
Building GPU Accelerated Applications

Thibault Imbert

Starling
Introducing

www.allitebooks.com

http://
http://www.allitebooks.org

www.allitebooks.com

http://
http://www.allitebooks.org

Introducing Starling

Thibault Imbert

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://
http://www.allitebooks.org

Introducing Starling
by Thibault Imbert

Copyright © 2012 Thibault Imbert. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Jasmine Perez
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-01-11 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449320867 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Introducing Starling and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32086-7

[LSI]

1326307192

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449320867
http://
http://www.allitebooks.org

Adobe Developer Library, a copublishing partnership between O’Reilly Media Inc.,
and Adobe Systems, Inc., is the authoritative resource for developers using Adobe
technologies. These comprehensive resources offer learning solutions to help devel-
opers create cutting-edge interactive web applications that can reach virtually any-
one on any platform.

With top-quality books and innovative online resources covering the latest tools for
rich-Internet application development, the Adobe Developer Library delivers expert
training straight from the source. Topics include ActionScript, Adobe Flex®, Adobe
Flash®, and Adobe Acrobat®.

Get the latest news about books, online resources, and more at http://adobedeveloper
library.com.

www.allitebooks.com

http://
http://www.allitebooks.org

Developing Android Applications with Adobe Flex 4.5

By Rich Tretola

Released: May 2011

Ebook: $16.99

Developing iOS Applications with Flex 4.5

By Rich Tretola

Released: August 2011

Ebook: $12.99

Creating HTML5 Animations with Flash and Wallaby

By Ian L. McLean

Released: September 2011

Ebook: $12.99

Automating ActionScript Projects with Eclipse and Ant

By Sidney de Koning

Released: October 2011

Ebook: $9.99

Related Ebooks

www.allitebooks.com

http://
http://www.allitebooks.org

Table of Contents

Preface . vii

First Flight . 1
What Is Starling? 1
Why Starling? 1
Philosophy 1

Intuitive 1
Lightweight 2
Free 2

How 2
Layering Restrictions 7
Getting Started 8
Setting Up Your Scene 9
Wmode Requirements 13
Stage Quality 14
Progressive Enhancements 14
The Display List 15
Event Model 29

Event Propagation 29
Touch Events 30

Simulating Multi-touch 32
Texture 35

Image 37
Collision Detection 44
Drawing API 46

Flat Sprites 47
MovieClip 51

Texture Atlas 56
Juggler 62
Button 65
TextField 73

Embedded Fonts 76

v

www.allitebooks.com

http://
http://www.allitebooks.org

Bitmap Fonts 79
RenderTexture 88
Tweens 90
Asset Management 94
Handling Screen Resizes 95
Plugging Starling with Robotlegs 97
Plugging Starling with Box2D 97
Profiling Starling 101
Particles 104

vi | Table of Contents

www.allitebooks.com

http://
http://www.allitebooks.org

Preface

Starling allows you to leverage GPU acceleration quickly and easily, through the use of
simple ActionScript 3 APIs. Starling allows developers to leverage the power of Stage3D,
without having to dig into the low-level details of Stage3D.

Audience
This book is for any person interested in learning about Stage3D in Flash Player 11 and
Adobe AIR 3. As a Flash developer, it is also important that you learn and discover new
things like GPU programming. By digging into Starling’s source code to see how GPUs
work, you will also become a better developer.

Assumptions This Book Makes
This book isn’t intended to be an introduction book to ActionScript 3 programming.
To better understand the content of this book, you should be familiar with ActionScript
3 programming and the tools involved during the development of Flash content (Flash
Pro, Flash Builder, etc.)

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

vii

www.allitebooks.com

http://
http://www.allitebooks.org

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Introducing Starling by Thibault Imbert
(O’Reilly). Copyright 2012 Thibault Imbert, 978-1-449-32086-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

viii | Preface

www.allitebooks.com

mailto:permissions@oreilly.com
http://
http://www.allitebooks.org

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920024217.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank Chris Georgenes (mudbubble.com) for the gorgeous assets used
in this book.

I would also like to thank Daniel Sperl (author of Starling). Starling is a beautiful
framework, and working with you on this initiative has been extremely exciting.

Preface | ix

http://my.safaribooksonline.com/?portal=oreilly
http://shop.oreilly.com/product/0636920024217.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://mudbubble.com
http://

http://

First Flight

What Is Starling?
Starling is an ActionScript 3 2D framework developed on top of the Stage3D APIs
(available on desktop in Flash Player 11 and Adobe AIR 3). Starling is mainly designed
for game development, but could be used for many other use cases. Starling makes it
possible to write fast GPU-accelerated applications without having to touch the low-
level Stage3D APIs.

Why Starling?
Most Flash developers want to be able to leverage GPU acceleration (through Stage3D)
without the need to write such higher-level frameworks and dig into the low-level
Stage3D APIs. Starling is completely designed after the Flash Player APIs and abstracts
the complexity of Stage3D (Molehill) and allows easy and intuitive programming for
everyone.

Starling is for ActionScript 3 developers, especially those involved in 2D game devel-
opment, so you will need to have a basic understanding of ActionScript 3. By its design
(lightweight, flexible, and simple), Starling can also be used for other use cases like UI
programming. That said, everything is designed to be as intuitive as possible, so any
Java or .Net developer will get the hang of it quickly as well.

Philosophy

Intuitive
Starling is easy to learn. Flash/Flex developers will feel at home immediately, since it
follows most of the ActionScript dogmas and abstracts the complexity of the low-level
Stage3D APIs. Instead of coding against concepts like vertices buffer, perspective
matrices, shader programs and assembly bytecode, you will use familiar concepts like

1

http://

a DOM display list, an event model, and familiar APIs like MovieClip, Sprite, TextField,
and so on.

Lightweight
Starling is a lightweight bird in many ways. The amount of classes is limited (around
80k of code). There are no external dependencies beside Flash Player 11 or AIR 3
(mobile support will come in a future release). This keeps your applications small and
your workflow simple.

Free
Starling is free and alive. Licensed under the Simplified BSD license, you can use it freely
even in commercial applications. We are working on it every day and we count on an
active community to improve it even more.

How
Behind the scenes, Starling uses the Stage3D APIs, which are low-level GPU APIs
running on top of OpenGL and DirectX on desktop and OpenGL ES2 on mobile de-
vices. As a developer, you have to know that Starling is the ActionScript 3 port of
Sparrow (http://www.sparrow-framework.org), the equivalent library for iOS relying on
OpenGL ES2 APIs (Figure 1).

Figure 1. Starling layer on top of Stage3D (Molehill)

Starling re-creates many APIs that Flash developers are already familiar with. Fig-
ure 2 illustrates the APIs exposed by Starling when it comes to graphical elements.

2 | First Flight

http://www.sparrow-framework.org
http://

Figure 2. DisplayObject inheritance

Many people think that the Stage3D APIs are strictly limited to 3D content (and, to be
fair, the name is a bit confusing), but you can in fact also create 2D content with them.

Figure 3 illustrates the idea. How can we draw something like a MovieClip with the
drawTriangles API?

Figure 3. drawTriangles and 2D?

Actually, it is very simple. GPU are extremely efficient at drawing triangles, so the
drawTriangles API will draw two triangles, and we will then sample a texture and apply
it to the triangles using UV mapping. We will then end up with our textured quad,

How | 3

http://

which represents our sprite. By updating the texture every frame on our triangles, we
would end up with a MovieClip. Pretty cool, huh?

Now, the good news is that we will not even have to go through those details when
using Starling. We will just provide our frames, supply them to a Starling MovieClip,
and voila (Figure 4)!

Figure 4. drawTriangles + textured quad = 2D

To give you an idea of how Starling reduces the complexity, let’s see what code we
would have to write to display a simple textured quad using the low-level Stage3D APIs:

// create the vertices
var vertices:Vector.<Number> = Vector.<Number>([
−0.5,−0.5,0, 0, 0, // x, y, z, u, v
−0.5, 0.5, 0, 0, 1,
0.5, 0.5, 0, 1, 1,
0.5, −0.5, 0, 1, 0]);

// create the buffer to upload the vertices
var vertexbuffer:VertexBuffer3D = context3D.createVertexBuffer(4, 5);

// upload the vertices
vertexbuffer.uploadFromVector(vertices, 0, 4);

// create the buffer to upload the indices
var indexbuffer:IndexBuffer3D = context3D.createIndexBuffer(6);

// upload the indices
indexbuffer.uploadFromVector (Vector.<uint>([0, 1, 2, 2, 3, 0]), 0, 6);

// create the bitmap texture
var bitmap:Bitmap = new TextureBitmap();

4 | First Flight

http://

// create the texture bitmap to upload the bitmap
var texture:Texture = context3D.createTexture(bitmap.bitmapData.width,

bitmap.bitmapData.height, Context3DTextureFormat.BGRA, false);

// upload the bitmap
texture.uploadFromBitmapData(bitmap.bitmapData);

// create the mini assembler
var vertexShaderAssembler : AGALMiniAssembler = new AGALMiniAssembler();

// assemble the vertex shader
vertexShaderAssembler.assemble(Context3DProgramType.VERTEX,
"m44 op, va0, vc0\n" + // pos to clipspace
"mov v0, va1" // copy uv
);

// assemble the fragment shader
fragmentShaderAssembler.assemble(Context3DProgramType.FRAGMENT,
"tex ft1, v0, fs0 <2d,linear, nomip>;\n" +
"mov oc, ft1"
);

// create the shader program
var program:Program3D = context3D.createProgram();

// upload the vertex and fragment shaders
program.upload(vertexShaderAssembler.agalcode, fragmentShaderAssembler.agalcode);

// clear the buffer
context3D.clear (1, 1, 1, 1);

// set the vertex buffer
context3D.setVertexBufferAt(0, vertexbuffer, 0, Context3DVertexBufferFormat.FLOAT_3);
context3D.setVertexBufferAt(1, vertexbuffer, 3, Context3DVertexBufferFormat.FLOAT_2);

// set the texture
context3D.setTextureAt(0, texture);

// set the shaders program
context3D.setProgram(program);

// create a 3D matrix
var m:Matrix3D = new Matrix3D();

// apply rotation to the matrix to rotate vertices along the Z axis
m.appendRotation(getTimer()/50, Vector3D.Z_AXIS);

// set the program constants (matrix here)
context3D.setProgramConstantsFromMatrix(Co
ntext3DProgramType.VERTEX, 0, m, true);

// draw the triangles
context3D.drawTriangles(indexBuffer);

How | 5

http://

// present the pixels to the screen
context3D.present();

And we would end up with the result shown in Figure 5.

Figure 5. A simple textured quad

Pretty complex code for this, right? That is the cost of having access to low-level APIs.
You get to control a lot of things, but at the cost of low-levelness.

With Starling, you will write the following code:

// create a Texture object out of an embedded bitmap
var texture:Texture = Texture.fromBitmap (new embeddedBitmap());

// create an Image object our of the Texture
var image:Image = new Image(texture);

// set the properties
image.pivotX = 50;
image.pivotY = 50;
image.x = 300;
image.y = 150;
image.rotation = Math.PI/4;

// display it
addChild(image);

As an ActionScript 3 developer already accustomed to the Flash APIs, you will feel
pretty much at home with these APIs exposed, while all the complexity of the
Stage3D APIs is done behind the scenes.

If you try to use the redraw regions feature, you will see that Starling, as expected,
renders everything on Stage3D, not the classic display list. Figure 6 illustrates the
behavior. We have a quad rotating on each frame; the redraw regions only show the
FPS counter sitting in the display list (running on the CPU).

6 | First Flight

http://

Figure 6. Content rendered through Stage3D

Remember that with the Stage 3D architecture, the content is completely rendered and
composited by the GPU. As a result, the redraw regions feature used for the display list
cannot be used.

Layering Restrictions
As a developer using Starling (and thus Stage 3D), you need to remember one limitation
when developing content. As mentioned earlier, Stage3D is literally a new rendering
architecture inside Flash Player. A GPU surface is placed under the display list, meaning
that any content running inside the display list will be placed above the Stage3D con-
tent. At no time can content running in the display list be placed under the Stage3D
layer.

Figure 7 illustrates the layering.

Figure 7. Layering with Stage3D, StageVideo, and the display list

Layering Restrictions | 7

http://

Note that the Stage3D object cannot be transparent; such a capability would allow
developers to play video using the StageVideo technology (introduced in Flash Player
10.2; http://www.adobe.com/devnet/flashplayer/articles/stage_video.html) and overlay
the video with content rendered through Stage3D. Such a feature may be enabled in a
future release of the Flash Player and AIR.

Getting Started
In order to download Starling, check out the following links:

• Official Starling Github: http://github.com/PrimaryFeather/Starling-Framework/

• Official Starling website: http://www.starling-framework.org

Note that Starling is licensed under the simplified BSD licence, so feel free to use Starling
in any kind of projects. You can contact the people behind the Starling framework at
office@starling-framework.org.

Once downloaded, you will reference the Starling library as any other AS3 library. Then,
to use the new Stage3D APIs required by Starling, you will need to target SWF version
13 by passing in an extra compiler argument to the Flex compiler: -swf-version=13.
Here are the directions (which assume you’re using the Adobe Flex SDK):

• Download the new playerglobal.swc for Flash Player 11.

• Download Flex 4.5 SDK (4.5.1.21328) from the Flex 4.5 SDK table (http://open
source.adobe.com/wiki/display/flexsdk/Download+Flex+4.5).

• Install the build in your development environment.

• In Flash Builder, create a new ActionScript project: File → New → ActionScript
project.

• Open the project Properties panel (right-click and chose “Properties”).

• Select “ActionScript Compiler” from the list on the left.

• Use the “Configure Flex SDK’s” option in the upper-right corner to point the
project to Flex build 21328. Click OK.

• Configure your project to target SWF version 13.

• Open the project Properties panel (right-click and chose “Properties”).

• Select “ActionScript Compiler” from the list on the left.

• Add to the “Additional compiler arguments” input: -swf-version=13. This ensures
the outputted SWF targets SWF version 13. If you compile on the command-line
and not in Flash Builder, you need to add the same compiler argument.

• Ensure you have installed the new Flash Player 11 build in your browser.

8 | First Flight

www.allitebooks.com

http://www.adobe.com/devnet/flashplayer/articles/stage_video.html
http://github.com/PrimaryFeather/Starling-Framework/
http://www.starling-framework.org
mailto:office@starling-framework.org
http://opensource.adobe.com/wiki/display/flexsdk/Download+Flex+4.5
http://opensource.adobe.com/wiki/display/flexsdk/Download+Flex+4.5
http://
http://www.allitebooks.org

Setting Up Your Scene
But enough introduction—let’s dig into the code and see what this little bird can do.
Starling is very easy to setup. First, a Starling object needs to be created and added to
your main class.

Starting from now, when referring to objects like MovieClip, Sprite, and
so on, we will imply the Starling APIs and not the native ones from the
Flash Player, unless specificed explicitly.

The Starling constructor expects multiple arguments. Here is the signature:

public function Starling(rootClass:Class, stage:flash.display.Stage,
 viewPort:Rectangle=null, stage3D:Stage3D=null,
 renderMode:String="auto")

Actually, the first two are the only ones really used commonly. The rootClass argument
expects a reference to a class extending starling.display.Sprite and as a second
argument, our stage:

package
{
 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import starling.core.Starling;

 [SWF(width="1280", height="752", frameRate="60", backgroundColor="#002143")]
 public class Startup extends Sprite
 {
 private var mStarling:Starling;

 public function Startup()
 {
 // stats class for fps
 addChild (new Stats());

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 // create our Starling instance
 mStarling = new Starling(Game, stage);

 // set anti-aliasing (higher the better quality but slower performance)
 mStarling.antiAliasing = 1;

 // start it!
 mStarling.start();
 }
 }
}

Setting Up Your Scene | 9

http://

Here’s our Game class creating a simple quad when added to stage:

package
{
 import starling.display.Quad;
 import starling.display.Sprite;
 import starling.events.Event;

 public class Game extends Sprite
 {
 private var q:Quad;

 public function Game()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 q = new Quad(200, 200);
 q.setVertexColor(0, 0x000000);
 q.setVertexColor(1, 0xAA0000);
 q.setVertexColor(2, 0x00FF00);
 q.setVertexColor(3, 0x0000FF);
 addChild (q);
 }
 }
}

Just as we would usually do, we listen to the Event.ADDED_TO_STAGE event and initialize
our application in the event handler. That way, we can safely access the stage.

Again, pay attention to this subtle detail. Our Game class here extends
the Sprite class from the starling.display package, not the flash.dis-
play.package. A good practice is to always check your import statements
and make sure you are using the Starling APIs rather than the native
one. You will get used to it quickly, but this can be confusing when
you’re first starting out.

By testing our previous code, we get the following result. Note that, as expected and
just like in Flash, objects will have a default position of 0,0. Let’s add a few lines to
center our quad:

q.x = stage.stageWidth - q.width >> 1;
q.y = stage.stageHeight - q.height >> 1;

10 | First Flight

http://

Note that shifting one bit to the right (>>1) is the equivalent of a division by 2.
Figure 8 shows our result.

Figure 8. Our first quad!

Note that the anti-aliasing value allows you to set the anti-aliasing you want. Generally
a value of 1 is totally acceptable, but you can go further. Technically you can go from
0 to 16, but here is the list of the most common values:

• 0: No anti-aliasing

• 2: Minimal anti-aliasing.

• 4: High-quality anti-aliasing.

• 16: Very high-quality anti-aliasing.

We will rarely need to go above 2, especially for 2D content, but you will decide
depending on your use cases. Figure 9 shows the slight difference between two different
values (1 and 4).

Setting Up Your Scene | 11

http://

Figure 9. Anti-aliasing differences

You can try values above 2 to adjust to the quality you want. Of course, choosing a
high value will have an impact on the performance.

Let’s have a quick look at the other APIs available on the Starling object:

• enableErrorChecking: Allows you to enable or disable error checking. Specifies
whether errors encountered by the renderer are reported to the application. When
enableErrorChecking is true, the clear(), and drawTriangles() methods called in-
ternally by Starling are synchronous and can throw errors. When enableErrorCh-
ecking is false, the default, the clear(), and drawTriangles() methods are asynchro-
nous and errors are not reported. Enabling error checking reduces rendering per-
formance. You should only enable error checking when debugging.

• isStarted: Indicates if start was called.

• juggler: A juggler is a simple object. It does no more than saving a list of objects
implementing IAnimatable and advancing their time if told to do so (by calling its
own advanceTime: method). When an animation is completed, it throws it away.

• start: Starts the rendering and event handling.

• stop: Stops the rendering and event handling, you would use this method to pause
the rendering when the game goes into the background to save resources.

• dispose: Call this method when you want to dispose the entire content being ren-
dered and currently on the GPU memory. This API internally disposes the shader
programs and listeners.

Once your Starling object has been created, a debug trace is outputted automatically,
giving you information about the renderer used. By default, when the SWF is correctly
embedded in the page or when testing in standalone, Starling will output the following:

12 | First Flight

http://

[Starling] Initialization complete.
[Starling] Display Driver:OpenGL Vendor=NVIDIA Corporation Version=2.1 NVIDIA-7.2.9
Renderer=NVIDIA GeForce GT 330M OpenGL Engine GLSL=1.20 (Direct blitting)

Of course, hardware details depend on your configuration. Note that it informs us here
that we are using GPU acceleration by giving details about the drivers version. For
debugging purposes, you may want to force the software fallback used internally by
the Flash Player to get an idea of the performance of your content when running on
software.

To do so, just inform that you want to use the software fallback (software rasterizer):

mStarling = new Starling(Game, stage, null, null, Context3DRenderMode.SOFTWARE);

When using software, the message outputted confirms we are running in software
mode:

[Starling] Initialization complete.
[Starling] Display Driver:Software (Direct blitting)

You want to test your content in software too, to get an idea of the performance when
some users will be running in this mode. Your content will fall back to software if the
graphics drivers have been issued before 1/1/2009. Note that this will change in the
future; future versions of Flash Player and AIR may relax this rule. Now, let’s have a
look at the requirements for Stage3D when it comes to embedding your SWF in a page.

Wmode Requirements
You have to remember that in order to enable Stage 3D and GPU acceleration you have
to use wmode=direct as the embed mode in the page. If you do not specify any value or
choose a value other than “direct” (e.g., “transparent,” “opaque,” or “window”), Stage
3D will not be available. Instead, you will get a runtime exception informing you that
the creation of the Context3D object failed, when requestContext3D on Stage3D is called.
The runtime exception dialog box is shown in Figure 10.

Figure 10. Runtime exception, when Context3D is not available

Wmode Requirements | 13

http://

It is important to handle this situation if your application is embedded using the wrong
wmode. You need to react appropriately by displaying a message explaining the issue.
Fortunately, Starling handles this automatically, and will display the message shown
in Figure 11. Feel free to modify the Starling source code to modify this message and
even customize the look and feel.

Figure 11. Warning message when the application is not correctly embedded

Stage Quality
As a Flash developer, the concept of stage quality is not new to you. An important note
though is that when working with Stage3D, and as a result Starling, the stage quality
has no impact on the performance.

Progressive Enhancements
As mentioned previously, when GPU acceleration cannot be leveraged, Stage3D will
fall back to software and internally will use a software fallback engine, called Swift-
Shader (Transgaming). To make sure that your content runs well in such a scenario,
you need to detect when you are running in software and remove potential effects that
would be slow in software.

In the context of 2D content, software fallback should be able to handle many objects
and provide good performance, but still, to detect this, you can access the Context3D
object from the Starling object by using the static property context:

// are we running hardware of software ?
var isHW:Boolean = Starling.context.driverInfo.toLowerCase().indexOf("software") ==
−1;

It is a good practice to always design your content with software fallback in mind, as
it will ensure the best experience possible on all configurations. Some developers de-
velop their Stage3D games by switching on and off hardware acceleration constantly,
to make sure that the experience is always good when running on software.

Now let’s have a look at a pretty exciting topic: the display list in Starling!

14 | First Flight

http://

The Display List
Starling follows the same rule as the native Flash display list (i.e., the stage is not avail-
able until objects are added to the display list). To access the stage safely, we usually
rely on some of the most important events in Flash, which are also available in Starling:

• Event.ADDED: The object was added to a parent.

• Event.ADDED_TO_STAGE: The object was added to a parent that is connected
to the stage, thus becoming visible now.

• Event.REMOVED: The object was removed from a parent.

• Event.REMOVED_FROM_STAGE: The object was removed from a parent that
is connected to the stage, thus becoming invisible.

We will actively rely on those events in the following examples. Just like any Flash
content, those events will allow us to initialize or deactivate objects and optimize per-
formance and resources.

Here is the list of methods defined by the DisplayObject class:

• removeFromParent: Removes the object from its parent, if it has one.

• getTransformationMatrixToSpace: Creates a matrix that represents the trans-
formation from the local coordinate system to another.

• getBounds: Returns a rectangle that completely encloses the object as it appears
in another coordinate system.

• hitTestPoint: Returns the object that is found topmost on a point in local coor-
dinates, or nil if the test fails.

• globalToLocal: Transforms a point from global (stage) coordinates to the local
coordinate system.

• localToGlobal: Transforms a point from the local coordinate system to global
(stage) coordinates.

Here is a list of the properties defined by the DisplayObject class, it is very pleasant to
see all those properties exposed and some little improvements (compared to the native
display list) like pivotX and pivotY to dynamically change the registration point of a
DisplayObject:

• transformationMatrix: The transformation matrix of the object relative to its
parent.

• bounds: The bounds of the object relative to the local coordinates of the parent.

• width: The width of the object in points.

• height: The height of the object in points.

• root: The topmost object in the display tree the object is part of.

• x: The x coordinate of the object relative to the local coordinates of the parent.

The Display List | 15

http://

• y: The y coordinate of the object relative to the local coordinates of the parent.

• pivotX: The x coordinate of the object’s origin in its own coordinate space (default:
0).

• pivotY: The y coordinate of the object’s origin in its own coordinate space (default:
0).

• scaleX: The horizontal scale factor. “1” means no scale, negative values flip the
object.

• scaleY: The vertical scale factor. “1” means no scale, negative values flip the object.

• rotation: The rotation of the object in radians. (In Sparrow, all angles are measured
in radians.)

• alpha: The opacity of the object.

• visible: The visibility of the object. An invisible object will be untouchable.

• touchable: Indicates if this object (and its children) will receive touch events.

• parent: The display object container that contains this display object.

• stage: The stage the display object is connected to, or null if it is not connected to
a stage.

Just like with the native Flash APIs, a Sprite is the most lightweight container you can
use. Of course as a subclass of DisplayObject you get all the APIs mentioned earlier
plus the ability to nest content. So far we did not nest content, except for the scene,
actually, remember that our Game class extends Sprite, which is a DisplayObjectCon
tainer.

Here are the APIs exposed by DisplayObjectContainer objects:

• addChild: Adds a child to the container. It will be at the topmost position.

• addChildAt: Adds a child to the container at a certain index.

• dispose: Removes the GPU buffers and all the listeners registered to the object.

• removeFromParent: Removes the child from its parent.

• removeChild: Removes a child from the container. If the object is not a child,
nothing happens.

• removeChildAt: Removes a child at a certain index. Children above the child will
move down.

• removeChildren: Removes all children from the container.

• getChildAt: Returns a child object at a certain index.

• getChildByName: Returns a child object with a certain name (non-recursively).

• getChildIndex: Returns the index of a child within the container.

• setChildIndex: Changes the index of the specified child.

• swapChildren: Swaps the indexes of two children.

• swapChildrenAt: Swaps the indexes of two children.

16 | First Flight

http://

• contains: Determines if a certain object is a child of the container (recursively).

Once you have access to the stage you can then call most of the DisplayObjectCon
tainer APIs on it, but you can also pass a color to the stage. By default Starling will
take the default SWF background color, that you can set using the following SWF tag:

[SWF(width="1280", height="752", frameRate="60", backgroundColor="#990000")]

You can also override this behavior and just pass a color to the stage object that you
can access from any DisplayObject added to the display list:

package
{
 import starling.display.Quad;
 import starling.display.Sprite;
 import starling.events.Event;

 public class Game extends Sprite
 {
 private var q:Quad;

 public function Game()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // set the background color to blue
 stage.color = 0x002143;

 q = new Quad(200, 200);
 q.setVertexColor(0, 0x000000);
 q.setVertexColor(1, 0xAA0000);
 q.setVertexColor(2, 0x00FF00);
 q.setVertexColor(3, 0x0000FF);
 addChild (q);
 }
 }
}

Now, understand that we are not using any texture, we basically have two triangles
grouped as a quad, and each vertex of our plane has a different color being interpolated
on the GPU.

Of course, if you want a solid plain color, just use the color property of the Quad object:

package
{
 import starling.display.Quad;
 import starling.display.Sprite;
 import starling.events.Event;

 public class Game extends Sprite
 {
 private var q:Quad;

The Display List | 17

http://

 public function Game()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 q = new Quad(200, 200);
 q.color = 0x00FF00;
 q.x = stage.stageWidth - q.width >> 1;
 q.y = stage.stageHeight - q.height >> 1;
 addChild (q);
 }
 }
}

Then you will end up with the result shown in Figure 12.

Figure 12. A solid green quad

18 | First Flight

www.allitebooks.com

http://
http://www.allitebooks.org

We will be now using an Event.ENTER_FRAME event, this handler will interpolate the
quad color using a simple easing effect between random colors:

package
{
 import starling.display.Quad;
 import starling.display.Sprite;
 import starling.events.Event;

 public class Game extends Sprite
 {
 private var q:Quad;

 private var r:Number = 0;
 private var g:Number = 0;
 private var b:Number = 0;

 private var rDest:Number;
 private var gDest:Number;
 private var bDest:Number;

 public function Game()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 resetColors();

 q = new Quad(200, 200);
 q.x = stage.stageWidth - q.width >> 1;
 q.y = stage.stageHeight - q.height >> 1;
 addChild (q);

 s.addEventListener(Event.ENTER_FRAME, onFrame);
 }

 private function onFrame (e:Event):void
 {
 r -= (r - rDest) * .01;
 g -= (g - gDest) * .01;
 b -= (b - bDest) * .01;

 var color:uint = r << 16 | g << 8 | b;
 q.color = color;

 // when reaching the color, pick another one
 if (Math.abs(r - rDest) < 1 && Math.abs(g - gDest) < 1 && Math.abs(b
- bDest))
 resetColors();
 }

 private function resetColors():void
 {

The Display List | 19

http://

 rDest = Math.random()*255;
 gDest = Math.random()*255;
 bDest = Math.random()*255;
 }
 }
}

To rotate this quad, we can use the rotation property, note that Starling works in
radians whereas Flash Player works with degrees. This choice was made to preserve
consistency between Sparrow and Starling. Anytime you want to apply a rotation using
degrees, just use the starling.utils.deg2rad function or just inline the conversion:

sprite.rotation = deg2rad(Math.random()*360);

If you prefer working with degrees, again, feel free to modify Starling’s source code.
One neat thing is that all DisplayObject have pivotX and pivotY properties allowing us
to move the registration point at runtime for any object:

q.pivotX = q.width >> 1;
q.pivotY = q.height >> 1;

It feels very natural for an ActionScript developer to use Starling, this quad as a Dis
playObject can then be nested with a TextField inside a Sprite, and moving this sprite
will allow us to group elements together, just like what you would do with the native
display list:

package
{
 import starling.display.DisplayObject;
 import starling.display.Quad;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.text.TextField;

 public class Game extends Sprite
 {
 private var q:Quad;
 private var s:Sprite;

 private var r:Number = 0;
 private var g:Number = 0;
 private var b:Number = 0;

 private var rDest:Number;
 private var gDest:Number;
 private var bDest:Number;

 public function Game()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 resetColors();

20 | First Flight

http://

 q = new Quad(200, 200);

 s = new Sprite();

 var legend:TextField = new TextField(100, 20, "Hello Starling!", "Arial",
14, 0xFFFFFF);

 s.addChild(q);
 s.addChild(legend);

 s.pivotX = s.width >> 1;
 s.pivotY = s.height >> 1;

 s.x = (stage.stageWidth - s.width >> 1) + (s.width >> 1);
 s.y = (stage.stageHeight - s.height >> 1) + (s.height >> 1);

 addChild(s);

 s.addEventListener(Event.ENTER_FRAME, onFrame);
 }

 private function onFrame (e:Event):void
 {
 r -= (r - rDest) * .01;
 g -= (g - gDest) * .01;
 b -= (b - bDest) * .01;

 var color:uint = r << 16 | g << 8 | b;
 q.color = color;

 // when reaching the color, pick another one
 if (Math.abs(r - rDest) < 1 && Math.abs(g - gDest) < 1 && Math.abs(b
- bDest))
 resetColors();

 (e.currentTarget as DisplayObject).rotation += .01;
 }

 private function resetColors():void
 {
 rDest = Math.random()*255;
 gDest = Math.random()*255;
 bDest = Math.random()*255;
 }

 }
}

We now rotate our sprite containing our Quad and a TextField all this rotating around
the container registration point (Figure 13).

The Display List | 21

http://

Figure 13. A Sprite containing a Quad and a TextField

Our code starts to look messy, let’s move some code to define a CustomSprite, which
will encapsulate the internal color behavior and children. Here is our final Custom
Sprite class:

package
{
 import starling.display.Quad;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.text.TextField;

 public class CustomSprite extends Sprite
 {
 private var quad:Quad;
 private var legend:TextField;

 private var quadWidth:uint;
 private var quadHeight:uint;

 private var r:Number = 0;
 private var g:Number = 0;
 private var b:Number = 0;

 private var rDest:Number;
 private var gDest:Number;
 private var bDest:Number;

 public function CustomSprite(width:Number, height:Number, color:uint=16777215)
 {

22 | First Flight

http://

 // reset the destination color component
 resetColors();

 // set the width and height
 quadWidth = width;
 quadHeight = height;

 // when added to stage, activate it
 addEventListener(Event.ADDED_TO_STAGE, activate);
 }

 private function activate(e:Event):void
 {
 // create a quad of the specified width
 quad = new Quad(quadWidth, quadHeight);

 // add the legend
 legend = new TextField(100, 20, "Hello Starling!", "Arial", 14, 0xFFFFFF);

 // add the children
 addChild(quad);
 addChild(legend);

 // change the registration point
 pivotX = width >> 1;
 pivotY = height >> 1;
 }

 private function resetColors():void
 {
 // pick random color components
 rDest = Math.random()*255;
 gDest = Math.random()*255;
 bDest = Math.random()*255;
 }

 /**
 * Updates the internal behavior
 *
 */

 public function update ():void
 {
 // easing on the components
 r -= (r - rDest) * .01;
 g -= (g - gDest) * .01;
 b -= (b - bDest) * .01;

 // assemble the color
 var color:uint = r << 16 | g << 8 | b;
 quad.color = color;

 // when reaching the color, pick another one
 if (Math.abs(r - rDest) < 1 && Math.abs(g - gDest) < 1 && Math.abs(b
- bDest))

The Display List | 23

http://

 resetColors();

 // rotate it!
 //rotation += .01;
 }
 }
}

And this is our Game class:

package
{
 import starling.display.Sprite;
 import starling.events.Event;

 public class Game extends Sprite
 {
 private var customSprite:CustomSprite;

 public function Game()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create the custom sprite
 customSprite = new CustomSprite(200, 200);

 // positions it by default in the center of the stage
 // we add half width because of the registration point of the custom sprite
(middle)
 customSprite.x = (stage.stageWidth - customSprite.width >> 1) +
(customSprite.width >> 1);
 customSprite.y = (stage.stageHeight - customSprite.height >> 1) +
(customSprite.height >> 1);

 // show it
 addChild(customSprite);

 // need to comment this one ? ;)
 stage.addEventListener(Event.ENTER_FRAME, onFrame);
 }

 private function onFrame (e:Event):void
 {
 // we update our custom sprite
 customSprite.update();
 }
 }
}

Note that we update our custom sprite using the update API on CustomSprite allowing
us to have the main loop in the game class allowing us to control our object from a

24 | First Flight

http://

central place. By using this approach on our other elements, it becomes trivial then to
add a pause mechanism to our entire set of content.

Let’s add a little more interaction to our little test, we are going to add some more
movement by having our quad to follow the mouse. Here we add a little piece of code
to make it happen:

package
{
 import flash.geom.Point;

 import starling.display.Sprite;
 import starling.events.Event;
 import starling.events.Touch;
 import starling.events.TouchEvent;

 public class Game extends Sprite
 {
 private var customSprite:CustomSprite;
 private var mouseX:Number = 0;
 private var mouseY:Number = 0;

 public function Game()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create the custom sprite
 customSprite = new CustomSprite(200, 200);

 // positions it by default in the center of the stage
 // we add half width because of the registration point of the custom sprite
(middle)
 customSprite.x = (stage.stageWidth - customSprite.width >> 1) +
(customSprite.width >> 1);
 customSprite.y = (stage.stageHeight - customSprite.height >> 1) +
(customSprite.height >> 1);

 // show it
 addChild(customSprite);

 // we listen to the mouse movement on the stage
 stage.addEventListener(TouchEvent.TOUCH, onTouch);
 // need to comment this one ? ;)
 stage.addEventListener(Event.ENTER_FRAME, onFrame);
 }

 private function onFrame (e:Event):void
 {
 // easing on the custom sprite position
 customSprite.x -= (customSprite.x - mouseX) * .1;
 customSprite.y -= (customSprite.y - mouseY) * .1;

The Display List | 25

http://

 // we update our custom sprite
 customSprite.update();
 }

 private function onTouch (e:TouchEvent):void
 {
 // get the mouse location related to the stage
 var touch:Touch = e.getTouch(stage);
 var pos:Point = touch.getLocation(stage);

 // store the mouse coordinates
 mouseX = pos.x;
 mouseY = pos.y;
 }
 }
}

Note that here, we do not use any Mouse API, and actually there is no concept of mouse
in Starling, we will come back to this very soon.

By listening to the TouchEvent.TOUCH event, we are actually listening to any mouse/finger
movement, just like a classic MousEvent.MOUSE_MOVE. Every frame, we store the current
mouse location by using the helper APIs from the TouchEvent object like getTouch and
getLocation. Once the mouse position is stored, we use a little easing equation inside
the onFrame event handler to move our quad around.

As mentioned previously, Starling not only makes your life easier to program on the
GPU, but also when it comes to disposing objects for resources. Let’s say we want to
remove this quad from the scene when we click on it, we will then write the following:

package
{
 import flash.geom.Point;

 import starling.display.DisplayObject;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.events.Touch;
 import starling.events.TouchEvent;
 import starling.events.TouchPhase;

 public class Game extends Sprite
 {
 private var customSprite:CustomSprite;
 private var mouseX:Number = 0;
 private var mouseY:Number = 0;

 public function Game()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {

26 | First Flight

http://

 // create the custom sprite
 customSprite = new CustomSprite(200, 200);

 // positions it by default in the center of the stage
 // we add half width because of the registration point of the custom sprite
(middle)
 customSprite.x = (stage.stageWidth - customSprite.width >> 1) +
(customSprite.width >> 1);
 customSprite.y = (stage.stageHeight - customSprite.height >> 1) +
(customSprite.height >> 1);

 // show it
 addChild(customSprite);

 // we listen to the mouse movement on the stage
 stage.addEventListener(TouchEvent.TOUCH, onTouch);
 // need to comment this one ? ;)
 stage.addEventListener(Event.ENTER_FRAME, onFrame);
 // when the sprite is touched
 customSprite.addEventListener(TouchEvent.TOUCH, onTouchedSprite);
 }

 private function onFrame (e:Event):void
 {
 // easing on the custom sprite position
 customSprite.x -= (customSprite.x - mouseX) * .1;
 customSprite.y -= (customSprite.y - mouseY) * .1;

 // we update our custom sprite
 customSprite.update();
 }

 private function onTouch (e:TouchEvent):void
 {
 // get the mouse location related to the stage
 var touch:Touch = e.getTouch(stage);
 var pos:Point = touch.getLocation(stage);

 // store the mouse coordinates
 mouseX = pos.x;
 mouseY = pos.y;
 }

 private function onTouchedSprite(e:TouchEvent):void
 {
 // get the touch points (can be multiple because of multitouch)
 var touch:Touch = e.getTouch(stage);
 var clicked:DisplayObject = e.currentTarget as DisplayObject;

 // detect the click/release phase
 if (touch.phase == TouchPhase.ENDED)
 {
 // remove the clicked object
 removeChild(clicked);
 }

The Display List | 27

http://

 }
 }
}

Note that here we remove the child but we do not remove the Event.ENTER_FRAME lis-
tener. We can test if our sprite still has a listener by using the hasEventListener API:

private function onTouchedSprite(e:TouchEvent):void
{
 // get the touch points (can be multiple because of multitouch)
 var touch:Touch = e.getTouch(stage);
 var clicked:DisplayObject = e.currentTarget as DisplayObject;

 // detect the click/release phase
 if (touch.phase == TouchPhase.ENDED)
 {
 // remove the clicked object
 removeChild(clicked);
 // outputs : true
 trace (clicked.hasEventListener(e.type));
 }
}

To safely remove a child, use the second parameter dispose of the removeChild API,
which allows you to also remove automatically all the listeners registered to the object
being removed:

private function onTouchedSprite(e:TouchEvent):void
{
 // get the touch points (can be multiple because of multitouch)
 var touch:Touch = e.getTouch(stage);
 var clicked:DisplayObject = e.currentTarget as DisplayObject;

 // detect the click/release phase
 if (touch.phase == TouchPhase.ENDED)
 {
 // remove and dispose all the listeners
 removeChild(clicked, true);
 // outputs : false
 trace (clicked.hasEventListener(e.type));
 }
}

If the child has children, all of them will be disposed too. The same dispose argument
is available also on the other APIs to remove children like removeChildren or remove
ChildAt. Note that the dispose behavior also clears the GPU buffers for the object, but
not the texture. To dispose the texture, you can call the same dispose method on the
Texture or TextureAtlas object.

You can also remove all the listeners by calling the dispose API explicitely on any
DisplayObject:

clicked.dispose()

28 | First Flight

www.allitebooks.com

http://
http://www.allitebooks.org

We have been using for the first time, the Starling event model which looks very similar
to the native Flash Player’s one, let’s spend some more time on the EventDispatcher
API available in Starling.

Event Model
As shown in Figure 2, all Starling objects are subclasses of the EventDispatcher class.
Just like with the native EventDispatcher API, all Starling objects expose APIs to add
or remove listeners to them:

• addEventListener: Registers a listener to a specific event.

• hasEventListener: Tests if there is a listener for a specific event.

• removeEventListener: Removes the event listener.

• removeEventListeners: Removes all the listeners registered to a specific event or
all of them.

Note the addition of a very useful API: removeEventListeners. At any time, when you
need to remove all listeners registered to a specific event, use removeEventListeners by
passing the event type:

button.removeEventListeners(Event.TRIGGERED);

When you need to remove all the listeners, no matter the event, in a scenario where
you are about get rid of an object or deactivate it, just call the same removeEventListen
ers API with no event type as a parameter:

button.removeEventListeners ();

Note that we just used recently the removeChild API that takes an argument for dis-
posing listeners, which calls internally the same API internally, but on each child.

Event Propagation
As we have seen since the beginning of this Starling tutorial, Starling recreates the
concept of display list on top of Stage3D. The great news is that you will be able to also
reuse the power of event propagation with Starling. Event propagation can be really
useful in some scenarios to limit the number of listeners that you have to register and
unregister and make your code cleaner.

For those of you not familiar with the concept of event propagation, you can get more
details about it here: http://www.adobe.com/devnet/actionscript/articles/event_handling
_as3.html

As an interesting detail, Starling handles event propagation, but a slightly different
version than the native one in Flash. Starling only supports the bubbling phase, there
is no concept of capture phase. We will be leveraging event propagation during the
next examples to see how it works.

Event Model | 29

http://www.adobe.com/devnet/actionscript/articles/event_handling_as3.html
http://www.adobe.com/devnet/actionscript/articles/event_handling_as3.html
http://

Touch Events
As we mentioned earlier, Starling is Sparrow’s cousin, as a result, the touch event
mechanism is Starling is really tailored for mobile and therefore for touch interactions,
which can be quite confusing at first sight when using Starling on desktop applications
designed for mouse interactions.

First, if you take a look at the Figure 2, you will notice that in contrary of the native
display list, with Starling there is no InteractiveObject class in the hierarchy, all display
objects are by default interactive. To say it differently, the DisplayObject class defines
interactive behaviors.

We have been using touch events quickly in the past examples. We started with some
very basic stuff, like reacting when the mouse touches the quad. For this, we used the
TouchEvent.TOUCH event:

// when the sprite is touched
_customSprite.addEventListener(TouchEvent.TOUCH, onTouchedSprite);

You may think that this is pretty limited right? Actually it is very powerful cause you
can detect a lot of different states through this single event. Everytime a mouse or fingers
are interacting with a graphical object, a TouchEvent.TOUCH event is dispatched.

Let’s have a closer look. In the following code, we trace the phase property available
on the Touch object in our onTouch event handler:

private function onTouch (e:TouchEvent):void
{
 // get the mouse location related to the stage
 var touch:Touch = e.getTouch(stage);
 var pos:Point = touch.getLocation(stage);

 trace (touch.phase);

 // store the mouse coordinates
 _mouseY = pos.y;
 _mouseX = pos.x;
}

When we start interacting with the quad and click on it, we can see that different phases
are triggered; here is the list of all the phases available as constants through the Touch
Phase API:

• began: A mouse or finger starts interacting (similar to a mouse down state).

• ended: A mouse or finger stop interacting (similar to a native click state).

• hover: A mouse or finger is hovering an object. (similar to a native mouse over
state)

30 | First Flight

http://

• moved: A mouse or finger is moving an object (similar to a native mouse down
state + a mouse move state).

• stationary: A mouse or finger stopped interactng with an object and stays over it.

Let’s have a look at some others API available on the TouchEvent event object:

• ctrlKey: A boolean returning the state of the ctrl key (down or not).

• getTouch: Gets the first Touch object that originated over a certain target and are
in a certain phase.

• getTouches: Gets a set of Touch objects that originated over a certain target and
are in a certain phase.

• shiftKey: A boolean returning the state of the shift key (down or not).

• timestamp: The time the event occurred (in seconds since application launch).

• touches: All touches that are currently happening.

The use of the shiftKey and ctrlKey properties is useful to detect combination with
keyboard keys. So everytime there is an interaction, the finger or the mouse has a
Touch object related to it.

Let’s see the APIs available on a Touch object:

• clone: Clones the object.

• getLocation: Converts the current location of a touch to the local coordinate sys-
tem of a display object.

• getPreviousLocation: Converts the previous location of a touch to the local co-
ordinate system of a display object.

• globalX: The x-position of the touch in screen coordinates.

• globalY: The y-position of the touch in screen coordinates.

• id: A unique id for the object.

• phase: The current phase the touch is in.

• previousGlobalX: The previous x-position of the touch in screen coordinates.

• previousGlobalY: The previous y-position of the touch in screen coordinates

• tapCount: The number of taps the finger made in a short amount of time. Use this
to detect double-taps, for example.

• target: The display object at which the touch occurred.

• timestamp: The moment the event occurred (in seconds since application start).

Touch Events | 31

http://

Simulating Multi-touch
When developing content for mobile devices, there are lof of chances that you may
want to leverage multi-touch interactions, like for scaling for instance. When authoring
on desktop, if you cannot test live on the device, Starling offers a great built-in mech-
anism to simulate multi-touch.

To enable it, you need to use the simulateMultiTouch property on the Starling object:

package
{
 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import starling.core.Starling;

 [SWF(width="1280", height="752", frameRate="60", backgroundColor="#002143")]
 public class Startup extends Sprite
 {
 private var mStarling:Starling;

 public function Startup()
 {
 // stats class for fps
 addChild (new Stats());

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 // create our Starling instance
 mStarling = new Starling(Game, stage);
 // emulate multi-touch
 mStarling.simulateMultitouch = true;
 // set anti-aliasing (higher the better quality but slower performance)
 mStarling.antiAliasing = 1;
 // start it!
 mStarling.start();
 }
 }
}

Once enabled, just use the ctrl key, automatically, two little dots will appear and sim-
ulate multi touch inputs. Figure 14 illustrates the idea.

32 | First Flight

http://

Figure 14. Multi-touch simulation

In the following code, we are scaling the quad when using multiple touch points, like
two fingers. We retrieve the touch points and calculate the distance between them:

package
{
 import flash.geom.Point;

 import starling.display.Sprite;
 import starling.events.Event;
 import starling.events.Touch;
 import starling.events.TouchEvent;
 import starling.events.TouchPhase;

 public class Game extends Sprite
 {
 private var customSprite:CustomSprite;

 public function Game()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create the custom sprite
 customSprite = new CustomSprite(200, 200);

 // positions it by default in the center of the stage
 // we add half width because of the registration point of the custom sprite
(middle)
 customSprite.x = (stage.stageWidth - customSprite.width >> 1) +

Touch Events | 33

http://

(customSprite.width >> 1);
 customSprite.y = (stage.stageHeight - customSprite.height >> 1) +
(customSprite.height >> 1);

 // show it
 addChild(customSprite);

 // we listen to the mouse movement on the stage
 //stage.addEventListener(TouchEvent.TOUCH, onTouch);
 // need to comment this one ? ;)
 stage.addEventListener(Event.ENTER_FRAME, onFrame);
 // when the sprite is touched
 customSprite.addEventListener(TouchEvent.TOUCH, onTouchedSprite);
 }

 private function onFrame (e:Event):void
 {
 // we update our custom sprite
 customSprite.update();
 }

 private function onTouchedSprite(e:TouchEvent):void
 {
 // retrieves the touch points
 var touches:Vector.<Touch> = e.touches;

 // if two fingers
 if (touches.length == 2)
 {
 var finger1:Touch = touches[0];
 var finger2:Touch = touches[1];

 var distance:int;
 var dx:int;
 var dy:int;

 // if both fingers moving (dragging)
 if (finger1.phase == TouchPhase.MOVED && finger2.phase ==
TouchPhase.MOVED)
 {
 // calculate the distance between each axes
 dx = Math.abs (finger1.globalX - finger2.globalX);
 dy = Math.abs (finger1.globalY - finger2.globalY);

 // calculate the distance
 distance = Math.sqrt(dx*dx+dy*dy);

 trace (distance);
 }
 }
 }
 }
}

Let’s cover textures now!

34 | First Flight

http://

Texture
A texture object must be created to feed an Image object. Think of it, as the relationship
between Bitmap and BitmapData when using the native APIs. At anytime, when you need
to create a Texture object, you need to use the Texture API, which contains the following
APIs:

• base: The Stage3D texture object the texture is based on.

• dispose: Disposes the underlying texture data.

• empty: Returns a Texture object out of dimensions (width and height).

• frame: The texture frame (see class description).

• fromBitmap: Returns a Texture object out of a Bitmap object. This Bitmap object
can be embedded or loaded dynamically.

• fromBitmapData: Returns a Texture object out of a BitmapData object.

• fromAtfData: Allows the use of a compressed texture using the ATF (Adobe Tex-
ture Format). Compressed textures allows you to save a lot of memory especially
on constrained environments like mobile devices.

• fromTexture: Allows the use of a texture and returns a new texture.

• height: The height of the texture in pixels.

• mipmapping: Indicates if the texture contains mip maps.

• premultipliedAlpha: Indicates if the alpha values are premultiplied into the RGB
values.

• repeat: Indicates if the texture should repeat like a wallpaper or stretch the out-
ermost pixels.

• width: The width of the texture in pixels.

Different image formats can be used for your textures. The following list summarizes
the various formats that can be used for your textures:

• PNG: As alpha channel is often required, PNG is one of the most common file
format used for textures.

• JPEG: The classic JPEG format can also be used. Remember that on the GPU the
image will be decompressed, so using JPEG will not limit the memory usage and
you will not be able to use transparency in your textures.

• ATF: Adobe Texture Format. This is the best file format for the best compression.
ATF files are primarily a file container to store lossy texture data. It achieves its
lossy compression through to the use of two common techniques: JPEG-XR1 com-
pression and block based compression. JPEG-XR compression provide a compet-
itive method to save storage space and network bandwidth. Block based compres-
sion provides a way to reduce texture memory usage on the client, at a fixed ratio

Texture | 35

http://

of 1:8 compared to RGBA textures. ATF supports three types of block based com-
pression: DXT12, ETC13 and PVRTC4.

Let’s dig a little more on the concept of textures and discover an essential concept for
images on the GPU, mipmapping. Mipmapping is an important and easy concept to
understand. Scaled down versions of a texture are called mipmaps. When working with
textures on the GPU, the latter needs to scale images sometimes depending on the size
of the content. This can happen if your camera is moving towards the content, or when
the content is moving towards the camera. Both scenarios will scale your content and
as a result your textures.

Note that texture dimensions need to be of a power of two (1, 2, 4, 8,
16, 32, 64, 128, 256, 512, 1024, 2048), but do not require to be square.
If you do not respect this rule, Starling will automatically find the nearest
power of two for your image dimensions and create a texture of this size,
which can result in a waste of memory. To make sure you optimize the
memory used by textures, it is recommended to use texture atlases
commonly known as sprite sheets. We will come back to this topic later
on.

To ensure the best quality, the GPU requires all mipmap levels of the image (mipmaps).
Which means all the versions of the image from its original size (which needs to be a
power of two) to 1. Without Starling you would have to manually generate the miplevels
by using a very simple trick involving BitmapData.draw and a scaled by 2 transformation
matrix.

It is a good practice to upload them for 2D content, this is going to make
your content perform faster and look better (reduces aliasing) when el-
ements are being scaled down.

Fortunately, as mentioned earlier, Starling does it for you automatically, and here is
the code used by Starling internally, which generates the miplevels:

if (generateMipmaps)
 {
 var currentWidth:int = data.width >> 1;
 var currentHeight:int = data.height >> 1;
 var level:int = 1;
 var canvas:BitmapData = new BitmapData(currentWidth, currentHeight, true, 0);
 var transform:Matrix = new Matrix(.5, 0, 0, .5);

 while (currentWidth >= 1 || currentHeight >= 1)
 {
 canvas.fillRect(new Rectangle(0, 0, currentWidth, currentHeight), 0);
 canvas.draw(data, transform, null, null, null, true);
 texture.uploadFromBitmapData(canvas, level++);
 transform.scale(0.5, 0.5);
 currentWidth = currentWidth >> 1;

36 | First Flight

http://

 currentHeight = currentHeight >> 1;
 }

 canvas.dispose();
 }

When using the ATF format (Adobe Texture Format) you actually do not need to worry
about it, the ATF file format contains already the miplevels, which are not generated
at runtime but ahead of time. This is valuable cause it saves the time you would spend
generating those miplevels. In a scenario with a lot of textures this can be precious time
saved and bring faster initialization of your content.

Notice that there is also a frame property on the Texture object, this allows us to define
the position of the texture when assigned to an Image object. Let’s say you would like
to have some borders around your image, you would then use a smaller texture than
the image and position the texture in the center of the image:

texture.frame = new Rectangle(5, 5, 30, 30);
var image:Image = new Image(texture);

Talking about the Image object, let’s have a closer look at it.

Image
In Starling, a starling.display.Image object is the equivalent of a native flash.dis
play.Bitmap object:

var myImage:Image = new Image(texture);

To display an image, you then need to create an Image object and pass a Texture object
to it:

package
{
 import flash.display.Bitmap;

 import starling.display.Image;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.textures.Texture;
 import starling.utils.deg2rad;

 public class Game2 extends Sprite
 {
 private var sausagesVector:Vector.<Image> = new Vector.<Image>(NUM_SAUSAGES,
true);

 private const NUM_SAUSAGES:uint = 400;

 [Embed(source = "../media/textures/sausage.png")]
 private static const Sausage:Class;

 public function Game2()
 {

Texture | 37

http://

 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create a Bitmap object out of the embedded image
 var sausageBitmap:Bitmap = new Sausage();

 // create a Texture object to feed the Image object
 var texture:Texture = Texture.fromBitmap(sausageBitmap);

 for (var i:int = 0; i < NUM_SAUSAGES; i++)
 {
 // create a Image object with our one texture
 var image:Image = new Image(texture);

 // set a random alpha, position, rotation
 image.alpha = Math.random();

 // define a random initial position
 image.x = Math.random()*stage.stageWidth
 image.y = Math.random()*stage.stageHeight
 image.rotation = deg2rad(Math.random()*360);

 // show it
 addChild(image);

 // store references for later
 sausagesVector[i] = image;
 }
 }
 }
}

Note that we used the static fromBitmap API on the Texture class to generate our Tex
ture object.

If we test our code, this should gives us the result shown in Figure 15.

38 | First Flight

www.allitebooks.com

http://
http://www.allitebooks.org

Figure 15. Our sausages positioned randomly

The bitmap we use here is embedded but could be loaded dynamically. To achieve this,
we would use a Loader object, to load our texture, then retrieve the loaded Bitmap and
use the fromBitmap API to generate our Starling texture:

// create the loader
var loader:Loader = new Loader();

// load the texture
loader.load (new URLRequest ("texture.png"));

// when texture is loaded
loader.contentLoaderInfo.addEventListener (Event.COMPLETE, onComplete);

function onComplete (e : Event):void
{
 // grab the loaded bitmap
 var loadedBitmap:Bitmap = e.currentTarget.loader.content as Bitmap;

 // create a texture from the loaded bitmap
 var texture:Texture = Texture.fromBitmap (loadedBitmap)
}

Another API is available to generate a Texture object out of a BitmapData object, but we
will come back to this later.

Texture | 39

http://

Note that we are reusing here the same texture for all our sprites on screen. If you look
at the isolated code below, for each iteration, we reuse the one and only texture that
we initially created outside of the loop:

// create a Texture object to feed the Image object
var texture:Texture = Texture.fromBitmap(sausageBitmap);

for (var i:int = 0; i < NUM_SAUSAGES; i++)
{
 // create a Image object with our one texture
 var image:Image = new Image(texture);

A bad practice would be to recreate the texture for each iteration, like the following:

for (var i:int = 0; i < NUM_SAUSAGES; i++)
{
 // create a Image object by creating a new texture for each sausage
 var image:Image = new Image(Texture.fromBitmap(new Sausage()));

This would have a bad impact on the memory cause multiple copies of the same bitmap
for the texture are allocated, but also a general impact on the performance of your
content, cause multiple copies of the same image would be uploaded to the GPU, which
would be inefficient. Last but not least, the performance of your loop would be affected,
given that for each call to fromBitmap, you will also generate the mipmaps.

Let’s make things move now, for this, lets create a CustomImage class:

package
{
 import starling.display.Image;
 import starling.textures.Texture;

 public class CustomImage extends Image
 {
 public var destX:Number = 0;
 public var destY:Number = 0;

 public function CustomImage(texture:Texture)
 {
 super(texture);
 }
 }
}

Then let’s use this CustomImage class in our code:

package
{
 import flash.display.Bitmap;

 import starling.display.Sprite;
 import starling.events.Event;
 import starling.textures.Texture;
 import starling.utils.deg2rad;

 public class Game2 extends Sprite

40 | First Flight

http://

 {
 private var sausagesVector:Vector.<CustomImage> = new
Vector.<CustomImage>(NUM_SAUSAGES, true);

 private const NUM_SAUSAGES:uint = 400;

 [Embed(source = "../media/textures/sausage.png")]
 private static const Sausage:Class;

 public function Game2()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create a Bitmap object out of the embedded image
 var sausageBitmap:Bitmap = new Sausage();

 // create a Texture object to feed the Image object
 var texture:Texture = Texture.fromBitmap(sausageBitmap, false);

 for (var i:int = 0; i < NUM_SAUSAGES; i++)
 {
 // create a Image object with our one texture
 var image:CustomImage = new CustomImage(texture);
 // set a random alpha, position, rotation
 image.alpha = Math.random();

 // define a random destination
 image.destX = Math.random()*stage.stageWidth;
 image.destY = Math.random()*stage.stageWidth;

 // define a random initial position
 image.x = Math.random()*stage.stageWidth
 image.y = Math.random()*stage.stageHeight
 image.rotation = deg2rad(Math.random()*360);

 // show it
 addChild(image);

 // store references for later
 sausagesVector[i] = image;
 }

 // main loop
 stage.addEventListener(Event.ENTER_FRAME, onFrame);
 }

 private function onFrame (e:Event):void
 {
 var lng:uint = sausagesVector.length;

 for (var i:int = 0; i < lng; i++)
 {

Texture | 41

http://

 // move the sausages around
 var sausage:CustomImage = sausagesVector[i];
 sausage.x -= (sausage.x - sausage.destX) * .1;
 sausage.y -= (sausage.y - sausage.destY) * .1;

 // when reached destination
 if (Math.abs (sausage.x - sausage.destX) < 1 && Math.abs (sausage.y
- sausage.destY) < 1)
 {
 sausage.destX = Math.random()*stage.stageWidth;
 sausage.destY = Math.random()*stage.stageWidth;
 sausage.rotation = deg2rad(Math.random()*360);
 }
 }
 }
 }
}

As covered previously, Starling handles event propagation also, making our code
cleaner to catch touch events from all those images moving around. For this, we will
just listen to the TouchEvent.TOUCH on the stage:

// we listen to the mouse movement on the stage
stage.addEventListener(TouchEvent.TOUCH, onClick);

If we test the target and currentTarget properties, we see that the object dispatching
the event (currentTarget) is the Stage and the object initiating the event is a Custom
Image instance:

private function onClick(e:TouchEvent):void
{
 // get the touch points (can be mulitple because of multitouch)
 var touches:Vector.<Touch> = e.getTouches(this);
 var clicked:DisplayObject = e.currentTarget as DisplayObject;

 // if one finger only or the mouse
 if (touches.length == 1)
 {
 // grab the touch point
 var touch:Touch = touches[0];

 // detect the click/release phase
 if (touch.phase == TouchPhase.ENDED)
 {
 // outputs : [object Stage] [object CustomImage]
 trace (e.currentTarget, e.target);
 }
 }
}

By using this approach, we do not have to register a listener to each image. We just
listen to the event on their container, here the stage and catch the event during the
bubbling phase. If we use the bubble property from the TouchEvent object, we see that
the event is bubbling:

42 | First Flight

http://

// outputs : [object Stage] [object CustomImage] true
trace (e.currentTarget, e.target, e.bubbles);

OK, that’s it for the event propagation mechanism. Let’s have a look at the Image object
and what capabilities it offers. As expected, the Image object exposes all the APIs herited
from DisplayObject, plus one specific smoothing property to handle image smoothing.
The following values are allowed, stored as constants in the TextureSmoothing class:

• BILINEAR: Applies a bilinear filter to the texture when scaled. (default)

• NONE: Applies a bilinear filter to the texture when scaled.

• TRILINEAR: Applies a trilinear filter to the texture when scaled.

Which works like this:

//disable filtering when scaled
image.smoothing = TextureSmoothing.NONE;

Here’s an image being scaled using a bilinear filter (TextureSmoothing.BILINEAR).

Figure 16. TextureSmoothing.BILINEAR

Here’s an image being scaled using a trilinear filter (TextureSmoothing.TRILINEAR).

Figure 17. TextureSmoothing.TRILINEAR

Texture | 43

http://

Here’s an image being scaled not using any filter (TextureSmoothing.NONE).

Figure 18. TextureSmoothing.NONE

Note how cool this one looks when no filtering applied.

Keep in mind that the Image object exposes a color property allowing you to specify a
color value. For each pixel, the final color will be the result of the multiplication of the
color of the texture with the color you specified. This allows you to tint an image easily,
and create variations of an image without having to use different textures.

Figure 19 illustrates the idea:

Figure 19. Texture tinted by the quad color (figure courtesy of sparrow-framework.org)

What if you wanted to use dynamic custom shapes with Starling? No problem, check
the following section.

Collision Detection
In most games, when not relying on a physics engine (like Box2D, that we will cover
later), you may want to handle simple hit detection. When working with shapes like
circles, a simple test checking if the distance between the two points is less than the
sum of the radii will be enough. In some other scenarios, we can just do a simple test
between the bounding boxes, but what about pixel perfect collision?

44 | First Flight

http://sparrow-framework.org
http://

Figure 20 illustrates a typical scenario, where we need to detect the collision between
two objects, containing transparent areas:

Figure 20. Pixel perfect collision

In this scenario, we have curves, and we really want to detect the collision at the pixel
level. Of course, to perform pixel-level hit detection; we will be using transparent im-
ages.

It could be actually pretty expensive to test pixel detection by executing ActionScript
code. Fortunately, given that Starling relies on the native BitmapData API to create tex-
tures, we can use the native hitTest API from the BitmapData object.

The hitTest API is really simple to use but can be confusing at first sight, here is the
signature of the API:

public function hitTest(firstPoint: Point, firstAlphaThreshold: uint, secondObject:
Object, secondBitmapDataPoint: Point = null, secondAlphaThreshold: uint = 1): Boolean

Note that the secondObject parameter can be a Point, a Rectangle or a BitmapData object,
making the API pretty useful for many other scenarios. We will be using two Bitmap
Data objects in our example, which is very likely to be a common scenario with Starling,
because of the use of BitmapData for textures used by the Image object:

if (sausageBitmapData1.hitTest(new Point(sausageImage2.x, sausageImage2.y), 255,
sausageBitmapData1, new Point(sausageImage1.x, sausageImage1.y), 255))
{
 trace ("touched!")
}

We first pass a point, being the location of the second object we want to test the collision
against, an alpha threshold, allowing us to specify which pixels values are considered
opaque (you might be using 255 or 0xFF) most of the time. Finally, we need to pass
the second point, being the location of the current image, and then the second alpha
threshold.

Texture | 45

http://

Because we might be calling this hit detection test one each frame, we want to minimize
the garbage collector load. In our previous code, we create Point objects when per-
forming the hit test. A better approach would be to update the x and y properties of
the Point objects so that we do not have to allocate them on every frame:

private function onFrame(event:Event):void
{
 point1.x = sausageImage1.x;
 point1.y = sausageImage1.y;
 point2.x = sausageImage2.x;
 point2.y = sausageImage2.y;

 if (sausageBitmapData1.hitTest(point2, 255, sausageBitmapData1, point1, 255))
 {
 trace("touched!");
 }
}

Let’s have a look now, at how we can use the software native drawing API with Starling!

Drawing API
Starling does not expose a drawing API like you have today natively in the native
flash.display.Graphics object. However, it is easy to replicate such a feature by using
the drawing API then draw this inside a BitmapData object and use it as a texture.

Let’s say you want to use a star shape and display it using Starling, you would write the
following code:

// create a vector shape (Graphics)
var shape:flash.display.Sprite = new flash.display.Sprite();

// pick a color
var color:uint = Math.random() * 0xFFFFFF;

// set color fill
s.graphics.beginFill(color,ballAlpha);

// radius
var radius:uint = 20;

// draw circle with a specified radius
s.graphics.drawCircle(radius,radius,radius);
s.graphics.endFill();

// create a BitmapData buffer
var bmd:BitmapData = new BitmapData(radius * 2, radius * 2, true, color);

// draw the shape on the bitmap
buffer.draw(s);

// create a Texture out of the BitmapData
var texture:Texture = Texture.fromBitmapData(buffer);

46 | First Flight

http://

// create an Image out of the texture
var image:Image = new Image(texture);

// show it!
addChild(image);

The idea is simple, you use the traditional native Graphics API to draw your lines,
strokes, and fills, using the CPU, then you rasterize that on a bitmap and upload this
as a texture on the GPU.

Figure 21 illustrates an example where circles are being used with Starling.

Figure 21. Custom dynamic shapes

Did you know about flat sprites in Starling? So let’s check the following section and see
how we can improve performance by using this very powerful feature.

Flat Sprites
Starling contains a very powerful feature called flat sprites (compiled sprites in Sparrow)
which allows you to bring great performance improvements.

To better understand how the display list works by default, let’s have a look at Fig-
ure 22, which illustrates a typical display tree in an application with many different
objects nested together.

Flat Sprites | 47

http://

Figure 22. Children having their own vertex and index buffer

As you can see in Figure 22, Starling has to handle each child with its own vertex and
index buffer and all the children behaviors independently, which can require a lot of
computation and in some cases alter your performance.

What Starling can do is gather all the children’s geometry to a single big vertex buffer
and draw the entire content (the container and its children) in one draw call, like a
simple texture (if children share the same texture of course). See Figure 23.

Figure 23. When flattened, children drawn in one draw call (one index/vertex buffer)

You can think about it as a similar approach as the cacheAsBitmap (bitmap caching)
feature natively supported in the native dispay list. The exception (which is key here)
is that the surface being drawn does not get renerated automatically when changing a
child in the tree. You will have to call explicitely the flatten API to see the changes.

Here is a list of the APIs available:

48 | First Flight

www.allitebooks.com

http://
http://www.allitebooks.org

• flatten: Call flatten when you want to render content as fast as possible. Once
called, Starling gathers all the geometry required to draw the display tree and
groups all the data in a single buffer and the content is drawn in one draw call, as
if you were drawing a simple texture. Of course this power comes with a limitation,
once called, all changes done to the children will not be reflected until you call
flatten again to reflect the changes.

• unflatten: Disables the flatten behavior.

• isFlatenned: Indicates if the sprite is currently flattened or not.

Let’s try this out. In the following code, we add multiple images inside a Sprite and
rotate the container on each frame:

package
{
 import flash.display.Bitmap;

 import starling.display.Image;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.textures.Texture;
 import starling.utils.deg2rad;

 public class Game6 extends Sprite
 {
 private var container:Sprite;

 private static const NUM_PIGS:uint = 400;

 [Embed(source = "../media/textures/pig-parachute.png")]
 private static const PigParachute:Class;

 public function Game6()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create the container
 container = new Sprite();

 // change the registration point
 container.pivotX = stage.stageWidth >> 1;
 container.pivotY = stage.stageHeight >> 1;

 container.x = stage.stageWidth >> 1;
 container.y = stage.stageHeight >> 1;

 // create a Bitmap object out of the embedded image
 var pigTexture:Bitmap = new PigParachute();

 // create a Texture object to feed the Image object
 var texture:Texture = Texture.fromBitmap(pigTexture);

Flat Sprites | 49

http://

 // layout the pigs
 for (var i:uint = 0; i< NUM_PIGS; i++)
 {
 // create a new pig
 var pig:Image = new Image(texture);
 // random position
 pig.x = Math.random()*stage.stageWidth;
 pig.y = Math.random()*stage.stageHeight;
 pig.rotation = deg2rad(Math.random()*360);
 // nest the pig
 container.addChild (pig);
 }

 container.pivotX = stage.stageWidth >> 1;
 container.pivotY = stage.stageHeight >> 1;

 // show the pigs
 addChild (container);

 // on each frame
 stage.addEventListener(Event.ENTER_FRAME, onFrame);
 }

 private function onFrame (e:Event):void
 {
 // rotate the container
 container.rotation += .1;
 }

 }
}

In this test, the animation is perfectly smooth and runs at 60 frames per second, but
we can optimize this, to make sure we reduce the number of draw calls to the minimum.
So let’s call the flatten API:

// freeze the children
container.flatten();

Now, all the children are drawn through a single draw call. You may not see the per-
formance difference on desktop in terms of framerate, but this will make a difference
in terms of CPU usage. By doing a few tests, you could see up to 10x CPU usage drop
or even more.

Note that if the children do not share the same texture, Starling will split
up the draw calls, in such scenario the benefit of the flatten behavior
will be reduced. More generally, try to design your game as layers. All
elements on each layer should be part of the same spritsheet.

50 | First Flight

http://

This feature will also help a lot on mobile. Of course, the other value of this feature is
that it is dynamic, you can rearrange things after calling unflatten and then flatten
again, yes, you can compile textures from dynamic sprites in a way. At anytime, a child
can be modified; the changes will be reflected on screen, when calling explicitly flat
ten again.

Remember, that the flatten behavior works only for static content (Sprite), Starling does
not currently offer a similar optimization for MovieClips. Such a feature could be added
in a future release.

MovieClip
We just saw how to use the Sprite API in Starling, but what about animations like with
MovieClip? Every Flash developer is familiar with the concept of movieclip, for the past
few years, most AS3 developers have recreated the MovieClip API based on Bitmap
Data to accelerate rendering through the use of bitmaps, but also to get independent
framerate for each MovieClip.

Figure 24 illustrates a sprite atlas showing each frame of our MovieClip.

Figure 24. A sprite atlas for our running boy

The idea is that each frame will be sampled by the GPU and displayed in our scene; by
updating the texture on each frame we will reproduce the concept of movieclip. So how
do we create this animation? Well, Flash Pro is your best friend for that, each frame of
your animation is exported to a sequence of images. Then those images are loaded into
a tool like TexturePacker (http://www.texturepacker.com), which exports them merged
into a single texture used to feed our MovieClip object. Note that the future version of
Flash Pro (CS6) will be able to generate Starling spritesheets.

Figure 25 illustrates the frames of a sprite atlas.

MovieClip | 51

http://www.texturepacker.com
http://

Figure 25. Frames in a sprite atlas

If you are mipmapping your atlases, you need to make sure you that there is a 2pixels
space between each frame so that when mipmapped, there is no bleeding. Meaning
that when the GPU will sample a smaller frame, it does not sample some pixels from
other frames too.

Now, remember, there are some restrictions on the size of the textures, you need to
remember that Stage3D (Molehill) has been designed with mobile in mind. As a result,
Stage3D enforces OpenGL ES2 restrictions, like power of two textures. Texture-
Packer helps you to respect this, and also integrates a nice feature called AutoSize
(Figure 26), which determines the best width and height for the texture while respecting
the maximum width and height. (Starling limits to 2048*2048).

Figure 26. Autosize feature in TexturePacker

As mentioned before, Starling will also automatically make sure you are using power
of two sizes. If you do not, Starling will take care of it for you and automatically find
the next power of two size available for your image and crop it.

52 | First Flight

http://

To let Starling know at which position the frames are located, you need to provide an
XML file to the TextureAtlas API, which will generate out of that our Vector of textures.
Here again, TexturePacker generates this file for us automatically, when generating the
spritesheet. You can choose which format to use: XML, JSON, and so on.

Starling natively supports XML. Here is what this XML file looks like:

<?xml version="1.0" encoding="UTF-8"?>
<TextureAtlas imagePath="running-sheet.png">
 <!-- Created with TexturePacker -->
 <!-- http://texturepacker.com -->
 <!-- $TexturePacker:SmartUpdate:2b3f5fa2588769393bcea9b632749826$ -->
 <SubTexture name="running0001" x="0" y="0" width="304" height="284"/>
 <SubTexture name="running0002" x="304" y="0" width="304" height="284"/>
 <SubTexture name="running0003" x="608" y="0" width="304" height="284"/>
 <SubTexture name="running0004" x="0" y="284" width="304" height="284"/>
 <SubTexture name="running0005" x="304" y="284" width="304" height="284"/>
 <SubTexture name="running0006" x="608" y="284" width="304" height="284"/>
 <SubTexture name="running0007" x="0" y="568" width="304" height="284"/>
 <SubTexture name="running0008" x="304" y="568" width="304" height="284"/>
 <SubTexture name="running0009" x="608" y="568" width="304" height="284"/>
 <SubTexture name="running0010" x="0" y="852" width="304" height="284"/>
 <SubTexture name="running0011" x="304" y="852" width="304" height="284"/>
 <SubTexture name="running0012" x="608" y="852" width="304" height="284"/>
 <SubTexture name="running0013" x="0" y="1136" width="304" height="284"/>
 <SubTexture name="running0014" x="304" y="1136" width="304" height="284"/>
 <SubTexture name="running0015" x="608" y="1136" width="304" height="284"/>
</TextureAtlas>

The beauty of this is that you get total control over the frames and therefore the fram-
erate, allowing you to have multiple movieclips using independent framerate. Well, the
good news is that Starling applies the same technique, but on the GPU, here is how the
MovieClip constructor looks like:

public function MovieClip(textures:Vector.<Texture>, fps:Number=12)

In the following code, we create our texture containing our movieclip frames:

[Embed(source = "../media/textures/running-sheet.png")]
private const SpriteSheet:Class;

var bitmap:Bitmap = new SpriteSheet();

var texture:Texture = Texture.fromBitmap(bitmap);

Then we retrieve our XML description, describing the position of each frame in the
spritesheet:

[Embed(source="../media/textures/running-sheet.xml", mimeType="application/octet-
stream")]
public const SpriteSheetXML:Class;

var xml:XML = XML(new spriteSheetXML());

var sTextureAtlas:TextureAtlas = new TextureAtlas(texture, xml);

MovieClip | 53

http://

Then we can retrieve the frames related to our running boy:

var frames:Vector.<Texture> = sTextureAtlas.getTextures("running_");

Note that we passed here the argument “running_” meaning that we only want the
frames related to this from our spritesheet, we could have requested another sequence
like “jump”, “fire” or any other, if they we defined.

Let’s have a look at our complete code:

package
{
 import flash.display.Bitmap;

 import starling.core.Starling;
 import starling.display.MovieClip;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.textures.Texture;
 import starling.textures.TextureAtlas;

 public class Game3 extends Sprite
 {
 private var mMovie:MovieClip;

 [Embed(source="../media/textures/running-sheet.xml", mimeType="application/
octet-stream")]
 public static const SpriteSheetXML:Class;

 [Embed(source = "../media/textures/running-sheet.png")]
 private static const SpriteSheet:Class;

 public function Game3()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // creates the embedded bitmap (spritesheet file)
 var bitmap:Bitmap = new SpriteSheet();

 // creates a texture out of it
 var texture:Texture = Texture.fromBitmap(bitmap);

 // creates the XML file detailing the frames in the spritesheet
 var xml:XML = XML(new SpriteSheetXML());

 // creates a texture atlas (binds the spritesheet and XML description)
 var sTextureAtlas:TextureAtlas = new TextureAtlas(texture, xml);

 // retrieve the frames the running boy frames
 var frames:Vector.<Texture> = sTextureAtlas.getTextures("running_");

 // creates a MovieClip playing at 40fps
 mMovie = new MovieClip(frames, 40);

54 | First Flight

http://

 // centers the MovieClip
 mMovie.x = stage.stageWidth - mMovie.width >> 1;
 mMovie.y = stage.stageHeight - mMovie.height >> 1;

 // show it
 addChild (mMovie);
 }
 }
}

When testing, we get the result shown in Figure 27.

Figure 27. Our running boy rendered

Later on we will cover a simple caching technique to reuse assets, so that you limit the
number of objects to instanciate during your application’s lifetime.

To flip our movieclip, as with the native Flash APIs, just use the scaleX property, and
then add the width to reposition it at the exact same place:

mMovie = new MovieClip(frames, 40);

mMovie.scaleX = −1;

mMovie.x = (stage.stageWidth - mMovie.width >> 1) + mMovie.width;
mMovie.y = stage.stageHeight - mMovie.height >> 1;

Which gives us the result shown in Figure 28.

MovieClip | 55

http://

Figure 28. Our MovieClip flipped

As stated earlier, it is very common and actually a good practice to put all of your assets
on a single texture file. Why?

First, it is convenient, all the assets of your game are stored in one texture file. Using a
single texture minimizes the number of upload you will ask to the GPU. Remember,
uploading is costly on the GPU especially on mobile. So the less you upload, the better
it is. Finally, switching from one texture to another is also costly, so the better it is if
you have a single texture to sample your assets from rather than switching constantly,
from one texture to another.

Texture Atlas
We just discovered the concept of sprite atlas, now, I would like to introduce you to
the concept of texture atlases. In a texture atlas, all our assets are contained in one single
texture.

In Figure 29, we add another sequence of frames in the same bitmap.

56 | First Flight

http://

Figure 29. Texture Atlas containing all our assets

MovieClip | 57

http://

Our XML descriptor file now contains also now the butcher textures:

<?xml version="1.0" encoding="UTF-8"?>
<TextureAtlas imagePath="running-sheet.png">
 <!-- Created with TexturePacker -->
 <!-- http://texturepacker.com -->
 <!-- $TexturePacker:SmartUpdate:5aa8dfdc90d616e76e06b3079d2c5e80$ -->
 <SubTexture name="french-butcher_01" x="930" y="486" width="77" height="122"
frameX="-106" frameY="-33" frameWidth="275" frameHeight="200"/>
 <SubTexture name="french-butcher_02" x="845" y="588" width="77" height="118"
frameX="-106" frameY="-37" frameWidth="275" frameHeight="200"/>
...

We now can reference those frames by using the getTextures API on the TextureAtlas:

// retrieve the frames the running boy frames
var frames:Vector.<Texture> = sTextureAtlas.getTextures("running_");

// retrieve the frames the running butcher
var framesButcher:Vector.<Texture> = sTextureAtlas.getTextures("french-butcher_");

// creates a MovieClip playing at 40fps
mMovie = new MovieClip(frames, 40);

// creates a MovieClip playing at 25
mMovieButcher = new MovieClip(framesButcher, 25);

// positiomns them
mMovie.x = stage.stageWidth - mMovie.width >> 1;
mMovie.y = stage.stageHeight - mMovie.height >> 1;
mMovieButcher.x = mMovie.x + mMovie.width + 10;
mMovieButcher.y = mMovie.y;

// show them
addChild (mMovie);
addChild (mMovieButcher);

We then end with our butcher next to our little boy, as shown in Figure 30:

Note that at this state, we have our movieclips created and on the scene, but they do
not play. To play them, we need to use a Juggler object.

A default juggler is available as a juggler property of the Starling object, handling your
content. To animate the boy and the butcher, we would add the following lines:

// animate them
Starling.juggler.add (mMovie);
Starling.juggler.add (mMovieButcher);

58 | First Flight

www.allitebooks.com

http://
http://www.allitebooks.org

Figure 30. Both MovieClips sampled from the same sprite sheet (texture atlas)

Once added, our movieclips are now animated! Of course, anytime we want, we can
pause or stop the playback:

// pause or stop the playback
mMovie.pause();
mMovie.stop();

Note that the difference between the two is subtle. The pause API will pause the play-
back leaving the current frame at its position, whereas the stop API, will reposition the
playhead at the first frame.

Let’s have a look at the entire set of APIs available on the MovieClip object, some of
them may look familiar to you as a Flash developer, some others will be very useful like
the ability to set a specific framerate, replace or add frames at runtime and many others:

• currentFrame: The current frame.

• fps: The default frames per second. Used when you add a frame without specifying
a duration.

• isPlaying: Indicates if the movie is currently playing.

• loop: Indicates if the movie is looping.

• numFrames: The number of frames of the clip.

• totalTime: The accumulated duration of all frames.

• addFrame: Adds a frame with a specified duration.

• addFrameAt: Inserts a frame at the index specified.

MovieClip | 59

http://

• addFrame: Adds a frame with the default duration.

• getFrameDuration: Returns the duration (in seconds) of a frame at a certain in-
dex.

• getFrameSound: Returns the sound of a frame at a certain index.

• getFrameTexture: Returns the texture of a frame at a certain index.

• pause: Pause playback.

• play: Start playback. Make sure that the clip has been added to a Juggler too.

• removeFrameAt: Removes the frame at the index specified.

• setFrameDuration: Sets the duration of a certain frame in seconds.

• setFrameSound: Sets the sound that will be played back when a certain frame is
active.

• setFrameTexture: Sets the texture of a certain frame.

We will not cover through examples all of them, but we can see some pretty useful
ones, like for instance addFrameAt and removeFrameAt, allowing you at runtime to add
or remove frames at runtime. Or even set a different duration for a specific frame, and
of course helper APIs like isPlaying or loop.

In this code, we want the frame 5, to have a 2 seconds duration:

// frame 5 will length 2 seconds
mMovie.setFrameDuration(5, 2);

We could also add dynamically a sound to a specific frame:

// frame 5 will length 2 seconds and play a sound when reached
mMovie.setFrameDuration(5, 2);
mMovie.setFrameSound(5, new StepSound() as Sound);

Thanks to those APIs, it is possible to entirely assemble movieclips at runtime, from
dynamically loaded or embedded assets, which can be extremely powerful.

A common scenario requiring the use of such APIs (addFrameAt, removeFrameAt, etc.) is
when you want to have multiple states of an animation grouped inside one Movie
Clip. Using the native MovieClip API, you would have MovieClips on each frames of
the parent MovieClip and have the states played when switching to one frame from
another. Starling MovieClips are not containers; as a result we will need to dynamically
change the frames to play the state we want.

To finish, let’s plug this little running boy with the keyboard like we would do in a
game to control it:

package
{
 import flash.display.Bitmap;
 import flash.ui.Keyboard;

 import starling.animation.Juggler;
 import starling.core.Starling;

60 | First Flight

http://

 import starling.display.MovieClip;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.events.KeyboardEvent;
 import starling.textures.Texture;
 import starling.textures.TextureAtlas;

 public class Game3 extends Sprite
 {
 private var mMovie:MovieClip;
 private var j:Juggler;

 [Embed(source="../media/textures/running-sheet.xml", mimeType="application/
octet-stream")]
 public static const SpriteSheetXML:Class;

 [Embed(source = "../media/textures/running-sheet.png")]
 private static const SpriteSheet:Class;

 public function Game3()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // creates the embedded bitmap (spritesheet file)
 var bitmap:Bitmap = new SpriteSheet();

 // creates a texture out of it
 var texture:Texture = Texture.fromBitmap(bitmap);

 // creates the XML file detailing the frames in the spritesheet
 var xml:XML = XML(new SpriteSheetXML());

 // creates a texture atlas (binds the spritesheet and XML description)
 var sTextureAtlas:TextureAtlas = new TextureAtlas(texture, xml);

 // retrieve the frames the running boy frames
 var frames:Vector.<Texture> = sTextureAtlas.getTextures("running_");

 // creates a MovieClip playing at 40fps
 mMovie = new MovieClip(frames, 40);

 // centers the MovieClip
 mMovie.x = stage.stageWidth - mMovie.width >> 1;
 mMovie.y = stage.stageHeight - mMovie.height >> 1;

 // show it
 addChild (mMovie);

 // animate it
 Starling.juggler.add (mMovie);

 // on key down

MovieClip | 61

http://

 stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyDown);
 }

 private function onKeyDown(e:KeyboardEvent):void
 {
 // repositions the boy accordingly
 if (mMovie.scaleX == −1)
 mMovie.x -= mMovie.width;

 // if right key or left key
 var state:int;
 if (e.keyCode == Keyboard.RIGHT)
 state = 1;
 else if (e.keyCode == Keyboard.LEFT)
 state = −1;

 // flip the running boy
 mMovie.scaleX = state;

 // repositions the boy accordingly
 if (mMovie.scaleX == −1)
 mMovie.x = mMovie.x + mMovie.width;
 }
 }
}

If you need to listen to the end of the animation, you can listen to the Event.COMPLETE
event:

// listen to the end of the animation
mMovie.addEventListener(Event.MOVIE_COMPLETED, onAnimationComplete);

We have been using the Juggler object in this example, let’s see how this object works
internally and what you can do with it.

Juggler
The Juggler API allows you to animate any objects implementing the IAnimatable in-
terface. MovieClip objects implement the latter, but you can also define you own type
of animated object for Starling, all you need to do is implement the IAnimatable inter-
face and override the advanceTime method. This is how the particles extension works,
we will come back to this at the end of this tutorial.

Below we can see how animation is done on a MovieClip, the main logic is located here.
On each frame, the texture is swapped. With the native APIs, a similar mechanism
would be changing the bitmapData used by a Bitmap object on each frame:

// IAnimatable
public function advanceTime(passedTime:Number):void
{
 if (mLoop && mCurrentTime == mTotalTime) mCurrentTime = 0.0;
 if (!mPlaying || passedTime == 0.0 || mCurrentTime == mTotalTime) return;

62 | First Flight

http://

 var i:int = 0;
 var durationSum:Number = 0.0;
 var previousTime:Number = mCurrentTime;
 var restTime:Number = mTotalTime - mCurrentTime;
 var carryOverTime:Number = passedTime > restTime ? passedTime - restTime : 0.0;
 mCurrentTime = Math.min(mTotalTime, mCurrentTime + passedTime);

 for each (var duration:Number in mDurations)
 {
 if (durationSum + duration >= mCurrentTime)
 {
 if (mCurrentFrame != i)
 {
 mCurrentFrame = i;
 updateCurrentFrame();
 playCurrentSound();
 }
 break;
 }

 ++i;
 durationSum += duration;
 }

 if (previousTime < mTotalTime && mCurrentTime == mTotalTime &&
 hasEventListener(Event.MOVIE_COMPLETED))
 {
 dispatchEvent(new Event(Event.MOVIE_COMPLETED));
 }

 advanceTime(carryOverTime);
}

Here is a list of APIs available on the Juggler API:

• add: Adds an object to the juggler.

• advanceTime: API intended to be called if needed to manually handle the Juggler
main loop.

• delayCall: Delays the execution of a certain method. Returns a proxy object on
which to call the method instead. Execution will be delayed until time has passed.

• elapsedTime: The total life time of the juggler.

• isComplete: The status of the Juggler.

• purge: Removes all objects at once.

• remove: Removes an object from the juggler.

• removeTweens: Removes all objects of type Tween that have a certain target.

Another interesting feature of the juggler is the ability to delay calls. In the following
code, we use the juggler to delay the moment when the child is going to be removed
from the parent:

juggler.delayCall(object.removeFromParent, 1.0);

Juggler | 63

http://

In some scenarios, you may require to create another Juggler to handle animation while
the main content of your game for instance is paused. To animate elements like menus
overlaying your paused game, you may want to use a Juggler, all you need to do is create
an instance and call its advanceTime API.

For this, you would need to architect your game by using a Juggler for each main blocks
used for your game. When the user will press pause, you do not want to pause the entire
content, calling the stop API from the Starling object would actually cause this, by
stopping all draw calls and all frame events:

Starling.current.stop();

Instead, each main block of your game (menus, background, playfield) will be handled
by separated jugglers. When the game needs to be paused, only specific jugglers will
be paused, allowing you to control which parts of the game needs to be paused or
resumed.

In the following code, we define a custom class BattleScene containing our battle scene:

package
{
 import starling.animation.Juggler;
 import starling.display.Sprite;

 public class BattleScene extends Sprite
 {
 private var juggler:Juggler;

 public function BattleScene()
 {
 juggler = new Juggler();
 }

 // this API will be called from outside
 // stop calling it will pause the content played by this Juggler in this sprite
(BattleScene)
 public function advanceTime (time:Number):void
 {
 juggler.advanceTime(time);
 }

 public override function dispose():void
 {
 juggler.purge();
 super.dispose();
 }
 }
}

64 | First Flight

http://

From the outside, we would call the advanceTime API by using the EnterFrameE
vent.EVENT event and passing the time passing:

private function onFrame(event:EnterFrameEvent):void
{
 if (paused)
 battle.advanceTime(event.passedTime);
}

When the game is paused, we stop calling the advanceTime API, hence stopping the
battle scene content. Of course, we would need our menus to be overlayed and ani-
mated, to handle this, we would just add:

private function onFrame(event:EnterFrameEvent):void
{
 if (paused)
 alertBox.advanceTime (event.passedTime);
 else battle.advanceTime(event.passedTime);

 dashboard.advanceTime (event.passedTime);
}

Just switching the paused Boolean would do the magic.

Let’s have a look now at another important part of Starling for interactions, the But
ton API.

Button
Starling natively supports the concepts of buttons. Here is the signature of the Button
constructor:

public function Button(upState:Texture, text:String="", downState:Texture=null)

By default, the Button class creates an internal TextField to support labels and the text
is centered inside the button. In the following code, we create a simple button out of
an embedded bitmap that we use as a skin:

package
{

 import flash.display.Bitmap;

 import starling.display.Button;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.textures.Texture;

 public class Game4 extends Sprite
 {

 [Embed(source = "../media/textures/button_normal.png")]
 private static const ButtonTexture:Class;

Button | 65

http://

 public function Game4()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create a Bitmap object out of the embedded image
 var buttonSkin:Bitmap = new ButtonTexture();

 // create a Texture object to feed the Button object
 var texture:Texture = Texture.fromBitmap(buttonSkin);

 // create a button using this skin as up state
 var myButton:Button = new Button(texture, "Play");

 // createa container for the menu (buttons)
 var menuContainer:Sprite = new Sprite();

 // add the button to our container
 menuContainer.addChild(myButton);

 // centers the menu
 menuContainer.x = stage.stageWidth - menuContainer.width >> 1;
 menuContainer.y = stage.stageHeight - menuContainer.height >> 1;

 // show the button
 addChild(menuContainer);
 }

 }
}

Note that we use here the fromBitmap API, to create the texture that we need to feed
the Button object for its skin:

// create a Texture object to feed the Button object
var texture:Texture = Texture.fromBitmap(buttonSkin);

Let’s create a simple menu out of some data contained in a Vector, a simple loop and
we are done:

package
{

 import flash.display.Bitmap;

 import starling.display.Button;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.textures.Texture;

 public class Game4 extends Sprite
 {

 [Embed(source = "../media/textures/button_normal.png")]

66 | First Flight

http://

 private static const ButtonTexture:Class;

 // sections
 private var _sections:Vector.<String> = Vector.<String>(["Play", "Options",
"Rules", "Sign in"]);

 public function Game4()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create a Bitmap object out of the embedded image
 var buttonSkin:Bitmap = new ButtonTexture();

 // create a Texture object to feed the Button object
 var texture:Texture = Texture.fromBitmap(buttonSkin);

 // createa container for the menu (buttons)
 var menuContainer:Sprite = new Sprite();

 var numSections:uint = _sections.length

 for (var i:uint = 0; i< 4; i++)
 {
 // create a button using this skin as up state
 var myButton:Button = new Button(texture, _sections[i]);

 // bold labels
 myButton.fontBold = true;

 // position the buttons
 myButton.y = myButton.height * i;

 // add the button to our container
 menuContainer.addChild(myButton);
 }

 // centers the menu
 menuContainer.x = stage.stageWidth - menuContainer.width >> 1;
 menuContainer.y = stage.stageHeight - menuContainer.height >> 1;

 // show the button
 addChild(menuContainer);
 }
 }
}

By testing this code, we get the result shown in Figure 31.

Button | 67

http://

Figure 31. A simple menu, made out of buttons

But wait, we did not use here a sprite sheet with all the button skins. We just embedded
one skin and we had to upload it to the GPU through the fromBitmap API of the Tex
ture object. That is fine if you intend to use a single skin for all your buttons. A best
practice would be to define all our skins into a single texture atlas, just like what we
did for the two movieclips previously (boy and butcher).

Now let’s have a look at the list of properties available on the Button class:

• alphaWhenDisabled: The alpha value used when button is disabled.

• downState: The texture used when the button is in its downstate (clicked).

• enabled: Determines if the button can be triggered.

• fontBold: Determines if the label’s font is using bold styling or not.

• fontColor: The color of the font.

• fontName: The font used for the button’s label. Can be a system’s font or a reg-
istered bitmap font.

• fontSize: Size of the font used for the button ’s label.

• scaleWhenDown: The scale factor when the button is touched. When a down
state texure is used, the button will not scale.

• text: The text to use for the button’s label.

• textBounds: The position of the button’s label.

• upState: The texture used when the button is not being touched.

68 | First Flight

http://

In contrary of the native Flash APIs, the Button object is a subclass of DisplayObject
Container, meaning that you are not restricted to the state properties to skin your but-
ton. You can decorate it the way you want, just like any other container.

Note that the Button object also dispatches a specific Event.TRIGGERED event to handle
click state:

// listen to the Event.TRIGGERED event
myButton.addEventListener(Event.TRIGGERED, onTriggered);

private function onTriggered(e:Event):void
{
 trace ("I got clicked!");
}

The Event.TRIGGERED event does bubble; if you want to leverage event propagation you
can rely on it and catch the event at the container’s level:

package
{

 import flash.display.Bitmap;

 import starling.display.Button;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.textures.Texture;

 public class Game4 extends Sprite
 {

 [Embed(source = "../media/textures/button_normal.png")]
 private static const ButtonTexture:Class;

 // sections
 private var _sections:Vector.<String> = Vector.<String>(["Play", "Options",
"Rules", "Sign in"]);

 public function Game4()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create a Bitmap object out of the embedded image
 var buttonSkin:Bitmap = new ButtonTexture();

 // create a Texture object to feed the Button object
 var texture:Texture = Texture.fromBitmap(buttonSkin);

 // createa container for the menu (buttons)
 var menuContainer:Sprite = new Sprite();

 var numSections:uint = _sections.length

Button | 69

http://

 for (var i:uint = 0; i< 4; i++)
 {
 // create a button using this skin as up state
 var myButton:Button = new Button(texture, _sections[i]);

 // bold labels
 myButton.fontBold = true;

 // position the buttons
 myButton.y = myButton.height * i;

 // add the button to our container
 menuContainer.addChild(myButton);
 }

 // catch the Event.TRIGGERED event
 menuContainer.addEventListener(Event.TRIGGERED, onTriggered);

 // centers the menu
 menuContainer.x = stage.stageWidth - menuContainer.width >> 1;
 menuContainer.y = stage.stageHeight - menuContainer.height >> 1;

 // show the button
 addChild(menuContainer);
 }

 private function onTriggered(e:Event):void
 {
 // outputs : [object Sprite] [object Button]
 trace (e.currentTarget, e.target);
 // outputs : triggered!
 trace ("triggered!");
 }
 }
}

Let’s add a background to our interface, like a simple scrolled texture:

package
{

 import flash.display.Bitmap;

 import starling.display.Button;
 import starling.display.Image;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.textures.Texture;

 public class Game4 extends Sprite
 {

 [Embed(source = "../media/textures/button_normal.png")]
 private static const ButtonTexture:Class;

70 | First Flight

http://

 [Embed(source = "../media/textures/background.jpg")]
 private static const BackgroundImage:Class;

 private var backgroundContainer:Sprite;

 private var background1:Image;
 private var background2:Image;

 // sections
 private var sections:Vector.<String> = Vector.<String>(["Play", "Options",
"Rules", "Sign in"]);

 public function Game4()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create a Bitmap object out of the embedded image
 var buttonSkin:Bitmap = new ButtonTexture();

 // create a Texture object to feed the Button object
 var texture:Texture = Texture.fromBitmap(buttonSkin);

 // create a Bitmap object out of the embedded image
 var background:Bitmap = new BackgroundImage();

 // create a Texture object to feed the Image object
 var textureBackground:Texture = Texture.fromBitmap(background);

 // container for the background textures
 backgroundContainer = new Sprite();

 // create the images for the background
 background1 = new Image(textureBackground);
 background2 = new Image(textureBackground);

 // positions the second part
 background2.x = background1.width;

 // nest them
 backgroundContainer.addChild(background1);
 backgroundContainer.addChild(background2);

 // show the background
 addChild(backgroundContainer);

 // create container for the menu (buttons)
 var menuContainer:Sprite = new Sprite();

 var numSections:uint = sections.length

 for (var i:uint = 0; i< 4; i++)
 {

Button | 71

http://

 // create a button using this skin as up state
 var myButton:Button = new Button(texture, sections[i]);
 // bold labels
 myButton.fontBold = true;
 // position the buttons
 myButton.y = myButton.height * i;
 // add the button to our container
 menuContainer.addChild(myButton);
 }

 // catch the Event.TRIGGERED event
 // catch the Event.TRIGGERED event
 menuContainer.addEventListener(Event.TRIGGERED, onTriggered);

 // on each frame
 stage.addEventListener(Event.ENTER_FRAME, onFrame);

 // centers the menu
 menuContainer.x = stage.stageWidth - menuContainer.width >> 1;
 menuContainer.y = stage.stageHeight - menuContainer.height >> 1;

 // show the button
 addChild(menuContainer);
 }

 private function onTriggered(e:Event):void
 {
 // outputs : [object Sprite] [object Button]
 trace (e.currentTarget, e.target);
 // outputs : triggered!
 trace ("triggered!");
 }

 private function onFrame (e:Event):void
 {
 // scroll it
 backgroundContainer.x -= 10;
 // reset
 if (backgroundContainer.x <= -background1.width)
 backgroundContainer.x = 0;
 }
 }
}

We now have our background scrolling, with our menu on top. Figure 32 illustrates
the result.

72 | First Flight

http://

Figure 32. Our menu and a scrolled background

Note that we applied a little motion blur to the image in Photoshop, to emphasize the
feeling of motion when the image is being scrolled.

TextField
We used the starling.text.TextField API briefly earlier when playing with quads.
Let’s spend some little time on how text works with Starling. You may wonder how a
GPU renders a font, but there is a trick here. Behind the scenes Starling creates a native
TextField object on the CPU, and uses it as a offscreen buffer to render the font. Once
rasterized, the texture is uploaded to the GPU and you have your text on screen.

Note that the TextField API does not create a native flash.text.TextField
instance for each starling.text.TextField you use. One instance is cached
and reused to render all the text.

In the following code, we create a TextField object and display some text using the
Verdana system font:

package
{
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.text.TextField;

 public class Game5 extends Sprite

TextField | 73

http://

 {
 public function Game5()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create the TextField object
 var legend:TextField = new TextField(300, 300, "Here is some text, using
an embedded font!", "Verdana", 38, 0xFFFFFF);

 // centers the text on stage
 legend.x = stage.stageWidth - legend.width >> 1;
 legend.y = stage.stageHeight - legend.height >> 1;

 // show it
 addChild(legend);
 }
 }
}

Figure 33 illustrates the result.

Figure 33. Some simple text

74 | First Flight

http://

Again, remember that what you see here on screen is not a real text field, but a snapshot
of the text field that got drawn to a bitmap texture and uploaded to the GPU.

Let’s have a closer look at the set of properties exposed by the TextField API:

• alpha: Alpha of the text.

• autoScale: Scales the text automatically to fit the dimensions of the text block.

• bold: Determines if the label’s font is using bold styling or not.

• border: Allows displaying a border around the edges of the text field. Useful for
visual debugging.

• bounds: The bounds of the actual characters inside the text field.

• color: The color of the text.

• fontName: The name of the font.

• fontSize: The size of the font.

• hAlign: The horizontal alignment of the text.

• italic: Defines if the text is italic or not.

• kerning: Allows using kerning information with a bitmap font (where available).
Default is YES.

• text: The displayed text.

• textBounds: The bounds of the actual characters inside the text field.

• underline: Defines if the text is underlined or not.

• vAlign: The vertical alignment of the text.

One of the coolest features of TextField is the autoScale property that we will cover
very soon. But first, let’s play with a few of those properties, in the following code, we
add a border around the text and make it bold and then change its color:

// create the TextField object
var legend:TextField = new TextField(300, 300, "Here is some text, using an embedded
font!", "Verdana", 38, 0xFFFFFF);

// change the color, set bold and enable a border
legend.color = 0x990000;
legend.bold = true;
legend.border = true;

Figure 34 illustrates the result.

TextField | 75

http://

Figure 34. Some simple colored text

Note that the TextField object does not handle HTML text natively. However, Starling
may introduce such a feature in a future version. Do not hesitate to raise your voice on
the Starling forums, if you would like to see such a feature added. Remember Starling
is open source, you can also implement such a feature by yourself and provide it as an
extension to the community.

We just used in the previous example a very common system font, which are pretty
useful but you will need to use embedded fonts in most projects today. In the context
of games for instance, you want to be able to deliver a strongly branded experience, so
you will need to use embedded fonts.

Embedded Fonts
Starling does not expose an embedFonts property just like the native TextField API does.
But don’t worry, it is actually very easy to use embedded fonts with Starling. First, as
expected, you need to do is embed or load at runtime your font, and then just use it as
the font name passed to the TextField constructor.

76 | First Flight

http://

In this code, we embed a font, instanciate it, and use it by passing the fontName property
to the TextField constructor:

package
{

 import flash.text.Font;

 import starling.display.Sprite;
 import starling.events.Event;
 import starling.text.TextField;

 public class Game5 extends Sprite
 {
 [Embed(source='/../media/fonts/Abduction.ttf', embedAsCFF='false',
fontName='Abduction')]
 public static var Abduction:Class;

 public function Game5()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create the font
 var font:Font = new Abduction();

 // create the TextField object
 var legend:TextField = new TextField(300, 300, "Here is some text, using
an embedded font!", font.fontName, 38, 0xFFFFFF);

 // centers the text on stage
 legend.x = stage.stageWidth - legend.width >> 1;
 legend.y = stage.stageHeight - legend.height >> 1;

 // show it
 addChild(legend);
 }
 }
}

Automatically, the TextField object finds the embedded font by its name and uses it.
Figure 35 shows our text using the embedded Abduction font.

TextField | 77

http://

Figure 35. Some simple text using an embedded font

Pretty simple right? In your content, you may want to offer a way to input text, to enter
let’s say, a user name, an email and other informations. As you can imagine, text editing,
it is a tricky thing to do on the GPU. Most platforms, even on mobile use the same trick
as the one we will discuss. The idea is simple, for this scenario, we will just use the
classic native display list we have always used.

As the display list sits above the Stage3D scene, we will be able to place our input text
field above the GPU content. To do this, we will rely on a very convenient feature from
Starling, native overlay.

Earlier we saw how Starling is able to display an error message when the wmode value
used is incorrect. Starling relies internally on this native overlay feature. As you know,
Starling works on top of Stage3D, the native overlay feature allows you to get access to
the display list from the Starling object and add objects to the native display list that
you’ve always used in Flash and overlay native elements like video, or text input on top
of the Stage3D content.

When Starling detects that the wrong wmode value us being used, the internal showFa
talError function is called to display the warning message on top of Stage3D. Obvi-
ously, in this scenario, as there is no GPU surface to render into, Starling relies here on
the display list on top of Stage3D:

78 | First Flight

http://

private function showFatalError(message:String):void
{
 var textField:TextField = new TextField();
 var textFormat:TextFormat = new TextFormat("Verdana", 12, 0xFFFFFF);
 textFormat.align = TextFormatAlign.CENTER;
 textField.defaultTextFormat = textFormat;
 textField.wordWrap = true;
 textField.width = mStage.stageWidth * 0.75;
 textField.autoSize = TextFieldAutoSize.CENTER;
 textField.text = message;
 textField.x = (mStage.stageWidth - textField.width) / 2;
 textField.y = (mStage.stageHeight - textField.height) / 2;
 textField.background = true;
 textField.backgroundColor = 0x440000;
 nativeOverlay.addChild(textField);
}

In this code, we create an input text field and add it on top of our Starling content, on
the display list:

var textInput:flash.text.TextField = new flash.text.TextField();
textInput.type = TextFieldType.INPUT;
Starling.current.nativeOverlay.addChild(textInput);

This can be extremely useful when text input is required, to enter various informations
when starting a game for instance. Note that you can also access the native stage
(flash.display.Stage) at anytime by using the nativeStage property on the Starling
object:

// access the native frame rate from the flash.display.Stage
trace (Starling.current.nativeStage.frameRate)

Let’s have a look at bitmap fonts now, to get the best performance out of fonts with
Starling!

Bitmap Fonts
Because of the texture creation done behind the scene, for the best performance and
lowest cost in terms of resources and GC load, you can use the TextField API with
bitmap fonts. The idea is the same, all the glyphs from a font are exported to a sprite-
sheet, this texture is then sampled to render each glyph required.

Figure 36 shows the GlyphDesigner tool (from 71 squared - commercial) preparing
glyphs spritesheet for the Britannic Bold font.

TextField | 79

http://

Figure 36. GlyphDesigner on MacOS

On Windows, a similar freely available tool called Bitmap Font Generator (from Angel
Code) can be used (Figure 37).

Figure 37. Bitmap Font Generator on Windows

80 | First Flight

http://

Yes, trust me, you want to use the MacOS tool ☺
Of course, nothing prevents you from generating this glyphs spritesheet at runtime,
using a TextField containing each glyph, laying out the glypes as on the spritesheet and
just use the BitmapData API and draw it. Depending on your platform (desktop or mo-
bile) your choices may vary. Doing it at runtime would be valuable for size reasons,
whereas embedding would give you faster startup time for your content. You will de-
cide!

Once exported, the texture will be saved as an image and the description of the image,
giving details about the position of each glyph on the image as a .fnt file (XML or text),
which looks like the following:

 <info face="BranchingMouse" size="40" />
 <common lineHeight="40" />
 <pages> <!-- currently, only one page is supported -->
 <page id="0" file="texture.png" />
 </pages>
 <chars>
 <char id="32" x="60" y="29" width="1" height="1" xoffset="0" yoffset="27"
xadvance="8" />
 <char id="33" x="155" y="144" width="9" height="21" xoffset="0" yoffset="6"
xadvance="9" />
 </chars>
 <kernings> <!-- Kerning is optional -->
 <kerning first="83" second="83" amount="-4"/>
 </kernings>

Once our bitmap texture and .fnt description file exported, we can embed them as
usual:

[Embed(source = "../media/fonts/britannic-bold.png")]
private static const BitmapChars:Class;

[Embed(source="../media/fonts/britannic-bold.fnt", mimeType="application/octet-
stream")]
private static const BritannicXML:Class;

To use those, we will be using the following static TextField APIs:

• registerBitmapFont: Registers a bitmap font.

• unregisterBitmapFont: Unregisters a bitmap font.

We will then pass our font texture and its file decription to the BitmapFont object and
register it through the registerBitmapFont API:

package
{

 import flash.display.Bitmap;

 import starling.display.Sprite;

TextField | 81

http://

 import starling.events.Event;
 import starling.text.BitmapFont;
 import starling.text.TextField;
 import starling.textures.Texture;
 import starling.utils.Color;

 public class Game5 extends Sprite
 {

 [Embed(source = "../media/fonts/britannic-bold.png")]
 private static const BitmapChars:Class;

 [Embed(source="../media/fonts/britannic-bold.fnt", mimeType="application/octet-
stream")]
 private static const BritannicXML:Class;

 public function Game5()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // creates the embedded bitmap (spritesheet file)
 var bitmap:Bitmap = new BitmapChars();

 // creates a texture out of it
 var texture:Texture = Texture.fromBitmap(bitmap);

 // create the XML file describing the glyphes position on the spritesheet
 var xml:XML = XML(new BritannicXML());

 // register the bitmap font to make it available to TextField
 TextField.registerBitmapFont(new BitmapFont(texture, xml));

 // create the TextField object
 var bmpFontTF:TextField = new TextField(400, 400, "Here is some text, using
an embedded font!", "BritannicBold", 10);

 // the native bitmap font size, no scaling
 bmpFontTF.fontSize = BitmapFont.NATIVE_SIZE;

 // use white to use the texture as it is (no tinting)
 bmpFontTF.color = Color.WHITE;

 // centers the text on stage
 bmpFontTF.x = stage.stageWidth - bmpFontTF.width >> 1;
 bmpFontTF.y = stage.stageHeight - bmpFontTF.height >> 1;

 // show it
 addChild(bmpFontTF);
 }
 }
}

82 | First Flight

http://

Once registered, we can pass the font name when creating the TextField object.

Figure 38 illustrates the result.

Figure 38. Some text rendered through a bitmap font

Now, let’s change the string to make it little longer, and see what happens:

var bmpFontTF:TextField = new TextField(400, 400, "Here is some longer text that is
very likely to be cut, using an embedded font!", "BritannicBold", 10);

As expected, the bounding box of our text field is too small to display our entire string.
As a result, we end up with our text being cut and not properly displayed (Figure 39).

Figure 39. Some large bitmp text being cut off

TextField | 83

http://

Fortunately, Starling exposes an autoScale property on TextField:

// make the text fit into the box
bmpFontTF.autoScale = true;

This property is extremely useful in games when you need to localize your strings and
you need to make sure that text fits into a specific box. Most of the time, for design
reasons, you want the text to be scaled a little bit so that your layout stays exactly the
same and aligned whatever the length of the string.

Figure 40 shows the autoScale property enabled, with our string slightly changed.

Figure 40. Large text being scaled down to fit the bounding box

We can enhance our previous example with bitmap fonts for our menu and scrolled
background:

package
{

 import flash.display.Bitmap;
 import flash.geom.Rectangle;

 import starling.display.Button;
 import starling.display.Image;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.text.BitmapFont;
 import starling.text.TextField;
 import starling.textures.Texture;

 public class Game4 extends Sprite
 {

 [Embed(source = "../media/textures/sausage-skin.png")]

84 | First Flight

http://

 private static const ButtonTexture:Class;

 [Embed(source = "../media/textures/background.jpg")]
 private static const BackgroundImage:Class;

 [Embed(source = "../media/fonts/hobo-std.png")]
 private static const BitmapChars:Class;

 [Embed(source="../media/fonts/hobo-std.fnt", mimeType="application/octet-
stream")]
 private static const Hobo:Class;

 private static const FONT_NAME:String = "HoboStd";

 private var backgroundContainer:Sprite;

 private var background1:Image;
 private var background2:Image;

 // sections
 private var sections:Vector.<String> = Vector.<String>(["Play", "Options",
"Rules", "Sign in"]);

 public function Game4()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // creates the embedded bitmap (spritesheet file)
 var bitmap:Bitmap = new BitmapChars();

 // creates a texture out of it
 var texture:Texture = Texture.fromBitmap(bitmap);

 // create the XML file describing the glyphes position on the spritesheet
 var xml:XML = XML(new Hobo());

 // register the bitmap font to make it available to TextField
 TextField.registerBitmapFont(new BitmapFont(texture, xml));

 // create a Bitmap object out of the embedded image
 var buttonSkin:Bitmap = new ButtonTexture();

 // create a Texture object to feed the Button object
 var textureSkin:Texture = Texture.fromBitmap(buttonSkin);

 // create a Bitmap object out of the embedded image
 var background:Bitmap = new BackgroundImage();

 // create a Texture object to feed the Image object
 var textureBackground:Texture = Texture.fromBitmap(background);

 // container for the background textures

TextField | 85

http://

 backgroundContainer = new Sprite();

 // create the images for the background
 background1 = new Image(textureBackground);
 background2 = new Image(textureBackground);

 // positions the second part
 background2.x = background1.width;

 // nest them
 backgroundContainer.addChild(background1);
 backgroundContainer.addChild(background2);

 // show the background
 addChild(backgroundContainer);

 // create container for the menu (buttons)
 var menuContainer:Sprite = new Sprite();

 var numSections:uint = sections.length

 for (var i:uint = 0; i< numSections; i++)
 {
 // create a button using this skin as up state
 var myButton:Button = new Button(textureSkin, sections[i]);

 // font name
 myButton.fontName = FONT_NAME;
 myButton.fontColor = 0xFFFFFF;

 // positions the text
 myButton.textBounds = new Rectangle(10, 38, 160, 30);

 // font size
 myButton.fontSize = 26;

 // position the buttons
 myButton.y = (myButton.height-10) * i;

 // add the button to our container
 menuContainer.addChild(myButton);
 }

 // catch the Event.TRIGGERED event
 menuContainer.addEventListener(Event.TRIGGERED, onTriggered);

 // on each frame
 stage.addEventListener(Event.ENTER_FRAME, onFrame);

 // centers the menu
 menuContainer.x = stage.stageWidth - menuContainer.width >> 1;
 menuContainer.y = stage.stageHeight - menuContainer.height >> 1;

 // show the button
 addChild(menuContainer);

86 | First Flight

http://

 }

 private function onTriggered(e:Event):void
 {
 // outputs : [object Sprite] [object Button]
 trace (e.currentTarget, e.target);
 // outputs : triggered!
 trace ("triggered!");
 }

 private function onFrame (e:Event):void
 {
 // scroll it
 backgroundContainer.x -= 10;
 // reset
 if (backgroundContainer.x <= -background1.width)
 backgroundContainer.x = 0;
 }
 }
}

Figure 41 illustrates the result.

Figure 41. Custom font used in our menu

Let’s discover now another neat Starling feature, called rendered textures.

TextField | 87

http://

RenderTexture
The starling.textures.RenderTexture API, allows developers to create nondestructive
drawing. As a Flash developer, think about the BitmapData API. This feature can be
really useful when creating applications like drawing tools, where you need to draw
continuously inside a texture and preserve previous drawings.

In the following code, we replicate the BitmapData.draw feature, on the GPU through
Starling:

package
{
 import flash.display.Bitmap;
 import flash.geom.Point;

 import starling.display.Image;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.events.Touch;
 import starling.events.TouchEvent;
 import starling.events.TouchPhase;
 import starling.textures.RenderTexture;
 import starling.textures.Texture;

 public class Game10 extends Sprite
 {
 private var mRenderTexture:RenderTexture;
 private var mBrush:Image;

 [Embed(source = "/../media/textures/egg_closed.png")]
 private static const Egg:Class;

 public function Game10()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create a Bitmap object out of the embedded image
 var brush:Bitmap = new Egg();

 // create a Texture object to feed the Image object
 var texture:Texture = Texture.fromBitmap(brush);

 // create the texture to draw into the texture
 mBrush = new Image(texture);

88 | First Flight

http://

 // set the registration point
 mBrush.pivotX = mBrush.width >> 1;
 mBrush.pivotY = mBrush.height >> 1;

 // scale it
 mBrush.scaleX = mBrush.scaleY = 0.5;

 // creates the canvas to draw into
 mRenderTexture = new RenderTexture(stage.stageWidth, stage.stageHeight);

 // we encapsulate it into an Image object
 var canvas:Image = new Image(mRenderTexture);

 // show it
 addChild(canvas);

 // listen to mouse interactions on the stage
 stage.addEventListener(TouchEvent.TOUCH, onTouch);
 }

 private function onTouch(event:TouchEvent):void
 {
 // retrieves the entire set of touch points (in case of multiple fingers
on a touch screen)
 var touches:Vector.<Touch> = event.getTouches(this);

 for each (var touch:Touch in touches)
 {
 // if only hovering or click states, let's skip
 if (touch.phase == TouchPhase.HOVER || touch.phase == TouchPhase.ENDED)
 continue;

 // grab the location of the mouse or each finger
 var location:Point = touch.getLocation(this);

 // positions the brush to draw
 mBrush.x = location.x;
 mBrush.y = location.y;

 // draw into the canvas
 mRenderTexture.draw(mBrush);
 }
 }
 }
}

When holding the mouse down, and moving the mouse around, we get the result shown
in Figure 42.

RenderTexture | 89

http://

Figure 42. Non destructive drawing

We are going to talk now about a very well-known topic to Flash developers, tweening!

Tweens
Starling also supports tweening and comes with its own tweening engine, supporting
most of the most common equations, illustrated in Figure 43:

In this code, we apply a tween to the x and y properties of our text field with a bounce
effect:

// create a Tween object
var t:Tween = new Tween(bmpFontTF, 4, Transitions.EASE_IN_OUT_BOUNCE);

// move the object position
t.moveTo(bmpFontTF.x+300, bmpFontTF.y);

// add it to the Juggler
Starling.juggler.add(t);

90 | First Flight

http://

Figure 43. Easing equations available in Starling (figure courtesy of sparrow-framework.org)

Here is the list of APIs available on a Tween object:

• animate: Animates the property of an object to a target value. You can call this
method multiple times on one tween.

• complete: End the tween when called.

• currentTime: The current timing for the tween.

• delay: The delay before the tween is started.

• fadeTo: Animates the alpha property of an object to a target value. You can call
this method multiple times on one tween.

• isComplete: Informs if the tweening is complete or not.

• moveTo: Animates the x and y properties of an object simultaneously.

• onComplete: Reference to the callback called when tween is complete.

• onCompleteArgs: Parameters to be passed to the the callback when tween is
complete.

Tweens | 91

http://sparrow-framework.org
http://

• onStart: Reference to the callback called when tween starts.

• onStartArgs: Parameters to be passed to the the callback when tween starts.

• onUpdate: Reference to the callback called when tween is in progress.

• onUpdateArgs: Parameters to be passed to the the callback when tweenis in pro-
gress.

• roundToInt:

• scaleTo: Animates the scaleX and scaleY properties of an object simultaneously.

• target: The target object that is animated.

• totalTime: The total time the tween will take (in seconds).

• transition: The transition method used for the animation.

As an example, in the following code, we listen to the end of the tween, then we dispose
the object being animated by passing the dispose argument through the onComple
teArgs API:

// create a Tween object
var t:Tween = new Tween(bmpFontTF, 4, Transitions.EASE_IN_OUT_BOUNCE);

// move the object position
t.moveTo(bmpFontTF.x+300, bmpFontTF.y);
t.animate("alpha", 0);

// add it to the Juggler
Starling.juggler.add(t);

// on complete, remove the textfield from the stage
t.onComplete = bmpFontTF.removeFromParent;

// pass the dispose argument to the removeFromParent call
t.onCompleteArgs = [true];

In this code, we listen to the progress of the tween by using three callbacks assigned to
the onStart, onUpdate and onComplete events:

package
{

 import flash.text.Font;

 import starling.animation.Transitions;
 import starling.animation.Tween;
 import starling.core.Starling;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.text.TextField;

 public class Game5 extends Sprite
 {
 [Embed(source='/../media/fonts/Abduction.ttf', embedAsCFF='false',
fontName='Abduction')]

92 | First Flight

http://

 public static var Abduction:Class;

 public function Game5()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // create the font
 var font:Font = new Abduction();

 // create the TextField object
 var legend:TextField = new TextField(300, 300, "Here is some text, using an
embedded font!", font.fontName, 38, 0xFFFFFF);

 // centers the text on stage
 legend.x = stage.stageWidth - legend.width >> 1;
 legend.y = stage.stageHeight - legend.height >> 1;

 // create a Tween object
 var t:Tween = new Tween(legend, 4, Transitions.EASE_IN_OUT_BOUNCE);

 // move the object position
 t.moveTo(legend.x+300, legend.y);

 // add it to the Juggler
 Starling.juggler.add(t);

 // listen to the start
 t.onStart = onStart;
 // listen to the progress
 t.onUpdate = onProgress;
 // listen to the end
 t.onComplete = onComplete;

 // show it
 addChild(legend);
 }

 private function onStart():void
 {
 trace ("tweening complete");
 }

 private function onProgress():void
 {
 trace ("tweening in progress");
 }

 private function onComplete():void
 {
 trace ("tweening complete")
 }

Tweens | 93

http://

 }
}

Note that existing popular tweening libraries like TweenLite and others should work
fine with Starling. Some of them may require some tweaking, but it should still be really
straightforward to plug them. Let’s see now how we can handle our assets in a more
organized way. So far, we have been using simple embed tags in our code to embed
what is needed. In a large project, you want to be able to have all your assets in a central
location. In the following section, we will see a few simple techniques to group your
assets and reuse them.

Asset Management
So far we have been using assets in a very simple way. In order to optimize the way you
work with assets, it is highly recommend using an Assets object working as a central
location to get resources from. This Assets object would be responsible for pooling the
assets used and make sure they are reused instead of being thrown away and instanci-
ated again which could pressure the GC.

In this code, we define a getTexture API on the Assets object, allowing us to retrieve
an embedded texture

public static function getTexture(name:String):Texture
{
 if (Assets[name] != undefined)
 {
 if (sTextures[name] == undefined)
 {
 var bitmap:Bitmap = new Assets[name]();
 sTextures[name] = Texture.fromBitmap(bitmap);
 }

 return sTextures[name];
 } else throw new Error("Resource not defined.");
}

Note here, the use of a simple Dictionary, to store the asset, so that the next time we
need, we just grab it from the pool, instead of recretating it.

As usual, the textures are embedded through the Embed tag:

[Embed(source = "../media/textures/background.png")]
private static const Background:Class;

Note that Starling does not force you to use embedded textures; you can also load a
texture dynamically by using a Loader object for instance:

// create the Loader
var loader:Loader = new Loader();

// listen to the Event.COMPLETE event
loader.contentLoaderInfo.addEventListener (Event.COMPLETE, onComplete);

94 | First Flight

http://

// load the image
loader.load (new URLRequest ("texture.png"));

function onComplete (e:Event):void
{
 // create the Bitmap
 var bitmap:Bitmap = e.currentTarget.data;

 // creates a texture out of it
 var texture:Texture = Texture.fromBitmap(bitmap);

 // create the Image object
 var image:Image = new Image (texture);

 // show the image
 addChild (image);
}

A dynamic texture can also be generated out of a BitmapData object, so far we have been
using pre-athored bitmaps with Starling, but what if we wanted to create a texture
dynamically and use it as a texture?

For this, we would be using the static fromBitmapData API on the Texture class:

// creates a dynamic bitmap
var dynamicBitmap:BitmapData = new BitmapData (512, 512);

// we draw a custom vector shape coming from the library or drawn at runtime too
dynamicBitmap.draw (myCustomShape);

// creates a texture out of it
var texture:Texture = Texture.fromBitmapData(bitmap);

// create the Image object
var image:Image = new Image (texture);

// show the image
addChild (image);

Your Starling applications are likely to run on mobile devices, desktop browsers and
as a result, on a large set of different screen sizes. Starling allows you to easily handle
screen resizes, let’s see how this works in the following section.

Handling Screen Resizes
As a Flash developer, you generally rely on a very simple event to handle screen resizes,
such event is called Event.RESIZE and allows you to be notified everytime the page
dimensions are being changed. By using the stage.stageWidth and stage.stageHeight
properties you can then layout your content appropriately, no matter what screen size
you are targeting.

Handling Screen Resizes | 95

http://

To handle this, the starling.display.Stage used by Starling also dispatches a similar
event, called ResizeEvent.RESIZE, allowing you to handle dynamic resize elegantly.

In this code, we update our first example with our quad centered in the scene:

package
{
 import flash.geom.Rectangle;

 import starling.core.Starling;
 import starling.display.Quad;
 import starling.display.Sprite;
 import starling.events.Event;
 import starling.events.ResizeEvent;

 public class Game extends Sprite
 {
 private var q:Quad;
 private var rect:Rectangle = new Rectangle(0,0,0,0);

 public function Game()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // listen to the event
 stage.addEventListener(ResizeEvent.RESIZE, onResize);

 q = new Quad(200, 200);
 q.color = 0x00FF00;
 q.x = stage.stageWidth - q.width >> 1;
 q.y = stage.stageHeight - q.height >> 1;
 addChild (q);
 }

 private function onResize(event:ResizeEvent):void
 {
 // set rect dimmensions
 rect.width = event.width, rect.height = event.height;

 // resize the viewport
 Starling.current.viewPort = rect;

 // assign the new stage width and height
 stage.stageWidth = event.width;
 stage.stageHeight = event.height;

 // repositions our quad
 q.x = stage.stageWidth - q.width >> 1;
 q.y = stage.stageHeight - q.height >> 1;
 }
 }
}

96 | First Flight

http://

Everytime our SWF is resized, the ResizeEvent.RESIZE is dispatched; note that the new
dimensions are sent through the ResizeEvent object, we manually write them to the
stageWidth and stageHeight properties. We then reposition our content, any other
content in our application based on the stage dimensions would then correctly layout.

Plugging Starling with Robotlegs
You may already be using the great Robotlegs framework (http://www.robotlegs.org/)
to architect your code cleanly and efficiently. Omar Gonzalez created a Robotlegs plug-
in to support the use of Starling with Robotlegs. Find more details at the following link:
https://github.com/s9tpepper/robotlegs-starling-plugin

Plugging Starling with Box2D
The fantastic thing about Starling is its display list API, which makes it very easy to
plug with existing frameworks. For instance, let’s say we would like to use the Box2D
framework for adding some physics to our game?

You can learn more about Box2D here and download the library that we will use in the
following example: http://box2dflash.sourceforge.net/

In this code, we make boxes fall on the ground with some simple gravity. Of course,
everything is rendered through the GPU:

package
{
 import Box2D.Collision.Shapes.b2CircleShape;
 import Box2D.Collision.Shapes.b2PolygonShape;
 import Box2D.Common.Math.b2Vec2;
 import Box2D.Dynamics.b2Body;
 import Box2D.Dynamics.b2BodyDef;
 import Box2D.Dynamics.b2FixtureDef;
 import Box2D.Dynamics.b2World;

 import starling.display.DisplayObject;
 import starling.display.Quad;
 import starling.display.Sprite;
 import starling.events.Event;

 public class PhysicsTest extends Sprite
 {
 private var mMainMenu:Sprite;
 private var bodyDef:b2BodyDef;
 private var inc:int;

 public var m_world:b2World;
 public var m_velocityIterations:int = 10;
 public var m_positionIterations:int = 10;
 public var m_timeStep:Number = 1.0/30.0;

Plugging Starling with Box2D | 97

https://github.com/s9tpepper/robotlegs-starling-plugin
http://box2dflash.sourceforge.net/
http://

 public function PhysicsTest()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // Define the gravity vector
 var gravity:b2Vec2 = new b2Vec2(0.0, 10.0);

 // Allow bodies to sleep
 var doSleep:Boolean = true;

 // Construct a world object
 m_world = new b2World(gravity, doSleep);

 // Vars used to create bodies
 var body:b2Body;
 var boxShape:b2PolygonShape;
 var circleShape:b2CircleShape;

 // Add ground body
 bodyDef = new b2BodyDef();
 //bodyDef.position.Set(15, 19);
 bodyDef.position.Set(10, 28);
 //bodyDef.angle = 0.1;
 boxShape = new b2PolygonShape();
 boxShape.SetAsBox(30, 3);
 var fixtureDef:b2FixtureDef = new b2FixtureDef();
 fixtureDef.shape = boxShape;
 fixtureDef.friction = 0.3;
 // static bodies require zero density
 fixtureDef.density = 0;

 // Add sprite to body userData
 var box:Quad = new Quad(2000, 200, 0xCCCCCC);
 box.pivotX = box.width / 2.0;
 box.pivotY = box.height / 2.0;

 bodyDef.userData = box;
 bodyDef.userData.width = 34 * 2 * 30;
 bodyDef.userData.height = 30 * 2 * 3;
 addChild(bodyDef.userData);

 body = m_world.CreateBody(bodyDef);
 body.CreateFixture(fixtureDef);

 var quad:Quad;

 // Add some objects
 for (var i:int = 1; i < 100; i++)
 {
 bodyDef = new b2BodyDef();
 bodyDef.type = b2Body.b2_dynamicBody;
 bodyDef.position.x = Math.random() * 15 + 5;

98 | First Flight

http://

 bodyDef.position.y = Math.random() * 10;
 var rX:Number = Math.random() + 0.5;
 var rY:Number = Math.random() + 0.5;

 // Box
 boxShape = new b2PolygonShape();
 boxShape.SetAsBox(rX, rY);
 fixtureDef.shape = boxShape;
 fixtureDef.density = 1.0;
 fixtureDef.friction = 0.5;
 fixtureDef.restitution = 0.2;

 // create the quads
 quad = new Quad(100, 100, Math.random()*0xFFFFFF);
 quad.pivotX = quad.width / 2.0;
 quad.pivotY = quad.height / 2.0;

 // this is the key line, we pass as a userData the starling.display.Quad
 bodyDef.userData = quad;
 bodyDef.userData.width = rX * 2 * 30;
 bodyDef.userData.height = rY * 2 * 30;
 body = m_world.CreateBody(bodyDef);
 body.CreateFixture(fixtureDef);

 // show each quad (acting as a skin of each body)
 addChild(bodyDef.userData);
 }

 // on each frame
 addEventListener(Event.ENTER_FRAME, Update);
 }

 public function Update(e:Event):void
 {
 // we make the world run
 m_world.Step(m_timeStep, m_velocityIterations, m_positionIterations);
 m_world.ClearForces() ;

 // Go through body list and update sprite positions/rotations
 for (var bb:b2Body = m_world.GetBodyList(); bb; bb = bb.GetNext()){

 // key line here, we test if we find any starling.display.DisplayObject
objects and apply the physics to them
 if (bb.GetUserData() is DisplayObject)
 {
 // we cast as a Starling DisplayObject, not the native one !
 var sprite:DisplayObject = bb.GetUserData() as DisplayObject;
 sprite.x = bb.GetPosition().x * 30;
 sprite.y = bb.GetPosition().y * 30;
 sprite.rotation = bb.GetAngle();
 }
 }
 bodyDef.position.Set(10, 28);
 }

Plugging Starling with Box2D | 99

http://

 }
}

When testing this code, we get the result shown in Figure 44.

Figure 44. Box2D used with Starling

And here is the same content running on a next version of AIR for mobile with Stage
3D support (Figure 45).

Figure 45. The same application running on a tablet at 60fps

Of course, we can easily replace those quads with textures, we would end up very
quickly with something way richer graphically. Up to you now to build amazing 2D
GPU content!

100 | First Flight

http://

Profiling Starling
When it comes to profiling performance. The first and absolute must have in all content,
is the frames per second benchmark. Generally, developers will keep this debug infor-
mation visible at all times during debugging to monitor performance hickups, pain
points and areas of improvements in content.

We have been using since the beginning of this tutorial the classic Stats class from
mr.doob, available here: https://github.com/mrdoob/Hi-ReS-Stats

We could keep using the Stats class as we did so far. But of course there are always
exceptions, especially on mobile. In a future version of AIR for mobile, Stage 3D will
be available. When running on mobile devices, on platforms like Android, using the
display list at the same time as the Stage3D surface, you risk a big performance hit. To
give you an idea, on some GPU’s, using the display list, will reduce your framerate by
a factor of 2, so using a compiled framerate of 60 will end up resulting in 30fps for the
display list and 30fps for the Stage3D content. As a result, even for single debugging
purposes, you need to make sure that everything goes to Stage3D.

We just covered previously the concept of bitmap fonts, so we could totally develop a
little FPS class displaying the framerate, which would be running on Stage3D?

Figure 46 illustrates the glyphs spritesheet we are exporting. Note that to make the
spritesheet as lightweight as possible, we select only the glyphs useful for a FPS counter.

Figure 46. The text texture for our FPS counter

Once the spritesheet and glyphs description files are exported, we use a TextField object
with a BitmapFont to display the FPS:

Profiling Starling | 101

https://github.com/mrdoob/Hi-ReS-Stats
http://

package
{
 import flash.display.Bitmap;
 import flash.utils.getTimer;

 import starling.display.Sprite;
 import starling.events.Event;
 import starling.text.BitmapFont;
 import starling.text.TextField;
 import starling.textures.Texture;
 import starling.utils.Color;

 public class FPS extends Sprite
 {
 private var container:Sprite = new Sprite();
 private var bmpFontTF:TextField;

 private var frameCount:uint = 0;
 private var totalTime:Number = 0;

 private static var last:uint = getTimer();
 private static var ticks:uint = 0;
 private static var text:String = "--.- FPS";

 [Embed(source = "../media/fonts/futura-fps.png")]
 private static const BitmapChars:Class;

 [Embed(source="../media/fonts/futura-fps.fnt", mimeType="application/octet-
stream")]
 private static const BritannicXML:Class;

 public function FPS()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 private function onAdded (e:Event):void
 {
 // creates the embedded bitmap (spritesheet file)
 var bitmap:Bitmap = new BitmapChars();

 // creates a texture out of it
 var texture:Texture = Texture.fromBitmap(bitmap);

 // create the XML file describing the glyphes position on the spritesheet
 var xml:XML = XML(new BritannicXML());

 // register the bitmap font to make it available to TextField
 TextField.registerBitmapFont(new BitmapFont(texture, xml));

 // create the TextField object
 bmpFontTF = new TextField(70, 70, "... FPS", "Futura-Medium", 12);

 // border
 bmpFontTF.border = true;

102 | First Flight

http://

 // use white to use the texture as it is (no tinting)
 bmpFontTF.color = Color.WHITE;

 // show it
 addChild(bmpFontTF);

 // on each frame
 stage.addEventListener(Event.ENTER_FRAME, onFrame);
 }

 public function onFrame(e:Event):void
 {
 ticks++;
 var now:uint = getTimer();
 var delta:uint = now - last;
 if (delta >= 1000) {
 var fps:Number = ticks / delta * 1000;
 text = fps.toFixed(1) + " FPS";
 ticks = 0;
 last = now;
 }
 bmpFontTF.text = text;
 }
 }
}

To use it, very easy, add the following line anywhere inside your Starling world:

// show the fps counter
addChild (new FPS());

Figure 47 illustrates our FPS counter at work.

Figure 47. Our FPS counter rendered through the GPU

We can now update our physics demo and integrate our FPS counter in it (Figure 48).

Profiling Starling | 103

http://

Figure 48. Our FPS counter integrated in our application

We now have a way to profile the performance of our content also on mobile. As we
mentioned previously, this solution allows us to completely get rid of the display list,
not only for menus, UI animations, but also for displaying simple debugging informa-
tions like the framerate.

Note that the famous Stats class by mr.doob was recently ported to Starling, you can
find it here amongst other contributions:

http://forum.starling-framework.org/topic/list-of-user-contributions#post-181

Particles
When it comes to beautiful effects, particles are definitely my favorites. And believe it
or not, particles look amazing but are not really complex. Technically, particles are
literally textured quads moved around using a specific blending mode producing beau-
tiful combinations.

To design our particles for Starling, we will be using a very convenient tool named
ParticleDesigner (developed by 71 squared, the same company behind GlyphDesigner,
which we used for our bitmap fonts). Figure 49 shows a snapshot of ParticleDesigner.
Notice the emulation mode (on the right), where you can preview the particles you are
designing.

The main window is just a bunch of parameters to modify. You can easily spend hours
playing with all those options to create the particles you want. There is actually a ran-
domize button to automatically generate parameters and as a result produce different
particles effects.

104 | First Flight

http://forum.starling-framework.org/topic/list-of-user-contributions#post-181
http://

Figure 50 illustrates the save-as dialog box of Particle Designer, exporting the Parti-
cleEmitter file (.pex) and the texture to render our particles. Those two files will be the
files we will be using to feed our ParticleDesignerPS object.

Figure 50. Particle Designer on MacOS

Figure 49. Particle Designer on MacOS

Particles | 105

http://

Figure 51 is an example of particles created from ParticleDesigner and running through
Starling.

Figure 51. Custom particles running through Starling

Beautiful no? If you look at it, Starling does not come out of the box with the particles
feature. That’s right, the particles engine is actually an extension of Starling and can be
download at the following address: https://github.com/PrimaryFeather/Starling-Exten
sion-Particle-System

Figure 52 shows another beautiful example of particles.

Figure 52. Custom particles running through Starling

Keep in mind that the particles have to be considered as any other animated object in
Starling, as a result, you need to add your particle object to a Juggler see them animated:

106 | First Flight

https://github.com/PrimaryFeather/Starling-Extension-Particle-System
https://github.com/PrimaryFeather/Starling-Extension-Particle-System
http://

// load the XML config file
var psConfig:XML = XML(new StarConfig());

// create the particle texture
var psTexture:Texture = Texture.fromBitmap(new StarParticle());

// create the particle system out of the texture and XML description
mParticleSystem = new ParticleDesignerPS(psConfig, psTexture);

// positions the particles starting point
mParticleSystem.emitterX = 800;
mParticleSystem.emitterY = 240;

// start the particles
mParticleSystem.start();

// show them
addChild(mParticleSystem);

// animate them
Starling.juggler.add(mParticleSystem);

Feel free to position the particles the way you want, the ParticleDesignerPS object is
actually a DisplayObject, so you can use all of the expected features. Of course, as
always, when you are done, you need to remove the particles from the juggler, and
dispose the particles by calling the dispose API on the ParticleDesignerPS object.

Lee Brimelow (leebrimelow.com) created an example in which particles are used to
simulate fire for a space ship (Figure 53).

Figure 53. Particle effect integrated to our space ship

Particles | 107

http://leebrimelow.com
http://

We can now add some little particles on the rockets that our space ship fires (Figure 54).

Figure 54. Rockets with fire

Once our rockets are moving out of the stage, we need to remove them from the scene
and from the juggler:

Starling.juggler.remove(this.particle);
this.removeFromParent(true);

We actually missed a very important detail here: we forgot to dispose the particles,
which means that they will not be cleaned from the GPU memory. So the code above
should be changed as follows:

Starling.juggler.remove(this.particle);
this.particle.dispose();
this.removeFromParent(true);

You may also use the removeChild API, which will allow you to remove the particle
system and dispose it:

removeChild (particle, true);

There is also another potential scenario that you could encounter. In our previous
example, the particles are attached to a rocket and are moving out of the screen. It is
then easy to check for the particles current position and dispose them when out of the
screen bounds.

Another scenario would be the particles are exploding at random locations but do not
move out of the screen, they would vanish inside the bounds of the game screen. In

108 | First Flight

http://

such a scenario, testing the location of the particles does not help, you need to check
for the completion of the particles animation and dispose them when the animation is
complete.

Fortunately, there is an event informing about the completion of the particle system.
When needed, just listen to the Event.COMPLETE event on the ParticleSystem object:

mParticleSystem.addEventListener(Event.COMPLETE, onParticleComplete);

Simple as that, you are now all set!

We are now done with our introduction to Starling, I hope you enjoyed it, now it is up
to you to create amazing content on top of Starling!

Particles | 109

http://

http://

About the Author
Thibault Imbert is a Senior Product Manager for the Flash Runtime, focused on graph-
ics, language, VM, and Monocle (a future profiling tool for Flash). After a few years
working for different French agencies as a Flash developer, Thibault became an Adobe
Certified Instructor in Paris, where he taught ActionScript at an Adobe training center.
In 2008, Thibault released a free and open source ActionScript 3 book called Pratique
d’ActionScript 3, which was rewritten for Flash Player 10 and released by Pearson in
2009. He released a white paper about performance optimizations for the Flash Plat-
form. Most of his experiments are available on his blog, ByteArray.org. Thibault also
attends conferences about ActionScript and likes listening to funky music and making
macaroons.

http://

http://

	Table of Contents
	Preface
	Audience
	Assumptions This Book Makes
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	First Flight
	What Is Starling?
	Why Starling?
	Philosophy
	Intuitive
	Lightweight
	Free

	How
	Layering Restrictions
	Getting Started
	Setting Up Your Scene
	Wmode Requirements
	Stage Quality
	Progressive Enhancements
	The Display List
	Event Model
	Event Propagation

	Touch Events
	Simulating Multi-touch

	Texture
	Image
	Collision Detection
	Drawing API

	Flat Sprites
	MovieClip
	Texture Atlas

	Juggler
	Button
	TextField
	Embedded Fonts
	Bitmap Fonts

	RenderTexture
	Tweens
	Asset Management
	Handling Screen Resizes
	Plugging Starling with Robotlegs
	Plugging Starling with Box2D
	Profiling Starling
	Particles

