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Preface
Python has long been considered one of the main "glue" languages for programmers and data 
analysts due to its easy-to-learn syntax and a vast array of libraries to extend functionality. In 
the last two or so years Python has become a language that isn't used for just the glue, but 
the analysis itself. A big reason for that is pandas. This book covers pandas and other libraries 
by example. The book is sectioned into recipes which start off with the basics, but through 
progressively useful (and sometimes difficult) recipes the reader will get a good feel for pandas.

What this book covers
Working with files covers basic DataFrame creation as well as working with files. Very rarely is 
data generated from within, so knowing how to work with files is important to get off the ground.

Slicing pandas objects explains how to slice the DataFrame. After following the first recipe a 
DataFrame can be created, but the next step is understanding how to slice the DataFrame. 
Thankfully, it isn't much different from a native Python array.

Subsetting data covers how to select just the data that is of interest, quite often during data 
analysis. Cohort analysis is a good consequence of being able to subset data.

Working with dates will cover the beginning of how to carry out date manipulation. Date math 
sucks. pandas makes it suck a little less.

Modifying data with functions teaches how to use functions to modify data. Not only is the 
analyst often given too much data, but also the data often needs some work and applying 
functions to that data can allow for easier use.

Combining datasets discusses how to take multiple datasets and combine them into one, 
which is very similar to using SQL to join datasets.

Using indexes to manipulate objects demonstrates the use of indexes for data manipulation.
Index in pandas allows for easy manipulation of data. One way to think about Indexes is that if 
data is made up of metrics and dimensions, indexes are the metadata used to describe those 
metrics and dimensions.
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Getting data from the Web explains how to get data from the Web. A hidden gem in  
pandas is its ability to get data from all over. This brief recipe will show off this feature.

Combining pandas with scikit-learn explores how to integrate pandas with scikit-learn,  
a library for Machine Learning. One of the great things about pandas is its ability to work  
with other libraries in the PyData ecosystem.

Integrating pandas with statistics packages will discuss integration of pandas, using 
StatsModels a module for classical statistics and econometric analysis.

Using Flask for the backend uses Flask. It's a micro framework that allows for quickly  
building a web backend.

Visualizing pandas objects will discuss graphing and charting with pandas. Often large 
amounts of data can't be understood just by looking at the raw numbers.

Reporting with pandas objects puts it all together. Using Flask as the backend, the  
reader will build a basic reporting app to display a subset of a DataFrame.

What you need for this book
Obviously pandas is required, but in addition to pandas the following Python packages  
are required:

ff Numpy

ff SciKit Learn

ff StatsModels

ff Flask

ff matplotlib

ff IPython (not technically required, but highly recommended)

ff Dependencies aren't mentioned; therefore, it is a good idea to use pip to  
install these packages which will alert unmet dependencies.

Who this book is for
This book is for the people who interact with tabular datasets and who like Python, and  
would like for Python to be a bigger part of how they interact with data. The readers should  
be comfortable with Python, but no pandas experience is required.
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Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, 
dummy URLs, user input, and Twitter handles are shown as follows: "Create an incredibly simple 
DataFrame to start."

A block of code is set as follows:

> import pandas as pd #standard convention throughout the book
> import numpy as np
> my_df = pd.DataFrame([1,2,3])
> my_df
   0
0  1
1  2
2  3

Any command-line input or output is written as follows:

>import matplotlib.pyplot as plt

>plt.plot(close)

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you  
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you would report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the errata submission form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded on our website, or 
added to any list of existing errata, under the Errata section of that title. Any existing errata can 
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At  
Packt, we take the protection of our copyright and licenses very seriously. If you come  
across any illegal copies of our works, in any form, on the Internet, please provide us  
with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
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Instant Data-intensive 
Apps with pandas  

How-to

Welcome to Instant Data Intensive Apps with pandas How-to. This book is a collection of 
recipes with the intention of transforming the reader from being a novice with just a simple 
idea of what pandas is, to a highly efficient user of the library. This book is not meant to be  
a comprehensive look through all the nooks of pandas, but is meant to get the reader up 
speed in the most common tasks.

Working with files (Simple)
In this recipe we'll introduce the pandas DataFrame by doing some quick exercises,  
then move onto one of the most fundamental parts of data analysis; getting data in and  
out of files.

Getting ready
Most of the rest of the book is working with data once it's in a pandas data structure, but this 
recipe is about those structures themselves and getting data in and out of them. Open your 
interpreter, preferably IPython.
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How to do it...
1.	 Create an incredibly simple DataFrame to start with. A DataFrame can handle lists, 

NumPy arrays, dicts of strings, and more.
> import pandas as pd 

 #standard convention throughout the book

> import numpy as np

> my_df = pd.DataFrame([1,2,3])

> my_df

   0

0  1

1  2

2  3

2.	 The first example is too simple, and isn't useful. Add some column headers and index 
for more information about the DataFrame.
> cols = ['A', 'B']

> idx = pd.Index(list('name'), name='a')

> data = np.random.normal(10, 1, (4, 2))

> df = pd.DataFrame(data, columns=cols, index=idx)

df

           A          B

a

n   9.945858  10.607128

a  10.742073   8.968044

m  10.178861   7.293450

e  10.251922  10.657038

#a single column is a series

> df.A 

a

n     9.945858

a    10.742073

m    10.178861

e    10.251922

Create a Panel by passing a dictionary of DataFrames to the 
constructor.

# multiple DataFrames is a panel

> pan = pd.Panel({'df1': df, 'df2': df})

> pan
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<class 'pandas.core.panel.Panel'>

Dimensions: 2 (items) x 4 (major_axis) x 2 (minor_axis)

Items axis: df1 to df2

Major_axis axis: n to e

Minor_axis axis: A to B

3.	 There are many ways to do I/O with pandas; in this step we will write the DataFrame 
out to several mediums.

#write df to different file types

> df.to_csv('df.csv')

> df.to_latex('df.tex') #useful with Pweave

> df.to_excel('df.xlsx') #requires extra packages

> df.to_html('df.html')

> df.to_string()

'           A          B\na                      \na   9.945858  
10.607128\nb  10.742073   8.968044\nc  10.178861   7.293450\nd  
10.251922  10.657038'

#read df from the files, output methods aren't symmetric

#often there's an intermediate step

> pd.read_csv('df.csv')

#back and forth with json

#json isn't officially supported, the reasons why are beyond #the 
scope of this book

> with open('df.json', 'w') as f:

  json.dump(df.to_dict(), f)

> with open('df.json') as f:

  df_json = json.load(f)

Downloading the example code

You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.



Instant Data-intensive Apps with pandas How-to

8

How it works...
Most of the file input and output in pandas is the orchestration behind the scenes of 
formatting the value outputs, and then writing those values to a file. There are many  
options for formatting file output. The to_csv method takes many parameters. Some  
of the more common parameters are as follows:

ff sep: It specifies the value to separate with, in the output file

ff index: It is a Boolean that decides whether or not to print the index

ff na_rep: It specifies what to substitute for the na values

The following snippet writes the DataFrame df and writes it to a file called file.tsv,  
and it's formatted according to the parameters passed to the method.

> df.to_csv('file.tsv', sep='\t', index=False, na_rep='NULL')

There's more...
In addition to standard file input and output functionalities, pandas has several built-in niceties.

Parsing dates at file read time
Using Panda's sophisticated date parser, a CSV can read and parse dates at the same time, 
as shown in the following command line:

> df = pd.read_csv('dates.csv', date_parser=True, parse_dates='YYYY-MM-
DD', index_col=0)

Besides the parsing capabilities, pandas also has a very handy date_range function,  
which returns a range of dates determined by the inputs. For example, it's very easy to  
get the months of 2012 in a series. This is shown in the following command line:

> pd.date_range('2012-01-01', '2012-12-31', freq='M')

Accessing data from a public source
pandas can also read CSV data from the Web, assuming http://www.example.com/
data.csv is the URL. Take a look at the following example:

> df = pd.read_csv(url)

Slicing pandas objects (Simple)
In this recipe we'll walk through some basic functionalities about slicing pandas objects. If 
you're familiar with array slicing, this will be very familiar to you, but with a few idiosyncrasies 
for pandas.
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Getting ready
Open up your interpreter, and execute the following steps:

How to do it...
1.	 Create a simple DataFrame to explore the different slicing abilities of pandas.

> dim = (10, 3)

> df = pd.DataFrame(np.random.normal(0, 1, dim), columns ['one', 
'two', 'three'])

2.	 Select the first two rows of the column named 'one'.
> df['one'][:2]

0   -0.492156

1   -0.476418

Name: one

3.	 Pass an array of column names instead of 'one'.
> df[['one', 'two']][:2]

        one       two

0 -0.492156  1.978798

-0.476418 -0.225360

4.	 Use a negative index to navigate backwards through the DataFrame.
> df[['one', 'two']][-3:-2]

       one       two

7 -0.392156  1.478198

5.	 Select every fifth row from the DataFrame df.
> df[::5]

      one       two     three

0  0.317379 -0.551568 -1.617768

5 -0.171340  2.025818  0.206053

6.	 Use the head and tail functions to easily select the top and bottom of the 
DataFrame.

> df.head(2)

       one       two

0 -0.492156  1.978798

1 -0.476418 -0.225360
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How it works...
At some level, pandas objects behave similar to NumPy arrays; they are after all abstractions 
built on top of them. However, because we have more metadata about the data structures we 
can use that to our advantage.

After the initial pandas object is created, simple slicing occurs according to the  
following structure:

> df[column names][rows]

Here column names is a string (or an array, if multiple columns) and rows is the number of 
rows that we wish to use.

There's more...
The methods that have already been described are very useful at a higher level, but there are 
more granular operations available.

Direct index access
The .ix command is an advanced method for selecting and slicing a DataFrame. Taking the 
sample from the preceding example, df.ix[1:3 ,[ 'one', 'two']] = 10 will not only 
select the specified subset of the data, but also set its value equal to 10. The .xs command 
has a more explicit interface for working with indexes.

Resetting the index
Often, the index of the DataFrame becomes out of alignment when slicing data. In pandas, the 
easiest way to reset an index is with the reset_index() method of the DataFrame object.

Subsetting data (Simple)
In this recipe we'll select parts of a DataFrame based on elements within the DataFrame. For 
example, select data only if it's greater than zero.

Getting ready
Open up your interpreter and follow along with the interpreter's session in the following How to 
do it… section.
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How to do it...
1.	 Create a sample DataFrame df to manipulate.

> d = {'Cost': np.random.normal(100, 5, 100),

     'Profit': np.random.normal(50, 5, 100),

     'CatA': np.random.choice(['a', 'b', 'c'], 100),

     'CatB': np.random.choice(['e', 'f', 'g'], 100)}

> df = pd.DataFrame(d)

2.	 Pass a Boolean value to the DataFrame to select only those rows that evaluate to True.

> df[df.CatA == 'a'][:5]

   CatA CatB        Cost     Profit

0     a    g  102.716045  48.585048

1     a    g  103.342873  44.285223

3     a    f  100.563783  52.609880

4     a    f   92.057118  53.030021

10    a    f   97.494169  44.849129

> mask = np.logical_and(df.CatA=='a', df.CatB=='e')

> df[mask][:5]

CatA CatB        Cost     Profit

15    a    e  103.532647  44.625927

20    a    e  101.780083  48.415357

57    a    e   95.795958  46.033187

76    a    e   96.831145  53.876999

77    a    e  100.991794  44.308626

> a_e = ['a', 'e']

> CatA_a_e = df[df.CatA.isin(a_e)]

> only_a_e = CatA_a_e[CatA_a_e.CatB.isin(a_e)]

> only_a_e[:5]

      CatA CatB        Cost     Profit

15    a    e  103.532647  44.625927

20    a    e  101.780083  48.415357

57    a    e   95.795958  46.033187

76    a    e   96.831145  53.876999

77    a    e  100.991794  44.308626
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How it works...
Subsetting is an integral part of data analysis, and is very simple to do in pandas. A nice 
pattern for creating subsets is to create mask arrays, which are arrays of Booleans, and  
then passing those into the DataFrame. For example, executing df[df.CatA.isin(a_e)] 
in the interpreter will return an array of the same length as df.CatA.

There's more...
There are more powerful pandas functions that make selecting subsets of DataFrames  
more concise.

The where and mask commands
In addition to masking data based on arrays, pandas contains many helper functions to 
subset and assign values to data. The two main ones are df.where() and df.mask(), 
which are complements. The df.CatA.where(df.CatA == 'a') function doesn't 
automatically remove data like in the previous examples; it creates a copy of df.CatA with 
NaN in places where df.CatA doesn't equals to 'a'.

Substituting with the where command
Taking the where command one step further, it's easy to replace the NaN element in one 
step. For example, df.CatA.where(df.CatA == 'a', 'e') will substitute NaN where 
df.CatA is equal to 'a'; however, because there is the second argument, the NaN will be 
replaced by 'e'.

Working with dates (Medium)
In this recipe we'll talk about working with dates in pandas. Because pandas was initially 
written with financial time series, it has a lot of out of the box date functionalities.

Getting ready
Open up your interpreter and follow the command progression in the following section. 
Difficult financial analysis was the mother of pandas creation; therefore, it has many efficient 
and easy ways for dealing with dates.

How to do it...
1.	 Let's examine the date_range functionality within pandas.

> Y2K = pd.date_range('2000-01-01', '2000-12-31')

> Y2K
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class 'pandas.tseries.index.DatetimeIndex'>

[2000-01-01 00:00:00, ..., 2000-12-31 00:00:00]

Length: 366, Freq: D, Timezone: None

#it is very easy to create date range of a different frequency

> Y2K_hourly = pd.date_range('2000-01-01', '2000-12-31', freq='H')

> Y2K_hourly

<class 'pandas.tseries.index.DatetimeIndex'>

[2000-01-01 00:00:00, ..., 2000-12-31 00:00:00]

Length: 8761, Freq: H, Timezone: None

2.	 Create a time series and slice it by passing a range of dates to Series.

> Y2K_temp = pd.Series(np.random.normal(75, 10, len(Y2K)), 
index=Y2K)

> Y2K_temp.head()

2000-01-01    77.425233

2000-01-02    67.949946

2000-01-03    74.079854

2000-01-04    83.048726

2000-01-05    88.435598

Freq: D

> Y2K_temp['2000-01-01':'2000-01-02']

2000-01-01    77.425233

2000-01-02    67.949946

Freq: D

> from datetime import date

> Y2K_temp[date(2000, 1, 1):date(2000, 1, 2)]

2000-01-01    77.425233

2000-01-02    67.949946

Freq: D

#pandas has functionality to move into and out-of date scopes

> Y2K_temp.resample('H', fill_method='pad')[:1]

2000-01-01 01:00:00    77.425233

Freq: H
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How it works...
The date_range function is defined by dates and frequencies. See the following section for 
the various frequency designations. The easiest way is to define a start date, end date, and 
frequency, but there are other ways as well. You can also change the frequency, or resample 
to a smaller or larger time interval.

There's more...
pandas adds a lot more functionalities to handle dates. These are mostly convenient methods 
because working with dates is a necessary evil of data analysis.

Alternative date range specification
Time series in pandas don't have to be defined by a start and end date. In pandas, it is 
possible to represent the time of the Series as an interval of dates with a common period 
between data points. For example, if we want to create a Series just like Y2K, we can do  
so as follows:

pd.date_range(start='2012-01-01', periods=366, freq='D')

Upsampling and downsampling Series
pandas offers the ability to move up and down the granularity of a time series. For example, 
given a Series of random numbers s for all the days in 2012, calculating the sum for each 
month is done by the following formula:

s.resample('M', how='sum')

In the preceding example, the 'M' variable specifies that we're upsampling to month. 
Downsampling is also done in a similar way; however, pandas provides functionalities for 
handling the disaggregation in a convenient way.

Modifying data with functions (Simple)
In this recipe we'll walk through the process of applying a function to a DataFrame. This is 
a simple but very important part of data analysis. Rarely, if ever, will a data in raw form be 
sufficient for data analysis. Often, that data needs to be transformed into some other form, 
and to do that you'll need to apply functions to pandas objects.

Getting ready
Open up your interpreter, and type the following commands successively.
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How to do it...
1.	 Create a simple Series of simulated open and close for a year.

> data = {'Open': np.random.normal(100, 5, 366),

          'Close': np.random.normal(100, 5, 366)}

> df = pd.DataFrame(data)

> df

<class 'pandas.core.frame.DataFrame'>

Int64Index: 366 entries, 0 to 365

Data columns:

Close    366  non-null values

Open     366  non-null values

dtypes: float64(2)

2.	 Apply element-wise functions.
> df.apply(np.mean, axis=1).head(3)

0    103.313391

1     99.668034

2     97.875755

#passing a lambda is a common pattern

> df.apply(lambda x: (x['Open'] - x['Close']), axis=1).head(3)

0     6.519618

1     8.407379

2    16.838463

#define a more complex function

> def percent_change(x):

    return (x['Open'] - x['Close']) / x['Open']

> df.apply(percent_change, axis=1).head(3)

0    0.061175

1    0.080940

2    0.158413

#change axis, axis = 0 is default
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> df.apply(np.mean, axis=0)

Close    99.739967

Open     99.631989

3.	 Define a standalone function that takes two arguments. One is the element itself, 
and another argument.

> def greater_than_x(element, x):

    return element > x

> df.Open.apply(greater_than_x, args=(100,)).head(3)

0     False

1     True

2     False

Name: Open

#This can be used as in conjunction with subset capabilities

> mask = df.Open.apply(greater_than_x, args=(100,))

> df.Open[mask].head()

1    100.713672

3    105.492173

4    100.171148

6    104.810547

7    110.539181

Name: Open

#It's also possible to do a rolling apply, this applys #aggregate 
functions over a certain number of rows

#For instance we can get the five day moving average

> pd.rolling_apply(df.Close, 5, np.mean)

#There are actually a several built-in rolling functions

> pd.rolling_corr(df.Close, df.Open, 5)[:5]

0         NaN

1         NaN

2         NaN

3       NaN

4    0.137234  #why are the first 4 NaN



Instant Data-intensive Apps with pandas How-to

17

How it works...
pandas sits on top of NumPy; thus pandas takes advantage of the broadcasting  
capabilities inherent within NumPy. For example, execute the following script to  
see the differences in NumPy:

> a = [1, 2, 3]

> a * 2

[1, 2, 3, 1, 2, 3]

> b = np.array(a)

> b * 2

[2, 4, 6]

Understanding the underlying NumPy structure is beyond the scope, but is extremely  
helpful in the long run.

There's more...
pandas makes additional use of the apply function in place of the for loop function.  
Quite often it's necessary to do more complex operations on an entire column(s) of a 
DataFrame, but broadcasting or looping won't cut it.

Other apply options
There are other apply functions in the family. For example, the applymap function  
operates in a slightly different manner than the apply function. The applymap function 
operates on a single value and returns a single value, whereas the apply function takes  
an array-like data structure as an input.

Alternative solutions
Functions can also be applied iteratively; however, this tends to make the functions slow  
and leads to unnecessarily verbose code.

> for x in df.Open:

  some_function(x)

vs.

> df.Open.apply(some_function)



Instant Data-intensive Apps with pandas How-to

18

Combining datasets (Medium)
Given that we have several different types of DataFrames, how can we best join them into 
one DataFrame for additional use? We'll also talk about merging and appending them in the 
following There's more... section.

Getting ready
Open up your interpreter and type the following given commands successively. Very rarely will 
an analyst receive data in a single flat file. Quite often, data will need to be either appended 
to the bottom of the DataFrame or attached to the side. For example, if a set of data comes 
directly from a normalized database, the analyst will need to combine them by joining them 
using Primary and Foreign Keys.

How to do it...
1.	 Create two basic DataFrames df1 and df2.

> rng = pd.date_range('2000-01-01', '2000-01-05')

> tickers = pd.DataFrame(['MSFT', 'AAPL'], columns= ['Ticker'])

> df1 = pd.DataFrame({'TickerID': [0]*5, 

  'Price': np.random.normal(100, 10, 5)}, index=rng)

> df2 = pd.DataFrame({'TickerID': [1]*5, 

  'Price': np.random.normal(100, 10, 5)}, index=rng)

2.	 The concat method is similar to the union command in SQL.
#select the first and last value from concat

> pd.concat([df1, df2]).ix[[0, -1]]

                Price  TickerID

2000-01-01  76.937336         0

2000-01-05  89.070339         1

3.	 Merge the two DataFrames into a single DataFrame.

> pd.merge(df1, df2, left_index=True, right_index=True)

               Price_x  TickerID_x     Price_y  TickerID_y

2000-01-01   76.937336           0   79.707124           1
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2000-01-02  127.788659           0  107.694863           1

2000-01-03   99.990745           0  106.456367           1

2000-01-04  112.125489           0   81.928378           1

2000-01-05  101.941148           0   89.070339           1

> pd.merge(df1, tickers, right_index=True, left_on='TickerID')

       Price      TickerID   Ticker

2000-01-01   76.937336         1   MSFT

2000-01-02  127.788659         1   MSFT

2000-01-03   99.990745         1   MSFT

2000-01-04  112.125489         1   MSFT

2000-01-05  101.941148         1   MSFT

How it works...
If the reader is familiar with R's functionalities, then he/she can see that joining data in 
pandas is not much different than in R. We'll cover more on indexes later, but thinking of the 
default index as a Primary Key, or the combination of hierarchical index as a Composite Key, 
elucidates the joining process.

There's more...
There are many options that can be supplied to the merge and join methods to modify the 
DataFrames' behaviour.

Merge and join details
The merge (and join) method uses a how parameter, which is a string of the join database. 
The possible values are 'left', 'right', 'outer', and 'inner'.

Specifying outputs in join
The join function (not the previously mentioned one) is easy to use to join DataFrames.

> f1.join(df2, lsuffix=".1", rsuffix=".2")

Use suffixes to disambiguate columns if the DataFrames have similar column names.  
join defaults to joining of indexes, but the on parameter can be used to specify a column. 
For example:

a_df.join(another_df, on='columnA')



Instant Data-intensive Apps with pandas How-to

20

Concatenation
One way to join the datasets is to just stack them on top of each other. This is similar to a 
union command in SQL. Given two DataFrames, One and Two, a concatenation is done in  
the following way:

pd.concat([One, Two])

A list can also be used. Although it will be awkward for two DataFrames, it makes much more 
sense in the event of 50 DataFrames.

Using indexes to manipulate objects 
(Medium)

Indexes are not advanced because they're difficult, but if we want to be an expert with pandas 
it is important that we use them well. We will discuss hierarchical indexes in the following 
There's more... section.

Getting ready
A good understanding of indexes in pandas is crucial to quickly move the data around. From 
a business intelligence perspective, they create a distinction similar to that of metrics and 
dimensions in an OLAP cube. To illustrate this point, this recipe walks through getting stock 
data out of pandas, combining it, then reindexing it for easy chomping.

How to do it...
1.	 Use the DataReader object to transfer stock price information into a DataFrame and 

to explore the basic axis of Panel.
> from pandas.i git push -u origin master

 o.data import DataReader

> tickers = ['gs', 'ibm', 'f', 'ba', 'axp']

> dfs = {}

> for ticker in tickers:

        dfs[ticker] = DataReader(ticker, "yahoo", '2006-01-01')

# a yet undiscussed data structure, in the same way the a 
# DataFrame is a collection of Series, a Panel is a collection of 
# DataFrames

> pan = pd.Panel(dfs)

> pan
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<class 'pandas.core.panel.Panel'>

Dimensions: 5 (items) x 1764 (major_axis) x 6 (minor_axis) 
Items axis: axp to ibm

Major_axis axis: 2006-01-03 00:00:00 to 2013-01-04 00:00:00 
Minor_axis axis: Open to Adj Close

> pan.items

Index([axp, ba, f, gs, ibm], dtype=object)

> pan.minor_axis

Index([Open, High, Low, Close, Volume, Adj Close], dtype=object)

> pan.major_axis

<class 'pandas.tseries.index.DatetimeIndex'> 
[2006-01-03 00:00:00, ..., 2013-01-04 00:00:00] 
Length: 1764, Freq: None, Timezone: None

2.	 Use the axis selectors to easily compute different sets of summary statistics.
> pan.minor_xs('Open').mean()

axp     46.227466 
ba      70.746451 
f        9.135794 
gs     151.655091 
ibm    129.570969

# major axis is sliceable as well

> day_slice = pan.major_axis[1]

> pan.major_xs(day_slice)[['gs', 'ba']]

                   ba          gs

Open            70.08      127.35

High            71.27      128.91

Low             69.86      126.38

Close           71.17      127.09

Volume     3165000.00  4861600.00

Adj Close       60.43      118.12

Convert the Panel to a DataFrame.

> dfs = []

> for df in pan:

www.allitebooks.com
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    idx = pan.major_axis

    idx = pd.MultiIndex.from_tuples(zip([df]*len(idx), idx))

    idx.names = ['ticker', 'timestamp']

    dfs.append(pd.DataFrame(pan[df].values, index=idx,  
columns=pan.minor_axis))

    

> df = pd.concat(dfs)

> df

Data columns:

Open         8820  non-null values

High         8820  non-null values

Low          8820  non-null values

Close        8820  non-null values

Volume       8820  non-null values

Adj Close    8820  non-null values

dtypes: float64(6)

3.	 Perform the analogous operations as in the preceding examples on the newly created 
DataFrame.

# selecting from a MultiIndex isn't much different than the Panel

# (output muted)

> df.ix['gs':'ibm']

> df['Open']

How it works...
The previous example was certainly contrived, but when indexing and statistical techniques 
are incorporated, the power of pandas begins to come through. Statistics will be covered in an 
upcoming recipe.

pandas' indexes by themselves can be thought of as descriptors of a certain point in the 
DataFrame. When ticker and timestamp are the only indexes in a DataFrame, then the 
point is individualized by the ticker, timestamp, and column name. After the point is 
individualized, it's more convenient for aggregation and analysis.

There's more...
Indexes show up all over the place in pandas so it's worthwhile to see some other use cases 
as well.
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Advanced header indexes
Hierarchical indexing isn't limited to rows. Headers can also be represented by MultiIndex, 
as shown in the following command line:

> header_top = ['Price', 'Price', 'Price', 'Price', 'Volume', 'Price']

> df.columns = pd.MultiIndex.from_tuples(zip(header_top, df.columns)

Performing aggregate operations with indexes
As a prelude to the following sections, we'll do a single groupby function here since they work 
with indexes so well.

> df.groupby(level=['tickers', 'day'])['Volume'].mean()

This answers the question for each ticker and for each day (not date), that is, what was the 
mean volume over the life of the data.

Getting data from the Web (Simple)
In this recipe we'll talk about getting data from other random places. Part of pandas' great 
functionality is that it can get data from several sources.

Getting ready
The read_csv method will get more attention in this recipe. It can read in data from a URL if 
properly formatted, such as being formatted like a CSV file. Also there is an example of using a 
built-in function to pull stock data.

How to do it...
1.	 Locate a URL with an accessible dataset.

> url = 'http://s3.amazonaws.com/trenthauck-public/book_data.csv'

2.	 Pass this url to the read_csv method.

#use this df to practice splitting, there's a mix of categorical 
#and numeric data

> df = pd.read_csv(url, df = pd.read_csv)
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How it works...
pandas has a lot of ways to get general data sets. Within the I/O package, there are ways to 
get data from Google Analytics, the World Bank, and single stock OHLC data. Because pandas 
can contain many tabular data sets, it's very easy to use it as an ETL tool, and it probably 
doesn't get as much exposure in that area as it deserves.

There's more...
This book will begin to change now. Most of the effort required to move data around should 
now be understood. Those skills are only tools now. That's the beauty of pandas; a lot of the 
functionalities for slicing all tabular data into less than 20 pages. That's not to say what's 
been presented is comprehensive, but these simple techniques are a large portion of general 
pandas usage.

The Next stage
Going forward, we will focus on answering questions about a larger set of stock data, 
foundational questions such as the variance of closing prices to the more complex  
questions such as if the stock price of IBM and of MSFT are similar.

> from pandas.io.data import DataReader

> gs = DataReader('gs', 'yahoo', '2006-01-01')

> gs.describe()[['Open', 'High']] #the simplest groupby

         Open         High

count  1764.000000  1764.000000

mean    151.655091   153.851729

std      38.977143    39.109340

min      54.000000    54.540000

25%     120.492500   122.955000

50%     152.695000   154.535000

75%     176.562500   178.805000

max     243.550000   250.700000

The previous command grouped the stock price by each column then described it  
with aggregate statistics. It is also easy to apply a particular function as shown in  
the following example:

> gs['year'] = gs.index.year

#will be described later in detail

#muted

> gs.groupby(['year'])['Open'].apply(lambda x: np.mean(x))
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Combining pandas with scikit-learn 
(Advanced)

In this recipe we'll walk through an example of using pandas with scikit-learn, which is a 
Python library for machine learning.

Getting ready
pandas can do so much heavy lifting—in terms of data movement and basic data analysis and 
in terms of elementary statistics and data munging—that you may not need additional tools. 
But eventually, to do sophisticated analysis we integrate pandas with scikit-learn (discussed in 
this recipe) and StatsModels (discussed in the next recipe).

In addition to the previous stats packages, this recipe will introduce simple plotting functions.

In order to carry out the plotting, for the rest of this book, you must have matplotlib installed.

How to do it...
1.	 Create a DataFrame named close from the pan DataFrame mentioned in the  

Using indexes to manipulate objects recipe.
> close = pan.minor_xs('Close')

2.	 The idea of our analysis (and a very contrived one) is that maybe we can predict  
if Ford went up on a given day in comparison with the other stocks in our data set 
that went up that day. First let's take a look at the data.
> close.plot()

#From the graph it appears that there may be a relationship in 
#daily price movements



Instant Data-intensive Apps with pandas How-to

26

3.	 Create a matrix for the features determined by the performance.
> diff = (close - close.shift(1))

> diff = diff[diff < 0].fillna(0)

> diff = diff[diff >= 0].fillna(1)

> diff.head()

        axp  ba  f  gs  ibm 
Date                            
2006-01-03    0   0  0   0    0 
2006-01-04    1   0  0   1    1 
2006-01-05    0   1  0   1    0 
2006-01-06    0   1  0   0    0 
2006-01-09    0   1  0   0    1

4.	 After the data is in a usable form, carry out the rest of the SVM analysis.

> from sklearn import svm

> x = diff[['axp', 'ba', 'ibm', 'gs']]

> y = diff['f']

> obj = svm.SVC()

> ft = obj.fit(x, y)

> ft

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, 
gamma=0.0, 
  kernel='rbf', probability=False, shrinking=True, tol=0.001, 
  verbose=False)

#so given the fit, we can then look at predictions

#all stocks up

> ft.predict([1,1,1,1])

array([ 1.])

#all stocks down

> ft.predict([0,0,0,0])

array([ 0.])
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How it works...
This is by no means a book on machine learning; that said, let's have a quick discussion on 
SVM, the machine learning technique that we have used and also why pandas integrates 
seamlessly with it in most cases.

Support Vector Machine (SVM) is a machine-learning technique used to classify outputs 
based on features. In the preceding example, we created a diff matrix that holds the 
features, and in this case stocks such as AXP, BA, IBM, and GS, as well as an output variable 
F. From a mathematical perspective, SVM constructs a (hyper) plane between the outputs of 
zero and outputs of one. If the inputs we chose with ft.predict([1,1,1,1]) fall on the 
side of the hyper plane where Ford goes up, the SVM predicts 1, if it doesn't, it predicts 0.

pandas integrates very well with scikit-learn; in the same way it integrates well with other 
packages associated with PyData. They all rely on the fast arrays implemented by NumPy. If 
you inspect a pandas object, you'll see that it essentially is a NumPy array with a masterfully 
crafted buffer between the low-level aspects of NumPy and the need for easy data use that 
pandas gives.

There's more
pandas is only one part of the scientific Python ecosystem. pandas is actually fairly new on the 
scene if you consider the fact that NumPy has been in the current form since 2005.

The NumPy object
It's easy to turn a pandas object into a NumPy object. The simplest way is to call the  
values method.

> df = pd.DataFrame(range(10), columns=['ColA'])

> type(df.values)

numpy.ndarray

Other tools
This is really only the start of what one can do with scikit-learn. There are many other tools 
available including basic regression, neural nets, and Gaussian processes. The main takeaway 
from this recipe should be that since all these tools are built on the same NumPy ecosystem, 
it is not difficult to use them together. We'll see another example of that in the next recipe.
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Integrating pandas with statistics packages 
(Advanced)

In this recipe, we'll discuss about integrating pandas with StatsModels, a package for classical 
statistics in Python.

Getting ready
In this recipe, StatsModels will be used to perform a simple regression analysis. There is some 
overlap between the functionalities present within StatsModels and pandas; there is even 
some between StatsModels and the package described earlier, scikit-learn.

StatsModels is built with econometrics in mind. So, a lot of regression types are available, but 
in this recipe we'll do ordinary least squares, which is a very basic linear model. This analysis 
will use the stock closing data from the non-Ford stocks and measure its linear relationship 
with Ford.

How to do it...
1.	 The import process for StatsModels is structured a bit differently from most other 

packages. However, the convention for importing it as a two-letter name is similar.
> import statsmodels.api as sm

2.	 Define the x (exogenous) and y (endogenous) variables. The exogenous variable is 
really a vector that contains the regressors for the endogenous variable.
> x = close[['axp', 'ba', 'gs', 'ibm']]

> y = close['f']

> ols_model = sm.OLS(y,x)

> fit = ols_model.fit()

#looking at the summary in IPython Notebook
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3.	 Select the different t-values from the regression.
> fit.t()

array([  7.14134063,  -5.55239471,   8.68521999,   
34.47609677])

4.	 Get a printout of the confidence intervals of the betas.

> fit.conf_int()

           0         1 
axp  0.067076  0.117870 
ba  -0.078078 -0.037316 
gs   0.013854  0.021937 
ibm  0.045798  0.051323
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There's more
As you play more with pandas, StatsModels is a great place to go and get data sets to  
practice with.

> longly = sm.datasets.longley.load_pandas()

#copper is now an object that has the data (among other things)

> longly.endog.head()

0    60323

1    61122

2    60171

3    61187

4    63221

Name: TOTEMP 

> longly.exog.head()  

GNPDEFL     GNP  UNEMP  ARMED     POP  YEAR

0     83.0  234289   2356   1590  107608  1947

1     88.5  259426   2325   1456  108632  1948

2     88.2  258054   3682   1616  109773  1949

3     89.5  284599   3351   1650  110929  1950

4     96.2  328975   2099   3099  112075  1951

Using Flask for the backend (Advanced)
In this recipe we'll spin up an easy backend with Flask, a micro framework that is great for 
quickly creating a simple web application. It's also very extensible so it can handle larger 
projects.

Getting ready
The next step for building a data application is to convey the analysis. Displaying it on the Web is 
the easiest way to pass the message to others. Thankfully, for passing that message, Flask can 
be used as it is a very simple way of displaying a web page with which pandas can be integrated.

Please note that Flask isn't fully ported to Python 3, so it is advised to use Python 2.7.
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The structure of this recipe is a bit different from the others in the way that you won't interact 
directly with the REPL. Each comment will be the filename, then the subsequent code will be 
the contents of that file.

How to do it...
1.	 Create a file called app.py and populate it with the following text. If you do not have 

Flask installed, run the pip install flask setup.
#app.py
from flask import Flask, render_template

import pandas as pd
import numpy as np

app = Flask(__name__)

@app.route('/report')
def report():
    df = pd.DataFrame(np.random.randn(10,10))
    return render_template('report.html', df=df.to_html())

if __name__ == '__main__':
        app.run()

2.	 Create a folder named templates in the same directory where app.py was created. 
And in that folder, create a file called report.html. In the report.html file enter 
the following text:
#templates/report.html
<!DOCTYPE html>
<html>
    <body>
        <h1>My Great Report</h1>
        #This is the only fancy part… we're clearing the html 
        #from the to_html() method
        {{ df|safe }}
    </body>
</html>

www.allitebooks.com
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3.	 Run python app.py, then go to localhost:5000/report in the browser. It will 
then look like the following image:

The df.to_html() function prints the DataFrame as an HTML table.
The {{ df|safe }} element allows the HTML table to be escaped so 
that it will be displayed properly.

There's more
The to_html() method has many parameters dedicated to the configuration of the HTML 
output. For instance, combining the to_html() method's ability to change the class of the 
DataFrame, it's very easy to output tables in good-looking HTML.

To get bootstrap css ready, download it and then copy the bootstrap.css file into the 
css folder within the static folder. Your folder structure should look as follows:

|-static
|---css
|-templates

And add this line to the head of the report.html document.

        <link rel="stylesheet" type="text/css" href={{ 
        url_for('static', filename='css/bootstrap.css') }}>
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This will give you a table that resembles the following image:

Visualizing pandas objects (Advanced)
The plotting functionality in pandas is getting better with each release. The maintainers have 
a long term view as well. Right now pandas utilizes matplotlib to do its plotting, which has 
served the Python community very well, but there are a fair amount of attempts to combine 
pandas with JavaScript's graphing libraries.

Getting ready
Plotting in pandas is done via an interface with matplotlib, as was done earlier with 
close.plot(). But it's easy to go beyond that for a variety of reasons. pandas offers  
not only simple diagnostic plots, but also some more advanced visualizations such as 
scatter_matrix.

pandas plotting is subjected to matplotlib, which facilitates the simple call above. 
Therefore it is also subjected to the same commands for formatting, which will be  
discussed later. For the plotting sections it is recommended that you use IPython Notebook.
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How to do it...
1.	 Using the same df Close method as in the prior examples, aggregate the 

DataFrame by mean, then plot it using the .plot method.
> close.mean().plot(kind='bar')

2.	 Create a boxplot method, which is another method that is directly accessible from 
the DataFrame object.
> close.boxplot()

3.	 Earlier we were trying to determine the relationship of closing prices between 
stocks—a scatter matrix is a good choice. In order to do more complex visualizations 
than a simple box plot or a bar chart, access pandas.tools.plotting.
> from pandas.tools.plotting import scatter_matrix

> scatter_matrix(close)
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There's more
The number of ways to configure the plots of pandas objects is far too large to cover in a single 
recipe, but there's a huge gallery of examples available online for matplotlib. Many of the 
concepts applicable to matplotlib at large are also applicable to pandas plotting specifically.

Additional options for scatter_matrix
Passing the diagonal parameter to the scatter_matrix function with the kde string will 
display the kernel density estimation instead of a histogram.

> scatter_matrix(close, diagonal='kde')

Other options for producing plots
It is worth investing in learning IPython Notebook in order to share the analysis that  
pandas makes so easily. It's featured throughout the book, but here general plot  
formatting will be discussed.

First execute the following:

>import matplotlib.pyplot as plt

>plt.plot(close)
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It is not by accident that the output looks very similar to the previous plot.

Because of the similarities, modifying the size of the output is quite simple.

For example, IPython has a figsize function via pylab, which allows you to set the size of 
the plot.

Reporting with pandas objects (Medium)
In the final recipe, we'll do an example that is a bit more complex than the one in the recipe in 
which we introduced Flask as a backend. Flask can often be used for dead simple APIs, so in 
this recipe we'll walk through filtering a DataFrame by month via a Flask route. While the data 
will be fed to a template, this recipe can easily be modified to jsonify the DataFrame and do 
something with an API.

Getting ready
The final step is putting all this together to present a report. There are a few ways this could 
be done depending on the desired level of effort, audience, and other factors.

One option for a more formal reporting could be to use the to_latex method to output a 
DataFrame to the laTeX markup—if the name wasn't enough. Combined with the Pweave 
package, writing DataFrames as nicely formatted tables can lead to an aesthetically 
pleasing report.

But the option pursued here is similar to what was used earlier. In fact, that application will 
be used as the basis for this. It will be a simplistic example of taking input from the user and 
reporting an aggregate function in a visually pleasing manner.

How to do it...
1.	 First we need to modify app.py so that it can accept user input to modify to_html 

to work with Bootstrap.
from flask import Flask, render_template
import pandas as pd

app = Flask(__name__)
@app.route('/report/<month>')
def report(month):
    from pandas.io.data import DataReader
    ibm = DataReader('ibm', 'yahoo', '2010-01-01', '2010- 
      12-31')
    df = ibm[ibm.index.month == month]
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    return render_template('report.html', 
    df=df.to_html(classes='table'))
if __name__ == '__main__':
        app.run()

2.	 Next, add custom css to style.css and modify HTML to work with the CSS file. 
First edit the report.html file in the templates folder.
<!DOCTYPE html>
<html>
  <head>
    <link rel="stylesheet" type="text/css" href={{
    url_for('static', filename='css/bootstrap.css') }}>
    <link rel="stylesheet" type="text/css" href={{
     url_for('static', filename='css/style.css') }}>
  </head>
  <body>
    <h1>Month Performance of IBM</h1>
    {{ df|safe }}
  </body>
</html>

3.	 Modify style.css to contain the following:
body {
  margin: auto;
  width: 960px;
    padding-top: 50px;
}

4.	 Now when you start the flask server and go to localhost:5000/report/3, you'll 
get March's performance for IBM.
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How it works…
Flask is a simple Python framework that can become quite powerful when used with a large 
number of extensions. It also serves as a very easy way to set up a basic API for another service. 
This is actually a good way to develop the reporting application. By separating the service that 
delivers data from the visualization, and mark up of the frontend it makes the code easier to 
maintain long-term. It's essentially the same idea behind keeping CSS out of HTML.

There's more
This book has only skimmed the surface of an ever growing toolkit, specifically pandas and 
PyData tools overall. Python has been a good language for a long time, and with a vibrant 
community, hopefully it can continue.

Next steps in Python visualization
There is a lot of desire and work being done to integrate d3.js with pandas to allow for easier 
web graphics. It's already quite simple to display a table in a nice, formatted HTML, but having 
graphics in the browser would be a huge win for pandas.

Also, little knowledge about JavaScript, d3, and pandas can been combined for decomposing 
a DataFrame into an array of arrays.

The future of pandas
Work is constantly being done on pandas. One reason for this is the fair number of 
contributors. Certainly the core developers do a lion's share of the work, but there is a long 
tail of contributors who help to slowly move it forward. Next to learn in pandas is how to 
take a look at the objects themselves, not simply the problems but also how to solve the 
abstractions. In doing so, you'll often find small things that can be fixed.
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