
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Advance Praise for Head First Mobile Web

“If you have been considering buying a book about mobile development that is cross‑browser and

cross‑vendor, you should stop right now and buy Head First Mobile Web. It’s written by amazingly smart

people [who] have great experience on mobile and don’t stop at one platform, but work on all of them.

Many developers spend days arguing [whether] they should go native or web. This book smoothly

goes from introductory topics to advanced ones, giving you all the needed information to create

exciting content for mobile.”

— Andrea Trasatti, leader of the DeviceAtlas project and cocreator of

the WURFL repository of wireless device capability information

“A pragmatic introduction to the chaotic world of mobile web development as it is today, with a

glimpse of how we can and should approach it for tomorrow. Head First Mobile Web successfully

presents practical techniques all readers can use immediately, while giving plenty of foundation and

resources for more experienced developers to build upon.”

— Stephen Hay, web designer, developer, speaker, and

cofounder of the Mobilism conference

“Hands‑on from the get‑go, Head First Mobile Web provides an excellent introduction to the challenges

and opportunities available when exploring the next chapter in web design.”

— Bryan and Stephanie Rieger, founders of yiibu.com

www.allitebooks.com

http://www.allitebooks.org

Praise for other Head First books
“Head First Object-Oriented Analysis and Design is a refreshing look at subject of OOAD. What sets this book

apart is its focus on learning. The authors have made the content of OOAD accessible [and] usable for

the practitioner.”

— Ivar Jacobson, Ivar Jacobson Consulting

“I just finished reading HF OOA&D, and I loved it! The thing I liked most about this book was its focus

on why we do OOA&D—to write great software!”

— Kyle Brown, Distinguished Engineer, IBM

“Hidden behind the funny pictures and crazy fonts is a serious, intelligent, extremely well‑crafted

presentation of OO analysis and design. As I read the book, I felt like I was looking over the shoulder of

an expert designer who was explaining to me what issues were important at each step, and why.”

— Edward Sciore, Associate Professor, Computer Science Department,

Boston College

“All in all, Head First Software Development is a great resource for anyone wanting to formalize their

programming skills in a way that constantly engages the reader on many different levels.”

— Andy Hudson, Linux Format

“If you’re a new software developer, Head First Software Development will get you started off on the right foot.

And if you’re an experienced (read: long‑time) developer, don’t be so quick to dismiss this.…”

— Thomas Duff, Duffbert’s Random Musings

“There’s something in Head First Java for everyone. Visual learners, kinesthetic learners, everyone can

learn from this book. Visual aids make things easier to remember, and the book is written in a very

accessible style—very different from most Java manuals.… Head First Java is a valuable book. I can

see the Head First books used in the classroom, whether in high schools or adult ed classes. And I will

definitely be referring back to this book, and referring others to it as well.”

— Warren Kelly, Blogcritics.org, March 2006

“Rather than textbook‑style learning, Head First iPhone and iPad Development brings a humorous, engaging,

and even enjoyable approach to learning iOS development. With coverage of key technologies including

core data, and even crucial aspects such as interface design, the content is aptly chosen and top‑notch.

Where else could you witness a fireside chat between a UIWebView and UITextField!”

— Sean Murphy, iOS designer and developer

www.allitebooks.com

http://www.allitebooks.org

Praise for other Head First books
“Another nice thing about Head First Java, Second Edition, is that it whets the appetite for more. With

later coverage of more advanced topics such as Swing and RMI, you just can’t wait to dive into those

APIs and code that flawless, 100,000‑line program on java.net that will bring you fame and venture‑

capital fortune. There’s also a great deal of material, and even some best practices, on networking and

threads—my own weak spot. In this case, I couldn’t help but crack up a little when the authors use

a 1950s telephone operator—yeah, you got it, that lady with a beehive hairdo that manually hooks in

patch lines—as an analogy for TCP/IP ports…you really should go to the bookstore and thumb through

Head First Java, Second Edition. Even if you already know Java, you may pick up a thing or two. And if

not, just thumbing through the pages is a great deal of fun.”

— Robert Eckstein, Java.sun.com

“Of course it’s not the range of material that makes Head First Java stand out, it’s the style and approach.

This book is about as far removed from a computer science textbook or technical manual as you can get.

The use of cartoons, quizzes, fridge magnets (yep, fridge magnets…). And, in place of the usual kind of

reader exercises, you are asked to pretend to be the compiler and compile the code, or perhaps to piece

some code together by filling in the blanks or…you get the picture.… The first edition of this book was

one of our recommended titles for those new to Java and objects. This new edition doesn’t disappoint

and rightfully steps into the shoes of its predecessor. If you are one of those people who falls asleep with

a traditional computer book, then this one is likely to keep you awake and learning.”

— TechBookReport.com

“Head First Web Design is your ticket to mastering all of these complex topics, and understanding what’s

really going on in the world of web design.… If you have not been baptized by fire in using something

as involved as Dreamweaver, then this book will be a great way to learn good web design. ”

— Robert Pritchett, MacCompanion

“Is it possible to learn real web design from a book format? Head First Web Design is the key to designing

user‑friendly sites, from customer requirements to hand‑drawn storyboards to online sites that work

well. What sets this apart from other ‘how to build a website’ books is that it uses the latest research

in cognitive science and learning to provide a visual learning experience rich in images and designed

for how the brain works and learns best. The result is a powerful tribute to web design basics that any

general‑interest computer library will find an important key to success.”

— Diane C. Donovan, California Bookwatch: The Computer Shelf

“I definitely recommend Head First Web Design to all of my fellow programmers who want to get a grip on

the more artistic side of the business. ”

— Claron Twitchell, UJUG

www.allitebooks.com

http://www.allitebooks.org

Other related books from O’Reilly
jQuery Cookbook

jQuery Pocket Reference

jQuery Mobile

JavaScript and jQuery: The Missing Manual

Other books in O’Reilly’s Head First series
Head First C#

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First SQL

Head First Software Development

Head First JavaScript

Head First Physics

Head First Statistics

Head First Ajax

Head First Rails

Head First Algebra

Head First PHP & MySQL

Head First PMP

Head First Web Design

Head First Networking

Head First iPhone and iPad Development

Head First jQuery

Head First HTML5 Programming

www.allitebooks.com

http://www.allitebooks.org

Beijing • Cambridge • Farnham • K�ln • Sebastopol • Tokyo

Lyza Danger Gardner
Jason Grigsby

Head First Mobile Web

Wouldn’t it be dreamy if there
were a book to help me learn how to
build mobile websites that was more
fun than going to the dentist? It’s

probably nothing but a fantasy…

www.allitebooks.com

http://www.allitebooks.org

Head First Mobile Web
by Lyza Danger Gardner and Jason Grigsby

Copyright © 2012 Cloud Four, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions

are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/

institutional sales department: (800) 998‑9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Editor: Courtney Nash

Design Editor: Louise Barr

Cover Designer: Karen Montgomery

Production Editor: Kristen Borg

Production Services: Rachel Monaghan

Indexer: Ginny Munroe

Page Viewers: Katie Byrd, Danny Boomer, the Future‑Friendly Helmet, and Tephra

Printing History:
December 2011: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,

Head First Mobile Web, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark

claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no

responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No feature phones were harmed in the making of this book.

ISBN: 978‑1‑449‑30266‑5

[M]

Katie Byrd

Daddy, can you
play now?

TephraFuture Friendly

Danny Boomer
aka /dev/cat

www.allitebooks.com

http://www.allitebooks.org

To the phenomenal women in my family: my sister, Maggie;

Momula, Fran; Aunt Catherine; stepmother, Christie; and above all,

to the memory of my grandmother, Pearl, whose fierce and literate

independence inspired generations.

 —Lyza

To my parents for buying that Commodore 64 so many years ago;

to my lovely wife, Dana, without whose support and understanding

this book wouldn’t have happened; and to Katie and Danny—yes,

Daddy can play now.

 —Jason

www.allitebooks.com

http://www.allitebooks.org

viii

the authors

Lyza Danger Gardner (@lyzadanger) is a dev. She

has built, broken, and hacked web things since 1996.

Curiously, Lyza was actually born and raised in

Portland, Oregon, the town where everyone wants to

be but no one seems to be from.

Lyza started college early and cobbled together a

motley education: a BA in Arts and Letters from

Portland State University, followed by a master’s

program in computer science at the University of

Birmingham (UK).

Lyza has written a lot of web applications (server‑side

devs, represent!), defeated wily content management

systems, optimized mobile websites, pounded on

various APIs, and worried a lot about databases.

Fascinated by the way mobile technology has changed

things, she now spends a lot of time thinking about the

future of the Web, mobile and otherwise.

Since cofounding Cloud Four, a Portland‑based mobile

web agency, in 2007, Lyza has voyaged further into the

deep, untrammeled reaches of Device Land, exploring

the foibles and chaos of mobile browsers and the mobile

web. She has an odd set of anachronistic hobbies,

and it has been said that she takes a fair number of

photographs. She owns a four‑letter .com domain. We’ll

bet you can guess what it is and go visit her there.

In 2000, Jason Grigsby got his first mobile phone.

He became obsessed with how the world could be

a better place if everyone had access to the world’s

information in their pockets. When his wife, Dana,

met him, he had covered the walls of his apartment

with crazy mobile dreams. To this day, he remains

baffled that she married him.

Those mobile dreams hit the hard wall of reality—

WAP was crap. So Jason went to work on the Web

until 2007, when the iPhone made it clear the time

was right. He joined forces with the three smartest

people he knew and started Cloud Four.

Since cofounding Cloud Four, he has had the good

fortune to work on many fantastic projects, including

the Obama iPhone App. He is founder and president

of Mobile Portland, a local nonprofit dedicated

to promoting the mobile community in Portland,

Oregon.

Jason is a sought‑after speaker and consultant on

mobile. If anything, he is more mobile obsessed now

than he was in 2000 (sorry, sweetheart!).

You can find him blogging at http://cloudfour.com;

on his personal site, http://userfirstweb.com; and on

Twitter as @grigs. Please say hello!

Lyza

Jason

www.allitebooks.com

http://www.allitebooks.org

ix

table of contents

Table of Contents (Summary)

Table of Contents (the real thing)

Your brain on mobile web. Here you are trying to learn something,

while here your brain is, doing you a favor by making sure the learning doesn’t

stick. Your brain’s thinking, “Better leave room for more important things, like

which wild animals to avoid and whether setting this BlackBerry Bold on fire

is going to activate the sprinkler system.” So how do you trick your brain into

thinking that your life depends on knowing mobile web?

Intro

Who is this book for? xxii

We know what you’re thinking xxiii

And we know what your brain is thinking xxiii

Metacognition: thinking about thinking xxv

The technical review team xxx

Acknowledgments xxxi

 Intro xxi

1 Getting Started on the Mobile Web: Responsive Web Design 1

2 Responsible Responsiveness: Mobile-first Responsive Web Design 43

3 A Separate Mobile Website: Facing less-than-awesome circumstances 91

4 Deciding Whom to Support: What devices should we support? 137

5 Device Databases and Classes: Get with the group 151

6 Build a Mobile Web App Using a Framework: The Tartanator 217

7 Mobile Web Apps in the Real World: Super mobile web apps 267

8 Build Hybrid Mobile Apps with PhoneGap: Tartan Hunt: Going native 313

9 How to Be Future Friendly: Make (some) sense of the chaos 357

i Leftovers: The top six things (we didn’t cover) 373

ii Set Up Your Web Server Environment: Gotta start somewhere 387

iii Install WURFL: Sniffing out devices 397

iv Install the Android SDK and Tools: Take care of the environment 403

 Index 417

x

table of contents

1 Responsive Web Design
getting started on the mobile web

Get on the mobile bandwagon 2

Something odd happened on the way to the pub 4

If mobile phone web browsers are so great… 5

What’s so different about the mobile web? 6

Responsive Web Design 10

Different CSS in different places 12

CSS media queries 13

The current structure of the Splendid Walrus site 15

Analyze the current CSS 16

What needs to change? 17

Identify the CSS that needs to change 18

Steps to creating the mobile‑specific CSS 19

What’s wrong with a fixed‑width layout, anyway? 26

How is fluid better? 27

The fluid formula 28

Continue your fluid conversion 29

Context switching 31

What’s wrong with this picture? 32

Fluid images and media 33

Remember to be responsible 36

That’s a responsive site! 40

Responsive design is also a state of mind 41

Hey there! Are you ready to jump into mobile�
Mobile web development is a wildly exciting way of life. There’s glamour and

excitement, and plenty of Eureka! moments. But there is also mystery and confusion.

Mobile technology is evolving at bewildering speed, and there’s so much to know!

Hang tight. We’ll start our journey by showing you a way of making websites called

Responsive Web Design (RWD). You’ll be able to adapt websites to look great on a

whole lot of mobile devices by building on the web skills you already have.

styles.css

index.html

xi

table of contents

2 Mobile-first Responsive Web Design
responsible responsiveness

That’s a beautiful mobile site. But beauty is only skin deep.
 Under the covers, it’s a different thing entirely. It may look like a mobile site, but it’s

still a desktop site in mobile clothing. If we want this site to be greased lightning on

mobile, we need to start with mobile first. We’ll begin by dissecting the current site

to find the desktop bones hiding in its mobile closet. We’ll clean house and start

fresh with progressive enhancement, building from the basic content all the way

to a desktop view. When we’re done, you’ll have a page that is optimized regardless

of the screen size.

Very small screens
(feature phones)

Small screens
(smartphones)

Medium screens
(tablets)

Larger screens
(desktops and TVs)

Pro
gre

ssi
ve

enh
anc

em
ent

 ba
sed

 on
 sc

ree
n s

ize
 an

d c
lien

t fe
atu

res

Just when you thought it was time to celebrate… 44

Is there really a problem? How do we know? 45

What to do when things aren’t blazing fast 47

Don’t let its looks fool you, that’s a BIG page 48

There’s gold in ’em HAR hills 49

Find the drags on page speed 51

Where did that Google Maps JavaScript come from? 53

It looks mobile friendly, but it isn’t 55

Mobile‑first Responsive Web Design 56

What is progressive enhancement? 57

Fix the content floats 60

Mobile‑first media queries 61

Surprise! The page is broken in Internet Explorer 62

One src to rule them all 68

Zoom in on the viewport <meta> tag 72

The right to zoom? 73

Add the map back using JavaScript 74

Build a pseudo‑media query in JavaScript 76

Add the JavaScript to the On Tap Now page 77

These widgets aren’t responsive 79

Move iframe attributes to CSS equivalents 80

Remove attributes from the JavaScript 81

The map overlap is back 83

Let the content be your guide 84

Breakpoints to the rescue 87

xii

table of contents

3 Facing less-than-awesome circumstances
a separate mobile website

The vision of a single, responsive Web is a beautiful one�
in which every site has one layout to rule them all, made lovingly with a mobile-first

approach. Mmm…tasty. But what happens when a stinky dose of reality sets in? Like

legacy systems, older devices, or customer budget constraints? What if, sometimes,

instead of mixing desktop and mobile support into one lovely soup, you need to keep

’em separated? In this chapter, we look at the nitty-gritty bits of detecting mobile users,

supporting those crufty older phones, and building a separate mobile site.

Creature Comforts has agents in the field 92

How can agents get and share the info they need? 93

Send mobile users to a mobile‑optimized website 96

Sniff out mobile users 97

Getting to know user agents 98

User agents: spawn of Satan? 101

Straight talk: Most major sites have a separate mobile website 104

When what you really want to do is (re‑)direct 105

Take a peek at the script 106

How does the script work? 107

Make a mobile mockup 108

Special delivery…of complicating factors 110

Not all phones are smartphones…not by a sight 113

Let’s keep it basic: Meet XHTML‑MP 114

Why would we want to use that old thing? 115

Keep your nose clean with XHTML‑MP 116

By the way, scrolling sucks 119

One last curveball 119

Access keys in action 123

What went wrong? 124

Fix the errors 125

Mobile‑savvy CSS 127

Hmmm…something is missing 132

The button look is sorely missed! 133

Great success! 134

xiii

table of contents

4 What devices should we support?
deciding whom to support

Definition
of where
to draw
the line

There aren’t enough hours in the day to test on every device.
You have to draw the line somewhere on what you can support. But how do you

decide? What about people using devices you can’t test on—are they left out in the

cold? Or is it possible to build your web pages in a way that will reach people on devices

you’ve never heard of? In this chapter, we’re going to mix a magic concoction of project

requirements and audience usage to help us figure out what devices we support

and what to do about those we don’t.

How do you know where to draw the line? 138

Step away from the keyboard for a second 139

Things you don’t support vs. those you can’t support 140

Ask questions about your project 142

Ingredients for your magic mobile potion 144

Draw from your cupboard of tools and data 145

How do I know my customers have the right stuff ? 150

xiv

table of contents

5 Get with the group
device databases and classes

Setting the bar for the devices we support doesn’t take care
of a few nagging issues. How do we find out enough stuff about our users’

mobile browsers to know if they measure up before we deliver content to them? How do

we avoid only building (lame) content for the lowest common denominator? And how do

we organize all of this stuff so that we don’t lose our minds? In this chapter, we’ll enter

the realm of device capabilities, learn to access them with a device database, and,

finally, discover how to group them into device classes so that we can keep our sanity.

A panic button for freaked‑out students 152

Mobile device data sources to the rescue 154

Meet WURFL 155

WURFL and its capabilities 156

WURFL: Clever API code 159

We can build an explore page, too 160

An explore page: Setting up our environment 161

A quick one‑two punch to improve our explore page 168

Put capabilities to work 170

Use WURFL to help differentiate content 170

Initialize the device and get the info ready 172

Is this thing mobile? 172

Make the page a bit smarter with WURFL 176

The panic button: For phones only 177

Device classes 181

Expanding a lucrative part of AcedIt!’s business 182

Evaluate the home page wearing mobile‑tinted glasses 183

Group requirements into multiple mobile flavors 184

Rounding out our device classes 185

Get acquainted with the matching function 191

What’s going on in that switch statement? 192

Use the matching function to test capabilities 193

Fill in the gaps in the device class tests 200

We need a bigger safety net 211

A stitch in time 212

xv

table of contents

6 The Tartanator
build a mobile web app using a framework

“We want an app!� Just a year or two ago, that hallmark cry generally meant

one thing: native code development and deployment for each platform you wanted

to support. But native isn’t the only game in town. These days, web-based apps for

mobile browsers have some street cred—especially now that hip cat HTML5 and

his sidekicks, CSS3 and JavaScript, are in the house. Let’s dip our toes into the

mobile web app world by taking a mobile framework—code tools designed to help

you get your job done quickly—for a spin!

Hmmm...it’s...nice,
but can you make

it feel more...like a
native app?

HTML5…app…what do these words even mean? 219

How “traditional” websites typically behave 220

How applike websites often behave 221

The master plan for phase 1 of the Tartanator 224

Why use mobile web app frameworks? 225

Our choice for the Tartanator: jQuery Mobile 226

Build a basic page with jQuery Mobile 228

Mark up the rest of the page 229

The HTML5 data‑* attribute 231

Link to multiple pages with jQuery Mobile 234

Take the list from blah to better 241

Drop in the rest of the tartans 243

Filter and organize a list 244

Add a footer toolbar 249

Make the toolbar snazzy 250

Finalize the structure 251

Time to make that tartan‑building form 253

Translate tartan patterns to a form 255

Build an HTML5 form 256

It’s time to add some basic fields 257

Lists within lists let the users add colors 258

Color‑size ingredient pairs: The color select field 259

Color‑size field pairs: The size field 260

Link to the form 262

xvi

table of contents

7 Super mobile web apps
mobile web apps in the real world

The mobile web feels like that gifted kid in the class.
You know, kind of fascinating, capable of amazing things, but also a

mysterious, unpredictable troublemaker. We’ve tried to keep its hyperactive

genius in check by being mindful of constraints and establishing boundaries,

but now it’s time to capitalize on some of the mobile web’s natural talents.

We can use progressive enhancement to spruce up the interface in more

precocious browsers and transform erratic connectivity from a burden to a

feature by crafting a thoughtful offline mode. And we can get at the essence

of mobility by using geolocation. Let’s go make this a super mobile web app!

It looks nice… 268

Mobile apps in the real world 270

Ready, set, enhance! 274

Make a better form 275

A widget to manage the list of colors and sizes 276

A peek under the hood 277

So, that’s the frontend enhancement… 278

…and now for the backend 280

The two sides of generate.php 281

One last thing! 282

Offline is important 284

A basic recipe to create a cache manifest 285

Dev tools to the rescue 286

Serve the manifest as the correct content‑type 287

Victory is (finally) ours 297

How geolocation works 298

How to ask W3C‑compliant browsers where they are 299

Start in on the Find Events page: The baseline 301

Let’s integrate geolocation 303

Nothing found 309

xvii

table of contents

8 Tartan Hunt: Going native
build hybrid mobile apps with PhoneGap

Sometimes you’ve got to go native. It might be because you need

access to something not available in mobile browsers (yet). Or maybe your client simply

must have an app in the App Store. We look forward to that shiny future when we have

access to everything we want in the browser, and mobile web apps share that sparkly

allure native apps enjoy. Until then, we have the option of hybrid development—we

continue writing our code using web standards, and use a library to bridge the gaps

between our code and the device’s native capabilities. Cross-platform native apps

built from web technologies? Not such a bad compromise, eh?

Hybrid App
Bridge

Opportunity knocks again 314

How do hybrid apps work? 317

Bridge the web‑native gap with PhoneGap 318

Get acquainted with PhoneGap Build 321

How will the app work? 322

Keep track of discovered tartans 323

Anatomy of the Tartan Hunt project 324

Download your apps 328

Choose your adventure 329

Who’s seen what? Store found tartans 334

What can localStorage do for us? 335

Check out what a browser supports 339

Use a function to show which tartans are found 340

The toggle and toggleClass methods 341

You found a tartan, eh? Prove it! 344

Rope in PhoneGap to take pictures 345

PhoneGap is almost ready for its close‑up 347

Now we’re ready for the mediaCapture API 348

How will we handle the success? 349

It always looks a bit different in real life 350

It’s just a bit anonymous 351

One last thing! 353

We nailed it! 354

xviii

table of contents

9 Make (some) sense of the chaos
how to be future friendly

Responsive Web Design. Device detection. Mobile web
apps. PhoneGap. Wait�which one should we use�

There are an overwhelming number of ways to develop for the mobile web.

Often, projects will involve multiple techniques used in combination. There

is no single right answer. But don’t worry. The key is to learn to go with the flow.

Embrace the uncertainty. Adopt a future-friendly mindset and ride the wave,

confident that you’re flexible and ready to adapt to whatever the future holds.

Now what? 358

Time to dispel our collective illusions of control 361

A future‑friendly manifesto 362

If you can’t be future proof, be future friendly 364

App today, web page tomorrow 365

It’s a long journey: Here are some guideposts 366

Mix up a batch of mobile goodness 369

Look toward the future 371

www.allitebooks.com

http://www.allitebooks.org

xix

table of contents

#1. Testing on mobile devices 374

#2. Remote debugging 376

#3. Determine which browsers support what 382

#4. Device APIs 384

#5. Application stores and distribution 385

#6. RESS: REsponsive design + Server‑Side components 386

What we need from you 388

Only available locally 389

Windows and Linux: Install and configure XAMPP 390

Get going with XAMPP 391

Mac folks: It’s MAMP time 392

Make sure you dock at the right port 393

Access your web server 394

phpInfo, please! 396

i

ii

The top six things (we didn’t cover)

Gotta start somewhere

leftovers

set up your web server environment

Ever feel like something’s missing� We know what
you mean� Just when you thought you were done, there’s more.

We couldn’t leave you without a few extra details, things we just couldn’t

fit into the rest of the book. At least, not if you want to be able to carry

this book around without a metallic case and caster wheels on the

bottom. So take a peek and see what you (still) might be missing out on.

You can’t spell “mobile web� without the “web.� There are no two

ways about it. You’re going to need a web server if you want to develop for the mobile

web. That goes for more than just completing the exercises in this book. You need

somewhere to put your web-hosted stuff, whether you use a third-party commercial

web hosting service, an enterprise-class data center, or your own computer. In this

appendix, we’ll walk you through the steps of setting up a local web server on your

computer and getting PHP going using free and open source software.

xx

table of contents

Index

Who’s got the brains? 398

And who’s got the brawn? 399

Getting the two to work together 400

A bit of filesystem housekeeping 401

Take note! 402

Let’s download the Android SDK 404

Get the right tools for the job 405

Create a new virtual device 408

Find the right PATH 413

 417

iii

iv

Sniffing out devices

Take care of the environment

install WURFL

install the Android SDK and tools

The first step to solving device detection mysteries
is a bit of legwork. Any decent gumshoe knows we’ve got to

gather our clues and interrogate our witnesses. First, we need to seek

out the brains of the operation: the WURFL PHP API. Then we’ll go track

down the brawn: capability information for thousands of devices in a single

XML data file. But it’ll take a bit of coaxing to get the two to spill the whole

story, so we’ll tweak a bit of configuration and take some careful notes.

To be the master of testing native Android apps, you need
to be environmentally aware. You’ll need to turn your computer into a nice

little ecosystem where you can herd Android apps to and from virtual (emulated) or

real devices. To make you the shepherd of your Android sheep, we’ll show you how to

download the Android software development kit (SDK), how to install some platform

tools, how to create some virtual devices, and how to install and uninstall apps.

you are here 4 xxi

the intro

how to use this book

Intro
I can’t believe they
put that in a mobile

web book!

In this section, we answer the burning question:

“So why DID they put that in a Mobile Web book?”

xxii intro

how to use this book

1

2

3

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card. Or cash. Cash is nice, too. - Ed]

Do you have previous web design and development
experience?

Do you want to learn, understand, remember, and
apply important mobile web concepts so that you can
make your mobile web pages more interactive and
exciting?

Do you prefer stimulating dinner-party conversation
to dry, dull, academic lectures?

1

2

3

Are you completely new to web development?

Are you already developing mobile web apps or sites
and looking for a reference book on mobile web?

Are you afraid to try something different? Would you
rather have a root canal than endure the suggestion
that there might be more than one true way to build for
the Web? Do you believe that a technical book can’t
be serious if there’s a walrus-themed pub and an app
called the Tartanator in it?

It definitely helps if you’ve already got some scripting chops, too. We’re not talking rocket science, but you shouldn’t feel visceral panic if you see a JavaScript snippet.

you are here 4 xxiii

the intro

Great. Only
450 more dull,

dry, boring pages.

We know what you’re thinking

And we know what your brain is thinking

“How can this be a serious mobile web development book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for something

unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things

you encounter? Everything it can to stop them from interfering with the

brain’s real job—recording things that matter. It doesn’t bother saving

the boring things; they never make it past the “this is obviously not

important” filter.

How does your brain know what’s important? Suppose you’re out for

a day hike and a tiger jumps in front of you. What happens inside your

head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger‑free zone.

You’re studying. Getting ready for an exam. Or trying to learn some tough

technical topic your boss thinks will take a week, 10 days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to make

sure that this obviously nonimportant content doesn’t clutter up scarce resources.

Resources that are better spent storing the really big things. Like tigers.

Like the danger of fire. Like how you should never again snowboard

in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank you

very much, but no matter how dull this book is, and how little I’m

registering on the emotional Richter scale right now, I really do want

you to keep this stuff around.”

Your brain thinks THIS is important.

Your brain
 thinks

THIS isn’t worth

saving.

xxiv intro

how to use this book

So what does it take to learn something� First, you have to get it, and then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the latest

research in cognitive science, neurobiology, and educational psychology, learning

takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:
Make it visual. Images are far more memorable than

words alone, and make learning much more effective (up

to 89% improvement in recall

and transfer studies). It

also makes things more

understandable.

Put the words within
or near the graphics they

relate to, rather than on the bottom or on another page, and learners will be up to twice as

likely to solve problems related to the content.

Use a conversational and personalized style. In recent studies, students

performed up to 40% better on post-learning tests if the content spoke directly to

the reader, using a first-person, conversational style rather than taking a formal tone.

Tell stories instead of lecturing. Use casual language. Don’t take yourself too seriously.

Which would you pay more attention to: a stimulating dinner-party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your

neurons, nothing much happens in your head. A reader has to be motivated, engaged, curious,

and inspired to solve problems, draw conclusions, and generate new knowledge. And for that,

you need challenges, exercises, and thought-provoking questions, and activities that involve

both sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the

“I really want to learn this, but I can’t stay awake past page one”

experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical

topic doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember

something is largely dependent on its emotional content. You remember what

you care about. You remember when you feel something. No, we’re not talking

heart-wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the…?” , and the feeling of “I rule!” that comes

when you solve a puzzle, learn something everybody else thinks is hard, or

realize you know something that “I’m more technical than thou” Bob from

Engineering doesn’t.

We think of a “Head First” reader as a learner.

Watch out, mobile web!

Here we come!

you are here 4 xxv

the intro

If you really want to learn, and you want to learn more quickly and more deeply,

pay attention to how you pay attention. Think about how you think. Learn how

you learn.

Most of us did not take courses on metacognition or learning theory when we were

growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn about

mobile web development. And you probably don’t want to spend a lot of time. And

since you’re going to build more sites and apps in the future, you need to remember

what you read. And for that, you’ve got to understand it. To get the most from this

book, or any book or learning experience, take responsibility for your brain. Your

brain on this content.

The trick is to get your brain to see the new material you’re learning as

Really Important. Crucial to your well‑being. As important as a tiger.

Otherwise, you’re in for a constant battle, with your brain doing its best to

keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I
can trick my brain
into remembering

this stuff...

So just how do you get your brain to think that mobile
web development is a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The slow way is about

sheer repetition. You obviously know that you are able to learn and remember even the

dullest of topics if you keep pounding the same thing into your brain. With enough

repetition, your brain says, “This doesn’t feel important to him, but he keeps looking at

the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different

types of brain activity. The things on the previous page are a big part of the solution,

and they’re all things that have been proven to help your brain work in your favor. For

example, studies show that putting words within the pictures they describe (as opposed to

somewhere else in the page, like a caption or in the body text) causes your brain to try to

makes sense of how the words and picture relate, and this causes more neurons to fire.

More neurons firing = more chances for your brain to get that this is something worth

paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they

perceive that they’re in a conversation, since they’re expected to follow along and hold up

their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”

is between you and a book! On the other hand, if the writing style is formal and dry, your

brain perceives it the same way you experience being lectured to while sitting in a roomful

of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

xxvi intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s

concerned, a picture really is worth a thousand words. And when text and pictures work

together, we embedded the text in the pictures because your brain works more effectively

when the text is within the thing the text refers to, as opposed to in a caption or buried in

the text somewhere.

We used redundancy, saying the same thing in different ways and with different media

types, and multiple senses, to increase the chance that the content gets coded into more than

one area of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for

novelty, and we used pictures and ideas with at least some emotional content, because your

brain is tuned to pay attention to the biochemistry of emotions. That which causes you to

feel something is more likely to be remembered, even if that feeling is nothing more than a

little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more

attention when it believes you’re in a conversation than if it thinks you’re passively listening

to a presentation. Your brain does this even when you’re reading.

We included loads of activities, because your brain is tuned to learn and remember

more when you do things than when you read about things. And we made the exercises

challenging‑yet‑doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step‑by‑step procedures,

while someone else wants to understand the big picture first, and someone else just wants

to see an example. But regardless of your own learning preference, everyone benefits from

seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain

you engage, the more likely you are to learn and remember, and the longer you can stay

focused. Since working one side of the brain often means giving the other side a chance to

rest, you can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,

because your brain is tuned to learn more deeply when it’s forced to make evaluations and

judgments.

We included challenges, with exercises, and by asking questions that don’t always have

a straight answer, because your brain is tuned to learn and remember when it has to work

at something. Think about it—you can’t get your body in shape just by watching people at

the gym. But we did our best to make sure that when you’re working hard, it’s on the right

things. That you’re not spending one extra dendrite processing a hard‑to‑understand

example, or parsing difficult, jargon‑laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, you’re a person. And

your brain pays more attention to people than it does to things.

Structured content (HTML)

Presentation (CSS)

Behavior (JavaScript)

you are here 4 xxvii

the intro

So, we did our part. The rest is up to you. These tips are a

starting point; listen to your brain and figure out what works

for you and what doesn’t. Try new things.

1

2

3

4

5 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.

Dehydration (which can happen before you ever

feel thirsty) decreases cognitive function.

Make this the last thing you read before
bed. Or at least the last challenging thing.

6

7

9 Create something!
Apply this to your daily work; use what you are

learning to make decisions on your projects. Just

do something to get some experience beyond the

exercises and activities in this book. All you need

is a pencil and a problem to solve…a problem that

might benefit from using the tools and techniques

you’re studying for the exam.

Listen to your brain.

8 Feel something!
Your brain needs to know that this matters. Get

involved with the stories. Make up your own

captions for the photos. Groaning over a bad joke

is still better than feeling nothing at all.

Pay attention to whether your brain is getting

overloaded. If you find yourself starting to skim

the surface or forget what you just read, it’s time

for a break. Once you go past a certain point, you

won’t learn faster by trying to shove more in, and

you might even hurt the process.

Talk about it. Out loud.
Speaking activates a different part of the brain.

If you’re trying to understand something, or

increase your chance of remembering it later, say

it out loud. Better still, try to explain it out loud

to someone else. You’ll learn more quickly, and

you might uncover ideas you hadn’t known were

there when you were reading about it.

Part of the learning (especially the transfer to

long‑term memory) happens after you put the

book down. Your brain needs time on its own, to

do more processing. If you put in something new

during that processing time, some of what you

just learned will be lost.

Read “There Are No Dumb Questions.”
That means all of them. They’re not optional

sidebars—they’re part of the core content!

Don’t skip them.

Do the exercises. Write your own notes.
We put them in, but if we did them for you,

that would be like having someone else do

your workouts for you. And don’t just look at

the exercises. Use a pencil. There’s plenty of

evidence that physical activity while learning

can increase the learning.

Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the

book asks you a question, don’t just skip to the

answer. Imagine that someone really is asking

the question. The more deeply you force your

brain to think, the better chance you have of

learning and remembering.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

xxviii intro

how to use this book

Read me
This is a learning experience, not a reference book. We deliberately stripped out everything

that might get in the way of learning whatever it is we’re working on at that point in the

book. And the first time through, you need to begin at the beginning, because the book

makes assumptions about what you’ve already seen and learned.

We expect you to know HTML and CSS.
If you don’t know HTML and CSS, pick up a copy of Head First HTML with CSS &

XHTML before starting this book. We’ll explain some of the more obscure CSS selectors or

HTML elements, but don’t expect to learn about that foundational stuff here.

We expect you to feel comfy around web scripting code.
We’re not asking you to be a world‑class JavaScript expert or to have done a graduate

computer science project using PHP, but you’ll see examples using both languages

throughout the book. If the merest notion of a for loop makes you hyperventilate (or if

you have no idea what we’re talking about), you might consider tracking down a copy of

Head First PHP & MySQL or Head First JavaScript and then heading on back here.

We expect you to know how to track things down.
We’ll be blunt. The mobile web is an enormous topic, and mastering it involves expanding

your existing web development skills. There are too many things to know about the Web for

any one person to memorize, whether it’s a detail of JavaScript syntax or the specifics of a

browser’s support for an HTML5 element attribute. Don’t be too hard on yourself. Part of

the toolset of a good web dev is keeping your Google chops sharp and knowing when and

how to hit the Web to look up info about web topics. We bet you’re good at that already.

We expect you to go beyond this book.
It’s a big and beautiful mobile web world out there. We hope we can give you a shove to

start you on your journey, but it’s up to you to keep up your steam. Seek out the active

mobile web community online, read blogs, join mailing lists that are up your alley, and

attend related technical events in your area.

The activities are NOT optional.
The exercises and activities are not add‑ons; they’re part of the core content of the

book. Some of them are to help with memory, some are for understanding, and some

will help you apply what you’ve learned. Don’t skip the exercises. They’re good for

giving your brain a chance to think about the ideas and terms you’ve been learning in a

different context.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we

want you to finish the book remembering what you’ve learned. Most reference books don’t

have retention and recall as a goal, but this book is about learning, so you’ll see some of the

same concepts come up more than once.

www.allitebooks.com

http://www.allitebooks.org

you are here 4 xxix

the intro

The Brain Power exercises don’t have answers.
For some of them, there is no right answer, and for others, part of the learning

experience of the exercise is for you to decide if and when your answers are right. In

some of the Brain Power exercises, you will find hints to point you in the right direction.

Software requirements
As for developing any website, you need a text editor, a browser, a web server (it can be

locally hosted on your personal computer), and the source code for the chapter examples.

The text editors we recommend for Windows are PSPad, TextPad, or EditPlus (but

you can use Notepad if you have to). The text editors we recommend for Mac are

TextWrangler (or its big brother, BBEdit) or TextMate. We also like Coda, a more

web‑focused tool.

If you’re on a Linux system, you’ve got plenty of text editors built in, and we trust you

don’t need us to tell you about them.

If you are going to do web development, you need a web server. You’ll need to go to

Appendix ii, which details installing a web server with PHP. We recommend doing that

now. No, seriously, head there now, follow the instructions, and come back to this page

when you’re done.

For Chapter 5, you’ll need to install the WURFL (Wireless Universal Resource FiLe) API

and data. And for Chapter 8, you’ll need the Android SDK and some related tools. You

guessed it: there are appendixes for those tasks, too.

You’ll also need a browser—no, strike that—as many browsers as

possible for testing. And the more mobile devices with browsers you

have on hand, the better (don’t panic; there are many emulators you can use

if you don’t have hardware).

For developing and testing on the desktop, we highly recommend Google’s

Chrome browser, which has versions for Mac, Windows, and Linux.

Learning how to use the JavaScript console in Google’s Chrome Dev Tools

is well worth the time. This is homework you need to do on your own.

Last of all, you’ll need to get the code and resources for the examples in the

chapters. It’s all available at http://hf-mw.com.

The hf-mw.com site has the starting
point of code for all the chapters.
Head on over there and get downloading.

The code and
resources for the
examples in the
chapters are all

available at
http://hf-mw.com.

xxx intro

The technical review team

the review team

Stephen Hay

Bryan Rieger

Andrea Trasatti

Trevor Farlow is an amateur baker, recreational soccer player,

and part‑time animal shelter volunteer. When he’s not walking

dogs, scoring goals, or perfecting his New York–style cheesecake,

he can be found learning the art of product ownership in a lean,

mean, agile development team at Clearwater Analytics, LLC.

Brad Frost is a mobile web strategist and frontend developer

at R/GA in New York City, where he works with large brands

on mobile‑related projects. He runs a resource site called Mobile

Web Best Practices (http://mobilewebbestpractices.com) aimed at

helping people create great mobile web experiences.

Stephen Hay has been building websites for more than 16

years. Aside from his client work, which focuses increasingly on

multiplatform design and development, he speaks at industry

events and has written for publications such as A List Apart and

.net Magazine. He also co‑organizes Mobilism, a highly respected

mobile web design and development conference.

Ethan Marcotte is an independent designer/developer who

is passionate about beautiful design, elegant code, and the

intersection of the two. Over the years, his clientele has included

New York Magazine, the Sundance Film Festival, the Boston Globe,

and the W3C. Ethan coined the term Responsive Web Design to

describe a new way of designing for the ever‑changing Web and,

if given the chance, will natter on excitedly about it—he even

went so far as to write a book on the topic.

Bryan Rieger is a designer and reluctant developer with a

background in theatre design and classical animation. Bryan has

worked across various media including print, broadcast, web,

and mobile; and with clients such as Apple, Microsoft, Nokia,

and the Symbian Foundation. A passionate storyteller and

incessant tinkerer, Bryan can be found crafting a diverse range

of experiences at Yiibu—a wee design consultancy based in

Edinburgh, Scotland.

Stephanie Rieger is a designer, writer, and closet

anthropologist with a passion for the many ways people interact

with technology. Stephanie has been designing for mobile since

2004 and now focuses primarily on web strategy, frontend

design, and optimization for multiple screens and capabilities. A

compulsive tester and researcher, Stephanie is always keen to

discover and share insights on mobile usage, user behavior, and

mobility trends from around the world.

Andrea Trasatti started creating WAP content in 1999 on the

Nokia 7110, which in Europe was considered groundbreaking at

the time. Andrea has led both WURFL and DeviceAtlas from

their earliest days to success, and during those years built vast

experience in device detection and content adaptation. You can

find Andrea on Twitter as @AndreaTrasatti, regularly talking

about mobile web and new trends in creating and managing

content for mobile.

Brad Frost

Stephanie Rieger

Ethan Marcotte

Trevor Farlow

you are here 4 xxxi

the intro

Acknowledgments

Courtney Nash

Lou Barr

The O’Reilly team:

Thanks to Lou Barr for her unfathomably speedy and masterful design and layout magic.

We’re seriously blown away here. Thank you. Our gratitude goes to Karen Shaner and

Rachel Monaghan for all the help juggling drafts, reviewers, and details!

Thanks to the rest of the O’Reilly folks who made us feel so welcomed: Mike Hendrickson,

for suggesting this crazy idea in the first place; Brady Forrest, for introducing and

championing us; Tim O’Reilly, for being the genuine, smart, and nice guy that he is; and

Sara Winge, for her graciousness and overall awesomeness.

Lyza’s friends and family:

Thanks to Bryan Christopher Fox (Other Dev), without whose coding chops, insight, support, and

all‑around supergenius this book would not have been possible.

Huge shout‑outs to my friends and family, who still seem to put up with me despite my long‑term

disappearance into Book Land. Thanks to Autumn and Amye, who showed stunning tenacity in the

face of my constant unavailability. Thanks, Mike, always. And thanks to Dad, who always shows me

how to find aesthetic and new adventure. Finally, thanks to Huw and Bethan of Plas‑yn‑Iâl, Llandegla,

Wales, a fantastic, sheep‑happy place where about a quarter of this book was written.

Our editor:

Thanks (and congratulations!) to Courtney Nash, who pushed us to create

the best book we possibly could. She endured a huge raft of emails, questions,

ramblings, and occasional crankiness. She stuck with us throughout this book

and trusted us to trust our guts. And thanks to Brian Sawyer for stepping

up at the end and taking us over the finish line.

Jason’s friends and family:

Thank you to my family for all of their support. Our parents, Jan, Carol, Mark, and Doanne, were

a tremendous help in keeping our sanity as we juggled book writing, family, and moving.

Special thanks to my wife, Dana Grigsby, for making it possible for me to work on a book while we

raised a baby and a preschooler and moved into a new house. I couldn’t have done it without you.

Our thanks:

Jason and Lyza work with the smartest people ever at Cloud Four. Our epic thanks to

fellow cofounders Aileen Jeffries and John Keith, and the rest of the Cloud Four team:

Matt Gifford, Chris Higgins, and Megan Notarte. This book is really a product of our

collective mobile web obsession, and they, more than anyone, championed and endured this

effort. Thanks a billion million zillion, you guys.

We’d also like to thank the mobile web community. In particular, we’d like to thank Josh Clark,

Gail Rahn Frederick, Scott Jehl, Scott Jenson, Dave Johnson, Tim Kadlec, Jeremy Keith, Peter‑

Paul Koch, Bryan LeRoux, James Pearce, Steve Souders, and Luke Wroblewski. We’re proud

and thankful to be part of this community.

xxxii intro

how to use this book

Safari® Books Online
Safari® Books Online is an on‑demand digital library that lets you easily

search over 7,500 technology and creative reference books and videos to

find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.

Read books on your cell phone and mobile devices. Access new titles before they are available

for print, and get exclusive access to manuscripts in development and post feedback for the

authors. Copy and paste code samples, organize your favorites, download chapters, bookmark

key sections, create notes, print out pages, and benefit from tons of other time‑saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital

access to this book and others on similar topics from O’Reilly and other publishers, sign up for

free at http://my.safaribooksonline.com.

this is a new chapter 1

getting started on the mobile web1

Responsive Web Design

Hey there! Are you ready to jump into mobile�
Mobile web development is a wildly exciting way of life. There’s glamour and

excitement, and plenty of Eureka! moments. But there is also mystery and confusion.

Mobile technology is evolving at bewildering speed, and there’s so much to know!

Hang tight. We’ll start our journey by showing you a way of making websites called

Responsive Web Design (RWD). You’ll be able to adapt websites to look great on a

whole lot of mobile devices by building on the web skills you already have.

Dashing, exciting, fascinating,
and oh-so-popular...but am I
ready to take the plunge?

2 Chapter 1

it’s a mobile world

Get on the mobile bandwagon
There’s a pretty good chance you own a mobile phone. We know that not

simply because you bought this book (smart move, by the way!), but because

it’s hard to find someone who doesn’t own a mobile phone.

It doesn’t matter where you go in the world. Mobile phones are being used

everywhere, from farmers in Nigeria using their mobiles to find which

market has the best price for their crops, to half of Japan’s top 10 best‑selling

novels being consumed and written—yes, written—on mobile phones.

At the beginning of 2011, there were 5.2 billion phones being used by the

6.9 billion people on Earth. More people use mobile phones than

have working toilets or toothbrushes.

The time is now
So yeah, mobile is huge, but it’s been big for years. Why should you get on

the mobile bandwagon now?

Because the iPhone changed everything. It sounds clichéd, but it is true.

There were app stores, touchscreens, and web browsers on phones before the

iPhone, but Apple was the first to put them together in a way that made it

easy for people to understand and use.
Are you ready to get on
the mobile bandwagon?

you are here 4 3

getting started

The iPhone is fantastic, but people use a lot of
different phones for a lot of different reasons.
And the most popular phones are likely to change.
We have no way of knowing what the the leading phones will be

when you read this book. Three years ago, Android was a mere

blip on the radar. In 2011, it is a leading smartphone platform

worldwide.

Mobile technology changes quickly, but there are a few things we

feel confident about:

Everyone has iPhones. And
if they don’t, are they really
going to browse the Web?

Every new phone has a web browser in it.
You can probably find a new phone that doesn’t have a web

browser in it, but you have to look pretty hard. Even the most

basic phones now come with decent browsers. Everyone wants the

Web on their phone.

1

Mobile web usage will exceed desktop web usage.
Soon the number of people accessing the Web via mobile phones

will surpass those who use a computer. Already, many people say

they use their phones more frequently than their PCs.

2

The Web is the only true cross-platform technology.
iPhone, Android, BlackBerry, Windows Phone, WebOS, Symbian,

Bada—there are more phone platforms than we can keep track of.

Each one has its own specific programming hooks, meaning that if

you want to write software for each, you have to start from scratch

each time.

Mobile web has its own challenges, but there is
no other technology that allows you to create
content and apps that reach every platform.

3

So you’re in the right spot at the right time. Mobile web is taking off,

and you’re ready to ride the rocketship. Let’s get started!

4 Chapter 1

meet the splendid walrus

Something odd happened on the
way to the pub
Mike is the proprietor of The Splendid Walrus, a pub with a

clever name and a cult‑like following of local beer enthusiasts.

Mike always has unusual beers on tap and highlights several

of them on his website.

Before he realized his lifelong dream of pub ownership, Mike

was a web developer. So he had no trouble putting together a

respectable website for The Splendid Walrus himself.

The Splendid Walrus
website is pretty

sweet—I used to do this
for a living, after all.

http://www.splendidwalrus.com

you are here 4 5

getting started

If mobile phone web browsers are so great…
Mike built the Splendid Walrus website several years ago, when

mobile browsing was still rudimentary and uncommon. It was made

for—and tested in—desktop browsers like Firefox, Internet Explorer,

and Safari.

Lots of newer mobile browers have good reputations. They’re

increasingly sophisticated and powerful, and starting to feel like some

of their desktop counterparts.

…shouldn’t this just work?
Mike had a rude awakening when he looked at the Splendid Walrus

site on his iPhone 4. It didn’t look so hot on a friend’s Android

device, either.

Here’s how the Splendid Walrus
site looks on an iPhone 4… …and here’s how the site

looks on a Motorola
Backflip Android phone.

6 Chapter 1

the brave new world of mobile web design

There are 86 billion different mobile web browsers.
OK, not quite that many. But when you’re developing for the

mobile web, sometimes it feels this way. Unlike the handful

of leading desktop browsers, there are hundreds of different

mobile browsers. Yikes.

1

Mobile devices are smaller and slower.
Yeah, we know. Newer mobile devices are state‑of‑the‑art

pocket computers. But they still pale in comparison to desktop

(or laptop) computers in terms of processing power. Mobile

networks can be flaky and downright poky, and data transfer is

not necessarily free or unlimited. This means we’ll need to think

about putting our sweet but enormous, media‑rich, complex

sites on a performance‑savvy diet.

3

Support for web technologies varies wildly.
On older mobile browsers (or even recent ones on less powerful

devices), you can pretty much forget about reliable CSS or

JavaScript. Even the newest browsers lack support for some

things, support them in bewilderingly different ways, or have

weird bugs. It’s the Wild West out here, folks!

2

Mobile interfaces require us to rethink our sites.
Just because a mobile browser can render a desktop website

with few hiccups doesn’t mean it necessarily should. Screens are

smaller; interactions and expectations are different.

People with mobile devices use all sorts of input devices: fingers,

stylus pens, the little nubbins they have on BlackBerry devices.

Typing and filling out forms can be tedious at best. Squinting

at type designed to fit a desktop browser window can give your

users headaches and fury. You get the idea.

4

What’s so different about the mobile web?

And just when you
think you’re on top
of all of them, a
new one will pop up
in, like, Thailand.

My iPhone has the Safari web
browser on it. My site looks great
in desktop Safari, so why does it

look all messed up on my phone?

www.allitebooks.com

http://www.allitebooks.org

you are here 4 7

getting started

Here’s how Mike’s iPhone 4 renders the Splendid Walrus website. It doesn’t look so
great. Can you spot the problem areas? Mark any problems you see.

1

3

2

4

8 Chapter 1

exercise solution

Did you spot some of these problem areas?

1

2

3

4

The navigation links
are all tiny and too
small to read or click.

1

The three-column
layout feels tight on
this screen resolution,
and the text is hard
to read.

3

The embedded
YouTube video
doesn’t work.

2

There is a weird gap
on the right edge
of the screen.

4

This is confusing and embarrassing.
I want my customers with mobile
devices to see a nice site. I’m out
of my depth here. Can you help?

you are here 4 9

getting started

Frank: Hold on a minute. We know that Mike makes a big

deal out of using clean, semantic HTML markup and uses

CSS to control layout and styling as much as possible.

Jim: And? That’s great and professional, but how does it

help us make this better?

Frank: Well, let’s think about this a bit. When I look at the

CSS he’s using for the Splendid Walrus site, I see a lot of

widths and sizes defined to fit within a 960‑pixel box. It looks

like he’s designed the site on a 960‑pixel grid, with three

main columns.

Jim: …and most mobile devices have resolutions

considerably less than 960 pixels. Also, three columns seems

like a lot for a smaller screen.

Frank: So…I have to wonder…what if we could use different

CSS for mobile devices? Say, maybe, CSS designed to lay out in

320 pixels, which is the width of a lot of smartphone screens?

And maybe reduce the number of columns?

Jim: Nice idea, Frank. But I don’t see how we could do that

without a lot of server‑side programming. I mean, how do we

get mobile devices to use completely different CSS?

Frank: You know how Jill just got back from the Awesome

Cool Mobile Web Camp conference and is all excited about

that thing called Responsive Web Design?

Jim: How could I forget? It’s all she’s been talking about.

Frank: Well, she says it’s getting a lot of attention from

web developers and it sounds like it involves, at least in

part, applying different CSS for different situations, without

having to do heavy‑duty programming. Apparently it’s

especially useful for developing mobile websites. I can’t really

remember the details, but maybe we should check it out.

Jim Frank

Ugh! What a mess! We’re totally
going to have to start from scratch...

10 Chapter 1

responsive web design

Responsive Web Design (RWD) is a set of techniques

championed by web designer Ethan Marcotte. Sites designed

with this approach adapt their layouts according to the

environment of the user’s browser, in large part by doing some

nifty things with CSS.

Depending on the current value of certain browser conditions

like window size, device orientation, or aspect ratio, we can

apply different CSS in different circumstances. By rethinking the

way we do page layouts, we can make formerly one‑size‑fits‑all

column and grid layouts flow more naturally across a continuum

of browser window sizes.

Responsive Web Design

Read Ethan’s original article
for

A List Apart about RWD at

http://bit.ly/nRePnj.

RWD is one of the simplest
and quickest ways to make
a website work handsomely
on a lot of devices—and you
can use the web skills you
already have.

CSS3 media queries
Evaluating certain aspects of the current browser

environment to determine which CSS to apply.

1

Fluid-grid layouts
Using relative CSS proportions instead of absolute

sizes for page layout elements.

2

Fluid images and media
Making our images and media scale to fit within

the size constraints of their containers by using

some CSS tricks.

3

The recipe for Responsive Web Design
There are three primary techniques for building a

responsively designed website:

We can apply different CSS rules
based on things like browser window width, aspect ratio, and orientation.

RWD uses percentages instead
of pixels as units for columns
and other layout elements.

Fluid images and media keep within the
bounds of their parent elements, scaling
proportionally with the rest of the layout.

you are here 4 11

getting started

styles.css

index.html

CSS media queries
determine which of
the CSS to apply to
which environments.

We deliver the same
HTML and CSS to all
devices and browsers.

A multicolumn, big
layout when there’s
plenty of room

Somewhat
simpler layout
as the window
width decreases

Streamlined,
single-column layout
for narrower displays.

An example of a responsively designed site

This is just one example of
a responsive design approach.

12 Chapter 1

selective css

Different CSS in different places
If you’ve been doing web development for some time (and are

CSS‑savvy), you might be friends with CSS media types already.

We can use @media rules to apply CSS selectively.

CSS media type declarations inside of a CSS file look like this:

@media screen { /* CSS Rules for screens! */ }

Another way to use media types to apply CSS selectively is from

within a <link> in your HTML document.

The rules between the
braces will only apply when
the content is rendered on
a screen.

“screen” is a media type.

<link rel="stylesheet" type="text/css" href="print.css" media="print" />

“print” is another media type.

You have certain features—your age, your height—and so do media

types. And just like The Splendid Walrus might want to establish a rule

that requires the minimum age of patrons to be 21 before they apply

alcohol, we might want to define certain CSS that we only apply to

browser window widths within a certain range.

We’re in luck! width, along with color and orientation, is one

of the media features defined in CSS3 for all common media types.

So, again, media types have media features.

Media features on their own don’t get us very far. We need a way to ask

the browser about the states of the ones we care about and, well, do

something about it. That’s where CSS3 media queries come in.

Media types, meet media features

Referencing the print media type like this is a common approach to

creating print stylesheets—that is, CSS styles that only get applied when

the content is printed.

The rules in this external stylesheet will only be applied if
the content is rendered on a print device (that is, a printer).

screen width

aspect-ratio

orientation“screen” is a useful
media type.

A few of the “screen”
media type’s media features.

P.S. There are more. But these
are the most useful to us.

height

Media Types
Up Close

Common (and useful) media types

include screen, print, and all.

There are other, less common media

types like aural, braille, and tv.

Curious? If you’re the kind of

person who reads technical specs for

fun or to satisfy curiosity, you can

see all of the media types defined

in CSS2 on the W3C’s site at

www.w3.org/TR/CSS2/media.html.

you are here 4 13

getting started

CSS3 media queries are
logical expressions that
evaluate the current
values of media features
in the user’s browser.
If the media query
expression evaluates as
TRUE, the contained
CSS is applied.

@media screen and (min-width:480px) { /* CSS Rules */ }

“screen” media type, we meet again!

“min-” is a media query prefix. Rather
intuitively, it means we want to query
about a minimum width.

“width” is a media feature
we want to evaluate on the
“screen” media type.

CSS media queries

This means: are we presently rendering content on a screen,

AND is the window currently at least 480 pixels wide?

Yes? OK! Apply these CSS rules.

Another example:

Unsurprisingly, there is
also a “max-” prefix.

@media all and (orientation: landscape) {}

Translating CSS media queries: You try it! Match the media query and its meaning.

@media print and (monochrome) {}

@media screen and (color) { }

<link rel="stylesheet" type="text/css"
href="my.css" media="screen and (color)" />

Apply these styles to all
media types when in
landscape orientation.

Apply these styles to
black‑and‑white printers.
Apply these rules to
color screens.

Apply the rules in this external
stylesheet to color screens.

@media print, screen and (monochrome) { }

Logical “or” is represented by a
comma. Yep, it’s a bit confusing.

“monochrome” is a media feature
of the “screen” media type. It
is either TRUE or FALSE.

Is this being rendered on a printer OR is it being rendered

on a screen that is monochrome (black and white)?

Yes? Use these styles!

These CSS rules will only get applied if the media query evaluates to TRUE.

14 Chapter 1

@media all and (orientation: landscape) {}

@media print and (monochrome) {}

@media screen and (color) { }

<link rel="stylesheet" type="text/css"
href="my.css" media="screen and (color)" />

how different?

Were you able to decipher the media queries?

Apply these styles to all
media types when in
landscape orientation.

Apply these styles to
black‑and‑white printers.
Apply these rules to
color screens.

Apply the rules in this external
stylesheet to color screens.

OK. Now I can understand media
queries and maybe even write my own.

But what am I doing here? How do I write
the CSS for mobile devices?

We’ll only write
different CSS
for those layout
elements that need to be different
for mobile.

CSS: How different is different?
We have a tool that lets us apply different CSS to different

situations. But now what?

Don’t panic. We do need to write some mobile‑friendly CSS, but

we’re not going to have to start from scratch. Nor are we going to

have to have totally different CSS for our mobile devices—we can

share a lot of what’s already there.

To generate our mobile-friendly layout, we’ll:
Check out the current layout of splendidwalrus.com and

analyze its structure.

Identify layout pieces that need to change to work better on

mobile browsers.

Generate mobile‑adapted CSS for those identified elements.

Organize our CSS and selectively apply the mobile and

desktop CSS using media queries.

Media type of “all,” you ask? Yep. This is what
we use if we want to look at the same media
feature across all media types

you are here 4 15

getting started

<div class="navigation">...</div>

<div class="header">...</div>

<h1>...</h1>

<div id="visit" class="column">...</div>

<div id="points" class="column">...</div>

<div id="main" class="column">...</div>

<div class="footer">...</div>

div.navigation

div.header

<h1>

div#visit

div#main

div#points

div.footer

The current structure of the Splendid Walrus site
Take a peek at the index.html file for the Splendid Walrus site in the chapter1

directory. If you use your imagination and strip out the content, you can

see a basic HTML page structure like this:

The current, desktop‑oriented CSS lays out the page like this:

The three main
content columns Putting the righthand

column before the center
column in the markup is
an old trick of the web
design trade: it makes it
easier to handle layouts
using CSS floats.

Let’s go look at the CSS that
defines the layout and figure out
what needs to change to adapt it
to be mobile-sized.

16 Chapter 1

now showing css analysis

/* Structure */
body, .header, .navigation, .footer {
 width: 960px;
}

.header, .navigation, .footer {
 clear: both;
}

.column {
 margin: 10px 10px 0 0;
}

.navigation {
 min-height: 25px;
}

.navigation ul li {
 width: 320px; /* 960/3 */
}

.header {
 background:url(images/w.png) no-repeat;
 height: 200px;
}

#visit {
 width: 240px;
 float: left;
}

#points {
 width: 240px;
 float: right;
}

#main {
 margin: 10px 260px 0 250px;
 width: 460px;
}

Open the styles.css file for the

Splendid Walrus site.

There’s a bunch of CSS at the top

of the file, but we don’t have to

worry about that. We can share

the same colors, typography, and

styling across both desktop and

mobile variants.

What we care about is the

structural CSS, near the

bottom of the file.

The body is 960 pixels wide. The header, footer, and navigation elements span the full width.

Because these elements
span the full width, make
sure nothing is floating
next to them.

Each column (visit, right, and
points) has a 10px margin at
top and a 10px margin at
right (a.k.a. a “gutter”).

The navigation links are in a .
Lay it out horizontally and
make each span 1/3 of the
page width.

Each gets 1/3 of
the page width because there are three links.

The header has a background image, so it needs to be 200px high to show all of the image.

The left and right
columns are each 240
pixels wide and float.

The main column uses
margins to position
itself—it doesn’t float.

clear:both just ensures
that these elements
start on a new “line”—
that is, that nothing
is next to them.

It seems like the main
column should be 480 pixels
wide (960 minus the two
240-pixel left and right
columns). But it’s 460 pixels
wide to account for the two
10-pixel gutters between
the columns.

Analyze the current CSS We’re only interested in the structural
part of the CSS file.

Its left margin of 260px
and right margin of 250px
position it in the window.

www.allitebooks.com

http://www.allitebooks.org

you are here 4 17

getting started

 We’re not going to have to

rewrite all of the CSS.

We just need to adapt some of

the structural layout elements.

The rest—typography, colors, and whatnot—can

stay basically unchanged.

div.navigation
div.header

div.header

<h1>

<h1>

div#visit

div#visit

div#main

div#main

div#points

div#points

div.footer

div.footer

What needs to change?

Reduce three columns to a single column.
In the original, desktop layout, three columns felt

“crunched” on a mobile screen.

2

Make the page and its structural elements
fit within 320 pixels.
As Frank mentioned on page 9, 320 pixels is a

common screen resolution for mobile devices.

1

For mobile, we need to go from this…

…to this

div.navigation
960 pixels

320 pixels

A single-column layout
sized for a 320-pixel
browser width

A three-column layout designed
to fit in 960 pixels

18 Chapter 1

mobile css adaptations

Identify the CSS that needs to change

We need to change the width
of the page and the header,
navigation, and footer elements.

We need to adapt the
navigation link widths to
fit the smaller screen.

We need to remove the
floats and change the
width of the visit and
points columns.

The highlighted code will need to be

adapted for our mobile version.

We don’t need this rule in
our mobile version (but it
doesn’t hurt anything).

This is actually fine: we
want the navigation links
to be at least this tall.

styles.css

Because nothing is floated

in our mobile layout, clears

aren’t necessary.

/* Structure */
body, .header, .navigation, .footer {
 width: 960px;
}

.header, .navigation, .footer {
 clear: both;
}

.column {
 margin: 10px 10px 0 0;
}

.navigation {
 min-height: 25px;
}

.navigation ul li {
 width: 320px; /* 960/3 */
}

.header {
 background:url(images/w.png) no-repeat;
 height: 200px;
}

#visit {
 width: 240px;
 float: left;
}

#points {
 width: 240px;
 float: right;
}

#main {
 margin: 10px 260px 0 250px;
 width: 460px;
}

The “columns” on the mobile
layout will lay out vertically, not

horizontally. Let’s add some space

between columns (vertically) but

get rid of the gutter.

We don’t need the margins for
positioning anymore (#main
will span the full width), and
we need to change the width.

We’ll use the same background
image for the header, so this
can stay the same.

It might seem like we would need
to adjust the 200px height here,
but we don’t because we’ll use the
same image.

you are here 4 19

getting started

body, .header, .footer, .navigation {

}

.column {

 border-bottom: 1px dashed #7b96bc;

}

.navigation ul li {

}

#visit, #points, #main {

}

width: 320px; width: 106.6667px;

width:320px;

Get rid of the CSS rules we don’t need.2

Change the width of the highlighted CSS rules.1

Factor out the common CSS rules.3

Steps to creating the mobile-specific CSS

margin: 10px 0;

This border is to add some

visual separation to the
columns (now vertical) as

they lay out on the page.

We’ll do this in just a minute.

Mobile CSS Magnets
Use the magnets to build the mobile-specific CSS.

20 Chapter 1

mobile css in four rules

Ta-da! Mobile-specific CSS

Wait a minute. Some of
the CSS rules disappeared.
Where’d they go?

They didn’t disappear…
…they just don’t need to be contained inside our

mobile‑specific CSS. Why? Because the CSS

rules in question are going to be the same for

both layouts (desktop and mobile).

We’ll put the shared CSS outside the media

queries so that we don’t have to have the same

CSS rules in two places. Let’s do that now.

And we’re done! These four CSS rules are all the

mobile‑specific layout we’ll need. Now we need to be

sure they’ll get used by mobile devices.

And how will we do that? Our old friend Mr. Media

Query to the rescue! We’ll generate a media query

shortly to apply this CSS to devices with a browser

window of 480 pixels wide or narrower.

Why 480 pixels? That’s
the resolution for the
“long side”(a.k.a. “landscape
orientation”) of many
popular smartphones.

body, .header, .footer, .navigation {

}

.column {

 border-bottom: 1px dashed #7b96bc;

}

.navigation ul li {

}

#visit, #points, #main {

}

Mobile CSS Magnets Solution

width: 320px;

width: 106.6667px;

width:320px;

margin: 10px 0;

you are here 4 21

getting started

.header, .footer, .navigation {
 clear: both;
}

.header {
 background:url(images/w.png) no-repeat;
 height: 200px;
}

.navigation {
 min-height: 25px;
}

The rest of our structural CSS

Our desktop structural CSS
We still need to have good CSS for desktop browsers!

After we remove the common structural CSS

rules, here’s what we end up with for the

desktop-specific CSS structure.

We’ll need to use a media query so that only

viewports 481 pixels and wider apply this CSS.

Check out the current layout of

splendidwalrus.com and analyze its structure.

Identify layout pieces that need to change

to work better on mobile browsers.

Generate mobile‑adapted CSS for those

identified elements.

Organize our CSS and selectively

apply the mobile and desktop CSS

using media queries.

What’s next?
Let’s check in on our to‑do list for creating

structural CSS that works for both desktop

and mobile browsers:

Shared structural CSS
See? Told you! None of the CSS actually

disappeared. Here’s the shared structural

CSS that we identified on page 18, factored

out and ready to go.

body, .header, .footer, .navigation {
 width: 960px;
}

.column {
 margin: 10px 10px 0 0;
}
.navigation ul li {
 width: 320px; /* 960/3 */
}

#visit {
 width: 240px;
 float: left;
}

#points {
 width: 240px;
 float: right;
}

#main {
 margin: 10px 260px 0 250px;
}

22 Chapter 1

one last thing…

Color, typography, and basic layout

Common structural CSS (page 21)

Put it together

chapter1

index.html

styles.css

point.png

sample.jpg

images

}

@media screen and (max-width:480px) {

}

@media screen and (min-width:481px) {

You’re going to need a viewport <meta> tag in the index.html file. These tags help

tell the browser how “zoomed in” to render the content. We’ll be taking a look at these

guys a bit later on, but for now, just take our word for it: you’ll want one of these.

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<meta name="viewport" content="width=device-width, initial-scale=1" />

<title>The Splendid Walrus: Public House and Spirits</title>

One last thing…

Here’s how we’ll put together the updated version of styles.css.

w.png
styles.css

index.html

We didn’t make
any changes to this
part of the CSS.

Desktop structural CSS (page 21)

Mobile structural CSS (page 20)

you are here 4 23

getting started

Test Drive
Once you’ve made these changes, load the index.html file in

your desktop browser and resize the window to less than 481

pixels wide to see the mobile‑friendly layout. Watch out, mobile web!
Here we come!

The page still looks the same
in desktop browsers…

…until the browser window
width is less than 481
pixels. Then you can see the
mobile-optimized layout!

Edit the index.html file.
Drop in the viewport <meta> tag from page 22.

1

Open the styles.css file.
You’ll be replacing the structural CSS rules near the bottom

of the file. Remove the existing rules for structural elements.

2

Add the common rules.
Add the shared structural CSS rules from page 21.

3

Add the desktop- and mobile-specific CSS.
Add the desktop rules (page 21) and mobile rules (page 20).

4

Wrap the desktop- and mobile-specific CSS in media queries.
Add the media queries (page 22).

5

Do this!

24 Chapter 1

neat proportions

Frank: This is really frustrating. I thought the mobile CSS we created would fix this.

Jill: Your CSS makes the layout fit on a smaller screen, but it’s still pretty rigid. I

mean, look what happens if I put my iPhone in landscape orientation.

Frank: Ugh. The layout is still 320 pixels wide…but on a 480‑pixel screen. Am I

going to have to write different CSS for every single different possible viewport size?!

Jill: See, this is where Responsive Web Design practices could help us. Right

now, you’re delivering a rigidly sized structure to all browsers whose current

window is 480 pixels wide or smaller, no matter what the actual specific browser

window width is. That’s not very flexible. I mean, not all mobile devices have a

320‑pixel‑wide browser window.

Responsive design helps us adapt our layout to different situations. Instead of

dictating the exact size of elements—that is, using pixel‑based measurements in our

structural CSS like we are now—we can use a proportional layout, which adapts

much better for different users.

Frank: Proportional? Is that like ems and percentages and stuff in CSS?

Jill: Yeah, sort of. We can use percentages instead of pixels when we code up our

layout. That way, content stretches and shrinks to fill available space—kind of like

water filling in gaps. That’s why this kind of layout is often called a fluid layout.

And, by the way, this will help us fix that wayward image as well.

Frank: So, all of that work with media queries was wasted time.

Jill: Not at all! Media queries are a big part of what makes responsive design work.

The next step to move toward
a responsive design—one that
will work more comfortably
on more devices and
browsers—is to convert our
fixed, pixel-based layout to a
proportional, fluid-grid layout.

The YouTube video is still
broken on this iPhone.

This photo is wider than 320 pixels, breaking out of the layout.

Frank Jill

This is a good start, but there’s a bit of a problem.
If I scroll down on my iPhone, you’ll see that the photo is
too big for the page. It breaks the layout.

you are here 4 25

getting started

Tonight’s talk: Fixed Grid meets Fluid Grid

Fluid Grid:
Hey, Fixed Grid. I know you’ve been around a while

and seen a lot of action. But, no offense, there are a

few problems with your philosophy.

I mean…you’re kind of a relic. Your rigidly defined

dimensions make you seem brittle and inflexible.

That is, you’re not responsive.

You don’t respond to changes in your user’s

environment. You stay the same, always.

At the cost of your users. Look at what happens when

we look at you in different browser window sizes.

Stuff is cut off, or there’s a bunch of blank space.

Maybe that worked in your day, but these days there

are simply too many kinds of browsers and devices. If

you’re willing to let go of pixel‑perfect layouts—hey,

they’re a holdover from the old print days of yore,

anyway—and let your content flow, like water, into

the available space in the browser window, you can

really adapt for different situations.

Fixed Grid:

What’s that? What’s a young upstart like you know

about philosophy?

Responsive?

What’s wrong with tradition? I’m staying true to

what the designer intended! 960 pixels wide, with

240‑pixel columns on the left and right.

If users don’t like it, they should straighten up, get a

haircut, and use a standard browser.

Well, pipsqueak, show me what you’ve got.

26 Chapter 1

oh, for a pixel-perfect world

What’s wrong with a fixed-width
layout, anyway?
If the whole world were full of browsers whose windows were

always the same size, it would be a safe, pretty world in which

designers could have pixel‑perfect control over what a website

looked like.

Unfortunately, the Web has never been this controllable.

Sometimes we try to design around “standard” window widths

like 640, 960, or 1,024 pixels. But that is mostly an illusion:

there is no standard browser window size. And that’s before

you even start thinking about mobile devices.

Sure, the fixed‑grid layout for The Splendid Walrus looks fine

at 960 pixels wide.

In a wider window, the entire layout is still only 960 pixels wide,

leaving a blank gap of wasted space at the right side of the

screen. Hmmm.

Left and right
columns are 240
pixels wide…always.

The site viewed in a
700-pixel window

The site viewed in a
1,200-pixel window

The entire width is
constrained to 960 pixels.

The site in a
960-pixel window

The layout doesn’t adapt to other window sizes
But in a narrower window, look what happens. The column

widths stay the same, which means content gets cut off and the

user has to scroll horizontally. Ick.

The right column
isn’t visible
without scrolling.

www.allitebooks.com

http://www.allitebooks.org

you are here 4 27

getting started

Fluid‑grid layouts use proportional units (percentages)

instead of pixels for widths. We can stay true to the

designer’s vision of having the left and right columns

span one‑quarter of the page width by defining their

widths as 25%, instead of 240 pixels.

How is fluid better?

We’re about to convert both the
desktop and mobile CSS from fixed
to fluid grids. Can you think of some
ways this might help solve some of
the problems Jill found with the site
on mobile browsers?

The layout adapts as the window changes size
In different window widths, the content flows, like water, to fill

the available spaces in the layout. The left and right columns

always take up 25% of the window, and content is not clipped

in narrower windows, nor is there any empty space in wider

windows.

A fluid version of the layout
at 960 pixels. It doesn’t
look very different right
now, does it?

A fluid version
of the layout
at 700 pixels

A fluid version
of the layout
at 1,200 pixels

Left and right columns are
proportional: 25% of the
window’s width.

28 Chapter 1

go with the flow

Go fluid

The fluid formula
To convert a pixel‑based layout to a proportional, fluid one,

use this formula:

Target
Context Result

The size of the
element, in pixels

The size of
the containing
“context,” in pixels

Our new, proportional CSS
rule, as a percentage.

960 pixels

240
pixels

240
pixels

460
pixels

960 pixels
A closer look
Let’s take a look at what this means, using the Splendid Walrus

site’s desktop layout.

We start with a context on which to base our proportions. In

this case, our reference design is 960 pixels wide. We want

our resulting, fluid layout to have the same proportions as the

current design does. So we’ll base our calculations on that

960‑pixel baseline.

The navigation, header, and footer all span the full width of the

page. That makes the fluid formula very easy to apply indeed!

960 pixels
960 pixels

100%

Convert the pixel‑based layout to a fluid one, using

proportional widths instead of fixed.

Make the default body font size 100% so our page’s fonts

can scale up and down proportionally.

Fix the broken YouTube video.

Fix the image that is too wide.

There are a number of things we’ll need to do to address the problems

Jill found and move toward a responsive design.

If we’re going to make our
layout fluid, we’ll want
to be sure our fonts are
flexible, too.

you are here 4 29

getting started

The left and right columns are both supposed to be 240 pixels wide, relative

to the 960‑pixel containing context. To get a proportional measurement, use

the fluid formula again:

240 pixels
960 pixels 25% The columns span a quarter

of the page width. So this
feels pretty intuitive, right?

The main, center column is a bit different. It doesn’t float. Instead, margins

are used to position the element. But that’s just fine. We can still use the

fluid formula to convert the pixel‑based margin sizes to percentages:

260 pixels
960 pixels

27.0833333%

#main {

 margin: 10px 260px 0 250px;

}

250 pixels
960 pixels 26.0416667%

Our current
CSS rule

#main {

 margin: 10px 27.0833333% 0 26.0416667%;

}

Finish converting the structural desktop CSS rules
in styles.css to proportional widths. You’ll want to
edit each of the six CSS rules within the media
query for window widths of 481 pixels or greater.

Continue your fluid conversion

Our updated CSS rule

Q: Why are there so many decimal places in
these numbers? Do we really need all that?
A: We’re demonstrating the purist fluid‑grid
approach here, which builds CSS units exactly as the
numbers come off the calculator.
Realistically, browsers round these very long numbers.
And—a bit concerningly—they round them in slightly
different ways.
So, it’s up to you. You might consider rounding the
numbers down to one or two digits past the decimal
point. Another approach is to leave some play in
your layout—a percentage or two not accounted for
at all. Your grid won’t be as precise, but you avoid
some of the pitfalls of rounding issues and make your
arithmetic less rigorous.
Q: Wait. Why is the top margin on .main still
10px? Isn’t that…wrong?
A: Vertical layout is a totally different beast than
horizontal. We can’t use the 960px context because
the height of the design is never really a known
quantity, and vertical layout using percentages is a
tricky affair, supported in different (and sometimes
poor) ways in different browsers. Using pixels like this
for vertical margins is OK.

30 Chapter 1

fluid desktop css

@media screen and (min-width: 481px) {

 body, .header, .footer, .navigation {
 width: 100%;
 }

 .column {
 margin: 10px 1.04166667% 0 0;
 }

 .navigation ul li {
 width: 33.333333%;
 }

 #visit {
 width: 25%;
 float: left;
 }

 #points {
 width: 25%;
 float: right;
 }

 #main {
 margin: 10px 27.0833333% 0 26.0416667%;
 }

}

Let’s take a look at that fluid desktop CSS.

Not so fast!
Sometimes the “context” can change…

So, to convert to a proportional width,
we divide the pixel width of an element
by the overall layout width, right?

960
960

100%

320
960

33.333333…%

240
960

25%

10
960

1.04166667%

We figured this
out on page 29.

you are here 4 31

getting started

Context switching

Mike has a new monthly special that he wants to post on the

Splendid Walrus site. Instead of text and a single image in the

main column, as it is now, he wants to display the beer labels

of two very special, limited‑edition stouts—floated next to each

other. In our pixel‑based reference design, this looks like:

960 pixels

240
pixels

240
pixels

460
pixels

960 pixels

220
pixels

#main img.label {

 width: 220px;

 margin: 5px;

 float: left;

}

These tags have
a class of “label.”

It’s tempting to think that the formula for converting these

image widths to be fluid would be:

Does this formula look right to you?

Mike’s pixel-based
CSS widths

220 pixels
960 pixels

22.916667%

Hey. I’m going to start offering
some new beer specials, and I want to
be able to feature those on the site—
can you adjust the design?

220
pixels

32 Chapter 1

22.916667%220 pixels
960 pixels

watch your contexts

What’s wrong with this picture?

240
pixels

240
pixels

960 pixels

The context changed!

If we set the images to span 22.9166667%, they will span 22.916667%

all right—22.916667% of their containing element.

The containing element of these images isn’t body (100% width,

or 960 pixels in our reference design), it’s div#main, which has a

width of about 460 pixels (47.91667% of 960 pixels in proportional

parlance). So we have just told the images to span a little less than 23%

of 460 pixels—too small!

Instead, we set the context in our formula to be

the reference width of the containing element,

which in this case is 460 pixels.

220 pixels
460 pixels 47.826087%

240
pixels

240
pixels

460
pixels

960 pixels

New context: width
of div#main, the
containing element.

Do this!

div.main

div.main

Setting image widths as percentages?

Turns out, this is on the right track to

fixing one of our other problems with the

mobile layout. Remember that photo that

is too big and messes up the page width?

We can use a variant of what we’re doing

here to fix that!

This is what you’ll get if you set the width of
img.label to be 22.916667%. Uh oh.

The images are now just
under 50% of the width of
div#main—that’s more like it.

you are here 4 33

getting started

Fluid images
There’s a lot of power in this little gem of CSS:

A sad farewell…
Most great things don’t come without a bit of sacrifice. To

use the fluid technique on images and media, we have to

forego our old friends: the width and height attributes.

The CSS rule above will override a width attribute but will

not affect a height attribute. That means that, if we use

height and width attributes, we could end up with an

image that scales its width but not its height. End result: a

sad‑looking squished image in the wrong aspect ratio.

OK, there are some workarounds for this, and removing

these attributes is not awesome. But we’re going to jettison

the height and width attributes for now.

With this quick addition, we help to prevent any image or

embedded media object from being wider than its containing

element. Because they are limited to 100% width—100% of the

width of their containing element—images and media obey their

parents and don’t try to break outside of the boundaries. Nice!

Fluid images
and media, like
fluid grids, scale
proportionally
within the layout.

img, object {

 max-width: 100%;

}

Ka-pow!

And media!

 Fluid images are not
a get-out-of-jail-free
technique.
Just because an image
scales down on a

narrower screen doesn’t mean that it
isn’t still, at heart, a large image. An
800 KB JPEG is still an 800 KB JPEG,
even if it’s crammed down into a
120-pixel-wide column.

In Chapter 2, we’ll talk about
techniques to deliver different images
to different devices and browsers,
saving on otherwise wasted bandwidth
and processor power (required to do
the actual scaling).

Still, it’s a powerful technique, and one
definitely worth having in your arsenal.

34 Chapter 1

fluid mobile css

@media screen and (max-width: 480px) {

 body, .header, .footer, .navigation
 {
 width: 320px;
 }

.column {
 margin: 1em 0;
 border-bottom: 1px dashed #7b96bc;
}

.navigation ul li {
 width: 106.6667px;
}

#visit, #points, #main {
 width: 320px;
}

Are we there yet?
We’re making progress toward a responsive design that adapts to more

devices. But we have a few things left to track down:

We still need to convert the mobile CSS (we did the desktop CSS already).

We did this using the
fluid images technique.

Spiff up the mobile CSS
There are just a few mobile‑specific CSS rules we need to convert to be fluid.

current (fixed) updated (fluid)

Convert the pixel‑based layout to a fluid one, using

proportional widths instead of fixed.

Make the default body font size 100% so our page’s fonts

can scale up and down proportionally.

Fix the broken YouTube video.

Fix the image that is too wide.

@media screen and (max-width: 480px) {
 body, .header, .footer, .navigation {
 width: 100%;
 }

.column {
 margin: 1em 0;
 border-bottom: 1px dashed #7b96bc;
}

.navigation ul li {
 width: 33.333333%;
}

#visit, #points, #main {
 width: 100%;
}

Hey! Now that we’re proportional here, these two rules are exactly the same as the desktop ones (see page 30). Might as well put them in the common structural CSS instead of having them in two places.

you are here 4 35

getting started

Let’s take care of a few remaining details to make our

updated version of the Splendid Walrus site totally responsive.

Details, details
Font Sizes Up Close

Set up flexible fonts
So far, our layout is adaptive, but the fonts are stodgy

and rigid. Just as percentages are the fluid ying to pixels’

fixed‑width yang, ems are proportional font‑size units. Mike

used ems in his original CSS, so we’ll just add the following

rule to the <body> element to be extra thorough:
1em = 100% ≈ 12pt ≈ 16px

body {

 background: #f9f3e9;

 color: #594846;

 font: 100% "Adobe Caslon Pro",
 "Georgia", "Times New Roman", serif;

}

With this edit to the CSS rule for the <body>

element, we’re setting the baseline font size

for the page to be 100%. But what does 100%

mean? Here’s a quick‑and‑dirty (and approximate)

rule of thumb:

But recall that we aim to adapt our content to

the user’s environment. If a user has changed

the browser’s font size, 100% is going to

represent a different absolute size.

Also keep in mind that fonts on mobile devices

are a complex thing, and that in some cases,

1em might equate to a (significantly) different

point or pixel size.

Lots of mobile devices don’t support Adobe Flash. The markup

for the embedded YouTube is out of date: YouTube now provides

an iframe‑based embedding snippet that will work just fine on an

iPhone (and other modern devices). We need to edit the index.html

file and replace the current embed code.

<iframe src="http://www.youtube.com/embed/O-
jOEAufDQ4" style="max-width:100%"></iframe>

Fix the YouTube video

<object width="230" height="179"
type="application/x-shockwave-flash"
data="http://www.youtube.com/v/O-
jOEAufDQ4?fs=1&hl=en_US&rel=0"><embed
src=... /></object>

Instead of this
(Flash-only) version

Use this!

This baseline font‑size reset is the CSS equivalent of dotting our

i’s and crossing our t’s: it’s setting an explicit reference against

which the other font sizes in the CSS are defined. Not a big deal;

just keeping things tidy!

YouTube’s newer embed code determines the

appropriate video format to use depending

on the browser. It can supply HTML5 video

instead of Flash for devices—like Mike’s

iPhone—that support it. We simply grabbed

this newer snippet from the “embed” section of

this video’s YouTube page.

This technique isn’t limited to

Flash! Other media can be made

fluid this way, as well.

36 Chapter 1

flex your rwd muscles

Edit the styles.css file

Edit the index.html file

 Edit the CSS rules within the media query for lower‑resolution devices.

Convert these widths to be proportional (page 34).
1

 Identify the structural CSS rules that are common between both mobile

and desktop variants now that they are proportional (page 34). Remove

these rules from the media‑query‑specific sections and put them in the

common structural section of the CSS file.

2

 Add the CSS from page 33 to implement fluid images (and media).3

 Update the CSS rules for the <body> element to add a proportional

font size baseline (page 35).
4

 Replace the Flash‑only embedded YouTube with the smarter, iframe

variant on page 35.
5

OK! Let’s get all of these changes in place to give The Splendid Walrus a mobile‑friendly site
that uses Responsive Web Design techniques.

Let ’er rip!

 Save your changes and load the index.html page in any web browser.6

Try resizing your browser
window and watching the
content adapt.

Remember to be responsible
Just like fluid image resizing doesn’t actually reduce the file size of

images, neither does fluid media change the size of the actual media.

It’s up to you to determine whether using video (or other multimedia) on

mobile devices is worth the file size and processor oomph required for

playback.

www.allitebooks.com

http://www.allitebooks.org

you are here 4 37

getting started

Q: OK. I’ve seen ems as units in CSS,
but I don’t quite get it. What’s the point?
A: 1em is—unspectacularly—a
representation of the current font size, in the
current context. That doesn’t sound terribly
exciting. But the magic comes when you
define your font sizes in relation to this. So,
if you set your <h1> element to display at
1.5em, it will be 150% of the baseline font
size of its containing element.
You can actually use the same fluid formula
to generate fluid, em‑based font sizes from
fixed font sizes. To create a fluid version
of an 18‑point font in a context where the
baseline font is 16 points, you can do
18/16 = 1.125em (target/context =
result).
Q: Wait. Why is it 1.125em instead of
112.5%?
A: Mostly tradition and clarity, but ems
do tend to work a smidge better across
platforms. It is common web practice to
define block element widths in percentages
and font sizes in ems. With some really
teeny exceptions, percentages and ems are
interchangeable for font sizes. About those
teeny exceptions: we set the <body>
element font-size to 100% to account
for them.

Q: Is there any other use for CSS
media queries beyond the mobile web?
A: Definitely. An example: just as mobile
devices often represent the lower end of
the screen resolution spectrum, some of the
newer widescreen monitors and televisions
have very high resolution. Sometimes it
makes sense to adapt a layout—say, to add
more columns—for these window widths.
Q: What actually caused the weird
gap at the right side of the screen in the
exercise way back on page 7?
A: This one’s iPhone‑specific. When
displaying a web page “zoomed out” (i.e.,
when it’s acting like a desktop browser),
mobile Safari on the iPhone assumes a
viewport width of 980 pixels. Before mobile
optimization, the Splendid Walrus layout was
960 pixels wide, which leaves an awkward,
20‑pixel gap on the right.
Q: What’s the deal with the “3” in

“CSS3 media queries”?
A: There are several versions of CSS. It’s
tempting to say that there are three, but the
situation is a bit more cloudy. CSS2, which
was published as a “recommendation” way
back in 1998, is the flavor with which most
web developers have had a longstanding
familiarity. Media types were introduced with
CSS2.

CSS3 is a different beast than earlier
versions of CSS, in that it is modularized—
there are something like 40 different
modules, instead of a single big, complex
spec. Fortunately, the Media Queries module
is one of the more complete and stable.

Q: If CSS3 isn’t all the way “done,” do
browsers support it?
A: Like we said, it’s a jungle out there.
Adoption for some of the more complete
pieces of CSS3 is becoming widespread, but,
as we’ll see a bit later, is far from something
that can be assumed in the mobile space.
Q: Why does the right column show
up before the main column in the mobile
layout?
A: The div#points content comes
before the div#main content in the
HTML markup. In the desktop layout, floats
are used to position the #points content,
such that it appears to the right of the
#main content. The mobile layout doesn’t
use floats, and as such, the content is
displayed in the order it occurs in the HTML.
Q: You skipped the @import syntax
for media types. And can I use @import
syntax with media queries?
A: @import syntax doesn’t get a lot of
love. So little, in fact, that we didn’t even
mention it. But, yes, it absolutely works for
including stylesheets based on media types
and for media queries, too.

38 Chapter 1

exercise solution

Let’s walk through the resulting CSS file and look at our changes.

.header, .footer {

 clear: both;

}

.header {

 background:url(images/w.png)

no-repeat;

 height: 200px;

}

.navigation {

 min-height: 25px;

}

img, object {

 max-width: 100%;

}

.navigation ul li {

 width: 33.333%;

}

.header, .footer, .navigation {

 width: 100%;

}

body {
 background: #f9f3e9;
 color: #594846;
 font: 100% "Adobe Caslon Pro", Georgia,
 "Times New Roman", serif;
}

This is right near the
top of the CSS file.

…shared typography, colors,
borders, etc. (shared,
nonstructural CSS)…

Shared structural CSS

To save space, we won’t show
these rules here.

you are here 4 39

getting started

@media screen and (min-width:481px) {
 .column {
 margin: 10px 1.04166667% 0 0;
 }

 #visit {
 width: 25%;
 float: left;
 }

 #points {
 width: 25%;
 float: right;
 }

 #main {
 margin: 10px 27.0833333% 0 26.0416667%;
 }

}

@media screen and (max-width:480px) {
 .column {
 margin: 1em 0;
 border-bottom: 1px dashed
#7b96bc;
 }

 #visit, #points, #main {
 width: 100%;
 }

}

And now, the resolution‑specific structural CSS.

Structural CSS for larger
browser windows (e.g., desktop)

Structural CSS for smaller
browser windows (e.g.,
mobile devices)

40 Chapter 1

the walrus is splendidly responsive

That’s a responsive site!

TO
DO

Screen
shots at

 various
 window sizes

You guys made big
improvements, and

hardly touched the
HTML at all!

The photo fits correctly
on this Android Nexus S
phone, thanks to the fluid
images technique.

Looking good on the Motorola
Backflip (Android)

We’re using the same header background image in
our mobile-optimized CSS, even though it’s getting
seriously cut off. Can you think of how to use RWD
techniques to use a different image (to save on
bandwidth and improve performance)?

you are here 4 41

getting started

 � The mobile web is not unlike the Wild West—it’s full
of surprises and adventure. The mobile web browser
landscape is diverse, and, sometimes, crazy‑making.

 � Just because we can use the same layout on a mobile
device as in a “traditional” browser doesn’t mean we
necessarily should.

 � Responsive Web Design (RWD) is a collection of
approaches to make our web content adapt to the user,
not the other way around (forcing the user to look at
rigidly formatted pages).

 � RWD is a combination of CSS3 media queries, fluid-
grid layouts, and fluid images. It’s also a way of
thinking about layout and content.

 � CSS3 media queries let us apply CSS selectively to
different user environments based on the current value
of relevant media features.

 � Media types (e.g., screen, print, projection)
have media features (width, color,
monochrome, orientation). It’s these media
features we evaluate in our media queries.

 � A CSS media query is a logical expression. When it
evaluates to TRUE, the enclosed CSS rules are applied.

 � A fluid layout is one that uses proportional widths instead
of fixed widths such that the content of the page scales
and flows naturally across a range of window widths.

 � Fluid images are a CSS technique that keeps outsized
images (or media) from “breaking out” of their parent
elements when the parent element width is smaller than
that of the image (or media). The images and media
scale down as the parent element scales down.

 � Using a simple font-size reset on the <body>
element and defining font sizes in ems or percentages
keeps our type fluid.

=

Letting go of pixel-perfect
layouts and instead designing our
content to adapt to different
(browser or device) environments

Responsive design is also a state of mind

Fluid-grid layouts

CSS media queries

Fluid images/media

A state of mind

+

+

+

Responsive
Web Design!

this is a new chapter 43

responsible responsiveness2
Mobile-first Responsive Web Design

That’s a beautiful mobile site. But beauty is only skin deep.
 Under the covers, it’s a different thing entirely. It may look like a mobile site, but it’s

still a desktop site in mobile clothing. If we want this site to be greased lightning on

mobile, we need to start with mobile first. We’ll begin by dissecting the current site

to find the desktop bones hiding in its mobile closet. We’ll clean house and start

fresh with progressive enhancement, building from the basic content all the way

to a desktop view. When we’re done, you’ll have a page that is optimized regardless

of the screen size.

Darling, I don’t care if you are cold.
If you knew how much optimization it

had taken to look this good, you’d wear
a bikini on the beach in winter, too.

44 Chapter 2

not-so-splendid walrus

Just when you thought it was time to celebrate…
Mike called in a panic. As a reformed web developer, he normally

resists the urge to tinker with his site, but he fell off the wagon

and decided to make a few tweaks. He thinks he broke the

Splendid Walrus site and needs help.

Mike added pictures for all of his new brews to the On Tap Now

page. He didn’t modify the code other than to add pictures, but

now the page is loading very slowly on mobile phones. It’s so slow

that customers have started complaining.

Check out the On Tap Now page at http://hf-mw.com/ch2/chapter2/ontap.html.

Sorry, guys. Not sure
what I did, but the

Splendid Walrus site is
now dog slow.

you are here 4 45

responsible responsiveness

Is there really a problem? How do we know?
Jim: Poor Mike. He knows just enough to get in trouble.

Frank: Exactly. But in this case, I’m not so sure he did

anything wrong. Mobile phones have slower networks and

processors. Of course the page loads slowly.

Jim: That makes sense, but it still seems slower than

expected. Mike says that even on a WiFi network, it is

unbearable. And he has a brand‑new smartphone.

Joe: Hmm…it sounds like we should at least look into it to

see if there is something obvious slowing it down.

Frank: How will we know what’s going on? It could just

be the network or any number of things between the

phone and the server.

Joe: I’ve been using a plug‑in for Firefox that gives you a

grade on your page performance. We could use something

like that.

Jim: That sounds awesome.

Frank: Can we install plug‑ins on mobile browsers?

Joe: Ugh, you’re right. There’s no way to install plug‑ins

on my phone. Some of my favorite developer tools are

browser plug‑ins. Without them, how do we know what’s

really going on?

Jim: The other day, Kim was showing me how you can

watch every request that is made on our WiFi network

through the network router’s log page. Could we look at

something like that and watch what the phone does?

Frank: That’s a great idea. But instead, let’s use a proxy

server. It is very similar to what Kim showed you, but it is

designed for exactly this purpose. If we hook up the phone

to a proxy server, we can see all of the web requests that

the phone makes.

The YSlow plug-in gives you a grade for performance based on how a web page is constructed. Get YSlow at this URL: yhoo.it/yslow. Performance is something every web developer—especially mobile web developers—should care about.

Speaking of which, we’re going to spend a
little time looking at performance. Don’t
worry. We’ll get to mobile-first Responsive
Web Design soon, and we promise all of this
performance stuff is related.

Jim
FrankJoe

http://developer.yahoo.com/yslow/

46 Chapter 2

wait, use a proxy

Waitress, will you take my order please?
A famous athlete is stricken with food poisoning the night before

a big match against his archrival. The police suspect foul play

and have assigned a detective. The detective quickly starts

questioning the best witness: the waitress.

The waitress took the food order, wrote down the request,

and handed it to the cook. After the food was ready, the

waitress brought the food out. The waitress saw everything.

Most of the time when you’re on the Web, you’re talking

directly to the cook. Nothing is between you and the web server

for the page you’re visiting.

But if we have a proxy server act like a waitress, it will record

both what was ordered and delivered by the browser. Now we can

be our own detectives and dig into what actually happened.

Can I get a proxy to set up my proxy?

If you do a lot of mobile work, you may find it worth your

while to learn how to set up a proxy server. It is the best way

to see what’s going on between the phone and server.

Unfortunately, setting up a proxy server can be a tad difficult.

Thankfully, some kind souls at Blaze, a mobile performance

company, have set up a free service that is the next best thing

to installing your own tool.

Mobile phone
Proxy server The Internet

Web server
You don’t need a fancy server.
Your personal computer can
act as a proxy server with
the right software.

you are here 4 47

responsible responsiveness

What to do when things aren’t blazing fast
Blaze provides Mobitest—a free mobile performance test

using real iPhone and Android phones. Mobitest is located

at www.blaze.io/mobile.

Blaze’s Mobitest works like a proxy server. You tell it what

web page URL you want to test and what device you

want to test with. Mobitest then puts your test request in

a queue for that device.

When the phone you requested is available, Blaze tracks

all of the communication between its test phone and the

web server so you can see what happened.

There is even a fun feature that records a video of the

page loading so you can see what someone using that

phone would see.

Ready for some detective work? It’s time to figure out why the On Tap Now page is slow.

Test the On Tap Now page at www.blaze.io/mobile.
The On Tap Now page is at http://hf-mw.com/ch2/chapter2/ontap.html.

1

Look at the load time and page size.
The load time tells you how long the page took to load on this phone

during this test. The page size is the total size of all resources associated

with the page including HTML, CSS, JavaScript, images, fonts, etc.

2

Try two different phones and compare speeds.
Not only will the speed of networks vary, but the phones themselves may

also vary in the speed at which they process and display pages.

3

Test Drive

48 Chapter 2

overweight walrus page

Don’t let its looks fool you, that’s a BIG page
Yikes! The test says the page is approximately 3 megabytes in size.

That would be a pretty big page for a desktop browser. It’s a slow‑

moving elephant on a mobile phone.

No wonder Mike’s customers complained about the page. It takes

over 10 seconds to load on a test iPhone.

What is a waterfall chart? I looked at
it, and it doesn’t tell me what’s making the
page so big. Is the chart even useful?

Waterfall charts are a common
web performance report.
The chart shows the files that the browser

requested from the server to build the web

page. The bars represent the length of time

spent downloading a resource. The resources

are listed in the order in which the browser

requested them from the server.

But don’t go chasing the waterfall on the Blaze

report page. It doesn’t have the details we need

for our detective work. We’re going to show you

how to find a waterfall that is more useful.

Blaze Mobitest results page using an iPhone

Load time
can vary
widely
depending
network
conditions.
Blaze tests
on WiFi.

Size of HTML
and all resources
for the page

Click to
see a larger
version of
the waterfall
chart.

In truth, it’s too big for desktop too. Just because a screen is big doesn’t mean the connection is fast. Performance matters everywhere.

you are here 4 49

responsible responsiveness

There’s gold in ’em HAR hills
There is a nugget buried in the Blaze Mobitest

results page behind the tiny View HAR file link.

Click that link, and you will go to a new site

called the HTTP Archive Viewer and see a more

detailed waterfall than the test results page.

This waterfall chart shows us every resource that

the browser downloaded in much more detail

than the picture of the waterfall on the Blaze

report page.
You’ll find the “View HAR file” link next to the Twitter and Facebook links.

The preview tab contains a

waterfall chart for the page

we tested. It was generated

from a HAR file.

Do you see any suspicious files being
downloaded in the waterfall chart?

HAR stands for
HTTP Archive. It
is a file specification
that provides a
standard way to
record what happens
when a browser
requests a web page
from a server.

Top part of the Blaze Mobitest results page.

The HAR file can be used

to make waterfall charts.

Read more about HAR at

httparchive.org.

HTTP Archive (HAR) Viewer

50 Chapter 2

bloated page pie charts

10,000-feet view: Show statistics
The HAR waterfall charts show you the files that were downloaded,

how the server responded, and the time it took to download. But

before we dig into the waterfall chart itself, let’s take a look at the

high‑level statistics.

Click the Show Statistics link on the HAR Viewer page to see a series

of four pie charts. The chart that matters most to us is the second one,

which breaks down the page by type of file. Hover your mouse over

each file type to see its total file size.

Eight JavaScript files for
this page. Total size of all
JS is 351 KB.

So that’s why the page is so slow. There’s
nothing on this page that uses JavaScript, but
it’s downloading eight JavaScript files. Plus the

images are almost 2.4 MB in size. We need to figure
out why the images and JavaScript are so big.

Whoa! There are 35 images;

2.4MB for images alone.

See the pie charts by clicking Show Statistics on the HAR Viewer page.

you are here 4 51

responsible responsiveness

The type of request from the browser.
Usually GET, but can be POST if it’s a form.

Each line shows a different file
requested to build the page.
Hover to see the full URL.

The web page requested.
Hover over it for a pull-
down menu with which you
can add more information
to the chart (e.g., the
type of file).

The HTTP response
code from the server.
200 means “OK.”

Size of the
file downloaded Time required to

download the file

The bar graph shows when the file request started and when the file completely downloaded. Only a few files can be downloaded at the same time.

Find the drags on page speed
Now it’s time to dig into that waterfall chart to find where

the big images and JavaScript are coming from. Here’s a

key to reading the chart.

 Review the waterfall chart for the On Tap Now page. Find the five largest files and examine
them. For each file, answer:

The amount of communication between the browser and the

server can be overwhelming, but don’t worry. You just need to

look for two things: which resources are the largest, and where is the

JavaScript coming from?

Click the plus sign to get more details
about what the browser asked the
server and how the server responded
(aka the HTTP headers).

What type of file is it?1

What domain is the file coming from?2

If the file is an image, what is its height and width?
Hint: You may need to copy the image URL and open it in a new tab or
download the image to find the dimensions.

3

What does this information tell you about what you might need to do to make the page faster?

Waterfall chart on the HAR Viewer page

52 Chapter 2

exercise solution

Did you find the problems with the page? Let’s review.
What type of file is it?
You can determine the type of file by
hovering over the filename to see the
full URL and extension. You can also
add a column containing the file type
so you can scan the list quickly.

1

Hover over the page URL. Click on the down arrow next to the URL to add the file type column.

What domain is the file coming from?
Now we’re getting somewhere. Check out where
this big, 174.8 KB JavaScript file comes from.

2

At 174.8 KB, this is the largest

JavaScript file on the page.

The large file isn’t
the only suspicious file

here. These files have

strange names.

Hover your mouse over the file name to see the full URL.

Maps.gstatic.com is a domain for Google Maps. The browser is
downloading JavaScript for a map that isn’t displayed on the mobile view.
Many of the mysterious files are related to Google Maps.

If the file is an image, what
is its height and width?
Find the images with the largest file
size. Copy the URL and open them
in a new window. Without even
looking at the height and width, you
can tell that these images are far
larger than the size they appear on
a small screen.

3

682 pixels wide

Same file (121 KB) used
for both despite the
different sizes at which
the image appears

75
0

pix
els

 h
igh

16
8

pix
els

 h
igh

153 pixels wide
Scaled size
used on iPhone

*Images are not to scale.

you are here 4 53

responsible responsiveness

Where did that Google Maps JavaScript come from?
When you view the On Tap Now page on a mobile

phone, the page doesn’t contain a map. Why is that

JavaScript downloaded? Let’s open the page in our

desktop browser and investigate.

Hey, there’s the map. Mike must have set it up so

that it only shows up on wider screens.

Hiding the map on the mobile makes some sense.

It’s a bit big for a small screen. Older phones may

not be able to handle the map’s complex JavaScript,

and we’ve seen that the map has a lot of overhead.

So how did Mike hide the map?

One line to download them all
The map is included in the page via an iframe.

The iframe loads all of the components necessary

to make the map.

Hey, there’s the elusive map!

<iframe id="map" width="300" height="300" frameborder="0" scrolling="no"

marginheight="0" marginwidth="0" src="http://maps.google.com..."></iframe>

Extremely long URL abbreviatedThis single iframe causes 47 files to be downloaded!

Mike hid the map with CSS
Mike figured out how we used media queries to

modify the layout for mobile. He added in his own

CSS rule inside our media query. The rule Mike

added sets the display for the iframe to none.

Unfortunately, while setting the display to none

will prevent the map from showing up, it doesn’t

prevent it from downloading.

@media screen and (max-width:480px) {

 .

 .

 .

 #map {display:none;}

}

taps.css

There are many more rules

in the CSS file.

The iframe has an id of map. This rule hides the Google Maps iframe by setting the display to none.

Look inside ontap.html to
find this code.

54 Chapter 2

optimize those images

What’s with the big pictures?
The images on this page need to be put on a diet. Let’s look at the waterfall

to find the biggest images and see why they’re so big.

The taps.jpg file is 440.7 KB, making it

the largest file on the page.

But that huge file is
the header image, and it isn’t

even displayed on mobile.

Right, but that doesn’t mean it’s not downloading.
The taps.jpg image has been hidden from the page in the same way

as Google Maps—the display property has been set to none in

the CSS. But, as we saw with the map, setting display:none

doesn’t stop the content from downloading.

This is taps.jpg. View the
On Tap Now page in a
desktop browser to see
where the image is used.

@media screen and (max-width:480px) {

 [Other CSS rules are here]

 .header {display:none;}

}

Fluid images are huge images
Another thing to notice from the waterfall is that the brew

labels are all large files that range from 93 to 132 KB.

They’re desktop images scaled down to fit the screen

using the fluid‑image technique we learned in Chapter 1.

So this isn’t a new issue, but when we only had one or

two images on the page, it wasn’t noticeable. But when

you put 16 brew labels on one page, suddenly the fluid

images are an anchor slowing the page down.

The total size of the 16 brew labels is nearly 2 MB. Finding a way to optimize these images is key to making the page faster.

you are here 4 55

responsible responsiveness

It looks mobile friendly, but it isn’t
Jim: Well, that’s a bummer. I guess looks can be deceiving, eh?

Frank: At least we can tell Mike he didn’t break the page.

Joe: Yeah, any of us could have made the same mistake. The

problems are really bad on this particular page, but I think the

same issues exist on every page on the site.

Frank: So what do we do? Build a whole separate site for the

mobile version? Ditch Responsive Web Design?

Joe: Let’s not get ahead of ourselves here. There’s got to be a

way to make it work. We’re so close right now. Do the image

and JavaScript problems have anything in common?

Jim: It seems like all of the problems stem from the fact that

we’re starting with desktop‑appropriate content—images, maps,

etc.—and then hiding that content.

Frank: Exactly. We’ve got big files going to the browser by

default and then CSS is being used to try to cover them up.

But it seems that, if we’re not careful, the large files will still be

downloaded by mobile devices. That’s not the ideal fallback

behavior if something goes wrong.

Joe: What if we flipped things around and sent the smallest

files by default?

Jim: Oh, interesting. That might work. Start with the mobile

templates first and then add on content for desktop.

Frank: What you’re describing sounds a lot like progressive

enhancement.

Joe: You’re right. We’ve been using progressive enhancement

for years. The only difference now is that we’re starting from

mobile and progressively enhancing the document to fit the

desktop.

Jim: It seems like it should work. Let’s try it out.

Progressive enhancement
promotes building layered
web pages. At minimum,
everyone can see and use
the content. Those with
more capable browsers get
additional layers of style
and interactivity that
enhance the experience.

56 Chapter 2

mobile first; it’s only polite

Mobile-first Responsive Web Design
Mobile-first Responsive Web Design (RWD) is exactly

what the name suggests: RWD techniques that start from a

mobile template. Despite its simplicity, there is a lot of power

that comes from this approach.

 ► Basic HTML
 ► Simple layout
 ► Small images
 ► Limited CSS and JS

Very small screens
(feature phones)

Small screens
(smartphones)

 ► Add newer HTML5 features if supported
 ► Simple layout
 ► Small images, but bigger than feature-
phone size

 ► More CSS and JS

Medium screens
(tablets)

 ► Because there is more room,
we can add optional content
like sidebars

 ► Multiple column layouts
 ► Larger images

Larger screens
(desktops and TVs)

 ► Add widescreen layouts
 ► Larger images
 ► For TVs, optimize
navigation for use by
people sitting 10 feet
away who are using a
remote control

*These are just examples of enhancements. What you do depends on the project.

Pro
gre

ssi
ve

enh
anc

em
ent

 ba
sed

 on
 sc

ree
n s

ize
 an

d c
lien

t fe
atu

res

Sc
re

en
 si

ze
 d

ict
at

es

lay
ou

t
an

d
me

dia
 si

ze
.

Us
e J

S
to

 t
est

 fo
r b

ro
ws

er

sup
po

rt
 of

 ad
va

nc
ed

 f
ea

tu
re

s.

you are here 4 57

responsible responsiveness

Structured content (HTML)

Progressive enhancement is like a
layer cake. Mmm. Cake.

What is progressive enhancement?
Progressive enhancement views web design in a series of

layers. The first layer is the content. Combine that with semantic

markup to create structured content. If you stop right there, you

have a document that nearly every browser in the world can read.

After you’ve got the basics out of the way, you add a presentation

layer using CSS and a behavior layer using JavaScript. You never

assume the browser supports those features, but if it does, visitors

get a better experience.

For many years, web developers commonly built things that only

worked on the most advanced browsers and tried to make sure

the web page degraded gracefully on older browsers. Progressive

enhancement flips this practice around.

Benefits of mobile-first design
Mobile‑first RWD isn’t that different from progressive

enhancement. Recognizing this fact, many call it content-first

design instead because content is the first layer of progressive

enhancement.

Regardless of what you call it, starting from the most basic

document not only reaches the most people, it also has

beneficial side effects.

Mobile first is like a small‑plate diet. Simply by eating on a

smaller plate, you’re likely to eat less food.

The desktop home page is an all‑you‑can‑eat buffet. All sorts of

junk gets thrown on it.

Mobile is a small plate. You have to choose carefully and

prioritize your content.

And once you’ve got a focused mobile site, you’re better prepared

to ask the tough questions like whether or not the things that

didn’t make the cut for mobile are really important enough to

add back in for desktop.

Semantic Markup
Up Close

Semantic markup means HTML

tags and attributes that convey the

meaning of the content.

For example, content surrounded by an

<h1> tag is more important on the page

than content marked up with an <h2>

or a <p> tag.

class and id attributes can also add

semantic meaning to documents if their

values are things like calendar and

not presentation values like left or

top. Many web developers use classes

in a standard way called microformats to

provide more semantic meaning. Learn

more at www.microformats.org.

Semantic markup doesn’t mean you

completely avoid tags like <div> and

 that don’t add meaning. Instead,

you choose the right semantic tags and

attributes for the content of a page

whenever possible.

Presentation (CSS)

Behavior (JavaScript)

58 Chapter 2

current page structure check

Let’s turn this web page around
Because we’re already using RWD, making our page mobile first won’t

take too long. Here is a short list of changes we’re going to make.

Make the HTML as simple as possible and swap the order of the CSS

so that the mobile version is first.

Fix CSS background images so that only one file gets downloaded per

image. Make sure display:none is being used appropriately.

Supply different source files for tags at different screen

resolutions. Make sure the right size image is downloaded.

Use JavaScript to add Google Maps to the page when the browser can

support it and the document is wide enough to accommodate it.

The current structure of the On Tap Now page
Open up the ontap.html file for the Splendid Walrus site in the chapter2 directory.

The file looks very similar to the document we built in Chapter 1:

<div class="navigation">...</div>

<div class="header">...</div>

<h1>...</h1>

<div id="visit" class="column">...</div>

<div id="ontap" class="column">...</div>

<div class="footer">...</div>

Two columns
instead of
three

Instead of a <div> called
“main,” Mike has created a new
column with the id of “ontap.”
That <div> contains the list of
current beers.

Because we did a good job of creating a template with semantic markup,

the document is clean and simple already. It looks like our main task to

make the content mobile first will be removing the Google map.

Because we’re going to need to reference the code later, let’s use HTML

comments to prevent the iframe from being included in the page.

<!--

 <iframe id="map" width="300" height="300" frameborder="0" scrolling="no"
marginheight="0" marginwidth="0" src="http://maps.google.com..."></iframe>

 -->

Comment out the Google Maps iframe by

surrounding it with <!-- and -->. Find the iframe in the #visit <div>.

We’ll explain why in a bit.

you are here 4 59

responsible responsiveness

Am I on a new page or not?

The On Tap Now page looks
so similar to the home page.

How can visitors tell they’re on a
different page?

Good catch. We have a problem
with the order of the content.
On the home page, it was fine if the first

thing on the mobile view was the Visit Us

information. But if the Visit Us content

repeats on every page, visitors won’t be

able to tell that the page has changed

without scrolling down.

We need to reorder the content so the On

Tap Now info comes before the Visit Us

content.

<div class="navigation">...</div>

<div class="header">...</div>

<h1>...</h1>

<div id="ontap" class="column">...</div>

<div id="visit" class="column">...</div>

<div class="footer">...</div>

Copy everything in the
<div> with the visit
id and paste it below
the ontap <div>.

Do this!

Is the Visit Us content essential on this page? Would it be better to move it
to a separate page and link to it? Or maybe leave it out of the mobile page
and add it using JavaScript if the page is rendered on a larger screen?

60 Chapter 2

content floating around the page

Fix the content floats
The change we made to the order of the content broke the

layout in a desktop browser. The Visit Us section is at the

bottom of the page.

In Chapter 1, we mentioned how putting the right column

before the main column was a trick to make it easier to

handle floats for layouts. If you want a block to float next

to something, you need to put it first in the source order.

Don’t worry, though. There is a simple fix here. We’ve been

floating the Visit Us content to the left of the On Tap Now

content. Instead, we need to float the On Tap Now content

to the right of the Visit Us content.

Open taps.css and make the following two changes.

@media screen and (min-width:481px) {

 .column {

 margin: 10px 1.04166667% 0 0;

 }

 #visit {

 width: 31.25%;

 float: left;

 }

 #points {

 width: 25%;

 float: right;

 }

 #main {

 margin: 10px 27.0833333% 0
26.0416667%;

 }

 #ontap {

 margin: 10px 0 0 32%;

 }

}

@media screen and (min-width:481px) {

 .column {

 margin: 10px 1.04166667% 0 0;

 }

 #visit {

 margin: 0 68.75% 0 0;

 }

 #points {

 width: 25%;

 float: right;

 }

 #main {

 margin: 10px 27.0833333% 0
26.0416667%;

 }

 #ontap {

 width: 67%;

 float: right;

 margin: 10px 0 0 0;

 }

}

Change this…

Change this…

…to this.

…to this.

Using 67%
instead of
68.75% gives us
a little wiggle
room for the
columns.

Visit Us is floating beneath the beer labels.
Before After

you are here 4 61

responsible responsiveness

Mobile-first media queries
Now for a little housekeeping. In Chapter 1, we started with a desktop website

and made it mobile. We’re going to turn this around and start from the simplest

content and build up to the desktop (and beyond).

But first we have a confession. Mobile first is a little bit of a misnomer when it

comes to the CSS. Before we apply any media queries for small screens, we’re

going to set all of the basic styles—for color, type, etc.—and then enhance them.

There is a good reason for doing this. Many mobile browsers don’t understand

media queries at all. So we need to make sure they at least get the basic

style rules.

Put your CSS house in order
CSS files are often like the kitchen junk drawer. It may start out organized and

logical, but over time chaos takes over. To put mobile‑first media queries in

place, you may need to untangle the basic style rules from the layout rules.

Fortunately, the CSS we built in Chapter 1 is already in good shape. Most of the

basic style rules are already at the beginning of the file, with the media queries

adding the layout and formatting later in the document. All we need to do is put

the mobile media query before the desktop query.

CSS cascade follows the
path from small screen to
large screen.

/* Wider viewports/higher resolutions (e.g. desktop) */

@media screen and (min-width:481px) {

 [Desktop layout rules here]

}

/* Mobile/lower-resolution devices */

@media screen and (max-width:480px) {

 [Mobile layout rules here]

}

Move the mobile media query block

above the desktop media query.
By doing this, we’re making sure
the cascading effect of CSS is
consistent with our mobile-first

progressive enhancement approach.

Do this!

We’ve made quite a few changes to the page:

We better check to make sure things still work. Load the page in a few desktop and mobile browsers

to see how it looks. Be sure to check Internet Explorer.

• Removed Google Maps

• Reordered the markup

Test Drive
• Fixed the floats

• Reordered the media queries

Basic styles
Small screen styles

Large screen styles

62 Chapter 2

conditional comment lifelines

Surprise! The page is broken in Internet Explorer
Don’t tell us you didn’t see this coming the moment

we hinted you might want to test the page in Internet

Explorer (IE). Battling IE is a rite of passage for web

developers. You’ve probably been scarred enough from

previous battles that you knew there was an IE‑sized

monkey wrench awaiting us.

So what’s the catch? IE doesn’t support media queries.

Now before you toss the book aside and curse us for

teaching something that doesn’t work in the world’s most

popular browser, take a deep breath and relax. There

are ways to work around IE’s (many) shortcomings.

Because IE 8 and below don’t support media queries, IE isn’t getting the CSS rules that create columns.

We’re being a little too harsh. IE9 and above
do support media queries, so help is coming.

Internet Explorer’s escape hatch: conditional comments
Microsoft has provided a nice tool to help web developers target code

specifically to Internet Explorer via conditional comments.

<!--[if (lt IE 9)&(!IEMobile)]>

<link rel="stylesheet" type="text/css" href="layout.css" media="all" />

<![endif]-->

This tests to see if the browser is less than (lt) IE 9 and

that it isn’t IE Mobile (!IEMobile). We exclude IE Mobile

because it should get the mobile layout. IE9 and above

understand media queries, so they don’t need
 the extra help.

Look carefully. The
HTML comment
opens on the first
line, but doesn’t
close until “-->” is
included on the final
line. Other browsers
will see this as a
comment and ignore
its content.

If the conditions are met, IE will do whatever is in between the opening [if]
statement and the closing [endif]. The example shows a link to a CSS file,
but it could be anything you would find in an HTML document.

See the full syntax for conditional
comments at http://bit.ly/ie-comments.

you are here 4 63

responsible responsiveness

Use conditional comments with a media query
You probably noticed that the conditional comment points to layout.css.

Time to create that file.

We’re going to grab some of the rules from the current stylesheet. We’ve

called the new file layout.css because it will only be used for browsers that

have enough screen real estate that multicolumn layouts make sense.

Create a blank text file called layout.css and copy the
desktop rules into it.
Make sure you copy everything between the beginning and end of the

media query, but not the @media rule itself.

1

/* Wider viewports/higher resolutions
(e.g. desktop) */

@media screen and (min-width:481px) {

 .column {

 margin: 10px 1.04166667% 0 0;

 }

 #visit {

 margin: 0 68.75% 0 0;

 }

 #points {

 width: 25%;

 float: right;

 }

 #main {

 margin: 10px 27.0833333% 0
26.0416667%;

 }

 #ontap {

 width: 67%;

 float: right;

 margin: 10px 0 0 0;

 }

}

taps.css

layout.css

 .column {

 margin: 10px 1.04166667% 0 0;

 }

 #visit {

 margin: 0 68.75% 0 0;

 }

 #points {

 width: 25%;

 float: right;

 }

 #main {

 margin: 10px 27.0833333% 0
26.0416667%;

 }

 #ontap {

 width: 67%;

 float: right;

 margin: 10px 0 0 0;

 }

Copy these
rules to
your new
file.

After you copy them, remove the rules and the
surrounding media query from taps.css. We’ll
reapply the rules to the HTML document next.

64 Chapter 2

conditional love

Add a link to the new stylesheet.
For browsers that support media queries, we’re going to add a link

to the new layout.css file if the screen size is wide enough.

2

<link rel="stylesheet" type="text/css" href="taps.css" />

<link rel="stylesheet" type="text/css" href="layout.css" media="all and
(min-width: 481px)" />

Add this link tag
to ontap.html. This is the media query syntax

for link tags that you learned
in Chapter 1.

The 481px value for min-width was copied from the media query we
removed from taps.css.

Add the IE conditional comment.
We’ve got it working for most desktop browsers. Now we just need

to add the conditional comment we created earlier to finish up.

3

<link rel="stylesheet" type="text/css" href="taps.css" />

<link rel="stylesheet" type="text/css" href="layout.css" media="all and
(min-width: 481px)">

<!--[if (lt IE 9)&(!IEMobile)]>

<link rel="stylesheet" type="text/css" href="layout.css" media="all" />

<![endif]-->

The conditional comment repeats the line above it,
ensuring that desktop IE sees our layout.css file.

Time to test again.
Check the page in a browser that supports media queries and

different versions of Internet Explorer. Looks good, huh?

4

Even our persnickety old

friend IE is showing the
layout properly now.

you are here 4 65

responsible responsiveness

Q:With super-fast 4G phones on the
horizon, is performance really that big of
a deal?
A: Absolutely. Even 4G phones end up on
the EDGE network occasionally (EDGE is
an older, slower network). Studies show that
slow sites decrease usage and directly affect
the bottom line.
Q:Why am I getting different results
from the Blaze Mobitest?
A: There are many reasons why this
can occur. Page download time will change
with every test depending on network traffic.
Google Maps code is different for each
operating system and may change over time.
The behavior of the phones will also change
as new versions of the operating systems
are released. For the book, we tested using
Blaze’s iOS 4.3, Android 2.2, and Android
2.3 test devices.
Don’t worry too much about the variations
in test results. What matters is the code and
images being downloaded unnecessarily.
Q: By separating the stylesheet into
two files, aren’t you making the site load
more slowly?
A: It is true that the number of HTTP
requests makes a big difference in the
download speed. So we shouldn’t recklessly
add requests. In this case, we thought it
made more sense to separate them so IE
could use the same file.

Q: You mentioned that setting up a
proxy server might make sense. What do
you recommend?
A: There are many proxy servers,
including some fantastic open source ones.
We happen to be fans of a commercial
product called Charles Proxy.
Q: The lack of plug-ins seems like a
big deal. How do you get anything done
without Firebug and Web Inspector?
A: It isn’t easy. First, a lot of your
debugging work can be done in a desktop
browser so long as you are careful to test on
real devices at some point in the process.
There are also a lot of new tools that attempt
to get around the plug‑in limitations. The
Mobile Perf Bookmarklet (http://bit.ly/
mw-perf) includes many performance tools.
weinre (http://bit.ly/mweinre) and Opera
Dragonfly (http://opera.com/dragonfly) let
you run Web Inspector on your desktop
and examine what is going on in the phone
browser.
Q: It doesn’t seem like much changed
when we switched to mobile-first media
queries. Why bother?
A: For this page, there wasn’t a big
difference between a desktop‑first CSS file
and a mobile‑first one. In our experience,
however, this is the exception. With more
complex styles, you often want the wider
rules to override some, but not all, of the
styles set for smaller screens. Reordering
the media queries ensures that the CSS
cascading behavior is consistent with the
goal of progressively enhancing the page as
the screen gets wider.

Q: It seems like the order of content
may often be different between desktop
and mobile. How do you handle this in
more complex pages?
A:Ah, you caught that, huh? Yes, this
is one of the common challenges for
Responsive Web Design. In the long run,
the Flexible Box Module (Flexbox) in CSS3
promises an easy way to reorder content in
stylesheets. Combine Flexbox with media
queries, and you can completely reorder
pages as needed. Unfortunately, Flexbox
is still young and isn’t fully supported. So
developers resort to JavaScript to reorder
content or combine RWD with device
detection (see Chapter 5). Frankly, content
ordering and image handling remain two of
the biggest challenges for RWD.
Q: Will the versions of IE that don’t
support media queries see the responsive
design? Aren’t media queries necessary?
A: Internet Explorer will display the
desktop version. It will still have the fluid
grids and flexible images. But it won’t
change based on any of the media query
instructions. If media query support is
critical, there is an open source library
called Respond.js that fills in support for
media queries for older IE versions. This is
a fairly intensive script, so be sure to test
extensively if you decide to implement it.

66 Chapter 2

fix display:none with a media query

How are we doing?
We’ve got the basics in place and our CSS in order. What’s next on our list?

Play taps for the header image
Our waterfall chart showed us that we had one large

CSS background image that was being hidden with

display:none. Despite the fact that the image never

shows up on the page, the browser still downloads the image.

So let’s make sure the image is only downloaded when it is

needed. How do we do that? By putting it in a media query so it

only gets downloaded if the screen is wider than 480 pixels.

But instead of creating a whole new media query, put the CSS

rules in layout.css, which is already being included in the page via

a media query in the <link> tag.

Remember our friend, taps.jpg, which downloads on mobile but never shows up on the page?

.header {

 background:URL('images/taps.jpg') repeat-x;

 height: 300px;

}

Copy these lines from
taps.css and add them
to the end of layout.css. Delete these lines

from taps.css
after you add
them to layout.css.

Check the On Tap Now page using the Blaze Mobitest to make sure taps.jpg is

no longer being downloaded. Try both iPhone and Android devices. You can

use http://hf-mw.com/ch2/ex/3/ontap.html if your copy of the page is not on a

public server.

Make the HTML as simple as possible and swap the order of the CSS

so that the mobile version is first.

Fix CSS background images so that only one file gets downloaded per

image. Make sure display:none is being used appropriately.

Supply different source files for tags at different screen

resolutions. Make sure the right size image is downloaded.

Use JavaScript to add Google Maps to the page when the browser can

support it and the document is wide enough to accommodate it.

Test Drive

you are here 4 67

responsible responsiveness

It works on iPhone,
but the image is still
downloading on Android.

Android appears to still be
downloading taps.jpg.

Blaze’s Mobitest says Android is still downloading the
image, but it is a false report.
Blaze had to modify its phones to make them work for remote testing.

This causes some occasional odd behavior.

When you use a stock Android phone, the taps.jpg image will not be

downloaded.

Going old school with image optimization
Back in the early days of the Web, web developers spent a lot time worrying

about image optimization. As bandwidth has increased, web developers

stopped worrying about eking out every bit of performance from images.

But mobile devices make image optimization paramount once again.

It looks like we can make the taps.jpg image smaller with some basic web

image optimization. Changing the JPEG quality from 80 to 45 makes the

image 78 KB instead of 440 KB,

and you have to look very closely to

see any difference in image quality.

We’re using Photoshop to optimize this
photo for the Web, but you can use
your favorite web image editor.

For more on web image optimization,

see Chapter 5 of Head First HTML

with CSS & XHTML.

Copy the optimized
version of taps.jpg from
the extras folder into
the images folder to
replace the original, large
file with a smaller version.

We’d argue that image optimization has always been paramount. Faster connections are never a given, even for destkop computers.

Images still not small enough? Smush them further at www.smushit.com.

68 Chapter 2

scale images to the device

One src to rule them all
CSS images are just the beginning of our image woes. The

tag presents problems for every responsive design because there can

only be one value for the src attribute regardless of screen size. So

how do we deliver the right size image?

There are 16 beer lab
els on the On

Tap Now page that use an <i
mg> tag

like this one for Benson’s Bubbler.
Despite the need for multiple versions of this image depending on the screen size, HTML only allows one value for the src.

It’s tempting to replace the value of the src attribute using JavaScript.

Unfortunately, most browsers look ahead at the HTML document and preload

images before the JavaScript has been fully evaluated. This often means

one size file downloads before the JavaScript changes the src, resulting in

duplicate downloads and causing the browser to reflow the page layout.

A responsive image server to the rescue
If the browser can’t ask the server for the right image, the server will just have

to figure it out for itself. That’s what Sencha.io Src attempts to do.

We can use Sencha.io Src to deliver the best‑sized image for every device.

CSS can’t be used to
override the value of the
src attribute, either.

The image resizing service formerly known as TinySRC

Set the first part of the src to
http://src.sencha.io/.

After the slash, add the full URL of
the image you want to have resized.

Sencha.io Src will resize the image to fit the size
of the device screen. For example, if an iPhone
visits the site, the image will be constrained to its
screen size of 320 by 480 pixels. Do this!

Update all of the brew label images in the
ontap.html document to use Sencha.io Src.

 Sencha.io Src
only shrinks
images.
It doesn’t make
them bigger.

Enlarging images results in
poor quality. It is better to find
a higher-quality source image.

<img src="http://src.sencha.io/http://[DOMAIN]/[PATH]/brews_images/bensons_
bubbler.jpg" alt="Benson's Bubbler">

Replace with your domain and
path to the images.

you are here 4 69

responsible responsiveness

How Sencha.io Src works
Sencha.io Src works like magic. You request an image from an iPhone, it gives you

an iPhone‑sized image. Using a feature phone? No problem—Sencha.io Src will

give you a tiny image. Sitting at your desktop? Here’s the full image.

How does Sencha.io Src know what size image to deliver? It uses the browser’s user-

agent string—an identifier that every browser provides—to look up the device in a

big database. The database contains information about thousands of devices. One

of the things these device databases track is the size of the screen.

Once Sencha.io Src knows the screen size, it goes to work scaling the image to

the maximum width of the device. It stores the image it created in a cache for 30

minutes so subsequent requests for the image at that size will be even faster.

No great solutions for tags
Using Sencha.io Src has drawbacks. It relies on device detection, which can

occasionally get things wrong (as we will discuss in more detail in Chapter 5). It also

requires you to route all your images through a third party.

The reality is that there are currently no great solutions for how to handle different

image sources for different screen sizes. But watch this space closely, because a lot

of people are trying to find a better solution.

One final tweak: optimized beer label images
As with the taps.jpg image, we can reduce the file size of the beer label images by

saving them at a slightly lower JPEG quality level. Don’t worry, we’ve optimized

them for you. Find them in the extras/labels-optimized directory.

Copy the optimized images into the brew_images folder, replacing any existing image

files.

If you need Sencha.io Src to provide a specific image size, it can do that for you as well. See how at http://bit.ly/senchasrc.

We should have an efficient, fast, mobile‑optimized web page now. Test it
using www.blaze.io/mobile to see how we did. Select the option to have Blaze
run three tests on the phone to get an average. Compare the total file size
and download time of the new page to the original page.
If your pages are not publicly accessible, you can test using
http://hf-mw.com/ch2/ex/4/ontap.html.

What’s a user-agent string?

We’ll take a closer look in the

next chapter.

Why is the tag so difficult? Read more in this series on responsive images: http://bit.ly/rwdimgs1.

Test Drive

http://bit.ly/senchasrc
http://bit.ly/senchasrc

70 Chapter 2

performance, optimized

That’s a blazing-fast mobile web page
Our diet plan worked! The On Tap Now page is 87% slimmer

than it was before. iPhone download time has gone from

almost 12 seconds to under 3 seconds.

Before

After

Web performance optimization is a growing
field with many more ways to make
pages faster. What other performance
improvements could we make to this page?

Mike is going to love
how fast the site is on
a mobile phone now.

Can you say “Bloated, S-L-O-W loading page”?

The On Tap Now page’s post-
optimization results. Much better.

you are here 4 71

responsible responsiveness

Q: Why do browsers download CSS images that are
never used?
A: The browser usually can’t know for certain that an image
isn’t going to be used. It could be an image that shows up
when some JavaScript or CSS activity triggers it. The browser
downloads the images in advance so people don’t have to wait
if an activity suddenly triggers an image to be displayed.
Q: OK, so why don’t they download images that are
within media queries?
A: Originally, browsers downloaded them as well. Browser
makers have seen how developers are using media queries
and are adjusting browser behavior accordingly. All of this
is fairly new, which is why some browsers still download
resources inside a media query that doesn’t apply.
Q: Is it safe to route our images through Sencha.io
Src? It makes me nervous.
A: Being cautious is reasonable. Any time you integrate a
third‑party service into a critical part of your site, you’re going
to be impacted if that service goes down.
Sencha has said it is committed to providing this service and
that it will remain free. At the same time, you can be sure that if
a tremendously large site started using it, Sencha would need
to be compensated or it wouldn’t be able to run the service.
If you don’t like Sencha.io Src, you could build a similar service
using the device detection tools we teach in Chapter 5.
Q: Are there alternatives to Sencha.io Src? Are there
solutions to the tag problem that are client side only?
A: There are many different ways to handle tags
in responsive designs. A lot of work is currently underway to
find a solution that doesn’t require device detection. There
are compromises with every solution, including the one we’re
using for this project. You can find an extensive review of the
techniques at http://bit.ly/rwdimgs2.

Q: What about other media? Do video and audio suffer
from the same problems?
A: In a word: yes. The HTML5 video and audio formats are
a little better because they allow you to define fallback versions
of the media in different file formats. If your browser doesn’t
support the first option provided, it will look at the second one.
But while better, this approach does nothing to address
network speed or resolution. Someone using a mobile phone
on a wireless network probably doesn’t need an HD‑quality
movie. By contrast, Apple’s QuickTime video offers a movie
reference format that delivers movies based on Internet
connection speed.
Q: Is it just me, or are there a lot of unknowns and
problems related to Responsive Web Design?
A: There are definitely challenges. As with any new
technique, people are still trying to figure out what works and
what doesn’t. RWD is bleeding edge. That’s why we’re covering
a lot of techniques in this book. It’s likely you’ll need to combine
techniques to deliver the best experience for your project.
Despite the challenges, the promise of RWD inspires many
people to strive to build more complete solutions. Things are
moving quickly when it comes to RWD.

72 Chapter 2

to zoom or not to zoom?

Zoom, zoom, pow…

Sorry, guys! I hate to spring a new
requirement on you in the middle of your

work, but one of my best customers has trouble
seeing small text and is complaining that she can’t

zoom the page. Can you fix it?

Remember that viewport <meta> tag from
Chapter 1? Time to look at it more closely.
The viewport <meta> tag tells the browser the

intended dimensions and scaling (aka zoom level) for a

page. It also contains controls that can prevent users from

being able to change the size of the page.

Zoom in on the viewport <meta> tag
You’ll find the viewport <meta> tag in the <head> of

the ontap.html document. The syntax is pretty simple.

<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1" />

What type of
<meta> tag is this?

Width of the viewport. Can be set in pixels or can be set to “device-width,” which tells the browser to match the viewport to the device resolution.

The content attribute contains a

comma-separated list of instructions

for the browser. See all of the

options at http://bit.ly/metaviewport.

Sets the initial scale (or zoom
level) of the page. Setting it to 1
means that the document should be
displayed at its normal scale.

Declares a limit on
how much the page
can be scaled up.
There is also a similar
minimum-scale setting.

The maximum-scale
is what is preventing
the users from
zooming the page.

you are here 4 73

responsible responsiveness

The right to zoom?

It seems like being able to zoom
is important for accessibility. Why
would anyone ever turn it off?

It can make a difference for accessibility.
Some web developers have gone so far
as to declare that zooming on mobile is a
fundamental human right.
We wouldn’t necessarily go that far, but zooming is important,

and it should be considered carefully before it is disabled.

As for why designers disable scaling, there are a few reasons.

If the page is using complex touch gestures, disabling zoom

makes it easier for people to swipe successfully.

There is also a bug in iOS that causes

the zoom level to change when the

device is rotated into landscape

mode. The bug zooms the page in,

causing the right side of the page

to get cut off.

Turn zooming back on
To turn zooming back on, we need to

remove the maximum-scale setting

from the viewport <meta> tag.

<meta name="viewport" content="width=device-width, initial-scale=1" />

Edit the viewport <meta> tag
and remove “maximum-scale=1.”

Make sure you remove the extra
comma after “initial-scale=1.”

Do this!

After you turn zooming back on, rotate an iPhone or iPod Touch to see the iOS zooming bug in action.

When you rotate an iOS device, a bug causes the page to no longer fit in the viewport, cutting off the right side of the content.

74 Chapter 2

map out the final step

Back to our regularly scheduled project
With our emergency viewport adventure out of the way, let’s take a look at our

progress. Our fast mobile page puts us very close to a mobile‑first RWD. All that’s

left to do is add the map back in if the screen is big enough.

Add the map back using JavaScript
The only remaining item is to add the map back if the browser window is

wide enough. We’ve already seen that, if we hide and show the map using

CSS, the resources for the map will still get downloaded.

So we’re going to need to use JavaScript to add the map when appropriate.

Think of it as a JavaScript version of the media queries we know and love.

Grab that Google Maps iframe code that we set aside earlier. We’re going

to need to put that back into the page in order to show the map. Let’s take

a closer look at the iframe code.

Remember this iframe snippet that

we commented out? We’re going to use

JavaScript to insert it in
to the page.

<!--

 <iframe id="map" width="300" height="300" frameborder="0" scrolling="no"
marginheight="0" marginwidth="0" src="http://maps.google.com..."></iframe>

 -->

Make the HTML as simple as possible and swap the order of the CSS

so that the mobile version is first.

Fix CSS background images so that only one file gets downloaded per

image. Make sure display:none is being used appropriately.

Supply different source files for tags at different screen

resolutions. Make sure the right size image is downloaded.

Use JavaScript to add Google Maps to the page when the browser can

support it and the document is wide enough to accommodate it.

you are here 4 75

responsible responsiveness

On second thought, a map would be useful
Location. Location. Location.

The old saying takes on new meaning when it comes to mobile phones.

Because many phones can tell where you are via GPS and other forms of

triangulation, using location to provide more relevant content is common.

Mike hid the map on mobile because it was too big. Now that we’ve seen

how many files it downloads, it makes sense to keep the map hidden.

But that doesn’t mean a map wouldn’t be nice. So instead of embedding

a map on narrow screens, let’s link to the map.

To link to the map, we’ll need a <div> that our JavaScript can reference.

The <div> will contain a <p> tag with a link to the map. Why do you

think we need to order it that way?

<div id="mapcontainer">

 <p id="maplink">

 View Google Map

 </p>

</div>

<!--

 <iframe id="map" width="300" height="300" frameborder="0"
scrolling="no" marginheight="0" marginwidth="0"
src="http://maps.google.com..."></iframe>

 -->

We’re going to need a cont
ainer for the JavaScript

to reference, so we’ll add a <div> here.

The id on the <p>
tag will allow us to
insert the iframe
above the link for
wider screens. More
on this soon.

Add the new
<div> above the
commented-out
iframe code.

Do this!

Add a link to the map

76 Chapter 2

it’s kinda like a media query

<script type="text/javascript">

var breakpoint = 481,

 id = 'mapcontainer',

 viewportWidth = window.innerWidth;

if (viewportWidth > breakpoint) {

 var mapElement = document.createElement('iframe');

 mapElement.id = 'map';

 mapElement.width = '300';

 mapElement.height = '300';

 mapElement.frameborder = '0';

 mapElement.scrolling = 'no';

 mapElement.marginheight = '0';

 mapElement.marginwidth = '0';

 mapElement.src = 'http://maps.google.com/maps?f=q&so
urce=s_q&hl=en&geocode=&q=334+NW+11th+Ave,+Portland,+O
R+97209&aq=&sll=37.0625,-95.677068&sspn=58.164117,80.3
32031&vpsrc=0&ie=UTF8&hq=&hnear=334+NW+11th+Ave,+Portl
and,+Oregon+97209&t=m&ll=45.525472,-122.68218&spn=0.01
804,0.025749&z=14&output=embed';

 document.getElementById(id).insertBefore(mapElement,
maplink);

}

</script>

Sets the breakpoint variable to 481 pixels. The breakpoint is the width at which the
map will be added to the page.

Checks to see
if the window
viewport is larger
than the breakpoint Adds a new iframe

element and assigns it to
the mapElement variable

Build a pseudo-media query in JavaScript
Let’s take a look at the JavaScript code we’re going to use to insert the

iframe into the page. The code acts like a very simple media query.

These lines add all
of the attributes
to our new iframe
element. The
attributes and their
values were copied
from the Google
Maps iframe snippet.

The URL
Google Maps
provides is
ugly. You
probably
don’t want
to retype
it. Find a
copy of
this code in
extras/map.js.

This final step
adds the iframe
(mapElement) into
the mapcontainer
<div> (id) before
the paragraph
containing the link
(maplink).

This variable is for the id of the
element we want to add the map to.
We’re using a variable to make the
<div> easier to change in the future.

Remove the commented-out iframe code
We no longer need the original iframe code, so delete it

from the HTML document.

<!--

 <iframe id="map" width="300" height="300" frameborder="0" scrolling="no"
marginheight="0" marginwidth="0" src="http://maps.google.com..."></iframe>

 -->

Delete these lines!

you are here 4 77

responsible responsiveness

Does the JavaScript get downloaded on mobile phones?
Load the page on iPhone and Android using www.blaze.io/mobile/.
Check the waterfall chart to see if the Google Maps code is
downloading. If your web page isn’t on a public network, you can use
http://hf-mw.com/ch2/ex/5/ontap.html to test.

1

Does the map show up on larger screens?
Open the On Tap Now page in your favorite desktop browser. Does
the map show up when the window is wider than 480 pixels?

2

How does the map fit into the responsive design?
Try adjusting the size of your browser window. Does the map scale
like the rest of the design? Are there any problems with the map?

3

Time to put our work to the test. Grab ontap.html and answer the following:

<div class="footer">

 <p>See you soon! Love, The Splendid Walrus</p>

</div>

[INSERT SCRIPT HERE]

</body>

</html>

Open ontap.html and find the
bottom of the HTML document.

We’re going to add our
JavaScript as the very last
thing on the page before the
closing </body> tag.

Add the JavaScript to the On Tap Now page
Now we need to add the JavaScript to the page. Because the map is a

nice‑to‑have feature and not essential, we’re going to make it one of

the last things the browser adds to the page.

Putting nonessential JavaScript at the bottom of the page is a

great way to make a page load faster. The browser will parse all of

the HTML and CSS before it gets to the JavaScript. Our visitors

will have a usable page more quickly and won’t be stuck waiting

for the map code to load.

78 Chapter 2

is the map responsive?

How’s it looking? Any problems?
Does the JavaScript get downloaded on mobile phones?1

Does the map show up on larger screens?
Yep. The map looks great in our desktop browser.

2

How does the map fit into the
responsive design?
Uh oh. We’ve got some problems here. The
map doesn’t scale like the rest of the responsive
design. Not only that, but there are some screen
widths where the map overlaps the beer labels.

3

Check the page using an iPhone on the Blaze Mobitest service.
Make your way to the detailed waterfall chart by clicking the HAR
file link on the results page to see all of the files downloaded.
The map files are not getting downloaded. Perfect.
Now what about Android? Blaze says the JavaScript still
downloads, but it is another false report.
We mentioned that Blaze had to modify its phones to make them
work for remote testing. One odd by‑product of this modification is
that JavaScript running on its test phones reports the screen width
as much wider (800 pixels!) than what unmodified phones do.
You’ll have to take our word for it that the JavaScript works and
the map code isn’t downloading on Android, either.

Yikes. When the browser window
narrows, the map overlaps the
beer labels.

The map shows up in Chrome, which
means our JavaScript is working.

Look Ma, no Google Maps downloads.

Why isn’t the map scaling like
the images on the page?

you are here 4 79

responsible responsiveness

These widgets aren’t responsive

The iframe code for Google Maps isn’t
designed to be fluid. It hardcodes the width
to 300 pixels. I bet if we change the iframe
to use CSS, we can make it fluid.

Responsive Web Design is so new
that widgets like Google Maps are
unlikely to be fluid by default.
When companies provide widgets to embed in other

web pages, they do everything they can to make

sure the widget will work regardless of the page

layout. That often means hardcoding things like

height and width in the HTML itself.

Dealing with poorly built third‑party widgets is a

problem for nearly every mobile site. Responsive

designs have an additional requirement that

widgets be fluid.

<iframe id="map" width="300" height="300" frameborder="0" scrolling="no"
marginheight="0" marginwidth="0" src="http://maps.google.com..."></iframe>

Width and height are fixed, which
prevents the map from scaling.

Many of the attributes on this iframe could
be moved to CSS.

Ideally, our HTML would only contain the

content and markup. It wouldn’t contain any

presentation information.

Which CSS properties map to the
attributes used in the iframe?

80 Chapter 2

use css for presentation

<iframe id="map" width="300" height="300" frameborder="0" scrolling="no"
marginheight="0" marginwidth="0" src="http://maps.google.com..."></iframe>

Move iframe attributes to CSS equivalents
Let’s move as many of the iframe’s attributes to CSS as possible

and make them fluid while we’re at it.

First, we need to create a list of attributes we want to move to CSS

by identifying which attributes are for presentation and which are

content or metadata.

Metadata
Presentation Presentation Presentation Presentation

Presentation Presentation Content

All those presentation attributes belong in the CSS.

Match styles to attributes
Some of the attributes share the same name with their CSS

comrades. We don’t have to look hard to find the CSS version of

width and height. Others, like frameborder, are obscure

attributes. Fortunately, the CSS counterparts are still fairly

straightforward.

#map {

 width:100%;

 height:100%;

 border:none;

 overflow:hidden;

 margin:0;

}

Our new CSS rules
for the map iframe

<iframe

 id="map"

 width="300"

 height="300"

 frameborder="0"

 scrolling="no"

 marginheight="0"

 marginwidth="0"

 src="http://maps.
google.com...">
</iframe>

The iframe attributes
To make the iframe
fluid, we’re changing
from a set number
of pixels to a
percentage like we
learned in Chapter 1.

In CSS, scrolling is
controlled by the
overflow property. This
says we want to hide any
extra content instead
of adding scroll bars. It
accomplishes the same
thing as scrolling = “no”.

Add these rules to
layout.css.

Do this!

you are here 4 81

responsible responsiveness

Remove attributes from the JavaScript
Now that we’ve got CSS doing the heavy lifting, let’s modify our

JavaScript so the presentation attributes aren’t set. Remove the

lines that add the presentation attributes that we identified.

<script type="text/JavaScript">

var breakpoint = 481,

 id = 'mapcontainer',

 viewportWidth = window.innerWidth;

if (viewportWidth > breakpoint) {

 var mapElement = document.createElement('iframe');

 mapElement.id = 'map';

 mapElement.width = '300';

 mapElement.height = '300';

 mapElement.frameborder = '0';

 mapElement.scrolling = 'no';

 mapElement.marginheight = '0';

 mapElement.marginwidth = '0';

 mapElement.src = 'http://maps.google.com/maps?f=q&so
urce=s_q&hl=en&geocode=&q=334+NW+11th+Ave,+Portland,+O
R+97209&aq=&sll=37.0625,-95.677068&sspn=58.164117,80.3
32031&vpsrc=0&ie=UTF8&hq=&hnear=334+NW+11th+Ave,+Portl
and,+Oregon+97209&t=m&ll=45.525472,-122.68218&spn=0.01
804,0.025749&z=14&output=embed';

 document.getElementById(id).insertBefore(mapElement,
maplink);

}

</script>

Find the JavaScript at the bottom of ontap.html.

Delete these

lines from the

JavaScript.

Save layout.css and ontap.html. Load the On Tap Now page in Safari.
You can use http://hf-mw.com/ch2/ex/6/ontap.html if it’s more convenient. How
does the map look?

Test Drive

82 Chapter 2

map misbehavior

No one should have trouble finding the pub now
The map got a little full of itself, didn’t it? It nearly took over the whole

left column. Soon it will start singing, “I’m the map, I’m the map” to get

our attention—unless we tame it.

If you make the window narrow, you can begin to see why the map

might be trying to get our attention. The map gets squeezed until it

turns into a thin, tall strip that is completely unusable.

We still want the map to scale, but we need to set some boundaries on

how far it scales in each direction.

The height of the map is too big.
Setting the height to 100% makes the map longer

than the tallest image on the page. Let’s keep the

map a little more under control by setting the

height to 400px.

1

 height: 400px;

Add this line to the
#map CSS rule.

Hey look, the map is wearing skinny jeans.
When the window gets narrow, the map gets so thin

that most of the information cannot be seen. We need

to set a minimum width so that the map doesn’t go

beanpole on us.

2

#map {

 width:100%;

 height:400px;

 border:none;

 overflow:hidden;

 margin:0;

 min-width: 200px;

}

After adding
the two new lines,
your #map rule in
layout.css should
look like this.

These screenshots are from Safari. Other browsers behave differently. The map isn’t doing what we want in any of them.

you are here 4 83

responsible responsiveness

The map overlap is back

The map is covering up the beer labels again when the window is narrow.

Moving the iframe presentation attributes
into CSS was the first step. Now we need
to take a fresh look at our media queries.
In Chapter 1, we used media queries to switch the layout

at 480 pixels. We determined that width based on the

width of popular smartphones.

What we’re seeing with the map is that we need to look

at the content of the page when we make decisions

about where to apply media queries.

I thought the whole reason for
making the iframe fluid was to get rid of
the overlap. We’ve got everything in CSS now,
but the map is still covering up the beer labels
when you make the browser window narrow.

84 Chapter 2

become one with your content

There’s a problem with using 480 pixels as our breakpoint

for the media query. Not every phone has the same width.

And even if a majority of them do today, who’s to say that

540 pixels won’t be the most common size in the future?

A better approach is to let your content be the guide on

when to make changes to the layout.

We’re not asking you to commune with your content until

it starts to speak to you. But if you adjust the size of your

browser window until things don’t look right, the content

will tell you a lot.

Maybe images are getting too small. Maybe the columns

are too narrow.

When those things happen, that’s where you need a

breakpoint. Then you can craft a media query to change

the presentation at that breakpoint.

Let the content be your guide

We shouldn’t pay so much attention
to typical mobile and desktop screen
sizes. When the content breaks the
layout, it is telling us to adjust our

media queries and JavaScript.

you are here 4 85

responsible responsiveness

Time to bend and stretch that browser
We need to put our content through its paces by making the page as

big and as small as we can while watching for when the layout breaks.

But before we do that, we need some way of knowing how big the

screen is when something looks wrong on the page. The easiest way to

do this is to install a bookmarklet that will show you the window size.

A bookmarklet is a little bit of JavaScript stored in a browser bookmark.

The Window Size bookmark in Safari’s bookmark bar.
When you click the Window Size

bookmarklet, it adds the size of

the window in the upper-left

corner.

Install the bookmarklet in your browser
Go to http://bit.ly/window-resize and drag the link labeled Window Size

into your bookmarks toolbar to create the bookmarklet. Click the

bookmarklet to activate it. Resize your browser and watch the numbers

change in the upper‑left corner of the browser window.

Optional: Install an extension
There is an extension for Google Chrome that not only will show

the window size, but will also resize your window to match common

screen resolutions. You can get it at http://bit.ly/chrome-resizer.

The Web Developer Toolkit (http://bit.ly/webdevtoolkit) will display

page size in the title bar along with a bunch of other useful tools.

It works in Firefox and Chrome.

click

Load the On Tap Now page in the browser with the Window Size bookmarklet

(or a browser extension). Activate the bookmarklet. Resize the browser.

Write down the width of the browser when the layout breaks or the

content looks odd.

86 Chapter 2

sharpen solution

610 pixels: Beer labels touch the map.
At around 610 pixels, the labels touch the map.

If we’re going to create a new breakpoint to

address this problem, we’ll need to do it before

they touch. This means instead of using 610,

we’ll use 640 pixels as the breakpoint.

1,200 pixels: Huge beer labels.
As the browser gets wider, the beer

labels become ridiculously big.

Where they become too big is an

aesthetic judgment. For our tastes,

they start getting too big when

the browser is 1,200 pixels wide.

Did you see other problems as you resized
the browser? How significant do you think a
problem needs to be before it makes sense
to address it with an additional media query?

Let’s review some of the trouble spots that show up

when you resize the browser.

Where’s the whitespace gone?

you are here 4 87

responsible responsiveness

Breakpoints to the rescue
All in all, not too bad. Just a couple of small tweaks to the

CSS should do it.

Shrink the humongous beer labels
There are currently three beer labels in each row. When the

page gets wider, there is room for four beer labels per row.

Create a media query for windows wider than 1,200 pixels

that changes the beer labels to four across the page.

@media screen and (min-width:1201px) {

 .taplist li {

 width: 25%;

 }

}

This change only happens if the
window is bigger than 1,200 pixels.

Setting the width of the list item (li)
containing the beer labels to 25% will
put four labels on each row. Add these rules

to layout.css

Going to one column sooner
Even if the beer labels didn’t overlap with the map, the

layout is getting very crowded at 640 pixels. Instead

of adding a new breakpoint to address the overlap, we

can move our existing media query from 480 pixels

to 640 pixels.

Making this change will convert the layout to a single

column and hide the map. This has the added benefit

of applying the single‑column layout to phones bigger

than 480 pixels.

<link rel="stylesheet" type="text/css" href="layout.css"
media="all and min-width: 641px)">

Set min-width
to 641px.

ontap.html

<script type="text/
javascript">

var breakpoint = 641,

 ...

</script>

/* Mobile/lower-resolution devices
*/

@media screen and (max-width:640px)
{

Set breakpoint
in JavaScript
to 641px.

taps.css

Set max-width
to 640px.

It’s common to make images smaller
proportionally as screens get wider.

Our HTML, JavaScript, and CSS all reference 480 pixels, so we’ll need to update all three.

88 Chapter 2

slimline, responsive—it’s a whole new walrus

Widescreen view with four beer labels per row

Narrower views go to one
column and hide the map.

Lightweight and

fast on mobile

Our mobile-first responsive design is complete

You can use
http://hf-mw.com/ch2/ex/8/ontap.html to run your own speed tests.

Make the HTML as simple as possible and swap the order of the CSS

so that the mobile version is first.

Fix CSS background images so that only one file gets downloaded per

image. Make sure display:none is being used appropriately.

Supply different source files for tags at different screen

resolutions. Make sure the right size image is downloaded.

Use JavaScript to add Google Maps to the page when the browser can

support it and the document is wide enough to accommodate it.

You guys rock! The page
is fast and looks great.
Drinks are on the house.

you are here 4 89

responsible responsiveness

Q: What exactly is a viewport?
A: Imagine taking a sheet of cardboard
and cutting out a rectangle in the middle of
it. Lay that rectangle over your monitor so
you can only see the portion of the web page
that shows through the rectangle. That’s
what a viewport does for web pages.
Q: So the viewport <meta> tag
tells the browser what size to make the
viewport?
A: Exactly. By default, iOS sets the
viewport to 980 pixels. If you’ve optimized
your page for smaller screens, setting
the <meta-viewport> tag lets the
browser know to set the viewport accordingly.

Q: What are breakpoints?
A: Breakpoints are just a fancy way of
describing the resolution at which a designer
decides to change the layout of a page. This
is usually done via media queries checking
to see if a page is narrower or wider than a
certain number of pixels.
A complex responsive design may have
multiple breakpoints, including some that
make wholesale changes to the layout as
well as some minor breakpoints that only
make a few targeted tweaks to fix minor
layout issues.
Q: I don’t want to prevent people
from zooming, but that iOS bug is pretty
heinous. Is there any way to enable
zooming and not have a broken page?
A: You can find a JavaScript workaround
at https://gist.github.com/901295.

Q: Why does the overlap with the map
occur in the first place?
A: Because the map is an element that
doesn’t scale with the browser window.
When the window is small, the browser can’t
scale the map any smaller, so the left column
ends up overlapping the right column.
Q: Doesn’t adding a min-width
to the map break the responsive design
by creating an element that doesn’t scale
with the browser window?
A: Technically, yes. It seems like a decent
solution here because we’ve modified the
media queries to address overlapping
content. Another option would have been to
use media queries to adjust the dimensions
of the map and proportions of the columns.

 � Adding media queries to an existing desktop site may
make it look good on mobile, but doesn’t mean that it is
mobile optimized.

 � Because most mobile browsers don’t support plug-ins,
there are fewer tools to assist mobile web developers.

 � Using a proxy server or a testing solution like Blaze
Mobitest can help you see what is actually getting
downloaded by a mobile browser.

 � HTTP archive files and waterfall charts are essential
performance tools.

 � Mobile-first Responsive Web Design helps optimize
web pages by making sure that smaller resources are
downloaded by default.

 � Mobile‑first RWD is another form of progressive
enhancement that uses screen size to determine how
to enhance web pages.

 � Designing for mobile first forces you to focus on what
really matters, thus helping you remove cruft from
pages.

 � Internet Explorer 8 and below do not support media
queries. Conditional comments are a workaround.

 � JavaScript can augment media queries by testing for
screen size and adding content when appropriate.

 � Instead of designing breakpoints based on the typical
screen resolutions, let the content dictate the
resolutions at which you need to modify the layout.

this is a new chapter 91

Beautiful, harmonious,
responsively designed websites
that work for all browsers and
devices known to man...was it all

but a wonderful dream?

a separate mobile website3
Facing less-than-awesome circumstances

The vision of a single, responsive Web is a beautiful one...
in which every site has one layout to rule them all, made lovingly with a mobile-first

approach. Mmm…tasty. But what happens when a stinky dose of reality sets in? Like

legacy systems, older devices, or customer budget constraints? What if, sometimes,

instead of mixing desktop and mobile support into one lovely soup, you need to keep

’em separated? In this chapter, we look at the nitty-gritty bits of detecting mobile users,

supporting those crufty older phones, and building a separate mobile site.

92 Chapter 3

creature comforts

Creature Comforts has agents in the field
Creature Comforts International is a worldwide, nonprofit agency that

helps treat sick or injured livestock in areas hit by natural disasters

and provides support to affected farmers and ranchers. Until recently,

the organization relied on voice communications or the occasional

ruggedized laptop for their agents to coordinate personnel and supplies.

Creature Comforts serves
a lot of areas where the health and

safety of livestock is tantamount to
the citizens’ financial well-being and

recovery after a disaster.

Creature Comforts’
VP of Communication

But being able to access and
exchange information—quickly—about
people and supplies in our system is

getting harder as we grow.

you are here 4 93

a separate mobile site

How can agents get and share the info
they need?
Creature Comforts is not a new organization; its roots go back over

two decades. It already has a lot of internal infrastructure, including

a significant “traditional” web presence built on a proprietary content

management system (CMS).

...but our current
website doesn’t look good or
work well on mobile phones.

We’ve got people
worldwide who need to

stay in touch and get information
while in the field. We have web

tools for that already...

An increasing need for mobile web
Increasingly, the Creature Comforts staff is finding that the most

reliable—and often only—connectivity in the field is via the local

cellular network. Land‑based Internet connections are hard to find,

require more equipment, and restrict mobility.

Creature Comforts needs a mobile website: one that can support a

wide array of devices on a wide array of connections.

94 Chapter 3

sometimes separation makes sense

Frank: I’ve got a bit of bad news. Creature Comforts doesn’t have

a very big budget. There are some internal politics involved. And it

would take a huge effort to extract the group’s administrative and

content‑publishing processes from its older, proprietary CMS. We can’t

touch the desktop site, at least for now.

Jim: Doesn’t that make our job impossible?

Frank: No, but it might require a bit of compromise. Creature

Comforts’ website is big and complicated, but the only part the group

feels it is vital to make mobile‑optimized is its so‑called Comforts

Logistics Portal. This web application lets agents give and receive

updates and coordinate scheduling and supply drops. This part of the

desktop website is relatively contained and has APIs that we can use.

Jim: I don’t get it. How do we selectively change only part of the site?

Frank: In this case, I think we’re going to need to develop a separate

site for mobile users.

Jim: That sounds messy.

Frank: The mobile web can be a messy job. You know that. We need

to make this work, and work reliably, for a lot of people scattered

around the globe. This is not the spanking‑new‑smartphone crowd,

either. A lot of the staff members’ devices are donated, older phones,

and the mobile connections in some of the areas they serve are spotty

at best. We need a lean, simple, and functional mobile website that

helps these folks get their jobs done. We simply can’t wrangle their

existing desktop stuff into what we need.

Sometimes it makes
sense to create a
separate, standalone
site for mobile devices.

 Scared of programming?

Don’t sweat it too much.

There is some talk of APIs and web

applications whirling around, but

we won’t make you do any of the heavy lifting. Leave

the programming up to us—your job is to help us

make it look good and work well on the mobile web.

Jim
Frank

This sounds like a great project. Can’t wait to get in
and make the agency’s CMS deliver more mobile-friendly

content and use some responsive design goodness.

you are here 4 95

a separate mobile site

Q: What does a content management system (CMS) do?
A: A web CMS is a combination of editing, publishing, and rights
management tools for creating and managing web content. Some
CMSes are quite full‑featured and provide an environment for
developing web applications quickly (sometimes these are called
content management frameworks, or CMFs).

CMSes let administrative users, who might not be familiar with HTML
markup or web design, create and manage content.

There are CMSes in both the open source and commercial spaces,
written in every programming language you can think of. Examples
include WordPress, Drupal, DotNetNuke, Joomla!, and SharePoint.
Larger or specialized organizations sometimes create their own CMS
software.

Most CMSes also handle the publishing of content, using templating
systems or other mechanisms. This can make the transition to
support mobile devices tricky, as, in many cases, the content is
tangled up with presentation layers.

This is the situation with Creature Comforts. Its CMS, designed
several years ago, has only one set of templates. Retooling
the system from the ground up would be too expensive for the
organization right now.
Q: Is adapting for mobile devices a problem with every web
CMS?
A: The number of CMSes out there is bewildering. Some are more
easily adapted for mobile devices than others. The problem of mixing
content, logic, and presentation is certainly one suffered by many
popular CMSes.
The development communities and companies behind many CMSes
are actively working on subsequent releases that are optimized for
delivering content to different types of clients. And forward‑thinking
folks in the mobile web world are reimagining ways of structuring
content—treating content more systematically, like application data,
to makes its reuse across multiple platforms more straightforward.

APIs Up Close

APIs (application programming interfaces) are systematized,
clearly defined interfaces created so that different software systems
can talk to one another. An example of a popular API on the Web is
the Twitter API. The Twitter API defines a set of methods that web
programmers can use to retrieve and alter data in the Twitter system.
The Creature Comforts web application team coded the part of
the website that allows agents and admins to manage people and
supplies among the far‑flung teams. As part of this development, the
team created an API that can be used to get and update information
for team members and materials.
The API returns structured data that our mobile web dev team can
use to build a mobile web version of the Creature Comforts site.

Unlike its CMS, Creature
Comforts’ API doesn’t
conflate logic and presentation.
So it will make our mobile
optimization a lot easier.

96 Chapter 3

hold while your request is redirected

Send mobile users to a
mobile-optimized website

Different kinds of
devices and browsers
request the website (e.g.,
www.example.com).

A script on the web server
examines the incoming request
and attempts to determine
whether the client is mobile.

Mobile clients are redirected

to the mobile site. Desktop clients stay on the
desktop-oriented site.

m.example.com www.example.com

Sometimes it’s necessary to have a separate website

for mobile devices and desktop browsers. Often,

you’ll want your users to be able to go to a single

domain—e.g., www.example.com—and automatically

get routed to the appropriate site based on their

devices.

www.example.com

you are here 4 97

a separate mobile site

Sniff out mobile users
To make this setup work—rerouting mobile devices to the

mobile‑optimized site—the web server needs to know if an

incoming request comes from a mobile device or not.

How can you “know”
which browsers are mobile?

We’re going to make a stab at
determining whether a user is
on a mobile device or not by
looking at the User-Agent HTTP
header sent by the browser.
There are other techniques, but user‑agent

detection is a very common server‑side

approach for device detection.

A user-agent string is a
piece of text that serves
as a sort of ID card for
a client application (in
our case, web browsers).
Each unique browser is
a unique user agent.

This technique is commonly called “user-agent sniffing.”

“User agent” is often
abbreviated to “UA.”

98 Chapter 3

user-agent sniffing (seriously)

Getting to know user agents

Mozilla/5.0 (Windows NT 6.0) AppleWebKit/535.1 (KHTML, like
Gecko) Chrome/14.0.792.0 Safari/535.1

Why would the user agent for Chrome on Windows mention Safari? What’s

KHTML, and how is it “like” Gecko? Like your appendix or the stumpy leg

remnants in whales, some of this is evolutionary cruft.

The vestigial “Mozilla compatibility flag” (Mozilla/5.0 in the example above) is

practically omnipresent to this day, though it doesn’t mean much anymore. Mentions

of Mozilla, KHTML, Gecko, or WebKit are UAs’ way of claiming that their layout

engines are comparable to or “better” than those. At the time of this writing, all

WebKit‑based browsers on mobile devices except for Android mention “Safari” in

their user‑agent string (Apple originally developed WebKit, basing it on KHTML).

Web browsers—and, yes, that includes mobile browsers—send a User-Agent

header as part of the HTTP request whenever the browser sends a request

for a web page or resource.

User‑agent strings have long been used (and misused) by webmasters to identify

(and misidentify) browsers. Way back in the misty history of the 1990s, so‑called

user-agent sniffing was the bane of millions of users faced with ubiquitous “This

site better viewed in Internet Explorer” (or Mozilla or Netscape or whatever the

preferred browser flavor was at the time).

Chrome 14 running on
Windows Vista…of course!

User-agent archaeology
The structure of user‑agent strings today is a curious and sometimes confounding

patchwork of convention, confusion, and trickery. Full order has never successfully

been imposed over how they are written. So you can end up with things like:

Request line

Request headers

Request body (if any)
Simplified structure of an HTTP request

Host: www.example.com

Accept: text/html,application/xhtml+xml,application/xml

Accept-Encoding: gzip,deflate,sdch

Referer: http://www.example.com/foo

User-Agent: Opera/9.64(Windows NT 5.1; U; en) Presto/2.1.1

GET /pretty.png HTTP/1.1

you are here 4 99

a separate mobile site

Mozilla/5.0 (Windows NT 6.0) AppleWebKit/535.1 (KHTML,
like Gecko) Chrome/14.0.792.0 Safari/535.1

Let’s take a deeper look at the pieces of some real‑life

user‑agent strings.

Mozilla/4.0 (compatible; MSIE 7.0; Windows Phone OS 7.0;
Trident/3.1; IEMobile/7.0; SAMSUNG; SGH-i917)

BlackBerry9700/5.0.0.442 Profile/MIDP-2.1 Configuration/CLDC-1.1
VendorID/612

Chrome 14 running on
Windows Vista (we met
this on page 98).

A Samsung phone running Windows Phone 7

A BlackBerry
9700 (Bold)

User Agents Way Up Close

Mozilla/5.0

Mozilla/4.0

Windows NT 6.0

Windows Phone OS 7.0

BlackBerry9700/5.0.0.442
IE Mobile/7.0

Chrome/14.0.792.0

AppleWebKit/535.1

Trident/3.1

KHTML, like Gecko

Safari/535.1
MSIE 7.0

Profile/MIDP-2.1

SAMSUNG; SGH-i917

Configuration/CLDC-1.1

VendorID/612

Browser name and version

Layout engine (Trident
is IE’s layout engine).

Platform, OS, and version

This browser is
“compatible with”
or historically
based upon…

Java runtime for
mobile devices

Java ME framework
specification

Identifies the
vendor/carrier

…miscellaneous elements

Analyze some of the pieces

This Samsung sends model info. While not rare, this isn’t necessarily common.

100 Chapter 3

what's my purpose

Layout engine

Presto/2.1.1

You’ve seen a few user‑agent strings dissected. Now you try it. Match each snippet,

extracted from the user‑agent strings above, to its purpose.

Mozilla/5.0 (Linux; U; Android 2.1; en-us; ADR6200 Build/ERD79)
AppleWebKit/530.17 (KHTML, like Gecko) Version/4.0 Mobile Safari/530.17

Mozilla/5.0 (BlackBerry; U; BlackBerry 9800; en-US) AppleWebKit/534.1+ (KHTML, like Gecko) Version/6.0.0.246 Mobile Safari/534.1+

Opera/9.64(Windows NT 5.1; U; en) P
resto/2.1.1

Apple WebKit/534.1+

Windows NT 5.1

Mozilla/5.0

Version/6.0.0.246

KHTML, like Gecko

Opera/9.64

Layout engine

OS, platform, and version

Historical/compatible flag

Historical/compatible flag

Browser version

Browser name and version

3
2

Answers on page 102.

1

you are here 4 101

a separate mobile site

User agents: spawn of Satan?

So, if we use user-agent sniffing to
figure out which devices are mobile,
isn’t that just enforcing the same
old bad behavior that created the
user-agent mess in the first place?

Well, sort of.
Utter the term “user‑agent sniffing” loudly in a room full of

web developers, and you’ll invariably get some stern looks of

disapproval and a couple of urgent, strangled sounds.

User‑agent sniffing rubs a lot of developers the wrong way. We’ve

already seen how complex user‑agent strings can be. In addition,

user‑agent spoofing, in which a user (purposely or not) configures

his or her browser to send a different UA header, is common. And

there are thousands upon thousands of unique UAs, with more

entering the market every single day.

Detecting mobile browsers by sniffing user agents on the server

can definitely seem like an inelegant and inaccurate hack. But

sometimes it’s the best (if crude) tool for the job.

Can you think of some reasons why user-agent
sniffing might be a necessary evil?

102 Chapter 3

exercise solution

SOlUTion

 Not all user-agent
strings follow
consistent patterns.
Some user-agent strings
make a lot more sense

than others. User agents don’t all
use the same constituent parts, and
some are outright peculiar. There are
some basic patterns that most follow,
but don’t rely on that too much. Don’t
worry! We have some good tools to
account for (most of) this.

Layout engine

Presto/2.1.1

Apple WebKit/534.1+

Windows NT 5.1

Mozilla/5.0

Version/6.0.0.246

KHTML, like Gecko

Opera/9.64

Layout engine

OS, platform, and version

Historical/compatible flag

Historical/compatible flag

Browser version

Browser name and version

Presto is the
Opera browser’s
layout engine.

What browsers are these?
Curious about the example user‑agent strings used for this

exercise (on page 100)? Here are the clients they came from,

unmasked for you:

A Droid Eris (aka HTC Desire) Android
phone running the Android 2.1 browser

1

Opera 9 running on Windows XP2

BlackBerry 9800 (Torch) running the
BlackBerry OS 6 browser

3

Compare the BlackBerry Torch (OS 6) UA on page 100

against the BlackBerry Bold (OS 5) UA on page 99.

Different, huh? As of OS 6, BlackBerry browsers use

the WebKit layout engine, and their UA strings look a

lot more like other WebKit browsers.

you are here 4 103

a separate mobile site

Q: What about the other parts of user-
agent strings on page 99 that you didn’t
explain? What does en-us mean? What
does U mean?
A: The “en‑us” is language information,
and means that the browser and its interface
elements are localized for English, US‑
style. The “U” indicates that the browser
has “strong” security (as opposed to “I” for

“weak” security, or “N” for no security at all).
To analyze other various bits of user‑agent
strings like this, make a trip to the ever‑so‑
useful www.useragentstring.com.
Q: Is there seriously a different user
agent for every build, release, version,
platform, device, whim, and vendor out
there?
A: Pretty much.
Q: Does anything else send
User-Agent headers besides
browsers?
A: Several other kinds of applications
that make requests to web servers also
send User-Agent headers. These
include, but aren’t limited to, search engines,
crawlers, and various Internet bots (both
benign and nefarious). Sometimes web
server logs capture user‑agent information
about unusual things that are accessing
our sites, like a web viewer built into, say, a
note‑taking desktop application, or a web
bookmarking tool, or a monitoring service that
pings a site to make sure it is operational.
Q:Why would people “spoof” their
browser’s user agent?
A: Why would anyone purposely ask
their browser to “lie” for them, you ask?

A few reasons. Two common motivations
are privacy and the desire for a specific
experience. Some users don’t want to share
information about what browsers they are
using. In other cases, a user might want
to try to see web content in a particular
way. A popular example is the “desktop
mode” available in several mobile browsers.
By turning this on, users are often (and
sometimes unknowingly) causing the
browser to send a different User-Agent
header, one that looks more like a desktop
browser. Sometimes this is done sanely,
and is just fine—Windows Phone 7 desktop
mode user agents are relatively easy to spot.
But not always. Take a look at the user‑
agent string that one of the Android versions
of the mobile browser Skyfire sends when in
desktop mode:
Mozilla/5.0 (Macintosh;
U; Intel Mac OS X 10_5_7;
en-us) AppleWebKit/530.17
(KHTML, like Gecko)
Version/4.0 Safari/530.17
If that looks an awful lot like desktop OS
X Safari, that’s because that user agent
is completely identical to one of the user
agents for desktop Safari.
Q: But if someone has gone to the
trouble of disguising his mobile browser
as a desktop one, shouldn’t we respect
his wishes and give him a desktop
experience?
A: Though this is a delicate question of
philosophy, we tend to lean toward “yes,”
and fill in the gaps with responsive design
(which will adapt to the environment no
matter who or what the browser claims to be,
assuming the browser is modern enough to
support media queries and the like). There’s
a bit of a gray area in terms of whether users
know what they’re doing or not, but, hey, as
far as we’re concerned, you should get what

you ask for. Disagreement abounds between
developers on this point. There be dragons.
Tread lightly.
Q: Hey, you totally neglected to
mention UAProf.
A: Many mobile devices send UAProf
(User‑Agent Profile) headers when making
requests, often (but not always) as the
x-wap-profile request header. The
UAProf specification gives mobile handset
manufacturers a way to provide information
about the device. Usually, a link to the
location of the UAProf is provided in the
request header.
This sounds pretty good, but unfortunately,
not all devices and browsers send UAProf
headers. Additionally, a rather unpleasant
percentage of the links to UAProfs are
not valid. And there is inconsistency in the
amount and quality of the data in the UAProf
files themselves.
Q: OK, so, there are a million billion
user agents and UAProfs aren’t all
that reliable, yet you claim that there
is a sane and reasonable way to do
user-agent-based detection?
A:In Chapter 5, we’ll be meeting some
organizations and projects whose entire
existence is concerned with tracking user
agents and building databases of metadata
about them and other data sources like
UAProfs. Until then, we’ll keep it simple
and use a basic server‑side script to look
for user‑agent strings that bear the primary
hallmarks of mobile browser user agents.

www.useragentstring.com

104 Chapter 3

user-agent sniffing isn't all bad

Straight talk: Most major sites have a
separate mobile website
The majority of the world’s biggest websites have a separate mobile site,

and a majority of those use some form of user‑agent sniffing to route

traffic. If user‑agent sniffing is so derided, why is this the case? There

must be some goodness in the user‑agent approach.

Some things seem more natural on the server side…
Redirecting incoming traffic to a mobile site is something that fits

naturally on the server side. If we’re sending mobile requests off to a

separate site—something that we’ll need to do for Creature Comforts—

decisions are best made before content is sent to the client.

…and the User-Agent header is our best clue
The User-Agent header, while imperfect, is the most

straightforward and reliable clue the server has about the

requesting browser. There are a few other HTTP request headers

that provide hints to a client’s “mobileness,” but none so ubiquitous

as that maddening User-Agent header. It’s the best option in a

pile of not‑so‑great alternatives. And, while we’ve gone to certain

lengths to point out where user‑agent sniffing can go wrong (hey,

devil’s advocate!), most of the time it can be used accurately, especially

when wielded responsibly.

We can use a simple, freely
available script to perform
basic mobile device
detection.

OK. Say we do build a separate mobile
site. How exactly are we going to see the user
agents of requesting browsers...and how are we
going to get the mobile traffic to the new, mobile

version of Creature Comforts?

you are here 4 105

a separate mobile site

When what you really want to do is (re-)direct

Wouldn’t such a script
need to go on Creature Comforts’

existing (desktop) web server so it can
detect mobile browsers and redirect them
to our mobile site? I thought we couldn’t
make any changes to the existing site.

Good catch. Fortunately, Frank and
Jim have been able to work with
Creature Comforts’ IT department.
We’ll be able to put a simple redirect script on

the agency’s existing web server. The web team

at Creature Comforts will include the mobile

detection script at the top of each page, so that

mobile traffic can be redirected.

Get ye to the script
Time to make a quick trip to

www.detectmobilebrowsers.com. There you’ll

find a free, simple mobile detection script.

We want to be sure you have the latest

version, so go get it now! Make sure to

download the PHP version.

The script is available for
many different languages
and platforms. We want the

PHP version.

106 Chapter 3

script taming

Take a peek at the script

<?php

$useragent=$_SERVER['HTTP_USER_AGENT'];

if(preg_match('/android|avantgo|blackberry|blazer|compal|elaine|fennec|hiptop|iem
obile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|opera m(ob|in)i|palm(os)?|phon
e|p(ixi|re)\/|plucker|pocket|psp|symbian|treo|up\.(browser|link)|vodafone|wap|wi
ndows (ce|phone)|xda|xiino/i',$useragent)|| preg_match('/1207|6310|6590|3gso|4thp
|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny
|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s)|avan|be(ck|ll|nq)|bi(lb|rd)|
bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(
mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)
|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-
5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp(i|ip)|hs\-
c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac(|\-|\/)|ibro|idea|
ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt(|\/)|klon|kpt
|kwc\-|kyo(c|k)|le(no|xi)|lg(g|\/(k|l|u)|50|54|e\-|e\/|\-[a-w])|libw|lynx|m1\-
w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(di|rc|ri)|mi(o8|oa|ts)|mmef|mo(
01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v)|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2
)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti
|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-
2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r60
0|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-
|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(f
t|ny)|sp(01|h\-|v\-|v)|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-
|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v40
0|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|8
1|83|85|98)|w3c(\-|)|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|xda(\-|2|g)|yas\-
|your|zeto|zte\-/i',substr($useragent,0,4)))

header('Location: http://detectmobilebrowser.com/mobile');

?>

 The script might look a bit

beastly right now, but we don’t

have to do much to tame it.

When you first open up

detectmobilebrowser.php in your preferred text editor, you

might find it a bit…brutal‑looking. But fear not. We’re

going to walk you through the basics of how it works,

but, really, all you have to do to get it to work is make a

couple of small changes—and we’ll show you how.

1

2

3

detectmobilebrowser.php.txtThis is the script!
The one you
download might
not look exactly
the same (it
might be a newer
version), but it
should be similar.

Do this!

Rename this file
redirect.php and save it
inside the chapter3 folder.

you are here 4 107

a separate mobile site

It grabs the requesting browser’s user-agent string.
In PHP, this is accessible in the global

$_SERVER['HTTP_USER_AGENT'] variable.

1

It uses some carefully crafted regular expressions.
There are two regular expressions here. Both look at the

user‑agent string and see if it matches known mobile values.

You can probably spot some obvious snippets like “hiptop” or

“symbian.” But there are some more obscure things in here as

well—these regular expressions were developed by people who

really know the mobile landscape!

2

It redirects browsers whose user-agent string
matches either of the regular expressions.
If the browser’s user‑agent string matches either of the

regular expressions, the script sets a Location header with

the designated place to redirect mobile traffic.

3

How does the script work?
The script examines the user‑agent string and determines

whether it seems mobile—and if so, it redirects. It does

this in three steps:

By default, mobile traffic is redirected
to www.detectmobilebrowser.com/mobile —
we’ll need to change this.

Make sure your working
environment is seaworthy
A few safety checks before we continue!

The next sections—and many more in the

book—require you to have a working web

server that allows you to use PHP. This

can be your own computer, or you can

use a hosting provider; we’re not picky.

But if you haven’t done so yet, go now to

Appendix ii and find information about

how to get yourself squared away.

A regular expression, a.k.a.
“regex” or “regexp,” is a
formal means of matching
patterns in strings.

108 Chapter 3

tweak your redirect script

Jim: Hey, Frank, how are you going with getting started on Creature Comforts’

mobile site?

Frank: I thought it might be a bit much to try to handle writing code to work

with the agency’s APIs and do the mobile design at the same time, so I’ve

whipped up some quick mockups for us to start with. One thing at a time, right?

Jim: Sounds good. Did you use responsive stuff ?

Frank: Well, yes and no. I used proportional widths, but figured we’re working

with older phones that might not understand media queries and other things

that make responsive designs work so well. I took the desktop HTML templates

for the current Agent Portal landing page dashboard thingy, simplified the heck

out of them, and refactored the CSS to be mobile‑friendly. I used some sample

data so we don’t have to worry about functionality or APIs or anything for now.

Jim: What about the mobile device detection and redirect script? How are we

going to test that?

Frank: Well, you heard that we’ll ultimately put it on Creature Comforts’ server

and those folks will call it from every page they serve. But for now, we’ll want to

test it locally to check out how the redirect will behave.

<?php

$useragent = $_SERVER['HTTP_USER_AGENT'];

$mobile_location = 'http://' . $_SERVER['HTTP_HOST'] . '/index_mobile.html';

if(preg_match(...))

 header('Location: ' . $mobile_location);

?>

A few tweaks to the mobile redirect script
We’ll need to make a few customizations to the redirect script so that we can see it

in action. We’ll want to add a new line to define where the script should redirect

if it sees a mobile user. The PHP $_SERVER['HTTP_HOST'] variable is the

name of the web host that the script is running on.

We’ll also want to edit the line that sends the Location response

header—we want to redirect mobile traffic to our mobile mockup, not the

www.detectmobilebrowser.com site.

The name of the web host (e.g.,
“www.example.com,” “localhost,”
or “10.0.0.2” or somesuch if
you're doing your work on your
own computer)

Make a mobile mockup

Just as there are request
headers (like User-Agent), HTTP

responses (sent back by the
server) also have headers.

redirect.php

you are here 4 109

a separate mobile site

Put the contents of the chapter3 folder at the root of
your web server.
If you don’t want to put the files at the document root, no biggie. Just be

sure to update the path in the line that defines $mobile_location.

1

Make the edits from page 108 in the redirect script.
Open the redirect script again in your text editor (if it’s not open

already). Make the edits in the script and save it.

2

Edit index.php.
Add the following line to the very top of the index.php file:

<?php require_once('redirect.php'); ?>

Save the file.

3

View the mockup in a mobile browser (emulator or real life).4

The mockup viewed on
an iPhone 4—simple,
but it works.

 These are just mockups.

The mobile mockups we’ll be using

throughout this chapter are just that—

mockups. They use sample data to

represent what the site will look like when “plugged into”

real data APIs. The data represented is imaginary, and

many links aren’t functional. Don’t worry about it!

There’s no
need for PHP
processing in this
file, so we’ll just
make it .html.

index.php

chapter3

index_mobile.
html

redirect.php

styles.css

cows.jpg

CSS background
image

extras

Stuff for later;
ignore for now.

This is the
redirect script
you downloaded
and edited.

Test Drive
Copy the contents of the
chapter3 folder to your web
server's document root.

110 Chapter 3

opera mini

Special delivery…of complicating factors

Hey, Frank. I checked with the
team that handles distributing phones to

our staff, and it says that a lot of the phones are
running a browser called Opera Mini.

I also overnighted you a package of some of the
common phones we’re using so you can

test them out.

Because it’s made to support
a wide range of (often
lower-end) phones, Opera
Mini acts a bit differently
than full-featured
smartphone browsers.

Opera Mini, huh?
Hotshot browsers like BlackBerry’s WebKit

browser and iOS’s Safari get a lot of glory, but

don’t discount Opera Mini! The sister browsers

Opera Mini and Opera Mobile are the most

popular mobile web browsers in the world.

In the middle of 2011, for example, Opera

reported over 110 million users. That

accounted for more than half of mobile web

traffic in India, and over 90% of mobile web

traffic in Nigeria.

Opera Mini is especially popular in places where

connectivity is slow, or data is expensive or limited.

Opera Mini is actually a mobile transcoder.

This means that when a user goes to a web page

in Opera Mini, the request is routed through

Opera’s servers, where web pages and resources

are compressed and optimized for mobile devices.

This optimization means fewer bytes are ultimately

delivered to the device—resulting in a faster (and

often cheaper) experience.

Opera Mini isn’t just a
developing-world concern. It’s
also quite popular on feature
phones in the US and Europe.

you are here 4 111

a separate mobile site

Let’s see how the mobile mockup looks in the Opera Mini 4.2 simulator. Use the web‑embedded
Opera Mini simulator to view the mockup at http://hf-mw.com/ch3/ex/1/.
Make some notes about what looks different (or, alas!, broken). Can you find at least four differences
between the way the mockup looks in the Opera Mini simulator versus the iPhone or Android
simulator (page 109)?

Do this!

We’re going to be looking at the mobile mockup in Opera Mini
4.2. Fortunately, Opera has a convenient, web‑based simulator
(it’s a Java Applet) that you can use. Point your web browser at:
http://www.opera.com/mobile/demo/?ver=4

1

3

2

4

Cool. It’ll be handy to have these
phones on hand for testing. On the

other hand, wow. Some of these phones are
pretty old and obscure...and I wonder how the

mockup will look on Opera Mini.

112 Chapter 3

exercise solution

1

2

3

The mockup looks pretty different in Opera Mini 4.2, huh? Let’s look at some of
the places where it differs or is weird. We found five trouble spots.

The <h1> and <h2> tags are not styled
and are quite small. Because of this, the
background image in the header seems
kind of silly.

1

Text formatting is not getting applied
very well. Italic text is not italic, and
bold text is not bold.

3

Instead of rounded corners, we get
square ones.

4

The status message uses overflow:
scroll, which is an absolute no-no on all
mobile devices. Content is cut off, and
scrolling is not working.

5

We can’t really
style any of the
heading elements
in Opera Mini.

This one’s a doozy.

Bonus points if
you noticed this
on the iPhone or
Android already!

3
4

5

2

The entire page is too wide and disappears
off the right side of the screen.

2

Q: Why do I have to view this example on http://hf-mw.com?
Why can’t I use my own copy?
A: Opera Mini is a proxy browser. That means that all web traffic
goes through an Opera server. So, the example mockup and other
code bits have to be hosted somewhere that Opera’s servers can
reach.

If you are doing your work on your own computer, you may well have
an IP address that is not visible to the entire Internet (a so‑called
internal IP address only visible to the network you are connected to).
If you are doing work on a hosting provider or otherwise have the
web pages for Creature Comforts on an externally accessible web
server, you can certainly use your own copy.

http://hf-mw.com

you are here 4 113

a separate mobile site

Not all phones are smartphones…not by a sight
In many of the countries that Creature Comforts works in, seeing a

smartphone is a rarity. In India, smartphones sales are projected to be less

than 6% of the total phones sold during 2011. No big deal…right?

How many phones does India have, anyway?
As of August 2011, India had over 850 million mobile phone subscribers.

This makes India second only to China in total number of mobile phones.

While smartphones are a rarity in India, mobile phones
are more common than toilets!

This is no joking matter. The UN
issued a report comparing the
easy access to mobile phones to
poor sanitation infrastructure.

Emerging markets aren’t the only places where
feature phones outnumber smartphones.
Only recently did the sales of smartphones exceed feature

phones in the United States. Sometime in 2012, smartphones

will finally represent the majority of phones in America. The

same is true of most European countries.

When you see reports about the explosive growth of smartphones,

keep in mind that even with that growth, it will take quite some

time before all of those old phones have been replaced.

And, hey, feature phones aren’t all that bad
Sure, they cause us heartache with their older, quirkier browsers

and often poor connections, but feature phones have made a

huge difference in the lives of many people around the world.

If you want to see some serious innovation, travel to a country

with an emerging market and watch how they use mobile phones

for everything from farming to banking.

For many, a phone isn’t a cute, pocket‑size, lesser version of a

modern computer. It is their primary connection to the world.

What if my users aren’t in India? In the
US, everyone uses smartphones. I shouldn’t

have to worry about those feature phones.

114 Chapter 3

meet xhtml-mp

Let’s keep it basic: Meet XHTML-MP
If you look again at index_mobile.html, you’ll see that the

mockup currently uses this DOCTYPE declaration:

<!DOCTYPE html>

That’s the DOCTYPE for HTML5, an excellent and exciting

choice for robust websites and web apps in this modern world,

but not necessarily right if we want to reach and support the

kinds of mobile devices that the Creature Comforts staff

members use. It’s time to introduce you to our newest friend,

XHTML Mobile Profile (XHTML-MP).

XHTML‑MP is a flavor of XHTML developed specifically to

support mid‑level and feature phones with fair to middling web

browsers. It’s a few years old now—and increasingly overlooked

in favor of its sexier, younger cousin, HTML5—but it’s still useful

for projects like the Creature Comforts mobile site.

<?xml version="1.0" encoding="UTF-8" ?>

< !DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.2//EN"
"http://www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd">

Ready Bake
DOCTYPE

Let’s convert the mockup page to be an XHTML‑MP document. Edit the
index_mobile.html file and replace the HTML5 DOCTYPE (top line of the
file) with the following two lines:

This is the DOCTYPE for
XHTML-MP version 1.2.
That’s the most recent version.

And yes, we know we said
“two lines,” but it doesn’t all
fit onto the page.

XHTML Mobile Profile
is a subset of the desktop
(X)HTML you know and love.
It’s a streamlined version of
HTML designed to perform
well on a lot of different
mobile browsers. And a
lot of mobile browsers are
designed to support it.

XHTML-MP is a kind of XML, so we need this XML declaration, too.
index_mobile.html

you are here 4 115

a separate mobile site

Why would we want to use that old thing?

All we did was change the
DOCTYPE declaration. That
seems totally pointless. Why
can’t I just use HTML5?

…but something actually did happen as a
result of our DOCTYPE change.
If you load http://hf-mw.com/ch3/ex/2 in the Opera

Mini 4.2 simulator, you’ll see a striking change.

Explicitly using XHTML-MP as our DOCTYPE

changed the way the browser behaves!

No longer do we have the content escaping the bounds

of the page. Instead, the buttons and floats all fit within

the page width.

Turns out, Opera Mini takes the HTML5 DOCTYPE

as a “hint” that it is supposed to behave a bit more

like a desktop browser. That means layout that has

percentage‑based widths—responsive layouts, for

example—might not work exactly as we expect.

Hey, look at that!
The content fits on
the screen now.

We admit it. On the surface, using
XHTML-MP doesn’t seem very thrilling…
It doesn’t support some of the things we like to use

in our HTML, and modern phones are increasingly

supportive (or at least tolerant) of HTML5 markup.

 Our job is not done here:
we can’t just change the
DOCTYPE and call it a day.
We’ve changed the DOCTYPE
to XHTML-MP, but that doesn’t

mean that the markup is valid XHTML-
MP markup. We also need to make some
changes to our code to make it actually
XHTML-MP.

116 Chapter 3

mobile-specific DOCTYPE benefits

It ensures support on many older mobile browsers.
Though most mobile browsers won’t choke and die when they encounter

an HTML5 document, they might. And some of the features supported

in HTML5 just plain won’t work on a lot of older phones.

1

It reminds us of potential mobile pitfalls and keeps us honest.
If a feature isn’t supported in XHTML‑MP, there is quite likely a reason. Using

XHTML‑MP and staying within its bounds keeps us from wandering off into

dangerous territory. Just like mobile‑first RWD keeps us focused on constraints,

cleanliness, and the tasks at hand, so too does XHTML‑MP provide a

framework within which to create a widely supported mobile website.

2

Q: Apparently I missed the memo. What’s a DOCTYPE?
A: A DOCTYPE (more formally, a document type
declaration) is a short piece of text at the top of SGML and XML
documents that informs the client (i.e., browser) which DTD to
evaluate the document against.
Q: Too many acronyms. SGML and XML documents?
DTD?
A:HTML is descended from SGML (Standard Generalized
Markup Language), while XHTML is a kind of XML (and thus
is more rigidly structured than its “X”‑less kin), so both warrant
DOCTYPEs.
Document type declarations (DTDs) are formalized definitions
of what elements (tags, attributes, etc.) are allowed, and where,
in the type of document they describe. Each specification of
HTML and XHTML has its own DTD.
Nominally, associating a document with its intended DTD would
allow the rendering client to go validate the document against
that DTD. In real‑life web browsers, this doesn’t happen—web
browsers never actually go out and validate against DTDs.

Q:So what’s the point of a DOCTYPE, and why do
browsers insist on them?
A: Browsers perform a kind of “sniffing” (not too different
from our own user‑agent sniffing earlier) on DOCTYPEs.
While they don’t formally validate documents, they use the
DOCTYPE as a hint about what “mode” to assume and how to
render the content.
Remember the Opera Mini situation, wherein changing the
DOCTYPE from HTML5 to XHTML‑MP (or XHTML‑Basic)
caused the layout mode to change? That’s a good example of
this at work.
Other browsers use the DOCTYPE to determine whether to
render the content in “standards” mode or in “quirks” mode, a
backward‑compatible, more tolerant mode.
As of HTML5, all pretense of the browser going out and actually
looking at a DTD has been dismissed, which is why one ends
up with the short and simple <!DOCTYPE html> (no URL
to a DTD).

Keep your nose clean with XHTML-MP
It’s not always a thrill a minute, but using a mobile‑specific DOCTYPE

helps us because:

you are here 4 117

a separate mobile site

 We need to keep our markup tidy.
We’re pretty serious about that “choke
and die” thing. Mobile browsers
(especially older ones) are less fault-
tolerant of poorly formed markup than

their desktop counterparts. You need to be diligent
about validating your markup—bad markup can cause
mobile browsers to crash, or, even worse, wretched
things like making the phone reboot entirely. Ick.

Grumpy Mobile Web Developer: You’re looking

a bit long in the tooth there, XHTML‑MP. How

long until you buy the proverbial farm, or sell it to

HTML5?

XHTML-MP 1.2: I’m not dead yet! Some people

think I’ve been put out to pasture, but I’m a useful old

coot. I keep those older mobile browsers in line. You

can depend on me. I can help keep you out of trouble.

GMWD: What kinds of trouble can you keep me out

of ?

XHTML-MP 1.2: You want examples? OK. What’s

the point of having an anchor (<a>) tag with a

target of _new or _blank if you’re on a mobile

device? Many mobile browsers won’t let you open a

new window from a link. So, I don’t support targets.

Oh, and, frames—those are dangerous mojo. I don’t

support any frames, not even those fancy‑pants

iframes.

GMWD: No iframes? Bah.

XHTML-MP 1.2: Don’t forget that my XHTML‑MP

family—ever since my granddad XHTML‑MP 1.0

was a boy—brings you access keys.

GMWD: Access keys?

XHTML-MP 1.2: The entire XHTML‑MP lineage

gives you the accesskey attribute on anchor (<a>)

tags. That lets you assign digits 0–9 as shortcut keys

for those anchors. This can be very nice on phones

that have numeric keypads. It can also help cut down

on tedious scrolling.

GMWD: So…XHTML‑MP invented access keys?

XHTML-MP 1.2: Well, technically that was passed

down through generations, from WML through

C‑HTML to us. It’s quite an heirloom.

GMWD: WML? C‑HTML?

XHTML-MP 1.2: I’m not dead yet, but those guys

sure are. Wireless Markup Language (WML) is

gradually being phased out entirely. It’s quite different

than HTML, and my family replaced it as the

preferred mobile markup variant.

C‑HTML (Compact HTML) was used a lot in Japan

in days of yore by DoCoMo. Some people call it

iMode. You want emoticons? C‑HTML has emoji

in spades. But what it doesn’t have fills volumes: no

tables, no CSS, no images. Oh, and no color. Ah, yes,

the good old days.

XHTML-MP Exposed
This week’s interview:
Why bother with XHTML-MP�

118 Chapter 3

right back to basics

Jim: So, Frank, you think we should use XHTML‑MP?

Frank: It sounds like the safest bet. It looks like we need to keep it

clean and simple for these older browsers.

Jim: Is that going to require us to make other changes?

Frank: It’s cool that the XHTML‑MP DOCTYPE fixed the floated

<div>s in Opera Mini, but I’m starting to feel really paranoid about

floats on those older browsers. I know it’s a bit old-school, but

I was thinking of using tables to lay out the dashboard

information.

Jim: I thought HTML tables were relics of the ’90s, man.

Frank: Usually I avoid them like the plague, but they’re not, like,

invalid. And this dashboard stuff does feel like tabular data. I’m just

not convinced that floated, <div>‑based columns are going to work

reliably in all of the mobile browsers we need to support.

Jim: Yeah, tables are kind of uncool, but I guess we know that

they’ll work. Also…what about all that CSS we already wrote for the

mockup?

Frank: I’m feeling a bit overwhelmed by which HTML tags are

supported and what kind of CSS support we can depend on.

I think I’d like to take this one thing at a time. I want to figure out

which HTML elements are valid and supported on these phones, first.

So, I’m going to strip out all the CSS for now and add it

back later.

Hey, guys. One last thing before you do
another round of mockups. Some of the feedback

from Creature Comforts is that it feels like users on
phones with small screens have to scroll through a

lot of links to get to their dashboard section...
Any ideas?

We can assign access key attributes to the
links in the #tools <div> to give quicker access
to the dashboard and the other links.

Without having to do
so much scrolling

you are here 4 119

a separate mobile site

One last curveball
OK, there’s something we neglected to tell you. If this

makes you want to throw up your hands and make

very irritated noises, we understand.

XHTML-MP 1.2 was superseded
by XHTML-Basic in 2008. Sorry.

XHTML-Basic 1.1 gives you everything that

XHTML-MP 1.2 did, with a few bonuses. You get

the target attribute on anchor tags back (not that we’re

suggesting that you use that, necessarily). You also get a few

treats like <sup> and <sub>. Bottom line: you don’t lose

anything you already had in XHTML‑MP 1.2.

 There are a whole lot of

confusing markup options

for mobile devices, but

we’ll stick to XHTML-Basic

for the rest of this chapter.

Sorry we made you go through that, but it was

for your own good. The mobile web markup

landscape is complicated, and you should have a

sense of what’s out there. Now we’ll stop flailing

around and stick with XHTML‑Basic. It’s not too

hard: we’ll just need to identify what tags aren’t

supported, and avoid them. And we won’t even

worry about CSS styling or layout right now.

By the way, scrolling sucks
Not everyone has the luxury of a touchscreen. On many phones,

the way to navigate through web pages is to use a key or a cursor

to scroll through the content. In many interfaces, each clickable

item is highlighted as the users scroll down the page, giving them

an opportunity to follow the links. The more links and content,

the more scrolling.

…thank goodness for access keys
The accesskey attribute on the anchor (<a>) tag lets us assign

a numeric shortcut key to any anchor, reducing the amount of

potential scrolling for our users. This lets users use the number

keys on their phones to access links quickly. Access key syntax

looks like this:

Your Dashboard

The access key number assigned to a link doesn’t show up

automatically, so it’s often handy to use ordered lists ()

instead of unordered lists () for lists of links (assuming the

first item in the list uses accesskey 1).

Also, XHTML-MP 1.2
does still work—just
fine—in mobile browsers.

Access keys let users use their
numeric keys as shortcuts!

120 Chapter 3

test drive

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN"
"http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">

Convert the document to XHTML-Basic.
Replace the current DOCTYPE tag with the following:

1

Remove the CSS for now.
Delete the CSS <link> tag; we’ll deal with CSS later.

2

Convert the in the #tools <div> to an .
This will make numbers show up next to the links and helps

with the next step.

3

Add accesskey attributes to the <a> tags in the
#tools <div>.
See page 119 for syntax hints.

4

Convert the floating, <div>-based #dashboard <div> to a table.
Replace the content inside the #dashboard <div> with a table. This

is a bit tedious, so you can use the ready‑bake markup on page 121 (or find this

code in the extras directory in the chapter3 folder—it’s in a file called table.txt).

5

Save your changed file as index.html.
Save the file as index.html—we’re done testing the mobile redirect

now, so it’s easier to just use index.html.

6

Our plain, but
functional, mockup on
an Android device.

Q: So, I know we’re going all hardcore
simplified for now, but, after changing
the DOCTYPE to XHTML-Basic, does
the mockup we looked at on page 115 still
work in Opera Mini 4.2?
A: Yep! You can see this at http://hf-mw.com/
ch3/ex/2a if you are curious.

Q: Isn’t Opera Mini 4.2 pretty archaic?
How many people really use that version
anymore?
A: Admittedly, it’s not a recent browser.
But browsers of its vintage absolutely do
exist out there in the woolly wilds of Mobile
Web Land. It’s a good example of the sort of
browser with the sort of constraints one runs
into on older feature phones in, especially,
emerging markets.

Q: But didn’t you just say that
smartphones are now outselling these
dinosaur feature phones?
A: Outselling doesn’t mean outnumbering.
There are still vast numbers of existing
older smartphones (not really “smart” by our
current standards) and feature phones. It will
be some time before they disappear.

Make sure to keep the
#dashboard <div>. Just
replace its contents.

Test Drive

http://hf-mw.com/ch3/ex/2a
http://hf-mw.com/ch3/ex/2a

you are here 4 121

a separate mobile site

Ready Bake
Table Code

<table>
 <thead>
 <tr>
 <th>Type</th>
 <th>Details</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td><p>Message
Feb 3 8:54PM EST</p></td>
 <td><p>Supply Request #493-C4 Approved

 Hi, Jess, Good news! I wanted to let you know that we were successful in
tracking down those bottles...</p></td>
 </tr>
 <tr>
 <td><p>Message
Feb 3 1:47PM EST</p></td>
 <td><p>Supply Request #493-C4 Received

 This is an automated message to confirm that your recent Supply Request
has been received and is in process...</p></td>
 </tr>
 <tr>
 <td><p>Event Scheduled
Feb 3 8:22AM EST</p></td>
 <td><p>Itinerary 39924 Approved LAX -> DAC

 Your itinerary for event: "Bangladesh Flood Event" has been approved.
Your calendar has been updated...</p></td>
 </tr>
 <tr>
 <td><p>Personnel Event
Feb 2 9:23PM EST</p></td>
 <td><p>Re: Personnel Confirmation 03/05 - 03/15

 Jessica! Thanks so much for committing to this operation! I think
Dr. Madling is going too and...</p>
 </td>
 </tr>
 <tr>
 <td colspan="2"><div class="morelink"><p>More >> </p>
</div></td>
 </tr>
 </tbody>
</table>

122 Chapter 3

element validation

Which elements are valid where? Use what we’ve learned and your own intuitive sense to figure
out which tags and attributes are OK in which standards. An element may be OK in more than one
standard!

<table>

<sup>

<u>

<tbody>

<link>

<video>

<iframe>

XHTML-MP 1.2 XHTML-Basic 1.1 HTML5

I can’t get access keys to work.
The Opera Mini simulator doesn’t
seem to support them, and I don’t have
a phone with a hard keyboard.

We promise that they do work
on a lot of phones, but you don’t
have to take our word for it.
Access keys are actually supported in most

major desktop browsers, too.

Answers on page 126.

you are here 4 123

a separate mobile site

Access keys in action

Get some validation
Remember how we told you that it’s important to use valid markup?

Let’s not just give that lip service—it’s time to validate the markup in the

mockup and make sure it’s up to snuff. Let’s head over to the invaluable

W3C Markup Validator site to check our code.

If you want to test out the access keys on the mobile markup, you can

view index.html in your desktop browser. Test out the access keys by using

the following key combinations:

Chrome or Safari: CTRL-OPT [accesskey]
FireFox: CRTL-[accesskey]

Chrome or Safari: ALT-[accesskey]
FireFox: ALT-SHIFT-[accesskey]
Internet Explorer: ALT-[accesskey]

Chrome: ALT-[accesskey]

FireFox: ALT-SHIFT-[acces
skey]

http://validator.w3.org

You can either upload the
index.html file (Validate by File
Upload) or copy and paste its
contents (Direct Input).

WindowsMac

Linux

Certain operating system
shortcut keys or software
configurations could take
precedence over these, so
your mileage may vary.

124 Chapter 3

w3c validation errors

So, are we good to go?

What went wrong?

<thead> and <tbody> tags are not supported in XHTML-Basic
(or XHTML-MP).
This is likely the most glaring partially unsupported HTML module in

both XHTML‑MP and XHTML‑Basic. Tables are OK, but you can’t use
<thead>, <tbody>, <tfoot>, <col>, or <colgroup>.

1

Scroll down on the results page to see details about

the errors. So, what’s the problem here?

These three errors are related to the unsupported <thead> and <tbody> tags in the mobile mockup HTML.

The third error is a side effect

of the <tbody> and <thead>
tags; if we remove those tags,
this error will be resolved.

Uh oh!

you are here 4 125

a separate mobile site

There are some improperly nested tags.
Even seasoned pros make little typo‑esque mistakes like this one. That’s one of the

reasons to use the validator—even if you’re at the top of your game.

2

Fix the errors

<td colspan="2"><div class="morelink">
<p>More >></p></div>
</td>

Fix the markup problems in the index.html file.

 Remove the <thead>, </thead>, <tbody>, and

</tbody> tags from the markup.
1

 Fix the improperly nested tags. Put the tag

within the paragraph in the .morelink <div>.
2

 Revalidate the updated code with the W3C validator.3

From index.html

Both of these errors
were caused by a
misplaced tag.This isn’t actually an error—it’s the

validator trying to give us hints as t
o

where to find the problem.

Woot! Green means success.

Test Drive

126 Chapter 3

exercise solution

OK. We’ve got valid code and a basic
structure. But it’s looking super bland.
Can we bring back some CSS?

How’d you do identifying which tags are valid in which standards?

<table>

<sup>

<u>

<tbody>

<link>

<video>

<iframe>

XHTML-MP 1.2 XHTML-Basic 1.1 HTML5
 and <u> are
both deprecated—
use CSS instead!

you are here 4 127

a separate mobile site

Mobile-savvy CSS
CSS Mobile Profile 2.0 (CSS‑MP) and XHTML‑Basic (or XHTML‑

MP) go together like peas and carrots. The CSS‑MP standard was

developed with low‑ to mid‑range phones in mind.

What do you get in CSS Mobile Profile? Well, most of what you’ve come

to expect out of CSS2, and even a bit of CSS3. But not everything.

Sounds simple in theory
Browsers that implement CSS Mobile Profile 2.0 are supposed to support

the required properties. But the reality is a bit of a downer. CSS support

varies quite a bit, and the onus often falls on you, the intrepid developer,

to test thoroughly and work around quirks.

In addition, quite a few CSS properties and values are considered optional

in CSS‑MP, meaning browser makers can opt to support them—or not.

The best way is: less chit-chat, more doing.
Instead of throwing out a tedious list of supported and

unsupported CSS properties in CSS Mobile Profile, let’s

jump in and figure out how to adapt the existing

CSS to be CSS-MP compliant.

Sounds complicated
and depressing. How am I
going to learn this stuff?

128 Chapter 3

marrying xhtml-basic and css mobile profile

Buckle up. Roll up your sleeves. Batten down the hatches. We’re going to go on a journey here—a
journey that, if everything goes right, will end with a loving marriage between XHTML‑Basic and
CSS Mobile Profile. We’ll be editing both index.html and styles.css.

Put the <link> tag back in index.html.
We’re going to want to start using CSS again, so we need that <link> tag.

1

<head>
 <title>Creature Comforts Agent Portal</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1,
maximum-scale=1" />
 <link rel="stylesheet" type="text/css" href="styles.css" />
</head>

Let’s refactor styles.css to be valid CSS Mobile Profile.2

* {
 padding: 0;
 margin: 0;
}
body {
 font-family: "Helvetica", "Arial", san-serif;
 font-size: 100%;
 width: 100%;
 background-color: #f3ffc2;
 background-image: url('cows.jpg');
 background-repeat: no-repeat;
 background-position: 50% 0px;
}
p {
 font-size: .95em;
 margin: 0.25em 0;
}
h1, h2, h3, h4, h5 {
 font-family: "Times New Roman", serif;
 margin: 0;
 color: #10508c;
 text-align: center;
}

The background-image

and background-repeat

properties are supported in

CSS‑MP, but having a big

header with a background

image wastes a lot of space.

Let’s just get rid of the

background image.

background-position values in
percentages and pixels are not
supported in CSS-MP, so we’d
have to change this if we were
keeping the background image.

But we’re not. Device support

is iffy; heck, even support f
or

background-color isn’t assured.

Everything else in this CSS
so far is compliant…onward!

index.html

styles.css

you are here 4 129

a separate mobile site

h3 {
 font-style: italic;
 font-weight: 100;
 font-size: 1.15em;
}
ol {
 width: 100%;
}
a {
 text-decoration: none;
 color: #096c9f;
}
.header {
 height: 150px;
}

#tools ol {
 list-style-type: none;
}

#tools ol li a {
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 border-radius: 5px;
 display: block;
 height: 1.1em;
 width: 94%;
 background-color: #fff;
 margin: 3%;
 border: 1px solid #ccc;
 text-align: center;
 padding: .6em 0;
}
.greeting {
 border: 1px dashed #10508c;
 border-width: 1px 0;
}
#dashboard {
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 border-radius: 5px;
 background-color: #fff;
 border: 1px solid #ccc;
 margin: 1em 3%;
 padding: .5em 0;
 width: 94%;
}

These properties to
create rounded corners
are invalid in CSS-MP,
and most of those older
browsers don’t support
them, anyway. Delete
these from the CSS.

styles.css

Since we last used this
CSS, we changed our

to an . These rules
will need to be updated
to reflect that.

Continues over the page.

130 Chapter 3

make sure to sign the pre-nup

<tr class="even">
 <td class="event event_meta"><p>Message

 Feb 3 8:54PM EST</p>
 </td>

 <td class="event"><p>Supply Request #493-
C4 Approved

 Hi, Jess, Good news! I wanted to let you know that we were
successful in tracking down those bottles...</p></td>
</tr>

Back to index.html: add some classes to the table elements.3

And now back to styles.css: adapt styles to apply to the
tabular markup.
We switched from <div>s to tables for layout. We’ll want to get rid

of some properties that no longer make sense, and make a few edits to

others.

4

Hey, hotshot! Apply
these classes to the
other three rows, too.

But alternate
tr.even with tr.odd.

#dashboard td.event {
 border: 1px dashed #ddd;
 border-width: 1px 0 0 0;
 margin: .5em 0;
 padding: 0.5em 0;
 width: 100%;
 clear: both;
 overflow: hidden;
}
#dashboard .odd {
 background-color: #fff;
}
#dashboard .even {
 background-color: #eee;
}
#dashboard td.event_meta {
 width: 30%;
 margin: 0 2%;
 float: left;
}

We’re not floating content
anymore. In addition,
browsers that implement
CSS‑MP are only required
to implement the “auto”
value of overflow;
everything else is optional.
You can’t rely on overflow
in CSS‑MP.Remove these

three properties.

No more float
here. And some
adjustment to
width and margins.

index.html

styles.css

you are here 4 131

a separate mobile site

Add this CSS rule to styles.css...5

...and remove some unneeded rules.
Find and eliminate the style rules:

#dashboard div
#dashboard .event_time
#dashboard .event_details
#dashboard .event_subject
#dashboard .event_summary

6

Fix the #status_message <div>.7

#dashboard table {
 border-collapse: collapse;
 width: 100%;
}

#status_message {
 background-color: #f8f1b2;
 padding: 0.25em;
 line-height: 1.3em;
 border: 1px solid #ccc;
 border-width: 1px 0;
 height: 70px;
 overflow: scroll;
}

And, finally, get
rid of these.

Add this new CSS
rule (anywhere in
the styles.css file).

Delete all of these!

 Beware of using the overflow property!
overflow: scroll is totally taboo in Mobile Land. It’s generally
not supported on any platform, and is an interactive ickiness.
The behavior of the overflow property in browsers that implement

CSS‑MP is varied—the only value that they are required to support is auto.
Avoid relying on overflow whenever possible.

styles.css

styles.css

styles.css

Save the files, and you’re done!8

132 Chapter 3

so long, buttons

Hmmm…something is missing
Take a look at this screenshot from the Opera Mini 4.2 simulator of the

current mockup. Notice anything? We’ve lost the list numbering on our

—and those numbers indicated the access keys. Uh oh.

Where’d the numbers go?
The numbers are still “there,” but we’ve applied CSS that makes the
 elements look like buttons that span the full width of the window.

So the numbers are off to the left of the visible content.

Normally, to “bring them back,” we’d use something like:

list-style-position: inside brings the numbers “inside” the

 element and renders them (in this case) next to the contents of

the (our links). Sounds about right, huh?

Unfortunately, list-style-position is not supported in

CSS-MP. So we have a problem. Maybe we’ll need to convert the

links into a simple list of links, instead of the buttony look we have now.

Then the numbers will show up again.

Bye bye, buttons
We can regain the numbered list by replacing the CSS rules for

#tools ol and #tools ol li with this:

#tools ol {

 list-style-position: inside;

}

However, when Creature
Comforts reviewed this
change to the layout…

…our ’s numbers
come back.

How the mockup
currently looks:
no access keys.

P.S. The padding and margin for all
elements (*) has been set to 0. So we’d
need to add a bit of margin back here
to get the numbers onto the visible page.

#tools ol {

 margin: 0.5em 1.5em;

}

If we swap out the existing CSS for this new CSS…

you are here 4 133

a separate mobile site

Hmmm...I’d really prefer it
if those utility links looked like
buttons and not just links.

The button look is sorely missed!

<div id="tools">

 1. Your Dashboard
 2. Messages (2)
 3. Your Schedule
 4. Request Supplies
 5. Request Personnel
 6. Call HQ

</div>

Creature Comforts has become
attached to the button look and
wants it back.
The only way to accomplish this with valid

CSS‑MP is to convert the list back to a

, add the numbers to the content itself,

and update the CSS style rules.

#tools ul {
 ...
}

#tools ul li a {
 ...

}

Change the CSS selectors in the styles.css file and convert the to a

 in index.html. Don’t forget to add the access key numbers to the text

content of the links, too!

styles.css
Put the CSS that was used for
#tools ol on page 129 here.

Ahhh, compromises. That’s the mobile web way!

And put the CSS previously
used for #tools ol li a here.

Change the back to a
 again in index.html.

Test Drive

index.html

134 Chapter 3

the new site pushes creature comforts' buttons

Great success!

 � It’s a big world, and there are billions (yep) of
mobile phones. Not all of them are bleeding‑edge
smartphones, and sometimes you have to make your
website or web app work with those phones.

 � There are real‑life circumstances: older systems,
recalcitrant clients, or specific projects that make
having a totally separate mobile website necessary.

 � One of the ways to route mobile traffic to a
mobile‑specific website is to use server-side mobile
device detection and redirection.

 � User-agent sniffing is a popular technique for
evaluating whether an incoming request is from a
mobile browser.

 � User‑agent sniffing examines the User-Agent
header that browsers send as part of each HTTP
request. Users can “spoof” their user agent—
knowingly or not. This is a weakness of this method.

 � Some older mobile browsers (and current, lower‑end
mobile devices) implement different standards for
HTML and CSS.

 � XHTML Mobile Profile (XHTML‑MP) is a
mobile‑specific standard used by many mobile
browsers. It is similar to XHTML, but does not support
everything that XHTML does.

 � Similarly, CSS Mobile Profile (CSS‑MP) is a
mobile‑specific flavor of CSS.

 � XHTML‑MP was superseded by XHTML-Basic
1.1, which is almost the same except for a few new
supported elements.

 � It’s important to choose the appropriate DOCTYPE
for your mobile web project and pay attention to
keeping your markup valid—bad code can make
phones behave very badly.

You can see the final mockup at http://hf-mw.com/ch3/ex/5.

Mockup on a BlackBerry 9330

Looks fine on newer
smartphones, like this
Android Nexus S.

you are here 4 135

a separate mobile site

Q: There’s XHTML-Basic/XHTML-MP instead of HTML,
and CSS-Mobile Profile instead of full-on CSS2. Is there an
equivalent mobile flavor of JavaScript for mobile devices?
A: Yes, there is a mobile‑specific JavaScript called ECMAScript
Mobile Profile, but you can’t rely on it. We’ve worked with phones
where the JavaScript cannot change anything on the page once it
is loaded, which means most of the things you use JavaScript for
cannot be done. So if you’re targeting old phones, you’re probably
better off not relying on JavaScript.
Q: What about Wireless CSS?
A: Wireless CSS is a standard quite similar to CSS‑Mobile Profile,
but with support for fewer properties. It’s kind of on its way out, and
we don’t see any reason to use it instead of CSS‑MP.
Q: If you use user-agent sniffing to route mobile traffic, and
you misidentify a user’s browser either because she is spoofing
her user agent or because you’re just…wrong, couldn’t she end
up getting redirected and stuck on the mobile version of the site,
unable to escape back to the full site?
A:Well spotted! This is important! In a real‑life situation, you would
want to provide an “escape hatch,” often in the form of a link back to
the desktop site.
The link on its own isn’t enough—you need to let your redirection
script know that the user wants the desktop site. You can accomplish
this by setting a cookie indicating this preference and not redirecting
browsers that have that cookie set.

Q: What happens if I just can’t get my site to do what I
want in a way that is perfectly valid XHTML-Basic or CSS-MP
or whatever? Does the sky fall? Do phones around the world
crash?
A: Being successful on the mobile web often means making
compromises and trade‑offs. While writing valid code is something to
shoot for, it’s not always 100% feasible. But knowing the rules before
you break them is always a good motto to live by.
Q: Do I have to use XHTML-Basic every time I want to
support a lot of mobile browsers? It feels constrained.
A: We have to pull out the classic mobile web answer for this: “it
depends.” In Creature Comforts’ case, there were a lot of older, less
full‑featured phones we needed to support. Our goals were to get a
server‑side data service to render well on as many feature phones as
possible.
Using HTML5 in many cases is a reasonable approach, even on
older phones. But we wanted to show you the kinds of things you
need to be aware of when targeting older devices.
Q: You neglected to do so on page 127, but I do want to see an
exhaustive list of supported and nonsupported properties in
CSS-MP.
A: Hey, you’re in luck: the CSS Mobile Profile 2.0 spec happens to
be a rather quick and easy read. You can find it at
http://www.w3.org/TR/css-mobile.

Hey, developer types! How could we support users who want
the desktop version instead? Can you think of what would
be needed to add a link from the mobile to the desktop site,
and what modifications you’d need to make to redirect.php to
write and check for a cookie to store the user’s preference?

It’s not cool to strand
users on a stripped-down
mobile site if they’d
prefer to escape to the
desktop version.

this is a new chapter 137

Well, sure your
site doesn’t work on this

phone, but you could have left
out the part about “out-of-date

technophobe Luddites”...

deciding whom to support4
What devices should we support?

There aren’t enough hours in the day to test on every device.
You have to draw the line somewhere on what you can support. But how do you

decide? What about people using devices you can’t test on—are they left out in the

cold? Or is it possible to build your web pages in a way that will reach people on devices

you’ve never heard of? In this chapter, we’re going to mix a magic concoction of project

requirements and audience usage to help us figure out what devices we support

and what to do about those we don’t.

138 Chapter 4

all about the compromises

How do you know where to draw the line?
Every project is a series of compromises.

Stakeholder desires. User experience feedback.

Search engine optimization. Figuring out what

matters for your project can seem like magic to

people who aren’t in the trenches with you.

Deciding what devices you care about is

similar. You take criteria and priorities, apply

some brain power, sprinkle in a little magical

inspiration, and you come up with a list of

devices that are key to your success.

Your
brain magic

Criteria and
priorities

Definition
of where
to draw
the line

you are here 4 139

deciding whom to support

Step away from the keyboard for a second
We’ve tried to keep everything grounded and hands on so far, but we’ve reached

that point in the movie where the actor stares off into space and contemplates a

tough problem. Suddenly, inspiration hits and the actor leaps into action.

The difference here is that you’re the actor. You already have all of the tools you

need to decide where to draw the line.

But you’re not going to find that inspiration at the keyboard, so we’ll take a brief

interlude from building stuff to talk about the abstract stuff that turns criteria and

priorities into a list of devices you support. We’re going to help focus your brain a

little and then get out of the way.

Don’t worry, we’ll get back to building stuff soon. The best directors know that all

they need to do is give their actors some guidance and let the actors act.

What’s this line we need to draw?
Supporting every device ever made is a noble goal. Testing on every device ever

made is a sure‑fire path to losing your mind. You can hope to support as many

people as possible, but to keep your sanity, you’re going to have to know the answer

to three questions.

Can you think of some differences between
devices you don’t support and those that you
can’t support?

What devices do we support?
Which devices or types of devices are you going to test

your pages on to make sure they work as intended?

1

What happens to devices we DON’T support?
What can you do to make sure devices that you don’t

test on are still able to use your site?

2

What happens to devices we CAN’T support?
What message do you give people whose devices aren’t

up to snuff ?

2

140 Chapter 4

to support or not to support

Don’t be a meanie about it
If you can’t support someone’s browser, be nice

about it. He may not have the latest phone in

his pocket, but he may have access to a better

browser somewhere else.

Besides, no one likes to be told his phone is a

jalopy. Be gracious to your guests.

 Don’t exclude unsupported browsers.
Just because you can’t verify that your pages
will work in a browser doesn’t mean you
should exclude people using that browser. If
you build the site using semantic markup, it

will work in many browsers—including ones you couldn’t
test on and that were not critical to your project.

Things you don’t support vs.
those you can’t support
Once you know what you are going to support, everything else is

something you don’t support. So why make a distinction between

what you don’t support and what you can’t support?

Although you don’t explicitly support a device, that doesn’t mean

what you’ve built won’t work on that device. If you build your

web page using well‑formed, semantic HTML and progressive

enhancement, your page will be accessible by many more

browsers and devices than you can guarantee that it will work on.

But sometimes a browser is so old and feeble that you simply can’t

support it.

For example, if you’re selling shoes online, you need to use

HTTPS to keep credit card information safe. Some old phones

don’t support HTTPS. When that happens, the best thing you

can do is tell the person that she can’t buy shoes on her phone.

Devices we don’t support

Devices we
do support

Devices we can’t support

you are here 4 141

deciding whom to support

You’re right. In many cases, progressive
enhancement means you can support
hundreds of different browsers. But your
mileage may vary.
Starting with basic HTML and progressively enhancing

the document should be the starting point for most

web pages. Browsers with advanced features get

enhancements like rounded corners and gradients.

However, the minimum requirements for a site or app

may be higher than basic HTML can provide. A video

game may require WebGL, a graphics library, for

game play. There is no content if the browser doesn’t

support WebGL—that is, until a couple of years from

now when you can progressively enhance from WebGL

to WebGL 2!

As they say, you have to know the rules before you

know when to break them. You should use progressive

enhancement from basic HTML unless you have a really

good reason why it won’t work.

And even then, a basic HTML document that said,

“Sorry, this game requires WebGL support to play” would

be a nice starting point upon which to build the game.

WebGL 2 doesn’t exist, but it seems likely, doesn’t it?

I understand not being able to support
really old phones that don’t have HTTPS, but I
thought if you delivered a basic HTML document
and then progressively enhanced it with CSS
and JavaScript, it would work everywhere.

142 Chapter 4

who, why, what, where, and when

Ask questions about your project
It might sound like we’re teaching you to suck eggs here, but the

first step toward figuring out where to draw the line is to think

about your project. Who is your audience? What functionality is

core? What features are optional? What is the best experience?

The cheapest thing on this
site costs $10,000. Might as well
call it Filthy Rich ‘R’ Us. Can we

assume most customers will have
recent smartphones?

The sales team needs to show the app to
potential customers, but standard issue for
salespeople is a BlackBerry 4.5 phone. How can
we show off the app on such an old device

and still make it look good on iPhones?

Hmm...the travel app I’m
working on needs to know
where someone is to work.

What if that person’s phone
doesn’t have GPS? Would zip
code be accurate enough?

you are here 4 143

deciding whom to support

We’re getting ready to expand into
Japan and South Korea. Do they use the
same phones as we do? I heard Japan has
a lot of phones not available elsewhere.

Our Funny Cat Video site
will be great on mobile, but only if the
phone supports video. Which phones

support video and have good data plans
or WiFi ability?

Our newest game, Enraged Avians,
is graphically intense. We already know the

browser will need to support WebGL, but now
we’re wondering if some phones will be too slow

even if they support WebGL.

144 Chapter 4

magic factors

Ingredients for your magic mobile potion
When you ask questions about your project, you’re starting to suss out the factors

that can help you figure out which devices matter. Who is your audience and what

is it likely to use? What are must‑haves versus nice‑to‑have features?

This is where the magic comes in. Mix these factors together into a magic potion

that tells you what devices you need to support.

Does this browser support cookies? How about
HTTPS? Video playback?

Do you need ac
cess to

the phone’s lo
cation?

Camera? Gyroscope?

If you’re doing something

intense, you may need to worry

about CPU speed, memory, and

whether or not CSS effects

are hardware accelerated.

Does your service need to be used online, or do you need to support offline usage?

What devices are
your customers most
likely to use?

That video-intensive
site will only work well
on fast connections.

Did you really think
that

you could get away without

supporting whatever phone

your boss happens t
o use?

Browser features

Connection speed

Audience usage

Online vs. offline

Device capabilities

Hardware performance

Stakeholder devices

you are here 4 145

deciding whom to support

Audience
Survey

It neve
r hurts

 to ask
!

There are big
differences in the
phones sold in different
parts of the world.

Income, age, and (to

some degree) gender

all impact what

phone someone is

likely to own.

Draw from your cupboard of tools and data
What goes into audience usage? Dig into your jar of

web analytics to see what your current customers are

using. Expanding to a new geography? Pull out data

on the top phones in those countries to see what the

cool phone is in Singapore.

Analytics Geographic
Trends

Demographics

Device
Databases

Big collections like the Device Anywhere Data Explorer and Browserscope can help answer questions about which devices support which features.

Analytics can be web
statistics or other forms
of tracking customer usage.

Beware of analytics if
your site has a poor mobile
experience. Garbage site in: Garbage analytics out.

Is your cupboard bare? You’re in luck. Check out
this comprehensive guide to mobile statistics at
http://bit.ly/m-stats.

146 Chapter 4

case studies exercise

Example
Case Study
Mo Better Museums is building an app that allows
museum visitors to point their phone cameras at
a piece of art and see an overlay containing more
information about the piece. It can tell which piece
of art is being viewed based on the phone’s location.
Phone reception in museums can be spotty.

Requirements:
 • Must have: support JavaScript

 • Must have: access to camera

 • Must have: access to location

 • Nice to have: support offline mode

Time to put your magician’s hat on and work
some magic. For each case study, build a
requirements list based on what the app is
trying to accomplish and the target audience.
The list should include must‑have
requirements and nice‑to‑have features.

Here’s our list of
requirements based
on the information
in this case study.

Requirements:
Case Study
A politician wants an edge in a close election. She would like an app for volunteers to use when they go door‑to‑door to encourage people to vote. The app will provide the address of people to contact—with a map if possible—and what questions the volunteer should ask. Volunteers are in short supply, so she would like the app to support whatever phone they happen to own.

you are here 4 147

deciding whom to support

Case Study
Bowling Boxers is the video‑
game generation’s version of
Dogs Playing Poker. You control
a boxer, based on a dog in the
famous C. M. Coolidge paintings,
that is pitted in a fierce back‑alley
bowling competition. Rendering
the characters and all of the
insane lane action pushes the
limits of many phones.

Requirements:

Which requirements are
minimum bars, and which
can be supported via
progressive enhancement?

Case Study
Global Corp has noticed an

increase in sales in India. The VP

of Sales believes India could be Global’s

next big market. He would like a localized

version of Global’s site that will work on the

most popular phones in India. He wants it

to be as easy as possible for customers to

place orders on their phones.

Requirements:

148 Chapter 4

requirements lists

EXAMPLE
Case Study
Mo Better Museums is building an app that allows
museum visitors to point their phone cameras at
a piece of art and see an overlay containing more
information about the piece. It can tell which piece
of art is being viewed based on the phone’s location.
Phone reception in museums can be spotty.

Requirements:
 • Must have: support JavaScript

 • Must have: access to camera

 • Must have: access to location

 • Nice to have: support offline mode

Requirements: • Must have: Internet
connection

 • Nice to have: ability to display images for map
 • Nice to have: JavaScript for interactive maps

Case Study
A politician wants an edge in a close election. She would like an app for volunteers to use when they go door‑to‑door to encourage people to vote. The app will provide the address of people to contact—with a map if possible—and what questions the volunteer should ask. Volunteers are in short supply, so she would like the app to support whatever phone they happen to own.

Nice! Some
opportunities
for progressive
enhancement!

Don’t you hate it when someone tells
you there is no right answer? Yeah, well,
sorry about that. There are no right
answers when it comes to requirements.
So don’t fret if you have a different
answer for these case studies. Your
experience may give you a requirement
that we’ve missed. Trust your
experience and instincts.

Camera access is a new
W3C API. So far, only the
latest version of Android
partially supports it.

you are here 4 149

deciding whom to support

Case Study
Bowling Boxers is the video‑
game generation’s version of
Dogs Playing Poker. You control
a boxer, based on a dog in the
famous C. M. Coolidge paintings,
that is pitted in a fierce back‑alley
bowling competition. Rendering
the characters and all of the
insane lane action pushes the
limits of many phones.

Requirements:
 • Must have: support JavaScript
 • Must have: support WebGL
 • Must have: fast CPU and GPU, or
the game performance will suffer

Case Study
Global Corp has noticed an

increase in sales in India. The VP

of Sales believes India could be Global’s

next big market. He would like a localized

version of Global’s site that will work on the

most popular phones in India. He wants it

to be as easy as possible for customers to

place orders on their phones.

Requirements: • Must have: support basic markup for old phones
 • Must have: HTTPS for checkout • Must have: cookies for login

 Iteration helps you

uncover extra

requirements.

If you were to pull

back the curtain on most mobile

projects, you’d find that the people who

made the site were uncertain about what

devices they needed to support. They

made the best guess they could and then

iterated on it until they perfected the site.

150 Chapter 4

detective work

How do I know my customers
have the right stuff?

Now that I have
a device requirements list,

how do I know if a specific
phone fits my criteria?

Great question. There are two main
methods: server-side device detection
and client-side feature detection.
We’re going to look at device-detection
databases in the next chapter.
It sounds like you’re ready for this interlude to end

and get back to building things. We told you this

wouldn’t take long.

Now get ready to roll up your sleeves again and dig

into the crazy world of device databases and the bane

of web developers everywhere: user‑agent strings.

Don’t worry. It isn’t as bad as it sounds. By the end

of the next chapter, you’ll be bossing those evil user‑

agent strings around.

 � Every project draws the line somewhere on which
devices it supports.

 � Knowing where to draw the line is a combination of
experience, research, and gut instinct.

 � There is a difference between devices you don’t
support and those you can’t support because
they lack critical features that make it impossible to
use your site.

 � Look at your project requirements and your target
audience to help decide where to draw the line.

 � Progressive enhancement should be the default
approach. This will make your site work on many
more devices than you can officially support.

 � Unless you know for certain that you cannot
support a device, you shouldn’t exclude it. New
browsers show up all the time. Give them a chance
to prove they’re up to snuff.

 � Don’t let mobile’s complexity overwhelm you. You
already have all of the tools you need to know
where to draw the line. Trust your experience
and instincts.

We looked at feature detection in Chapter 2 when we talked about progressive enhancement.

this is a new chapter 151

Uh, when you said
you were going to take a

peek behind the curtain, I
didn’t think you meant this one...
It is possible to know a little too
much about a user, you know...

device databases and classes5

Get with the group

Setting the bar for the devices we support doesn’t take care
of a few nagging issues. How do we find out enough stuff about our users’

mobile browsers to know if they measure up before we deliver content to them? How do

we avoid only building (lame) content for the lowest common denominator? And how do

we organize all of this stuff so that we don’t lose our minds? In this chapter, we’ll enter

the realm of device capabilities, learn to access them with a device database, and,

finally, discover how to group them into device classes so that we can keep our sanity.

152 Chapter 5

time to hit the panic button

AcedIt! Test Prep hangs its hat on superior customer service. Its

goal is to make each and every one of its students—who are hard

at work nerve‑rackingly studying for career‑ or academic‑advancing

standardized tests and certifications—feel like they have a one‑on‑one

connection with tutors who are experts in their subjects.

Sometimes students panic. That’s why AcedIt! wants to create a page

on its website specially attuned to its customers who are on the edge.

It’s called the I’m Freaking Out! page, and its goal is simple: connect

the customer with an on‑call tutor right away.

A panic button for freaked-out students

Wouldn’t it be cool if a freaked-out
user on a mobile browser could see a big
red panic button that he could press and
place a phone call right away?

Steve, CEO of AcedIt!

device databases and classes

you are here 4 153

The button is for mobile phones only
Desktop browsers can’t make phone calls,

so the big, red panic button metaphor is

kind of lost there. Steve only wants the

button to show up on mobile phones.

We have an IT guy who
usually does the website
tweaks, but in this case I
think we might need help.

Frank: We might be able to do this with CSS media

queries based on the window width of the browser.

Jill: Not in this case, I don’t think. Just because a

window is narrow in width doesn’t mean the browser

is on an actual mobile phone.

Frank: Right, I guess the panic button would end up

showing up on narrow windows and tablets and stuff

if we used a width‑based media query. Not all mobile

devices are phones, either. But what other options do

we have?

Jill: Ideally, we’d have some way of getting

information about the user’s browser and device that

is specific enough to give us hints as to whether it’s a

mobile phone, not just a device with low resolution

or a narrow screen.

But how do we know someone is on a mobile phone?

Narrow window
doesn’t mean
mobile phone!

154 Chapter 5

a little black book of browser data

resolution width = 320px

browser = Safari HTML table support = yes

has cellular radio = yes
built-in camera = yes

css rounded corners = webkit

(etc., etc., etc.)

Mobile device data sources to the rescue
Mobile device databases contain detailed information about

the browser, platform, and hardware features of mobile devices and

their browsers. By querying the data set with a uniquely identifying

key—generally a user‑agent string—we can get tons of attributes

about that device and its browser.

Device database
contains data about devices and their characteristics.

A device’s browser makes a request to the server.

Software API helps to find a
match in the device database
for the current user agent.

A successful match gives us access to all sorts of data about the device.

Information is available
about the device’s hardware,
platform, and browser.

Armed with this
data, you can
adapt content
based on a device’s
characteristics.

device databases and classes

you are here 4 155

Meet WURFL
WURFL (Wireless Universal Resource FiLe, usually

pronounced “wuhr‑full”) is an open source device

database with an enormous amount of information

about the specific capabilities of mobile devices and

their browsers.

Recently, the longtime maintainers of the WURFL

project started a company called ScientiaMobile to

provide commercial support for WURFL.

WURFL tracks details about mobile device specifics

from ringtone formats to physical screen sizes.

Not all of WURFL’s capabilities are of interest to

us web developers, but you’ll find some real, useful

gems in there.

Go out and try it yourself! The ScientiaMobile explorer lets you
interact with Tera‑WURFL data in a web browser.

 Go to http://www.tera-wurfl.com/explore in a
mobile browser.1

 Visit the See my capabilities section and browse the
capabilities it returns for your mobile device and browser.

2

Some of the capabilities listed in
the explorer on an iPhone 4.

The explorer is intended to be used

on a mobile browser. If you visit with

a desktop browser, a random mobile

device will be selected for your
capability-viewing pleasure.

You can also visit the explorer in a desktop browser
and enter in any user‑agent string you’d like to find
capabilities for. This can be a quick and handy way to
look up device capabilities for a known user agent.

 A device is not a platform is
not a browser.
There is no good word meaning “a
device’s hardware characteristics
combined with its platform and

OS melded with its browser.” There really
maybe should be. WURFL’s notion of a device
is a combination of all three, and contains
information about hardware, OS, and browser.

Terminology makes it difficult to be clear. We’re
guilty, too, so keep in mind that our use of the
shorthand word device likely carries some of
the connotations of browser, hardware, and OS.

156 Chapter 5

wurfl out loud

WURFL and its capabilities

WURFL provides information about
mobile devices, their platforms, and their
browsers as a set of capabilities. You
can use this information to adapt your
web content accordingly.
There are currently over 500 capabilities that WURFL

tracks, grouped into a couple dozen or so categories like

css (can this browser support rounded corners? What

about background images?) and playback (what kinds of

media can this device play?).

Device data is maintained in a large, single XML file that

is regularly updated. The latest version is made available

on the project’s Sourceforge page.

There’s more than one flavor of WURFL
ScientiaMobile’s explorer is based on a particular

implementation of WURFL (the Database Edition, also

known as Tera-WURFL) that keeps WURFL device data

in a database instead in a flat XML file. Tera‑WURFL

is intended to be set up as a web service or PHP library

that mobile‑oriented websites can query to get device

information for user‑agent strings.

There are many different APIs and implementations of

WURFL, but all have one thing in common: that big ol’

WURFL XML file with all of the mobile device data.

The full WURFL experience is a combination of the

WURFL data file (XML), the way the data is stored, and

an API to interact with it.

We’ll be using the PHP API
There are WURFL APIs for a number of major

programming languages. We’ll be using the PHP API

and file‑based data.

Device who? Capabilities
what? What does WURFL
actually do for me?

Unsurprisingly, the URL
is wurfl.sourceforge.net.

wurfl.sourceforge.net

device databases and classes

you are here 4 157

WURFL works well because of several
factors in its favor (one of which is that
it doesn’t track every single user agent).
WURFL’s developer community is constantly

contributing to the data source, meaning it isn’t left

to some poor guy alone in a dim cubicle somewhere

trying to track down every new device and browser

on the market—not just a thankless task, but likely

impossible.

WURFL’s various APIs’ algorithms are clever when

performing matches on user agents. It also doesn’t

hurt that WURFL has been around a while, has

a proven track record, and has been used by (and

contributed to) some pretty major web players (ever

heard of Facebook?).

And, of course, if WURFL doesn’t meet your needs,

there are other device databases such as DeviceAtlas,

DetectRight, and MobileAware. What makes sense

for your project depends on your needs, budget, and

licensing requirements.

There are thousands and thousands of
user agents out there. How could anybody
or any organization track all of them and
all of the data about each device?!

158 Chapter 5

there are no dumb questions

Q: What is ScientiaMobile?
A: ScientiaMobile is a company founded in 2011 by Steve
Kamerman, Luca Passani, and Krishna Guda. Luca has
been one of the maintainers of the open source WURFL
project since he and Andrea Trasatti started WURFL in 2001.
Steve created Tera‑WURFL, which has become the WURFL
Database Edition.
Q: Is WURFL free? Do I have to pay for it?
A: It depends. WURFL is technically open source. The
WURFL API is available under the Affero General Public
License v3 (AGPL), which is an open source license. The
WURFL XML database has a restricted license that only
allows it to be used with the WURFL API.
So, if you can comply with the AGPL restrictions, you don’t
have to pay anything. But AGPL is more aggressive than its
GPL cousin. With AGPL, running the software on a server
counts as a distribution, which triggers provisions requiring
you to open source any derivative work.
If AGPL doesn’t work for you (and, in many cases, it probably
won’t), ScientiaMobile will sell you a commercial license.
Q:If I integrate WURFL with (insert your favorite open
source solution here) and build a site on top of it, do I
have to open source the whole site?
A:Short answer: buy a commercial license or talk to a
lawyer. ScientiaMobile.com also has a licensing FAQ.
Q:Are there other things out there that do what WURFL
does?
A: Yes. WURFL is the only device database that offers
an open source license, but there are several commercial
databases. Device Atlas is probably the best known
alternative. Others include Mobile Aware and Detect Right.

Q: What APIs are there for WURFL other than the
PHP API?
A: ScientiaMobile provides Java, .NET, and Database APIs
in addition to PHP.
Q: How does WURFL data get updated? More to the
point, how would I get new data as it’s updated?
A: ScientiaMobile keeps an eye out for new devices.
Sometimes manufacturers provide information directly. Other
times, people using WURFL submit the information. A large
part of the work any device database vendor does is related
to validating information provided about new devices.
Q: Who decides what capabilities get tracked by
WURFL?
A: ScientiaMobile picks capabilities based on suggestions
from the community.
Q: Where is this WURFL community of which you
speak?
A: The community is a mailing list. WURFL has been
around so long that the list is called the WML programming
list. There are also conversations happening in the support
forums on ScientiaMobile.com.

You can find the wml-programming

list at http://tech.groups.yahoo.com/

group/wmlprogramming/.

http://tech.groups.yahoo.com/group/wmlprogramming/
http://tech.groups.yahoo.com/group/wmlprogramming/

device databases and classes

you are here 4 159

WURFL: Clever API code
When a WURFL API tries to match an incoming user

agent to a known device, it doesn’t just go belly up if

that exact user agent isn’t in the data. As it is totally

impossible to track every single user agent out there, the

API matchers instead perform some clever tricks when the

precise user agent is not recognized.

A tree of devices and their families
As the WURFL API analyzes a given user‑agent string, a

series of increasingly generic fallbacks is evaluated, with

the goal of at least slotting the device into the correct

family of related devices.

You can think of WURFL’s data as a sort of tree of

devices, with the trunk being a generic browser and each

branch, twig, and leaf a more specific device or group of

devices. The API tries to get as far as it can toward the

exact leaf, but has the rest of the tree to fall back on if it

cannot.

Additionally, the WURFL data for a given device only

defines the capabilities for that device (or group of devices)

that differ from its parent device or devices. That way,

the WURFL XML data file is kept reasonably small (a

bit under 10 MB as of mid‑2011), despite the amount of

information it really contains.

Geek Bits

WURFL APIs use a combination of algorithms

to keep from getting tripped up by weird little

user-agent quirks.

One way it finds matches is by using matchers

optimized for a given family of browsers or

devices. The most recent PHP API has a few dozen

handlers to deal with the analysis of user agents.

The API first determines which handler makes the

most sense for the given user agent. User agents

with the string “BlackBerry,” for example, are

handed off to the BlackBerryHandler.

Each handler is savvy about the kinds of

differences that matter for user agents in its

family, which cuts down on the amount of

super-specific user agents that WURFL data

maintainers have to track.

The PHP WURFL API combines handlers with RIS

matching (reduction-in-string—that is, removing

pieces of an unrecognized user-agent string until

it ends up with one it does recognize) to get to its

end result.

It’s time to install WURFL on your computer

Check out Appendix iii for installation details.

160 Chapter 5

start with the underpinnings

We can build an explore page, too
Once you have the WURFL PHP API installed, it requires a pretty

small amount of code to build a page not unlike the ScientiaMobile

explorer page. In fact, we’re going to do that right now.

Wait. If ScientiaMobile’s explorer page
already lets me get WURFL information
about devices, why do I want to go to the
trouble of building my own version?

Building the explore page will get your
hands dirty with the WURFL API, and
it will use data from your own data file.
Learning by doing. That’s the ticket. We’ll build

some underpinnings here that we can reuse for

other—more functional—tasks.

Also, the ScientiaMobile explorer page is driven by

the so‑called Database Edition of WURFL. The

data is stored and matched slightly differently than

the XML file‑PHP API combination we’ll be using.

Bottom line: the data is a bit different in little

(but sometimes critical) ways.

Plus, by having your own explore page, you know

that you’re getting data from your version of the

data file, not one that is older or newer than the one

you have.

Steps for building our explore page

By your data, we
mean the current
set of data you
have in the WURFL
XML file you
downloaded when
installing WURFL.

Set up our working environment, files, and configuration for WURFL.

Write a bit of (boilerplate) PHP code to initialize some WURFL

objects so that we can start accessing capability information for

the current browser and device.

Organize the capability data. Build a page and output the data

in an HTML table.

device databases and classes

you are here 4 161

config.php.example

device.php

index.php

styles.css

Your WURFL
installation

resourcesWURFL

explore
We’ll be editing this
file and renaming it to
remove the .example.

This file holds some
code that gets
WURFL device
information and
organizes it.

Our explore
page! Displays
capabilities.

Simple stylesheet
for our page.

See the installation appendix if you need help locating the resources
or API code directories in your
WURFL install.

WURFL data source
WURFL PHP
API code

The configuration file will tell
the explore code where to find
your WURFL installation.

chapter5

An explore page: Setting up our environment
The first order of business is to get our directory structure sorted

and a configuration file created. You’ll find a starting point in the

explore subfolder of the chapter5 folder.

By this point, you should have the WURFL PHP API up and

running. You’ll need to know the location of its installation to create

a configuration file (well, one that works, anyway).

Directory structure for the explore page

162 Chapter 5

create a config file

/* WURFL_DIR needs to point to the install directory for WURFL */
define("WURFL_DIR", '/path/to/WURFL/');
/* RESOURCES_DIR needs to point to the resources dir you want to use. */
define("RESOURCES_DIR", '/path/to/WURFL/resources/');

config.php.exampleChange me, please! You
need to edit these paths
to point to your own
WURFL API code and
resources directories.

Write once, reuse indefinitely.
We’ll be reusing this config file
for the rest of the examples
in this chapter.

Set up our working environment, files, and configuration for WURFL.

Write a bit of (boilerplate) PHP code to initialize some WURFL
objects so that we can start accessing capability information for
the current browser and device.

Organize the capability data. Build a page and output the data in an
HTML table.

Now we can write some code to
initialize the WURFL objects and
start getting at capabilities…

You’ve got WURFL installed (we sure hope), but now we need to configure it to work
in the web page we’re building. To do that, we’ll want to create a configuration file.
Open config.php.example in a text editor. Make edits to the paths below as indicated, and
then save the file as config.php in the explore folder (remove the .example extension!).

Don’t forget to remove the .example extension.

For help with WURFL

installation pa
ths, see

Appendix iii.

device databases and classes

you are here 4 163

<?php

require_once('config.php');
$user_agent = $_SERVER['HTTP_USER_AGENT'];

$wurflConfig = new WURFL_Configuration_XmlConfig($wurflConfigFile);
$wurflManagerFactory = new WURFL_WURFLManagerFactory($wurflConfig);
$wurflManager = $wurflManagerFactory->create();
$device = $wurflManager->getDeviceForUserAgent($user_agent);

This includes our new
config file.

OK! We’ve got our configuration file. Now we need to create some code that will
initialize WURFL stuff and get it all warmed up so that we can plumb its depths for
device capabilities. Open device.php in your text editor. It’s rather empty to start with,
so let’s plop in some WURFL‑y code!

device.php’s job is twofold: initialize WURFL objects using the User-Agent header
of the current request (that is, the user’s browser) and to organize the capability data
for the device into something we can display on a page.

I’m OK with most of this,
but I can’t seem to get my

head around what those last
lines of code do.

Those lines instantiate several WURFL objects
and populate a device object for us.
Most of this chunk is boilerplate code that we’ll cut and paste as

needed to get WURFL into shape for our use. If you’re a whiz

with PHP and this innately makes sense to you, kudos, but if it

doesn’t, don’t sweat it too much.

Continues over the page.

device.php

164 Chapter 5

capability wrangling

$device = $wurflManager->getDeviceForUserAgent($user_agent);

The getDeviceForUserAgent method in the WURFL_WURFLManager class

takes a user‑agent string and returns the matching device (from WURFL data) as a

WURFL_CustomDevice object.

At this point, if
things went right,
the device capabilities
are ready to use.

Translation: We feed it a user-agent string, and it gives us a device object populated with values for the various capabilities.

Let’s take a slightly closer look at the last line of the boilerplate code chunk from page
163. It’s where we tell WURFL how to build a device object. In our case, we’re using
$user_agent, which currently holds the value of the User-Agent header of the
requesting client.
That is, we’re instructing WURFL to take the user‑agent string of the current user’s
browser and try to find a match in its data file. If it’s successful, we’ll have a device
object containing the capabilities of the browser and device.

Now that we have a populated
WURFL device object, let’s
organize the device’s
capabilities so that we can
display them in an HTML table.

Set up our working environment, files, and configuration for WURFL.

Write a bit of (boilerplate) PHP code to initialize some WURFL
objects so that we can start accessing capability information for
the current browser and device.

Organize the capability data. Build a page and output the data in an
HTML table.

device databases and classes

you are here 4 165

Still more to do over the page.

$device = $wurflManager->getDeviceForUserAgent($user_agent);
if ($device) {
 $groups = $wurflManager->getListOfGroups();
 $grouped_capabilities = array();
 foreach($groups as $a_group) {
 $grouped_capabilities[$a_group] = array();
 $capabilities = $wurflManager->getCapabilitiesNameForGroup($a_group);
 foreach ($capabilities as $cap) {
 $grouped_capabilities[$a_group][$cap] = $device->getCapability($cap);
 }
 }
}

device.phpThis code chunk organizes the
capabilities of the current device
and browser into groups.

It’s totally OK if you don’t
understand everything this PHP
is doing; you can just copy this
into the device.php file.

The second job of device.php is to organize the capabilities info so that
we can display it later. We’ll add a chunk of code to the file to organize
capabilities by WURFL group.
Drop the following code into device.php and save the file. We’re done
with device.php for now.

The getListOfGroups() method
simply returns an array of
WURFL group names…

…and getCapabilitiesNamesForGroup()
gets the names of the capabilities, um,
in that group!

This is how we access the values
of individual capabilities. We’ll look more closely at this in a bit.

166 Chapter 5

finish up

<div id="devicedata">

 <h2>Device Data</h2>

 <p>Device data for <?php print $user_agent; ?></p>
 <p>WURFL Device ID: <?php print $device->id; ?></p>
 <?php foreach($grouped_capabilities as $group_name => $my_caps): ?>
 <h3 class="group"><?php print $group_name; ?></h3>
 <dl>
 <?php foreach($my_caps as $cap_name => $cap): ?>
 <dt><?php print $cap_name; ?></dt>
 <dd><?php print ($cap) ? $cap : '[no value]'; ?></dd>
 <?php endforeach; ?>
 </dl>
 <?php endforeach; ?>
</div>

Iterate over the collected
WURFL capability data,
which is organized by group.

For each group, generate a <dl>
with the names and values of the
capabilities in that group.

If there is no value for the
current capability, display
the string “no value.”

Display the capability name in
each <dt>, and the value in
each <dd>. OK, let ’er rip! Save index.php and

view it in your browser.

Let’s display the user agent
and the id attribute of the
device (WURFL’s ID of what
this browser or device is).

Ready Bake
PHP/HTML

We’re done with device.php for now. Time to edit index.php and add some code.

This part is done! Time to do this.

Set up our working environment, files, and configuration for WURFL.

Write a bit of (boilerplate) PHP code to initialize some WURFL
objects so that we can start accessing capability information for
the current browser and device.

Organize the capability data. Build a page and output the data in an
HTML table.

index.php

device databases and classes

you are here 4 167

A good start!
You can see all of the capabilities of your desktop browser now, with

capabilities organized by group.

But we can make it better
Instead of just showing the capabilities of the current browser

(especially uninteresting if you’re in a desktop browser!), let’s make the

explore page display WURFL data for any user agent. We can do this

by dropping a quick HTML form into index.php and making a small

change to device.php.

Set up our working environment, files, and configuration for WURFL.

Write a bit of (boilerplate) PHP code to initialize some WURFL
objects so that we can start accessing capability information for
the current browser and device.

Organize the capability data. Build a page and output the data in an
HTML table.

168 Chapter 5

check out that user agent

<div id="testform">

<form method="post" action="<?php print $_SERVER['PHP_SELF']; ?>"
id="useragentform">
 <p>Test this user agent string:</p>
 <input type="text" name="useragent" id="useragent_field"
 value="<?php print $user_agent; ?>" />

 <input type="submit" name="submit" value="Test User Agent" id="submit" />
</form>
</div>

require_once('config.php');

$user_agent = (isset($_POST['useragent'])) ? $_POST['useragent'] :
$_SERVER['HTTP_USER_AGENT'];
$wurflConfig = new WURFL_Configuration_XmlConfig($wurflConfigFile);

In device.php, we now check to see if there
is an incoming form value (in $_POST) for
the user agent; otherwise, we default to the
current browser’s user agent.

Add a short form that allows the
entry of any user-agent string.

Edit this line.

A quick one-two punch to
improve our explore page
A couple of quick changes, and our explore

page will be more useful.

$_SERVER[‘PHP_SELF’] is shorthand for
the currently executing script—that is, the
form will post to the current page.

index.php

device.php

device databases and classes

you are here 4 169

Save all of the changes and load up the
index.php file in a web browser.
The first time you load the page, you should see your

own browser’s WURFL capabilities.

1

Try a few mobile browser user agents.
Enter some mobile browser user agents into the form

and explore the resulting capabilities.

2

Mozilla/5.0 (Linux; U; Android 2.2.1; en-us; DROIDX Build/
VZW) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0
Mobile Safari/533.1 480X854 motorola DROIDX

Mozilla/5.0 (webOS/1.4.5; U; en-US)
AppleWebKit/532.2 (KHTML, like Gecko)
Version/1.0 Safari/532.2 Pre/1.0

Try these.

Now you can enter any user-agent string and
explore the capabilities of the matched device.

 Tired of typing in user-agent strings?

We’ve got you covered. You’ll find a useful_user_agents.txt file in the

chapter5 folder. All of the user agents mentioned in this chapter are in

it, for easy copying‑and‑pasting goodness.

A quick way to find your
browser’s current UA string:
http://whatsmyuseragent.com

Test Drive

170 Chapter 5

work that wurfl

Put capabilities to work

I’m up to my ears
in capabilities. How can I do

something useful with them?

OK, time to get specific.
It’s time to figure out how to use WURFL

capabilities to determine whether or not

we should show that panic button on

AcedIt!’s site.
(Oh, yeah, that’s
what we were up to.)

Create a configuration file and add some code

to initialize some WURFL objects—that is, get

information about the current device and make it

ready for us to use.

Ask WURFL about the specfic capability or

capabilities we care about.

Add some code to the I’m Freaking Out! page

mockup to alter the content delivered to different

devices based on the value of capabilities.

Use WURFL to help differentiate content

Let’s only show the big, red panic button on browsers

that WURFL says are mobile browsers (not just narrow

screens, à la CSS media queries). We’ll do this by using

WURFL capabilities (bet you didn’t see that coming)!

Steps to success

We learned how to
do this part in the
last exercise!

device databases and classes

you are here 4 171

Copy the config.php file from the explore
directory into the panic_button directory.

Do this!Back on page 165, we briefly met the getCapability method for the

$device object.

That’s a handy method. Even if this class and instance mumbo‑jumbo is

generally Greek to you, getting at those capabilities is not too tricky, and

we’ll show you how.

Getting a value for a specific capability looks like this:

$value = $device->getCapability($capability_name);

Name of the capability we’re
asking about as a string.

e.g., ‘is_tablet’ or
‘brand_name’$value will either be the value

of the device’s capability as a
string, or NULL if there isn’t
a value.

$value = $device->getCapability('is_wireless_device');

$value = $device->getCapability('cookie_support');

A couple of examples:

Does this browser-device
combo support cookies?

Ask WURFL the right questions

config.php

index.php

styles.css

panic_button

button.png

Note that when you retrieve capability values, you don’t have

to worry about what group the capability is in. Groups are a

nice organizational concept, but each capability is uniquely

named and can be asked for directly. You’re not required to

use capability groups to interact with WURFL.

A WURFL CustomDevice object,
already initialized and populated. We’ll do this in the device.php

file in just a sec.

The image
for the panic
button

A mockup
of the I’m
Freaking
Out! page

WURFL
configuration

directory and file structure

Is this a mobile device?

device.php

WURFL device
initialization
and testing

Want to see info about all the WURFL
capabilities? Check out http://wurfl.
sourceforge.net/help_doc.php.

 http://wurfl.sourceforge.net/help_doc.php
 http://wurfl.sourceforge.net/help_doc.php

172 Chapter 5

ask wurfl

Is this thing mobile?
Now we’ve got our WURFL device all warmed up. Let’s ask it stuff.

WURFL has a nice baseline capability called is_wireless_device,

which answers the basic question: is this a mobile device? So, it would

seem we’d want to do something like:

$device = $wurflManager->getDeviceForHttpRequest($_SERVER);

$is_phone = $device->getCapability('is_wireless_device');

Yeah, right?

Initialize the device and get the info ready
You’ll see that we’ve given you a bit of a leg up in the panic_button folder.

The device.php file already contains much of the WURFL boilerplate stuff you

need to get your proverbial house in order.

We’re going to be using a different method to instantiate the device than we

did for the explore page. Instead of using a user‑agent string and calling the

getDeviceForUserAgent method, we’ll tell WURFL to use whatever

values are in the current server request (contained in PHP’s always‑available

$_SERVER variable).

$wurflManager = $wurflManagerFactory->create();
$device = $wurflManager->getDeviceForHttpRequest($_SERVER);

device.php

device.php

Translation: Give us device
data for the device currently
accessing the server.

Sounds like a TRUE/FALSE
(Boolean) type of question.

This method also takes hints from
a couple of other HTTP headers
besides the user-agent header—
but user-agent is still the main
source of clues.

device databases and classes

you are here 4 173

Danger, Will Robinson!

<div id="content">
 <h1>I'm Freaking Out!</h1>
 <?php if ($is_phone): ?>
 <div id="panic_button">

 </div>
 <?php else: ?>
 <h2>Help is only a phone call away.</h2>
 <div id="big_number">
 503-555-2939
 </div>
 <?php endif; ?>
 <p>Pre-test late-night jitters? A math problem that just
won't budge? Our expert on-call tutors are standing by to help
you through tough moments.</p>
</div>

$is_phone = $device->getCapability('is_wireless_device');

$is_phone = ($device->getCapability('is_wireless_device') = = = 'true') ?
true : false;

In the PHP API, all capability values are returned as strings. That means

that the seemingly Boolean capability is_wireless_device has three

possible values: 'true', 'false', or NULL (NULL means that WURFL

doesn’t have a value at all for that capability).

We need to be more explicit, or the value 'false' will evaluate as true,

and nonmobile devices will look like mobile ones. So we must make this

alteration. Replace the last line we wrote with the new version:

In PHP, the string ‘false’ is
truthy. If you have no idea what
that means, that’s OK. Just use
the code below instead of the
last code snippet on page 172.

The triple-equals identity operator here means
that the value must be exactly the string of
‘true’ to pass, not just any truthy value.

Now, use that value
The device.php file gets included in the index.php file, so we can

access the code we just wrote. We want to add the following PHP

conditionals to index.php.

…otherwise, just show the phone number, real big (via a CSS style).

device.php

index.php
For requests that qualify as mobile
(per the is_wireless_device_capability),
show the panic button…

174 Chapter 5

are you freaking out?

Make the changes from pages 171 and 173 to config.php and index.php, save the
files, and then view the resulting I’m Freaking Out! page in a desktop browser
and a mobile browser.

The button doesn’t show up on
desktop browsers, even with a
narrow window.

The button on a
mobile device

Test Drive

device databases and classes

you are here 4 175

Interviewer: So, WURFL, what exactly did you bring

to the table here?

WURFL: Seems pretty clear. You can tell right off if the

browser is mobile!

Interviewer: There are other ways to do that, you

know. Client‑side detection, basic server‑side detection—

WURFL: Basic mobile‑or‑not‑mobile is sort of child’s

play. You’re not using me to my full potential.

Interviewer: All right, try me.

WURFL: So, I challenge you to look at the page on an

iPod Touch.

Interviewer: OK…[a long pause while the interviewer digs

through a drawer of mobile devices]…yep, the big red button.

WURFL: Doesn’t that seem a bit…well, perhaps not

what you intended? When’s the last time you were able to

make a phone call from an iPod?

Interviewer: Great. The button doesn’t make sense on

iPod Touches. Now we’re back to square one.

WURFL: No, no. Like I said, you’re not using me to my

full potential. Dig deep and revisit my capabilities. I think

you’ll make a nice discovery or two.

Interviewer: But you have over 500 capabilities! How

will I find the right one?

WURFL: You’re complaining because I’m too

comprehensive? I can’t win! Fine, I’ll give you a hint:

just because the button is showing up on mobile devices

doesn’t mean it actually makes a phone call—you haven’t

linked it yet, so it’s a pretty image, but not functional.

You might think about that and take another look at my

capabilities.

WURFL Exposed
This week’s interview:
What’s the use of WURFL�

Go look at our explore page and investigate the capabilities for an
iPod Touch (where we don’t want the button to show up) versus
the capabilities for an Android Nexus S (where we do want the
button). You might also look at a desktop browser for comparison.
Can you spot a capability that will help us make the differentiation
between a small or mobile device and an actual phone?

Mozilla/5.0 (iPod; U; CPU iPhone OS 4_3_2
like Mac OS X; en-us) AppleWebKit/533.17.9
(KHTML, like Gecko) Version/5.0.2 Mobile/8H7
Safari/6533.18.5

Mozilla/5.0 (Linux; U; Android 2.3.3; en-us;
Nexus S Build/GRI40) AppleWebKit/533.1 (KHTML,
like Gecko) Version/4.0 Mobile Safari/533.1

The button shows up on
an iPod Touch…where it
doesn’t make any sense.

iPod Touch UA

Nexus S UA

176 Chapter 5

to call or not to call

Make the page a bit smarter with WURFL
By testing the value of has_cellular_radio, we can get a good idea

as to whether the current user is on a phone. We also need to know how we

should link the phone number such that when users click on it, it initiates a

phone call.

The value in the xhtml_make_phone_call_string is a hint to the

syntax we should use when linking up phone numbers such that when the link is

clicked, the phone knows to instigate a phone call. For the Nexus S, this value is

tel:.

For the iPod Touch, this value is none. The iPod Touch doesn’t make phone

calls. Desktop browsers will also return a value of none.

By combining the value in xhtml_make_phone_call_string with the

phone number we want to dial, we can create a working link.

Making phone calls with links
Mobile phone browsers recognize certain URI patterns in links as phone

numbers. When a user clicks on this kind of link, an alert box prompts her to

confirm that she really wishes to place the call.

tel: is the most common URI schema for phone numbers, and works for

nigh all modern smartphones. But it doesn’t hurt to use WURFL’s value in that

xhtml_make_phone_call_string field. You’ve got it anyway. Here’s

what we end up with:

Make a phone call

tel: links work without the country
code (+1). But to be correct about
things, you should use one. Plus, it
makes you seem so worldly.

The WURFL bearer capability group has a handsome capability called
has_cellular_radio. We’ll be looking at the value of that capability to evaluate
whether the current request is coming from a phone, not just any mobile device.
We’re also going to make friends with the xhtml_make_phone_call_string,
as it will show us how best to create clickable phone number links for this device.

If the has_cellular_radio capability is
‘true’ and there is a useful value for the
xhtml_make_phone_call capability, we’ll
consider this a phone!

device databases and classes

you are here 4 177

The panic button: For phones only

$is_phone = ($device->getCapability('is_wireless_device') === 'true') ?
true : false;
$has_radio = $device->getCapability('has_cellular_radio');
$phone_string = $device->getCapability('xhtml_make_phone_call_string');

We can include additional tests in the device.php file to look at the

has_cellular_radio and xhtml_make_phone_call_string values.

First, let’s get the values

Now, let’s evaluate them

$phone_string = $device->getCapability('xhtml_make_phone_call_string');
$is_phone = false;
if ($has_radio === 'true' && $phone_string && $phone_string !== 'none') {
 $is_phone = true;
}

We don’t need this line anymore.

 ‘none’ is a meaningful value!
Recall from page 173 that, in the PHP API,
CustomDevice->getCapability() returns either a
string (if a value is present for that capability) or NULL (only
if WURFL does not have a value at all for that capability).

The difference is critical.

For WURFL-identified devices like the iPod Touch and desktop browsers,
the value for xhtml_make_phone_call_string is the string 'none'.
If you treat this as a Boolean value in PHP, it will evaluate as TRUE.

This is why we have
to test both for
the existence of
$phone_string and
that its value is not
the string ‘none’.

device.php

device.php

178 Chapter 5

calling questions

Q: Don’t mobile phone browsers
automatically recognize phone numbers
and link them for you?
A:Most do, yep. But a couple things about
that. Most relevant to our present situation:
our link was an image, not a phone number.
There was no text. A phone likely would not
have recognized it.
Also, various phones’ abilities to correctly
recognize phone numbers is hit or miss.
Opera Mini has a tendency to think that zip
codes with the plus‑4 extension are phone
numbers. Trying to place a phone call to a zip
code has curious results, as you’d imagine.
Also recall that we are being quite
formal with our phone number formatting
(+15035552329). One might want to display
a slightly different string in the link text itself,
yet be confident that the link itself will be
formatted correctly.

Q: How come there has to be that
pop-up confirmation box after a user
clicks on a phone call link? Why can’t it
just spawn a call directly?
A: This is to protect the user from being
tricked. A visible phone number link might
have one number, but the link itself another.
Some poor suckers might end up calling
a scammer when they thought they were
cancelling their local newspaper subscription.
In our case, we’re not even displaying the
phone number, something that is arguably
not really a best practice. We could also
use a CSS background image instead of
an inline image, have the phone number as
the text in the link, and use a big negative
margin in CSS to hide the text.
Q: In English, please? I didn’t major in
CSS in college.
A: Using a large negative left margin
(e.g., margin-left: ‑10000px)
is a way to get text to go way off to the left
and be invisible. We like to visualize the text
somewhere 10,000 pixels to the left, floating in
the air somewhere in our office. But we’re weird.

Q: So, we think a browser that has a
non-none value for xhtml_make_
phone_call_string is on a
mobile phone that can make phone calls,
but do we know?
A: WURFL has some intelligent data, but
it’s not that smart (no one is). There’s no
clear‑cut way to be absolutely certain a user
is on a functioning cellular network (versus
WiFi or something else) or that there are not
other things preventing the actual placement
of a phone call. But, really, this gets us more
than most of the way there.
Q: Couldn’t we just test that the
value of xhtml_make_phone_
call_string isn’t 'none' and
call it done? Isn’t the test for has_
cellular_radio redundant?
A: You might be on to something,
Smartypants.
Q: Speaking of Smartypants, you
glossed over it pretty quickly, but I
actually do want to know more about the
WURFL objects and API.…
A: Hey, we heartily encourage you to go
look at the PHP classes in the API and see
how they work together. If you’ve installed
the API, you’ve got the files already, so hop
to it!

No more button on
iPod Touch! But still
there on iPhone!

device databases and classes

you are here 4 179

After updating device.php with the changes from page 173 with the stuff on
page 177, you might realize that you don’t have an iPod Touch on hand to
test the changes.
To see what an iPod Touch would see, edit the device.php file. Use
the getDeviceForUserAgent() method instead of the
getDeviceForHTTPRequest() method and give it an iPod
Touch user agent.You can find one

on page 175.

Answers on page 180.

Jim: This could get out of hand! In a more complex project—or even

AcedIt!’s site, if it adds more mobile bells and whistles—it seems like using

scattered, individual WURFL capabilities all over the code would cause a

lot of headache and mess. I mean, if we end up with one capability being

tested for in one template, another capability being tested somewhere else…

and so on.…

Frank: I agree. It seems like we’d be delivering a slightly different website

to every possible combination of capabilities—a nightmare to think

through and test.

Jim: A one‑way ticket to spaghetti code, yeah.

Frank: But I don’t want to throw out the whole concept. Even though I

like to try to do feature detection on the client, and we still want to make

our stuff as responsive as possible, it does seem like a device database like

WURFL can give us insight into some details that we might not be able to

get from other sources.

Jim: But how do we corral all of this so it doesn’t make us crazy?

Frank: It seems like if we could group devices logically—instead of testing

capabilities piecemeal—we might be able to keep our sanity. Remember

how we recently spent time thinking through how to evaluate which devices

to support by picking and choosing features and drawing the line for

phones that don’t make the cut?

Jim: Do I ever. I’m still somewhat cross‑eyed from those exercises!

Frank: It seems like we could go one step further and create buckets of

devices that are within the group of devices we decide to support.

Jim: Interesting…I think you might be on to something.

180 Chapter 5

device class corral

Herding devices
A device class creates a sort of logical corral into which

you can herd devices that have certain things in common.

Just as a rancher might put spotted cattle into one field,

giant work horses in another, and little piglets in yet

another (can you tell we’ve never been ranchers?), we can

sort our devices into virtual cubby‑holes with device classes.

Sort once, then go
Once our rancher identifies an animal as belonging to

one of those three groups, he can make further decisions

without having to look at the smaller details. He can feed

oats to the horses without stopping to reverify that they

have legs of a certain length or swishy tails or can support

PNG images (everyone knows that horses lack support for

transparent PNGs!).

He already knows they’re horses because they’re in the

horse corral. He doesn’t have to tailor feeding to each

individual animal (that would be a lot of horse meals to

keep track of). But, at the same time, he doesn’t feed oats

to the piglets.

A device class is an abstract
collection of common
characteristics that define
a group of devices (and
their browsers).

You can test what content gets delivered for a given device or browser by using its user agent
when intializing the WURFL device.

$wurflManager = $wurflManagerFactory->create();
$device = $wurflManager->getDeviceForHttpRequest($_SERVER);
$user_agent = "Mozilla/5.0 (iPod; U; CPU iPhone OS 4_3_2 like Mac
OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2
Mobile/8H7 Safari/6533.18.5";
$device = $wurflManager->getDeviceForUserAgent($user_agent);

device.php

device databases and classes

you are here 4 181

Device classes
As we learned earlier, we can run incoming requests against

a device database to get device information. By grouping the

capabilities and values that matter for the site at hand, we can

adapt content across an entire device class instead of chasing

down each individual capability’s value.

These device class definitions, converted into code, sort

devices into one of several groups. Once our devices are

sorted, we can take action without having to keep track of each

individual constituent capability.

Incoming requests are run against a device database.

Code evaluates which device class
the device matches based on
device data.

In this hypothetical example,
devices are sorted into one of
four groups.

Desktop-like devices

Spiffy, newer
smartphones

Middle-of-the-
road smartphones and advanced
feature phones

Devices that didn’t meet
bottom-line requirements

The bar is set here
(like in Chapter 4).

182 Chapter 5

study aids on the go

The picture just got a lot bigger

Expanding a lucrative part of AcedIt!’s business

AcedIt! is building a standalone website for the study aids it sells

to its students. It’s realized that flashcards, practice test booklets,

reference books, and the like are selling like hotcakes, but the only

way to purchase things right now is through a printed catalog.

It’s time for a change. AcedIt!’s new study‑aid‑specific site will

not only allow users to buy any physical product online, but will

also introduce online products like flashcards that can be used

interactively, right on the site itself.

An early look at what it has in mind
It’s early yet. Logo designs haven’t been finalized, content is still

being evaluated, and the design is still in simple‑mockup phase.

But let’s see what the company’s up to:

AcedIt!’s web
folks sent this
early mockup of
the new site’s
home page.

Users can shop online
and study now—use
interactive products
right on the site itself.

AcedIt! will feature
products in a snazzy
Flash movie.

The home page has excerpts from the company’s blog.

These ads are
for related
services, like paper proofreading and local study groups.

AcedIt!’s devs
are building these
features using
JavaScript and
other standard
web technologies.

Hey, you guys. Nice job on that panic button!
Do you think you could help us mobile-optimize

a big new site we’re building?

device databases and classes

you are here 4 183

Evaluate the home page wearing
mobile-tinted glasses
The scope of the new study aid site is much bigger than the

single panic button page. We risk making ourselves crazy if we plan

development piecemeal, capability by capability. One way to frame our

development approach and make the site work well for different kinds of

users is to group the different experiences using device classes.

Combining device data with logical grouping
The process of defining device classes is related to the work we did in

Chapter 4. We look at the task at hand, figure out what things matter,

mumble a few incantations, and come out the other side with some

general criteria.

We know. “Group the experiences using device classes” is

catastrophically vague. Let’s start by reviewing the mockup again and

weighing AcedIt!’s priorities against what we know about mobile web

characteristics and constraints.

Using Flash content is
problematic on mobile
devices. We’ll need
to find an alternate
format for mobile.

AcedIt! has mentioned
that it doesn’t think
the ads need to show
up for mobile users.

It seems a bit
lukewarm on the
whole ad part of the
site, anyway.We might want to link to

the blog instead of having
the content excerpts right
on the page.

We’ll want to adjust the layout by reducing the number of columns and tightening up the header.

There’s a lot of
complex CSS3 styling
that won’t work on
all devices.

AcedIt! has made it
very clear that the
interactive elements
on the site are of
mega importance.

We need to keep the JavaScript and AJAX (Asynchronous JavaScript and XML) device capabilities in mind.

OK, yeah, we know. We only
have a rough landing-page
mockup for right now. But
the scope will be broader on
this project…eventually.

We can put the content first
and the navigation nearer to
the bottom for mobile layouts.

184 Chapter 5

full-fat design vs. skinny design

A fuller mobile experience
By creating a device class that encompasses the requirements

for the richer mobile experience, we can design something neat

without risking poor support on lesser devices.

By specifying that devices in this class must have a WebKit‑

based browser, we can use CSS goodies like gradients with

relative confidence. We can also rely on a certain level of decent

JavaScript support.

A simplified experience for simpler phones
For narrower screens and less powerful devices, let’s be more

streamlined. And let’s not assume support for all of the modern

browser bells and whistles.

This simpler layout doesn’t provide the link to the online products,

but users can still shop in the online store. This version works

fairly well down to about 176 pixels wide, at which point the

product images in the store become difficult to see.

Group requirements into multiple mobile flavors

Interactive
pieces of the
site look best on
screens at least
320 pixels wide.

The full‑fledged interactive site experience has some high demands. Mobile

devices need to have the kind of JavaScript, HTML, and CSS support that is

usually found in newer, swankier browsers on smartphones. Specifically, the

AcedIt! devs are targeting mobile devices running WebKit‑based browsers and

designing for screen sizes no narrower than 320 pixels.

But that doesn’t mean everyone else should get the cold shoulder. Smaller,

slightly less cutting‑edge phones are still welcome on the site. They can buy

physical products in the online store and visit the other areas of the site. They

just aren’t cut out for the heavy‑duty interactive experience or the hardcore CSS,

for example.

Instead of delivering to the lowest common denominator or kicking out devices

that don’t quite cut it, let’s create two separate flavors of the site that make

sense for each group of devices.

higher_mobile

simpler_mobile

Now we have a rough sense
of our two mobile device
classes, higher_mobile and
simpler_mobile.

The landing page
mocked up as it
would appear for
each device class

device databases and classes

you are here 4 185

Rounding out our device classes

higher_mobile

simpler_mobile

desktop
tablet

unsupported

Totally Required

Based on the
priorities and

 requirements,

it seems like the fo
llowing are the

bottom line. Mobile devices
must

have the foll
owing to be con

sidered

“supported.”

- SSL support

- Cookie support

- At least some JavaScript sup
port

- A resolution o
f at least 17

6px

We now have a rough sense of two mobile device classes

we’ll want to construct. What else?

Oh, by the way, tablets
AcedIt!’s devs are also working on a tablet‑optimized,

super‑nifty, touch‑driven interface for their online products.

It’s not done yet, but they want to be prepared for its

eventual launch by being able to identify tablets now.

Where to draw the line
It’s important to the AcedIt! folks that their visitors can

either shop online or use the online products. If visitors

can’t do either because of device constraints, the device

and browser they are using are considered unsupported.

The company’s ecommerce software requires cookie

support and a bit of JavaScript support (not nearly

as much as the online interactive products). It is also

mandatory that, for security, devices support SSL.

Our device class lineup

WebKit‑based
browsers and at
least 320px width

Minimal JavaScript
support and at least
176px width

Hey, desktop is a
device class, too!

Yep, tablets

Is delinquent in any
of the totally required
characteristics

186 Chapter 5

interview with a device class

Slightly Confused Web Developer: I’m

having trouble getting my head around this device

class business. A collection of capabilities…tied to

an experience?

Device Class: I admit, I am a bit difficult to

capture. If I were a painting, I’d be an abstract blur.

I’m a concept, a way to think about organizing

common things so that we can create just a few

flavors of a site, instead of a million billion.

SCWD: So, a device class is a set of WURFL

capabilities—

Device Class: Not so fast. Remember that I’m

an abstract concept. We’ll be using WURFL here,

but there’s no reason you have to. No reason, in

fact, you have to use any device database.

SCWD: This is all starting to feel a bit woo‑woo.

Can you help me understand where the rubber

meets the road here?

Device Class: OK. Let’s plan this together. For

AcedIt!, we’ll have five device classes.

SCWD: Does that mean we’ll be making a version

of the website for each? That sounds like a big task.

Device Class: No, we only need to focus on

the differences. For example, until the new touch‑

based, tablet‑optimized flashcard interface is

launched, the tablet‑device‑class version of the site

only differs from the desktop version in that no

Flash content will be used.

SCWD: OK, so we have a desktop device class,

which is self‑evident…and that tablet device class,

which has minor differences…let’s see. What are

the differences between higher_mobile and

simpler_mobile?

Device Class: As we know that

higher_mobile represents devices with larger

screens and capable WebKit‑based browsers,

we can be more confident that they have the

horsepower to handle some of the site’s more

intensely interactive features.

simpler_mobile, by contrast, represents

devices with narrower screens and perhaps less

cutting‑edge browsers. We can give them smaller

images (yay! less bandwidth). We know they support

a bit of the ol’ JavaScript, but can give them a dose

of content that is less deluxe.

SCWD: Wait, how do we know that the

simpler_mobile devices support JavaScript?

Device Class: We will test for at least a modicum

of JavaScript support. Devices that don’t have the

ability to modify the DOM after page load will be

shunted off into the unsupported device class.

SCWD: So what’s up next to keep this ball rolling?

Device Class: We need to map the right

WURFL capabilities and their values to the

device classes we want to create. After we have

a logical representation of the device classes, we’ll

create code to do some actual testing and slotting.

Device Classes Exposed
This week’s interview:
Abstraction to execution�what
exactly is a device class�

device databases and classes

you are here 4 187

Pool Puzzle
Time to find the right WURFL capabilities

and values for our device classes.

Your job is to take the WURFL

capabilities and values from the

pool and place them into the blank

device classes. You may not use

the same item more than once.

Note: each thing from

the pool can only be

used once!

reso
luti

on_w
idth

>= 3
20 p

ixel
s

resolution_width

< 320 pixels

cookie_support = false

https_s
upport

= falseis_tablet = true

is_wireless_device = false

ajax_manipulate_do
m = false

mobile_browser =
'Safari' OR 'Android'

is_wireless_device = true

is_wireless_device
 = true

higher_mobile

lesser_mobile

unsupported

desktop

tablet

resolution_width < 176

188 Chapter 5

exercise solution

Pool Puzzle Solution
Now we’ve collected the right WURFL

capabilities and values to build

our device classes.

resolution_width

>= 320 pixels

resolution_width

< 320 pixels

cookie_support = false

https_s
upport

= false

is_tabl
et = tr

ue

is_wireless_device = false

ajax_manipulate_do
m = false

mobile_browser =
'Safari' OR 'Android'

is_wireless_device = true

is_wireless_device
 = true

higher_mobile

lesser_mobile

unsupported

desktop

tablet

resolution_width < 176

device databases and classes

you are here 4 189

Q: Why the focus on WebKit-based browsers? Are the
devs hating on other, totally decent mobile browsers?
A: WebKit‑based browsers are seen by many mobile web
devs as both fairly advanced and consistent. Browsers with
the WebKit rendering engine generally have good support for
HTML5, JavaScript, and CSS3.
Note the word generally in the previous sentence. The problem
is, there is a misconception as to just how consistent browsers
based on WebKit are. The sad truth is: there’s still a lot of chaos.
Mobile platform strategist Peter‑Paul Koch spells out the
pitfalls of assuming consistency in mobile WebKit browsers
in the thorough post “There is no WebKit on Mobile” on his
QuirksBlog (http://bit.ly/uWnFLa).
Q: If mobile WebKit isn’t really a “thing,” why are we
basing a device class on it?
A: Consistent and reliable or no, WebKit‑based browsers
are what the devs have done their development on and testing
for. At this point in the project, it is too late to throw the net
wider. We’re kind of following their lead on this one.
Q: How is testing for the string 'Safari' or
'Android' as the mobile browser name equivalent to

finding all WebKit browsers?
A:You might recall from Chapter 3 that user‑agent strings
are wily creatures. Apple’s history with respect to WebKit
endures in the user‑agent string legacy. At time of writing, all
known mobile variants of WebKit browsers have either “Safari”
or “Android” in their browser name (yes, even WebKit browsers
on BlackBerries and Nokia phones and whatnot).
Q: If I use device classes in a project, will I always have
five?
A: Nope. You might have 10, 4, or 0. Having fewer means
less complexity. Having more means more nuance.

Q: What’s with the names higher_mobile and
simpler_mobile? Is there a naming convention I
need to know about?
A: Eh, we just pulled those out of a hat. They sounded
about right. We used underscores simply so we can translate
the names into code more easily. You can call your device
classes whatever you’d like. Within reason.
Q: Now that we’ve got device classes, I can never test
an individual device capability?
A: You can totally still test individual capabilities. In fact, the
solution for the panic button problem was very appropriate: we
were testing for the value of a very specific capability—a value
that might differ among devices in the same device class (an
iPhone versus an iPod Touch, for example).
Q: Couldn’t a device match more than one device
class?
A: Yes. We need to arrange our device class testing code
in order carefully. The first matched device class will be the
device class we assign.
Q: What the heck is the CustomDevice object I
keep seeing in the code examples?
A: CustomDevice is simply the name of the class in
the WURFL API that represents a device and its characteristics.
Q: Seems like device classes are not just a mobile web
thing.
A: Not at all! Content and layout adaptation is a concern
that spans the entire Web. The mobile web doesn’t have a
monopoly on that.
Q: OK, great. I have some circles with some
capabilities and required values in them. Now what?
A: Turn the page, my impatient friend. We’re going to start
turning these device classes into code.

190 Chapter 5

grouping groundwork

Let’s get this show on the road
Now we need to convert the abstract notion of what we’re grouping into

real code that will detect and slot devices into the appropriate device class.

Here comes the sorting!

Write a (PHP) function to test the individual

device capabilities we care about in each device

class definition.

Translate each device class’s capability requirements

into conditional (if/then) statements in code

so we can determine which device class the current

device should be assigned to.

But, first…
Find the device_classes folder in chapter5, and then the test_classes

folder beneath it. Eureka! This is our playground for now.

This is probably starting to feel pretty familiar: we need to set up

a configuration file so that WURFL can be initialized. Start by

copying the config.php file from the panic_button folder into

device_classes/test_classes.

Write a simple test page (similar to our WURFL

explore page) to see how different user agents get

sorted into device classes.

config.php

index.php

styles.css

test_classes

device.php

device_classes.php

device_classes

We’ll add to this file over
the next few pages.

To cut down on busywork, we
cobbled this together for you.

And we’re off!
Here’s what we’re going to do:

A simple test page to
enter user agents and see
which device class they
get slotted into.

device databases and classes

you are here 4 191

Ready Bake
PHP

function device_match($capability, $comparison, $value) {
 global $device;
 if (!$device) {
 return FALSE;
 }
 $device_value = $device->getCapability($capability);
 switch ($comparison) {
 case '==':
 case '===':
 return ($device_value === $value);
 case '!=':
 case '!==':
 return ($device_value !== $value);
 case '>=':
 return ($device_value >= $value);
 case '<=':
 return ($device_value <= $value);
 case '>':
 return ($device_value > $value);
 case '<':
 return ($device_value < $value);
 case 'LIKE':
 return (strpos($device_value, $value) !== FALSE);
 case 'NOT LIKE':
 return (strpos($device_value, $value) === FALSE);
 default:
 return FALSE;
 }
}

The name of the
capability to test

A comparison
operator The value to test

against

Make sure the device
object exists.

Get the value of
the capability
from the device.

We test the
current value from
the device against
the value we are
curious about.

Get acquainted with the matching function
You’ll find this matching function already waiting for you inside of

device_classes.php. We’ll use it when we create the individual tests for

each device class.

We wanted to tell you a few things about it before we started taking

advantage of it. Stand back; here comes some PHP.

device_classes.php

This function
returns a TRUE or
FALSE (Boolean)
result—whether
or not the given
test passed.

192 Chapter 5

dig deeper

 switch ($comparison) {
 case '==':
 case '===':
 return ($device_value === $value);
 case '!=':
 case '!==':
 return ($device_value !== $value);
 case '>=':
 return ($device_value >= $value);
 case '<=':
 return ($device_value <= $value);
 case '>':
 return ($device_value > $value);
 case '<':
 return ($device_value < $value);
 case 'LIKE':
 return (strpos($device_value, $value) !== FALSE);
 case 'NOT LIKE':
 return (strpos($device_value, $value) === FALSE);
 default:
 return FALSE;
 }

Depending on
the comparison
operator supplied,
the values are
compared in
different ways.

$device_value is the value of the capability
in question on the current device.

$value is the value
we’d like to test
against.

LIKE and NOT
LIKE allow us to
do glob (substring)
comparisons.

device_match('resolution_width', '<=', '240');

device_match('is_wireless_device', '===', 'false');

device_match('mobile_browser', 'LIKE', 'Safari');

Some examples

This test passes (returns
TRUE) if the device’s
resolution_width value is
240 pixels or smaller.

This test passes if the
is_wireless_device value for
this device is ‘false’.

This test passes if the
mobile_browser value
contains the string ‘Safari’.

If $comparison is not one of
the recognized comparison
operators, we fail.

What’s going on in that switch statement?

device databases and classes

you are here 4 193

Write a (PHP) function to test the individual device

capabilities we care about in each device class definition.

Translate each device class’s capability requirements into

conditional (if/then) statements in code so we can determine

which device class the current device should be assigned to.

Write a simple test page (similar to our WURFL explore page)

to see how different user agents get sorted into device classes.

We wrote that matching function for you, but now it’s time for you to do a bit of work.
Which tests belong to which device class?

if (device_match('mobile_browser', 'LIKE', 'Safari') ||
 device_match('mobile_browser', 'LIKE', 'Android'))

if (device_match('is_wireless_device', '===', 'false'))

if (device_match('https_support', '===', 'false'))

if (device_match('cookie_support', '===', 'false'))

if (device_match('ajax_manipulate_dom', '===', 'false'))

if (device_match('resolution_width', '<', '176'))

if (device_match('resolution_width', '>=', '320'))

if (device_match('resolution_width', '<', '320'))

if (device_match('is_tablet', '===', 'true'))

Use the matching function to test capabilities
Now we have a function to test capabilities with. Time to convert our

required capabilities into tests.

Reminder: The device
classes we ended
up with are desktop,
tablet, higher_mobile,
simpler_mobile, and
unsupported. We figured
out what to test for
each in the pool puzzle
on page 188.

194 Chapter 5

exercise solution

We’ve got these tests sorted! Now it’s time to convert them into grouped nuggets of real PHP
code. Keep truckin’!

if (device_match('mobile_browser', 'LIKE', 'Safari') ||
 device_match('mobile_browser', 'LIKE', 'Android'))

if (device_match('is_wireless_device', '===', 'false'))

if (device_match('https_support', '===', 'false'))

if (device_match('cookie_support', '===', 'false'))

if (device_match('ajax_manipulate_dom', '===', 'false'))

if (device_match('resolution_width', '<', '176'))

if (device_match('resolution_width', '>=', '320'))

if (device_match('resolution_width', '<', '320'))

if (device_match('is_tablet', '===', 'true'))

higher_mobile

unsupported

desktop

higher_mobile

unsupported

tablet

unsupported

unsupported

simpler_mobile

Time to put the
code together…

This feels like it might be an appropriate test for the desktop device class, but we’ll be weeding out desktop browsers immediately by looking at the is_wireless_device capability…

device databases and classes

you are here 4 195

Comfortable with PHP code? See if you can plunk in the missing

pieces of the code chunk here. These are the device class tests,

grouped and ready to go.

$device_class = NULL;

if (device_match('is_wireless_device', '===', ' ')) {

 $device_class = 'desktop';

}

else if (device_match('https_support', ' ', ' ') ||

 device_match(' _support', ' ', ' ') ||

 device_match('ajax_manipulate_dom', '===', 'false') ||

 device_match(' ', ' ', '176')) {

 $device_class = ' ';

}

else if (device_match('is_tablet', '===', ' ')) {

 $device_class = ' ';

}

else if (device_match('is_wireless_device', '===', 'true') &&

 device_match('resolution_width', '>=', ' ') &&

 (device_match('mobile_browser', ' ', 'Safari') ||

 device_match(' ', 'LIKE', 'Android')))

{

 $device_class = ' ';

}

else if (device_match('is_wireless_device', '===', ' ') &&

 device_match(' ', '<', ' ')) {

 $device_class = 'simpler_mobile';

}

196 Chapter 5

tests at the ready

All right, now we have our tests!

$device_class = NULL;

if (device_match('is_wireless_device', '===', ' ')) {
 $device_class = 'desktop';
}
else if (device_match('https_support', ' ', ' ') ||
 device_match(' _support', ' ', ' ') ||
 device_match('ajax_manipulate_dom', '===', 'false') ||
 device_match(' ', ' ', '176')) {
 $device_class = ' ';
}
else if (device_match('is_tablet', '===', ' ')) {
 $device_class = ' ';
}
else if (device_match('is_wireless_device', '===', 'true') &&
 device_match('resolution_width', '>=', ' ') &&
 (device_match('mobile_browser', ' ', 'Safari') ||
 device_match(' ', 'LIKE', 'Android')))
{
 $device_class = ' ';
}
else if (device_match('is_wireless_device', '===', ' ') &&
 device_match(' ', '<', ' ')) {
 $device_class = 'simpler_mobile';
}

false

false
false===

===cookie

resolution_width

resolution_width

<
unsupported

320
LIKE

mobile_browser

true
320

higher_mobile

true
tablet

All right! Two out of three! We’re almost done now!

First and foremost: is this even a mobile browser?

Make sure this device
doesn’t lack our baseline
requirements…

Is it perhaps a tablet?

Or are its browser
and resolution
pretty awesome?

Or maybe it’s good enough but not cutting-edge.

Write a (PHP) function to test the individual device

capabilities we care about in each device class definition.

Translate each device class’s capability requirements into

conditional (if/then) statements in code so we can determine

which device class the current device should be assigned to.

Write a simple test page (similar to our WURFL explore page)

to see how different user agents get sorted into device classes.

device databases and classes

you are here 4 197

Put code into the device_classes.php file.
Add the tests from page 196 into the file after the

device_match function and save it.

1

View the index.php file in a browser.
By default, the page will show you the device class

assigned to your current browser.

2

Test some different user agents.
Enter the user agents here into the form field to see

which device class they get assigned to.

3

Mozilla/5.0 (PlayBook; U;
RIM Tablet OS 1.0.0; en-
US) AppleWebKit/534.8+ (KHTML,
like Gecko) Version/0.0.1
Safari/534.8+

BlackBerry9300/5.0.0.794
Profile/MIDP-2.1 Configuration/
CLDC-1.1 VendorID/245

PantechP2020/JIUS05172010R;
Mozilla/5.0 (Profile/MIDP-2.0
Configuration/CLDC-1.1; Opera
Mini/att/4.2.19039; U; en-US)
Opera 9.50

BlackBerry8330/4.5.0.77 Profile/
MIDP-2.0 Configuration/CLDC-1.1
VendorID/105

This simple test
form is coded for
you in index.php.

The page displays the
device ID and the
computed device class for
the entered user agent.

Time to pound the last few nails into our device class testing project.

We want a page with a simple form that will take a user agent and spit

out which device class it matches. As this is super similar to what we

did for the WURFL explore page, we’ve done it for you (yippee!).

The home stretch

index.php

Test Drive

198 Chapter 5

testing time

Well, let’s see…how’d it go?

Looks like something went a bit wrong
The problem is that this Curve has a resolution of 320 pixels (meaning it’s too

wide to qualify for the simpler_mobile class), but does not have a WebKit

browser (meaning it fails to qualify for higher_mobile). This is going to be a

problem for other devices that have higher resolution but non‑WebKit browsers.

We need to fix this and make sure our device classes don’t have any other logical

holes that devices can fall through.

Filling in the gaps
We have three options for how to fix the higher‑resolution‑but‑non‑WebKit‑browser

situation:

 We could create a new device class to handle this combination.1

 We could change the higher_mobile device class to allow for

other, non‑WebKit browsers.
2

 We could edit the simpler_mobile device class and remove the

240‑pixel resolution maximum.
3

Why did the user agent for the
BlackBerry 9300 (Curve) fail to
match any device classes?

Grouping by resolution

Grouping by browser

Each option is totally valid. We have to decide which seems most ideal for the

AcedIt! study aid website.

This RIM Playbook
was correctly
identified as a tablet.

This Pantech smartphone
qualifies as simpler_mobile
because of its smaller screen.

This BlackBerry’s browser is old
enough (version 4.5) that it doesn’t
allow manipulation of the DOM
after the page is loaded.

Uh oh! This user agent didn’t
qualify for any device classes!

Good!

Good!

Good!

Uh oh!

That is, it doesn’t have
the kind of JavaScript
support required.

device databases and classes

you are here 4 199

Joe: Do we really need to add yet another device class? Seems like a

lot to wrangle.

Frank: I agree. We need to strike a balance between nuance and

the number of device classes we have. It feels like we already have

about the right number.

Joe: So, what now?

Frank: OK. The problem is that higher‑resolution devices that

don’t have WebKit browsers are falling through and not getting

assigned to any device classes—

Joe: Aren’t there actually two problems here? One, we’re not

thinking through what experience those devices should get, like you

said. But we also don’t have a fallback, default device class overall.

Seems possible something could go wrong with device detection or

there might be something else we’re not thinking of. I think we need

a sort of safety net device class.

Frank: Good point. For the first problem, if we’re not adding a

new device class, we need to fill the gap. The question is: what is

more relevant here, device resolution or browser capabilities?

Joe: AcedIt! puts a lot of focus on the interactive elements of the

site—that suggests browser capabilities matter more. But at the

same time, we were planning on delivering smaller images to those

lower‑resolution devices.

Frank: I think you’re right about AcedIt!’s priorities. How about

this for a compromise? We update the device classes such that there

isn’t a top‑end resolution restriction on the simpler_mobile

class.

That does mean that some higher‑resolution devices get a

simpler feel, but if I recall correctly, the dev team working on

the touch‑optimized flashcards is using a framework targeted to

WebKit‑based browsers. Heh, in fact, I think that’s why we were

testing for WebKit browsers in our higher_mobile class in the

first place. Wow, I need to get more sleep; my memory is failing me.

Joe: What about images?

Frank: I think we’d do fairly well if we gave all mobile devices

mobile‑optimized images that aren’t any bigger than 320 pixels in

any dimension. Then we can use responsive image techniques to get

us through the final mile on the device.

200 Chapter 5

retest the user agent

Fill in the gaps in the device class tests

 $device_class = 'higher_mobile';
}
else if (device_match('is_wireless_device', '===', 'true') &&
 device_match('resolution_width', '<', '320')) {
 $device_class = 'simpler_mobile';
}
else {
 $device_class = 'desktop';
}

Here are the changes we need to make to our device class tests: Remove this resolution restriction for simpler_mobile.

Careful: Only
remove one of the
parentheses here.

Add a fallback
default device class.

Make the changes to the device_classes.php file and retry the user‑agent strings from

page 197 in the test form.

Yay! The problematic BlackBerry user
agent now matches the simpler_mobile device class.

device_classes.php

Test Drive

device databases and classes

you are here 4 201

config.php

adapt_content

styles

device_classes.php

index.php

test.php

common.css

desktop.css

mobile.css

mwebkit.css

Make something actually happen
with device classes
Time to take the device classes we’ve cooked up and get cracking.

The goal: deliver different flavors of the landing
page mockup to different users based on device
classes.
We’ll use our code to sort devices into device classes and deliver

different versions of the current AcedIt! study‑aid‑site mockup to

different devices, using the wireframes we whipped up on page 184.

Do this!

 It’s getting a bit late, and we’re all

tired: to save you some time, we

did a lot of this for you.

We’re going to walk through how we did

it over the next several pages, but we’ll show you where to

find the finished code.

Copy the configuration file from the last

exercise into the adapt_content folder. Yep.

Again! This is the last time, we promise.

This is the device class
testing code we just
finished up (already
there for you).

Your configuration file

This page allows you to enter a user agent so that you can view index.php as different devices.

CSS for the
different
device classes.

The HTML and CSS we’re dealing with here is pretty basic:

AcedIt! is still in the early phases of development on the new site,

and so we’re working with some pretty barebones mockups.

We’ll treat unsupported devices similarly to
desktop browsers…for now, at least
We’re going to deliver content to the unsupported device class

that is basically the same as the desktop content, but we’ll

explicitly eliminate links to the interactive flashcards section of

the site and the online store. We’ll also not deliver Flash content

to unsupported devices.

device.php

Device initialization
file: all ready for you

202 Chapter 5

content delivery

The starting point of index.php has all versions of the content (for all device

classes) in it. It’s time to identify which pieces of content will be delivered

(or not delivered) to users who fall into our different device classes. For each

number below, find the corresponding markup on the right and fill in the

blanks with the appropriate device classe(es).

Use this DOCTYPE for the1 device class.

2 Use this stylesheet for the ,
device classes.

3 Use this stylesheet for the and
device classes.

4 Use this stylesheet for the device class.

5 Show this version of the navigation for the ,
device classes.

6 Do not show these two links for the device class.

, and

, and

device databases and classes

you are here 4 203

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN"

 "http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">

<!DOCTYPE html>

<html>

<head>

 <title>AcedIt! Study Aids</title>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1,
maximum-scale=1" />

 <link rel="stylesheet" type="text/css" href="../assets/common.css" />

 <link rel="stylesheet" type="text/css" href="../assets/desktop.css" />

 <link rel="stylesheet" type="text/css" href="../assets/mobile.css" />

 <link rel="stylesheet" type="text/css" href="../assets/mwebkit.css" />

</head>

<body>

<div id="header">

 <h1>AcedIt! Study Aids</h1>

</div>

<div id="navigation">

 Home

 Shop Online

 Study Now!

 Contact Us

 FAQ

</div>

1

2
3
4

5

6

Psst…the Study Now section is the interactive JavaScript-based flashcard feature.

Continued on next page.

index.php

Here’s the markup from the index.php file. Use it to answer the questions on the

page at left.

204 Chapter 5

still queuing

Oh, you thought you were done? At least you’re halfway there!

Deliver Flash content to the7 device class.

8 Don’t use Flash for the
, or

,
device classes.

9 Don’t show these sections for the or
device classes.

10

11

Show this version of the navigation for the and
device classes.

device class.

,

Hide the link to the interactive flashcards for the

device databases and classes

you are here 4 205

<div id="intro">

<p>Morbi non erat non ipsum pharetra tempus. Donec orci. Proin in ante.
Pellentesque sit amet purus. Cras egestas diam sed ante. Etiam imperdiet
urna sit amet risus...</p>

</div>

<div id="feature">

 <div id="featured_product">

 <p>Featured product Flash slideshow.</p>

 <p>Static featured product image.</p>

 </div>

</div>

<div id="ads">
 ...
</div>
<div id="fromtheblog">
 ...
</div>

<div id="navigation">

 Home

 Shop Online

 Study Now!

 Blog

 Contact Us

 FAQ

</div>

<div id="footer">

 <p>Current device class: <?php print $device_class; ?></p>

</div>

</body>

</html>

7
8

9

10

11

We removed a bit of the text content to save space here on this page.

It’s probably obvious, but these
are just placeholders until the
Flash movie and static variant
are developed.

index.php

206 Chapter 5

code conversion

Time to look at the markup differences for the different device classes and
convert our decisions into code.

2 Use this stylesheet for the ,
device classes.

3 Use this stylesheet for the and device classes.

4 Use this stylesheet for the device class.

Use this DOCTYPE for the1 device class.simpler_mobile
We’ll use XHTML-Basic for the simpler mobile device class. Everyone else gets HTML5.

desktop tablet
unsupported

Recall that we’re treating the unsupported
device class—mostly—like desktop.

higher_mobilesimpler_mobile

higher_mobile

This stylesheet has gradients and other fancy-pants

stuff, specifically formulated for WebKit browsers.

<?php if($device_class = = 'simpler_mobile'): ?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN" "http://
www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">
<?php else: ?>
 <!DOCTYPE html>
<?php endif; ?>

 <link rel="stylesheet" type="text/css" href="../assets/common.css" />
 <?php if ($device_class == 'desktop'
 || $device_class == 'tablet'
 || $device_class == 'unsupported'): ?>
 <link rel="stylesheet" type="text/css" href="../assets/desktop.css" />
 <?php endif; ?>
 <?php if ($device_class == 'higher_mobile'
 || $device_class == 'simpler_mobile'): ?>
 <link rel="stylesheet" type="text/css" href="../assets/mobile.css" />
 <?php endif; ?>
 <?php if ($device_class == 'higher_mobile'): ?>
 <link rel="stylesheet" type="text/css" href="../assets/mwebkit.css" />
 <?php endif; ?>

There are elements common to both
mobile device classes in these styles.

Everyone gets the aptly named
common.css.

2

3

4

1

, and

device databases and classes

you are here 4 207

5 Show this version of the navigation for the ,
device classes.

6 Do not show these two links for the device class.

desktop tablet
unsupported

This is the desktop-style navigation, near
the top of the page.

unsupported

Deliver Flash content to the7 device class.
8 Don’t use Flash for the

, or
,

device classes.

desktop

tablet
unsupported

higher_mobile
simpler_mobile

Flash and mobile devices often don’t play well
together. Ditto for tablets.

<?php if ($device_class == 'desktop'
 || $device_class == 'tablet'
 || $device_class == 'unsupported'): ?>
 <div id="navigation">

 Home
 <?php if ($device_class != 'unsupported'): ?>
 Shop Online
 Study Now!
 <?php endif; ?>
 Contact Us
 FAQ

 </div>
<?php endif; ?>

No online shopping or
snazzy flashcards for
these guys!

5

6

<?php if ($device_class == 'desktop'): ?>
 <p>Featured product Flash slideshow.</p>
<?php else: ?>
 <p>Static featured product image.</p>
<?php endif; ?>

7

8

,

Continues over the page.

, and

208 Chapter 5

who gets what?

9 Don’t show these sections on the or device classes.

10

11

Show this version of the navigation for the and
device classes.

device class.Hide the link to the interactive flashcards for the

higher_mobile simpler_mobile

higher_mobile
simpler_mobile

simpler_mobile

We’re not showing ads on the mobile layouts, and

instead of having blog teasers on the page, we’ll
provide a link to the blog subpage.

This is the mobile version of the navigation,
down at the bottom of the page.

No interactive flashcards for these phones!

<?php if ($device_class == 'desktop'
 || $device_class == 'tablet'): ?>
 <div id="ads">
 ...
 </div>
 <div id="fromtheblog">
 ...
 </div>
<?php endif; ?>

9

<?php if ($device_class == 'higher_mobile'
 || $device_class == 'simpler_mobile'): ?>
 <div id="navigation">

 Home
 Shop Online
 <?php if ($device_class == 'higher_mobile'): ?>
 Study Now!
 <?php endif; ?>
 Blog
 Contact Us
 FAQ

 </div>
<?php endif; ?>

Only give the link to the flashcards to the higher_mobile class.

11

10

device databases and classes

you are here 4 209

Try it out! Find the finished version of index.php in index_solution.php.

Replace the current index.php file with index_solution.php.

Navigate to test.php in your web browser and try some of the user‑agent

strings from the useful_user_agents.txt file to see the different device class

versions. Hit index.php directly with your desktop browser to see the desktop

version of the mockup.

We tightened up our device class tests on page
200, but can you think of anything other risks we
might not be considering?

Test Drive

210 Chapter 5

wurfl-ly generic

Always tread with care and come prepared
Way back in Chapter 3, we highlighted some pitfalls of server‑

side device detection using user agents. There are some risks that

you should keep in mind:

Browsers don’t always send accurate user agents.
Sometimes the user purposely overrides what user agent gets

sent, and sometimes browsers just send weird ones. This could

cause a device database to return inaccurate data.

1

WURFL doesn’t always find a (specific) match.
WURFL doesn’t always find a successful match, or any valid

match whatsoever. You might get a generic device ID, or

nothing at all.

2

WURFL’s “generic” is pretty generic
If you tried out the facebookexternalhit user agent in our explore

page (and if you didn’t, do it now!), you will have noticed that WURFL

identifies it as device ID generic. This is WURFL’s way of shrugging its

shoulders and saying, “hey, I tried, but I just don’t know what this puppy is.”

So what?
The values for capabilities for a generic device aren’t meaningful enough

to base decisions upon. It’s unlikely that the facebookexternalhit

client has a resolution_width of 90 pixels, for example. That just

happens to be the value that our WURFL data file has for generic devices.

Do this! Go back to the explore page we created earlier in the chapter and enter the
following user agent: facebookexternalhit/1.1 (+http://
www.facebook.com/externalhit_uatext.php).

device databases and classes

you are here 4 211

When designing a site that uses server‑side detection, take some time

to think through how the site will behave if a generic ID is returned,

or if the device fails to match at all. Hint: It should still work.

Accidental success is not good enough
On the AcedIt! study aid mobile test site right now, user agents that

result in a generic device match will receive the unsupported device

class (try the facebookexternalhit user agent to see). This

is not an inappropriate device class to assign, but the assignment is

kind of happening via dumb luck.

 WURFL data can vary a bit.
Let’s compare the facebookexternalhit
capability data in our explore page against
the data in the ScientiaMobile explorer.

Visit http://www.tera-wurfl.com/explore and enter the
facebookexternalhit user agent.The first thing to
note is that the Database Edition’s variant of the generic
device ID is called generic_web_browser.

If you explore the capabilities returned for a bit, you’ll
find more differences. For example, take a look at the
display capability group and compare it to the display
capability group values for our “generic” device ID above.

Pretty different, huh? It’s smart to get familiar with our
flavor of WURFL (the PHP API, file-based variant), and
it’s a good idea that we have our own explore page.

We need a bigger safety net

Detail from the ScientiaMobile
explorer page capabilities for the
facebookexternalhit user agent

Detail of our explore page. The generic

values for the display group are very
generic—we shouldn’t rely on them.

212 Chapter 5

what if there’s no device at all?

A stitch in time

if (!$device->id
 || (!$device->isSpecific()
 && $device->fallBack === 'root')) {
 /* FAIL--make sure you have a plan for this situation */

}

If there is no
device ID at all…

Or if the match is nonspecific and has fallen back

all the way to the root (generic) device

The PHP API provides a few methods for determining how

specific a match was. Let’s take a peek.

That seems overcomplicated.
Why can’t I just test for a specific
match and be done with it?

Two reasons: error-checking goodness and
the desktop browser patch.
Checking for the lack of a device ID overall feels like good

housekeeping. We’re being tidy.

The desktop browser patch we’re using with WURFL

allows us to get basic information about desktop browsers

as well as mobile ones.

However, all matches for desktop browsers will return

FALSE for isSpecific(), as the data in the patch

isn’t considered specific. By checking the fallback and

making sure it’s not root (generic), we can avoid falsely

identifying desktop browser matches as failures.

device databases and classes

you are here 4 213

Update device_classes.php in the adapt_content directory to include a test for generic IDs or
lookup failures. Assign the unsupported device class in this case.

Q: What is this desktop browser patch of which you
speak?
A: The default installation of WURFL comes with a patch
that will identify, broadly, a set of desktop browsers as well as
mobile browsers.
Q: I don’t understand what parts of WURFL are the
API parts.
A: WURFL itself is just the data. The API is all the code
that interacts with it, organizes it, and so on. There are APIs
for several major programming languages.
Q: What does the facebookexternalhit user
agent mean, anyway?
A: When someone shares a link or whatnot on Facebook,
Facebook often goes and fetches some content from that
page, and/or a representative thumbnail‑ish image. This is
the user agent it uses when it does so.

Q: Wouldn’t the device class testing code be better as
a function/object/whatever?
A: It sure would. In real life, for real projects, the code
would likely be more elegant, more organized, and more
powerful. We’re just showing you the basics here.
Q: Excuse me, but if I am not mistaken, the
$device variable is global. That’s stinky.
A: See above.

$device_class = NULL;

if (device_match('is_wireless_device', '===', 'false')) {
 $device_class = 'desktop';
}

device_classes.php

Hint: Code will
go in this area.

214 Chapter 5

content-adapted ribbon

Now we’ve battened down the hatches! All done!

$device_class = NULL;
if (!$device->id ||
 (!$device->isSpecific() && $device->fallBack === 'root')) {
 $device_class = 'unsupported';
}
else if (device_match('is_wireless_device', '===', 'false')) {
 $device_class = 'desktop';
}

device_classes.php

 Congratulations, you’ve
mastered wrangling device
capabilities and classes.

It’s a complex concept—and you made it! You even have

a content‑adapted web page to prove it. Good work!

device databases and classes

you are here 4 215

 � Device data repositories like WURFL (Wireless
Universal Resource FiLe) allow us to get at very detailed
information about a whole lot of devices.

 � WURFL data contains over 500 capabilities per device,
organized into a couple dozen groups.

 � We can use a device database to identify a value for a
given capability and act upon that value.

 � WURFL’s PHP API is one of several APIs for interacting
with WURFL data. Different APIs handle and represent
the data slightly differently.

 � ScientiaMobile was founded in 2011 by some of the
original WURFL maintainers. The company provides
open source and commercial licenses for WURFL. There
are alternatives if WURFL doesn’t work for you.

 � When working on larger projects, it can be helpful to
group relevant capabilities into device classes.

 � Device classes are abstract groupings of devices based
on common capabilities.

 � By slotting a device into a device class, we can take
further action upon it (e.g., delivering adapted content)
without having to track individual capabilities constantly.

 � It’s important to build in default device classes, error
checking, and generic device handling into any code
that uses a device database for identification.

 � Like nearly everything on the Web, server‑side device
detection is not a 100% bulletproof concept.

 � Server-side detection and content adaptation can be
married with client-side adaptation—the two are not
mutually exclusive. We’ll be looking into this more later.

How do I make a choice between server-side
detection, which can trip up on bad or mysterious

user agents, and Responsive Web Design and
feature detection, which doesn’t have full support

in all mobile browsers?

It doesn’t have to be one way or
the other. You don’t have to throw
RWD out the window when you use
server-side device detection.
Some very handsome things can be accomplished

with a combination of the two. Each has its pros

and cons. Making the two dance in harmony is

part of what we’ll look at in Chapter 9, as we look

to the future.

this is a new chapter 217

build a mobile web app using a framework6

The Tartanator

“We want an app!� Just a year or two ago, that hallmark cry generally meant

one thing: native code development and deployment for each platform you wanted

to support. But native isn’t the only game in town. These days, web-based apps for

mobile browsers have some street cred—especially now that hip cat HTML5 and

his sidekicks, CSS3 and JavaScript, are in the house. Let’s dip our toes into the

mobile web app world by taking a mobile framework—code tools designed to help

you get your job done quickly—for a spin!

HTML5, CSS3, JavaScript,
mobile frameworks…They

sure don’t make tartans like
they used to.

218 Chapter 6

decipher buzzwords

Just like the term Web 2.0 a
few years ago, HTML5 and app
are the buzzword darlings of
media and Internet folks alike.
The terms mean different things to

different people—a free‑wheeling

semantic party that can be exhilarating

or frustrating.

As a web dev, you may already have eager

customers beating down your doors asking

for HTML5 and web apps specifically.

So, what is it that they’re really

asking for?

I’ve heard that you can do
all sorts of cool things by using

HTML5 on mobile phones, and I’ve
got a great idea for an HTML5

mobile web app!

you are here 4 219

build a mobile web app using a framework

And sometimes they just

mean “anything cool
I’ve

ever seen on the W
eb.”

Which is, well,
a bit misleading.

HTML5 is a specific thing…
HTML5 is a specific thing. It’s an in‑progress standard, an evolution of the HTML

we know and love—the language without which there would be no Web. HTML5

clarifies and improves upon the two‑decade‑old markup language, adding,

especially, support for web apps without putting much backward compatibility

at risk.

HTML5 introduces new semantic elements like <section>, <article>,

<nav>, and <header>. It simplifies the syntax for some tags, gives us the

power of media with <audio> and <video> tags, and unleashes interactivity

through new JavaScript APIs like geolocation and offline storage.

…but it has come to represent more
When people say HTML5, they often mean the combination of HTML5 itself,

super‑swanky JavaScript, and CSS3 goodness—in short, the core pieces for

building modern, interactive web applications.

…and what, exactly, is a web app?
What about the web app part of an HTML5 web

app? HTML5 is a confusing enough term, but

with the word app, you’re stumbling into even

murkier territory, full of dragons and discord.

You can usually look at a website in a browser

and have an sense of whether what you’re

looking at feels applike or not. An emphasis on

accomplishing tasks, a layout that fits on a single

screen, actions that don’t reload the whole page,

interactivity—all have been proposed as criteria

for what is an app versus what is a regular ol’

(content‑centric) website.

In short, no one has ever defined the word app

in a way that makes everyone happy.

HTML5…app…what do these words even mean?

Web apps are hard to
define, but they share
certain interactive
characteristics that
are well suited for the
strengths of HTML5
and its complementary
technologies.

220 Chapter 6

bloated page loads

I ne
ed this web page, please.

I ne
ed a b

it more information.

Sure, here you go.

Sure, here you go.

How “traditional” websites typically behave
In a traditional website model, a request for an HTML page retrieves

all of the components of that page—the HTML itself, JavaScript,

CSS, images, etc.

Browsers are often good about caching elements, and web servers

can be configured to encourage additional caching. But this model

means that each interaction—form submit, link click, whatnot—

results in a full‑page load.

The downside to this—especially when it comes to

mobile devices with limited concurrent HTTP requests,

bandwidth, and processing power—is that it means

requesting and downloading assets the browser may

already have downloaded before, and encumbers the

browser with re‑rendering content and reprocessing code

that might not have changed. It also feels less interactive.

Subsequent requests

Full pages are served again as
if the browser and server had
never communicated before.

Subsequent requests via form submits,

clicked links, etc.

Clients cache some
things (but not all).

First page request

These full-page loads
feel less interactive
and applike.

server

server

The client requests a
page from the server.

The server returns the page and all the assets needed to load it correctly.

request

request

web
page

web
page

HTML
CSS

images
JS etc.

HTML
CSS

images
JS etc.

client

client

you are here 4 221

build a mobile web app using a framework

I ne
ed this web page, please.

I ne
ed a b

it more information.

Sure, here you go.

Sure, here you go.

How applike websites often behave

Certain assets (images, data,
JS) can be saved locally for
later or offline use.

Often asynchronous req
uests (AJAX)

Response content can be inserted into an existing page’s DOM.

Subsequent requests

A response can be limited to the
specific content needed, avoiding
the bandwidth and processor
costs of a full-page reload.

The first request gets all the
various components of the page…

…and often some special instructions about which assets to cache.

First page request

In a more applike model, the client tends to play a bigger role, and fewer

assets are bandied around in each request. Reusable markup, code, and

assets can be stored locally. Requests for changed content or data can be

made asynchronously using AJAX. These behind‑the‑scenes asynchronous

requests pull in specific content or assets without causing a full‑page reload.

Requesting only relevant pieces of content and not reloading the entire page

reduces bandwidth and processing, and improves the sense of interactivity.

A lot of this interactive feeling is accomplished through asynchronous requests.

server

server

The client requests a
page from the server.

request

request

web
page

data

HTML
CSS

images
JS etc.

client

client

222 Chapter 6

turn the web tartan

Tartans Unlimited is an international organization that’s trying to

keep the history and culture surrounding Scottish tartans alive in

other parts of the world.

I have an idea for a web
app I want to build. It’ll let users find

information about us, but—this is more fun—
find and share and maybe even create their

own tartan patterns.

Ewan

A Tartans Unlimited mobile HTML5 web app

Welcome message

Tartan events

Tartans!

This is the main part of the

idea…sounds like an app?

Keep this simple…link to About Us

page for more info…

I have some ideas here…not

sure if they are possible!

The Tartanator!

Maybe call the whole

app/site “The Tartanator”?

Has a nice ring!

New Website! App?

 - A collection of tartans: popular “traditional” ones as well as new-world and user-created tartans.

 - Make it so users can see and explore the tartan patterns right on their phones.

 - Wouldn’t it be cool if users could create their own tartans?

Can this be done?

Lots of images
of tartans!

 - It would be nice if the app
could somehow “link into” our
international events database.
 - Could a user’s phone help
find the nearest events?

Events page

Ewan

A history of Tartans Unlimited.Links to information about the history of tartans.

About Us page

This content isn’t
ready yet.

Bug Pat about this.

 - Might want to wait until

phase 2 or phase 3 of the site

for events stuff—complex?

you are here 4 223

build a mobile web app using a framework

Jill: Hey guys, I know the requirements are pretty vague. When I

talked to Ewan, I got the sense that there are two main things he wants

to accomplish with the site…or app, or whatever. There’s a chunk

of content pages: info about the organization and education about

tartans. Then there’s this whole section he’s calling the Tartanator—

Joe: The Tartanator? Seriously? Heh.

Jill: Yeah. Actually, it seems he wants to call the whole site that, not

just one section. Anyway, it seems like it’s sort of a combination of a

browsable listing of tartan patterns to explore and, he hopes, a way for

users to create their own tartan patterns using a form—

Frank: Wow. That sounds simultaneously bizarre and daunting, but

possibly fun as an implementation challenge.

Joe: OK, content pages, Tartanator area…what about this note about

an Events page?

Jill: Hold your horses! I’m getting there! We’ve decided to do this

project in two rough phases. For the first phase, we’ll build basic

structure for the content pages and implement the tartan listing. He’d

also like us to think about how an interface for users to create their own

tartans would look, and maybe prototype the frontend of that.

Joe: So, like, we’d build the form for creating a tartan, but it doesn’t

need to do anything yet?

Jill: Something like that, yes. In phase 2, we’ll make it actually work,

and we’ll also come back and work on an Events section.

Frank: OK, sounds like we need to go start building a mobile web app.

MacAlpine clan
tartan

Innes clan
tartan Lennox clan

tartan

Tartan for the
state of Oregon

Some of the tartans that will be in the Tartanator’s tartan directory

224 Chapter 6

the tartanator project plan

Build content pages and site structure.

We need to create basic sections and pages and create an

overall structure.

Create the tartan listings.

For the first phase, we’ll create a listing of existing popular

tartan patterns. The tartans section should be a browsing

interface that—of course—looks and feels applike and

mobile oriented.

Build a prototype of the tartan-building form.

Ultimately, Ewan would like users to be able to construct

their own tartans by using an applike mobile interface. He

wants to see what that might look like, so we’ll whip him up

a prototype.

The master plan for phase 1 of the Tartanator

Here’s what we
need to do!

Well, you could build an app from scratch…
If you’re up to speed with CSS, HTML, and JavaScript,

learn how to put them all together to create awesome web

apps with Head First HTML5 Programming.

So, we’re supposed to build a mobile web app with
HTML5 and stuff. I have no idea where to begin.

Do I have to build all of this from scratch?

OK, enough plugging
now. - Ed.

Buy it, it’s great! The best
HTML5 Programming book
on the market. Seriously, you
know you want to.

you are here 4 225

build a mobile web app using a framework

 …or you could use a mobile web framework
To build phase 1 of the Tartanator, we’re going to turbo‑boost our web aptitude

by using a mobile web framework.

We’ll still be using our HTML and CSS chops, but a mobile‑oriented user

interface framework can help us get our job done faster.

A framework can help us manage cross-platform
inconsistencies.
Framework developers keep on top of obnoxious or

curious browser quirks that could really throw a wrench in

things, working around them in the framework’s codebase

so that we don’t have to.

3

 Choose and use web frameworks with care.
Frameworks are powerful mojo, but they also have
some drawbacks. Many are quite hefty, and can bloat
your site’s payload by hundreds of kilobytes. Some
employ a kitchen-sink approach, including tons of

widgets and cutesy animations that not only are large in byte
units, but can cause serious performance woes on lesser devices.
Finally, make sure you evaluate a framework’s device support.
Some only support one or a few major, cutting-edge platforms.

A framework can help us make a website or app
look mobile-friendly.
Mobile‑oriented frameworks generally help alter and

style HTML elements to look and feel more mobile, often

saving us quite a lot of time.

1

A framework can help us make a website or app
feel mobile.
Frameworks can take the drudgery out of transitions and

effects that make a website or app feel more native, or, at

least, consistent.

2

Depending on
the project, you
might not want to
reinvent at least
some of the wheels
required for an
interactive web
app. That’s where
mobile development
frameworks come
in handy.

Why use mobile web app frameworks?
Let’s face it. Building complex, interactive web apps from scratch—especially

mobile web apps—can be a daunting proposition. A web development

framework—that is, a packaged collection of interactive elements and code

tools—can help give us a leg up.

226 Chapter 6

jQuery Mobile

Our choice for the Tartanator: jQuery Mobile
To build the Tartanator, we’re going to use the jQuery Mobile framework.

jQuery Mobile is a user interface framework optimized for mobile devices.

It’s built atop the immensely popular jQuery JavaScript library.

The reason we chose jQuery Mobile for this project is that it is pretty easy to

use and has an architecture that maps well to our HTML5 focus—jQuery

Mobile is designed in a way that hooks in easily (sometimes invisibly!) to

well‑formed HTML5 markup.

Also, if you’ve ever used jQuery before, you probably know how intuitive and

straightforward it feels.

You’re right. It’s a
complicated landscape.
Here’s where we trot out our tired

Wild West metaphor about the mobile

web. But it’s true. There are no simple

answers, and pulling off complex

feats on the mobile web often involves

the cobbling together of several

implementation approaches.

So, no, don’t throw out everything we’ve

already learned. None of the techniques

we’ve covered so far is mutually

exclusive, and each makes more (or less!)

sense in different circumstances.

Life is complex. So is
the mobile web!

jQuery Mobile, like all of
the jQuery projects, is
open source.

Seems like we already have a hundred different
ways to build stuff for the mobile web. Responsive
Web Design. Separate sites. Using device detection or
feature detection. Do I just forget about all of that
stuff and start over with mobile web frameworks?

you are here 4 227

build a mobile web app using a framework

Q: Are there other mobile frameworks out there?
A:And how! There are more every day. Some other mobile web
frameworks include Sencha Touch, Wink, iUI, DHTMLX Touch, and
JQTouch.
Q: What exactly makes up a mobile web framework?
A: It depends on the framework, but most involve a combination of
JavaScript, CSS, and image (or other) assets to aid in the styling of
the mobile experience. Some frameworks also include a server‑side
component to help generate (as opposed to adapt) content.
Q: Wait. What about zepto.js or XUI?
A: Zepto.js (very lightweight JavaScript, with jQuery syntax) and
XUI (also very compact JS) both fall more on the library side of the
line (versus framework). Frameworks tend to have UI components,
while libraries tend to be code—in this case, JavaScript—only. This
is a grey area; the division between library and framework isn’t easy
to define.
Q: So, jQuery Mobile is a mobile version of the original
jQuery library?
A: Not so fast, hotshot! jQuery Mobile builds on top of jQuery. It
does not replace it. You’ll notice that when we start building stuff with
jQuery Mobile, the first JavaScript file we include is the core jQuery
library.
Q: So, jQuery Mobile is a JavaScript development framework
that extends jQuery.
A: Bear with us. Yes, there is JavaScript in the jQuery Mobile
framework. But jQuery Mobile is not a JavaScript framework. It’s
bigger than that. It’s a user interface framework. That means it also
includes stylesheets, icons, and other pieces of the puzzle.

Q: Do we really need to use a framework?
A: Do we need to? Technically? No, not at all! In fact, we
encourage you to build applike mobile websites from scratch, if that’s
your bag.
However, the nice thing about frameworks, and jQuery Mobile
in particular, is that they take care of a lot of obnoxious,
platform‑specific quirks and bugs for us. Their team of devs has
laserlike focus on the foibles of different mobile browsers.
We have limited time and space here, folks. Trying to pull off what
we need to do for the Tartanator without a framework of any sort
would be pretty hairy, not to mention the chaos of extra testing that
would be required (as we wouldn’t have that underpinning of tested
cross‑platform support).
Q: I still don’t get it. How is the Tartanator an app instead of
a website?
A: Because Ewan says so. No, really. The subtleties of
differentiation between app and site are so vague that the answer
sometimes seems almost arbitrary.
Ewan has a vision of the Tartanator as a functional, web‑based
thing. His focus is on the ability to find and create tartans, and, also,
ultimately, to search for relevant events. In his mind, that makes this
an app.
Q: But what if it were a site? I couldn’t use jQuery Mobile
then, right?
A: jQuery Mobile is a user interface framework. It doesn’t care
whether you call what you’re making with it an app or a site. Its job
is to make things feel usable and not break across various mobile
platforms, using a combination of CSS, JavaScript, and HTML5.
Q: But which mobile browsers support HTML5?
A: No browser supports (all of) HTML5. Don’t panic! HTML5 is
modular, and mobile browsers are increasingly supporting more and
more pieces. Just as no modern desktop browser fully supports every
single piece of CSS2.1, it may well be that HTML5 is never fully
supported, exactly as it is in the spec, by every browser. Oh, and the
spec is still evolving. The website http://www.caniuse.com is a good
reference if you’re looking for info about specific feature support in
HTML5 and the other major web technologies.

228 Chapter 6

mobile-friendly markup

You can ignore
this folder for
now. We’ll show
you what’s in it
in a little bit.

Build a basic page with jQuery Mobile

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8" />
 <title>The Tartanator</title>
</head>
<body>

<h1>The Tartanator</h1>

<p>The Tartanator is a community-built
association of groups, businesses, and
individuals bent on keeping the Scottish
heritage alive overseas by promoting
the understanding and enjoyment of
tartans</p>.

</body>
</html>

chapter6

aboutus.html

findevent.html

index.html

extras

The first stop on the Tartanator adventure is to learn how to build a

simple page with jQuery Mobile so that we can start constructing the

pages in the project. You’ll be surprised by just how easy this is.

Start basic
By starting with a super‑simple HTML page, you can see the basics

of jQuery Mobile at work more clearly.

We’ll be meeting
these pages in a
few, err, pages.

chapter6 directory structure:
your starting point

The entire contents of index.html—seriously, it’s this basic!

index.html

tartans This folder
comes a bit
later, too.

We’re using the HTML5
<DOCTYPE> tag.

Include jQuery mobile code components
Open index.html in your text editor and get ready to plop in some jQuery Mobile. First

things first: include the JavaScript and CSS that will make things go.

<title>The Tartanator</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/1.0rc1/
jquery.mobile-1.0rc1.min.css" />
<script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>
<script src="http://code.jquery.com/mobile/1.0rc1/jquery.mobile-1.0rc1.
min.js"></script>
</head>

Include jQuery
Mobile’s CSS:
this will style
our markup in
mobile-friendly
ways.

Remember that
jQuery Mobile is
nothing without
jQuery (core).

The inclusion of jQuery and
jQuery Mobile JavaScript
will give our web app its
mobile-friendly interactions.

index.html

you are here 4 229

build a mobile web app using a framework

Mark up the rest of the page

It really is that easy to make a simple jQuery Mobile page.
Add the items to the head and body of the index.html file and save it. View it in a
browser (you can view it in a mobile browser if you like!).

We’ve included the three main jQuery Mobile components from jQuery’s CDN

(content delivery network—that is, the code as hosted on code.jquery.com). That’s a

reliable and fast place to link to the code.

Now that we’ve included the three core files—theme CSS, jQuery Core, and

jQuery Mobile itself—we need to make a few adjustments to the HTML markup

within the <body>.

By wrapping parts of our content in <div> tags with descriptive data-*

attributes, we tell jQuery Mobile how we want them treated:

<body>

<div data-role="page">
 <div data-role="header">
 <h1>The Tartanator</h1>
 </div><!-- /header -->
 <div data-role="content">
 <p>The Tartanator is a community-built
association of groups, businesses and individuals
bent on keeping the Scottish heritage alive
overseas by promoting the understanding and
enjoyment of tartans.</p>

 </div><!-- /content -->
<div data-role="footer">
 <h4>Bring forrit the tartan!</h4>
</div><!-- /footer -->
</div><!--/page-->
</body>

A data-role of
“page” tells jQuery
Mobile to treat
the contents as a
full page.

The data-role of
“header” tells jQuery
Mobile to style this
as a header-like
element.

A data-role of
“content”
means—you
guessed it—this is
the main content
of the page.

index.html

Let’s slap a footer
on

this bad boy to se
e

what jQuery Mobile

does with that.

We’ll explain data-* attributes
more in just a moment.

“Bring forrit the tartan!” is a rousing battle cry attributed to Sir Colin Campbell during the siege of Lucknow in the 1850s.
Test Drive

230 Chapter 6

iOS or not?

What does it even
mean to “look mobile”? Doesn’t

that page mostly look like a
native iOS app?

And we’re off!

Hmmm…the footer
text doesn’t quite fit…
but let’s worry about
that a bit later.

We don’t have anything too fancy yet (OK, it’s

actually pretty dull), but the landing page does

look somewhat “mobile.”

Note how jQuery Mobile adds gradients, sizes,

and font treatments, and turns our elements

into header‑ and footer‑like chunks.

Our first jQuery
Mobile page, as
rendered on an iPhone

The default jQuery Mobile look
definitely smacks of iOS.
For better or worse, the rounded‑button,

gradient‑laden‑headers look of the native iOS

platform have become a common visual metaphor

for web‑based mobile apps. And many people now

associate that appearance with “looking mobile.”

But beyond Apple‑esque polish, there are some useful

things going on here. Whitespace is increased and

font size optimized for small‑screen reading. Soon,

we’ll build forms and be able to see that jQM gives

us larger input areas and chunky buttons—big touch

targets for our fat fingers.

These are just a
couple of examples!

you are here 4 231

build a mobile web app using a framework

The HTML5 data-* attribute
jQuery Mobile makes heavy use of the data-*

attribute introduced with HTML5. In our simple

page, we used the data-role attribute to inform

jQuery Mobile of, well, what role the given element

has in our page structure. Right now things are pretty

simple: we have a header, some content, and a footer.

Build more of the Tartanator
Now that we have a solid foundation, let’s start

building more of the Tartanator. Right now we have

our landing page, but we need to link it to some other

basic pages to move forward with the project.

HTML5 data-* Up Close

index.html

aboutus.html findevent.html tartans.html

tartans

A simple
information page This will be a page

to find events, but
right now it’s just a
placeholder page.

This is the fun
part: lots of
examples of
tartans. We’ll get to this pretty soon.

Time to add a navigation‑like list of links to the three subpages. Edit index.html and add a
very simple after the introductory paragraph inside of the main content <div>. The
text of the list elements should be the names of the subpages: About Us, Find an Event,
and Popular Tartans.

We’ll add the actual links in just
a bit; for now, just text, OK?

The data-* attribute was introduced with HTML5
as a way to let developers associate lightweight but
meaningful data with HTML elements.
In the past, we developers found some ways to do
things like this by kind of hijacking other element
attributes like class or title.
But now there is a real, sanctioned way to do this,
and jQuery Mobile takes advantage of it.
As we move along, we’ll continue to encounter
places where jQuery Mobile uses different data-*
attributes to get its job done.

232 Chapter 6

data-roles a go-go

Basic HTML FTW!
 <p>The Tartanator is a community-built association
of groups, businesses, and individuals bent on keeping
the Scottish heritage alive overseas by promoting the
understanding and enjoyment of tartans.</p>

 About Us
 Find an Event
 Popular Tartans

</div><!-- /content --> index.html

Make it a jQuery Mobile list
If you save your changes and view index.html in a

browser, you’ll likely notice that our little list doesn’t

look very exciting (or mobile‑ish). That’s because

we haven’t informed jQuery Mobile that we want it

to take note of its existence. We need to use the

data-role attribute again!

<ul data-role="listview">

We use the data-role attribute
to tell jQuery Mobile to treat
this as a list view.

That way, jQuery Mobile
will style the list nicely and
recognize its existence.

Add the data-role attribute to the in index.html and view the page in a browser.
What do you think of the way jQuery Mobile styles the list?

Hmmm, that’s a
pretty humdrum list.

jQuery Mobile alters content
with the listview data-role
to make it look and feel
like a more mobile-friendly,
interactive list.

Test Drive

you are here 4 233

build a mobile web app using a framework

Our list: Better, but not quite there
By default, jQuery Mobile will treat listviews like page

content, filling the full width of the screen with the
elements. On our landing page, this looks a bit awkward

and cramped.

For our purposes, the navigation list is part of the content,

not the entirety of it. jQuery Mobile’s list options include

inset lists—lists that are contained within a page that has

other stuff on it. Let’s use that.

<ul data-role="listview" data-inset="tru
e">

Do this!

Add the data-inset
attribute to the list in index.html
and try viewing the page again.

The list looks great and all, but
none of its elements are clickable.
But, uh, don’t we need to make them

actually link to something?

You’re right. Let’s link up
the pages!
Time to make the Tartanator

more than a one‑page show.

The list looks a bit
scrunched and odd.

First try

Second try

The inset list
looks much better.

234 Chapter 6

jQM links

Link to multiple pages with jQuery Mobile
Linking to other pages in jQuery Mobile is quite straightforward.

All we have to do is add basic HTML links:

<ul data-role="listview" data-inset="true">
 About Us
 Find an Event
 Learn about Tartans

Do this! Add the links to the list in
index.html and test them
out. What happens?

There is no tartan.html
file in our main directory
yet. This is how jQuery
Mobile reacts when it
encounters a broken link.

By adding the links,
we automatically get
the arrow icons that
show users these are
clickable links.

index.html

you are here 4 235

build a mobile web app using a framework

Head First: I hear you have something to tell us

about what a “page” really is, to you.

jQuery Mobile: I do! It’s one of my favorite things

about myself, so I wanted to explain.

Remember how the structure of one of my pages

uses a <div> with a data-role value of page?

Head First: Sure.

jQuery Mobile: The markup contained within that

<div>—often a header, content area, and footer—is

what I consider a page.

Head First: Then what is the point of the rest of

the HTML markup? Is it chopped liver?

jQuery Mobile: Definitely not! In a web app

designed along my principles, each HTML file is a

standalone, autonomous thing that you can visit in

your browser.

Head First: I’m lost. If each HTML file is

independent, why bother with the <div> with the

data-role of page?

jQuery Mobile: Let me back up. When you first

navigate to a page in one of my sites or applications,

that page is loaded just like any old HTML page on

the Web.

But once that first page is loaded, I do something

different. When you click on links, I find the page

content from the requested HTML document—that

is, the stuff in the <div> with the data-role of

page—with AJAX and inject it into the current

page’s DOM—

Head First: But what is the point of that?

jQuery Mobile: There are several points, if you’d

let me finish!

Instead of requesting and downloading the whole

requested page—scripts, images, styles—and

reinitializing and rebuilding the DOM from scratch,

I only snag the pieces that matter. That saves on

HTTP requests, bandwidth, and processing time

and makes the experience feel a bit more natural

and native.

Head First: If content pieces are loaded

dynamically, how come I see the URL of the link I

clicked on in the address bar of my desktop browser?

jQuery Mobile: My modest exterior belies the deep

sophistication of my navigation model. I always aim

to have real URLs for the pages in my apps, even if

the pages are really generated dynamically or there

are multiple <div> tags with a data-role of

page in a single HTML document.

By having a unique and reusable URL for AJAX‑

loaded content chunks, I can make them look and

act like full‑blown web pages. When the browser

allows me to (not all browsers do), I even update the

displayed URL in the browser’s address bar as I load

in new content asynchronously.

Head First: If I understand correctly, then, I can

access each HTML file in my app or site directly,

but the content of those documents can be retrieved

independently and dynamically, when linked to, to

improve performance and responsiveness?

jQuery Mobile: Exactly!

Head First: Thanks, jQuery Mobile, for a really

dynamic chat.

jQuery Mobile Exposed
This week’s interview:
How does jQuery Mobile handle
loading pages�

236 Chapter 6

degrade gracefully without JavaScript

If page content is loaded
dynamically with AJAX, what happens to

older browsers with limited JavaScript support
or browsers with no JavaScript support at all?

Do they break?

jQuery Mobile can work even if there is no
JavaScript support at all.
Recall that the links in the markup start out as just that:

basic HTML links. It’s jQuery Mobile’s JavaScript that

does the magic of converting the links into dynamic

AJAX‑y goodness for browsers that support it.

For browsers that don’t support this, navigation between

pages works just like the old‑fashioned Web always has.

Q: If pages are loaded with AJAX, why
do I need to create separate pages at all?
Can’t I just put all of my app’s content
into one page and use jQuery Mobile to
show and hide it?
A: You could, but you’d be missing out on
jQuery Mobile’s nice notion of progressive
enhancement. You’d be leaving lesser
mobile browsers (those that can’t do the
snazzy JavaScript) out in the cold.
You’d also have a large, complex file that is
difficult to maintain and has a heavy DOM
that is tough for lesser phones to handle.
jQuery Mobile encourages you to author
websites and apps like you’re used to: with
separate HTML files that can stand alone or
be sucked in with AJAX.

Q: How did jQuery Mobile know which
data-* attributes to use? Where can I
find information about all of the available
data-* attributes?
A: Developers can cook up any name they’d
like for data-* attributes (well, they have
to start with a letter). There is no prescribed set.
The idea is that data-* attributes pertain
to the functioning of the website that they
appear in—that is, they’re not intended for
communicating data to external applications.
Because of that, web developers have
relative freedom to generate their own
data-* naming conventions.

Q: What version of jQuery Mobile are
we using?
A: The jQuery Mobile dev team is on a tear!
During the time we spent writing this chapter,
both 1.0 beta 3 and 1.0 Release Candidate 1
were released, requiring some scrambling on
our part.

Oh, wait, we just checked. 1.0RC2 is out
now, too! Oh! There’s RC3! Oh, no, it’s faster
than a speeding bullet! jQuery Mobile 1.0 is
now released and official!

For the Tartanator, we’re using 1.0RC1.

Crazy, huh?

you are here 4 237

build a mobile web app using a framework

Footer (RE-)Construction

As we saw on page 230, the text in the page footer is getting truncated on narrow screens.

That’s because jQuery Mobile leaves room for button placement around header elements

in headers and footers—but we don’t have any buttons in our footer. Let’s fix it!

Remove the <h4> element surrounding the footer text.
Right now, the footer text is wrapped in an <h4> element. By

removing this header element, we’ll keep jQuery Mobile from

leaving room for buttons and, as a side effect, truncating the text.

1

Add a CSS rule to center the footer text and give it a
bit of padding.
Unfortunately, removing the <h4> will also remove the centering and

the padding. We need to account for this in our own CSS.

Open tartans/tartans.css in your text editor and add this rule at the top

of the file (there is already a bunch of CSS in this file).

2

<div data-role="footer">
 <h4>Bring forrit the tartan!</h4>
</div><!-- /footer -->

index.html

[data-role="footer"] { text-align: center; padding: 5px 0;}
#abercrombie { background-image:url('icons/abercrombie.png'); }

tartans.css

Our header, before reconstruction. It’s truncated.
Also, it has a bit more
visual weight than it needs
to. It feels really dark

This CSS selector applies to elements with a
data-role attribute that has the value “footer.”

By default, jQuery Mobile’s
styling leaves room for
buttons around header
elements (<h1>, etc.) in
headers and footers.

Co
nt

in
ue

s,
fli

p t
he

 pa
ge

.

238 Chapter 6

footer (re-)construction exercise

Footer (RE-)Construction

Link in the stylesheet.
Edit index.html again and add a link to the stylesheet.

3

<link rel="stylesheet" href="http://code.jquery.com/mobile/1.0rc1/
jquery.mobile-1.0rc1.min.css" />
<link rel="stylesheet" href="tartans/tartans.css" />
<script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>

index.htmlCheck our progress.
Save the file and view index.html in a smartphone browser or

simulator.

4

It’s not cut off anymore. But it still
feels dark. Also, look, it doesn’t always end up
at the very bottom of the screen. There’s a
gap. That makes it feel kind of weird. There

must be a way to fix that…

The fix to both of these
items involves a couple
of small changes to the
footer <div>.
We want to tell jQuery Mobile

to use fixed positioning to make

the footer stick to the bottom

of the page, and we need to

change the theming swatch to

make the footer appear less

dominant visually.

The footer isn’t always at the
bottom of all of the pages;
sometimes there is a gap.

you are here 4 239

build a mobile web app using a framework

<div data-role="footer" data-position="fixed" data-theme="c">
 Bring forrit the tartan!
</div><!-- /footer -->

index.html

Use fixed positioning on the footer so that it always shows
up in the same place.
By using the data-position attribute and setting its value to fixed,

we tell jQuery Mobile to use fixed positioning on the footer element.

That way it will always stick to the bottom of the page.

5

Use a different theme swatch to make the footer appear
less dominant.
jQuery Mobile’s initial stylesheet has five default color groups, called

swatches. These five swatches are referenced by the letters a through e.

By default, header and footer elements receive swatch a, which has the

most dominant contrast.

Our footer isn’t a particularly important page element, and right now

has too much visual weight. By explictly assigning swatch c, we can

make the appearance of the footer much less in‑your‑face.

You can use the data-theme attribute on any element to override

jQuery’s default swatch for that element.

6

The default color scheme
for swatches a through
e is defined in jQuery
Mobile’s CSS.

That’s it! The footer should
look a lot better now. Try
saving your changes and
reviewing our improved
footer in a mobile browser
or simulator.

The release of jQuery Mobile 1.0
includes a new Theme Roller tool that
makes theming jQM easier. See more at
http://jquerymobile.com/themeroller/.

240 Chapter 6

bring on the tartans

Build content pages and site structure.

We need to create basic sections and pages and create an

overall structure.

Create the tartan listings.

For the first phase, we’ll create a list of existing popular

tartan patterns. The tartans section should be a browsing

interface that—of course—looks and feels applike and

mobile oriented.

Build a prototype of the tartan-building form.

The footer is now positioned
correctly and is much less
imposing visually. Success!

The meat of the Tartanator: The tartans themselves

We’ve got our core content pages—at least the skeletons of

them—in place. Now let’s turn our attention to matters that are

more interesting: the tartans themselves.

For phase 1, the Tartanator will allow users to browse a

collection of popular and unusual tartans. Think of it

kind of like a quick tartan reference.

Do this! Copy tartans.html from the extras
folder to the chapter6 folder (that
is, move it up one level).

The tartans directory, which contains the individual tartan HTML pages, should already be in your chapter6 directory.

Let’s check in with our status on phase 1 of the

Tartanator project:

We’ve got our basic layout
squared away and created the
basics of the main pages.

Next on our list!

We’ll get to this
in just a bit.

Get to work on tartans.html
The tartans.html file has the beginnings of a list () for the

popular tartans. To get you going, the list contains tartans starting

with A and B. Once you’ve moved the tartans.html file into place,

load up the Tartanator on a browser (mobile or otherwise) and

take a peek. You can click on the tartan names to visit the tartan

page for that tartan.

you are here 4 241

build a mobile web app using a framework

We’ve given you a head start on the list

Take the list from blah to better
The list of tartans is looking a bit lifeless compared to the tartan

information pages themselves. Good news! jQuery Mobile makes it

easy to drop thumbnails into lists so we can have small icons on the list

itself (much snazzier). Here’s an example:

 <h3>Abercrombie</h3>

Add thumbnails to the list items in tartans.html. The icons are in the tartans/icons directory and
have the same name as their HTML counterparts (but with a .png extension).

The first swag at the
list of tartans—we did
this for you already.

tartans.html
tartans/baird.html

Each tartan pattern
has its own HTML page.
The tartan is a CSS
background image.

Yep. All you need to
do is add an image.
jQuery Mobile takes
care of the rest.

The tartan listing section is a
combination of a single HTML
page with a list of tartans…

…and an individual HTML
page for each tartan.

242 Chapter 6

exercise solution

<ul data-role="listview">

 <h3>Abercrombie</h3>

 <h3>Arbuthnot</h3>

 <h3>Baird</h3>

 <h3>Barclay Dress</h3>

 <h3>Barclay</h3>

 <h3>Birrell</h3>

 <h3>Blair</h3>

 <h3>Borthwick Dress</h3>

 <h3>Borthwick</h3>

 <h3>Bruce</h3>

 <h3>Buchanan</h3>

you are here 4 243

build a mobile web app using a framework

Drop in the rest of the tartans
There are a whole bunch more tartans that need

to be added to the list (with their nice icons). Don’t

worry, we won’t make you do that much typing. Go

find tartan-list.txt in the extras folder. In the file, you’ll

find a snippet of HTML that is the full for all of

the tartans. Copy and paste the into tartans.html,

replacing the current HTML list.

Hey, the list’s looking pretty nice,
but it seems kind of long. It’s hard to
find a specific tartan name without a

whole lot of scrolling.

True. It’s a bit unwieldy.
Turns out, jQuery Mobile has more up

its sleeve for us. More easy‑to‑implement,

good bang‑for‑the‑buck improvements to

our tartan list coming up!

Now we’ve got an enhanced
list—hey, nice icons!—and have
included all of the tartans in
the current collection.

244 Chapter 6

filtered, organized lists in a snap

We can add list dividers.
We can break up the list into sections by using list

dividers. This will help organize the list by grouping

tartans by their first letter.

1

We can add a list filter.
With jQuery Mobile, it’s eerily easy to drop in

a filter for a list. A filter looks like a search field

(with a little magnifying glass and everything!)

and filters the list as the user types in it.

No JavaScript coding required!

2

Filter and organize a list

<ul data-role="listview" data-filter="tr
ue">

<ul data-role="listview" data-filter="true">
 <li data-role="list-divider">A

 <h3>Abercrombie</h3>

1

2

To add a filter for the list,
add a data-filter attribute to
the with a value of “true.”

Yep, that’s all
there is to it!

You can visually separate the
list by adding s with a
data-role of “list-divider.”

tartans.html

Give the in tartans.html a filter field and list dividers.
Add list dividers for each letter (except those that don’t
have any tartans, like Q and X).
Save your work and view the results in a browser. Pretty cool, eh?

Test Drive

you are here 4 245

build a mobile web app using a framework

Q: I notice that when you change
pages in a jQuery Mobile web app, there
is an animation effect. What is that?
A: To make web apps feel more
consistent with mobile user interface
patterns, jQuery Mobile applies a transition
to page changes.
By default, the slide transition will be
used, which makes it appear that the new
page is sliding in from the right. To change
the transition that is used, you can add
a data-transition attribute to
the link in question. Half a dozen or so
transitions are supported. See jQuery Mobile
documentation (on its website) for details.

Q: Will this stuff work on every
phone?
A: No mobile framework can claim that
distinction. But jQuery Mobile strives to have
as much cross‑platform support as possible.
You can see a list of the supported devices
and browsers and how well they are presently
supported at http://jquerymobile.com/gbs.

Q: What happens if a device or
browser isn’t supported? Or if JavaScript
is turned off?
A: jQuery Mobile’s philosophy is heavily
biased toward progressive enhancement.
And so is our underlying markup!
Why don’t you try it out yourself? Load
up the Tartanator in a web browser with
disabled JavaScript. Sure, it isn’t exactly
pretty, but it works.

Our tartan list is nicer now

List dividers help
break up the long
page of tartans.

Typing in this field
will (instantly) filter
tartans by name.

Quick, mobile-ready widgets like these are one of the hallmarks of mobile UI
frameworks like jQuery Mobile.

246 Chapter 6

client feedback

It’s time to show the early Tartanator
work to Ewan

Hmmm…it’s…nice,
but can you make
it feel more…like a

native app?

Build content pages and site structure.

Create the tartan listings.

Build a prototype of the tartan-building form.

How are we doing on the project steps?

Before we start into the form, let’s check with the client to

make sure our overall approach so far is OK.

you are here 4 247

build a mobile web app using a framework

Jim: What does “make it look like a native app” even mean?

Frank: It seems like that’s a very subjective thing, doesn’t it? I

think what Ewan is looking for is something that feels a bit more

“app”‑y.

Jim: Which means…?

Frank: I guess like tab bars, navigation elements, button‑y and

icon‑y bits. Ewan seemed happy with the transitions, for example.

Those, to him, feel native.

Jim: But don’t we run the risk of emulating one platform too

much at the expense of others?

Frank: Heh, yes. When people say “native,” sometimes they

are dangerously close to meaning “make it look like iOS, please.”

Each platform has its own UI metaphors.

Jim: This sounds like a catch‑22. To make our customer happy,

we need to look native, which might well mean alienating, say, our

Android and BlackBerry users.

Frank: I think we need to pick and choose some things we could

enhance to make the Tartanator feel more like an app without

making it look like an iPhone app. To be fair, jQuery Mobile

elements in their default skins look kind of iOS style. So we’re

already partway down this path.

Jim: So the aim is to make the Tartanator feel more like an app

without necessarily feeling platform‑specific native?

Frank: Exactly. I’ll sketch down a few thoughts on some changes

we can make to shoot for that goal.

The new goal: make the
Tartanator look more applike
without necessarily looking
platform-specific.

248 Chapter 6

make like an app

Tricks to make it feel more like an app

Here are some quick things I think
we could do to make the Tartanator
feel more like an app.

Tabs/buttons instead of links

A header that sticks around

- Replace current <
ul> of links with a

persistent toolb
ar/navbar/whatever

at the bottom of the screen.

More like an app!

- Buttons with icons for th
e

toolbar will feel more like an app.

- Make the header
stick

around, too.
- Recent email from Ewan: content isn’t panning out as well as he’d hoped.

What about the About Us page?

- Maybe conflate the landing page and the About Us page into one? Use the landing page as the info page? Convert links on landing page into persistent

toolbar with icons.

Do away with the separate About Us page, as

content is not forthcoming. Consider the current

landing page the de facto About page for now.

Make the header bar persistent, too.

Make Tartanator feel more applike: to-dos

you are here 4 249

build a mobile web app using a framework

Add a footer toolbar

<div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 </div><!-- /navbar -->
</div><!-- /footer -->

In jQuery Mobile, it’s easy to add a fixed‑position toolbar to either

the header or the footer. To create a more applike feel, let’s put a

toolbar in the footer instead of having the links to the Tartanator’s

sections inside a on the landing page.

Construct a navbar
Inside of a header or footer container—so designated by the
data-role attribute—we can put another <div> with a

data-role of navbar. This tells jQuery Mobile to treat the

contents as buttons in a toolbar. The basic construction looks

like this:

Put buttons in the navbar
Instead of links in a vertically organized list, we’re going to make

toolbar buttons to access the main sections of the Tartanator.

This is a more applike metaphor.

jQuery Mobile will automatically convert linked list elements

within a navbar into buttons.

<div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 About
 Events
 Tartans

 </div><!-- /navbar -->
</div><!-- /footer -->

Navbar buttons (i.e.,
links) will go in here.

A data-role of navbar
triggers jQuery Mobile
to make this look like,
well, a navbar.

Remember, we’re
jettisoning the
aboutus.html page
in favor of using
the index.html
page as an About
page.

jQuery Mobile will
automatically make
these links look
like buttons.

index.html

index.html

Notice that we’ve
removed the
data-theme attribute.

250 Chapter 6

iconic toolbar buttons

Make the toolbar snazzy

<div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 About
 Events
 Tartans

 </div><!-- /navbar -->
</div><!-- /footer -->

So far, so good, but our toolbar buttons are a bit drab.

jQuery Mobile comes with a set of 18 or so default icons

that we can use, easily. Let’s drop some icons in by using

the data-icon attribute.

Also, let’s denote which section the user is currently viewing by

setting a class of ui-btn-active on the appropriate link.

This will show up with theming that makes it highlighted, thus

appearing active.

About
Events
Tartans

They look like buttons, all
right, but they could be a
bit more fancy.

The data-icon attribute
indicates which icon to use
in this button.

A list of available default
icons can be found in the
jQuery Mobile documentation.

This code goes in index.html.
For the other pages, you’d
want to assign this class to the
appropriate anchor tag.

index.html

Take 1: Detail of
button rendering

index.html

you are here 4 251

build a mobile web app using a framework

Finalize the structure

What about that footer
slogan we spent so much

time adjusting?

Ah, yes. Life on the Web! Requirements
are always changing.
We’ve replaced the footer with a navbar, but we don’t

have to discard the tagline entirely. Let’s make it a

kind of subheader on the landing page (only).

<div data-role="header" data-position="fixed">
 <h1>The Tartanator</h1>
</div><!-- /header -->
<div data-role="header" data-theme="b" class="forrit">Bring forrit
the tartan!</div>

Make the header sticky, too
While we’re in there, let’s make the position on the

header fixed, too. That will make the header behave

in the same way as the footer: always present at the

top of the screen, even if the user scrolls.

index.html

Let’s check in on our to-dos:

We just need to tweak the header a bit now…

Detail of navbar as the
updated code renders it.

Convert links on landing page into persistent

toolbar with icons.

Do away with the separate About Us page, as

content is not forthcoming. Consider the current

landing page the de facto About page for now.

Make the header bar persistent, too.

252 Chapter 6

test it and get feedback

Both the header and footer are now fixed.
They will always show up at the top and the
bottom of the page (respectively), even if
the user scrolls.

Ah, iterative design. The way of the Web. Let’s update the Tartanator.

Implement the new footer navbars.
Edit index.html, findevent.html, and tartans.html. Replace the footer with the

version we cooked up on page 250.

Make sure to assign the ui-btn-active class to the correct anchor

tag, depending on the page.

1

Give the header a fixed position.
Add a data-position attribute to the header on each page.

2

Add the tag line to the landing page (index.html).
For index.html (only), add the tagline as a subhead.

3

That’s looking
more like an app!

Test Drive

you are here 4 253

build a mobile web app using a framework

Time to make that tartan-building form

Build a prototype of the tartan-building form.

Ewan would like users to be able to construct their

own tartans by using an applike mobile interface.

The next step in the project is to create a prototype of a form that will let

users design their own tartans, right from their mobile browsers.

A tartan design is like a recipe.
But instead of a list of food ingredients

and their measurements—ounces, grams,

teaspoons, whatever—it’s a list of colors

and their relative sizes in the pattern.

When a tartan is woven, this pattern is

repeated both horizontally and vertically.

We need to have a rough idea of how

tartans are put together so that we

can build a form to gather the right

kinds of info.

Create a tartan design?
What does that even mean?

Build content pages and site structure.

Create the tartan listings.

254 Chapter 6

a very tartan recipe

Color Size
(Stitches)

Black 6
Green 72
Blue 56
Red 4
Blue 4
Yellow 6

6 black 72 green 56 blue 4 red
4 blue

6 yellow

Tartans: patterns like recipes

Follow the tartan recipe
To weave the tartan, the pattern is followed in order (in our case,

we’ll be “weaving” with pixels instead of wool).

For Carmichael, 6 stitches of black are followed by 72 stitches of

green, followed by 56 blue, and so on.

When the last color in the pattern is reached (six stitches of yellow,

in our example), the pattern is followed in reverse (blue, red, blue,

green). When the first color (black) is reached again, the cycle repeats.

The pattern is woven both horizontally and vertically (warp and weft)

to create the overall tartan pattern.

Let’s look at an example. To create the Carmichael clan tartan,

the pattern looks something like:

Back and forth and
back and forth and
back and…Pssst…this is the

same pattern as
above, just shown
horizontally instead
of vertically.

Each ingredient in the
pattern is a pairing of a
color and a size.

As the different colors
overlap horizontally and
vertically, they create
the distinctive pattern.

The Carmichael
clan tartan.

We need to create
form fields that will
collect the color and
size value for each
ingredient in a user’s
tartan design.

The first and last colors (black
and yellow) don’t repeat. In
tartan-ese, these are called
“pivots” in the pattern.

you are here 4 255

build a mobile web app using a framework

Create an empty jQuery mobile page to hold the
tartan‑building form. Using tartans.html as a guide,
create a blank page. Use the same header and footer,
but change the title and header of the page to “Tartan
Builder.” Name this file build.php.

Basic info about the tartan being created: its name and an optional description.

Color-size field pairs
let users build the
ingredient list for
their tartan recipes…

…and so on with the
color-size combo fields.

Translate tartan patterns to a form
Let’s take a look at the form prototype we

want to build. We need fields that allow

users to enter in those color‑size pairs

that build a tartan recipe.

(There are more.)

OK, we have a general
idea of the form we
want to build. Let’s go
build it!

256 Chapter 6

HTML5 form structure

Build an HTML5 form

<div data-role="content">
 <form id="tartanator_form">
 <ul data-role="listview" id="tartanator_form_list">
 <li data-role="list-divider">Tell us about your tartan
 <li data-role="list-divider">Build your colors

 </form>
</div><!-- /content -->

Ready Bake
Form structure

The form itself will be a standard HTML5 form: jQuery

Mobile will adapt it to make it look and feel more

mobile‑friendly. In Chapter 7, we’ll make the form actually

do something, including enhancing its interactivity with

JavaScript and spitting out actual tartan images.

For now, we’ll lay the groundwork and create a baseline,

no‑frills form that will work in nearly all mobile browsers.

We’ll use a listview to
help with the layout of
our form.

These two list-divider
s break our form
into two sections.

build.php

Using ID attributes
will help us script
enhancements later.

Tartan recipe
 - Tartan name

 - Tartan description

(optional)

 - Series of color-size

combinations

These are the things our
form needs to collect.

Form structure
We’ll want users to name their tartans and, optionally,

enter a description. Then, they can define color‑size

combinations to build the pattern itself. Let’s give our

form two main sections: a top section for metadata about

the tartan and a main section for defining colors and sizes.

you are here 4 257

build a mobile web app using a framework

The metadata form fields—name and description—are pretty basic.

We’ll use a text input and a textarea, respectively. The only difference

between the markup we’ll use and what you might be accustomed to is that

we’ll take advantage of the HTML5 placeholder attribute.

We’ll also be careful to use proper, semantic, accessible

label elements.
The placeholder attribute lets us add initial,
placeholding text in a field—it “goes away” when a

user clicks into the field and alters its contents.

It’s time to add some basic fields

<li data-role="list-divider">Tell us about your tartan
 <li data-role="fieldcontain">
 <label for="tartan_name">Tartan Name</label>
 <input type="text" name="name" id="tartan_name"
placeholder="Tartan Name" />

 <li data-role="fieldcontain">
 <label for="tartan_info">Tartan Info</label>
 <textarea cols="40" rows="8" name="tartan_info"
id="tartan_info" placeholder="Optional tartan description
or info"></textarea>

 <li data-role="list-divider">Build your colors

Ready Bake
Form Fields

build.php

Give jQuery Mobile hints about the fields
You may notice above that each field is inside an element with a data-role

of fieldcontain. This data-role gives jQuery Mobile a hint that form

fields are within this element, ready to be enhanced.
We’re using a to organize our form,
so we put the fieldcontain class on each
 that contains a field.

258 Chapter 6

nested lists

Lists within lists let the users add colors
Each piece of the tartan pattern is a combination

of a color and a size (width). For layout, let’s group

each of these compound fields into a single . For the

baseline experience—that is, for browsers without JavaScript

support—we’ll generate six of these field groups with PHP

(saves on typing!).

Here’s a starting point:

<li data-role="list-divider">Build your colors
 <?php for ($i = 0; $i < 6; $i++): // 6 color fields ?>
 <li class="colorset">

 <?php endfor; ?>

build.php

This PHP for loop
will generate 6 of
whatever is inside
the loop.

The color and size fields
will go here.

Q: Why are we not assigning the
data-role of fieldcontain
class to this ? It has fields in it.
A: Each of these s (li.
colorset) will actually contain two
fields. When we build the fields themselves,
we’ll place each one of them within its
own <div>, and we’ll assign the
fieldcontain data-role to that
<div>.

Q: I’m confused. Which kind of
element should I be assigning the
fieldcontain data-role
attribute to?
A: Whichever element contains the
field itself—its immediate parent. That
could be an or a <div> or a
<fieldset> or a <p> (or whatnot).
The fieldcontain data-role
tells jQuery Mobile to group the contained
field and its label when enhancing the
form. So, each containing element with a
data-role of fieldcontain
should contain one field (and its label).

Q: Do I need PHP for this part of the
project?
A: Yep! As we move into the more
functional pieces of the Tartanator, we’ll be
using PHP to do the crunching and thinking.

So, each color-size
ingredient will be contained
within a single —two
actual fields per .

you are here 4 259

build a mobile web app using a framework

Color-size ingredient pairs: The color select field

<li class="colorset">
 <div data-role="fieldcontain" class="color-input">
 <label class="select" for="color-<?php print $i ?>">
 Color</label>
 <select name="colors[]" id="color-<?php print $i ?>" >
 <option value="">Select a Color</option>
 <option value="#000000">Black</option>
 <option value="#ffffff">White</option>
 </select>
 </div>

build.php

Each set of color fields will have a color (as a <select>) and a size input.

The classes of color-input and size-input are for later, when we

enhance the form with JavaScript.

Obviously, we want more than just black and white as color options!

More on that in a moment.

Recall that we’re
inside a PHP loop;
this assigns each field
a unique ID.

It’d be cool if we could use the HTML color
input type, but, alas,
it’s not yet supported
in many browsers.

The field above renders
about like this on
modern WebKit-based
mobile browsers.

260 Chapter 6

down on the range

Tartan patterns
can only have
stitch counts
in multiples of
2. The step
attribute should
be able to help
us here.

 </select>
 </div>
 <div data-role="fieldcontain" class="size-input">
 <label for="size-<?php print $i ?>">Stitch Count</label>
 <input id="size-<?php print $i ?>" type="range" min="2"
step="2" max="72" autocomplete="off" name="sizes[]" value="2" />
 </div>

We’re using an input type new to HTML5: range. This field

type has increasingly good support among modern browsers

(though certainly not universally). In supported browsers, it

renders as a slider; in unsupported browsers, it degrades to

a text field. jQuery Mobile further enhances the slider into

something mobile‑friendly.

The min and max attributes do what they sound like they’d do: define minimum and maximum values for the fields.

build.php

Color-size field pairs: The size field

The field above renders
about like this on
modern WebKit-based
mobile browsers.

This part goes right
after the <select>
we just built.

you are here 4 261

build a mobile web app using a framework

Time to put it all together and build our mobile‑looking (if not‑yet‑functional) form.

Put the form fields into build.php.
Drop in the markup from pages 256 through 260 to

create the basic form fields.

1

Add more color options to the colors field.
You can use the colors (hex values) from the file in

extras/color-list.txt and/or add any color you’d like to

have available for tartan building.

2

Save build.php and load it up in a mobile browser!

Looking (and feeling)
more applike.

Test Drive

Looks pretty good… but
how would users get to

the form page?

We need to link to the
form and back again in
an applike way. Let’s
do that now!

262 Chapter 6

there…and back

Link to the form
The build form is considered part of the Tartans section of the Tartanator.

We need to give users a way to get to the form from the Tartans landing

page (the long list of existing tartans). Adding a button in the header

should suffice:

<div data-role="header" data-position="fixed">
 <h1>Popular Tartans</h1>
 <a href="build.php" data-role="button" data-icon="plus"
class="ui-btn-right" data-theme="b">Create
</div><!-- /header -->

Give the button
a “plus” icon.

The ui-btn-right class will
make the button float
right (instead of left,
which is the default).

Assign the “b” theming
swatch to make the button
stand out a bit more.

…and give users a way back
On the form page (build.php), let’s add a back button:

<div data-role="header" data-position="fixed">
 <a href="tartans.html" data-rel="back" data-icon="back"
data-role="button">Back
 <h1>Tartan Builder</h1>
</div><!-- /header -->

By adding data-rel="back" to the anchor tag, we tell jQuery Mobile

to treat this link as a back link. When possible, jQuery Mobile will send

the user to the last location in her history when she clicks this link. For

nonsupporting browsers, we supply a good default href, which is, in this

case, tartans.html.

tartans.html

build.php

you are here 4 263

build a mobile web app using a framework

Link to the form from tartans.html.
Add the Create button to the header in tartans.html.

1

Put a back button on the form page (build.php).
Add a back link to the header of the Tartan Builder page.

2

Build content pages and site structure.

We need to create basic pages for the site and

create an overall structure that looks and feels right

on mobile devices.

Create the tartan listings.

For the first phase, we’ll create a listing of existing

popular tartan patterns. The tartans section should

be a browsing interface that—of course—looks

and feels applike and mobile oriented.

Build a prototype of the tartan-building form.

Ultimately, Ewan would like users to be able to

construct their own tartans by using an applike mobile

interface. He wants to see what that might look like, so

we’ll whip him up a prototype.

Yay! We’re done with phase 1 of the
Tartanator. Time for customer review.

Test Drive

264 Chapter 6

you’re done

 � People want apps! The definition of what, exactly, makes
a website a web app is fuzzy. Applike websites tend
to feel more interactive than content pages. Chunks of
content and data are often retrieved asynchronously and
inserted into an existing DOM, reducing the frequency of
full‑page loads.

 � HTML5 is a specific, single thing—it’s a spec
representing the evolution of HyperText Markup
Language (HTML)—but the term HTML5 is often used
to represent a combination of technologies that create
applike web experiences.

 � Building mobile web apps from scratch can be very
complex. We encourage you to try it! But for our
purposes, we used a mobile user interface development
framework to help us out.

 � There are lots of mobile web frameworks out there
(more every day!), representing many different
approaches and emphases.

 � jQuery Mobile is a popular mobile web framework.
It has a strong relationship with well‑formed HTML5
markup, which makes it relatively straightforward to build
mobile interfaces from basic code.

 � We built the structure for phase 1 of the Tartanator by,
among other things, using jQuery Mobile–enhanced
listviews, headers, footers, navbars, and form elements.

 � Making a web app feel more native is always a
balancing act, requiring some careful decisions.

 � We used some HTML5 form element attributes to
build our prototype form. jQuery Mobile helps to adapt
these form elements across mobile browsers, including
adaptation for those that don’t support them yet.

jQuery Mobile Help

We’ve barely scr
atched the su

rface

of all of the
things you can

 do

with jQuery Mobile in this ch
apter.

To learn more or find more

information about th
e stuff we’ve

covered, refer
to the documentation

on www.jquerymobile.com. It’s very

detailed.

Hey, guys. That’s looking pretty good.
I’m excited about moving on to the
next phase of the Tartanator—that’s
where the fun stuff really happens.

you are here 4 265

build a mobile web app using a framework

Q: How much of the code in the
Tartanator so far is really HTML5?
That is, how much of it uses tags or
attributes that are new as part of the
HTML5 spec?
A: We’re using the data-*
attribute quite a bit. That’s new. We
are also using the range input type
and the placeholder attribute
in our form.
Q: I put the step attribute into
my range input for the size fields
of the form, but I can still enter any
value between 2 and 72…even and
odd numbers both. What gives?
A: Unfortunately, at the time of this
writing, jQuery Mobile’s range slider
widget doesn’t support the step
attribute. We’ll show you a workaround
in Chapter 7.

Q: Colors as a select list—that
doesn’t seem like the most fantastic
user experience.
A: When we enhance the form in
Chapter 7, we’ll add some JavaScript
code that will show the user the color
she has selected.
Q: What happens to mobile
browsers that don’t support
range inputs yet?
A: As long as the browser supports
JavaScript and CSS fairly well, jQuery
Mobile will convert the range field
into a slider widget (actually, it does
this for browsers that support range
inputs also).
If a browser doesn’t support range
inputs and doesn’t have JavaScript
support (or it’s disabled), the range
field will most likely appear as a
standard text input field.

Q: The header and footer blink
sometimes, or are slower to load
than the other parts of the page.
Sometimes scrolling feels a bit slow.
Why is that?
A: One of the ways jQuery Mobile
attempts to emulate a native‑ish
experience is by using fixed‑position
headers and footers (when you
designate them as such, that is). The
way this is actually carried out differs
on different platforms.
In a nutshell: although the landscape
is improving very fast, fixed positioning
(in CSS, position:fixed)
has unpleasantly scattered and weird
support in mobile browsers. There
are workarounds, but they aren’t
perfect. The slightly‑less‑than‑totally‑
snappy performance and occasional
peculiarity are often manifestations of
the trade‑off the framework is making
between being applike and adhering
carefully to web standards.

 Congratulations,
you’ve just built a
mobile web app with

HTML5 and its friends.
See? It’s really not too many steps from

the HTML and CSS you already know to

a mobile‑feeling, applike website!

this is a new chapter 267

mobile web apps in the real world7

Super mobile web apps

The mobile web feels like that gifted kid in the class.
You know, kind of fascinating, capable of amazing things, but also a

mysterious, unpredictable troublemaker. We’ve tried to keep its hyperactive

genius in check by being mindful of constraints and establishing boundaries,

but now it’s time to capitalize on some of the mobile web’s natural talents.

We can use progressive enhancement to spruce up the interface in more

precocious browsers and transform erratic connectivity from a burden to a

feature by crafting a thoughtful offline mode. And we can get at the essence

of mobility by using geolocation. Let’s go make this a super mobile web app!

Pull my pigtails again,
and you’ll pay! There’s
nowhere to hide. I can

find you anywhere...

268 Chapter 7

retailoring the tartanator

It looks nice…
Now that we’re done with phase 1, the Tartanator has that

mobile‑web‑app sheen.

It talks the talk…
There are buttons. And navbars. And cool page

transitions. We’re loading content selectively with AJAX.

We’re reducing bandwidth, requests, and JavaScript

DOM processing. And jQuery Mobile is helping to make

our HTML5 form elements look and feel mobile friendly.

you are here 4 269

mobile apps in the real world

Shiny, sure. Mobile-riffic,
sure. But it doesn’t do
anything. Doesn’t an app
need to do something?

Take heart. It may seem like
building phase 1 was full of
sound and fury, signifying
nothing. But we’ve laid some
really good groundwork.

We've got a
straightforward structure based on HTML5—now it's time to take it to the next level!

…but it needs to walk the walk
Phase 2 will build on the stuff we’ve put in place, turning our

solid—but admittedly somewhat functionality‑free—web app into

what we think of as a super mobile app!

270 Chapter 7

super mobile web apps

Mobile apps in the real world
Mobile web apps that take good advantage of innately mobile

characteristics often have certain aspects in common.

What we like to call super mobile web apps feel like mobile apps for

the real world. They adapt to their users’ disparate devices with

the robust use of progressive enhancement. When the user

doesn’t have a data connection, these apps can function in an

offline mode. And they take advantage of browser‑accessible

geolocation to provide location‑relevant content.

Super Mobile Web Apps knows all about the three features we’ll explore in this chapter to make mobile web apps more “super” and take advantage of its inherent, awesome mobileness.

Progressive enhancement
Offline mode

Geolocation

you are here 4 271

mobile apps in the real world

What will we do to complete Phase 2 and make the Tartanator a

super mobile web app?

Our first task is to get a grip on what it is we’ll need to implement to

complete the Tartanator as outlined by Ewan in Chapter 6. Highlight

the requirements we haven’t completed yet. Then we’ll boil them

down into a few core objectives for this phase.

Ewan

Welcome message

Tartan events

Tartans!

This is the main part of the

idea…sounds like an app?

Keep this simple…link to About Us

page for more info...

I have some ideas here…not

sure if they are possible!

The Tartanator!

Maybe call the whole

app/site “The Tartanator”?

Has a nice ring!

New Website! App?

 - A collection of tartans: popular “traditional” ones as well as new-world and user-created tartans.

 - Make it so users can see and explore the tartan patterns right on their phones.

 - Wouldn’t it be cool if users could create their own tartans?

Can this be done?

Lots of images
of tartans!

 - It would be nice if the app
could somehow “link into” our
international events database.
 - Could a user’s phone help
find the nearest events?

Events page

A history of Tartans Unlimited.Links to information about the history of tartans.

About Us page

This content isn’t
ready yet.

Bug Pat about this.

 - Might want to wait until

phase 2 or phase 3 of the site

for events stuff—complex?

272 Chapter 7

tartanator phase two goals

The major objectives for the second phase of the project really

fall into two core goals:

Plug in the pieces that let users generate their own tartans.
We’ve got our prototyped form. Now we need to walk the walk and plug in the

pieces to make this actually work. We also need to enhance the existing form to

make it more usable for fancier smartphones and add a few bells and whistles.

1

Build a dynamic, searchable, location-aware Events page.
We’ll need to hook into an existing events data source to let users find nearby

tartan-related events. That means we’ll have to delve into geolocation!

2

Welcome message

Tartans!

This is the main part of the

idea…sounds like an app?

Keep this simple…link to About Us

page for more info…

I have some ideas here…not

sure if they are possible!

The Tartanator!

Maybe call the whole

app/site “The Tartanator”?

Has a nice ring!

New Website! App?

Tartan eventsA history of Tartans Unlimited.Links to information about the history of tartans.

About Us page

This content isn’t
ready yet.

Bug Pat about this.

 - It would be nice if the app
could somehow “link into” our
international events database.
 - Could a user’s phone help
find the nearest events?

Events page

 - Might want to wait until

phase 2 or phase 3 of the site

for events stuff—complex?

 - Make it so users can see and explore the tartan patterns right on their phones.

Can this be done?

Lots of images
of tartans!

 - A collection of tartans: popular “traditional” ones as well as new-world and user-created tartans.

 - Wouldn’t it be cool if users could create their own tartans?

you are here 4 273

mobile apps in the real world

Frank: That first big requirement is a doozy, isn’t it? I think it’ll help

to break it down into smaller chunks.

Jim: Before we do that—what happened to the outstanding item for

the About Us page and historical background?

Frank: Oh, right! The wife of the guy who writes bios and

informational copy for Tartans Unlimited just had a baby. The new

father has found himself far busier than he expected and isn’t going to

be able to help out with the project for a while. Big surprise, huh? So

we’re not on the hook for that one right now.

Jim: Well, that’s one less thing, I guess. Let’s talk about getting the

pieces in place to allow users to create their own tartan patterns.

Not to brag, but I’ve already got a head start on this one. I’ve been

tinkering with a bit of JavaScript to enhance the form.

Joe: Cool. That’ll look nice and pretty. But we also need to drop in

server‑side scripts to do the actual work—

Jim: You server‑side guys! Trust me, enhancing the form interface is a

really significant improvement.

Joe: Anyway, I’ve been working on the PHP scripts. What about the

events stuff ?

Jim: Actually, is it OK if we focus on getting the tartan generation

nailed and circle back on the events searching when we’re feeling

ready to think about it? I only have room in my brain for so much at

one time.

Frank: I guess that’s fine as long as we get cracking on the custom

user tartans stuff right quick. We’re on a pretty tight timeline.

To-dos: custom user tartan pattern implementation

Enhance the form we built to take advantage of capabilities of newer

mobile browsers.

Drop in server‑side code for processing the form and generating

resources (images, HTML, etc.) for user‑created tartans.

Make sure the offline experience for this part of the app is acceptable.

Here's our master to-do
list for the custom
tartans requirement.

We'll start here!

274 Chapter 7

nifty enhancements

Ready, set, enhance!

 No need to panic about

writing your own widget. The

JavaScript is all ready for you.

Some crackerjack frontend devs

cranked out this enhancement JavaScript. The devs

always get so excited and productive when they get to

work on mobile web app projects!

We’ll walk you through the highlights (and you can

always spend some time looking at the code), but you

don’t have to write it yourself or anything!

Strap yourself in. We’re about to make a lot of nifty enhancements

to the Tartanator’s create form—in very short order.

First step to a super mobile web app:
enhance the UI for the browsers that
support it well.

We can get
rid of these
space-consuming
repeated fields
and instead create
a single widget.

The form is functional
without any JavaScript at
all–that's a good thing!

But it's a bit
clunky on a newer
smartphone browser.

We did the right thing
We designed our form for the baseline experience:

we’re not leaving anyone out in the cold (well, very

few people, anyway). Take a look at what happens

if you load up the Tartanator build form with no

JavaScript at all.

Now let’s enhance
It’s functional for everyone, but also kind of

ugly and unwieldy for everyone. While having

six color‑size combo fields is OK for a less

full‑featured browser, it’s an encumbrance for

more sophisticated ones.

Now that we have our baseline ducks in a row, let’s

drop in some enhancements that will make the

form more of a pleasure to use with smartphones.

you are here 4 275

mobile apps in the real world

Make a better form
Instead of having six fields—both

cluttered and limiting—let’s use a single

widget. This will allow our users to add

as many color‑size combos as they like!

We can do this by using JavaScript to

remove all of the color-size fields

except for the first set.

A custom widget for the
color select field
We can override the default select

interface in the browser and use one

of jQuery Mobile’s custom select UI

widgets. That way, we can show color

swatches for each option.

The custom jQuery Mobile widget

we’re going to use pops up like a dialog

to display the color options.

Clicking on “Select
a Color” pops up
this customized
field widget.

Only one color-size set, not six

Geek Bits

If you’re familiar with jQuery code, the construct $(document).ready might be

something you see (or use!) a lot. The jQuery .ready method is kind of like (though not

identical to) the browser’s body.onload event—when it fires, it indicates that the DOM

is loaded and ready. jQuery developers typically wrap their code in this so that it doesn’t

execute before the page’s DOM is ready.

In jQuery Mobile (jQM), you don’t (usually) want to use $(document).ready. Instead,

jQM introduces some new page-load-related events, the most important of which are

pageinit and pagecreate. pagecreate is fired after jQuery and jQM have completed

initializing the DOM of the page, but before widgets are rendered. pageinit is fired after

widgets are finished, too. And remember that subsequent pages are often inserted into the

first page’s existing DOM—that means that pagecreate and pageinit events can fire

multiple times in a single full-page load.

Confused a bit? So were we. It takes a few minutes for even seasoned JavaScript and jQuery

folks to fully grasp the concept. Read more in the JQM docs (http://jquerymobile.com/demos).

For curious jQuery and
JavaScript folks

jQM also
introduces
mobile-relevant
events for touch,
orientation,
and transition,
among others.

click

276 Chapter 7

widgetized colors and sizes

A widget to manage the list of colors and sizes

The select list background
reflects the currently
chosen color.

When a user clicks the Add
This Color button, the
color-size combo is added
to the list.

Clicking an item
already in the
list removes it.

We’ve now removed all but one of the color‑size field combos. Using

that remaining pair of fields, we need to be able to generate an arbitrary

number of color‑size combos.

To do this, we add a new button: Add This Color. When clicked, the

currently selected color and stitch count are added as a list element ()

to an unordered list () of current color‑size values. We also add

hidden form fields to the to contain the color and size.

Clicking on an in the existing color list will remove it and its

contents from the list. Finally, clicking the “Make it!” submit button will

generate a tartan pattern with all of the color‑sizes currently in the list.

Our form's submit button

When the range input
changes value, a function
makes sure the stitch
count is an even number.

This is our workaround
for jQM's lack of support
for the step attribute on
range input fields.

The button becomes
visible once at least one
color-size combo has
been added to the list.

JavaScript does all
of this.

Enhanced build.php
form (detail)

The remaining
color-size
field pair

Color-size list

ul#colorlist

Take it for a spin
Hey, good news. You don’t have to do

anything to get the frontend enhancements

to work. It’s already done for you.

The starting point of the code in the

chapter7 folder already includes the

JavaScript enhancements. Go try it out!

See how it feels in a mobile browser.

Remember, the form is on
the build.php page.

Also, we haven't “hooked up”
the backend yet; clicking
this won't do anything yet!

you are here 4 277

mobile apps in the real world

A peek under the hood
We promised that you wouldn’t have to write the JavaScript, but it might

behoove you to get a loose handle on what it’s doing.

In a nutshell, there are a bunch of things that happen when the page with

the form on it has been fully loaded into the DOM (pagecreate event)

and also some stuff that happens after the jQuery Mobile widgets are

finished enhancing things (pageinit event).

In these initialization functions, other functions are attached to various

events (form field changes, clicks, form submit, etc.) to enhance user

interaction and make our custom widgets functional.

Do this!

Get cozy with the code. Take a few
minutes to go hang out with and
get to know the updated pieces of
the Tartanator app, especially the
updated tartanator.js script.

Match each function in the JavaScript enhancement code (tartanator.js) to what it

does, and also to the event(s) that trigger it. Reference the comments in the script

and use your noodle to determine what each of these functions does for us.

onStitchSizeChange()

styleColorListItem()

buildAddButton()

onColorListChange()

addColor()

setColorSelectStyle() Makes sure the size value is an even integer.

Adds a colored CSS border (swatch) to

the left side of each color select option.

Constructs the button to add a color‑size

combo and inserts it into the DOM.

Refreshes the and elements

of the current color list.

Constructs hidden form fields, puts them

in a new , and appends the

to the existing color list.

Sets the background color of the select

widget to the currently selected color.

change (size input

value updated)

pageinit

pagecreate

click (on list element in

current color list) and after

new color added to list

click (on Add This

Color button)

pageinit and change

(color select field)

Function name What it does Event that triggers it
For an extra challenge!

278 Chapter 7

exercise solution

SOlUTion

So, that’s the frontend enhancement…

Enhance the form we built to take advantage of capabilities of newer

mobile browsers.

Drop in server‑side code for processing the form and generating

resources (images, HTML, etc.) for user‑created tartans.

Make sure the offline experience for this part of the app is acceptable.

Next up!

Done!

onStitchSizeChange()

styleColorListItem()

buildAddButton()

onColorListChange()

addColor()

setColorSelectStyle() Makes sure the size value is an even integer.

Adds a colored CSS border (swatch) to

the left side of each color select option.

Constructs the button to add a color‑size

combo and inserts it into the DOM.

Refreshes the and elements

of the current color list.

Constructs hidden form fields, puts them

in a new , and appends the

to the existing color list.

Sets the background color of the select

widget to the currently selected color.

change (size input

value updated)

pageinit

pagecreate

click (on list element in

current color list) and after

new color added to list

click (on Add This

Color button)

pageinit and change

(color select field)

Function name What it does Event that triggers it

you are here 4 279

mobile apps in the real world

Head First: OK, I gotta ask. We just did a whirlwind

tour of a bunch of jQuery Mobile–specific JavaScript

interface enhancements. Was it really worth it?

Interface Enhancement: What jQuery Mobile

makes possible, quickly, with respect to enhancing the

mobile interface is compelling, sure, but I get your

drift. Really, I’m trying to illustrate a broader concept

here.

Head First: Which is?

Enhancement: Regardless of whether you are

using a framework, designing for a baseline and then

enhancing is a good philosophy.

Head First: With JavaScript?

Enhancement: Let your mind go a bit here…this

is broader than JavaScript, too. We’re talking about

starting basic, defining the core experience or content,

and then making it better—that is, really taking

advantage of what more powerful mobile browsers

can do.

Head First: By adding bells and whistles.

Enhancement: I like to think that my contributions

are bigger than rounded corners and gradients. We’ve

taken a somewhat limited and awkward form and

made it better for applicable users.

Head First: You’ve overridden the rendering of a

native form element. The color select field is now

using a custom jQuery Mobile widget. Isn’t that kind

of taboo?

Enhancement: It’s true that messing with native

form controls is a bit controversial. I don’t argue for it

as a general rule. However, in our particular case, the

styling necessary to give visual clues to the user—color

swatches—wasn’t possible with traditional select fields.

The underlying markup is still semantically

appropriate—a <select> element—but we’re

tweaking it to make it a more usable experience. But

yes, you are correct in that we should consider native

form control overrides carefully.

Interface Enhancement Exposed
This week’s interview:
Enhancement: is it all just fluff�

The build-a-tartan form
in an Android browser

280 Chapter 7

a new generation of tartans

…and now for the backend

chapter7

tartans

js

index.php

build.php

tartans.php

findevent.php

extras

The starting point for Chapter 7 code has the structure
shown here. Getting the backend pieces plugged in
requires a couple of quick steps.
Copy all of the contents of the extras/scripts directory into your chapter7

directory. When you’re done, the chapter7 directory should have three new

files—config.php, generate.php, and image.php—as well as an inc directory (with

two files inside).

css

dialogs

generate.php image.php inc

A quick tour of tartan generation

XML file HTML file PNG

Form POST data

generate.php

Using the data posted from
the form, generate.php
creates several resources.

An XML file
representing the tartan
pattern is output to
tartans/data/.

An HTML file for the tartan
is created in tartans/.

This HTML file is based on
the tartan-template.php
file in tartans/.

An image of the
tartan is output
as a PNG.

config.php

you are here 4 281

mobile apps in the real world

build.php

build.php

generate.php

generate.php <new-tartan>.html

<new-tartan>.html

POST data
new tartan
HTML URL

The two sides of generate.php
The way that generate.php ultimately responds after creating the

tartan resources depends on how it was requested.

Requested with AJAX
For browsers that support AJAX appropriately, the JavaScript

in build.php posts the form data to generate.php using XHR

(XMLHttpRequest). If successful, generate.php responds with the

URL of the newly created HTML file for the tartan. The content

of this new page is then inserted into the current page’s DOM.

Form posted directly
For browsers that don’t support JavaScript and XHR, the form is

directly posted in a “traditional” way to generate.php. After generate.php

creates the tartan resources, the browser is redirected to the newly

minted tartan page.

In this method, there’s never
a full-page reload. The
content of the new tartan
page is inserted into the
DOM of the build page.

In this method, the client is redirected to the new tartan page (a full-page load).

In both methods, the
primary job of generate.php
is the same: create the new
tartan resources.

Asynchronous request
with XHR

POST data redirect

We’ve made sure
to support mobile
browsers with
and without
AJAX support.

Asynchronous request with XHR

“Traditional� method—redirect to the new tartan page

282 Chapter 7

lists of tartans

Q: Help! Something’s not working right!
A: If you are having trouble getting your tartan build form to
work, or aren’t seeing any created tartans, here’s a few things
to check.
First, make sure that the tartans/ directory exists and that it and
all of its subdirectories can be written to by your web server’s
user. Also verify that the tartan-template.php file is in the tartans
directory. Finally, double‑ and triple‑check the <form> tag in
build.php for the correct action and method.
Q: How does the tartan list page work?
A: The list.php file included in the page looks at the current
HTML files in the tartans/ directory to generate its list. For each,
it grabs its associated XML file (in tartans/data/) to get further
information, like the pretty display name. It then outputs an
 for each tartan, with a link to the tartan’s HTML page.

Q: About that XML. What the heck is that?
A: We chose to store the data representation of tartan
patterns as XML for a couple of reasons. One, it’s a nice,
simple, portable data format. Two, it obviates the need to use a
database (less work for you!).
Q: By the way, what is this whole super mobile web
app thing you’re talking about? Some kind of standard or
initiative or something?
A: Nah. It’s just something we started calling mobile web
apps that seem like they take good advantage of the neat things
mobile devices and their browsers have to offer.

Go create some tartans! Create half a dozen or so
tartans of your own using the form on build.php.
Your creations should appear on the tartans
landing page (tartans.php).

One last thing!

<ul data-role="listview" data-filter="true">
 <?php include('inc/list.php'); ?>

Now that users can add tartans, the tartan list as shown on tartans.php is ever‑

changing. Drop this line into the tartans.php file to include a script that will

output s for each currently existing tartan.

tartans.php

Do this!

you are here 4 283

mobile apps in the real world

But we’re not done yet
Now we have to deliver on the third piece of the tartan‑creation

implementation: the tartans need to be available offline.

Frustrating. I want to show a friend the tartan
I designed a few minutes ago...but I have dreadful
phone service in this building. I can’t get a
connection...and now my tartan won’t show up.

A stable—or even existent—
network connection is
something we just can’t take
for granted with mobile devices.
We’ve got to do something to make tartans

available without an Internet connection.

Two out of three is a great start
We’ve taken some good steps toward a super mobile web app.

We’ve enhanced the baseline interface to take advantage of

savvier browsers. And now the app does something!

We need to deal with
this requirement.

Enhance the form we built to take advantage of capabilities of newer

mobile browsers.

Drop in server‑side code for processing the form and generating

resources (images, HTML, etc.) for user‑created tartans.

Make sure the offline experience for this part of the app is acceptable.

284 Chapter 7

offline storage

Offline is important
Part of giving a good experience to your users is making

your websites and apps behave when there isn’t an Internet

connection to be had.

For the Tartanator, we need to step back and figure out how

we can make things work better for our disconnected users.

We need to make certain things available offline.

Can you think of why it would be difficult for
Opera Mini to support application cache?

How do we control
what’s available offline?
Is that even possible?

We can use something called a cache manifest to define
which pieces of our app should be available offline.
Make it manifest
Application cache is part of the HTML5 specification. It allows for control

over which web resources are cached for offline availability through the use of

a cache manifest.

A cache manifest is a specific type of file on a web server that gives instructions

about how or whether certain web resources should be cached on a user’s

device. By creating a cache manifest, we can dictate which things are available

offline for the Tartanator web app.

Browsers that implement application cache—or appCache, as it is almost

universally shortened to—also provide the window.applicationCache

object and its various events, which we can access and manipulate with

JavaScript if we like.

Support for appCache is fairly widespread in current browsers, with the

notable exceptions of Internet Explorer 9 and Opera Mini. Using a cache

manifest won’t cause problems for these browsers; they just won’t pay

attention to it.

you are here 4 285

mobile apps in the real world

 Write a cache manifest file.1

 Make sure the manifest is served as the correct type of file.3

 Add a manifest attribute to the <html> tag of the applicable

pages with a URL (relative is fine) to the manifest file.
2 The file must have a content-type

of text/cache-manifest, or it
won't work.

A basic recipe to create a cache manifest
There are three general steps to creating and using a cache manifest

on a website or app.

CACHE MANIFEST

comments look like this

CACHE:

index.html
foo/bar.html
baz.html
css/styles.css
icons/plus.png

This line, verbatim, is required.

<!DOCTYPE html>
<html manifest="manifest.appcache">
<head>

The deceptively simple syntax of a cache manifest
A simple cache manifest file is quite basic in appearance. You list the items you

want cached under the (technically not required, but definitely good practice)

CACHE: heading.

Next, you update your web page(s) by adding a

manifest attribute pointing to that file. You also

need to make sure the file is served as the correct

Content-type (aka MIME-type). You can often

do this simply with Apache by adding the following

to the Apache configuration file or, more likely, an

.htaccess file on your website’s filesystem.

This file doesn't have to
be named manifest, but
the preferred extension
is .appcache.

1

2

AddType text/cache-manifest .appcache

.htaccess

3

This line tells the web server to
serve files ending in .appcache as the
text/cache-manifest content type. The file has to be of this type,

or browsers won't recognize it.

URLs can
be relative
(like here) or
absolute (e.g.,
http://…).

manifest.appcache

286 Chapter 7

cache me, baby

In theory, cache management using a cache manifest file is straightforward.

List the things you want available offline, add the manifest attribute to

the <html> tag of a page or pages, and let the caching begin!

Don’t start panicking quite yet, but creating a cache manifest and getting it

to work the way we really want it to can be a bit confusing and sometimes

frustrating. There are a fair number of details and gotchas that can trip you

up. It helps to have good tools to help you inspect and debug what’s going on.

Dev tools to the rescue
WebKit provides a tool called Web Inspector, which is available in both

Chrome and Safari (being WebKit‑based browsers). You can see great

details about appCache information in the Resources tab.

Unfortunately, the devil is in the details

 It can be easy to get yourself in a jam working
with cache manifests.
Cache manifest behavior can be tough and confusing to
debug, and malformed cache manifest files are difficult to
find and remove without the right tools. We recommend

using either Chrome or Safari for building and testing our Tartanator
cache manifest. Also note that appCache isn’t supported by Internet
Explorer before version 10, which at the time of this writing is still in
developer preview.

It will also help you save your sanity to develop and test on a desktop
browser first before moving to a mobile device.

Detail of the Resources
tab's info about
appCache in Chrome.

Safari's developer
tools look almost
exactly the same.

It can be a bit painful to try to excise poorly formed appCaches from mobile devices.

you are here 4 287

mobile apps in the real world

Implement a basic cache manifest for the Tartanator.

I’ve never messed around with
 .htaccess files, and I don’t even
know if I can do that with my
current web hosting service.

It’s highly likely that you can use .htaccess
files on your hosting provider or local web
server. But we won’t make you.
We do know you can use PHP. So, we’ll generate our cache

manifest files using PHP and use a snippet of code to set

the file’s content-type to text/cache-manifest.

 Name your file manifest.appcache.php and put it in the chapter7 directory.1

 Add the following line to the top of the file.2

 Add a CACHE: section and list the main pages of the site, as well as the JavaScript
and CSS files.3

<?php header('Content-type: text/cache-manifest'); ?>

The .php extension is needed so that we can execute the PHP code in the file.

This sets the content-type of the output
of this script to text/cache-manifest.

Refer to the syntax
on page 285.

 Update the <html> tag on index.php, build.php, tartans.php, and findevent.php with
a manifest attribute.4

Serve the manifest as the correct content-type

288 Chapter 7

cache headaches

The manifest.appcache.php file you created should look something like the one below. Note that
we’re also listing the CSS and JavaScript files from jQuery’s content delivery network (CDN).

<?php header('Content-type: text/cache-manifest'); ?>
CACHE MANIFEST

CACHE:
index.php
build.php
tartans.php
findevent.php
css/styles.css
js/tartanator.js
http://code.jquery.com/mobile/1.0rc1/jquery.mobile-1.0rc1.min.css
http://code.jquery.com/jquery-1.6.4.min.js
http://code.jquery.com/mobile/1.0rc1/jquery.mobile-1.0rc1.min.js

manifest.appcache.php

<html manifest="manifest.appcache.php">

…you can use absolute URLs
to denote resources on other
domains that you want to cache.

In addition to relative URLs to resources on your own site…

The HTML tag on the Tartanator
pages should now look like this.

I think I’m doing
something wrong. A lot of

images and icons aren’t showing
up, even when I’m online.

A trade-off of using PHP to
generate our manifest is that
we can't use the preferred
.appcache extension.

you are here 4 289

mobile apps in the real world

Frustrated Web Dev: Argh. As I navigate around

the Tartanator site, a bunch of images and icons and

stuff aren’t showing up, even though I’m online.

appCache: Well, that’s because you neglected to

include some of these resources in the CACHE list.

You should go round them up and add them to the

cache manifest.

FWD: So, I need to list every resource on the site or

they won’t show up at all?

appCache: No. You need to add the resources that

are needed by the HTML files in the cache.

FWD: I’m totally confused. What does it even mean

for an HTML file to be in the cache?

appCache: You already know one way to include

an HTML file in the application cache: listing it

explicitly in the CACHE section of the manifest

file. But it’s also worth noting that any HTML

file that has a manifest attribute on its HTML

tag is included in the cache manifest, even if it’s

not explicitly listed there. Only those pages listed

in the manifest or referencing it in a manifest

attribute—that is, in the cache—need to have all of

their resources added to the cache list.

FWD: OK, so for any page in the cache, if I neglect

to add each and every resource to the CACHE

section, any missed resource won’t ever load, even if

I’m online.

appCache: Well, that’s not exactly true, either.

I gather you’ve learned about the CACHE section,

but haven’t heard anything yet about the NETWORK

section.

FWD: What’s it for?

appCache: The NETWORK section lets you define

resources that you don’t want to cache, and for

which the browser should request fresh copies when

a connection is available. It has a special handy‑

dandy wildcard token, *, which means that anything

not explicitly listed in the CACHE section should be

retrieved from the server.

FWD: Eureka! That sounds like the answer I need

here.

appCache: Take caution. If something is in the

NETWORK section, either explicitly or by dint of the

* wildcard, it will always be requested afresh. So you

need to choose your path carefully.

Decide what things should really be available offline

and list them in the CACHE section. It sounds like

you do need to track down some icons and images,

for example. But for things that really are dynamic—

login screens, API calls, etc.—let the NETWORK

wildcard do its work.

Cache Manifest Exposed
This week’s interview:
Bending appCache to our will

Can you think of some parts of the
Tartanator web app that we might not
want to make available offline? Why?

290 Chapter 7

dynamically output tartans

We need to make the tartan
pages and images work offline, so they
need to be added to the CACHE section.
But how can I do that when I don’t know

what their URLs will be?

 Changes to any of the resources listed in the
manifest’s CACHE section will not be
downloaded by browsers unless the cache
manifest file itself changes.
We have css/styles.css in our manifest’s CACHE section.

Therefore, we could edit styles.css until the cows come home, but
browsers won’t see those changes. Once an item is in the cache, it
will only be refreshed if the cache manifest file itself changes.

A common method for managing this is to use a comment line in the
manifest file with a version number. Simply changing this version
number will cause browsers to see that the manifest has changed,
download it afresh, and check whether any of the resources within it
are new or modified.

The PHP code we’ll use to autogenerate a list of current tartan
images and HTML files has the happy side effect of causing the
manifest file to be updated when new tartans are added. But, after
implementing appCache, we’ll need to increment the version number
if and when we change other files.

Feels like a chicken-and-egg
problem, huh?
Fortunately, we’re using PHP to generate our

manifest file, so we can drop in some code to

dynamically output a list of all of the tartan

HTML files and images that currently exist.

Do this!Find the snippet of PHP code to dynamically
generate the list of images and HTML files
in the chapter7/extras folder. It’s in a file
called current_file_list.txt.

Remember that
comment lines
start with #.

you are here 4 291

mobile apps in the real world

It’s time to make our cache manifest behave a bit better. Let’s integrate
some of the lessons we’ve learned into the manifest.appcache.php file.

Track down the missing static icons and images.
There are some icons and images, used by jQuery Mobile,
that we need to add to the CACHE section.

1

Add the NETWORK: section and the wildcard.
Put this above the CACHE: section.

2

Remove build.php and findevent.php from
the manifest.
Come to think of it, these are resources that should only be
available when the user is online. The Events page doesn’t
do anything yet, but it will. Soon, even.

4

NETWORK:
*

 It’s easy to create cache manifests that are, shall

we say, not quite what we intended.

Remedying a wayward appCache is easiest in the Chrome

browser. Type chrome://appcache-internals in

the URL bar, and you will see information about all current appCache data.

Each site cache has a simple Remove link.

In Safari, go into Preferences and select the Privacy tab. You can either

Remove All Website Data wholesale, or use the Details button to search for

the problematic site and remove its cache.

In Firefox, go to Preferences → Advanced → Network. There is an area in

the Offline Storage subsection that lists all sites that have stored data for

offline use. You can selectively remove the appCache here.

Add the PHP snippet.
Add the code from extras/current_file_list.txt to the end of the
cache manifest file.

3

Don't forget to remove the manifest attribute from the <html> tag on these pages.

Kudos if you caught a
bunch of these already
in the earlier step!

292 Chapter 7

cache solution

t
<?php header('Content-type: text/cache-manifest'); ?>
CACHE MANIFEST

NETWORK:
*

CACHE:
http://code.jquery.com/mobile/1.0rc1/jquery.mobile-1.0rc1.min.css
http://code.jquery.com/jquery-1.6.4.min.js
http://code.jquery.com/mobile/1.0rc1/jquery.mobile-1.0rc1.min.js
http://code.jquery.com/mobile/1.0rc1/images/ajax-loader.png
http://code.jquery.com/mobile/1.0rc1/images/icons-18-white.png
http://code.jquery.com/mobile/1.0rc1/images/icons-18-black.png
http://code.jquery.com/mobile/1.0rc1/images/icons-36-white.png
http://code.jquery.com/mobile/1.0rc1/images/icons-36-black.png
index.php
tartans.php
css/styles.css

<?php // The PHP code snippet from the current_file_list.txt file
 // goes here. We're not showing it to save space.?>

 A single problem with a cache manifest
can cause the whole thing not to work.
Just what you need, more gotchas. But you should
know that if a single resource in the manifest
results in a 404 (not found), the entire manifest will

be disregarded. Similarly, a single syntax goof can render the
whole thing useless.

You can protect yourself. Use the handy-dandy manifest
validator at http://manifest-validator.com/ and keep an eye
on your developer tools windows to make sure none of the
referenced resources is missing.

manifest.appcache.php should look about like this now.

Now, save the file and try it out!

Make sure you don't have any blank
lines here between the header() line
and the CACHE MANIFEST line.

you are here 4 293

mobile apps in the real world

Confusing. I think it mostly
works, but when I add a new tartan, it
doesn’t show up on the tartans list page
right away. I have to reload the page.
That’s not quite right, is it?

Even though the cache manifest file
has been updated, you have to reload
the tartans list page (tartans.php)
before you can see the newest stuff.
What gives?

294 Chapter 7

update, don’t reload

Frank: I went and read up about this. I admit I got a bit sucked in.

Here’s how it works. Say your browser already has a cache manifest

file for the site. Then say you visit the tartans listing page again later

after new tartans have been created. Your browser will notice that

the cache manifest file has changed—it’s different from the one the

browser already had because the list of tartan files in it has changed.

Your browser will immediately grab the new manifest file and check for

updated or new stuff.

Jim: Then why the heck doesn’t the updated or new stuff show up

right away?

Frank: The browser doesn’t wait around for all of the resources that

are updated or new to download before rendering the page. Once the

browser does finish downloading stuff, the new or updated assets are

ready to go, in the browser’s cache, but won’t show up until the page is

refreshed.

Jim: So, the only way for folks to see updated things is to reload.

Frank: Well, I think I might have a workaround for this particular

situation. I wrote a tiny little JavaScript tool—

Jim: Always with the JavaScript!

Frank: The part of the page that’s dynamic is the stuff that gets output

by the PHP file included in it—that is, list.php. It outputs one per

tartan. The rest of the page is static. We really only care about updating

the contents of the tartan list .

Jim: True.

Frank: My code uses the window.applicationCache object

and its methods to see if there has been an update to the cache—which

there will be if the manifest file has changed, right? If there has been

an update, we want to get the updated output from list.php.

Jim: Right. If the cache manifest has updated, we know the tartan list

should be updated. Preferably without the user having to reload the

entire page.

Frank: Yeah. So, if there has been an update to the cache manifest, my

code sends an AJAX request to list.php. list.php isn’t in the manifest and,

when requested directly, will always return HTML markup representing

the current list of tartans. I then take the markup returned by list.php and

replace the current—that is, stale—list on the page with it. Voilà!

you are here 4 295

mobile apps in the real world

Let’s take Frank’s little JavaScript library for a spin and see if it helps us wrap up this

complex adventure with appCache.

Go grab the little library.
Copy cache-manager.js from the extras/js folder into chapter7/js.

1

Include the script in the Tartanator pages.
Include the cache-manager.js script right after the jQuery Mobile script on

index.php, build.php, findevent.php, and tartans.php.

2

Add this JavaScript snippet to tartans.php.
This code indicates that we want to ensure fresh content for the

#tartans-list element inside of the #tartans_page page

content <div>, using data returned from inc/list.php.

3

<script src="js/cache-manager.js" type="text/javascript"></script>

<div data-role="page" id="tartans_page">
 <script type="text/javascript" charset="utf-8">
 var tartanPage = $('#tartans_page');
 tartanPage.live('pageinit', function () {
 if (!tartanPage.data.cacheManager) {
 tartanPage.data.cacheManager = new CacheManager('#tartans_page');
 tartanPage.data.cacheManager.ensureFreshContent('#tartans-list',
'inc/list.php');
 }
 });
 </script>
<div data-role="header" data-position="fixed">

tartans.php

Test Drive

296 Chapter 7

a real cache

Q: If you can use a wildcard in the
NETWORK section of a cache manifest,
can’t I just use a wildcard in the CACHE
section to cache everything on my site
and leave it at that?
A: For better or worse, you can’t use
wildcards in the CACHE section. The
special wildcard token is only for the
NETWORK section, and it’s not really a
wildcard. You can’t combine it with any other
text patterns—it is a standalone thing with a
specific meaning (which is: unless a given
resource on the site is listed in another
section explicitly, request it over the network
when possible).
Q: What is the point of making it so
that pages with a manifest attribute
in their HTML tags get cached even if
they’re not listed in the manifest?
A: This can indeed cause confusion and
headaches. But the idea is that instead of
downloading and caching a bunch or all of
the pages on a given site in one go, pages
can be added to the cache “lazily”—that is,
they get added to the cache when the user
visits them first.
Q: What’s this about “all in one go”?
A: When a browser gets a new or
updated cache manifest file, it immediately
starts downloading all of the new resources
and/or checking for updates to existing ones.
This is something to consider, seriously,
when designing your cache manifests.

Q: Our manifest contains all of the
tartan images and HTML files. Isn’t that
an awful lot to download all in one go?
A: We agonized over that a bit. It is a
fair number of HTTP requests, yes. But
the files are rather minute: most of the
images are under 1 KB and the HTML files
are even smaller. So, the bandwidth hit is
small, and, because the resources are being
downloaded asynchronously, the impact on
the user should be minimal.
Q: Does the browser redownload
everything in the manifest every time it’s
updated?
A: Thankfully, no. The browser will check
to see if the resources it already has cached
have changed but will not download them
again unless they’ve been modified.

Q: All of this is well and good, but
what happens if the user’s browser
doesn’t support appCache?
A: The site basically behaves like it did
before we added a cache manifest. It works
fine, but won’t have a nice offline experience.
Q: You totally didn’t mention the
FALLBACK section.
A: In addition to the CACHE and
NETWORK sections, there is an optional
FALLBACK section that allows you to list
the offline variants that should be used when
an online variant is unavailable—for example,
use offline.html instead of login.html.
Q: appCache is nice, but what about
localStorage? It feels like only half of the
story here.
A: Hey, smartypants! You’re ahead of us.
We’ll come back to localStorage in Chapter 8
(and if you’re new to the term, no worries!).

 Watch out for implicit caching
via the manifest attribute.
We mentioned it already, but we’re
going to pound it home: any page
that has a manifest attribute

on its <html> tag will be cached, whether or
not it’s listed explicitly in the cache manifest.
And, no, you can’t get around this by using the
NETWORK section or any other trickery.

you are here 4 297

mobile apps in the real world

Victory is (finally) ours
Phew. It was a bit of a battle, but we now have the Tartanator working offline. That

means we’re done implementing the custom tartans piece of phase 2.

It’s time for some
The other chunk of phase 2 is the building of a

page that lets users search for local tartan‑related

events near them.

We want to find events that
are close to the user’s current
position. That means we’ll need
to talk about geolocation.

The Find Events form that
we want to build.

location-aware

Enhance the form we built to take advantage of capabilities of newer

mobile browsers.

Drop in server‑side code for processing the form and generating

resources (images, HTML, etc.) for user‑created tartans.

Make sure the offline experience for this

part of the app is acceptable.

searchable events

Congratulations, you
just successfully bent
appCache to your will.

Writing cache manifest files that do what

you actually want them to do can be

tricky—you did it!

298 Chapter 7

it’s not just gps, you know

How geolocation works
Geolocation from a web browser involves using JavaScript to

obtain the device’s current position. Many modern smartphone

browsers implement the World Wide Web Consortium (W3C)

Geolocation API, which provides a straightforward interface for

getting at geolocation data. There are a few other contenders in

the mix, including the now‑deprecated Google Gears API and

some proprietary APIs. Older phones and even some modern

smartphones don’t have geolocation support in the browser at all.

Although the first thing many people think of

when they hear the term geolocation is GPS (global

positioning system), there are in actuality many

additional sources for the location of a device,

including nearby WiFi networks, cell towers,

the device’s IP address, RFID (radio frequency

identification) tags, and WiFi or Bluetooth MAC

(media access controller) addresses.

Where
am I

?

24.21.168.0
Device’s IP address

Cell towers

RFID tags

00:0D:93:00:00:00
MAC addresses

GPS

WiFi networks

you are here 4 299

mobile apps in the real world

How to ask W3C-compliant browsers
where they are
Browsers that implement the W3C Geolocation API make the feature

available via the navigator.geolocation object. The most

relevant method on that object is getCurrentPosition, which

attempts to do what it sounds like it would do.

navigator.geolocation.getCurrentPosition(successCallback, errorCallback);

Try to get the current
position of the device.

The name of a JavaScript function
to call if a position is obtained.

The name of a JavaScript
function to call if an
error is encountered.

Handling the info getCurrentPosition gives us
When a location is successfully determined, the function that was

given as the name of the success callback will be called and given a

position object. We get at the info we really care about—latitude

and longitude—by looking at the latitude and longitude of

the coords attribute of the position object.

function successCallback (position) {
 var coords = position.coords;
 alert(coords.latitude + ',' + coords.longitude);
}

The success callback function This position object contains
the information we need.

The most pertinent
attribute of the
position is the
coords object… …and the most pertinent attributes on the

coords object are latitude and longitude.

function errorCallback(error) {
 alert(error.message);
}

Both of these functions
simply (and somewhat
annoyingly) pop up a
JavaScript alert.

The error callback function. If
something went wrong, it's called.

300 Chapter 7

geolocate your code

"Browser doesn't support geolocation"

navigator.geolocation

getCurrentPosition()

position

longitude

latitude

message

getLocation

coords

coords

posit
ion

onGeoError

Answers on page 302.

Geolocation JavaScript Magnets
Place the code magnets in the correct positions in the geolocation

JavaScript below. You can only use each magnet once, but you may

end up with a few that you don’t need.

function getLocation () {

 // Verify the browser supports W3C geolocation

 if () {

 navigator.geolocation. (, onGeoError);

 } else { // It doesn't

 onGeoError(new Error());

 }

}

function onGeoSuccess () {

 var = .coords;

 alert(coordinates. + ',' + coordinates.);

}

function (error) {

 alert(error.);

}

 ();

onGeoSuccess

position

getCurrentPosition

coordinates

you are here 4 301

mobile apps in the real world

Start in on the Find Events page: The baseline
The idea of the Find Events page is just that: to find events. We now have a

peek into how to find a user’s location with JavaScript in applicable browsers.

But we’ve been taking the approach of creating a baseline experience first.

What if a user’s browser doesn’t have JavaScript or geolocation?

Let’s start basic and create an events search form that doesn’t require either

of those things. Providing a simple list of US states in a select list will be our

baseline default.

Build a simple events search form on findevent.php to use as our baseline.
Put the form inside the page content <div>.

 Add a select input element.The displayed options should show
the name of the 50 US states. The values should be the two‑letter
postal abbreviations of the states.

2

 The submit input button should have an id of search_submit.3

A select element
with the name and
ID of state_filter

A very simple form
for searching for
events by state

The events database
only has US-based
events…at least for now.

Don't forget to wrap the
fields in a <div> with a
data-role of fieldcontain
(the jQM way).

 Give the form a method of GET and an id of search_form.
Set the action attribute to events.php.1

We'll show you where
to find events.php
in just a bit.

Find us_states.txt in the
extras/events directory
to help you along.

302 Chapter 7

i see where you’re coming from

position

function getLocation () {

 // Verify the browser supports W3C geolocation

 if () {

 navigator.geolocation. (, onGeoError);

 } else { // It doesn't

 onGeoError(new Error());

 }

}

function onGeoSuccess () {

 var = .coords;

 alert(coordinates. + ',' + coordinates.);

}

function (error) {

 alert(error.);

}

 ();

"Browser doesn't support geolocation"

navigator.geolocation

position

longitude

coordinates

latitude

message

getLocation

position

getCurrentPosition

onGeoError

onGeoSuccess

Once you’ve constructed this code, put it in a file called

geolocation.js in the chapter7/js/ directory. Then include it in

the findevent.php page by using a <script> tag within the

<div> with data-role="page".

It should go right above
the search form.

You didn’t need
these magnets.

Geolocation JavaScript Magnets Solution
Did you manage to place the magnets in the right position?

getCurrentPosition()

coords

coords

you are here 4 303

mobile apps in the real world

Your basic form should look like this.

Let’s integrate geolocation

<div data-role="content">
 <script type="text/javascript" src="js/geolocation.js"></script>
 <form method="get" action="events.php" id="search_form">
 <div data-role="fieldcontain">
 <label for="state_filter">Search by State</label>
 <select id="state_filter" name="state_filter">
 <option value="">Choose State</option>
 <option value="AL">Alabama</option>
 <!-- ETC -->
 </select>
 </div>
 <div data-role="fieldcontain">
 <input type="submit" value="Find Events" id="search_submit" />
 </div>
 </form>
</div><!-- /content -->

We now have a basic form. Oh, and some really annoying

JavaScript alerts.

Let’s do the fun part: dropping in geolocation for browsers

that support it. Here’s what the form will look like for enabled

browsers after our next set of changes:

Once we spruce up our form,
users with browsers that
support geolocation will be
able to use their current
location to find events.

304 Chapter 7

geolocation construction

Geolocation Construction

We’re going to fancy up the code in geolocation.js. Let’s walk through the highlights.

(function () {
 var $page, $searchForm, $submitButton, $stateFilter;

 $page = $('#event_page');
 if (!$page.data.initialized) {
 $page.live('pagecreate', initGeo);
 $page.data.initialized = true;
 }

 function initGeo() {
 $searchForm = $('#search_form');
 $submitButton = $('#search_submit');
 $stateFilter = $('#state_filter');
 if (navigator.geolocation) {
 initGeoOptions();
 }
 }
 function initGeoOptions() {
 var $latField, $longField, $flipSwitch;
 $flipSwitch = $('<select name="usegeo" id="usegeo"
data-role="slider"><option value="off">Off</
off><option value="on">On</option></select>').
change(toggleLocation);
 $flipSwitch.prependTo($searchForm).wrap('<div data-
role="fieldcontain"></div>');
 $flipSwitch.before('<label for="usegeo">Use my
Location:</label>');
 $latField = $('<input type="hidden" />').attr({ name
: 'latitude', id : 'latitude'})
 $longField = $('<input type="hidden" />').attr({
name: 'longitude', id : 'longitude' })
 $latField.appendTo($searchForm);
 $longField.appendTo($searchForm);
 }

When the page initializes,
call the initGeo function.

If the browser supports geolocation, initialize the geolocation-related form elements.

Add a slider-themed
on/off switch to let
users opt in to using
their current location.

Add two hidden fields
to hold the value of
latitude and longitude
from the geolocation.

you are here 4 305

mobile apps in the real world

 function toggleLocation(event) {
 var geoActivated = ($(event.target).val()
 == 'on') ? true : false;
 if (geoActivated) {
 $submitButton.button('disable');
 $stateFilter.selectmenu('disable');
 $.mobile.showPageLoadingMsg();
 navigator.geolocation.getCurrentPosition(
onGeoSuccess, onGeoError);
 } else {
 $stateFilter.selectmenu('enable');
 $submitButton.button('enable');
 }
 }
 function onGeoSuccess(position) {
 var coordinates = position.coords;
 $('#latitude').val(coordinates.latitude);
 $('#longitude').val(coordinates.longitude);
 $.mobile.hidePageLoadingMsg();
 $submitButton.button('enable');
 }
 function onGeoError(error) {
 $('#usegeo').val('off').trigger('change');
 alert(error.message);
 }
})();

You can find this code in the
chapter7 folder in extras/js/
enhanced_geo_form.js.
Update the geolocation.js file, save it, and try

out the updated Find Events page.

Here's our success callback.
We've altered it to update
the latitude and longitude
hidden fields with the
user's location data.

On error, slide the use
geolocation switch back to
the off position and fire its
change event (which is bound
to toggleLocation above).

toggleLocation is bound
to the change event on
the slider switch.

If the user just flipped it on,
disable the state filter, and
disable the submit button (it
will be reenabled when the
geolocation is complete).

When it's turned off, reenable
filter by state.

Here's where we trigger
the geolocation.

Try it out! Play with the form
to get a feel for what the new
JavaScript does for us.

306 Chapter 7

visit the library

Jim: I was just checking out the geolocation piece on some devices. I know that

the BlackBerry OS 5 browser is supposed to have geolocation, but the Use My

Location switch isn’t showing up.

Frank: Yeah. The BlackBerry OS 5 browser supports geolocation, but it isn’t the

W3C flavor. I was just looking this up. And older Android browsers don’t have

W3C‑style geolocation, either. They’re based on Google Gears.

Jim: This sounds complicated.

Frank: It is. And we’re on a tight deadline. I don’t think we have time to chase

down all of the odds and ends and do exhaustive testing on a whole bunch of

obscure devices. What I did find is this open source, drop‑in JavaScript library that

handles geolocation across a bunch of different platforms, W3C‑compliant or no.

It’s called, simply enough, geo-location-javascript.

Jim: But doesn’t that mean we’d have to go refactor all of our existing JavaScript?

Frank: Nope. The API for this library emulates that of the W3C spec. All of the

major method and attribute names are the same. I think we only need to change

a few lines and then we can stop worrying quite so much about cross‑platform

compatibility.

Jim: Oh, while we’re making edits to the JavaScript…the pop‑up error for

geolocation failures is ugly. And could use some finesse in wording.

Frank: Yep. I think we should use a jQuery Mobile dialog, like the ones I built for

form errors on the tartan‑creation form.

Jim: Oh, you didn’t tell me about that!

Frank: If you try to submit the tartan form without a title, or if you forget a color

or size when you add a color‑size combo, a dialog will pop up to alert you to the

errors of your ways. It’s styled in a nice, jQM way.

Jim: How do you make a jQuery Mobile dialog?

Frank: They’re standalone jQM pages. Check out the ones in the dialogs directory.

Then I make them show up from the JavaScript.

Jim: Oh, cool. I can probably figure this out.

Frank: OK. You do that. I’m going to drop in this geolocation library real quick.

Do this!

Copy the extras/js/geo.js file
into the chapter7/js folder. This
is the geo‑location‑javascript
library. You can also visit
the project’s home page, if
you’re curious about it, at
http://bit.ly/sx7JrH.

you are here 4 307

mobile apps in the real world

Update the Find Events page and the geolocation JavaScript to use the cross‑platform
geolocation code and show geolocation errors in a pop‑up dialog.

Update findevent.php to include the JavaScript for the
new geolocation library.

1

Update geolocation.js to use the new library.
Find and change the following code from:

2

Create and invoke a dialog for geolocation errors.
Using the other pages in the dialogs directory as a guide, create a nicely worded error
dialog for geolocation failures. Name this file geolocation_error.html.
Next, replace the alert in the onGeoError function with a dialog pop up. You
can find examples of dialog pop ups in the js/tartanator.js file. You should only need to
adjust the URL argument.

3

<div data-role="content">
<script src="http://code.google.com/apis/gears/gears_init.js" type="text/
javascript" charset="utf-8"></script>
<script src="js/geo.js" type="text/javascript" charset="utf-8"></script>
<script type="text/javascript" src="js/geolocation.js"></script>

if (navigator.geolocation) {
 initGeoOptions();
}

navigator.geolocation.getCurrentPosition(onGeoSuccess, onGeoError);

if (geo_position_js.init()) {
 initGeoOptions();
}

geo_position_js.getCurrentPosition(onGeoSuccess, onGeoError);

to:

and change this:

to:

308 Chapter 7

use my location

Here’s what your onGeoError function should look like after you convert the
error from a basic JavaScript alert to a jQuery Mobile dialog. We trust you also
made the HTML page for the dialog itself!
 function onGeoError(error) {

 $('#usegeo').val('off').trigger('change');

 $.mobile.changePage("dialogs/geolocation_error.html", {
 transition: "pop",
 reverse: false,
 role: 'dialog'
 });
 }

Enough, already! Let’s see this thing in action. It won’t take much to hook this thing up

to some search code and sample data.

Try it out!
Head to the Find Events page in your mobile browser of choice and hit the

Use My Location switch.

2

Copy some needed files from the extras/events directory.
Copy event_search.inc and event_list.inc into the chapter7/inc directory. Copy events.php

into the chapter7 directory.

1

Test Drive

 We just blew through some gnarly JavaScript.

We admit, that was pretty intense. And there’s some code

we didn’t explain in depth. But this isn’t Head First JavaScript,

and we didn’t want to distract you from the main tasks at

hand: winning the battle with appCache and taking advantage of PhoneGap’s

mediaCapture API (even for browsers that don’t support it yet).

you are here 4 309

mobile apps in the real world

Nothing found
Ha, ha. Sorry about that. Unless you’re lucky enough to be in

the Portland, Oregon, metro area, you probably got this result

on your first location‑based search:

That’s because all of the sample data is local, and the search

radius is set to 25 miles. How’s about you add some of your

own fake events to get this thing to deliver some results?

Add a few events in the sample data that are in your neck of the woods. Find the event_list.inc file
in chapter7/inc/. Inside is a big PHP array representing fake data for events. Add a few of your own
elements to this array, using an address and lat/long pairs that are within 25 miles of you.
If you feel particularly uncomfortable with PHP, you could try just updating the address and
lat/long of a few existing entries. The latitude, longitude, and state are what is used by the
search script to find matches.

Use this tool to get a lat/long
pair real quick for any address:
http://itouchmap.com/latlong.html.

Unless you’re near Portland,

you'll get this result on your

first try.

310 Chapter 7

events geolocated just for you

Extra-super extra credit: Can you think of how
you would go about adding a range input to allow
users to determine the search radius? When
should it show up? If you can figure out how to
add an input with a name of radius, the backend
search script is already configured to use it!

This is looking great, guys! This is what
I had in mind when I first envisioned a
mobile web app for the Tartanator.

Nice! We’ve successfully integrated
several of the features that make
a mobile web app feel super:
progressive enhancement, offline
mode, and location awareness.

you are here 4 311

mobile apps in the real world

 � Web apps that feel natural and comfortable on mobile
devices often share certain characteristics like well-
considered progressive enhancement, a good
offline mode, and location-aware features.

 � Starting with a baseline is a great way to reach as
many users as possible, and thoughtful progressive
enhancement for more powerful mobile browsers can
make things really shine.

 � Crafting a relevant offline experience is important:
mobile devices can’t be expected to have an
always‑available data connection.

 � We can take advantage of the appCache feature in
browsers by creating a cache manifest file to instruct
the browser which resources to cache and make
available offline.

 � The construction of cache manifests is straightforward
on the surface, but there are a number of gotchas that
you have to carefully consider.

 � In our cache manifest file, we can indicate which
resources should be downloaded and cached for offline
use (in the CACHE section) as well as those that
should be requested afresh when an Internet connection
is available (in the NETWORK section).

 � Geolocation in the browser is supported widely
among modern smartphones. Many implement
the W3C’s Geolocation API, which exposes the
navigator.geolocation object to JavaScript.

 � Similarly to how we enhanced the tartan‑creation form
for supporting browsers, we also enhanced the Find
Events form to integrate geolocation, when it’s available.

 � Certain mobile browsers, especially on slightly older
smartphones, have implementations of geolocation
that are not W3C-compliant. To manage these
idiosyncracies, we used a third‑party geolocation library
called geo‑location‑javascript.

 � The geo-location-javascript library emulates the
W3C API, requiring minimal changes to our original,
W3C‑specific JavaScript code.

Looking good in various
mobile browsers

This one's an Android.

this is a new chapter 313

Ack. Barbed wire.
Boy, the grouchy old neighbor’s

really kicked it up a gear this year
to stop me from getting the apples
in his yard. What I wouldn’t do for

a bridge right now...

build hybrid mobile apps with PhoneGap8

Tartan Hunt: Going native

Sometimes you’ve got to go native. It might be because you need

access to something not available in mobile browsers (yet). Or maybe your client simply

must have an app in the App Store. We look forward to that shiny future when we have

access to everything we want in the browser, and mobile web apps share that sparkly

allure native apps enjoy. Until then, we have the option of hybrid development—we

continue writing our code using web standards, and use a library to bridge the gaps

between our code and the device’s native capabilities. Cross-platform native apps

built from web technologies? Not such a bad compromise, eh?

314 Chapter 8

tartan tripping

Psst! Hey, guys, check this out. We just
landed a new sponsor for the big Scottish

convention coming to town. We’re going to run a
contest, and I want to add it to the Tartanator!

Scottish airline Loch Air has just
agreed to sponsor an all-expenses-paid
trip for two to Edinburgh.
As part of the upcoming Scottish Celebration

Expo in two months, Loch Air wants to run a

promotional contest along with Tartans Unlimited,

Ewan’s organization.

Opportunity knocks again

you are here 4 315

build hybrid mobile apps with PhoneGap

I was thinking we could have a sort of
scavenger hunt. Contestants have to take

photos of tartan swatches they find at the
booths of conference sponsors.

The Tartan Hunt contest will send attendees
to seek out tartans hidden at the booths of
certain key sponsors.
Players are challenged to find and take a photo of each listed

tartan with their devices’ cameras; found tartans are then

checked off the list of hidden tartans. Once a contestant has

found all of the tartans, he or she can show the completed list

and be entered to win the trip.

Sounds like a
perfect addition

to the Tartanator!

Unfortunately, there’s a problem.
Access to the camera—and some other

device features like audio recording,

filesystem operations, network status, and

contact data—isn’t available for the most

part in mobile browsers.

316 Chapter 8

hybrid applications

Um. Photos. We don’t have access to
the device’s camera from mobile browsers.
What are we going to do? Do we have to

go native?

Frank: We obviously don’t have the time or budget to rewrite

the Tartanator as a native app for a bunch of platforms and

also add the new features Ewan wants.

Jim: Does that mean we have to walk away from this work?

That would be too bad.

Joe: I wonder if there’s a compromise here somewhere. We

might consider proposing a hybrid application.

Jim: What is that?

Joe: A hybrid application is a native application written with web

technologies. Because it’s native, we can get at device capabilities

like the camera, but the code itself is written with standard web

stuff, so we can share the code across several platforms.

Frank: But if it’s web‑based, and those features aren’t

available in the browser, how does that work?

Joe: There are several frameworks and platforms that provide

bridges between web apps and native code. They take our web

app, chew on it a bit, and then spit out packaged apps—native

ones—for various platforms. They take care of the various bits

and bobs for us so we can just use the web standards we know.

Jim: Should we convert the Tartanator to one of these hybrid

apps, then?

Joe: I don’t think we have the time to wrap the entire app

natively and test it effectively. Given the timeline, what do you

think about suggesting that we create a native app just for the

contest?

Frank: I kind of like that idea. And we don’t have to risk

making hurried changes to the Tartanator web app. It has a bit

of cachet—attendees show up and can download a special app

just for the event and the contest. Joe, if you think we can get

the hybrid app thing to work on several platforms, let’s float the

idea with Ewan.

Many device
capabilities, like
the camera, are
not accessible from
mobile browsers.

This is slowly changing for the
better, but there are still a
number of things we can’t get at
from the browser.

you are here 4 317

build hybrid mobile apps with PhoneGap

Hybrid App
Bridge

How do hybrid apps work?
You write your code using standard web technologies like HTML5,

CSS, and JavaScript—the same way websites have always been built.

A framework or platform then acts as a bridge, providing a common

API for you to use to access features natively on the various device

platforms. It bridges the gap between your JavaScript and the device’s

native code (for each platform it supports) and produces apps for

various platforms.

Standard web technologies
and resources

…like compass, camera,
contacts, audio recording,
filesystem…

The framework bridges
the gap between web
code and the target OS’s
native capabilities…

…and creates apps for
various OSes.

318 Chapter 8

build some bridges

PhoneGap is an open source HTML5 platform that allows you to create native

apps for several mobile operating systems using the hybrid approach that we’ve

been talking about. You write your code like you’re used to, using HTML, CSS,

and JavaScript. PhoneGap provides the bridge between that and native code via

a consistent, cross‑platform JavaScript API.

PhoneGap was developed by Vancouver‑based firm Nitobi, which was acquired

by Adobe in October 2011. But don’t worry: Adobe has already taken steps to

make sure PhoneGap remains open source by giving the rights to PhoneGap

to the nonprofit Apache Software Foundation. The newly minted Apache

Cordova project will make sure that the PhoneGap codebase stays open source

going forward.

PhoneGap Build
PhoneGap Build is a web‑based service that lets you compile in the cloud for

several platforms at once. It takes a bit of the drudgery out of the build process

by allowing you to skip installing at least some of the SDKs, plug‑ins, IDEs, and

whatnot for each platform you want to support.

Whereas with standard PhoneGap development, you’d do your own compiling

and building, with PhoneGap Build you upload a zip file (or pull from a code

repository) and it does the rest.

Ewan has agreed to the Tartan Hunt
contest companion app idea. That’s cool,
but we have an incredibly tight timeline.
Where do we start?

We’re going to show you how to
build a hybrid Android app using
PhoneGap Build.
If you don’t have an Android device, not

to worry. We’ll show you how to build and

install the app for a real‑life device and for

emulated virtual devices.

Bridge the web-native gap with PhoneGap

PhoneGap supports
up to seven platforms,
but in this chapter
we’re going to use
PhoneGap Build, which
supports Apple iOS,
Android, BlackBerry,
WebOS, and Symbian.

you are here 4 319

build hybrid mobile apps with PhoneGap

We chose Android as our example platform for
a few reasons.
For one thing, it is a popular platform (duh). But, also, building

and deploying iOS apps onto devices requires membership

in the iOS Developer program ($99/year). We didn’t want to

assume you’d fork that over.

Android also has a freely available SDK that supports

emulating many virtual devices across different versions of

the Android OS. And the Android SDK runs on several

platforms. With Xcode, the development toolset needed for

iOS development, you’re out of luck if you don’t have a Mac.

How come we’re singling out
Android for this project? What
about iOS and other platforms?

Is your development environment
ready to go?

 JavaScript ahead.
You don’t have to be a JavaScript genius
to make it through this chapter, but there’s
no getting around the fact that today’s
web app development involves JavaScript.

To communicate with native functionality such as the
camera APIs using PhoneGap, we need to use a
client-side technology—and JavaScript is obviously
the right guy for this job.

If you haven’t done it yet, hold everything and visit

Appendix iv. You need to have the right stuff installed

and an understanding of how to install and uninstall

apps on virtual and real devices before moving on to

the next parts of the chapter.

320 Chapter 8

hybridization questions

Q: What other tools, products, or services are there for
building hybrid apps?
A:Two of the best‑known hybrid development alternatives are
Appcelerator Titanium and the forthcoming Sencha Touch 2 product.
Q: What platforms are supported by PhoneGap?
A: PhoneGap presently supports Android, Bada, BlackBerry,
iOS, Symbian, WebOS, and Windows Phone 7. See
http://phonegap.com/about/features for a list of which of its features
are supported on which versions of which platforms.
Q: Does PhoneGap Build support the same platforms as
PhoneGap?
A: Not quite. At the time of this writing, it does not support
Windows Phone 7 or Bada.
Q: Is PhoneGap free?
A: Yes. PhoneGap—or, as it is known going forward, Apache
Cordova—is open source and free.
Q: What about PhoneGap Build? Is it free, too?
A: It depends. PhoneGap Build offers tiered levels of service. Its
free variant allows developers to have one private app and as many
public apps as they’d like. We’ll be using this free service to build the
Tartan Hunt app. PhoneGap Build’s other levels of service increase
the number of private apps and project collaborators.

Q: Why did I have to install the Android SDK?
A: We won’t be compiling or building the Tartan Hunt App—
PhoneGap Build will do that for us—but we still need to be able to
install it and test it on an emulator, a device (if you have an Android
device), or both. To do that, we need some of the tools provided by
the SDK.
We don’t, however, need to install the Eclipse IDE, which we’d likely
need to do if we were developing and building the code ourselves. So
at least we saved that step!
Q: Why is it that some things aren’t accessible in the web
browser in the first place?
A: There are several reasons that you can’t do anything and
everything from the browser on mobile devices.
Security is a considerable concern. Giving the browser access to
things like the filesystem or the user’s contact list is something that
has to be done carefully, with a lot of consideration about how to
keep things properly sandboxed. Doing these things right takes time.
In addition, some of the proposed standards for these features are
new or incomplete, or have multiple variants vying for adoption. As
these things get ironed out, expect to see some bumps along the way
with conflicting or inconsistent support in browsers.
But here’s to a standardized, device‑API‑rich future! Let’s try to enjoy
the ride!

If you have a device that is not Android but is one of PhoneGap Build’s supported
platforms, or if you have an Apple Developer Account, we encourage you to try
building and testing the examples in this chapter on your platform.

Our test kitchen has run the Tartan Hunt app successfully on various flavors of
Android and iOS.

you are here 4 321

build hybrid mobile apps with PhoneGap

Do this!

Get on over to
https://build.phonegap.com and
create an account. It’s free and only
takes a moment.

Roger. PhoneGap Build
account set up, Android SDK

ready. But you know, it’d be great
to know what exactly it is we’re

building.

Get acquainted with PhoneGap Build

322 Chapter 8

app tapping

How will the app work?
The landing page of our app will display contest instructions and

a list of tartans to find. Tapping on an item in the list goes to a

display with more information about the vendor at whose booth

the tartan can be found.

We used a collapsible element
so that the instructions can be
hidden. You do this in jQuery
Mobile by using a data-role
attribute of “collapsible." See index.html in the

chapter8 folder if

you're curious ab
out

the markup for this.

Landing screen

Tartan and vendor
detail screen

tap

you are here 4 323

build hybrid mobile apps with PhoneGap

Set up and configure a PhoneGap Build project. Zip

up the current HTML, CSS, and images; build the

app; and install it on an Android device or emulator.

Add the ability for players to mark which tartans

they’ve spotted.

Add the ability for players to save photos of the

tartans they’ve spotted.

How we’ll get from here to there

In our completed app, clicking the “I found it!”

button will launch the device’s camera, and the

player can take a snapshot of the discovered

tartan. The photo is displayed on the detail

page and marked off as “found” in the list on

the landing page.

Keep track of discovered tartans

We already have the basic HTML layout, CSS,

and images. Now we need to make them do

something and build a native Android app

using PhoneGap Build.

tap

324 Chapter 8

app anatomy

Anatomy of the Tartan Hunt project

index.html

style

images

scripts

extras

chapter8 Stuff we’ll
need later

We’re using jQuery Mobile again for this project, so the

overall look will be generally consistent with the Tartanator.

We’re already organized for PhoneGap Build
The structure of our starting point is now almost ready to

drop into PhoneGap Build.

PhoneGap Build projects have a structure based on the

W3C web widget specification. Web widgets are

encapsulated web apps that are meant as standalone client

applications. In their most basic form, they consist of at

least one start file (in our case, index.html) and a configuration

file (in XML). You can add any number of files that your

app will need to the package—things like images and CSS

and JavaScript and whatnot.

We’re already almost there. But we need to create a

configuration file to give PhoneGap Build some needed

details about our app.

PhoneGap Build will look for a file
in our project called config.xml.
Let’s go build that now!

almost

Wanna read the spec?
Here it is:
www.w3.org/TR/widgets/.

<div data-role="content">
 <div data-role="collapsible">...</div>
 <ul id="vendors">

 <ul class="details">
 ...
 ...
 ...

 <ul class="details">
 ...
 ...
 ...

 ...

</div>

Here’s the simplified structure of the content <div> in index.html.

ul#vendors has one
entry () per
tartan to find.

Each tartan ele
ment

has a nested list (u
l.details)

with further info a
bout

the vendor and th
e “I

found it!" button.

index.html

The structure of
our content is a
 with a bunch of
nested s.

you are here 4 325

build hybrid mobile apps with PhoneGap

Let’s make our first PhoneGap Build app. First, we need a configuration file.
Create a file called config.xml in the chapter8 directory. Use the template
below to complete the file’s contents.

<?xml version="1.0" encoding="UTF-8"?>

<widget xmlns = "http://www.w3.org/ns/widgets"

 xmlns:gap = "http://phonegap.com/ns/1.0"

 id = ""

 version = "1.0.0">

 <name></name>

 <description></description>

 <author href=""

 email="">YOUR NAME HERE

 </author>

 <icon src="images/touch-icon-iphone4.png" height="114" width="114" />

</widget>

config.xml

Remember that a PhoneGap Build project is either built from a zip file or
pulled from a code repository. We’re going to take the zip file route.
Zip up the entire contents of the chapter8 directory. It doesn’t matter what
the resulting file is called, as long as it is a zip archive with a .zip extension.

Let’s use com.hfmw.tartanhunt as our app’s ID.

Give the app a human-readable
name and description.

Your website and email address. You can use http://hf-mw.com if you don’t have your own site.

Let’s add icons! These show up on the
user’s home screen. We've added the first
one for you. Find the rest in the images
directory and add them as well.

326 Chapter 8

exercise solution

<?xml version="1.0" encoding="UTF-8"?>

<widget xmlns = "http://www.w3.org/ns/widgets"
 xmlns:gap = "http://phonegap.com/ns/1.0"
 id = "com.hfmw.tartanhunt"
 version = "1.0.0">

 <name>Tartan Hunt</name>

 <description>A companion application for the Scottish Celebration:
win a trip for 2 to Edinburgh from Loch Air!</description>

 <author href="http://www.hf-mw.com"
 email="help@hf-mw.com">
 Lyza Gardner and Jason Grigsby
 </author>

<icon src="images/touch-icon-iphone4.png" height="114" width="114" />
<icon src="images/touch-icon-ipad.png" height="72" width="72" />
<icon src="images/touch-icon-iphone.png" height="57" width="57" />
<icon src="images/icon-48.png" height="48" width="48" />
<icon src="images/icon-36.png" height="36" width="36" />

</widget>

config.xml

Your config.xml file should look something like this. But don’t lose your identity! We expect you to
use your own name and stuff.

PhoneGap Build will give the right icon to the right devices…

you are here 4 327

build hybrid mobile apps with PhoneGap

Log in to PhoneGap Build to see your dashboard.
It’s time to create our app!

Click the new app button to get started.

Your settings
should look like thi

s.

Choose the zip file
you created from the
chapter8 directory.

https://build.phonegap.com

Click Create to, uh,
create your app.

328 Chapter 8

grab an app

Download your apps

Download the
Android APK.

APK (Android
Application Package
File) is the packaged
app, ready to install.

OK, let’s get this
thing installed.

After you upload the zip file, PhoneGap Build will queue

your app for building. Wait a minute or two and refresh the

page. You should see Download buttons for each platform for

which the app was successfully built. We want to download the

Android package (APK) file.

When the build
process is done, you’ll
see a Download
button appear, rather
like this.

you are here 4 329

build hybrid mobile apps with PhoneGap

Choose your adventure

Install on an emulator
To prep for installing the app on a virtual device, start

the Android SDK. Go to Tools → Manage AVDs

to bring up a list of your installed Android virtual

devices (AVDs). Launch a device for a recent‑ish

version of Android. The emulated device needs to be

running when you install the app. Don’t try to install

the app until the emulator is all the way booted up.

$ adb install TartanHunt.apk
1157 KB/s (683431 bytes in 0.576s)
 pkg: /data/local/tmp/TartanHunt.apk
Success
$

File Edit Window Help Tartans

Our APK file was named
TartanHunt.apk.

You should
see something
similar to this…

adb install <the name of the package file>

We recommend using an
AVD for Android 2.3 or
4.0+. Earlier versions have
somewhat finicky emulators,
especially for the camera
stuff we’ll do later. The first time you run the app, it

might take a little while—up to
about 30 seconds—to launch.

You should now be able to see the
Tartan Hunt app in the application
screen of your device or emulator.
Go ahead and launch the app!

Ready, aim, fire!
The process for installing the app is the same whether you’re

deploying it virtually or to a real device. Open up a terminal

window (Mac or Linux) or type cmd in the Start menu’s Search

box (Windows) to get a command line, and cd to the directory

where you downloaded the Android APK file.

The command to install the app is:

Install on a real device
If you have a real‑life Android device, woot! Connect

your Android device to your computer’s USB port.

Yep. That’s it.

Don’t forget! Your (real) device
must be attached or your
emulator fully booted before you
run this command.

We talk about this in more
detail in Appendix iv.

OR

330 Chapter 8

tartan hunting in the wild

The landing screen
of the app in a
version 2.3.3 emulated
Android device.

One of the nested list
subpages on an Android
Nexus One device.

The Tartan Hunt icon is showing up on this Android’s application screen.

The landing page with the
instructions collapsed on an
emulated Android device.

The landing page on an iOS
device—yep, if you have a
signing key, it works!

you are here 4 331

build hybrid mobile apps with PhoneGap

Interesting. We only have one HTML
file. But each tartan I touch seems
to take me to a separate page.

Hey, what about BlackBerry?
If you visit your dashboard on PhoneGap Build, you might see

something like this:

jQuery Mobile automatically converts nested s
into separate “pages.”
It does this by converting each nested list to a <div> with a data-role

of page and using that <div> as the active “page” when the list items

are clicked. There is still actually only one proper page, technically. You’ll

also note that it uses the title of the parent list element (in our case, the

vendor’s booth number) as the title of the nested list’s page.

To make the PhoneGap Build Tartan Hunt app work on
BlackBerry OS, you would need to alter jQuery Mobile’s
icon filenames and update any reference to them in jQM’s
source code. While this wouldn’t take too long, it does
mean “hacking” jQuery Mobile’s core and introduces a
maintenance burden. What do you think? Is it worth it?

For purposes of
brevity and sanity—
and because Ewan has
expressed diffidence
about supporting the
BlackBerry platform,
we're not going to
address this here…

Our BlackBerry status is
FROWNY. :(

We could rectify
the iOS situation by
providing a signing
key (if we had one).

What’s with the frowny face for BlackBerry? Well, sadly, there’s a problem

currently with the combination of PhoneGap Build, BlackBerry, and any

filename with a hyphen in it. Several of the jQuery Mobile files we need

have hyphens in their filenames.

332 Chapter 8

uninstall to reinstall

 You need to uninstall the app before you can reinstall it after
making changes.
Each time you rebuild the app on PhoneGap Build and need to reinstall it
on a device or emulator, you need to uninstall first. Run this command when
the device is attached via USB, or when the emulator you want to uninstall it
from is running.

$ adb uninstall com.hfmw.tartanhunt
Success
$

File Edit Window Help TartanHunting

Let’s add a splash screen so that users don’t have to look at a boring blank
screen while the app loads. Use the PhoneGap Build config.xml documentation at
https://build.phonegap.com/docs/config-xml to figure out how to do this. Find the two splash‑
screen images in chapter8/extras/images and move them to the chapter8/images folder.
Update config.xml, zip up chapter8 again, rebuild the app on PhoneGap Build, and
reinstall it to see the new splash screen take effect.

Note that you use the app’s
package ID with the uninstall
command (com.hfmw.tartanhunt
or whatever you set the ID to
in the config.xml file), not the
APK filename like we did with
the install command.

Look for the “Update
code” button to upload
your updated zip file.
The rebuild process
starts automatically
after upload.

Answers on page 334.

you are here 4 333

build hybrid mobile apps with PhoneGap

Congratulations,
you just built a
native mobile app.

Not so tricky, huh? You can use your

web dev chops to build native stuff

without too much hassle!

Set up and configure a PhoneGap Build project. Zip

up the current HTML, CSS, and images; build the

app; and install it on an Android device or emulator.

Add the ability for players to mark which

tartans they’ve spotted.

Add the ability for players to save photos of the

tartans they’ve spotted.

Store which tartans users have found

Rock on. We have an app. Now let’s
make it do what it’s supposed to do.
We’ve broken down the functional
pieces into two steps.
First, we want the app to be able to remember

which tartans the user has found. When players

click the “I found it!” button, we need the app to

keep a record of that.

First, let’s build the
ability to keep track of
which tartans users say
they have found.

Then we’ll come back in a
bit and enhance the app to
prompt users to take a photo.

How am I going to get the app to
“remember” which tartans the users

claimed they saw? Are we going to have
to get down and dirty with native code?

Fortunately, there’s a way to
do this in JavaScript using an
HTML5 web standard called
localStorage.
It’s already supported in the default

mobile browsers of all of the platforms

we’re targeting with PhoneGap Build.

It’s not supported by
BlackBerry before OS 6,
but we're not supporting
BlackBerry currently.

Nice work, hotshot!

334 Chapter 8

run to the localStore for found tartans

 <icon src="images/icon-48.png" height="48" width="48" />
 <icon src="images/icon-36.png" height="36" width="36" />

 <gap:splash src="images/splash2x.png" width="640" height="960" />
 <gap:splash src="images/splash.png" width="320" height="480" />
</widget>

config.xml

Who’s seen what? Store found tartans

Here’s the end of the config.xml file, with splash screens
added. The two sizes allow us to have a bigger version
for devices with higher resolution.

We can store simple data on the client—in our case, which tartans

have been found—without much fuss using the localStorage API in

the browser.

What makes localStorage so special?
In the past, developers have often relied on HTTP cookies for data

that needs to be kept on the client. There are a few downsides to

cookies, however.

Every time the client makes a request to a server, the entire contents

of all cookies for that domain are transferred. Sometimes, a developer

might want to store hefty amounts of data on the client—say, images

or considerable amounts of configuration information—which isn’t

feasible with cookies (or, at least, isn’t performance‑friendly!).

Also, cookies are notoriously convoluted to work with using JavaScript.

They’re just kinda clunky. Plus, there is some data we might want to

stick on the client that the server just doesn’t need to know about (or

maybe, as in our case, there is no server).

localStorage was designed specifically for the straightforward storage

and retrieval of string data in key‑value pairs on the client. It gives us

methods to set, get, and clear out data—and that’s about it. It’s not

complicated.

Our app has a splash screen now!
This is what it looks like on an
iPod Touch.

you are here 4 335

build hybrid mobile apps with PhoneGap

What can localStorage do for us?
When a player clicks the “I found it!” button, we can add an entry to

localStorage. And we check for data in localStorage when we want to

see which of the tartans the contestant has already found.

Meet the getter and the setter
There are two methods on localStorage that provide most of its

utility. First, we set a value:

localStorage.setItem(key, value);

var storedValue = localStorage.getItem(key);

A key to name the thing
we're storing

The value we want to
store

Both the key and the
value must be strings.

Then, later, we can ask for that value by using its key: The key for which we’d like the
stored data, please!

If a value is found for key,
it is assigned to storedValue. If data for the key is not found,

storedValue will be null.

var isFound = localStorage.getItem('douglas');

localStorage.setItem('douglas', 'true');

In our case, when a user found, say, the Douglas tartan at a vendor’s

booth and indicated this by tapping the “I found it!” button, we could do

something like:

Then if we wanted to check if he’d already found the Douglas tartan, we

could ask localStorage:

336 Chapter 8

magnetic commentary

// Turn off jQM page transitions

// Add a back button to the nested list subpages

// Add a
click han

dler for
the "I fo

und it!"
buttons

// Check
for local

Storage s
upport in

 the brow
ser

// Call the initDevice function when the DOM is ready

// Click handler for "I found it" button

// Get the ID of the clicked button

// Store that this tartan was found

// Create a button-styled <a> element

// Add a
click han

dler for
the reset

 button

// Clear all entries from localStorage

// Get the entry from localStorage

// Insert the reset button into the page

// Update the display to show which tartans have been found

localStorage JavaScript Magnets
It’s time to update scripts/app.js (our app’s main JS code) to

record found tartans. The updated app.js file is on the next page.

Your job is to add the comment magnets above the lines of code

they refer to.

You can only use each magnet once, but you might end up with

some left over!

you are here 4 337

build hybrid mobile apps with PhoneGap

(function() {
 $(document).bind("mobileinit", function() {

 $.extend($.mobile, { defaultPageTransition: 'none' });

 $.mobile.page.prototype.options.addBackBtn = true;

 });

 var initDevice = function() {

 if (typeof(window.localStorage) == 'object') {

 $('.foundTartan').click(tartanFound);

 addResetButton();

 }

 };

 $(document).ready(initDevice);

 var tartanFound = function(event) {

 var tartanKey = $(event.currentTarget).attr('id');

 localStorage.setItem(tartanKey, 'true');

 };

 var addResetButton = function() {

 var $resetButton = $('<a>').attr('data-role','button').html('start Over!');

 $resetButton.click(function() {

 localStorage.clear();

 });

 $resetButton.appendTo($('#booths'));

 };
})(); app.js

338 Chapter 8

comment magnets solution

(function() {
 $(document).bind("mobileinit", function() {

 $.extend($.mobile, { defaultPageTransition: 'none' });

 $.mobile.page.prototype.options.addBackBtn = true;

 });

 var initDevice = function() {

 if(typeof(window.localStorage) == 'object') {

 $('.foundTartan').click(tartanFound);

 addResetButton();

 }

 };

 $(document).ready(initDevice);

 var tartanFound = function(event) {

 var tartanKey = $(event.currentTarget).attr('id');

 localStorage.setItem(tartanKey, 'true');

 };

 var addResetButton = function() {

 var $resetButton = $('<a>').attr('data-role','button').html('start Over!');

 $resetButton.click(function() {

 localStorage.clear();

 });

 $resetButton.appendTo($('#booths'));

 };
})();

// Turn off jQM page transitions

// Add a back button to the nested list subpages

// Add a click handler for the "I found it!" buttons

// Check for localStorage support in the browser

// Call the initDevice function when the DOM is ready

// Click handler for "I found it" button

// Get the ID of the clicked button

// Store that this tartan was found

// Create a button-styled <a> element

// Add a click handler for the reset button

// Clear all entries from localStorage

// Insert the reset button into the page

app.js

We're turning off the
page transitions because
they are slow on some
Android devices.

You can see that we're adding a button to
let the user reset and start the game over.

Hey! We didn’t tell you about the clear() method yet—did you figure it out?

It does what it sounds
like: clears all keys and
their associated values
from localStorage.

The value of ‘true' is sort of
arbitrary. We just want to
store *something*.

We only add the click
handler for browsers that
support localStorage.

Ditto with the
reset button.

localStorage JavaScript Magnets Solution

you are here 4 339

build hybrid mobile apps with PhoneGap

Check out what a browser supports
We talked a bit about client-side feature detection way back in Chapter

2, and that’s what we’re doing again here inside of the initDevice function.

By checking if window.localStorage is an object, we are detecting if the

localStorage feature is supported by the browser.

// Get the entry from localStorage

// Update the display to
// show which tartans
// have been found

var initDevice = function() {

 if (typeof(window.localStorage) == 'object') {

 $('.foundTartan').click(tartanFound);

 addResetButton();

 }
}

We perform some client-side
feature detection here to
make sure localStorage is
supported before adding the
click handler and showing the
reset button.

initDevice is called on $(document).ready().
Translation: it gets executed when the page’s
DOM is done being initialized by jQuery.

By only adding click handlers and the reset
button if localStorage is supported, we are
in effect setting a minimal bar for supported
browsers, Chapter 4 style. Can you think of
why this might be OK? Can you also think
why it might not be in some cases?

Client‑side feature detection can be quite simple, like this example, but there are

also JavaScript libraries that provide detection for all sorts of features. Modernizr

(http://modernizr.com) is a widely used example of such a tool.

But wait…the story isn’t over yet
The leftover comment magnets give us a clue about what else we need to do

here. We’re storing found tartans, and providing a way to clear them all out, but

the interface doesn’t change. We need to write some code that updates the

display so players can see which tartans they’ve found. Turn the page

to get started.

We also did feature detection
in Chapter 5 using WURFL
device capability data. That’s
server-side feature detection.

Our leftover magnets.
We need to take care
of these items!

340 Chapter 8

the key to localStorage searches

$(document).ready(initDevice);

refreshTartans = function() {

 $('ul.details').each(function() {

 var myID = $(this).attr('id');

 var tartanKey = 'found-' + myID;

 var foundValue = localStorage.getItem(tartanKey);

 var isFound = Boolean (foundValue);

 $('#vendor-'+ myID).toggleClass('found', isFound);

 $('[data-url*="'+myID+'"]').toggleClass('found',isFound);

 $('#'+tartanKey).closest('li').toggle(!isFound);

 });

 $('ul').each(function() {

 if ($(this).data('listview')) {

 $(this).listview('refresh');

 }

 });

};

tartanFound = function (event) {
If we don’t, any
altered content won’t
be styled correctly.

Use a function to show which tartans are found
Sounds like we need another function in our JavaScript—one that

can update the way the page looks depending on which tartans have

been found. Let’s dive in again. We’re going to call our new function

refreshTartans because it updates the appearance of the tartan

listings and the detail screens depending on which tartans have been found.

Each of the nested lists—ul.details—in index.html contains

information about a single vendor and tartan to be found. We can use

the id attribute of each of those lists to determine a key to look for in

localStorage. If there is a value of any sort for that key, that tartan has

been found and we need to update the interface to reflect that.

app.js

Ready Bake
JavaScript

This is jQuery code. It means: iterate (loop) over each element that matches the CSS selector ul.details (s with a class of “details”).So, for each ul.details in
the document…

Figure out the name of
the key to look for in
localStorage by getting the
id attribute of this
and prepending ‘found-'

1

Check for that key in
localStorage.

e.g,. ‘found-douglas'

Toggle the visibility and classes on some elements to reflect whether they’ve been found or not.

Refresh the jQuery Mobile
listviews in the document.

2

3

4

What’s all that
toggle stuff?

toggle and toggleClass
are part of jQuery. Let’s
take a closer look.

Remember, jQuery Mobile builds on top of jQuery, so we have all of jQuery’s methods available to us.

you are here 4 341

build hybrid mobile apps with PhoneGap

Add the completed magnets code and the refreshTartans function
to scripts/app.js. refreshTartans needs to be called on page
initialization and any time localStorage is altered. See if you can figure
out where in the code the three calls to refreshTartans need to go.

var foundValue = localStorage.getItem(tartanKey);
var isFound = Boolean (foundValue);
$('#vendor-'+ myID).toggleClass('found', isFound);
$('[data-url*="'+myID+'"]').toggleClass('found',isFound);
$('#'+tartanKey).closest('li').toggle(!isFound);

Let’s look at that code chunk again
Remember that localStorage.getItem(tartanKey)will either

return the value stored for that key (in our case, the string 'true') or

null. We convert that to a Boolean value (true or false) so we can

use it with jQuery’s toggle and toggleClass methods.

We need a real Boolean value
(not just the string ‘true' or
null) to use these methods.

isFound is true if
any value exists in
localStorage for this
tartan; false otherwise.

toggleClass will add the CSS class indicated (found) to the elements that

match the selector given if the isFound value is true (and remove the class if

it is false).

Similarly, toggle will show the element indicated if it’s passed a

Boolean with a true value. We’re doing something a bit clever here and giving

it the opposite of the current value of isFound (that’s what !isFound does).

Why, you might ask? Well, we want to hide that if the tartan’s been found

(that is, isFound is true). That’s the that contains the “I found it!”

button. We don’t need it to show up anymore if the tartan has been found.

Summary: Add the found class
to two elements and hide the
 containing the “I found it!"
button if the tartan has been
found. Remove the class and
show the button if not.

The toggle and toggleClass methods
toggle and toggleClass are jQuery methods. toggle

toggles the visibility of an element; toggleClass toggles

the application of CSS classes to an element.

By selectively applying the ‘found'
CSS class to certain elements using
toggleClass, we can use styling to
show which tartans are found…

…and we can hide the “I found it!" button
when it’s not needed using toggle. (No button here!)

342 Chapter 8

refreshed tartans

var initDevice = function() {
 if (typeof(window.localStorage) == 'object') {
 $('.foundTartan').click(tartanFound);
 refreshTartans();
 addResetButton();
 }
};

var tartanFound = function(event) {
 var tartanKey = $(event.currentTarget).attr('id');
 localStorage.setItem(tartanKey, 'true');
 refreshTartans();
};

var addResetButton = function() {
 var $resetButton = $('<a>').attr('data-role','button').
html('start Over!');
 $resetButton.click(function() {
 localStorage.clear();
 refreshTartans();
 });
 $resetButton.appendTo($('#booths'));
};

Here are the three places refreshTartans needs to be called in app.js.

When we initialize…

Whenever a new tartan is found…

…And when
the tartans
are reset.

Edit app.js to integrate the changes from the last several pages. Save
the file and preview Tartan Hunt’s index.html in a desktop web browser
(this should work just fine). Try clicking on some tartans and their “I
found it!” buttons. You should see found tartans and their detail pages
receive some CSS style changes (things will turn green).
If you’re having trouble, use the Web Inspector tool in Chrome or
Safari, or the Error Console in Firefox, to review possible JavaScript
errors. If you’re really stuck, you can find a finished version of the file in
chapter8/extras/scripts/app.localStorage.js.

You’ll need to replace your
app.js with this file if you
want to use it.

Do this!

Go ahead and zip up the
contents of the chapter8
directory again and rebuild on
PhoneGap Build. Install again
on a device or emulator and
try it out!

app.js

Test Drive

you are here 4 343

build hybrid mobile apps with PhoneGap

Q: Which browsers currently support
localStorage?
A: The short answer is: most of them. But not
Opera Mini. And if you’re still using Internet Explorer
version 7, you’re out of luck there.
Q: Do the keys have to have certain names?
A: Both keys and the values you assign to them
have to be strings. Beyond that, the sky’s the limit. You
can call them whatever pleases you.
Q: How much data can I store?
A: The W3C localStorage Specification is sort
of adorably vague about this. To quote: “A mostly
arbitrary limit of five megabytes per origin is
recommended. Implementation feedback is welcome
and will be used to update this suggestion in the
future.”
Most browsers provide between 2 and 5 MB. Some
browsers, like Safari, prompt users to allocate more
space if the allotment is used up.
Q: Can other sites or apps access my
localStorage data?
A: No. Part of the spec is concerned with security
and mandates certain things that prevent other origins
(very rough translation: other sites) from accessing any
localStorage data other than their own.

Q: You said that you can only store strings in
localStorage. But earlier you mentioned that you
can use localStorage to store images. How could
that possibly work?
A: Strings, yes. But what’s to stop us from storing
rather large strings? Images can be stored as their
BASE64‑encoded strings and used directly as the value
of src attributes or as url() values in CSS
background images. Browser support for data‑URIs
(that’s what this is called) is pretty decent, with the big
exception of Internet Explorer. Read more about it in this
article by Nicholas Zakas: http://bit.ly/sWe7HS.
Q: Wait a minute! I was just looking at the code
again and noticed we're adding a back button on
the nested list pages. That doesn’t make sense for
Androids—most Android devices have hardware
back buttons already.
A: Well spotted. The back button doesn’t just feel
awkward for Android, it actually closes the PhoneGap
Build–generated app! That is not good. We’ll come
back to this in just a bit and fix it.
Q: If localStorage is available in the browser to
us, why are we using PhoneGap Build at all? Can’t
we just make this a web app?
A:Aha! Patience! We’re just about there. It’s time to
integrate the camera into Tartan Hunt.

	Contents
	
	Intro: How to Use This Book
	Who is this book for?
	We know what you’re thinking
	And we know what your brain is thinking
	Metacognition: thinking about thinking
	Here’s what WE did
	Here’s what YOU can do to bend your brain into submission
	Read me
	Software requirements
	The technical review team
	Acknowledgments
	Safari® Books Online

	Chapter 1: Getting Started on the Mobile Web: Responsive Web Design
	Get on the mobile bandwagon
	Something odd happened on the way to the pub
	If mobile phone web browsers are so great…
	What’s so different about the mobile web?
	Responsive Web Design
	An example of a responsively designed site
	Different CSS in different places
	CSS media queries
	The current structure of the Splendid Walrus site
	Analyze the current CSS
	What needs to change?
	Identify the CSS that needs to change
	Steps to creating the mobile-specific CSS
	Ta-da! Mobile-specific CSS
	The rest of our structural CSS
	Put it together
	What’s wrong with a fixed‑width layout, anyway?
	How is fluid better?
	Go fluid
	The fluid formula
	Continue your fluid conversion
	Context switching
	What’s wrong with this picture?
	Fluid images and media
	Are we there yet?
	Details, details
	Remember to be responsible
	That’s a responsive site!
	Responsive design is also a state of mind

	Chapter 2: Responsible Responsiveness: Mobile-first Responsive Web Design
	Just when you thought it was time to celebrate…
	Is there really a problem? How do we know?
	Waitress, will you take my order please?
	What to do when things aren’t blazing fast
	Don’t let its looks fool you, that’s a BIG page
	There’s gold in ’em HAR hills
	10,000-feet view: Show statistics
	Find the drags on page speed
	Where did that Google Maps JavaScript come from?
	What’s with the big pictures?
	It looks mobile friendly, but it isn’t
	Mobile-first Responsive Web Design
	What is progressive enhancement?
	Let’s turn this web page around
	Am I on a new page or not?
	Fix the content floats
	Mobile-first media queries
	Surprise! The page is broken in Internet Explorer
	Use conditional comments with a media query
	How are we doing?
	One src to rule them all
	How Sencha.io Src works
	That’s a blazing-fast mobile web page
	Zoom, zoom, pow…
	The right to zoom?
	Back to our regularly scheduled project
	On second thought, a map would be useful
	Build a pseudo-media query in JavaScript
	Add the JavaScript to the On Tap Now page
	These widgets aren’t responsive
	Move iframe attributes to CSS equivalents
	Remove attributes from the JavaScript
	No one should have trouble finding the pub now
	The map overlap is back
	Let the content be your guide
	Time to bend and stretch that browser
	Breakpoints to the rescue

	Chapter 3: A Separate Mobile Website: Facing less-than-awesome circumstances
	Creature Comforts has agents in the field
	How can agents get and share the info they need?
	Send mobile users to a mobile-optimized website
	Sniff out mobile users
	Getting to know user agents
	User agents: spawn of Satan?
	Straight talk: Most major sites have aseparate mobile website
	When what you really want to do is (re-)direct
	Take a peek at the script
	How does the script work?
	Make a mobile mockup
	Special delivery…of complicating factors
	Not all phones are smartphones…not by a sight
	Let’s keep it basic: Meet XHTML-MP
	Why would we want to use that old thing?
	Keep your nose clean with XHTML-MP
	By the way, scrolling sucks
	One last curveball
	Access keys in action
	So, are we good to go?
	What went wrong?
	Fix the errors
	Mobile-savvy CSS
	Hmmm…something is missing
	The button look is sorely missed!
	Great success!

	Chapter 4: Deciding Whom to Support: What devices should we support?
	How do you know where to draw the line?
	Step away from the keyboard for a second
	Things you don’t support vs. those you can’t support
	Ask questions about your project
	Ingredients for your magic mobile potion
	Draw from your cupboard of tools and data
	How do I know my customers have the right stuff?

	Chapter 5: Device Databases and Classes: Get with the group
	A panic button for freaked-out students
	The button is for mobile phones only
	Mobile device data sources to the rescue
	Meet WURFL
	WURFL and its capabilities
	WURFL: Clever API code
	We can build an explore page, too
	An explore page: Setting up our environment
	A good start!
	A quick one-two punch to improve our explore page
	Put capabilities to work
	Ask WURFL the right questions
	Initialize the device and get the info ready
	Is this thing mobile?
	Danger, Will Robinson!
	Make the page a bit smarter with WURFL
	The panic button: For phones only
	Herding devices
	Device classes
	The picture just got a lot bigger
	Evaluate the home page wearing mobile-tinted glasses
	Group requirements into multiple mobile flavors
	Rounding out our device classes
	Let’s get this show on the road
	Get acquainted with the matching function
	What’s going on in that switch statement?
	Use the matching function to test capabilities
	The home stretch
	Well, let’s see…how’d it go?
	Fill in the gaps in the device class tests
	Make something actually happen with device classes
	Always tread with care and come prepared
	We need a bigger safety net
	A stitch in time

	Chapter 6: Build a Mobile Web App Using a Framework: The Tartanator
	HTML5…app…what do these words even mean?
	How “traditional” websites typically behave
	How applike websites often behave
	A Tartans Unlimited mobile HTML5 web app
	The master plan for phase 1 of the Tartanator
	…or you could use a mobile web framework
	Why use mobile web app frameworks?
	Our choice for the Tartanator: jQuery Mobile
	Build a basic page with jQuery Mobile
	Mark up the rest of the page
	And we’re off!
	The HTML5 data-* attribute
	Our list: Better, but not quite there
	Link to multiple pages with jQuery Mobile
	The meat of the Tartanator: The tartans themselves
	We’ve given you a head start on the list
	Drop in the rest of the tartans
	Filter and organize a list
	Our tartan list is nicer now
	It’s time to show the early Tartanator work to Ewan
	Tricks to make it feel more like an app
	Add a footer toolbar
	Make the toolbar snazzy
	Finalize the structure
	Time to make that tartan-building form
	Tartans: patterns like recipes
	Translate tartan patterns to a form
	Build an HTML5 form
	It’s time to add some basic fields
	Lists within lists let the users add colors
	Color-size ingredient pairs: The color select field
	Color-size field pairs: The size field
	Link to the form

	Chapter 7: Mobile Web Apps in the Real World: Super mobile web apps
	It looks nice…
	Mobile apps in the real world
	Ready, set, enhance!
	Make a better form
	A widget to manage the list of colors and sizes
	A peek under the hood
	So, that’s the frontend enhancement…
	…and now for the backend
	The two sides of generate.php
	One last thing!
	Two out of three is a great start
	Offline is important
	A basic recipe to create a cache manifest
	Unfortunately, the devil is in the details
	Serve the manifest as the correct content-type
	Victory is (finally) ours
	How geolocation works
	How to ask W3C-compliant browsers where they are
	Start in on the Find Events page: The baseline
	Let’s integrate geolocation
	Nothing found

	Chapter 8: Build Hybrid Mobile Apps with PhoneGap Tartan Hunt: Going native
	Opportunity knocks again
	How do hybrid apps work?
	Bridge the web-native gap with PhoneGap
	Get acquainted with PhoneGap Build
	How will the app work?
	Keep track of discovered tartans
	Anatomy of the Tartan Hunt project
	Download your apps
	Choose your adventure
	Nice work, hotshot!
	Who’s seen what? Store found tartans
	What can localStorage do for us?
	Check out what a browser supports
	Use a function to show which tartans are found
	The toggle and toggleClass methods
	You found a tartan, eh? Prove it!
	Rope in PhoneGap to take pictures
	PhoneGap is almost ready for its close-up
	Now we’re ready for the mediaCapture API
	How will we handle the success?
	It always looks a bit different in real life
	It’s just a bit anonymous
	We nailed it!

	Chapter 9: How to Be Future Friendly: Make (some) sense of the chaos
	Now what?
	It’s complicated
	A future-friendly manifesto
	If you can’t be future proof, be future friendly
	App today, web page tomorrow
	It’s a long journey: Here are some guideposts
	Look toward the future

	Appendix i: Leftovers: The top six things (we didn’t cover)
	#1. Testing on mobile devices
	#2. Remote debugging
	#3. Determine which browsers support what
	#4. Device APIs
	#5. Application stores and distribution
	#6. RESS: REsponsive design + Server-Side components

	Appendix ii: Set Up Your Web Server Environment: Gotta start somewhere
	What we need from you
	Only available locally
	Windows and Linux: Install andconfigure XAMPP
	Get going with XAMPP
	Mac folks: It’s MAMP time
	Make sure you dock at the right port
	Access your web server
	phpInfo, please!

	Appendix iii: Install WURFL: Sniffing out devices
	Who’s got the brains?
	And who’s got the brawn?
	Getting the two to work together
	A bit of filesystem housekeeping
	Take note!

	Appendix iv: Install the Android SDK and Tools: Take care of the environment
	Let’s download the Android SDK
	Get the right tools for the job
	Hit the Install button and go make some coffee
	Do virtual devices dream of electric sheep?
	Create a new virtual device
	Let ’er rip!
	Apps on, apps off
	Find the right PATH

	Index

