
www.allitebooks.com

http://www.allitebooks.org

Instant Data Intensive
Apps with pandas
How-to

Manipulate, visualize, and analyze your data with pandas

Trent Hauck

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Instant Data Intensive Apps with pandas
How-to

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2013

Production Reference: 1170513

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-558-3

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Trent Hauck

Reviewer
Dan Mantyla

Acquisition Editor
Akram Hussain

Commissioning Editor
Ameya Sawant

Technical Editors
Dheera Meril Paul

Vrinda Nitesh Bhosale

Copy Editor
Alfida Paiva

Project Coordinator
Siddhant Shetty

Proofreaders
Maria Gould

Amy Guest

Graphics
Ronak Dhruv

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

Prachali Bhiwandker

Cover Image
Sheetal Aute

www.allitebooks.com

http://www.allitebooks.org

About the Author

Trent Hauck is a graduate from the University of Kansas. He holds a Bachelor's in
Accounting and a Master's in Finance. Early in his career he worked in Finance and
Insurance, but has transitioned to Marketing and Analytics. Working with data and
finding tools for efficient use has been a theme throughout.

I'd like to thank my friends and family for their support and patience.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Dan Mantyla is a HPC Systems Programmer for Atipa Technologies and has been using
Python since 2009. As a utility infielder of all things, software development and with a BSCS
from the University of Kansas, Dan has done everything from contributing to open source
web frameworks to designing advanced cluster management architectures in Python. He
contributes to HPCwire.com and lives in a beautiful Lawrence, KS, home of Linux New
Media and birthplace of Python Django.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Instant Data-intensive Apps with pandas How-to	 5

Working with files (Simple)	 5
Slicing pandas objects (Simple)	 8
Subsetting data (Simple)	 10
Working with dates (Medium)	 12
Modifying data with functions (Simple)	 14
Combining datasets (Medium)	 18
Using indexes to manipulate objects (Medium)	 20
Getting data from the Web (Simple)	 23
Combining pandas with scikit-learn (Advanced)	 25
Integrating pandas with statistics packages (Advanced)	 28
Using Flask for the backend (Advanced)	 30
Visualizing pandas objects (Advanced)	 33
Reporting with pandas objects (Medium)	 36

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface
Python has long been considered one of the main "glue" languages for programmers and data
analysts due to its easy-to-learn syntax and a vast array of libraries to extend functionality. In
the last two or so years Python has become a language that isn't used for just the glue, but
the analysis itself. A big reason for that is pandas. This book covers pandas and other libraries
by example. The book is sectioned into recipes which start off with the basics, but through
progressively useful (and sometimes difficult) recipes the reader will get a good feel for pandas.

What this book covers
Working with files covers basic DataFrame creation as well as working with files. Very rarely is
data generated from within, so knowing how to work with files is important to get off the ground.

Slicing pandas objects explains how to slice the DataFrame. After following the first recipe a
DataFrame can be created, but the next step is understanding how to slice the DataFrame.
Thankfully, it isn't much different from a native Python array.

Subsetting data covers how to select just the data that is of interest, quite often during data
analysis. Cohort analysis is a good consequence of being able to subset data.

Working with dates will cover the beginning of how to carry out date manipulation. Date math
sucks. pandas makes it suck a little less.

Modifying data with functions teaches how to use functions to modify data. Not only is the
analyst often given too much data, but also the data often needs some work and applying
functions to that data can allow for easier use.

Combining datasets discusses how to take multiple datasets and combine them into one,
which is very similar to using SQL to join datasets.

Using indexes to manipulate objects demonstrates the use of indexes for data manipulation.
Index in pandas allows for easy manipulation of data. One way to think about Indexes is that if
data is made up of metrics and dimensions, indexes are the metadata used to describe those
metrics and dimensions.

www.allitebooks.com

http://www.allitebooks.org

Preface

2

Getting data from the Web explains how to get data from the Web. A hidden gem in
pandas is its ability to get data from all over. This brief recipe will show off this feature.

Combining pandas with scikit-learn explores how to integrate pandas with scikit-learn,
a library for Machine Learning. One of the great things about pandas is its ability to work
with other libraries in the PyData ecosystem.

Integrating pandas with statistics packages will discuss integration of pandas, using
StatsModels a module for classical statistics and econometric analysis.

Using Flask for the backend uses Flask. It's a micro framework that allows for quickly
building a web backend.

Visualizing pandas objects will discuss graphing and charting with pandas. Often large
amounts of data can't be understood just by looking at the raw numbers.

Reporting with pandas objects puts it all together. Using Flask as the backend, the
reader will build a basic reporting app to display a subset of a DataFrame.

What you need for this book
Obviously pandas is required, but in addition to pandas the following Python packages
are required:

ff Numpy

ff SciKit Learn

ff StatsModels

ff Flask

ff matplotlib

ff IPython (not technically required, but highly recommended)

ff Dependencies aren't mentioned; therefore, it is a good idea to use pip to
install these packages which will alert unmet dependencies.

Who this book is for
This book is for the people who interact with tabular datasets and who like Python, and
would like for Python to be a bigger part of how they interact with data. The readers should
be comfortable with Python, but no pandas experience is required.

Preface

3

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "Create an incredibly simple
DataFrame to start."

A block of code is set as follows:

> import pandas as pd #standard convention throughout the book
> import numpy as np
> my_df = pd.DataFrame([1,2,3])
> my_df
 0
0 1
1 2
2 3

Any command-line input or output is written as follows:

>import matplotlib.pyplot as plt

>plt.plot(close)

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

4

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us
with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Instant Data-intensive
Apps with pandas

How-to

Welcome to Instant Data Intensive Apps with pandas How-to. This book is a collection of
recipes with the intention of transforming the reader from being a novice with just a simple
idea of what pandas is, to a highly efficient user of the library. This book is not meant to be
a comprehensive look through all the nooks of pandas, but is meant to get the reader up
speed in the most common tasks.

Working with files (Simple)
In this recipe we'll introduce the pandas DataFrame by doing some quick exercises,
then move onto one of the most fundamental parts of data analysis; getting data in and
out of files.

Getting ready
Most of the rest of the book is working with data once it's in a pandas data structure, but this
recipe is about those structures themselves and getting data in and out of them. Open your
interpreter, preferably IPython.

Instant Data-intensive Apps with pandas How-to

6

How to do it...
1.	 Create an incredibly simple DataFrame to start with. A DataFrame can handle lists,

NumPy arrays, dicts of strings, and more.
> import pandas as pd

 #standard convention throughout the book

> import numpy as np

> my_df = pd.DataFrame([1,2,3])

> my_df

 0

0 1

1 2

2 3

2.	 The first example is too simple, and isn't useful. Add some column headers and index
for more information about the DataFrame.
> cols = ['A', 'B']

> idx = pd.Index(list('name'), name='a')

> data = np.random.normal(10, 1, (4, 2))

> df = pd.DataFrame(data, columns=cols, index=idx)

df

 A B

a

n 9.945858 10.607128

a 10.742073 8.968044

m 10.178861 7.293450

e 10.251922 10.657038

#a single column is a series

> df.A

a

n 9.945858

a 10.742073

m 10.178861

e 10.251922

Create a Panel by passing a dictionary of DataFrames to the
constructor.

multiple DataFrames is a panel

> pan = pd.Panel({'df1': df, 'df2': df})

> pan

Instant Data-intensive Apps with pandas How-to

7

<class 'pandas.core.panel.Panel'>

Dimensions: 2 (items) x 4 (major_axis) x 2 (minor_axis)

Items axis: df1 to df2

Major_axis axis: n to e

Minor_axis axis: A to B

3.	 There are many ways to do I/O with pandas; in this step we will write the DataFrame
out to several mediums.

#write df to different file types

> df.to_csv('df.csv')

> df.to_latex('df.tex') #useful with Pweave

> df.to_excel('df.xlsx') #requires extra packages

> df.to_html('df.html')

> df.to_string()

' A B\na \na 9.945858
10.607128\nb 10.742073 8.968044\nc 10.178861 7.293450\nd
10.251922 10.657038'

#read df from the files, output methods aren't symmetric

#often there's an intermediate step

> pd.read_csv('df.csv')

#back and forth with json

#json isn't officially supported, the reasons why are beyond #the
scope of this book

> with open('df.json', 'w') as f:

 json.dump(df.to_dict(), f)

> with open('df.json') as f:

 df_json = json.load(f)

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Instant Data-intensive Apps with pandas How-to

8

How it works...
Most of the file input and output in pandas is the orchestration behind the scenes of
formatting the value outputs, and then writing those values to a file. There are many
options for formatting file output. The to_csv method takes many parameters. Some
of the more common parameters are as follows:

ff sep: It specifies the value to separate with, in the output file

ff index: It is a Boolean that decides whether or not to print the index

ff na_rep: It specifies what to substitute for the na values

The following snippet writes the DataFrame df and writes it to a file called file.tsv,
and it's formatted according to the parameters passed to the method.

> df.to_csv('file.tsv', sep='\t', index=False, na_rep='NULL')

There's more...
In addition to standard file input and output functionalities, pandas has several built-in niceties.

Parsing dates at file read time
Using Panda's sophisticated date parser, a CSV can read and parse dates at the same time,
as shown in the following command line:

> df = pd.read_csv('dates.csv', date_parser=True, parse_dates='YYYY-MM-
DD', index_col=0)

Besides the parsing capabilities, pandas also has a very handy date_range function,
which returns a range of dates determined by the inputs. For example, it's very easy to
get the months of 2012 in a series. This is shown in the following command line:

> pd.date_range('2012-01-01', '2012-12-31', freq='M')

Accessing data from a public source
pandas can also read CSV data from the Web, assuming http://www.example.com/
data.csv is the URL. Take a look at the following example:

> df = pd.read_csv(url)

Slicing pandas objects (Simple)
In this recipe we'll walk through some basic functionalities about slicing pandas objects. If
you're familiar with array slicing, this will be very familiar to you, but with a few idiosyncrasies
for pandas.

Instant Data-intensive Apps with pandas How-to

9

Getting ready
Open up your interpreter, and execute the following steps:

How to do it...
1.	 Create a simple DataFrame to explore the different slicing abilities of pandas.

> dim = (10, 3)

> df = pd.DataFrame(np.random.normal(0, 1, dim), columns ['one',
'two', 'three'])

2.	 Select the first two rows of the column named 'one'.
> df['one'][:2]

0 -0.492156

1 -0.476418

Name: one

3.	 Pass an array of column names instead of 'one'.
> df[['one', 'two']][:2]

 one two

0 -0.492156 1.978798

-0.476418 -0.225360

4.	 Use a negative index to navigate backwards through the DataFrame.
> df[['one', 'two']][-3:-2]

 one two

7 -0.392156 1.478198

5.	 Select every fifth row from the DataFrame df.
> df[::5]

 one two three

0 0.317379 -0.551568 -1.617768

5 -0.171340 2.025818 0.206053

6.	 Use the head and tail functions to easily select the top and bottom of the
DataFrame.

> df.head(2)

 one two

0 -0.492156 1.978798

1 -0.476418 -0.225360

Instant Data-intensive Apps with pandas How-to

10

How it works...
At some level, pandas objects behave similar to NumPy arrays; they are after all abstractions
built on top of them. However, because we have more metadata about the data structures we
can use that to our advantage.

After the initial pandas object is created, simple slicing occurs according to the
following structure:

> df[column names][rows]

Here column names is a string (or an array, if multiple columns) and rows is the number of
rows that we wish to use.

There's more...
The methods that have already been described are very useful at a higher level, but there are
more granular operations available.

Direct index access
The .ix command is an advanced method for selecting and slicing a DataFrame. Taking the
sample from the preceding example, df.ix[1:3 ,['one', 'two']] = 10 will not only
select the specified subset of the data, but also set its value equal to 10. The .xs command
has a more explicit interface for working with indexes.

Resetting the index
Often, the index of the DataFrame becomes out of alignment when slicing data. In pandas, the
easiest way to reset an index is with the reset_index() method of the DataFrame object.

Subsetting data (Simple)
In this recipe we'll select parts of a DataFrame based on elements within the DataFrame. For
example, select data only if it's greater than zero.

Getting ready
Open up your interpreter and follow along with the interpreter's session in the following How to
do it… section.

Instant Data-intensive Apps with pandas How-to

11

How to do it...
1.	 Create a sample DataFrame df to manipulate.

> d = {'Cost': np.random.normal(100, 5, 100),

 'Profit': np.random.normal(50, 5, 100),

 'CatA': np.random.choice(['a', 'b', 'c'], 100),

 'CatB': np.random.choice(['e', 'f', 'g'], 100)}

> df = pd.DataFrame(d)

2.	 Pass a Boolean value to the DataFrame to select only those rows that evaluate to True.

> df[df.CatA == 'a'][:5]

 CatA CatB Cost Profit

0 a g 102.716045 48.585048

1 a g 103.342873 44.285223

3 a f 100.563783 52.609880

4 a f 92.057118 53.030021

10 a f 97.494169 44.849129

> mask = np.logical_and(df.CatA=='a', df.CatB=='e')

> df[mask][:5]

CatA CatB Cost Profit

15 a e 103.532647 44.625927

20 a e 101.780083 48.415357

57 a e 95.795958 46.033187

76 a e 96.831145 53.876999

77 a e 100.991794 44.308626

> a_e = ['a', 'e']

> CatA_a_e = df[df.CatA.isin(a_e)]

> only_a_e = CatA_a_e[CatA_a_e.CatB.isin(a_e)]

> only_a_e[:5]

 CatA CatB Cost Profit

15 a e 103.532647 44.625927

20 a e 101.780083 48.415357

57 a e 95.795958 46.033187

76 a e 96.831145 53.876999

77 a e 100.991794 44.308626

www.allitebooks.com

http://www.allitebooks.org

Instant Data-intensive Apps with pandas How-to

12

How it works...
Subsetting is an integral part of data analysis, and is very simple to do in pandas. A nice
pattern for creating subsets is to create mask arrays, which are arrays of Booleans, and
then passing those into the DataFrame. For example, executing df[df.CatA.isin(a_e)]
in the interpreter will return an array of the same length as df.CatA.

There's more...
There are more powerful pandas functions that make selecting subsets of DataFrames
more concise.

The where and mask commands
In addition to masking data based on arrays, pandas contains many helper functions to
subset and assign values to data. The two main ones are df.where() and df.mask(),
which are complements. The df.CatA.where(df.CatA == 'a') function doesn't
automatically remove data like in the previous examples; it creates a copy of df.CatA with
NaN in places where df.CatA doesn't equals to 'a'.

Substituting with the where command
Taking the where command one step further, it's easy to replace the NaN element in one
step. For example, df.CatA.where(df.CatA == 'a', 'e') will substitute NaN where
df.CatA is equal to 'a'; however, because there is the second argument, the NaN will be
replaced by 'e'.

Working with dates (Medium)
In this recipe we'll talk about working with dates in pandas. Because pandas was initially
written with financial time series, it has a lot of out of the box date functionalities.

Getting ready
Open up your interpreter and follow the command progression in the following section.
Difficult financial analysis was the mother of pandas creation; therefore, it has many efficient
and easy ways for dealing with dates.

How to do it...
1.	 Let's examine the date_range functionality within pandas.

> Y2K = pd.date_range('2000-01-01', '2000-12-31')

> Y2K

Instant Data-intensive Apps with pandas How-to

13

class 'pandas.tseries.index.DatetimeIndex'>

[2000-01-01 00:00:00, ..., 2000-12-31 00:00:00]

Length: 366, Freq: D, Timezone: None

#it is very easy to create date range of a different frequency

> Y2K_hourly = pd.date_range('2000-01-01', '2000-12-31', freq='H')

> Y2K_hourly

<class 'pandas.tseries.index.DatetimeIndex'>

[2000-01-01 00:00:00, ..., 2000-12-31 00:00:00]

Length: 8761, Freq: H, Timezone: None

2.	 Create a time series and slice it by passing a range of dates to Series.

> Y2K_temp = pd.Series(np.random.normal(75, 10, len(Y2K)),
index=Y2K)

> Y2K_temp.head()

2000-01-01 77.425233

2000-01-02 67.949946

2000-01-03 74.079854

2000-01-04 83.048726

2000-01-05 88.435598

Freq: D

> Y2K_temp['2000-01-01':'2000-01-02']

2000-01-01 77.425233

2000-01-02 67.949946

Freq: D

> from datetime import date

> Y2K_temp[date(2000, 1, 1):date(2000, 1, 2)]

2000-01-01 77.425233

2000-01-02 67.949946

Freq: D

#pandas has functionality to move into and out-of date scopes

> Y2K_temp.resample('H', fill_method='pad')[:1]

2000-01-01 01:00:00 77.425233

Freq: H

Instant Data-intensive Apps with pandas How-to

14

How it works...
The date_range function is defined by dates and frequencies. See the following section for
the various frequency designations. The easiest way is to define a start date, end date, and
frequency, but there are other ways as well. You can also change the frequency, or resample
to a smaller or larger time interval.

There's more...
pandas adds a lot more functionalities to handle dates. These are mostly convenient methods
because working with dates is a necessary evil of data analysis.

Alternative date range specification
Time series in pandas don't have to be defined by a start and end date. In pandas, it is
possible to represent the time of the Series as an interval of dates with a common period
between data points. For example, if we want to create a Series just like Y2K, we can do
so as follows:

pd.date_range(start='2012-01-01', periods=366, freq='D')

Upsampling and downsampling Series
pandas offers the ability to move up and down the granularity of a time series. For example,
given a Series of random numbers s for all the days in 2012, calculating the sum for each
month is done by the following formula:

s.resample('M', how='sum')

In the preceding example, the 'M' variable specifies that we're upsampling to month.
Downsampling is also done in a similar way; however, pandas provides functionalities for
handling the disaggregation in a convenient way.

Modifying data with functions (Simple)
In this recipe we'll walk through the process of applying a function to a DataFrame. This is
a simple but very important part of data analysis. Rarely, if ever, will a data in raw form be
sufficient for data analysis. Often, that data needs to be transformed into some other form,
and to do that you'll need to apply functions to pandas objects.

Getting ready
Open up your interpreter, and type the following commands successively.

Instant Data-intensive Apps with pandas How-to

15

How to do it...
1.	 Create a simple Series of simulated open and close for a year.

> data = {'Open': np.random.normal(100, 5, 366),

 'Close': np.random.normal(100, 5, 366)}

> df = pd.DataFrame(data)

> df

<class 'pandas.core.frame.DataFrame'>

Int64Index: 366 entries, 0 to 365

Data columns:

Close 366 non-null values

Open 366 non-null values

dtypes: float64(2)

2.	 Apply element-wise functions.
> df.apply(np.mean, axis=1).head(3)

0 103.313391

1 99.668034

2 97.875755

#passing a lambda is a common pattern

> df.apply(lambda x: (x['Open'] - x['Close']), axis=1).head(3)

0 6.519618

1 8.407379

2 16.838463

#define a more complex function

> def percent_change(x):

 return (x['Open'] - x['Close']) / x['Open']

> df.apply(percent_change, axis=1).head(3)

0 0.061175

1 0.080940

2 0.158413

#change axis, axis = 0 is default

Instant Data-intensive Apps with pandas How-to

16

> df.apply(np.mean, axis=0)

Close 99.739967

Open 99.631989

3.	 Define a standalone function that takes two arguments. One is the element itself,
and another argument.

> def greater_than_x(element, x):

 return element > x

> df.Open.apply(greater_than_x, args=(100,)).head(3)

0 False

1 True

2 False

Name: Open

#This can be used as in conjunction with subset capabilities

> mask = df.Open.apply(greater_than_x, args=(100,))

> df.Open[mask].head()

1 100.713672

3 105.492173

4 100.171148

6 104.810547

7 110.539181

Name: Open

#It's also possible to do a rolling apply, this applys #aggregate
functions over a certain number of rows

#For instance we can get the five day moving average

> pd.rolling_apply(df.Close, 5, np.mean)

#There are actually a several built-in rolling functions

> pd.rolling_corr(df.Close, df.Open, 5)[:5]

0 NaN

1 NaN

2 NaN

3 NaN

4 0.137234 #why are the first 4 NaN

Instant Data-intensive Apps with pandas How-to

17

How it works...
pandas sits on top of NumPy; thus pandas takes advantage of the broadcasting
capabilities inherent within NumPy. For example, execute the following script to
see the differences in NumPy:

> a = [1, 2, 3]

> a * 2

[1, 2, 3, 1, 2, 3]

> b = np.array(a)

> b * 2

[2, 4, 6]

Understanding the underlying NumPy structure is beyond the scope, but is extremely
helpful in the long run.

There's more...
pandas makes additional use of the apply function in place of the for loop function.
Quite often it's necessary to do more complex operations on an entire column(s) of a
DataFrame, but broadcasting or looping won't cut it.

Other apply options
There are other apply functions in the family. For example, the applymap function
operates in a slightly different manner than the apply function. The applymap function
operates on a single value and returns a single value, whereas the apply function takes
an array-like data structure as an input.

Alternative solutions
Functions can also be applied iteratively; however, this tends to make the functions slow
and leads to unnecessarily verbose code.

> for x in df.Open:

 some_function(x)

vs.

> df.Open.apply(some_function)

Instant Data-intensive Apps with pandas How-to

18

Combining datasets (Medium)
Given that we have several different types of DataFrames, how can we best join them into
one DataFrame for additional use? We'll also talk about merging and appending them in the
following There's more... section.

Getting ready
Open up your interpreter and type the following given commands successively. Very rarely will
an analyst receive data in a single flat file. Quite often, data will need to be either appended
to the bottom of the DataFrame or attached to the side. For example, if a set of data comes
directly from a normalized database, the analyst will need to combine them by joining them
using Primary and Foreign Keys.

How to do it...
1.	 Create two basic DataFrames df1 and df2.

> rng = pd.date_range('2000-01-01', '2000-01-05')

> tickers = pd.DataFrame(['MSFT', 'AAPL'], columns= ['Ticker'])

> df1 = pd.DataFrame({'TickerID': [0]*5,

 'Price': np.random.normal(100, 10, 5)}, index=rng)

> df2 = pd.DataFrame({'TickerID': [1]*5,

 'Price': np.random.normal(100, 10, 5)}, index=rng)

2.	 The concat method is similar to the union command in SQL.
#select the first and last value from concat

> pd.concat([df1, df2]).ix[[0, -1]]

 Price TickerID

2000-01-01 76.937336 0

2000-01-05 89.070339 1

3.	 Merge the two DataFrames into a single DataFrame.

> pd.merge(df1, df2, left_index=True, right_index=True)

 Price_x TickerID_x Price_y TickerID_y

2000-01-01 76.937336 0 79.707124 1

Instant Data-intensive Apps with pandas How-to

19

2000-01-02 127.788659 0 107.694863 1

2000-01-03 99.990745 0 106.456367 1

2000-01-04 112.125489 0 81.928378 1

2000-01-05 101.941148 0 89.070339 1

> pd.merge(df1, tickers, right_index=True, left_on='TickerID')

 Price TickerID Ticker

2000-01-01 76.937336 1 MSFT

2000-01-02 127.788659 1 MSFT

2000-01-03 99.990745 1 MSFT

2000-01-04 112.125489 1 MSFT

2000-01-05 101.941148 1 MSFT

How it works...
If the reader is familiar with R's functionalities, then he/she can see that joining data in
pandas is not much different than in R. We'll cover more on indexes later, but thinking of the
default index as a Primary Key, or the combination of hierarchical index as a Composite Key,
elucidates the joining process.

There's more...
There are many options that can be supplied to the merge and join methods to modify the
DataFrames' behaviour.

Merge and join details
The merge (and join) method uses a how parameter, which is a string of the join database.
The possible values are 'left', 'right', 'outer', and 'inner'.

Specifying outputs in join
The join function (not the previously mentioned one) is easy to use to join DataFrames.

> f1.join(df2, lsuffix=".1", rsuffix=".2")

Use suffixes to disambiguate columns if the DataFrames have similar column names.
join defaults to joining of indexes, but the on parameter can be used to specify a column.
For example:

a_df.join(another_df, on='columnA')

Instant Data-intensive Apps with pandas How-to

20

Concatenation
One way to join the datasets is to just stack them on top of each other. This is similar to a
union command in SQL. Given two DataFrames, One and Two, a concatenation is done in
the following way:

pd.concat([One, Two])

A list can also be used. Although it will be awkward for two DataFrames, it makes much more
sense in the event of 50 DataFrames.

Using indexes to manipulate objects
(Medium)

Indexes are not advanced because they're difficult, but if we want to be an expert with pandas
it is important that we use them well. We will discuss hierarchical indexes in the following
There's more... section.

Getting ready
A good understanding of indexes in pandas is crucial to quickly move the data around. From
a business intelligence perspective, they create a distinction similar to that of metrics and
dimensions in an OLAP cube. To illustrate this point, this recipe walks through getting stock
data out of pandas, combining it, then reindexing it for easy chomping.

How to do it...
1.	 Use the DataReader object to transfer stock price information into a DataFrame and

to explore the basic axis of Panel.
> from pandas.i git push -u origin master

 o.data import DataReader

> tickers = ['gs', 'ibm', 'f', 'ba', 'axp']

> dfs = {}

> for ticker in tickers:

 dfs[ticker] = DataReader(ticker, "yahoo", '2006-01-01')

a yet undiscussed data structure, in the same way the a
DataFrame is a collection of Series, a Panel is a collection of
DataFrames

> pan = pd.Panel(dfs)

> pan

Instant Data-intensive Apps with pandas How-to

21

<class 'pandas.core.panel.Panel'>

Dimensions: 5 (items) x 1764 (major_axis) x 6 (minor_axis)
Items axis: axp to ibm

Major_axis axis: 2006-01-03 00:00:00 to 2013-01-04 00:00:00
Minor_axis axis: Open to Adj Close

> pan.items

Index([axp, ba, f, gs, ibm], dtype=object)

> pan.minor_axis

Index([Open, High, Low, Close, Volume, Adj Close], dtype=object)

> pan.major_axis

<class 'pandas.tseries.index.DatetimeIndex'>
[2006-01-03 00:00:00, ..., 2013-01-04 00:00:00]
Length: 1764, Freq: None, Timezone: None

2.	 Use the axis selectors to easily compute different sets of summary statistics.
> pan.minor_xs('Open').mean()

axp 46.227466
ba 70.746451
f 9.135794
gs 151.655091
ibm 129.570969

major axis is sliceable as well

> day_slice = pan.major_axis[1]

> pan.major_xs(day_slice)[['gs', 'ba']]

 ba gs

Open 70.08 127.35

High 71.27 128.91

Low 69.86 126.38

Close 71.17 127.09

Volume 3165000.00 4861600.00

Adj Close 60.43 118.12

Convert the Panel to a DataFrame.

> dfs = []

> for df in pan:

www.allitebooks.com

http://www.allitebooks.org

Instant Data-intensive Apps with pandas How-to

22

 idx = pan.major_axis

 idx = pd.MultiIndex.from_tuples(zip([df]*len(idx), idx))

 idx.names = ['ticker', 'timestamp']

 dfs.append(pd.DataFrame(pan[df].values, index=idx,
columns=pan.minor_axis))

> df = pd.concat(dfs)

> df

Data columns:

Open 8820 non-null values

High 8820 non-null values

Low 8820 non-null values

Close 8820 non-null values

Volume 8820 non-null values

Adj Close 8820 non-null values

dtypes: float64(6)

3.	 Perform the analogous operations as in the preceding examples on the newly created
DataFrame.

selecting from a MultiIndex isn't much different than the Panel

(output muted)

> df.ix['gs':'ibm']

> df['Open']

How it works...
The previous example was certainly contrived, but when indexing and statistical techniques
are incorporated, the power of pandas begins to come through. Statistics will be covered in an
upcoming recipe.

pandas' indexes by themselves can be thought of as descriptors of a certain point in the
DataFrame. When ticker and timestamp are the only indexes in a DataFrame, then the
point is individualized by the ticker, timestamp, and column name. After the point is
individualized, it's more convenient for aggregation and analysis.

There's more...
Indexes show up all over the place in pandas so it's worthwhile to see some other use cases
as well.

Instant Data-intensive Apps with pandas How-to

23

Advanced header indexes
Hierarchical indexing isn't limited to rows. Headers can also be represented by MultiIndex,
as shown in the following command line:

> header_top = ['Price', 'Price', 'Price', 'Price', 'Volume', 'Price']

> df.columns = pd.MultiIndex.from_tuples(zip(header_top, df.columns)

Performing aggregate operations with indexes
As a prelude to the following sections, we'll do a single groupby function here since they work
with indexes so well.

> df.groupby(level=['tickers', 'day'])['Volume'].mean()

This answers the question for each ticker and for each day (not date), that is, what was the
mean volume over the life of the data.

Getting data from the Web (Simple)
In this recipe we'll talk about getting data from other random places. Part of pandas' great
functionality is that it can get data from several sources.

Getting ready
The read_csv method will get more attention in this recipe. It can read in data from a URL if
properly formatted, such as being formatted like a CSV file. Also there is an example of using a
built-in function to pull stock data.

How to do it...
1.	 Locate a URL with an accessible dataset.

> url = 'http://s3.amazonaws.com/trenthauck-public/book_data.csv'

2.	 Pass this url to the read_csv method.

#use this df to practice splitting, there's a mix of categorical
#and numeric data

> df = pd.read_csv(url, df = pd.read_csv)

Instant Data-intensive Apps with pandas How-to

24

How it works...
pandas has a lot of ways to get general data sets. Within the I/O package, there are ways to
get data from Google Analytics, the World Bank, and single stock OHLC data. Because pandas
can contain many tabular data sets, it's very easy to use it as an ETL tool, and it probably
doesn't get as much exposure in that area as it deserves.

There's more...
This book will begin to change now. Most of the effort required to move data around should
now be understood. Those skills are only tools now. That's the beauty of pandas; a lot of the
functionalities for slicing all tabular data into less than 20 pages. That's not to say what's
been presented is comprehensive, but these simple techniques are a large portion of general
pandas usage.

The Next stage
Going forward, we will focus on answering questions about a larger set of stock data,
foundational questions such as the variance of closing prices to the more complex
questions such as if the stock price of IBM and of MSFT are similar.

> from pandas.io.data import DataReader

> gs = DataReader('gs', 'yahoo', '2006-01-01')

> gs.describe()[['Open', 'High']] #the simplest groupby

 Open High

count 1764.000000 1764.000000

mean 151.655091 153.851729

std 38.977143 39.109340

min 54.000000 54.540000

25% 120.492500 122.955000

50% 152.695000 154.535000

75% 176.562500 178.805000

max 243.550000 250.700000

The previous command grouped the stock price by each column then described it
with aggregate statistics. It is also easy to apply a particular function as shown in
the following example:

> gs['year'] = gs.index.year

#will be described later in detail

#muted

> gs.groupby(['year'])['Open'].apply(lambda x: np.mean(x))

Instant Data-intensive Apps with pandas How-to

25

Combining pandas with scikit-learn
(Advanced)

In this recipe we'll walk through an example of using pandas with scikit-learn, which is a
Python library for machine learning.

Getting ready
pandas can do so much heavy lifting—in terms of data movement and basic data analysis and
in terms of elementary statistics and data munging—that you may not need additional tools.
But eventually, to do sophisticated analysis we integrate pandas with scikit-learn (discussed in
this recipe) and StatsModels (discussed in the next recipe).

In addition to the previous stats packages, this recipe will introduce simple plotting functions.

In order to carry out the plotting, for the rest of this book, you must have matplotlib installed.

How to do it...
1.	 Create a DataFrame named close from the pan DataFrame mentioned in the

Using indexes to manipulate objects recipe.
> close = pan.minor_xs('Close')

2.	 The idea of our analysis (and a very contrived one) is that maybe we can predict
if Ford went up on a given day in comparison with the other stocks in our data set
that went up that day. First let's take a look at the data.
> close.plot()

#From the graph it appears that there may be a relationship in
#daily price movements

Instant Data-intensive Apps with pandas How-to

26

3.	 Create a matrix for the features determined by the performance.
> diff = (close - close.shift(1))

> diff = diff[diff < 0].fillna(0)

> diff = diff[diff >= 0].fillna(1)

> diff.head()

 axp ba f gs ibm
Date
2006-01-03 0 0 0 0 0
2006-01-04 1 0 0 1 1
2006-01-05 0 1 0 1 0
2006-01-06 0 1 0 0 0
2006-01-09 0 1 0 0 1

4.	 After the data is in a usable form, carry out the rest of the SVM analysis.

> from sklearn import svm

> x = diff[['axp', 'ba', 'ibm', 'gs']]

> y = diff['f']

> obj = svm.SVC()

> ft = obj.fit(x, y)

> ft

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,
gamma=0.0,
 kernel='rbf', probability=False, shrinking=True, tol=0.001,
 verbose=False)

#so given the fit, we can then look at predictions

#all stocks up

> ft.predict([1,1,1,1])

array([1.])

#all stocks down

> ft.predict([0,0,0,0])

array([0.])

Instant Data-intensive Apps with pandas How-to

27

How it works...
This is by no means a book on machine learning; that said, let's have a quick discussion on
SVM, the machine learning technique that we have used and also why pandas integrates
seamlessly with it in most cases.

Support Vector Machine (SVM) is a machine-learning technique used to classify outputs
based on features. In the preceding example, we created a diff matrix that holds the
features, and in this case stocks such as AXP, BA, IBM, and GS, as well as an output variable
F. From a mathematical perspective, SVM constructs a (hyper) plane between the outputs of
zero and outputs of one. If the inputs we chose with ft.predict([1,1,1,1]) fall on the
side of the hyper plane where Ford goes up, the SVM predicts 1, if it doesn't, it predicts 0.

pandas integrates very well with scikit-learn; in the same way it integrates well with other
packages associated with PyData. They all rely on the fast arrays implemented by NumPy. If
you inspect a pandas object, you'll see that it essentially is a NumPy array with a masterfully
crafted buffer between the low-level aspects of NumPy and the need for easy data use that
pandas gives.

There's more
pandas is only one part of the scientific Python ecosystem. pandas is actually fairly new on the
scene if you consider the fact that NumPy has been in the current form since 2005.

The NumPy object
It's easy to turn a pandas object into a NumPy object. The simplest way is to call the
values method.

> df = pd.DataFrame(range(10), columns=['ColA'])

> type(df.values)

numpy.ndarray

Other tools
This is really only the start of what one can do with scikit-learn. There are many other tools
available including basic regression, neural nets, and Gaussian processes. The main takeaway
from this recipe should be that since all these tools are built on the same NumPy ecosystem,
it is not difficult to use them together. We'll see another example of that in the next recipe.

Instant Data-intensive Apps with pandas How-to

28

Integrating pandas with statistics packages
(Advanced)

In this recipe, we'll discuss about integrating pandas with StatsModels, a package for classical
statistics in Python.

Getting ready
In this recipe, StatsModels will be used to perform a simple regression analysis. There is some
overlap between the functionalities present within StatsModels and pandas; there is even
some between StatsModels and the package described earlier, scikit-learn.

StatsModels is built with econometrics in mind. So, a lot of regression types are available, but
in this recipe we'll do ordinary least squares, which is a very basic linear model. This analysis
will use the stock closing data from the non-Ford stocks and measure its linear relationship
with Ford.

How to do it...
1.	 The import process for StatsModels is structured a bit differently from most other

packages. However, the convention for importing it as a two-letter name is similar.
> import statsmodels.api as sm

2.	 Define the x (exogenous) and y (endogenous) variables. The exogenous variable is
really a vector that contains the regressors for the endogenous variable.
> x = close[['axp', 'ba', 'gs', 'ibm']]

> y = close['f']

> ols_model = sm.OLS(y,x)

> fit = ols_model.fit()

#looking at the summary in IPython Notebook

Instant Data-intensive Apps with pandas How-to

29

3.	 Select the different t-values from the regression.
> fit.t()

array([7.14134063, -5.55239471, 8.68521999,
34.47609677])

4.	 Get a printout of the confidence intervals of the betas.

> fit.conf_int()

 0 1
axp 0.067076 0.117870
ba -0.078078 -0.037316
gs 0.013854 0.021937
ibm 0.045798 0.051323

Instant Data-intensive Apps with pandas How-to

30

There's more
As you play more with pandas, StatsModels is a great place to go and get data sets to
practice with.

> longly = sm.datasets.longley.load_pandas()

#copper is now an object that has the data (among other things)

> longly.endog.head()

0 60323

1 61122

2 60171

3 61187

4 63221

Name: TOTEMP

> longly.exog.head()

GNPDEFL GNP UNEMP ARMED POP YEAR

0 83.0 234289 2356 1590 107608 1947

1 88.5 259426 2325 1456 108632 1948

2 88.2 258054 3682 1616 109773 1949

3 89.5 284599 3351 1650 110929 1950

4 96.2 328975 2099 3099 112075 1951

Using Flask for the backend (Advanced)
In this recipe we'll spin up an easy backend with Flask, a micro framework that is great for
quickly creating a simple web application. It's also very extensible so it can handle larger
projects.

Getting ready
The next step for building a data application is to convey the analysis. Displaying it on the Web is
the easiest way to pass the message to others. Thankfully, for passing that message, Flask can
be used as it is a very simple way of displaying a web page with which pandas can be integrated.

Please note that Flask isn't fully ported to Python 3, so it is advised to use Python 2.7.

Instant Data-intensive Apps with pandas How-to

31

The structure of this recipe is a bit different from the others in the way that you won't interact
directly with the REPL. Each comment will be the filename, then the subsequent code will be
the contents of that file.

How to do it...
1.	 Create a file called app.py and populate it with the following text. If you do not have

Flask installed, run the pip install flask setup.
#app.py
from flask import Flask, render_template

import pandas as pd
import numpy as np

app = Flask(__name__)

@app.route('/report')
def report():
 df = pd.DataFrame(np.random.randn(10,10))
 return render_template('report.html', df=df.to_html())

if __name__ == '__main__':
 app.run()

2.	 Create a folder named templates in the same directory where app.py was created.
And in that folder, create a file called report.html. In the report.html file enter
the following text:
#templates/report.html
<!DOCTYPE html>
<html>
 <body>
 <h1>My Great Report</h1>
 #This is the only fancy part… we're clearing the html
 #from the to_html() method
 {{ df|safe }}
 </body>
</html>

www.allitebooks.com

http://www.allitebooks.org

Instant Data-intensive Apps with pandas How-to

32

3.	 Run python app.py, then go to localhost:5000/report in the browser. It will
then look like the following image:

The df.to_html() function prints the DataFrame as an HTML table.
The {{ df|safe }} element allows the HTML table to be escaped so
that it will be displayed properly.

There's more
The to_html() method has many parameters dedicated to the configuration of the HTML
output. For instance, combining the to_html() method's ability to change the class of the
DataFrame, it's very easy to output tables in good-looking HTML.

To get bootstrap css ready, download it and then copy the bootstrap.css file into the
css folder within the static folder. Your folder structure should look as follows:

|-static
|---css
|-templates

And add this line to the head of the report.html document.

 <link rel="stylesheet" type="text/css" href={{
 url_for('static', filename='css/bootstrap.css') }}>

Instant Data-intensive Apps with pandas How-to

33

This will give you a table that resembles the following image:

Visualizing pandas objects (Advanced)
The plotting functionality in pandas is getting better with each release. The maintainers have
a long term view as well. Right now pandas utilizes matplotlib to do its plotting, which has
served the Python community very well, but there are a fair amount of attempts to combine
pandas with JavaScript's graphing libraries.

Getting ready
Plotting in pandas is done via an interface with matplotlib, as was done earlier with
close.plot(). But it's easy to go beyond that for a variety of reasons. pandas offers
not only simple diagnostic plots, but also some more advanced visualizations such as
scatter_matrix.

pandas plotting is subjected to matplotlib, which facilitates the simple call above.
Therefore it is also subjected to the same commands for formatting, which will be
discussed later. For the plotting sections it is recommended that you use IPython Notebook.

Instant Data-intensive Apps with pandas How-to

34

How to do it...
1.	 Using the same df Close method as in the prior examples, aggregate the

DataFrame by mean, then plot it using the .plot method.
> close.mean().plot(kind='bar')

2.	 Create a boxplot method, which is another method that is directly accessible from
the DataFrame object.
> close.boxplot()

3.	 Earlier we were trying to determine the relationship of closing prices between
stocks—a scatter matrix is a good choice. In order to do more complex visualizations
than a simple box plot or a bar chart, access pandas.tools.plotting.
> from pandas.tools.plotting import scatter_matrix

> scatter_matrix(close)

Instant Data-intensive Apps with pandas How-to

35

There's more
The number of ways to configure the plots of pandas objects is far too large to cover in a single
recipe, but there's a huge gallery of examples available online for matplotlib. Many of the
concepts applicable to matplotlib at large are also applicable to pandas plotting specifically.

Additional options for scatter_matrix
Passing the diagonal parameter to the scatter_matrix function with the kde string will
display the kernel density estimation instead of a histogram.

> scatter_matrix(close, diagonal='kde')

Other options for producing plots
It is worth investing in learning IPython Notebook in order to share the analysis that
pandas makes so easily. It's featured throughout the book, but here general plot
formatting will be discussed.

First execute the following:

>import matplotlib.pyplot as plt

>plt.plot(close)

Instant Data-intensive Apps with pandas How-to

36

It is not by accident that the output looks very similar to the previous plot.

Because of the similarities, modifying the size of the output is quite simple.

For example, IPython has a figsize function via pylab, which allows you to set the size of
the plot.

Reporting with pandas objects (Medium)
In the final recipe, we'll do an example that is a bit more complex than the one in the recipe in
which we introduced Flask as a backend. Flask can often be used for dead simple APIs, so in
this recipe we'll walk through filtering a DataFrame by month via a Flask route. While the data
will be fed to a template, this recipe can easily be modified to jsonify the DataFrame and do
something with an API.

Getting ready
The final step is putting all this together to present a report. There are a few ways this could
be done depending on the desired level of effort, audience, and other factors.

One option for a more formal reporting could be to use the to_latex method to output a
DataFrame to the laTeX markup—if the name wasn't enough. Combined with the Pweave
package, writing DataFrames as nicely formatted tables can lead to an aesthetically
pleasing report.

But the option pursued here is similar to what was used earlier. In fact, that application will
be used as the basis for this. It will be a simplistic example of taking input from the user and
reporting an aggregate function in a visually pleasing manner.

How to do it...
1.	 First we need to modify app.py so that it can accept user input to modify to_html

to work with Bootstrap.
from flask import Flask, render_template
import pandas as pd

app = Flask(__name__)
@app.route('/report/<month>')
def report(month):
 from pandas.io.data import DataReader
 ibm = DataReader('ibm', 'yahoo', '2010-01-01', '2010-
 12-31')
 df = ibm[ibm.index.month == month]

Instant Data-intensive Apps with pandas How-to

37

 return render_template('report.html',
 df=df.to_html(classes='table'))
if __name__ == '__main__':
 app.run()

2.	 Next, add custom css to style.css and modify HTML to work with the CSS file.
First edit the report.html file in the templates folder.
<!DOCTYPE html>
<html>
 <head>
 <link rel="stylesheet" type="text/css" href={{
 url_for('static', filename='css/bootstrap.css') }}>
 <link rel="stylesheet" type="text/css" href={{
 url_for('static', filename='css/style.css') }}>
 </head>
 <body>
 <h1>Month Performance of IBM</h1>
 {{ df|safe }}
 </body>
</html>

3.	 Modify style.css to contain the following:
body {
 margin: auto;
 width: 960px;
 padding-top: 50px;
}

4.	 Now when you start the flask server and go to localhost:5000/report/3, you'll
get March's performance for IBM.

Instant Data-intensive Apps with pandas How-to

38

How it works…
Flask is a simple Python framework that can become quite powerful when used with a large
number of extensions. It also serves as a very easy way to set up a basic API for another service.
This is actually a good way to develop the reporting application. By separating the service that
delivers data from the visualization, and mark up of the frontend it makes the code easier to
maintain long-term. It's essentially the same idea behind keeping CSS out of HTML.

There's more
This book has only skimmed the surface of an ever growing toolkit, specifically pandas and
PyData tools overall. Python has been a good language for a long time, and with a vibrant
community, hopefully it can continue.

Next steps in Python visualization
There is a lot of desire and work being done to integrate d3.js with pandas to allow for easier
web graphics. It's already quite simple to display a table in a nice, formatted HTML, but having
graphics in the browser would be a huge win for pandas.

Also, little knowledge about JavaScript, d3, and pandas can been combined for decomposing
a DataFrame into an array of arrays.

The future of pandas
Work is constantly being done on pandas. One reason for this is the fair number of
contributors. Certainly the core developers do a lion's share of the work, but there is a long
tail of contributors who help to slowly move it forward. Next to learn in pandas is how to
take a look at the objects themselves, not simply the problems but also how to solve the
abstractions. In doing so, you'll often find small things that can be fixed.

Thank you for buying
Instant Data Intensive Apps
with pandas How-to

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning IPython for
Interactive Computing and
Data Visualization
ISBN: 978-1-78216-993-2 Paperback: 138 pages

Learn IPython for interactive Python programming,
high-performance numerical computing, and data
visualization

1.	 A practical step-by-step tutorial which will help you
to replace the Python console with the powerful
IPython command-line interface

2.	 Use the IPython notebook to modernize the way
you interact with Python

3.	 Perform highly efficient computations with NumPy
and pandas

4.	 Optimize your code using parallel computing
and Cython

Python 3 Web Development
Beginner's Guide
ISBN: 978-1-84951-374-6 Paperback: 336 pages

Use Python to create, theme, and deploy unique
web applications

1.	 Build your own Python web applications
from scratch

2.	 Follow the examples to create a number
of different Python-based web applications,
including a task list, book database, and
wiki application

3.	 Have the freedom to make your site your own
without having to learn another framework

Please check www.PacktPub.com for information on our titles

MySQL for Python
ISBN: 978-1-84951-018-9 Paperback: 440 pages

Integrate the flexibility of Python and the power of MySQL
to boost the productivity of your Python applications

1.	 Implement the outstanding features of Python's
MySQL library to their full potential

2.	 See how to make MySQL take the processing
burden from your programs

3.	 Learn how to employ Python with MySQL to power
your websites and desktop applications

4.	 Apply your knowledge of MySQL and Python
to real-world problems instead of hypothetical
scenarios

Instant Django 1.5 Application
Development Starter
ISBN: 978-1-78216-356-5 Paperback: 78 pages

Jump into Django with this hands-on guide to practical
web application development with Python

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Work with the database API to create a data-
driven app

3.	 Learn Django by creating a practical web
application

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Instant Data-intensive Apps with pandas
How-to
	Working with files (Simple)
	Slicing pandas objects (Simple)
	Subsetting data (Simple)
	Working with dates (Medium)
	Modifying data with functions (Simple)
	Combining datasets (Medium)
	Using indexes to manipulate objects (Medium)
	Getting data from the Web (Simple)
	Combining pandas with scikit-learn (Advanced)
	Integrating pandas with statistics packages (Advanced)
	Using Flask for the backend (Advanced)
	Visualizing pandas objects (Advanced)
	Reporting with pandas objects (Medium)

