
www.allitebooks.com

http://www.allitebooks.org

Highcharts Cookbook

80 hands-on recipes to create, integrate, and extend
dynamic and interactive charts in your web projects

Nicholas Terwoord

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Highcharts Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 1120314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-968-8

www.packtpub.com

Cover Image by Catherine Garland (catherinegarland@comcast.net)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Nicholas Terwoord

Reviewers
Gert Vaartjes

Juanjo Fernandez

Jugal Thakkar

Steve P. Sharpe

Acquisition Editors
Nikhil Karkal

Kartikey Pandey

Content Development Editor
Balaji Naidu

Technical Editors
Arwa Manasawala

Veena Pagare

Manal Pednekar

Anand Singh

Copy Editors
Roshni Banerjee

Sayanee Mukherjee

Deepa Nambiar

Project Coordinator
Wendell Palmer

Proofreaders
Mario Cecere

Stephen Copestake

Indexer
Priya Subramani

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Nicholas Terwoord is a software developer, professional geek, and graduate from the
University of Waterloo with a Bachelor of Computer Science (Honors). When not developing
software, which is not often, he can be found helping his wife, Amanda, with her business,
or more likely working his way through a growing list of distractions on Steam. He can be
reached at http://nt3r.com.

He is happily employed at Willet Inc., a company in Kitchener, Ontario that develops Second
Funnel, a marketing solution for brands, and online retailers. More information can be found
at http://secondfunnel.com.

I would like to take this opportunity to thank my lovely wife, Amanda, for
being so supportive as I wrote this book as well as my good friends who
encouraged me through the long (and sometimes arduous) journey towards
completing my first published work.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Gert Vaartjes started as a specialist in Geographical Information Systems. While
customizing these programs, he was intrigued by what's actually under the hood, and thus
started his passion for programming. This programming journey led him through all kinds of
programming languages. As a technical consultant, he worked for several governmental and
non-governmental companies. He has been developing software for more than 10 years.
Now he's working as a senior developer at Highsoft, working on the Highcharts products
and focusing on backend integrations of Highcharts.

When not programming, you can find him working on his small-scale farm in Norway,
where he grows potatoes, chases sheep, chops wood, and does other basic stuff.

Juanjo Fernandez is a software developer with 10 years of professional experience.
He was self taught in Flash when he began using it and tried to combine the best possible
design/programming and user experience.

For several years he has been in the backend, struggling with databases and servers,
using PHP, MySQL, and Apache, but he's also a certified Java programmer. Now he has
returned to the area of development that he is passionate about, the frontend. He's a
strong advocate of web standards, and he's very excited about the future and the great
possibilities offered by HTML5, CSS3, and JavaScript.

Currently he works in Incubio, a startup incubator located in Barcelona, and helps to
develop frontend of several startups such as ZeedProtection, Quizlyse, NotedLinks,
Signaturit, and Trakty. Also, he is working on his first personal project, Wallastic.

If you want to know him, you can follow him on Twitter and his Twitter handle is @juanjo_fr.

www.allitebooks.com

http://www.allitebooks.org

Jugal Thakkar is a very passionate and enthusiastic software developer since his youth.
He is also curious about new technologies and relishes sharing knowledge. Enterprise
web applications are his forte, with usability and user friendliness as his prime focus. He
is an active supporter of the Stack Overflow community and is one of the top respondents
to Highcharts' queries. He appreciates open source technologies and is a keen follower of
Android. He loves to solve Sudoku, Rubik's Cube, and play ping pong in his free time. All the
views expressed are his own and do not reflect those of his employer or anyone else.

Steve P. Sharpe has been a software engineer for more than a decade, specializing
in designing and building scalable web apps. Primarily a Ruby programmer, he is also a
Zend Certified Engineer and has solid knowledge of frontend technologies and utilizes best
practices and latest industry trends.

He is Chief Technology Officer at EthOS Labs, an Ethnographic Research Solution company,
and he has been instrumental in the company's growth and innovation. He has previously
worked with various well-known brands and organizations including Coca-Cola, ITV, NHS,
Sonneti ®, Autocar, Oasis, Drambuie®, Motorola, and KPMG.

Follow him on Twitter; his Twitte handle is @stevepsharpe.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Highcharts 7

Introduction 7
Finding documentation on Highcharts 8
Creating your first chart 8
Including multiple series in one chart 12
Displaying multiple charts in one graph 14
Using the same data in multiple charts 17
Creating spiderweb graphs for comparison 19
Creating custom tooltips 21
Adding extra content to tooltips 24
Making charts internationalizable/localizable 26
Creating a new theme 30
Creating reusable graphs 32

Chapter 2: Processing Data 35
Introduction 35
Working with different data formats 35
Using AJAX for polling charts 38
Using WebSockets for real-time updates 43
Drilling down and filtering data 49
Using CSV, XML, or JSON with Highcharts 53
Handling cross-domain data 55
Handling dates 57

Chapter 3: Handling User Interaction 63
Introduction 63
Creating a simple poll 63
Making graphs zoomable 67
Creating master details graphs 69

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Slicing and dicing time data 74
Annotating a chart 79
Developing dynamic tooltips 82
Taking actions on other events 88
Adding events after the chart is rendered 91

Chapter 4: Sharing Charts on the Web 93
Introduction 93
Rendering charts on the server side 93
Exporting images to different formats 96
E-mailing static charts 97
E-mailing dynamic charts 99
Preparing charts for printing 102

Chapter 5: Integrating with ExtJS 107
Introduction 107
Setting up a simple ExtJS project 108
Using Highcharts in ExtJS 110
Connecting your chart using Ext.data.Store 115
Observing live data using other Store types 117
Connecting your chart to Ext.app.Controller 120
Creating charts that inherit from other charts 124

Chapter 6: Integrating with jQuery 127
Introduction 127
Creating charts with jQuery 128
Using the data- attributes to load charts 129
Binding events using jQuery.on 131
Handling user interaction with jQuery 133
Updating a chart on the backend 134
Using jQuery UI tabs and Highcharts 137
Modifying charts using jQuery UI widgets 140
Putting charts in pages using jQuery Mobile 145

Chapter 7: Integrating with the Yii Framework 151
Introduction 151
Setting up a simple Yii project 151
Creating a chart from model data 155
Generating a chart with a Yii CLI command 163
Creating charts with a RESTful controller 166
Updating the model when the chart changes 173

Chapter 8: Integrating with Other Frameworks 181
Introduction 181

iii

Table of Contents

Using NodeJS as a data provider 182
Using Django as a data provider 185
Using Flask/Bottle as a data provider 190
Integrating with Backbone 194
Using AngularJS data bindings and controllers 204
Using NodeJS for chart rendering 209

Chapter 9: Extending Highcharts 213
Introduction 213
Wrapping existing functions 213
Creating new chart types 216
Creating your own Highcharts extension 221
Adding new functions to your extension 222
JSHinting your code 226
Unit testing your new extension 227
Packaging your extension 231
Minifying your code 233

Chapter 10: Math and Statistics 235
Introduction 235
Graphing equations 235
Showing descriptive statistics with box plots 240
Plotting distributions with jStat 243
Displaying experimental data with scatter plots 246
Displaying percentiles with area range graphs 249

Chapter 11: System Integration 257
Introduction 257
Exploring hard drive usage 258
Understanding CPU and memory usage graphs 264
Showing Git commits by contributor 269
Showing Git commits over time 272

Chapter 12: Other Inspirational Uses 275
Introduction 275
Demonstrating time zones with gauge charts 276
Exploring a Highcharts stopwatch 281
Counting words per minute 285
Measuring the distance travelled 290
Plotting tweets per day 295
Creating a compass 301
Creating a weight-watching application 304

Index 311

Preface
Welcome to Highcharts Cookbook. Highcharts is a charting library that makes it easy to
create interactive, configurable charts using just pure JavaScript and HTML5. It supports a
variety of different chart types, has an extensive set of documentation, and even has helpful
support available. This book explores how it is possible to integrate Highcharts into a variety
of applications, focusing on some of the more common applications.

If it seems daunting to get started with something new, such as Highcharts, there's no need to
worry. Everyone has been where you are now: beginning a journey to learn something new. In
this case, if you're unfamiliar with Highcharts (or even JavaScript) that's fine; step by step, this
book will walk you through simple recipes in the first few chapters to get you up-to-speed and
make you more comfortable.

If you've used Highcharts before, then you can take a look through the different recipes at
your leisure, and you can work to improve your understanding of the library and how it can
fit into applications. You can build on the examples to create something great. Each recipe
and chapter will help you to focus on a particular area to grow and improve.

If you're a JavaScript expert, then this book will provide a lot of shortcuts. There's no need
to reinvent the wheel; just find out what you want to do to accomplish your goals, get a feel
for what needs to be done, and use this book to speed yourself along. Whether you are an
expert or a novice, I hope that you find the recipes of this book useful, and that they aid
you in accomplishing your goals.

What this book covers
Chapter 1, Getting Started with Highcharts, covers the basics of setting up a simple page
with Highcharts and quickly explores common scenarios a developer may encounter.

Chapter 2, Processing Data, dives into the different input sources for a chart and how those
sources connect to our chart.

Preface

2

Chapter 3, Handling User Interaction, shows how we can customize charts to provide richer
interactions and visualizations.

Chapter 4, Sharing Charts on the Web, demonstrates how we can send charts to others,
online or offline.

Chapter 5, Integrating with ExtJS, shows how we can start building rich desktop-like
applications using Highcharts.

Chapter 6, Integrating with jQuery, covers how we can leverage jQuery and its various plugins
to create and display charts.

Chapter 7, Integrating with the Yii Framework, demonstrates how we can use Highcharts
in a PHP application.

Chapter 8, Integrating with Other Frameworks, looks at some of the more popular Web
frameworks and tools and how we can get them up and running with Highcharts.

Chapter 9, Extending Highcharts, takes us one step further into working with the internals
of Highcharts and how we can create our own chart extensions.

Chapter 10, Math and Statistics, dives into how we can use Highcharts to graph and display
data of a more mathematical and scientific nature.

Chapter 11, System Integration, covers a few interesting connections with system resources
and how we can use Highcharts to visualize that data.

Chapter 12, Other Inspirational Uses, takes a look at how we can use what we've learned in
the previous chapters as well as leveraging HTML5 APIs and other odds and ends to create
really interesting applications without a lot of code.

What you need for this book
While this book focuses primarily on Highcharts, there are a number of tools that we will
leverage to make the recipes possible. Usually, all the required tools are mentioned in the
Getting ready section of a recipe. The following are a few of the required tools:

 f Node.js (http://nodejs.org/): This is a platform for creating JavaScript
applications on the server side. This book was written assuming version 0.10.24
or higher is being used.

 f Bower (http://bower.io/): This is a package manager for our JavaScript
dependencies. This book was written assuming version 1.2.8 or higher is being used.

 f Git (http://git-scm.com): This is a distributed version control system needed
for certain recipes and to install certain packages with Bower. This book was written
assuming version 1.8 or higher is being used.

Preface

3

 f Python (http://www.python.org/): This is a programming language used in
some recipes for server-side examples. This book was written assuming version 2.7
of Python is being used, and it is unlikely that these examples will work in Python 3
or higher.

 f pip (http://pip-installer.org/): This is a package manager for Python.
This book was written assuming version 1.4 or higher is being used.

 f PHP (http://php.net): This is a general-purpose scripting language used in some
recipes for server-side examples. This book was written assuming version 5.3 or
higher is being used.

 f Web browser: Any recent version of Firefox, Chrome, Internet Explorer, or Safari
should work fine.

Who this book is for
I've done my best to make this book as easy to read as possible for anyone with a technical
background. However, this book will be easier to understand and more useful for JavaScript
developers or other developers working on web applications.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Charts
are created by making instances of a Highcharts.Chart object, either directly via its
constructor or indirectly using plugins developed for different JavaScript frameworks."

A block of code is set as follows:

{
 "name": "my-project",
 "dependencies": {
 "highcharts": "~3.0",
 "jquery": "^1.9"
 }
}

Preface

4

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

var options = {
 // ...
 tooltip: {
 formatter: function() {
 return 'We have ' + this.y + ' ' + this.point.options.
 category + 's'
 }
 }
}

Any command-line input or output is written as follows:

pip install bottle==0.11.6

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the By hour button,
as shown in the following screenshot."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

5

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/9688OT_Images.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

1
Getting Started with

Highcharts

In this chapter, we will cover the following recipes:

 f Finding documentation on Highcharts

 f Creating your first chart

 f Including multiple series in one chart

 f Displaying multiple charts in one graph

 f Using the same data in multiple charts

 f Creating spiderweb graphs for comparison

 f Creating custom tooltips

 f Adding extra content to tooltips

 f Making charts internationalizable/localizable

 f Creating a new theme

 f Creating reusable graphs

Introduction
This chapter explains the basics of creating and rendering a chart using Highcharts and
how to work with different Highcharts options to configure charts. All charts are created by
providing a chart with the options object; options allows the user to define the behavior
and look and feel of the chart.

Charts are created by making instances of a Highcharts.Chart object, either directly
via its constructor or indirectly using plugins developed for different JavaScript frameworks.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Highcharts

8

Finding documentation on Highcharts
Highcharts has a very well-documented Application Programming Interface (API), and while
many of the examples we go through will include details of the various options and settings
used, this book is by no means a complete reference.

How to do it...
To get started, follow the ensuing instructions:

1. Visit http://docs.highcharts.com to find an introduction to core concepts
in Highcharts, learn about chart features, and get an introduction to working
with charts.

2. Highcharts also has a searchable API document found at http://api.
highcharts.com, which has details of every method, property, and configuration
option available to set up a chart. Many of the configuration options in the API
include links to examples where it is possible to see the option in action or modify
an existing chart.

3. Lastly, there are the demos that can be found either at http://www.highcharts.
com/demo, or within the examples folder from the Highcharts ZIP file. Demos show
a variety of examples used and configurations to give some idea of what Highcharts
is capable of creating.

Creating your first chart
To create and render a chart, we'll need to create a Highcharts.Chart instance and
provide it with some options.

Getting ready
There are a few things that we need to do before we get started:

1. Install bower (http://bower.io), a package manager for JavaScript.

2. Create a bower.json file that lists information about our project, most importantly,
its dependencies, as shown in the following code:
{
 "name": "my-project",
 "dependencies": {
 "highcharts": "~3.0",
 "jquery": "^1.9"
 }
}

Chapter 1

9

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

3. From the same folder, run bower install to install our dependencies.

4. Create a simple HTML page where we will create our chart, as shown in the
following code:

<html>
 <head>
 <style type='text/css'>
 #container {
 width: 300px;
 height: 300px;
 border: 1px solid #000;
 padding: 20px;
 margin: 10px;
 }
 </style>
 </head>
 <body>
 <div id='container'></div>

 <script src='./bower_components/jquery/jquery.js'></
 script>
 <script src='./bower_components/highcharts/highcharts-all.
 js'></script>

 <script type='text/javascript'>
 $(document).ready(function() {
 // our code will go here
 });
 </script>
 </body>
</html>

In our examples, we will be using jQuery, but there are plugins and
adapters for many different toolkits and frameworks.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Getting Started with Highcharts

10

How to do it...
To get started, follow the ensuing instructions:

1. First, we create an options object that will define what our chart looks like,
as shown in the following code:
var options = {
 chart: {
 type: 'bar'
 },
 title: {
 text: 'Creating your first chart'
 },
 series: [{
 name: 'Bar #1'
 data: [1, 2, 3, 4]
 }]
}

It is possible to create a chart with an empty set of options (that is,
options = {}) but this generates a very bland chart.

2. Next, we render our new chart by calling the .highcharts jQuery function on some
element on the page. In this case, we select an element on the page with an id value
equal to container, as shown in the following code:

 var options = {
 chart: {
 type: 'bar'
 },
 title: {
 text: 'Creating your first chart'
 },
 series: [{
 name: 'Bar #1',
 data: [1,2,3,4]
 }]
 };

 $('#container').highcharts(options);

Chapter 1

11

The following is the rendered chart:

How it works...
The .highcharts function is actually a part of a jQuery plugin used to create
the Highcharts.Chart objects. It uses jQuery's element selector (for example,
$('#container')) to find the element we want to render the chart to and renders the
chart inside that element. Even if we supply a more general selector (for example, $('div')),
it will only render the first element.

There's more...
As previously mentioned, it is not necessary to use jQuery to render a chart. We can create a
chart instance manually using the chart.renderTo option and the Highcharts.Chart
constructor. Using this method, we can either pass in the ID of an element or a reference to
an element, as shown in the following code:

 // Using an element id
 var options = {
 chart: {
 renderTo: 'container'
 },
 // ...
 }

Getting Started with Highcharts

12

 var chart = new Highcharts.Chart(options);

 // Using an element reference
 var otherOptions = {
 chart: {
 renderTo: document.getElementById('container');
 },
 // ...
 }

 var otherChart = new Highcharts.Chart(options);

Including multiple series in one chart
While it is useful to display one data series, we may want to add more data to a chart. For
example, we may want to compare two different sets of data over the same period of time.

In Highcharts, we can display additional data in a separate series array. The series arrays
are just lists of data with a name. In Highcharts, this list is represented by a JavaScript array.

How to do it...
To get started, follow the ensuing instructions:

1. Define options for our chart as in the previous recipe, as follows:
var options = {
 chart: {
 type: 'bar'
 },
 title: {
 text: 'Including multiple series in one chart'
 },
 series: [{
 name: 'Bar #1',
 data: [1, 2, 3, 4]
 }]
};

Chapter 1

13

2. Add a second series object as shown in the following code:
var options = {
 chart: {
 type: 'bar'
 },
 title: {
 text: 'Including multiple series in one chart'
 },
 series: [{
 name: 'Bar #1',
 data: [1, 2, 3, 4]
 }, // Add a new series
 {
 name: 'Bar #2',
 data: [4, 3, 2, 1]
 }]
};

3. Finally, render the chart using the highcharts function $('#container').
highcharts(options)". This output is shown in the following screenshot:

Getting Started with Highcharts

14

There's more...
If we want to add another series to the chart after it has been rendered, you can use the
addSeries method and pass it in the series object. We can get a reference to the chart
in one of the following two ways:

 f Create the chart, then call .highcharts() with the appropriate jQuery selector,
as shown in the following code:
$('#container').highcharts(options);
var chart = $('#container').highcharts();

 f When creating the chart, chain together a call to .highcharts()as follows:

var chart = $('#container').highcharts(options).highcharts();

Using the chaining method, we can add a series as follows:

 var chart = $('#container').highcharts(options).highcharts();
 chart.addSeries({
 name: 'Series 2',
 data: [4,3,2,1]
 });

The addSeries method also has a few other arguments that can be passed. The
addSeries method also has optional second and third arguments that determine whether
the chart should be redrawn (defaults to true) and how the new series should be animated
(defaults to true, but we could supply an animation object that is best described in the
documentation).

Displaying multiple charts in one graph
We are not limited to displaying a single series in a chart, and likewise, we are not limited to
displaying a single type of chart within the same chart. In some circumstances, we may want
to display the same data using different types of charts.

Earlier, we saw that a series object can have data associated with it, such as name.
Similarly, a series object can also have a type, which changes how the data is displayed
in the rendered chart.

Chapter 1

15

How to do it...
To get started, follow the ensuing instructions:

1. Define our chart options as we did in the previous recipe, as shown in the
following code:
var options = {
 chart: {
 type: 'bar'
 },
 title: {
 text: 'Displaying multiple charts in one graph'
 },
 series: [{
 name: 'Bar #1',
 data: [1, 2, 3, 4]
 }, {
 name: 'Bar #2',
 data: [4, 3, 2, 1]
 }]

2. Add a new series to our chart with the type pie using the following code:

var options = {
 chart: {
 type: 'bar'
 },
 title: {
 text: 'Displaying multiple charts in one graph'
 },
 series: [{
 name: 'Bar #1',
 data: [1, 2, 3, 4]
 }, {
 name: 'Bar #2',
 data: [4, 3, 2, 1]
 }, { // add new series
 type: 'pie',
 data: [1,2,3,4],
 center: [0,0]
 }]
}

Getting Started with Highcharts

16

The following is the rendered chart:

How it works...
By default, Highcharts will use the chart.type string to determine how the different series
should be displayed. However, if a series has its own type provided, it will use that type when
it is rendered in the chart.

There's more...
Just changing the type string of the series will probably result in something ugly or otherwise
undesired, especially in the case of a pie chart where it will render on top of the existing chart.
Fortunately, it is possible to adjust the positioning and style of a pie series by providing a
center option.

If we wanted to enable the labels on the pie chart, we could set dataLabels.enabled to
true, as shown in the following code:

 var options = {
 // ...
 series: [{
 type: 'pie',

Chapter 1

17

 name: 'Bar #1',
 data: [1,2,3,4],
 dataLabels: {
 enabled: true
 }
 }]
 };

In fact, a series object can have any options that you would normally set inside
plotOptions.<chartType>. For more details, visit http://api.highcharts.com/
highcharts#plotOptions.

Using the same data in multiple charts
Oftentimes, we have data that we want to display in different ways on the same page, but
we may not want to show that data in the same chart. For example, we may want to have an
aggregate view of a set of data in one chart and another where we can see the same data
over a time period. In this case, we want to share the same data in different charts.

How to do it...
To get started, follow the ensuing instructions:

1. Create a set of data or have a set of data available, as shown in the following code:
var data = [1,2,3,4];

2. Define options for our two charts as shown in the following code:
var chartOptions = {
 // other fields omitted for brevity
 series: [{
 name: 'X',
 data: data
 }];
};

var chart2Options = {
 // other fields omitted for brevity
 series: [{
 name: 'Y',
 data: data
 }];
}

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Highcharts

18

3. Render our two charts as shown in the following code:
$('#container').highcharts(chartOptions);
$('#container2').highcharts(chart2Options);

4. If the data changes, call <series>.setData on each chart to reflect the changes
in the charts as follows:

// e.g. data = [1, 9, 9, 2, 1, 1, 2, 4];
$('#container').highcharts().series[0].setData(data);
$('#container2').highcharts().series[0].setData(data);

The following chart reflects these changes:

How it works...
Highcharts uses the same reference to the data for both charts. Unfortunately, it does not
maintain a reference to the original data, so we need to call setData to update the chart
with the new data.

Chapter 1

19

Creating spiderweb graphs for comparison
We like to compare different things, but sometimes, the things that we want to compare
differ in more than just one or two axes. Rather than displaying multiple graphs, we can
amalgamate these different axes into one graph and use the spiderweb graph.

How to do it...
To get started, follow the ensuing instructions:

1. Define options for our basic chart, setting the polar property of the chart to true
using the following code:
var options = {
 chart: {
 polar: true,
 type: 'line'
 },
 title: {
 text: 'Creating spiderweb graphs for comparison'
 }
}

To create a spiderweb graph, we'll need to make a polar chart. The
previous options will change our display from an ordinary two-axes chart
into an arbitrary-axes chart that is more like a circle.

2. Label the axes of our graph by setting xAxis.categories, as shown in the
following code:
options= {
 // ...
 xAxis: {
 categories: ["Strength", "Speed", "Defense"],
 tickmarkPlacement: 'on'
 }
};

Getting Started with Highcharts

20

3. Set yAxis.gridLineInterpolation to polygon to make the chart less rounded,
as shown in the following code:
var options= {
 // ...
 yAxis: {
 gridLineInterpolation: 'polygon'
 }
};

4. Define the data for our spiderweb graph as follows:

var options = {
 // ...
 series: [{
 name: 'Fighter',
 data: [10, 1, 5],
 pointPlacement: 'on'
 }, {
 name: 'Rogue',
 data: [5, 10, 1],
 pointPlacement: 'on'
 }]
};

The following is the rendered graph:

Chapter 1

21

Creating custom tooltips
So far, we haven't done a lot with the behavior of charts. One common behavior in charts
is the tooltip object, which can display useful information about a data point in the graph
when a user hovers the mouse over that point. Tooltips are added by default to a graph,
but it is useful to be able to extend this basic functionality.

How to do it...
To get started, perform the following instructions:

1. Create a function for our tooltip as follows:
var formatter = function () {
 var tooltipMessage = '';

 tooltipMessage += 'X value: ' + this.x + '
';
 for (var i=0; i < this.points.length; i++) {
 tooltipMessage += 'Y[' + i + '] value: ' + this.points[i].
 y+ '
'
 }

 return tooltipMessage;
}

2. Define options for our chart as follows:
var options = {
 chart: {
 type: 'bar'
 },
 title: {
 text: 'Creating custom tooltips'
 },
 series: [{
 name: 'Bar #1',
 data: [1,2,3,4]
 }, {
 name: 'Bar #2',
 data: [4,3,2,1]
 }]
};

Getting Started with Highcharts

22

3. Assign this function to our options as tooltip.formatter, as shown in the
following code:

var options = {
 // ...
 tooltip: {
 formatter: formatter,
 borderColor: '#f00',
 backgroundColor: '#ccc',
 shared: true
 }
};

The following is the output chart:

Chapter 1

23

The formatter function will render any string within the tooltip window.
The this keyword refers to the data point that we are hovering over, so we
can access the x and y values of the current point via this.x or this.y.
We can also change the appearance of the tooltip via options such as
changing the border with tooltip.borderColor or the background with
tooltip.backgroundColor.
It is even possible to disable the tooltip entirely by setting tooltip.
enabled to false.
More details on tooltip options can be found at http://api.
highcharts.com/highcharts#tooltip or in the individual
plot options for a chart at http://api.highcharts.com/
highcharts#plotOptions.

There's more...
By default, tooltips are not shared—every series displays only the data for its own tooltip. If you
want to have all the data to be available from a single tooltip, you can set tooltip.shared
to true. In this case, if we are using tooltip.formatter, we need to change how we refer
to our y values, that is, instead of this.y, we need to use this.points[i].y (where i is
the series index). In fact, any value that we would normally access via this.<value> needs
to be accessed via this.points[i].<value> when we have the shared Boolean value
set to true. The one exception to this rule is this.x, which is always common.

If we wanted, we could also make our tooltips look better by adding HTML to our formatter
function. The formatter function supports the , , <i>, , and

tags, which gives us a bit more flexibility in how we design our tooltips. This is shown in the
following code:

var options = {
 // ...
 tooltip: {
 formatter: function() {
 return 'The value at this point is ' + this.y +
 '';
 }
 }
}

Getting Started with Highcharts

24

Adding extra content to tooltips
We've already seen that tooltips can add useful behavior to our charts; however, we are not
merely limited to changing colors or text in the tooltip. It is possible to access more data than
just what Highcharts provides.

How to do it...
To get started, follow the ensuing instructions:

1. Create or make available a set of additional data that we would like to use in our
tooltips as follows:
var altName = ["apple", "banana", "pear"];

2. Define options for our chart, including our series and its additional data, as shown
in the following code:
var options = {
 chart: {
 type: 'bar'
 },
 title: {
 text: 'Adding extra content to tooltips'
 },
 series: [{
 data: [{
 'x': 1,
 'y': 4,
 'category': 'Apple'
 }, {
 'x': 2,
 'y': 3,
 'category': 'Pear'
 }, {
 'x': 3,
 'y': 2,
 'category': 'Banana'
 }]
 }]
};

Chapter 1

25

3. Access our desired fields in the formatter function via this.point.options as
shown in the following code:

var options = {
 // ...
 tooltip: {
 formatter: function() {
 return 'We have ' + this.y + ' ' + this.point.options.
 category + 's'
 }
 }
}

The following is the output chart:

Getting Started with Highcharts

26

How it works...
Highcharts supports multiple data formats. Earlier, we were using its most basic format—an
array of numeric data. However, as in this example, we have seen that the data array can be
more complex. A data series can support two other formats—an array of objects with named
values (as we used previously) and an array of the [x,y] coordinates, as you can see in the
following code:

var options = {
 // ...
 series: {
 data: [
 [1,1],
 [2,2],
 [3,3]
]
 }
}

When we specify data as an array of objects, we can access the information about the
individual points via this.point.options. Since the formatter function is just a
JavaScript function, we can do whatever we might normally do inside a JavaScript function,
such as displaying our additional information.

Making charts internationalizable/
localizable

Making charts for our own purposes is fine; however, in a business environment, we may
be working with people who need to view charts in a different language or localize the
chart. Fortunately, Highcharts makes it possible to change language and display settings
by changing Highcharts global settings.

Getting ready...
We will need to have access to some translated words. We could use Google Translate or a
similar service; but for our purposes, we will use French, just to ensure that changes have
been made.

Chapter 1

27

How to do it...
To get started, follow the ensuing instructions:

1. Define our chart options as shown in the following code:
var options = {
 chart: {
 type: 'spline'
 },
 xAxis: {
 type: 'datetime',
 dateTimeLabelFormats: {
 month: '%B'
 }
 },
 title: {
 text: 'Making charts internationalizable / localizable'
 },
 series: [{
 name: 'Temperature?',
 data: [
 [Date.UTC(2013, 0, 1), 1],
 [Date.UTC(2013, 1, 1), 10],
 [Date.UTC(2013, 2, 1), 100],
 [Date.UTC(2013, 3, 1), 1000],
 [Date.UTC(2013, 4, 1), 10000],
 [Date.UTC(2013, 5, 1), 1000],
 [Date.UTC(2013, 6, 1), 100],
 [Date.UTC(2013, 7, 1), 1000],
 [Date.UTC(2013, 8, 1), 10000],
 [Date.UTC(2013, 9, 1), 1000],
 [Date.UTC(2013, 10, 1), 100],
 [Date.UTC(2013, 11, 1), 1],
]
 }]
};

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Highcharts

28

2. Create a lang object with the appropriate keys for the text that we want to change,
as shown in the following code snippet. For example, if we want to change the months,
we would create lang.months. We can also change the thousands separator (lang.
thousandsSep) or symbols (lang.numericSymbols) we use for different counters
(for example, normally 1,000 = 1K, but we can instead use 1 mille).
var lang = {
 months: ['Janvier', 'Février', 'Mars', 'Avril', 'Mai',
 'Juin', 'Juillet', 'Août', 'Septembre', 'Octobre', 'Novembre',
 'Décembre'],
 thousandsSep: ' ',
 numericSymbols: [' mille']
};

3. Call Highcharts.setOptions to change these language settings globally using
the following code:

Highcharts.setOptions({lang: lang});

We must call Highcharts.setOptions before any charts
are rendered, otherwise the changes will not take effect.

The following is the new graph:

Chapter 1

29

How it works...
The Highcharts.setOptions function allows us to change the options of all the charts
prior to the charts being rendered. Unlike other options, lang can only be set in this way.
Internally, Highcharts has a number of different settings for language strings, and what
we have done in our example is overwritten the default English strings with French ones.

Number formats and other numeric details can also be changed for languages that differ
from English. Again, using French as the example, we will change the decimal separator
to a comma and the thousands separator to a space instead of a comma, as shown in
the following code:

Highcharts.setOptions({
 lang: {
 decimalPoint: ',',
 thousandsSep: ' '
 }
});

We can also change the numeric symbols if we like. Numeric symbols are used when we have
large numbers to display, such as one million (1,000,000). By default, metric prefixes are
used for every power of one thousand (1,000), such as k for one thousand (1k) and M for one
million (1M). However, we can change these values as we like. We can also disable shortening
altogether if we set lang.numericSymbols to null. This is shown in the following code:

Highcharts.setOptions({
 lang: {
 numericSymbols: [' thousand', ' millions']
 }
});

Some languages are displayed right-to-left (RTL) rather than left-to-right (LTR), as English is.
If the language we are working with is an RTL language, we may want to move the positions
of the x and y axes such that they are also right oriented. We can do this by setting yAxis.
opposite to true (to move the y axis to the right-hand side) and xAxis.reversed to true
(to start the x axis on the right-hand side), as shown in the following code snippet:

var options = {
 // ...
 yAxis: {opposite: true},
 xAxis: {opposite: true}
}

Getting Started with Highcharts

30

By calling Highcharts.setOptions for different lang options (refer to http://api.
highcharts.com/highcharts#lang for more details), we can change just about any
of the default strings in Highcharts including the strings used to determine the loading text
(for example, lang.loading), the strings for downloading the chart (for example, lang.
downloadJPEG.), and other date fields (for example, lang.weekdays).

There's more...
If, for whatever reason, we need to render the chart before we set language options, there
is a way to do so. All that we have to do is redraw the existing chart after it has rendered,
as shown in the following code:

 Highcharts.setOptions(options);
 $('#container').highcharts().redraw();

Creating a new theme
When working on charts, we may find that there is a set of colors that works well or that
there are settings that we may want to use in other charts. This is where themes are helpful.
Themes are just a collection of common options that we can apply to all charts.

How to do it...
To get started, follow the ensuing instructions:

1. Create an empty options object using the following code:
var myTheme = {};

2. Assign the properties we want in the theme, such as colors or a background color
as follows:
myTheme.colors = ["#000000", "#ff0000", "#00ff00", "#0000ff"]
myTheme.chart = {
 backgroundColor: '#cccccc'
};
myTheme.title = {
 style: {
 fontSize: '20px',
 fontFamily: '"Georgia", "Verdana", sans-serif',
 fontWeight: 'bold',
 color: '#000000'
 }
}

Chapter 1

31

When all colors have been used, Highcharts will pull new colors
from the beginning of the array.

3. Call Highcharts.setOptions to apply our theme to all charts using the
following code:

Highcharts.setOptions(myTheme);

The following is the output chart:

How it works...
The Highcharts.setOptions function, as previously discussed, sets options globally;
a theme is just a set of options that we want applied to all charts.

If we want to store the theme in a separate file, we only need to make a few small changes.
First, we will create our theme in a new file. In this file, we will create our theme in the
Highcharts namespace, include our theme file after highcharts.js on our main page,
and call Highcharts.setOptions, as shown in the following code:

 // myTheme.js
 Highcharts.myTheme = {
 // Our theme goes here
 };

Getting Started with Highcharts

32

 // main page
 <script type='text/javascript' src='highcharts.js'></script>
 <script type='text/javascript' src='myTheme.js'></script>

 <script type='text/javascript'>
 // ... chart creation ...

 Highcharts.setOptions(Highcharts.myTheme);

 // ... chart rendering …
 </script>

There's more...
Highcharts provides a few basic themes out of the box. This includes grid, skies, gray,
dark blue, and dark green, in addition to the default colors. They can be found in the
themes folder and are included just as you would include any other theme. More details on
theming can be found at http://highcharts.com/docs/chart-design-and-style/
themes.

Creating reusable graphs
So far we have experimented with a lot of different graph options and configurations where
themes defined a common set of styles; we may find a time where we have a very common
type of graph that we want to create and we do not want to define the same options over
and over again. We can avoid this tedium by creating reusable charts.

How to do it...
To get started, follow the ensuing instructions:

1. Determine what type of a chart you want to make reusable. Suppose that we want
to take our existing spiderweb chart.

2. Create a new function spiderWebChart. This chart will take an options argument
to let us configure the chart and return a Highcharts.Chart instance, as shown
in the following code:
 var SpiderWebChart = function (options) {
 return Highcharts.Chart(options);
 };

Chapter 1

33

3. Define default values for the chart that will give it the correct appearance, as we did
in the recipe Creating spiderweb graphs for comparison, using the following code:

 var SpiderWebChart = function (options) {
 // create options if they don't exist
 var modifiedOptions = options || {};

 // create a chart option if it does not exist
 modifiedOptions.chart = modifiedOptions.chart || {};
 modifiedOptions.chart.polar = true;

 // create an xAxis option if it does not exist
 modifiedOptions.xAxis = modifiedOptions.xAxis || {};
 modifiedOptions.xAxis.tickmarkPlacement = 'on';
 modifiedOptions.xAxis.lineWidth = 0;

 // create a yAxis option if it does not exist
 modifiedOptions.yAxis = modifiedOptions.xAxis || {};
 modifiedOptions.yAxis.gridLineInterpolation = 'polygon';
 modifiedOptions.yAxis.lineWidth = 0;

 return new Highcharts.Chart(modifiedOptions);
 };

4. Create a spiderweb graph using the options from the previously mentioned recipe,
using the following code:

 var chart = SpiderWebChart({
 chart: {
 renderTo: 'container'
 },
 title: {
 text: 'Creating spiderweb graphs for comparison'
 },
 series: [{
 name: 'Fighter',
 data: [10, 1, 5],
 pointPlacement: 'on'
 }, {
 name: 'Rogue',
 data: [5, 10, 1],
 pointPlacement: 'on'
 }]
 });

Getting Started with Highcharts

34

How it works...
We have created a wrapper function for common options. Instead of using jQuery, we use
the renderTo option to find an element with container as its ID and render the chart
within that element. As we only overwrite certain properties in our SpiderWebChart
function, we can pass in as many other options as we like and only the ones relevant to the
SpiderWebChart function will be affected.

2
Processing Data

In this chapter, we will cover the following recipes:

 f Working with different data formats

 f Using AJAX for polling charts

 f Using WebSockets for real-time updates

 f Drilling down and filtering data

 f Using CSV, XML, or JSON with Highcharts

 f Handling cross-domain data

 f Handling dates

Introduction
Highcharts makes it easy to chart existing data, but one problem that often comes up is how
to get data from a backend service into a chart. This chapter covers the specifics of how
Highcharts can read different data formats, how to fetch fresh data, how to drill down and
filter data, and generally, how data can be processed in Highcharts.

Working with different data formats
When creating charts, we may have little control over which format the data comes back in.
Due to this, it's important that we be aware of how to work with the different formats that
Highcharts supports.

Processing Data

36

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

How to do it...
To get started, perform the following steps:

1. Define the options as shown in the following code:
var options = {
 series: []
};

2. Assign the series data as an array of arrays as shown in the following code:
var options = {
 series: [{
 name: 'Array of arrays',
 data: [
 [0, 0],
 [1, 1],
 [2, 4],
 [3, 9]
]
 }]
};

3. Create a second series as an array of objects as shown in the following code:

var options = {
 series: [{
 name: 'Array of arrays',
 data: [
 [0, 0],
 [1, 1],
 [2, 4],
 [3, 9]
]
 }, {
 name: 'Array of objects',
 data: [
 {x: 0, y: 0},
 {x: 1, y: 1},
 {x: 2, y: 4},
 {x: 3, y: 9}
]
 }]
};

Chapter 2

37

How it works...
Our examples so far had our data formatted as a simple array of numbers. This format can
be useful if we have data that will be used in a bar, column, or pie chart, especially where
the categories or x axis are provided for us.

If our data is more complex, for instance, a series of (x, y) pairs, we will want to use one
of Highcharts' other supported formats, namely, the array of arrays, as we used earlier. In
this case, each individual element of data contains two points stored in an [x , y] array.
Highcharts also supports a variation of this format if we want to express a data range. If we
had data on temperature and wanted to show its highs and lows, for example, we could enter
our data as [index, low, high]:

var options = {
 series: [{
 name: 'temperature (Celsius)'
 data: [
 [0, 15, 30],
 [1, 12, 27],
 [2, 14, 23],
 [3, 10, 20]
]
 }]
};

Highcharts does support one last format that is more flexible than the previous two.
Highcharts has the idea of a single data point that has its own Point format. The Point
format is where each element in the data array is a JavaScript object with, at least, a y value:

var options = {
 series: [{
 data: [{
 'y': 4, // required
 'x': 0, // optional fields
 'id': '0',
 'myField': 'value'
 }]
 }]
};

Using these three different formats gives us a lot of flexibility in how we can use Highcharts
without any adjustments to our data. More details of these formats can be found in the
Highcharts documentation at http://api.highcharts.com/highcharts.

www.allitebooks.com

http://www.allitebooks.org

Processing Data

38

Using AJAX for polling charts
We have made static charts so far. Often, we'll want to update charts periodically to represent
changes in the data over time. The best way to do that is using AJAX.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

If you already have a server set up or will be setting up your own, many of the following steps
can be omitted:

1. Download Python 2.7 from http://www.python.org/download and install it.

2. Download pip from http://www.pip-installer.org/en/latest/
installing.html and install it.

3. Run the following command to install Bottle:
pip install bottle==0.11.6

4. Create a bottle_server.py file and include the following code in it:
#!/usr/bin/env python2.7
from bottle import run, route, static_file, template, request,
response
import json
import random

r = lambda: random.randint(0,255)

def jsonp(request, data):
 if (request.query.callback):
 return "{callback}({result})".format(
 callback=request.query.callback,
 result=data
)
 return data

@route('/jsonp/series')
def jsonp_series():
 if (request.query.callback):
 response.content_type = 'application/javascript'
 response.status = 200
 return jsonp(request, series())

Chapter 2

39

@route('/jsonp/point')
def jsonp_point():
 if (request.query.callback):
 response.content_type = 'application/javascript'
 response.status = 200
 return jsonp(request, point())

@route('/csv/series')
def csv_series():
 response.content_type = 'text/css'
 response.status = 200
 results = [];
 for x in xrange(0,11):
 results.append(str(r()))

 return ",".join(results)

@route('/xml/series')
def xml_series():
 response.content_type = 'application/xml'
 response.status = 200
 xml = "<xml>\n";
 for x in xrange(0,11):
 xml += "\t<row>\n\t\t<y>{0}</y>\n\t</row>\n".format(r())
 xml += "</xml>"
 return xml;

@route('/ajax/series')
def series():
 response.content_type = 'application/javascript'
 response.status = 200
 series = []
 for x in xrange(0,11):
 series.append({
 'y': r(),
 'color': '#%02X%02X%02X' % (r(), r(), r())
 })

 return json.dumps(series)

@route('/ajax/point')
def point():
 response.content_type = 'application/javascript'
 response.status = 200

Processing Data

40

 point = {
 'y': r(),
 'color': '#%02X%02X%02X' % (r(), r(), r())
 }
 return json.dumps(point)

Static files
e.g. HTML page and Javascript
@route('/')
def index():
 return static_file('index.html', root='.')

@route('/bower_components/<filename:path>')
def index(filename):
 return static_file(filename, root='bower_components')

run(host='localhost', port=8000)

5. To start the web server, run the following command from the command line:

python bottle_server.py

How to do it...
To get started, perform the following steps:

1. Define the options as shown in the following code:
var options = {
 chart: {
 type: 'bar',
 },
 title: {
 text: 'Using AJAX for polling charts'
 },
 series: [{
 name: 'AJAX data (series)',
 data: []
 }]
};

Chapter 2

41

2. Create a new event handler for the chart load event:
var options = {
 chart: {
 type: 'bar',
 events: {
 load: function() {
 // maintain a reference to the chart
 var self = this;

 // code goes here
 }
 }
 }
 /* … */
};

3. Within our event handler, create an interval via setInterval with a duration of how
frequently we would like the chart to refresh as shown:
events: {
 load: function() {
 // maintain a reference to the chart
 var self = this;

 setInterval(function() {
 // our code goes here
 }, 3000); // 3000 milliseconds = 3 seconds
 }
}

4. Inside our interval function, call $.getJSON to fetch our data as shown in the
following code:
load: function() {
 // maintain a reference to the chart
 var self = this;

 setInterval(function() {
 $.getJSON('http://localhost:8000/ajax/series', function(data)
{
 // our code goes here
 });
 }, 3000);
}

Processing Data

42

5. Inside our $.getJSON call, replace the existing data in the chart with <series>.
setData() as shown:
$.getJSON('./example.json', function(data) {
 self.series[0].setData(data);
});

The resultant chart is displayed as follows:

6. Observe the graph change every three seconds, as shown in the following screenshot:

Chapter 2

43

How it works...
Highcharts supports a variety of events that are triggered at different points. In our case,
we have created an event handler to execute when the chart is complete. Normally, an event
handler would include some information about the event that we are handling, but we do not
need this feature in this example.

Also, using setInterval, we can periodically execute some functions over and over again.
In this case, we can periodically fetch the new data via $.getJSON and then redraw the
chart when the new data is available.

There's more...
Presently, our function will completely replace the existing data series. While this works, it is
not necessarily efficient, or ideal, as it destroys the existing data and replaces it with the new
data. Instead, if we have a data source that can provide us with updates point by point, we can
use <series>.addPoint(). In this case, we just need to change our $.getJSON function:

load: function() {
 var self = this;
 $.getJSON('./example.json', function(data) {
 var series = self.series[0];
 series.addPoint(data);
 });
}

It is also worth noting that in this recipe we used an event (load). Events are triggered at
different points in the chart, for example, when individual data points are selected or removed
(for example, series.data.events), or after axes change (for example, xAxis.events).

Using WebSockets for real-time updates
Using AJAX for chart updates, as done in the last recipe, is helpful but may lead to a lot of
unnecessary calls to whichever backend service is providing the data. Also, regardless of
whether there is new data, we will have to ask for it every three seconds (or whichever interval
we've configured). One alternative to this is to use WebSockets, which allows us to receive
updates as soon as the server has updates.

For this recipe, we will be using Tornado, a python library that is available at http://www.
tornadoweb.org, to provide the server-side component for our chart, but the client-side
code will be similar for any server-side component that provides the WebSockets connectivity.

Processing Data

44

While WebSockets is gaining support in many, if not the most modern,
browsers—at the time of writing—they are not supported in all browsers or
may experience some unusual behavior in certain network configurations.
For this reason, please be aware of the limitations of your application
environment when using them.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

If you already have a WebSocket-capable server set up or will be setting up your own, many
of these steps can be omitted:

1. Download Python 2.7 from http://www.python.org/download and install it.

2. Download pip from http://www.pip-installer.org/en/latest/
installing.html and install it.

3. Run the following command to install Tornado:
pip install tornado==3.1

4. Create a websocket_server.py file and include the following code in it:
#!/usr/bin/env python2.7
import json
import random
from tornado import websocket, web, ioloop
import datetime
from time import time

Random number generator
r = lambda: random.randint(0,255)

Boilerplate WebSocket code
class WebSocketHandler(websocket.WebSocketHandler):
 def open(self):

Chapter 2

45

 print 'Connection established.'
 # Set up a call to send_data in 5 seconds
 ioloop.IOLoop.instance().add_timeout(datetime.
 timedelta(seconds=1), self.send_data)

 def on_message(self, message):
 print 'Message received {0}.'.format(message)

 def on_close(self):
 print 'Connection closed.'

 # Our function to get new (random) data for charts
 def send_data(self):
 point_data = {
 'x': int(time()),
 'y': r(),
 'color': '#%02X%02X%02X' % (r(), r(), r())
 }

 self.write_message(json.dumps(point_data))
 timeout = r() / 10

 # Call this again within the next 0-25 seconds
 ioloop.IOLoop.instance().add_timeout(datetime.
 timedelta(seconds=timeout), self.send_data)

application = web.Application([
 (r'/websocket', WebSocketHandler)
])

if __name__ == "__main__":
 application.listen(8001)
 ioloop.IOLoop.instance().start()

5. To start the WebSocket server, run the following command from the command line:

python websocket_server.py

Processing Data

46

How to do it...
To get started, perform the following steps:

1. Define the chart options as shown in the following code:
var options = {
 chart: {
 type: 'spline',
 },
 title: {
 text: 'Using WebSockets for realtime updates'
 },
 xAxis: {
 type: 'datetime'
 },
 series: [{
 name: 'Websockets data (points)',
 data: []
 }]
};

2. Create a new event handler for the chart load event as shown in the following code:
var options = {
 chart: {
 type: 'spline',
 events: {
 load: function() {
 // maintain a reference to the chart
 var self = this;

 // code goes here
 }
 }
 }
 /* … */
}

Chapter 2

47

3. Within our event handler, create a new WebSocket instance as shown in the
following code:
load: function() {
 // maintain a reference to the chart
 var self = this;

 var connection = new WebSocket('ws://localhost:8001/websocket');
}

4. Create an onmessage event handler on our WebSocket as shown in the
following code:
load: function() {
 // maintain a reference to the chart
 var self = this;

 var connection = new WebSocket('ws://localhost:8001/websocket');
 connection.onmessage = function(event) {
 }
}

5. In the onmessage event handler, process the data by accessing event.data and
replace the chart data using <series>.setData as shown in the following code:
load: function() {
 // maintain a reference to the chart
 var self = this;

 var connection = new WebSocket('ws://localhost:8001/websocket');
 connection.onmessage = function(event) {
 var data = JSON.parse(event.data);
 self.series[0].setData(data);
 }
}

www.allitebooks.com

http://www.allitebooks.org

Processing Data

48

The resultant chart is displayed as follows:

6. Observe the graph change periodically, as shown in the following screenshot:

Chapter 2

49

How it works...
When the chart has loaded, we create a WebSocket object, which acts like a regular socket:
it listens for new information from the other end of the socket (the server) and calls the
appropriate event handler (for example, onmessage) whenever there is new data. In our case,
every time we have new data, we reload the chart.

In this example, we created a self variable equal to this. We had to do this because
otherwise, when our connection event handler is executed, it wouldn't be able to access
our chart because this would refer to some other object. Alternatively, if we had some global
reference to the chart, we could have just accessed the chart via that global reference.

Drilling down and filtering data
Sometimes, we have data that is not only categorical but also hierarchical. While it can be
useful to combine that data into top-level elements, we may want to drill down into the data
or filter it to see different relationships. This recipe deals with how we can drill down and filter
our existing data.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

For our example, we will assume that our data looks as follows:

var name = 'Drilling Down and Filtering Data'
var categories = ['IE Users', 'Chrome Users', 'FF Users'];
var data =[{
 y: 50,
 category: 'IE Users',
 categories: [
 'IE 10', 'IE 9', 'IE 8', 'IE 7'
],
 data: [{
 y: 25,
 name: 'IE 10'
 }, {
 y: 55,
 name: 'IE 9'
 }, {
 y: 15,
 name: 'IE 8'
 }, {

Processing Data

50

 y: 5,
 name: 'IE 7'
 }]
}, {
 y: 30,
 category: 'Chrome Users',
 categories: ['Most recent', 'Older versions'],
 data: [{
 y: 95,
 name: 'Most recent'
 }, {
 y: 5,
 name: 'Older versions'
 }]
];

How to do it...
To get started, perform the following steps:

1. Create a function to handle drilldown, and redraw the chart as shown in the
following code:
var redrawChart = function(name, categories, data) {
 chart.xAxis[0].setCategories(categories, false);
 chart.series[0].remove(false);
 chart.addSeries({
 name: name,
 data: data
 });
 chart.redraw();
};

2. Define options for our chart as shown in the following code:
var options = {
 chart: {
 type: 'column'
 },
 title: {
 text: name
 },

Chapter 2

51

 xAxis: {
 categories: categories
 },
 series: [{
 name: name,
 data: data
 }]
};

3. Create an event handler for plotOptions.<type>.point.events.click to
handle the click events on the points in our chart, as shown in the following code:
var options = {
 /* … */
 plotOptions: {
 // we could also change this to 'bar' or 'pie' depending on
 the type
 column: {
 point: { // options for a 'point' in the chart
 events: {
 click: function () {
 // Our code goes here
 }
 }
 }
 }
 }
};

4. Within our click handler, call our function with different parameters depending on
whether the drilldown data is available, as shown in the following code:
click: function() {
 if (this.categories) {
 // drilldown data is available!
 redrawChart(this.category, this.categories, this.data);
 } else {
 // drilldown data unavailable; use top level data
 redrawChart(name, categories, data);
 }
}

Processing Data

52

The resultant chart is displayed as follows:

5. Observe the chart after clicking on a column.

Chapter 2

53

How it works...
As previously mentioned, event handlers allow us to handle different interactions on the
chart. In this case, we can listen for click events on a point in the chart (here, represented by
a column) and take some action depending on the value of the point we clicked on. We could
just as easily have done something similar with a bar or pie chart.

There's more...
As long as you have a legend and the data is split into series, you can automatically filter data
by clicking on the series legend.

Using CSV, XML, or JSON with Highcharts
Even though much of the data we work with in charts comes via a backend source, there are
times when we may need to get our data from an external source, such as a CSV file or an
XML file.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section of
the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts. Refer to the
steps as described in the Using AJAX for polling charts recipe discussed earlier in this chapter.

How to do it...
To get started, perform the following steps:

1. Create a new event handler for the chart load event as shown in the following code:
var options = {
 chart: {
 events: {
 load: function() {
 // maintain a reference to the chart
 var self = this;

 // code goes here
 }
 }
 }
};

Processing Data

54

2. Within our event handler, call $.ajax with a success function to handle the
retrieved data. We will also need to provide dataType, which is dependent on the
type of data we are fetching. For a CSV file, the dataType is text, for XML it is xml,
and for JSON it is json, as shown in the following code:
load: function() {
 // maintain a reference to the chart
 var self = this;

 $.ajax('http://path/to/data/source', {
 dataType: 'json',
 success: function(data) {
 // code goes here
 }
 });
}

3. Inside our success function, process the data as desired, then finally replace the
existing series data by using <series>.setData, as shown in the following code:

success: function(data) {
 // do any data processing

 // pick the first series, but could be any series
 self.series[0].setData(data);
}

For CSV files, data will be returned as a string. In order to use the data, we would need to
process the data as shown in the following code:

success: function(data) {
 var delimiter = ',';
 var explodedData = data.split(delimiter);
 var csvArray = [];
 for(var i=0; i < explodedData.length; i++) {
 // need to convert strings to numbers
 explodedData.push(parseInt(explodedData[i]))
 }

 self.series[0].setData(explodedData);
}

For XML files, the data will be returned as a string, as well. However, we can traverse it using
jQuery. How we process that data is highly dependent on what that XML looks like.

Chapter 2

55

Assuming that we have XML data as follows:

<xml><row><x>0</x><y>1</y></row></xml>

We can process the data as follows:

success: function(data) {
 var xmlData = [];
 $(data).find('row').each(function(idx, elem) {
 var x = parseInt($(elem).find('x').text());
 var y = parseInt($(elem).find('y').text());
 xmlData.push([x, y]);
 });

 self.series[0].setData(xmlData);
}

How it works...
The $.ajax function, such as $.getJSON, allows us to fetch the data from an external
source and execute a callback function when it is completed. That callback function includes
whatever resultant data it has retrieved, and all we need to do is process it. Even after setting
up all the required tools, as we have done in this example, the chart will not render until our
AJAX call is successful.

There's more...
We can combine the idea from this recipe with our example from the Using AJAX for polling
charts recipe to have polling charts with a CSV or XML source. This can be done if we replace
the $.getJSON call with the appropriate $.ajax call from this recipe.

Handling cross-domain data
We may not always have a direct access to the data we want to work with; it may not be on
our server or in a file we have access to. It may be a public URL on a different domain. Due to
the way in which AJAX requests are handled, we can't use the exact same methods we used
previously. There are still means to access cross-domain data, namely, JSON with Padding
(JSONP).

It is worth noting that we can only use JSONP for services that support
JSONP. If we do not control the backend service or the backend service
does not support JSONP, we will not be able to use this technique.

Processing Data

56

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts. Refer
to the steps as described in the Using AJAX for polling charts recipe discussed earlier in
this chapter.

How to do it...
To get started, perform the following steps:

1. Create a new event handler for the chart load event as shown in the following code:
var options = {
 chart: {
 events: {
 load: function() {
 // maintain a reference to the chart
 var self = this;

 // code goes here
 }
 }
 }
}

2. Within our event handler, call $.ajax with jsonp for the dataType parameter and
a success function to handle the retrieved data as shown in the following code:
load: function() {
 // maintain a reference to the chart
 var self = this;

 $.ajax('http://localhost:8000/jsonp/series', {
 dataType: 'jsonp',
 success: function(data) {
 // code goes here
 }
 });
}

Chapter 2

57

3. Inside our success function, process the data as desired, then finally replace the
existing series data using <series>.setData as shown in the following code:

success: function(data) {
 // do any data processing

 // pick the first series, but could be any series
 self.series[0].setData(data);
}

How it works...
Normally, AJAX requests can't access other domains due to the same-origin policy, which
states that AJAX requests can only obtain data from the same origin, that is, the same
domain. JSONP avoids this problem as the server wraps the results in a JavaScript function,
and that entire result is loaded as a <script> tag and executed. Since a <script> tag is
exempt from the same-origin policy, we can make requests from other domains. However,
since we use jQuery to handle our AJAX requests, all of this complexity is abstracted away for
us. For more details on cross-domain JavaScript, check out the Mozilla Developer Network
article on the same-origin policy at https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Same_origin_policy_for_JavaScript or the article on Defining
Safer JSON-P at http://json-p.org.

Handling dates
So far none of our charts have dealt with dates, which is critical for time-series charts.
In this recipe, we'll look at some of the different ways in which Highcharts can handle
and display dates.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

www.allitebooks.com

http://www.allitebooks.org

Processing Data

58

How to do it...
To get started, perform the following steps:

1. Define the options as shown in the following code:
var options = {
 title: {
 text: 'Handling Dates',
 type: 'spline'
 }
};

2. Set xAxis.type or yAxis.type to datetime for our chart, as shown in the
following code:
var options = {
 /* … */
 xAxis: {
 type: 'datetime'
 }
};

3. Create a new series for our chart with timestamp values for our data as shown in the
following code:

var options = {
 /* … */
 series: [{
 name: 'Timestamps',
 data: [
 [1356998400000, 3.141592], // 2013-01-01 ET
 [1363478400000, 2.314], // 2013-03-17 ET
 [1365120000000, 4.2] // 2013-04-05 ET
]
 }]
};

Highcharts expects all dates to be a timestamp. These timestamps are very similar to
the UNIX timestamps (for example, seconds since January 1, 1970) except that they are
measured in milliseconds instead of seconds. For example, a UNIX timestamp for January 1,
2000 would be 946684800, but Highcharts would expect it to be 946684800000.

Chapter 2

59

To include the timestamp, we'll need to use either an array of the arrays format (for example,
[timestamp, y]) or an array of the objects format (for example, {x: timestamp, y:
y}). The resultant chart is shown as follows:

How it works...
As long as the data provided to the chart is a timestamp, Highcharts will automatically,
correctly handle labeling axes and re-labeling (if the chart is zoomable or if the chart is
redrawn), and it will plot the data correctly even if it is in irregular intervals.

If our data is not a timestamp, we might still be able to format it correctly using Date.parse.
For example, our data may look as follows:

var data = [
 ['2013-01-01', 4.2]
 ['2013-03-17', 3.14159]
 ['2013-04-05', 2.314]
];

Processing Data

60

We can convert this data using either of the two methods as shown in the following code:

var newData = [];
var elem, newDate, oldDate;
for (var i=0; i < data.length; i++) {
 elem = data[i];
 oldDate = elem[0];

 newDate = Date.parse(oldDate);
 newData.push([newDate, elem[1]])
}

Rather than preprocessing the data, we can process it immediately using an immediate
function. Immediate functions take the (function () {/*function contents*/}())
form. Using our previous example, we can process the data immediately as shown in
the following code:

var options = {
 series: [{
 data: (function(){
 var newData = [];
 var elem;
 for (var i=0; i < data.length; i++) {
 elem = data[i];
 newData.push([Date.parse(elem[0]), elem[1]]);
 }
 return newData;
 }())
 }]
};

There's more...
We do not necessarily need a timestamp if the data is in regular intervals. In this case, we
can use Series.pointStart, which determines the date or time when the first data point
begins, and Series.pointInterval, which determines the time interval between points,
as shown in the following code:

var options = {
 series: [{
 data: [1,2,3,4],
 pointStart: Date.UTC(2013,0,1), // January 1, 2013
 pointInterval: 24*3600*1000 // 1 day in milliseconds
 }]
};

Chapter 2

61

Highcharts will automatically use certain date/time formats depending on the scale of the
chart data, which is shown in the following code. We can override these formats using xAxis.
dateTimeLabelFormats. The format used is a subset of the formats provided by PHP's
strftime function found at http://php.net/manual/en/function.strftime.php:

var options = {
 xAxis: {
 dateTimeLabelFormats: {
 millisecond: '%H:%M:%S.%L', //e.g. 00:01:02.000
 second: '%H:%M:%S', // e.g. 00:01:02
 minute: '%H:%M', // e.g. 21:42
 hour: '%l:%M%P', //e.g. 3:14pm
 day: '%a %d', // e.g. Sun 01
 week: '%b-%e', //e.g. Jan-2
 month: '%B \'%y', // e.g. February '13
 year: '%Y' //e.g. 2013
 }
 }
};

It is even possible to create our own date label format strings. Highcharts.dateFormats
is an object where each key is a string that we can use in xAxis.dateTimeLabelFormats,
and each value is a function that takes a timestamp and returns the formatted string. For
example, if we want to create a "week of the year" format, we can do it in the following way:

Highcharts.dateFormats = {
 W: function(timestamp) {
 var date = new Date(timestamp);
 var dateYear = date.getUTCFullYear();
 var firstYearDay = Date.UTC(dateYear, 0, 1);
 var dayInMs = 24 * 60 * 60 * 1000;
 var dayOfYear = (date – firstYearDay) / dayInMs;
 return Math.floor(dayOfYear / 7);
 }
};

More details on date formats can be found in the API documentation at http://api.
highcharts.com/highcharts#xAxis.dateTimeLabelFormat.

3
Handling User

Interaction

In this chapter, we will cover the following recipes:

 f Creating a simple poll

 f Making graphs zoomable

 f Creating master detail graphs

 f Slicing and dicing time data

 f Annotating a chart

 f Developing dynamic tooltips

 f Taking actions on events

 f Adding events after the chart has rendered

Introduction
So far we have dealt with input coming from other sources such as various backends, CSV
files, and XML files, all sources external to the user. This chapter focuses on how to handle
input from the user, specifically how to handle different events that are fired within a chart.

Creating a simple poll
One of the simplest charts that we've introduced is a poll, which is a tally of votes or choice
selections between a number of options, often displayed as a histogram with the option for a
user to make a selection and have it added to the tally. This recipe covers the basics of how
to handle that interaction and update the chart.

Handling User Interaction

64

Getting ready
For setting up a basic page and installing jQuery and Highcharts, refer to the Getting ready
section of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

How to do it...
To get started, perform the following steps:

1. In addition to our container <div>, create voting buttons as shown in the
following code:
<div id='container'></div>
<div>
 Is it easy to create a poll?
 <input type='button' value='Yes' id='yes' class='vote-
 btn'></input>
 <input type='button' value='No' id='no' class='vote-
 btn'/></input>
</div>

2. Define options for a new column or bar chart as shown in the following code:
var options = {
 chart: {
 type: 'column'
 },
 title: {
 text: 'Creating a simple poll'
 },
 subtitle: {
 text: 'Is this easy?'
 },
 series: [{
 name: 'Yes',
 data: [0]
 }, {
 name: 'No',
 data: [0]
 }]
};

Chapter 3

65

3. Render the chart and obtain a reference to it as shown in the following code:
$('#container').highcharts(options);
var chart = $('#container').highcharts();

// Alternatively
var chart =
 $('#container').highcharts(options).highcharts();

4. Create a vote function as shown in the following code:
var vote = function(event) {
 var $button = $(this),
 value = $button.attr('id'),
 series, data;

 if(value === 'yes') {
 series = chart.series[0];
 } else {
 series = chart.series[1];
 }

 votes = series.data[0].y || 0;
 votes += 1;

 series.setData([votes]);
};

5. Attach the vote function as an event handler for the buttons as shown in the
following code:
$('.vote-btn').on('click', vote);

Handling User Interaction

66

6. Click on the different vote buttons and observe the difference as shown in the
following screenshot:

Before voting

And after

Chapter 3

67

How it works...
There isn't anything special about our chart; however, once we've obtained a reference
to it via $(selector).highcharts() (or $(selector).highcharts(options).
highcharts() when we're rendering the chart), we can take actions on the chart without
defining those actions in the chart options.

In our case, we use jQuery's .on(event, handler) method to register and click on handler
on the voting buttons. The handler has one argument, event, which contains information
about the click event. From here, it is possible to find out what element was clicked on using
event.target, then we just need to figure out which series to get the previous value from
and to update using series.setData().

For more information on jQuery event handling, check out the jQuery API documentation at
http://api.jquery.com/on/.

Making graphs zoomable
When working with a small amount of data, it is possible to fit it all within the bounds of the
graph. When working with larger sets of data, it becomes necessary to manage the data
differently: summarize the data, filter it, and so on. One alternative to these approaches,
especially in the case of chronological data, is to make a graph that we can zoom in and out of.

Getting ready
For setting up a basic page and installing jQuery and Highcharts, refer to the Getting ready
section of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

How to do it...
To get started, perform the following steps:

1. Define chart options as we normally would for our chart, as shown in the
following code:
var options = {
 chart: {
 type: 'spline',
 },
 title: {
 text: 'Making graphs zoomable'
 },

Handling User Interaction

68

 series: [{
 name: 'Our data',
 data: [/* Our data goes here */]
 }]
};

2. Set options.chart.zoomType to x, as shown in the following code:
var options = {
 chart: {
 type: 'spline',
 zoomType: 'x'
 },
 /* … */
};

3. Render the chart using the following code:
$('#container').highcharts(options);

4. Zoom in to the chart to see it in more detail, as shown in the following screenshot:

Before zooming

Chapter 3

69

And after

How it works...
If we click-and-drag over an area on our chart, we'll notice that Highcharts begins selecting an
area of our chart. When we finish this selection, the chart will automatically zoom in and show
the selected area in detail, along with a Reset Zoom button for us to go back to the full view
of the data.

In our example, our selection was along the x axis; this is because we set chart.zoomType
to x. We can set it to y too if we want to select data along the y axis only, or set it to xy if we
want to select a specific area of the chart.

Creating master details graphs
Often times in data, especially chronological data, there are patterns. These patterns can get
lost when we are presented with too much, or too little, data. There are also times when we
want to keep both views at hand: the details as well as the overall data. These types of graphs
are known as master details graphs.

Handling User Interaction

70

Getting ready
For setting up a basic page and installing jQuery and Highcharts, refer to the Getting ready
section of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

How to do it...
To get started, perform the following steps:

1. Unlike normally, we'll create three containers: one for the master graph, one for
the details graph, and one to wrap both of them, as shown in the following code:
<div id='graph-container'>
 <div id='detail'></div>
 <div id='master'></div>
</div>

2. Create a variable for what will be our details chart, as shown in the following code:
var detailsChart;

3. Create a selection handler for when we select an area in our master chart, as shown
in the following code:
var selectionHandler = function(event) {
 var selection = event.xAxis[0],
 xAxis = this.xAxis[0],
 extremes = xAxis.getExtremes(),
 max = selection.max,
 min = selection.min,
 data = [];

 // mask unselected areas
 xAxis.removePlotBand('before-selected');
 xAxis.addPlotBand({
 id: 'before-selected',
 color: 'rgba(0, 0, 0, 0.2)',
 from: extremes.min,
 to: min
 });
 xAxis.removePlotBand('after-selected');
 xAxis.addPlotBand({
 id: 'after-selected',
 color: 'rgba(0, 0, 0, 0.2)',
 from: max,
 to: extremes.max
 });

Chapter 3

71

 jQuery.each(this.series[0].data, function(i, point) {
 if (min < point.x && point.x < max) {
 data.push({x: point.x, y: point.y});
 }
 });
 detailsChart.series[0].setData(data);

 // don't do whatever we would normally do on select
 return false;
};

4. Define options for our master chart using the next code snippet.

As the master chart is intended to give a general idea of the data, we
will disable most labels and markers aside from those on the x axis.

var masterOptions = {
 chart: {
 zoomType: 'x',
 events: { selection: selectionHandler}
 },
 title: {text: null},
 tooltip: {formatter: function (){return false;}},
 legend: {enabled: false},
 credits: {enabled: false},
 yAxis: {
 title: {text: null},
 labels: {enabled: false}
 },
 xAxis: {
 title: {text:null},
 plotBands: [{
 id: 'before-selected', color: 'rgba(0, 0, 0,
 0.2)', from: -100, to: -50
 },{
 id: 'after-selected', color: 'rgba(0, 0, 0,
 0.2)', from: 50, to: 100
 }]
 },
 series: [{
 data: (function() {
 var data = [], x= -100;
 while (x < 100) {

Handling User Interaction

72

 data.push([x, Math.pow(x,3)]);
 x++;
 }
 return data;
 }())
 }]
};

5. Create a callback function for when the master chart has rendered, as shown
in the following code:
var createDetailsChart = function (master) {
 var options, data = [];

 //define our options for the details chart as we like
 options = {
 title: {
 text: 'Creating master detail graphs'
 },
 series: [{
 data: master.series[0].data
 }]
 };
 detailsChart =
 $('#detail').highcharts(options).highcharts();
};

6. Render the master chart with our callback function to render the details chart,
as shown in the following code:
$('#master').highcharts(masterOptions, createDetailsChart);
Re-position the charts
$('#graph-container').css('position', 'relative');
$('#master').css({
 position: 'absolute',
 width: '100%' });

Chapter 3

73

7. Select a large portion of the master graph, as shown in the following screenshot:

Zoomed in very closely

And examining a larger section of the graph

Handling User Interaction

74

How it works...
There are a few important things discussed in this recipe:

 f Creating the details chart after the master chart is loaded

 f Handling the selection on the master chart

 f Masking and unmasking areas according to the selection

The $(selector).highcharts() function can also take a second argument, as we've
done in this example, to handle the load event for the chart. In this case, the first argument
of our load handler is a reference to the rendered chart. This is equivalent to setting a handler
on chart.events.load.

We have also created a selection handler on our master chart. This handler allows us to take
some action after we have selected an area on the chart, and the first argument (event)
to the handler contains information about the selection via event.xAxis[0] or event.
yAxis[0] depending on how we set chart.zoomType.

Lastly, we also use <axis>.addPlotBand and <axis>.removePlotBand to create a
mask over our chart. With <axis>.addPlotBand, we define a from value, a to value, a color,
and an ID; we can remove this band with <axis>.removePlotBand, provided that we have
the ID of the correct band.

Slicing and dicing time data
As we've seen, displaying the same data in a different way can often reveal patterns we hadn't
previously seen. Another way to view data is to group it into different buckets; for example,
by hour, or by month.

Getting ready
For setting up a basic page and installing jQuery and Highcharts, refer to the Getting ready
section of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

In addition to this basic setup, we will need to install underscore, a functional programming
library for JavaScript:

1. Edit bower.json to add underscore as a dependency, as shown in the
following code:
{
 "name": "highcharts-cookbook-chapter-3",
 "dependencies": {
 "highcharts": "~3.0",
 "jquery": "^1.9",

Chapter 3

75

 "underscore": "~1.5.2"
 }
}

2. Install your dependencies using bower, as shown in the following code:

bower install

How to do it...
To get started, perform the following steps:

1. In addition to the chart container <div>, create three buttons, as shown in the
following code:
<div id='container'></div>
<div class='buttons'>
 Group data:
 <input type='button' value='Chronologically'
 id='chrono'></input>
 <input type='button' value='By day' id='day'></input>
 <input type='button' value='By hour' id='hour'></input>
</div>

2. Store or create a copy of your data outside of your chart options so that you can
use the data later, as shown in the following code:
var chartData = [{
 x: Date.UTC(2013,0,1),
 y: 42
}, /* More data goes here */];

3. Define the options for your chart, as shown in the following code:
var options = {
 chart: { type: 'column' },
 title: {text: 'Slicing and dicing time data' },
 subtitle: {text: 'All changes conducted on original
 data' },
 xAxis: { type: 'datetime' },
 series: [{ data: chartData}]
};
Render the chart and obtain a reference to it
var chart =
 $('#container').highcharts(options).highcharts();

Handling User Interaction

76

4. Create an event handler for your buttons, as shown in the following code:
var groupData = function (event) {
 var $button = $(event.target),
 groupedData,
 displayData = {},
 xAxisOptions = {},
 data = _.clone(chartData);

 switch($button.attr('value')) {
 case 'Chronologically':
 break;
 case 'By day':
 break;
 case 'By hour':
 break;
 }
 chart.xAxis[0].update(xAxisOptions);
 chart.series[0].update(displayData);
};

5. Create the case to handle chronological data, as shown in the following code:
case 'Chronologically':
 xAxisOptions = { type: 'datetime' };
 displayData = { data: data };
 break;

6. Create the case to handle day data, as shown in the following code:
case 'By day':
 xAxisOptions = { type: 'category' };

 groupedData = _.groupBy(data, function(point) {
 return new Date(point.x).getUTCDay();
 });

 groupedData = _.chain(groupedData).map(function(value,
 index) {
 var y = _.chain(value).pluck('y').reduce(function(sum,
 num){
 return sum + num;
 }).value();
 return { y: y, name: index } ;
 });

 displayData = { data: groupedData.value() }
 break;

Chapter 3

77

7. Create the case to handle hour data (very similar to 'day' data), as shown in the
following code:
case 'By hour':
 xAxisOptions = { type: 'category' };

 groupedData = _.groupBy(data, function(point) {
 return new Date(point.x).getUTCHours();
 });

 groupedData = _.chain(groupedData).map(function(value,
 index) {
 var y = _.chain(value).pluck('y').reduce(function(sum,
 num){
 return sum + num;
 }).value();
 return { y: y, name: index } ;
 });

 displayData = { data: groupedData.value() }
 break;

8. Bind your buttons to the event handler, as shown in the following code:
$('#chrono').on('click', groupData);
$('#day').on('click', groupData);
$('#hour').on('click', groupData);

9. Click on the Chronologically button, as shown in the following screenshot:

Handling User Interaction

78

10. Click on the By day button, as shown in the following screenshot:

11. Click on the By hour button, as shown in the following screenshot:

Chapter 3

79

How it works...
When we click on our different grouping buttons, our event handler is called, and we can
begin transforming the data depending on the button clicked. A lot of the data transformation
is handled by a number of clever underscore functions.

The _.clone(obj) script makes a copy of obj, which is good as it allows working on the
original data without having to worry about side effects.

The _.groupBy(collection, groupFn) script takes a collection (in this case, our data)
and transforms it into an object, where the keys are our grouping, and the values are arrays
of our original objects that are in that group. When we call this function the first time, it takes
our original data and transforms it into something like the following data:

{'0': […], '1': […], …}

The next part may look complicated, but can actually be broken down into simpler steps.

The _.chain(obj) script wraps an object in an underscore wrapper. This is helpful as it
makes it easier to chain function calls together without always having to provide obj as the
first argument. We do, however, need to call .value() in order to convert the wrapper object
into an actual result.

The _(obj).map(mapFn) script applies mapFn to every element of obj, and replaces each
value with whatever we return in mapFn.

Our map function has two arguments, value (the array of values in the group) and index
(the group). By using _.chain(value).pluck('y'), we can get just the y values from all
of our points, and by calling .reduce(reduceFn), we can reduce our array to a single value
by repeatedly calling reduceFn with the aggregated value (sum, for our function) and the next
value (num, in our case).

Annotating a chart
It can be useful to include information about a chart on a chart. While tooltips is one option,
there are times when we may want to leave a note to ourselves. Due to the various events
that Highcharts is able to capture, it is possible for us to annotate charts.

Getting ready
For setting up a basic page and installing jQuery and Highcharts, refer to the Getting ready
section of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

Handling User Interaction

80

How to do it...
To get started, perform the following steps:

1. In addition to the regular chart container, create a text area to enter your annotations,
as shown in the following code:
<div id='container'></div>
<textarea id='annotation'></textarea>

2. Create a click handler for your chart, as shown in the following code:
var annotateChart = function (event) {
 var x, y, text, box, content;
 x = event.chartX;
 y = event.chartY;

 // get content from the textarea
 content = $('#annotation').val();

 // create the text
 text = this.renderer.text(content, x, y).attr({
 zIndex: 2
 }).add();

 // create the border
 box = text.getBBox();
 this.renderer.rect(box.x-5, box.y-5, box.width+10,
 box.height+10, 5)
 .attr({
 fill: '#ffffff', stroke: 'gray', 'stroke-
 width': 1, zIndex: 1
 }).add();

 // empty out the textbox
 $('#annotation').val('');
};

Chapter 3

81

3. Define your chart options as shown in the following code:
var options = {
 chart: {
 type: 'scatter',
 events: {click: annotateChart}
 },
 title: {text: 'Annotate a chart'},
 series: [{/* Our data goes here */}]
};

4. Render your chart as shown in the following code:
$('#container').highcharts(options);

5. Annotate the chart as shown in the following screenshot:

Before annotating the chart

And after

Handling User Interaction

82

How it works...
The chart.events.click script allows us to define a click handler. The event that we
get from that handler includes information about the point that we've clicked on in the chart
in terms of x and y coordinates (via event.chartX and event.chartY). By leveraging
the chart's renderer, we can draw all sorts of different shapes. In this recipe, we use this.
renderer.text(text, x, y) to render the text, and then add it to the chart via .add().
We can get the bounding box of our text using <element>.getBBox() and use it to figure
out where to place our border.

Developing dynamic tooltips
Highcharts tooltips are fairly powerful by default, but they do have some limitations.
It can be difficult to attach different controls inside tooltips. For that reason, we can
develop dynamic tooltips.

Getting ready
For setting up a basic page and installing jQuery and Highcharts, refer to the Getting ready
section of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

In addition to this basic setup, we will need to install underscore, a functional programming
library for JavaScript:

1. Edit bower.json to add underscore as a dependency, as shown in the
following code:
{
 "name": "highcharts-cookbook-chapter-3",
 "dependencies": {
 "highcharts": "~3.0",
 "jquery": "^1.9",
 "underscore": "~1.5.2"
 }
}

2. Install your dependencies using bower, as shown in the following code:

bower install

Chapter 3

83

How to do it...
To get started, perform the following steps:

1. In addition to your chart container, create a tooltip container and a wrapper <div>
for the two elements, as shown in the following code:
<div id='wrapper' style='position: relative'>
 <div id='container'></div>
 <div id='tooltip'></div>
</div>

2. Create a function to position your tooltip, as shown in the following code:
var positionTooltip = function (chart, point) {
 var selectedPoint = (chart.getSelectedPoints() ||
 [])[0],
 referencePoint, x, y;

 // Stick the tooltip next to the selected point
 if (selectedPoint) {
 referencePoint = selectedPoint;
 } else {
 referencePoint = point;
 }

 x = referencePoint.plotX + chart.plotLeft + 25;
 y = referencePoint.plotY + chart.plotTop + 25;

 $('#tooltip').css({
 position: 'absolute',
 top: y,
 left: x
 });
};

3. Create templates necessary for your tooltip, as shown in the following code:
var buttonTemplate = _.template('<input type="button"
 class="<%= cls %>" value="<%= value %>"/>');
var coordsTemplate = _.template('(<%= x %>, <%= y %>)');

Handling User Interaction

84

4. Create a function to handle updating the template, as shown in the following code:
var updateTooltipText = function(x, y) {
 var tooltipString = coordsTemplate({x: x, y: y}) +
 '
';
 tooltipString += buttonTemplate({cls: 'modifyValue',
 value: '+'});
 tooltipString += buttonTemplate({cls: 'modifyValue',
 value: '-'}) + '
';
 tooltipString += buttonTemplate({cls: 'removePoint',
 value: 'Remove Point?'});

 $('#customTooltip').html(tooltipString);
};

5. Create a select handler to handle point selection, as shown in the following code:
var pointSelect = function (event) {
 var tooltipString = "";

 // position tooltip
 var point = this;
 positionTooltip(this.series.chart, point);

 // create tooltip text
 updateTooltipText(parseInt(this.x), parseInt(this.y));

 // unbind any previous handlers and add this one
 $('#tooltip').off('click').on('click', '.modifyValue',
 function (event){
 var $button = $(this);
 var y = point.y;

 if ($button.attr('value') === '+') {
 y += 1;
 } else {
 y -= 1;
 }

 point.update(y);

 // Update tooltip
 updateTooltipText(parseInt(this.x), parseInt(this.y));
 });

Chapter 3

85

 $('#tooltip').one('click', '.removePoint', function
 (event) {
 point.remove();
 $('#tooltip').hide().empty();
 });

 $('#tooltip').show();
};

6. Create an unselect handler to handle when a point is unselected, as shown in the
following code:
var pointUnselect = function (event) {
 var chart = this.series.chart;

 // A point is still selected when the `unselect` event
 fires
 if (this.selected) {
 $('#tooltip').hide().empty();
 } else {
 // reposition tooltip
 positionTooltip(chart, this);
 }
};

7. Define the options for your chart, including your select and unselect handlers and
options to disable tooltips, as shown in the following code:
var options = {
 title: {text: 'Dynamic tooltips'},
 tooltip: {enabled: false},
 series: [{/* Our data goes here */}],
 plotOptions: {
 series: {
 stickyTracking: true,
 allowPointSelect: true,
 point: {
 events: {select: pointSelect, unselect:
 pointUnselect}
 }
 }
 }
};

8. Render your chart using the following code:
$('#container').highcharts(options);

Handling User Interaction

86

9. Select a point, as shown in the following screenshot:

Before selecting a point

After selecting a point

Chapter 3

87

How it works...
It may appear that there is a lot going on in our example, but we can break things down into
two main parts:

 f Positioning our custom tooltip

 f Handling events for our tooltip

Our positionTooltip function is straightforward. Since we have a reference to the
chart, we can call chart.getSelectedPoints() to find out which points in the chart
are selected (and we can select points because we have chart.plotOptions.series.
allowPointSelect set to true). We then take the selected point (or the current point, if
one isn't available) and determine where to plot our tooltip by adding the current position of
the point relative to the chart (<point>.plotX and <point>.plotY) to the chart offsets
(chart.plotLeft and chart.plotTop). Then we just set the positioning of the tooltip with
ordinary CSS.

Since our tooltip is custom-made, we also need to handle all the relevant events. In our
example, we create and position the tooltip whenever a point is selected, and display the
proper coordinates via this.x and this.y. The trickiest part is ensuring that the buttons in
our tooltip are bound properly. We do this by unregistering (.off('click')) any previous
click handlers on our .modifyValue buttons and registering a new click handler to handle
adjusting the point values. We use .one(event, selector, handler) to ensure that our
remove handler is registered exactly once, and when we click on the Remove Point? button,
we only remove the one point.

Since creating the tooltip itself is a bit repetitive, we leverage the template function from
underscore. This allows us to define a template string where underscore will substitute a
variable name for its value. This means when we call _.template(variable_str, {key:
value}), underscore will replace any instances of <%= key %> in variable_str with
value. In our recipe, we use a slightly different version of the template function—by omitting
the data, underscore will pre-compile the template so that it is ready to be rendered at
any point. For more information on the underscore template function, check out the
underscore documentation at http://underscorejs.org/#template.

Handling User Interaction

88

Taking actions on other events
So far, we have touched on a number of different events such as selection, unselect,
click, and load that we can handle through Highcharts. There are many other user
interactions that we are able to track.

Getting ready
For setting up a basic page and installing jQuery and Highcharts, refer to the Getting ready
section of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

How to do it...
To get started, perform the following steps:

1. Define options for your chart as shown in the following code:
var options = {
 chart: {type: 'spline'},
 title: {text: 'Taking actions on other events'},
 series:[{ /* Our series data goes here */}],
 xAxis: { min: 0, max: 100 },
 yAxis: { min: 0, max: 100 }
}

2. Add event handlers for when the chart is redrawn, as shown in the following code:
var options = {
 chart: {
 type: 'spline',
 events: {
 redraw: function(event) {
 console.log('Chart redrawn!', event, this);
 }
 }
 },
 /* … */
};

3. Add event handlers for hovering over a series, as shown in the following code:
var options = {
 /* … */
 plotOptions: {
 series: {

Chapter 3

89

 events: {
 mouseOver: function(event) {
 console.log('Series mouseover!', event,
 this);
 }
 }
 }
 }
};

4. Render the chart as shown in the following code:
$('#container').highcharts(options);

5. Examine the developer console for a redraw message, as shown in the following
screenshot:

View of the console before a redraw event

Handling User Interaction

90

6. Examine the developer console for a redraw message, as shown in the
following screenshot:

An example after the redraw event has fired

How it works...
Adding these event handlers is no different from the ones we've added in any other recipe. There
are all sorts of different events that can be handled on the chart (for example, chart.event.
addSeries and chart.event.selection), on a series (for example, plotOptions.
series.events.hide and plotOptions.series.events.mouseOut), or even on
an individual data point (plotOptions.series.events.remove and plotOptions.
series.events.update). Events can even be handled for specific chart types (for example,
plotOptions.<type>.events and plotOptions.<type>.point.events).

Chapter 3

91

Adding events after the chart is rendered
There are occasions where we are unable to attach the proper event handlers to a chart
before the chart has rendered. Fortunately, in these cases, we can leverage some handy
Highcharts functions.

Getting ready
For setting up a basic page and installing jQuery and Highcharts, refer to the Getting ready
section of the Creating your first chart recipe from Chapter 1, Getting Started with Highcharts.

How to do it...
To get started, perform the following steps:

1. Create an event handler for when we click on a series, as shown in the following code:
var clickSeries = function (event) {
 console.log('Captured click event!', event);
};

2. Get a reference to your chart as shown in the following code:
var chart = $('#container').highcharts();

// Alternatively, if the chart has not already rendered
var chart =
 $('#container').highcharts(options).highcharts();

3. Call Highcharts.addEvent to attach the event handler, as shown in the
following code:

Highcharts.addEvent(chart.series[0], 'click', clickSeries);

How it works...
As long as we have a reference to the part of the chart we want to attach an event handler to,
we can call Highcharts.addEvent(element, event, handler) to call handler when
event is fired on element.

As previously mentioned, there are different events available to listen to. For more details
on where to find information on different events, see API documentation on chart.events
at http://api.highcharts.com/highcharts#chart.events or under the various
plotOptions at http://api.highcharts.com/highcharts#plotOptions.

If we're more familiar with jQuery, it's possible to just use its event binding mechanism:

$(chart.series[0]).on('click' , clickSeries);

4
Sharing Charts

on the Web

In this chapter, we will cover the following recipes:

 f Rendering charts on the server side

 f Exporting images to different formats

 f E-mailing static charts

 f E-mailing dynamic charts

 f Preparing charts for printing

Introduction
Creating a chart for our own use on our own computer is certainly helpful, but there are
many times when we would like to distribute our charts. This chapter will cover how to
make changes in order to print, e-mail, or otherwise export our charts for different formats.

Rendering charts on the server side
One of the first steps towards being able to send charts to others is rendering the chart in
a static format. While Highcharts does make it possible to render charts using its Content
Distribution Network (CDN), this recipe will cover how we can render the charts on our own,
which is especially important if we don't want our data being made available to the public.

Sharing Charts on the Web

94

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe from Chapter 1, Getting Started with Highcharts.

As the bower installation does not include some important scripts, we'll need to download
Highcharts normally by performing the following steps:

1. Visit the Highcharts website and download Highcharts from http://www.
highcharts.com/download.

2. Extract the contents of the downloaded zip file to a folder called Highcharts.

We will also need to install and run PhantomJS.

3. Install PhantomJS following the instructions on the PhantomJS website from
http://phantomjs.org.

4. Change directories to Highcharts/exporting-server/phantomjs.

5. Modify highcharts-convert.js to use Highcharts instead of Highstock
as shown in the following code:
var config = {
 /* define locations of mandatory JavaScript files */
 HIGHCHARTS: 'highcharts.js',
 HIGHCHARTS_MORE: 'highcharts-more.js',
 HIGHCHARTS_DATA: 'data.js',
 JQUERY: 'jquery.1.9.1.min.js',
 TIMEOUT: 2000 /* 2 seconds timeout for loading images
 */

6. Within that folder, run the following command to start a PhantomJS instance
using the following code:

phantomjs highcharts-convert.js -host 127.0.0.1 -port 3003

How to do it...
To get started, perform the following steps:

1. Include exporting.js on our page as shown in the following code:
<!-- Include the verbose version of Highcharts extras -->
<script src='./bower_components/highcharts/highcharts-
 more.src.js'></script>

<!-- Include the exporting module -->
<script

Chapter 4

95

 src='./bower_components/highcharts/
 modules/exporting.src.js'></script>

2. Add exporting.enabled and exporting.url to our chart configuration as
shown in the following code:
var options = {
 /* … */
 exporting: {
 enabled: true,
 url: 'http://localhost:3003/'
 }
};

3. Render our chart as shown in the following code:

$('#container').highcharts(options);

How it works...
PhantomJS is a headless JavaScript API. Basically, this means that it can execute JavaScript
files without having a browser, or even a display (such as a monitor). When highcharts-
convert.js is executed with PhantomJS, we start a web server; by including exporting.
js and configuring the exporting object, Highcharts knows to make requests to our web
server, and our web server responds to these requests.

Had we not included exporting.url and pointed it at our server, Highcharts would have
defaulted to using its CDN (http://export.highcharts.com). If the information we are
exporting is not sensitive or if the user is connected to the Internet, we could have just omitted
the parameter.

If, for whatever reason, we wanted to use different versions of the files listed in the
recipe, for example, a non-minified version of jQuery, we can make changes to config in
highcharts-convert.js, as in the following code:

config = {
 /* define locations of mandatory javascript files */
 /* Note: all files / paths are relative to the exporting-
 server/phantomjs directory */
 HIGHCHARTS: 'highstock.js',
 HIGHCHARTS_MORE: 'highcharts-more.js', /
 HIGHCHARTS_DATA: 'data.js',
 JQUERY: 'jquery.1.9.1.js',
 TIMEOUT: 2000 /* 2 seconds timeout for loading images */
},

Sharing Charts on the Web

96

Exporting images to different formats
There may be occasions where we don't want an entire server running to render a few charts.
In this case, we can opt for a slightly simpler solution and render to specific image formats at
the same time.

Getting ready
To set up and run PhantomJS, refer to the Getting ready section of the Rendering charts on
the server side recipe given earlier in this chapter.

How to do it...
To get started, perform the following steps:

1. Create a file called options.json in Highcharts/exporting-server/phantomjs,
and include all of our chart options there. Note that this file must be JSON data
(that is, no Javascript). The following is an example:
{
 "chart": {"type": "bar"},
 "title": {"text": "Creating your first chart"},
 "series": [{
 "name": "Bar #1",
 "data": [1, 2, 3, 4]
 }]
}

2. Change directories to Highcharts/exporting-server/phantomjs.

3. Run the following command to generate a chart from options.json:

phantomjs highcharts-convert.js -infile options.json -
 outfile chart.png

How it works...
The highcharts-convert.js script can run as either a server or as a single command as
we've seen. In this scenario, it will take JSON (as in our charts) and render a chart as output.

Generally, the outputted chart will match whatever configuration we pass via options.json,
but we can change a few properties, such as the image format or the size of the image, using
different command-line flags. The following are examples of how we can change properties:

Chapter 4

97

 f By changing the file extension in our command, we can change the file format.
The script supports four image formats: PNG, JPEG, PDF, and SVG as shown in
the following code:
phantomjs highcharts-convert.js -infile options.json -
 outfile chart.pdf

 f We can alter the size of the image by using the -scale argument, which will scale
the image by the factor that is provided. Images can scale to at most four times their
original size as shown in the following command:
phantomjs highcharts-convert.js -infile options.json -scale
 2 -outfile chart.png

 f We can also define a fixed width (in pixels) for the image (which will override the
scaling) using the -width argument as shown in the following code:

phantomjs highcharts-convert.js -infile options.json -width
 400 -
 outfile chart.png

E-mailing static charts
When we want to share information, sometimes the fastest way to do so is to just send an
e-mail. In this recipe, we'll cover how we can generate a static chart and then e-mail it to
someone programmatically.

Getting ready...
1. Install PhantomJS following the instructions found on the PhantomJS website

at http://phantomjs.org.

2. Install Python 2.7 following the instructions found on the Python website at
http://www.python.org/getit/.

It is possible to accomplish this recipe using almost any server side
language. The steps as outlined and explained are still relevant, but the
details will vary from language to language.

Sharing Charts on the Web

98

How to do it...
To get started, perform the following steps:

1. Create a new Python file email_static.py.

2. Import the different Python modules we'll be using as shown in the following code:
import smtplib, os
from email.MIMEMultipart import MIMEMultipart
from email.MIMEBase import MIMEBase
from email.MIMEText import MIMEText
from email.Utils import COMMASPACE, formatdate
from email import Encoders
from subprocess import call

3. Define our variables as shown in the following code:
send_to = ['whoever@account.com']
send_from = 'your_address@account.com';
subject = 'Test email'
text = 'This is a test email for sending email attachments'
outfile = 'chart.png'

4. Render our chart using the following code:
call(['phantomjs', 'highcharts-convert.js', '-infile',
 'options.json', '-outfile', outfile])

5. Define our message and its fields as shown in the following code:
msg = MIMEMultipart()
msg['From'] = send_from
msg['To'] = COMMASPACE.join(send_to)
msg['Date'] = formatdate(localtime=True)
msg['Subject'] = subject
msg.attach(MIMEText(text))

6. Convert the rendered file into the proper encoding and attach it as shown in the
following code:
part = MIMEBase('application', "octet-stream")
part.set_payload(open(outfile,"rb").read())
Encoders.encode_base64(part)
part.add_header('Content-Disposition', 'attachment;
 filename="%s"'
 % os.path.basename('chart.png'))
msg.attach(part)

Chapter 4

99

7. Send the message using Gmail as shown in the following code:
smtp = smtplib.SMTP('smtp.gmail.com:587')
smtp.starttls()
smtp.login('gmail_username@gmail.com','your password')
smtp.sendmail(send_from, send_to, msg.as_string())
smtp.quit()

8. Run email_static.py as shown in the following code:

python email_static.py

How it works...
What we've done is very similar to our Exporting images to different formats recipe,
with some changes.

First, we render the chart, as we had done previously using Python's subprocess module
to call phantomjs outside the function. Then, we start building up our e-mail's basic fields
(for example, subject, to, from), and then encode and include that image in the e-mail.
Finally, we send the e-mail.

There's more...
If we do not want to use Gmail, we can instead leverage any SMTP server by making the
following changes in the code:

smtp = smtplib.SMTP('IP Address')
smtp.sendmail(send_from, send_to, msg.as_string())
smtp.close()

E-mailing dynamic charts
While sending a static chart is nice to give someone an idea about some dataset, they may
want to explore the data themselves. In this case, we'll need to design our charts such that
we can share them.

The following technique will only work for non-local websites, that is,
websites that are reachable either on a local network or over the Internet.

Sharing Charts on the Web

100

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe from Chapter 1, Getting Started with Highcharts.

How to do it...
To get started, perform the following steps:

1. Create the following getParams function as shown in the following code:
var getParams = function() {
 var searchParams = window.location.search.substr(1),
 paramPairs = searchParams.split('&'),
 params = {},
 i, temp;

 for (i=0; i < paramPairs.length; i++) {
 if (paramPairs[i].trim() === "") {
 continue;
 }
 temp = paramPairs[i].split('=');
 params[temp[0]] = JSON.parse(temp[1]);
 }

 return params;
};

2. Call our getParams function using the following code:
var params = getParams();

3. Define our chart options as shown in the following code:
var otherData = [/* Assume this is defined */];
var options = {
 /* … */
 series: [{
 // options that are in our GET params
 data: params.data || otherData
 }]
};

4. Render our chart as shown in the following code:
var chart =
 $('#container').highcharts(options).highcharts();

Chapter 4

101

5. Create the following chartLink function:
var chartLink = function(chart) {
 var config = chart.options,
 url = window.location.origin +
 window.location.pathname + '?',
 key, value;

 // determine which configurable options to be used
 key = 'data';
 value = config.series[0].data;
 url += key + '=' + JSON.stringify(value);

 return url;
};

6. Define a button and text field on the page to call our chartLink function as shown
in the following code:
<input type='button' value='Generate Link' id='generate' />
<input type='text' id='link'/>

7. Attach an event handler to our button to generate the link as shown in the
following code:

$('#generate').click(function(){
 $('#link').val(chartLink(chart));
});

Depending on how Highcharts is integrated with your project,
this technique may interfere with other aspects of the web
page, given that the technique leverages the GET parameters.

How it works...
As implemented previously, our chartLink function is a bit incomplete, but enough is
present to get the gist of things. Our getParams function will look for any search parameters
(for example, anything after the ? in a URL) in the URL, turn the keys into dictionary values,
and convert the JSON-encoded values into the relevant JavaScript objects.

Our chartLink function will return a URL to the current page with relevant parameters
converted to JSON.

When the page loads, our chart will look for GET parameters; if it finds them, it will use them
in the chart. When we send the chart, the parameters will be in the URL, so they will be used
on the page that renders.

Sharing Charts on the Web

102

There's more...
The technique we've used previously isn't limited to Highcharts; we could also use those
encoded parameters in other aspects of a JavaScript application.

We can encode whichever parameter we want, provided that we change our chartLink
function. For example, if we want to copy all the chart parameters, we could perform the
following code:

var chartLink = function(chart) {
 var config = chart.options,
 url = window.location.origin + window.location.pathname +
 '?',
 key, value;

 // determine which configurable options to be used
 for(key in config) {
 if (config.hasOwnProperty(key)){
 value = config[key];
 url += key + '=' + JSON.stringify(value);
 }
 }

 return url;
};

We could do something similar to what we did in the E-mailing static charts
recipe, and render the entire HTML page. However, this process is both more
involved and more error-prone, so it is left as an exercise for the reader.

Preparing charts for printing
Although we tend to do things entirely digitally, there may be occasions where we will want
to print a chart, be it for a report or some other purpose. In cases such as these, we need to
make some small adjustments to make our charts look good for printing.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe from Chapter 1, Getting Started with Highcharts.

Chapter 4

103

How to do it...
To get started, perform the following steps:

1. Include exporting.js on our page as shown in the following code:
<!-- Include the verbose version of Highcharts extras -->
<script src='./bower_components/highcharts/highcharts-
 more.src.js'></script>

<!-- Include the exporting module -->
<script
 src='./bower_components/highcharts/modules/
 exporting.src.js'></script>

2. Create a button as shown in the following code:
<div id='container'></div>
<input type='button' id='print-all' value='Print All' />

3. Create the following printCharts function and include it on your page as shown
in the following code:
var printCharts = function (charts) {
 var origDisplay = [],
 origParent = [],
 body = document.body,
 childNodes = body.childNodes,
 ELEMENT = 1;

 // (1) default to all charts
 charts = charts || Highcharts.charts;

 // (2) hide all body content
 Highcharts.each(childNodes, function (node, i) {
 if (node.nodeType === ELEMENT) {
 origDisplay[i] = node.style.display;
 node.style.display = "none";
 }
 });

 // (3) put the charts back in
 $.each(charts, function (i, chart) {
 origParent[i] = chart.container.parentNode;
 body.appendChild(chart.container);
 });

 // (4) print

Sharing Charts on the Web

104

 window.print();

 // (5) allow the browser to prepare before reverting
 setTimeout(function () {
 // (6) put the charts back in
 $.each(charts, function (i, chart) {
 origParent[i].appendChild(chart.container);
 });

 // (7) restore all body content
 Highcharts.each(childNodes, function (node, i) {
 if (node.nodeType === 1) {
 node.style.display = origDisplay[i];
 }
 });
 }, 500);
}

4. Attach our printCharts function to the button with an event handler as shown
in the following code:

$('#print-all').click(function(event) {
 printCharts();
});

How it works...
By default, Highcharts will only print a single chart when we click on Print chart even if
multiple charts are present on the screen. We've wired our button to the printCharts
function, which allows us to print an arbitrary number of charts. The way that it does this
is very similar to Chart.print. To print charts, we perform the following steps:

1. Determine which charts we want to print. If none are provided, we default to using
all charts available.

2. Find all HTML elements that are part of the document and hide them by setting
display: none for the element's style. Keep track of the element's original style.

3. Iterate over the charts we want to print, keep track of their original parent element,
then insert them into the document again.

4. Tell the browser to print.

5. When we've finished printing, allow a brief pause before we start putting things
back to the way they were.

6. Put the charts back underneath their old parent elements.

7. Set the display property back to whatever it was before we set it to display: none.

Chapter 4

105

There's more...
If we wanted this behavior to be the default and override the existing Print chart button,
we could accomplish that as follows:

// Get a reference to the default menu items
var defaultOptions = Highcharts.getOptions(),
 buttons =
 defaultOptions.exporting.buttons.contextButton.menuItems;

// replace the 'Print Chart button'
buttons[0].onclick = function () {
 printCharts();
} ;

// In our chart options, use our new menu items
var options = {
 /* … */
 exporting: {
 buttons: {
 contextButton: {
 menuItems: buttons
 }
 }
 }
};

One other thing that we can do to prepare charts for printing is to change the colors used
to make them more print-friendly. These changes are left as an exercise for the reader.

For best results, save the chart as a PDF, and be sure to compare the printed version to
what is seen on the screen.

5
Integrating with ExtJS

In this chapter, we will cover the following recipes:

 f Setting up a simple ExtJS project

 f Using Highcharts in ExtJS

 f Connecting your chart using Ext.data.Store

 f Observing live data using other Store types

 f Connecting your chart to Ext.app.Controller

 f Creating charts that inherit from other charts

Introduction
ExtJS is a well-documented JavaScript framework for rich desktop-like applications. It provides a
lot of tools for common development patterns right out of the box, and also has a lot of reusable,
pre-built components. In this chapter, we'll take a brief look at some of the components in an
ExtJS application and how we can integrate Highcharts into that application.

All examples in this chapter will be written from the perspective
of using ExtJS 4.2.1. While the same advice should apply to later
versions, or possibly other 4.x Versions, please keep this in mind.

Integrating with ExtJS

108

Setting up a simple ExtJS project
In order to get started, we'll need to first set up a basic ExtJS project, and then get a bit of an
understanding of how ExtJS projects are laid out.

Getting ready
Before we begin, we will need to download the ExtJS framework and set up our project.

1. Visit the Sencha website to download ExtJS from http://www.sencha.com/
products/extjs/. Note that both free and commercial versions of the software
are available, so we need to pick an appropriate version for our project.

2. Create a folder named my_project that will contain our project.

3. Unzip ExtJS to my_project/extjs.

4. Create a file named my_project/app.js that will define our application. Include
the following code in it:
// Added so that Viewport code is always loaded before application
runs
Ext.require('Ext.container.Viewport');

5. Create a file named my_project/index.html and include the following code
within it:

<html>
 <head>
 <title>Chapter 5 – Integrating with ExtJS</title>
 <!-- Include default stylesheets -->
 <link rel="stylesheet" type="text/css" href="extjs/resources/
 css/ext-all.css">

 <!-- Include the core JS in a developer friendly format -->
 <script type="text/javascript" src="extjs/ext-dev.js"></script>

 <!-- Include our application -->
 <script type="text/javascript" src="app.js"></script>

 </head>

 <body></body>
</html>

Chapter 5

109

We will also need a way of running this project from a server. This is beyond the scope of this
chapter, but we may be able to re-use the techniques used to set up a Bottle server, which is
discussed in the Using Ajax for polling charts recipe in Chapter 2, Processing Data.

How to do it...
To get started, perform the following steps:

1. Within my_project/app.js, include the following code:
// Added so that Viewport code is always loaded before application
runs
Ext.require('Ext.container.Viewport');

Ext.application({
 name: 'Chapter5',
 launch: function() {
 Ext.create('Ext.container.Viewport', {
 layout: 'fit',
 items: [{
 title: 'Setting up a simple ExtJS project',
 html: 'This is a panel (by default); also, a bare ExtJS
 example'
 }]
 });
 }
});

2. Visit the index.html page in the browser:

Integrating with ExtJS

110

How it works...
If you've noticed, our index.html page, unlike usual, doesn't really do all that much: It links
some ExtJS stylesheets to the developer version of the core libraries (ext-dev.js) and to
our application (app.js).

All of the detail of our project comes from app.js where we create our main Application
object. We can include any component that we'll need by using Ext.require, which we've
done for our viewport (that is, an object representing the browser). We'll also notice that
unlike other JavaScript code, where we might follow some pattern such as var obj = new
MyClass(), here we use Ext.create. ExtJS handles all object creation, inheritance, and so
on for us, so we can focus on writing application-level code in ExtJS.

Our example is fairly straightforward: when the application launches, we want to create a
viewport that will fill the screen (layout: 'fit') and put some items in our viewport. We'll
notice this pattern when creating other nested items (Ext.create('Class', {items:
[/*list of child items*/]}). Normally, we'd specify an xtype, which is a short name
for a particular class; but if it is omitted, the parent will usually render the item as a panel,
which is a simple container object.

There's more...
ExtJS is a very feature-rich library, so it is definitely worth reading up on its well-documented API
at http://docs.sencha.com/extjs/. Rather than setting up a project manually, Sencha
provides a tool called Sencha Cmd (http://www.sencha.com/products/sencha-cmd/),
which not only makes it easy to scaffold applications, as we did in our example, but also makes
it easy to handle other steps in the process of building an ExtJS application.

Using Highcharts in ExtJS
Now that we have a basic understanding of how to set up an ExtJS project, we are able to
get started and create our first chart in ExtJS. Much of what we have already learned can be
applied, but there are differences worth noting.

Getting ready
We will need to download the Highcharts extension for ExtJS.

1. Create an account on the Sencha network at https://id.sencha.com/users/
sign_up because this is necessary to access the market.

2. Download the Highcharts extension (Version 2.3) found in the Sencha market
(http://market.sencha.com/extensions/highcharts/).

Chapter 5

111

3. Unzip the Highcharts extension so that our project looks like the following hierarchy:
my_project/
 app.js
 index.html
 extjs/
 resources/
 Chart/
 ux/

4. Highcharts and jQuery are not included in the Highcharts extension, so download
these files, if necessary, and copy them to my_project/resources as follows:
my_project/
 app.js
 index.html
 extjs/
 resources/
 highcharts.src.js
 highcharts-more.src.js
 jquery.dev.js
 Chart/

5. Update my_project/index.html to include Highcharts and jQuery, as shown in
the following code:
<!-- Include the core JS in a developer friendly format -->
<script type="text/javascript" src="extjs/ext-dev.js"></script>

<!-- Include Highcharts, jQuery; Not provided by Highcharts
extension -->
<script type="text/javascript" src="resources/jquery.dev.js"></
script>
<script type="text/javascript" src="resources/highcharts.src.
js"></script>
<script type="text/javascript" src="resources/highcharts-more.src.
js"></script>

<!-- Include our application -->
<script type="text/javascript" src="app.js"></script>

Integrating with ExtJS

112

6. Ensure that the Highcharts extension is loaded in our application, as shown in the
following code:

// Added so that Viewport code is always loaded before application
runs
Ext.require('Ext.container.Viewport');

// Needs to know where Highcharts class is located
Ext.Loader.setPath('Chart', '../resources/Chart');

// Require Highcharts Extension
Ext.require('Chart.ux.Highcharts');

// Require whichever series we will be using
Ext.require('Chart.ux.Highcharts.Serie');
Ext.require('Chart.ux.Highcharts.LineSerie');

How to do it...
To get started, perform the following steps:

1. Create a new application in app.js, as shown in the following code:
Ext.require(/* … */);

Ext.application({
 name: 'MyApp',
 launch: function() {
 var chart = Ext.create('Chart.ux.Highcharts', { });
 }
});

2. Add configuration to our chart, as shown in the following code:
launch: function() {
 var chart = Ext.create('Chart.ux.Highcharts', {
 region: 'center',
 id: 'chart',
 initAnimAfterLoad: false,
 chartConfig: {
 chart: {
 type: 'line',
 showAxes: true
 },
 title: {
 text: 'A simple graph'
 }
 }
 });
}

Chapter 5

113

3. Create Viewport, as shown in the following code:
launch: function() {
 var chart = Ext.create('Chart.ux.Highcharts', { /*...*/});

 var viewport = Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [{
 region: 'west',
 width: 200,
 title: 'Test',
 html: 'Testing'
 }, chart]
 });
}

4. Add data to the chart, as shown in the following code:
launch: function() {
 var chart = Ext.create('Chart.ux.Highcharts', { /*...*/});
 var viewport = Ext.create('Ext.container.Viewport', {/*...*/});
 chart.addSeries([{
 name: 'Series #1',
 data: [1,2,3]
 }], false);
}

5. Visit the index.html page in the browser:

Integrating with ExtJS

114

How it works...
ExtJS loads files dynamically as they are needed, so we must first tell ExtJS where it can find
the Highcharts extension by using Ext.Loader.setPath. With Ext.Loader.setPath, we
tell ExtJS what class we want to find (for example, Chart) and where it can be found relative
to app.js (in this case, it is present in ../resources/Chart). Then, as is the case with
any module, we need to tell ExtJS that we require that module by using Ext.require.

Configuration works differently when using the extensions as compared to how they would be
defined in JavaScript. First, most of the chart configuration is stored inside a chartConfig
element. Second, all data that we would normally define using series[x].data has been
removed from config and instead been added by using chart.addSeries(series,
append). This method allows us to add one or more charts in a way similar to how we would
normally define our series.

We need to include a few options to render the chart without initial data. We need to set
initAnimAfterLoad to false to prevent the chart from animating after loading, and
chartConfig.chart.showAxes to true so that the axes will render the chart initially.

In the case of the Highcharts extension, if you do not include the
dependencies for the chart's series types that are used, the graph will not
load. For example, if chartConfig.chart.type is area, Chart.
ux.Highcharts.AreaSerie must be included by using Ext.
require. For more information on the names and series types available,
please visit the Highcharts extension documentation at http://
joekuan.org/demos/Highcharts_Sencha/docs/.

There's more...
Because of the differences between ExtJS and plain JavaScript, the Highcharts extension
for ExtJS makes some changes to how configuration is defined and how certain actions take
place. For this reason, it's worthwhile to take a look at the online documentation for the
extension (http://joekuan.org/demos/Highcharts_Sencha/docs/) and the source
code (https://github.com/JoeKuan/Highcharts_Sencha) for more details about
the differences.

Chapter 5

115

Connecting your chart using Ext.data.Store
When working with Highcharts, most of our work is focused on defining the configuration and
the data. In ExtJS, this work is abstracted into different components. In particular, data is
managed using a store. This recipe examines how we can leverage the store to add data to
our charts.

Getting ready
For setting up a basic ExtJS project with Highcharts, refer to the Getting ready section of the
Using Highcharts in ExtJS recipe discussed earlier in this chapter.

How to do it...
To get started, perform the following steps:

1. Define the application as follows:
Ext.require('Ext.container.Viewport');

Ext.Loader.setPath('Chart', '../resources/Chart');
Ext.require('Chart.ux.Highcharts');
Ext.require('Chart.ux.Highcharts.Serie');
Ext.require('Chart.ux.Highcharts.LineSerie');

Ext.application({
 name: 'MyApp',
 launch: function() {
 }
});

2. Create ArrayStore for your data as follows:
launch: function() {
 data = [
 ['September', 42],
 ['October', 31.4],
 ['November', 23.18]
];

Integrating with ExtJS

116

 var store = Ext.create('Ext.data.ArrayStore', {
 fields: [
 {name: 'month', type: 'string'},
 {name: 'value', type: 'float'}
],
 data: data
 });
}

3. Create the chart as follows:
launch: function() {
 var store = Ext.create('Ext.data.ArrayStore', { /*...*/});
 var chart = Ext.create('Chart.ux.Highcharts', {
 region: 'center',
 id: 'chart',
 store: store,
 series: [{
 dataIndex: 'value'
 }],
 xField: 'month',
 chartConfig: {
 chart: {
 type: 'line',
 },
 title: {
 text: 'A simple graph'
 }
 }
 });
}

4. Create a viewport as follows:
launch: function() {
 var store = Ext.create('Ext.data.ArrayStore', { /*...*/});
 var chart = Ext.create('Chart.ux.Highcharts', { /*...*/});
 var viewport = Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [chart]
 });
}

5. Visit the index.html page in the browser.

Chapter 5

117

How it works...
The biggest difference between this recipe and how we've created our charts previously is the
introduction of ArrayStore. An ArrayStore is a Store: a class that encapsulates a client-
side collection of models, which are just individual data points. Using an ArrayStore means
that the data is expected to be in an array format, even though other stores exist for other
data formats.

The way in which it works is that we tell our Store what the fields of each data point are
named (for example, month), what format the data will be in (for example, string), and we then
provide the Store with the data as an array of arrays that follows the format that we laid out,
namely, [[month, value], ...].

We also add a few new configuration options to our chart apart from store. We use xField
to determine which field in the Store should be used for the x axis labels, and series lets
us list which series will be included in the chart and what will be used for the y axis values by
setting dataIndex.

Observing live data using other Store types
ExtJS supports a number of different Store types, but stores are only a part of the data
management puzzle. The other piece is proxies, which are used to access the data from
different sources. This recipe will look into how we can use certain stores, or stores and
proxies, to get live data from a server.

Getting ready
For setting up a basic ExtJS project with Highcharts, refer to the Getting ready section of the
Using Highcharts in ExtJS recipe discussed earlier in this chapter.

For this recipe, we will assume that the data we get back from our source looks like the
following code snippet:

[
 {"y": 132, "color": "#98D8AF"},
 {"y": 254, "color": "#A80877"},
 {"y": 119, "color": "#569A3C"}
 /* … */
]

Integrating with ExtJS

118

How to do it...
To get started, perform the following steps:

1. Define the application as follows:
Ext.require('Ext.container.Viewport');

Ext.Loader.setPath('Chart', '../resources/Chart');
Ext.require('Chart.ux.Highcharts');
Ext.require('Chart.ux.Highcharts.Serie');
Ext.require('Chart.ux.Highcharts.LineSerie');

Ext.application({
 name: 'MyApp',
 launch: function() {
 }
});

2. Create a JsonStore for our data as follows:
launch: function() {
 var store = Ext.create('Ext.data.JsonStore', {
 fields: [
 {name: 'color', type: 'string'},
 {name: 'y', type: 'float'}
],
 proxy: {
 type: 'ajax',
 url: '/ajax/series'
 },
 autoLoad: true
 });
}

3. Create the chart as follows:
launch: function() {
 var store = Ext.create('Ext.data.ArrayStore', { /*...*/});
 var chart = Ext.create('Chart.ux.Highcharts', {
 region: 'center',
 id: 'chart',
 store: store,
 series: [{
 dataIndex: 'y'
 }],
 chartConfig: {
 chart: {
 type: 'line',
 },
 title: {

Chapter 5

119

 text: 'A simple graph'
 }
 }
 });
}

4. Create a viewport as shown in the following code:
launch: function() {
 var store = Ext.create('Ext.data.ArrayStore', { /*...*/});
 var chart = Ext.create('Chart.ux.Highcharts', { /*...*/});
 var viewport = Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [chart]
 });
}

5. Visit the index.html page in the browser.

How it works...
In this recipe, we've used a proxy, in particular AjaxProxy. Proxies make it easy to create,
read, update, and delete resources. All we need to do is provide our store with a proxy
definition with a type and relevant details (url in this case), and the store will be able to fetch
whatever results it needs. The autoLoad callback just determines whether we should load
data immediately or not.

There's more...
If we want to create a polling example where the chart updates periodically (for example, once
in a second), we just need to periodically call store.reload():

launch: function {
 var store = Ext.create('Ext.data.ArrayStore', { /*...*/});
 var chart = Ext.create('Chart.ux.Highcharts', { /*...*/});
 var viewport = Ext.create('Ext.container.Viewport', { /*...*/});
 setInterval(function() {
 store.reload();
 }, 1000);
}

Also, other proxies exist for RESTful services (RestProxy, http://docs.sencha.com/
extjs/4.2.1/#!/api/Ext.data.proxy.Rest) and for JSONP (JsonPProxy,
http://docs.sencha.com/extjs/4.2.1/#!/api/Ext.data.proxy.JsonP).

Integrating with ExtJS

120

Connecting your chart to Ext.app.Controller
Being able to create a chart can be useful, but it is even better to be able to control the chart;
for example, being able to take certain actions and listen for events on the chart. That is
where Ext.app.Controller comes in, and this is what we'll be investigating in this recipe.

Getting ready
For setting up a basic ExtJS project with Highcharts, refer to the Getting ready section of the
Using Highcharts in ExtJS recipe discussed earlier in this chapter.

How to do it...
To get started, perform the following steps:

1. Set up the folder structure. We will also need to create an empty
GenericController.js file as follows:
my_project/
 app.js
 index.html
 extjs/
 resources/
 app/
 controller/
 GenericController.js

2. Define the controller in GenericController.js as follows:
Ext.define('MyApp.controller.GenericController', {
 extend: 'Ext.app.Controller',

 init: function() {
 console.log('Initialized GenericController!');
 this.control({
 '#refresh': {
 click: function() {
 var chart = Ext.getCmp('chart');
 chart.store.reload();
 }
 }
 });
 }
});

Chapter 5

121

3. Define the application in my_project/app.js as follows:
Ext.require('Ext.container.Viewport');
Ext.Loader.setPath('Chart', '../resources/Chart');
Ext.require('Chart.ux.Highcharts');
Ext.require('Chart.ux.Highcharts.Serie');
Ext.require('Chart.ux.Highcharts.LineSerie');

Ext.application({
 name: 'MyApp',
 appFolder: 'app',
 launch: function() { }
});

4. Create a reference for our controller in our application as follows:
Ext.application({
 name: 'MyApp',
 appFolder: 'app',
 controllers: ['GenericController'],
 launch: function() { }
});

5. Create a JsonStore for our data:
launch: function() {
 var store = Ext.create('Ext.data.JsonStore', {
 fields: [
 {name: 'color', type: 'string'},
 {name: 'y', type: 'float'}
],
 proxy: {
 type: 'ajax',
 url: '/ajax/series'
 },
 autoLoad: true
 });
}

6. Create the chart as shown in the following code:
launch: function() {
 var store = Ext.create('Ext.data.ArrayStore', { /*...*/});
 var chart = Ext.create('Chart.ux.Highcharts', {
 region: 'center',
 id: 'chart',
 store: store,

Integrating with ExtJS

122

 series: [{
 dataIndex: 'y'
 }],
 chartConfig: {
 chart: {
 type: 'line',
 },
 title: {
 text: 'A simple graph'
 }
 }
 });
}

7. Create a viewport as shown in the following code:
launch: function() {
 var store = Ext.create('Ext.data.ArrayStore', { /*...*/});
 var chart = Ext.create('Chart.ux.Highcharts', { /*...*/});
 var viewport = Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [{
 region: 'west',
 width: 200,
 title: 'Sidebar',
 html: 'This is a sidebar. It <i>could</i> display useful
 information'
 }, {
 region: 'center',
 tbar: [{
 xtype: 'button',
 text: 'Refresh',
 id: 'refresh',
 height: 50
 }],
 items: [chart]
 }]
 });
}

Chapter 5

123

8. Visit the index.html page in the browser:

How it works...
A controller is just a means of handling and redirecting events, such as an element being clicked
or rendered. If we set up everything correctly, then ExtJS can load our controller automatically.
More specifically, it will load our controller if the following conditions are satisfied:

 f We have set appFolder to the folder containing our other classes

 f We have created the appropriate folders in that folder (that is, controller)

 f The controller's name in our controllers' arrays matches the name in the
JavaScript file

Apart from our viewport, which now has a bar at the top (tbar) with a Refresh button on
it, most of the interesting work takes place inside our GenericController. The most
important part of our controller is the init method where we can set up our event handlers.
With the help of this.control, we can pass a set of key-value pairs, where the keys are
component selectors (very similar to DOM selectors, but for ExtJS components), and the
values are a map of events to handler functions.

We'll also notice that we use an Ext.getCmp function, which is an abbreviation for get
component; it will get an ExtJS component from anywhere on the page by the component's
ID. Once we have a reference to the chart, we can access its store and refresh the data at
the click of a button.

Integrating with ExtJS

124

There's more...
ExtJS component selectors are similar to DOM selectors, but have some interesting
differences and improvements from basic DOM selectors. More information on the selectors
can be found in the Ext.ComponentQuery documentation (http://docs.sencha.com/
extjs/#!/api/Ext.ComponentQuery).

For more information on how to structure an application in ExtJS and the general architectural
details of ExtJS, it is worth reviewing their MVC architecture guide (http://docs.sencha.
com/extjs/#/guide/application_architecture).

Creating charts that inherit from other
charts

Creating the same charts over and over again can become tiresome, especially if the only
elements that change are the data or a few small details. In this recipe, we'll uncover how we
can define charts in a way that we can extend and change to make new charts.

Getting ready
For setting up a basic ExtJS project with Highcharts, refer to the Getting ready section of the
Using Highcharts in ExtJS recipe discussed earlier in this chapter.

How to do it...
To get started, perform the following steps:

1. Create a new my_project/Custom folder, and create a CustomChart.js file
within it.

2. Within CustomChart.js, define our class using the following code:
Ext.define('Custom.SplineChart', {
});

3. Our class should extend Chart.ux.Highcharts, as shown in the following code:
Ext.define('Custom.SplineChart', {
 extend: 'Chart.ux.Highcharts'
});

Chapter 5

125

4. Define any option we want for our new chart. Also, include anything we would require:
Ext.require('Chart.ux.Highcharts.SplineSeries');
Ext.define('Custom.SplineChart', {
 extend: 'Chart.ux.Highcharts',
 constructor:function(config) {
 this.callParent(arguments);
 this.initConfig(config);

 this.chartConfig = this.chartConfig || {};
 this.chartConfig.chart = this.chartConfig.chart || {};
 this.chartConfig.chart.type = 'spline';
 }
});

5. Use our new chart in an application, as shown in the following code:

Ext.Loader.setPath('Chart', '../resources/Chart);
Ext.Loader.setPath('Custom', '../Custom');

Ext.require('Chart.ux.Highcharts');
Ext.require('Custom.SplineChart');

How it works...
The Ext.define function handles the task of selecting the class we want to extend (Chart.
ux.Highcharts) and extending it to create a new class (Custom.SplineChart). We can
also use this technique to extend or replace any other methods or properties of the base
class. We still need to tell ExtJS where to find our new class by using Ext.Loader.setPath,
and we still require both the class and the Highcharts extension as dependencies for the
application by using Ext.require.

6
Integrating with jQuery

In this chapter, we will cover the following recipes:

 f Creating charts with jQuery

 f Using the data- attributes to load charts

 f Binding events using jQuery.on

 f Handling user interaction with jQuery

 f Updating a chart on the backend

 f Using jQuery UI tabs and Highcharts

 f Modifying charts using jQuery UI widgets

 f Putting charts in pages using jQuery Mobile

Introduction
jQuery is one of the most popular JavaScript libraries in use today, and it's easy to
understand why. It abstracts away a lot of the inconsistencies between browsers, and,
since its introduction, it has also grown to include loads of other useful functionalities such
as animations and plugins. Its existence has also paved the way for similar, more focused
projects such as jQuery Mobile (focused on improvements for mobile browsers) and jQuery UI
(provides widgets and other functionalities for web pages and web applications). This chapter
will focus on how we can integrate Highcharts with some of the varied functionality that
jQuery provides.

Integrating with jQuery

128

Creating charts with jQuery
Before we really dig into what we can create, we need to make a basic chart. Fortunately,
Highcharts provides a wrapper for jQuery, making chart creation very simple.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section of
the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

How to do it...
To get started, perform the following steps:

1. Create a set of chart options as shown in the following code:
$(document).ready(function() {
 var options = {
 chart: {
 type: 'column'
 },
 title: {
 text: 'Creating Charts with jQuery'
 },
 subtitle: {
 text: 'Look familiar?'
 },
 series: [{
 name: '2^x',
 data: [1,2,4,8]
 }, {
 name: '2^(x+1)',
 data: [2,4,8,16]
 }]
 };

2. Render the chart by using .highcharts() as shown in the following code:

$('#container').highcharts(options);

Chapter 6

129

How it works...
By default, Highcharts includes a wrapper that makes it easy to create charts. This wrapper is
the .highcharts() plugin. This function automatically takes the options provided and uses
it to generate a chart within the DOM node with the container ID (that is, #container). We
can optionally provide a second argument that will execute some function on load (similar to
chart.events.load).

There's more...
We can also obtain a reference to the chart, which will occasionally be needed to act on the
chart after it has already been created. This can be done when the chart is being created, as
shown in the following code:

var chart = $('#container').highcharts(options).highcharts();

It can also be done after the chart has been created, as shown in the following code:

var chart = $('#container').highcharts();

Using the data- attributes to load charts
There may be occasions where we do not have a data source for our charts per se. Perhaps
we're only given a pre-rendered HTML code and need to make a chart from that, or the data is
stored using data- attributes. In such cases, it is still relatively easy to create a chart.

This recipe assumes that we have a piece of HTML code with the following
data- attributes. If our HTML is not of this format, we will need to change it
accordingly:

<div id='container'
 data-chart='{"type": "column"}'
 data-title='{"text": "Using data-attributes to load
 charts"}'
 data-series='[{"name": "2^x", "data": [1,2,4,8]},
{"name": "2^(x+1)", "data": [2,4,8,16]}]'
></div>

Integrating with jQuery

130

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section of
the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

How to do it...
To get started, perform the following steps:

1. Obtain the data from our DOM node with the following code:
var options = $('#container').data();

2. Process the data as necessary as shown in the following code. This step is optional:
options.title = 'My new title';

3. Render the chart with the following code:

$('#container').highcharts(options);

How it works...
jQuery has a function called .data() that can be called on any jQuery object. This function
will return any data on that element that is set using .data(key, value), or initially set
using data- attributes. Any data- attribute is automatically converted. Keys are converted
to camel case and have their data- prefix removed (for example, data-my-attr becomes
myAttr in the returned object). In fact, if our data is formatted in a proper JSON format (for
example, all keys are enclosed in double quotes), the .data function will even extract nested
fields, as it did in our example. If we only wanted to extract some of the information from our
element, we could have used .data(key), which would have returned data only for that key
(for example, .data('chart') would return {"type": "column"}).

There's more...
We could also accomplish what we've done in this recipe in a shorter form as follows:

 $('#container').highcharts(
 $.extend($('#container').data(), { title: "My new title" })
);

Chapter 6

131

The major difference being that we use $.extend, which takes the first object argument and
adds or overwrites it with any keys found in the subsequent argument objects.

Binding events using jQuery.on
Static charts are used for various purposes, but in order for our charts to become more
dynamic, we need to be able to handle events. Handling events is possible with the use
of jQuery.on.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

How to do it...
To get started, perform the following steps:

1. Define the chart options with the following code:
var options = { /* our chart options */};

2. Render our chart, maintaining a reference to the chart, as shown in the
following code:
var chart = $('#container').highcharts(options).highcharts();

3. Bind a click handler to the chart as shown in the following code:
$(chart).on('click', function() {
 console.log('Our chart has been clicked!');
});

4. Bind a handler for the show event on the first series in the chart as shown
in the following code:

$(chart.series[0]).on('show', function() {
 console.log('The first series has been shown in our chart!');
});

Integrating with jQuery

132

The resultant chart is displayed as follows:

How it works...
The .bind() method is very similar to using the various events' options we would normally
put in our chart configuration, except that it works after the chart has already been rendered.
We can call .bind() on any element in our chart we would normally be able to define
events on (for example, the chart object itself, individual series, and points), and we can bind
handlers to any event that these objects would normally respond to (for example, the click
event on a series or a point). The format is straightforward, .bind() takes two arguments,
a string of events (or multiple events, for example, show click to use the same handler for
the show and click events), and an event handler.

Chapter 6

133

Handling user interaction with jQuery
Using jQuery.on is a start, it allows us to handle events. However, what if .on() is too
verbose for us? What about handling events on multiple objects?

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section of
the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

How to do it...
To get started, perform the following steps:

1. Define the chart options as shown in the following code:
var options = { /* our chart options */};

2. Render our chart, maintaining a reference to the chart, as shown in the
following code:
var chart = $('#container').highcharts(options).highcharts();

3. Register a handler as shown in the following code:
$(chart).click(function() {
 console.log('Our chart has been clicked!');
});

4. Register a handler using .on() as shown in the following code:
$(chart.series[0].data[0]).on('mouseOver', function() {
 console.log('Mouseover on first point!');
});

5. Register a handler on several elements, as shown in the following code:

$(chart.series[1].data).each(function(index, point) {
 $(point).click(function() {
 console.log('Clicked on a point!');
 });
});

Integrating with jQuery

134

How it works...
jQuery supports a number of shortcuts such as .click() to handle events. The difference
between this and .bind() is that we do not need to supply the event name as it's included in
the function (that is, .click() handles the click events).

The .bind() and .click() methods are really just aliases of .on(), which is how jQuery
handles all events. Of course, there may be subtle differences, so it's always best to consult
the documentation (http://api.jquery.com).

Also in this recipe, we used $(element).each(eachFn), which is a simple helper function
that allows us to iterate over the element. The eachFn parameter that we provide, takes an
index and an element as its first and second parameters respectively. From there, we just add
our handler to each element.

Updating a chart on the backend
Until this point, we've mostly been getting data from some source. We never modify or change
data at the source. This recipe will briefly go through the details of how we might send data to
some server that affects our chart.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts. For our
example, assume that the JSON we retrieve looks like the following code:

{'y': 0}

How to do it...
To get started, perform the following steps:

1. Create a textbox and a button on our page as follows:
<div id='container'></div>

<input type='text' id='new_value' />
<input type='submit' id='replace_value' value="Replace value"/>

2. Create a handler for the instance when the button is pressed, as shown in the
following code:
$('#replace_value'').on('click', function(event) {
 var newValue = $('#new_value').val();

 event.preventDefault();

Chapter 6

135

 $.ajax({
 url: '/ajax/point',
 contentType: 'application/json',
 type: 'POST',
 data: JSON.stringify({y: newValue})
 }) ;
});

3. Define the chart options as follows:
var options = {
 /* … */
};

4. Have our chart fetch data periodically using setInterval and the load event on
the chart, as shown in the following code:
var options = {
 chart: {
 events: {
 load: function () {
 var self = this;
 setInterval(function() {
 $.getJSON('/ajax/point', function(data) {
 var series = self.series[0];
 var redrawVal = true;
 var shiftVal = false;
 if (series.data && series.data.length > 10) {
 shiftVal = true;
 }
 series.addPoint(data, redrawVal, shiftVal);
 });
 }, 1000);
 }
 }
 }
};

5. Render the chart as follows:
$('#container').highcharts(options);

Integrating with jQuery

136

The resultant chart is displayed as follows:

6. Change the values as shown in the following screenshot:

Chapter 6

137

How it works...
Similarly, to know how we can obtain data using $.ajax or $.getJSON, we can also send
data using these methods. In our case, since we're sending data, we set the type to POST,
we set our contentType so that the server knows what to expect, and since we're not
submitting a form, we need to send over our data as a string, which we do using JSON.
stringify(obj). Then, our backend gets the new value, and whenever we poll for new
data, our chart will add that new value on to the end (as we did in previous examples).

Using jQuery UI tabs and Highcharts
So far, we've been able to create charts and modify their containers using CSS, or the chart
itself using options. One element that we haven't looked into is layout. This recipe will show us
how we can put Highcharts in jQuery UI tabs, but these steps will be very similar to the steps
for using other jQuery UI elements, such as an accordion.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section of
the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

We will also need to include CSS and JavaScript for jQuery UI by performing the following steps:

1. Modify bower.json to include jquery-ui as follows:
{
 "name": "highcharts-cookbook-chapter-6",
 "dependencies": {
 "jquery": "^1.9",
 "jquery-ui": "^1.10",
 "highcharts": "~3.0"
 }
}

2. Install bower dependencies with the following code:
bower install

3. Include jQuery UI theming on the page as follows:
<title>Chapter 6 - Integrating with jQuery - Examples</title>
<link rel="stylesheet" href="./bower_components/jquery-ui/themes/
ui-lightness/jquery-ui.min.css" />
<link rel="stylesheet" href="./bower_components/jquery-ui/themes/
ui-lightness/jquery.ui.theme.css" />

Integrating with jQuery

138

4. Include jQuery UI JavaScript in the page as follows:

<!-- Include the verbose version of jQuery -->
<script src='./bower_components/jquery/jquery.js'></script>

<!-- Include jQuery UI -->
<script src="./bower_components/jquery-ui/ui/jquery-ui.js"></
script>

How to do it...
To get started, perform the following steps:

1. Define the tab markup as shown in the following code:
<div id='tabs'>

 Tab 1
 Tab 2

 <div id='tab1'></div>
 <div id='tab2'></div>
</div>

2. Define the chart options as follows:
var options1 = {
 chart: {
 type: 'areaspline'
 },
 title: {
 text: 'Tab 1 Chart'
 },
 series: [{
 name: 'x^2',
 data: [0, 1, 4, 9, 16, 25]
 }, {
 name: '-(x^2) + 30',
 data: [30, 29, 26, 21, 14, 5]
 }]
};
var options2 = {
 chart: {
 type: 'area'
 },
 title: {
 text: 'Tab 2 Chart'
 },

Chapter 6

139

 series: [{
 name: '1/2 x',
 data: [0, 0.5, 1, 1.5]
 }, {
 name: 'x',
 data: [0, 1, 2, 3]
 }, {
 name: '2x',
 data: [0, 2, 4, 6]
 }]
};

3. Render the charts as shown in the following code:
$('#tab1').highcharts(options1);
$('#tab2').highcharts(options2);

4. Render the tabs as shown in the following code:

$('#tabs').tabs();

The resultant chart appears as follows:

Integrating with jQuery

140

How it works...
The .tabs() method is part of jQuery UI that takes a given element and converts it into
a set of tabs. By default, it expects a or element where it will obtain the tab
information from the elements present. Each element must have an anchor with
an href attribute, and it will link to whichever ID is specified in the anchor (for example, Banana will connect the tab to the element with ID banana).

In addition to all this, .tabs() will automatically add styles to the tabs and containers
making them easy to style, or use some of jQuery UI's existing themes. It is also possible to
add configurations to tabs by using .tabs(config). For more details on .tabs(config),
visit the jQuery UI documentation (http://api.jqueryui.com/tabs).

Modifying charts using jQuery UI widgets
jQuery UI provides a number of different controls that are easy to create and style. This recipe
looks at how we can leverage a few of these widgets in our charts.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section of
the Using jQuery UI tabs and Highcharts recipe discussed earlier in this chapter.

How to do it...
To get started, perform the following steps:

1. Create elements for a slider and a button, as follows:
<div id='container'></div>
<div id='slider'></div>

<button id='increase'>Increase</button>
<button id='decrease'>Decrease</button>

2. Define the chart options as shown in the following code:
var options = {
 chart: {
 type: 'column'
 },
 title: {

Chapter 6

141

 text: 'Modifying charts using jQuery UI Controls'
 },
 series: [{
 name: 'Slider',
 data: [0]
 }, {
 name: 'Button',
 data: [0]
 }]
};

3. Render the chart, keeping a reference to it, as shown in the following code:
var chart = $('#container').highcharts(options).highcharts();

4. Create the slider as follows:
$('#slider').slider({
 min: 0,
 max: 100,
 step: 10,
 slide: function (event, ui) {
 chart.series[0].setData([ui.value]);
 }
});

5. Create the buttons using the following code:
$('#increase').button().click(function() {
 var data = chart.series[1].data[0].y || 0;
 chart.series[1].setData([data += 1]);
});
$('#decrease').button().click(function() {
 var data = chart.series[1].data[0].y || 0;
 chart.series[1].setData([data -= 1]);
});

Integrating with jQuery

142

6. Observe the following chart that is rendered initially:

Chapter 6

143

7. Observe the following chart that is rendered after adjusting the slider:

Integrating with jQuery

144

8. Observe the following chart that is rendered after pressing the Decrease button a
few times:

How it works...
jQuery UI provides almost all of its widgets as plugins. In our case, we use these plugins to
create our slider and buttons.

The .slider() method takes an object as configuration, and in our case, we define the
minimum and maximum values and what each tick of the slider represents (that is, the step
value). We also provide the plugin with a slide() function to take some action while the
slider is moving. In our case, we get the current value of the slider by using ui.value, and
we set the first series to this value (causing the chart to shrink or grow as we drag the slider).
The creation of buttons is even more straightforward. We call .button() to convert the
buttons into jQuery buttons, and then we can attach a click handler to them.

Chapter 6

145

Putting charts in pages using jQuery Mobile
Our charts have mostly been designed for desktop browsers. While Highcharts works in a
large variety of browsers (including mobile browsers on Android and iPhone; see http://
www.highcharts.com/documentation/compatibility for more details), we haven't
really designed our charts for these devices. This recipe will look at how we can use jQuery
Mobile to make pages more mobile-friendly.

How to do it...
To get started, perform the following steps:

1. Define the base HTML page as follows:
<!DOCTYPE html>
<html>
<head>
 <title>My Page</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/1.2.1/
 jquery.mobile-1.2.1.min.css" />
 <script src="http://code.jquery.com/jquery-1.8.3.min.js">
 </script>
 <script src="http://code.jquery.com/mobile/1.2.1/jquery.mobile-
 1.2.1.min.js"></script>

</head>
<body>

<div data-role="page">

 <div data-role="header">
 <h1>Highcharts with jQuery Mobile</h1>
 </div>

 <div data-role="content">
 <ul data-role='listview' data-inset='true' data-filter='true'>
 First Chart
 Second Chart

 </div>
</div>
</body>
</html>

Integrating with jQuery

146

2. Define a page for our first chart as follows:
 Second Chart

 </div>
</div>

<div data-role="page" id='chart1'>
 <div data-role="header">
 <h1>First Chart</h1>
 </div>

 <div data-role="content">
 <div id='container1'></div>
 </div>
</div>

3. Define a page for our second chart as follows:
 <div id='container1'></div>
 </div>
</div>

<div data-role="page" id='chart2'>
 <div data-role="header">
 <h1>Second Chart</h1>
 </div>

 <div data-role="content">
 <div class='chart' id='container2'
 data-chart='{"type": "column"}'
 data-title='{"text": "Using data-attributes to load
 charts"}'
 data-series='[{"name": "2^x", "data": [8,2,4,1]},
 {"name":"2^(x+1)", "data": [2,16,8,4]}]'
 ></div>
 </div>
</div>

4. Define the code to render our first chart as follows:
 data-series='[{"name": "2^x", "data": [8,2,4,1]}, {"name":
 "2^(x+1)", "data": [2,16,8,4]}]'
 ></div>
 </div>

</div>

Chapter 6

147

<!-- Include the verbose version of highcharts -->
<script src='./highcharts.src.js'></script>

<!-- Include the verbose version of highcharts extras -->
<script src='./highcharts-more.src.js'></script>

<!-- Include our scripts -->
<script type='text/javascript'>
 $('#chart1').on('pageshow', function() {
 var chart1Options = {
 chart: {
 type: 'column'
 },
 title: {
 text: 'Creating Charts with jQuery'
 },
 subtitle: {
 text: 'Look familiar?'
 },
 series: [{
 name: '2^x',
 data: [1,2,4,8]
 }, {
 name: '2^(x+1) (scrambled)',
 data: [2,4,8,16]
 }]
 };

 $('#container1').highcharts(chart1Options);
 }) ;

</script>
</body>

5. Define the code to render our second chart as follows:
 $('#container').highcharts(chart1Options);
 }) ;

 $('#chart2').on('pageshow', function() {
 var chart2Settings = $('#container2').data();
 $('#container2').highcharts(chart2Settings);
 });

</script>
</body>

Integrating with jQuery

148

6. Examine the list view page shown in the following screenshot:

7. Examine the chart page shown in the following screenshot:

Chapter 6

149

How it works...
A lot of what jQuery Mobile does is handled using data- attributes. In our example,
we've created three pages (data-role='page') each with its own header (data-
role='header') and content (data-role='content'). When we create links using , jQuery Mobile will automatically create a smooth transition between pages and
will visit the next page. In fact, if the link and page IDs match, it will treat the different jQuery
Mobile pages in our example as though they were completely separate pages.

On our first page, we've created a special type of element, listview. Based on the settings
provided, this creates a list of items that we can filter by typing in the textbox it creates.

Rendering our charts is quite different in jQuery Mobile; for starters, we do not use
$(document).ready(). Again, jQuery Mobile is page-focused, so instead of waiting until
the document is ready, we take actions based on page status. The pageshow event will fire
when a jQuery Mobile page is rendered for the first time, or subsequent times, so we create
our charts when their respective pages are shown. Otherwise, it's remarkably similar.

7
Integrating with the

Yii Framework

In this chapter, we will cover the following recipes:

 f Setting up a simple Yii project

 f Creating a chart from model data

 f Generating a chart with a Yii CLI command

 f Creating charts with a RESTful controller

 f Updating the model when the chart changes

Introduction
Integrating with a well-defined backend component can be very easy, but it is often less
simple when we are starting from scratch and need to build an entire piece of software from
start to end. This chapter focuses on how to build a backend component rapidly and integrate
it with the Highcharts library.

Setting up a simple Yii project
In order to get started with Highcharts and Yii, we'll need to set up a base project. While Yii
provides tools to handle a lot of this work, we'll need to make some changes in order to get
things working.

Integrating with the Yii Framework

152

Getting ready
In order to get started, we will need to do a bit of preparation to get PHP and Yii ready. We'll do
this using the following steps:

1. Install PHP. We will need Version 5.1.0 or above. Details on how to install PHP can be
found on the PHP website http://php.net/manual/en/install.php.

2. Install any necessary PHP Data Object (PDO) extensions. For these examples, we will
be using SQLite which should be included by default, but this may vary from system
to system. Details on installing other PDO drivers can be found online (http://php.
net/manual/en/pdo.drivers.php).

3. Enable the SQLite PDO driver. This is done by editing php.ini on your system and
finding and uncommenting the appropriate lines, as shown in the following code:
; If you only provide the name of the extension, PHP will look for
it in its
; default extension directory.
;
; … other PHP extensions
extension=pdo_sqlite.so
extension=sqlite3.so

To find your php.ini file, run php –ini.
How PDO extensions are installed varies from system to system. Please
consult the manual for more details (http://php.net/manual/en/
pdo.installation.php).
In this chapter, we will use SQLite for our database; it is possible to use
any database, but SQLite is fairly lightweight and easy to get started with.
For details on installing SQLite, please refer to your operating system's
package manager or the SQLite website (http://www.sqlite.org/
download.html).

4. Download the Yii framework (http://www.yiiframework/download/).

This chapter was written with reference to Version 1.1 of the Yii
framework. The author gives no guarantee that the instructions in this
chapter will work with other versions of the Yii framework.

5. Create a folder yii-highcharts and unzip the Yii framework to yii-
highcharts/yii.

6. Start a local server with PHP from yii-highcharts using the following command:
php -S localhost:8080

Chapter 7

153

7. Verify that Yii's requirements are met by visiting http://localhost:8080/yii/
requirements/index.php and following the instructions on screen.

Also, we will need to make some small changes to the setup that follow from the Getting Ready
section of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

1. In bower.json, add underscore to our list of dependencies as shown in the
following code:
 "dependencies": {
 "highcharts": "~3.0",
 "underscore": "~1.5"
 }

2. Create a file, .bowerrc, in the same folder as bower.json. Place the following
contents in that file to ensure that the bower components are installed to the right
location, as shown in the following code:
{
 "directory": "yii-highcharts/example_app/js"
}

3. Install our JavaScript dependencies using the following command:

bower install

How to do it...
To get started, follow the ensuing instructions:

1. Create a skeleton project by running the following command from the yii-
highcharts/yii/framework folder:
./yiic webapp ../../example_app

2. Verify whether the skeleton project works by visiting http://localhost:8080/
example_app/index.php.

3. Configure Gii for model creation. Make the following changes in example_app/
protected/config/main.php:
// ...
'modules'=>array(
 // uncomment the following to enable the Gii tool
 'gii'=>array(
 'class'=>'system.gii.GiiModule',
 'password'=>'password',
),
),
// ...

Integrating with the Yii Framework

154

4. Create a new folder, yii-highcharts/example_app/js, and include
the Highcharts files here.

5. Edit example_app/protected/views/layouts/main.php to include
the required JavaScript files:

</div><!-- page -->
<?php
Yii::app()->clientScript->registerCoreScript('jquery');
Yii::app()->clientScript->registerScriptFile(Yii::app()-
>baseUrl.'/js/highcharts/highcharts.src.js');
Yii::app()->clientScript->registerScriptFile(Yii::app()-
>baseUrl.'/js/highcharts/highcharts-more.src.js');
Yii::app()->clientScript->registerScriptFile(Yii::app()-
>baseUrl.'/js/underscore/underscore.js');
?>
</body>
</html>

How it works...
Most of what we have coded executes when we run yiic webapp <name>. This command
uses the Yii framework to create a skeleton project and set up the examples, views,
controllers, and whatever else we might need to get started.

Gii is a code generator provided by the Yii framework that we will use later in this chapter
to automatically create models and controllers from a database schema. We have enabled
it and set a password for its use.

Lastly, we actually include Highcharts on a page; example_app/protected/views/
layouts/main.php is the wrapper view for the main page layout, so whatever changes
we make to this file will affect all other pages. The Yii framework includes some JavaScript
of its own including jQuery—these core scripts are registered by name and can be included
via registerCoreScript(name) as we did earlier. We can also register our own JavaScript
for inclusion using registerScriptFile(filepath). The Yii::app()->baseUrl
string is just a shortcut to get the root folder of our application.

Chapter 7

155

Creating a chart from model data
Now that we've set up our base project, we can really get started with the Yii framework.
Since non-static data is typically stored in models, we'll begin by creating a chart from
the model data.

Getting ready
To set up the basic Yii project, refer to the Setting up a simple Yii Project recipe from
this chapter.

How to do it...
Perform the following steps to create a chart from the model data:

1. Open example_app/protected/data/testdrive.db using the following
command:
sqlite3 example_app/protected/data/testdrive.db

2. Create a table for our data using the following code:
CREATE TABLE tbl_monster (
 id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
 name VARCHAR(32) NOT NULL,
 height REAL,
 weight REAL,
 hp INTEGER,
 attack INTEGER,
 defense INTEGER,
 special_attack INTEGER,
 special_defense INTEGER,
 speed INTEGER
);

3. Add the example data to our table using the following code:
INSERT INTO tbl_monster (name, height, weight, hp, attack,
defense, special_attack, special_defense, speed) VALUES ('Turtle',
0.5, 9.0, 44, 48, 65, 50, 64, 43);
INSERT INTO tbl_monster (name, height, weight, hp, attack,
defense, special_attack, special_defense, speed) VALUES
('Salamander', 0.6, 8.5, 39, 52, 43, 60, 50, 65);
INSERT INTO tbl_monster (name, height, weight, hp, attack,
defense, special_attack, special_defense, speed) VALUES
('Dinosaur', 0.7, 6.9, 45, 49, 49, 65, 65, 45);

Integrating with the Yii Framework

156

4. Visit http://localhost:8080/example_app/?r=gii, and enter the password
we defined in example_app/protected/config/main.php in the field shown
in the following screenshot:

5. Visit Model Generator as shown in the following screenshot:

Chapter 7

157

6. Enter the name of the table we created (tbl_monster), the name we would like
for our model class Monster, and then click on Preview, as shown in the following
screenshot:

7. On the following page, click on Generate as shown in the following screenshot:

Integrating with the Yii Framework

158

8. From the sidebar, click on Crud Generator:

9. Enter the name of the model that we created from a previous step, then click on
Preview:

Chapter 7

159

10. On the following page, click on Generate, as shown in the following screenshot:

11. Create a container for our charts in example_app/protected/views/
monster/_view.php using the following code:
<?php
/* @var $this MonsterController */
/* @var $data Monster */
?>

<div class="view">
 <div
 style='float: right; height:150px; width:250px; '
 id='monster<?php echo CHtml::encode($data->id); ?>'>
 Testing
 </div>

12. Uncomment the commented attributes in the generated example_app/
protected/views/monster/_view.php file as shown in the following code:
<?php echo CHtml::encode($data->getAttributeLabel('defense'));
?>:
 <?php echo CHtml::encode($data->defense); ?>

Integrating with the Yii Framework

160

 <?php echo CHtml::encode($data->getAttributeLabel('special_
 attack')); ?>:
 <?php echo CHtml::encode($data->special_attack); ?>

 <?php echo CHtml::encode($data->getAttributeLabel('special_
 defense')); ?>:
 <?php echo CHtml::encode($data->special_defense); ?>

 <?php echo CHtml::encode($data->getAttributeLabel('speed'));
 ?>:
 <?php echo CHtml::encode($data->speed); ?>

13. Add a JavaScript block at the end of example_app/protected/views/
monster/_view.php for our data as shown in the following code:
 <?php echo CHtml::encode($data->speed); ?>

 <script type='text/javascript'>
 (function() {
 var srcData = <?php echo CJSON::encode($data-
 >attributes) ?>;
 var srcCategories = <?php echo CJSON::encode($data-
 >attributeLabels()) ?>;

 var categories = _.chain(srcCategories)
 .omit(['id', 'weight', 'height', 'name'])
 .values()
 .value();

 var data = _.chain(srcData)
 .omit(['id', 'weight', 'height', 'name'])
 .values()
 .map(function(val) {
 return parseInt(val, 10);
 })
 .value();

 var id = '#monster<?php echo CHtml::encode($data->id);
 ?>';
 }());
 </script>
</div>

Chapter 7

161

14. Add the code for our spiderweb chart to example_app/protected/views/
monster/_view.php, as shown in the following code:
 var id = '#monster<?php echo CHtml::encode($data->id);
 ?>'

 var options = {
 chart: {polar: true, type: 'line'},
 title: {text: null},
 xAxis: {
 tickmarkPlacement: 'on',
 categories: categories,
 labels: {
 overflow: 'justify',
 style: {
 fontSize: '10px'
 }
 }
 },
 yAxis: {gridLineInterpolation: 'polygon', min: 0},
 tooltip: {
 shared: true,
 pointFormat: '<span style="color:series.
 color}">{series.name}: ${point.y:,.0f}

'
 },
 legend: {
 enabled: false
 },
 series: [{
 data: data,
 pointPlacement: 'on'
 }]
 };

 jQuery(id).highcharts(options);
}());

Integrating with the Yii Framework

162

15. Visit http://localhost:8080/example_app/?r=monster. You should get the
page as shown in the following screenshot:

How it works...
Gii does most of the work in this recipe. After we've added a table and some sample data
to our database (example_app/protected/data/testdrive.db), we use its code
generation tools to create the model, controller, and views that we use to create, edit, update,
and delete our data. Then, all we need to do is make changes to our view, which ends up with
something as follows:

Chapter 7

163

In this recipe, we made changes to _view.php. The _view.php view is used for each
element in the list view. Gii also created a number of other views, such as view.php (used
when looking at a single model), update.php (used to create the form to update the
Monster model), and search.php (used when searching for Monsters).

Most of what we did in this recipe should look familiar, the big difference being how we
obtain our data. In _view.php, $data represents the model instance. In order to access
the relevant data, we needed to access it via $data->attributes, and then convert it
into something that we can manipulate in JavaScript. We used CJSON::encode($data) to
convert the model data from PHP to JSON. We could have also accessed the various attributes
via $data->attributeName (as we did with $data->id), but in this case, it is more
convenient to convert all the data and use underscore to filter out the data we didn't need.

Generating a chart with a Yii CLI command
In past recipes, we've explored how to generate a chart from the command line, or more
correctly, on the server side. In this recipe, we'll be leveraging Yii's command-line capabilities
to create a chart from the command line.

Getting ready
To set up the basic Yii project, refer to the Setting up a simple Yii Project recipe from this
chapter.

We will also need to install PhantomJS. As the bower installation does not include some
important scripts, we'll also need to download Highcharts normally using the following steps:

1. Visit the Highcharts website and download Highcharts (http://www.highcharts.
com/download).

2. Extract the contents of the downloaded ZIP file, and copy the exporting-server/
phantomjs folder to yii-highcharts/example_app/js/highcharts-
phantomjs.

3. Install PhantomJS following the instructions found on the PhantomJS website
(http://phantomjs.org).

Integrating with the Yii Framework

164

How to do it...
To get started, follow the ensuing instructions:

1. Create a new file highchartsCommand.php in example_app/protected/
commands using the following code:
<?php

class highchartsCommand extends CConsoleCommand
{
}
?>

2. Add a method called actionGenerate as shown in the following code:
class highchartsCommand extends CConsoleCommand
{
 public function actionGenerate($file, $scale=False,
 $width=False, $format='pdf') {
 $PHANTOM_JS = exec('which phantomjs');
 $SCRIPT ="\"".Yii::app()->basePath.'/../js/highcharts-
 phantomjs/highcharts-convert.js'."\"";

 echo "Generating chart...\n";

 $cmd = $PHANTOM_JS." ".$SCRIPT;

 if ($scale) {
 $cmd .= " -scale ".$scale;
 }

 if($width) {
 $cmd .= " -width ".$width;
 }

 $cmd .= ' -infile '.$file;
 $cmd .= ' -outfile file.'.$format;

 echo exec($cmd);
 }
}

Chapter 7

165

3. Define our chart in yii-highcharts/options.json as shown in the
following code:
{
 "chart": {
 "type": "bar"
 },
 "title": {
 "text": "Exporting images to different formats"
 },
 "series": [{
 "name": "Bar #1",
 "data": [1,2,3,4]
 }]
}

4. Navigate to example_app/protected, and generate a chart with the
following command:

./yiic highcharts generate –file=../../options.json

How it works...
Yii allows us to create command-line arguments easily. All that we need to do is create a
new file <myCommand>Command.php in the example_app/protected/commands folder,
extend CConsoleCommand in that file, and our command will show up in the list of available
commands when we run yiic.

We can then create specific actions (such as generate in our case) by adding a
action<actionName> public function to that class. Any arguments that are included
as the function definition will become available as command-line options; for example,
if one of our arguments was $banana, we could pass that to our action by appending
--banana=value to our command-line arguments. We can also set the default values
by setting $arg='value' in our function definition.

More information on creating console commands in Yii can be found in the Yii documentation
(http://yiiframework.com/doc/guide/1.1/en/topics.console).

Integrating with the Yii Framework

166

There's more...
Our preceding example is pretty simple. However, what if we wanted to pull data from a
model instead of using a passed-in file? In this case, we can leverage the connection to
the database. We could do something like the following in our action:

$sql = "SELECT * FROM {{monster}}";
$connection = Yii::app()->db;
$monsters=$connection->createCommand($sql)->queryAll();

This code would connect to the database and get all of the rows from the monster table.
With this information, we could then inject the data into our chart configuration. This is left
as an exercise for the reader.

More information on working with the database can be found in the Data Access Object (DAO)
documentation (http://yiiframework.com/doc/guide/1.1/en/database.dao).

Creating charts with a RESTful controller
For ease of understanding or just to make our API calls tidier, we may want to use RESTful
services. This recipe looks at how we can make our existing services RESTful and how we
can leverage these changes in our charts.

Getting ready
To set up the basic Yii project, refer to the Setting up a simple Yii Project recipe from this
chapter.

We will also need to download and set up RestfullYii, an extension for the Yii framework
using the following steps:

1. Download the appropriate version of RestfullYii from the RestfullYii page
(http://yiiframework.com/extension/restfullyii) and extract
the contents to example_app/protected/extensions.

2. Add an aliases entry in example_app/protected/config/main.php
as shown in the following code:
return array(
 'basePath'=>dirname(__FILE__).DIRECTORY_SEPARATOR.'..',
 'name'=>'My Web Application',

 'aliases' => array(
 'RestfullYii' =>realpath(__DIR__.'/../extensions/starship/
 RestfullYii'),
),

Chapter 7

167

3. Uncomment the urlManager array and add the following rules:
 'components'=>array(
 'user'=>array(
 // enable cookie-based authentication
 'allowAutoLogin'=>true,
),
 // uncomment the following to enable URLs in path-format
 'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>[
 'api/<controller:\w+>'=>['<controller>/REST.GET',
 'verb'=>'GET'],
 'api/<controller:\w+>/<id:\w*>'=>['<controller>/
REST.GET', 'verb'=>'GET'],
 'api/<controller:\w+>/<id:\w*>/<param1:\
w*>'=>['<controller>/REST.GET', 'verb'=>'GET'],
 'api/<controller:\w+>/<id:\w*>/<param1:\
w*>/<param2:\w*>'=>['<controller>/REST.GET', 'verb'=>'GET'],

 ['<controller>/REST.PUT',
'pattern'=>'api/<controller:\w+>/<id:\w*>', 'verb'=>'PUT'],
 ['<controller>/REST.PUT',
'pattern'=>'api/<controller:\w+>/<id:\w*>/<param1:\w*>',
'verb'=>'PUT'],
 ['<controller>/REST.PUT',
'pattern'=>'api/<controller:\w*>/<id:\w*>/<param1:\
w*>/<param2:\w*>', 'verb'=>'PUT'],

 ['<controller>/REST.DELETE',
'pattern'=>'api/<controller:\w+>/<id:\w*>','verb'=>'DELETE'],
 ['<controller>/REST.DELETE',
'pattern'=>'api/<controller:\w+>/<id:\w*>/<param1:\w*>',
'verb'=>'DELETE'],
 ['<controller>/REST.DELETE',
'pattern'=>'api/<controller:\w+>/<id:\w*>/<param1:\
w*>/<param2:\w*>', 'verb'=>'DELETE'],

 ['<controller>/REST.POST',
'pattern'=>'api/<controller:\w+>', 'verb'=>'POST'],
 ['<controller>/REST.POST',
'pattern'=>'api/<controller:\w+>/<id:\w+>', 'verb'=>'POST'],
 ['<controller>/REST.POST',
'pattern'=>'api/<controller:\w+>/<id:\w*>/<param1:\w*>',
'verb'=>'POST'],

Integrating with the Yii Framework

168

 ['<controller>/REST.POST',
'pattern'=>'api/<controller:\w+>/<id:\w*>/<param1:\
w*>/<param2:\w*>', 'verb'=>'POST'],

 '<controller:\w+>/<id:\d+>'=>'<controller>/view',
 '<controller:\w+>/<action:\w+>/<id:\
 d+>'=>'<controller>/<action>',
 '<controller:\w+>/<action:\
 w+>'=>'<controller>/<action>',
],
),

4. Change the filters method in our MonsterController (example_app/
protected/controllers/MonsterController.php) as shown in the
following code:
public function filters()
 {
 return array(
 'accessControl', // perform access control for CRUD
 operations
 // 'postOnly + delete', // we only allow deletion via
 POST request
 array(
 'ext.starship.RestfullYii.filters.ERestFilter +
 REST.GET, REST.PUT, REST.POST, REST.DELETE'
),
);
 }

5. Add an actions method in our MonsterController as shown in the
following code:
public function actions()
{
 return array(
 'REST.'=>'ext.starship.RestfullYii.actions.
 ERestActionProvider',
);
}

Chapter 7

169

6. Change the accessRules method in our MonsterController as shown in the
following code:
public function accessRules()
{
 return array(
 // remove previous allow rules
 array('allow',
 'actions'=>array('REST.GET', 'REST.PUT', 'REST.POST',
 'REST.DELETE'),
 'users'=>array('*'),
),
 array('deny', // deny all users
 'users'=>array('*'),
),
);
}

7. Verify that our new API works using the following command:

curl -i -H "Accept: application/json" -H "X_REST_USERNAME:
admin@restuser" -H "X_REST_PASSWORD: admin@Access" http://
localhost:8080/example_app/api/monster

@Access" http://localhost:8080/example_app/api/monster

HTTP/1.1 200 OK

Host: localhost:8080

Connection: close

X-Powered-By: PHP/5.5.5

Set-Cookie: PHPSESSID=3gm61kbl54ptm3iqrbcsd363i1; path=/

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0,
pre-check=0

Pragma: no-cache

Content-type: application/json

{"success":true,"message":"Record(s) Found","data":{"totalCou
nt":"3","monster":[{"id":"1","name":"Turtle","height":"0.5","w
eight":"9.0","hp":"44","attack":"48","defense":"65","special_
attack":"50","special_defense":"64","speed":"43"},{"id":"2","na
me":"Salamander","height":"0.6","weight":"8.5","hp":"39","attac
k":"52","defense":"43","special_attack":"60","special_defense":
"50","speed":"65"},{"id":"3","name":"Dinosaur","height":"0.7","
weight":"6.9","hp":"45","attack":"49","defense":"49","special_
attack":"65","special_defense":"65","speed":"45"}]}}

Integrating with the Yii Framework

170

In this example, we've used curl, but just about any application that can
make an HTTP request can perform this check.
For more information on curl, visit the curl website (http://curl.
haxx.se).

How to do it...
To get started, follow the ensuing instructions:

1. Edit example_app/protected/controllers/SiteController.php as
shown in the following code:
 public function actionIndex()
 {
 // renders the view file 'protected/views/site/index.php'
 // using the default layout 'protected/views/layouts/main.
 php'
 $this->render('index');
 }

 public function actionExample()
 {
 $this->render('example');
 }

2. Create a new file, example_app/protected/views/site/example.php,
as shown in the following code:
<?php
$this->pageTitle=Yii::app()->name . ' - Example';
$this->breadcrumbs=array(
 'Example',
);
?>
<h1>Example page</h1>

<div id='container'>
</div>

Chapter 7

171

3. Create JavaScript to fetch data as shown in the following code:
</div>

<script type='text/javascript'>
 jQuery.ajax({
 url: '/example_app/api/monster',
 type: 'GET',
 headers: {
 "X_REST_USERNAME": "admin@restuser",
 "X_REST_PASSWORD": "admin@Access"
 },
 success: function(response) {
 }
 });
</script>

4. Transform the data for easier use in our chart using the following code:
success: function(response) {
 var options, categories, seriesData;
 console.log(response);

 categories = _.chain(response.data.monster[0])
 .omit(['id', 'weight', 'height', 'name'])
 .keys()
 .map(function(elem) {
 return elem.split('_').join(' ');
 }).value();

 seriesData = _.chain(response.data.monster)
 .map(function(elem){
 var result = {};

 result.name = elem.name;
 result.data = _.chain(elem)
 .omit(['id', 'weight', 'height', 'name'])
 .values()
 .map(function(val) {
 return parseInt(val, 10);
 })
 .value();

 return result;
 }).value();
 //...

Integrating with the Yii Framework

172

5. Create our chart using the following code:
 options = {
 chart: {
 polar: true,
 type: 'line'
 },
 title: {text: 'Monster'},
 xAxis: {
 tickmarkPlacement: 'on',
 categories: categories,
 labels: {
 overflow: 'justify',
 style: {
 fontSize: '10px'
 }
 }
 },
 yAxis: {gridLineInterpolation: 'polygon', min: 0},
 tooltip: {
 shared: true,
 pointFormat: '<span style="color:series.
 color}">{series.name}: {point.y:,.0f}

'
 },
 series: seriesData
 };
 $('#container').highcharts(options);

6. View the chart at http://localhost:8080/example_app/site/example.
It should look as follows:

Chapter 7

173

How it works...
restfulyii takes our existing controllers and makes a few changes to make our URLs
RESTful. Changing urlManager in config/main.php sets up the rules for what our URLs
can look like and what actions should take place. Then, when we made changes to the
MonsterController, this allowed us to set rules for accessing resources and informed
us about which HTTP verbs we can use.

Our JavaScript, in this example, is very similar to what we've seen in the past. The biggest
difference is that we make a call to our API first using jQuery.ajax and then, we create
our chart.

Updating the model when the chart changes
In previous chapters, we've focused on getting data from a server and sending it to the
browser and rendering a chart, with a few examples on how we can send data in the other
direction. In this recipe, we'll be demonstrating how we can update the model on the server
from the browser. This recipe will leverage the work done in the previous recipe.

Getting ready
Complete all the steps in the previous recipe Creating charts with a RESTful controller.

How to do it...
To get started, follow the ensuing instructions:

1. Replace our existing example_app/protected/views/site/example.php file
with the following:
<?php
$this->pageTitle=Yii::app()->name . ' - Example';
$this->breadcrumbs=array(
 'Example',
);
?>
<h1>Example page</h1>

<div id='container'>
</div>

Integrating with the Yii Framework

174

<center>
 Give a treat to:
 <div class='buttons'>
 </div>
<center>

<script type='text/javascript'>
</script>

2. Create a function to get the categories for our chart using the following code:
<script type='text/javascript'>
var getStats = function(categories) {
 return _.chain(categories)
 .omit(['id', 'weight', 'height', 'name'])
 .keys()
 .map(function(elem) {
 return elem.split('_').join(' ');
 }).value();
};

3. Create a function to get series data for our chart using the following code:
var getStats = function(categories) {/* … */};
var getSeries = function(series) {
 return _.chain(series)
 .map(function(elem){
 var result = {};
 result.name = elem.name;
 result.data = _.chain(elem)
 .omit(['id', 'weight', 'height', 'name'])
 .values()
 .map(function(val) {
 return parseInt(val, 10);
 })
 .value();
 return result;
 }).value();
};

Chapter 7

175

4. Create a function to draw the chart as shown in the following code:
 var getStats = function(categories) {/* … */};
 var getSeries = function(series) {/* … */};
var drawChart = function (response) {
 var options = {
 chart: {
 polar: true,
 type: 'line'
 },
 title: {text: 'Monster'},
 xAxis: {
 tickmarkPlacement: 'on',
 categories: getStats(response.data.monster[0]),
 labels: {
 overflow: 'justify',
 style: {
 fontSize: '10px'
 }
 }
 },
 yAxis: {gridLineInterpolation: 'polygon', min: 0},
 tooltip: {
 shared: true,
 pointFormat: '<span style="color:series.
 color}">{series.name}: {point.y:,.0f}
'
 },
 series: getSeries(response.data.monster)
 };
 $('#container').highcharts(options);
};

5. Create a function to update a model as shown in the following code:
var getStats = function(categories) {/* … */};
var getSeries = function(series) {/* … */};
 var drawChart = function (response) {/* … */ };
var levelUpMonster = function (monster) {
 var id = monster.id
 $.ajax({
 url: '/example_app/api/monster/' + id,
 type: 'PUT',

Integrating with the Yii Framework

176

 headers: {
 "X_REST_USERNAME": "admin@restuser",
 "X_REST_PASSWORD": "admin@Access"
 },
 data: JSON.stringify(monster),
 success: function() {
 reload();
 }
 });
};

6. Create a function handle by clicking on different monster buttons (for example,
Turtle, Salamander, and Dinosaur) using the following code:
var getStats = function(categories) {/* … */};
var getSeries = function(series) {/* … */};
var drawChart = function (response) {/* … */};
var levelUpMonster = function (monster) {/* … */};
var feedMonster = function(data) {
 // Randomly select a stat
 key = _.chain(data).omit(['id', 'weight', 'height', 'name']).
 keys().shuffle().first().value();

 // Randomly increase the stat
 data[key] = parseInt(data[key], 10) + _.random(1,10);

 levelUpMonster(data);
};

7. Create a function to create buttons as shown in the following code:
var getStats = function(categories) {/* … */};
var getSeries = function(series) {/* … */};
 var drawChart = function (response) {/* … */};
var levelUpMonster = function (monster) {/* … */};
var feedMonster = function (monster) {/* … */};
var createButtons = function (monsters) {
 $('.buttons').empty();
 _.chain(monsters)

Chapter 7

177

 .each(function(data) {
 var $button = $('<input>', {
 type: 'button',
 value: data.name,
 id: data.name
 });
 $button.click(function() {
 feedMonster(data);
 });
 $('.buttons').append($button);
 });
};

8. Create a function to reload the data as shown in the following code:
var getStats = function(categories) {/* … */};
var getSeries = function(series) {/* … */};
 var drawChart = function (response) {/* … */};
var levelUpMonster = function (monster) {/* … */};
var feedMonster = function (monster) {/* … */};
var createButtons = function (monsters) {/* … */};
 var reload = function() {
 jQuery.ajax({
 url: '/example_app/api/monster',
 type: 'GET',
 headers: {
 "X_REST_USERNAME": "admin@restuser",
 "X_REST_PASSWORD": "admin@Access"
 },
 success: function(response) {
 drawChart(response);
 createButtons(response.data.monster);
 }
 });
 };
 reload();
</script>

Integrating with the Yii Framework

178

9. Visit http://localhost:8080/example_app/site/example. You should get
the following page:

10. Give a treat to the Turtle multiple times and observe the changes in the chart as
shown in the following screenshot:

Chapter 7

179

How it works...
It may seem like we have a lot going on, but what we've done is just broken down our previous
recipe into smaller pieces and added on to that.

When we call the reload() method, we fetch data via our RESTful controller, draw the chart,
and create buttons.

When we click on a button, we increment one of the monsters stats (via feedMonster), and
when that happens, we submit a PUT request to change the model (via levelUpMonster).
After that has happened, we reload the chart to display the new data.

8
Integrating with Other

Frameworks

In this chapter, we will cover the following recipes:

 f Using NodeJS as a data provider

 f Using Django as a data provider

 f Using Flask/Bottle as a data provider

 f Integrating with Backbone

 f Using AngularJS data bindings and controllers

 f Using NodeJS for chart rendering

Introduction
There exists a wide variety of different tools and frameworks spanning different languages
and paradigms, and this list of tools continues to grow and expand. This chapter examines
a few of the more popular tools and gives us some idea on how to integrate these different
tools with Highcharts.

Integrating with Other Frameworks

182

Using NodeJS as a data provider
JavaScript has become a formidable language in its own right. Google's work on the
V8 JavaScript engine has enabled others to develop NodeJS, and with it, allowed the
development of JavaScript on the server side. This chapter will take a look at how we can
serve data using NodeJS, specifically using a framework known as express.

Getting ready
We will need to set up a simple project before we can get started using the following steps:

1. Download and install NodeJS (http://nodejs.org/download/).

2. Create a folder nodejs for our project.

3. Create a file nodejs/package.json and fill it with the following contents:
{
 "name": "highcharts-cookbook-nodejs",
 "description": "An example application for using highcharts
 with nodejs",
 "version": "0.0.1",
 "private": true,
 "dependencies": {
 "express": "3.4.4"
 }
}

4. From within the nodejs folder, install our dependencies locally (that is, within
the nodejs folder) using npm (NodeJS package manager) using the following
command:
npm install

If we wanted to install packages globally, we could have instead done
the following:

npm install -g

5. Create a folder nodejs/static, which will later contain our static assets (for
example, a web page and our JavaScript).

6. Create a file nodejs/app.js, which will later contain our express application and
data provider.

Chapter 8

183

7. Create a file nodejs/bower.json to list our JavaScript dependencies for the page
using the following code:
{
 "name": "highcharts-cookbook-chapter-8",
 "dependencies": {
 "jquery": "^1.9",
 "highcharts": "~3.0"
 }
}

8. Create a file nodejs/.bowerrc to configure where our JavaScript dependencies
will be installed, as shown in the following code:

{
 "directory": "static/js"
}

How to do it...
Let's begin. Perform the following steps:

1. Create an example file nodejs/static/index.html to view our charts using the
following steps:
<html>
 <head>
 </head>
 <body>
 <div id='example'></div>
 <script src='./js/jquery/jquery.js'></script>
 <script src='./js/highcharts/highcharts.js'></script>

 <script type='text/javascript'>
 $(document).ready(function() {
 var options = {
 chart: {
 type: 'bar',
 events: {
 load: function () {
 var self = this;
 setInterval(function() {
 $.getJSON('/ajax/series',
 function(data) {
 var series = self.
 series[0];

Integrating with Other Frameworks

184

 series.setData(data);
 });
 }, 1000);
 }
 }
 },
 title: {
 text: 'Using AJAX for polling charts'
 },
 series: [{
 name: 'AJAX data (series)',
 data: []
 }]
 };
 $('#example').highcharts(options);
 });
 </script>
 </body>
</html>

2. In nodejs/app.js, import the express framework using the following code:
var express = require('express');

3. Create a new express application using the following code:
var app = express();

4. Tell our application from where to serve static files using the following code:
var app = express();
app.use(express.static('static'));

5. Create a method to return the data using the following code:
app.use(express.static('static'));

app.get('/ajax/series', function(request, response) {
 var count = 10,
 results = [];

 for(var i = 0; i < count; i++) {
 results.push({
 "y": Math.random()*100
 });
 }

 response.json(results);
});

Chapter 8

185

6. Listen on port 8888 using the following code:
 response.json(results);
});
app.listen(8888);

7. Start our application using the following command:
node app.js

8. View the output on http://localhost:8888/index.html.

How it works...
Most of what we've done in our application is fairly simple: creating an express instance,
creating request methods, and listening on a certain port.

With express, we could also process different HTTP verbs such as POST or DELETE. We
can handle these methods by creating a new request method. In our example, we handled
the GET requests (that is, app.get), but in general, we can use app.VERB (where VERB
is an HTTP verb). In fact, we can also be more flexible in what our URLs look like: we can
use JavaScript regular expressions. More information on the express API can be found at
http://expressjs.com/api.html.

Using Django as a data provider
Django is likely one of the more robust Python frameworks and certainly one of the oldest.
As such, Django can be used to tackle a variety of different cases and has a lot of available
support and extensions. This recipe will look at how we can leverage Django to provide data
for Highcharts.

Getting ready
Perform the following steps before we proceed:

1. Download and install Python 2.7 (http://www.python.org/

2. Download and install Django (http://www.djangoproject.com/download/).

3. Create a new folder django for our project.

4. From within the django folder, run the following command to create a new project:
django-admin.py startproject example

Integrating with Other Frameworks

186

5. Create a file django/bower.json to list the following JavaScript dependencies:
{
 "name": "highcharts-cookbook-chapter-8",
 "dependencies": {
 "jquery": "^1.9",
 "highcharts": "~3.0"
 }
}

6. Create a file django/.bowerrc to configure where our JavaScript dependencies
will be installed. The following code gives this location:
{
 "directory": "example/static/js"
}

7. Create a folder example/templates for any templates we may have.

How to do it...
To get started, follow the ensuing instructions:

1. Create a folder example/templates and include a file index.html as follows:
{% load staticfiles %}
<html>
 <head>
 </head>
 <body>
 <div class='example' id='example'></div>

 <script src='{% static "js/jquery/jquery.js" %}'></script>
 <script src='{% static "js/highcharts/highcharts.js"
%}'></script>

 <script type='text/javascript'>
 $(document).ready(function() {
 var options = {
 chart: {
 type: 'bar',
 events: {
 load: function () {
 var self = this;
 setInterval(function() {
 $.getJSON('/ajax/series',
function(data) {

Chapter 8

187

 var series = self.
 series[0];
 series.setData(data);
 });
 }, 1000);
 }
 }
 },
 title: {
 text: 'Using AJAX for polling charts'
 },
 series: [{
 name: 'AJAX data (series)',
 data: []
 }]
 };
 $('#example').highcharts(options);
 });
 </script>
 </body>
</html>

2. Edit example/example/settings.py and include the following code at the end
of the file:
STATIC_URL = '/static/'

TEMPLATE_DIRS = (
 os.path.join(BASE_DIR, 'templates/')
)

STATICFILES_DIRS = (
 os.path.join(BASE_DIR, 'static/'),
)

3. Create a file example/example/views.py, and create a handler to show our
page as shown in the following code:
from django.shortcuts import render_to_response

def index(request):
 return render_to_response('index.html')

Integrating with Other Frameworks

188

4. Edit example/example/views.py, and create a handler to serve our data
as shown in the following code:
import json
from random import randint
from django.http import HttpResponse
from django.shortcuts import render_to_response

def index(request):
 return render_to_response('index.html')

def series(request):
 results = []

 for i in xrange(1, 11):
 results.append({
 'y': randint(0, 100)
 })

 json_results = json.dumps(results)
 return HttpResponse(json_results, mimetype='application/json')

5. Edit example/example/urls.py to register our URL handlers using the
following code:
from django.conf.urls import patterns, include, url

from django.contrib import admin
admin.autodiscover()

import views

urlpatterns = patterns('',
 # Examples:
 # url(r'^$', 'example.views.home', name='home'),
 # url(r'^blog/', include('blog.urls')),

 url(r'^admin/', include(admin.site.urls)),

 url(r'^/?$', views.index, name='index'),
 url(r'^ajax/series/?$', views.series, name='series'),
)

Chapter 8

189

6. Run the following command from the django folder to start the server:
python example/manage.py runserver

7. Observe the page by visiting http://localhost:8000.

How it works...
There are a lot of different things going on here, so let's try to understand some of the specifics.

The django-admin.py startproject <name> command creates a skeleton project for
us. The settings.py file includes any settings relevant to running our application such as
where we can find templates (that is, TEMPLATE_DIRS) or static files (that is, STATICFILES_
DIRS). The urls.py file lists the different routes in our application. Each route has a path
listed as a regular expression, a reference to a Python function, and a name that we can
use to look up the view from our code. Lastly, there is views.py, which contains handler
functions and serves content.

One might notice that in our index.html file, we've included some unusual syntax. Our
index.html file is actually a template—a file that we can dynamically alter and inject content
into. Our particular page is not very exciting: we tell Django to load a set of template tags
(that is, {% load staticfiles %}). Later, we use some of these tags to generate proper
URLs for files (that is, {% static "<filename>" %}) that can be found in our example/
static folder.

Our handler functions are only useful when they return something meaningful. In our example,
we use two different ways to return a value. For our index.html page, we use render_to_
response. This method takes the name of a template in our example/templates folder,
renders it, and returns it with the proper MIME type and HTTP status code. The other way to
return a value is to return an HTTP response object via HTTPResponse, in which case we
can set our own MIME type, response body, and HTTP status code as we like.

Integrating with Other Frameworks

190

Using Flask/Bottle as a data provider
Many different micro frameworks have emerged to tackle small, specific problems that
developers may have. In the Python world, there are two prominent examples: Flask and
Bottle. Flask and Bottle are very similar, and so in this recipe, we examine how we can
use either as a data provider for Highcharts.

Getting ready
First, we will need to set up Python using the following steps:

1. Download and install Python 2.7 (http://www.python.org/getit/).

2. Download and install Flask (http://flask.pocoo.org).

3. Download and install Bottle (http://bottlepy.org/).

4. Create a folder flask_bottle for our project.

5. Create a file flask_bottle/bower.json to list our JavaScript dependencies.
The dependencies are as follows:
{
 "name": "highcharts-cookbook-chapter-8",
 "dependencies": {
 "jquery": "^1.9",
 "highcharts": "~3.0"
 }
}

6. Create a file flask_bottle/.bowerrc to configure where our JavaScript
dependencies will be installed. The following code gives this location:

{
 "directory": "static/js"
}

How to do it...
To get started, follow the ensuing instructions:

1. Create a file static/index.html as follows:
<html>
 <head>
 </head>
 <body>

Chapter 8

191

 <div id='example'></div>
 <script src='./js/jquery/jquery.js'></script>
 <script src='./js/highcharts/highcharts.js'></script>

 <script type='text/javascript'>
 $(document).ready(function() {
 var options = {
 chart: {
 type: 'bar',
 events: {
 load: function () {
 var self = this;
 setInterval(function() {
 $.getJSON('/ajax/series',
 function(data) {
 var series = self.
 series[0];
 series.setData(data);
 });
 }, 1000);
 }
 }
 },
 title: {
 text: 'Using AJAX for polling charts'
 },
 series: [{
 name: 'AJAX data (series)',
 data: []
 }]
 };
 $('#example').highcharts(options);
 });
 </script>
 </body>
</html>

2. Create a file server.py, and create a Flask instance as shown in the following code:
from flask import Flask

app = Flask(__name__)

Integrating with Other Frameworks

192

3. Create a route to serve our data as shown in the following code:
from flask import Flask

app = Flask(__name__)

@app.route('/ajax/series')
def series():
 return None

4. Return some data in our route using the following code:
from flask import Flask, Response
import json
import random

app = Flask(__name__)

@app.route('/ajax/series')
def series():
 series = []
 for x in xrange(0,11):
 series.append({
 'y': random.randint(0,100)
 })

 return Response(json.dumps(series), mimetype='application/
 json')

5. If the file is run as an executable, run our application in the debug mode as shown
in the following code:
from flask import Flask, Response
import json
import random

app = Flask(__name__)

@app.route('/ajax/series')
def series():
 series = []
 for x in xrange(0,11):
 series.append({
 'y': random.randint(0, 100)
 })

Chapter 8

193

 return Response(json.dumps(series), mimetype='application/
 json')

if __name__ == '__main__':
 app.run(debug=True)

6. Start the server using the following command:
python server.py

7. Visit http://localhost:5000/static/index.html.

How it works...
app.route is a decorator we can apply to Python methods to handle HTTP requests.
In addition to specifying the path, we can also specify which HTTP methods we want to
handle (for example, app.route('/path', methods=['GET']) to just handle the
GET requests).

Flask will automatically call server files from the static folder at http://localhost:5000/
static, which is why we did not need to add any special configuration to see index.html.

There's more...
In Bottle, we'll find the code quite similar to the following:

from bottle import run, route, static_file, request, response
import json
import random

@route('/ajax/series')
def series():
 response.content_type = 'application/json'
 response.status = 200
 series = []
 for x in xrange(0,11):
 series.append({
 'y': random.randint(0, 100)
 })

 return json.dumps(series)

Static files
e.g. HTML page and JavaScript

Integrating with Other Frameworks

194

@route('/')
def index():
 return static_file('index.html', root='.')

@route('/static/<filename:path>')
def index(filename):
 return static_file(filename, root='static')

run(host='localhost', port=5000)

The following are the more significant differences:

 f Bottle doesn't use a core application object; it just handles everything globally
via various methods imported from Bottle.

 f We can return just about anything from a method and Bottle will serve it. If we
want to set some property on the response though, we need to import response
and alter that.

 f Bottle has specific methods for serving static files.

Integrating with Backbone
In addition to server-side micro frameworks, a number of client-side micro frameworks have
also appeared. Many aim to provide a simple means to send data from end-to-end with a clear
separation of concerns. In this recipe, we'll take a look at Backbone, specifically at integration
of Backbone with its models (an abstraction of our interface with a backend) and collections
(a means of managing multiple models).

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe from Chapter 1, Getting Started with Highcharts.

We will, however, need to make some small changes as shown in the following steps:

1. Create a folder backbone for our project, and set up a basic project in that folder
as described previously.

2. Modify backbone/bower.json as follows:
{
 "name": "highcharts-cookbook-chapter-8",
 "dependencies": {
 "highcharts": "~3.0",
 "jquery": "^1.9",

Chapter 8

195

 "underscore": "^1.5", // Used by Backbone, functional
 programming
 "backbone": "~1.1.0", // Model-view-controller library for
 JavaScript
 "backbone.localStorage": "~1.1.7" // Handles persistence
 using brower's localStorage
 }
}

3. Install our dependencies from within the backbone folder using the
following command:

bower install

How to do it...
To get started, follow the ensuing instructions:

1. Create our skeleton HTML file backbone/index.html, as shown in the
following code:
<!doctype html>
<html>
 <head>
 <script src='./bower_components/jquery/jquery.js'></
 script>
 <script src='./bower_components/highcharts/highcharts.src.
 js'></script>
 <script src='./bower_components/highcharts/highcharts-
 more.src.js'></script>
 <script src='./bower_components/underscore/underscore.
 js'></script>
 <script src='./bower_components/backbone/backbone.js'></
 script>
 <script src='./bower_components/backbone.localStorage/
 backbone.localStorage.js'></script>
 <script src='./example.js'></script>

 <style type='text/css'>
 #monsters {
 list-style: none;
 padding: 0px;
 }
 #monsters li {
 margin-bottom: 5px;
 }

Integrating with Other Frameworks

196

 #monsters .card {
 clear: both;
 padding: 10px;
 border: 1px solid #aaa;
 }
 #monsters .card .graph {
 float: left;
 width: 300px;
 height: 300px;
 }
 #monsters .card .stats .row > label {
 display: inline-block;
 width: 100px;
 font-size: 1.0em;
 text-transform: capitalize;
 }
 #monsters .card .stats .row > input {
 width: 50px;
 padding: 5px;
 text-align: right;
 font-size: 1.2em;
 }
 </style>
 </head>

 <body>
 <div id='main'>
 <input id='monster-name' type='text' />
 <input id='new-monster' type='button' value='Create
 New Monster' />
 <ul id='monsters'>

 </div>
 </body>
</html>

2. Create a template for our model instances as shown in the following code:
<!doctype html>
<html>
 <head>
 <!-- … -->
 </head>

Chapter 8

197

 <body>
 <div id='main'>
 <!-- … -->
 </div>

 <script type='text/template' id='monster-template'>
 <div class='card'>
 <div class='graph' id='monster-<%= stats.name %>'>
 </div>
 <div class='stats'>
 <h2><%= stats.name %> <input class='feed'
 type='button' value='Feed Me!' /></h2>

 <% var keys = ['hp', 'attack', 'defense',
 'special_attack', 'special_defense', 'speed'];
 %>
 <% var key_stats = _.chain(stats).pick(keys).
 value(); %>
 <% _.each(key_stats , function(value, key) {
 %>
 <div class='row'>
 <label for='<%= key %>'><%= key %></label>
 <input type='text' name='<%= key %>'
 value='<%= value %>' />
 </div>
 <% }); %>
 </div>
 </div>
 </script>
 </body>
</html>

On the page, observe the Create New Monster button we have created so far:

3. Create a file backbone/example.js, and include an immediate function using
jQuery as shown in the following code:
$(function() {
});

Integrating with Other Frameworks

198

4. Define a Backbone model as shown in the following code:
$(function() {
 var Monster = Backbone.Model.extend({
 defaults: {
 name: 'Unknown',
 height: 0.0,
 weight: 0.0,
 hp: 0,
 attack: 0,
 defense: 0,
 special_attack: 0,
 special_defense: 0,
 speed: 0
 }
 });
});

5. Define a Backbone collection using the following code:
$(function() {
 //...
 var MonsterCollection = Backbone.Collection.extend({
 model: Monster ,
 localStorage: new Backbone.LocalStorage("example")
 });
});

6. Create a MonsterCollection as shown in the following code:
$(function(){
 // ...
 var MonsterCollection = Backbone.Collection.extend(/* … */);

 var Monsters = new MonsterCollection();
});

7. Create a view for our Monster model as shown in the following code. This will handle
interaction with our model as well as make any changes to the UI for a model.
$(function() {
 // ...
 var MonsterView = Backbone.View.extend({
 tagName: 'li',

 template: _.template($('#monster-template').html()),

Chapter 8

199

 initialize: function () {
 this.listenTo(this.model, 'change', this.render);
 },

 render: function() {
 this.$el.html(this.template({
 'stats': this.model.toJSON()
 }));

 return this;
 }
 });
});

8. Create a view for our application in general, as shown in the following code:
$(function() {
 // ...
 var AppView = Backbone.View.extend({
 el: $('#main'),

 events: {
 'click #new-monster': 'createMonster',
 'keypress #monster-name': 'createMonster'
 },

 initialize: function() {
 this.listenTo(Monsters, 'add', this.addMonster);
 },

 createMonster: function(event) {
 var $name = $('#monster-name');

 if (event.type === 'keypress' && event.keyCode !== 13)
 {
 return;
 }
 if (!$name.val()) {
 return;
 }

 Monsters.create({name: $name.val()});

 $name.val('');
 },

Integrating with Other Frameworks

200

 addMonster: function(monster) {
 var view = new MonsterView({model: monster});
 this.$("#monsters").append(view.render().el);
 },
 });
});

9. Create an instance of our application view using the following code:
$(function() {
 // ...
 var App = new AppView();
});

On the page, observe the progress on our template monster view so far:

10. Modify MonsterView.render to render our Highcharts as shown in the
following code:
 var MonsterView = Backbone.View.extend({
 // …
 chartOptions: {
 chart: {
 polar: true,
 type: 'line'
 },

Chapter 8

201

 legend: {
 enabled: false
 },
 xAxis: {
 tickmarkPlacement: 'on',
 labels: {
 overflow: 'justify',
 style: {
 fontSize: '10px'
 }
 }
 },
 yAxis: {gridLineInterpolation: 'polygon', min: 0},
 tooltip: {
 pointFormat: '<span style="color:series.
 color}">{series.name}: {point.y:,.0f}
'
 }
 },

 render: function() {
 this.$el.html(this.template({
 'stats': this.model.toJSON()
 }));

 // get the key stats from the model
 var key_stats = this.model.pick([
 'hp',
 'attack',
 'defense',
 'special_attack',
 'special_defense',
 'speed'
]);

 // turn those stats into a highcharts data series
 var series = _.chain(key_stats).map(function(value,
 key) {
 return parseInt(value, 10);
 });

 // extend the default options
 var options = _.extend(this.chartOptions, {
 title: {

Integrating with Other Frameworks

202

 text: this.model.get('name')
 },
 xAxis: {
 categories: _.chain(key_stats).keys().value()
 },
 series: [{
 data: series.value()
 }]
 });

 this.$('.graph').highcharts(options);

 return this;
 },
 });

11. Modify MonsterView to help us to handle changing different stats using the
following code:

 var MonsterView = Backbone.View.extend({
 // ...
 events: {
 'keyup .row input': 'statChange'
 },

 statChange: function(event) {
 // figure out which element this is from
 var $target = this.$(event.target)

 // get the text value from the element
 var value = parseInt($target.val(), 10);
 var key = $target.attr('name');
 if (!_.isNumber(value) || _.isNaN(value) || value < 0)
 {
 return;
 }

 // update the underlying model
 this.model.set(key, value);
 }
});

On the page, create a new monster and assign it some stats to see our chart change,
as shown in the following screenshot:

Chapter 8

203

How it works...
Our models and collections are fairly straightforward, especially as there is presently no
backend interaction: we only store information in a local copy of our models. Our models only
contain some simple information and a set of default values, and our collection only has one
really interesting piece, the key model which defines what type of models this collection holds.

Most of the interesting work in our example comes from our two views. Backbone is able to
handle events after we've defined either a template (as we did in our MonsterView) or an
existing element with el (as we did in AppView). After that, we're able to register events
via the events object using jQuery-like selectors of the form '<event> <selector>':
'function_name'.

Our views also have a few important methods. The initialize method is called
immediately after a view is created, which allows us to set up any additional event handling
we need to do. For example, we use this.listenTo to listen certain events on a view's
model to tell the view to re-render itself.

Integrating with Other Frameworks

204

Using AngularJS data bindings and
controllers

Interactivity, especially responsiveness, in web applications has become very important.
One important concept to fostering further responsiveness is the idea of two-way binding,
where changes made to a model or a view are automatically made to the other or vice versa.
This recipe looks at how we can leverage data bindings in AngularJS and integrate them
with Highcharts.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe from Chapter 1, Getting Started with Highcharts.

We will, however, need to make some small changes as shown in the following steps:

1. Create a folder angularjs for our project, and set up a basic project in that folder
as described previously.

2. Modify angularjs/bower.json as follows:
{
 "name": "highcharts-cookbook-chapter-8",
 "dependencies": {
 "highcharts": "~3.0",
 "jquery": "^1.9",
 "angular": "^1.2", // JavaScript framework
 "highcharts-ng": "~0.0.4" // Highcharts adapter for AngularJS
 }
}

3. Install our dependencies from within the backbone folder using the following
command:

bower install

Chapter 8

205

How to do it...
To get started, follow the ensuing instructions:

1. Create a skeleton HTML file angularjs/index.html as shown in the
following code:
<!doctype html>
<html>
 <head>
 <script src='./bower_components/jquery/jquery.js'></
 script>
 <script src='./bower_components/highcharts/highcharts.src.
 js'></script>
 <script src='./bower_components/angular/angular.js'></
 script>
 <script src='./bower_components/highcharts-ng/dist/
 highcharts-ng.js'></script>
 <script src='./example.js'></script>

 <style type='text/css'>
 .example {
 clear: both;
 }

 .container {
 width: 300px;
 float: left;
 }

 .controls {
 padding: 20px;
 }

 input.title {
 width: 150px;
 }

Integrating with Other Frameworks

206

 input {
 width: 50px;
 padding: 6px;
 }

 span {
 display: inline-block;
 width: 30px;
 }
 </style>
 </head>

 <body ng-app="example">
 <div ng-controller='ctrl'>
 <div class='example'>
 <div class='container'>
 <highchart id='example1' config='config'></
 highchart>
 </div>
 <div class='controls'>
 <input ng-model='config.title.text'
 class='title'>

 Yes: <input type="number" ng-
 model='config.series[0].data[0]'>

 No: <input type="number" ng-
 model='config.series[0].data[1]'>
 </div>
 </div>
 </div>
 </body>
</html>

2. Create our controller angularjs/example.js using the following code:
var app = angular.module('example', ['highcharts-ng']);

app.controller('ctrl', function($scope){
 $scope.config = {
 options: {
 chart: {
 type: 'column'
 },
 },

Chapter 8

207

 xAxis: {
 categories: ['Yes', 'No']
 },
 series: [{
 name: 'Votes',
 data: [0, 0]
 }],
 title: {
 text: 'Data-binding Example'
 },
 subtitle: {
 text: 'Is this easy?'
 },
 credits: {
 enabled: false
 },
 loading: false
 };
});

The following is the output from the controller:

Integrating with Other Frameworks

208

3. Change the title text as shown in the following screenshot:

4. Adjust the voting buttons as shown in the following screenshot:

Chapter 8

209

How it works...
This AngularJS example is deceptively simple in that a lot is happening for free. Let's start by
looking at our example.js file.

First, we create a new application via angular.module(app_name, dependencies).
This, in conjunction with the accompanying ng-app="app_name" in the HTML page, binds
the application in JavaScript to the HTML code; if there was no ng-app attribute on the page,
our JavaScript just wouldn't do anything.

Once we've done that, we can add controllers to our application. Controllers are responsible
for handling any model and action that take place in the scope of that controller. That's
why, when we create our controller (for example, app.controller(control_name,
callback)), everything has access to the controller's scope.

In our case, we define a config model, which is basically our chart options. Models don't
really require anything special to define; they're just objects.

The magic of handling the two-way bindings is handled by directives. Directives are attributes
(for example, ng-model) or elements (highchart) that watch for changes in the view
or model and propagate the changes in both directions. Directives are one of the most
complicated parts of AngularJS.

There is a lot more to AngularJS than what has been described here; it is well worth reading
the documentation (http://angularjs.org) to get a better understanding of how it works.

Using NodeJS for chart rendering
In previous chapters, we've seen different ways of rendering charts on the server side.
In this recipe, we look at how we can do the same using NodeJS.

Getting ready
To begin, we'll need to set up a few NodeJS dependencies, as shown in the following steps:

1. Create a folder nodejs-rendering.

2. Download and install NodeJS (http://nodejs.org/download/)

3. Create a file nodejs-rendering/package.json, and fill it with the
following content:
{
 "name": "highcharts-cookbook-nodejs",
 "description": "An example application for using highcharts with
 nodejs",

Integrating with Other Frameworks

210

 "version": "0.0.1",
 "private": true,
 "dependencies": {
 "express": "3.4",
 "node-highcharts-exporter": "0.0.5"
 }
}

4. Install our dependencies (for example, express) using the following command:

npm install

How to do it...
Let's begin. Perform the following steps:

1. Create nodejs-rendering/app.js, and set up express as shown in the
following code:
var express = require('express');
var app = express();

app.use(express.bodyParser());

app.post('/generate', function(req, response) {
 // future code
});
app.listen(8888);

2. Include node-highcharts-exporter library using the following code:
app.use(express.json());

var nhe = require('node-highcharts-exporter');

// ...

3. Call out to the node-highcharts-exporter library using the following code:
var nhe = require('node-highcharts-exporter');

app.post('/generate', function(req, response) {
 nhe.exportChart(req.body, function(error, chart) {
 // future code
 });
});
// ...

Chapter 8

211

4. Open the image and serve it if it is available, otherwise, show an error, as shown in
the following code:
var nhe = require('node-highcharts-exporter');
var fs = require('fs')

app.post('/generate', function(req, response) {
 nhe.exportChart(req.body, function(error, chart) {
 if (error) {
 console.log(error)
 response.writeHead(500);
 response.end(error);
 } else {
 var img = fs.readFileSync(chart.filePath);
 console.log(req.body.type)
 response.writeHead(200, {'Content-Type': req.body.type
 });
 response.end(img, 'binary');
 };
 });
});

app.listen(8888);

5. On the page using this export functionality, set exporting.url to point at our
NodeJS app and include the exporting module, as shown in the following code:

<script type='text/javascript' src='path/to/highcharts/modules/
exporting.js'></script>

// ...
var options = {
 // …
 exporting: {
 enabled: true,
 url: 'http://localhost:8888/generate'
 }
}
$('#container').highcharts(options);

Integrating with Other Frameworks

212

How it works...
Our NodeJS application hands over most of the work to the node-highcharts-exporter
library. This library has one very important method exportChart, which takes two
arguments: an object containing the parameters to generate the chart (req.body in our
case) and a callback for when the chart has been rendered. The callback will give us an error
message and the generated chart as its arguments, and so we just need to serve img (a
stream of binary data, or error, JSON containing information about the error) as a response
in our /generate function.

9
Extending Highcharts

In this chapter, we will cover the following recipes:

 f Wrapping existing functions

 f Creating new chart types

 f Creating your own Highcharts extension

 f Adding new functions to your extension

 f JSHinting your code

 f Unit - testing your new extension

 f Packaging your extension

 f Minifying your code

Introduction
We've been working mostly with Highcharts as a library to create a specific sort of chart
or connect data to a certain source. However, there may be occasions where we would
prefer to do more than just that. We may want to expand on the Highcharts library to add
our own functionality. This chapter shows how we can expand on the core library to add
our own improvements.

Wrapping existing functions
Sometimes, we don't want to change the entire way that a method works, just a part of it. In
these cases, it would be fantastic if we could just wrap a method or a property by calling our
code either before or after the desired method. This recipe will show how we can wrap one
such method in Highcharts, drawGraph, but a similar technique can be applied to wrap
other methods.

Extending Highcharts

214

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe from Chapter 1, Getting Started with Highcharts.

How to do it...
To get started, perform the following steps:

1. Create an immediate function that takes Highcharts as an argument, as shown
in the following code:
(function(H) {
 // Later code goes here
}(Highcharts));

2. Within that function, call the wrap function and give it an object and method to
wrap, as shown in the following code:
(function(H) {
 H.wrap(
 H.Series.prototype,
 'drawGraph',
 function(original_fn) {
 var original_arguments = Array.prototype.slice.call(
 arguments, 1
);
 original_fn.apply(this, original_arguments);
 }
);
}(Highcharts));

3. Create a wrapping function to call code either before or after the wrapped method is
called. In our example, we will just use console.log to show a message as shown
in the following code:
(function(H) {
 H.wrap(
 H.Series.prototype,
 'drawGraph',
 function(original_fn) {
 var original_arguments = Array.prototype.slice.call(
 arguments, 1
);
 console.log('Called before H.series.prototype.
drawGraph');
 original_fn.apply(this, original_arguments);

Chapter 9

215

 console.log('Called after H.series.prototype.
drawGraph');
 }
);
}(Highcharts));

4. Create a chart normally, as shown in the following code:
var options = {
 title: {
 text: 'Wrapping existing functions'
 },
 series: [{
 type: 'spline',
 name: 'Spline #1',
 data: [1,2,3,4]
 }]
};

5. Render the chart using the following code:

$('#container').highcharts(options);

How it works...
We execute all our calls to wrap in an immediate function ((function(args){}(args)))
to ensure that any work that needs to be done happens before we render any charts, or
before anything else has the chance to take place. This also has the benefit of not polluting
the global scope (that is, our variables and functions will not have any side-effect on those
found outside our immediate function); doing so is common practice.

Thanks to Highcharts.wrap, most of what we do is straightforward. Highcharts.wrap
takes three arguments: the object to wrap, its method, and a function to call in its place. Then,
when Highcharts goes to call the named method on that object, it instead calls our method. In
fact, it will be called in the same scope, so calls to this will behave the same as if the original
method were called.

In order to avoid breaking Highcharts, our wrapping function needs to do a few things. First,
it must take the original function as an argument (original_fn). Secondly, if desired, the
original function needs to be called at some point; in some cases, we may not want to call
the original function, in which case we could omit the call. In our example, since we aren't
modifying any arguments, we pass all the original arguments to the original function, Array.
prototype.slice.call(arguments, 1), that takes the list of arguments passed to our
wrapping function and slices off the first (for example, original_fn), leaving us with the
remaining arguments. Similarly, original_fn.apply(this, original_arguments)
calls the wrapped function and makes sure it is called within the same scope.

Extending Highcharts

216

Creating new chart types
We've worked with a variety of different chart types so far: column, bar, pie, and spline,
to name a few. What if we could make our own chart type? As daunting as that may sound,
this recipe looks at how we might make our own chart type, picto, which is like a column
chart but uses images for bars.

Much of how this recipe has been prepared depends on specifics of
the Highcharts source code. This recipe was written assuming that
Highcharts Version 3.0.7 is used. The information provided here may
change depending on the version of Highcharts or the chart type.
To make changes to other chart types, refer to the existing series
types in the Highcharts source code.

How to do it...
To get started, perform the following steps:

1. Create an immediate function that takes Highcharts as an argument as shown in
the following code:
(function(H) {
 // Future code goes here
}(Highcharts));

2. Create a wrapper function for Highcharts.Renderer.prototype.image as
shown in the following code:
(function(H) {
 // Fix for incorrect image renderer function
 H.wrap(
 H.Renderer.prototype,
 'image',
 function(original_fn) {
 var passed_arguments,
 first_argument,
 original_arguments;

 original_arguments = Array.prototype.slice.call(
 arguments, 1
);
 first_argument = original_arguments[0];

Chapter 9

217

 if (typeof first_argument === 'object') {
 passed_arguments = [];
 passed_arguments.push(first_argument.source);
 passed_arguments.push(first_argument.x);
 passed_arguments.push(first_argument.y);
 passed_arguments.push(first_argument.width);
 passed_arguments.push(first_argument.height);

 } else {
 passed_arguments = original_arguments;
 }

 return original_fn.apply(this, passed_arguments);
 }
);
}(Highcharts));

3. Create a copy, PictoSeries, of ColumnSeries as shown in the following code:
(function(H) {
 H.wrap(H.Renderer.prototype, 'image', function(original_fn) {
 // Wrapping code, as previously
 });
 var ColumnSeries = H.seriesTypes['column'];
 var PictoSeries = H.extendClass(ColumnSeries, {});
}(Highcharts));

4. Add a translate method to our PictoSeries to mix in our image attributes, as
shown in the following code:
(function(H) {
 H.wrap(H.Renderer.prototype, 'image', function(original_fn) {
 // Wrapping code, as previously
 });
 var ColumnSeries = H.seriesTypes['column'];
 var PictoSeries = H.extendClass(ColumnSeries, {
 translate: function() {
 var series = this;

 // call translate normally
 ColumnSeries.prototype.translate.apply(this,
arguments);

 // Fix shape arguments

Extending Highcharts

218

 H.each(series.points, function (point) {
 point.shapeType = 'image',
 point.shapeArgs = {
 source: series.options.image,
 unitHeight: series.options.unitHeight,
 width: point.shapeArgs.width,
 height: point.shapeArgs.height,
 x: point.shapeArgs.x,
 y: point.shapeArgs.y
 };
 });
 }
 });
}(Highcharts));

5. Add a drawPoints method to handle drawing multiple points. Note that most
of this comes from the ColumnSeries method drawPoints, with some
modifications as shown in the following code:
(function(H) {
 H.wrap(H.Renderer.prototype, 'image', function(original_fn) {
 // Wrapping code, as previously
 });
 var ColumnSeries = H.seriesTypes['column'];
 var PictoSeries = H.extendClass(ColumnSeries, {
 translate: function() {/* … as previously ... */},
 drawPoints: function() {
 var series = this,
 options = series.options,
 renderer = series.chart.renderer,
 shapeArgs;

 $.each(series.points, function (index, point) {
 var plotY = point.plotY,
 graphic = point.graphic,
 graphicArgs,
 unitHeight,
 remainder;

 if (plotY !== undefined && !isNaN(plotY) &&
point.y !== null) {
 shapeArgs = point.shapeArgs;
 unitHeight = shapeArgs.unitHeight || 1

Chapter 9

219

 if (graphic) {
 stop(graphic);
 graphic.animate(merge(shapeArgs));
 } else {
 for(var units=0; units < shapeArgs.height;
units += unitHeight) {
 graphicArgs = $.extend({}, shapeArgs,
{
 'height': unitHeight,
 'y': shapeArgs.y + units
 });

 point.graphic = graphic =
renderer[point.shapeType](graphicArgs)
 .attr(point.pointAttr[point.
selected ? 'select' : ''])
 .add(series.group)
 .shadow(options.shadow, null,
options.stacking && !options.borderRadius);
 }
 }

 } else if (graphic) {
 point.graphic = graphic.destroy();
 }
 });
 }
 });
}(Highcharts));

6. Register PictoSeries as a new chart type as shown in the following code:
(function(H) {
 H.wrap(H.Renderer.prototype, 'image', function(original_fn) {
 // Wrapping code, as previously
 });
 var ColumnSeries = H.seriesTypes['column'];
 var PictoSeries = H.extendClass(ColumnSeries, {
 translate: function() {/* … as previously ... */}
 });
 H.seriesTypes.picto = PictoSeries;
}(Highcharts));

Extending Highcharts

220

7. Define our chart options and make sure to set the chart type and the image,
as shown in the following code:
var options = {
 title: {
 text: 'PictoChart!'
 },
 series: [{
 image: 'check.gif',
 type: 'picto',
 name: 'Picto #1',
 data: [1,2,3,4]
 }]
};

8. Render the chart using the following code:

$('#container').highcharts(options);

How it works...
Highcharts is able to determine which type of chart to render by the different series objects
that are stored in Highcharts.seriesTypes. Many chart types are simply extensions
of other chart types (for example, bar and column charts) whereas other chart types (for
example, polar) are not. Our example is similar to bar and column charts in that we extend
an existing series and make a small set of modifications, rather than implementing our own
series class from scratch.

Highcharts.extendClass allows us to take an existing class, in this case ColumnSeries,
and extend it. In our case, we do everything that a column chart would normally do, but we'll
modify some existing methods to suit our needs.

We also wrapped Highcharts.Renderer.prototype.image. We do this so that the
object we pass to the method can be unpacked into individual arguments; if we didn't, our
images wouldn't have any dimensions and it would appear as though our chart was empty.

Chapter 9

221

Creating your own Highcharts extension
In past examples, our code has been fairly ad hoc; we've created functions when necessary
on a per-project basis. If we could compartmentalize our code, as the Highcharts library does,
then we could leverage what we've learned in multiple projects or even share our changes.
This recipe will look at how we can create our own library that builds off Highcharts.

How to do it...
To get started, perform the following steps:

1. Create a new file myExtension.js, and, in it, include an immediate function,
as shown in the following code:
(function(w, H, $) {
}(window, Highcharts, jQuery));

2. Create a new object in the window scope, if one does not exist, as shown in
the following code:
(function(w, H, $) {
 w.MyExtension = w.MyExtension || {};
}(window, Highcharts, jQuery));

3. Create a Chart function as shown in the following code:
(function(w, H, $) {
 var me;

 w.MyExtension = w.MyExtension || {};
 me = w.MyExtension;

 me.Chart = me.Chart || Highcharts.Chart;
}(window, Highcharts, jQuery));

4. On a page, create options for our chart as shown in the following code:
var options = {
 chart: {
 renderTo: 'container'
 },
 title: {
 text: 'Creating a chart extension'
 },
 series: [{
 name: 'Series #1',
 data: [1,2,3,4]
 }]
};

Extending Highcharts

222

5. Render our chart using the following code:

var chart = new MyExtension.Chart(options);

How it works...
It is true that our extension does not appear to be doing much; our extension does the
minimum possible to lay the foundation for our library.

Our immediate function ensures that everything that takes place within it doesn't leak out into
the global scope. We pass in any libraries or variables that we require as well (for example the
window object, Highcharts, and jQuery, for later).

Within our immediate function, we create our extension and attach it to the window object; if it
already exists, we instead use this function (w.MyExtension = w.MyExtension || {}).
In addition, we create a local reference (that is, me) for convenience, and any of the functions
we attach to that local reference are exposed as public methods. We then create our own
chart constructor that references Highcharts.

Adding new functions to your extension
In our last recipe, we set up a foundation for extension that at the moment, just aliases
Highcharts. In this recipe, we will see how we can add functions to our extension to make
it more useful.

How to do it...
To get started, perform the following steps:

1. Add some new variables to our extension, as shown in the following code:
(function(w, H, $) {
 var me,
 NAME,
 MAJOR,
 MINOR,
 PUBLISHED;

 w.MyExtension = w.MyExtension || {};
 me = w.MyExtension;

 // --- Private variables ---
 NAME = 'MyExtension';
 MAJOR = 1;

Chapter 9

223

 MINOR = 0;
 PUBLISHED = new Date(2013, 11, 26);

 // --- Global functions ---
 me.Chart = me.Chart || Highcharts.Chart;
}(window, Highcharts, jQuery));

2. Create a getVersionInfo function, as shown in the following code:
(function(w, H, $) {
 var me,
 NAME,
 MAJOR,
 MINOR,
 PUBLISHED,
 formatDate;

 w.MyExtension = w.MyExtension || {};
 me = w.MyExtension;

 // --- Private variables ---
 NAME = 'MyExtension';
 MAJOR = 1;
 MINOR = 0;
 PUBLISHED = new Date(2013, 11, 26);

 // --- Private function ---
 formatDate = function(d) {
 return "" + d.getFullYear() + "-" + d.getMonth() + "-" +
d.getDate();
 }

 // --- Global functions ---
 me.Chart = me.Chart || Highcharts.Chart;

 // Privileged functions
 me.getVersionInfo = function() {
 return ""
 + NAME + " - " + MAJOR + "." + MINOR
 + " (" + formatDate(PUBLISHED) + ")";
 };
}(window, Highcharts, jQuery));

Extending Highcharts

224

3. Create a SpiderWebChart function as shown in the following code:
(function(w, H, $) {
 var me,
 NAME,
 MAJOR,
 MINOR,
 PUBLISHED,
 formatDate;

 w.MyExtension = w.MyExtension || {};
 me = w.MyExtension;

 // --- Private variables ---
 NAME = 'MyExtension';
 MAJOR = 1;
 MINOR = 0;
 PUBLISHED = new Date(2013, 11, 26);

 // --- Private function ---
 formatDate = function(d) {
 return "" + d.getFullYear() + "-" + d.getMonth() + "-" +
d.getDate();
 }

 // --- Global functions ---
 me.Chart = me.Chart || Highcharts.Chart;

 me.SpiderWebChart = function (options) {
 // create options if they don't exist
 var modifiedOptions = options || {};

 // create a chart option if it does not exist
 modifiedOptions.chart = modifiedOptions.chart || {};
 modifiedOptions.chart.polar = true;

 // create an xAxis option if it does not exist
 modifiedOptions.xAxis = modifiedOptions.xAxis || {};
 modifiedOptions.xAxis.tickmarkPlacement = 'on';
 modifiedOptions.xAxis.lineWidth = 0;

Chapter 9

225

 // create a yAxis option if it does not exist
 modifiedOptions.yAxis = modifiedOptions.xAxis || {};
 modifiedOptions.yAxis.gridLineInterpolation = 'polygon';
 modifiedOptions.yAxis.lineWidth = 0;

 new me.Chart(modifiedOptions);
 };

 // Privileged functions
 me.getVersionInfo = function() {
 return ""
 + NAME + " - " + MAJOR + "." + MINOR
 + " (" + formatDate(PUBLISHED) + ")";
 };
}(window, Highcharts, jQuery));

4. On our page, define our chart options as shown in the following code:
var options = {
 chart: {
 renderTo: 'container'
 },
 title: {
 text: MyExtension.getVersionInfo()
 },
 xAxis: {
 categories: ["Strength", "Speed", "Defense"]
 },
 series: [{
 name: 'Fighter',
 data: [10, 1, 5],
 pointPlacement: 'on'
 }, {
 name: 'Rogue',
 data: [5, 10, 1],
 pointPlacement: 'on'
 }]
};

5. Render our chart using the following code:

var chart = new MyExtension.SpiderWebChart(options);

Extending Highcharts

226

How it works...
Our extension now contains private, public, and privileged elements. We've already seen how
we can create public functions and attributes by adding on to the w.MyExtension object.
Creating private variables and functions is also simple; any functions or variables declared in
our immediate function will not be accessible outside the immediate function.

The exception to this is privileged functions. Privileged functions are public functions that
can access private variables. Normally, a JavaScript function can only access variables
defined in the scope of the function. However, if we have an inner function (for example,
getVersionInfo) that accesses variables from an outer function (for example, our
immediate function), we can create a closure. When we have a closure, the inner function
maintains a reference to variables from the outer function, even though that function has
already been executed; that's basically how privileged functions work.

JSHinting your code
Now that we have a fledgling extension, we may want to remove any extraneous code or
potential errors. A common way to do this is to use a lint program (that is, a program designed
to find suspicious language usage). This recipe will examine how we can use JSHint to find
errors in our extension.

Getting ready
Install JSHint (http://www.jshint.com/install/). If you already have NodeJS and
npm set up, you can just install it by running the following command:

npm install jshint

It may be necessary to install JSHint globally (rather than locally, which is
the default method). To install JSHint globally, run the following command:
npm install jshint -g

It is also possible to avoid installing JSHint entirely by using the JSHint
website at http://www.jshint.com.

How to do it...
1. Run JSHint using the following command:

jshint myExtension.js

2. Correct the errors/warnings listed.

Chapter 9

227

How it works...
By default, JSHint will run some simple checks: looking for missing semicolons, undeclared
variables, and so on. We can customize how strict JSHint is by using either comments or a
.jshintrc file in the same directory. For example, if we want to tell JSHint that the code
will be running in a browser in strict mode, we could add the following comment at the
beginning of our document:

/* jshint strict: true, browser: true */

We can also have JSHint tell us more about potential problems with the --show-
non-errors flag. There are many, many options though, so it's worth looking at
the documentation to determine which options you may want to enable or disable
(http://www.jshint.com/docs/options/).

Unit testing your new extension
Unit testing is a common means to provide some certainties that the code is working correctly.
While unit testing, it is important that we only test our code (there is no need to test other
people's code). In this recipe, we'll be unit testing our extension using QUnit.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe from Chapter 1, Getting Started with Highcharts.

We will also need to make a small change to our bower.json file as shown in the
following code:

{
 "name": "highcharts-cookbook-chapter-9",
 "dependencies": {
 "highcharts": "~3.0",
 "jquery": "^1.9",
 "qunit": "~1.14.0"
 }
}

Extending Highcharts

228

How to do it...
To get started, perform the following steps:

1. Create a file, test.html, and then open it in a browser, as shown in the
following code:
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>QUnit Example</title>
 <link rel="stylesheet" href="./bower_components/qunit/qunit/
qunit.css">
</head>
<body>
 <div id="qunit"></div>
 <div id="qunit-fixture"></div>
 <script src="./bower_components/qunit/qunit/qunit.js"></script>
 <script src="./bower_components/jquery/jquery.js"></script>
 <script src="./bower_components/highcharts/highcharts.js"></
script>
 <script src="myExtension.js"></script>
 <script src="tests.js"></script>
</body>
</html>

After the code is executed, we get the following screenshot:

2. Create a file, test.js, as shown in the following code:
test("Failing test example", function() {
 ok(false, "This test fails, for demonstration
 purposes.");
});

Chapter 9

229

3. Open test.html to see the failing test run, as shown in the following screenshot:

4. Add some additional tests as shown in the following code:
test("Failing test example", function() {
 ok(false, "This test fails, for demonstration purposes.");
});

test("MyExtension", function() {
 ok(MyExtension, "MyExtension doesn't exist.");
});

test("MyExtension.getVersionInfo", function() {
 var actual, expected;

 actual = MyExtension.getVersionInfo();
 expected = "MyExtension - 1.0 (2013-11-26)";
 equal(actual, expected, "Wrong version info.")
});

test("MyExtension.SpiderWebChart", function() {
 var actual, expected;

 ok(MyExtension.SpiderWebChart, "SpiderWebChart doesn't
exist.")

 throws(function(){
 new MyExtension.SpiderWebGraph();
 }, "SpiderWebChart needs arguments.");
});

Extending Highcharts

230

5. Open test.html to see other tests succeed as shown in the following screenshot:

How it works...
Our test.html page sets up a test runner that does all the hard work of making it possible
to run our tests. After qunit.js has been included, we include all of our source files and
then our tests.js file.

QUnit will automatically execute any test function we've included on the page. The test
function is just a simple function for grouping tests. Within that method, we can execute
any code that we want to execute, then use various assertions, such as ok, equal, or throws,
to verify that some expected value matches our actual value.

More information on QUnit can be found in the documentation at http://api.qunitjs.
com.

Chapter 9

231

Packaging your extension
Our extension as implemented works, but it isn't as polished as the Highcharts library itself.
For example, we can't create a chart using jQuery as we previously could. This recipe will
look at how we can package our extension as a jQuery plugin.

Getting ready
To set up a basic extension, refer to the Creating your own Highcharts extension recipe
presented earlier in this chapter.

How to do it...
To get started, perform the following steps:

1. In myExtension.js, create a new function as shown in the following code:
(function(w, H, $) {
 // … previous code
 $.fn.spiderwebchart = function() {
 return this;
 };
}(window, Highcharts, jQuery));

2. Get our chart options from the arguments, as shown in the following code:
(function(w, H, $) {
 // … previous code
 $.fn.spiderwebchart = function() {
 var args = arguments,
 options;

 options = args[0];

 return this;
 });
}(window, Highcharts, jQuery));

Extending Highcharts

232

3. Add code to create the chart, as shown in the following code:
(function(w, H, $) {
 // … previous code
 $.fn.spiderwebchart = function() {
 var args = arguments,
 options,
 chart;

 options = args[0];

 // Create the chart
 options.chart = options.chart || {};
 options.chart.renderTo = this[0]; // use just the first
 element
 chart = new me.SpiderWebChart(options);

 return this;
 });
}(window, Highcharts, jQuery));

4. Define our chart options, as shown in the following code:
var options = {
 title: {
 text: 'SpiderWebGraph'
 },
 series: [{
 name: 'Bar #1',
 data: [1,2,3,4]
 }]
};

5. Render our chart using the following code:

$('#container').spiderwebchart(options);

How it works...
jQuery plugins are created by adding functions onto $.fn. By using the arguments option, our
plugin can accept an arbitrary number of arguments (though, in this case, we only use the first
argument). Within our plugin, this is a collection of elements that the jQuery selector returns.
For our plugin, we just take the first element from the selector and use that element as the
path to which the chart should render.

Chapter 9

233

Minifying your code
We now have something we may want to share with the world, something that we may even
want to deploy to one of our own applications. As our extension may be unnecessarily large
now, it might take longer for slower devices to run our application. A technique that is often
used to handle this issue is minification. This recipe looks at how we can reduce the size
of our extension using UglifyJS.

Getting ready
Install UglifyJS (http://lisperator.net/uglifyjs/). If you already have NodeJS
and npm set up, you can just install it as follows:

npm install uglify-js

Depending on your system, it may be necessary to install UglifyJS
globally. If this is the case, you can install UglifyJS globally with the
following command:
npm install uglify-js -g

How to do it...
1. Minify our extension using the following code:

uglifyjs myExtension.js -o myExtension.min.js

How it works...
UglifyJS is a JavaScript parser, compressor, and beautifier. This means that is can take
a JavaScript file as an input and compress it by shortening variables and functions. In
our example, we do this by calling the uglifyjs command with the source as the first
argument (that is, myExtension.js) specifying the output file using the -o flag, and
listing the desired output file (for example, myExtension.min.js).

10
Math and Statistics

In this chapter, we will cover the following recipes:

 f Graphing equations

 f Showing descriptive statistics with box plots

 f Plotting distributions with jStat

 f Displaying experimental data with scatter plots

 f Displaying percentiles with area range graphs

Introduction
One of the most common uses of charts is to display mathematical formulas. Anything ranging
from business to education, simple to complex models can be demonstrated with the help
of charts. This chapter looks at a few ways in which we can leverage math and statistics in
our Highcharts.

Graphing equations
Mathematics classes are filled with many equations, and students are often required to learn
how to plot these equations. In this recipe, we'll look at how it is possible to create a simple
application to graph equations.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

Math and Statistics

236

How to do it...
To get started, perform the following steps:

1. Create input fields for our graph's parameters and observe the page, as shown
in the following code:
<div id='container'></div>
<label for='equation'>Equation:</label>
<input type='text' id='equation' placeholder='javascript (e.g.
Math.pow(x, 2))'/>

<label for='maxX'>Max. X:</label>
<input type='text' id='maxX' placeholder='100'/>

<label for='minX'>Min. X:</label>
<input type='text' id='minX' placeholder='-100'/>

<label for='maxY'>Max. Y:</label>
<input type='text' id='maxY' placeholder='100'/>

<label for='minY'>Min. Y:</label>
<input type='text' id='minY' placeholder='-100'/>

<label for='resolution'>Resolution:</label>
<input type='text' id='resolution' placeholder='10'/>

<input type='button' id='addSeries' value='Add Equation'/>
<input type='button' id='removeSeries' value='Erase All'/>

The result of this code is shown in the following screenshot:

Chapter 10

237

2. Create a dataFromEquation function to generate data for our series as follows:
var dataFromEquation = function(config) {
 var config = config || {},
 equation = config.equation || function(x) {
 return x;
 },
 minX = parseInt(config.minX, 10) || -100,
 maxX = parseInt(config.maxX, 10) || 100,
 minY = parseInt(config.minY, 10) || -100,
 maxY = parseInt(config.maxY, 10) || 100,
 resolution = parseInt(config.resolution, 10) || 10,
 data = [];

 var data = [];

 for(var x = minX; x <= maxX; x+=resolution) {
 data.push({
 'x': x,
 'y': equation(x)
 })
 }

 return data;
};

3. Create an addSeries function that will add an equation to the chart, as shown
in the following code:
var addSeries = function() {
 var equationStr = $('#equation').val(),
 minX = $('#minX').val(),
 maxX = $('#maxX').val(),
 minY = $('#minY').val(),
 maxY = $('#maxY').val(),
 resolution = $('#resolution').val();

 var equation = new Function('x', 'return ' + equationStr);

 $('#container').highcharts().addSeries({
 name: equationStr,
 data: dataFromEquation({
 minX: minX,
 maxX: maxX,

Math and Statistics

238

 minY: minY,
 maxY: maxY,
 resolution: resolution,
 equation: equation
 })
 });
};

4. Create a removeSeries function that will remove all equations from the chart,
as shown in the following code:
var removeSeries = function() {
 var chart = $('#container').highcharts();

 while(chart.series.length > 0) {
 chart.series[0].remove(true);
 }
};

5. With the help of the following code, attach handlers as necessary:
$('#addSeries').click(addSeries);
$('#removeSeries').click(removeSeries);

6. Define the chart options as follows:
var options = {
 chart: {
 zoomType: 'xy',
 type: 'spline'
 },
 title: {
 text: 'Plotting equations'
 },
 xAxis: {
 gridLineWidth: 1,
 },
 yAxis: {
 gridLineWidth: 1,
 },

Chapter 10

239

 series: [{
 name: 'Default Equation',
 data: dataFromEquation({
 equation: function(x) {
 return Math.pow(x, 2);
 }
 })
 }]
};

7. Render our chart with the following code:

$('#container').highcharts(options);

The resultant chart is displayed as follows:

How it works...
Unfortunately, Highcharts cannot plot arbitrary functions, but our dataFromEquation
function can generate a list of data points for us to plot (as seen in the previous screenshot).
It takes a configuration object which allows us to set the maximum and minimum x and y
values for our chart as well as the resolution (that is, the number of points to display).

Our addSeries function generates the configuration object for dataFromEquation.
Equations, in our example, are just JavaScript code (for example, Math.pow(x,4) + x*3 –
2); due to this, we can use JavaScript's Function constructor to create a function that we will
evaluate at every x value in dataFromEquation.

Math and Statistics

240

Lastly, we make sure that our chart has chart.zoomType set to xy so that we are able
to zoom in anywhere we like on the chart. After we add an equation in our application (for
example, -Math.pow(x,2)+1000), we have a result similar to the following screenshot:

Showing descriptive statistics with box
plots

Few concepts in statistics are as well understood as descriptive statistics: the mean (average),
minimum, maximum, and quartiles. Often, it is possible to condense all of this data into one
simple graph. In this recipe, we will plot all of these different data points using a box plot,
occasionally referred to as a box-and-whisker plot graph.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section of
the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts. In addition
to these instructions, box plot charts are only available by using highcharts-more.js. So,
the following code can be used to ensure that we have included it on our page after we have
included Highcharts:

<script src='./bower_components/highcharts/highcharts.js'></script>
<script src='./bower_components/highcharts/highcharts-more.js'></
script>

Chapter 10

241

How to do it...
To get started, perform the following steps:

1. Define the chart options as follows:
var options = {
 chart: {
 type: 'boxplot'
 },
 title: {
 text: 'Box Plots'
 },
 series: [{
 name: 'Sample #1',
 data: [[0, 25, 50, 75, 100]]
 }]
};

2. Render the chart with the following code:

$('#container').highcharts(options);

How it works...
Provided that we add the proper type to our chart using chart.type or series[0].type,
Highcharts will do the rest. In our example, we only showed one box plot, but we could have
easily added more plots by adding them on to series[0].data. The following code is an
example of how we can add more plots:

series: [{
 name: 'Sample #1',
 data: [
 [0, 25, 50, 75, 100],
 [25, 30, 40, 100, 120]
]
}]

Math and Statistics

242

The resultant graph would look like the following screenshot:

It is worth noting that the format of the data as well. Box plots take data in a specific format.
Each array must be of the following form:

[minimum, first quartile, mean, third quartile, maximum]

A sample box plot is shown as follows:

Chapter 10

243

Plotting distributions with jStat
Some areas of statistics are more used and referred to than others; distributions, probability
density functions (PDFs), and cumulative density functions (CDFs) are just some of the
topics that tend to come up often. In this recipe, we will look at how we can use jStat to plot
certain statistical distributions such as the normal distribution.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

We will also need to add some additional dependencies to our project in bower.json as
shown in the following code:

{
 "name": "highcharts-cookbook-chapter-10",
 "dependencies": {
 "jquery": "^1.9",
 "highcharts": "~3.0",
 "rm-jstat": "~1.0.0",
 "underscore": "~1.6.0"
 }
}

Lastly, we need to include the following files on our page:

<script src='./bower_components/highcharts/highcharts.js'></script>
<script src='./bower_components/rm-jstat/jstat.js'></script>
<script src='./bower_components/underscore/underscore.js'></script>

How to do it...
To get started, perform the following steps:

1. Create a normal distribution and its points as follows:
var range = jstat.seq(-5,5,100);
var dNorm = jstat.dnorm(range, 0.0, 1.0);
var dNormPairs = _.zip(range, dNorm);

Math and Statistics

244

2. Create a log-normal distribution and its points as follows:
var range = jstat.seq(-5,5,100);
var dNorm = jstat.dnorm(range, 0.0, 1.0);
var dNormPairs = _.zip(range, dNorm);

var dlNorm = jstat.dlnorm(range, 0.0, 1.0);
var dlNormPairs = _.zip(range, dlNorm);

3. Define the chart options as follows:
var options = {
 chart: {
 type: 'spline',
 zoomType: 'xy'
 },
 title: {
 text: 'Probability Density Functions (PDFs)'
 },
 series: [{
 name: 'Normal (0,1)',
 data: dNormPairs
 }, {
 name: 'Log-Normal (0,1)',
 data: dlNormPairs
 }]
};

4. Render our chart with the following code:

$('#container').highcharts(options);

Chapter 10

245

The resultant chart is displayed as follows:

How it works...
As we can see, jStat is able to generate the points for both our functions when given some
information:

 f jstat.seq(min, max, points): This function generates a range that we
can use when generating the points for the different distributions; in our case, we
generate 100 points between -5 and 5 on the x axis.

 f jstat.dnorm(range, mean, standard_deviation): This function generates
the data points for a normal probability density function at the given values defined
in the range. The jstat.dlnorm(range, log_mean, log_standard_
deviation) function is similar to jstat.dnorm(range, mean, standard_
deviation), except that it takes log(mean) and log(standard_deviation)
as its parameters.

Math and Statistics

246

Lastly, since these functions only give us values for the y axis, we need to map them to their x
values, which we do by using _.zip():

var x = [1, 2, 3];
var y = [4, 5, 6]
_.zip(x,y); // [[1, 4], [2, 5], [3, 6]]

Displaying experimental data with scatter
plots

There are occasions where we don't know the relationship between our data points. In these
instances, a scatter plot can show us the data, and patterns may emerge from the plotting
of the points. This recipe will show us how we can display data using a scatter plot.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

We will also need to add some additional dependencies to our project in bower.json,
as shown in the following code:

{
 "name": "highcharts-cookbook-chapter-10",
 "dependencies": {
 "jquery": "^1.9",
 "highcharts": "~3.0",
 "underscore": "~1.6.0"
 }
}

Lastly, we need to include these files on our page as follows:

<script src='./bower_components/highcharts/highcharts.js'></script>
<script src='./bower_components/underscore/underscore.js'></script>

Chapter 10

247

How to do it...
To get started, perform the following steps:

1. Generate example data as shown in the following code:
var samples = 10;
var rangeFn = _.partial(_.random, 1, 100);
var experiment1 = _.zip(
 _.times(samples, rangeFn),
 _.times(samples, rangeFn)
);

var experiment2 = _.zip(
 _.times(samples, rangeFn),
 _.times(samples, rangeFn)
);

2. Define the chart options as follows:
var options = {
 chart: {
 type: 'scatter',
 zoomType: 'xy'
 },
 title: {
 text: 'Using Scatter Plots'
 },
 series: [{
 name: 'Experiment #1',
 data: experiment1
 }, {
 name: 'Experiment #2',
 data: experiment2
 }]
};

3. Render our chart with the following code:

$('#container').highcharts(options);

Math and Statistics

248

The resultant chart is displayed as follows:

How it works...
Creating a scatter plot is easy, as long as we perform the following steps:

1. Set chart.type or series[0].type to scatter.

2. Ensure that our series data is formatted as a series of x, y pairs, as either [[x1,
y1], [x2, y2] …] or [{x: x1, y: y1}, {x: x2, y: y2}, …].

As for our generated data, it may look complex, but it can be explained simply as follows:

 f _.partial(fn, arg1, ...): This function takes a function, applies arguments
to it, then returns a new function. In this case, we take the function _.random, pass
the arguments 1 and 100 to it, and return a function that calls it. In our example,
it creates a function that returns a random number between 1 and 100.

 f _.times(n, fn): This function will call a function n times and add the result
of each call to an array, which it returns. In our example, it creates an array of 10
random numbers between 1 and 100.

 f _.zip(arg1, …): This function takes an arbitrary number of arrays and zips them
together (refer to the Plotting distributions with jStat recipe). In our case, we take our
array of random numbers, and zip it together with another array of random numbers,
yielding a bunch of random x, y pairs.

Chapter 10

249

Displaying percentiles with area range
graphs

Percentile data is interesting because it provides an insight into the distribution of the
data. Different percentile can provide us with a greater picture than just the average. Take
historical weather data for instance; a single day may be cold compared to the average of
the temperature of various days but still within the 25th percentile (that is, it is still relatively
common). This recipe will look at how we can use layered area range graphs to explain
percentile data better.

Getting ready
To set up a basic page and installing jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe in Chapter 1, Getting Started with Highcharts.

We will also need to add some additional dependencies to our project in bower.json as
shown in the following code:

{
 "name": "highcharts-cookbook-chapter-10",
 "dependencies": {
 "jquery": "^1.9",
 "highcharts": "~3.0",
 "underscore": "~1.6.0"
 }
}

We will need to include highcharts-more.js as well as the following files on our page:

<script src='./bower_components/highcharts/highcharts.js'></script>
<script src='./bower_components/highcharts/highcharts-more.js'></
script>
<script src='./bower_components/underscore/underscore.js'></script>

Lastly, include the following weather data on our page:

var highs = [{
 'time': 1386306000000,
 'max': 17,
 '90%': 8,
 '75%': 5,
 '50%': 2,
 '25%': -1,

Math and Statistics

250

 '10%': -3,
 'min': -4
}, {
 'time': 1386392400000,
 'max': 17,
 '90%': 8,
 '75%': 5,
 '50%': 2,
 '25%': -1,
 '10%': -4,
 'min': -5
}, {
 'time': 1386478800000,
 'max': 10,
 '90%': 8,
 '75%': 5,
 '50%': 2,
 '25%': -1,
 '10%': -4,
 'min': -6
}];

var lows = [{
 'time': 1386306000000,
 'max': 3,
 '90%': 2,
 '75%': 0,
 '50%': -4,
 '25%': -7,
 '10%': -10,
 'min': -14
}, {
 'time': 1386392400000,
 'max': 3,
 '90%': 2,
 '75%': 0,
 '50%': -4,
 '25%': -8,
 '10%': -11,
 'min': -11
}, {
 'time': 1386478800000,

Chapter 10

251

 'max': 5,
 '90%': 2,
 '75%': 0,
 '50%': -4,
 '25%': -8,
 '10%': -11,
 'min': -15
}];

How to do it...
To get started, perform the following steps:

1. Define a function for the maximum and minimum values of our high and low
weather data points as follows:
var getExtremes = function(item) {
 return [
 item['time'],
 item['min'],
 item['max']
];
};
var highLines = _.map(highs, getExtremes);
var lowLines = _.map(lows, getExtremes);

2. Define a function for the 10th and 90th percentiles of our high and low weather
data points as follows:
var highPercentiles = function(item) {
 return [
 item['time'],
 item['10%'],
 item['90%']
];
};
var highOuter = _.map(highs, highPercentiles);
var lowOuter = _.map(lows, highPercentiles);

3. Define a function for the 25th and 75th percentiles of our high and low weather
data points as follows:
var q1q3 = function(item) {
 return [
 item['time'],
 item['25%'],

Math and Statistics

252

 item['75%']
];
};
var highInner = _.map(highs, q1q3);
var lowInner = _.map(lows, q1q3);

4. Define the chart options as follows:
var options = {
 chart: {
 type: 'arearange',
 zoomType: 'xy'
 },
 title: {
 text: 'Displaying Percentile Data'
 },
 xAxis: {
 type: 'datetime'
 },
 tooltip: {
 crosshairs: true,
 shared: true,
 valueSuffix: 'C'
 }
};

5. Add the extreme values to the graph as follows:
tooltip: {/* … */}
series: [{
 id: 'highs',
 name: 'Highs',
 data: highLines,
 fillOpacity: 0.1,
 color: '#ff0000',
 zIndex: 0
}, {
 id: 'lows',
 name: 'Lows',
 data: lowLines,
 fillOpacity: 0.1,
 color: '#0000ff',
 zIndex: 3
}]

Chapter 10

253

6. Add our 10th and 90th percentiles to the graph as follows:
series: [{
 id: 'highs',
 name: 'Highs',
 data: highLines,
 fillOpacity: 0.1,
 color: '#ff0000',
 zIndex: 0
}, {
 name: '10% - 90%',
 linkedTo: 'highs',
 data: highOuter,
 lineWidth: 0,
 fillOpacity: 0.1,
 color: '#ff0000',
 zIndex: 1
}, {
 id: 'lows',
 name: 'Lows',
 data: lowLines,
 fillOpacity: 0.1,
 color: '#0000ff',
 zIndex: 3
}, {
 name: '10% - 90%',
 linkedTo: 'lows',
 data: lowOuter,
 lineWidth: 0,
 fillOpacity: 0.1,
 color: '#0000ff',
 zIndex: 4
}]

7. Add our 25th and 75th percentiles to the graph as follows:
series: [{
 id: 'highs',
 name: 'Highs',
 data: highLines,
 fillOpacity: 0.1,
 color: '#ff0000',
 zIndex: 0
}, {

Math and Statistics

254

 name: '10% - 90%',
 linkedTo: 'highs',
 data: highOuter,
 lineWidth: 0,
 fillOpacity: 0.1,
 color: '#ff0000',
 zIndex: 1
}, {
 name: '25% - 75%',
 linkedTo: 'highs',
 data: highInner,
 lineWidth: 0,
 fillOpacity: 0.1,
 color: '#ff0000',
 zIndex: 2
}, {
 id: 'lows',
 name: 'Lows',
 data: lowLines,
 fillOpacity: 0.1,
 color: '#0000ff',
 zIndex: 3
}, {
 name: '10% - 90%',
 linkedTo: 'lows',
 data: lowOuter,
 lineWidth: 0,
 fillOpacity: 0.1,
 color: '#0000ff',
 zIndex: 4
}, {
 name: '25% - 75%',
 linkedTo: 'lows',
 data: lowInner,
 lineWidth: 0,
 fillOpacity: 0.1,
 color: '#0000ff',
 zIndex: 5
}]

8. Render the chart with the following code:

$('#container').highcharts(options);

Chapter 10

255

The resultant chart is displayed as follows:

How it works...
As we can see, the combination of the overlapping high and low values gives us a clearer
view of where the high and low values are concentrated. Darker areas are where a greater
percentage of our data lies.

The _.map(iterable, fn) function calls fn on each element in iterable and returns
an array of the results of each call. Most of our calls were made to just partition the data
into different subsets.

Once we set chart.type or series[0].type to arearange, Highcharts expects our
data to be in the following format:

[x, low, high]

When we create our series, most of our options are merely for styling (for example,
lineWidth: 0 removes lines, fillOpacity: 0.1 determines how opaque our colors are,
and color sets the color of the fill area).

However, for our main series, we've defined the ID fields, and in our other series, we've defined
the linkedTo fields referring to these IDs. This is done so that even though we have multiple
series in our chart, our percentile data can appear as though it is a part of a series in the
legend, which means that we can show or hide all high/low data at once.

Lastly, we use zIndex to determine the order in which the different series should appear so
that we can layer them properly. Elements with a higher value for zIndex appear on top of
elements that have a lower value for zIndex.

11
System Integration

In this chapter, we will cover the following recipes:

 f Exploring hard drive usage

 f Understanding CPU and memory usage graphs

 f Showing Git commits by contributor

 f Showing Git commits over time

Introduction
Highcharts can be very powerful on its own, but it is only as useful as the data we can obtain;
the more data sources we can integrate with Highcharts, the more useful it can be. One such
data source that can be useful to integrate with is the system itself, whether that be our own
computer or some remote server. In this chapter, we will look at how we can use Highcharts
along with Node.js to integrate with certain systems.

The recipes in this chapter are highly server-side dependent; we will need
to have Node.js set up and installed. For instructions on installing Node.js,
visit http://nodejs.org/download.

System Integration

258

Exploring hard drive usage
The hard drive is something that we use often, and many tools exist for exploring it. It is often
easy to get simple data about a hard drive (for example, how much space is available or used)
but not as easy to visualize that data, especially if that data is only available when logged on
to a remote machine. In this recipe, we will look at how we can leverage Node.js and explore
hard drive usage using Highcharts.

Getting ready
Create a folder nodejs for all of the files in this recipe; all instructions for this recipe will
assume that we are operating from this folder, unless specified otherwise.

To set up a basic page and install jQuery and Highcharts, refer to the Getting ready section
of the Creating your first chart recipe from Chapter 1, Getting Started with Highcharts.

We will also need to perform some steps to ensure our page and Node.js are set up correctly.
They are as follows:

1. Include Underscore as one of our dependencies in bower.json, as shown in the
following code:
{
 "name": "highcharts-cookbook-chapter-11",
 "dependencies": {
 "jquery": "^1.9",
 "highcharts": "~3.0",
 "underscore": "~1.6.0"
 }
}

2. Install our JavaScript dependencies using the following command:
bower install

3. Create a file package.json in the same folder as bower.json for our Node.js
dependencies, as shown in the following code:
{
 "name": "highcharts-cookbook-chapter-11",
 "version": "0.0.0",
 "dependencies": {
 "gift": "~0.1.1",
 "underscore": "~1.5.2",
 "express": "~3.4.7"
 }
}

Chapter 11

259

4. Install our Node.js dependencies using npm:
npm install

5. Create a basic Node.js application app.js to serve our files, as shown in the
following code:

var express = require('express');
var app = express();
app.use(express.json());
app.use(express.static(__dirname));

app.listen(8888);
console.log('Listening on port 8888');

How to do it...
To get started, perform the following steps:

1. Create a handler to obtain a directory listing, as shown in the following code:
app.use(express.static('static'));
app.post('/directory', function(request, response) {
});
app.listen(8888);

2. Get a list of files for a given directory using the following code:
var fs = require('fs');
app.post('/directory', function(request, response) {
 // request.body → {'path': '/some/directory'}
 var dir = request.body.path;

 // Get a list of files synchronously
 var file_list = fs.readdirSync(dir);
});

3. Convert the list of files into a usable format, as shown in the following code:
var fs = require('fs');
var path = require('path');
var underscore = require('underscore');
app.post('/directory', function(request, response) {
 // request.body → {'path': '/some/directory'}
 var dir = request.body.path;

System Integration

260

 // Get a list of files synchronously
 var file_list = fs.readdirSync(dir);

 // Generate file statistics
 var files = underscore.map(file_list, function(file) {
 var filepath = path.join(dir, file);
 var file_obj = fs.lstatSync(filepath);
 var is_directory = file_obj.isDirectory();
 var size;
 var type;

 if (is_directory) {
 type = 'directory';
 size = 0;
 } else {
 type = 'file';
 size = file_obj.size;
 }

 // Note: Sizes are in bytes
 return {
 'name': file,
 'path': filepath,
 'type': type,
 'size': size
 }
 });
});

4. Group, sort, and return the list of files and directories, as shown in the following code:
// ...
app.post('/directory', function(request, response) {
 // … from previous step
 /*
 [{file}, …, {directory}, …]
 →
 {file: [files], directory: [files]}
 */
 var objects = underscore.groupBy(files, function(elem) {return
elem.type;})

 var sorted_files = underscore.sortBy(objects.file, function(x)
{return x.size;}).reverse();

Chapter 11

261

 var sorted_dirs = underscore.sortBy(objects.directory,
function(x) {return x.name;});

 response.json({
 files: sorted_files,
 directories: sorted_dirs
 });
});
// ...

5. Include some controls for loading a directory, as shown in the following code:
 <body>
 <div id='container'></div>
 <label for='directory'>Initial Directory:</label>
 <input type='text' name='directory' id='directory' />
 <input type='button' name='go' id='go' value='Explore' />

 <label for='directories'>Sub-directories:</label>
 <select name='directories' id='directories'>
 </select>

 <script src='./bower_components/jquery/jquery.js'></
script>

6. Create a function to handle drawing a chart for each directory, as shown in the
following code:
$(document).ready(function() {
 var drawDirectoryChart = function(files, directory) {
 // Convert files to proper format
 var slices = _.map(files, function(item) {
 var sizeInMB = parseFloat((item.size / (1024 * 1024)).
toFixed(2));
 return [item.name, sizeInMB];
 });

 var options = {
 chart: {type: 'pie'},
 title: {text: directory || 'Explore Hard Drive
Usage'},
 series: [{name: 'Size (MB)', data: slices}]
 };

 $('#container').highcharts(options);
 };
});

System Integration

262

7. Create a function for updating the list of subdirectories, as shown in the
following code:
$(document).ready(function() {
 var drawDirectoryChart = function(files, directory) {
 // ...
 };

 var updateDirectorySelector = function (directories) {
 var $selector = $('#directories');
 $selector.empty();
 _.each(directories, function(directory) {
 var newElem = $('<option>', {
 value: directory.path,
 text: directory.name
 })
 $selector.append(newElem);
 });
 };
});

8. Create a function to get data from our server-side application, as shown in the
following code:
$(document).ready(function() {
 var drawDirectoryChart = function(files, directory) {
/*...*/};
 var updateDirectorySelector = function (directories) {
/*...*/};
 var getData = function (value) {
 var path = value || $('#directory').val();

 $.ajax({
 url: '/directory',
 data: JSON.stringify({'path': path}),
 type: 'POST',
 contentType: 'application/json; charset=utf-8',
 dataType: 'json'
 }).done(function(data) {
 drawDirectoryChart(data.files, path);
 updateDirectorySelector(data.directories);
 }).fail(function() {
 console.log(arguments);
 });
 };
});

Chapter 11

263

9. Attach event handlers so that our chart updates when we make selections
or enter a directory, as shown in the following code:

$(document).ready(function() {
 var drawDirectoryChart = function(files, directory) { /*...*/
};
 var updateDirectorySelector = function (directories)
{/*...*/};
 var getData = function (value) { /*...*/};
 $('#directory').on('keypress', function(e) {
 var key = e.keyCode || e.which;
 if (key == 13) {
 getData();
 }
 });

 $('#go').on('click', function() {getData();});

 $('#directories').on('change', function(e) {getData(this.
value);});
});

10. Start the NodeJS application, node app.js.

11. Visit localhost:8888 in a browser window, and observe our initial
application state:

System Integration

264

12. Enter a directory on your computer in the Initial Directory field, click on the Explore
button, and observe:

How it works...
On the server side, what we've done is simple and is mostly handled by fs—Node.js's file
system library. The fs.readdirSync method takes the path to a directory and returns a
listing of the files in the directory. In order to get the information we need, we go through each
file listed using underscore.map and call fs.lstatSync to get details about the individual
file objects. The last thing we do at the server side is take our list of file objects, separate out
directories from files, and otherwise tidy up the value that we return.

Understanding CPU and memory usage
graphs

When working with remote systems, it can be useful to know the status of the server. For
example, it can be beneficial to know when a machine has run out of memory, or whether it is
spending a lot of time doing computationally expensive work. In this recipe, we'll look at how
we can use Node.js and Highcharts to understand a system's CPU and RAM usage graphs.

Getting ready
To set up a basic Node.js project and its dependencies, refer to the Getting Ready section
of the Exploring hard drive usage recipe from this chapter.

Chapter 11

265

How to do it...
To get started, perform the following steps:

1. Create a handler for obtaining CPU information using the following code:
app.use(express.static('static'));
app.get('/cpu/', function(request, response) {});
app.listen(8888);

2. Calculate and return the CPU usage, as shown in the following code:
var os = require('os');
var underscore = require('underscore');
var sum = function(p, n) { return p + n; };
app.get('/cpu/', function(request, response) {
 var cpus = os.cpus();

 var cpu_percentages = underscore.map(cpus, function(cpu, key)
{
 var values = underscore.values(cpu.times);
 var total = underscore.reduce(values, sum, 0);
 var idle = cpu.times.idle;

 return {
 'percent': parseFloat((((total - idle) * 100) /
total).toFixed(1)),
 'usage': (total - idle),
 'total': total,
 'time': timestamp.getTime(),
 'id': key
 }
 });
 response.json(cpu_percentages);
});

3. Create a handler to obtain RAM information using the following code:
app.get('/cpu/', function(request, response) {/*...*/});

app.get('/memory/', function(request, response) {});

4. Calculate RAM usage and return, as shown in the following code:
app.get('/memory/', function(request, response) {
 var timestamp = new Date();
 var free = os.freemem();
 var total = os.totalmem();

System Integration

266

 var used = total – free;

 response.json([{
 'percent': parseFloat(((used * 100) / total).toFixed(1)),
 'usage': used,
 'total': total,
 'time': timestamp.getTime(),
 'id': 'RAM'
 }]);
});

5. Meanwhile, on our page (index.html), create a function to add data to our chart,
as shown in the following code:
$(document).ready(function() {
 var addOrUpdateSeries = function(chart, dataSeries, name) {
 var id = dataSeries.id,
 display = (name) ? '' + name + id : id,
 series = chart.get(id),
 percent = dataSeries.percent,
 timestamp = dataSeries.time,
 redraw = true,
 newSeries, existingPoints, point;

 if (series) { // Update
 existingPoints = series.data.length
 point = { x: timestamp, y: percent }
 series.addPoint(point, redraw, existingPoints > 10);
 } else { // New
 newSeries = {
 id: id,
 name: display,
 data: [{ x: timestamp, y: percent }]
 }

 chart.addSeries(newSeries);
 }
 };
});

Chapter 11

267

6. Create a set of options common to our charts, as shown in the following code:
$(document).ready(function() {
 var addOrUpdateSeries = function(chart, dataSeries, name) {
/*...*/};
 var commonOptions = {
 chart: {type: 'spline',},
 xAxis: {type: 'datetime'},
 yAxis: {max: 100, min: 0},
 series: []
 }
});

7. Define options for our CPU chart, as shown in the following code:
$(document).ready(function() {
 var addOrUpdateSeries = function(chart, dataSeries, name) {
/*...*/};
 var commonOptions = {/*...*/}
 var cpuChart = _.extend({}, commonOptions);
 cpuChart.chart.events = {
 load: function () {
 var self = this;
 setInterval(function() {
 $.getJSON('/cpu/', function(data) {
 for (var i=0; i < data.length; i++) {
 addOrUpdateSeries(self, data[i], 'CPU #');
 }
 });
 }, 1000);
 }
 };
 cpuChart.title = {text: 'CPU usage'};
});

8. Define options for our RAM chart, as follows:
var ramChart = _.extend({}, commonOptions);
ramChart.chart.events = {
 load: function () {
 var self = this;
 setInterval(function() {
 $.getJSON('/memory/', function(data) {
 for (var i=0; i < data.length; i++) {

System Integration

268

 addOrUpdateSeries(self, data[i]);
 }
 });
 }, 1000);
 }
};
ramChart.title = {
 text: 'RAM usage'
};

9. Render our charts using the following code:
$('#cpu').highcharts(cpuChart);
$('#ram').highcharts(ramChart);

10. Visit localhost:8888 and observe:

How it works...
Node.js's os library handles a lot of the heavy lifting in this recipe. It allows us to access
information about memory (os.freemem() for free memory and os.totalmem() for
total memory) as well as CPU information (os.cpus()).

Chapter 11

269

Showing Git commits by contributor
Git is a fantastic tool that has done a lot to improve version control for developers. Out of the
box, it is possible to get a lot of useful meta-information about a Git repository such as who
has made the most commits. By default, Git provides this information as text, but what if we
wanted to visualize the data differently? This recipe will examine how we can set up Node.js
to obtain Git information and how we can use Highcharts to display it.

Getting ready
To set up a basic Node.js project and its dependencies, refer to the Getting ready section
of the Exploring hard drive usage recipe from this chapter.

How to do it...
To get started, perform the following steps:

1. Create a handler to obtain the Git user information with the following code:
app.use(express.static('static'));
app.get('/git/users', function(request, response) {
});
app.listen(8888);

2. Create a connection to a repo, and get all commits from a particular branch (in this
case, master), as shown in the following code:
var git = require('gift');
var repo = git('/full/path/to/repository');
app.get('/git/users', function(request, response) {
 repo.commits('master', -1, function(err, commits) {
 });
});

The path provided to the git function can be absolute or relative. If
the path is relative, it will be relative to the folder in which app.js is
started.

3. Filter and return the commits by user, as shown in the following code:
var underscore = require('underscore');
app.get('/git/users', function(request, response) {
 repo.commits('master', -1, function(err, commits) {
 // Count the user

System Integration

270

 user_counts = underscore.countBy(commits, function(commit)
{
 return commit.author.name;
 });

 // Convert to list of [name, commits]
 counts = underscore.pairs(user_counts);

 // Sort by most commits first
 sorted_counts = underscore.sortBy(counts, function(x) {
 return x[1];
 });

 // Respond with result
 response.json(sorted_counts);
 });
});

4. Create a function to get our Git data, as shown in the following code:
$(document).ready(function() {
 $.getJSON('/git/users', function(data) {
 });
});

5. Create a set of options for our chart using the following code:
$(document).ready(function() {
 $.getJSON('/git/users', function(data) {
 var options = {
 chart: {type: 'pie'},
 title: {text: 'Show Git commits by contributor'},
 series: [{name: 'Commits',data: data}]
 };
 });
});

6. Render our chart, as follows:
$(document).ready(function() {
 $.getJSON('/git/users', function(data) {
 var options = {/* … */};
 $('#container').highcharts(options);
 });
});

Chapter 11

271

Your desired output will look something like the following:

How it works...
Gift (http://npmjs.org/package/gift) is a Node.js library that wraps the Git command-
line interface. We use it to obtain a reference to an existing repository (repo = git('path/
to/repo')), and we can also use it to obtain a list of commits (repo.commit(branch_
name, number_of_commits, callback)).

System Integration

272

Showing Git commits over time
Displaying Git commits by users is interesting, but what if we wanted to observe when
commits are taking place instead of observing who is making commits? Perhaps commits
occur more likely at certain times of the day, or on certain days of the week? This recipe will
look at how we can take the same Git data we have and instead show it as commits over time.

Getting ready
To set up a basic Node.js project and its dependencies, refer to the Getting ready section
of the Exploring hard drive usage recipe from this chapter.

How to do it...
1. Create a handler to obtain Git timeline information as shown in the following code:

app.use(express.static('static'));
app.get('/git/timeline', function(request, response) {/*...*/});
app.listen(8888);

2. Create a connection to a Git repo, and get all commits from a particular branch (in
this case, master) as shown in the following code:
var git = require('gift');
var repo = git('/full/path/to/repository');
app.get('/git/timeline', function(request, response) {
 repo.commits('master', -1, function(err, commits) {
 });
});

The path provided to the git function can be absolute or relative. If the
path is relative, it will be relative to the folder in which app.js is started.

3. Filter and return the commits by user, as shown in the following code:
var underscore = require('underscore');
app.get('/git/timeline', function(request, response) {
 repo.commits('master', -1, function(err, commits) {
 // Group commits by day
 commits_per_day = underscore.countBy(commits,
function(commit) {
 var date = commit.authored_date; // Alt. use
`committed_date`

Chapter 11

273

 var day = new Date(date.getFullYear(), date.
getMonth(), date.getDate());
 return day.getTime();
 });

 // Convert to list
 commits = underscore.pairs(commits_per_day);

 // JSON can't have integer keys; convert string keys to
ints again
 commits = underscore.map(commits, function(item) {
 key = parseInt(item[0]);
 value = item[1];
 return [key, value];
 });

 // Sort the dates; Highcharts has problems with unsorted
data
 commits = underscore.sortBy(commits, function(x) {return
x[0]; });

 // Respond with result
 response.json(commits);
 });
});

4. Create a function to get our Git data, as follows:
$(document).ready(function() {
 $.getJSON('/git/timeline', function(data) {
 });
});

5. Create a set of options for our chart, as shown in the following code:
$(document).ready(function() {
 $.getJSON('/git/timeline', function(data) {
 var options = {
 chart: {
 type: 'pie'
 },
 title: {
 text: 'Show Git commits over time'
 },
 series: [{
 name: 'Commits',

System Integration

274

 data: data
 }]
 };
 });
});

6. Render our chart and observe:

$(document).ready(function() {
 $.getJSON('/git/timeline', function(data) {
 var options = {/* … */};
 $('#container').highcharts(options);
 });
});

Your desired output will look something like the following:

How it works...
Again, Gift (http://npmjs.org/package/gift) does a lot of the work in this example.
The notable difference in this recipe is in how we slice the data.

Instead of using countBy to get the count of commits by author, we use it to get the count by
the authored date of the commit. From there, all we need to do is clean up the data (as we do
in our map function), sort by the date, and return the data.

12
Other Inspirational

Uses

In this chapter, we will cover the following topics:

 f Demonstrating time zones with gauge charts

 f Exploring a Highcharts stopwatch

 f Counting words per minute

 f Measuring the distance travelled

 f Plotting tweets per day

 f Creating a compass

 f Creating a weight watching application

Introduction
In the previous chapters, we mostly experimented with the somewhat useful or typical
examples of what we can do with Highcharts. This chapter explores some of the remaining
chart types. In addition to that, we will also learn how we can integrate interesting APIs
(for example, HTML5's geolocation or localStorage APIs) to come up with even
more interesting uses of Highcharts.

For example, what if we could use Highcharts to tackle habits that we'd like to change? Such
as watching our weight? Recording the changes over time and observing improvements can
be incredibly motivating. Or what if we wanted to work on our typing speed and see it update
in real time like the speedometer of an automobile? These are just a few of the interesting
things that we can do with Highcharts. Hopefully, after reading this chapter, you'll find other
inspirational uses.

Other Inspirational Uses

276

Demonstrating time zones with gauge
charts

There are a lot of straightforward uses of charts, especially for charts that are used in
reports. However, one of the advantages of using a library for rendering dynamic charts
is, well, dynamism. By leveraging the dynamic nature of Highcharts along with its gauge
chart, we can do some very interesting things, such as creating a clock.

Getting ready
To set up a basic page and installing jQuery and Highcharts, refer to the instructions in the
Getting ready section of the Creating your first chart recipe in Chapter 1, Getting Started
with Highcharts.

How to do it...
To get started, follow the ensuing instructions:

1. Create HTML fields for our time zones using the following code:
<div id='container'></div>
<label for='timezone'>Timezone:</label>
<select name='timezone' id='timezone'>
 <option value='localtime'>Localtime</option>
 <option value='-8'>Pacific (UTC-08:00)</option>
 <option value='-7'>Mountain (UTC-07:00)</option>
 <option value='-6'>Central (UTC-06:00)</option>
 <option value='-5'>Eastern (UTC-05:00)</option>
 <option value='-4'>Atlantic (UTC-04:00)</option>
 <option value='-3.5'>Newfoundland (UTC-03:30)</option>
</select>
<script src='./bower_components/jquery/jquery.js'></script>

2. Define a variable to store the time zone (clockTimezone) and create a function to
get the positions of the clock hands, as shown in the following code:
$(document).ready(function() {
 var clockTimezone;

 var getClockPositions = function(options) {
 var date, now, tzOffset, tzDifference;

 options = options || {};

Chapter 12

277

 date = new Date();
 tzOffset = parseFloat(options.tz);

 if (tzOffset) {
 tzDifference = (tzOffset * 60) + date.
 getTimezoneOffset();
 now = new Date(date.getTime() + tzDifference * 60 *
 1000);
 } else {
 now = date;
 }

 return {
 hours: now.getHours() + (now.getMinutes() / 60),
 minutes: ((now.getMinutes() * 12) / 60) + ((now.
 getSeconds() * 12) / 3600),
 seconds: ((now.getSeconds() * 12) / 60)
 };
 };
});

3. Get the initial position of the hands and define the chart options, as shown in the
following code:
var getClockPositions = function(options) {/* … */}

var initialPosition = getClockPositions();

var options = {
 chart: { type: 'gauge' },
 title: { text: 'Time' },
 subtitle: { text: 'Localtime' },
 tooltip: { enabled: false },
 yAxis: {
 min: 0,
 max: 12,
 showFirstLabel: false,
 tickInterval: 1
 },
 series: [{
 animation: false,
 dataLabels: { enabled: false},
 data: [{
 id: 'hours',
 y: initialPosition.hours,
 dial: { radius: '70%' }
 }, {

Other Inspirational Uses

278

 id: 'minutes',
 y: initialPosition.minutes,
 dial: { radius: '90%' }
 }, {
 id: 'seconds',
 y: initialPosition.seconds,
 dial: {
 radius: '90%',
 baseWidth: 1,
 backgroundColor: '#faa',
 borderColor: '#faa'
 }
 }]
 }]
};

4. Render our chart and get a reference to the chart using the following code:
var options = {/* ... */};
var chart = $('#container').highcharts(options).highcharts();
Create an interval timer to update the clock hands using the
following code:
var chart = $('#container').highcharts(options).highcharts();

var clockInterval = setInterval(function() {
 var hours = chart.get('hours'),
 minutes = chart.get('minutes'),
 seconds = chart.get('seconds'),
 now = getClockPositions({
 tz: clockTimezone
 }),
 redraw = true;
 animate = false;

 hours.update(now.hours, redraw, animate);
 minutes.update(now.minutes, redraw, animate);
 seconds.update(now.seconds, redraw, animate);
}, 1000);

5. Create a handler for changing the time zone as shown in the following code:
var clockInterval = setInterval(function() {/* … */}, 1000);

$('#timezone').change(function(event) {
 var tz = this.value,
 tzText = $(this).find(':selected').text();

 clockTimezone = tz;
 chart.setTitle(undefined, {text: tzText});
});

Chapter 12

279

6. Observe the clock on the page. You should see the clock shown in the
following screenshot:

7. Change the Timezone value and observe the clock change, as shown in the
following screenshot:

Other Inspirational Uses

280

How it works...
All of this is possible due to the type of gauge chart. This chart type maps the y values along
the outside of the gauge. Since we don't define a start angle (options.pane.startAngle)
or end angle (options.pane.endAngle), our gauge wraps around completely, meaning we
have the perfect setup to create a clock.

The getClockPositions method may look complicated. However, if we break it down,
it does the following:

 f Gets the current time (date = new Date()) and offset (if available, tzOffset =
parseFloat(options.tz)).

 f Gets the adjusted time by converting a time zone offset (for example, -5, for eastern
time) into minutes ((tzOffset * 60) + date.getTimezoneOffset())
and adding it to the current time (now = new Date(date.getTime() +
tzDifference * 60 * 1000)).

 f Lastly, it gets the position of the hands from the adjusted time. Since our clock values
go from 0 to 12, we need to ensure that hours, minutes, and seconds all appear
correctly. We do this by normalizing the values by performing the following steps:

 � Hours are the most straightforward. We take the current hour value (now.
getHours()) and add any fractional hours (now.getMinutes() / 60)
to it.

 � Next, we need to map minute values (that is, 0 to 59) to hour values (0 to 12).
We do this by multiplying the current minute value (now.getMinutes())
by 12 and dividing this by 60 (effectively, making each minute one-fifth of
a clock value, as we would expect). We do something similar to add any
fractional minutes.

 � We do the same thing with seconds, mapping each second to one-fifth
of a clock value. The biggest difference is that we are not concerned
with fractional seconds (that is, milliseconds).

Our interval function is fairly straightforward: we use chart.get(id) to get whichever series
we need to update, get the updated positions for the clock hands, and then use <series>.
update(value, redraw, animate) to set the value of the hand positions.

Since we set the time zone in a private variable (clockTimezone) via our change handler,
our clock will update on the next tick of the clock. Lastly, we adjust the appearance of the
clock hands via series.dial.

Chapter 12

281

Exploring a Highcharts stopwatch
If we can create a clock, what other concepts can we create? A clock is just a way to
measure time; perhaps there are other ways in which we can measure time? There are.
With a few adjustments, we can create not only a clock, but also a stopwatch. This recipe
will show how we can leverage the gauge chart to make a realistic-looking stopwatch.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the instructions in the
Getting ready section of the Creating your first chart recipe in Chapter 1, Getting Started
with Highcharts.

How to do it...
To get started, follow the ensuing instructions:

1. Define the HTML code for our stopwatch controls as shown in the following code:
<div id='container'></div>
<button type='button' id='start'>Start</button>
<button type='button' id='reset'>Reset</button>
<script src='./bower_components/jquery/jquery.js'></script>

2. Define our chart options as shown in the following code:
$(document).ready(function() {
 var options = {
 chart: {type: 'gauge' },
 title: { text: 'Stopwatch' },
 yAxis: {
 min: 0,
 max: 60,
 showFirstLabel: false,
 tickInterval: 5
 },
 tooltip: { enabled: false },
 series: [{
 animation: false,
 dataLabels: {
 formatter: function() {
 // Output in the following format:
 // HH:mm:ss.ms
 var hours,

Other Inspirational Uses

282

 minutes,
 seconds,
 milli,
 s = this.y,
 H = 3600, // 1h = 3600 s
 M = 60, // 1m = 60 s

 hours = Math.floor(s / H);
 minutes = Math.floor((s - (hours * H)) / M)
 seconds = Math.floor((s - (hours * H) -
 (minutes * M)));
 milli = parseInt((s*1000) % 1000);

 // Add padding to numbers
 if (hours < 10) { hours = "0" + hours; }
 if (minutes < 10) { minutes = "0" + minutes;
 }
 if (seconds < 10) { seconds = "0" + seconds;
 }
 if (milli < 100) { milli = "0" + milli; }
 if (milli < 10) { milli = "0" + milli; }

 return hours + ':' + minutes + ':' + seconds +
 '.' + milli;
 }
 },
 data: [{
 id: 'seconds',
 y: 0,
 dial: {
 radius: '90%',
 baseWidth: 1,
 backgroundColor: '#faa',
 borderColor: '#faa'
 }
 }]
 }]
 };
});

3. Render our chart and get a reference to it, using the following code:
var options = {/* … */};
var chart = $('#container').highcharts(options).highcharts();

Chapter 12

283

4. Define a variable to keep track of our timer as shown in the following code:
var chart = $('#container').highcharts(options).highcharts();
var stopWatchInterval;
var minimumResolution = 100;

5. Create a function to update our chart as shown in the following code:
var stopWatchInterval;
var minimumResolution = 100;

var updateTimer = function(value) {
 var seconds = chart.get('seconds'),
 prevValue = seconds.y,
 nextValue,
 redraw = true,
 animate = false;

 if (value != undefined) {nextValue = value;}
 else {nextValue = prevValue + (minimumResolution / 1000);}

 seconds.update(nextValue, redraw, animate);
};

6. Create the functions that affect the timer as shown in the following code:
var updateTimer = function(value) {/* ... */};

var timerRunning = function() {
 return !!stopWatchInterval;
};

var startTimer = function() {
 stopWatchInterval = setInterval(function() {updateTimer();},
 minimumResolution);
 $('#start').text('Stop');
};

var stopTimer = function() {
 clearInterval(stopWatchInterval);
 stopWatchInterval = 0;
 $('#start').text('Start');
};

Other Inspirational Uses

284

7. Create handlers for our start and reset buttons as shown in the following code:
var stopTimer = function() {/* ... */};

$('#start').click(function() {
 if (!timerRunning()) {startTimer();}
 else {stopTimer();}
});

$('#reset').click(function() {
 if (timerRunning()) {stopTimer();}
 updateTimer(0);
});

8. Visit the page and observe the stopwatch at rest. You should see the stopwatch
that is shown in the following screenshot:

9. Start the stopwatch by clicking on the Start button, and then watch it in action as
shown in the following screenshot:

Chapter 12

285

How it works...
Our setup in this scenario is similar to our clock in the previous recipe. Our updateTimer
function handles the specifics of modifying the actual chart. If we provide it with a value (as
we do when we reset the timer), it will set the value of the gauge to whatever value we provide.

Other than that, much of our work revolves around ensuring that our timer is in a good state.
Our Start button will start or stop the timer, depending on whether it is running or not, and
our Reset button will stop the timer (if it is running) and also reset it.

Counting words per minute
In our previous recipes, we used gauge charts in "less-than-typical" scenarios. In this recipe,
we will use a gauge for a more typical example, such as a speedometer in an automobile.
In the case of a speedometer, we measure velocity; in our example, we'll be measuring
words per minute.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the instructions in the
Getting ready section of the Creating your first chart recipe in Chapter 1, Getting Started
with Highcharts.

Other Inspirational Uses

286

We will also need to include underscore by adding it to our dependencies in bower.js,
as shown in the following code:

{
 "name": "highcharts-cookbook-chapter-12",
 "dependencies": {
 "jquery": "~1.9",
 "highcharts": "~3.0",
 "underscore": "~1.6.0"
 }
}

Next, we need to install our dependencies using the following command:

bower install

Lastly, we need to include underscore.js to our page using the following code:

<script src='./bower_components/highcharts/highcharts-more.src.js'></
script>
<script src='./bower_components/underscore/underscore.js'></script>

How to do it...
To get started, follow the ensuing instructions:

1. Define the HTML component where we will type (and measure) our words per minute
as shown in the following code:
<div id='container'></div>
<textarea id='wpm'></textarea>
<script src='./bower_components/jquery/jquery.js'></script>

2. Define the chart options as shown in the following code:
$(document).ready(function() {
 var options = {
 chart: { type: 'gauge' },
 title: { text: 'Words Per Minute (WPM)' },
 pane: {
 startAngle: -150,
 endAngle: 150,
 },
 yAxis: {
 min: 0,
 max: 200,
 tickInterval: 10
 },
 tooltip: { enabled: false },
 series: [{

Chapter 12

287

 animation: false,
 data: [{
 id: 'wpm',
 y: 0,
 dial: {
 radius: '90%',
 baseWidth: 1,
 backgroundColor: '#faa',
 borderColor: '#faa'
 }
 }]
 }]
 };
});

3. Render the chart and get a reference to it using the following code:
var options = {/* … */};
var chart = $('#container').highcharts(options).highcharts();

4. Create a function to calculate words per minute as shown in the following code:
var chart = $('#container').highcharts(options).highcharts();

//WPM: standardized as 5 keystrokes = 1 word
var keystrokes = totalTime = lastTime = currTime = wpm = 0,
 pastWPM = [];

$('#wpm').on('keyup', function(){
 var words, wpmilli, subset,
 animate = true,
 redraw = true,
 sumOver = 3;

 currTime = new Date().getTime();

 if (lastTime != 0) {
 keystrokes++;

 totalTime += currTime - lastTime;

 words = keystrokes / 5;

 // take the average of the past few values to
 // smooth things out
 wpmilli = words / totalTime;
 pastWPM.push(wpmilli * 60000);

 if (pastWPM.length >= sumOver) {
 subset = _.last(pastWPM, sumOver);

Other Inspirational Uses

288

 wpm = _.reduce(subset, function(a, b) {return a + b;})
/ sumOver;
 }
 }

 lastTime = currTime;
});

5. Update the gauge periodically (instead of doing it immediately) using the following code:
$('#wpm').on('keyup', function() {/* … */});

setInterval(function() {
 var redraw = animate = true;
 chart.get('wpm').update(wpm, redraw, animate) ;
}, 1000);

6. Visit our page and observe our Word Per Minute (WPM) detector at rest. You should
see it as shown in the following screenshot:

Chapter 12

289

7. Start typing and then observe the detector measure your speed. You should see the
change in the speedometer as shown in the following screenshot:

How it works...
Whenever a key is pressed in our text area, the code does the following:

 f If some amount of time has passed, increase the number of keystrokes by
one (keystrokes++)

 f Convert keystrokes to words; we use five keystrokes to represent one word
 f Calculate the current words per minute and store it temporarily (pastWPM.

push(wpmilli * 60000))
 f Take the average of the past few (three) WPM values to provide a more

accurate measure
 f Lastly, instead of updating the gauge on every keyup event (which would

make our chart very sluggish), we only update it once every second

Other Inspirational Uses

290

Measuring the distance travelled
Bubble charts are a good way to represent three-dimensional values in a two-dimensional
space (that is, a chart). In this way, it is similar to a scatter chart that only tracks the x and
y coordinates. In this recipe, we'll use a bubble chart (and a few HTML5 technologies) to
log our location with Highcharts.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the instructions in the
Getting ready section of the Creating your first chart recipe in Chapter 1, Getting Started
with Highcharts.

How to do it...
To get started, follow the ensuing instructions:

1. Create some controls to manage our chart using the following code:
<div id='container'></div>
<button id='record-location'>Record Location</button>

<ul id='log-messages'>
<script src='./bower_components/jquery/jquery.js'></script>

2. Create a function to calculate the distance between two points (that is, latitude and
longitude) on the globe as shown in the following code:
$(document).ready(function() {
 // See http://en.wikipedia.org/wiki/Great-circle_
 distance#Formulas
 var calculateDistance = function(p1, p2) {
 var radius = 6378.137; // km

 // convert measures to radians
 var dLat = ((p1.y - p2.y) * Math.PI) / 180;
 var dLon = ((p1.x - p2.x) * Math.PI) / 180;

 var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
 Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(p1.y) *
 Math.cos(p2.y);

 var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));

 var d = radius * c;

Chapter 12

291

 return d;
 };
});

3. Define our chart options as shown in the following code:
var calculateDistance = function(p1, p2) {/* ... */};

var options = {
 chart: { type: 'bubble' },
 title: { text: 'My Location' },
 subtitle: { text: 'Over time' },
 xAxis: { title: { text: 'Longitude' } },
 yAxis: { title: { text: 'Latitude' } },
 tooltip: {
 formatter: function() {
 var coordsLn, recordedLn, distanceLn, distance, index,
 p;

 // indexOf isn't supported in IE8 or less,
 // but neither is geolocation!
 index = this.series.data.indexOf(this.point);

 if (index > 0) {
 distance = calculateDistance(this.point, this.
 series.data[index-1]);
 } else {
 distance = 0;
 }

 recordedLn = 'Recorded: ' + new Date(this.
 point.timestamp) + '
';
 coordsLn = 'Coordinates: (' + this.x + ', ' +
 this.y + ')
';
 distanceLn = 'Geographical distance from last
 logged: ~' + distance + 'km';
 return recordedLn + coordsLn + distanceLn;
 },
 },
 legend: { enabled: false },
 series: [{
 id: 'position',
 lineWidth: 1,
 data: []
 }]
};

Other Inspirational Uses

292

4. Render our chart and obtain a reference to it, using the following code:
var options = {/* ... */};
var chart = $('#container').highcharts(options).highcharts();

5. Define functions for accessing localStorage as shown in the following code:
var chart = $('#container').highcharts(options).highcharts();

var key = 'highcharts_location';
var addToLocalStorage = function(point) {
 var data = JSON.parse(localStorage[key] || "[]");
 data.push(point);
 localStorage[key] = JSON.stringify(data);
};

6. Prompt the user to allow location access using the following code:
var addToLocalStorage = function(point) {/* ... */};

try {
 navigator.geolocation.getCurrentPosition(function(){});
} catch(e) {
 console.log('It appears that your browser does not support the
Geolocation API :(');
}

The following screenshot shows the output:

An example of what the prompt looks like in Chrome

7. Define handlers that log our position using the following code:
try {
 navigator.geolocation.getCurrentPosition(function(){});
} catch(e) {
 console.log('It appears that your browser does not support the
Geolocation API :(');
}

$('#record-location').click(function() {
 navigator.geolocation.getCurrentPosition(function(p){
 var position = chart.get('position'), point;

 point = {
 y: p.coords.latitude,

Chapter 12

293

 x: p.coords.longitude,
 z: p.coords.accuracy,
 altitude: p.coords.altitude,
 timestamp: p.timestamp
 } ;

 position.addPoint(point);
 addToLocalStorage(point);
 });
});

8. Load the initial data into the chart using the following code:
$('#record-location').click(function() {/* … */});

var data = JSON.parse(localStorage[key] || "[]");
chart.get('position').setData(data);

9. Open the page and record a position using the Record Location button as shown in
the following screenshot.

Other Inspirational Uses

294

10. Travel to some other location, and then click on the Record Location button again.
You should now see an output similar to the following screenshot:

How it works...
Using the geolocation API allows us to access information about the user's location
(provided they allow us to do so). More specifically, if we provide a single-argument (p)
callback to navigation.geolocation.getCurrentPosition, we can get the
following information:

 f Latitude (p.coords.latitude)

 f Longitude (p.coords.longitude)

 f Accuracy (p.coords.accuracy)

 f Altitude (if available, p.coords.altitude)

 f Altitude accuracy (if available, p.coords.altitudeAccuracy)

Chapter 12

295

 f Heading (if available, p.coords.heading)

 f Speed (if available, p.coords.speed)

The localStorage API acts a lot like a dictionary in that we can get and set keys with
localStorage[key] = value. Unfortunately, it doesn't handle nested objects too
well. So, we convert all of the values to strings before we store them, and then convert
them back to objects when we retrieve keys from localStorage.

Plotting tweets per day
Sometimes, patterns emerge when we look at data differently. In this recipe, we'll take data
from our existing Twitter feed, summarize it using Node.js, and then display it using a bubble
chart where the size of the bubble is the number of tweets in that day.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the instructions in the
Getting ready section of the Creating your first chart recipe in Chapter 1, Getting Started
with Highcharts.

We will also need to include underscore by adding it to our dependencies in bower.js
as shown in the following code:

{
 "name": "highcharts-cookbook-chapter-12",
 "dependencies": {
 "jquery": "~1.9",
 "highcharts": "~3.0",
 "underscore": "~1.6.0"
 }
}

Next, we need to install our dependencies using the following command:

bower install

We will also need to include underscore.js to our page using the following code:

<script src='./bower_components/highcharts/highcharts-more.src.js'></
script>
<script src='./bower_components/underscore/underscore.js'></script>

Other Inspirational Uses

296

We will also need to make some changes in order to obtain tweets on the server side. This can
be done using the following steps:

1. Create package.json, and add the following code to it:
{
 "name": "highcharts-cookbook-chapter-12",
 "version": "0.0.0",
 "dependencies": {
 "underscore": "~1.5.2",
 "express": "~3.4.7",
 "twitter": "~0.2.5"
 }
}

2. Install the Node.js dependencies using the following command:
npm install

3. In order to access the Twitter API, we will need to obtain a consumer key, consumer
secret, access token key, and access token secret, These values can be obtained
after creating an application (https://dev.twitter.com/apps).

How to do it...
To get started, follow the ensuing instructions:

1. Set up a basic express application in a file app.js as shown in the following code:
var express = require('express');
var app = express();

app.use(express.json());
app.use(express.static(__dirname));

app.listen(8888);
console.log('Listening on port 8888');

2. Create a handler to obtain tweets using the following code snippet:
app.use(express.static(__dirname));

app.get('/tweets/summary', function(request, response) {});

app.listen(8888);

Chapter 12

297

3. Create a Twitter client and then obtain tweets using the following code:
var twitter = require('twitter');
client = new twitter({
 consumer_key: 'YOUR KEY GOES HERE',
 consumer_secret: 'YOUR SECRET GOES HERE',
 access_token_key: 'YOUR ACCESS TOKEN',
 access_token_secret: 'YOUR TOKEN SECRET'
});

app.get('/tweets/summary', function(request, response) {
 client.get('/statuses/user_timeline.json', {
 screen_name: 'YOUR_SCREEN_NAME',
 include_entities: false,
 count: 200,
 trim_user: 1,
 include_rts: false
 }, function(data) {
});
});

4. Simplify the Twitter data using the following code:
var underscore = require('underscore');
app.get('/tweets/summary', function(request, response) {
 /*...*/
 }, function(data) {
 var tweets;

 tweets = underscore.map(data, function(tweet) {
 return {
 created: new Date(tweet.created_at),
 text: tweet.text
 }
 });
 }
});

Next, group the tweets by day as shown in the following code:
app.get('/tweets/summary', function(request, response) {
 client.get('/statuses/user_timeline.json', {
 /*...*/
 }, function(data) {
 var tweets;

 tweets = underscore.map(data, function(tweet) {/* ...*/});

Other Inspirational Uses

298

 tweets = underscore.countBy(tweets, function(tweet) {
 var date = tweet.created;
 var day = new Date(date.getFullYear(), date.
 getMonth(), date.getDate());
 return day.getTime();
 });
 }
});

5. Clean up, sort, and respond with tweets using the following code:
app.get('/tweets/summary', function(request, response) {
 client.get('/statuses/user_timeline.json', {
 /* ... */
 }, function(data) {
 var tweets;

 tweets = underscore.map(data, function(tweet) {/*...*/});

 tweets = underscore.countBy(tweets, function(tweet)
 {/*...*/});

 // Convert to list of lists
 tweets = underscore.pairs(tweets)

 // JSON can't have integer keys; convert string keys to
 ints again
 tweets = underscore.map(tweets, function(tweetSummary) {
 var date, monthYear, day;

 timestamp = parseInt(tweetSummary[0]);
 count = tweetSummary[1];

 date = new Date(timestamp);
 monthYear = (
 new Date(date.getFullYear(), date.getMonth(), 1)
).getTime();
 day = date.getDate();

 return [monthYear, day, count];
 });

 // Sort the dates; Highcharts has problems with unsorted
 data
 tweets = underscore.sortBy(tweets, function(x) {
 return x[0];
 });

Chapter 12

299

 // Respond with result
 response.json(tweets);
 }
});

6. In our page, create a callback to handle the response from our /tweets/summary
service, as shown in the following code snippet:
$(document).ready(function() {
 $.getJSON('/tweets/summary', function(data) {
 });
});

7. Define our chart options as shown in the following screenshot:
$.getJSON('/tweets/summary', function(data) {
 var options = {
 chart: {type: 'bubble' },
 title: { text: 'Tweets per day' },
 xAxis: { type: 'datetime' },
 yAxis: {
 min: 1,
 max: 31,
 title: { text: 'Day of Month' }
 },
 tooltip: {
 formatter: function() {
 var line1, line2, date, day, count, fmtDate;

 date = new Date(this.point.x);
 day = this.point.y;
 count = this.point.z;

 date.setDate(date.getDate() + day - 1);
 fmtDate = date.getFullYear() + '/' + (date.
 getMonth() + 1) + '/' + date.getDate();

 line1 = '' + fmtDate + '
';
 line2 = 'Tweets: ' + count;

 return line1 + line2;
 }
 },
 series: [{name: 'Tweets', data: data}]
 };
});

8. Render our chart using the following code:
var options = {/* ... */};
$('#container').highcharts(options);

Other Inspirational Uses

300

The following screenshot shows the rendered chart for a particular person:

An example of someone's tweets displayed over time

How it works...
Most of the work in this recipe is actually on the backend. After we've created a Twitter client,
we can access any REST endpoint in the Twitter documentation (https://dev.twitter.
com/docs/api/1.1) via twitter.<verb>(url, parameters, callback).

In our recipe, we get data from /statuses/user_timeline.json, which gives the
status updates from a user. In our parameters, we specify who we want to get updates from
(screen_name), how many tweets we want (count: 200), and whether we want to include
retweets (include_rts). We could also set many other fields based on what is stated in the
documentation of the endpoint.

Chapter 12

301

Creating a compass
In this recipe, we'll use what we've learned about gauge charts and the HTML5 geolocation
API to create a compass. Our compass may not be as accurate as a physical compass, but it
should give us a decent approximation of our heading.

Not all browsers/devices provide the necessary data to get heading
information, so this recipe may not work in all circumstances.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the instructions in the
Getting ready section of the Creating your first chart recipe in Chapter 1, Getting Started
with Highcharts.

How to do it...
To get started, follow the ensuing instructions:

1. Define the controls for our chart as shown in the following code:
<div id='container'></div>
<button id='start-compass'>Start Compass</button>
<script type='text/javascript'></script>

2. Define the options for our chart as shown in the following code:
$(document).ready(function() {
 var options = {
 chart: {type: 'gauge' },
 title: { text: 'Compass' },
 yAxis: {
 min: 0,
 max: 360,
 showLastLabel: false,
 tickInterval: 45,
 labels: {
 formatter: function() {
 var direction,
 directions = {
 0: 'N', 45: 'NE', 90: 'E', 135: 'SE',
 180: 'S', 225: 'SW', 270: 'W', 315:
 'NW'
 };
 direction = directions[this.value] || '';

Other Inspirational Uses

302

 return '' + direction + ''
 }
 }
 },
 tooltip: { enabled: false },
 series: [{
 animation: false,
 dataLabels: false,
 data: [{
 id: 'north',
 y: 0,
 dial: {
 radius: '90%',
 backgroundColor: '#f66',
 borderColor: '#faa',
 baseWidth: 5,
 baseLength: '90%'
 }
 }, {
 id: 'south',
 y: 180,
 dial: {
 radius: '90%',
 backgroundColor: '#bbb',
 borderColor: '#000',
 baseWidth: 5,
 baseLength: '90%'
 }
 }]
 }]
 };
});

3. Render and obtain a reference to our chart as shown in the following code:
var options = {/* ... */};
var chart = $('#container').highcharts(options).highcharts();

4. Create methods to start and stop watching our heading using the following code:
var chart $('#container').highcharts(options).highcharts();

var compassInt;
var compassOn = function () {return !!compassInt;};

var startCompass = function() {
compassInt = navigator.geolocation.watchPosition(function(p){
 var northSeries = chart.get('north'),
 southSeries = chart.get('south'),
 redraw = true,

Chapter 12

303

 animate = false,
 north, south;

 north = p.coords.heading;
 south = (180 + north) % 360;

 northSeries.update(north, redraw, animate);
 southSeries.update(south, redraw, animate);
 });
 $('#start-compass').text('Stop Compass');
};

var stopCompass = function () {
 navigator.geolocation.clearWatch(compassInt);
 compassInt = 0;
 $('#start-compass').text('Start Compass');
};

5. Create handlers to control starting and stopping our compass using the following code:
var stopCompass = function() {/* … */};

$('#start-compass').click(function() {
 if(compassOn()) {stopCompass();}
 else {startCompass();}
});

The following screenshot shows the compass in its default state:

Other Inspirational Uses

304

How it works...
The HTML5 geolocation API (navigator.geolocation) provides the following two methods
that are used to obtain a user's location information; each method accepts a single-argument
callback function (whose argument we will refer to, as in the code, as p):

 f The getCurrentPosition method returns the user's current latitude
(p.coords.latitude), longitude (p.coords.longitude), and the accuracy in
meters (p.coords.accuracy), of the coordinates. Other values may be available,
depending on the device. For example, the heading (p.coords.heading) that we
use in our compass.

 f The watchPosition method does the same, except that it is similar to setInterval
in that it will poll for the user's current position periodically.

In our example, when a user clicks on the Start button, we start watching the user's position
to get the current heading. If we click on the button again, the compass will stop polling for
the user's position. The only special work that we need to do is to draw the south arm 180
degrees from the north arm to make our chart more closely resemble a compass.

Creating a weight-watching application
Once a year, people work to come up with a list of things to change for the new year—new
year's resolutions. Losing weight is a new year's resolution that comes up quite often, and
an important part of losing weight (or making progress in just about anything) is weight
measurement. In this recipe, we will see how we can track our weight, or just about any
measurable quality, on a regular basis.

Getting ready
To set up a basic page and install jQuery and Highcharts, refer to the instructions in the
Getting ready section of the Creating your first chart recipe in Chapter 1, Getting Started
with Highcharts.

We will also need to include underscore by adding it to our dependencies in bower.js,
as shown in the following code:

{
 "name": "highcharts-cookbook-chapter-12",
 "dependencies": {
 "jquery": "~1.9",
 "highcharts": "~3.0",
 "underscore": "~1.6.0"
 }
}

Chapter 12

305

Next, we need to install our dependencies using the following command:

bower install

We will also need to include underscore.js to our page, as shown in the following code:

<script src='./bower_components/highcharts/highcharts-more.src.js'></
script>
<script src='./bower_components/underscore/underscore.js'></script>

How to do it...
To get started, follow the ensuing instructions:

1. Define controls for our chart as shown in the following code:
<div id='container'></div>

<label for='date-list'>Date:</label>
<select name='date-list' id='date-list'>
</select>

<label for='weight'>Weight (kg):</label>
<input type='text' name='weight' id='weight' />
<button name='modify' id='modify'>Add / Modify</button>

<script src='./bower_components/jquery/jquery.js'></script>

2. Define our chart options as shown in the following code:
$(document).ready(function() {
 var options = {
 chart: { type: 'spline' },
 title: { text: 'Weight Watcher' },
 xAxis: { type: 'datetime' },
 series: [{
 id: 'weight',
 name: 'Weight',
 data: []
 }]
 };
});

3. Render and obtain a reference to our chart using the following code:
var options = {/* … */};
var chart = $('#container').highcharts(options).highcharts();

Other Inspirational Uses

306

4. Create a function to add new elements to our selected box as shown in the
following code:
var chart = $('#container').highcharts(options).highcharts();
var addToList = function(timestamp, weight) {
 var $elem, $list = $('#date-list');

 $elem = $('<option/>', {
 value: timestamp,
 text: new Date(timestamp)
 });
 $elem.data('weight', weight);

 $list.append($elem);
};

5. Create functions to interact with localStorage as shown in the following code:
var addToList = function(timestamp, weight) {/* … */};

var key = 'highcharts_weightwatcher';
var getDataFromStorage = function() {
 var obj, list

 obj = JSON.parse(localStorage[key] || "{}");

 list = _.pairs(obj);
 return _.map(list, function(item) {
 return [parseInt(item[0]), item[1]];
 });
};

var loadInitial = function() {
 var data = getDataFromStorage();
 var $list = $('#date-list');

 $list.empty();

 $list.append('<option value="new" selected="selected">New
 Entry</option>');

 _.each(data, function(item) {
 addToList(item[0], item[1]);
 });

 // Add Data to chart
 var series = chart.get('weight');

Chapter 12

307

 series.setData(data);
};

var modifyData = function(weight, date) {
 var data = JSON.parse(localStorage[key] || "{}");
 date = date || new Date();
 data[date.getTime()] = weight;
 localStorage[key] = JSON.stringify(data);
};

6. Create handlers for our selected box and our button as shown in the following code:
var modifyData = function(weight, data) {/* ... */};
$('#modify').click(function() {
 var listValue, weight, date, isNew, timestamp, series, redraw;

 weight = parseInt($('#weight').val());
 listValue = $('#date-list').val();
 isNew = (listValue === 'new');

 series = chart.get('weight');
 if (isNew) { date = new Date();
 timestamp = date.getTime();

 addToList(date.getTime(), weight);
 series.addPoint([timestamp, weight]);
 } else {
 timestamp = parseInt(listValue);
 date = new Date(timestamp)
 }

 modifyData(weight, date);

 redraw = true;
 if (!isNew) {series.setData(getDataFromStorage(), redraw)}
});

$('#date-list').change(function() {
 var value = $(this).find(':selected').data('weight') || '';
 $('#weight').val(value);
});

Other Inspirational Uses

308

7. Load any previously saved data using the following code:
$('#date-list').change(function() {/* ... */});

loadInitial();

8. Visit the page and observe our application's initial state. You should get something
similar to the following screenshot:

Chapter 12

309

9. Record a few weight values via the Add / Modify button as shown in the
following screenshot:

How it works...
Most of our functions are self explanatory, but the following areas do need clarification:

 f We store all of our data in localStorage as a dictionary ({}) with the timestamp
as the key. This makes it easy for us to add new values or to replace values from
previous points in time.

 f Since we use timestamp as a key for several things and an option element can
only have one value attribute, we store weight on the option element as a data
attribute using $elem.data('field', value).

 f As previously mentioned, localStorage doesn't support object nesting very well.
So, we convert everything to a string before storing and to an object when retrieving.

Index
Symbols
$.ajax function 55
$.getJSON function 43
$(selector).highcharts() function 74
.bind() method 132
/generate function 212
.highcharts function 11
_.map(iterable, fn) function 255
_.partial(fn, arg1, ...) function 248
-scale argument 97
<script> tag 57
.slider() method 144
.tabs() method 140
_.times(n, fn) function 248
-width argument 97
_.zip(arg1,) function 248

A
Add / Modify button 309
addSeries function 237, 239
addSeries method 14
AJAX

used, for polling charts 38-43
AngularJS

controllers 204-209
data bindings 204-209
URL 209

API documentation
URL 61

Application object 110
Application Programming Interface (API) 8
app.route 193
area range graphs

percentile data, displaying with 249-255

B
Backbone

integrating with 194, 203
backend

chart, updating on 134-137
Bottle

URL 190
used, as data provider 190-194

bower
installing, URL 8

box plots
descriptive statistics, showing with 240-242

By day button 78

C
CDN

about 93
URL 95

center option 16
chart

annotating 79-82
connecting, Ext.data.Store used 115, 117
connecting, to Ext.app.Controller 120-124
creating 8-11
creating, from model data 155-162
creating, inherited from other charts 124,

125
creating, with jQuery 128, 129
creating, with RESTful controller 166-173
generating, with Yii CLI command 163-165
loading, data- attributes used 129, 130
localizing 26-29
modifying, jQuery UI widgets used 140-144
multiple series, including in 12-14

312

preparing, for printing 102-105
rendering, on server side 93-95
updating, on backend 134-137

Chart function 221
chartLink function 101, 102
chart, putting

in pages, jQuery Mobile used 145-149
chart rendering

NodeJS, using for 209-212
chart.renderTo option 11
chart types

creating 216-220
Chronologically button 77
click event 132
code

minifying 233
ColumnSeries method 218
compass

creating 301-304
CPU usage graph 264-268
cross-domain data

handling 55-57
CSV

used, with Highcharts 53-55
cumulative density functions (CDFs) 243
custom tooltips

creating 21-23

D
data

displaying, with scatter plots 246-248
drilling down 49-53
filtering 49-53

Data Access Object (DAO)
URL 166

data- attributes
used, to load charts 129, 130

data formats
working with 35-37

dataFromEquation function 237, 239
data provider

Bottle, using 190-194
Django, using 185-189
Flask, using 190-194
NodeJS, using 182-185

dates
handling 57-61

Decrease button 144
descriptive statistics

showing, with box plots 240-242
different formats

images, exporting to 96, 97
display property 104
distance

measuring 290-295
distributions

plotting, with jStat 243-246
Django

URL 185
used, as data provider 185-189

django-admin.py startproject <name>
command 189

documentation
finding, on Highcharts 8

drawPoints method 218
dynamic charts

e-mailing 99-102
dynamic tooltips

developing 82-87

E
eachFn parameter 134
equations

graphing 235-239
events

adding, to rendered chart 91
binding, jQuery.on used 131, 132
tracking 88-90

events object 203
existing functions

wrapping 213-215
Explore button 264
express 182
express API

URL 185
Ext.app.Controller

chart, connecting to 120-124
Ext.ComponentQuery documentation

URL 124

313

Ext.data.Store
used, for connecting chart 115, 117

Ext.define function 125
extension

packaging 231, 232
Ext.getCmp function 123
ExtJS

Highcharts, using in 110-114
URL 110

ExtJS project
setting up 108, 110

extra content
adding, to tooltips 24-26

F
filters method 168
Flask

URL 190
used, as data provider 190-194

formatter function 23, 25
fs.readdirSync method 264

G
gauge charts

time zones, demonstrating with 276-280
getClockPositions method 280
getCurrentPosition method 304
getParams function 100, 101
getVersionInfo function 223
Gift

URL 271
Git 269
Git commits

displaying, by contributor 269-271
displaying, over time 272-274

git function 269, 272
graphs

multiple charts, displaying in 14-17
zooming 67-69

H
hard drive usage

exploring 258-264

Highcharts
CSV, used with 53-55
documentation, finding on 8
JSON, used with 53-55
URL 8, 94, 163
used, in ExtJS 110-114
using 137-140
XML, used with 53-55

Highcharts.Chart object 7
Highcharts documentation

URL 37
Highcharts extension

creating 221, 222
new functions, adding to 222-226

Highcharts extension documentation
URL 114

Highcharts extension (Version 2.3)
URL 110

highcharts function 13
Highcharts.setOptions function 29, 31
Highcharts stopwatch

exploring 281-285
href attribute 140

I
images

exporting, to different formats 96, 97
individual plot option

URL, for chart 23
initialize method 203
init method 123

J
jQuery

chart, creating with 128, 129
user interaction, handling with 133, 134

jQuery API documentation
URL 67

jQuery Mobile
used, for putting charts in pages 145-149

jQuery.on
used, for binding events 131, 132

jQuery UI documentation
URL 140

314

jQuery UI tabs
using 137-140

jQuery UI widgets
used, for modifying charts 140-144

JSHint
installing 226, 227
URL 226

JSON
used, with Highcharts 53-55

JSONP
URL 119

JSON with Padding (JSONP) 55
jStat

distributions, plotting with 243-246
jstat.dnorm(range, mean, standard_deviation)

function 245
jstat.seq(min, max, points) function 245

K
keyup event 289

L
lang object 28
left-to-right (LTR) 29
live data

observing, Store types used 117-119
load event 74, 135

M
map function 274
master details graphs

creating 69-74
memory usage graph 264-268
model

updating, when chart changes 173-179
model data

chart, creating from 155-162
Mozilla Developer Network article

URL 57
multiple charts

displaying, in one graph 14-17
same data, using in 17, 18

multiple series
including, in chart 12-14

MVC architecture guide
URL 124

N
new extension

unit testing 227-230
new functions

adding, to Highcharts extension 222-226
new theme

creating 30-32
Node.js

installing, URL 257
NodeJS

URL 209
used, as data provider 182-185
used, for chart rendering 209-212

npm (NodeJS package manager) 182

O
options object 7, 10

P
pageshow event 149
PDO drivers

URL 152
percentile data

displaying, with area range graphs 249-255
PhantomJS

installing, URL 94, 163
PHP

installing, URL 152
PHP Data Object (PDO) 152
pip

URL 38
plotOptions

URL 91
polar property 19
polling charts

AJAX, used for 38-43
positionTooltip function 87
Print chart button 105
printCharts function 103
probability density functions (PDFs) 243
Python 2.7

URL 38, 185

315

Q
QUnit

URL 230

R
real-time updates

WebSockets, used for 43-49
Record Location button 294
Refresh button 123
Remove Point? button 87
removeSeries function 238
renderTo option 34
Reset button 285
Reset Zoom button 69
RESTful controller

chart, creating with 166-173
RestfullYii

URL 166
RESTful services

URL 119
reusable graphs

creating 32-34
right-to-left (RTL) 29

S
same data

used, in multiple charts 17, 18
scatter plots

data, displaying with 246-248
self variable 49
Sencha Cmd

URL 110
Sencha network

creating account, URL 110
Sencha website

URL 108
series object 14
server side

chart, rendering on 93-95
simple poll

creating 63-67
slide() function 144
SpiderWebChart function 34, 224

spiderweb graphs
creating, for comparison 19, 20

SQLite
URL 152

Start button 284, 285, 304
static charts

e-mailing 97-99
Store types

used, for observing live data 117-119
strftime function

URL 61
success function 54, 56

T
theming

URL 32
this keyword 23
time data

dicing 74-79
slicing 74-79

time zones
demonstrating, with gauge charts 276-280

tooltip object 21
tooltip option

URL 23
tooltips

extra content, adding to 24, 26
Tornado

URL 43
tweets per day

plotting 295-300
type string 16

U
UglifyJS

installing, URL 233
uglifyjs command 233
underscore documentation

URL 87
underscore template function 87
updateTimer function 285
user interaction

handling, with jQuery 133, 134

316

V
vote function 65

W
watchPosition method 304
WebSocket object 49
WebSockets

used, for real-time updates 43-49
weight-watching application

creating 304-309
w.MyExtension object 226
words per minute

counting 285-289
wrap function 214

X
XML

used, with Highcharts 53-55

Y
Yii CLI command

chart, generating with 163-165
Yii documentation

URL 165
Yii framework

URL 152
Yii project

setting up 151-154

Thank you for buying
Highcharts Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Highcharts
ISBN: 978-1-84951-908-3 Paperback: 362 pages

Create rich, intuitive, and interactive JavaScript data
visualization for your web and enterprise development
needs using this powerful charting library — Highcharts

1. Step-by-step instructions with real-live data to
create bar charts, column charts and pie charts,
to easily create artistic and professional quality
charts.

2. Learn tips and tricks to create a variety of charts
such as horizontal gauge charts, projection
charts, and circular ratio charts.

3. Use and integrate Highcharts with jQuery
Mobile and ExtJS 4, and understand how
to run Highcharts on the server-side.

Instant Highcharts
ISBN: 978-1-84969-754-5 Paperback: 50 pages

Learn to create dynamic and customized charts instantly
using Highcharts

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Create your first customized and interactive
Highcharts chart.

3. Get to grips with the core concepts of Highcharts.

4. Learn how to progress with the Highcharts library.

Please check www.PacktPub.com for information on our titles

Vaadin 7 Cookbook
ISBN: 978-1-84951-880-2 Paperback: 404 pages

Over 90 recipes for creating Rich Internet Applications
with the latest version of Vaadin

1. Covers exciting features such as using drag and
drop, creating charts, custom components, lazy
loading, server-push functionality, and more.

2. Tips for facilitating the development and testing
of Vaadin applications.

3. Enhance your applications with Spring, Grails,
or Roo integration.

FusionCharts Beginner's
Guide
The Official Guide for FusionCharts Suite
ISBN: 978-1-84969-176-5 Paperback: 252 pages

Create interactive charts in JavaScript (HTML5) and
Flash for your web and enterprise applications

1. Go from nothing to delightful reports and
dashboards in your web applications in super
quick time.

2. Create your first chart in 15 minutes and
customize it both aesthetically and functionally.

3. Create a powerful reporting experience with
advanced capabilities like drill-down and
JavaScript integration.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Highcharts
	Introduction
	Finding documentation on Highcharts
	Creating your first chart
	Including multiple series in one chart
	Displaying multiple charts in one graph
	Using the same data in multiple charts
	Creating spiderweb graphs for comparison
	Creating custom tooltips
	Adding extra content to tooltips
	Making charts internationalizable/localizable
	Creating a new theme
	Creating reusable graphs

	Chapter 2: Processing Data
	Introduction
	Working with different data formats
	Using AJAX for polling charts
	Using WebSockets for real-time updates
	Drilling down and filtering data
	Using CSV, XML, or JSON with Highcharts
	Handling cross-domain data
	Handling dates

	Chapter 3: Handling User Interaction
	Introduction
	Creating a simple poll
	Making graphs zoomable
	Creating master details graphs
	Slicing and dicing time data
	Annotating a chart
	Developing dynamic tooltips
	Taking actions on other events
	Adding events after the chart has rendered

	Chapter 4: Sharing Charts
on the Web
	Introduction
	Rendering charts on the server side
	Exporting images to different formats
	E-mailing static charts
	E-mailing dynamic charts
	Preparing charts for printing

	Chapter 5: Integrating with ExtJS
	Introduction
	Setting up a simple ExtJS project
	Using Highcharts in ExtJS
	Connecting your chart using Ext.data.Store
	Observing live data using other Store types
	Connecting your chart to Ext.app.Controller
	Creating charts that inherit from other charts

	Chapter 6: Integrating with jQuery
	Introduction
	Creating charts with jQuery
	Using the data- attributes to load charts
	Binding events using jQuery.on
	Handling user interaction with jQuery
	Updating a chart on the backend
	Using jQuery UI tabs and Highcharts
	Modifying charts using jQuery UI widgets
	Putting charts in pages using jQuery Mobile

	Chapter 7: Integrating With the
Yii Framework
	Introduction
	Setting up a simple Yii project
	Creating a chart from model data
	Generating a chart with a Yii CLI command
	Creating charts with a RESTful controller
	Updating the model when the chart changes

	Chapter 8: Integrating with Other Frameworks
	Introduction
	Using NodeJS as a data provider
	Using Django as a data provider
	Using Flask/Bottle as a data provider
	Integrating with Backbone
	Using AngularJS data bindings and controllers
	Using NodeJS for chart rendering

	Chapter 9: Extending Highcharts
	Introduction
	Wrapping existing functions
	Creating new chart types
	Creating your own Highcharts extension
	Adding new functions to your extension
	JSHinting your code
	Unit - testing your new extension
	Packaging your extension
	Minifying your code

	Chapter 10: Math and Statistics
	Introduction
	Graphing equations
	Showing descriptive statistics with box plots
	Plotting distributions with jStat
	Displaying experimental data with scatter plots
	Displaying percentiles with area range graphs

	Chapter 11: System Integration
	Introduction
	Exploring hard drive usage
	Understanding CPU and memory usage graphs
	Showing Git commits by contributor
	Showing Git commits over time

	Chapter 12: Other Inspirational Uses
	Introduction
	Demonstrating time zones with gauge charts
	Exploring a Highcharts stopwatch
	Counting words per minute
	Measuring the distance travelled
	Plotting tweets per day
	Creating a compass
	Creating a weight-watching application

	Index

