creates table rows & populates t he rows array

LOOP THROUGH OBJECTS IN people ARRAY

A NONYMOUS FUNCTION

Create $row holds <tr> element
Add <td>s holding name & rate

• Add new object to rows arr$ay
V Add references to person & row

GO TO NEXT OBJECT IN peop 1 e ARRAY __)

FUNCTION: appendRows() adds rows to <tbody>

Create <tbody> to hold <tr> elements

rt·I.!111'-MIG:t+f!HH!IH.ltf f.fofi'!
Q L Add $row to $tbody element

GO TO NEXT OBJECT IN rows ARRAY _.J

Add <tbody> to <tab 1 e>

FUNCTION: update() updates t able contents

...

~!ow !',:~~·:::.;~ Sh!'°~
GO TO NEXT OBJECT IN rows ARRAY

FUNCTION: i nit() sets up the script

Set up slider
Call makeRows(), appendRows(), update()

4fb Call i ni t () when the DOM has loaded

FILTERING AN ARRAY
JAVASCRIPT cl2/j s/dynamic-f i l ter.js

G) (function(){ II PEOPLE ARRAY GOES HERE

~

@{
@{

@

var rows= [] , II rows array
$min= $(' #val ue-min'), II Minimum text input
$max= $(' #val ue-max'), II Maximum text input
$table = $('#rates'); II The tabl e that shows results

function makeRows() { II Create table rows and the array
people. forEach(function(person) II For each person object in people

var $row= $('<tr><ltr>'); II Create a row for them
$row.append($('<td><ltd> ').text(person.name)); II Add their name
$row.append($('<td><ltd>').text(person.rate)); II Add their rate
rows.push({ II Add object to cross -references between people and rows

person: person, II Reference t o the person object
$element: $row II Reference to row as jQuery selection

}) ;
}) ;

function appendRows() { II Adds rows to the table
II Create <tbody> element var $tbody = $('<tbody><ltbody>');

rows. forEach(function(row) {
$tbody .append(row.$element);

}) ;
$table.append($tbody);

II For each object in the rows array
II Add the HTML for the row

II Add the rows to the table

funct ion update(mi n, max) { II Update the table content
rows.forEach(function(row) II For each row in the rows array

if (row.person.rate>= mi n && row. person.rate<= max) { II If in range

}
}) ;

row.$element.show(); II Show the row
else { II Otherwise
row.$element.hide(); II Hide the row

function init() { II Tasks when script first runs

}

$(' #s l ider').noUiSlider({ II Set up the slide control
range: [O, 150], start: [65 , 90], handles: 2, margin: 20, connect: true,
serialization: { to: [$min,$max], resolution: 1 }

}).change(function() { update($min .val (), $max . val ());});
makeRows(); II Create table rows and rows array
appendRows(); II Add the rows to t he tabl e
update($min.val (), $max .val()); II Updat e table to show matches

@ $(init);
} ());

II Call in i t() when DOM is ready

FILTERING, SEARCHING & SORTING 8

FILTERED IMAGE GALLERY

In this example, a gallery of images are tagged.

Users click on filters to show matching images.

IMAGES ARE TAGGED

In this example, a series of

photos are tagged. The tags are
stored in an HTML attribute

called data-tags on each of the
 elements. HTMLS allows

you to store any data with an

element using an attribute that
starts with the word data-. The

tags are comma-separated.
(See right-hand page)

TAGGED OBJECT

The script creates an object
cal led tagged. The script then

goes through each of the images

looking at its tags. Each tag
is added as a property of the

tagged object. The value of that
property is an array holding a

reference to each element
that uses that tag.
(See p546-p547)

FILTER BUTTONS

By looping through each of the
keys on the tagged object, the

buttons can automatically be

generated. The tag counts come
from the length of the array.

Each button is given an event
handler. When clicked, it filters

the images and only shows those
with the tag the user selected.
(See p548- p549)

EmJ Anlmetors (3) lllu1tntors (3} ~plMfs (3) Fllmm-. (2) OeslgM<S (3)

t -
\I II \ (/ :i-. f II \ I
'11:1II11\I . : /

'~ .. ., .

"
~--~ f ~

. ..
"•I\'(
\,/ ·\

. ~ -

8 FILTERING, SEARCHING & SORTING

TAGGED IMAGES

<body>
<header>

<hl>CreativeFolk</hl>
</ header>
<div id="buttons"></div>
<div i d="ga 11 ery">

cl2/filter-tags.html

</div>
<script src=" j s/ j query .j s 11 ></scri pt>
<script src="js/fi l ter-tags.js"></script>

</ body>

On the right, you can see the tagged object for the
HTML sample used in this example. For each new
tag in the images' data-tags attribute, a property
is created on the tagged object. Here it has five
properties: animators, designers, fi 1 mmakers,
illustrators, and photographers. The value is an
array of images that use that tag.

tagged = {
animators: [pl.jpg, p6.jpg, p9.jpg],
designers: [p4 . jpg, p6.jpg, p8.jpg]
filmmakers: [p2.jpg, p3.jpg, p5.jpg]
i l lustrators: [pl.jpg, p9.Jpg]
photographers: [p2.jpg, p3.jpg, pB.jpg]

FILTERING, SEARCHING & SORTING 8

PROCESSING THE TAGS

Here you can see how the script is set up. It loops

through the images and the tagged object is given

a new property for each tag. The value of each

property is an array holding the images with that tag.

1. Place the script in an llFE (not shown in flowchart).

2 . The $imgs variable holds a jQuery selection

containing the images.

3. The $buttons variable holds a jQuery selection

holding the container for the buttons.

4 . The tagged object is created.

5. Loop through each of the images stored in $ i mgs

using jQuery's . each() method. For each one, run

the same anonymous function:

6 . Store the current image in a variable called img.

7. Store the tags from the current image in a variable

called tags. (The tags are found in the image's

data-tags attribute.)

8. If the tags variable for this image has a value:

9. Use the String object's sp 1 it () method to create

an array of tags (split ting them at the comma).

Chaining the . forEach () method off the sp 1 it ()

method lets you run an anonymous function for each

of the elements in the array (in this case, each of the

tags on the current image). For each tag:

10. Check if the tag is already a property of the

tagged object.

11. If not, add it as a new property whose value is an

empty array.

12. Then get the property of the tagged object that

matches this tag and add the image to the array that

is stored as the value of that property.

Then move onto the next tag (go back to step 10).

When all of the tags for that image have been

processed, move to the next image (step 5).

8 FILTERING, SEARCHING & SORTING

A Creat e var iables:
v $1mgs: all images e $buttons: element with id of buttons

I
Create ob ject:

O tagged: array of tags & tagged images

+ ·--- LOOPTHROUGHEACHIMAGE

0
0

ANONYMOUS FUNCTION:
Processes Image

Create variables:
img: current image
tags: value of data-tags attribute

'
+ I

Does the tags
variable have

a value?

ANO NYMOUS FUNCTION:

'
Add tags & images to tagged object

' I
Is this tag

a property of the
tagged object?

Add tag name as a property
of the tagged object

'
Add image to array for this tag

'---- GO TO N EXT TAG ___ __.)

----- GO TO NEXT IMAGE -----

THE TAGGED OBJECT

JAVASCRIPT

CD (function() {

@ var $imgs =$('#gallery img ');
@ var $buttons = $ (' #buttons');
© var tagged = {};

~ $imgs.each(function ()
© var img = th i s;
<J) var tags= $(this).data('tags') ;

® if (t ags) {
~ tags.split(' , ').forEach(funct ion(tagName)
@ if (tagged [tag Name] == nu 11) {
® tagged [tagName] = [] ;

}
~ tagged [tagName] .push(img) ;

}
}) ;

}) ;

c12/ js/fi l t er-t ags.js

II Store al l images
II St ore buttons element
II Create tagged object

II Loop through imag es and
II Store img i n vari able
II Get this element's t ags

II If the element had t ags
II Split at comma and
II If object doesn ' t have t ag
II Add empt y array to object

II Add t he image to the array

II Buttons , event handl ers, and f i l ters go here (see p549)

} ());

F ILTERING, SEARCHING & SORTING 8

FILTERING THE GALLERY

The filter buttons are created and added by the 8 Create empty <button> element
script. When a button is clicked, it triggers an e Add text: Show A 11

anonymous function, which will hide and show the 0 Add class: active

+ appropriate images for that tag. I

e Event: c 1 i ck on button

1. The script lives in an l lFE (not shown in flowchart).

l
I

2. Create the button to show all images. The second A NONYMOUS FUNCTION:

parameter is an object literal that sets its properties:
Shows all images

3. The text on the button is set to say 'Show A 11 '. 0 Add active class to this b utton &

4. A value of active is added to the cl ass attribute. 0 remove active class from siblings

5. When the user clicks on the button, an +
I

anonymous function runs. When that happens: (i) Show all images

6. This button is stored in a jQuery object and is

given a c 1 ass of active. f) Add button to the filter buttons
7. Its siblings are selected, and the cl ass of active +
is removed from them.
8. The . show() method is called on all images. G>
9. The button is then appended to the button

container using the • appendTo () method. This is ANONYMOUS FUNCTION:
chained off the jQuery object that was just created. Makes button for tag

10. Next. the other filter buttons are created.
CD Create empty <button> element

jQuery's $.each () method is used to loop through I
each property (or each tag) in the tagged object. • Add tag name & count to the button
The same anonymous function runs for each tag: +
11. A button is created for the tag using the same I

G) - Event: c 1 i ck on button
technique you saw for the 'Show All' button.

I
12. The text for the button is set to the tag name,

followed by the length of the array (which is the ANONYMOUS FUNCTION:
Shows images with selected tag

number of images that have that tag).

13. The c 1 i ck event on that button triggers an e Add active class to this button
& remove active class from

anonymous function: e siblings

14. This button is given a c 1 ass of active. +
15. active is removed from all of its siblings.

I

0 Hide all photos
16. Then all of the images are hidden. +
17. The jQuery . fi 1 ter() method is used to select I

the images that have the specified tag. It does a • Filter for images with this tag

+ similar job to the Array object's . fi 1 ter () method, I

but it returns a jQuery collection. It can also work G) Show the matching images

with an object or an element array (as shown here).

18. The . show() method is used to show the images G> Add button to the filter buttons
returned by the . fi 1 ter() method.

19. The new button is added to the other filter GO TO NEXT PROPERTY
)

buttons using the . appendTo () method.

8 FILTERING, SEARCHING & SORTING

THE FILTER BUTTONS

JAVASCRIPT c12/ js/ f i l t er-tags.js

Q) (function() {

@
®
©
®
@{
cv{
®

®

@
®
@
@

@{
@{
@{
®
@

/ /Create variables (see p547)
/I Create tagged object (see p547)

$ ('<button/> ' , {
text : 'Show All',
class: ' acti ve' ,
click: function()

$(thi s)
.addClass(' active ')
.s i bl ings()
. removeCl ass('active');

$i mgs.show();
}

}) .appendTo($buttons);

II Create empty button
II Add text 'show al l '
II Make it active
II Add onclick handler to it
//Get the clicked on button
II Add the class of active
//Get i ts siblings
//Remove act i ve from them
II Show all images

II Add to buttons

$.each(tagged, f unction(tagName){ II For each tag name
$('<button/> ' , { /I Create empty button

text : tagName + ' (' + tagged[tagName] . length + ')', II Add tag name
click: function() { II Add click handler

$(thi s) /I The button clicked on
.addClass('active') - II Make clicked i tem active
.sibl i ngs() II Get its siblings
.removeClass('active ') ; //Remove active from them

$i mgs I/ With all of the images
. hide() II Hide them
. fi l ter(tagged[tagName]) //Find ones with this tag
. show(); II Show just those images

}
~ }) .appendTo($but tons); II Add to the buttons

}) ;
} ());

FILTERING, SEARCHING & SORTING 8

SEARCH

Search is like filtering but you show only results that match a search term.

In this example, you will see a technique known as livesearch.

The alt text for the image is used for the search instead of tags.

SEARCH LOOKS IN ALT
TEXT OF IMAGES

This example will use the same
set of photos that you saw in the

last example, but will implement
a livesearch feature. As you type,

the images are narrowed down

to match the search criteria.

The search looks at the a 1 t text

oneachimageandshowson~

<i mg> elements whose a 1 t text

contains the search term.

IT USES INDEXOF() TO
FIND A MATCH

The i ndexOf () method of the
String object is used to check

for the search term. If it is not
found, i ndexOf () returns -1.
Since i ndexOf () is case

sensitive, it is important to
convert all text (both the a 1 t
text and the search term)

to lowercase (which is done
using the String object's
tolowerCase () function).

SEARCH A CUSTOM
CACHE OBJECT

We do not want to do the case
conversion for each image every

time the search terms change, so
an object called cache is created

to store the text along with the

image that uses that text.

When the user enters something

into the search box, this object
is checked rather than looking

through each of the images.

Crcati\·eFol k ' '1j t •• '11 f d ~' upl" l,_,r J0'-1 <.r• I ·' P' .J• c•

9 FILTERING, SEARCHING & SORTING

\I\\ \<> 1 :~ l 11\ ;(:,.

,11:11 I \l\I' . I "
1

; 1/' ""i ..
a;. ' . ' .
~¥ ''~, :'

,:;~ ,

SEARCHABLE IMAGES

<body>
<header>

<hl>CreativeFolk</hl>
</header>
<div id="search">

c12/filter-search.html

<input type="text" placeholder="filter by search" id="filter-search" />
</d iv>
<div id="gall ery">

<i mg src="img/p5 . jpg" data-tags="Filmmakers" alt="Trumpet Player" />
<i mg src="i mg/p6. j pg" data-tags="Designers, Animators" alt="Logo Ident" />
<i mg src="img/p7.jpg" data -tags= ''Photographers" alt="Bicycl e Japan" />

</div>
<script src="js/jquery . js"></script>
<script src=" j s/filter- search. j s"></script>

</body>

For each of the images, the cache = [

cache array is given a new {element: img, text :
object. The array for the HTML {element: img, text:
above would look like the one {element : img , text:
shown on the right (except {element: img, text:
where it says i mg, it stores a {element: img, text:
reference to the corresponding {element: img, text:
 element). {element: img, text:

{element: img, text:
When the user types in the {element: img, text:
search box, the code will look in
the text property of each object,
and if it finds a match, it will
show the corresponding image.

'rabbi t'} ,
' sea'},
'deer ' },
'new york street map'},
'trumpet pl ayer'} ,
' 1 ogo i dent ' } ,
'bicycle japan'},
'aqua 1 ogo' } ,
' ghost'}

FILTERING, SEARCHING & SORTING @

SEARCH TEXT

This script can be divided into two key parts:

SETTING UP THE CACHE OBJECT

1. Place the script in an llFE (not shown in flowchart).
2. The $imgs variable holds a jQuery selection
containing the images.

3. $search holds search input.
4. The cache array is created.

5. Loop through each image in $imgs using .each() ,

and run an anonymous function on each one:

6. Use push() to add an object to the cache array
representing that image.

7. The object's element property holds a reference
to the element.

8 . Its text property holds the alt text. Note that
two methods process the text:

• trim() removes spaces from the start and end.

. tolowerCase () converts it all to lowercase.

FILTERING IMAGES WHEN USER TYPES IN

SEARCH BOX

9. Declare a function called filter() .

10. Store the search text in a variable called query.
Use . trim() and . tolowerCase () to clean the text.

11. Loop through each object in the cache array and

call the same anonymous function on each:

12. A variable called index is created and set to 0.
13. If query has a value:

14. Use i ndexOf () to check if the search term is in
the text property of this object.
The result is stored in the index variable. If found, it

will be a positive number. If not, it wi ll be -1.
15. If the value of index is -1, set the display
property of the image to none. Otherwise, set

display to a blank st ring (showing the image).

Move onto the next image (step 11).
16. Check if the browser supports the input event.

(It works well in modern browsers, but is not
supported in IE8 or earlier.)

17. If so, when it fires on the search box, call the
filter() function.

18. Otherwise, use the input event to trigger it.

0 FILTERING, SEARCHING & SORTING

A Create variables:
V $imgs: all Images e $search: searc h input
O cache: array of objects (text/ Images)

•
: r,..._A_d_d-ob~:1.:1·:m:1:1t:=11 .=;:1:1:1:1:•1:1:.=:·1.:1:1:m11ca_c_h_e _a-rr--.a}

element: reference to
text: processed alt text (see bottom p553)

'----- GO TO NEXT IMAGE -----

'
Does browser
support input

event?

Event: input on search Input

Event: keyup on search input
I

FUNCTION: filter{)
Checks a 1 t text & shows matching images

Create variable: query to hold the query

Create variable: index: position of text

have a value? Does query '

Search for query within text usL g l . i ndexOf () & store position In index

'I

'

ts value of ~ index - 1?

L dhployto" to •how lmoge I
Set display to none to hide image

'----- GO TO NEXT IMAGE ----

JAVASCRIPT

<D (function() {
@ var $imgs =$('#gallery img');
~ var $search= $(' #filter-search');
© var cache = [];

®
©
(j)
®

$imgs.each(function()
cache .push({

el ement: this,
text: this.alt.trim().tolowerCase()

}) ;
}) ;

LIVESEARCH

II Lives in an IIFE
II Get the images

cl2/js/filter-search.js

II Get the input element
II Create an array cal l ed cache

II For each image
II Add an object to the cache array
11 This image
II Its alt text (lowercase trimmed)

(2) function filter() { II Declare filter() function
~ var query= this.value.trim().tolowerCase(); II Get the query

QD cache.forEach(function(img) II For each entry in cache pass image
@ var index = O; II Set index to 0
~ if (query) { II If there is some query text
~ index= img . text.indexOf(query); II Find if query text is in there

@ img.element.style.display
}) ;

@ if ('oninput' in $search[O]) {
QZ) $search.on('input', filter);

else {
~ $search.on('keyup', filter);

}
} ());

index -1 ? 'none' ''.
' II Show I hide

II If browser supports i nput event
II Use input event to cal l filter()
II Otherwise
II Use keyup event to call filter()

The alt text of every image and

the text that the user enters into
the search input are cleaned

using two jQuery methods.

METHOD USE

Both are used on the same
selection and are chained after

each other.

trim() Removes whitespace from start or end of string

tolowerCase 0 Converts string to lowercase letters because

i ndexOf () is case-sensitive

FILTERING, SEARCHING & SORTING 0

SORTING

Sorting involves taking a set of values and reordering them.
Computers often need detailed instructions about in order to sort data.

In this section, you meet the Array object's sort() method.

When you sort an array using

the sort() method, you change

the order of the items it holds.

Remember that the elements in

an array have an index number,

so sorting can be compared to
changing the index numbers of
the items in the array.

SORTING STRINGS

Take a look at the array on the
right, which contains names.

When the sort() method is
used upon the array, it changes

the order of the names.

SORTING NUMBERS

By default, numbers are also
sorted lexicographically, and
you can get some unexpected

results. To get around this you
would need to create a compare

function (see next page).

By default, the sort () method
orders items lexicographically.

It is the same order dictionaries
use, and it can lead to interesting

results (see the numbers below).

To sort items in a different
way, you can write a compare

function (see right-hand page).

Lexicographic order is as follows:
1. Look at the first letter, and
order words by the first letter.

2 . If two words share the same
first letter, order those words by

the second letter.

3 . If two words share the same
first two letters, order those

words by the third letter, etc.

var names= [' Al ice ', ' Ann' , ' Andrew ' , ' Abe '] ;
names . sort () ;

The array is now ordered as follows:
['Abe' , 'A 1 ice' , 'Andrew' , ' Ann '] ;

var prices = [l , 2, 125, 19, 14, 156);
prices . sort() ;

The array is now ordered as follows:

(1, 125 , 14, 156, 19, 2]

9 FILTERING, SEARCHING & SORTING

CHANGING ORDER USING
COMPARE FUNCTIONS

If you want to change the order of the sort, you write a compare function .

It compares two values at a time and returns a number.
The number it returns is then used to rearrange the items in the array.

The sort () method only ever
compares two values at a time

(you will see these referred to
as a and b), and it determines

whether value a should appear
before or after value b.

Because only two values are
compared at a time, the sort()

method may need to compare
each value in the array with

several other values in the array
(see diagram on the next page).

COMPARE FUNCTIONS MUST RETURN NUMBERS -

A compare function should

return a number. That number
indicates which of the two items
should come first.

<O
Indicates that it should

·show a before b

The sort() method wi ll

determine which values it needs
to compare to ensure the array is
ordered correctly.

0
Indicates that the items should

remain in the same order

sort () can have an anonymous
or a named function as a

parameter. This function is called
a compare function and it lets

you create rules to determine

whether value a should come

before or after value b.

You just write the compare

function so that it returns a
number that reflects the order in
which you want items to appear.

>O
Indicates that it should

show b before a

To see the order in which the values are being compared, you can add the con so 1e. 1 og () method to the
compare function. For example: con so 1e. 1 og (a + ' - , · + b + ' = ' + (b - a)) ;

F ILTERING, SEARCHING & SORTING 8

SORTING NUMBERS

Here are some examples of compare functions that

can be used as a parameter of the sort () method.

ASCENDING
NUMERICAL ORDER

To sort numbers in an ascending
order, you subtract the value of
the second number b from the
first number a. In the table on
the right, you can see examples
of how two values from the array
are compared.

DESCENDING
NUMERICAL ORDER

To order numbers in a
descending order, you subtract
the value of the first number a
from the second number b.

RANDOM ORDER

This will randomly return a value
between -1 and 1 creating a
random order for the items.

var prices = [l, 2, 125, 2, 19, 14];
prices.sort(function(a, b) {

return a - b;
}) ;

a OPERATOR b RESULT ORDER

1

2

2

2

2

l

- 1

0

a comes before b

leave in same order

b comes before a

var prices = [l, 2, 125, 2, 19, 14];
prices.sort(function(a, b) { ·

return b - a;
}) ;

b OPERATOR a RESULT ORDER

2

2

1

2

2

1

0

-1

b comes before a

leave in same order

a comes before b

var prices = [1, 2, 125, 2, 19, 14];
prices.sort(function() {

return 0.5 - Math.random();
}) ;

8 FILTERING, SEARCHING & SORTING

SORTING DATES

Dates need to be converted into a Date object so that
they can then be compared using< and >operators.

var holidays = [

' 2014- 12-25 ' '
' 2014-01-01',

] ;

I 2014-07-04 1
t

' 2014-11-28'

holidays.sort(function(a, b) {

var dateA = new Date(a);

var dateB =new Date(b);

return dateA - dateB

}) ;

The array is now ordered as follows:

holidays = [

' 2014-01-01 ' '
' 2014-07-04',
' 2014- 11-28 ' '
'2014-12-25 '

DATES IN ASCENDING
ORDER

If the dates are held as strings,

as they are in the array shown

on the left, the compare function

needs to create a Date object

from the string so that the two

dates can be compared.

Once they have been converted

into a Date object, JavaScript

stores the date as the number

of milliseconds since the 1st

January 1970.

With the date stored as a

number, two dates can be

compared in the same way that

numbers are compared on the

left-hand page.

FILTERING, SEARCHING & SORTING 9

SORTING A TABLE

In this example, the contents of a table can be reordered.

Each row of the table is stored in an array.

The array is then sorted when the user clicks on a header.

SORT BY HEADER

When users click on a heading, it
triggers an anonymous function

to sort the contents of the array
(which contains the table rows).

The rows are sorted in ascending
order using data in that column.

Clicking the same header again

will show the same column
sorted in descending order.

My Videos

GENII£

Fiim

Fiim

Anlm1tlon

Anlmetfon

Anlmetlon

DATA TYPES

Each column can contain one of
the fol lowing types of data:

• Strings
• Time durations (mins/secs)

• Dates

If you look at the <th> elements,
the type of data used is specified

in an attribute called data-sort.

-..mclN

Arll<Nlo 6!AO

n..o- 8:24

TlwGhott 11:40

WfCOnl 21:40

Wlldfood 3:47

e FILTERING, SEARCHING & SORTING

COMPARE FU NCTIONS

Each type of data needs a

different compare function.
The compare functions will be

stored as three methods of an
object called compare, which you

create on p563:

• name() sorts strings

• duration() sorts mins/secs
• date() sorts dates

l!I Camille Berger
9 Peri,Fteneo

DATE

2005-12-21

20M-02•2a

2012·04-IO

2007-04-12

20l4-o7·1e

HTML TABLE STRUCTURE

1. The <table> element needs

to carry a c 1 ass attribute whose
value contains sortable.

2. Table headers have an attribute

called data-sort. It reflects the
type data in that column.

<body>
© <tabl e class="sortable">

<thead>
<tr>

<th data-sort="name">Genre</th>
<th data-sort="name">Title</th>
<th data-sort="duration">Duration</th>
<th data-sort="date">Date</th>

</tr>
</thead>
<tbody>

<tr>
<td>Animation</td>
<td>Wildfood</td>
<td>3:47</td>
<td>2014-07-16</td>

</tr>
<tr>

<td>Film</td>
<td>The Oeer</td>
<td>6:24</td>
<td>2012-02-28</td>

</tr>
<tr>

<td>Animation</td>
<td>The Ghost</td>
<td>ll :40</td>
<td>2013-04-10</td>

</tr> .. .
</tbody>

</tabl e>
<script src="js/jquery.js"></script>
<script src="js/sort - table . js"></scri pt >

</body>

The value of the data-sort

attribute corresponds with the
methods of the compare object.

cl2/sort-table.html

FILTERING, SEARCHING & SORTING @

COMPARE FUNCTIONS

1. Declare the compare object. It has three methods

used to sort names, time durations, and dates.

THE name() METHOD

2. Add a method called name (). Like all compare

functions, it should take two parameters: a and b.

3. Use a regular expression to remove the word 'the'

from the beginning of both of the arguments that

have been passed into the function (for more on this

technique. see the bottom of the right-hand page).

4 . If the value of a is lower than that of b:

5. Return -1 (indicating that a should come before b).

6. Otherwise, if a is greater than b, return 1. Or, if

they are the same, return 0. (See bottom of page.)

THE duration() METHOD

7. Add a method called duration(). Like all compare

functions, it should take two parameters: a and b.

8. Duration is stored in minutes and seconds: mm: ss.

The String object's sp 1 it() method splits the

string at the colon, and creates an array with

minutes and seconds as separate entries.

9. To get the total duration in seconds. Number()

converts the strings in the arrays to numbers.

The minutes are multiplied by 60 and added to the

number of seconds.

10. The value of a - bis returned.

THE date() METHOD

11. Add a method called date(). Like all compare

functions, it should take two parameters: a and b.

12. Create a new Date object to represent each of

the arguments passed into the method.

13. Return the value of a minus b.

return a > b ? 1 : 0

A shorthand for a conditional operator is the ternary

operator. It evaluates a condition and returns one of

two values. The condition is shown to the left of the

question mark.

@ FILTERING, SEARCHING & SORTING

0

8

e

0

e

0

Create object: compare

+ I

DECLARE METHOD: name(a, b)

Replace any instances of the word the at
the start of the parameter with a blank

string using a regular expression

+
I

'
Is a less

' than b?

l I

'\ Return - 1

'
Is a greater

' than b?

I I

Return 0 Return 1

DECLARE METHOD: durat ion (a, b)

Convert both parameters into arrays

I
Convert both parameters to seconds

I
Return a - b

+
I

DECLARE METHOD: date(a , b)

Convert both parameters to Date objects

I
Return a - b

The two options are shown to the right separated by

a colon. If the condition returns a truthy value, the

first value is returned. If the value is falsy, the value

after the colon is returned.

THE COMPARE OBJECT

JAVASCRIPT

CD var compare = {
@ name; function(a, b) {

@{ a a.replace(IAthe Ii ,
b = b.replace(IAthe Ii ,

© if (a < b) {
~ return -1;

else {
© return a > b ? 1 O;

}
}.
du ration: function(a, b) {

a a.split(': ');
b b.split(':');

I I) ;

I I) ;

c12/js/sort-table .js

II Dec l are compare obj ect
II Add a method cal l ed name
II Remove The from start of parameter
II Remove The from start of parameter

II If value a is less than value b
II Return -1
II Otherwise
II If a is greater than b return 1 OR
II if they are the same return 0

II Add a method cal led duration
II Split the time at t he colon
II Split the time at the colon

a= Number(a[O]) * 60 + Number(a[l]); II Convert the time to seconds
b Number(b[O]) * 60 + Number(b[l]} ; II Convert the time to seconds

@)

®
@{
@

return a - b;
}.
date: function(a, b) {

a new Date(a};

}
} ;

b =new Date(b};

return a - b;

a . repl ace(/l\the /i , '');
The replace() method is used to remove any
instances of The from the start of a string. replace ()

works on any string and it takes one argument: a
regular expression (see p612). It is helpful when

The is not always used in a name, e.g., for band
names or film titles. The regular expression is the

first parameter of replace () method.

II Return a minus b

II Add a method called date
II New Date object to hold the date
II New·oate object to hol d the date

II Return a minus b

• The string you are looking for is shown between

the forward slash characters.

• The caret" indicates that the must be at the start
of the string.

• The space after the indicates there must be a
space after it.

• The ; indicates that the test is case insensitive.

When a match for the regular expression is found,
the second parameter specifies what should take its

place. In this case it is an empty string.

FILTERING, SEARCHING & SORTING @

SORTING COLUMNS

1. For each element that has a cl ass attribute with a
value of sortable, run the anonymous function.

2 . Store the current <table> in $table.
3. Store the table body in $tbody.

4 . Store the <th> elements in $controls.
5 . Put each row in $tbody into an array called rows.

6. Add an event handler for when users click on a
header. It should call an anonymous function.

7. $header stores that element in a jQuery object.

8. Store the value of that heading's data- sort
attribute in an variable called order.
9. Declare a variable called column.

10. In the header the user cl icked upon, if t he c l ass
att ribute has a value of ascending or descending,
then it is already sorted by this column.

11. Toggle the value of that cl ass attr ibute (so that it

shows the other value ascending/descending).
12. Reverse the rows (stored in the rows array) using

the reverse () method of the array.

13. Otherwise, if the row the user clicked on was not
selected, add a cl ass of ascending to the header.
14. Remove the class of ascending or descending

from all other <th> elements on this table.
15. If the compare object has a method that matches

the value of the data-type attribute for this column:

16. Get the column number using the index ()
method (it returns the index number of the element

within a jQuery matched set). That value is stored in
the column variable.

17. The sort () method is applied to the array of
rows and will compare two rows at a time. As it

compares these values:

18. The values a and bare stored in variables:
. find() gets the <td> elements for that row.

. eq () looks for the cell in the row whose index

number matches the column variable.
. text() gets the text from that cel l.
19. The compare object is used to compare a and b.

It will use the method specified in the type variable

(which was collected from the data-sort attribute
in step 6).

20. Append the rows (stored in the rows array) to
the table body.

8 FILTERING, SEARCHING & SORTING

0
e e

Create variables:
$table: <table> element
$tbody: <tbody> element
$controls: <th> elements
rows: array of <tr> elements

• '
Event: click on <th> element

ANONYMOUS FUNCTION:
Sorts data based on header clicked

Create variables (from clicked header):
header: the header that was clicked on
order: value of data-sort attribute
co 1 umn: will hold index of clicked header

• '

' I
Is cl ass ascending

or descendi ng? ' I Add class of
ascending to <th>

Toggle value of
cl ass attribute

I I
Remove ascending
or descending from e

all other headers

Reverse order
of rows In table

'
Does compare

have a value that matches
the order variable? ' I column set to store index number of

<th> element clicked on
I

Sort rows using compare function

I
a is text from first row being compared

& b is text from second row

Use compare object to compare a and b
using method specified in order variable

I
Append array to <tbody> element

- - -- GO TO NEXT SORTABLE TABLE ----

SORTABLE TABLE SCRIPT

JAVASCRIPT c12/ js/ sort- table .js

G) $('. sortable ').each(function() {
CY var $table = $(this); II This sortable table

II Store table body Q) var $tbody = $table . find('tbody');
~ var $controls= $table.find('th'); II Store table headers
~ var rows = $tbody.find('tr').toArray() ; II Store array containing rows

© $controls.on('click', function() { II When user clicks on a header
II Get t he header CZ) var $header = $(this) ;

@) var order = $header.data(' sort') ; II Get val ue of data-sort att r ibute
II Declare var iable call ed column <2) var column;

@)
®
@

@

@
@
@

®
@{
®

II If selected i tem has ascending or descendi ng cl ass , reverse contents
if ($header.is(' .ascending') I I $header.is('. descending')) {

$header.toggleClass('ascending descending') ; II Toggle to other class

}
}) ;

}) ;

$tbody.append(rows.reverse()); II Reverse the array
else { II Otherwise perform a sort
$header.addClass('ascending'); II Add class to header
II Remove asc or desc from all other headers
$header.siblings().removeClass('ascending descending ');
if (compare.hasOwnProperty(order)) { II If compare object has method

column = $controls.index(this); II Search for column' s index no

rows.sort(function(a, b) { -II Call sort() on rows array
a = $(a) . find('td').eq(column).text(); ll Get text of column in row a
b = $(b) . find('td') .eq(column) . text(); l l Get text of column in row b
return compare[order](a , b); II Call compare method

}) ;

$tbody.append(rows);

FILTERING, SEARCHING & SORTING 8

Arrays are commonly used to store a set of objects.

Arrays have helpful methods that allow you to add,

remove, filter, and sort the items they contain.

Filtering lets you remove items and only show a subset

of them based on selected criteria.

Filters often rely on custom functions to check whether

items match your criteria.

Search lets you filter based upon data the user enters.

Sorting allows you to reorder the items in an array.

If you want to control the order in which items are

sorted, you can use a compare function.

To support older browsers, you can use a shim script.

SEARCHING

Forms allow you to collect information from visitors, and

JavaScript can help you get the right information from them.

Since JavaScript was created, it has been used to enhance and validate forms.

Enhancements make forms easier to use. Validation checks whether the user has provided

the right information before submitting the form (if not, i t provides feedback to the user).

This chapter is divided into the following three sections:

FORM HTMLS FORM FORM
ENHANCEMENT ELEMENTS VALIDATION

This section features HTMLS contains validation The final, and longest,

many examples of form features that do not use example in the book shows

enhancement. Each one JavaScript. This section a script that validates (and

introduces the different addresses ways in which enhances) the registration

properties and methods you you can offer validation to form that you can see on the

can use when working w ith old and new browsers in a right-hand page. It has over

form elements. consistent way. 250 lines of code.

The first section of this chapter also drops jQuery in favor of plain JavaScript, because you
should not always rely upon jQuery (especially for scripts that use little of its functionality).

8 FORM ENHANCEMENT & VALIDATION

...

J
~

'

',
l

•

! ..

' 4
J
I

HELPER FUNCTIONS

The first section of th is chapter uses plain JavaScript, no jQuery.

We will create our own JavaScript file to handle cross-browser issues,

it will contain one helper function to create events.

Forms use a lot of event handlers and (as you saw
in Chapter 6) IES-8 used a different event model

than other browsers. You can use jQuery to deal
with cross-browser event handling. But, if you do

not want to include the entire jQuery script just to

handle events in older version of IE, then you need to
write your own fallback code to handle the events.

Instead of writing the same tailback code every
t ime you need an event handler, you can write the

tailback code once in a helper function, and then call

that function every time you need to add an event
handler to a page.

On the right-hand page you can see a function called
add Event(). It lives in a fi le called utilities .j s.

Once that file has been included in the HTML page,
any scripts included after it wil l be able to use this

function to create cross-browser event handler:

addEvent(el, event, callback);
CD ® ®

The function takes three parameters:

i) el is a DOM node representing the element that
the event will be added to or removed from.

ii) event is the type of event being listened for.
iii) callback is the function that is to be run when

the event is triggered on that element.

The ut i 1 it i es. j s fi le on the website also has a

method to remove events.

@ FORM ENHANCEMENT & VALIDATION

ff you look inside the add Event() method on the
right-hand page, a conditional statement checks

whether the browser supports addEventL i stener().
ff it does, a standard event listener will be added.

If not, then the IE fallback will be created.

The fallback addresses three points:

• It uses I E's the a ttachEvent () method.
• In IES-8, the event object is not automatically

passed into the event-handling function (and is

not available via the this keyword) see p264.

Instead it is available on the window object.
So the code must pass the event object

into the event handler as a parameter.

• When you pass parameters to an event-handling
function, the call must be wrapped in an

anonymous function see p256.

To achieve this, the fallback adds two methods to the
element the event handler will be placed upon (see

steps 5 and 6 on the right-hand page). It then uses

IE's attachEvent () method to add the event handler

code to the element.

The functions demonstrate two new techniques:

• Adding new methods to DOM nodes:
You can add methods to DOM nodes because

they are just objects (that represent elements).

• Creating method names using a variable:
Square brackets can be used to set a property/

method, their content is evaluated into a string.

Here, you can see the add Event() function that will

be used to create all of the event handlers in this

chapter. It lives in a fi le called uti l ities.js.

JAVASCRIPT

UTILITIES Fl LE

These reusable functions are often referred to as

helper functions. As you write more JavaScript, you
are increasingly likely to create this type of function.

cl3/ js/ utilities.js

// Helper function to add an event l i stener
G) function addEvent(el , event , callback) {

@ if ('addEventlistener' in el) { II
~ el . addEventlistener(event, cal lbac k, false); //
© el se {
~ el[' e ' + event+ cal l back] =cal l back;
~ el [event + ca l l back] = f unc t i on() {

If addEventli stener works

Use it

Ot herwise
Make cal l back a method of el
Add second method

el [' e' +event+ cal l back](window. event);

} ;

II
II
II
II Use i t to cal l prev func

el . attachEvent ('on ' +event, el [event + callback]) ; // Use at tachEven t ()

// to cal l t he second function, which t hen call s t he f i r st one

1. The add Event() function is declared with three
parameters: element, event type, callback function.

2. A conditional statement checks if the element
supports the addEventL i stener() method.

3. If it does, then addEventL i stener() is used.

4. If not, the fallback code will run instead.

The tailback must add two methods to the element
the event handler will be placed upon. It then uses

Internet Explorer's attachEvent () method to call
them when the event occurs on that element.

5. The fi rst method added to the element is the

code that should run when the event occurs on this
element (it was the third parameter of the function).

6. The second method calls the method from the
previous step. It is needed in order to pass the event

object to the function in step 5.
7. The attachEvent () method is used to listen for

the specified event, on the specified element. When

the event fires, it calls the method that it added in
step 6, which in turn calls the method in step 5 using

the correct reference to the event object.

In steps 5 and 6, square bracket notation is used to
add a method name to an element:

e] ['e' +event+ callback]

i) The DOM node is stored in e 1. The square
brackets add the method name to that node. That
method name must be unique to that element, so it

is created using three pieces of information.
ii) The method names are made up of:

• The letter e (used for the fi rst method in step 5
but not used in step 6)

• The eventtype (e.g., click, blur, mouseover)

• The code from the callback function

In the code on the right-hand page, the value of this
method is the callback function. (This could lead to a

long method name, but it serves the purpose.) This

function is based on one by John Resig, who created

jQuery(http : //ej ohn.org/ projects/flexible

javascri pt-events/).

FORM ENHANCEMENT & VALIDATION @

THE FORM ELEMENT

DOM nodes for form controls have different properties, methods, and
events than some of the other elements you have met so far.
Here are some you should note for the <form> element.

PROPERTY DESCRIPTION

action The URL the form is submitted to

method If it is to be sent via,GET or POST

name Rarely used, more common to select a
form by the value of its id attribute

el ements A collection of the elements in the
form that users can interact with. They

can be accessed via index numbers or

the values of their name attributes.

The DOM methods you saw in Chapter 5, such as
getElementByld(),getElementsByTagName(),and

querySe l ector(), are the most popular techniques
for accessing both the <form> element and the form

contro.ls within any form. However, the document

object also has something called the forms

collection. The forms collection holds a reference to
each of the <form> elements that appear on a page.

Each item in a collection is given an index number
(a number starting at 0, like an array). This would

access the second form using its index number:

document.forms[!];

You can also access a form using the value of its

name attribute. The following would select a form

whose name attribute has a value of login:
document . forms.login

§ FORM ENHANCEMENT & VALIDATION

METHOD DESCRIPTION

submit () This has the same effect as clicking the

submit button on a form

reset () Resets the form to the initial values it had

when the page loaded

EVENT DESCRIPTION

submit Fires when the form is submitted

reset Fires when the form is reset

Each <form> element in the page also has an
e 1 ements collection. It holds all of the form controls
within that form. Each item in thee l ements

col lection can also be accessed by index number or

by the value of its name attribute.

The following would access the second form on the
page and then select the first form control within it:
document.forms[l].el ements[O];

The following would access the second form on the

page, then select the element whose name attribute

had a value of password from that form:
document.forms[l].elements.password;

Note: index numbers in a collection of elements can
change if the markup of a page is altered. So, use of

index numbers ties a script to the HTML markup (-it

does not achieve a separation of concerns).

FORM CONTROLS

Each type of form control uses a different combination of the properties,
methods, and events shown below. Note that the methods can be used to
simulate how a user would interact with the form controls.

PROPERTY

value

type

name

DESCRIPTION

In a text input, it is the text the user entered; otherwise, it is the value of the va 1 ue attribute

When a form control has been created using the <input> element, this defines the type of the
form element (e.g., text, password, radio, checkbox)

Gets or sets the value of the name attribute

default Val ue The initial value of a text box or text area when the page is rendered

form The form that the control belongs to

disabled Disables the <form> element

checked Indicates which checkbox or radio buttons have been checked.
This property is a Boolean; in JavaScript it will have a value of true if checked

defaul tChecked Whether the checkbox or radio button was checked or not when the page loaded (Boolean)

sel ected Indicates that an item from a select box has been selected (Boolean - true if selected)

METHOD DESCRIPTION

focus() Gives an element focus

blur() Removes focus from an element

sel ect() Selects and highlights text content of an element, (e.g., text inputs, text areas, and passwords)

cl ick() Triggers a click event upon buttons, checkboxes, and file upload
Also triggers a submit event on a submit button, and the reset event on a reset button

EVENT DESCRIPTION

blur When the user leaves a field

focus When the user enters a fie ld

click When the user clicks on an element

change When the value of an element changes

input When the value of an <input> or <texta rea> element changes

keydown, keyup, key press When the user interacts with a keyboard

FORM ENHANCEMENT & VALIDATION 8

SUBMITTING FORMS

In this example, a basic login form lets users enter a
username and password. When the user submits the
form, a welcome message will replace the form.

On the right-hand page you can see both the HTML
and the JavaScript for this example.

1. Place the script in an Immediately Invoked
Function Expression (ll FE see p97). (This is not
shown in the flowchart.)

2. A variable called form is created and it is set to
hold the <form> element. It is used in the event

listener in the next line of code.
3. An event listener triggers an anonymous funct ion

when the form is submitted. Note how this is set

using the add Event() function that was created in
the ut i 1 it i es. j s file that you saw on p571.

4. To prevent the form being sent (and to allow
this example to show a message to the user) the

preventDefault() method is used on the form.
5. The collection of elements in this form is stored in

a variable cal led e 1 ements.

6 . To get the username, first select the username

input from the e 1 ements collect ion using the value
of its name attribute. Then, to get the text the user
entered, the va 1 ue property of that element is used.

7. A welcome message is created and stored in a

variable called msg; this message will incorporate the
username that the visitor entered.

8 . The message replaces the form within the HTML.

8 FORM ENHANCEMENT & VALIDATION

In the HTML page, the uti l ities . j s file you saw on
p571 is included before the submit-event. j s script
because its add Event() function is used to create

the event handlers for this example. utilities . j s is

included for all examples in this section.

f) Create variable: fonn holds <fonn> element

...
I

Event : submit on form
I

ANONYMOUS FUNCTION :
Greets the user by username

0 Prevent default action of form submitting

I

e
0
0

0

Create variables:
e 1 ements: elements collection
username: username
msg: welcome message

...
I

Replace form with welcome message

The event listener wa its for the submit event on the

form (rather than a click on the submit button)

because the form can be submitted in other ways

than clicking on the submit button. For example, the
user might press the Enter key.

THE SUBMIT EVENT &
GETTING FORM VALUES

M:iief.11 cl3/submit-event.html

<form id="login" action="/ login" method="post">. ..
<div class="two-thirds column" i d="main">

<fieldset>
<legend>Login</ legend>
<label for="username">Username: </ label>
<input type="text" id=" username" name="username" I>
<label for="pwd">Password: </ label>
<input type="password" id="pwd" name="pwd" / >
<input type="submit" value="Login" / >

</ fieldset>
</di v> <!-- .two-thirds -->

</ form>
<script src="js/utilities.js"><l script>
<script src="js/ submit-event.js"></ script>

JAVASCRIPT

CD (function() {

cl3/js/submit-event.js

~ var form= document.getElementByld('login '); II Get form element

®
@

add Event (form, 'submit', function (e)
e.preventDefault();
var elements this.elements;

//When user submits form
II Stop it being sent

®
©
0
®

var username = elements.username.value;
II Get al l fo rm elements
/I Sel ect username entered
/I Create welcome message var msg = 'Welcome ' + username;

document.getElementByld('main').textContent = msg; II Write welcome message
}) ;

} ());

When selecting a DOM node, if you are likely to
use it again, it should be cached. On the right, you

can see a variation of the above code, where the
username and the main element have both been

stored in variables outside of the event listener.
If the user had to resubmit the form, the browser

would not have to make the same selections again .

var form = document.getElementByid(' login') ;

var el ements = form.elements;
var el Username = elements.username ;
var elMain = document .getElementByld('main');

addEvent (form, 'submit', function (e) {
e.preventDefault();

var msg = ' Welcome ' + el Username.value;

el Main.textContent = msg;
}) ;

FORM ENHANCEMENT & VALIDATION 8

CHANGING TYPE OF INPUT

This example adds a checkbox under the password

input. If the user checks that box, their password
will become visible. It works by using JavaScript
to change the type property of the input from

password to text. (The type property in the DOM
corresponds to type attribute in the HTML.)

Changing the type property causes an error in IE8
(and earlier), so this code is placed in a try •.•

catch statement. If the browser detects an error, the
script continues to run the second code block.

1. Place the script in an llFE (not shown in flowchart).
2. Put password input and checkbox in variables.

3. An event listener triggers an anonymous function
when the show password checkbox is changed.

4. The target of the event (the checkbox) is stored in
a variable called target. As you saw in Chapter 6,

e. target wi ll retrieve this for most browsers.

e. srcEl ement is only used for old versions of IE.

5. A try ..• catch statement checks if an error is
caused when the type attribute is updated.
6. If the checkbox is selected:

7. The value of the password input's type attribute is

set to text.
8 . Otherwise, it is set to password.

9. If trying to change the type causes an error, the

catch clause runs another code block instead.
10. It shows a message to tell the user.

8 FORM ENHANCEMENT & VALIDATION

Create variables:
8 pwd: password Input

chk: checkbox

e

0

e

+ r
Event: change on checkbox

I

ANONYMOUS FUNCTION:
Changes value of password's type attribute

Get element clicked on

Try to process following code block

+
I

' lo
Is it checked?

' • I
Set type to password Set type to text

l..._~~~~--~~~~~--'

Catch:
Is there an error? ' I G Display message: <=IES can't switch types

As you saw in Chapter 10, an error can stop a script

from running. If you know something may cause
an error for some browsers, placing that code in

a try ... catch statement lets the interpreter

continue with an alternative set of code.

SHOWING A PASSWORD

W:hif.11

<fieldset>
<legend>Login<l legend>
<label for="username">Username: <ll abel>

cl3/input-type . html

<input type="text" id="username" name="username" I>
<label for="pwd">Password :<l label>
<input type="password" id="pwd" name="pwd" I>
<input type="checkbox" id="showPwd">
<label for="showPwd">show password<llabel >
<input type="submit" value="Login " I>

<l fieldset> . . .
<script src="jsl utilities .js"><lscript>
<script src="jsl input-type.js"><lscript>

JAVA SCRIPT

CD (function() {

cl3/ js/i nput-type.js

var pwd = document.getElementByid('pwd'); II Get password input
var chk = document .getElementByid('showPwd'); . ll Get checkbox

Q) addEvent(chk, ' change', function(e) {
© var target = e. t arget 11 e. srcElement;
® t ry {
(§) i f (target. checked)
(2) pwd.type 'text ' ;

else {
(§:> pwd.type = 'password';

II When user clicks on checkbox
II Get that element
II Try the following code block
II If the checkbox is checked
II Set pwd type to text
II Otherwise
II Set pwd type to password

(2) catch(error) II If this causes an error
Q9> alert('This browser cannot switch type'); II Say 'cannot switch type'

}
}) ;

} ());

FORM ENHAN CEMENT & VALIDATION 8

SUBMIT BUTTONS

This script disables the submit button when:

• The script first loads. The change event then
checks when the password changes and enables
submit if the password is given a value.

• The form has been submitted (to prevent the
form being sent multiple times).

The button is disabled using the di sabled property.

It corresponds with the HTML disabled attribute,

and can be used to disable any form elements that a
user can interact with. A value of t rue disables the

button; fa 1 se lets the user cl ick on it.

1. Place the script in an llFE (not shown in flowchart).

2. Store the form, password input, and submit
button in variables.

3. The submi t t ed variable is known as a f lag; it

remembers if the form has been submitted yet.

4 . The submit button is disabled at the start of the
script (rather than in the HTML) so that the form
can still be used if a visitor has JavaScript disabled.

5. An event listener waits for the input event on the
password input; it triggers an anonymous function.

6 . Store the target of the event in t arget .

7. If the password input has a value, the submit

button is enabled, and (8) its style updated.
9. A second event listener checks for when the user

submits the form (and runs an anonymous function).
10. If the submit button is disabled, or the form has

been submitted, the subsequent code block is run.
11. The default action of the form (submitting) is

prevented, and retur n leaves the function.

12. If step 11 did not run, the form is submitted, the
submit button disabled, the submi t ted variable

updated with a value of true, and its cl ass updated.

8 FORM ENHANCEMENT & VA LI DATION

f)

e

Creat e variables:
form: <form> element
password: password input
submit: submit button
submitted: set to fa 1 se (form not yet submitted)

I
0 Disable submit button & set class to disabl ed

• I

9 Event : input on password input

I

A NONYMOUS FUNCTION:
Checks if submit should be enabled

0 Get target element (password input)

0 ' I
• I

Has form been
submitted? ' I Set di sab 1 ed

property to fa 1 se
Set di sab 1 ed

property to t rue
1... ________ _____)

y

Set class
to di sabled

Does target
have a value? ' I Set class

to enabled

Event: submit on <form> input

ANONYMOUS FUNCTIO N:
Checks if form can be submitted

Is submit disabled
or has form been

submi tted?

Let form submit , then:
• Disable form
• Updat e variable that t racks

if it has been submitted
•Set cl ass to disabled

Prevent
form

submitting

l

DISABLE SUBM IT BUTTON

""·'·''
<label for="pwd">New password: <llabel>
<input type="password" id="pwd" I>

cl3/disable-submit.html

<input type="submit" id="submit" value="submit" I>

JAVASCRIPT cl3/ js/disable-submit.js

G) (function() {
var form = document.getElementByid('newPwd'); II The form
var password
var submit

= document .getElementByid(' pwd'); II Password input
= document.getElementByid(' submit'); II Submit button

~ var submitted = false; II Has form been submitted?

@) submit.disabled = true;
submit.className = 'disabled';

II Disable submit button
II Style submit button

II On input: Check whether or not to enable the submit button
® addEvent(password, 'input', function(e) { II On input of password
© var target= e.target 11 e.srcElement; II Target of event
0 submit.disabled = submitted II !target.value; II Set disabled property

II If form has been submitted or pwd has no value set CSS to disabled
~ submit.className = (!target.value I I submitted) ? 'disabled' : 'enabled ' ;

®
@)

@{

}) ;

II On submit: Disable the form so it cannot
addEvent(form, 'submit', function(e) {

if (submit .disabled I I submitted) {
e.preventDefault();
return;

submit .disabled = true;
submitted = true;
submit.className = 'disabled';

be submitted again
11 On submit
II If disabled OR sent
II Stop form submission
II Stop processing function
II Ot herwise continue ...
II Disable submit button
II Update submitted var
II Update style

II Demo purposes only: What would
e.preventDefault();

have been sent & show submit is disab led

alert('Password is ' +password.value);
}) ;

} ()) ;

II Stop form submitting
II Show the text

FORM ENHANCEMENT & VALIDATION 8

CHECKBOXES
This example asks users about their interests. It has

an option to select or deselect all of the checkboxes.

It has two event handlers:

• The first fires when the all checkbox is selected; it

loops through the options, updating them.

• The second fi res when the options change; if one

is deselected, the all option must be deselected.

You can use the change event to detect when the

value of a checkbox, radio button, or select box

changes. Here, it is used to tel l when the user

selects I deselects a checkbox. The checkboxes

can be updated using the checked property, which

corresponds with HTML's checked attribute.

1. Place the script in an llFE (not shown in flowchart).

2. The form, all of the form elements, the options,

and the all checkbox are stored in variables.

3. The updateAl 1 () function is declared.

4. A loop runs through each of the options.

5. For each one, the checked property is set to the

same value as the checked property on the all option.

6. An event listener waits for the user to click on the

all checkbox, which fires a change event and calls the

updateA 11 () function.

7. The c 1earA1 1 Option() function is defined.

8. It gets the target of the option the user clicked on.

9. If that option is deselected, then the all option is

also deselected (as they are no longer all selected).

10. A loop runs through the options, adding an event

listener. When the change event happens on any of

them, c 1earA11 Option() is called.

@ FORM ENHANCEMENT & VALIDATION

Create variables:
fonn: <fonn> element

8 elements: elements contained in fonn
options: array of genre checkboxes
all: checkbox to turn all genres on/ off

• I

0 Event: change on element with id of a 11

I

e
0

G

0

FUNCTION: updateAl 1 ()
Checks or unchecks all checkboxes

Set checked property to match
checked property of select all

GO TO NEXT CHECKBOX

LOOP THROUGH EACH CHECKBOX

Event: change on genre c heckboxes

I

FUNCTION: cl earAl lOption()
Unchecks the 'all' option

Get element user clicked on

• I

ls It not ft
checked? T

I
Deselec t the 'all' option

---- GO TO NEXT CHECKBOX -----

SELECT ALL CHECKBOXES

M:iief.11 c13/al l -checkboxes .html

<label><input type="checkbox" value="all" id="al l ">All <llabel>
<label><input type="checkbox" name="genre" va l ue="ani mation">Animation<ll abel>
<label><input type="checkbox" name="genre" value="docs">Documentary<l l abel>
<label><input type="checkbox" name="genre" value="shorts">Shorts<llabel>

JAVASCRIPT c13/js/al l-checkboxes.js

CD (function() {

2

var form document.getElementByid(' interests '); II Get form
var elements
var options
var all

form.elements; II Al l elements i n form
el ements.genre; II Array: genre checkboxes
document.getElementByid(' al l '); II The 'al l ' checkbox

@.) function updateAll{) {
© for (var i = O; i <options . length; i++) {
® options[i] .checked =all .checked;

}
® add Event (a 11 , 'change' , updateA 11);

function clearAllOption(e)
var target = e. target 11 e.srcElement;
if (!target .checked) {

all .checked = false;

II Loop through checkboxes
II Update checked property

II Add event listener

II Get target of event
II If not checked
II Uncheck 'All' checkbox

for (var i = O; i <opt i ons.length; i++) { II Loop through checkboxes
addEvent(options[i], 'change', clearAllOption); II Add event listener

} ());

FORM ENHANCEMENT & VALIDATION 9

RADIO BUTTONS

This example lets users say how they heard about a

website. Every time the user selects a radio button,

the code checks if the user selected the option that

says other, and one of two things happens:

• If other is selected, a text input is shown so they

can add further detail.

• If the first two options are selected, the text box

is hidden and its value is emptied.

1. Place the script in an ll FE (not shown in flowchart).

2. The code starts out by setting up variables to hold

the form, all radio buttons, the radio button for the

other option, and the text input.

3. The text input is hidden. This uses JavaScript

to update the cl ass attribute so that the form still

works if the user has JavaScript disabled.

4. Using a for loop, an event listener is added to

each of the radio buttons. When one of them is

clicked, the radioChanged() function is called.

5. The radi oChanged () function is declared.

6. If other is checked, the value of the hi de variable

is set to be a blank string, otherwise it is set to hi de.

7. The hi de variable is, in turn, used to set the value

of the cl ass at tribute on the text input. If it is blank,

the other option is shown; if it has a value of hi de,

the text input is hidden.

8. If the hi de attribute has a value of hi de, then the

contents of the text input are emptied (so that the

text input is blank if it is shown).

@ FORM ENHANCEMENT & VALIDATION

Create variables:
form: the form

a options: all of the radio buttons
V other: only the other radio button

otherText: the other-text input
hi de: will store if other-text is hidden or not

• I

E) Set class of other- text to hide

0

•
Event: cl i ck on this radio element

FUNCTION: radi oChanged ()
Shows/hides the hidden text Input

' I
Is the other

option checked? ' I Set hi de variable
to hide

Clear hide
variable

l
y

)

Set class to value of hide variable

• I

Is the hidden
variable truthy?

Clear text input ' I
- - -- GO TO NEXT RADIO BUTTON ----

RADIO BUTTONS

1:11,,,,, cl3/show-option.html

<form id="how-heard" action="/heard" method="post">

<input type="radio" name="heard" value="search" id="search" / >
<label for="search">Search engine</ label>

<input type="radio" name="heard" val ue="print" id="print" / >
<label for="print">Newspaper or magazine</label>

<input type="radio" name="heard" value="other" id="other" / >
<label for="other">Other</ label >

<input type="text" name="other-input" id="other-text" />

<input id="submit" type="submit" value="submit" />

</ form>

JAVASCRIPT cl3/js/show-option.js

CD (function() {

,
®

®
©
0

~

var form, options, other, otherText, hide;
form = document.getElementByld('how-heard!) ;
options = form .elements.heard;
other = document.getElementByld('other ');
otherText = document.getElementByld('other-text ');
otherText.className = 'h i de';

for (var i = [0]; i <options . length ; i++) {
addEvent(options[i], 'click', radioChanged);

function radioChanged() {
hide= other.checked? ' ' 'hide' ;
otherText .className = hide;
if (hide) {

otherText.value = ' ' ;

}
} ());

//Declare variables
/ / Get the form
//Get the radio buttons
// Other radio button
// Other text input
// Hide other text input

//Loop through radios
//Add event l istener

// Is other checked?
// Text input visibili ty
// If text input hidden
// Empty its contents

FORM ENHANCEMENT & VALIDATION 8

SELECT BOXES

The <select> element is more complex than the other form controls.

Its DOM node has a number of extra properties and methods.
Its <option> elements contain the values a user can select.

This example features two select boxes.
W hen the user selects an option from the first

select box, the contents of the second select box are
updated with corresponding options.

In the first select box, users can choose to rent a

camera or a projector. When they make their choice,

a list of options are shown in the second select box.
Because this example is a bit more complex than the
ones you have seen so far in this chapter, the HTML

and screen shots are shown to the right. and the
JavaScript file is discussed on p586-p587.

PROPERTY DESCRIPTION

When the user selects an option from the drop

down list, the change event fi res. This event is often
used to trigger scripts when the user changes the

value of a select box.

The <select> element also has some extra

properties and methods that are specific to it;
these are shown in the tables below.

If you want to work w ith the individual options
the user can select from, a collection of <option>

elements is available.

options A collection of all the <option> elements

selected Index

length

multiple

sel ectedOptions

METHOD

Index number of the option that is currently option

Number of options

A llows users to select multiple options from the select box

(Rarely used because the user-experience is not very good)

A collection of all the selected <option> elements

DESCRIPTION

add (opt ion, before) Adds an item to the list:

remove (index)

The first parameter is the new option; the second is the element it should go before
If no value is given, the item wil l be added to the end of the options

Removes an item from the list:

Has only one parameter - the index number of the option to be removed

8 FORM ENHANCEMENT & VALIDATION

...

SELECT BOXES

W:ii$11

<label for="equipmentType">type</ l abel>
<select id="equipmentType" name="equipmentType">

<option value="choose">Please choose a type</option>
<option value="cameras">camera</option>
<option value="projectors">projector</ option>

</ select>

<label for="model ">model </ label>
<select id="model" name="model">

<option>Please choose a type first</option>
</select>

<input id="submit" type="submit" value="submit" />

l;(J.iilii

cl3/populate-selectbox.html

FORM ENHANCEMENT & VALIDATION 8

SELECT BOXES

1. Place the script in an llFE (not shown in flowchart).

2. Variables hold the two select boxes.
3. Two objects are created; each one holds options

used to populate the second select box (one has
types of cameras, the other has types of projectors).

4 . When the user changes the first select box, an
event listener triggers an anonymous function.
5. The anonymous function checks if the first select

box has a value of choose.

6. If so, the second select box is updated with just
one option, which tells the user to select a type.

7. No further processing is needed, and the return
keyword exits the anonymous function (until the
user changes the first select box again).

8 . If a type of equipment has been selected, the
anonymous funct ion continues to run, and a model s

variable is created. It will store one of the objects
defined in step 3 (cameras or projectors).

This correct object is ret rieved using the
getMode ls () function declared at the end of the
script (9+10). The function takes one parameter

t his.val ue, which corresponds to the value from

the option that was selected in first select box.
9. Inside the getMode ls () function, an if statement

checks if the value passed in was cameras; if so, it

returns the cameras object.
10. If not, it continues to run, checking to see if

the value was projector s, and if so, it returns the
projectors object.

11. A variable called options is created. It wi ll hold
all the <option> elements for the second select box.

When this variable is created the f irst <opt ion> is

added to it; it tel ls users to choose a model.
12. A for loop goes through the contents of the

object that was placed in the models variable in step
(8-10). Inside the loop, key refers to the individual

items in the object.

13. Another <opt i on> element is created for every
item in the object. Its value attribute uses the

property name from the object. The content that sits
between the <option> tags is that property's value.

14. The options are then added to the second select

box using the i nnerHTML property.

8 FORM ENHANCEMENT & VALIDATION

8
e

0

Cl)

G

G

G

e

Creat e variables:
type & model store the drop-down boxes
Create objects:
cameras & projectors store the equipment lists

+
I

Event: change on equipment type select box

I

A NONYMOUS FUNCTION:
Populates t he drop-down box

'
Is the value

' choose?

0 1 I
Call getMode 1 s () & Add <option>

store matching object 'Please choose
in models variable a type ... first'

l
8

Create variable: options
Add <option> 'Please choose a model'

+

L Add <option> element

GO TO NEXT KEY IN OBJECT

After loop: update <select> box

FUNCTION: getModel s()
Get models for selected equipment type

A Is user looking ft
T fo r cameras? T

L_,"""'" objeo" !,.,,.,

'
Is user looking ft
for projectors? T

I
Ret urn object: projectors

.,

SELECT BOXES

JAVASCRIPT cl3/js/populate-selectbox . js

G) (function() {
~ var type = document.getElementByid('equipmentType ') ; // Type select box
~ var model = document .getElementByid('model '); //Model select box

3

©
®
®
(J)

®

var cameras = { //Object stores cameras

} ;

bolex : ' Bolex Paillard H8',
yashica : 'Yashica 30',
pathescape: 'Pathescape Super-8 Relax',
canon: 'Canon 512 '

var projectors = {

} ;

kodak: 'Kodak Instamat i c M55' ,
bolex: 'Bolex Sound 715',
eumig: 'Eumig Mark S',
sankyo: 'Sankyo Dualux'

//WHEN THE USER CHANGES THE TYPE SELECT BOX
add Event (type, 'change' , funct i on() {

if (this.value === 'choose') {
model . innerHTML = '<option>Please choose
return;

var models= getModels(this.value);

//Store projectors

//No selection made
a type fi rst</ option> ';

//No need to proceed further

// Select the right object

//LOOP THROUGH THE OPTIONS IN THE OBJECT TO CREATE OPTIONS
(!j) var options = '<option>Please choose a model </option> ';
@ for (var key in mode l s) { // Loop through models
@ options+= '<option val ue= '"+ key+ 111 >1 + mode l s [key] +'</opt i on>';

} // If an option could contain a quote, key should be escaped
Q1> model .innerHTML =options; //Update select box

}) ;

function getModels(equipmentType) {

}

if (equipmentType === 'cameras') {
return cameras;
el se if (equipmentType === 'projectors')
return projectors;

} ());

// If type is cameras
// Return cameras object
// If type is projectors
// Return projectors object

FORM ENHANCEMENT & VALIDATION 8

TEXTAREA

In this example, users can enter a biography of up to

140 characters. When the cursor is in the textarea,

a element will be shown with a count of how
many characters the user has remaining. When the

textarea loses focus, this message is hidden.

1. Place the script in an l lFE (not shown in flowchart).

2 . The script sets up two variables to hold:
a reference to the <textarea> element and

a reference to the that holds the message.
3. Two event listeners monitor the <textarea>.

The first checks for when the element gains focus;
the second checks for a input event. Both events
trigger a function called updateCounter() (6-11)

The input event does not work in IE8, but you can

use keyup to support older browsers.
4 . A third event listener triggers an anonymous

function when the user leaves the <textarea>.

5. If the number of characters is less than or equal
to 140 characters, the length of the bio is okay, and
it hides the message (because it is not needed when

the user is not interacting with the element).

6 . The updateCounter() function is declared.
7. It gets a reference to the element that called it.

8 . A variable called count holds the number of

characters left to use (it does this by subtracting the
number of characters used from 140).

9. if. • • else statements are used to set the CSS
class for the element that holds the message (these

can also show the message if it was hidden).

10. A variable called charMsg is created to store the
message that will be shown to the user.

11. The message is added to the page.

@ FORM ENHANCEMENT & VALIDATION

Create variables: 8 bio: <textarea> element for bio
bioCount: element to show characters left

+
I

C) Event: focus & input on b lo <textarea>

e
f)

0

I

FUNCTION: updateCounter ()
Updates the count and/or message

Get target of event (<textarea>)

I
Create variable: count: result of
calculation (140 minus the length of
content In <textarea>)

"' I

' lscount<O? ' L Add<lm••L

'
Is count<= 15?

' I I
Ad~ class: good Add class: warn

\..._ ____ ______)
y

Create variable: charMsg: message
containing number of characters left

"' I

Write message to screen

Event: b 1 ur on blo <text area>
I

ANONYMOUS FUNCTION:
Hides the counter

Is count<= 140?

' I Hide the counter

CHARACTER COUNTER

""·'·'' cl3/textarea-counter. html

<label for="bio">Short Bio {up to 140 characters) <l label>
<textarea name="bio" id="bio" rows="S" col s="30"><1textarea>
<l span>

<script src="jslutilities . js"><l scri pt >
<script src="jsltextarea-counter .js"><l scri pt>

JAVASCRIPT cl3/js/textarea-counter.js

CD (fu nction () {
~ var bio document.getElementByid('bio');
~ var bioCount document.getElementByid('bio-count');

II <textarea> element
II Character count el

r:;J addEvent(bio, 'focus', updateCounter);
~ addEvent(bio, 'input', updateCounter);

©
(J)
®

9

@)
®

addEvent(bio, 'blur', function() {
i f (bio.value.length <= 140) {

bioCount.className = 'hide';
}

}) ;

funct ion updateCounter(e) {
var target = e.target I I e.srcElement;
var count = 140 - target .value.length;
if (count< O) {

bioCount.className = 'error';
else if (count <= 15) {
bioCount.class Name = 'warn';
else {
bioCount .class Name = 'good ';

var charMsg = '' + count + '<lb>' + '
bioCount.innerHTML = charMsg;

} ());

II Call updateCounter() on focus
II Call updateCounter() on input

II On leaving the element
II If bio is not too long
II Hide the counter

II Get the target of the event
II How many characters are left
II If less than 0 chars free
II Add class of error
II If less than 15 chars free
II Add class of warn
II Otherwise
II Add class of good

characters'; II Message to displ ay
II Update the counter element

FORM ENHANCEMENT & VALIDATION s

HTML5 ELEMENTS
& ATTRIBUTES

HTMLS adds form elements and attributes to perform tasks that had

previously been performed by JavaScript. However, their appearance can

vary a lot between different browsers (especially their error messages).

SEARCH

<input type="search "

placehol der="Search ... "
autofocus>

SAFARI

(she-epdog

FIREFOX

I sheepdog

CHROME

r sheepdog

Safari rounds the corners of

its search inputs to match the

user interface of the operating
system. W hen you enter text,

Safari shows a cross icon which,

when clicked or tapped, allows
the user to clear the text from

the field. Other browsers show
an input like any other text input.

EMAIL, URL, PHONE

<input type="email ">

<input type="url ">

<input type="telephone">

SAFARI

J hello@javascriptbook.com J

FIREFOX

I hello@javascriptbook.com

CHROME

I hello@javascri ptbook. J

Email, URL, and phone inputs all

look like text input fields, but the

browser performs checks on the
data entered into these inputs

to see if it is in the right format
to be an email address, URL, or
phone number, then sl;iows a

message if it is not.

s FORM ENHANCEMENT & VALIDATION

NUMBER

<input type="number"

min="O"

max="lO"

step="2"
va l ue="6">

SAFARI

FIREFOX

CHROME

16

Number inputs sometimes add

arrows to increase or decrease
the number specified (also

known as spinboxes). You
can specify a minimum and
a maximum value, a step (or

increment), and an initial value.

The browser checks that the
user entered a number, and

shows a message if a number

was not entered.

ATTRIBUTE DESCRIPTION

autofocus Gives focus to this element when the page is loaded

p 1aceho1 der Content of this att ribute is shown in the <input > element as a hint (see p594)

required Checks that the fie ld has a value - could be text entered or an option selected (see p606)

min Minimum permitted number

max Maximum permitted number

step Intervals by which numbers should increase or decrease

value Default value for a number when the control fi rst loads on the page

autocomp l ete On by default: shows list of past entries (disable for credit card numbers I sensit ive data)

pattern Lets you to specify a regular expression to validate a value (see p612)

novalidate Used on the <form> element to disable the HTMLS built-in form validation (see p604)

RANGE

<input type="range"
min="O"

max=" l O"

step="2"
value="6">

SAFA RI

-0-

FI REFOX

-----.

CHROME

===~o)!::· = =:)

The range input offers another

way to specify a number - this

time the control shows a slider.
As with the spinbox, you can

specify a minimum and a
maximum value, a step, and an

initial value.

COLOR PICKER

<input type="color">

CHROME

At the time of writ ing, Chrome

and Opera are the only browsers
to implement a color input. It

allows users to specify a color.
When they click on the control,
the browser will usually show the

operating system's default color

picker (except for Linux, which
offers a more basic palette). It

inserts a hex color value based

on the user's selection.

DATE

<input type="date "> (bel ow)

<input type="month">

<i nput type="week ">
<input type="time">

<i nput type="datetime">

CHROME

11'/ 0412015 o~ · I
April 2015 . n~GJ
Mon Tue Wed Thu Fri Sat Sun

~n l l 2 3 4

6 7 8 9 10 ll 12
l3 l4 15 16 17 18 19

20 21 22 23 24 25 26

I_
27 28 29 30

There are several different date

inputs available. At the time of
writing, Chrome was the only

browser to have implemented a
date picker.

FORM ENHANCEMENT & VALIDATION @ .

SUPPORT & STYLING

HTMLS form elements are not supported in all browsers and, when they
are, the inputs and error messages can look very different.

DESKTOP BROWSERS

At the t ime of writing, many developers were st ill

using JavaScript instead of these new HTMLS

features because:

• Older browsers do not support the new input

types (they just show a text box in their place).

• Different browsers present the elements and

their error messages in very different ways

(and designers often want to give users a

consistent experience across browsers).

Below, you can see how the error messages look

very different in two of the main browsers.

MOBILE

On mobile devices the situation is very different, as

most modern mobile browsers:

• Support the main HTMLS elements

• Show a keyboard that's adapted to the type:

emai 1 brings up a keyboard w ith the @ sign

number type brings up a number keyboard

• Give helpful versions of the date picker

Therefore, in mobile browsers, the new HTMLS

types and elements make forms more accessible

and usable for your visitors.

ERROR MESSAGE FOR AN EMAIL INPUT IN CHROME: DATE INPUT IN IOS:

javascriptbook.com C

I D Please enter an email address.
1 Q

ERROR MESSAGE FOR AN EMAIL INPUT IN FIREFOX:
< > Clear Done

hello
20 November 2013

21 December 2014

Please enter an email address. 22 January 2015
23 February 2016
24 March 2017

8 FORM ENHANCEMENT & VALIDATION

CURRENT APPROACHES

Until more visitors' browsers support these new features, and do so in a
consistent way, developers will think carefully about how they use them.

POLYFILLS

A polyfill is a script that provides

functionality you may expect a
browser to support by default.

For example, because older

browsers do not support the new
HTMLS elements, polyfi lls can

be used to implement a similar
experience I functionality in
those older browsers. Typically

this is achieved using JavaScript
or a jQuery plugin.

Polyfills often come with CSS
files that are used to style the

functionality the script adds.

You can find a list of polyfills for
various features here:

http://html5please.com

There is an example of how to
use a polyfill on p594, where

you see how to get the HTMLS

p 1aceho1 der attribute to show
up in older browsers.

FEATURE DETECTION

Feature detection means
checking whether a browser

supports a feature or not.

You can then decide what to do if
a feature is, or is not, supported.

On p415 you learned about
a script called moderni zr .js,

which tests for browser features.

Commonly, if a feature is not
supported, a polyfill script wil l be

loaded to emulate that featl.Jre.

To save loading the polyfill script
into browsers that do not need it,

Modernizr includes a conditional
loader; it w ill only load a script if
the test indicates that the script

is needed.

Another popular conditional

loader is Re qui re. j s (available

from http: //requi rej s. org),
but it is a bit more complex when

you are first starting out because
it offers many other features.

CONSISTENCY

Many designers and developers

want to control the appearance
of form controls and error

messages to give a consistent
experience across all browsers.

(Consistency in error messages

is considered important
because different styles of error

messages can confuse users.)

Therefore, the long example

used at the end of this chapter

wil l disable HTMLS validation

and try to use JavaScript
validation as its first choice.
(HTMLS validation is only

shown if the user does not have
JavaScript enabled; it is used as a

tailback in modern browsers.)

In that example, you also see

jQuery UI used to ensure that

the date picker is consistent
across all devices, with as little

code as possible.

FORM ENHANCEMENT & VALIDATION s ·

PLACEHOLDER FALLBACK

The HTMLS placehol der attribute lets you put
words in text inputs (to replace labels or to add hints
about what to enter). When the input gains focus

and the user starts typing, the text disappears. But

it only works in modern browsers, so this script
ensures that the user sees placeholder text in older

browsers too. It is a basic example of a polyfil l.

1. Place the script in an llFE (not shown in flowchart).

2. Check if the browser supports the HTMLS

pl aceho 1 der attribute. If it does, t here is no need for
the fa llback. Use return to exit the function.
3. Find out how many forms are on the page using

the length property of the forms collection.
4. Loop through each <form> element on the page

and call show Placeholder () for each one, passing it

the collection of elements in that form.
5. The showPl ace hol der() function is declared.

6. A for loop runs through elements in the collection.
7. An if statement checks each element to see if the

element has a placeholder attribute with a value.
8. If there is no placeholder attribute, continue

tells it to go on to the next element. Otherwise, it:

9. Changes the text color to gray, and sets the value
of the element to be the placeholder text.

10. An event listener triggers an anonymous

function when the element gains focus.
11. If the current value of the element matches the

placeholder text, the value is cleared (and color
changed to black).

12. An event listener triggers an anonymous function
when the element loses focus.

13. If the input is empty, the placeholder text is

added back in (and its color changed to gray).

8 FORM ENHANCEMENT & VALIDATION

0

' I
Is p 1aceho1 der

supported? ' Create variable: 1 ength: number of forms

+

t
1

Call function: showPl aceho l der{)

~ GOTONEXTFORM ------

e

•
0

0

0

FUNCTION: showPl ace holder()
add placeholder to elements without one

Create variable: el: current element

+ I

Does it use ft
placeholder? T

I
Set color to gray

I
Set placehold er text

Event: focus on t h is element

ANONYMOUS FUNCTION:

If p laceholder text is in the
input, empty it & make text
black

Event: b 1 ur on t h is elem ent

I

ANONYMOUS FUNCTION:

If the input is empty, show the
placeholder text in gray

+
I

"----- GO TO NEXT ELEMENT ----

PLACEHOLDER POLYFILL

JAVASCRIPT c13/js/pl acehol der-polyfi l l . js

G) (function() { //Pl ace code in an IIFE
// Test: Creat e an input element, and see if t he placehol der i s supported

~ if ('placeholder' in document.createElement('input')) {

®
®

0
®

return;

var length = document.forms.length;
for (var i = 0, l = length; i < l; i++)

showPl aceholder(document.forms[i] .elements);

// Get number of forms
// Loop t hrough each one
// Call showPl aceholder()

II Dec l are function function showPlaceholder(elements) {
for (var i = 0, 1 =elements.length;

var el = elements[i];
< l; i++) { // For each el ement

// Store that el ement

}
} ());

if (!el.placeholder) {
continue;

el.style.color= 1 #666666 1
;

el.value= el .placeholder;

addEvent(el, 'focus', function () {
if (this.value === this .placeholder)

this.value= '';
this .style.color = '#000000';

}
}) ;

addEvent(el, 'blur', function () {
if (this .val ue === 11

) {

}
}) ;

this.value = this.placeholder;
this.style.color= '#666666';

/ / If no placehol der set
II Go to next element
// Otherwise
// Set text t o gray
// Add placeholder t ext

// If it gains focus
// If va l ue=pl aceholder
// Empty text i nput
// Make t ext bl ack

// On bl ur event
// If the input i s empty
// Make val ue pl acehol der
// Make t ext gray

//End of for l oop
// End showPlacehol der()

There are a few differences from the HTMLS"s placeholder attribute: e.g., if the user deletes their text, the

placeholder only returns when the user leaves the input (not immediately - as with some browsers). It wi ll not

submit text that has the same value as the placeholder."Placeholder values may be saved by autocomplete.

FORM ENHANCEMENT & VALIDATION 8 A

POLYFILL USING
MODERNIZR & YEPNOPE

You met Modernizr in Chapter 9, here you can see it used with a
conditional loader so that it only loads a fallback script if one is needed.

Modernizr lets you test whether or not a browser
and device support certain features; this is known

as feature detection. You can then take different
courses of action depending on whether or not the

features were supported. For example, if an older
browser does not support a feature, you might

decide to use a polyfill.

Modernizr is sometimes included in the <head> of an
HTML page when it needs to perform checks before

the page has loaded (for example, some HTMLS I
CSS3 polyfills must be loaded before the page).

MODERNIZR ON ITS OWN

Each feature you test using Modernizr becomes
a property of the Moderni zr object. If the feature
is supported, the property contains true; if not, it

contains false. You then use the properties of the

Moder ni zr object in a conditional statement as

shown below. Here, if Moderni zr's cssanimati ons

property does not return true the code in the curly
braces runs.

if (!Modernizr.cssanimations)

II CSS animations are not supported

II Use jQuery animation instead

8 FORM ENHANCEMENT & VALIDATION

Rather than loading a polyfill script for everyone who
visi ts your site (even if they do not need to use it),

you can use something called a conditional loader,
which will let you load different files depending on

whether a condition returns true or false. Modernizr

is commonly used with a conditional loader called
YepNope. j s, so polyfills are only loaded if needed.

Once you have included the Yep Nope script in your

page, you can call the yepnope() function. It uses
object literal syntax to indicate a condition to test,

and then what files to load depending on whether
the condition returned true or false.

MODERNIZR + YEPNOPE

YepNope is passed an object literal, which usually
contains a minimum of three properties:

• test is the a condit ion being checked.
Here Modernizr is used to check if

cssanimati ons are supported.

• yep is the file to load if the condition returns true.

• nope is the file to load if the condition returns
false (here it loads two files using array syntax).

yepnope({

test: Modernizr.cssanimations,

yep: 'cssl animations.css',
nope: ('jsl jquery.js' , 'jsl animate.js']

}) ; .

CONDITIONAL LOADING
OF A POLYFILL

""Ml' c13/ number-pol yfi l l . html

<head>

<script src =" js/ moderni zr.js"></script>
<script src="js/yepnope .js"></script>
<script src="js/number-polyfil l -eg.js"></script>

</head>
<body>

<label for="age">Enter your age:</label>
<input type="number" id="age" />

</body>

JAVASCRI PT c13/ js/ number-polyfi l l-eg.js

yepnope({
test: Modernizr. i nputtypes.number,
nope: ['js/numPolyfill .js ' , ' css/number.css'],
compl ete: function() {

}
}) ;

l:IJiQil

consol e .l og(' YepNope + Modernizr are done');

This example tests if the browser

supports the <input> element
using a type attribute with a

value of number. Both Modernizr
and YepNope are included in the

<head> of the page so that the
fal lback is shown correctly.

The yepnope () function takes an

object literal as a parameter. It's
properties include:

• test: the feature you are
checking fo r. In this case it

is checking Modernizr to

see if the number input is
supported.

• yep: not used in this example
can load files if the feature is
supported.

• nope: what to do if feature is
not supported (you can load

multiple fi les in an array).

• comp 1 ete: can run a function

when the checks are
complete, and any necessary

files have loaded. Here it adds
a message to the console to
demonstrate how it works.

Note that Modernizr stores the
value of the <input> element 's

type attribute, in a child object

called i nputtypes. E.g., to check
if the HTMLS date selector is
supported, you use:

Modernizr.inputtypes.date
(not Moderni zr. date).

FORM ENHANCEMENT & VALIDATION 0

FORM VALIDATION

The final section of this chapter uses one big script to discuss the topic of

form validation. It helps users give you responses in the format you need.

(The example also has some form enhancements, too.)

Validation is the process of checking whether a value

meets certain rules (for example, that a password

has a minimum number of characters). It lets you

tell users if there is a problem with the values they

entered so that they can correct the form before

they resubmit it. This has three key advantages:

• You are more likely to get the information you

need in a format you can use.

• It is faster to check values in the browser than it

is to send data to the server to be checked .

• It saves resources on the server.

s FORM ENHANCEMENT & VALIDATION

In this section you see how to check the values a

user enters into a form. These checks happen when

the form is submitted. To do this users could press

submit or use the Enter on the keyboard, so the

validation process wi ll be tr iggered by the submi t
event (not the c 1 i ck event of a submit but ton).

W e will look at val idation using one long example.

You can see the form below, and the HTML is shown

on the right. It uses HTMLS form controls, but the

validation is going to be done using JavaScript to

make sure that the experience is consistent across

all browsers (ev.en if they do support HTMLS).

FORM HTML
This example uses HTMLS markup, but validation is
performed using JavaScript (not HTMLS validation).

Due to limited space, the code below only shows the
form inputs (not the markup for the columns).

""*''
<form method="post" action="/register">

<!- - Column 1 -->
<div class="name">

<label for="name" class="required">Name: </label>

cl3/va11dation.html

<input type="text" placeholder="Enter your name" name="name" id="name"
required title="Please enter your name">

</div>
<div class="email">

<label for="email" class="required">Email: </label>
<input type="email" placeholder="you@example.com" name="email " id="emai l "

required>
</div>
<div class="password">

<label for="password" class="required">Password :</label>
<input type="password" name="password" id="password" required>

</div>
<div class="password">

<label for="conf-password" class="required">Confirm password:</label>
<input type="password" name="conf-password" id="conf-password" required>

</div>
<!-- Column 2 -->
<div class="birthday">

<label for="birthday" class="required">Birthday:</label>
<input type="date" name="birthday" id="birthday" placeholder="yyyy-mn-dd"

required>
<div id="consent-container" class="hide">

<label for="parents-consent"> You need a parent's permission to join .
Tick here if your child can join:</label>

<input type="checkbox" narne="parents-consent" id="parents-consent">
</div>

</div>
<div class="bio">

<label for="bio">Short Bio (max 140 characters) :</label>
<textarea narne="bio" id="bio" rows="S" cols="30"></textarea>
l40

</div>
<div class="submit"><input type="submit"></div>

</form>

FORM ENHANCEMENT & VALIDATION 8

VALIDATION OVERVIEW

This example has over 250 lines of code and will take 22 pages to explain.

The script starts by looping through each element on the page
performing two generic checks on every form control.

GENERIC CHECKS

First, the code loops through every element in the
form and performs two types of generic checks.

They are generic checks because they would work

on any element, and would work with any form.
1. Does the element have the requi r ed attribute?

If so, does it have a value?
2. Does the value match with the type attribute?

E.g., Does an email input hold an email address?

CHECKING EACH ELEMENT

To work through each element in the form, the

script makes use the form's e 1 ements col lection
(which holds a reference to each form control). The

collection is stored in a variable called e 1 ements. In

this example, the e l ements collection will hold the
following form controls. The right-hand column tells

you which elements are required to have a value:

INDEX ELEMENT REQUIRED

0 elements.name Yes

elements. email Yes

2 elements.password Yes

3 elements.conf-password Yes

4 elements.birthday Yes

5 elements .parents- consent lfunder13

6 elements .bio No

8 FORM ENHANCEMENT & VALIDATION

Some developers proactively cache form elements in

variables in case validation fai ls. This is a good idea,

but to keep this (already very long) example simpler,

the nodes for the form elements are not cached.

If you have not already done so, it would be helpful

to download the code for this example from the

website, javascriptbook.com, and have it ready when

you are reading through the following pages.

Once the generic checks have been performed, the script then makes

some checks that apply to individual elements on the form.

Some of these checks apply only to this specific form.

CUSTOM VALIDATION TASKS

Next the code performs checks that correspond w ith

specific elements in the form (not all elements):

• Do the passwords match?

• Is the bio in the textarea under 140 characters?

• If the user is less than 13 years old, is the parental

consent checkbox selected?

These checks are specific to this form and only apply

to selected elements in the form (not all of them).

TRACKING VALID ELEMENTS

To keep track of errors, an object called va 1 id is

created.- As the code loops through each element

performing the generic checks, a property is added

to the va 1 id object for each element:

• The property name is the value of its id attribute.

• The value is a Boolean. Whenever an error is

found on an element, this value is set to fa 1 se.

PROPERTIES OF THE VALID OBJECT

val id.name

valid.email

valid . passwor d

valid.cont-password

valid .birthday

valid.parents-consent

valid .bio

FORM ENHANCEMENT & VALIDATION 8

DEALING WITH ERRORS

If there are errors, the script needs to prevent the form being submitted
and tell the user what they need to do in order to correct their answers.

As the script checks each element, if an error is
found, two things happen:

• The corresponding property of the valid object
is updated to indicate the content is not valid.

• A function called setErrorMessage () is called.

This function uses jQuery's • data() method,
which allows you to store data with the element.

So the error message is stored in memory along
with the form element that has the problem.

After each element has been checked, then error
messages can be shown using showErrorMessage().

It retrieves the error message and puts it in a
element, which is added after the form control.

form

Each time the user tries to submit the form, if an
error was not found on an element it is important

to remove any error messages from that element.
Consider the following scenario:

a) A user filled out a form with more than one error.

b) This triggered multiple error messages.
c) The user fixes one problem, so its corresponding

message must be removed, while error message(s)
for problems that have not been fixed must remain
visible.

Therefore, when each of the elements is looped

through, either an error message is set, or the error

message is removed.

I

elements

email password conf-password
I

key/value

Above you can see a representation of the form and
its elements collection. There was a problem with

the email input, so the . data() method has stored a

key/value pair with that element.

8 FORM ENHANCEMENT & VALIDATION

birthday parents-consent

This is how the setErrorMessage() function will
store the error messages to show to the user.

If the error is fixed, then the error value is cleared

(and the element with the error message removed).

SUBM ITTING THE FORM

Before sending the form, the script checks whether there were any errors.
If there were, the script stops the file from being submitted.

In order to check whether any errors were found, a
variable cal led i sFormVa lid is created and is given

a value of true. The script then loops through each
property of the valid object, and if there was an
error (if any property of that object has a value of

false), then there is an error in the form and the

isFormValid variable is also set to false.

So, i sFormVa lid is being used as a flag (you can
think of it being like a master switch) if an error is
found, it is turned off. At the end of the script, if

is FormV a 1 i d is fa 1 se then an error must have been
found and the form should not be submitted (using

the pr eventOefau 1t () method).

It is important to check and process all of the

elements before deciding whether to submit the
form so that you can show all of the relevant error

messages in one go.

If every value has been checked, the user can be

shown all of the things they have to amend before
re-submitting the form.

If the form only showed the first error it came
across, and stopped, the user would only see one

error each time they submitted the form. This could

soon become frustrating for the user if they were to
keep trying to submit the form and see new errors .

....... ··
~~~ ............. ···" PROPERTIES OF val id OBJECT 

Create variable: i sFonnVa lid 

+ 

T ' Is value fa l se? ' 

~ GOTONEXTPROPERTY -+-----

·· .... 

Set isFonnValid to false 

Prevent default action of form submitting 

·. ·· ... 
·· ... 

··. 

······· ............. . 

valid.name true 

valid.email true 

valid.password true 

valid.conf-password true 

valid.birthday false 

valid .parents-consent false 

valid.bio true 

The loop stops when the first error is found. 

(Note that error messages are already visible.) 

FORM ENHANCEMENT & VALIDATION @ 



CODE OVERVIEW 

On the right is an outline of the validation code, spl it into four sections. 
On line 3, an anonymous function is called when the form is submitted. 
It orchestrates the validation, in turn calling other functions (not all of 
which are shown on the right-hand page, see fu rther pages for more). 

A: SET UP THE SCRIPT 

1. The code lives inside an llFE (creat ing function

level scope). 
2. This script uses JavaScript validation to ensure 

that error messages look the same on all browsers, 
so HTMLS validat ion is turned off by set ting the 

no Va 1 i date property of the form to true. 
3. When the user submits the form, an anonymous 
function is run (this contains the validation code). 

4. e 1 ements holds a collection of all form elements. 

5. va 1 id is the object that keeps track of whether or 

not each form control is valid. Each form control is 
added as a property of the valid object. 
6. i s Valid is a flag that is re-used to check whether 

individual elements are valid. 
7. i sFonnVa lid is a flag that is used as a master 
switch to check whether the entire form is valid. 

C: PERFORM CUSTOM VALIDATION 

14. After the code has looped through every element 

on the form, the custom validat ion can occur. There 
are three types of custom validat ion occurring (each 

one uses its own function): 

i) Is the bio too long? See p61 5. 

ii) Do passwords match? 
iii) ls user old enough to join on own? If not, is the 

parental approval checkbox selected? See p617. 
15. If an element fails one of the custom validation 

checks, showErrorMessage() will be called, and the 
corresponding property in the valid object will be 

set to fal se. 

16. If the element passes the check, 
r emoveErrorMessage () is called for that element. 

8 FORM ENHANCEMENT & VALIDATION 

B: PERFORM GENERIC CHECKS 

8. The code loops through each form control. 
9. It performs two generic checks on each one: 
i) Is the element required? If so, does it have a 

value? Uses va 1 i dateRequi red() . See p606. 
ii) Does the value correspond with the type of data it 

should hold? Uses validate Types() . See p610. 
If either of these functions does not return t r ue, 

then is Val id is set to f alse. 
10. An if • • • e 1 se statement checks if that element 

passed the tests (by checking if is Val id is false). 

11. If the control is not valid, showErrorMessage () 
shows an error message to the user. See p609. 
12. If it is valid, r emoveErrorMessage() removes any 

errors associated with that element. 

13. The value of the element's id att ribute is added 
as a property val i d object; it s value is whether or 

not the element was valid. 

D: DID THE FORM PASS VALIDATION? 

The val id object now has a property for each 
element, and the value of that property states 

whether or not the element was valid or not. 
17. The code loops through each property in the 

va 1 id object. 

18. An i f statement checks to see if the element 
was not valid. 

19. If it was not valid, set i sFormVa lid to false and 
stop the loop. 

20. Otherwise, is FormVa l i d is set to true. 
21. Finally, having looped through the valid object, 

if i sFormVa l id is not true, the preventDefault () 

met~od prevents the form being submitted. 
Otherwise, it is sent. 



JAVASCRIPT c13/js/validation.js 

II SET UP THE SCRIPT 
G) (function () { 
~ document. forms. register .noVal idat e = true; 
@ $( ' form ') .on( 'submit' , function(e) { 

II Disable HTML5 validation 
II When form is submitted 

© 
® 
© 
0 

@ 

® 
@) 
® 

@ 

@ 

@ 

@{ 

® 
@ 

® 

var elements = t his .element s; 
var va l id ={} ; 

II Collection of form controls 
II Custom valid object 

var i sVal i d; II isValid : checks form controls 
II isFormValid : checks entire form var i sFormValid ; 

II PERFORM GENERIC CHECKS (calls funct i ons outside the event handler) 
for (var i = 0, l = (elements. lengt h - l) ; i < l ; i++) { 

II Next line calls validateRequired() see p606 & validateTypes() p610 
isValid = validateRequi red (el ements[i]) && val idateTypes(elements[i]); 
i f ( !i sValid) { II If it does not pass these two tests 

showErrorMessage (el ements[i]); II Show error messages (see p608) 
else { II Otherwise 
removeErrorMessage (el ements[i]); II Remove error messages 

} II End if statement 
val id[elements[i] . id] = isVali d; II Add element to the valid object 

II End for loop 

II PERFORM CUSTOM VALIDATION (just 1 of 3 functions - see p614-p617) 
if (!validateBio()) { II Call validateBio(), if not valid 

showEr rorMessage(document.getEl ementBy ld( 'bi o' )); II Show error 
valid. bio = false ; II Update valid object-not valid 
el se { II Otherwise 
removeErrorMessage (document.getElement By ld('b io')); II Remove error 
II two more functions follow here (see p614-p617) 

II DID IT PASS I CAN IT SUBMIT THE FORM? 
II Loop through va l i d object, if there are errors set isFormVal i d to false 
for (var fie ld in valid) { II Check properties of the va li d obj ect 

} 

if (!valid[field]) { II If it is not valid 
i sFormVal i d = false ; II Set isFormValid variable to false 
break; II Stop the for loop, error was found 

II Otherwise 
isFormValid = true; II The form is valid and OK to submit 

II If the form did not 
if (!i sFormValid) { 

validate, prevent it being submitted 
II If isFormValid is not true 

} 
} ) ; 

} ()) ; 

e.preventDefault() ; II Prevent the form being submitted 

II End event handler 
II Functions called above are here 
JI End of IIFE 

FORM ENHANCEMENT & VALIDATION 9 



REQUIRED FORM 
ELEMENTS 

The HTMLS required attribute indicates a field must have a value. 
Our val i dateRequi red () function will first check for the attribute. 

If present, it then checks whether or not it has a value . 

val i dateRequi red () is cal led for 

each element individually (see 
step 9, p605). Its one parameter 

is the element it is checking. 

function validateRequired(el) 

if (isRequired(el)) { 
var valid = !isEmpty(el); 
if (!val id) { 

In turn, it calls upon three other 

named functions. 
i) i sRequ ired() checks for the 
required attribute. 

ii) i sEmpty() can check if the 
element has a value. 
iii) setErrorMessage() sets error 

messages if there are problems. 

// Is this element required 

setErrorMessage(el, 'Field is required'); 

// Is value not empty (true/false) 
// If val id variable holds false 

//Set the error message 

return valid; //Return valid variable (true/false) 

return true; // If not required, all is okay 

A: DOES IT HAVE A B: IF SO, DOES IT HAVE C: SHOULD AN ERROR 
REQUIRED ATTRIBUTE? A VALUE? MESSAGE BE SET? 

1. An if statement uses a If the field is required, the next 3. An i f statement checks if the 
function called i sRequi red() step is to check whether or not va 1 id variable is not true. 
to check whether the element it has a value. This is done using 
carries the required attribute. a function cal led i sEmpty (),also 4. If it is not true, an error 
You can see the i sRequi red() shown on the right-hand page. message is set using the 
function on the right-hand page. setErrorMessage () function, 
If the attribute is present, the 2. The result from is Empty() is which you meet on p608. 
subsequent code block is run. stored in a variable called va 1 id. 

If it is not empty, the valid 5. The va 1 id variable is returned 
6. If not, the code skips to step to variable will hold a value of true. on the next line, and that is 
step 6 to say this element is OK. If it is empty, it holds false. where this function ends. 

e FORM ENHANCEMENT & VALIDATION 



va 1 i dateRequi red() uses two functions to perform checks: 
1: i sRequi red() checks whether the element has a required attribute. 

2: i sEmpty () checks whether the element has a value. 

i sRequ i red() 

The i sRequ ired() function 

takes an element as a parameter 
and checks if the required 

attribute is present on that 
element. It returns a Boolean. 

function i sRequired(el) { 

There are two types of check: 

The first, in blue, is for browsers 
that support the HTMLS 

required attribute. The one in 
orange is for older browsers. 

return ( (typeof el .required === ' boolean') && el . requ ired ) I I 
(typeof el .required === 'string') ; 

MODERN BROWSERS 

Modern browsers know the 
required property is a Boolean, 

so the fi rst part of this check 
tells us if it is a modern browser. 
The second part checks if it is 

present on this element. 
If the attribute is present, it will 

evaluate to true. If not, it returns 
undefined, which is considered 

a falsy value. 

i sEmpty() 

The i sEmpty() function (below) 

takes an element as a parameter 
and checks to see if it has a 

value. As with i sRequi red(), 
two checks are used to handle 

both new and older browsers. 

function isEmpty(el) { 

OLDER BROWSERS 

Browsers that do not know 

HTMLS can still tell whether 

or not an HTMLS attribute 
is present on an element. In 
those browsers, if the requi red 

attribute is present, it gets 
treated as a string, so the 

condition would evaluate t9 

true. If not, the type would be 
undefined, which is falsy. 

ALL BROWSERS 

The first check looks to see if the 
element does not have a value. 

If it has a value, the function 
should return fa 1 se. If it is 

empty, it will return true. 

return !el.val ue I I el . value === el . placeholder ; 

To check if the required 

attribute is present, the typeof 
operator is used. It checks what 
datatype the browser thinks the 

required attribute is. 

WHAT IS VALIDATED 

It is important to note that the 

required attribute only indicates 
that a value is required. It doesn't 

stipulate how long the value 
should be, nor does it perform 

any other kind of validation. 
Specific checks, such as these, 
would have to be added in the 

va 1 i date Types() function or 

the script's custom validation 

section. 

OLDER BROWSERS 

If older browsers use a polyfill 

for placeholder text, the value 
would be the same as the 
placeholder, so it is considered 

empty if those values match. 

FORM ENHANCEMENT & VALIDATION 8 



CREATING ERROR 
MESSAGES 

The validation code processes elements one by one; 

any error messages are stored using jQuery's • data() method. 

HOW ERRORS ARE SET 

Throughout the validation code, whenever an 
error is found, you will see calls to a function called 
setErrorMessage(), which takes two parameters: 

i) e 1: the element that the error message is for 

ii) message: the text the error message will display 

For example, the following would add the message 
'Fie 1 d is required' to the element that is stored in 

the el variable: 

setErrorMessage(el, 'Field is required'); 

set ErrorMessage() 

function setErrorMessage(el, message) { 

$(el ) .data('errorMessage', message); 

8 FORM ENHANCEMENT & VALIDATION 

HOW DATA IS STORED WITH NODES 

Each error message is going to be stored with the 
element node that it relates to using the jQuery 

.data() method. When you have elements in a 
jQuery matched set, the .data() method allows 

you to store information in key/value pairs for each 

individual element. 

The . data() method has two parameters: 

i) The key, which is always going to be errorMessage 
ii) The value, which is the text that the error 

message will display 

II Store error message with element 



DISPLAYING ERROR 
MESSAGES 

After each element has been checked, if one or more were not valid, 

showErrorMessage () will display the error messages on the page. 

HOW ERRORS ARE DISPLAYED 

If an error message needs to be shown, first a 
<span> e lement will be added to the page directly 
after the form field with the error. 

Next, the message is added into the <span> element. 
To get the text for the error message, the same 
jQuery . data() method that set the message is 
used again. This t ime, it only takes one parameter: 
the key (which is always errorMessage). 

This al l happens within the function called 
showErrorMessage() which is shown below. 

showErrorMessage() 

fu nct i on showErrorMessage(el) 
var $el = $(el ) ; 
var $errorContainer = $el .sibl i ngs( ' . er ror'); 

1. $el holds a jQuery selection containing the 
element that the error message relates to. 
2. $errorConta i ner looks for any existing errors 
on this element by checking if it has any sibling 
elements that have a class of error. 
3. If the element does not have an error message 
associated with it, the code in the curly braces runs. 
4 . $errorContai ner is set to hold a <span> element. 
Then . i nsertA fter () adds the <span> element into 
the page after the element causing the error. 
5. The content of the <span> element is populated 
with the error message fo r that element, which is 
retrieved using the .data() method of the element. 

II Fi nd e l ement with the error 
II Does i t have err or s already 

if (! $errorContainer. l ength) { II If no errors found 
II Creat e a <span> to hold t he error and add it after the element with the err or 
$errorContainer = $( ' <span class="error"><ls pan>') . insertAfter($el ); 

$errorConta i ner . text($(el) . dat a( ' errorMessage ' )); II Add error message 

FORM ENHANCEMENT & VALIDATION @ . 



VALIDATING DIFFERENT 
TYPES OF INPUT 

HTMLS's new types of input come with built-in validation. 
This example uses HTMLS inputs, but validates them with JavaScript 
to ensure that the experience is consistent across all browsers. 

The va 1 i date Types() function 
is going to perform the validation 

just like modern browsers do 
with HTMLS elements, but it will 

do it for all browsers. It needs to: 

• Check what type of data the 
form element should hold 

• Ensure the contents of the 
element matches that type 

function validateTypes(el) { 

if (!el.value) return true; 

1. The first line in the function 
checks if the element has 

a value. If the user has not 
entered any information, you 

cannot validate the type of data. 

Furthermore, it is not the wrong 
type of data. So, if there is no 
value, the function returns true 
(and the rest of the function 
does not need to run). 

2. If there is a value, a variable 
called type is created to hold the 

value of the type attribute. First, 
the code checks to see if jQuery 

stored info about the type using 

its .data() method (see why on 
p618). If not, it gets the value 

of the type attribute. 

var type= $(el) .data( ' type') II 
if (typeof validateType[type] 

return validateType[type](el); 

else { 

II If element has no value, return true 

II Otherwise get the value from .data() 
el.getAttribute('type'); II or get the type of input 

'function ' ) { II Is type a method of validate object? 

II If yes, check i f the value validates 

11 If not 
return true; 

The getAttri bute() method 

is used rather than the DOM 
property for type because all 
browsers can return the value 

of the type attribute, whereas 
browsers that don·t recognize 

a new HTMLS DOM property 

types would just return text. 

II Return true as it cannot be tested 

3. This function uses an object 
called val idateType (shown 

on the next page) to check the 
content of the element. The 

if statement checks if the 
va 1 i date Type object has a 

method whose name matches 

the value of the type attribute. 

If it has a method name that 
matches the type of form control: 

4. The element is passed to the 
object; it returns true or fa 1 se. 

5. If there is no matching 
method, the object is not able to 

val idate the form control and no 

error message should be set. 

8 FORM ENHANCEMENT & VALIDATION 



CREATING AN OBJECT TO 
VALIDATE DATA TYPES 

The validate Type object 

(outlined below) has three 
methods: 

var validateType = { 
email: function(el) 

II Check email address 
}, 
number: function(el) { 

II Check it is a number 
}, 

date: function(el) { 

II Check date format 
} 

The code inside each method 

is virtually identical. You can 
see the format of the ema i l () 

method below. Each method 
validates the data using 

something called a regular 
expression. The regular 

expression is the only thing that 
changes in each method to test 

the different data types. 

Regular expressions allow you 
to check for patterns in strings, 

and here they are used with a 
method called test () . 

You can learn more about 
regular expressions and their 

syntax on the next two pages. 
For now, you just need to know 

that they are used to check the 
data contains a specific pattern 

of characters. 

Storing these checks as methods 
of an object makes it easy to 

access each of the the different 
checks when it comes time to 

validate the different types of 

input in a form. 

/[A@J+@[A@]+/ .test(el . value); 
.__ __ _,CD II @t----~ 

i) The regular expression is 
["@] +@["@]+(it is between the 

I and I characters). It states a 
pattern of characters that are 

found in a typical email address. 

email: function (el) { 

ii) The test () method takes one 
parameter (a string), and checks 

whether t he regular expression 
can be found within the string. 

It returns a Boolean. 

iii) In this example, the test() 

method is passed the value of 
the element you want to check. 

Below you can see the method to 
test email addresses. 

II Create email method 
var val id= l["©]+@["@]+l.test(el.value); 

if (!valid) { 
II Store result of test in valid 

II If the value of valid is not true 
II Set error message setErrorMessage(el, 'Please enter a valid emai l '); 

return valid; 
}, 

1. A variable called valid holds 

the result of the test using the 
regular expression. 

II Return the valid variable 

2. If the string does not contain a 

match for the regular expression, 

3. an error message is set. 

4. The function returns the value 

of the valid variable (which is 

true or false). 

FORM ENHANCEMENT & VALIDATION e · 



REGULAR EXPRESSIONS 

Regular expressions search for characters that 
form a pattern. They can also replace those 
characters with new ones. 

Regular expressions do not just 
search for matching letters; 
they can check for sequences 

of upper/lowercase characters, 
numbers, punctuation, and 

other symbols. 

• [ J 

The idea is similar to the 
functionality of find and replace 

features in text editors, but it 
makes it possible to create far 

more complicated searches for 
combinations of characters . 

[A J 
any single single character single character 

Below you can see the building 
blocks of regular expressions. 

On the right-hand page, you can 
see some examples of how they 

are combined to create powerful 

pattern-matching tools. 

$ 
the starting the ending position 

character (except contained within not contained position in any line in any line 
newline) brackets within brackets 

( ) \n {m,n} \d 
sub expressions preceding element nth marked preceding element digit 

(sometimes called zero or more times subexpression at least m, but no 

a block or capturing (n is digit 1-9) more than n, times 
group) 

\D \s \S \w \W . 
non-digit character whitespace anything but alphanumeric non-alphanumeric 

character whitespace character character 
(A-Z, a-z, 0-9) (except_) 

612 FORM ENHANCEMENT & VALIDATION 





CUSTOM VALIDATION 

The final part of the script performs three checks that apply to individual 

form elements; each check lives in a named function. 

On the next pages, you will see 

these three functions. Each is 

called in the same manner as 

the va 1 i dateBi o() function 

shown below. (The full code that 

cal ls them is available from the 

website, along with the code for 

all examples from the book.) 

FUNCTION PURPOSE 

va l idateBio() Check bio is 140 characters or less 

validatePassword() Check password is at least 8 characters 

va 1 i datePa rentsConsent () If user is under 13, test if parental consent 

box is checked 

Each of these functions will return a value of true or fa 1 se. 

1 if (!val i dateBio()) { 

showErrorMessage(document.getElementByld( ' bio')); 

va l id .bio = f alse ; 

II Call validateBio(), if not valid 

II Show error message 

II Update valid object - not valid 

II Otherwise remove error message else { 

removeErrorMessage(document .getElementByld('bio')); 

1. The function is called as a 

condition in an if. . . e 1 se 

statement. This was shown in 

steps 14-16 on p605. 

2. If the function returns fa 1 se, 

an error message is shown and 

the corresponding property of 

the va 1 id object is set to fa 1 se. 

3. If the function returns true, 

the error message is removed 
from the corresponding element. 

8 FORM ENHANCEMENT & VALIDATION 

0 

Call function, 
does it return 

true? ' I• Call function: 
showErrorMessage() 
& set corresponding 

property of val id 
object 

Call function: 
removeErrorMessage() 

-
' 

-. 

: 

..: 

' . 



The val i dateBi o () function: 
1. Stores the form element 
containing the user's biography 
in a variable called bi o. 

JAVASCRIPT 

function validateBio() { 

BIO & PASSWORD 
VALIDATION 

2. If the length of the bio is less 
than or equal to 140 characters, 
the va 1 id variable is set tot rue 
(otherwise, it is set to false) . 
3. If valid is not true, then ... 

4. The setErrorMessage() 
function is called (see p608). 
5. The val id attribute is 
returned to the calling code, 
which will show or hide the error. 

c13/js/validation.js 

CD var bio document.getElementByid ( ' bio'); II Store ref to bio text area 
~ var valid= bio.value.length <= 140; II Is bio <= 140 characters? 
@ if (!valid) { II If not, set an error message 
@) setErrorMessage(bio, 'Your bio should not exceed 140 characters'); 

® return valid; 

The va 1 i datePassword () 
function starts by: 
1. Storing the element containing 
the password in a variable called 
password. 

JAVASCRIPT 

II Return Boolean va l ue 

2. If the length of the value il'l the 
password input is greater than or 
equal to 8, val id is set to true 
(otherwise, it is set to false). 
3. If valid is not true, then ... 

4. The setErrorMessage() 
function is called. 
5. The val id attribute is 
returned to the calling code, 
which will show or hide the error. 

c13/js/validati on . js 

funct i on validatePassword() { 
CD var password= document.getElementByid( ' password'); l l St ore ref to element 
~ var valid =password.value. l ength>= 8; I I Is its value>= 8 chars 
@ if ( ! va 1 id) { 11 If not, set error msg 
@) setErrorMessage(password, 'Password must be at least 8 characters'); 

® return va l id; I I Return t r ue I f alse 

FORM ENHANCEMENT & VALIDATION s • 



CODE DEPENDENCIES 
& REUSE 

In any project, avoid writing two sets of code that perform the same task. 
You can also try to reuse code across projects (for example, using utility 
scripts or jQuery plugins). If you do, note any dependencies in your code. 

DEPENDENCIES 

Sometimes one script will 

require another script to be 

included in the page in order to 

work. When you write a script 

that rel ies on another script, 

the other script is known as a 

dependency. 

For example, if you are writing 

a script that uses jQuery, then 

your script depends upon jQuery 

being included in the page in 

order to work; otherwise, you 

would not be able to use its 

selectors or methods. 

CODE REUSE VS. DUPLICATION 

When you have two sets of code 

that do the same job, it is referred 

to as code duplication. This is 

usually considered bad practice. 

The opposite is code reuse where 

the same lines of code are used 

in more than one part of a script 

(functions are a good example of 

code reuse). 

You may hear programmers 

refer to this as the DRY 

principle: don't repeat yourself. 

"Every piece of knowledge must 

have a single, unambiguous, 

authoritative representation 

within a system." It was 

formulated by Andrew Hunt 

and Dave Thomas in a book 

called The Pragmatic Programmer 
(Addison-Wesley, 1999). 

8 FORM ENHANCEMENT & VALIDATION 

It is a good idea to note 

dependencies in a comment at 

the top of the script so that they 

are clear to others. The final 

custom function in this example 

depends on another script that 

checks the user's age. 

To encourage reuse, 

programmers sometimes create 

a set of smaller scripts (instead 

of one big script). Therefore, 

code reuse can lead to more 

code dependencies. You have 

already seen an example of this 

with the helper functions for 

event handling. You are about to 

see another example ... 



VALIDATING 
PARENTAL CONSENT 

When the validation script was 
introduced, it was noted that 

the form would use a couple of 
scripts to enhance the page. 

You start to see those scripts on 

the next page, but one of them 
needs to be noted now because 

it hides the parental consent 
checkbox when the page loads. 

ThevalidateParentsConsent() 

function is called in the same 
way as the other two custom 
validation checks (see p614). 

Inside the function: 
1. It stores the checkbox 

for parental consent and its 
containing element in variables. 

2. Sets a val id variable to true. 

JAVASCRI PT 

That parental consent checkbox 

is only shown again if the user 
indicates that they are 13 years 

old or younger. 

The val idation code to check 
whether the parent has given 

their consent will only run if that 
checkbox is showing. 

3. An if statement checks 
whether the container for the 

checkbox is not hidden. It does 
this by fetching the value of 

its cl ass attribute and using 
the i ndexOf () function (which 
you saw on p128) to check 

if it contains a value of hi de .. 

If the value is not found, then 
i ndexOf () will return -1. 

So the code to check whether 
the parent has given consent 
depends upon (reuses) the 

same code that checked if the 

checkbox should be shown. 

This works well as long as the 
other script (to show/hide the 
checkbox) is included in the 

page before the validation script. 

4. If it is not hidden, the user is 

under 13. So, if the checkbox is 
selected, the va 1 id variable is 

set to the t rue, and if it was not 
selected, it will be set to fa 1 se. 
5. If it is not valid, an error 

message is added to the element. 
6. The function returns the value 

of the va 1 id variable to indicate 

whether the consent was given. 

cl3/ js/ vali dati on . js 

functi on validateParentsConsent() { 

~ var parentsCon sent document . getEl emen t Byid('parents - consent'); 
\..!.11_ var consentContainer = document.getElementByid('consent-container'); 

@ va r vali d = true ; / /Variable : valid set to true 

~ if (consentContainer . c l as sName.indexOf( ' hide') === - 1) { / /If ch eckbox shown 

va l id = parentsConsent . checked; // Update valid: i s i t checked/ not 
© if ( ! va 1 i d) { / / If not, set the error message 
~ setErrorMessage(paren t sConsent, 'You need your parents\' consent'); 

return valid; / / Return whet her val id or not 

FORM ENHANCEMENT & VALIDATION 8 . 



HIDE PARENTAL CONSENT 

As you saw on the previous page, the subscription 

form uses two extra scripts to enhance the user 

experience. Here is the first; it does two things: 

• Uses the jQuery UI date picker to show a 

consistent date picker across browsers 

• Checks whether the parental consent checkbox 
should be shown when the user leaves the date 

input (it does this if they are under 13) 

1. Place the script in an llFE (not shown in flowchart). 

2. Three jQuery select ions store the input where 

users enter their birthday, the consent checkbox, 

and the container for the consent checkbox. 

3. The jQuery selection for the date of birth input 

is converted from a date input to a text input so 

that it does not conflict with HTMLS date picker 

functionality (done using the jQuery • prop () 

method to alter the value of its type attribute). The 

selection uses • data() to note that it is a date input 

and jQuery Ul's . datepi cker() method to create 

the jQuery UI date picker. 

4 . When the user leaves the date input, the 

checkDate () function is called. 

5. The checkDate () function is declared. 

6. A variable called dob is created to hold the date 

the user selected. The date is converted into an array 

of three values (month, day, and year) using the 

split () method of the String object. 

7. togg l eParentsConsent () is called. It has one 

parameter: the date of birth. It is passed into the 

function as a Date object. 

8. togg 1 ePa rentsConsent () is declared. 

9. Inside the function, it checks the date is a number. 

If not, return indicates the function should stop. 

10. The current time is obtained by creating a new 

Date object (the current time is the default value of a 

new Date object). It is stored in a variable called now. 

11. To find the user's age, the date of birth is 

subtracted from the current date. For simplicity, leap 

years are ignored. If that is less than 13 years: 

12. Show the container for the parental consent. 

13. Otherwise, the container of the consent box is 

hidden, and the checkbox is unchecked. 

@ FORM ENHANCEMENT & VALIDATION 

Create variables: 
A $birth: birthday text input 
V $parentsConsent: age consent checkbox 

$consentContai ner: age consent container 
I 

Q Create date picker using )Query 

+ 
I 

0 Event: blur or change on birthday 

I 

FU NCTION: checkDate() 
Checks user's date of birth 

Create var iable: dob: the date of birth as 
an array (split into year, month, & day at '·' 
characters) 

Call funct ion: toggleParentsConsent() & 
pass it a Date object created using dob array 

FUNCTION: toggl eParentsConsent () 
Shows/hides parental consent based on age 

Is date a 
number? ' I Create a new Date object called now 

(sub!racting dob from now gives age) 

+ 
I 

Was birthday 
< 13 years ago? 

Add hide class 
to consent 
container 

I 
Set checked on 

consentcheckbox 
to false 

Remove hide class 
from consent 
container 

I 
Give focus 

to consent 
checkbox 



AGE CONFIRMATION 

JAVASCRIPT cl3/js/birthday.js 

CD (function() { 
var $birth $('#birthday'); 
var $parentsConsent $('#parents-consent'); 
var $consentContainer $( '#consent-container'); 
II Create the date picker using jQuery UI 

II D-0-B input 
II Consent checkbox 
II Checkbox container 

@ $birth .prop{'type', 'text') .data('type', 'date').datepicker({ 

© 
® 
© 

® 
® 
@ 

@ 

@{ 

dateFormat: 'yy-mm-dd' II Set date format 
} ) ; 
$birth.on('blur change ' , checkDate); II D-0-B loses focus 
function checkOate() { II Declare checkDate() 

} 

var dob =this.value . split('-'); II Array from date 
II Pass toggleParentsConsent() the date of birth as a date object 
toggleParentsConsent(new Oate(dob[O], dob[l] - 1, dob[2])); 

function toggleParentsConsent(date) II Declare function 

} 

if (isNaN(date)) return; II Stop if date inval id 
var now= new Date(); II New date obj: today 
II If difference (now minus date of birth, is less than 13 years 
II show parents consent checkbox (does not account for leap years) 
II To get 13 yrs ms* secs* mins *hrs* days* years 
if ((now - date) < (1000 * 60 * 60 * 24 * 365 * 13)) { 

$consentContainer.removeClass('hide'); II Remove hide class 
$parentsConsent.focus(); II Give it focus 
else { II Otherwise 
$consentContainer.addClass('hide'); II Add hide to class 
$parentsConsent.prop('checked', false); II Set checked to false 

} ()); 

When creating a date picker using jQuery UI, you 

can specify the format in which you want the date to 

be written. On the right you can see several options 
for the format of the date and what this would look 
like if the date were the 20th December 1995. In 

particular note that y gives you two digits for the 
year, and yy gives you four digits for the year. 

FORMAT 

rrm/dd/yy 

yy-nvn-dd 

d m, y 

mm d, yy 

RESULT 

12/20/1995 

1995·12-20 

20 Dec, 95 

December 20, 1995 

00, d rmn, yy Saturday, 20 December, 1995 

FORM ENHANCEMENT & VALIDATION @ A 



PASSWORD FEEDBACK 

The second script designed to enhance the form 

provides feedback to the users as they leave either 
of the password inputs. It changes the value of the 

cl ass attribute for the password inputs. offering 
feedback to show whether or not the password is 
long enough and whether or not the value of the 

password and its confirmation box match. 

1. Place the script in an l lFE (not shown in flowchart). 

2. Variables store references to the password input 
and the password confirmation input. 

3. setErrorHi gh lighter() function is declared. 
4. It retrieves the target of the event that called it. 

5. An if statement checks the value of that element. 
If it is less than 8 characters, that element's class 
attribute is given a value of fai l . Otherwise, it is 
given a value of pass. 

6. removeErrorHighl ighter () is declared. 

7. It retrieves the target of the event that called it. 

8. If the value of the c 1 ass attribute is fa i 1, then the 
value of the cl ass attribute is set to a blank string 
(clearing the error). 

9. passwordsMatch () is declared (it is only called by 
the password confirm box). 

10. It retrieves the target of the event that called it. 

11. If the value of that element is the same as the first 

password input, its cl ass attribute is given a value of 

pass; otherwise, it is given a value of fai 1. 
12. Event listeners are set up: 

ELEMENT EVENT METHOD 

password focus removeErrorH ighl i ghter ( ) 

password blur setErrorHi ghlighter ( ) 

conf-password focus removeErrorHi gh 1 i ghter() 

conf-password b 1 ur passwordsMatch () 

This demonstrates how scripts often group all of the 
functions and the event handlers together. 

§ FORM ENHANCEMENT & VALIDATION 

Create variables: 
f) password: password input 

passwordConfi nn: confirmation input 

+ 
I 

G> Event: b 1 ur on password 

e 
0 

I 

FUNCTION: setErrorHi gh 1 i ghter() 
Sets error highlight ing 

' I 
Get t arget element 

+ 
I 

Is it< 8 
characters? ' I Add class: pass Add class: fai 1 

G> Event: focus on password or password confirm 

I 

0 

0 

FUNCTION: removeErrorHighl ighter() 
Removes error highlighting 

Get target element 

+ I 

Does class 
indicate an 

error? ' I Set cl ass attribute to '' 

Event: b 1 ur on password confirm 

I 

FUNCTION: passwordsMatch () 
Checks both passwords match 

Get target element 

+ 
I 

' 
Do password & 

passwordConfinn 
match? ' I I 

Add class: fail Add class: pass 



PASSWORD SCRIPT 

' JAVASCRIPT c13/js/password-signup.js 

G) (function () { 
~ var password= document.getElementByld('password'); II Store password 
~ var passwordConfirm = document.getElementByid('conf-password ' ); 

inputs 

Q) function setErrorHighlighter(e) { 
@) var target= e.target I I e.srcElement; II Get target element 

II If its length i s< 8 
II Set class to fail 

, 

if (target.value.length< 8) { 
target.className ='fail'; 
else { 
target.className = 'pass'; 

II Otherwise 
II Set class to pass 

® 
®> 

, 

function removeErrorHighlighter(e) { 
var target= e.target I I e.srcElement; 
if (target.className ' fail ' ) { 

target.className = ''; 

II Get target element 
II If class is f ail 
II Clear class 

function passwordsMatch(e) { 
var target= e.target I I e.srcElement; II Get target element 
II If value matches pwd and it is l onger t han 8 characters 
if ((password.value=== target.value) && target.val ue.length>= 8){ 

target.className 'pass'; II Set class to pass 
else { II Otherwise 
target.className 'fail'; II Set class to fail 

} 
addEvent(password, ' focus', removeErrorHighlighter); 
addEvent(password, 'blur', setErrorHi ghlighter); 

12 add Event ( passwordConf i rm, 'focus' , removeErrorHi gh 1 i ghter); 
addEvent(passwordConfirm, ' blur', passwordsMatch); 

} ()); 

FORM ENHANCEMENT & VALIDATION s • 



Form enhancements make your form easier to use. 

Validation lets you give users feedback before the form 

data is sent to the server. 

HTMLS introduced new form contro ls which feature 

validation (but they only work in modern or mobile 

browsers). 

HTM LS inputs and their validation messages look 

different in various browsers. 

You can use JavaScript to offer the same functionality 

as the new HTMLS elements in all browsers (and 

control how they appear in all browsers). 

Libraries like jQuery UI help create forms that look the 

same across different browsers. 

Regular expressions help you find patterns of 

characters in a string. 



INDEX 
SYMBOLS 
$(}shortcut for jQuery() function 296, 299, 313, 361 
$ () conflicts with other scripts that use $ () 361 
$(document) . ready(funct i on(){ ... }) 312 
$ (function() { • .• } ) (shortcut) 313, 364-5 
$(this) 324, 549 
[] Array syntax 72 

[] Accessing an object's properties 103 
{} Code blocks 57 
{} Code block (function) 90 
() Final parentheses (calling a function) 97 
() Grouping operator 97 
= Assignment operator 107 
+= Operator (adding to a string) 111, 125 
== Equal to (comparison operator) 150, 168 
===Strict equal to (comparison operator) 150, 168 
! =Not equal to (comparison operator) 150, 168 
! == Strict not equal to (comparison operator) 150, 168 
>Greater than (comparison operator) 151 
>= Greater than or equal to (comparison operator) 151 
< l ess than (comparison operator) 151 
<= Less than or equal to (comparison operator) 151 
&& Logical and (logical operators) 157, 158, 537 
! logical not (logical operators) 157, 159 
11 Logical or (logical operators) 157, 159, 169 
. Member operator 50, 103 
/ / (No http: in a url) 355 

A 
• abort() method (j qXHR object) 389 
Accessibility 46, 491 
Accordion 430, 492-5, 522- 5 
. accordion() (jQuery UI method) 430 
action (DOM property - forms) 572 
add() (option to select box) 584 
. add () (jQuery method) 531 
• addCl ass() (jQuery method) 320, 498, 

512-3. 519, 565 
addEventl i stener() (DOM method) 254-5, 570-1 
Adding or removing HTML Content 

Comparing techniques 226-7 
i nnerHTML & DOM manipulation 218 -225, 240-1 
Using jQuery 314-9, 346-7 

Addition 76-7, 181 
.after() (jQuery method) 318 -9 
Age verification 617-9 
Ajax 

Introduction to 370-3 
Data formats 

HTML 374, 378-9, 390-1 
JSON 374, 376-7, 382-3, 396-7 
XML 374-5, 380-1 

Forms 394- 5 
. serialize() (jQuery method) 394 

jqXHR object (see J > jqXHR object) 

JSON object (see J > JSON > JSON object) 

Relative URls 389 
Requests (loading data): 

CORS (Cross Origin Resource Sharing) 384 
HTML 378-9 
HTML (jQuery) 390-1, 393 
JSON 382-3 
JSON/JSONP from a remote server 385-8 
Proxy for loading remote content 384 
XML 380-1 
jQuery 388-9, 392-3 

. load() 390-1, 407, 427 
$.ajax() 388, 398-9, 405 
$.get() 392-3 
$.getJSON() 392,396-7 
$.getScript() 392 
$.post() 392,394-5 

Responses 373-391 
Update URL 424-7 
URLs (maintaining) 424-7 
XMLHttpRequest object 

Methods 
open(), send() 372-3 
Properties 
r esponseText 379,383,389 
responseXML 380-2,389 
status 373,378-9,389 

XOoma i nReques t object (IE8-9) 384 
Alert box 125 
al ert() (window object) 124-5 
.always() (jqXHRobject) 389,396-7 
AngularJS 428, 434-9 
.animate() (jQuery method) 332, 334-5, 352-3, 

493, 515, 520-1 
Anonymous functions 88, 96 



A Pis 
Introduction to 410, 412 
API Keys 441 
Console API 470 
HTML5 APls 413 

Geolocation API 416-9 
History API 424-7 
Web Storage API 420-3 

Platform APls 440 
Google Maps API 441-7 

Scripts 
Introduction to 428 
AngularJS 434-9 
jQuery UI 429-433 

• append() (jQuery method) 318, 565 
.appendTo() (jQuery method) 318, 505, 519 
appendChild() <DOM method) 222, 240 
Arguments 93, 109 
Arithmetic operators 76-7 
Arrays 

Introduction to 70-3 
Adding and removing items 530, 536-7, 540-3 
Creating 72 

split() method (String object) 
to create arrays 128-130, 546-7, 563, 618-9 

looping through an array 174-5, 535 
Methods 
con cat() 530 
every() 530 
filter() 530,536-7 
forEach() 530,536-7 
map() 530 
pop() 530 
push() 530, 536-7, 540-3 
reverse() 530, 564-5 
shift() 530 
some() 530 
sort() 530, 554-9, 564-5 
unshift () 530 
Properties 
length property 72, 118-9 
Arrays and objects 

Arrays are objects 118-9 
Array-like objects (jQuery) 308, 340 
Arrays of objects 119, 533-5 

Multiple return values from a function 95 
vs variables and objects 116-7 

Assignment operator 61, 107 
Asynchronous loading (images) 509 
Asynchronous processing 371 
attachEvent () (IE8 event model) 255, 258-9, 570-1 

Cross-browser solution 570-1 
Attributes 

.attr() (jQuery method) 320-1 
Creating I removing (DOM method) 232-5 

Autocomplete (live search) 370 

B 
back() (hi story object) 426 
. before() (jQuery method) 318 
beforeunl oad event 286-7 
Behavior layer 44 
Binding events 248, 250 
blur() (DOM method) 573 
b 1 ur event 247, 274-5, 282, 573, 588-9 
Boolean data type 62, 66 
break keyword 174 
Browsers 

Developer tools 
Debugging 464-7 
Examining DOM 236-7 

Dimensions 124-5, 350 
Feature detection (see F > Feature detection) 
JavaScript console 464-79 (see also C >Console) 
Rendering engine 40 
Scrollbars 35"0 
Support in examples 10 

Browser Object Model 
Introduction to 121-2 
hi story object 122, 124- 5, 424-7 
1 ocat ion object 122 
navigator object 122 
screen object 122, 124-5 
window object 122, 124-5 

Bubbling (event flow) 260-1 
Built-in objects 120-7 
: button (jQuery selector) 342 



c 
Caching 

Cross-references 540-1 
DOM queries 190-1, 575 
Images (in custom object) 509-511 
jQuery selections 308-9, 540-1 
Object references 540-1 

Calling a function 91 
cancel able property (event object) 262 
Capturing (event flow) 260-1 
Case sensitivity 56 
catch (error handling) 480-1, 576-7 
CDN 354-5 
cei 1 () (Math object) 134 
Centering images 511 
Chaining (jQuery methods) 311 
change event 247, 282, 573, 576-7, 586-7 
Character count 588-9 
charAt() (String object) 128-130 
Checkboxes 580-1 

: checkbox (jQuery selector) 342 
: checked (jQuery selector) 342 
checked (DOM property - forms) 573, 580-1 

. children() (jQuery method) 336 
clearTimeout() (window object) 517-9 
• c 1 i ck() (jQuery method) 512-3 
click() (DOM method) 573 
click event 39, 246, 276-7, 573 
cl i entX, clientY (event object) 278-9 
• c 1 one() (jQuery method) 346-7 
. closest() (jQuerymethod) 336 
Code blocks 56, 90 
Code dependencies 616 
Code reuse 616 
Collections 

elements (nodelists) 196-9 
elements (form) 572, 600 

Color picker 591 
Comments 57 
Compare functions (sorting) 555-9 
Comparison operators 150-9 

Checking equality 168 
Comparing expressions 154-5 
Operands 152 
Truthy and falsy values 167 

concat () (array object) 530 

Conditional loading 596-7 
Conditional statements 149 

if 160-1, 181 
if ... else 162-3 
switch 164-5, 291 

Conditions (loops) 170-1 
Console 

Breakpoints 476-8 
console.asser t() 475 
console.error() 472 
console .group() 473 
console .groupEnd() 473 
console . info() 472 
console . log() 470-1 
console.table() 474 
console .warn() 472 
debugger keyword 479 

Constructor notation 106-111, 113 
: contains() (jQuery selector) 338 
Content layer 44 
Content panels 

Accordion 492-5, 522-5 
Modal window 500-5 
Photo viewer 506-513 
Slider 515-520 
Tabs 496-9 

continue keyword 174, 594-5 
Coordinates (geolocation API) 417-9 
copy event 247 
CORS (Cross Origin Resource Sharing) 384 
Create attributes (DOM) 234 
Create elements (DOM) 126, 222-3, 240 
Create text nodes (DOM) 126, 222-3, 240 
Cross-Site Scripting (XSS) Attacks 228-231 
. css () (jQuery method) 322-3, 504-5, 510-1, 521 
css 

Box dimensions 348 
CSS-style selectors in jQuery 302-3 
Properties and values 9 
Selectors to find elements (DOM) 193, 197, 202 
Updating class names 189, 195, 232 
Updating id attributes 189, 232 
Updating styles (DOM) 195, 232 
Updating styles (jQuery) 320-3, 497-9 

Cut, copy, paste element (jQuery) 346-7 
cut event 247 



D 
. data() (jQuery method) 546-7, 565, 602, 608-9 
data-* attributes (HTML5) 289-90, 544- 6, 608 
Data binding (Angular) 437 
Data models 

Introduction to 26-7 
Comparing techniques 116-7 
Arrays and objects 118-9, 533 
Objects and properties 28, 102-5, 142 

Data types 
Complex data types 

Objects (Arrays and functions) 131 
Simple (primitive) data types 

Boolean 62, 131, 167 
Number 62, 131-5 
Null 131 
String 62, 128-130, 131 
Undefined 131 

Type coercion and weak typing 166-7 
Dates / Date object 

Introduction to 136-9 
Comparing 618- 9 
Creating I Constructor 136, 138, 143 
Date formats 136-9 
Date pickers 432-3, 591, 618-9 
Day & month names 137, 143 
Difference between two dates 139, 143 
Sorting 559, 562-3 
Methods 
getTime(),getMilliseconds(), getSeconds() , 
getMinutes() , getHours(), getDate{), getDay{), 
getMonth(), getFul lYear(), 
getTimeZoneOffset() 137 
setTime{),setMilliseconds(), setSeconds() , 
setMinutes{) , setHours{) , setDate() . 
setMonth{) , setFullYear(). toString() . 
toTimeString{), toDateString{) 137 

dbl click event 246 
Debugging 

Errors and a debugging worktlow 462-3 
Tips 484 
(see also Console and Troubleshooting) 

Declare a variable 60-1 
Declaring an array 71-3 
Declaring a function 90, 92 
defaul tChecked (DOM property - forms) 573 
defau 1tVa1 ue (DOM property - forms) 573 

Delays 
clearTimeout() 517-9 
• de 1 ay () (jQuery method) 311, 332-3, 364 
setTimeout() 517-9 

Delegating events 266-70, 290-1, 331 
del ete keyword 107, 112, 533 
Deserializing JSON data 382-3 
Design patterns 501 
. detach() (jQuery method) 346, 502-3, 505 
Developer tools 236-7, 464-5 
: di sab 1 ed (jQuery selector) 342 
disabled (DOM property - forms) 573, 578 
disabled (JavaScript is disabled) 491 
document object 

Introduction to 36-9, 123, 126-7 
Events 
load 39,246, 272-3 
M ethods 
get El ementByld () 39, 126, 193-195 
createElement() , createTextNode() 126, 222-3 
querySe l ectorA 11 () 126, 193, 197, 202, 204-5 
write() 39, 49, 126, 226 
Properties 
domain 126 
lastModified 36, 39, 126-7 
title 36, 39, 126-7 
URL 126-7 

DOMContentLoaded event 286-7 
DOM (document object model) 

Introduction to 121, 126-7, 184, 186-7 
Elements 

Accessing 
getElementByld() 193-5 
get El ementsByCl ass Name() 193, 197-9, 200 
get El ementsByTagName () 193, 197, 201 
querySelector() 193-4, 202-3 
querySe l ectorAl 1 () 193, 197, 202-3, 204-5 
Adding 
appendChild() 222-3 
i nsertBefore {) 222, 240 
Creating 
createElement() 222-3 
Updating 
DOM manipulation 219, 222-5, 227 
i nnerHTML 218, 220-1, 227, 228-31 
textContent and i nnerText 216 



Attributes 
cl ass attribute/cl assName property 195, 232 
getting and updating 232-5 
id property 232 

Text nodes 
createTextNode() 222 
nodeValue 214-5 
textContent and i nnerText 216-7 

Document nodes 186 
document object (see D > document object) 
DOM queries 

Performance (fastest route) 192 
Caching DOM queries 190-1, 575 

DOM tree 
Introduction to 40-1, 186-7 
Inspecting (exploring - browser tools) 236-7 
Traversing the DOM 208, 210-11 
Updating 212-3 

Events (see E >Events) 
Event handlers 250, 252-3 
Event listeners 250, 254-5, 263, 265 

Nodes 40, 186-9 
Whitespace 209-211 

Nodelist 192, 196-9, 202-205 
length property 196 
Live and static Nodelists 196 
Looping through 204-5 
Selecting items from a Nodelist 198-9 

. done() (jqXHR object) 389, 405 
Dot notation 103 (see also member operator) 
Do while loops 170, 177 
Drop-down boxes 584-7 
DRY principle (don't repeat yourself) 616 
Dynamic filtering 538-43 

E 
. each() (jQuery method) 324-5, 333, 339, 498-9, 

519, 531, 546-7 
ECMAScript 532 
Elements (see D> DOM > Elements and J > jQuery) 

Dimensions (jQuery) 348-9 
Finding elements (DOM) 192-203 
Finding elements (jQuery) 296, 302-3, 336, 342 
Form element content (jQuery) 342-5 
Hiding/showing 332-3, 582-3, 618-9 
Inserting new elements (jQuery) 318-9 

Updating elements (DOM) 212-3 
Updating elements (jQuery) 313 

elements collection (DOM property) 572, 574-5 
. empty () (jQuery method) 346, 504-5 
: enabled (jQuery selector) 342 
. eq () (jQuery method) 340-1, 512-3, 521 
Equality 150-1, 168 
equals sign (assignment operator) 61 
Errors 

Common errors 460-1, 485 
Debugging workflow 462-3 (and tips 484-5) 
error event 246, 272 
Error handling 480-1, 576-7 
Error objects 459, 461, 481 

EvalError 459-460 
RangeError 459,461 
Ref erenceError 459-60 
SyntaxError 459-60 
TypeError 459, 461 
UR!Error 459-60 

Exceptions 458, 480-1 
NaN 461 
Understanding errors 458 

e (shorthand: event or error object) 328 
EvalError 459-460 
Evaluating conditions 149-59 
Events 

Introduction to 5, 30-31, 244-50 
All events 

beforeunload 286-7 
blur 247,274-5, 282 
change 282-3,586-7 
click 260-1, 268-9, 276-7 
dblclick 246,276 
DOMContentloaded 286-7 
DOMNodeinserted 284,285 
DOMNodelnsertedlntoDocument 284 
DOMNodeRemoved 284 
DOMNodeRemovedFromDocument 284 
DOMSubtreeModified 284 
error 246, 272 
focus 274-5,282,588-9,594-5 
focusin 274 
focusout 274 
hashchange 286,426-7 
input 247, 271, 280-2, 552-3, 573, 588-9 



Events continued. 
keydown 280 

keypress 280-1 
keyup 280 
load 39,246,272-3 

mousedown 276 

mousemove 276,279 
mouseout 276 

mouseover 276 
mouseup 276 

resize 272, 504-5 
scrol 1 272 

submit 282-3,572,574-5 

unload 272 
binding 248, 250 
Delegation (DOM) 266, 268-71, 290-1 

Delegation (jQuery) 330-1, 365 
Determining position 278-9 

Event flow (bubbling and capturing) 260-1 
Event handlers 

Cross browser 570-1 

DOM Event handlers 250, 252-3 

DOM Event listeners 250, 254-5 
Removing event listeners 255 

Using parameters with events 256-7, 263 
HTML event handlers 250-1 

event object DOM 262-3, 265-70 

M ethods 

preventDefault() 262,26~283 
stopPropagation() 262,267 

Properties 

cancelable, clientX,clientY, pageX, pageY, 
screenX,screenY, target,type 262, 278-9 

event object (jQuery) 328-9, 331 

Methods 
.preventDefault() 328 

.stopPropagation() 328 

Properties 

data, pageX,pageY, target, timeStamp, 
type, which 328 

IE8 event model 
attachEvent() 255, 258-9, 290 

Cross-browser helper function 570-1 
event object 264-5, 570-1 

Property and method equivalents 262 

Fallback example 258-9 
jQuery (consider as alternative) 300-1 

jQuery events 326-331, 343 
Performance (delegation) 266, 268-9, 290, 331 

Terminology (fired, raised, triggered) 247 
Types of event 246-7, 271 

W3C DOM 271-286 
HTML5 286-7 

jQuery events 326-331, 343- 5 

Which element user interacted with 262-70 
every() (array object) 530 
Exceptions (see Errors) 

Execution contexts 453- 6 
Expressions 74-6 

F 

Comparing expressions 154 

Function expressions 96-7 

. fade In() (jQuery method) 298, 311, 332-7, 365 

. fadeout() (jQuery method) 332-3, 337, 510-11 

. fade To() (jQuery method) 510-11 

. fai 1 () method (jqXHR object) 389, 396-7, 405 

Falsy and truthy values 167-9 
Feature detection 

Feature detection (in jQuery) 301 
Modernizr 414-5, 417, 419, 593, 596-7 

: fi 1 e (jQuery selector) 342 
File extension 

.js 46 

.min.js 298 

Filtering 

Introduction to 534 
filter() (array object) 530, 536-7 

. f i 1 ter () (jQuery method) 338-9, 343, 531, 
548-9 

Tags 544-9 

Text/ live search 550-3 
finally (error handling) 480-1 

Final parentheses 97 

. find() (jQuery method) 336-7, 518-9, 564-5 

Firebug 237 
firs tChi 1 d (DOM property) 188-9, 208-9, 211 

Flags 578-9 
floor() (Math object) 134-5, 139 

Flowcharts 18, 23, 148, 494 
fn object (jQuery) 523- 5 

focus() (DOM method) 273. 573 
. focus() (jQuery method) 326, 619 

: focus (jQuery selector) 342 



focus event 274-5, 282, 573, 588-9 
focus in event 247 
focusout event 247 
forEach () (array object) 530, 536-7, 542-3 
for loop 172-3, 175, 207 
Forms 

Controls (types of) 573 
Changing type of form control 576-7 
Checkboxes 580-1 
Date picker (HTML5) 591 
Date picker (jQuery) 432-3, 619-9 
Email 590, 611 
Radio buttons 582-3 
Range inputs 591 
Select boxes 584-7 
Submit button 578-9 
Text input 576-7, 594-5 
Textareas 588-9 

elements collection 600 
Enhancement 

Introduction to 568 
jQuery UI (Date picker & slider) 432-3 
Password length and match 620-1 
Show or hide based on other form input 618-9 

Giving focus to an element 273, 326, 573, 619 
Methods 343, 572-3, 584 
Properties 343, 572-3, 584 
Submitting forms 574-5, 578-9 
Validation 282, 598-619 

Introduction to 568, 598 
Age 617-9 
Character count 588-9 
Checkbox selected 580-1 
Checking for a value 606-7 
Checking length of text input 615 
Dates 617-9 
Email 611 
HTML5 form validation 590-1, 604-5 
Length of text/password input 588-9, 620-1 
Numbers 132, 343 
Password length and match 615 
Radio button selected 582-3 
Regular expressions 612-3 
Required elements 606-7 
test() and regular expressions 611-3 
Turn off HTML5 validation 591 
URL 590 

Which element the user interacted with 576-7 
(see also Event object) 

forward() (history object) 426 
Function-level scope 98 
Functions 

G 

Introduction to 88-9 
Anonymous functions 88 
Arguments 92-3 
Calling 91, 93 
Code block 90 
Declaring 90, 92, 96 
Final parentheses 97 
Function expressions 96-7 
Helper functions 570- 571 
initialize/ init() 539, 542-3 
Parameters 88, 92-3 
return 92, 94-7, 578-9, 586-7, 594- 5 
this (scope of keyword) 270 

(see also this keyword) 

Geolocation API 416-9 
$.get() (jQuery method) 388, 392-3 
getAttribute() (DOM method) 232-3 
getCurrentPos it ion () (Geo location API) 417-9 
getDate() (Date object) 137 
getDay () (Date object) 137 
getElementByld() (DOM method) 126, 192-5 
get El ementsByCl assName () (DOM method) 193, 

197, 200 
getElementsByTagName() (DOM method) 193, 197, 

201, 240 
get Full Year() (Date object) 137-8 
getHours () (Date object) 137 
get Item() (storage API) 421 -3 
$.getJSON() (jQuery method) 388, 392, 396-7, 405 
getMi 11 seconds() (Date object) 137 
getMi nut es () (Date object) 137 
getMonth () (Date object) 137 
$. getScri pt () (jQuery method) 388, 392 
get Seconds() (Date object) 137 
getTime() (Date object) 137 
getTimezoneOffset () (Date object) 137 



Global JavaScript Objects 
Introduction to 121, 124-139 
Boo 1 ean object 123 
Date object 123, 136-9 
Math object 123, 134-5 
Number object 123, 132-3 
Regex object 123 
String object 123, 128-130 

Global scope 98 
go() (hi story object) 426 
Google Maps API 441-7 
Grouping operator 97 
:gt() (jQueryselector) 340-1 

H 
: has () (jQuery selector) 338-9 
hasAttribute() (DOM method) 232-3, 235 
. hasCl ass() (jQuery method) 365 
hashchange event 286, 426-7 
. height () (jQuery methods) 348-9, 350, 353 
height (screen object) 124-5 
Helper functions 570-571 
.hide() (jQuery method) 332-3, 512-3, 582-3, 

618-9 
History API 424-7 
hi story object (Browser Object Model) 124-5, 

424-7 
Methods 
back(), forward{), go(), 
pushState(),replaceState() 426 
Properties 
length 426 

History stack 424 
Hoisting 456 
How many characters in a string 128-130 
. html() (jQuery method) 314-7 
HTML5 

APls 413 
Geolocation API 416-9 
History API 424-7 
Web Storage API 420-3 

Attributes 
data-* attributes 289-90, 544- 6, 608 
required 591, 607 

Events 286-7 
Form controls (support, polyfills, styling) 590-2 

placeholder tailback 594-7 

id (DOM property) 189, 232 
if ••• e 1 se 148-9, 162-3 
if statements 148-9, 160-3, 181 
: image (jQuery selector) 342 
Images centering 511 
Immediately Invoked Function Expressions ( llFE) 97, 

142, 504, 523 
Implicit iteration 310 
Increment in loops 170-3 
• index() (jQuery method) 565 
Index numbers 129 
i ndexOf () (String object) 128-130, 550-3 
Initialize / i nit() (functions) 539, 542-3 
lnline scripts 49 
• i nnerHei ght () (jQuery methods) 348 
i nnerHei ght (window object) 124-5 
i nnerHTML (DOM property) 218, 220-1, 227 

Security risks 228 
i nnerText (DOM property) 216-7 
• i nnerWi dth () (jQuery methods) 348 
i nnerWi dth (window object) 124-5 
: input (jQuery selector) 342 
input event 247, 271, 280-2, 552-3, 573, 588-9 
i nsertBefore () (DOM method) 240 
Instances (of objects) 109-11 
Interpreter 

Definition 40 
How it works· 452-7 

. is () (jQuery method) 343, 521, 565 
i sNaN () (Number object) 132 
$.isNumeric() 343 
item() (Array) 71 
item() (Nodelists) 196, 198 

j 

JavaScript console 462-79 
JavaScript History I Standards 532 
JavaScript libraries 360-1, 428 
JavaScript not enabled 491 
jQuery 

Introduction to 294, 296, 298-9 
$()shortcut for jQuery() 296, 299, 313, 361 
$(function() { ... } ) ; 313 

Advantages 300 
Ajax (see Ajax) 



API 358 

Caching selections 308-9 

Chaining methods 311 
Conflicts with other scripts 361 
document. ready () 312-13 

Documentation 358 

Elements 302-3, 314 -6, 318-9, 336-9,342-7 
Events object 326-331 

. fn object 523- 5 
Forms(. seri a 1 i ze()) 394 

Global methods 
$. aj ax() 388, 398-9, 405 
$.get() 388,392-3 

$.getJSON() 388, 392, 396-7, 405 

$.getScr ipt() 388 
$. isNumeric() 343 

$.post() 388, 394-5 
How to include 298, 354-5 

Implicit iteration 310 
jQuery () function (see also$ () ) 296, 299, 313, 361 

jQuery methods: full list of methods 304- 5 

jQuery selection (matched set) 296-7, 306 

Adding to I filtering selection 338-341 
Caching 308-9 
Number of elements (1 ength property) 364 

jQuery selectors 296, 300, 302-3 

jQuery Selectors: full list of selectors 302-3 

jQuery UI 429 
Accordion 430 
Date picker 432- 33, 618-9 

Form enhancements 432-3 
Tabs 431 

looping 

Through elements (implicit iteration) 310 

Through elements . each() (see E > . each()) 
Matched set (see J > jQuery > jQuery selection) 

Page is ready to work with 312-3 
Plugins 359, 428 

Creating your own 522-5 
Date picker 619 

jQuery UI 429-434, 618-9 

noUISlider 538 
Versions 298, 301 

Where to get/ download 298, 354-5 

Where to place script 313, 354-7 
jqXHR object 389, 405 

Methods 
. abort() , • a 1 ways(), 
.done() , . fail() 389, 396-7 

.overrideMimeType() 405 

Properties 
responseText, responseXML, 

status, statusText 389 

JSON 
Introduction to 376-7 
As an Ajax data format 374 

Debugging JSON 474 

Displaying JSON 382-3 
JSON object 

parse() & stringify() methods 377, 382-3 
Serializing and deserializing data 382-3 

JSONP 385-7 

K 
Keyboard events 246-7, 280-1 

keydown, keypress, keyup, i nput event 246-7 
keys (objects) 101, 533, key/value pairs 118 

Keywords 

L 

break 164-5, 174 
case 164-5 

catch 480-1, 576-7 
continue 174, 595 

debugger 479 

delete 107, 112, 533 
finally 480-1 

new (array) 71 
new (object) 106, 109 

return 92,94-~578-9, 586-~594-5 

swi tch 164-5 

this 102-9, 114-5, 270, 324 

throw 482 
try 480-1, 576-7 

var 60, 63-8 

las tChi l d (DOM property) 208, 211 
l astindexOf () (String object) 128-130 

length (hi story object) 124, 426 

length ( items in a select box) 584 
length (Stri ng object) 128-130, 588-9, 620-1 



Length of text input 588-9 
Lexical scope 457 

Lexicographic sort 554 
Libraries 360-1, 428 
Linking to a JavaScript file 47, 51, 298, 313, 354-7 

Links 
Get value of href att ribute 407 
Which link was clicked 498-9 

Literal notation 102, 104-5, 113, 142 
(see also 0 > Objects> Creating your own objects) 

Livesearch (autocomplete) 370 
load event 246, 272-3, 286-7 

• load() (jQuery method -Ajax) 388, 390-1, 407 
Local scope 98-9 (see also p456-7) 

Locale 137 

localStorage 420-3 
1 ocat ion property (window object) 124-5 
Logical operators 156-9, 169 

Logical and 157-8, 537 
Logical not 157, 159 

Logical OR 157. 159 
Short-circuit evaluation 157, 169 

Looking for text 550-3 

Loops 
Introduction to 170-7 
break keyword 174 (see also Keywords> break) 

Conditions 170-3 
continue keyword 174. 595 

Counters 171-4, 181 
do wh i 1 e loop 170. 177 

for loop 175 

Introduction to 170, 175 
Diagram 172-3 
Looping through elements 204-7 

Increment(++) 171 

Infinite loop 174 
jQuery implicit iteration 310 

jQuery . each() method 324 

Looping through 
an array 175, 530, 534-7, 542-3 

checkboxes 580-1 
DOM elements (nodelist) 204-7, 594-5 

properties of an object 533, 605 

radio buttons 582- 3 
Performance 174 

whi 1 e loop 170, 176, 181 

Lowercase 128-130 
: 1 t () (jQuery selector) 340 

M 
map () (array object) 530 

Maps (Google maps) 441 -7 
Matched set (jQuery) 296-7, 306-9, 338-41, 364 

Math object 134-5 

Methods 
ceil (),floor(), random() , 
round() , sqrt() 134 

Properties 
PI 134 

Member operator 50. 103 
method property (DOM property - forms) 572 

Methods 
Introduction to 32-3, 100-11 

Calling a method 50, 103 
Minification (.min . js extension) 298 

Modal window 500-5 
Modernizr 414-5, 417, 419, 593, 596-7 

Module pattern 501 
mousedown,mousemove,mouseout, 

mouseover, mouseup event 246, 276-7 
multiple (DOM property - forms) 584 

Multiplication 76-7, 176-7, 181 

Mutation events 247, 284-5 
MVC I MV• 360, 434-9 

N 
name (DOM property - forms) 572-3 

Name/value pairs 28, 88-9, 101, 113, 116-8, 131 

Naming conflicts (collisions) 97, 99, 361 
NaN 78, 132, 461, 483 
navigator object (Browser Object Model) 122, 414, 

417-9 

new keyword 71, 106, 109 
. next() (jQuery method) 336-7, 495 

. next A 11 () (jQuery method) 336 

nextSi bl i ng (DOM property) 208, 210, 214 
NodeLists 196-9 

Nodes (introduction to) 40, 186-7 
node Va 1 ue (DOM property) 184, 214-5, 241 

No JavaScript 491 
Non-blocking processing 371 

• not() (jQuery method) 338, 494-5, 531 
: not() (jQuery selectors) 338-9 

noUiSlider 538, 542-3 

nova 1 i date property (HTMLS forms) 591, 604-5 



Number object (Built-in Objects) 

Methods 
isNan(), toExponential(), 

toFixed{),toPrecisi on() 132-3 
Rounding numbers 132-3 

Numbers 62-3 

Random numbers 135 
Rounding 132-3 

Sorting 558 
Numeric data type 62 (see also D > Data types) 

0 
Objects 

Introduction to 26-9, 34-5, 10 0-1 

Accessing properties and methods 
Dot notation 103- 5, 110 
Square brackets 103, 107 

Adding and removing properties 112 
Arrays and objects 118-9, 308, 340, 533 
Built- in objects 120-3 

Creating 

Comparison of techniques 113 
Constructor notation 106, 108-111, 113 

Literal notation 102, 104-5, 113, 142 
Instances of 109-11 

Multiple objects 105, 108-111 
Creating your own objects (examples of) 

Compare functions for sorting 562-3 
Custom object for valid elements 601, 604-5 

Data: cameras and projectors 586-7 

Data: people for filtering 533-4 
Image cache 509-13 
Modal window 501- 5 

Tags 544-9 

keys 101-2, 113, 117-8, 131, 533 
Methods 32-5, 38-9, 100-11 

Properties 28-9, 34-5, 100-12 

this 114-5 
Updating properties 107 

vs variables and arrays 116-7 
Object models (introduction to) 121 

.off() (jQuery method) 505 

. offset () (jQuery methods) 351, 353 

.on() ( jQuery method) 326-31, 343-5, 365 

onpopstate property (window object) 426-7 
. open() (XMLHttpRequest object) 373, 379, 381, 383 

Operators 
+= adding to a string 111, 125, 127, 130, 133 

Comparison operators 148-56 
>greater than,>= greater than or equal to 151- 5 

() grouping operator 97 
<less than, <= less than or equal to 151 

. Member operator 50, 103 
== is equal to, ! = is not equal to 150 

=== strict equal to, ! == strict not equal to 150 
? : Ternary operator 562, 579, 583 

Unary operator 168 
<option> elements 584-7 

options (DOM property- forms) 584 

Order of execution 452 
. outerHei ght () . (jQuery method) 348 

.outerWidth() (jQuery method) 348 

.overri deMimeType () (jqXHR method) 405 

p 
Page loads - run script 273, 312-3 

pageXOffset, pageYOffset (window object) 124-5 
pageX, pageY (window object) 124, 278-9 

Parameters 50, 88, 92-3 

W ith event listeners 256-7 
. parent() (jQuery method) 336, 498-9 
. parents() (jQuery method) 336 

parentNode (DOM property) 208, 224-5 
: password (jQuery selector) 342 

paste event 247 

Performance 
Caching 

DOM queries 190-1, 575 
Images (custom object) 509-11 

jQuery selections 308-9, 540-1 
Object references 540-1 
Text (custom object) 551 

Event delegation 266, 268-71, 290-1, 330-1, 365 

Global vs Local variables 98-9 

Selecting cl ass and id attributes (jQuery vs 
DOM) 324 

Where to place scripts 356-7 
PI property (Math object) 134 
p 1 aceho l der (and its fall back) 590-1, 594-5 

Polyfills 593-7 

pop{) (ar ray object) 530 
. position() (jQuery method) 351 



Position object (geolocation API) 418-9 
Position Error object (geolocation API) 418-9 
Position of items on page 351-3 
$.post() (jQuery method) 388, 392, 394- 6 
. prepend () & . prependTo () (jQuery methods) 318 

Presentation layer 44 
preventDef au l t () (event object) 262, 267, 283, 
. preventDefaul t() (jQuery method) 328, 345, 

365, 494-5, 504-5 
previ ousSi bl i ng (DOM property) 208-10 
Primitive data types (see Data types) 
Progressive enhancement 45 
. prop() (jQuery method) 618-9 
Properties 28-9, 34-5, 100-12 
Protocol relative URL 355 
Proxy (Ajax) 384 
push() (array object) 519, 530, 536-7, 540, 542-3 
pushState () (hi story object) 424-7, 426 

Q 

querySe l ector () (DOM method) 193-6, 202, 241 
querySe l ectorA 11 () (DOM method) 126, 193, 197 

R 
: radio (jQuery selector) 342 
random() (Math object) 134-5 
Random numbers 135 
RangeError 459, 461 
Range slider 432-3, 538. 542-3 
. ready() (jQuery method) 312-3, 361, 364 
Reference 

To an element DOM 190-1, 575 
To an element jQuery 308-9, 540-1 
To an object 540-1 

ReferenceError 459-60 
Regular expressions 563, 611-3 
Relative URLs (Ajax) 389 
Removing content: 

. remove() (jQuery method) 299, 316-7, 346, 584 
• removeAttr() (jQuery method) 320 
removeAttribute() (DOM method) 232, 235 
removeChi l d () (DOM method) 224-5 
. removeCl ass() (jQuery method) 320-1, 339, 

341, 512-3 
removeEventlistener() (DOM method) 255 
(see also i nnerHTML an(d detach ()) 

replace() (String object) 128-130, 406-7, 562-3 
rep l aceState () method (hi story object) 424-6 
. rep l aceWi th () (jQuery method) 316 
Require.js 593 
: reset (jQuery selector) 342 
reset() (DOM method - forms) 572 
reset event 247, 572 
resize event 246, 272, 504-5 
response Text (XMLHttpRequest object) 379, 383, 389 
responseXML (XMLHttpRequest object) 380, 389 
return keyword 92, 94-7, 578-9, 586-7, 594-5 
reverse() (Array object) 530, 564-5 
RangeError 459,461 
Rounding numbers 132-5 
round() (Math object) 134 

s 
Same origin policy 420 
Saving a script 46 
Scope 98-9, 457 

Global scope 98-9, 453-7 
llFEs 97 
lexical scope 457 
Local (function-level) scope 98-9, 453 
Naming collisions and namespaces 99, 523 

Screen dimensions 124-125, 278, 350 
screen object (Browser Object Model) 124-5 

Properties 
height, width 124 
screenX, screenY (window object) 124, 278 

<script> element 47 
Conditional loader for scripts 596-597 
'vVhentoload 596-7 
'vVhere to place <script> tag 48, 51, 313, 354-7 

Scripts 
Approach to writing 16-23 
Definit ion 14-7 

scro 11 event 246, 272 
. scrol l Left() (jQuery method) 350 
. scro l lT op() (jQuery method) 350, 353 
Search 550-553 
Security: Cross Site Scripting (CSS) Attack 228-231 

. Select boxes 584-7 
select() (DOM method) 573 
: selected (jQuery selector) 342 
selected (DOM property - forms) 573, 580-3 
selectedlndex (DOM property- forms) 584 



se l ectedOpt ions (DOM property - forms) 584 
select event 24 7 
send() (XMLHttpRequest object) 373, 379, 381, 383 
Separation of concerns 490 
. seriali ze () (jQuery method - forms) 394-5 
Serializing JSON data 382 
sessionStorage 420-3 
setAttri bute() (DOM method) 232, 234 
setDate() (Date object) 137 
set Fu l lYear() (Date object) 137 
setHours () (Date object) 137 
set Item() (storage API) 421 -3 
setTime() (Date object) 137 
setTi meout () (window object) 517-9 
setMi 11 seconds() (Date object) 137 
setMi nutes () (Date object) 137 
setMonth() (Date object) 137 
setSeconds () (Date object) 137 
shift() (array object) 530 
Short-circuit evaluation 157, 169 
. show() (jQuery method) 332-3, 344, 364 
. s i bl i ngs (} (jQuery method) 336, 548-9 
Slider (content panel) 515-520 
.slideToggle() (jQuerY. method) 494-5 
some() (array object) 530 
sort() (array object) 530, 533, 554-65 
Sorting 555-6 

Dates 559 
Lexicographic sort 554 
Numbers 554, 558 
Random order 558 
Sorting a table 561-6 

split() (String object) 128-130, 546-7, 563, 618-9 
sqrt() (Math object) 134 
src attribute 47 
Stack 454-5 
Statements 56 
. stop() (jQuery method) 332, 353, 510-1 
stopPropagati on() (DOM event object) 262, 267 
. stopPropagati on() (jQuery method) 328 
Storage objects (storage API) 420-3 
Storing data (compare techniques) 116-7 
String data type 62, 64-5 

Checking for text 552-3 

Stri ng object 
Methods 
charAt(}, indexOf(}, lastindexOf(}, 
replace(), split(), substring(), trim(), 
to Lowercase() , toUpperCase () 128-130 
Properties 
length 128-130 

: submit (jQuery selector) 342 
submit() (DOM method - forms) 572 
Submit buttons 578- 9 
submit event 247, 271, 282, 572 
substring() (String object) 128-130 
. complete() (jQuery method) 396 
.error() (jQuery method) 396 
. success() (jQuery method) 396 
switch statements 164-165, 291 
Switch value 165 
Synchronous processing 371 
SyntaxError 459- 460 

T 
Tables 

Adding rows 542-3 
Sorting a table 560 -5 

. tabs() (jQuery UI method) 431 
Tabs 431, 496-9 
target property (event object) 262-3, 268-9 
Templ~tes 360, 434-9 
Ternary operator 562-3, 579, 583 
Testing for features (see Feature detection) 
test() method 611 
. text() (jQuery method) 314-7, 364- 5, 535 
: text (jQuery selector) 342 
<textarea> 588-9 
textContent (DOM property) 216-7 
this 102-9, 114-5, 270, 324 
thro1~ (error handling) 481-3 
Timers (see Delays) 
. toArray () (jQuery method) 531 
toDateStri ng () (Date object) 137 
toExponent i al () (Number object) 132 
to Fixed () (Number object) 132 
. toggle() (jQuery method) 332, 493 
. togg l eCl ass() (jQuery method) 565 
to Lowercase () (String object) 128-130, 550-3 
toPrec is ion() (Number object) 132 
toStri ng () (Date object) 137 



toTimeString() (Date object) 137 
toUpperCase () (String object) 128-130, 406 
Traversing the DOM 208-11 
trim() (String object) 128-130, 552-3 
Troubleshooting 

Ajax not working in Chrome (locally) 378 
Ajax requests: assets not showing up 389 
Common errors 485 (see also 460-1) 
Console 464-474 
Debugging JSON data and objects 474 
Debugging tips 462-3, 484 
Equivalent values do not match 166 
Events firing more than once 260-1 
IE will not run script locally 47 
jQuery object only returns data from first 

element in selection 307 
NaN 78, 461 
t ry • . . catch 480-1, 576-7 

Truthy and fa lsy values 167-9 
try (error handling) 480-1, 576-7 
type (DOM property - forms) 573 

type (even~ object) 262 
Type coercion 166, 168 
TypeError 459, 461 

u 
UML (Unified Modeling Language) 494 
undefined 61, 485 
Unix time 136-7 
un 1 oad event 246, 272 (see also beforeun 1 oad) 
unshi ft() (array object) 530 
Untrusted data (XSS) 228-31 
. unwrap() (jQuery method) 346 
Updating ~ontent (see DOM and jQuery) 
Updating page without refreshing (see Ajax) 
Uppercase 128-130, 406 
URIError 459-460 
URL (get current) 36-9, 124 

v 
. val () (jQuery method) 343, 345, 365, 542-3 
Validation (definition) 282, 568 
value (DOM property - forms) 573, 574-5, 578-9 

Variables 
Assign a value I assignment operator 61 
Declaration 60 
Definition 58-9 
Naming 60, 69 
Naming conflicts and col lisions 97, 99 
Scope 98, 453 
undefined 61, 485 
vs arrays and objects 116-7 

var keyword 60, 63-8 

w 
Weak typi.ng 166-7 
Web Storage API 420-3 
Where to place your scripts 356 
whi 1 e loop 170, 176, 181 
Whitespace (DOM) 209-211, 237 
width (screen object) 124-5 
• width() (jQuery methods) 348-50 
window object (Browser Object Model) 36-7, 124-5 

Introduction to 36-7 
Methods 
alert(),open{),print() 124 
Properties 
innerHeight, innerWidth 124-5 
l ocation property 36, 124 
onpopstate 426 
pageXOffset~ pageYOffset 124 
screenX,screenY 124-5 

wr ite() (document object) 126, 226 

XYZ 
XDomai nRequest object ( IE8-9) 384 
XM L 374- 5, 380-81 
XMLHttpRequest object 

Methods 
open{) , send() 372-3 
Properties 
response Text 379, 383, 389 
responseXML 380-2, 389 
stat us 373,378-9,389 

XSS (Cross Site Scripting) Attacks 228-231 

\ ' 

. ' 








