
www.allitebooks.com

http://www.allitebooks.org

Groovy 2 Cookbook

Over 90 recipes that provide solutions to everyday
programming challenges using the powerful features
of Groovy 2

Andrey Adamovich

Luciano Fiandesio

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.packtpub.com/authors/profiles/andrey-adamovich
http://www.packtpub.com/authors/profiles/luciano-fiandesio
http://www.allitebooks.org

Groovy 2 Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1151013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-936-6

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Andrey Adamovich

Luciano Fiandesio

Reviewers
Kunal Dabir

Ayan Dave

Fergal Dearle

Eric Kelm

Guillaume Laforge

Acquisition Editors
Kartikey Pandey

Rebecca Youe

Lead Technical Editor
Ankita Shashi

Technical Editors
Pragnesh Bilimoria

Jinesh Kampani

Sandeep Madnaik

Chandni Maishery

Ankita Thakur

Project Coordinator
Apeksha Chitnis

Proofreaders
Ameesha Green

Katherine Tarr

Indexer
Hemangini Bari

Graphics
Ronak Dhruv

Yuvraj Mannari

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.packtpub.com/authors/profiles/andrey-adamovich
http://www.packtpub.com/authors/profiles/luciano-fiandesio
http://www.allitebooks.org

About the Authors

Andrey Adamovich is a software craftsman with many years of experience in different
lifecycle phases of software creation. He is passionate about defining good development
practices, documenting and presenting architecture, the reuse of code and design patterns,
the profiling and analysis of application performance, as well as extreme automation of
development and operations activities.

He is a longtime Groovy user and has a deep knowledge of the language internals. He uses
Groovy in his day-to-day development job for simplifying the development process, which
includes: code generation, super cool DSLs, and rapid prototyping.

He has Master's degree in Computer Science from the Latvian State University.

I would like to thank my wife Lena for her patience and understanding that
gave me enough time and energy to focus on the book. Many thanks to my
friends, Sergey and Dmitry, who attentively reviewed book chapters and
shared their insightful comments. And, of course, I'm very grateful to Luciano
for the exciting experience we had together while working on this book.

Luciano Fiandesio is a programmer, technology enthusiast, and entrepreneur living in
Zurich, Switzerland. Luciano has been working for the last 18 years in 12 different countries
as an architect and developer for large corporations and small start-ups: Nokia, European
Central Bank, BNP Paribas, and Ericsson are among his clients. He loves coding and
designing solutions that are both elegant and rock solid. When not busy learning the next
big thing, he likes playing with his analog cameras and cooking Italian food. Two years ago,
he started a consulting company focused on software factory automation, Aestas IT, where
Groovy plays a big role. He holds a Master's degree in Literature and Philosophy from
Rome University.

I'd like to thank Andrey, my business partner, friend, and co-author on this
book; Laura, my life partner for her patience; Matteo, my brother, for his
help; and Pierluigi for reviewing the book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ayan Dave is a software engineer that takes pride in building and delivering high quality
applications using languages and components in the JVM ecosystem. He is passionate
about software development and enjoys exploring open source projects. He is enthusiastic
about Agile and Extreme Programming, and frequently advocates for them. Over the years,
he has provided a consulting service to several organizations and has played many different
roles. Most recently, he is the "Architectus Oryzus" for a project team with big ideas, and he
subscribes to the idea that running code is the system of truth.

He has a Master's degree in Computer Engineering from the University of Houston-Clear
Lake and holds PMP, PSM-1, and OCMJEA certifications. He is also a speaker on various
technical topics at local user groups and community events. He currently lives in Columbus,
Ohio, where he works with Quick Solutions Inc. In the digital world, he can be found at
http://daveayan.com.

Fergal Dearle has been writing code since he started writing BASIC as a bellbottom-wearing
teenager in the 70s. The jeans aren't bellbottoms anymore and the code is in Groovy, not BASIC
but he's still wearing jeans and he's still coding. Recently, he can be found mostly working on
web-based projects in Groovy on Grails as his framework of choice. He is the author of Groovy
for Domain Specific Languages and is a passionate advocate of Agile methods.

Eric Kelm is senior software developer with over nine years of experience as a developer,
senior developer, and technical lead, delivering top-notch solutions to customers. His
current focus is developing Java web applications, particularly with the Groovy-based
Grails framework.

He holds a Bachelor's degree in Computer Science from the Sam Houston State University.
Along with his day-to-day work, he also shares his insights into some of his technical solutions
with a broader audience through his blog http://asoftwareguy.com.

www.allitebooks.com

http://daveayan.com/
http://www.allitebooks.org

Guillaume Laforge is the project lead of the Groovy language. He works for Pivotal,
formerly the SpringSource division of VMware. Guillaume co-authored the Groovy in Action
best-seller, and speaks regularly about Groovy, Domain-Specific Languages, and various
Groovy related topics at conferences worldwide.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Groovy 7

Introduction 7
Installing Groovy on Windows 8
Installing Groovy on Linux and OS X 10
Executing Groovy code from the command line 11
Using Groovy as a command-line text file editor 14
Using Groovy to start a server on the command line 16
Running Groovy with invokedynamic support 17
Building Groovy from source 18
Managing multiple Groovy installations on Linux 20
Using groovysh to try out Groovy commands 23
Starting groovyConsole to execute Groovy snippets 29
Configuring Groovy in Eclipse 35
Configuring Groovy in IntelliJ IDEA 42

Chapter 2: Using Groovy Ecosystem 47
Introduction 47
Using Java classes from Groovy 48
Embedding Groovy into Java 51
Compiling Groovy code 57
Simplifying dependency management with Grape 60
Integrating Groovy into the build process using Ant 63
Integrating Groovy into the build process using Maven 71
Integrating Groovy into the build process using Gradle 75
Generating documentation for Groovy code 78
Checking Groovy code's quality with CodeNarc 82

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Using Groovy Language Features 89
Introduction 89
Searching strings with regular expressions 90
Writing less verbose Java Beans with Groovy Beans 92
Inheriting constructors in Groovy classes 99
Adding the cloning functionality to Groovy Beans 100
Defining code as data in Groovy 104
Defining data structures as code in Groovy 108
Implementing multiple inheritance in Groovy 117
Adding a functionality to the existing Java/Groovy classes 123
Defining type-checking rules for dynamic code 126
Adding automatic logging to Groovy classes 132

Chapter 4: Working with Files in Groovy 135
Introduction 136
Reading from a file 136
Reading a text file line by line 138
Processing every word in a text file 140
Writing to a file 142
Replacing tabs with spaces in a text file 144
Filtering a text file's content 146
Deleting a file or directory 149
Walking through a directory recursively 151
Searching for files 153
Changing file attributes on Windows 157
Reading data from a ZIP file 159
Reading an Excel file 160
Extracting data from a PDF 162

Chapter 5: Working with XML in Groovy 167
Introduction 167
Reading XML using XmlSlurper 168
Reading XML using XmlParser 170
Reading XML content with namespaces 172
Searching in XML with GPath 175
Searching in XML with XPath 178
Constructing XML content 184
Modifying XML content 187
Sorting XML nodes 189
Serializing Groovy Beans to XML 192

iii

Table of Contents

Chapter 6: Working with JSON in Groovy 197
Introduction 197
Parsing JSON messages with JsonSlurper 198
Constructing JSON messages with JsonBuilder 201
Modifying JSON messages 204
Validating JSON messages 205
Converting JSON message to XML 211
Converting JSON message to Groovy Bean 214
Using JSON to configure your scripts 218

Chapter 7: Working with Databases in Groovy 223
Introduction 223
Creating a database table 224
Connecting to an SQL database 228
Querying an SQL database 231
Modifying data in an SQL database 235
Calling a stored procedure 239
Reading BLOB/CLOB from a database 242
Building a simple ORM framework 244
Using Groovy to access Redis 246
Using Groovy to access MongoDB 252
Using Groovy to access Apache Cassandra 256

Chapter 8: Working with Web Services in Groovy 263
Introduction 263
Downloading content from the Internet 264
Executing an HTTP GET request 265
Executing an HTTP POST request 268
Constructing and modifying complex URLs 271
Issuing a REST request and parsing a response 272
Issuing a SOAP request and parsing a response 276
Consuming RSS and Atom feeds 279
Using basic authentication for web service security 283
Using OAuth for web service security 284

Chapter 9: Metaprogramming and DSLs in Groovy 289
Introduction 289
Querying methods and properties 290
Dynamically extending classes with new methods 293
Overriding methods dynamically 296
Adding performance logging to methods 299

iv

Table of Contents

Adding a caching functionality around methods 305
Adding transparent imports to a script 317
DSL for executing commands over SSH 319
DSL for generating reports from logfiles 327

Chapter 10: Concurrent Programming in Groovy 335
Introduction 335
Processing collections concurrently 336
Downloading files concurrently 340
Splitting a large task into smaller parallel jobs 344
Running tasks in parallel and asynchronously 349
Using actors to build message-based concurrency 355
Using STM to atomically update fields 361
Using dataflow variables for lazy evaluation 365

Index 371

Preface
Groovy 2 Cookbook consists of problem-solving recipes for Groovy, one of the most flexible
programming languages we have ever used. This book contains solutions to more than 100
common problems, shown with more than 500 Groovy code snippets.

There are a few unique things about this book:

 f As a cookbook, it's intended to save your time by providing solutions to the most
common problems you'll encounter.

 f Most of the examples can be run as Groovy scripts or directly in the GroovyConsole.
As a result, whether you're sitting by a computer or in a plane, you get the benefit of
seeing their exact output.

 f The book covers not only the Groovy language, but also has several recipes on Groovy
libraries and tools, including Gradle, concurrent programming, and functional testing.

This book covers Groovy 2.0 and 2.1.

The Groovy language
Groovy arises from the self-imposed limitations of the Java language. Java is an "old"
language, originally conceived in 1990 and released at the beginning of 1996 (Java 1.0).
We are looking at a 20 year life span that, in our field, is equivalent to an ice age. Java was
portable (remember the motto "write once, run anywhere"?), sported a truly object-oriented
core, and provided an automatic management of memory. The Java platform evolved in two
directions: Java Virtual Machine (JVM), an outstanding piece of software engineering, which
has become increasingly powerful and more performant over the years, and the actual Java
language. The latter unquestionably matured and changed since its origin, but it did so in an
unnerving slow-motion pace. The reason for this pondered evolution lies in the strong ties
that the Java language historically had with the enterprise world. This bond acted as a
double-edged weapon. It gave the language the massive adoption and popularity that it
enjoys today, but it tampered the ability to quickly adapt to an ever-changing IT landscape.

Preface

2

In order to counteract the lethargic adoption of new features in Java, new languages based on
the JVM started to see the light. Groovy is one of these languages, along with Scala, Clojure,
JRuby, Jython, and many others. So what is Groovy? Groovy is an optionally typed, dynamic
language for the JVM with many features influenced by languages such as Python, Ruby, and
Smalltalk, making them available to Java developers using a Java-such as syntax. Groovy
is designed to work seamlessly with Java at every level, from syntax alignment to bytecode
generation (although it creates different bytecode). The language evolved from being a limited
scripting language to a fully-fledged programming language that can be used in very different
contexts, such as web applications and services, backend servers, background jobs, and
desktop applications.

The dynamic nature of the language allows a degree of flexibility hardly achievable with
Java. Thanks to the language's metaprogramming features, it is possible to modify or
augment the code and behavior at runtime, or even at compile time (using AST) and create
Domain-Specific Languages (DSL) in a breeze. Furthermore, Groovy adds a huge number of
convenience methods and approaches that simplify your code and make it more powerful.

We, the authors, have been programming in Groovy for many years now. We hope that through
this book, we will be able to convey the great fun and productivity boost that we enjoyed by
using this language.

What this book covers
Chapter 1, Getting Started with Groovy, covers the installation process on different operating
systems and the basic tools that come with the language distribution.

Chapter 2, Using Groovy Ecosystem, introduces the Groovy ecosystem—a set of tools for
compiling, embedding, building, documenting, and running code analysis with Groovy.

Chapter 3, Using Groovy Language Features, shows the different facets of the Groovy
language that allows you to write a terser, readable, and less ceremonious code in
comparison to Java.

Chapter 4, Working with Files in Groovy, covers I/O with Groovy, from simple cases such
as reading a file to more complex endeavors such as mining data from a PDF file or an
Excel spreadsheet.

Chapter 5, Working with XML in Groovy, introduces you to the recipes that discuss how to
consume and produce XML, as well as more advanced topics such serialization.

Chapter 6, Working with JSON in Groovy, covers Groovy's native support for reading and
producing JSON documents.

Chapter 7, Working with Databases in Groovy, presents recipes related to data persistence,
either through a relational SQL database or a NoSQL data store.

Preface

3

Chapter 8, Working with Web Services in Groovy, explains how to use Groovy to interact with
SOAP and REST-based web services.

Chapter 9, Metaprogramming and DSLs in Groovy, covers advanced metaprogramming
concepts such as dynamically extending classes with new methods, creating DSLs, and
using AST transformation to modify the code at compilation time.

Chapter 10, Concurrent Programming in Groovy, introduces you to the GPars framework and
several approaches to execute tasks concurrently.

Chapter 11, Testing with Groovy, covers how to use Groovy for testing not only code using
unit tests, but also databases, web services, and the performance of your application. This
chapter is available online at: http://www.packtpub.com/sites/default/files/
downloads/Testingwithgroovy.pdf.

What you need for this book
In order to be able to run the examples in the book, you will need the Java Development
Kit 1.6 or newer, and v2.0 (or higher) of Groovy.

Who this book is for
This book is for Java and Groovy developers who have an interest in discovering new ways
to quickly get the job done using the Groovy language, which shares many similarities with
Java. The book's recipes start simple, therefore no extensive Groovy experience is required
to understand and use the code and the explanations accompanying the examples. Some
advanced recipes assume that the reader already has the necessary background to
understand the topic at hand (for example, general knowledge of computer science, data
structures, complexity, and concurrent programming). Moreover, the recipes are often just
skeletons that aim to provide essential information for getting started, but which require the
reader to do more research to fill in the details. As such, it is assumed that the reader knows
how to use search engines and how to access Groovy's online documentation.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"It also ensures that the reader object gets closed after the method returns."

Preface

4

A block of code is set as follows:

class Person {
 String name
 String lastName
}

p = new Person()

Any command-line input or output is written as follows:

groovy -e "throw new Exception()"

Caught: java.lang.Exception

java.lang.Exception
 at script_from_command_line.run(script_from_command_line:1)

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Click on the Advanced
system settings to open the System Properties window".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Preface

5

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

1
Getting Started

with Groovy

In this chapter, we will cover:

 f Installing Groovy on Windows

 f Installing Groovy on Linux and OS X

 f Executing Groovy code from the command line

 f Using Groovy as a command-line text file editor

 f Using Groovy to start a server on the command line

 f Running Groovy with invokedynamic support

 f Building Groovy from source

 f Managing multiple Groovy installations on Linux

 f Using groovysh to try out Groovy commands

 f Starting groovyConsole to execute Groovy snippets

 f Configuring Groovy in Eclipse

 f Configuring Groovy in IntelliJ IDEA

Introduction
The first chapter focuses on the basics of getting started with Groovy. We begin by showing
how to install Groovy on the most popular operating systems and we move to some
command-line tools available with the language distribution. The remaining recipes
offer an overview of how the language easily integrates with the most popular Java IDEs.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Groovy

8

Installing Groovy on Windows
In this recipe, we will provide instructions on installing the Groovy distribution on the Windows
operating system.

Getting ready
The requirement for installing Groovy 2.0 is JDK 1.5 and higher. We assume that you have
JDK installed and know how to use Java. In case you use JDK 7 or later, then you can take
advantage of the dynamic language optimization present in that version. For instance,
the invokedynamic bytecode instruction (see the Running Groovy with invokedynamic
support recipe).

To install Groovy on Windows, you need to download the ZIP distribution from
http://groovy.codehaus.org/Download.

The latest major version at the time of writing is 2.1.6. The latest minor version is 2.0.8. Since
v2.0, Groovy has changed the release version numbering, so the next major version of Groovy
will be 3.0 and the next minor versions will have the second digit increased (2.1, 2.2, 2.3,
and so on).

Alternatively, you can build Groovy from the source distribution which is described in the
Building Groovy from source recipe.

How to do it…
After downloading the zipped distribution, you need to unzip the archive to a directory of your
choice and carry out the following steps to install Groovy on Windows:

1. For simplicity, we will assume that the directory is C:\Applications\groovy-2.0.
The contents of the directory should look as shown in the following screenshot:

2. In order to have the groovy command available on your command line, you need
to add it to your system's path by setting the environment variable named PATH.
We also advise you to create a GROOVY_HOME variable for simpler reference.

Chapter 1

9

3. To access the Windows environment variables, you need to press the Windows
+ Break key combination. On Windows Vista, Windows 7, or later, it will open the
Control Panel page for system settings.

4. Click on Advanced system settings to open the System Properties window.

5. Then you need to click on the Environment Variables... button to finally get to the list
of the system variables.

6. Click on the New... button and add the GROOVY_HOME variable pointing to your
Groovy installation path:

7. Then find the Path variable in the list of system variables and append or insert the
%GROOVY_HOME%\bin; string to it:

8. You can now fire the Windows command line and verify that Groovy is installed
correctly by issuing the groovy --version command:

If you get the output displayed as in the previous screenshot, your Groovy installation
is complete.

Getting Started with Groovy

10

There's more...
As an alternative to the zipped archive, Windows users can also download a one-click
installer (you can find the link on the same download page under the Download
Windows-Installer link). Execute the installer and follow the instructions to get a
fully functional Groovy installation.

Installing Groovy on Linux and OS X
This recipe gives you instructions for installing Groovy on any Linux distribution and Mac OS X.

How to do it...
As a starter, download the Groovy 2.0 binaries as described in the Installing Groovy on
Windows recipe and perform the following steps to install Groovy on Linux and OS X:

1. Create a new folder for the Groovy distribution:
sudo mkdir /usr/share/groovy

2. Move the unzipped Groovy folder into /usr/share/groovy and create a symlink
to the folder, without using the version number:
sudo mv groovy-2.1.6 /usr/share/groovy/

sudo ln -s /usr/share/groovy/groovy-2.1.6 current

3. Finally, add Groovy to the path by editing your ~/.profile (or ~/.bash_profile)
file. You can use vi or an editor of your choice:
export GROOVY_HOME=/usr/share/groovy/current

export PATH=$GROOVY_HOME/bin:$PATH

4. Your JAVA_HOME variable should be set as well. On OS X, the recommended way to
set the variable is as follows:
export JAVA_HOME=$(/usr/libexec/java_home)

5. Reload your ~/.profile file by typing:
source `~/.profile`

6. To test if your installation is successful, type:

groovy -version

The output should display the installed Groovy version and the JDK in use.

Chapter 1

11

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works...
Using the symbolic link called current, which we created in step 2, makes it very easy to
upgrade to a newer version of Groovy by changing the folder to which the symbolic link points to.

There's more...
Most *nix-based operating systems (such as Linux or Mac OS X) have package manager
systems that allow you to install Groovy by simply typing a command in the terminal.

In Ubuntu, Groovy can be installed by simply typing:

sudo apt-get install groovy

The version installed by the Ubuntu package manager is quite old (1.7.10), so you may want to
install Groovy manually as described in this recipe.

In OS X, you can use Homebrew as follows:

brew install groovy

If you are happy with running a stable version of Groovy, but possibly not the most recent one,
a package manager is the recommended way to get Groovy quickly and easily. If you want to
install a beta version of Groovy or a version that is not yet available on the package manager
system used by your OS, install the binaries from the website.

See also
 f Managing multiple Groovy installations on Linux

Executing Groovy code from the command
line

Groovy, by definition, is a language with scripting features. Many developers approach
Groovy by writing short scripts to automate repetitive tasks. The language provides a set of
command-line tools that help you create scripts that are usable within your favorite shell.

Getting Started with Groovy

12

In this recipe, we will cover the execution of a simple script with the help of the groovy
command, which is made available to you after a successful Groovy installation (see the
Installing Groovy on Windows recipe and Installing Groovy on Linux and OS X recipe).

How to do it...
Let's start with the most abused example in programming books, printing Hello, World!:

1. The simplest way to execute Groovy code is by using the -e option and starting to
write Groovy code on the same line:
groovy -e "println 'Hello, World!'"

2. You can also place the println 'Hello, World!' statement in a separate
file; for example, hello.groovy, and execute that script with the following simple
command:
groovy hello.groovy

3. In both cases, you'll see the same results:

Hello, World!

How it works...
In step 1, the actual Groovy code resides in the double quotes (") and uses the predefined
println method to print a Hello, World! string. But to explain where the println
method actually comes from, we need to give a bit more details on Groovy internals.

Every script in Groovy (a command-line parameter or a standalone script file) is compiled on
the fly into a class that extends the groovy.lang.Script class (Javadoc for this class can
be found at http://groovy.codehaus.org/api/groovy/lang/Script.html).

Naturally, a Script class is eventually inherited from java.lang.Object, which is the base
class for all classes in both Java and Groovy. But since Groovy adds its own extension methods
to many standard JDK classes (see the Adding a functionality to the existing Java/Groovy
classes recipe in Chapter 3, Using Groovy Language Features for Information on Custom
Extension Modules), java.lang.Object is enriched with many useful methods including
println (the relevant Java documentation can be found at http://groovy.codehaus.
org/groovy-jdk/java/lang/Object.html#println(java.lang.Object)).

There's more...
In fact, the groovy command has several other useful command-line options. If you type
groovy --help, you can get a full list of them as shown in the following screenshot:

Chapter 1

13

Let's go through some of those options to get a better overview of the possibilities.

First of all, -classpath, --classpath, and -cp options work in a very similar way to
the java command. You just specify a list of the *.jar files or list of directories with the
*.class files. The only peculiarity is that -classpath must come as the first parameter in
the command line; otherwise Groovy will not recognize it.

Another parameter that is common with the java command is -D, which allows to pass the
system properties to your script in the following way:

groovy -Dmessage=world
 -e "println 'Hello, ' + System.getProperty('message')"

One of the strengths of Groovy (as opposed to Java) is its conciseness. This rule is also
applied to what Groovy prints out if an exception occurs in your script:

groovy -e "throw new Exception()"

Caught: java.lang.Exception

java.lang.Exception
 at script_from_command_line.run(script_from_command_line:1)

To print the conventional full Java stack trace, you can use the -d or -debug options
(some stack trace lines are omitted for brevity):

groovy -d -e "throw new Exception()"

Caught: java.lang.Exception

java.lang.Exception

 at sun.reflect.Native...

Getting Started with Groovy

14

 ...

 at script_from_command_line.run(script_from_command_line:1)

 ...

 at org.codehaus.groovy.tools.GroovyStarter.main(...)

See also
For additional command-line features, please refer to the following recipes:

 f Using Groovy as a command-line text file editor

 f Using Groovy to start a server on the command line

For more information on the Groovy script structure and Groovy additions, go to:

 f http://groovy.codehaus.org/api/groovy/lang/Script.html

 f http://groovy.codehaus.org/groovy-jdk/java/lang/Object.html

Using Groovy as a command-line text file
editor

The groovy command, which we introduced in the Executing Groovy code from the
command line recipe, can also be used as a stream editor or text file filter. In this recipe,
we will cover the -i, -n, and -p parameters that can be used to leverage file editing and
processing functionality.

How to do it...
Assume that you have a file, data.txt, which contains five lines with numbers from 1 to 5:

1. To multiply each number by 2, you can use the following command:
groovy -n -e "println line.toLong() * 2" data.txt

2. We can even omit the println method call if we pass additional the -p parameter
to the command:
groovy -n -p -e "line.toLong() * 2" data.txt

Chapter 1

15

3. In both cases, Groovy will print the following output:

2

4

6

8

10

How it works...
Due to the fact that we are using the -n option, the code in double quotes is applied to
each line read from the datafile specified as the last parameter in the command line.
The line variable is predefined by Groovy, and you can use it to access, filter, or modify
the line's content.

There's more...
If you add the -i option to the previous command, then it will actually modify the input file,
with output values as follows:

groovy -i -n -p -e "line.toLong() * 2" data.txt

Adding a suffix .bak to the -i option will save the original input file data.txt under data.
txt.bak:

groovy -i .bak -n -p -e "line.toLong() * 2" data.txt

You can use the -n and -p options to filter the input stream of other operating system
commands. For example, if you want to filter the output of a directory listing command (dir)
to show only the *.jar files, on Windows you can use the following command:

dir | groovy -n -e "if (line.contains('.jar')) println line"

Or on *nix-based operating systems, you can use the following command:

ls -la | groovy -n -e "if (line.contains('.jar')) println line"

Of course, the result of the previous commands can be easily achieved by more efficient
operating system instructions. However, these examples are given to demonstrate that
you can actually leverage the full power of the Groovy and Java programming languages to
implement more complex processing rules.

Getting Started with Groovy

16

See also
 f Executing Groovy code from the command line

 f Using Groovy to start a server on the command line

Using Groovy to start a server on the
command line

In this recipe, we continue to explore the groovy command's features at one's disposal.
This time, we show how to create a process capable of serving client requests through
TCP/IP directly from the command line and with one line of code.

How to do it...
The command-line option that we are going to use for this purpose is -l:

1. By using the -l option, it is trivial to start a simple socket server in Groovy:
groovy -l 4444 -e "println new Date()"

2. The previous line will start a server that listens to port 4444 and returns the date
and time string for every line of data it receives from the clients:
groovy is listening on port 4444

3. In order to test whether the server actually works, you can start any telnet-like
program (for example, KiTTY, if you are on Windows) to connect to a localhost
on port 4444, and type any string (for example, What time is it?), and
press Enter. The server should reply with a date/time string back as shown
in the following screenshot:

In this way, you can quite easily organize communication channels for ad hoc notifications on
different hosts.

Chapter 1

17

See also
 f Executing Groovy code from the command line

 f Using Groovy as a command-line text file editor

Running Groovy with invokedynamic support
One of the biggest improvements introduced in Groovy 2.0 is the support for the
invokedynamic instruction. The invokedynamic is a new JVM instruction available in
Java 7, which allows easier implementation and promises increased speed and efficiency
of dynamic languages (for example, Groovy).

Dynamic languages generate a bytecode that often necessitates a number of JVM method
invocations to perform a single operation. Furthermore, reflection and dynamic proxies are
used extensively, which comes with a costly performance toll. Also, the JIT (Just-In-Time)
compiler that helps to improve the runtime performance of a JVM, cannot work its magic by
applying optimization to the bytecode because it lacks information and patterns, which are
normally possible to optimize. The new bytecode instruction, invokedynamic, is able to
mitigate partially these issues, including support for better JIT optimization.

In this recipe, we will show how to run Groovy with the invokedynamic (also known as indy)
support and Java 7.

Getting ready
The invokedynamic support is a compile-time and runtime feature only. In other words, a
developer cannot use it from within the source code. What invokedynamic brings to Groovy
2.0 (and even more to 2.1) is basically improved runtime performance.

How to do it...
As explained in the introduction, Java 7 is the required version of the JVM to compile Groovy
code that leverages the invokedynamic instruction:

1. Make sure that Java 7 is your current JVM. Type java -version and confirm that
the output mentions Version 7:
java version "1.7.0_25"

2. The following steps will let us fully enable the indy support in your Groovy
distribution. First of all rename or remove all the JAR files starting with
groovy- in the lib directory of your Groovy 2.x home directory.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Groovy

18

3. Replace them with the files in the indy directory located in the root of the Groovy
distribution folder.

4. Remove the -indy classifier from the JAR names.

5. Finally, invoke either groovy or the groovyc compiler with the --indy flag to
execute your code:

groovy --indy my_script.groovy

There's more...
It is important to note that if the --indy flag is omitted, the code will be compiled without the
invokedynamic support, even if Java 7 is used and the Groovy JAR files have been replaced.

The performance gain introduced by the new JVM instruction greatly varies depending on a
numbers of factors, including the actual JVM version and the type of code that is optimized.
JVM support for the invokedynamic instruction improves at each version. The upcoming
Java 8 will use invokedynamic to support lambda functions, so it is very likely that newer
JVMs will offer even greater optimization. Given the current state of things, some benchmarks
that we have run have shown an improvement of around 20 percent when given the same
code compiled with the invokedynamic instruction enabled.

See also
 f The InvokeDynamic support documentation at

http://groovy.codehaus.org/InvokeDynamic+support

Building Groovy from source
In this recipe, we introduce a procedure for building Groovy from the source code. The only
requirement needed to build Groovy from source is Java JDK 1.7 or higher.

Java 7 is required to leverage the new invokedynamic instruction used by Groovy 2. You can
read more about the benefits of invokedynamic in the Running Groovy with invokedynamic
support recipe.

Getting ready
Like many of today's open source projects, Groovy source is maintained on GitHub. GitHub is a
website that provides a Git hosting service. You have probably heard of Git, the version control
system started by the Linux creator, Linus Torvalds.

Chapter 1

19

In order to build Groovy, you need a local copy of the source code that must be fetched from
GitHub via Git. If you are running a Linux or OS X operating system, chances are that you
already have Git installed on your box.

For Windows, there are several ways to install Git. You may want to use Cygwin
(http://www.cygwin.com/) or the officially released version available on the
Git website (http://git-scm.com/download/win).

For this recipe, we assume that a recent version of Git is available in your shell. To test that Git
is indeed available, open a shell and type the following command:

git --version

How to do it...
Assuming that git is installed and operational, we can proceed with the following steps to
build Groovy from source:

1. Open a shell in your operating system and type:
git clone https://github.com/groovy/groovy-core.git

2. Wait for Git to fetch all the source code and proceed to build Groovy. On Windows,
open a DOS shell, move to the groovy-core folder you just cloned, and type:
gradlew.bat clean dist

On Linux or Mac OS X, open a shell, move to the groovy-core folder, and type:

./gradlew clean dist

3. If you already have Gradle installed, you can run the following command instead:

gradle clean dist

How it works...
The git clone command in the first step fetches the Groovy repository, around 125 MB,
so be patient if you are on a slow connection. Groovy has switched to the Gradle build tool
from Ant. The gradlew command is a convenient wrapper for Gradle that takes care
of downloading all the required dependencies and triggering the build. Chapter 2, Using
Groovy Ecosystem, has a whole recipe dedicated to Gradle, so you may want to take a look
at the Integrating Groovy into the build process using Gradle recipe to know more about this
awesome tool. Furthermore, several recipes in this book will make use of Gradle to build the
code examples.

Getting Started with Groovy

20

The build process will download the required dependencies and compile the code. Upon
successful compilation, the build will generate a ZIP file named groovy-binary-2.x.x-
SNAPSHOT.zip that contains the binaries, under /target/distributions. Install the
binaries in the same way as explained in the Installing Groovy on Windows and Installing
Groovy on Linux and OS X recipes.

Note how two types of Groovy binaries are generated: a normal version and an indy version.
The indy version will leverage the invokedynamic feature (see also the Running Groovy
with invokedynamic support recipe).

Managing multiple Groovy installations on
Linux

If a developer needs to work with different Groovy distributions on the same machine,
chances are that he or she would be involved in a lot of environment variable fiddling,
such as PATH, JAVA_HOME, and GROOVY_HOME.

Luckily, there is a tool that helps to manage those variables as well as to download the
required setup files on demand.

The name of this goody is GVM (Groovy enVironment Manager). GVM was inspired by similar
tools from the Ruby ecosystem, RVM, and rbenv.

In this recipe, we will demonstrate how to use the GVM tool and show the benefits it delivers.

Getting ready
Use the package manager available on your Linux distribution to install curl, unzip,
and java on your machine. For example, on Ubuntu it can be achieved with the following
command sequence:

sudo apt-get update

sudo apt-get install curl

sudo apt-get install zip

sudo apt-get install openjdk-6-jdk

The GVM installation script will not work without those packages. You can skip the OpenJDK
package in case you have Java 5 or later distribution already installed.

Then you need to fetch the installation script from GVM's website
(http://get.gvmtool.net) and pass it to bash using the following command:

curl -s get.gvmtool.net | bash

Chapter 1

21

It will start the set up process as shown in the following screenshot:

To finalize the installation, open a new terminal and run the following command:

source ~/.gvm/bin/gvm-init.sh

How to do it...
As soon as GVM is installed and running, you can start putting it to use:

1. To install the latest Groovy distribution, you can issue the following command:
> gvm install groovy

Downloading: groovy 2.1.6

...

Installing: groovy 2.1.6

Done installing!

2. At the end of the installation, it will ask you whether to make it the default or not.
Since we all like "the latest and greatest", type Y (yes):
Do you want groovy 2.1.6 to be set as default? (Y/n): Y

3. To install different Groovy distribution (for example, v1.8.6, which is still rather
popular) you can fire the following command:
> gvm install groovy 1.8.6

Downloading: groovy 1.8.6

...

Installing: groovy 1.8.6

Done installing!

Getting Started with Groovy

22

4. Again it will ask about setting 1.8.6 as default Groovy distribution. Answer n (no) in
this case since we would like to keep v2 as the primary one:
Do you want groovy 1.8.6 to be set as default? (Y/n): n

5. To set (or to ensure) Groovy version used by default, use the following command:
> gvm default groovy 2.1.6

Default groovy version set to 2.1.6

6. You can also verify that Groovy is running and is the requested version by typing:
> groovy --version

Groovy Version: 2.1.6 JVM: ...

7. To switch temporarily to a different Groovy distribution, just type:
> gvm use groovy 1.8.6

Using groovy version 1.8.6 in this shell.

8. Another way to check which version of Groovy is currently active is:
> gvm current groovy

Using groovy version 1.8.6

9. For example, this script will not run under 1.8.6:
> groovy -e "println new File('.').directorySize()"

Caught: groovy.lang.MissingMethodException:

 No signature of method:

 java.io.File.directorySize() is applicable ...

10. If we switch to the latest Groovy, the script will succeed as shown:
> gvm use groovy

Using groovy version 2.1.6 in this shell.

> groovy -e "println new File('.').directorySize()"

126818311

11. To remove the unnecessary distribution, we can just run:

> gvm uninstall groovy 1.8.6

Uninstalling groovy 1.8.6...

Chapter 1

23

How it works...
The reason the directorySize() method (steps 9 and 10) didn't work for v1.8.6 of Groovy
is simply because this method was only introduced in v2.

As we already mentioned, GVM manages the values of environment variables to direct your
Groovy commands to the proper distribution. It also downloads, unpacks, and caches Groovy
installation archives under the ~/.gvm/var directory.

There's more...
GVM also can manage other popular Groovy-based products; for example, Gradle (to build a
framework that we are going to discuss in the Integrating Groovy into the build process using
Gradle recipe in Chapter 2, Using Groovy Ecosystem), Grails (a web application framework),
Griffon (a desktop application framework), and so on in a similar way.

This recipe can also be applied to a Mac running OS X. You can enjoy GVM on Windows too,
but you need to install and run Cygwin (a Linux environment simulation for Windows).

See also
Additional useful information can be found on the following product's home pages:

 f GVM home page: http://gvmtool.net/

 f Cygwin home page: http://www.cygwin.com/

Using groovysh to try out Groovy commands
Similar to many other languages (for example, Ruby or Perl), Groovy sports a so called
Read - Evaluate - Print loop (REPL). REPL is a simple, interactive programming environment
mostly used to quickly try out language features. Groovy's REPL is named groovysh, and in
this recipe we are going to explore some of its features.

Getting Started with Groovy

24

How to do it...
The groovysh command is a command-line tool available with the standard Groovy
distribution. Install Groovy as described in one of the installation recipes (see the Installing
Groovy on Windows recipe and Installing Groovy on Linux and OS X recipe) and you'll get the
groovysh command available in your shell:

1. Open a shell on your operating system and type groovysh, as shown in the
following screenshot:

2. The Groovy shell allows you to evaluate simple expressions, such as:
groovy:000> println "Hello World!"

Hello World

===> null

3. It is also possible to evaluate more complex expressions such as functions or
closures, (closures are discussed in great length in the Defining code as data in
Groovy recipe in Chapter 3, Using Groovy Language Features):
groovy:000> helloClosure = { println ""Hello $it"" }

===> groovysh_evaluate$_run_closure1@7301061

groovy:000> counter = 1..5

===> 1..5

groovy:000> counter.each helloClosure

Hello 1

Hello 2

Hello 3

Hello 4

Hello 5

===> 1..5

Chapter 1

25

4. The Groovy shell also supports creating classes:
groovy:000> class Vehicle {

groovy:001> String brand

groovy:002> String type

groovy:003> String engineType

groovy:004> }

===> true

groovy:000> v = new Vehicle()

===> Vehicle@7639fabd

groovy:000> v.brand = 'Ferrari'

===> Ferrari

groovy:000> v.type = 'Car'

===> Car

===> null

groovy:000> println v.brand

Ferrari

===> null

5. The dynamic nature of Groovy allows us to quickly list all the methods on a class:

groovy:000> GString.methods.each { println it}

public java.util.regex.Pattern groovy.lang.GString.negate()

public boolean groovy.lang.GString.equals(java.lang.Object)

public boolean groovy.lang.GString.equals(groovy.lang.GString)

public java.lang.String groovy.lang.GString.toString()

public int groovy.lang.GString.hashCode()

How it works...
The groovysh command compiles and executes completed statements as soon as we press
the Enter key. It then prints the result of that statement execution along with any output from
the execution.

Getting Started with Groovy

26

Autocompletion is supported through the JLine library that can be found at http://jline.
sourceforge.net/. Pressing the Tab key automatically completes keywords and methods
as we type:

groovy:000> string = "I'm a String!"

===> I'm a String!

groovy:000> string.

Display all 159 possibilities? (y or n)

groovy:000> string.toU

toURI() toURL() toUpperCase(toUpperCase()

In step 2, the evaluated statement returned null. This is normal as groovysh is informing
us that the last statement didn't return any value—hence null.

In step 4, we can see how groovysh supports code that spawns multiple lines. Note how the
counter on the left of each statement increases at each line. The up and down arrows key will
display the history of the typed commands. The history is preserved even across sessions so
you can safely exit groovysh and you will still be able to access the history.

You may have noticed that in the previous examples, we didn't use any typed variables.
 A variable declared with def or a data type is not stored in the session and will be lost
as soon as the command is issued:

groovy:000> def name = "Oscar"

===> Oscar

groovy:000> println name

ERROR groovy.lang.MissingPropertyException:

No such property: name for class: groovysh_evaluate

 at groovysh_evaluate.run (groovysh_evaluate:2)

This is a small gotcha you should remember when using groovysh.

There's more...
groovysh has a number of commands, which can be listed by typing help as shown in the
following screenshot:

Chapter 1

27

The import behaves like the standard import keyword in Groovy and Java. It allows to
import packages from the JDK or the GDK:

groovy:000> import groovy.swing.SwingBuilder

===> [import groovy.swing.SwingBuilder]

groovy:000> swing = new SwingBuilder()

===> groovy.swing.SwingBuilder@6df59ac1

groovy:000> frame = swing.frame(title:'Frame') {

groovy:000> textlabel = label(text:'hello world!')

groovy:000> }

===> javax.swing.JFrame[...]

groovy:000> frame.show()

===> null

The display command shows the current buffer and save allows to save it to a file:

groovy:000> display

Buffer is empty

groovy:000> class Person {

groovy:001> display

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Groovy

28

With clear, the buffer can be reset, in case you mistyped something.

The record command acts as a flying recorder. It saves the typed commands to a file as
we type. Use record start and record stop to control the recording. It is preferable
to specify a file to which you want the recorded commands to be stored:

groovy:000> record start Session1.txt
Recording session to: Session1.txt
===> Session1.txt
groovy:000> println 'hello world!'
hello world!
===> null
groovy:000> class Person {
groovy:001> String name
groovy:002> }
===> true
groovy:000> record stop
Recording stopped; session saved as: Session1.txt (202 bytes)
===> Session1.txt

A very useful feature of the Groovy shell is the inspect command that displays the content
of the last evaluated expression inside a GUI application, named Groovy Object Browser.

The Groovy Object Browser shows a good deal of information about the latest stored object,
such as the class name, the implemented interfaces, and all the methods exposed by the
object. The following screenshot shows some of the methods visible in the java.lang.
String class:

groovy:000> name = "Oscar"
===> Oscar
inspect

Chapter 1

29

Starting groovyConsole to execute Groovy
snippets

The Groovy distribution has another option for developers who are more familiar
with a graphical interface and want to try out code snippets. The tool in question is
groovyConsole, which is very similar to groovysh (see the Using groovysh to try out
Groovy commands recipe) except that it provides a GUI with syntax highlighting and basic
code editor features.

In this recipe, we are going to cover basic GroovyConsole usage scenarios.

How to do it...
Open your shell and let's dive in:

1. To start GroovyConsole, you just need to fire the groovyConsole command in your
command line:

The GroovyConsole screen is divided into two logical parts. The top area is meant for
script editing, and the bottom area displays the script execution output when a script
is launched.

Getting Started with Groovy

30

2. By pressing Ctrl + R (CMD + R on a Mac) or going to the Script menu and selecting
Run, the script in the edit area will be executed:

3. Press Ctrl + W (CMD + W on a Mac) to clean the output in the lower pane.

4. The bottom panel displays an output similar to the groovysh shell; that is, first the
executed script is printed after the groovy> marker followed by the printed output and
a result value, if any:

5. In the previous script, we set the value of the internal test property (this property is
being stored within an instance of the groovy.lang.Script class that is used to
execute all the code in the console). If you change that code to reuse the previous
field value (for example, +=), you will actually notice that the value changes every
time the code gets executed:

Chapter 1

31

6. Similar to groovysh, if you define a variable using the def keyword, then you can't
reuse the previous value. The def keyword is used to define locally scoped variables
and in this case, it's bound only to single execution of the script:

Getting Started with Groovy

32

7. Let's go through the editor features of the GroovyConsole application. The File
menu offers standard functions to start over by clicking on the New File menu item,
to open a new GroovyConsole window, to open a previously saved Groovy script,
to save or print contents of the editor, and to close the application as shown in the
following screenshot:

8. The Edit menu provides functionality available in any modern text editor such as copy,
paste, and basic search functionality, as shown in the following screenshot:

Chapter 1

33

9. The View menu has some interesting features for manipulating what is displayed in
the bottom output area, as shown in the following screenshot:

It is possible to increase or decrease the font size and configure the way the output
panel displays information. For instance, you can disable the script output or clear
the output screen at each run.

10. The History menu allows you to revive previous script versions that you have executed
during your session with GroovyConsole, as shown in the following screenshot:

Getting Started with Groovy

34

11. Since GroovyConsole is all about executing a script, the Script menu presents the
most valuable options, as shown in the following screenshot:

You can run or abort your script execution, force script compilation, and add
additional libraries to the class path. Also, you can Clear Script Context, which
will lead to clearing all the script's accumulated properties (for example, test).

12. Another useful feature is that you can select a part of your script in the editor and
execute only that part by clicking on Run Selection in the Script menu, as shown in
the following screenshot:

There's more...
The GroovyConsole tool comes with a handy Object Browser that graphically shows the fields
and methods available for a given class.

Chapter 1

35

Press Ctrl + I (CMD + I on a Mac) to launch the browser and display the last evaluated
expression. The following simple class would appear like in the following screenshot:

class Person {
 String name
 String lastName
}

p = new Person()

By pressing Ctrl + J (CMD + J on a Mac), we can display another view of the Object Browser,
this time focused on the variables visible from within the script.

Configuring Groovy in Eclipse
Eclipse is a popular IDE that is taking up a big share of the IDE market for JVM-based
technologies, as well as other languages and platforms. In fact, Eclipse is a huge ecosystem
devoted to building tooling for different areas such as dynamic languages, reporting, testing,
modeling, analysis, and so on.

Eclipse is distributed in various combinations featuring different areas. A special distribution
exists that comes prepackaged with an Eclipse plugin for Groovy (code named GRECLIPSE),
as well as various other useful plugins. It can be downloaded from http://grails.org/
products/ggts.

However, in this recipe we will describe the installation instructions for the Eclipse plugin for
Groovy assuming that it is not part of the distribution that you already have.

Getting Started with Groovy

36

Getting ready
The steps in the following section have been tested against Eclipse Indigo 3.7, but are very
similar when using previous or later versions of Eclipse. For information on different Eclipse
versions, you can always check http://groovy.codehaus.org/Eclipse+Plugin.

How to do it...
The plugin installation in Eclipse usually starts with opening the Install New Software... menu
item under the Help menu. Perform the following steps to configure Groovy support in Eclipse:

1. In the Work with: textbox, you need to type a plugin update site URL, which is
http://dist.springsource.org/release/GRECLIPSE/e3.7/ for the given
version of Eclipse.

2. After you press Enter, Eclipse will load the updated site contents into the tree view.
3. You need to select the Groovy-Eclipse component and click on the Next button.
4. Then you will have to follow the standard Eclipse installation procedure by accepting

the software license and restarting Eclipse workspace after the download and
installation process is complete.

5. When your Eclipse instance starts again, it should be possible to create Groovy
projects, as well as edit, compile, and execute Groovy source files.

6. To get started, let's create a new project first. Go to the New menu and select the
Other... menu item.

7. In the New wizard window, you should select the Groovy Project item and then click
on the Next button, as shown in the following screenshot:

Chapter 1

37

8. The following dialog shows the new project's options, which are very similar to the
one for Java projects:

9. You need to choose a project name (for example, test-groovy), a project location (for
example, C:\Work\test-groovy), a target JRE, and click on the Finish button for the
project to be created in the current workspace, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Groovy

38

10. Now it's time to add some code. You can do it through the same New menu, and add
a new Groovy Class to the recently created project.

11. The class creation dialog has many similarities to the one for Java classes:

12. Groovy shares almost 100 percent of Java syntax; therefore, you can start creating
Groovy classes in the same way you would do it in Java. You will also get all the syntax
highlighting and other IDE goodies when editing Groovy source files, as shown in the
following screenshot:

Chapter 1

39

How it works...
The code shown in the previous section is actually Groovy code (even though it looks very
much like Java) since we omitted semicolons and used the println method. The reasons for
that method to be available were described in the Executing Groovy code from the command
line recipe.

With the Eclipse plugin for Groovy, you also get the possibility to execute Groovy code right
from your IDE. For that, you need to use the Run as... menu item from the Context Menu,
as shown in the following screenshot:

 f The Groovy Console executor will send your code to the groovyConsole instance,
which is described to a greater extent in the Starting groovyConsole to execute Groovy
snippets recipe.

 f The Groovy Script executor will run your code in the same way as groovy
HelloWorld.groovy command would do it.

 f The Java Application executor (similarly to how it works for Java classes) will try to
invoke the main method of your class.

By running the example code with either the Groovy Script executor or Java Application
executor, you should get the following output in Eclipse's Console view:

Getting Started with Groovy

40

There's more...
Groovy can be used to write standard classes. But as we have seen in the previous recipes,
Groovy is also a scripting language, and the Eclipse IDE plugin supports this feature as well.

To define a Groovy script in your project, simply create a plain empty text file with the
*.groovy extension anywhere in your project. The new file is a Groovy script, so you
can start by typing the line of code, as shown in the following screenshot:

When you run your script (HelloWorld2.groovy) with the Groovy Script executor, you will
get the same output as the previously mentioned Groovy source file (HelloWorld.groovy).

Conversely, if you run your Groovy script (HelloWorld2.groovy) using the Java Application
executor, it will complain about a missing class, as shown in the following screenshot:

The reason for the exception lies in how Groovy distinguishes between script files and classes.
If you look at the way Groovy script and Groovy classes are compiled in the Eclipse Navigator
view, you can also see that even though the script source file resides in the package folder
org.test under the src directory, that information is erased when the actual script is
compiled into a class file:

Chapter 1

41

You can also spot the difference between scripts and classes by looking at the list of
the class generated methods by activating Package Explorer view, as shown in the
following screenshot:

As you can see, the Groovy script class has additional constructors as well as the
main and run methods. The Groovy class has only the methods that were defined
by the class definition.

This distinction makes Groovy a very powerful addition to a Java tool set. Groovy allows you to
use an alternative and more concise syntax to extend your existing Java applications, as well
as writing short and concise scripts that leverage the richness of the Java platform.

Getting Started with Groovy

42

See also
 f http://groovy.codehaus.org/Eclipse+Plugin

Configuring Groovy in IntelliJ IDEA
Since v8, IntelliJ IDEA, one of the most popular Java IDEs, has native support for Groovy. There
is no need to install a plugin to start coding in Groovy and benefit from a number of interesting
features such as code completion and refactoring. The latest iteration of IntelliJ IDEA, Version
12, has full support for Groovy 2.0.

In this recipe, we are going to show how to set up a Groovy project in IDEA and showcase
some of the most interesting qualities of the integration.

Getting ready
To get started with this recipe, you need v12 of IntelliJ IDEA. The IDE comes in two versions,
Community Edition and Ultimate. JetBrains, the company behind IDEA, offers the Community
Edition for free, while it charges for the Ultimate version. The good news is that Groovy support
is available in the free version of the IDE so you can start using it straight away. Download
IntelliJ IDEA from http://www.jetbrains.com.

You also need to install Java and a Groovy distribution. Refer to the installation recipes from
earlier in this chapter.

How to do it...
Let's start with the project creation:

1. Click on the Create New Project link in the main IntelliJ IDEA start page, as shown in
the following screenshot:

Chapter 1

43

2. In the next wizard page, select Groovy Module and enter the name and location of
your project, as shown in the following screenshot:

Getting Started with Groovy

44

3. The Project SDK field should be set to the version of the JDK you want to use for this
project. If the Project SDK is empty and there is nothing in the list, then click on the
New... button, select JDK and locate the JDK installation directory in the open folder
selection dialog.

4. After JDK is selected click on the Next button to get to the Groovy SDK selection
page, as shown in the following screenshot:

5. If it is a fresh installation, most likely the Use library drop-down list will be empty.
Click on the Create… button and locate the Groovy installation directory. That's it,
click on the Finish button.

6. Once the project is created, the IDE allows to create Groovy classes as well as Groovy
scripts. Scripts can be used as scrapbooks for testing code snippets and can be later
integrated into a class:

Chapter 1

45

7. You can also create Java classes that call methods on Groovy classes. Let's create a
simple Groovy class, named MyGroovyClass, as shown in the following screenshot:

8. The class defines three attributes and uses the concise Groovy approach, with no
need for getters and setters to access the variables.

9. Now let's create a Java class, MyJavaClass, as shown in the following screenshot:

As you can see in the previous screenshot, the code autocompletion works perfectly
and it's even able to propose synthetic methods that are generated by the Groovy
compiler, such as getters and setters.

For a broader look at the integration between Java and Groovy, take a look at the
Using Java classes from Groovy recipe in Chapter 2, Using Groovy Ecosystem.

Getting Started with Groovy

46

There's more...
Several refactoring goodies are also available, including Extract Parameter that also works
for closures (see the Defining code as data in Groovy recipe in Chapter 3, Using Groovy
Language Features), as shown in the following screenshot:

The result of the refactoring will be as shown in the following screenshot:

2
Using Groovy

Ecosystem

In this chapter, we will cover:

 f Using Java classes from Groovy

 f Embedding Groovy into Java

 f Compiling Groovy code

 f Simplifying dependency management with Grape

 f Integrating Groovy into the build process using Ant

 f Integrating Groovy into the build process using Maven

 f Integrating Groovy into the build process using Gradle

 f Generating documentation for Groovy code

 f Checking Groovy code's quality with CodeNarc

Introduction
In this chapter, we will introduce the Groovy ecosystem: compilation, embedding, building,
documentation, and analysis options that various, tools surrounding, Groovy offer to
make your life smoother.

In the first three recipes, we will demonstrate how simple Java and Groovy interoperability is
and what makes Groovy the perfect tool in a Java developer's hands. The following recipes will
describe external dependency management possibilities and the most popular build tools
(for example, Ant, Maven, and Gradle) integration options. Then there will be a recipe devoted
to Groovydoc, which can be used to generate documentation for your sources. Finally, the last
recipe will introduce a way to verify your Groovy code quality.

www.allitebooks.com

http://www.allitebooks.org

Using Groovy Ecosystem

48

Using Java classes from Groovy
The Groovy language is designed in a way that it fully supports the Java syntax (there are only
few minor exceptions; for example, do..while is not supported in Groovy). Most of the code
that you can write in Java can automatically be considered Groovy code as well.

In this recipe, we will learn how simple it is to use existing Java classes and libraries from your
Groovy code and we will explore some basic language features that makes Groovy—groovy!

How to do it...
This recipe has a rather simple setup. You can either start up the groovyConsole, as
described in the Starting groovyConsole to execute Groovy snippets recipe in Chapter 1,
Getting Started with Groovy, or you can create a new file with the *.groovy extension.

1. In the groovyConsole type the following code:
import java.io.File;
File currentDir = new File(".");
System.out.println("Current directory: " +
 currentDir.getAbsolutePath());
File[] files = currentDir.listFiles();
for (File file: files) {
 System.out.println(file.getName());
}

2. Run the script to see the list of files found in the folder from where the
groovyConsole was launched.

How it works...
The Groovy script from the previous section first prints the absolute path of the current
directory and then the names of all the files contained in it by using the java.io.File API.

Since Groovy supports the Java syntax, you can import any class from the Java JDK in the
same way you would do it in Java code.

As you can see, the code after the import statement can perfectly serve as a body of
some Java method, but it is still Groovy code. On the other hand, we are still using the
Java API directly.

There are several ways in which we can improve the previous script by using idiomatic Groovy
syntax and without removing the java.io.File dependency.

Chapter 2

49

First of all, Groovy automatically imports many classes from the Java JDK and the Groovy
GDK into the scope of the script or class. The following packages do not need to be explicitly
imported in Groovy, and you simply can refer to their classes:

 f java.io.*

 f java.lang.*

 f java.math.BigDecimal

 f java.math.BigInteger

 f java.net.*

 f java.util.*

 f groovy.lang.*

 f groovy.util.*

For this reason, we can omit the import statements from the example script. We still need to
import a class which is not located in one of the packages previously listed.

As we discussed in Chapter 1, Getting Started with Groovy, the Script class, an instance of
which is created for each Groovy script, exposes the println method; this is why all calls to
System.out.println can be shortened to just println.

Another Groovy feature that can be applied to any imported class is the short notation for
calling setters and getters. It allows you to write file.name instead of file.getName and
file.name = "poem.txt" instead of file.setName('poem.txt'). This feature
greatly simplifies working with Java Beans and makes code much more readable (see also
the Writing less verbose Java Beans with Groovy Beans recipe in Chapter 3, Using Groovy
Language Features).

Famously, Groovy doesn't require a semicolon (;) at the end of a statement, if the statement
is the only one in the line. We can happily omit semicolons from our script.

One more facet we can resort to in order to groovify our script is interpolation. Groovy
simplifies string concatenation with the help of the ${ } operator, that is replaced with the
value of the expression that appears inside it. If the expression is a simple reference to a
variable or a dot expression (like in our case), then we can omit the curly brackets ({ })
and just write $currentDir.absolutePath. Or, for example, we can do the following:

def name = 'John'
println "My name is $name"

The previous code obviously yields the following:

My name is John

Using Groovy Ecosystem

50

It is worth knowing that strings containing expression are actually GString in Groovy and not
normal java.lang.String. String interpolation is only done for strings enclosed in double
quotes ("). If you want to avoid string interpolation, then you can use single quotes (') or
escape the dollar sign; that is, \$:

def price = 8
println "Item price: \$${price}"

The previous code snippet will print:

Item price: $8

Thanks to the dynamic nature of the language, we can also omit specifying the variable type
in the variable declaration. We can just use the def keyword instead.

Taking all the previous notes into account, the code can be shortened to:

def currentDir = new File('.')
println "Current directory ${currentDir.absolutePath}"
def files = currentDir.listFiles()
for (def file: files) {
 println file.name
}

There are a few other features of Groovy that can help to make this script even more concise
such as closures and metaclass facilities, but those will be discussed in more detail in
Chapter 3, Using Groovy Language Features.

Under the hood (either for dynamic scripts or Groovy classes compiled through groovyc),
Groovy code is always compiled into Java bytecode. Every direct call to an imported Java
class would act in the exact same way as it would if it were a Java code.

There's more...
For many standard JDK classes, Groovy provides API extensions. For example, instances of the
java.io.File class have methods such as append or getText:

def textFile = new File('poem.txt')
textFile.append('What\'s in a name? ')
textFile.append('That which we call a rose\n')
textFile.append('By any other name would smell as sweet.\n')
println textFile.text

Chapter 2

51

The previous code snippet adds two lines of William Shakespeare's poem at the end of the
poem.txt file, and then it prints the file contents on the console. Even though we operate
solely on the java.io.File object, we call methods that did not originally exist in the
JDK. Additional utility methods that appear on standard classes are described in the Groovy
JDK documentation located at http://groovy.codehaus.org/groovy-jdk/. Those
methods can be called due to Groovy's metaclass functionality, which is discussed in more
detail in Chapter 9, Metaprogramming and DSLs in Groovy, which allows to add your own
methods to any Java class used within Groovy code.

See also
 f Chapter 4, Working with Files in Groovy

 f Chapter 9, Metaprogramming and DSLs in Groovy
 f http://groovy.codehaus.org/groovy-jdk/

Embedding Groovy into Java
There are plenty of scripting languages available at the moment on the JVM. Some of
them only offer expression language support for data binding and configuration needs, for
example, MVEL (http://mvel.codehaus.org/) and SpEL (Spring Expression Language,
http://www.springsource.org/documentation). Others provide a fully featured
programming language. Examples of these are JRuby, Jython, Clojure, Jaskell, and
of course, Groovy.

In this recipe, we will show you how to benefit from Groovy scripting from within your
Java application.

Getting ready
To embed Groovy scripts into your Java code base, first of all, you need to add groovy-all-
2.x.x.jar library to your class path. Or if you are using Java 7 and want to take advantage
of the invokedynamic optimization, you should add groovy-all-2.x.x-indy.jar
instead (see also the Running Groovy with invokedynamic support recipe in Chapter 1,
Getting Started with Groovy).

These libraries are located inside the Groovy distribution archive under the embeddable
folder. Another way to get those JAR files is from Maven Central Repository at
http://search.maven.org/.

Using Groovy Ecosystem

52

The groovy-all artifact contains all the required classes to run Groovy code. It also includes
dependencies such as Antlr, ASM, and Apache Commons inside the archive to be able to
run Groovy with only single JAR on the class path. However, you shouldn't worry about class
version conflicts if you use one of these libraries because all foreign classes are placed under
special packages inside the groovy-all library.

How to do it...
There are several ways in which a Groovy script can be invoked from your Java application,
but the recommended one—and also the simplest—is using the GroovyShell class.

1. Let's start by creating a new Java class named CallGroovyUsingGroovyShell
that has the following content:
import groovy.lang.GroovyShell;
import groovy.lang.Script;
import java.io.File;
import java.io.IOException;
import org.codehaus.groovy.control.CompilationFailedException;
public class CallGroovyUsingGroovyShell {
 public static void main(String[] args)
 throws CompilationFailedException,
 IOException {
 // Create shell object.
 GroovyShell shell = new GroovyShell();
 double result = (Double) shell.
 evaluate("(4/3) * Math.PI * 6370 " +
 "// Earth volume in cubic killometeres ");
 System.out.println(result);
 }
}

The class instantiates a GroovyShell object and calls the evaluate method of the
object by passing a String containing Groovy code.

2. Let's explore more methods of the GrovyShell class by adding the following Java
code to the main method:
shell.evaluate("name = 'Andrew'");
shell.setVariable("name", "Andrew");
shell.evaluate("println \"My name is ${name}\"");
shell.evaluate("name = name.toUpperCase()");
System.out.println(shell.getVariable("name"));
System.out.println(shell.getProperty("name"));
shell.evaluate("println 'Hello from shell!'");
System.out.println(shell.evaluate(" 1 + 2 "));

Chapter 2

53

3. In the same folder where the newly created Java class is located, place a Groovy
script named script.groovy, with the following content:
def scriptName = 'external script'
name = scriptName

println "Hello from ${name} on ${currentDate}!"

def getCurrentDate() {
 new Date().format('yyyy-MM-dd')
}

4. Let's continue by adding a new line to the main method of our Java class:
shell.evaluate(new File("script.groovy"));

5. Now compile and run the class. The groovy-all-2.x.x.jar library must be
located in the same folder as the Java and the Groovy file.

On Linux/OS X:
javac -cp groovy-all-2.1.6.jar
 CallGroovyUsingGroovyShell.java
java -cp .:groovy-all-2.1.6.jar CallGroovyUsingGroovyShell

On Windows:
javac -cp groovy-all-2.1.6.jar
 CallGroovyUsingGroovyShell.java
java -cp .;groovy-all-2.1.6.jar CallGroovyUsingGroovyShell

The output should look as follows:

6682.593603822243
My name is Andrew
My name is Andrew
ANDREW
ANDREW
Hello from shell!
3
Hello from external script on 2013-08-31!

6. Let's add more examples to the CallGroovyUsingGroovyShell class. Append the
following lines to the main method of the class:
Script script = shell.parse(new File("script.groovy"));
script.run();
System.out.println(script.
 invokeMethod("getCurrentDate", null));
System.out.println(script.getProperty("name"));
// Calling internal script

Using Groovy Ecosystem

54

script = shell.
 parse("println 'Hello from internal script!'");
script.run();
script = shell.parse(new File("functions.groovy"));
System.out.println(script.invokeMethod("year", null));

7. Add one more Groovy file to the list of files for this recipe, named functions.groovy:
def year() {
 Calendar.instance.get(Calendar.YEAR)
}

def month() {
 Calendar.instance.get(Calendar.MONTH)
}

def day() {
 Calendar.instance.get(Calendar.DAY_OF_MONTH)
}

8. Compile and run again; the additional output should look as follows:

Hello from external script on 2013-08-31!
2013-08-31
external script
Hello from internal script!
2013

How it works...
In the Java class example, the GroovyShell object is instantiated using the
default constructor.

In step 1, the Groovy code passed to the evaluate method calculates the result of the
simple arithmetical expression. No return statement is used, but still the expression
evaluates correctly. The reason is that in Groovy, the return statement is optional, and an
expression will always return the value of the last statement. The mathematical expression's
result type is java.lang.Double as we only operate with floating numbers; this is why we
can safely cast it.

Furthermore, the expression refers to a constant defined in the java.lang.Math class,
without explicitly importing it. This is possible due to the fact that Groovy imports all
java.lang.* classes automatically, just like Java.

There is also a comment at the end of the expression, which is safely ignored. Similar to Java,
comments can appear anywhere in Groovy code.

Chapter 2

55

The GroovyShell object supports defining global variables, which can be re-used by
evaluated scripts, by using the setVariable method, as displayed in step 2.

The variable name is set and then used inside a script evaluated later. The variable will be
available to all the scripts executed throughout the lifetime of the GroovyShell object.

The variable's value can also be changed during script execution and retrieved later using the
getVariable method.

In step 3, we can observe another useful feature of the integration of Groovy with Java; the
possibility of executing external Groovy scripts from Java by passing a java.io.File object
to the evaluate method.

You can also create individual Script objects for repeated executions:

Script script = shell.parse(new File("HelloWorld2.groovy"));
script.run(); // run first time
script.run(); // run second time

In this case, the script code will be compiled by the parse method and the script execution
will be faster than if we do repeated calls of the evaluate method.

Steps 6 and 7 show how you can also execute individual methods if they are defined
by the code located in an external script. Once the script is successfully compiled, the
invokeMethod can be used to call any function declared in the external script.

There's more...
If you are familiar with JSR-223, which provides the specification for the Java SE scripting API,
you can also use it with Groovy. JSR-223 is recommended over the GroovyShell approach if
you want to be able to switch to a different scripting language at any point. The next example
shows how to get started with the scripting API:

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class CallGroovyUsingJSR223 {

 public static void main(String[] args)
 throws ScriptException {

 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("groovy");

Using Groovy Ecosystem

56

 // Expression evalution.
 System.out
 .println(engine
 .eval("(4/3) * Math.PI * 6370 " +
 "// Earth volume in cubic killometeres "));

 // Variable binding.
 engine.put("name", "Andrew");
 engine.eval("println \"My name is ${name}\"");

 }

}

The key to start using Groovy with JSR-233 is again to add the groovy-all artifact to the
classpath. Adding the jar will automatically bind the Groovy script engine into JVM, which can
be retrieved by a call to manager.getEngineByName("groovy") as shown in the previous
example. Please note that the JSR-233 specification is only available from Java 6.

Another way to dynamically embed Groovy into Java code is by defining the Groovy classes and
parsing them with GroovyClassLoader. For example, let's assume we have the following
TimePrinter.groovy file:

class TimePrinter implements Runnable {
 void run() {
 (1..10).each {
 println Calendar.instance.time
 Thread.sleep(1000)
 }
 }
}

As you can see, it defines the TimePrinter class, which implements the Runnable interface.
The method run prints the current time and then sleeps for one second, and it repeats that
operation 10 times. This code also shows one way of looping in Groovy: the (1..10) expression
under the hood creates an object of type groovy.lang.IntRange. This class implements the
java.lang.Iterable interface, which in Groovy has an extension method called each. This
takes a code block (groovy.lang.Closure) as an input parameter and executes it for every
element of java.lang.Iterable. For more information about Groovy Ranges, please refer to
http://groovy.codehaus.org/api/groovy/lang/Range.html.

In order to use the TimePrinter class dynamically at runtime, we need to create an instance
of GroovyClassLoader and call the parseClass method on it in order to get the new
class definition:

// Create class loader.
GroovyClassLoader gcl = new GroovyClassLoader();

// Parse and load class.

Chapter 2

57

@SuppressWarnings("unchecked")
Class<? extends Runnable> runnableClass =
 gcl.parseClass(new File("TimePrinter.groovy"));

Then, by using the Java Reflection API and specifically the newInstance method, we can
create an instance of our dynamically loaded class and use it inside our normal Java code:

// Create and use class instance.
new Thread(runnableClass.newInstance()).start();

In this way, you can define classes on the fly to change or enhance your application functionality.

To get even more configuration options and more control over security setup, you can also
make use of the GroovyScriptEngine class, which is not in the scope of this recipe.

See also
 f http://groovy.codehaus.org/Embedding+Groovy

 f http://groovy.codehaus.org/JSR+223+Scripting+with+Groovy

 f http://groovy.codehaus.org/api/groovy/lang/GroovyShell.html

 f http://groovy.codehaus.org/api/groovy/lang/GroovyClassLoader.
html

 f http://groovy.codehaus.org/api/groovy/util/GroovyScriptEngine.
html

Compiling Groovy code
Groovy scripts are normally executed by running the groovy command from the console;
for example:

groovy someScript.groovy

The groovy command generates the JVM bytecode on the fly and immediately executes it.
There are scenarios in which the Groovy code is required to be compiled to bytecode as a
*.class file. A typical case is when Java and Groovy code have to be used side-by-side for
building a mixed Groovy/Java application.

Groovy has an answer to that by offering a compiler command, groovyc (similarly to Java's
javac), that can also be invoked from the command line or through a build tool such as
Ant (see the Integrating Groovy into the build process using Ant recipe), Maven (see the
Integrating Groovy into the build process using Maven recipe), or Gradle (see the Integrating
Groovy into the build process using Gradle recipe).

In this recipe, we are going to show you the principal purposes of the groovyc command.

www.allitebooks.com

http://www.allitebooks.org

Using Groovy Ecosystem

58

Getting ready
The best way to show the Groovy compiler in action is to actually invoke it on some
Groovy code.

Let's create a file named fizzbuzz.groovy and add the following code to it:

1.upto(100) {
 ans = ''
 if (it % 3 == 0) { ans ='Fizz' }
 if (it % 5 == 0) { ans += 'Buzz' }
 if (ans == '') {
 println it
 } else {
 println ans
 }
}

The code prints numbers from 1 to 100. For numbers that are multiples of three, it prints
Fizz, and for the multiples of five, it prints Buzz. For numbers which are multiples of both
three and five, it prints FizzBuzz. This little coding exercise was made popular by Jeff
Atwood back in 2007 in his CODING HORROR blog http://www.codinghorror.com/
blog/2007/02/why-cant-programmers-program.html.

How to do it...
Once the file is ready, let's make sure it prints Fizz and Buzz where it has to:

1. Open the console and type:
groovy fizzbuzz.groovy

2. And now, let's call the Groovy compiler from the same command line:
groovyc fizzbuzz.groovy

3. The compiler should generate two *.class files:
fizzbuzz$_run_closure1.class and fizzbuzz.class.

4. Finally, we can now try to run the compiled Groovy files using the standard
Java command:

On Windows:
java -cp ".;%GROOVY_HOME%\lib*" fizzbuzz

On Linux/OS X type:

java -cp ".:$GROOVY_HOME/lib/*" fizzbuzz

Chapter 2

59

5. The output of our little program should be printed on the screen as follows:

1
2
Fizz
4
Buzz
Fizz
7
8
Fizz
Buzz
11

How it works...
The reason groovyc produces two class files lies in the dynamic nature of Groovy and the
usages of special constructs—closures—in our code snippet. The code block that appears after
the each statement is actually a closure that can be stored and passed as a data structure in
Groovy. Closures are discussed in more detail in the Defining code as data in Groovy recipe in
Chapter 3, Using Groovy Language Features. Groovy creates a separate internal class for each
such dynamic code block. The main script code is placed in fizzbuzz.class.

Also, as you probably noticed, we added all the Groovy distribution libraries to the classpath
since compiled Groovy code relies on their functionality.

See also
For single file compilation, groovyc is easy to use, though if you need to compile dozens or
even hundreds of classes, then it would be better to use a build tool for that:

 f Integrating Groovy into the build process using Ant

 f Integrating Groovy into the build process using Maven

 f Integrating Groovy into the build process using Gradle

Using Groovy Ecosystem

60

Simplifying dependency management with
Grape

Your nicely written and useful script can solve many interesting problems with the help of
third-party libraries, and as long as it resides on your machine and has all the dependencies
in place, it will work perfectly. However, at the point when you need to share it with your
colleagues or community, you will realize that small and concise code requires several
megabytes of additional libraries to be passed together with the script in order to make it
work. Luckily, Groovy has a solution for that called Grape.

In this recipe, we will show you how to declare and automatically load Groovy script
dependencies with the help of the wonderful Grape tool, which is integrated into Groovy.

Getting ready
Grape stands for the Groovy Adaptable (Advanced) Packaging Engine, and it is a part of the
Groovy installation. Grape helps you download and cache external dependencies from within
your script with a set of simple annotations.

How to do it...
If, in your script, you require an external dependency, that you know is available in a public
repository as Maven Central Repository, you can use @Grab annotation to annotate your
import, class, or method with a reference to that library, and Groovy will automatically
download it, cache it, and put it on the class path of your script:

1. For example, the search.groovy script is dependent on Apache Commons
HttpClient library for making a Google search and saving a result page to
a local file:
@Grab('org.apache.httpcomponents:httpclient:4.2.1')
import org.apache.http.impl.client.DefaultHttpClient
import org.apache.http.client.methods.HttpGet

def httpClient = new DefaultHttpClient()
def url = 'http://www.google.com/search?q=Groovy'
def httpGet = new HttpGet(url)

def httpResponse = httpClient.execute(httpGet)

new File('result.html').text =
 httpResponse.entity.content.text

Chapter 2

61

2. To execute the script, just use the usual invocation: groovy search.groovy
mechanism. Groovy will automatically detect any external dependency requirements
and tell Grape to fetch it before script execution.

How it works...
The first time the script gets executed, we experience a delay while the dependencies are
downloaded. The second time, the script will execute faster because all libraries will be
cached in Grape's cache directory, located in .groovy\grapes, in the user's home folder.
Groovy also provides a command-line tool, grape, to overview and control Grape's library
cache. If the Grape's cache was empty in the beginning, then after our script execution,
grape's list command will output something as follows:

commons-codec commons-codec [1.6]
commons-logging commons-logging [1.1.1]
org.apache apache [4, 9]
org.apache.commons commons-parent [22, 5]
org.apache.httpcomponents httpclient [4.2.1]
org.apache.httpcomponents httpcomponents-client [4.2.1]
org.apache.httpcomponents httpcomponents-core [4.2.1]
org.apache.httpcomponents httpcore [4.2.1]
org.apache.httpcomponents project [6]
org.ccil.cowan.tagsoup tagsoup [1.2]

10 Grape modules cached
12 Grape module versions cached

You can put @Grab annotation preceding various elements of the code.

On import:

@Grab('org.apache.httpcomponents:httpclient:4.2.1')
import org.apache.http.impl.client.DefaultHttpClient

def httpClient = new DefaultHttpClient()

On variable:

@Grab('org.apache.httpcomponents:httpclient:4.2.1')
def httpClient =
 new org.apache.http.impl.client.DefaultHttpClient()

On method:

@Grab('org.apache.httpcomponents:httpclient:4.2.1')
def getHttpClient() {
 new org.apache.http.impl.client.DefaultHttpClient()
}

Using Groovy Ecosystem

62

On class:

@Grab('org.apache.httpcomponents:httpclient:4.2.1')
class Searcher {
 def httpClient
 Searcher() {
 httpClient =
 new org.apache.http.impl.client.DefaultHttpClient()
 }
}

The only rule is that @Grab should appear before the first usage of the imported class;
otherwise the Groovy compiler will complain about it.

There's more...
Additionally, the @Grapes annotation can be used to group several dependencies as follows:

@Grapes([
 @Grab('org.apache.httpcomponents:httpclient:4.2.1'),
 @Grab('org.ccil.cowan.tagsoup:tagsoup:1.2')])
class Searcher { ... }

By default, Grape is using the Maven Central Repository (located at http://search.
maven.org/) for downloading libraries. If you need to add your own repository, then you can
either change grapeConfig.xml, which is in fact, an Apache Ivy configuration, or you can
use the @GrabResolver annotation inside the script itself to make it more portable:

@GrabResolver(name='codehaus',
 root='http://repository.codehaus.org/')
class Searcher { ... }

Like with any dependency management tool, sometimes you need to exclude certain
dependencies from a dependency tree, and there, the @GrabExclude annotation
comes to the rescue:

@GrabExclude(group='commons-codec',
 module='commons-codec')
class Searcher { ... }

Under the hood, Grape is using the Apache Ivy library for dependency management
and resolution.

If you don't want to wait for the artifact download upon script start, you can use the grape
install command to install artifacts before execution:

grape install org.apache.httpcomponents httpclient 4.2.1

Chapter 2

63

You can also use the Grape API directly and prefetch the required dependencies using another
Groovy script:

 import groovy.grape.Grape

 Grape.grab(group: 'org.apache.httpcomponents',
 module: 'httpclient',
 version: '4.2.1')

See also
 f Grape documentation: http://groovy.codehaus.org/Grape

 f Apache Ivy: https://ant.apache.org/ivy/

Integrating Groovy into the build process
using Ant

Apache Ant (http://ant.apache.org/) was one of the first build tools that appeared
within the Java ecosystem, and it is still widely used by many organizations around the globe.

In this recipe, we will cover how to compile and test a complete Groovy project using Apache
Ant. At the end of the recipe, we will show you how to use Groovy from within Ant to add
scripting to a build task.

Getting ready
For demonstrating the build tool integration, let's create the following folders and files:

src/main/groovy/org/groovy/cookbook
 DatagramWorker.groovy
 MessageReceiver.groovy
 MessageSender.groovy
src/test/groovy/org/groovy/cookbook
 MessageProcessingTest.groovy

The aim of the project is to create a very simple UDP client/server and accompany it with a
unit test.

The base class for the server and the client, DatagramWorker, has the following code:

abstract class DatagramWorker {

 byte[] buffer = new byte[256]
 DatagramSocket socket = null

Using Groovy Ecosystem

64

 String lastMessage = null

 DatagramPacket receive() {
 def packet = new DatagramPacket(buffer, buffer.length)
 socket.receive(packet)
 lastMessage = new String(packet.data, 0, packet.length)
 println "RECEIVED: $lastMessage"
 packet
 }

 def send(String message,
 InetAddress address,
 int port) {
 def output = new DatagramPacket(
 message.bytes,
 message.length(),
 address,
 port
)
 socket.send(output)
 }

 def send(DatagramPacket inputPacket) {
 send('OK', inputPacket.address, inputPacket.port)
 }
}

The class contains a field for holding the socket object, a temporary data buffer and the
lastMessage received by the socket. Additionally, it exposes basic methods for sending
and receiving data.

The server class, MessageReceiver, is implemented in the following way:

class MessageReceiver extends DatagramWorker {

 def start() {
 socket = new DatagramSocket(12345)
 Thread.startDaemon {
 while(true) {
 send(receive())
 }
 }
 }

}

Chapter 2

65

Upon the start method call, it starts a daemon thread that listens to incoming messages on
port 12345 and sends OK back to the client when a message is received.

The client class, MessageSender, looks as follows:

class MessageSender extends DatagramWorker {

 def send(String message) {
 socket = new DatagramSocket()
 send(message, InetAddress.getByName('localhost'), 12345)
 receive()
 }

}

It contains a single method send, which sends a given message to the server running at
localhost on port 12345.

Finally the unit test, MessageProcessingTest, verifies that both the server (receiver)
and the client (sender) can successfully exchange messages:

import org.junit.Test

class MessageProcessingTest {

 MessageReceiver receiver = new MessageReceiver()
 MessageSender sender = new MessageSender()

 @Test
 void testMessages() throws Exception {
 receiver.start()
 sender.send('HELLO')
 assert receiver.lastMessage == 'HELLO'
 assert sender.lastMessage == 'OK'
 }

}

In this recipe, we also assume that you are familiar with Apache Ant, and you know how to
install it. It also makes sense to use Apache Ivy for dependency management to simplify the
dependencies download. So, we assume that Ant has the Ivy (http://ant.apache.org/
ivy/) extension installed in ANT_HOME/lib.

Using Groovy Ecosystem

66

How to do it...
At this point, we are going to create a fully functional Ant build for the project defined previously.

1. Let's start with the following partial build.xml that you need to place in the root
directory of our project:
<project xmlns:ivy="antlib:org.apache.ivy.ant"
 basedir="."
 default="test"
 name="build-groovy">
 <property name="lib.dir"
 value="lib" />
 <property name="build.dir"
 value="output" />
 <property name="src.main.dir"
 value="src/main/groovy" />
 <property name="src.test.dir"
 value="src/test/groovy" />
 <property name="classes.main.dir"
 value="${build.dir}/main" />
 <property name="classes.test.dir"
 value="${build.dir}/test" />
 <property name="test.result.dir"
 value="${build.dir}/test-results" />
 <path id="lib.path.id">
 <fileset dir="${lib.dir}" />
 </path>
 <path id="runtime.path.id">
 <path refid="lib.path.id" />
 <path location="${classes.main.dir}" />
 </path>
 <path id="test.path.id">
 <path refid="runtime.path.id" />
 <path location="${classes.test.dir}" />
 </path>
 <!-- tasks -->
</project>

2. In order to start using Ivy, we need to define a dependency descriptor file, ivy.xml,
and place it in the same directory as build.xml:
<ivy-module version="2.0">
 <info organisation="org.groovy.cookbook"
 module="build-groovy" />

Chapter 2

67

 <dependencies>
 <dependency org="org.codehaus.groovy"
 name="groovy-all"
 rev="2.1.6"
 transitive="false" />
 <dependency org="junit"
 name="junit"
 rev="4.10" />
 </dependencies>
</ivy-module>

3. Once the dependencies are added, we can define the clean and prepare targets
inside build.xml. Replace the <!-- tasks --> comment in the build.xml file
with the following snippet:
<target name="clean"
 description="Clean output directory">
 <delete dir="${build.dir}" />
</target>
<target name="prepare"
 description="Get dependencies and create folders">
 <ivy:retrieve />
 <mkdir dir="${classes.main.dir}" />
 <mkdir dir="${classes.test.dir}" />
 <mkdir dir="${test.result.dir}" />
 <taskdef name="groovyc"
 classname="org.codehaus.groovy.ant.Groovyc"
 classpathref="lib.path.id" />
</target>

4. Now we are ready to define the compile target:
<target name="compile"
 depends="prepare"
 description="Compile Groovy code">
 <groovyc srcdir="${src.main.dir}"
 destdir="${classes.main.dir}"
 classpathref="lib.path.id" />
</target>

5. We can then define a similar target, testCompile, to compile our test code:
<target name="testCompile"
 depends="prepare, compile"
 description="Compile Groovy unit tests">
 <groovyc srcdir="${src.test.dir}"
 destdir="${classes.test.dir}"
 classpathref="runtime.path.id" />
</target>

Using Groovy Ecosystem

68

6. And finally we define a target for running unit tests:
<target name="test"
 depends="testCompile"
 description="Run unit tests">
 <junit>
 <classpath refid="test.path.id" />
 <batchtest todir="${test.result.dir}">
 <fileset dir="${classes.test.dir}" includes="**/*" />
 <formatter type="plain" />
 </batchtest>
 </junit>
</target>

7. In order to build and test the project, we can just call the declared Ant targets:

ant clean test

You should get an output similar to the following:

Buildfile: build.xml
clean:
 [delete] Deleting directory output
prepare:
[ivy:retrieve] <...skipped part...>
 [mkdir] Created dir: output\main
 [mkdir] Created dir: output\test
 [mkdir] Created dir: output\test-results
compile:
 [groovyc] Compiling 3 source files to output\main
testCompile:
 [groovyc] Compiling 1 source file to output\test
test:
BUILD SUCCESSFUL
Total time: 3 seconds

How it works...
There are several properties and paths defined in Ant's build.xml script:

 f The lib.dir property refers to a directory where Apache Ivy puts all the
downloaded dependencies

 f build.dir will contain all the files we produce during the compilation and build

 f src.main.dir and src.test.dir refer to the directories holding the Groovy main
and test code respectively

Chapter 2

69

 f classes.main.dir and classes.test.dir hold the compiled classes for the
main and test code

 f test.result.dir will contain the JUnit test results
 f lib.path.id is reference to all the libraries imported by Ivy
 f runtime.path.id appends all the compiled classes to lib.path.id
 f test.path.id also appends the compiled test classes to runtime.path.id

Step 2 shows the Ivy dependencies file: there are only 2 dependencies declared for this
project: groovy-all library for actually running the Groovy code and junit library for
tests. The groovy -all artifact has the transitive property set to false, because
the main Groovy library is enough for running this project and we don't need to download
other dependencies.

Now let's go into more detail of our Ant script targets. The clean target just deletes the
output folder. The prepare target does several things:

 f Downloads all the dependencies specified in the ivy.xml file,

 f Creates all output folders,

 f Holds the definition of the groovyc task that we will use for compiling Groovy code.

As you can notice we specify the location of Groovy sources through the srcdir attribute, and
the output folder of compiled classes through desdir attribute. classpathref is pointing to
the classpath variable, lib.path.id, which contains the groovy-all library that holds the
Groovy compiler.

The groovyc task has a number of options, including the initial and maximum memory size
(memoryInitialSize, memoryMaximumSize) and the file encoding (encoding). A more
exhaustive explanation of these attributes can be found in the documentation.

Finally, the testing target does not differ from what you would normally do for running Java unit
tests. That is possible only because Groovy code is actually compiled into Java byte code.

There's more...
If the same source folder contains both Java and Groovy code, the groovyc Ant task can
run in joint compilation mode. In this mode, the Groovy compiler creates Java files out of the
Groovy source code and feeds them directly to the Java javac, which proceeds to compile
them along with the standard Java files. In order to enable the joint compilation, a javac
nested element must be added to the groovyc task:

<target name="compile"
 depends="prepare"
 description="Compile Groovy and Java code">
 <groovyc srcdir="${src.main.dir}"
 destdir="${classes.main.dir}"

Using Groovy Ecosystem

70

 classpathref="lib.path.id">
 <javac source="1.6" target="1.6" debug="on" />
 </groovyc>
</target>

So far, this recipe has demonstrated how to compile Groovy code using Ant. However, the
integration between Groovy and Ant can go further than that: Groovy can be used to extend
Ant capabilities by calling embedded or external Groovy scripts from an Ant build file.

Ant can call Groovy scripts with the groovy task that is also part of the groovy-all library.
To show how this can work, we can extend the prepare target with another taskdef
as follows:

<taskdef name="groovy"
 classname="org.codehaus.groovy.ant.Groovy"
 classpathref="lib.path.id" />

The taskdef declaration should be placed between properties and targets definitions.

Once the taskdef is declared, the groovy task can be called from within any target. For
example, the following target, info, prints the project name and the list of dependencies
using a Groovy embedded script:

<target name="info"
 depends="prepare"
 description="Print project information">
 <groovy>
 println "Name: $project.name"
 println 'Dependencies: '
 project.references."lib.path.id".each { println it.name }
 </groovy>
</target>

The embedded Groovy script has access to the Ant API and script variables from within the
script body. The output of running the ant info command will display an output similar to
the following:

info:
 [groovy] Name: build-groovy
 [groovy] Dependencies:
 [groovy] groovy-all-2.1.6-javadoc.jar
 [groovy] groovy-all-2.1.6-sources.jar
 [groovy] groovy-all-2.1.6.jar
 [groovy] hamcrest-core-1.1.jar
 [groovy] junit-4.10-javadoc.jar
 [groovy] junit-4.10-sources.jar
 [groovy] junit-4.10.jar

BUILD SUCCESSFUL
Total time: 2 seconds

Chapter 2

71

You can also externalize your scripts and run them by specifying the src attribute of the
groovy task:

<groovy src="info.groovy"/>

See also
 f The Groovy Compile Ant task documentation:

http://groovy.codehaus.org/The+groovyc+Ant+Task

 f The Groovy Ant task documentation:
http://groovy.codehaus.org/The+groovy+Ant+Task

Integrating Groovy into the build process
using Maven

Apache Maven (http://maven.apache.org/) is a software project build tool that uses
the POM (Project Object Model) to describe project artifacts, dependencies, and rules in a
declarative form.

Apache Maven was an important milestone in Java build tool evolution. Together with
important features such as organized dependency management and declarative build scripts,
it also brought a variety of standards and conventions that have been widely adopted by the
Java community, even if Maven itself is not used.

In this recipe, we are going to look into how to compile, test, and run a fully blown Groovy
project using the Apache Maven build tool.

Getting ready
We are going to re-use the same Groovy project presented in the Integrating Groovy into the
build process using Ant recipe. We also assume that you are familiar with Apache Maven and
that it is installed on your machine and is ready for use. The steps of this recipe were tested
against Maven 3. For those who don't have it yet, download and installation instructions can
be found at http://maven.apache.org/download.cgi.

How to do it...
As we already mentioned, Maven uses POM. The POM definition is stored in pom.xml.

1. Let's start with the following partial pom.xml:
<?xml version="1.0" encoding="UTF-8"?>
<project>
 <modelVersion>4.0.0</modelVersion>

Using Groovy Ecosystem

72

 <groupId>org.groovy.cookbook</groupId>
 <artifactId>build-groovy</artifactId>
 <version>1.0-SNAPSHOT</version>
 <!-- dependencies -->
 <!-- build -->
</project>

It's not much different from the standard POM you would use for any Maven project.

2. Then we can add the dependencies needed to inject Groovy functionality into
the Maven build. Just replace <!-- dependencies --> comment line with
the following:
<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.10</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.codehaus.gmaven.runtime</groupId>
 <artifactId>gmaven-runtime-2.0</artifactId>
 <version>1.4</version>
 </dependency>
</dependencies>

3. The last step of the configuration is to add the extensions to build goals to let
Maven compile the Groovy code. Replace the <!-- build --> comment with
the following snippet:
<build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.gmaven</groupId>
 <artifactId>gmaven-plugin</artifactId>
 <version>1.4</version>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>org.codehaus.gmaven.runtime</groupId>

Chapter 2

73

 <artifactId>gmaven-runtime-2.0</artifactId>
 <version>1.4</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
</build>

4. Then, in order to compile and test the project, we just use the standard Maven
command line:
mvn clean test

5. The output of the command should look similar to the following screenshot:

How it works...
We have chosen to use the GMaven plugin to integrate Groovy and Maven.
The gmaven-runtime-2.0 library is part of that plugin, and it contains transitive
references to required Groovy distribution libraries including the groovy-all library.

We instruct GMaven to execute during the standard compile and testCompile
goals. Unfortunately, due to the nature of the GMaven plugin, we need to list the
gmaven-runtime-2.0 library in the plugin dependencies once again.

After command execution, Maven (with the help of GMaven) compiles and tests the Groovy
classes and reports the status in the console. Files produced during the build will be placed
under the target directory, which will contain the .class files and JUnit reports.

Using Groovy Ecosystem

74

There's more...
If you want to use the latest Groovy release, which may not yet be referenced by
gmaven-runtime, then you can override the groovy-all dependency in the
following way (both for project and plugin configuration):

<dependencies>
 <dependency>
 <groupId>org.codehaus.gmaven.runtime</groupId>
 <artifactId>gmaven-runtime-2.0</artifactId>
 <version>1.4</version>
 <exclusions>
 <exclusion>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-all</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-all</artifactId>
 <version>2.1.6</version>
 </dependency>
</dependencies>

There is also a possibility to use Groovy to supply additional logic to Maven goals. The same
GMaven plugin can be used for that. For example, the following snippet executes Groovy script
after the compile phase is finished, and it prints a list of dependencies:

<execution>
 <id>compile</id>
 <phase>compile</phase>
 <goals>
 <goal>execute</goal>
 </goals>
 <configuration>
 <source>
 println "Name: $project.name"
 println 'Dependencies: '
 project.dependencies.each { println it.artifactId }
 </source>
 </configuration>
</execution>

Chapter 2

75

This snippet has to be added inside the GMaven plugin configuration under the <executions>
tag. Also, please note that if you use GMaven for Groovy code compilation, then you need to set
unique the <id> of your <execution> elements.

The output of the snippet will appear in the build output and will look as follows:

[INFO] --- gmaven-plugin:1.4:execute (compile) @ build-groovy ---

Name: build-groovy

Dependencies:

junit

gmaven-runtime-2.0

As an alternative to GMaven, there's also the Eclipse Groovy Compiler plugin for Maven
that can be used instead of GMaven. They are very similar in functionality, and it's hard
to recommend one over the other.

See also
 f Maven homepage: http://maven.apache.org/

 f GMaven homepage: http://docs.codehaus.org/display/GMAVEN/Home

 f Maven's Groovy Eclipse Compiler plugin documentation: http://groovy.
codehaus.org/Groovy-Eclipse+compiler+plugin+for+Maven

Integrating Groovy into the build process
using Gradle

Gradle (http://www.gradle.org/) is a build and automation tool written in Java/Groovy,
which makes use of a Groovy-based DSL for defining declarative and imperative build
scripts. Gradle brings a lot of innovation into the Java/Groovy build tool space, and at a fast
pace is replacing other popular tools. At the same time, it builds upon the best practices
and foundations of those tools, such as project conventions standardization and
dependency management.

In this recipe, we will demonstrate how Gradle can simplify the compilation and testing of a
complete Groovy project.

Using Groovy Ecosystem

76

Getting ready
We will build the same example Groovy project defined in the Integrating Groovy into the build
process using Ant recipe. We assume that you have at least some familiarity with Gradle,
and it is already installed on your system. Otherwise, you can refer to the installation page
(http://www.gradle.org/docs/current/userguide/installation.html) of the
Gradle User Guide.

How to do it...
At first glance, a Gradle script may seem too simple to be actually functional. This is one of the
strengths of the product: simplicity and power.

1. You can achieve compilation and test of a project with just the following simple
build.gradle script:
apply plugin: 'groovy'

group = 'org.groovy.cookbook'

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.codehaus.groovy:groovy-all:2.1.6'
 testCompile 'junit:junit:4.10'
}

2. Then in order to compile and test the project, we just use standard Gradle
command line:
gradle clean test

3. The output of the command should look similar to the following:

:clean
:compileJava UP-TO-DATE
:compileGroovy
:processResources UP-TO-DATE
:classes
:compileTestJava UP-TO-DATE
:compileTestGroovy
:processTestResources UP-TO-DATE
:testClasses
:test
BUILD SUCCESSFUL
Total time: 9.989 secs

Chapter 2

77

How it works...
As you can probably guess, all the logic required for Groovy integration is built into the groovy
plugin declared on the first line of the build script. The remaining content of the script has the
following functions:

 f Define the project's groupdId in case we decide to build a JAR and deploy it to some
repository

 f Tell Gradle to load dependencies from Maven Central Repository by using the special
mavenCentral method

 f Declare the required libraries for the compile and for testCompile configurations,
which are defined by the groovy plugin and which are used at respective
build stages

Upon build completion, the code will be compiled and tested. The result of the build activity
including compiled classes and JUnit report files will be located in the automatically created
build directory.

There's more...
The Gradle build script language is actually a Groovy DSL. That's why you can define tasks
directly using Groovy. For example, you can add an info task that prints the project test
code dependencies:

task info << {
 println "Name: $project.name"
 println 'Dependencies: '
 project.configurations.testCompile.allDependencies.each {
 println it.name
 }
}

To execute the task, you can just type gradle info.

A more detailed introduction to Gradle features is out of scope for this recipe, and it's actually
worth a separate book.

See also
 f Gradle's Groovy plugin documentation:

http://gradle.org/docs/current/userguide/groovy_plugin.html

 f Gradle homepage: http://www.gradle.org/

Using Groovy Ecosystem

78

Generating documentation for Groovy code
All Java developers are familiar with Javadoc comment style and the javadoc command-line
tool, which is well integrated into all major IDEs and build tools.

Unfortunately, you will not be able to run the javadoc tool against Groovy source code,
just because javadoc does not recognize the Groovy language syntax - unless your Groovy
classes or scripts are written in Java. This is why Groovy has a tool, which for obvious reasons
is called Groovydoc. It shares a lot of features with its predecessor but also has some
significant differences. For example, groovydoc does not implement the Doclet extension
feature, which was used mainly for code generation but since the introduction of annotations
in Java 5, its usage has decreased dramatically. Also, unlike javadoc, which is a standalone
executable originally written in C++ with its extension points (that is, Doclets) written in Java,
Groovydoc's core functionality is fully implemented in Groovy and is available as a command
line script.

In this recipe, we will present the basic features of the groovydoc command-line tool.

Getting ready
For our experiments, we are going to use the VehicleUtils.groovy class, which should be
placed under the src/org/groovy/cookbook directory inside your current folder. The class
contains several Javadoc-like comments in order to demonstrate Groovydoc's capabilities:

package org.groovy.cookbook

/**
 * This class contains vehicle related
 * calculation utility methods.
 *
 * @author Groovy Writer
 * @since 2013
 *
 */
class VehicleUtils {

 /**
 * Returns average fuel consumption per 100 km.
 * More information about involved calculations
 * can be found in the
 * <a
 * href="http://en.wikipedia.org/wiki/Fuel_efficiency"
 * >respected source.
 *

Chapter 2

79

 * @param distance
 * the distance driven by the vehicle.
 * @param liters
 * the amount of fuel spent in liters.
 *
 * @return calculated fuel consumption.
 *
 */
 static fuelConsumptionPer100Km(distance, liters) {
 (liters * 100) / distance
 }
}

As you can see, there is not much difference in the formatting of comments compared
to javadoc.

If we try to use the javadoc command (executed from your current directory) to generate
documentation for that class, it will not find any source files:

> javadoc -sourcepath src org.groovy.cookbook
Loading source files for package org.groovy.cookbook...
javadoc: warning -
 No source files for package org.groovy.cookbook
Constructing Javadoc information...
javadoc: warning -
 No source files for package org.groovy.cookbook
javadoc: error -
 No public or protected classes found to document.
1 error
2 warnings

Even if you rename VehicleUtils.groovy to VehicleUtils.java, javadoc will still
complain about unrecognized syntax (since javadoc is re-using javac functionality):

./src/org/groovy/cookbook/VehicleUtils.java:1:
 ';' expected
package org.groovy.cookbook
 ^
./src/org/groovy/cookbook/VehicleUtils.java:25:
 <identifier> expected
 static def fuelConsumptionPer100Km(distance, liters) {
 ^
...

5 errors

Using Groovy Ecosystem

80

This all leads to the necessity of using Groovydoc for generating documentation. Groovydoc
is installed together with Groovy, and if you followed one of the installation recipes (see the
Installing Groovy on Linux and OS X or the Installing Groovy on Windows recipes in Chapter 1,
Getting Started with Groovy) correctly, the groovydoc command should already be available
in your shell.

How to do it...
By simply typing the groovydoc command, you'll get default help message with
parameter description.

1. To produce the HTML documentation for VehicleUtils.groovy, you need to
launch the following command from your current folder:
groovydoc -d doc -sourcepath src org.groovy.cookbook

2. The generated documentation will be located under the doc folder, and if you launch
index.html in our browser you should get the following view:

How it works...
Under the hood, groovydoc acts similar to javadoc by parsing the source files and
navigating internally to the AST (Abstract Syntax Tree) to extract comment information
and convert it to a set of HTML files.

Groovydoc supports all the standard Javadoc tags such as @author, @see, @since, @param,
@return, and some others.

Chapter 2

81

There's more...
Groovydoc can also be used to generate documentation for Java source code since by design,
Groovy fully supports Java syntax. This is very handy since, in the case of a combined code
base, which contains both Java and Groovy source code files, you can take advantage of
using the same tool to produce joint documentation.

For example, we can add the Vehicle.java source file inside the src/org/groovy/
cookbook folder:

package org.groovy.cookbook;

/**
 * This class contains vehicle data structure.
 *
 * @author Groovy Writer
 * @since 2013
 *
 */
public class Vehicle {

 final double maxSpeed;

 public Vehicle(double maxSpeed) {
 this.maxSpeed = maxSpeed;
 }

 /**
 * Returns vehicle's maximum speed.
 */
 public double getMaxSpeed() {
 return maxSpeed;
 }

}

Using Groovy Ecosystem

82

If we run the groovydoc tool again, it will happily create documentation for both classes:

Groovydoc is also well integrated with the build tools described in the Integrating Groovy
into the build process using Ant and Integrating Groovy into the build process using
Gradle recipes.

See also
 f Javadoc's home page: http://www.oracle.com/technetwork/java/javase/

documentation/index-jsp-135444.html

 f Groovydoc's Ant task: http://groovy.codehaus.org/api/org/codehaus/
groovy/ant/Groovydoc.html

 f Gradle's Groovydoc integration: http://www.gradle.org/docs/current/dsl/
org.gradle.api.tasks.javadoc.Groovydoc.html

Checking Groovy code's quality with
CodeNarc

As soon as you finish writing your first Groovy scripts or classes, you will probably start
wondering how Groovy pros write their code and what are the best practices they are using.
One way would be to learn by peeking at the best Groovy code bases (for example, Groovy
itself: https://github.com/groovy/groovy-core/tree/master/src/main/
groovy). Another way can be using code analysis tools that let you catch common coding
mistakes that are already well-known in the community.

Chapter 2

83

In the Java language world, there are many open source static code analysis tools such
as PMD (Project Mess Detector) (http://pmd.sourceforge.net/), Checkstyle
(http://checkstyle.sourceforge.net/), FindBugs (http://findbugs.
sourceforge.net/), and so on. There are also many commercial products
and IDEs that support various types of Java source code analysis.

In that regard, Groovy is less rich, though it has one library called CodeNarc
(http://codenarc.sourceforge.net). The library is already integrated into the
most popular build tools including Ant (see the Integrating Groovy into the build process
using Ant recipe), Maven (see the Integrating Groovy into the build process using Maven
recipe), and Gradle (see the Integrating Groovy into the build process using Gradle recipe).
Also, some IDEs have plugins for CodeNarc.

In this recipe, we will cover the typical use case for the CodeNarc command-line tool and show
how it can help to improve your Groovy code and boost your skills with the language.

Getting ready
For the sake of demonstration, we will use the following Groovy script, which on purposely
violates several coding rules that CodeNarc inspects:

import java.io.*;

public class DirListing {

 public static void main(String[] args) throws IOException {
 String path;
 if (args.length > 0) {
 path = args[0];
 } else {
 path = ".";
 }
 File directory = new File(path);
 File[] files = directory.listFiles();
 System.out.println("Directory of "
 + directory.getCanonicalFile().getAbsolutePath());
 for (int i = 0; i < files.length; i++) {
 if (files[i].isFile()) {
 File file = files[i];
 System.out.println(file.getName());
 }
 }
 }

}

Using Groovy Ecosystem

84

In fact, the previous code is actually plain Java, but since Groovy almost fully supports Java
syntax, the code will run under Groovy as well.

The task that is performed by the script is a simple directory file listing. The program takes a
directory path as its first argument. If the argument is omitted, the current directory is used.
All first-level file (not directory) names are printed to the standard output.

We assume that the script is placed in the src directory located in your current working folder.

How to do it...
We can launch the CodeNarc command-line interface using Groovy script with a little help
from Grape (see the Simplifying dependency management with Grape recipe).

1. Create a codenarc.groovy script in the current directory:
@Grab('org.codenarc:CodeNarc:0.18.1')
import org.codenarc.CodeNarc

CodeNarc.main(args)

2. Now you can start CodeNarc to get its default help message:
groovy codenarc.groovy -help

3. To get CodeNarc to generate a report for our poorly coded script, we need to pass
more parameters to the codenarc.groovy script:
groovy codenarc.groovy
 -rulesetfiles="rulesets/unnecessary.xml"
 -title="Directory Listing"
 -basedir=src

4. This will generate an HTML report inside the current directory that looks like the
following screenshot:

Chapter 2

85

How it works...
The violations that are reported are easy to fix, and most of them are self-explanatory.

As you probably noticed, we specified only one rule set file (rulesets/unnecessary.xml)
as an input parameter to CodeNarc. That specific rule-set groups rules for redundant code
and can be omitted or simplified. Writing redundant, non-idiomatic code is exactly what Java
programmers will face during their early days of Groovy programming since Groovy accepts
Java syntax.

As of writing CodeNarc has 300+ rules split into 21 major group (rule set). Each group has
its own name that can be referred to in the form of rulesets/<name>.xml. All those rule
files are part of the CodeNarc library, and you don't need to download them separately. More
information on the existing rules can be found at http://codenarc.sourceforge.net/
codenarc-rule-index.html.

Using Groovy Ecosystem

86

Let's go through a few violations to give the reader a taste of Groovy:

 f The UnnecessarySemicolon violation indicates that we terminated our statement
with a semicolon and that statement is the only statement on the line. In Groovy, you
can omit the ; (semicolon) in these cases.

 f The UnnecessaryPublicModifier violation says that in Groovy, you can omit the
public modifier for classes and methods since it's there by default.

 f The UnnecessaryGString violation warns you of the fact that you are using heavy
GString to define String constants. GString, which is defined by the " (double
quote), is useful when you need to insert variable expression (for example, ${name})
into the String. We discussed variable interpolation in the Using Java classes from
Groovy recipe. In order to fix this warning, you just need to use a ' (single quote),
which will create a normal String without further processing.

 f The UnnecessaryGetter warning simply notifies you about the fact that in Groovy,
you can refer to a getter using a field notation; for example, x.name instead of
x.getName().

If we just fix all those violations, our Groovy code will look as follows:

import java.io.*

class DirListing {

 static void main(String[] args) throws IOException {
 String path
 if (args.length > 0) {
 path = args[0]
 } else {
 path = '.'
 }
 File directory = new File(path)
 File[] files = directory.listFiles()
 def dirPath = directory.canonicalFile.absolutePath
 System.out.println("Directory of ${dirPath}")
 for (int i = 0; i < files.length; i++) {
 if (files[i].isFile()) {
 File file = files[i]
 System.out.println(file.name)
 }
 }
 }

}

Chapter 2

87

There's more...
Similarly to spelling or grammar checkers, CodeNarc does not detect all possible styling/
coding mistakes. So, there is still room for manual code reviews that may improve your code
even more. CodeNarc can be an early indicator for the parts of the code base that need
deeper analysis and refactoring.

By using some of the knowledge we've learned in this chapter, as well as the information that
we will learn in Chapter 3, Using Groovy Language Features and Chapter 4, Working with Files
in Groovy, we can rewrite the original code in a more idiomatic way:

def path = args.size() > 0 ? args[0] : '.'
def directory = new File(path)
def dirPath = directory.canonicalFile.absolutePath
println "Directory of ${dirPath}"
directory.eachFile { File file ->
 if (file.isFile()) {
 println file.name
 }
}

The previous code will produce the same result as our original and modified scripts.

See also
 f CodeNarc's home page: http://codenarc.sourceforge.net/

 f List of CodeNarc rules:
http://codenarc.sourceforge.net/codenarc-rule-index.html

 f CodeNarc's Ant task:
http://codenarc.sourceforge.net/codenarc-ant-task.html

 f Maven's plugin for CodeNarc:
http://mojo.codehaus.org/codenarc-maven-plugin/

 f Gradle's plugin for CodeNarc: http://www.gradle.org/docs/current/
userguide/codenarc_plugin.html

3
Using Groovy

Language Features

In this chapter, we will cover:

 f Searching strings with regular expressions

 f Writing less verbose Java Beans with Groovy Beans

 f Inheriting constructors in Groovy classes

 f Adding the cloning functionality to Groovy Beans

 f Defining code as data in Groovy

 f Defining data structures as code in Groovy

 f Implementing multiple inheritance in Groovy

 f Adding a functionality to the existing Java/Groovy classes

 f Defining type-checking rules for dynamic code

 f Adding automatic logging to Groovy classes

Introduction
This chapter is all about what makes Groovy a very productive and fun programming language.

Groovy popularity builds on certain features of the language that are simply done right,
such as closures or builders and are particularly appealing for Java programmers.

The recipes found in this chapter show the different facets of the Groovy language that allows
to write a more terse, readable, and less ceremonious code in comparison to Java.

Using Groovy Language Features

90

In this chapter, the reader will find—among others—recipes about the incredibly productive
Groovy-enhanced collection framework, closures, builders, and the fancy annotations that
makes code shorter and to the point.

For the most geeks among the readers, we have also added some recipes about advanced
language features such as regular expressions, mixins, and extension methods.

Searching strings with regular expressions
The regular expression API became part of JDK since v1.4. Pattern, Matcher, and String
classes contain functionality for regular expression matching and replacement that may
not always be obvious, especially for complex use cases.

Luckily, Groovy adds some syntax sugar and functionality to support regular expressions in a
more native fashion that will be demonstrated in this recipe.

Getting ready
We assume that you already have familiarity with regular expressions. This recipe will only
focus on the features added by Groovy to the already rich infrastructure offered by Java to
deal with regular expressions.

How to do it...
To begin with, Groovy offers a simple way to create Pattern objects using the
~/pattern/ notation:

Pattern pattern = ~/^.*?groovy.*$/

The previous pattern will match any text that contains the word groovy in it.

In fact, slashes at the beginning and the end of a pattern represent an alternative way to
define strings in Groovy. The following code will have the same effect:

Pattern pattern = ~"^.*?groovy.*\$"

The important difference between using slashes and quotes is that, in the former case, you
omit escaping backslashes and some other special characters, for example, "\\s\\d" can
just be written as /\s\d/.

You can use Pattern objects in the same way you would do in Java, but there are other
goodies that Groovy offers. There is the ==~ operator that you can use to directly match
your input string against a regular expression:

def input = 'Probably the easiest way to get groovy' +
 ' is to try working with collections.'

Chapter 3

91

if (input ==~ /^.*?groovy.*$/) {
 println 'Found groovy'
}

In fact, the ==~ operator is equivalent to calling the matches method of the String class.

Another operator that you can use in a similar way is =~ (note the single = sign):

if (input =~ /^.*?groovy.*$/) {
 println 'Found groovy'
}

Actually, the input =~ /^.*?groovy.*$/ expression just creates a Matcher object under
the hood. According to Groovy Truth, a Matcher object is equivalent to true if it has at least
one match. That's why if the input string contains the groovy, the body of the if statement
will be executed. That's also why you can assign this expression to a variable:

def matcher = input =~ /^.*?groovy.*$/

You can use all the standard JDK methods of the Matcher class as well as the additional
ones added by Groovy JDK.

It is also possible to refer to matcher's occurrences and internal regular expression groups
using the array index notation:

def matcher =
 'The Groovy Cook Book contains Groovy recipes' =~ /(.oo.)\s/

println "<${matcher[0][0]}>"
println "<${matcher[0][1]}>"
println "<${matcher[1][0]}>"
println "<${matcher[1][1]}>"

The previous code will print:

<Cook >

<Cook>

<Book >

<Book>

To better explain the previous example, we can rewrite this code using closures and the
each method:

matcher.each { match ->
 match.each { group ->
 println "<$group>"
 }
}

Using Groovy Language Features

92

This will produce the same output as the first code snippet. As you can see, the first
dimension of matcher is our regular expression occurrences, and the second dimension is
a list of groups inside the regular expression. The group with index 0 corresponds to a fully
matched string, and the next indexes refer to internal groups.

There's more...
A more advanced way to use regular expressions is to use them with replacement patterns.
That's where Groovy provides very interesting extensions. For example, you can apply a
closure to matching strings:

def input = 'The Groovy Cook Book contains Groovy recipes'
println input.replaceAll(/\b\w*?oo\w*?\b/) { match ->
 match.toUpperCase()
}

The previous code will print:

The GROOVY COOK BOOK contains GROOVY recipes

We just called the toUpperCase method for every string that matched the /\b\w*?oo\
w*?\b/ expression in the original input. As you can guess, the regular expression in the
snippet matches any word containing a double small "o" letter.

See also
 f http://groovy.codehaus.org/Regular+Expressions

 f http://www.regular-expressions.info/groovy.html

 f http://docs.oracle.com/javase/6/docs/api/java/util/regex/
Pattern.html

 f http://groovy.codehaus.org/groovy-jdk/java/util/regex/Matcher.
html

 f http://docs.codehaus.org/display/GROOVY/Groovy+Truth

Writing less verbose Java Beans with
Groovy Beans

Java Beans are very popular among Java developers. A Java Bean is essentially data with
little or no behavior (depending on the implementation). Formally, a Java Bean is a Java class
that is serializable, has a public no-argument constructor, private fields, and getter and setter
methods for accessing the fields. Often, POJO (Plain Old Java Object) and a Java Bean are
used interchangeably.

Chapter 3

93

In this recipe, we will show how Groovy can save you from a lot of typing by offering several
features for bean class creation built into the language and API.

Getting ready
A typical Java Bean looks like the following code snippet:

public class Student implements Serializable {

 private Long id;
 private String name;
 private String lastName;

 // more attributes

 public Student() {
 // NO-ARGS CONSTRUCTOR
 }

 // more constructors

 public void setId(final Long id) {
 this.id = id;
 }

 public Long getId() {
 return id;
 }

 public void setName(final String name) {
 this.name = name;
 }

 public Long getName() {
 return name;
 }

}

Using Groovy Language Features

94

This is quite a lot of code for a simple object without any business logic. The bean is
instantiated as with any other Java class, and properties are set either through setters or
one of the constructors.

Student student = new Student();
student.setId(23892);
student.setName("Charlie");

How to do it...
Let's check out how Groovy simplifies the writing of such objects with Groovy Beans.

1. Groovy makes the creation of a Java Bean way less verbose. Let's convert the above
Java class Student into a Groovy Bean:
class Student {
 Long id
 String name
 String lastName
}

2. Yes. That's it. The bean only has to declare the properties. Both getters and setters
and constructors are created at compilation time (through an AST transformation).

How it works...
Now let's check out how to interact with our newly created Groovy Bean:

def student = new Student()
student.setName('Charlie')
student.lastName = 'Parker'

assert student.name == 'Charlie'
assert student.lastName == 'Parker'

def student2 = new Student(
 id: 100,
 name: 'Jack',
 lastName: 'Shepard'
)

assert student2.name == 'Jack'
assert student2.id == 100
assert student2.lastName == 'Shepard'

Chapter 3

95

Mutators (or setters) can be invoked by either using the familiar Java syntax student.
setName("John") or by a handy shortcut student.name = 'John' (note that the
shortcut doesn't use the actual field, but the generated mutator). The Groovy Bean has also
a constructor that uses a Map for quick initialization. The Map parameters can be set in any
order and do not need to set all the properties of the bean:

def customer2 = new Customer(id:100)
def customer3 = new Customer(id:100, lastName:'Shepard')

A requirement that is often needed is that a bean has one or more fields that are read-only.
To define a field as immutable, add the final keyword to it and add an explicit constructor:

class Student {
 final Long id
 String name
 String lastName
 Student(Long id) {
 this.id = id
 }
}

def c = new Student(100)

Unfortunately, the explicit constructor replaces the Groovy-generated one so that named
parameters constructors are no longer available. Another way to make a Groovy Bean
completely immutable is to use the @Immutable AST transformation:

import groovy.transform.Immutable

@Immutable
class Student {
 String name, lastName
 Long id
}

def student = new Student(
 lastName: 'Hogan',
 id: 200,
 name: 'Mark'
)
student.name = 'John'

Using Groovy Language Features

96

Executing the previous code yields the following exception:

groovy.lang.ReadOnlyPropertyException:

Cannot set read-only property: name

for class: Customer

The @Immutable annotation makes the class final, all the fields become final, and also the
default equals, hashCode, and toString methods are provided based on the property
values. Furthermore, along with the standard Map constructor, a tuple-style constructor is
provided which allows you to set properties in the same order as they are defined.

def c1 = new Student('Mark', 'Hogan', 100)

There's more...
We just encountered the @Immutable annotation that conveniently adds a number of default
methods to the Groovy Bean. But what if we want to automatically generate these rather
common methods and have the class mutable? Groovy has a number of AST transformations
(based on annotations) that just do that.

The first annotation that we look at is @ToString, used to add a toString method to
a bean.

import groovy.transform.ToString

@ToString
class Student {
 String name
}

def s = new Student(name:'John')
assert s.toString() == 'Student(John)'

To include the field names in the output of toString add the includeNames=true attribute.

@ToString(includeNames = true)
class Student {
 ...
}

To exclude some fields from the computation of the String, use the excludes attribute.

@ToString(includeNames = true, excludes = 'lastName,age')
class Student {
 ...
}

Chapter 3

97

The toString method is conventionally accompanied by two other methods, hashCode
and equals. The first method is important to the performance of hash tables and other data
structures that store objects in groups (buckets) based on their computed hash values. The
equals method checks if the object passed to it as an argument is equal to the object on
which this method is invoked.

To implement both methods on a Groovy Bean, simply add the @EqualsAndHashCode
annotation to it:

import groovy.transform.EqualsAndHashCode

@EqualsAndHashCode
class Student {
 String name
 String lastName
}

def s1 = new Student(
 name: 'John',
 lastName: 'Ross'
)

def s2 = new Student(
 name: 'Rob',
 lastName: 'Bell'
)

assert !s1.equals(s2)

def copyOfS2 = new Student(
 name: 'Rob',
 lastName: 'Bell'
)

Set students = [:] as Set
students.add c1
students.add c2
students.add copyOfC2

assert users.size() == 2

Similar to the @ToString annotation, the excludes property can be used to exclude
properties from the computation. If the bean extends from a second bean, the property
callSuper set to true can be used to include the properties of the superclass.

Using Groovy Language Features

98

The @TupleConstructor annotation deals with Groovy Bean constructors and creates
constructors that do not require named parameters (Java-style constructors). For each
property in the bean, a parameter with a default value is created in the constructor in the
same order as the properties are declared. As the constructor is using default values,
we don't have to set all the properties when we build the bean.

import groovy.transform.TupleConstructor

@TupleConstructor
class Student {
 String name
 String lastName
 Long age
 List favouriteSubjects
}

def s1 = new Student('Mike','Wells',20,['math','phisics'])
def s2 = new Student('Joe','Garland',22)

assert s1.name == 'Mike'
assert !s2.favouriteSubjects

The @TupleConstructor annotation has also some additional attributes that can be set
to modify the behavior of the generated constructor. The force=true property instructs
the annotation to generate a constructor even if a different constructor is already defined.
Naturally, the property will fail in the case of a constructor conflict.

If the class annotated with @TupleConstructor extends another class and we
wish to include the properties or fields of the superclass, we can use the attributes
includeSuperProperties and includeSuperFields. Finally, the callSuper=true
attribute instructs the annotation to create a code in the constructor to call the super
constructor of the superclass with the properties.

A Groovy Bean can be annotated with more than one of the previous annotations:

@EqualsAndHashCode
@ToString
class Person {
 def name, address, pets
}

Furthermore, all the annotations we discussed in this recipe can be combined in a single
annotation, @Canonical. The @Canonical annotation instructs the compiler to execute
an AST transformation which adds positional constructors, hashCode, equals, and a pretty
print toString to a class.

Chapter 3

99

The @Canonical annotation has only two parameters, includes and excludes, to select
which properties to include or exclude in the computation. Since @Canonical doesn't take
any additional parameters and uses some sensible defaults, how can we customize certain
aspects of the code generation? For example, if you want to use @Canonical but customize
the @ToString behavior, then annotate the class with both @Canonical and @ToString.
The @ToString definition and parameters take precedence over @Canonical.

@Canonical
@ToString(excludes='age')
class Person {
 String name
 int age
}

Inheriting constructors in Groovy classes
In Java, class inheritance doesn't support the inheriting of constructors for a number of good
reasons (leaving the details of constructing an object to the programmer is generally a good
idea). There are times when automatically inheriting the constructors of a class would be
really useful and make the code less verbose. One of these cases is when inheriting from a
class that extends Exception, where all the constructors are just calling super. Groovy has
a convenient annotation for doing just that, @InheritConstructors.

In this recipe, we will explore how to use this annotation.

How to do it...
Let's demonstrate the features that the @InheritConstructors annotation gives:

1. Create an Exception class: one of the classes that are used to communicate that
something is horribly wrong with the code or the data:
class BusinessException extends Exception {

}

2. Try to instantiate the class using one of the default constructors of the Exception
class, for instance:
def be = new BusinessException('missing resource')

The code fails at runtime with the following error:

Could not find matching constructor for:

BusinessException(java.lang.String)

Using Groovy Language Features

100

3. Add the groovy.transform.InheritConstructors annotation to the
BusinessException and try to instantiate the class again with a String
message. This time, the code will execute without errors:

@groovy.transform.InheritConstructors
class BusinessException extends Exception {

}

How it works...
The @InheritConstructors annotation removes the boilerplate of writing matching
constructors for a superclass. By adding the @InheritConstructors annotation to the
class, we can create the BusinessException by using any of the constructors exposed by
java.lang.Exception:

import groovy.transform.InheritConstructors

@InheritConstructors
class BusinessException extends Exception { }

assert new BusinessException('hello').message == 'hello'

def b1 = new BusinessException('missing resource')
def b2 = new BusinessException('catastrophic failure', b1)
assert b2.cause.message == 'missing resource'

The annotation is smart enough to detect your existing constructors, if any, and avoid
overriding them during the constructor generation phase.

Adding the cloning functionality to Groovy
Beans

There are several strategies to clone an object in Java. To clone an object means the ability to
create an object with the same state as the original object.

A widely used strategy to clone an object is for the class to be cloned to implement the
Cloneable interface, and implement a method, clone, in which the cloning code is
executed. Naturally, Groovy supports this semantic but makes it even easier to implement
with the @AutoClone annotation, which will be demonstrated in this recipe.

Chapter 3

101

How to do it...
The following steps will show the power of the @AutoClone annotation:

1. Let's define an object Vehicle and annotate the class with the @AutoClone
annotation:
import groovy.transform.AutoClone

@AutoClone
 class Vehicle {
 String brand
 String type
 Long wheelsNumber
}

2. In the same script where the Vehicle object is defined, add the following code:
def v1 = new Vehicle()
v1.brand = 'Ferrari'
v1.type = 'Testarossa'
v1.wheelsNumber = 4
def v2 = v1.clone()

assert v1 instanceof Cloneable
assert v1.brand == v2.brand

The script should execute without errors.

3. Let's add a second object to the mix:
class Engine {
 int horseEngine
 Number liter
}

4. Let's add the engine property to the Vehicle class:
Engine engine

5. Modify the test code, so that the vehicle is created with an engine:
def v1 = new Vehicle(
 brand: 'Ferrari',
 type: 'Testarossa',
 wheelsNumber: 4
)
def e1 = new Engine(
 horseEngine: 390,

Using Groovy Language Features

102

 liter: 4.9
)
v1.engine = e1 // assign engine to car
def v2 = v1.clone() // clone

println 'Original vehicle engine liters: ' + v1.engine.liter
println 'Cloned vehicle engine liters: ' + v2.engine.liter
v2.engine.liter = 8
println 'Original vehicle engine liters: ' + v1.engine.liter

6. The result of the modified script yields:

Original vehicle engine liters: 4.9

Cloned vehicle engine liters: 4.9

Original vehicle engine liters: 8

How it works...
The snippet in step 2 shows how easy is to clone an object without having to implement any
interface. The default cloning strategy implemented by the annotation will call super.clone
before calling clone on each Cloneable property of the class. If a field or property is not
cloneable, it is simply copied in a bitwise fashion. If some properties don't support cloning, a
CloneNotSupportedException is thrown.

The decompiled Vehicle class has the following aspect (the code is cleaned up a bit for the
sake of readability, as the Groovy-generated bytecode uses reflection heavily):

public class Vehicle implements Cloneable, GroovyObject {

 public Object clone() throws CloneNotSupportedException {
 Object result = super.clone()
 if (brand instanceof Cloneable) {
 result.brand = brand.clone()
 }
 if (type instanceof Cloneable) {
 result.type = type.clone()
 }
 if (wheelsNumber instanceof Cloneable) {
 result.wheelsNumber = wheelsNumber.clone()
 }
 return result
 }

}

Chapter 3

103

In step 6, we can observe that the cloning process didn't quite work as expected. An attribute
of the cloned object is modified, and the same attribute on the original object gets modified as
well. Not surprisingly, the reason for this behavior is that the Engine class is not annotated
with the @AutoClone annotation; therefore, the cloning process only clones the reference
to the object, not the actual object. Simply annotate the Engine object with @AutoClone to
have the actual object cloned.

There's more...
The @AutoClone annotation supports some additional cloning styles. The first cloning style is
based on the Copy Constructor pattern:

import groovy.transform.*

@AutoClone(style=AutoCloneStyle.COPY_CONSTRUCTOR)
class Vehicle {
 ...
}

The clone method implementation is moved into the body of a constructor that takes a
parameter of the same type as the class. Then, calls to clone simply return the result of
calling this constructor. Enabling the COPY_CONSTRUCTOR pattern produces Java code
similar to the following code snippet:

public class Vehicle implements Cloneable {

 private String brand;
 private String type;
 private Long wheelsNumber;

 protected Vehicle(Vehicle other) {
 brand = other.brand;
 type = other.type;
 wheelsNumber = other.wheelsNumber;
 }

 public Object clone() throws CloneNotSupportedException {
 return new Vehicle(this);
 }

}

Using Groovy Language Features

104

If a class already implements Serializable, the @AutoClone annotation can
be configured to use the Serialization style. This feature performs a deep copy
automatically, attempting to copy the entire tree of objects including array and list elements.
The AutoCloneStyle.SERIALIZATION style has some limitations; it is generally slower
and it doesn't support fields marked with final.

Defining code as data in Groovy
One of the things that attracted the Java crowd to Groovy has been the presence of closures in
the language since its creation in 2003. Closures are a very powerful feature of Groovy
and one of the most widely used. It is important to understand them well to take full
advantage of the language. In this recipe, we will try to demonstrate the beauty that
closures add to the language.

Getting ready
At its core, a closure is an anonymous block of code, such as:

{ -> }

The previous snippet is actually a closure without body. It is, in fact, an object of type
groovy.lang.Closure. As with every other object, a closure can be passed to other
methods or even to other closures. However, a closure is also a method—a method with no
associated class; therefore, it may have arguments and can return a value (yes, it can also
return a closure). A closure always returns the value of the last statement in the body; the
return keyword is not needed. The body of a closure is not executed until it gets called.

This is what a closure definition with an argument looks like:

def doubling = { arg1 -> println arg1 * 2 }

This closure just prints the doubled value of the argument. The closure is assigned to the
variable doubling. The argument is not typed, and it gets used in the body of the closure,
the statement after the -> symbol. The closure object can be passed to other methods as a
parameter. For example, if we try to print it, we will actually call the toString method of the
Closure class:

println doubling

The previous line of code will yield something like the following:

closures$_run_closure1@76bb5e95

We can also pass closures to many methods (for example, each, collect, find, and so on)
that Groovy makes available on collections and arrays:

[1,2,3,4].each(doubling)

Chapter 3

105

The preceding code snippet will apply the passed closure to every element in the collection:

2

4

6

8

Now that we have a general idea about closures, we can look at how to use them to write
more elegant and concise code. Closures normally contain less code, have little or no
repetition, and can be re-used easily . This is because a closure can also be defined
code as data.

How to do it...
A common way to display the conciseness of Groovy closures is to show some looping and
iteration methods from the Groovy Collection API:

[1,2,3].each { println it }

The previous snippet is a great example of the power of closures. The code prints all the
elements of a list by iterating on each element of the array, and calls the println command
on each element. The astute reader is probably wondering what the it keyword is for; it is
simply a reference to the current element. The snippet can be also expressed in a slightly
more verbose way if we choose not to use it:

[1,2,3].each { element -> println element }

The it keyword is an implicit variable that works on closures, accepting a single argument.
A very welcome syntactic sugar!

The each is a method from the enhanced java.lang.Object of the Groovy JDK and takes
a closure a parameter. The closure contains the code that does actual stuff on each member
of the list.

The Java equivalent of the former snippet would look as follows:

List<Integer> list = Arrays.asList(1,2,3);
for (Integer it :list) {
 System.out.println(it);
}

Another example of how a closure can help with refactoring the code is that it deals with
resources that have to be disposed of once out of scope.

Using Groovy Language Features

106

Let's create a class, ExpensiveResource, and assume that this resource has to be explicitly
opened and closed once it has been used (very much like a JDBC connection):

class ExpensiveResource {
 def open() { println 'opened!' }
 def writeData(data) { println "data written! $data" }
 def close(){ println 'closed!'}
}

To use this class, we would write something like the following:

def e = new ExpensiveResource()
try {
 e.open()
 println e.data
} finally {
 e.close()
}

The open and close methods must be called every time we deal with the resource. Let's see
how a closure simplifies and makes the code more polished:

def safeResource(Closure closure) {
 def resource = new ExpensiveResource()
 try {
 resource.open()
 closure(resource)
 } finally {
 resource?.close()
 }
}

safeResource { it -> it.writeData('hello world!') }

The method safeResource accepts a closure and encapsulates the resource management
code, leaving the calling code to show its intent much more clearly.

Groovy provides a similar approach when dealing with file access by automatically handling
resource management code such as opening, closing, and handling exceptions behind the
scenes. For instance, the method file.eachLineMatch(pattern) { ... } opens
a file, iterates over each line trying to find the lines that match the specified pattern, and
then invokes some code passed in form of a closure for the matching line(s), if any, before
eventually closing the file.

Chapter 3

107

There's more...
Once you get familiar with Groovy closures, it will not take long before you'll encounter the
need to curry your closures. The term currying comes from the functional programming
domain, and it defines a way to apply default values to a closure by defining a complete
new closure. Here is an example:

def multiply = { x, y -> x * y }
multiply 3, 5

Result: 15

def closureByFour = multiply.curry(4)

The previous code snippets shows a standard closure that multiplies two numbers and
returns the result (remember, no return is needed). The second closure calls the curry
method on the first closure and specifies the value 4. The second closure, closureByFour,
can then be invoked with one argument only, and that argument will be multiplied by 4, the
value passed to the curry method. The limitation of the curry method is that arguments
are bound from left to right in the argument list. In other words, in two arguments-closures,
only the left argument can be used with the curry function.

The following example shows an interesting use case for currying. Let's define a closure that
filters the elements of a list. The filter argument is a closure:

def filterList = { filter, list -> list.findAll(filter) }

Now let's define a couple of closures that can be used as filters:

def even = { it % 2 == 0 }
def odd = { !even(it) }

Finally, we create two new closures by applying the curry function to the original closure,
and passing one of the closure filters:

def evenFilterList = filterList.curry(even)
def oddFilterList = filterList.curry(odd)

The new closures can now be invoked autonomously to filter out odd and even numbers:

assert [0,2,4,6,8] == evenFilterList(0..8)
assert [1,3,5,7] == oddFilterList(0..8)

Using Groovy Language Features

108

Defining data structures as code in Groovy
An important and powerful part of Groovy is its implementation of the Builder pattern.
This pattern was made famous by the seminal work Design Patterns: Elements of Reusable
Object-Oriented Software; Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

With builders, data can be defined in a semi-declarative way. Builders are appropriate for the
generation of XML, definition of UI components, and anything that is involved with simplifying
the construction of object graphs. Consider:

Teacher t = new Teacher('Steve')
Student s1 = new Student('John')
Student s2 = new Student('Richard')
t.addStudent(s1)
t.addStudent(s2)

There are a few issues with the previous code; verbosity and the lack of a hierarchical
relationship between objects. This is what we can do with a Builder in Groovy:

teacher ('Jones') {
 student ('Bob')
 student ('Sue')
}

Out of the box, Groovy includes a suite of builders for most of the common construction tasks
that we might encounter:

 f MarkupBuilder for building an XML-style tagged output (see the Constructing XML
content recipe in Chapter 5, Working with XML in Groovy)

 f DOMBuilder for constructing a WC3 DOM tree in memory from the
GroovyMarkup-like syntax (http://groovy.codehaus.org/GroovyMarkup)

 f JsonBuilder for building data structures using the JSON format (see the
Constructing JSON messages with JsonBuilder recipe in Chapter 6, Working
with JSON in Groovy)

 f SwingBuilder to build Swing-based UIs

 f ObjectGraphBuilder to construct a graph of objects that follow the Java
Beans rules

Builders are the fundamental blocks for creating DSLs (Domain Specific Languages) in
Groovy. Martin Fowler, in his book Domain-Specific Languages, defines a DSL as a computer
programming language of limited expressiveness focused on a particular domain. The limits
of a DSL are not bound to its usefulness, but rather to its scope within the domain. A typical
example of this contraposition is SQL: the language has enough expressiveness to operate on
a database, but it lacks the eloquence to write an operating system.

Chapter 3

109

A DSL is a small scale, specifically-focused language, rather than a general purpose language
like Java. Chapter 9, Metaprogramming and DSLs in Groovy, contains two recipes that show
how you to create DSLs in great detail.

In this recipe, we are going to explore how builders can simplify the creation of an object
hierarchy for testing purposes.

Getting ready
Generating test data is a tedious task, especially when we need realistic data that can be
used to simulate different situations in our code. Normally, it all starts from a domain model
that has to be manually built and fed to some function:

Book book1 = new Book()
book.id = 200
book.title = 'Twenty Thousand Leagues Under the Sea'
book.author = 'Jules Verne'
Book book2 = new Book()
book.id = 201

...

...you get the idea. Test cases quickly become an endless list of hard-to-read object graph
definitions and before you know it, your tests are very hard to maintain.

In this recipe, we want to create a simple DSL mainly based on Builders to draw our domain
model without the Java Bean ceremony and, as a bonus, be able to generate random data
using different strategies.

This is our domain model:

import groovy.transform.*

@Canonical
class ShoppingCart {
 List<Book> items = []
 User user
 Address shippingData
}

@Canonical
class Book {
 Long id
 String title
 BigDecimal price
}

Using Groovy Language Features

110

@Canonical
class User {
 Long id
 String name
 Address address }

@Canonical
class Address {
 String street
 String city
 String country
}

It's a simplistic domain model for a books e-commerce site. Our goal is to build a DSL that
uses the metaprogramming features of Groovy to express the object graph in a concise way.

def shoppingCart = new ECommerceTestDataBuilder().build {
 items(2) {
 title RANDOM_TITLE
 id RANDOM_ID, 100, 200000
 price 100
 }
 user {
 id RANDOM_ID, 1,500
 firstName RANDOM_STRING
 lastName RANDOM_STRING
 address RANDOM_US_ADDRESS
 }
}

The preceding snippet generates a ShoppingCart object containing two books. Each book
has a random title fetched from the amazing Gutenberg project (http://www.gutenberg.
org/), a random unique ID with values ranging from 100 to 200000, and a fixed price, set
to 100.

How to do it...
First of all, let's create a new Groovy file named randomTestData.groovy and paste the
domain model classes defined in the previous paragraph.

1. In the same file, following the domain classes, add the definition for the new builder:
class ECommerceTestDataBuilder {

}

Chapter 3

111

2. Add the main builder method, build, to the body of the class:
ShoppingCart shoppingCart
def books = []

ShoppingCart build(closure) {
 shoppingCart = new ShoppingCart()
 closure.delegate = this
 closure()

 shoppingCart.items = books
 shoppingCart
}

3. The next method to add is the one for defining the number of books to add to the
shopping cart:
void items (int quantity, closure) {
 closure.delegate = this
 quantity.times {
 books << new Book()
 closure()
 }
}

4. Add the methodMissing method, which is a key part of the DSL architecture,
as explained in the next section:
def methodMissing(String name, args) {
 Book book = books.last()
 if (book.hasProperty(name)) {
 def dataStrategy = isDataStrategy(args)
 if (dataStrategy) {
 book.@"$name" = dataStrategy.execute()
 } else {
 book.@"$name" = args[0]
 }
 } else {
 throw new MissingMethodException(
 name,
 ECommerceTestDataBuilder,
 args)
 }
}

Using Groovy Language Features

112

5. The last method to add for the ECommerceTestDataBuilder class is required for
adding random data generation strategies to our DSL:
def isDataStrategy(strategyData) {
 def strategyClass = null
 try {
 if (strategyData.length == 1) {
 strategyClass = strategyData[0].newInstance()
 } else {
 strategyClass = strategyData[0].
 newInstance(*strategyData[1,-1])
 }
 if (!(strategyClass instanceof
 DataPopulationStrategy)) {
 strategyClass = null
 }
 } catch (Exception e) {
 }
 strategyClass
}

6. The builder code is complete. Now let's add a couple of strategy classes to the script
and the main strategy interface:
interface DataPopulationStrategy {
 def execute()
}

class RANDOM_TITLE implements DataPopulationStrategy {

 def titleCache = []

 def ignoredTitleWords = ['Page', 'Sort', 'Next']

 void getRandomBookTitles() {
 def slurper = new XmlSlurper()
 slurper.setFeature(
 'http://apache.org/xml/features/' +
 'nonvalidating/load-external-dtd',
 false)
 def dataUrl = 'http://m.gutenberg.org' +
 '/ebooks/search.mobile'
 def orderBy = '/?sort_order=random'
 def htmlParser = slurper.parse("${dataUrl}${orderBy}")
 htmlParser.'**'.findAll{ it.@class == 'title'}.each {
 if (it.text().tokenize().disjoint(ignoredTitleWords)) {

Chapter 3

113

 titleCache << it.text()
 }
 }
 }

 def execute() {
 if (titleCache.size==0) {
 randomBookTitles
 }
 titleCache.pop()
 }

}

class RANDOM_ID implements DataPopulationStrategy {

 Long minVal
 Long maxVal

 RANDOM_ID (min, max) {
 minVal = min
 maxVal = max
 }

 def execute() {
 double rnd = new Random().nextDouble()
 minVal + (long) (rnd * (maxVal - minVal))
 }

}

7. It is time to put our code to the test:

def shoppingCart = new ECommerceTestDataBuilder().build {
 items(5) {
 title RANDOM_TITLE
 id RANDOM_ID, 100, 200000
 price 100
 }
}

assert shoppingCart.items.size == 5
shoppingCart.items.each {
 assert it.price == 100
 assert it.id > 100 && it.id < 200000
}

Using Groovy Language Features

114

How it works...
The domain model's classes are standard Groovy Beans annotated with the @Canonical
annotation. The annotation is discussed in detail in the Writing less verbose Java Beans
with Groovy Beans recipe. In short, it adds an implementation of equals, hashCode,
and toString, along with a tuple constructors, to a bean.

@Canonical
class Book {
 Long id
 String title
 BigDecimal price
}
Book b = new Book(2001, 'Pinocchio', 22.3)
println b.toString()

The preceding code snippet will print:

Book(2001, Pinocchio, 22.3)

The method build that was displayed at step 2 is the builder's entry method:

def shoppingCart = new ECommerceTestDataBuilder().build {
 ...
}

The build method takes a closure as only argument. The closure is where most of the magic
happens. Let's dig into the closure code:

items(5) {
 title RANDOM_TITLE
 id RANDOM_ID, 100, 200000
 price 100
}

The items method that was defined at step 3 is invoked with two arguments: the number of
books to create, and another closure where the random data strategies are defined. In Groovy,
if the last argument of a method is a closure, it does not need to be inside the parentheses of
the invoked method:

def doSomething(int i, Closure c) {
 c(i)
}
something(i) {
 // closure code
}

Chapter 3

115

You may have noticed that both methods, build and item, have a call to the delegate
method of the closure just before the closure is invoked:

closure.delegate = this
closure()

The delegate method allows you to change the scope of the closure so that the methods
invoked from within the closure are delegated directly to the builder class.

Inside the items block, we define the (random) values that we want to be assigned to each
property of the Book object. The properties are only defined in the Book object but are not
visible by the Builder. So how is the Builder able to resolve a call to the title or price
property of Book and assign a value? Every method invoked from inside the items block,
in fact, does not exist.

Thanks to Groovy's metaprogramming capabilities, we can intercept method calls and
create methods on the fly. In particular, the most common technique for intercepting calls
in Groovy is to implement the methodMissing method on a Groovy class. This method
can be considered as a net for undefined functions in a class. Every time a call is executed
against a missing method, the runtime routes the call to the methodMissing routine, just
before throwing a MissingMethodException exception. This offers a chance to define an
implementation for these ghost methods.

Let's take a closer look:

title RANDOM_TITLE

The method title does not exist in the Builder code. When an invocation to this
method is executed from within the closure, the dispatcher, before giving up and throwing
a MissingMethodException, tries to see if methodMissing can be used to resolve
the method.

Groovy allows you to call a method and omit the parentheses if there is at
least one parameter and there is no ambiguity. This is the case for the title
method, which can be written as title(RANDOM_TITLE), but obviously
the DSL is much more readable without parentheses.

Inside the Builder's methodMissing method, the code does the following:

1. Fetches the last book created by the items method.

2. Checks that the book has a property named as the missing method, using the
hasProperty method on the object itself.

3. If the missing method is named as one of the book's properties, the code
either directly assigns the parameter passed after the missing method to the
appropriate property of Book, or tries to resolve a random strategy through the
isDataStrategy method (step 7).

Using Groovy Language Features

116

The object property is accessed through the @ operator, which accesses the field directly
bypassing the mutators (getters and setters):

book.@"$name" = (dataStrategy) ? dataStrategy.execute() : args[0]

In the previous code snippet, the field is populated with the value defined in the DSL (for
example, price 100, or by the result of the random data strategy call). The random data
strategy classes must implement the DataPopulationStrategy (step 8). The interface
exposes only one execute method. If a strategy requires more arguments, these have to be
passed through the constructor (see RANDOM_ID strategy, where the minimum and maximum
values are set via the class' constructor). The method isDataStrategy is invoked for
each field specified in the items block. The class accesses the argument passed after
the field specification:

title RANDOM_TITLE

It tries to instantiate the class as a DataPopulationStrategy instance. The argument
passed to the property must match the class name of the strategy class in order for the
strategy resolution to work.

The isDataStrategy method employs a small trick to instantiate the random data strategy
class in case the DSL specifies additional arguments, such as:

id RANDOM_ID, 1,500

In the previous snippet, the id field will be populated by the result of the RANDOM_ID strategy
that will generate a random number between 1 and 500. If the strategy has no arguments,
the class is instantiated with newInstance:

strategyClass = strategyData[0].newInstance()

The strategyData variable corresponds to the args variable of the methodMissing
function, which is the caller. args is a list of arguments containing whatever values are
passed from the DSL. For instance, id RANDOM_ID, 1, 500 corresponds to calling a method
with the following signature:

def id(Object... args) { }

This is why we call newInstance on the first element of the strategyData variable. If the
args list contains more than one argument, we assume that the strategy class requires the
additional values, so the strategy class is instantiated in this fashion:

strategyClass = strategyData[0].newInstance(*strategyData[1,-1])

In this one-liner, we take advantage of several features of Groovy. The first one is the
possibility of calling newInstance with an array of objects. Java makes creating classes
dynamically with a constructor much more cumbersome. The second feature is the spread
operator. The spread operator (*) is used to tear a List apart into single elements.

Chapter 3

117

This can be used to call a method that has more than one argument and automatically
assigns each element of the list to the values for the parameters. We know that
strategyData contains the list of arguments specified in the DSL, and that the first item of
the list should be ignored because it is the actual strategy class to instantiate. The remaining
elements of the list must be used as arguments for the class' constructor. The spread does
exactly that in conjunction with Groovy ranges, strategyData[1,-1].

The two strategies defined in the code (step 5) are outside the scope of this recipe. The first
strategy simply fetches random book titles from the Internet. The second strategy generates
random Long values between a specified range. In real life, random data would be probably
pulled from a database or an existing source.

You may have also noticed that this recipe doesn't fully implement the DSL specified at the
beginning. The code doesn't support creating users and addresses. We will leave this for the
reader as an exercise to further understand builders and DSLs in Groovy.

See also
 f Defining code as data in Groovy

 f Writing less verbose Java Beans with Groovy Beans

 f Chapter 9, Metaprogramming and DSLs in Groovy

 f http://groovy.codehaus.org/Builders

Implementing multiple inheritance in Groovy
Java classes are only allowed to inherit from a single parent class. Multiple inheritance is only
available for interfaces that do not carry any state or implementation details. This is not a
drawback, but rather a design choice that allows you to avoid several problems. An example of
this is the diamond problem that arises in languages which do employ multiple inheritance.
Basically, there is an ambiguity (which method implementation to call) if classes B and C
inherit from class A and class D inherits from both B and C. The diamond name comes from
the shape of the class diagram formed by the A, B, C, and D.

Groovy still does not allow multiple class inheritance, but offers another approaches for
injecting logic that is spread over multiple classes into a single entity.

This recipe will demonstrate a simple use case for the @Mixin and @Delegate annotations
that can help you simulate multiple inheritance.

Using Groovy Language Features

118

Getting ready
We'll start with a simple project that models a publishing house. We are going to build the
code with the Gradle build tool that we touched in the Integrating Groovy into the build
process using Gradle recipe in Chapter 2, Using Groovy Ecosystem. The following directory
structure is what we are aiming for:

src/main/groovy/org/groovy/cookbook
 Publication.groovy
 OnlinePublication.groovy
 PeriodicPublication.groovy
 PrintedPublication.groovy
src/test/groovy/org/groovy/cookbook
 PublicationTest.groovy
build.gradle

The Publication class is the base class for describing the properties and behavior of all the
published items our publishing agency is dealing with:

package org.groovy.cookbook

abstract class Publication {
 String id
 String title
 Date issueDate
}

Then we have to define the specializations of our publications. For example,
the PrintedPublication class exists to denote items printed on paper:

package org.groovy.cookbook

class PrintedPublication {
 int pageCount
}

On the other hand, the OnlinePublication class may represent items
published electronically:

package org.groovy.cookbook

class OnlinePublication {
 URL url
}

Chapter 3

119

The PeriodicPublication class refers to items issued daily, weekly, monthly,
or repeatedly after any other period:

package org.groovy.cookbook

class PeriodicPublication {
 Duration issuePeriod
}

As you can guess, these three classes can be combined in a number of ways to properly
satisfy the publishing business needs. For instance, our publishing house may have an
electronic, monthly magazine, or a printed and online publication. Implementing all of these
combinations with a single inheritance hierarchy is clearly impossible. In the course of the
next section of this recipe, we'll show how Groovy deals with this situation.

We also have to define an empty unit test, which we are going to fill in soon:

package org.groovy.cookbook

import org.junit.Test
import groovy.time.DatumDependentDuration

class PublicationTest {

 @Test
 def testPublications() { ... }

}

Before we can start, build.gradle also goes here, which is the simplest possible in
this situation:

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.codehaus.groovy:groovy-all:2.1.6'
 testCompile 'junit:junit:4.11'
}

Using Groovy Language Features

120

How to do it...
At this stage, we are ready to introduce multiple inheritance in our code base:

1. Let's create the Newspaper class (in the src/main/groovy/org/groovy/
cookbook/Newspaper.groovy file), which obviously represents the printed
periodic publication:
package org.groovy.cookbook

@Mixin([PeriodicPublication,
 PrintedPublication])
class Newspaper extends Publication {

}

2. The next step is to create a class representing the online magazine,
OnlineMagazine.groovy:
package org.groovy.cookbook

@Mixin([OnlinePublication,
 PeriodicPublication])
class OnlineMagazine extends Publication {

}

3. And finally, we create a class that shares all the publication features we have:
MultimediaMagazine.groovy:
package org.groovy.cookbook

@Mixin([PeriodicPublication,
 PrintedPublication,
 OnlinePublication])
class MultimediaMagazine extends Publication {

}

4. Let's extend the unit test to verify that our hierarchy actually works:
@Test
def testPublications() {

 def monthly = new DatumDependentDuration(0, 1, 0, 0, 0, 0, 0)
 def daily = new DatumDependentDuration(0, 0, 1, 0, 0, 0, 0)

 def groovyMag = new OnlineMagazine(

Chapter 3

121

 id: 'GRMAG',
 title: 'GroovyMag'
).with {
 url = new URL('http://grailsmag.com/')
 issuePeriod = monthly
 it
 }

 def time = new MultimediaMagazine(
 id: 'TIME',
 title: 'Time'
).with {
 pageCount = 60
 url = new URL('http://www.time.com')
 issuePeriod = monthly
 it
 }

 def pravda = new Newspaper(
 id: 'PRVD',
 title: 'Pravda'
).with {
 pageCount = 8
 issuePeriod = daily
 it
 }

}

5. To verify that our code compiles and our test works, we just ran the standard
Gradle command:
gradle clean build

6. The result should be a normal successful build output:

...

BUILD SUCCESSFUL

...

Using Groovy Language Features

122

How it works...
The @Mixin annotation that we placed in our source code informs Groovy to perform a
transformation of the target class and add behavior (methods) of mixed-in classes into that.
The annotation accepts a single class name or an array of class names. Mixing in behavior is
done exclusively at runtime, since (as we already noted) under the hood, JVM does not allow
multiple parent classes. This is also the reason that the instanceof operator will not work
for mixed-in classes. For example, you can't check that groovyMag is an instance of the
PeriodicPulication class. But you can still use the groovyMag and other variables to
call the features of the mixed-in classes at runtime.

In the test class, we used the Groovy Bean constructor syntax (we discussed Groovy Beans
in more details in the Writing less verbose Java Beans with Groovy Beans recipe) to refer
to the fields that are available in the base class, but the fields we mixed-in from different
sources can only be accessed in a dynamic way. In fact, they are not just fields but also a pair
of getter and setter automatically defined by Groovy for all the bean classes. So, we really
mix the behavior (that is, methods) in, not the state of the class. That's also the reason we
used another Groovy feature here—the with method. This method is defined for all objects
in Groovy; it takes a closure (see the Defining code as data in Groovy recipe) as a parameter,
and the object itself is passed to the closure's context. That's why you can easily refer to an
object's methods and properties in a short form. In fact, you could have used the with
method to define all the properties of our object:

def groovyMag = new OnlineMagazine().with {
 id = 'GRMAG'
 title = 'GroovyMag'
 url = new URL('http://grailsmag.com/')
 issuePeriod = monthly
 it
 }

But we used different syntax to show the distinction between base class properties and
mixed-in properties.

There's more...
Another way to add behavior from other classes is to use Groovy's @Delegate annotation.
To give an example, we can define a new Book class:

package org.groovy.cookbook

class Book extends Publication {

 @Delegate
 PrintedPublication printedFeatures = new PrintedPublication()

}

Chapter 3

123

The @Delegate transformation makes all the methods available on the
PrintedPublication class also accessible from instances of the Book class. It delegates
all those method calls to the specific PrintedPublication's instance created upon book
object construction.

def groovy2cookbook = new Book(
 id: 'GR2CBOOK',
 title: 'Groovy 2 Cookbook',
 pageCount: 384
)

This is similar in the result it achieves compared to the @Mixin annotation, but the
implementation is quite different. The @Delegate annotation is a compile-time
transformation and influences the way Groovy constructs the bytecode for this class. This is
also the reason that the map-based constructor syntax worked for the pageCount property.
If we'd used the @Mixin annotation for the Book class, it would not have worked due to the
runtime nature of the @Mixin transformation.

It's hard to vote for any of these approaches and decide which one would be better to handle
your multiple inheritance needs. The @Mixin definition is less verbose and automatically
creates instances of all mixed-in classes, but on the other hand, managing the state of
those instances may not be so obvious. The @Delegate transformation has a more verbose
definition due to an additional variable declaration, but it also gives your target class direct
access and control over the way your mixed-in state is created.

In general, mixins and delegates can also be handy for splitting long classes into several
code units.

See also
 f http://groovy.codehaus.org/Category+and+Mixin+transformations

 f http://groovy.codehaus.org/Delegate+transformation

Adding a functionality to the existing
Java/Groovy classes

How many times have you dreamed of adding a new method to a final class or to a class that
you don't even have sources for? With Groovy, you are given the ability to do so. That's all
possible thanks to Groovy's extension methods. The original class stays untouched and
Groovy takes care of catching extended method calls.

Using Groovy Language Features

124

In fact, we have already seen examples of this feature in some of the recipes in Chapter 2,
Using Groovy Ecosystem, for example, the Using Java classes from Groovy and Embedding
Groovy into Java recipes, and we'll see more in coming recipes of this book. Groovy extends
many of the standard JDK classes (for example, java.io.File, java.lang.String,
java.util.Collection, and so on). It's one of the many cool Groovy features that makes
working with some old Java APIs a pleasant business.

In this recipe, we are going to cover the mechanism of creating an extension module to an
existing Java class, and then using that class inside Groovy with added functionality.

Getting ready
For our demonstration, we are going to extend the java.util.Date class with a new
method. To build the extension, we will use the Gradle build tool that we already encountered
in the Integrating Groovy into the build process using Gradle recipe in Chapter 2, Using Groovy
Ecosystem. Let's assume we have the following simple project structure:

 f src/main/groovy/org/groovy/cookbook

 f src/main/resources/META-INF/services

 f build.gradle

The build.gradle looks as simple as is:

apply plugin: 'groovy'

dependencies {
 compile localGroovy()
}

How to do it...
Let's define the extension module contents and verify that it works with a sample script:

1. Inside the src/main/groovy/org/groovy/cookbook directory, we need to
create the DateExtentions.groovy file with the following content:
package org.groovy.cookbook

import static java.util.Calendar.*
import java.text.DateFormatSymbols

class DateExtensions {

 static String getMonthName(Date date) {
 def dfs = new DateFormatSymbols()

Chapter 3

125

 dfs.months[date[MONTH]]
 }

}

2. In order for the extension to become active when it is added to the classpath, we
need to create a special descriptor file called org.codehaus.groovy.runtime.
ExtensionModule and place it under the src/main/resources/META-INF/
services directory:
moduleName=groovy-extension
moduleVersion=1.0
extensionClasses=org.groovy.cookbook.DateExtensions
staticExtensionClasses=

3. Now you are ready to compile the extension JAR with the following standard command:
gradle clean build

4. At this point, we can create a test script to verify that our extension actually works
and that the Date class actually has the getMonthName method. Define a date.
groovy file in the project's root directory with the following content:
def now = new Date()
println now.monthName

5. Run the script from the same directory with the groovy command:
groovy -cp ./build/libs/* date.groovy

6. Depending on your locale and date, the script should print the name of the
current month:
July

How it works...
Groovy dynamically loads all extension modules upon startup and makes the methods
defined by those available on instances of the target classes. In our case, it's the same
old Date class.

If we try to execute the date.groovy script without the classpath containing the extension
module, we'll get an ugly error:

Caught: groovy.lang.MissingPropertyException:

 No such property: monthName for class: java.util.Date

groovy.lang.MissingPropertyException:

 No such property: monthName for class: java.util.Date

 at date.run(date.groovy:2)

Using Groovy Language Features

126

There's more...
Extension methods existed in Groovy before v2.0. Most of the magical GDK functionality
(for example, additional methods available on the java.lang.String or java.io.File
classes) is implemented in that way. But since Groovy 2.0, creating and packaging your own
extension modules became possible.

Extension modules also work if you use the @Grab annotations to append classpath
dependencies to your scripts (see the Simplifying dependency management with Grape
recipe in Chapter 2, Using Groovy Ecosystem).

You can also append static methods to the classes. The mechanism works in the exactly
same way with the only small exception that you need to use staticExtensionClasses
in the module descriptor to refer to the class implementing those extensions. Also, if your
module defines both static and non-static extension points, then those should be located
in different classes.

That's not the only way to extend existing classes. Another approach is to use metaclass facilities
at runtime. This technique is discussed in more detail in Chapter 9, Metaprogramming and
DSLs in Groovy.

See also
 f Groovy's User Guide pages about extension modules: http://docs.codehaus.

org/display/GROOVY/Creating+an+extension+module

Defining type-checking rules for dynamic
code

The defining characteristic of Groovy is probably the dynamic nature of the language. Dynamic
languages possess the capacity to extend a program at runtime, including changing types,
behaviors, and object structures. With these languages, the things that static languages do
at compile time can be done at runtime; we can even execute program statements that are
created on the fly at runtime. Another trait of Groovy, typical of other dynamic languages such
as Ruby or Python, is dynamic typing. With dynamic typing, the language automatically tests
properties when expressions are being (dynamically) evaluated (that is, at runtime).

In this recipe, we will present how Groovy can be instructed to apply static typing checks to
code elements to warn you about potential violations at compiletime; that is, before code
is executed.

Chapter 3

127

Getting ready
Let's look at some script as follows:

def name = 'john'
printn naame

The Groovy compiler groovyc is perfectly happy to compile the previous code. Can you spot
the error?

But, if we try to execute the code we get, not surprisingly, the following exception:

Caught: groovy.lang.MissingPropertyException:

 No such property: naame

 for class: DynamicTypingExample

Dynamic typing is a very controversial topic. Proponents of static typing argue that the benefits
of static typing encompass:

1. Easier to spot programming mistakes (for example, preventing assigning a Boolean to
an integer).

2. Self-documenting code thanks to type signatures.

3. The compiler has more opportunities to optimize the code (for example, replacing a
virtual call with a direct one when the receiver's type is statically known).

4. More efficient development tools (for example, autocompletion of members of
a class).

Defenders of dynamic typing return fire by claiming that static typing is inflexible and has a
negative impact on prototyping systems with volatile or unknown requirements. Furthermore,
writing code in dynamic languages requires more discipline than writing in statically typed
languages. This is often translated into a greater awareness for testing—and unit testing in
particular—among developers who decide to produce code with dynamic languages.

It is worth noting that Groovy also supports optional static typing, even though the name is
slightly misleading. In Groovy, we can declare a variable's type as follows:

int var = 10

or

String computeFrequency(List<String> listOfWords) { }

Still, the compiler would not catch any compilation error if we assigned the wrong type to a
typed variable:

int var = "Hello, I'm not a number!"

Using Groovy Language Features

128

Groovy has optional typing mostly for Java compatibility and to support better code readability.

To mitigate some of the criticism inherent to dynamic typing, the Groovy team has introduced
static type-checking since v2.0 of the language. Static type-checking enables the verification
of the proper type and ensures that the methods we call and properties we access are valid
for the type at compile time, hence decreasing the number of bugs pushed to the runtime.

How to do it...
Forcing the compiler to enable static type-checking it is simply a matter of annotating the code
that we want to be checked with the @groovy.transform.TypeChecked annotation. The
annotation can be placed on classes or individual methods:

1. Create a new Groovy file (with the .groovy extension) with the following code:
def upperInteger(myInteger) {
 println myInteger.toUpperCase()
}

upperInteger(10)

2. From the shell, compile the code using the Groovy compiler groovyc. The compiler
shouldn't report any error.

3. Now, run the script using groovy. The runtime should throw an exception:
caught: groovy.lang.MissingMethodException:

No signature of method: java.lang.Integer.toUpperCase()

 is applicable for argument types: () values: []

4. Add the type-checking annotation to the upperInteger function:
@groovy.transform.TypeChecked
def upperInteger(myInteger) {
 println myInteger.toUpperCase()
}

5. Compile the code again with groovyc. This time, the compiler reports the type error:

DynamicTypingExample.groovy: 3: [Static type checking] -

Cannot find matching method java.lang.Object#toUpperCase().

Please check if the declared type is right

and if the method exists.

@ line 3, column 11.

println myInteger.toUpperCase()

 ^

Chapter 3

129

How it works...
If we place the annotation on a class, then type-checking is performed on all the methods,
closures, and inner classes in the class. If we place it on a method, the type-checking is
performed only on the members of the target method, including closures.

Static type-checking is implemented through an AST Transformation (see more on AST
Transformations in Chapter 9, Metaprogramming and DSLs in Groovy) and can be used to
enforce proper typing for a number of different cases. The following list shows a collection of
bugs that would not be caught by the compiler but are caught by the TypeChecked annotation.

1. Variable names:
@TypeChecked
def variableName() {
 def name = 'hello'
 println naame
}

The variable named name is misspelled in the second line. The compiler outputs:
MyClass.groovy: 7: [Static type checking] - The variable [naame]
is undeclared..

2. GStrings:
@TypeChecked
def gstring() {
 def name = 'hello'
 println "hello, this is $naame"
}

Similar to the previous bug, the compiler complains about the undeclared variable
naame.

3. Collections:
@TypeChecked
def collections() {
 List myList = []
 myList = "I'm a String"
}

Here, the compiler detects that we are assigning a String to a List and throws an
error: [Static type checking] - Cannot assign value of type java.
lang.String to variable of type java.util.List.

Using Groovy Language Features

130

4. Collection type:
@TypeChecked
def moreCollections() {
 int[] array = new int[2]
 array[0] = 100
 array[1] = '100'
}

Similarly to the previous example, the compiler detects the invalid assignment of a
String to an element of an array of ints.

5. Return type:
@TypeChecked
int getSalary() {
 'fired on ' + new Date().format('yyyy-MM-dd')
}

Return types are also verified by the static type-checking algorithm. In this example,
the compiler throws the following error:

[Static type checking] - Cannot return value of type java.lang.
String on method returning type int

6. Return type propagation:
boolean test() {
 true
}
@TypeChecked
void m() {
 int x = 1 + test()
}

Wrong return types are also detected when the type is propagated from another
method. In the previous example, the compiler fails with:

Static type checking] - Cannot find matching method
int#plus(void). Please check if the declared type is right and if
the method exists

7. Generics:

@TypeChecked
def generics() {
 List<Integer> aList = ['a','b']
}

Generics are supported as well. We are not allowed to assign the wrong type to a
typed List.

Chapter 3

131

There's more...
As you may have suspected, static type-checking doesn't play very nice with a dynamic
language. Metaprogramming capabilities are effectively shut down when using the
@TypeChecked annotation on a class or method.

Here is an example that uses metaprogramming to inject a new method into the class String
(the Dynamically extending classes with new methods recipe in Chapter 9, Metaprogramming
and DSLs in Groovy has more information about method injections):

class Sample {
 def test() {
 String.metaClass.hello = { "Hello, $delegate" }
 println 'some String'.hello()
 }
}
new Sample().test()

When executed, this script yields the following output:

Hello, some String

If we add the @TypeChecked annotation to the class and try to run the script, we get the
following error from the compiler:

[Static type checking] -

Cannot find matching method java.lang.String#hello().

Please check if the declared type is right
and if the method exists.

The reason for the error is that the compiler doesn't see the new dynamic method and
therefore fails. Another case where static type-checking is too picky is when using
implicit parameters in closures. Let's take an example:

class Sample {
 def test() {
 ['one','two','three'].collect { println it.toUpperCase() }
 }
}
new Sample().test()

This example, when executed, prints the following output:

ONE

TWO

THREE

Using Groovy Language Features

132

If the Sample class is annotated with @TypeChecked, the compiler will return:

[Static type checking] -

Cannot find matching method java.lang.Object#toUpperCase().

Please check if the declared type is right

and if the method exists.

@ line 77, column 44.

wo','three'].collect { println it.toUpper

 ^

What is happening here? Simply, the compiler has no idea of the type of the implicit variable
it, which is often used inside closures to make the code even more terse. This compilation
error can be solved by explicitly declaring the closure variable as follows:

['one','two','three'].collect {
 myString -> println myString.toUpperCase()
}

Adding automatic logging to Groovy classes
In the Writing less verbose Java Beans with Groovy Beans, Adding the cloning functionality
to Groovy Beans, and Inheriting constructors in Groovy classes recipes, we met some of the
annotation-based AST transformations available in Groovy. An AST transformation is a process
in which a programmer is able to hook into the bytecode generation process and influence the
final shape of the resulting bytecode. Groovy ships with many useful transformations and in
this recipe, we are going to look at the family of logging annotations.

How to do it...
The transformation we are going to demonstrate is the @groovy.util.logging.Log
annotation that injects java.util.logging.Logger into a Groovy class:

1. Let's apply the annotation to a Groovy class:
@groovy.util.logging.Log
class UserService {
 def createUser(String username, String password) {
 log.info("creating user with name ${username}")
 }
}

2. And call the method of the new class:
def userService = new UserService()
userService.createUser('john', 'secret')

Chapter 3

133

3. The output will be:

INFO: creating user with name john

How it works...
The annotation takes a number of steps. First, it creates a logger with the variable name log
and injects it in the class as a static final variable. Then it surrounds every call to the logger
with a conditional check to verify whether the log level is enabled. No need to pollute your
code with hard-to-read if statements just to check whether the log statement should
be evaluated.

The variable that holds the logger can be modified by using an attribute on the annotation:

@groovy.util.logging.Log('someLogger')
class UserService { ... }

There's more...
The logging transformation is not limited to use only one logging framework but it also allows
to use the following logging facilities by changing the annotation class:

 f @groovy.util.logging.Commons: It injects an Apache Commons logger and
initializes it using LogFactory.getLog(class).

 f @groovy.util.logging.Log4j: It injects Log4J org.apache.log4j.Logger
into the class and initializes it using Logger.getLogger(class).

 f @groovy.util.logging.Slf4j: It injects a Slf4J logger into the annotated class
and initializes it using org.slf4j.LoggerFactory.getLogger(class). Slf4J is
the underlying logger used by the newer framework Logback. If you wish to use that
framework you should use the @Slf4j annotation.

See also
 f http://groovy.codehaus.org/api/groovy/util/logging/Log.html

 f http://docs.oracle.com/javase/7/docs/api/java/util/logging/
Logger.html

 f http://commons.apache.org/proper/commons-logging/

 f http://logging.apache.org/log4j

 f http://www.slf4j.org/

4
Working with Files

in Groovy

In this chapter, we will cover:

 f Reading from a file

 f Reading a text file line by line

 f Processing every word in a text file

 f Writing to a file

 f Replacing tabs with spaces in a text file

 f Filtering a text file's content

 f Deleting a file or directory

 f Walking through a directory recursively

 f Searching for files

 f Changing file attributes on Windows

 f Reading data from a ZIP file

 f Reading an Excel file

 f Extracting data from a PDF

Working with Files in Groovy

136

Introduction
Groovy offers many shortcuts for dealing with files and directories. Mundane tasks such as
listing, copying, renaming, and deleting files are elegantly executed by Groovy, thanks to the
methods added to the standard JDK classes such as java.io.File. This chapter's recipes
are all about I/O with Groovy, from simple cases such as reading a file to more complex
endeavors, such as mining data from a PDF file or an Excel spreadsheet. The Java build tool
Ant makes a cameo appearance in this chapter as well. Groovy and Ant are tightly integrated
and we will discover some of the tasks made available through this marriage.

Reading from a file
Groovy makes dealing with files a very pleasant business, thanks to a number of helper
methods that work with standard Java's Reader and Writer, InputStream and
OutputStream and File classes.

In this recipe, we are going to look at the options available for reading a file in Groovy and
accessing its content, mainly through the Groovy-enhanced File class.

Getting ready
Let's assume we have a script that defines the following java.io.File object:

def file = new File('poem.txt')

Of course, in order to be read, the poem.txt file needs to exist in the same directory where
our script is.

How to do it...
Let's explore some different ways to read the content of the poem.txt file.

1. In order to get the full text file content as a java.lang.String, you can use the
getText method provided by the Groovy JDK extension:
String textContent = file.text

file.text is equivalent to file.getText, thanks to Groovy's special property
getter handling syntax.

2. You can also read it into memory as a byte array by using the getBytes method:
byte[] binaryContent = file.bytes

Chapter 4

137

3. If you want to have more control over the reading process, then you can use the
withReader method, which takes a closure as an input parameter:
file.withReader { Reader reader ->
 def firstLine = reader.readLine()
 println firstLine
}

4. In a similar way, you can read the file with the help of the withInputStream
method, which is similar to withReader with the exception that the closure
operates on a java.io.BufferedInputStream instance:

file.withInputStream { InputStream stream ->
 def firstByte = stream.read()
 println firstByte
}

How it works...
The getText method displayed in step 1 can also be called by passing the charset name,
in order to specify the character encoding:

String textContent = file.getText('UTF-8')

The withReader method in step 3 is an example of how Groovy can make the code much
more concise and unceremonious. In Java, readers and writers have to be explicitly closed
after we finish with them. Groovy has several with... methods for File, URL, streams,
readers and writers, where ... is the name of the stream, reader or writer class. We pass a
closure to these methods and Groovy makes sure all streams, readers and writers are closed
correctly, even if exceptions are thrown in the closure (Java 7 now has a similar feature via
the java.lang.AutoCloseable interface). The withReader method creates a new
java.io.BufferedReader instance for the given file and passes the reader into the
closure. It also ensures that the reader object gets closed after the method returns.

There's more...
To get even more control, you can just use the newReader method to get the reader:

Reader reader = file.newReader()

Or the newInputStream method to get the stream:

InputStream stream = file.newInputStream()

Naturally, that means that you need to manually control the resource life cycle and close
them properly.

Working with Files in Groovy

138

The Groovy's extensions for java.io.File also offer methods to create standard Java
input streams. You can use newDataInputStream or newObjectInputStream to
create streams for reading Java primitives and serialized Java objects. To get those
streams automatically closed you can also use the withDataInputStream and
withObjectInputStream methods.

All the methods described above shorten your path to reading a file's content compared to
what you would need in pure Java.

Additionally, many of the methods (for example, getText, getBytes, and others described
in later recipes) that we find on java.io.File are also available in java.io.Reader and
java.io.InputStream Groovy extensions.

See also
 f Reading a text file line by line

 f Processing every word in a text file

 f Writing to a file

 f http://docs.oracle.com/javase/6/docs/api/java/io/File.html

 f http://groovy.codehaus.org/groovy-jdk/java/io/File.html

 f http://groovy.codehaus.org/groovy-jdk/java/io/Reader.html

 f http://groovy.codehaus.org/groovy-jdk/java/io/InputStream.html

Reading a text file line by line
You may often find yourself with the need to read a file line-by-line and extract information
from each processed line; think of a logfile. In this recipe, we will learn a quick way to read
text files line-by-line using the efficient Groovy I/O APIs.

Getting ready
For the following code snippets, please refer to the Getting Ready section in the Reading from
a file recipe, or just assume you have the file variable of the java.io.File type defined
somewhere in your script.

How to do it...
Let's see how to read all the text file's lines and echo them to the standard output.

1. To read all the lines at once, you can use the readLines method:
def lines = file.readLines()

Chapter 4

139

2. The lines is a collection (java.util.ArrayList) that you can iterate over with the
usual collection iterator:
lines.each { String line ->
 println line
}

3. There is also the eachLine method, which allows doing the above without keeping
an intermediate variable:

file.eachLine { String line ->
 println line
}

There's more...
The java.io.Reader and java.io.InputStream class extensions also have the
readLines and eachLine methods. For example, consider the following code:

file.withReader { Reader reader ->
 reader.eachLine { String line ->
 ...
 }
}

This actually makes it possible for any Reader or InputStream to be processed line-by-line.

In a similar way, you can also read files, readers, or streams byte by byte with the help of the
eachByte method:

file.eachByte { int b ->
 ...
}

See also
The Processing every word in a text file recipe contains additional approaches to a text file
content processing.

You can also find the following Javadoc and Groovydoc references useful:

 f http://docs.oracle.com/javase/6/docs/api/java/io/File.html

 f http://groovy.codehaus.org/groovy-jdk/java/io/File.html

 f http://groovy.codehaus.org/groovy-jdk/java/io/Reader.html

 f http://groovy.codehaus.org/groovy-jdk/java/io/InputStream.html

Working with Files in Groovy

140

Processing every word in a text file
Sometimes, you may need to make a word-based analysis of a text file, for example, for spell
checking or statistics. This recipe shows how a file can be read word-by-word in Groovy.

Getting ready
For this recipe, you can create a new Groovy script file and download a large text file for
testing purposes. The Project Gutenberg website has thousands of text files that can
be used for text analysis, for example, William Shakespeare's Macbeth, available at
http://www.gutenberg.net/cache/epub/2264/pg2264.txt.

How to do it...
We assume that the pg2264.txt file containing Shakespeare's masterpiece Macbeth has
been downloaded, but any large text file will do for this example.

1. Add the following code to the Groovy script:
def file = new File('pg2264.txt') // Macbeth
int wordCount = 0
file.eachLine { String line ->
 line.tokenize().each { String word ->
 wordCount++
 println word
 }
}
println "Number of words: $wordCount"

2. After the execution, the script should terminate with the following output:

...

FINIS.

THE

TRAGEDIE

OF

MACBETH.

Number of words: 20366

Chapter 4

141

How it works...
The snippet in the previous paragraph prints every word in the file on a separate line, and
at the end, it outputs a total number of words. The simplest way to pick all the words from
a file is by reading the file line by line with the help of the eachLine method (described in
the Reading a text file line by line recipe) and then splitting each line into words. The java.
lang.String class already provides a split method that takes a regular expression for
a word separator. There is also a tokenize method added by the Groovy JDK. This splits a
given string into a collection of strings by using a whitespace separator ([\s\t]+).

The tokenize method is equivalent to the following split method call:

line.split(/[\s\t]+/).findAll{ it.trim() }.each { String word ->
 ...
}

Note that we filtered the empty words from the result of the split method using the
findAll method available in all collections in Groovy. The tokenize method does this
cleaning automatically for us.

There's more...
Another way to split words in a text file is to use the splitEachLine method from
java.io.File Groovy's extension. Like String's split method, it also takes a
regular expression as an input, as well as a closure to which it passes the collection
of strings received from a line split. With the help of this method, our original code
snippet can be rewritten in the following way:

int wordCount = 0
file.splitEachLine(/[\s\t]+/) { Collection words ->
 words.findAll{ it.trim() }.each { String word ->
 wordCount++
 println word
 }
}
println "Number of words: $wordCount"

Also, similar to the split method, we need to filter empty words to get the same number
of words.

See also
 f http://groovy.codehaus.org/groovy-jdk/java/io/File.html

 f http://groovy.codehaus.org/groovy-jdk/java/lang/String.html

Working with Files in Groovy

142

Writing to a file
Java's I/O API demands a lot of "ceremony code" to cover the file output operations (and
actually any other I/O resource). Groovy adds several extensions and syntax sugar to hide
Java's complexity and make the code more concise than its Java counterpart. In this recipe,
we will cover the file writing methods that are available in Groovy.

Getting ready
To start writing to a file, you just need to create an instance of java.io.File, for example:

File file = new File('output.txt')

How to do it...
Now let's see which writing operations we can perform on a File object.

1. To replace the full text of the file content with a String you can use the
setText extension method of the java.io.File (or just Groovy's syntax
for property assignment):
file.text = 'Just a text'

2. This also gives you the possibility of assigning multiple text lines at once:
file.text = '''What's in a name? That which we call a rose
By any other name would smell as sweet.'''

3. You can also assign binary content with the help of the setBytes method:
file.bytes = [65, 66, 67, 68] as byte[]

4. If you just want to append some text at the end of the file, you can use
the append method:
file.append('What\'s in a name? That which we call a rose,\n')
file.append('By any other name would smell as sweet.')

5. A more idiomatic way to append text to a file is by using the leftShift
operator (<<).
file << 'What\'s in a name? That which we call a rose\n'
file << 'By any other name would smell as sweet.'

Chapter 4

143

6. You can also take advantage of the java.io.Writer with the help of the
withWriter method:
file.withWriter { Writer writer ->
 writer << 'What\'s in a name? That which we call a rose\n'
 writer << 'By any other name would smell as sweet.'
}

7. And if you prefer working with streams, you can also do it with the help of the
withOutputStream:

file.withOutputStream { OutputStream stream ->
 stream << 'What\'s in a name? That which we call a rose\n'
 stream << 'By any other name would smell as sweet.'
}

How it works...
In the first and second code snippets, we used the setText method. It is actually absolutely
equivalent to the write method that also replaces the file content with the string that is
passed. Those methods exist to give the developer the freedom to choose the best wording
to describe his or her intent.

The functionality of the leftShift method is exactly the same as for the append method.
We used both in steps 4 and 5. There are other special method names in Groovy such as
plus for + or minus for - , which you can add to your own classes to be able to write more
concise expressions with the help of well-known arithmetical operators.

Each call to the append or leftShift methods opens and closes the file every time
you execute them. That's, of course, not very efficient if you need to perform many write
operations. To get more control, you can operate on the java.io.Writer object within
a closure passed to the withWriter method that we used in the sixth example.

As you might have noticed, we also make use of the left shift (<<) operator on the writer
object. That operator is made available by Groovy on all the java.io.Writer instances,
just like with java.io.File, and even with java.io.OutputStream.

The withWriter method creates a new instance of java.io.BufferedWriter and
ensures it is flushed and closed upon return. The file content will be fully replaced. In a similar
way, you can use the withWriterAppend method to use the writer object to add content
to the end of the file. Another available method is withPrintWriter, which gives you
access to the java.io.PrintWriter instance within a closure.

Another way of writing to a file implies using the withOutputStream method,
which is similar to withWriter with the exception that the closure operates on the
java.io.BufferedOutputStream instance as you can see in the seventh snippet.

Working with Files in Groovy

144

The leftShift operator is used again to append data to a stream. The stream object will
be opened and closed automatically in a similar way to the withWriter method.

There's more...
You can also wrap file access using the withDataOutputStream and
withObjectOutputStream methods. This gives you access to the java.
io.DataOutputStream and java.io.ObjectOutputStream instances
within a closure that allows you to write out primitive and serialized Java types respectively.

If you want to control the writer or stream instances yourself, you can use convenient
constructor methods such as newWriter, newOutputStream, newDataOutputStream,
and newObjectOutputStream.

Many of the writing methods of java.io.File are also available in the java.io.Writer
and java.io.OutputStream classes that allow using Groovy goodies for virtually any
output target.

See also
 f Reading from a file

 f http://groovy.codehaus.org/groovy-jdk/java/io/File.html

 f http://groovy.codehaus.org/groovy-jdk/java/io/Writer.html

 f http://groovy.codehaus.org/groovy-jdk/java/io/OutputStream.html

 f http://groovy.codehaus.org/groovy-jdk/java/io/PrintWriter.html

 f http://groovy.codehaus.org/groovy-jdk/java/io/PrintStream.html

Replacing tabs with spaces in a text file
Searching and replacing file content is an often needed routine that can be automated with
the help of Groovy scripts, one of which will be shown in this recipe.

Getting ready
Let's assume that we have an input.txt file that contains some tabulation characters.
We want to replace the tabulation characters with spaces and save the results into a
output.txt file.

Chapter 4

145

To perform any action on these files (similar to the Filtering a text file's content recipe),
we need to create two instances of java.io.File objects:

def inputFile = new File('input.txt')
def outputFile = new File('output.txt')

How to do it...
Let's go through several ways to achieve the desired result:

1. First of all, we will take advantage of the transformLine method available in the
java.io.Reader class, as well as the withWriter and withReader methods that
are described in more detail in the Writing to a file and Reading from a file recipes:
outputFile.withWriter { Writer writer ->
 inputFile.withReader { Reader reader ->
 reader.transformLine(writer) { String line ->
 line.replaceAll('\t', ' ')
 }
 }
}

2. A more concise form of the above code snippet looks like this:
inputFile.withReader { reader ->
 reader.transformLine(outputFile.newWriter()) { line ->
 line.replaceAll('\t', ' ')
 }
}

3. Another way to do this is with the help of the getText and setText extension
methods of java.io.File:

outputFile.text = inputFile.text.replaceAll('\t', ' ')

Although this approach is the shortest one, it has some complications, which we will
describe in the next section.

How it works...
Groovy adds an extension method, transformLine, to the java.io.Reader class. We
used this method in the first and second examples. The method takes two input parameters,
a Writer and a Closure. The closure expects a String and it should return a transformed
String back. The writer is used to output the transformed lines. This means that by
having a reader and a writer, we can use transformLine to perform a line-based
data transformation.

Working with Files in Groovy

146

Since the transformLine method automatically closes the writer, we can omit the outer
method call to withWriter and just pass a new Writer instance to the transformLine
method. That's what we've shown in the second example we just described.

The previous code snippet, of course, looks more concise; but this approach has one
disadvantage. The whole file content will be loaded into the memory, and, in the case of a
very large file, we are at risk of getting an OutOfMemoryError exception. With the first and
second approaches, we don't risk incurring any memory problems.

You have to choose which approach is more appropriate based on your input file sizes.

There's more...
In a similar way as we used transformLine, you can also use the transformChar method
to make character-based input transformations. For example, this code will transform a TAB
character with a single space character:

inputFile.withReader { Reader reader ->
 reader.transformChar(outputFile.newWriter()) { String chr ->
 chr == '\t' ? ' ' : chr
 }
}

See also
The following recipes give an introduction to I/O operations in Groovy:

 f Reading from a file

 f Writing to a file

Also, it's worth looking at what additional functionality Groovy offers in the
java.io.Reader class:

 f http://groovy.codehaus.org/groovy-jdk/java/io/Reader.html

Filtering a text file's content
Filtering a text file's content is a rather common task. In this recipe, we will show how it can be
easily achieved with Groovy.

Chapter 4

147

Getting ready
Let's assume we want to filter out comment lines from a Bash script stored in the
script.sh file and we want to save it into the new_script.sh file. First of all, we
need to define two variables of the java.io.File type that point to our inputFile
and outputFile:

def inputFile = new File('script.sh')
def outputFile = new File('new_script.sh')

How to do it...
File filtering can be implemented in several ways:

1. We can make use of the closure-based methods (that is eachLine and
withPrintWriter) that we have got familiar with in the Reading a text
file line by line and Writing to a file recipes:
outputFile.withPrintWriter { writer ->
 inputFile.eachLine { line ->
 if (!line.startsWith('#')) {
 writer.println(line)
 }
 }
}

2. Another way to achieve the same result is to use a filterLine method. It takes a
Writer and a closure as input parameters. The closure gets a string line as an
input and should return true or false depending on whether line is filtered in or out.
We can rewrite the original code snippet in the following way:
outputFile.withWriter { writer ->
 inputFile.filterLine(writer) { line ->
 !line.startsWith('#')
 }
}

3. Actually, the filterLine method also closes the given writer automatically. So, we
can omit one closure from the previous code and just pass a new Writer instance to
the method:

inputFile.filterLine(outputFile.newWriter()) { line ->
 !line.startsWith('#')
}

Working with Files in Groovy

148

How it works...
In the first code example above, we have first called a method withPrintWriter to which
we passed a closure in which we iterated through text lines with the help of the eachLine
method. The inner closure passed to eachLine has access to both the writer and the
line objects. Inside that closure, we added a simple conditional statement to write out only
those lines that do not start with #.

In the second snippet, we passed a closure to the filterLine method. That closure gives
you access to the line and expects to return a boolean that indicates whether that line
should be written to the final output (writer) or not.

All code examples achieve the same result. The filtered Bash script should contain no
comments after execution of the Groovy code demonstrated in the previous section.

There's more...
There is another overloaded version of the filterLine method that returns an instance
of groovy.lang.Writable. Writable has only one method that is, writeTo(java.
io.Writer writer). It's a Groovy abstraction that allows postponing the content creation
until it is actually streamed to the final output target. Instances of Writable can be used
in most of the output operations such as print, write, append, and leftShift. That's
why this filterLine version does not need any Writer. Taking it all into account, we can
rewrite the previous code as a one-liner:

outputFile << inputFile.filterLine { !it.startsWith('#') }

The Writable result of the filterLine method is sent to outputFile with the help of the
leftShift operator (you can read more about it in Writing to a file recipe). We also omitted
the line variable and simply referred to Groovy's default it closure parameter. In this way, the
code looks almost similar to an OS command; short and clear.

See also
Check the following recipes for some additional insights:

 f Reading a text file line by line

 f Writing to a file

The following Groovydoc links may be of interest for the reader:

 f http://groovy.codehaus.org/api/groovy/lang/Writable.html

 f http://groovy.codehaus.org/groovy-jdk/java/io/File.html

Chapter 4

149

Deleting a file or directory
Deleting a file or directory may seem a trivial task and it often is, but it has some hidden
quirks that Groovy may help you with. This recipe will enlist and give details about several
methods to delete a file or a directory.

Getting ready
Let's assume that we have two java.io.File variables: one pointing to a normal file and
another to a nonempty directory with several subdirectories in it. For example:

def dir = new File('./tmp1')
def file = new File('./tmp2/test.txt')

As you know from Java, the java.io.File class has a delete method and it works
perfectly in many situations. But it will only delete a normal file or an empty directory. So, to
delete a nonempty directory you need to write a recursive function in Java. Also, in most of the
situations, the delete method will not throw any exceptions; it will just return false if it fails to
delete a file or directory.

How to do it...
Let's explore several ways to delete things on the file system.

1. To delete the nonempty directories, Groovy provides an extension method
deleteDir in the java.io.File class. Let's try to delete our file and
directory with both the delete and deleteDir methods and print the result:
println file.deleteDir()
println file.delete()
println dir.delete()
println dir.deleteDir()

2. The previous code snippet should give the following output:

false
true
false
true

How it works...
The first method call returns false, because the given file is not a directory. The second
one successfully deletes the file and returns true. The third one returns false because
we try to delete a nonempty directory. The last one returns true, because we recursively
delete the root folder and its subfolders with the Groovy's deleteDir method.

Working with Files in Groovy

150

In order to ensure that a file or a directory is deleted, you always need to check the result of
the delete or deleteDir method. In a scenario where several files or folders have to be
deleted, you may end up with a lot of noisy conditional statements. Not pretty. An elegant
solution to the issue posed above is possible by resorting to Groovy's metaprogramming
features. The java.io.File class can be enhanced with a new method, safeDelete:

File.metaClass.safeDelete = {
 if (exists()) {
 if (isDirectory()) {
 if (!deleteDir()) {
 def msg = "Unable to delete a directory: ${name}"
 throw new IOException(msg)
 }
 } else {
 if (!delete()) {
 def msg = "Unable to delete a file: ${name}"
 throw new IOException(msg)
 }
 }
 }
}

Groovy metaprogramming and the metaClass object are discussed in more detail in
Chapter 9, Metaprogramming and DSLs in Groovy. In short, the previous code adds a new
method to the java.io.File class called safeDelete. The new method ensures that the
file exists; then it checks if the File is a directory, and calls a recursive delete on it. If the
File object points to a file, it calls a normal delete. If either the delete or deleteDir
operations return false, the method throws an IOException.

After you have extended the java.io.File class, then you can simply call the method on
any File instance:

file.safeDelete()
dir.safeDelete()

By using this method, you can avoid many conditional statements and implement simpler
exception handling.

There's more...
One more way to manipulate files is by using Groovy's built-in Apache Ant support. Through the
groovy.util.AntBuilder class, you can get access to all the common Ant tasks including
the delete task.

def ant = new AntBuilder()
ant.delete(dir: file.absolutePath, failonerror:false)

Chapter 4

151

Ant's file-handling capabilities are quite extended, especially when it comes to copying
files around.

See also
 f Chapter 9, Metaprogramming and DSLs in Groovy

 f http://groovy.codehaus.org/Using+Ant+from+Groovy

 f http://groovy.codehaus.org/api/groovy/util/AntBuilder.html

Walking through a directory recursively
Hierarchical file systems are the way we store most of our data. Groovy can help to build code
that needs to go through a dense forest of directory trees.

In this recipe, we will cover different ways of walking through a directory tree using
Groovy I/O awesomeness.

Getting ready
Let's assume that we need to walk through the current working directory. We can define the
currentDir variable of java.io.File type that points to it:

def currentDir = new File('.')

To test this recipe, you can use either a script file that you launch with the groovy command
or the groovysh/groovyConsole prompt.

How to do it...
As you probably know, the java.io.File class already provides the list and listFiles
methods that return a collection of first-level elements (files and directories) in a directory
represented by a File object. Using a recursive function, you can easily traverse the
subfolders found in the first-level folders.

1. However, Groovy already provides more concise methods that use recursion internally
to traverse a directory. One of them is the eachFileRecurse method. It takes a
closure as an input parameter, which is called for every file or directory entry that
is found:
currentDir.eachFileRecurse { File file ->
 println file.name
}

Working with Files in Groovy

152

2. If you need to walk recursively only through the directories, then you can use the
eachDirRecurse method instead:
currentDir.eachDirRecurse { File dir ->
 println dir.name
}

3. If you only need to go through the files, then you can pass an additional parameter
to eachFileRecurse, which is a value of a groovy.io.FileType enumeration
(you'll need to add an additional import at the beginning of your script or groovysh/
groovyConsole prompt):

import groovy.io.FileType
...

currentDir.eachFileRecurse(FileType.FILES) { File file ->
 println file.name
}

How it works...
The previous code recursively prints the names of all the files and/or directories in the current
directory tree. The recursive walk performs a depth-first search. That means that when the
search goes through a list of children and encounters a directory, then it goes (deeper) inside
that directory first before returning to process the remaining children. The order in which files
and directories are processed depends on the implementation of the file system.

There's more...
Groovy also adds the eachFile and eachDir methods to a java.io.File class that you
can use to iterate through the first-level elements only (just like listFiles). As other each-
methods, they take a closure as an input parameter. You can use that to build a recursive
function in a similar way as you would use it with the listFiles method. But instead of
defining a separate function, you can also make use of Groovy's closure that is capable of
creating a copy of itself with the help of the trampoline method:

 currentDir.eachFile { File file ->
 println file.name
 if (file.isDirectory()) {
 file.eachFile(trampoline())
 }
 }

The code snippet above does exactly the same thing as the previous code examples. The
"magic" trampoline method passes a copy of the parent closure to the nested eachFile
call, a copy of the parent closure and makes it behave like a recursive function.

Chapter 4

153

The previous example is very condensed, but it's not as obvious and easy to read compared to
the initially described methods.

Since v1.7.1, Groovy has also introduced a very powerful traverse method in the java.
io.File class. In its simplest form, it does the same as eachFileRecurse:

currentDir.traverse { File file ->
 println file.name
}

The traverse method has an overloaded version that also accepts a Map of additional
parameters, which allows you to control various aspects of directory traversing behavior.

More advanced traverse options are described in the Searching for files recipe.

See also
The following recipes contain some additional information on the topics discussed in
this recipe:

 f Searching for files

 f The Defining code as data in Groovy recipe in Chapter 3, Using Groovy
language features

Also, it's worth examining the Groovydoc for the File, FileType, and Closure classes:

 f http://groovy.codehaus.org/groovy-jdk/java/io/File.html

 f http://groovy.codehaus.org/api/groovy/io/FileType.html

 f http://groovy.codehaus.org/api/groovy/lang/Closure.html

Searching for files
In this recipe, we will show how easy it is to filter out files and folders during a search
operation on the file system.

Getting ready
Let's assume that we are searching for files in a current working directory. For that, we need to
define a variable of the java.io.File type that points to the . path:

def currentDir = new File('.')

Working with Files in Groovy

154

How to do it...
As we already mentioned in the Walking through a directory recursively recipe, Groovy adds a
powerful traverse method for helping us with our searching task. Let's explore the options
that are given by that method:

1. The simplest way to search for specific files is to apply some filtering logic within a
closure that we pass to the traverse method:
currentDir.traverse { File file ->
 if (file.name.endsWith('.groovy')) {
 println file.name
 }
}

2. The traverse method has another overloaded version that accepts a Map of the
parameters. One of those parameters is nameFilter, which should be of the
java.util.regex.Pattern type. So, our initial code snippet can be written
in the following way:
currentDir.traverse(nameFilter: ~/.*\.groovy/)
 { File file ->
 println file.name
}

3. The traverse method has even more tricks up its sleeve. By specifying the type of
the entries (you need to import the groovy.io.FileType class beforehand), we
can search for the pattern of the names we want to exclude (excludeNameFilter):
import static groovy.io.FileType.*

...

currentDir.traverse(
 type: FILES,
 nameFilter: ~/.*\.groovy/,
 excludeNameFilter: ~/^C.*$/) { File file ->
 println file.name
}

4. A closure that is passed as a final input argument can also be passed through a
visit parameter in the map:
currentDir.traverse(
 type: FILES,
 nameFilter: { it.matches(/.*\.groovy/) },
 excludeNameFilter: { it.matches(/^C.*$/) },
 visit: { println it.name }
)

Chapter 4

155

5. You can also filter on file attributes, other than name, by using the filter/
excludeFilter closure parameters, which are given on java.io.File objects:
def today = new Date()

currentDir.traverse(
 filter: {
 it.lastModified() < (today-5).time &&
 it.name.endsWith('.groovy')
 },
 excludeFilter: { it.isDirectory() },
 visit: { println it.name }
)

6. You can prune some directory tree branches by using the preDir (or postDir)
closure parameters:

import static groovy.io.FileVisitResult.*

...

currentDir.traverse(
 preDir: {
 if (it.name == '.svn') {
 return SKIP_SUBTREE
 }
 },
 nameFilter: { it.matches(/.*\.groovy/) },
 excludeNameFilter: { it.matches(/^C.*$/) },
 visit: { println it.name }
)

How it works...
As you can guess, the first code snippet will walk through all the subdirectories and print all
Groovy (*.groovy) source file names that are found.

In the Searching strings with regular expressions recipe in Chapter 3, Using Groovy Language
Features, we mentioned the ~// operator, which constructs a Pattern object. That's what
we use in the second example to match the *.groovy files and print their name again.

In the third step, we add a bit more logic to the code, since we only go through normal files by
specifying FileType.FILES in the type parameter. Other possible values are FileType.
ANY and FileType.DIRECTORIES. The search also excludes all files starting with C with the
help of a regular expression passed to the excludeNameFilter parameter.

Working with Files in Groovy

156

The fourth example is identical to the third one, except that all filtering logic is passed through
named parameters in a map.

The fifth code snippet prints the names of the files having the *.groovy extension, which are
older than 5 days and which are not directories.

The last code example behaves in the same way as the third snippet, but it also excludes
the .svn directory and all subdirectories from searching. The closure passed to preDir
returns an instance of the groovy.io.FileVisitResult enumeration, which controls the
traversing behavior. Other possible enumeration values are CONTINUE, SKIP_SIBLINGS,
and TERMINATE. In general, preDir and postDir can execute any code, and it's not
mandatory to return FileVisitResult.

There's more...
There are other useful options available for the traverse method:

 f maxDepth: It says how deep should we go in our search.

 f sort: It is a closure that sets the sorting order in which files and directories will
be processed.

 f visitRoot: It indicates that the visit closure should also be called for the target
search directory.

 f preRoot: It indicates that the preDir closure should also be called for the target
search directory.

 f postRoot: It indicates that postDir closure should also be called for the target
search directory.

If you just want to search in the current directory without visiting its subdirectories, you can
use the eachFileMatch method instead:

currentDir.eachFileMatch(~/.*\.groovy/) { File file ->
 println file.name
}

There is also an eachDirMatch method, in case you only need to walk through the matching
first-level directories.

See also
An initial introduction to walking through directory trees was given in the Walking through a
directory recursively recipe.

Chapter 4

157

Also pay your attention to the following Groovydoc references:

 f http://groovy.codehaus.org/groovy-jdk/java/io/File.html

 f http://groovy.codehaus.org/api/groovy/io/FileType.html

 f http://groovy.codehaus.org/api/groovy/io/FileVisitResult.html

Changing file attributes on Windows
Groovy is widely used as a scripting language for automating repetitive tasks. While working
with files, it occurs sometime that one has to change the attributes of a file in Windows.
For example, you may need to set the file as read-only, archived, and so on.

In this recipe, we will learn how to change file attributes in Windows using Groovy.

Getting ready
Let's start by creating a file and adding some content to it. Open your shell, start groovysh
and type the following code:

f = new File('test.txt')

f << 'hello, this is a test file'

You should now see a file named test.txt in the same directory where you
started groovysh.

On a DOS console, type:

attrib test.txt

The output should be as follows:

A I C:\hello.txt

The initial on the left stands for the first letter of the enabled attribute: A for "archive", S for
"system", H for "hidden" and R for "read-only".

How to do it...
With the exclusion of the read-only attribute; in Java, there is no way to set the Windows file
attributes through the File API. To make a file read-only:

f.setReadOnly()

Working with Files in Groovy

158

This will change the R attribute:

attrib test.txt

A R I C:\hello.txt

1. In order to change other file attributes, we have to resort to executing an external
process with Groovy, using the execute method of String. The external process
is the attrib DOS command that can be used to set and read file attributes.

2. To make a file "Hidden":
'attrib +H C:/hello.txt'.execute()

3. And to remove the "Hidden" attribute:
'attrib -H C:/hello.txt'.execute()

4. You can use the same approach for the other file attributes, S and A.

How it works...
Groovy provides a simple way to execute command line processes. Simply write the command
line as a string and call the execute method. The execute method returns a java.lang.
Process instance, which will subsequently allow the in/err/outstreams to be processed
and the exit value from the process to be inspected.

This snippet executed from groovish will output the directory listing on a UNIX machine:

println 'ls -al'.execute().text

Alternatively, we can access the stream resulting from the process and print the result
line-by-line:

p = 'ls -al'.execute().text
p.in.eachLine { line -> print line }

There's more...
If you run Groovy using JDK 7, you can leverage the new NIO API to set the Windows file
attributes. The following example shows you how to do it:

import java.nio.file.*
import java.nio.file.attribute.*
def f = new File('hello.txt')
f << 'hello, hello'
def path = Paths.get('C:\\groovybook\\hello.txt')
def dosView = Files.getFileAttributeView(
 path, DosFileAttributeView
)

Chapter 4

159

dosView.hidden = true
dosView.archive = true
dosView.system = true

This code will fail if it is executed in an environment other than Windows.

Reading data from a ZIP file
Reading from a ZIP file with Groovy is a simple affair. This recipe shows you how to read the
contents of a ZIP file without having to extract the content first.

Getting ready
Groovy doesn't have any GDK class to deal with ZIP files so we have to approach the problem
by using one of the JDK alternatives. Nevertheless, we can "groovify" the code quite a lot in
order to achieve simplicity and elegance.

How to do it...
Let's assume we have a ZIP file named archive.zip containing a bunch of text files.

1. The following code iterates through the ZIP entries and prints the name of the file as
well as the content:
def dumpZipContent(File zipFIle) {
 def zf = new java.util.zip.ZipFile(zipFIle)
 zf.entries().findAll { !it.directory }.each {
 println it.name
 println zf.getInputStream(it).text
 }
}
dumpZipContent(new File('archive.zip'))

2. The output may look as follows:

a/b.txt

This is text file!

c/d.txt

This is another text file!

Working with Files in Groovy

160

How it works...
The dumpZipContent function takes a File as an argument and creates a JDK ZipFIle
out of it. Finally, the code iterates on all the entries of the ZIP file, filtering out the folders. The
iteration is done through a couple of nested closures, the second of which prints the content
of the ZIP file using the handy text property added to the Java's InputStream class by
Groovy JDK.

There's more...
We have already encountered the AntBuilder class in the Deleting a file or directory recipe.
This class is a gateway to the enormous amount of tasks exposed by the Ant build system.
Among them, we can find the unzip task that allows us to decompress a ZIP, JAR, WAR,
and EAR file:

def ant = new AntBuilder()
ant.unzip (src: 'zipped.zip', dest: '.')

The previous snippet unzips a file named zipped.zip into the same folder where the code
is executed. For a complete list of properties of the unzip task, refer to Ant documentation
(https://ant.apache.org/manual/Tasks/unzip.html).

See also
 f http://docs.oracle.com/javase/7/docs/api/java/util/zip/ZipFile.

html

 f https://ant.apache.org/manual/Tasks/unzip.html

Reading an Excel file
In this recipe, you will learn how to read and extract data from an Excel file. If you are a
Windows or Mac user, changes are that you have worked in some capacity with Microsoft
Excel, the de facto standard for spreadsheets. Excel files are often the default data
interchange format of the enterprise. Entire departments are run using incredibly complex
Excel files with thousands of rows and absurdly convoluted formulas. As a programmer, it is
often the case that you are asked to interact with such files.

Chapter 4

161

Getting ready
Groovy (and Java) does not offer any out-of-the-box ingredient to manipulate Excel files.
Fortunately, there is no shortage of third-party libraries that are able to deal with Microsoft
documents. The undisputed king of this realm is Apache POI, the Java API for Microsoft
documents. With Apache POI, it is possible to parse as well as write Excel 2007 OOXML
documents (.xlsx) and older formats (.xls).

How to do it...
Let's start with a simple Excel file with only a few columns:

1. The script that follows, extracts the content of the Excel file depicted in the previous
screenshot and prints it on the console:
@Grab('org.apache.poi:poi:3.8')
@Grab('org.apache.poi:poi-ooxml:3.8')
@GrabExclude('xml-apis:xml-apis')
import org.apache.poi.xssf.usermodel.XSSFWorkbook
import org.apache.poi.xssf.usermodel.XSSFSheet
def excelFile = new File('Workbook1.xlsx')
excelFile.withInputStream { is ->
 workbook = new XSSFWorkbook(is)
 (0..<workbook.numberOfSheets).each { sheetNumber ->
 XSSFSheet sheet = workbook.getSheetAt(sheetNumber)
 sheet.rowIterator().each { row ->
 row.cellIterator().each { cell ->
 println cell.toString()
 }
 }
 }
}

Working with Files in Groovy

162

2. Running this script displays the following output:

100.0
A
200.0
B
300.0
C
400.0
D

How it works...
The recipe's code uses Grape (see the Simplifying dependency management with Grape
recipe in Chapter 2, Using Groovy Ecosystem) to fetch the necessary dependencies:
Apache POI and POI OOXML, the latter required to deal with the post-2007 Excel files. The
GrabExclude explicitly excludes the xml-apis library to avoid conflicts with the Groovy XML
parser. Please note that the code imports classes from the org.apache.poi.xssf, the
package used to access the newer Excel format. For the older format (pre-2007), we would
have imported classes from the org.apache.poi.xssf package.

The script creates an XSSFWorkbook instance from the Workbook1.xlsx file and iterates
on all the sheets found in the document. For each sheet, we use two nested closures (one for
the rows and one for the current row's cells) to traverse the cells that have content and print
the value on the console.

See also
 f The Simplifying dependency management with Grape recipe in Chapter 2,

Using Groovy Ecosystem

 f http://poi.apache.org/

Extracting data from a PDF
The ubiquity of PDF files is due to the ability of almost every PC, Mac, and smart device to
open and process this format. Electronic documents are often exchanged as PDF because
they cannot be easily altered and are, by default, read-only.

Many organizations use PDF files to distribute reports, bank statements, and invoices. Being
able to read such documents and extract the information they provide it's an invaluable tool in
the belt of a Groovy programmer.

This recipe focuses on mining information from a PDF file.

Chapter 4

163

Getting ready
As for ZIP files (see the Reading data from a ZIP file recipe), Groovy doesn't have any class to
deal with PDF files. Java too doesn't offer any built-in feature to read or write PDFs. Therefore,
we are left to resorting to a third-party library. A Google search for Java read PDF yields
numerous results with links to various libraries.

In this recipe, we will use iText, the most popular PDF library for the Java ecosystem. iText is
a very powerful library for generating PDF files, but it also has a very simple API for mining the
text inside the PDF file.

For demonstration purposes, we are going to use a PDF version of Chapter 1, Getting Started
with Groovy of this book (a version of the file is attached to the code distribution) located in
the groovy2cookbook_chapter1.pdf file:

Working with Files in Groovy

164

How to do it...
The Groovy code that follows shows you how to open a PDF file and dump the contents of the
pages of a PDF file in the console.

1. First of all, we need to @Grab the iText library and declare all imported classes that
we are going to make use of:
@Grab('com.itextpdf:itextpdf:5.3.2')
import com.itextpdf.text.pdf.parser.*
import com.itextpdf.text.pdf.*

2. After that, we can construct objects that help to achieve our final target:
def pdf = new PdfReader('groovy2cookbook_chapter1.pdf')
def maxPages = pdf.numberOfPages + 1
def parser = new PdfTextExtractor()

3. And now, all that is left is to iterate through all the pages and extract the text:
(1..<maxPages).each { pageNumber ->
 println parser.getTextFromPage(pdf, pageNumber)
}

4. Output should be as follows:

01

Getting started with Groovy

In this chapter, we will cover:

? Installing Groovy on Windows

? Installing Groovy on Linux and OSX

...

How it works...
The previous script does some interesting stuff. First, we use Grape (see the Simplifying
dependency management with Grape recipe in Chapter 2, Using Groovy Ecosystem) to fetch
the latest version of iText from a Maven repository (v5.3.2), through the Grab annotation.
Then an instance of the com.itextpdf.text.pdf.PdfReader class is created for reading
the PDF document. PdfReader can be constructed with different arguments, but we chose
String for simplicity. After instantiating PdfReader, we get the number of pages of the
PDF file we intend to analyze. Again, to get the number of pages, it's a simple call to the
getNumberOfPages method of PdfReader.

Chapter 4

165

Finally, we loop through all the pages and, for each page, we call getTextFromPage from the
com.itextpdf.text.pdf.parser.PdfTextExtractor class. The method returns the
text found in the page which is printed on the console.

There's more...
Extracting text from a PDF file is relatively easy in Groovy (and Java), but interpreting the
structure of a PDF file can be a very daunting task as PDF files have a layout-oriented
structure rather than a content-oriented one. If you have to cope with PDF documents that
have a nonstandard structure (for example, columns or tables), you may want to write your
own strategy for text extraction. The getTextFromPage method of the PdfTextExtractor
class accepts instances of the TextExtractionStrategy interface.

iText has some implementations of the interface, such as
SimpleTextExtractionStrategy, which stores all the snippets in the order they occur
in the stream; but it is smart enough to detect which text portions should be combined into
a single word or separated with a space character.

There is also a LocationTextExtractionStrategy interface that allows you to extract
text only from certain area of a PDF file. The next script is a modified version of the previous
one and shows you how to use LocationTextExtractionStrategy combined with
FilteredTextRenderListener. We define a small rectangular area from which the text
is extracted. In this case, it's the area of the chapter's title. The part of the code that does the
text extraction changes as we are passing the strategy to the getTextFromPage method and
we only execute for the first page:

@Grab('com.itextpdf:itextpdf:5.3.2')
import com.itextpdf.text.pdf.parser.*
import com.itextpdf.text.pdf.*
import com.itextpdf.text.Rectangle
def rect = new Rectangle(0, 550, 1000, 800)
def pdf = new PdfReader('groovy2cookbook_chapter1.pdf')
def parser = new PdfTextExtractor()
def strategy = new FilteredTextRenderListener(
 new LocationTextExtractionStrategy(),
 new RegionTextRenderFilter(rect))
println parser.getTextFromPage(pdf, 1, strategy)

The output should be as follows:

01
Getting started with Groovy

Working with Files in Groovy

166

Another thing that you may face when parsing the PDF files is dealing with non-English texts.
iText does a good job extracting text data for you, but in order to get proper result you need to
know which encoding was used in the PDF file for the text you want to extract. For example,
for saving Russian text encoded with the KOI8-R charset, you can use the following snippet:

new File('output.txt').withWriter('KOI8-R') { writer ->
 (1..<maxPages).each {
 writer << parser.getTextFromPage(pdf, it)
 }
}

This code saves the extracted text into the output.txt file using the specified encoding.

See also
 f http://itextpdf.com/

5
Working with XML

in Groovy

In this chapter, we will cover the following recipes:

 f Reading XML using XmlSlurper

 f Reading XML using XmlParser

 f Reading XML content with namespaces

 f Searching in XML with GPath

 f Searching in XML with XPath

 f Constructing XML content

 f Modifying XML content

 f Sorting XML nodes

 f Serializing Groovy Beans to XML

Introduction
Dealing with XML in Java is notoriously a tedious business. The Java architects traded
flexibility for simplicity, and the Java XML APIs are considered among the lower peaks of the
language. Fortunately, Groovy offers a marvelous alternative for reading and producing XML.
It's so good that once you experience Groovy's native parsers and emitters, you'll wonder why
you used anything else.

Working with XML in Groovy

168

This chapter is divided into recipes that deal with reading XML and producing XML. The two
Groovy parsers, XmlParser and XmlSlurper, are discussed in detail as well as the two
XML producers, MarkupBuilder and StreamingMarkupBuilder. We also touch on
advanced topics such as the serialization of Java and Groovy objects to XML, and element
tree navigation with XPath and GPath.

Reading XML using XmlSlurper
The eXtensible Markup Language or simply XML is the standard data format for exchanging
information among computer systems. The first two recipes of this chapter show how to
parse XML using Groovy. There are two parsers available in the groovy.util package,
XmlParser and XmlSlurper. They both expose similar API; but there are use cases for
when it is more appropriate to use one or the other. In this recipe, we look at how to read
XML with XmlSlurper and its main peculiarities.

Getting ready
For the examples in the rest of this recipe, we will work with an XML document (shown in the
following code) containing a list of works from William Shakespeare. The document is named
shakespeare.xml:

<?xml version="1.0" ?>
<bib:bibliography xmlns:bib="http://bibliography.org"
 xmlns:lit="http://literature.org">
<bib:author>William Shakespeare</bib:author>
 <lit:play>
 <lit:year>1589</lit:year>
 <lit:title>The Two Gentlemen of Verona.</lit:title>
 </lit:play>
 <lit:play>
 <lit:year>1594</lit:year>
 <lit:title>Love's Labour's Lost.</lit:title>
 </lit:play>
 <lit:play>
 <lit:year>1594</lit:year>
 <lit:title>Romeo and Juliet.</lit:title>
 </lit:play>
 <lit:play>
 <lit:year>1595</lit:year>
 <lit:title>A Midsummer-Night's Dream.</lit:title>
 </lit:play>
</bib:bibliography>

Chapter 5

169

How to do it...
Let's go through the process of parsing the previously mentioned XML file:

1. One way to read XML data using XmlSlurper is to create an instance of the class
and pass a java.io.File object, which references the file we want to read, into
the parse method:
def xmlSource = new File('shakespeare.xml')
def bibliography = new XmlSlurper().parse(xmlSource)

2. The parse method returns an implementation of groovy.util.
slurpersupport.GPathResult, which can be used to navigate the XML
element tree. For example, the following code will print the text representation
of the author element:
println bibliography.author

3. Deeper elements and element collections can also be referenced with the help of the
"." operator. Also, a set of finder and iterator methods are available to build complex
search expressions:
bibliography.play
 .findAll { it.year.toInteger() > 1592 }
 .each { println it.title }

The expressions that are used to navigate (and eventually also modify) the XML tree
are referred to as GPath expressions. More examples of those expressions can be
found in the Searching in XML with GPath recipe.

4. The output of the script should be as follows:

William Shakespeare

Love's Labour's Lost.

Romeo and Juliet.

A Midsummer-Night's Dream.

How it works...
The previous example selects all the plays written after 1592 and prints their titles.

Groovy's XmlSlurper resides in the groovy.util package, which is imported automatically
by Groovy. That's why we do not need an import statement for that class.

Working with XML in Groovy

170

XmlSlurper is a SAX-based parser; it loads the full document in memory, but it doesn't
require extra memory to process the document using GPath. GPath expressions are lazily
evaluated and no extra objects are created when evaluating the expression. XmlSlurper
is also null-safe: when accessing an attribute that doesn't exist, it returns an empty string;
the same goes for a non-existing node.

As a rule of thumb, you want to use XmlSlurper when you intend to process only a small
part of the document; while it is more efficient to use XmlParser when you have to process
the whole XML.

See also
 f Reading XML using XmlParser

 f Searching in XML with GPath
 f http://groovy.codehaus.org/api/groovy/util/XmlSlurper.html

 f http://groovy.codehaus.org/api/groovy/util/slurpersupport/
GPathResult.html

 f http://groovy.codehaus.org/Processing+XML

Reading XML using XmlParser
In the previous recipe, Reading XML using XmlSlurper, we learned how to read an XML
document using the XmlSlurper provided by Groovy. Now it's time to look at the other parser
available in Groovy, groovy.util.XmlParser. Its internal implementation differs from
groovy.util.XmlSlurper, but it exposes a very similar API when it comes to document
parsing, navigation, and modification.

In this recipe, we will cover the essential usage scenarios for the XmlParser class and its
differences from XmlSlurper.

How to do it...
Let's use the same shakespeare.xml file we used in the Reading XML using
XmlSlurper recipe.

1. Reading XML data is very similar to XmlSlurper. You need to create an instance of
XmlParser and pass a file reference to its parse method as shown:
def xmlSource = new File('shakespeare.xml')
def bibliography = new XmlParser().parse(xmlSource)

Chapter 5

171

2. As with XmlSlurper, GPath expressions (see the Searching in XML with GPath
recipe for more advanced examples) are also possible with XmlParser. For example,
the code to print the titles of all plays written after 1592 would be as follows:

println bibliography.'bib:author'.text()

bibliography.'lit:play'
 .findAll { it.'lit:year'
 .text().toInteger() > 1592 }
 .each { println it.'lit:title'.text() }

3. The output of the script will be the same as in the previous recipe:

William Shakespeare

Love's Labour's Lost.

Romeo and Juliet.

A Midsummer-Night's Dream.

How it works...
Navigating XML data with XmlParser is slightly different from XmlSlurper. In order to find
an element, you need to use its fully qualified name (FQN) including the exact prefix. Since, in
our XML example, we use the bib: prefix for the author element, we need to refer to author's
data as bib:author (or as *:author to be more independent).

If our XML example didn't contain a FQN, then we could have referred to them in a very similar
way as we did for XmlSlurper, for example, bibliography.author.

In step 2, you may have noticed that we have used the text method to get the textual
representation of the author element. That's because XmlParser returns instances of
groovy.util.Node, whose toString method does not return the element's textual
content by default. There is also the attribute method that accepts a name and returns
the given attribute. If you ask for an attribute that doesn't exist, attribute returns null
(this is the opposite behavior of XmlSlurper that returns an empty string).

The main difference between XmlParser and XmlSlurper is that the first uses the
groovy.util.Node type and its GPath expressions result in lists of nodes, which are
easily manipulable using our knowledge of lists and collections. Compared to XmlSlurper,
XmlParser consumes more memory because it has to create an intermediate data structure
to represent the node tree, but it makes XML tree queries a bit faster. So, it's up to developers
to decide which implementation better suits their needs.

Working with XML in Groovy

172

See also
 f Reading XML using XmlSlurper
 f Searching in XML with GPath
 f http://groovy.codehaus.org/api/groovy/util/XmlParser.html

 f http://groovy.codehaus.org/api/groovy/util/Node.html

 f http://groovy.codehaus.org/api/groovy/util/NodeList.html

 f http://groovy.codehaus.org/GPath

Reading XML content with namespaces
XML namespaces, in a way, are similar to Java packages because they allow creating an
additional context for grouping a set of elements. We already noted some differences in
namespace handling for the XmlParser and XmlSlurper classes in the Reading XML
using XmlParser and Reading XML using XmlSlurper recipes.

In this recipe, we dig a bit deeper into the details of XML namespace support in Groovy.

Getting ready
Let's use the same shakespeare.xml file we used for the Reading XML using XmlParser
and Reading XML using XmlSlurper recipes.

How to do it...
XmlParser requires you to specify an element name exactly as it appears in the parsed XML,
including the name of the prefix used in the actual XML content. This makes the code fragile
because the namespace prefixes have to match.

1. In order to make code that is based on XmlParser more reliable in respect to
namespaces, we can resort to the groovy.xml.Namespace class as shown
in the following code:
import groovy.xml.Namespace

def xmlSource = new File('shakespeare.xml')
def bibliography = new XmlParser().parse(xmlSource)

def bib = new Namespace('http://bibliography.org', 'bib')
def lit = new Namespace('http://literature.org', 'lit')

println bibliography[bib.author].text()
println bibliography[lit.play].findAll {
 it[lit.year].text().toInteger() > 1592
}.size()

Chapter 5

173

2. XmlSlurper has a similar API for declaring the prefixes and namespaces required to
navigate the nodes, shown in the following code:
def xmlSource = new File('shakespeare.xml')
def bibliography = new XmlSlurper().parse(xmlSource)

bibliography.declareNamespace(
 bib: 'http://bibliography.org',
 lit: 'http://literature.org')

println bibliography.'bib:author'
println bibliography.'lit:play'.findAll {
 it.'lit:year'.toInteger() > 1592
}.size()

3. The output of both scripts is indistinguishable:

William Shakespare

3

How it works...
Both of the previous code snippets extract the author's name and the number of plays written
after 1592 from our reference bibliography data XML document.

In the case of XmlParser, we declare two instances of the groovy.xml.Namespace
class. When we fetch a property (for example, bibliography[bib.author]) from the
Namespace object, this is really what happens:

 f The bib.author expression returns a value of javax.xml.namespace.QName
type.

 f The array reference bibliography[bib.author] is translated by Groovy into a
call to the getAt method of the groovy.util.Node class. This method accepts a
QName as an argument and returns a node if the QName is found, as shown next:

QName ns = bib.author
Node n = bibliography.getAt(ns)

In the case of XmlSlurper, the groovy.util.slurpersupport.GPathResult class
instance (returned by the parse method) has an additional method to declare namespaces
called, not surprisingly, declareNamespace.

Working with XML in Groovy

174

Please note that unlike XmlParser, the XmlSlurper implementation
(or more specifically GPathResult) does not force you to depend on
namespaces or prefixes at all. You can refer to elements and attributes using
their local names, and only resort to using namespace prefixes if there are
same local names under different namespaces.

If you try to use a fully qualified name (for example. bib:author) before declaring the
namespace within an XmlSlurper instance, you'll get no result back. Also, namespace
prefixes defined by declareNamespace do not have to match prefixes appearing in the
actual XML file.

The declareNamespace method takes a map of prefixes and namespaces. When those are
defined, you can use them to reference elements using their fully qualified names.

There's more...
If you plan to switch between XmlParser and XmlSlurper implementations and you need
to parse XML that uses namespaces, then the safest approach is to use the *: prefix for
element or attribute queries. For example:

println bibliography.'*:author'.text()

See also
 f Reading XML using XmlParser

 f Reading XML using XmlSlurper

 f Searching in XML with GPath
 f http://groovy.codehaus.org/api/groovy/util/XmlParser.html

 f http://groovy.codehaus.org/api/groovy/util/XmlSlurper.html

 f http://groovy.codehaus.org/api/groovy/util/Node.html

 f http://groovy.codehaus.org/api/groovy/xml/Namespace.html

Chapter 5

175

Searching in XML with GPath
When using XmlSlurper or XmlParser with Groovy (see the Reading XML using XmlSlurper
and Reading XML using XmlParser recipes), the returned parsed result can be queried
using GPath. GPath is a way to navigate nested data structures in Groovy. Sometimes GPath
is called an expression language integrated into Groovy; but, in fact, GPath does not have
a separate compiler or interpreter, it's just the way Groovy language and core classes are
designed to make data structure navigation and modification concise and easy-to-read.

GPath, in certain ways, is similar to XPath (http://www.w3.org/TR/xpath/) that is used
for querying XML data. The main difference is that it uses dots instead of slashes to navigate
the XML hierarchy and it can be used for navigating the hierarchy of objects (Plain Old Java
Objects (POJOs) and Plain Old Groovy Objects (POGOs) respectively).

The GPath syntax closely resembles E4X (ECMAScript for XML), which is an ECMAScript
extension for accessing XML content.

This recipe will show how to parse an XML document and query its values and attributes
through GPath.

Getting ready
As usual, we start by defining an XML snippet to test out our XML recipe. In this recipe,
we deal with movies. IMDB (Internet Movie Database) at http://www.imdb.com is the de
facto standard for everything you want to know around the cinema universe. IMDB stores
information about pretty much every movie ever made, along with actors and production data.
IMDB is also a good citizen of the Internet and exposes API to retrieve the same data available
on the site in XML. The API is not really documented, so we decide to roll out our own XML
format based on the data we fetch from IMDB. Let's print the information about some movies
having the word groovy in the title (admittedly not many!).

def groovyMoviez = '''<?xml version="1.0" ?>
 <movie-result>
 <movie id="tt0116288">
 <title>Groovy Days</title>
 <year>1996</year>
 <director>Peter Bay</director>
 <country>Denmark</country>
 <stars>
 Ken Vedsegaard,
 Sofie Gråbøl,

Working with XML in Groovy

176

 Martin Brygmann</stars>
 </movie>
 <movie id="tt1189088">
 <title>Cool and Groovy</title>
 <year>1956</year>
 <director>Will Cowan</director>
 <country>USA</country>
 <stars>Anita Day,
 Buddy De Franco and
 Buddy DeFranco Quartet</stars>
 </movie>
 <movie id="tt1492859">
 <title>Groovy: The Colors of Pacita Abad</title>
 <year>2005</year>
 <director>Milo Sogueco</director>
 <country>Philippines</country>
 <stars/>
 </movie>
 </movie-result>
'''

How to do it...
Let's see how we can navigate the previous XML with GPath.

1. The first step is to process the XML using XmlSlurper so that we can access the
GPath API:
def results = new XmlSlurper().parseText(groovyMoviez)

2. The rest is just Groovy's magic. The XML structure is magically converted into a
navigable object structure based on the tags and attribute of the XML document:
for (flick in results.movie) {
 println "Movie with id ${flick.@id} " +
 "is directed by ${flick.director}"
}

3. The code snippet yields the following output:
Movie with id tt0116288 is directed by Peter Bay

Movie with id tt1189088 is directed by Will Cowan

Movie with id tt1492859 is directed by Milo Sogueco

The code becomes extremely fluent and ceremony-free, just code and data.

Chapter 5

177

4. Want to see something more awesome? Check out what we can do with the Groovy's
spread-dot operator (*.):
results.movie*.title.each { println "- ${it}" }
results.movie.findAll {
 it.year.toInteger() > 1990
}*.title.each {
 println "title: ${it}"
}

5. The output will be as follows:
title: Groovy Days

title: Groovy: The Colors of Pacita Abad

6. Searching inside the XML document for specific content is also pretty simple:
results.movie.findAll {
 it.director.text().contains('Milo')
}.each {
 println "- ${it.title}"
}

The findAll method is applied to the movie node and the closure passed to the
findAll method checks for the presence of the word Milo in the director tag.

7. Should you need to search across all the nodes of the document (as opposed to
a specific set of children, such as movie), it is possible to use the depthFirst
method (or its shortcut **) on the root node:
results.'**'.findAll {
 it.director.text().contains('Milo')
}.each {
 println "- ${it.title}"
}

8. The output will be as follows:

- Groovy: The Colors of Pacita Abad

How it works...
In the first step, we create a parser, an XmlSlurper in this case.

Please note how this time, we use the parseText method to read a string
containing a valid XML document.

Working with XML in Groovy

178

Step 2 shows how we can easily access the attributes and values of a movie, while iterating
on the results.

Groovy cannot possibly know anything in advance about the elements and attributes that
are available in the XML document. It happily compiles anyway. That's one capability that
distinguishes a dynamic language.

Step 4 introduces the spread-dot operator: a shortcut to the collect method of a collection.
The result is a new collection containing the outcome of the operation applied to each
member of the original collection.

There's more...
To iterate over collections and transform each element of the collection in Groovy, the
collect method can be used. The transformation is defined as a closure passed
to the method:

assert [0,2,4,6] == (0..3).collect { it * 2 }

By using a spread-dot operator, we can rewrite the previous snippet as follows:

assert [0,2,4,6] == (0..3)*.multiply(2)

In the context of a GPath query for XML, the spread-dot accesses the properties of each node
returned from the findAll method, movies produced after the year 1990.

See also
 f Reading XML using XmlParser

 f Reading XML using XmlSlurper
 f http://groovy.codehaus.org/GPath

 f http://groovy.codehaus.org/api/groovy/util/slurpersupport/
GPathResult.html

Searching in XML with XPath
XPath is a W3C-standard query language for selecting nodes from an XML document. That
is somewhat equivalent to SQL for databases or regular expressions for text. XPath is a very
powerful query language, and it's beyond the scope of this book to delve into the extended
XPath capabilities. This recipe will show some basic queries to select nodes and groups
of nodes.

Chapter 5

179

Getting ready
Let's start as usual by defining an XML document that we can use for selecting nodes:

def todos = '''
<?xml version="1.0" ?>
<todos>
 <task created="2012-09-24" owner="max">
 <title>Buy Milk</title>
 <priority>3</priority>
 <location>WalMart</location>
 <due>2012-09-25</due>
 <alarm-type>sms</alarm-type>
 <alert-before>1H</alert-before>
 </task>
 <task created="2012-09-27" owner="lana">
 <title>Pay the rent</title>
 <priority>1</priority>
 <location>Computer</location>
 <due>2012-09-30</due>
 <alarm-type>email</alarm-type>
 <alert-before>1D</alert-before>
 </task>
 <task created="2012-09-21" owner="rick">
 <title>Take out the trash</title>
 <priority>3</priority>
 <location>Home</location>
 <due>2012-09-22</due>
 <alarm-type>none</alarm-type>
 <alert-before/>
 </task>
</todos>
'''

The previous snippet represents the data for an application for personal task management;
there aren't enough of those these days! Surely no self-respecting to-do application comes
without a powerful filtering feature, such as finding all due tasks, or showing only the task that
I can execute in a specific place.

Working with XML in Groovy

180

How to do it...
Let's go into the details of this recipe.

1. Before we can fire our XPath queries, the document has to be parsed using the Java
DOM API:
import javax.xml.parsers.DocumentBuilderFactory
import javax.xml.xpath.*

def inputStream = new ByteArrayInputStream(todos.bytes)
def myTodos = DocumentBuilderFactory.
 newInstance().
 newDocumentBuilder().
 parse(inputStream).
 documentElement

2. Once the XML document is parsed, we can create an instance of the XPath engine:
def xpath = XPathFactory.
 newInstance().
 newXPath()

3. Now we are ready to run some queries on our task list. The simplest thing to do is to
print all the task names:
def nodes = xpath.evaluate(
 '//task',
 myTodos,
 XPathConstants.NODESET
)

nodes.each {
 println xpath.evaluate('title/text()', it)
}

4. The output yielded is as follows:
Buy Milk
Pay the rent
Take out the trash

5. OK, now that we've got the API basics out of the way, it's time for more complex
queries. The next example shows how to print the titles in a more Groovy way:
xpath.evaluate(
 '//task/title/text()',
 myTodos,
 XPathConstants.NODESET
).each { println it.nodeValue }

Chapter 5

181

Note that we are using the API getNodeValue() method to extract the content of
the node.

6. What about fetching only tasks with a low priority (that is 2, 3, 4, and so on)?
xpath.evaluate(
 '//task[priority>1]/title/text()',
 myTodos,
 XPathConstants.NODESET
).each { println it.nodeValue }

7. The output yielded is as follows:
Buy Milk

Take out the trash

8. Naturally, it is also possible to filter by node attribute. For instance, to fetch all tasks
assigned to lana:
xpath.evaluate(
 "//task[@owner='lana']/title/text()",
 myTodos,
 XPathConstants.NODESET
).each { println it.nodeValue }

9. The output yielded is as follows:
Pay the rent

10. Finally, we are going to retrieve nodes based on the actual content. Let's build
a slightly more complex query that retrieves tasks based on the content of the
location and alarm-type tag:
xpath.evaluate(
 '//task[location="Computer" and ' +
 'contains(alarm-type, "email")]/' +
 'title/text()',
 myTodos,
 XPathConstants.NODESET
).each { println it.nodeValue }

11. The output yielded is as follows:
Pay the rent

Working with XML in Groovy

182

12. The previous snippet uses the XPath's contains keyword to probe for a string match
in a specific tag. We can also use the same keyword to search on all tags:
xpath.evaluate(
 "//*[contains(.,'WalMart')]/title/text()",
 myTodos,
 XPathConstants.NODESET
).each { println it.nodeValue }

13. The output yielded is as follows:

Buy milk

How it works...
In order to use XPath, we need to build a Java DOM parser. Neither XmlParser
nor XmlSlurper offer XPath querying capabilities, so we have to resort to building
a parser using the not-so-elegant Java API. In step 1, we create a new instance of
DocumentBuilderFactory from which we create a DocumentBuilder. The default
factory implementation defined by this plugin mechanism is com.sun.org.apache.
xerces.internal.jaxp.DocumentBuilderFactoryImpl. The factory is used to
produce a builder which parses the document.

The evaluate function used to run the XPath queries takes the following three parameters:

 f The actual XPath query string (in step 3, we use //task to select all the nodes
named task)

 f The document

 f The desired return type

In step 3, the return type is a NodeList, a list implementation on which Groovy can easily
iterate on. When the return type is not specified the default return type is a String.

There's more...
What if you need to find all the tasks due today in your task list?

XPath 1.0 (the default implementation bundled with the JDK 6 and 7, dating back to 1999)
doesn't support date functions, and you are left to rather ugly string comparison tricks.

The more recent specification of XPath, v2.0, supports date functions and a plethora of new
extremely powerful features. Luckily third-party libraries supporting XPath 2.0 are available
and can be readily used with Groovy. One of these libraries is Saxon 9, which supports XSLT
2.0, XQuery 1.0, and XPath 2.0 at the basic level of conformance defined by W3C.

Chapter 5

183

In this example, we are going to build a query that filters out the task due today. The XML data
defined at the beginning of this recipe is used also in this snippet:

@Grab('net.sf.saxon:Saxon-HE:9.4')
@GrabExclude('xml-apis:xml-apis')
import javax.xml.parsers.DocumentBuilderFactory
import javax.xml.xpath.*
import net.sf.saxon.lib.NamespaceConstant

def today = '2012-09-21'

def todos = '''
<?xml version="1.0" ?>
<todos>
 ...
</todos>
'''

def inputStream = new ByteArrayInputStream(todos.bytes)
def myTodos = DocumentBuilderFactory.
 newInstance().
 newDocumentBuilder().
 parse(inputStream).
 documentElement

// Set the SAXON XPath implementation
// by setting a System property
System.setProperty(
 'javax.xml.xpath.XPathFactory:' +
 NamespaceConstant.OBJECT_MODEL_SAXON,
 'net.sf.saxon.xpath.XPathFactoryImpl'
)

// Create the XPath 2.0 engine
def xpathSaxon = XPathFactory.
 newInstance(
 XPathConstants.DOM_OBJECT_MODEL
).newXPath()

// Print out all task names
// expiring on 22, September 2012
xpathSaxon.evaluate(
 '//task[xs:date(due) = ' +
 'xs:date("2012-09-22")]/title/text()',

Working with XML in Groovy

184

 myTodos,
 XPathConstants.NODESET
).each { println it.nodeValue }

// Bonus: print out all tasks
// for which the due date falls in September
xpathSaxon.evaluate(
 '//task[month-from-date(due)=9]/title/text()',
 myTodos,
 XPathConstants.NODESET
).each { println it.nodeValue }

See also
More information about the XPath query language can be found at
http://www.w3.org/TR/xpath. Also, the following links may be useful for further reading:

 f http://www.w3.org/TR/xpath20/

 f http://saxon.sourceforge.net/

Constructing XML content
The previous Reading XML using XmlSlurper, Reading XML using XmlParser, and Searching
in XML with GPath recipes have been useful to learn the ingredients and the techniques for
consuming and querying XML documents. In this recipe, we will cover how to produce XML
using Groovy's MarkupBuilder.

How to do it...
Let's create a bibliography XML similar to the one we used in the Reading XML using
XmlSlurper recipe.

1. In order to start using MarkupBuilder, you first need to import it since it's not
available by default:
import groovy.xml.MarkupBuilder

2. Then you need to create a writer object that will be responsible for the final output of
the XML content. For the sake of simplicity let's use:
java.io.StringWriter:
def writer = new StringWriter()

Chapter 5

185

3. Finally, we need to create an instance of MarkupBuilder and pass the writer object
to it:
def xml = new MarkupBuilder(writer)

4. At this point, we are ready to create some XML:
xml.bibliography {
 author('William Shakespeare')
 play {
 year('1595')
 title('A Midsummer-Night\'s Dream.')
 }
}

5. And now, by printing our writer object:

println writer

We'll get the following output:

<bibliography>
 <author>William Shakespeare</author>
 <play>
 <year>1595</year>
 <title>A Midsummer-Night's Dream.</title>
 </play>
</bibliography>

How it works...
The previous XML construction code is a set of nested dynamic method calls that are
mapped directly to XML element names. String parameter passed to those methods
defines the content of the element (for example, author('William Shakespeare')).

All the magic happens behind the scenes with the help of Groovy's Meta Object Protocol
(MOP), which is heavily used by MarkupBuilder (and in general, any other builder class
within Groovy, see the Defining data structures as code in Groovy recipe in Chapter 3,
Using Groovy Language Features). Every object in Groovy extends from groovy.lang.
GroovyObject, which offers two methods: invokeMethod and getProperty.
Those methods are overridden by MarkupBuilder to handle dynamic method names
that are translated into an XML tree.

It is possible to construct any kind of markup with this approach including HTML/XHTML.

Working with XML in Groovy

186

There's more...
Another way to create XML content is by using the groovy.xml.
StreamingMarkupBuilder class. Its API is similar, but a bit more complex than the
MarkupBuilder API. On the other hand, it offers better memory management and
allows creating large XML files with minimal memory footprint:

import groovy.xml.StreamingMarkupBuilder
def builder = new StreamingMarkupBuilder()
def bibliography = builder.bind {
 bibliography {
 author('William Shakespeare')
 play {
 year('1595')
 title('A Midsummer-Night's Dream.')
 }
 }
}
println bibliography

The previous code snippet achieves a similar result to the initial example.

In general, MarkupBuilder to StreamingMarkupBuilder is the same as XmlParser
(see the Reading XML using XmlParser recipe) is to XmlSlurper (see the Reading XML
using XmlSlurper recipe). There are three main differences between MarkupBuilder and
StreamingMarkupBuilder:

 f StreamingMarkupBuilder doesn't output the XML until a writer is explicitly
passed, while MarkupBuilder, by default, outputs to System.out.

 f MarkupBuilder processes the XML generation synchronously while
StreamingMarkupBuilder generates the XML only when is passed to a Writer. It is
possible, for instance, to define a number of closures containing snippets of XML and
generate the markup only when needed.

 f MarkupBuilder formats the output for increased readability whereas
StreamingMarkupBuilder does not.

See also
 f Reading XML using XmlSlurper

 f Reading XML using XmlParser
 f http://groovy.codehaus.org/Creating+XML+using+Groovy%27s+Marku

pBuilder

 f http://groovy.codehaus.org/api/groovy/xml/MarkupBuilder.html

Chapter 5

187

 f http://groovy.codehaus.org/gapi/groovy/xml/
StreamingMarkupBuilder.html

Modifying XML content
In this recipe, we will learn how to update and delete nodes of a parsed XML document using
the XmlParser.

Getting ready
Let's start by parsing the following XML with the XmlParser (see the Reading XML using
XmlParser recipe):

def carXml = '''
<?xml version="1.0" ?>
<cool-cars>
 <car manufacturer="Ferrari">
 <model>430 Scuderia</model>
 </car>
 <car manufacturer="Porsche">
 <model>911</model>
 </car>
 <car manufacturer="Lotus">
 <model>Elan</model>
 </car>
 <car manufacturer="Pagani">
 <model>Huayra</model>
 </car>
</cool-cars>
'''

def coolCars = new XmlParser().parseText(carXml)

How to do it...
The simplest way to change the value of a node is to reference it using the position of the
node itself.

1. For instance, if we want to change the model of the Lotus brand to Elise, we can
reference the model node as showed in the example:
coolCars.car[2].model[0].value = 'Elise'

Working with XML in Groovy

188

2. Alternatively, it is possible to find a node by its contents and alter it:
coolCars.find {
 it.@manufacturer == 'Ferrari'
}.model[0].value = 'Testarossa'

Instead of referencing the node by its position, we use the find method to reference
the attribute of the node.

3. What about modifying an attribute of a node?
coolCars.car[1].@manufacturer = 'Ford'

4. Finally, to delete nodes, you can use a very similar approach:
coolCars.remove(coolCars.car[3])
coolCars.remove(coolCars.car[1])

or even better:
coolCars.findAll { it.@manufacturer.startsWith('P') }
 .each { coolCars.remove(it) }

This previous example deletes every car's manufacturer, whose name starts with the
letter P.

5. Now we can print the result:
new XmlNodePrinter().print(coolCars)

6. The output will be as follows:

<cool-cars>
 <car manufacturer="Ferrari">
 <model>
 Testarossa
 </model>
 </car>
 <car manufacturer="Lotus">
 <model>
 Elise
 </model>
 </car>
</cool-cars>

How it works...
Thanks to Groovy's dynamic typing and metaprogramming capabilities, we can access the
members of our document directly by name, as shown in several other recipes from this
chapter: Reading XML using XmlSlurper, Searching in XML with GPath, and Constructing
XML content.

Chapter 5

189

In most cases, we operate directly on the groovy.util.Node classes or collections of
nodes. The full power of the Groovy Collection API can be applied easily to navigate and
modify the document tree.

In the previous code, we also made use of the .@ operator, which gives access to an attribute
of an XML element.

In the last step, we print out the resulting in-memory node tree to the standard output with the
help of the XmlNodePrinter class. This class pretty prints a groovy.util.Node including
all children in XML format.

See also
 f http://groovy.codehaus.org/api/groovy/util/Node.html

 f http://groovy.codehaus.org/api/groovy/util/XmlNodePrinter.html

Sorting XML nodes
Sometimes it is important to preserve XML data in certain order. Ordered data is easier to
read and search, and some computer systems may require data they consume to be sorted.
One of the most basic requirements that arise when dealing with XML is being able to sort
nodes either by node value or attribute value. In this recipe, we are going to go through a
couple of ways of achieving this with Groovy.

How to do it...
For this recipe, we will reuse the same XML document defined in the Searching in XML with
GPath recipe.

1. The grooviest way to sort nodes is to replace the entire element tree with a
sorted one:
import groovy.xml.XmlUtil
def groovyMoviez = '''
<?xml version="1.0" encoding="UTF-8"?>
...
'''
def movieList = new XmlParser().parseText(groovyMoviez)
movieList.value = movieList.movie.sort {
 it.title.text()
 }
println XmlUtil.serialize(movieList)

Working with XML in Groovy

190

2. This will yield:

<?xml version="1.0" encoding="UTF-8"?>
<movie-result>
 <movie>
 <title>Cool and Groovy</title>
 ...
 </movie>
 <movie>
 <title>Groovy Days</title>
 ...
 </movie>
 <movie>
 <title>Groovy: The Colors of Pacita Abad</title>
 ...
 </movie>
</movie-result>

How it works...
In step 1, we call the dynamic method, movie, which returns a NodeList (see the Searching
in XML with GPath recipe). To sort the elements of the NodeList, we invoke the sort
method. The groovy.util.NodeList super type is, in fact, an ArrayList and benefits of
the multitude of great features that come with Groovy collections. The closure passed to the
sort method defines the expression used to sort elements of the collection. In this case, we
used movie titles, which are sorted in lexicographical order. If we need to sort movie collection
in a descending order, then we can either reverse a collection:

movieList.value = movieList.movie.sort {
 it.title.text()
}.reverse()

Or pass a more verbose closure that operates on two compared elements, to the sort method:

movieList.value = movieList.movie.sort { a, b ->
 b.title.text() > a.title.text()
}

At the end of the script, we use the groovy.xml.XmlUtil class, which is a handy utility
that Groovy provides for serializing XML node trees. Another alternative to serializing XML is
the XmlNodePrinter class, which we touch in the Modifying XML content recipe. In fact,
XmlUtil is using XmlNodePrinter under the hood.

Chapter 5

191

There's more...
We can also create more complex sort expressions, such as:

movieList.value = movieList.movie.sort { a, b ->
 a.year.text().toInteger() <=> b.year.text().toInteger() ?:
 a.country.text() <=> b.country.text()
}

In this example, the Elvis operator (?:) is used, which is a handy shortcut for a ternary
operator. First we compare movie release years, and if they match, we sort based on country
name. The spaceship operator (<=>) it's just a shortcut for the compareTo function. It returns
-1 when the left side is smaller than the right side, 1 if the left side is greater, and 0 if they
are equal.

Please note that, in the case of the year element, the value is converted to
an integer value for the sorting algorithm to work correctly.

For the sake of completeness, we will also demonstrate how to sort an XML tree using XSLT.
This approach is not exactly easy on the eye, but can be used also as a general way to use
XSLT transformations with Groovy.

The first step is to declare an XSLT transformation set. The sorting is applied to the title tag:

def sortXSLT = '''<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="@* | node()">
 <xsl:copy>
 <xsl:apply-templates select="@* | node()">
 <xsl:sort select="title"/>
 </xsl:apply-templates>
 </xsl:copy>
</xsl:template>
</xsl:stylesheet>'''

Next, you need to add a bunch of imports to your code:

import javax.xml.transform.TransformerFactory
import javax.xml.transform.stream.StreamResult
import javax.xml.transform.stream.StreamSource

Working with XML in Groovy

192

Finally, here is the code to run the transformation on the original XML document:

def factory = TransformerFactory.newInstance()
def xsltSource = new StreamSource(new StringReader(sortXSLT))
def transformer = factory.newTransformer(xsltSource)
def source = new StreamSource(new StringReader(groovyMoviez))
def result = new StreamResult(new StringWriter())
transformer.transform(source, result)
println result.writer.toString()

See also
 f Searching in XML with GPath

 f Constructing XML content

 f Modifying XML content
 f http://groovy.codehaus.org/Operators

 f http://groovy.codehaus.org/api/groovy/xml/XmlUtil.html

 f http://groovy.codehaus.org/api/groovy/util/XmlNodePrinter.html

 f http://www.w3.org/TR/xslt20/

Serializing Groovy Beans to XML
In this recipe, we are going to learn how to serialize a Groovy Bean into XML and back.
Groovy Beans are discussed in detail in the Writing less verbose Java Beans with Groovy
Beans recipe from Chapter 3, Using Groovy Language Features. The steps from this recipe
can be applied either to POJO or POGO.

Getting ready
Groovy doesn't have a default XML object serializer. The groovy.xml.MarkupBuilder is
an excellent tool for generating XML in a fluent way but doesn't offer any simple mechanism
to create an XML document out of bean properties.

There is, on the other hand, a large offer of third-party Java libraries for XML serialization. In
this recipe, we are going to look at XStream (http://xstream.codehaus.org/). XStream
is a very popular library, with frequent releases and a dead-simple API. Did we mention
XStream is also fast and has a ridiculously low memory footprint?

Chapter 5

193

How to do it...
The following steps offer an insight into how to achieve our task:

1. Before we can use XStream, we need to fetch the dependency using Grape and
import it:
@Grab('com.thoughtworks.xstream:xstream:1.4.3')
import com.thoughtworks.xstream.*
import com.thoughtworks.xstream.io.xml.*

2. Then we continue by creating a couple of Groovy Beans representing a customer:
import groovy.transform.TupleConstructor
@TupleConstructor
class Customer {
 Long id
 String name
 String lastName
 Address businessAddress
}
@TupleConstructor
class Address {
 String street
 String postcode
 String city
 String country
}

The @TupleConstructor annotation is mentioned in the Writing less verbose Java
Beans with Groovy Beans from Chapter 3, Using Groovy Language Features.

3. Finally, let's get down to business and serialize our customer:
def xstream = new XStream()
def john = new Customer(
 100,
 'John',
 'Red',
 new Address(
 'Ocean Drive 101',
 '33139',
 'Miami',
 'US'
)
)
def xmlCustomer = xstream.toXML(john)
println xmlCustomer

Working with XML in Groovy

194

4. The generated XML looks as follows:
<Customer>
 <id>100</id>
 <name>John</name>
 <lastName>Red</lastName>
 <businessAddress>
 <street>Ocean Drive 101</street>
 <postcode>33139</postcode>
 <city>Miami</city>
 <country>US</country>
 </businessAddress>
</Customer>

Very cool indeed.

5. To convert the XML back into a bean, it's straightforward as well:
def xstream = new XStream(new DomDriver())
Customer johnred = xstream.fromXML(xmlCustomer)
println johnred.id
println johnred.businessAddress.postcode

6. The final lines will print:

100

33139

How it works...
Whenever XStream encounters an object that needs to be converted to/from XML, it
delegates to a suitable converter implementation associated with the class of that object.

XStream comes bundled with many converters for common types, including primitives, string,
collections, arrays, null, date, etc. XStream also has a default converter that is used when no
other converters match a type. This uses reflection to automatically generate the XML for all
the fields in an object.

If an object is composed of other objects, the converter may delegate to other converters.

Chapter 5

195

There's more...
With XStream, it is also possible to drive the way the XML gets generated through aliases.
There are different types of aliasing that can be applied to the serialization engine.

 f Class aliasing: The name of the root element of the serialized class can be changed
by applying an alias at the class level:
xstream.alias('Person', Customer)

The serialization process generates the following XML:

<Person>
 <id>100</id>
 <name>John</name>
 ...
</Person>

 f Field aliasing: The name of the bean field can also be modified when it gets serialized:
xstream.aliasField('customer-id', Customer, 'id')

This changes the element name id into customer-id:

<Customer>
 <customer-id>100</customer-id>
 ...
</Customer>

 f Attribute aliasing: In case you need to convert a bean field into an XML attribute,
XStream gets you covered. Let's say that we want to make the id field an attribute
of the <Person> element. It couldn't be easier:

xstream.useAttributeFor(Customer, 'id')

The resulting serialized XML looks like:

<Person id="100">
 <name>John</name>
</Person>

See also
The documentation for XStream is extremely good, and if you want to use this tool
to its full potential, it is recommended to spend some time reading the manual at
http://xstream.codehaus.org/.

6
Working with JSON

in Groovy

In this chapter, we will cover:

 f Parsing JSON messages with JsonSlurper

 f Constructing JSON messages with JsonBuilder

 f Modifying JSON messages

 f Validating JSON messages

 f Converting JSON message to XML

 f Converting JSON message to Groovy Bean

 f Using JSON to configure your scripts

Introduction
JSON (JavaScript Object Notation) (http://www.json.org/) is a data interchange format,
similar in scope to XML or CSV. It uses a very lightweight serialization form and works very well
for exchanging data between a web client (a browser) and a remote server, but it is not limited
to only that.

JSON is also a subset of the object literal notation of JavaScript. Being a subset of JavaScript
implies that a JSON payload can be processed by the language natively. This is the main
reason why JSON has become such a popular format for transferring serialized data
between a remote API (often a RESTful API) and a JavaScript client.

Working with JSON in Groovy

198

But JSON is also very lightweight—especially if we compare it to the very chatty XML, the
dethroned king of serialization—making it a suitable candidate for a general purpose data
processing format (if you can live with some of its limitations such as the lack of namespace
or poor complex data types support).

This chapter's recipes introduce the reader to Groovy native support for reading and producing
JSON. We also look at some more advanced recipes such as conversion from and to XML and
Groovy Beans.

Parsing JSON messages with JsonSlurper
The first thing you probably want to do with the JSON data is to parse it. JSON support
was introduced in Groovy 1.8. The class for consuming JSON is named JsonSlurper and it
behaves similarly to the XmlSlurper, presented in the Reading XML using XmlSlurper recipe
in Chapter 5, Working with XML in Groovy.

This recipe introduces the reader to JsonSlurper and shows how to parse a JSON file and
how to navigate the data structure created by JsonSlurper.

Getting ready
Let's assume we have a ui.json file which stores a definition of the UI layout for some
JavaScript framework:

{
 "items":[
 {
 "type":"chart",
 "height":270,
 "width":319,
 "animate":true,
 "insetPadding":20,
 "axes":[
 {
 "type":"Time",
 "fields":["x"],
 "position":"left",
 "title":"Time"
 },
 {
 "type":"Numeric",
 "fields":["y"],
 "position":"bottom",
 "title":"Profit in EUR"

Chapter 6

199

 }
],
 "series":[
 {
 "type":"bar",
 "label":{
 "display":"insideEnd",
 "field":"y",
 "color":"#333",
 "text-anchor":"middle"
 },
 "axis":"bottom",
 "xField":"x",
 "yField":["y"]
 }
]
 }
]
}

How to do it...
The JSON data can be easily parsed with the help of the groovy.json.JsonSlurper class.

1. The groovy.json package is not included in the list of packages imported by
default. For this reason, you need to explicitly import JsonSlurper:
import groovy.json.JsonSlurper
def reader = new FileReader('ui.json')
def ui = new JsonSlurper().parse(reader)

The parse method of JsonSlurper accepts a File or a Reader object. It is also
possible to pass a String to JsonSlurper by invoking the parseText method.

2. After the JSON payload is successfully parsed, you can easily navigate through the
resulting object using the familiar GPath-like expressions and closures:
ui.items.each { println it.type }

println ui.items[0]
 .axes
 .find {
 it.fields.contains('y')
 }.title

Working with JSON in Groovy

200

3. The complete output of the script looks like:

chart

Profit in EUR

How it works...
The first line in step 2 iterates through all the elements in the items node, which is a top-level
collection in our JSON object and it prints the value of the type attribute of each of those
objects. Since we have only one object in that collection it only prints chart in return.

The second line uses a slightly more complex expression. The expression's goal is simply to
find the title used by the y axis.

The expression selects the first element of the items collection and subsequently gets the
axes collection. It then searches the axes collection for the first element of the nested fields
collection having the y value. Finally, it returns the title of the found element.

Unlike XmlSlurper, which uses an intermediate set of classes to present the XML tree,
JsonSlurper transforms a JSON message to a nested combination of Maps and Lists.

For example, to show the actual classes used behind the scenes, we can fire up the
following code:

println ui.getClass()
println ui.items.getClass()

It will print out the following class names:

class java.util.HashMap
class java.util.ArrayList

Knowing that the structure created by JsonSlurper is backed by Groovy's Collections,
you can easily leverage all the Collection extension methods (such as each, find, and
collect) available in Groovy to build expressions that search and modify your JSON objects.

There's more...
JsonSlurper is rather well-suited for most parsing needs. On the other hand, there are
plenty of libraries available in the Java/Groovy ecosystem, which offer similar functionality:

 f Google GSON: http://code.google.com/p/google-gson/

 f JSONLib: http://json-lib.sourceforge.net/

 f Jackson: http://jackson.codehaus.org/

 f JSON.simple: http://code.google.com/p/json-simple/

Chapter 6

201

See also
 f Constructing JSON messages with JsonBuilder

 f The Reading XML using XmlSlurper recipe in Chapter 5, Working with XML in Groovy

 f http://www.json.org/

 f http://groovy.codehaus.org/gapi/groovy/json/JsonSlurper.html

Constructing JSON messages with
JsonBuilder

This recipe provides an overview of another class introduced in Groovy 1.8, which helps to
construct JSON messages, the JsonBuilder.

This class works like any other builder class in Groovy (see the Defining data structures as
code in Groovy recipe from Chapter 3, Using Groovy Language Features). A data structure
based on Lists and Maps is defined, and JSON is split out when the string representation
is requested.

How to do it...
The following steps will show some examples of using JsonBuilder.

1. Let's start right away with a simple script that builds the representation of a
fictional customer:
import groovy.json.JsonBuilder

def builder = new JsonBuilder()
builder.customer {
 name 'John'
 lastName 'Appleseed'
 address {
 streetName 'Gordon street'
 city 'Philadelphia'
 houseNumber 20
 }
}
println builder.toPrettyString()

Working with JSON in Groovy

202

2. The output of the previous script yields:
{
 "customer": {
 "name": "John",
 "lastName": "Appleseed",
 "address": {
 "streetName": "Gordon street",
 "city": "Philadelphia",
 "houseNumber": 20
 }
 }
}

3. Here is a slightly more complex example of JsonBuilder usage, used to build the
definition of a chart widget:

def chart = [
 items: [
 type: 'chart',
 height: 200,
 width: 300,
 axes: [
 {
 type 'Time'
 fields (['x'])
 position 'left'
 title 'Time'
 },
 {
 type 'Numeric'
 fields (['y'])
 position 'bottom'
 title 'Profit in EUR'
 }
]
]
]

def builder = new JsonBuilder(chart)
println builder.toPrettyString()

The output of the previous statement is:
{
 "items": [
 {

Chapter 6

203

 "type": "chart",
 "height": 200,
 "width": 300,
 "axes": [
 {
 "type": "Time",
 "fields": ["x"],
 "position": "left",
 "title": "Time"
 },
 {
 "type": "Numeric",
 "fields": ["y"],
 "position": "bottom",
 "title": "Profit in EUR"
 }
]
 }
]
}

How it works...
JsonBuilder can produce JSON-formatted output from Maps, Lists, and Java Beans (see the
Converting JSON message to Groovy Bean recipe). The output is stored in memory, and it can
be written to a stream or processed further. If we want to directly stream (instead of storing
it in memory) the data as it's created, we can use StreamingJsonBuilder instead of the
JsonBuilder.

In the example at step 1, we create an instance of the JsonBuilder class and we simply
define the key/value pairs that contain the data structure we wish to create. The approach is
very similar to any other builder, such as MarkupBuilder (see the Constructing XML content
recipe in Chapter 5, Working with XML in Groovy).

In the second example, the builder is directly created by passing a variable containing a Map.
The Map's keys are Strings as defined by the JSON standard, but the assigned values can
be one of the following types:

 f One of the simple data type (for example, Boolean and String) permitted by JSON

 f Another Map

 f Collection of the above

 f A closure or a collection of closures

Working with JSON in Groovy

204

To demonstrate the flexibility of JsonBuilder in our example, we used different types,
including closures.

See also
 f Parsing JSON messages with JsonSlurper

 f The Constructing XML content recipe in Chapter 5, Working with XML in Groovy

 f http://groovy.codehaus.org/gapi/groovy/json/JsonBuilder.html

Modifying JSON messages
After we've got acquainted with a way to read existing JSON messages (see the Parsing JSON
messages with JsonSlurper recipe) and create our own (see Constructing JSON messages
with JsonBuilder recipe), we need to have the ability to modify the messages that flow through
our system.

This recipe will show how straightforward it is to alter the content of a JSON document
in Groovy.

How to do it...
Let's use the same JSON data located in the ui.json file that we used in the Parsing JSON
messages with JsonSlurper recipe.

1. First of all we need to load and parse the JSON file:
import groovy.json.*

def reader = new FileReader('ui.json')
def ui = new JsonSlurper().parse(reader)

Since the data is actually just a nested structure, which consists of Maps, Lists
and primitive data types, we can use the same API we would use for collections to
navigate and change JSON data.

2. Consider the following snippet of code, which changes and removes some bits of the
original JSON message:
ui.items[0].type = 'panel'
ui.items[0].title = 'Main Window'
ui.items[0].remove('axes')
ui.items[0].remove('series')

Chapter 6

205

3. The next step is to save the modified message. There is the groovy.json.
JsonOutput class, which is designed specifically for that purpose. By using the
static toJson and prettyPrint methods we can get an indented text version of
the modified message:
println JsonOutput.prettyPrint(JsonOutput.toJson(ui))

4. Our initial modifications will lead to the following output:

{
 "items": [
 {
 "title": "Main Window",
 "animate": true,
 "height": 270,
 "width": 319,
 "insetPadding": 20,
 "type": "panel"
 }
]
}

How it works...
As we are operating on a Map, the code above does not do anything else but adding and
removing Map entries.

The toJson method returns a String with a compact version of the JSON data. The
prettyPrint method adds additional indentation spaces to any given JSON string.

See also
 f Parsing JSON messages with JsonSlurper

 f http://groovy.codehaus.org/gapi/groovy/json/JsonSlurper.html

 f http://groovy.codehaus.org/gapi/groovy/json/JsonOutput.html

Validating JSON messages
JSON is replacing XML for many applications, but one of the features that XML is exceptionally
good for is the ability to validate XML content against a DTD or an XML Schema.

Working with JSON in Groovy

206

Due to the lightweight nature of JSON, it is quite simple to construct invalid or incomplete
messages. That's why the necessity of JSON validation will arise quite soon if you plan to
develop high-quality and error-free applications.

This recipe will list some ways to validate your JSON input with the help of Groovy.

Getting ready
For this recipe, we are going to use a simple JSON document representing a vehicle and some
of its core attributes. Let's define a vehicle.json file containing a JSON representation of
a car:

{
 "brand": "Mazda",
 "model": "5",
 "fuel": "PETROL",
 "releaseYear": 2007,
 "transmission": {
 "gears": "5",
 "type": "MANUAL"
 }
}

How to do it...
Since JSON messages are represented by Maps and Lists, you can just use the Groovy
operators and collection methods—or simple GPath expressions—to navigate and express the
validation rules over a parsed JSON message. More information about GPath can be found in
the Searching in XML with GPath recipe in Chapter 5, Working with XML in Groovy.

1. We begin by parsing our document in the same way we did it in previous recipes (for
example, Parsing JSON messages with JsonSlurper):
import groovy.json.*

def reader = new FileReader('vehicle.json')
def vehicle = new JsonSlurper().parse(reader)

2. Now we can define the following validation functions in our script:

def isValidTransmission(vehicle) {
 vehicle?.transmission?.type in
 ['MANUAL', 'AUTOMATIC'] &&
 vehicle?.transmission?.gears > 3
}

Chapter 6

207

def isValidFuel(vehicle) {
 vehicle?.fuel in
 ['DIESEL', 'PETROL', 'GAS', 'ELECTRIC']
}

def hasWheels(vehicle) {
 vehicle?.wheels?.size() > 0
}

3. Calling the validation methods as:
println 'Vehicle has valid transmission data: ' +
 isValidTransmission(vehicle)

println 'Vehicle has valid fuel: ' +

 isValidFuel(vehicle)
println 'Vehicle has wheels: ' +

 hasWheels(vehicle)

4. The previous script yields the following output:

Vehicle has valid transmission data: true

Vehicle has valid fuel: true

Vehicle has wheels: false

How it works...
The previous code makes use of several very useful Groovy operators, which make Boolean
expressions look very short.

One of them is the safe navigation operator ?., which stops evaluating the Boolean
expression and returns null immediately if left operand is null. That means no ugly nested
if statements and no unexpected NullPointerExceptions, because the expression is
not evaluated further and because null will yield false in Boolean context.

So, for example, vehicle?.transmission?.gears > 3 will return false if vehicle or
transmission are null, or if transmission is not null, but there are no gears and
so on.

Working with JSON in Groovy

208

There's more...
Another approach would be to use JSON Schema. It is an emerging standard that is created
by the JSON community and it is essentially targeted to offer a similar functionality to what
XML Schema provides for XML.

JSON Schema, in the same fashion as XML Schema, can be expressed in JSON itself. To give
you an idea of how it looks, for our vehicle data we can define the following schema in a file:

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "description" : "Vehicle data schema",
 "type" : "object",
 "properties" : {
 "brand" : {
 "type" : "string",
 "required" : true
 },
 "model" : {
 "type" : "string",
 "required" : true
 },
 "fuel" : {
 "type" : "string",
 "enum" : ["DIESEL", "PETROL", "GAS", "ELECTRIC"]
 },
 "releaseYear" : {
 "type" : "integer"
 },
 "transmission" : {
 "type" : "object",
 "properties" : {
 "gears": {
 "type" : "integer"
 },
 "type": {
 "type" : "string",
 "enum" : ["MANUAL", "AUTOMATIC"]
 }
 }
 }
 }
}

Chapter 6

209

Basically, a JSON Schema defines a JSON object structure with the help of standard property
names and conventions, for example, the type attribute defines the type (for example, String,
integer, date, object, array, and so on) of the structure appearing on the same level in JSON
message, properties attribute contains a collection of nested property definitions, which also
describe type, name and restrictions like enum or required of the property value.

Please note that the JSON Schema is still a moving target: the example above
uses the slightly older draft 3 format. A newer version, named draft 4, is
available.

Currently there aren't many implementations of the JSON Schema in Java/Groovy. For this
example, we are going to use an implementation called json-schema-validator.

@Grab('com.github.fge:json-schema-validator:2.0.1')
import com.github.fge.jsonschema.main.JsonSchemaFactory
import com.github.fge.jsonschema.report.ProcessingReport
import com.github.fge.jsonschema.util.JsonLoader
import com.github.fge.jsonschema.main.JsonSchema

def factory = JsonSchemaFactory.byDefault()

def schemaFile = new File('vehicle_schema.json')
def metadata = JsonLoader.fromFile(schemaFile)
def data = JsonLoader.fromFile(new File('vehicle.json'))

def schema = factory.getJsonSchema(metadata)

def report = schema.validate(data)

def success = report.isSuccess()
println("Validation ${success ? 'succeeded' : 'failed'}")

if (!success) {
 println('---- BEGIN REPORT ----')
 report.each { message -> println message }
 println('---- END REPORT ----')
}

First of all, we Grab-ed the dependency for json-schema-validator and imported several
required classes. The json-schema-validator library internally uses the JsonNode data
structure to keep the JSON data. For this reason, we need to rely on JsonLoader to load the
JSON files.

Working with JSON in Groovy

210

Noticeably, data and schema are loaded in the same way. After constructing a JsonSchema
object using JsonSchemaFactory, we finally can validate the data. The last code lines just
call the validation routine and print out validation messages, if any.

The script reports one error (the following output is formatted for readability):

Validation failed

---- BEGIN REPORT ----

{

 level="error",

 schema={

 "loadingURI":"#",

 "pointer":"/properties/transmission/properties/gears"

 },

 instance={"pointer":"/transmission/gears"},

 domain="validation",

 keyword="type",

 message="instance type does not match any

 allowed primitive type",

 expected=["integer"],

 found="string"

}

---- END REPORT ----

The error reported by the validator is related to /transmission/gears: the JSON validation
code expects an Integer, but the JSON document provides a String:

{
 ...
 "transmission": {
 "gears": "5",
 "type": "MANUAL"
 }
 ...
}

JSON Schema provides a more generic approach to validation error handling compared to the
custom Groovy code.

Chapter 6

211

See also
 f Parsing JSON messages with JsonSlurper

 f http://groovy.codehaus.org/Operators

 f http://docs.codehaus.org/display/GROOVY/Groovy+Truth

 f http://json-schema.org/

 f https://github.com/fge/json-schema-validator

 f https://github.com/EqualExperts/json-schema-validator

Converting JSON message to XML
JSON and XML are the de facto data interchange standard formats used by industry
applications. The two formats share many similarities, but have different goals in their design.
JSON is designed to be a data exchange language, which is human readable and easy for
computers to parse and use. XML also shares the readability goal, but suffers from a higher
degree of verbosity and complexity.

Nevertheless, the two formats are here to stay, and a case for converting from one format to
the other is recurring in the IT industry.

This recipe shows how to convert a JSON document into XML using a Groovy only solution as
well as introducing a less "groovier" solution in the There's more... section.

Getting ready
The JSON document to convert is the ui.json file that we already encountered in the Parsing
JSON messages with JsonSlurper recipe.

How to do it...
The conversion is based on groovy.xml.MarkupBuilder, which allows full control on the
final output but makes the code more verbose because we have to explicitly specify all the
transformation rules.

1. In a script copy the following code, making sure that the ui.json file is in the same
folder as the Groovy script:
import groovy.json.JsonSlurper
import groovy.xml.MarkupBuilder

def reader = new FileReader('ui.json')

Working with JSON in Groovy

212

def ui = new JsonSlurper().parse(reader)

def writer = new StringWriter()
def xml = new MarkupBuilder(writer)

2. Now you can use the builder to pass data from the parsed message:
xml.items {
 ui.items.each { widget ->
 item(type: widget.type,
 height: widget.height,
 width: widget.width) {
 axes {
 widget.axes.each { widgetAxis ->
 axis(type: widgetAxis.type,
 name: widgetAxis.title)
 }
 }
 }
 }
}

println writer.toString()

3. The output of the code is as follows:

<items>

 <item type='chart' height='270' width='319'>

 <axes>

 <axis type='Time' name='Time' />

 <axis type='Numeric' name='Profit in EUR' />

 </axes>

 </item>

</items>

How it works...
The code in step 2 is really a testament to the sheer efficiency of builders (see the Defining
data structures as code in Groovy recipe in Chapter 3, Using Groovy Language Features).
The variable xml is used to construct the XML element names and attributes that are
extracted, via dynamic methods, from the ui variable, created by the MarkupBuilder.
More information on MarkupBuilder can be found in the Constructing XML content
recipe in Chapter 5, Working with XML in Groovy.

Chapter 6

213

To avoid confusing the Groovy compiler, when we are inside the iterator closures (for example,
widget.axes.each { widgetAxis -> ...) we have to use variable names that are
different from the XML element names (for example, axis(type: widgetAxis.type
...).

There's more...
The second approach mentioned in this recipe's introduction is to use a third-party library,
such as JSON-lib to perform the transformation with little coding. The following code makes
use of the XMLSerializer class to transform the JSON data to XML.

@Grapes([
 @Grab(group='net.sf.json-lib',
 module='json-lib',
 version='2.3',
 classifier='jdk15'),
 @Grab('xom:xom:1.2.5')
])
import net.sf.json.JSONObject
import net.sf.json.xml.XMLSerializer

def object = JSONObject.fromObject(new File('ui.json').text)

println new XMLSerializer().write(object)

Here we trade lines of code for lack of control above the produced XML, that is not quite as
readable as the Groovy only example:

<?xml version="1.0" encoding="UTF-8"?>
<o>
 <items class="array">
 <e class="object">
 <animate type="boolean">true</animate>
 <axes class="array">
 <e class="object">
 <fields class="array">
 <e type="string">x</e>
 </fields>
 <position type="string">left</position>
 <title type="string">Time</title>
 <type type="string">Time</type>
 </e>
 ...

Working with JSON in Groovy

214

 </axes>
 ...
 </e>
 ...
 </items>
</o>

The output can still be tweaked by setting different options of the XmlSerializer class,
but you would not be able to fully control the complete structure of the output. The technique
outlined here may be established for very complex JSON documents, which would require a
non-trivial amount of code to perform the conversion to XML. An additional approach could be
to apply XSLT transformation to the result produced by the XmlSerializer, but describing
the process goes beyond the scope of this recipe.

See also
 f Constructing JSON messages with JsonBuilder

 f The Constructing XML content recipe in Chapter 5, Working with XML in Groovy

 f http://json-lib.sourceforge.net/

 f http://json-lib.sourceforge.net/apidocs/jdk15/net/sf/json/xml/
XMLSerializer.html

 f http://groovy.codehaus.org/gapi/groovy/json/JsonBuilder.html

 f http://groovy.codehaus.org/api/groovy/xml/MarkupBuilder.html

Converting JSON message to Groovy Bean
The power of the Java/Groovy type system, reflection API, and other goodies may be very
handy if you need to make more type-safe code.

JSON by definition is not doing any type checking, but it is possible to map the JSON data
to the Java/Groovy objects to present data inside your application and get access to type
information. And that's what we will demonstrate in this recipe.

Getting ready
First of all let's define a Groovy Bean (POGO) class, which holds data representing some
vehicle information:

package org.groovy.cookbook

import groovy.transform.ToString

@ToString

Chapter 6

215

class Vehicle {

 static enum FuelType { DIESEL, PETROL, GAS, ELECTRIC }
 static enum TransmissionType { MANUAL, AUTOMATIC }

 @ToString
 static class Transmission {
 long gears
 TransmissionType type
 }

 String brand
 String model
 FuelType fuel
 Long releaseYear
 Transmission transmission

}

As you can notice it's nothing, but a set of fields of simple types, enumerations, and a nested
class, which again consists of simple type fields. In order for that class to be available for
the conversion script, let's place it into a vehicle.groovy file and compile it with the
groovyc command:

groovyc vehicle.groovy

The JSON document to which we want to map the class is the one defined in the recipe,
Validating JSON messages. Create a vehicle.json file in the same directory as the
vehicle.groovy.

To simplify the mapping, we used the same property names in both, JSON message and the
Vehicle class.

How to do it...
Create a new Groovy script, convert.groovy, making sure that it's located in the same
folder as the JSON file.

1. Add the following code to the script:
import groovy.json.JsonSlurper
import org.groovy.cookbook.Vehicle

def reader = new FileReader('vehicle.json')
def jsonVehicle = new JsonSlurper().parse(reader)

def vehicle = new Vehicle (
 brand: jsonVehicle.brand,

Working with JSON in Groovy

216

 model: jsonVehicle.model,
 transmission: new Vehicle.Transmission(
 gears: jsonVehicle.transmission.gears,
 type: jsonVehicle.transmission.type),
 releaseYear: jsonVehicle.releaseYear,
 fuel: jsonVehicle.fuel)

println vehicle

2. Run the script in a usual way:
groovy convert.groovy

3. The println command outputs:

org.groovy.cookbook.Vehicle(Mazda, 5, PETROL, 2007,

 org.groovy.cookbook.Vehicle$Transmission(5, MANUAL))

How it works...
Groovy performs some of the data type mapping automatically for us; making the conversion
code simpler. For example, jsonVehicle.fuel is actually a String, but it is transformed to
FuelType enumeration automatically since the values are matching. Also, jsonVehicle.
transmission.gears is a String in our original JSON message (because it is included in
the double quotes), but it is still safely converted to a long field in the Transmission object.

Thanks to the @ToString annotation, the Vehicle class shows all its internal data upon
printing by the last line of the script.

There's more...
Writing the conversion code for every possible type you may need, is time consuming.
Fortunately, existing third-party libraries come to the rescue. In the following sections,
we will show how Groovy Bean conversion can be achieved with the JSON-lib, Jackson
and GSON libraries. Please note that for the next examples to work the Vehicle class
is imported, therefore, it must be extracted to a Vehicle.groovy class and added to
the classpath when running the code.

 f JSON-lib can be used in the following way:
@Grapes([
 @Grab(group='net.sf.json-lib',
 module='json-lib',
 version='2.3',
 classifier='jdk15'),
 @Grab('xom:xom:1.2.5')
])

Chapter 6

217

import net.sf.json.JSONObject
import org.groovy.cookbook.Vehicle

def file = new File('vehicle.json')
def jsonObject = JSONObject.fromObject(file.text)

println JSONObject.toBean(jsonObject, Vehicle)

 f Jackson can be used in the following way:
@Grab('com.fasterxml.jackson.core:jackson-databind:2.1.0')
import com.fasterxml.jackson.databind.ObjectMapper
import org.groovy.cookbook.Vehicle

def mapper = new ObjectMapper()
def file = new File('vehicle.json')

println mapper.readValue(file, Vehicle)

 f GSON can be used in the following way:

@Grab('com.google.code.gson:gson:2.2.2')
import com.google.gson.Gson

import org.groovy.cookbook.Vehicle

def gson = new Gson()
def reader = new FileReader('vehicle.json')

println gson.fromJson(reader, Vehicle)

All of those frameworks produce similar results, and they can be further tweaked for more
complex data conversion requirements.

See also
 f Parsing JSON messages with JsonSlurper

 f http://json-lib.sourceforge.net/

 f http://code.google.com/p/google-gson/

 f http://wiki.fasterxml.com/JacksonHome

Working with JSON in Groovy

218

Using JSON to configure your scripts
The target of this recipe is to show how to use JSON as a format for configuring a
Groovy application.

The requirements for a configuration file format are:

 f Simple

 f Human-readable

 f Cross-platform

 f Multi-language support

 f Unicode support

JSON fully satisfies the above requirements, thus making a great candidate for configuring
an application.

Getting ready
For this recipe, we work on a fictional application that maintains a connection to multiple
databases. Each database has a number of parameters to configure such as host, port,
credentials, and connection pool initial size.

The following is a sample JSON based configuration file for our application:

{
 "configuration":{
 "database":[
 {
 "name":"database1",
 "host":"10.20.30.40",
 "port":"4930",
 "user":"user-alpha",
 "password":"secret",
 "pool-initial-size":"10",
 "pool-max-size":"10"
 },
 {
 "name":"database2",
 "host":"192.168.10.30",
 "port":"5001",
 "user":"user-beta",
 "password":"secret",
 "pool-initial-size":"5",

Chapter 6

219

 "pool-max-size":"30"
 }
]
 }
}

It takes very little code (compared to Java) to build a simple configuration handler in Groovy.

How to do it...
Let's start by copying the JSON configuration displayed above to a file named db-config.
json. For the sake of conciseness, let's keep all the code in one single Groovy script: create
a new file named configurator.groovy.

1. Add the following class to the file: it will hold the configuration data for each database.
import groovy.json.*
import groovy.transform.TupleConstructor

@TupleConstructor
class Database {
 String name
 String host
 Integer port
 String user
 String password
 Integer initPool
 Integer maxPool
}

This is a terse Groovy Bean (see the Writing less verbose Java Beans with Groovy
Beans recipe in Chapter 3, Using Groovy Language Features) with a bunch of
attributes which are mapped 1-1 to the configuration data.

2. What follows is the configuration handling class. Copy the code after the Database
class definition:
class AppConfig {

 def databases = []

 AppConfig(conf) {
 if (conf) {
 conf.configuration
 .database.each {
 databases << new Database(
 it.name,

Working with JSON in Groovy

220

 it.host,
 it.port.toInteger(),
 it.user,
 it.password,
 it.'pool-initial-size'.toInteger(),
 it.'pool-max-size'.toInteger())
 }
 }
 }

 def getDatabaseConfig = { name ->
 databases.find { it.name == name }
 }

}

3. Finally, let's put our class to work by parsing the configuration file and calling the
newly defined class:
def reader = new FileReader('db-config.json')
def conf = new JsonSlurper().parse(reader)
def dbConfig = new AppConfig(conf)
// Execute application logic
println dbConfig.getDatabaseConfig('database2').host
println dbConfig.getDatabaseConfig('database1').user
...

4. Our configurable script will output the following lines in this case:

192.168.10.30

user-alpha

How it works...
The AppConfig class takes java.util.HashMap as constructor parameter, which is the
outcome of a parsed JSON payload using JsonSlurper.

For each database found in the data structure, a new Database object is built and
added to the list of databases to configure. The Database object doesn't force us to
specify the constructor argument name, because the POGO class is annotated with
@TupleConstructor.

The getDatabaseConfig closure elegantly returns the database configuration object that
matches the given name of the database to configure.

If found, the database properties are accessible as Groovy Bean getters.

Chapter 6

221

There's more...
Another popular format similar to JSON for dealing with the configuration data is YAML.

YAML is a lightweight data serialization format designed with readability in mind and with
support for hierarchical data structures. YAML stands for YAML Ain't Markup Language.
It is easier on the eyes than JSON and sports a simple typing system.

Additionally, YAML can be considered a superset of JSON. That means, a valid JSON file is also
a valid YAML file (but not vice versa).

The ultimate goal of YAML is to be very comfortable on the eyes. The following is an example
of YAML formatted data.

firstname: Mike
lastname: Ross
position: CFO

Groovy doesn't have any native YAML parser. So, the most convenient approach is to use a
third-party Java library, such as JYaml.

@Grab('org.jyaml:jyaml:1.3')
import org.ho.yaml.Yaml

yamlData = '''
 firstname: Mike
 lastname: Ross
 position: CFO
''
'
class Staff {
 def firstname, lastname, position
}

Staff s = Yaml.loadType(yamlData, Staff)

println s.firstname
println s.position

The script will print:

Mike

CFO

This solution doesn't use any Groovy specific feature, but it nevertheless represents a good
compromise if YAML is among the requirements of your application.

Working with JSON in Groovy

222

Another alternative to configure your scripts is to use Groovy's native ConfigSlurper class,
which is capable of consuming configuration data defined in the form of Groovy scripts.

See also
 f Parsing JSON messages with JsonSlurper

 f http://jyaml.sourceforge.net/

 f http://groovy.codehaus.org/gapi/groovy/util/ConfigSlurper.html

7
Working with

Databases in Groovy

In this chapter, we will cover:

 f Creating a database table

 f Connecting to an SQL database

 f Querying an SQL database

 f Modifying data in an SQL database

 f Calling a stored procedure

 f Reading BLOB/CLOB from a database

 f Building a simple ORM framework

 f Using Groovy to access Redis

 f Using Groovy to access MongoDB

 f Using Groovy to access Apache Cassandra

Introduction
The group of recipes presented in this chapter deals with data persistence, either through a
relational SQL database or a NoSQL database.

The first recipe describes how to access and modify data stored in a relational database, such
as Oracle or MySQL. Groovy makes accessing data using the SQL language a very elegant
affair, compared to the clunky Java's JDBC APIs.

Working with Databases in Groovy

224

The last three recipes show how to use Groovy with the emerging NoSQL databases, such
as Redis, MongoDB, and Cassandra. Each of those recipes contains the steps to connect,
persist, and retrieve data with one of the three key/value stores.

Creating a database table
As a starting point for this chapter about database access and SQL, we look at how to create
a database schema using Groovy. The database model outlined in this recipe will serve as a
reference for the rest of this chapter.

The Data Definition Language (DDL) is an essential part of the SQL standard. Through its
syntax, it allows defining database objects. These database objects include schemas, tables,
views, sequences, catalogs, indexes, and aliases.

Groovy doesn't come with any specific support for this portion of the SQL language.
Nevertheless, we can leverage Groovy's conciseness to simplify the database
creation operations.

Getting ready
The following image contains a diagram depicting the tables of the schema we will create in
this recipe:

COOKBOOK

INGREDIENT RECIPE

ID
TITLE
AUTHOR
YEAR

ID
RECIPE_ID
NAME
AMOUNT
UNITS

ID
CHAPTER_ID
TITLE
DESCRIPTION
IMAGE

CHAPTER

ID
BOOK_ID
TITLE

As you can notice, the model represents a cookbook which consists of a set of chapters with
cooking recipes. Each recipe has a title, detailed description, image of the desired result, and
a list of ingredients required to implement it.

Chapter 7

225

The database that we are going to use all along is HyperSQL 2.3.0 (HSQLDB) in-memory
database. HSQLDB is a very popular database written in Java that is very often used for
unit testing and creation of application prototypes—thanks to its lightweight nature.

How to do it...
In order to get started, create a new Groovy script named DBUtil.groovy that will contain
some routines that will be used throughout this chapter:

1. Add the following code to the script:
@GrabConfig(systemClassLoader=true)
@Grab('org.hsqldb:hsqldb:2.3.0')
import org.hsqldb.Server

class DBUtil {

 static dbSettings = [
 url: 'jdbc:hsqldb:hsql://localhost/cookingdb',
 driver: 'org.hsqldb.jdbcDriver',
 user: 'sa',
 password: ''
]

 static startServer() {
 Server server = new Server()
 def logFile = new File('db.log')
 server.setLogWriter(new PrintWriter(logFile))
 server.with {
 setDatabaseName(0, 'cookingdb')
 setDatabasePath(0, 'mem:cookingdb')
 start()
 }
 server
 }

}

2. In a second script, createDb.groovy, add the following import statements for the
DBUtil class and Groovy's SQL utilities to be visible:
import static DBUtil.*
import groovy.sql.Sql

Working with Databases in Groovy

226

3. We need to define a list of DDL statements we want to run in order to create the
database schema. Let's use just a list of strings for that purpose:
def ddls = [

 '''
 CREATE TABLE COOKBOOK(
 ID INTEGER PRIMARY KEY,
 TITLE VARCHAR(100),
 AUTHOR VARCHAR(100),
 YEAR INTEGER)
 ''',

 '''
 CREATE TABLE CHAPTER(
 ID INTEGER PRIMARY KEY,
 BOOK_ID INTEGER,
 TITLE VARCHAR(100))
 ''',

 '''
 CREATE TABLE RECIPE(
 ID INTEGER PRIMARY KEY,
 CHAPTER_ID INTEGER,
 TITLE VARCHAR(100),
 DESCRIPTION CLOB,
 IMAGE BLOB)
 ''',

 '''
 CREATE TABLE INGREDIENT(
 ID INTEGER PRIMARY KEY,
 RECIPE_ID INTEGER,
 NAME VARCHAR(100),
 AMOUNT DOUBLE,
 UNITS VARCHAR(20))
 '''
]

4. Complete the second script with the following code that executes all the previous SQL
statements through a groovy.sql.Sql instance in a loop:
startServer()

Sql sql = Sql.newInstance(dbSettings)
ddls.each { ddl ->
 sql.execute(ddl)
}
println 'Schema created successfully'

Chapter 7

227

5. Assuming that both scripts are in the same folder, launch the createDb.groovy
script passing the folder path (or "." if it's a current directory), where both scripts
reside to the -cp parameter:
groovy -cp . createDb.groovy

6. The script should print the following line:

Schema created successfully

The script process will continue to run since the database server thread is still active. You
can reuse that to connect to the database and perform queries for later recipes (see the
Connecting to an SQL database and Querying an SQL database recipes).

How it works...
In this first recipe, we have covered quite a lot of ground and some explanation is due. The
first script contains a utility class to start the HyperSQL server. The database is started with a
name (cookingdb) and the path is set to use memory as storage. This means that when we
kill the database process, all the data is lost.

Most of the recipes in this chapter can be run against any relational database. After all this
is what SQL is about, a vendor-independent language to query data provided that the proper
JDBC drivers are available in the classpath.

This is exactly what the @Grab annotation is there for. It fetches the HyperSQL database
drivers as well as the server libraries. This is actually an exception, because, in most database
scenarios (MySQL, Oracle, etc.) you'd fetch the drivers only and not a full database engine
implementation! The @Grab annotation is accompanied by a second annotation:

@GrabConfig(systemClassLoader=true)

This annotation is forcing Grape to place the dependencies in the system class loader. By
default, the dependencies are available in the same class loader as our Groovy script or
application. But sometimes this is not enough; a typical case is exactly our case, a database
driver which is required to be in the system classpath for the java.sql.DriverManager
class to access it.

The DBUtil class also contains the database connection settings that we need to access the
in-memory database: one those are defined as a Map and contain the standard information
required to connect to any relational database, such as the driver or the server host. You will
need to adjust all the parameters to newInstance to connect to your database, especially
username and password.

The second script, in which the database tables are actually created, is very simple but
contains a key class that we will see over and over in the rest of this chapter's recipes,
groovy.sql.Sql (see the Connecting to an SQL database and the Querying an SQL
database recipes).

Working with Databases in Groovy

228

This class does all the connectivity heavy lifting: it connects to the database specified in the
dbSettings variable (note that the newInstance method of the Sql class accepts also a
plain string) and returns an object that is ready to be used to fire queries to the database to
which we are connected to.

Once we get a valid connection, the code simply iterates over the list of SQL statements
defined in the ddls variable, and runs them through the execute method of the Sql class.

See also
 f Connecting to an SQL database

 f Querying an SQL database
 f http://hsqldb.org/

 f http://groovy.codehaus.org/api/groovy/sql/Sql.html

Connecting to an SQL database
This recipe is about the various approaches we can use to connect to a database using Groovy
and the groovy.sql.Sql class that we briefly encountered in the Creating a database
table recipe.

Getting ready
As mentioned in the first recipe of this chapter, we are going to reuse the DBUtil class,
which contains some helper methods to simplify our work with the database. Create a new
Groovy script and add the following import statements before adding the code presented in
the next section:

@Grab('commons-dbcp:commons-dbcp:1.4')
import static DBUtil.*
import groovy.sql.Sql
import org.apache.commons.dbcp.BasicDataSource

Do not forget to start the HyperSQL server by calling startServer. As shown in the Creating
a database table recipe, pass the -cp argument to the groovy command with the path to
the folder with the DBUtil.groovy script in order to execute the script containing the steps
of this recipe.

Chapter 7

229

How to do it...
The simplest way to connect to a running instance of a database is by calling the
newInstance method on the groovy.sql.Sql class.

1. The newInstance method is written as follows:
Sql sql = Sql.newInstance(
 'jdbc:hsqldb:hsql://localhost/cookingdb',
 'sa',
 '',
 'org.hsqldb.jdbcDriver'
)
println 'connected with connection data: ok'

2. If we want to reuse an existing connection (normally when using a connection pool),
then we can simply pass it to the class constructor:
Sql reusedConnection = new Sql(sql.createConnection())
println 'connected with reused connection: ok'

3. A third way to connect to a database using the Groovy provided Sql class is by
passing a javax.sql.DataSource instance to the constructor:
@Grab('commons-dbcp:commons-dbcp:1.4')
import org.apache.commons.dbcp.BasicDataSource
def ds = new BasicDataSource()
ds.with {
 driverClassName = 'org.hsqldb.jdbcDriver'
 password = ''
 username = 'sa'
 url = 'jdbc:hsqldb:hsql://localhost/cookingdb'
}
Sql sql3 = new Sql(ds)
println 'connected with datasource: ok'

4. Finally, we need to clean up:

reusedConnection.close()

How it works...
Internally groovy.sql.Sql uses the JDBC driver infrastructure to connect to the database
and eventually make the SQL calls. The required database driver has to be added to the
classpath either with the help of @Grab annotation, which will load any required dependency
from the central dependency repository (http://repo1.maven.org/), or in case the driver
is not available on a public server, you can use any other standard Java way to add the driver's
JAR to the classpath.

Working with Databases in Groovy

230

For example, in order to connect to a MySQL database you need to use the following
@Grab annotation:

@Grab('mysql:mysql-connector-java:5.1.21')
import com.mysql.jdbc.Driver

The newInstance method creates a new connection every time it is invoked, so it should be
used with caution as you may end up exhausting the database resources. In the Creating a
database table recipe, we saw how to call newInstace with a Map. In step 1 of this recipe,
we use the standard constructor which accepts four arguments: database connection URL,
username, password, and driver class name. In step 2, we pass a java.sql.Connection
to the groovy.sql.Sql constructor.

This method of establishing a connection is normally used in conjunction with a connection
pool that manages the connections for us, decreasing dramatically the time it takes to open a
new connection. It is the caller's responsibility to close the connection after the Sql instance
has been used. The preferred approach is to call the close method which will close the
connection, but also free any cached resources (see step 4).

The Sql class exposes a constructor that also accepts a javax.sql.Datasource object,
as shown in step 3. Datasource objects are normally retrieved via a JNDI invocation from an
application server such as Tomcat, Oracle Weblogic, or IBM Websphere. A Datasource object is
an abstraction that avoids manually specifying the connection properties in the code. It renders
hard coding the driver name or JDBC URL obsolete, making the software more portable.

Moreover, storing the Datasource on an application server increases the maintainability of
the software: changes to the database (for example, a new IP address) do not impact the
deployed applications but only the server configuration. Lastly, Datasource normally provides
connection pooling and transactional services.

In step 3, we create a BasicDataSource object from the time-honored Apache Commons DBCP
project. When using JNDI, we would write code similar to the following snippet:

def ctx = new InitialContext()
def ds = (DataSource) ctx.lookup('jdbc/bookDB')

When using the constructor that accepts a Datasource, each operation will use a connection
from the Datasource pool and close it when the operation is completed putting it back into
the pool.

See also
 f Querying an SQL database

 f Modifying data in an SQL database
 f http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Chapter 7

231

 f http://groovy.codehaus.org/api/groovy/sql/Sql.html

 f https://commons.apache.org/proper/commons-dbcp/

Querying an SQL database
Usually data is more often read than it is written, and performing data queries is the most
important task done by database-driven applications. The standard JDBC API is rather verbose
and adds a lot of boilerplate code around actual queries. Groovy provides more elegance to
the querying code by simplifying access and mapping logic.

This recipe contains a highlight of some of the methods you can use to query a database
using Groovy.

Getting ready
As for the previous recipes from this chapter, we will use the DBUtil class defined in the
Creating a database table recipe as well as the same database structure.

Considering that this recipe is about querying data, we need to populate our database first.
The database population code is quite verbose, so we leave it out of this recipe and we ask
the reader to refer to the accompanying code for this chapter. The DBUtil.groovy available
in the download section has been refactored with two new methods:

 f createSchema: It triggers the same code we wrote for the Creating a database
table recipe

 f populate: It inserts some rows into the tables

How to do it...
The following steps will let us dive into SQL queries with the help of Groovy.

1. Let's start by creating a new Groovy script file (queryDb.groovy) where we import
the DBUtil module and we initialize the database:
import static DBUtil.*
import groovy.sql.Sql

def server = startServer()
createSchema()
populate()

2. Create the Sql class instance and initialize it with the default database
connection settings:
def sql = Sql.newInstance(dbSettings)

Working with Databases in Groovy

232

3. Write your first query:
sql.eachRow('SELECT * FROM COOKBOOK') { cookbook ->
 printf '%-20s%s\n',
 cookbook.id,
 cookbook[1]
}

4. Clean up and kill the server:
sql.close()
server.stop()

5. By running this script, the output should look as follows:
> groovy -cp /path/to/script/folder queryDb.groovy

schema created successfully

Database populated: ok

1 30-minute-meals

2 Ministry of food

6. Immediately after the first one, try another query, where we pass arguments to the
SQL query:
println ': using named arguments'
sql.eachRow('SELECT * FROM COOKBOOK ' +
 'WHERE id = :id ',
 [id:2]) { cookbook ->

 printf '%s|%s|%s\n',
 cookbook.id,
 cookbook.author,
 cookbook.title

}

7. Running the script again yields the following output:
: using named arguments

2|Jamie Oliver|Ministry of food

8. You can also limit the result set by specifying the maximum number of rows and the
number of the "page" (offset) to return:
println ': using offset'
sql.eachRow(
 'SELECT * FROM COOKBOOK',
 1, 5) { cookbook ->

Chapter 7

233

 printf '%s|%s|%s\n',
 cookbook.id,
 cookbook.author,
 cookbook.title

}

9. The query method grants you direct access to the java.sql ResultSet object,
should you need to interact with it:
println ': using ResultSet'
sql.query('SELECT * FROM COOKBOOK') { rs ->
 while (rs.next()) {
 println rs.getString('title')
 }
}

10. If we want to process all the rows but don't want to use an iterator, we can use the
rows method on the Sql instance. It returns an instance of the ArrayList class
containing the result data, as shown here:
println ': using rows method'
List allCookbooks = sql.rows('SELECT * FROM COOKBOOK')
assert allCookbooks.size() == 2
println allCookbooks[0]?.title

11. If you only need the first record of the result set or your query is meant to return only
one result, then you can use the firstRow method:

def firstCookbook = sql.firstRow('SELECT * FROM COOKBOOK')
println firstCookbook?.title

How it works...
The groovy.sql.Sql class has three main methods to query the database:

 f eachRow

 f rows

 f query

Working with Databases in Groovy

234

Each method has several overloaded versions (eachRow, for instance, has 20 overloaded
methods) that can be used to tweak the way the results are fetched and presented. eachRow,
in its simplest form, requires an SQL statement and a closure to process each row of data. In
step 3, we can see an example: eachRow executes SQL's SELECT query on the COOKBOOK
table and processes all its rows. We then iterate (as the name each indicates) over each row
and print the result. But what is the actual object we are iterating on. Let's look at the code
once again:

sql.eachRow('SELECT * FROM COOKBOOK') { cookbook ->
 printf '%-20s%s\n',
 cookbook.id,
 cookbook[1]
}

The cookbook variable is used as if it was an object: note how we call the method id on it.
At the same time, we treat it as a List, by referencing a column by index. So what is it? It's
an object of type groovy.sql.GroovyResultSet which wraps the underlying java.sql.
ResultSet. The property invocation (id) is intercepted and mapped to the column name, if
the two match. Similarly, referencing the column name by index achieves the same result
(starting from zero, allowing negative indexes that count from the end).

The various rows method available in the Sql class have all the same outcome: they return
the result set as a List, allowing a developer to leverage the rich Groovy Collection API, with
methods such as find, findAll, grep, any, and every.

The query method (step 9) trades some convenience for a higher degree of customization
in the iteration process. The method produces a java.sql.ResultSet and has the usual
quirks associated with this rather old Java class. The method next must be called to move
the cursor to the next row, you need to call type-specific getters (getString, getDate, and
so on) and indexes start at one instead of zero. The query method still hides some of the
ceremoniousness related to resource management by automatically opening/closing the
connection and the statement.

There's more...
If you are doing many similar queries within the same code block you can cache prepared
SQL statement objects with the help of the cacheStatements method, which accepts a
Closure as its only parameter. The Closure may contain other groovy.sql.Sql calls:

sql.cacheStatements {
 sql.eachRow('SELECT * FROM RECIPE ' +
 ' WHERE COOKBOOK_ID = 1') { recipe ->
 sql.eachRow('SELECT COUNT(*) FROM INGREDIENTS ' +
 'WHERE recipe_id = ?', [recipe.id]) {
 ...
 }
 }
}

Chapter 7

235

As you can notice we do a nested SQL query, which will benefit from being prepared and
cached for performance reasons.

See also
 f http://groovy.codehaus.org/api/groovy/sql/Sql.html

 f http://groovy.codehaus.org/api/groovy/sql/DataSet.html

 f http://groovy.codehaus.org/api/groovy/sql/GroovyRowResult.html

Modifying data in an SQL database
The logical step after querying a database (see the Querying an SQL database recipe) is
writing data to it. This recipe shows how a few lines of Groovy and very little boilerplate is
needed to do the job of modifying data in a database table.

Getting ready
This recipe also uses the same table structure and the way to start a database server defined
in the Creating a database table recipe.

How to do it...
As usual, create a new Groovy script named modifyDb.groovy. As for the previous recipes,
in this case we also need to import the DBUtil class.

1. Add the following code to the newly created script:
import static DBUtil.*
import groovy.sql.Sql

def server = startServer()
createSchema()

2. The next logical step is to define the initial data to write to the database. Add
the following code to the script, a variable containing a list of Maps with the
data to persist:
def cookbooks = [
 [id: 1,
 title: '30-minute-meals',
 author: 'Jamie Oliver',
 year: 2010],
 [id: 2,
 title: 'Ministry of food',

Working with Databases in Groovy

236

 author: 'Jamie Oliver',
 year: 2005],
 [id: 3,
 title: 'Vegan food',
 author: 'Mr. Spock',
 year: 2105]
]

3. It's all we need to insert data into the COOKBOOK table, by iterating on the list and
passing each entry to the execute method:
def sql = Sql.newInstance(dbSettings)
cookbooks.each { cookbook ->
 sql.execute(
 'INSERT INTO COOKBOOK ' +
 'VALUES(:id, :title, :author, :year)',
 cookbook
)
}

4. We can verify that the data was correctly inserted by triggering an SQL query and
asserting that data is indeed there:
assert 3 == sql.rows('SELECT * FROM COOKBOOK').size()

5. In order to modify one or more columns of a row, the execute method is again the
method to call, this time in conjunction with the UPDATE statement.
sql.execute(
 'UPDATE COOKBOOK ' +
 'SET title = :title ' +
 'WHERE ID = :id',
 [title: '15-minutes meals', id: 1]
)

Also in this case, a Map containing the values to alter is passed to the execute
method. This method can also be invoked with a single string, as follows:

sql.execute(
 'UPDATE COOKBOOK ' +
 'SET title = "15-minutes meal" ' +
 'WHERE ID = 1'
)

6. Let's check again that our update query has worked as intended:
assert '15-minutes meals' ==
 sql.rows('SELECT * FROM COOKBOOK ' +
 'WHERE ID = 1')[0].title

Chapter 7

237

7. Deleting one or more rows is as simple. The following statement deletes the row
having the ID with value 3.

sql.execute(

 'DELETE from COOKBOOK WHERE ID = :id',

 [id: 3]

)

assert 2 == sql.rows('SELECT * FROM COOKBOOK').size()

How it works...
The execute method of the Sql class does most of the work for you when it comes to
executing SQL queries: it gets a connection, builds and configures the SQL statement, fires
it, logs any error, and eventually closes the resources, even if an exception is thrown. The
method returns a boolean, which is true if the first result is a java.sql.ResultSet object;
false if it is an update count or there are no results.

In step 3, we can observe how to execute a simple INSERT statement. What if the INSERT
statement is executed on a row with an autogenerated identifier? How do we get the value
of the primary key for the newly inserted row?

The groovy.sql.Sql has a handy executeInsert method, which behaves exactly as
the execute one, but returns a list of the autogenerated column values for each inserted row.
The generated key values are array based. For example, to access the second autogenerated
column value of the third row, use keys[3][1]:

def insertedIds = db.executeInsert(
 'insert into customers ' +
 'values(null, "John", "Doe")'
)
assert 9000 == insertedIds[0][0]

There's more...
In many cases, updating a database should happen in the context of a transaction.
For instance, we may want to execute an INSERT and an UPDATE within a transaction,
so that if the second UPDATE statement fails, also the first INSERT is rolled back.

Working with Databases in Groovy

238

Groovy's groovy.sql.Sql has a method, which does exactly that, and it's named,
not surprisingly, withTransaction. The method accepts a Closure containing the
statements to execute.

sql.withTransaction {

 sql.executeInsert(
 'INSERT INTO COOKBOOK ' +
 'VALUES(:id, :title, :author, :year)',
 [id: 99, title: 'Food for robots',
 author: 'Hal Ninethousand', year: 2001]
)

 sql.executeInsert(
 'INSERT INTO COOKBOOK ' +
 'VALUES(:id, :title, :author, :year)',
 [id: 100, title: '0 Carb Meals',
 author: 'Harry Slim', year: 1987]
)

}

Should any of the operations inside the withTransaction block fail, the whole block is
rolled back, if the underlying database supports transactions.

Another useful feature of the groovy.sql.Sql class introduced in Groovy 1.7 is the
withBatch method, which executes a group of SQL statements in a batch. This method is
very useful, when for example, we need to read data from a file and persist it in a database:

def updateCounts =
 sql.withBatch(20, 'INSERT into COOKBOOK ' +
 'values (?, ?, ?,?)') { ps ->

 ps.addBatch(
 10,
 'In Defense of Food: An Eater\'s Manifesto',
 'Michael Pokkan',
 2009)

 ps.addBatch(
 12,
 'Now....you\'re cooking! Comfort Food Classics',
 'Joan Donogh',
 2011)

 ps.addBatch(

Chapter 7

239

 14,
 '50 Superfoods Recipes',
 'Rebecca Fallon',
 2012)

 ...

}

The previous example shows withBatch used with a batch size value of 20. For each 20
INSERTs, the JDBC's executeBatch will be automatically called. Also in this case, the
withBatch operation works only if the database driver supports it.

See also
 f http://groovy.codehaus.org/api/groovy/sql/Sql.html

Calling a stored procedure
Stored procedure implementation in most SQL database servers is vendor-specific. JDBC
offers a generic way for calling those and Groovy's Sql class helps to simplify that task.

This recipe will demonstrate how to utilize the Sql class to make stored procedure calls.

Getting ready
Let's use the same cookbook database, created and populated, like in the Querying an SQL
database recipe:

import static DBUtil.*
import groovy.sql.Sql

def server = startServer()
createSchema()
populate()

Let's also assume we have defined a stored procedure with the following structure:

CREATE PROCEDURE INGREDIENT_USAGE(
 OUT INGREDIENTS_RATE INTEGER,
 IN INGREDIENT_NAME VARCHAR(100))
READS SQL DATA
BEGIN ATOMIC
 SELECT COUNT(*)

Working with Databases in Groovy

240

 INTO INGREDIENTS_RATE
 FROM INGREDIENT
 WHERE NAME LIKE '%' || INGREDIENT_NAME || '%';
END

The INGREDIENT_USAGE procedure declares one IN parameter and one OUT parameter.
The input parameter determines what kind of ingredient we are searching for, and the output
parameter returns the number of times that ingredient appears in our recipes.

You can use the same approach we used for other DDL statements in the Creating a database
table recipe to append a new stored procedure definition to the database schema.

How to do it...
The following simple steps demonstrate how we can accomplish our recipe's goal:

1. In order to call a stored procedure you need to create a list of parameter types and
values first:
def params = [Sql.INTEGER, 'sugar']

2. Then by using the call method and JDBC syntax we can invoke the desired
procedure in the database:
def sql = Sql.newInstance(dbSettings)
sql.call(
 '{ CALL INGREDIENT_USAGE(:rate, :pattern) }',
 params) { rate ->
 println "Sugar usage: $rate"
}

3. The script should print something similar to:

Sugar usage: 2

How it works...
We have specified two values in the list passed to the call method. The first value is the
type of the OUT parameter that we expect to receive, and the second one is the value for the
IN parameter that we pass to the procedure. Sql.DOUBLE is a constant (of groovy.sql.
OutParameter type) defined in the groovy.sql.Sql class. There is a constant for every
standard JDBC type.

OUT parameter values received back from the procedure are passed to the closure given to
the call method as a second parameter. Inside that closure, you are free to manipulate
received values, for example, by printing them.

Chapter 7

241

There's more...
If a stored procedure contains several OUT, IN, or even INOUT parameters, then invoking
that does not look much more complex. Let's assume we have the following stored
procedure signature:

CREATE PROCEDURE INGREDIENT_USAGE2(
 IN COOKBOOK_ID INTEGER,
 OUT INGREDIENTS_RATE INTEGER,
 INOUT INGREDIENT_NAME VARCHAR(100))
READS SQL DATA
BEGIN ATOMIC
 ...
END

Calling that procedure will look as follows:

def params = [1, Sql.INTEGER, Sql.inout(Sql.VARCHAR('sugar'))]

sql.call(
 '{ CALL INGREDIENT_USAGE2(:cookbook_id, :rate, :pattern)}',
 params) { rate, pattern ->
 println rate
 println pattern
}

The difference from our original snippet is that we pass the INOUT parameter with the help of
the Sql.inout(Sql.VARCHAR('sugar')) construct and that final closure runs over two
output parameters, rate and pattern.

See also
 f Creating a database table

 f Querying an SQL database
 f http://docs.oracle.com/javase/tutorial/jdbc/basics/

storedprocedures.html

 f http://groovy.codehaus.org/api/groovy/sql/Sql.html

 f http://groovy.codehaus.org/api/groovy/sql/InParameter.html

 f http://groovy.codehaus.org/api/groovy/sql/OutParameter.html

 f http://groovy.codehaus.org/api/groovy/sql/InOutParameter.html

Working with Databases in Groovy

242

Reading BLOB/CLOB from a database
Large binary object types are meant to store data, which is otherwise not splittable into
relational tables and columns, or which is easier to store in a binary form for application-
specific or performance needs. Groovy does not offer any special methods for handling SQL's
large binary objects, but, on the other hand, this recipe will show how to apply Groovy's I/O API
extensions to make the code more readable.

Getting ready
Let's again use the database model we created in the Creating a database table recipe.
In the RECIPE table, we have the DESCRIPTION column of CLOB type and the IMAGE
column of BLOB type.

How to do it...
To read the data, we can just use the same query methods we used in the Querying an SQL
database recipe:

sql.eachRow('SELECT * FROM RECIPE') { recipe ->

 println recipe.description.characterStream.text

 def recipeImage = new File("recipe-${recipe.id}.jpg")
 recipeImage.delete()
 recipeImage << recipe.image.binaryStream

}

How it works...
The types of recipe.description and recipe.image fields are java.jdbc.Clob and
java.jdbc.Blob respectively. Those are standard JDBC types used to handle large binary
data. By using instances of those types, you can create an InputStream to get the actual
data from the database. And that's what happens in the previous code snippet. The only
difference between the fields is that they serve different stream types. We just make use
of Clob.getCharacterStream and Blob.getBinaryStream methods.

Thanks to the Groovy extensions of standard Java API, we can transform an InputStream
directly into String with the help of the getText method (or simply text). We can as
well send another stream directly to a file with the help of the leftShift method
(or simply << operator) available in java.io.File extension.

Chapter 7

243

There's more...
You can also write BLOB/CLOB data into the database with simple insert statements.
Let's assume we have the following recipe information stored in a Map:

def recipe = [
 id: 1000, chapter_id: 100, title: 'steak indian-style',
 description: '''\
TO START Get all your ingredients and equipment ready.
Put a griddle pan on a high heat...
''',
 image: Sql.BLOB(new File('steak.jpg').bytes)
]

As you can see we defined the CLOB data of description field as simple string and wrapped
the binary image file data into a groovy.sql.InParameter instance with the help of Sql.
BLOB method. Now you can just call the execute method to insert data as we did in the
Modifying data in an SQL database recipe:

sql.execute(
 'INSERT INTO RECIPE ' +
 'VALUES(:id, :chapter_id, :title, :description, :image)',
 recipe
)

It is important to consider if the data persisted using a BLOB is small enough to comply
with your memory usage requirements. If the size of the BLOB is large then you risk getting a
dreaded OutOfMemoryException. To avoid any memory related issue, you have to use plain
old JDBC API and stream data into the database.

Also, if CLOB/BLOB support in your database driver is not optimal you need to consider using
native support. For example, the Oracle JDBC driver is widely known to require handling of
BLOB/CLOB in a native way that is bypassing generic JDBC classes and interfaces, using
classes of your driver implementation directly.

See also
 f Creating a database table

 f Querying an SQL database
 f http://docs.oracle.com/javase/6/docs/api/java/sql/Blob.html

 f http://docs.oracle.com/javase/6/docs/api/java/sql/Clob.html

 f http://groovy.codehaus.org/groovy-jdk/java/io/File.html

 f http://groovy.codehaus.org/groovy-jdk/java/io/InputStream.html

Working with Databases in Groovy

244

Building a simple ORM framework
The groovy.sql.Sql class meets the needs of querying and modifying data stored in a
relational database. Still, as the name implies, this class requires knowledge of the SQL
language and has a strong relationship with the verbosity of the Java's JDBC API.

Wouldn't be great if we could access and insert data into a database table without writing a
single line of SQL? The groovy.sql.DataSet class can make that happen.

In this recipe, we are going to cover a simple approach to building a database mapping
solution using Groovy facilities.

Getting ready
For this recipe, we are going to create a new table, named EMPLOYEE. Create a new script,
named orm.groovy and add the following code:

import static DBUtil.*
import groovy.sql.Sql
import groovy.sql.DataSet

class Person {
 Integer id
 String name
 String lastName
 Integer age
 Integer department
}

def server = startServer()
def sql = Sql.newInstance(dbSettings)

sql.execute('''CREATE TABLE EMPLOYEE (
 ID INTEGER PRIMARY KEY,
 NAME VARCHAR(100),
 LASTNAME VARCHAR(100),
 AGE INTEGER,
 DEPARTMENT INTEGER)''')

Similarly to the other recipes in this chapter, we make use of the DBUtil class. Therefore,
the script must be invoked by specifying the location of DBUtil.groovy in the classpath,
as follows:

groovy -cp /path/to/script/folder orm.groovy

Chapter 7

245

The script also contains the definition of the class Person that we will map to the
EMPLOYEE table.

How to do it...
Let's start adding some code after the table creation statement:

1. This is how to insert data into a table without (explicitly) issuing an SQL statement:
def persons = new DataSet(sql, 'EMPLOYEE')
person.add(name: 'John',
 lastname: 'Willis',
 id: 1,
 age: 40,
 DEPARTMENT: 100)
person.add(name: 'Alfred',
 lastname: 'Morris',
 id: 2,
 age: 50,
 DEPARTMENT: 101)
person.add(name: 'Mickey',
 lastname: 'Rourke',
 id: 3,
 age: 30,
 DEPARTMENT: 101)
person.add(name: 'Santo',
 lastname: 'Mongo',
 id: 4,
 age: 45,
 DEPARTMENT: 101)

2. This is how to fetch the data from the database using Dataset:

persons.each {
 println "employee ${it.id} - ${it.name} ${it.lastname}"
}

This will yield something similar to the following:

console employee 1 - John Willis employee 2 - Alfred Morris

How it works...
The DataSet represents a list, in which each element is a map of key/value pairs, matching
the corresponding table row. Row data can be easily accessed through property names.
The name of the property is case-insensitive, but must match the original column name.

The DataSet class issues the relevant SQL statements only when the each method
is invoked.

Working with Databases in Groovy

246

Here is an example of using the DataSet class with some WHERE conditions:

persons.findAll { it.age > 45 }.each {
 println it
}

The output may be as follows:

>[ID:2, NAME:Alfred, LASTNAME:Morris, AGE:50, DEPARTMENT:101]
>[ID:4, NAME:Santo, LASTNAME:Mongo, AGE:45, DEPARTMENT:101]

In this case, the findAll produces an SQL statement that reflects the expression within the
closure. This generated statement is encapsulated in the returned persons data set.

There's more...
Filters inside the Dataset can be combined to create more powerful query conditions:

persons.findAll { it.department == 101 && it.age < 50 }
 .sort { it.lastname }
 .each {
 println it
}

The output may be as follows:

>[ID:4, NAME:Santo, LASTNAME:Mongo, AGE:45, DEPARTMENT:101]
>[ID:3, NAME:Mickey, LASTNAME:Rourke, AGE:30, DEPARTMENT:101]

Did you spot the sort? As for any other collection in Groovy you can indeed sort the result.

See also
 f http://groovy.codehaus.org/api/groovy/sql/DataSet.html

Using Groovy to access Redis
Redis is an open source data structure server with an in-memory data set. It is called a data
structure server, and not simply a key/value store, because Redis implements data structures
allowing keys to contain binary safe strings, hashes, sets and sorted sets, as well as lists. This
combination of flexibility and speed makes Redis the ideal tool for many applications.

Redis has incredible performance, due to the in-memory data set, but it is still possible
to persist the data either by saving a snapshot of the data set to disk once in a while or
appending each command to a log.

Chapter 7

247

Redis also supports trivial-to-setup master/slave replication, with very fast non-blocking
synchronization, auto reconnection on network split and so forth.

Redis first started in early 2009 as a key value store developed by Salvatore Sanfilippo in
order to improve the performance of his own LLOOGG, an analytics product. Redis grew in
popularity after getting support from people and companies in the developer world and has
since been supported by VMWare, who hired Salvatore and Pieter Noordhuis to work full-time
on the project.

This recipe will present a way of accessing a Redis data store with the help of existing libraries
and Groovy.

Getting ready
In this recipe, we are going to take a look at the most common commands and data
structures available in Redis.

Redis is easy to install. The recommended way to install Redis is by compiling the sources, as
it doesn't have any external dependencies. Redis sources can be downloaded from the official
website (http://redis.io) or directly from GitHub (https://github.com/antirez/
redis). Build instructions can be found at the Redis quick start page (http://redis.io/
topics/quickstart).

Alternatively, you can download the binaries (including Windows binaries) directly from the
Redis download page (http://redis.io/download).

This recipe assumes that you have an instance of Redis 2.6 or higher, up and running on your
development machine.

The Redis communication protocol is quite simple. A client needs to open a TCP/IP connection
to the server and issue a Redis command terminated by \r\n (CR LF).

The general form is as follows:

*<number of arguments> CR LF
$<number of bytes of argument 1> CR LF
<argument data> CR LF
..
$<number of bytes of argument N> CR LF
<argument data> CR LF

Dealing with Redis at such a low level is not ideal. In order to simplify working with the
commands, several clients have been implemented in the last years for almost every
possible language.

There is no pure Groovy client at the moment, but there are several Java clients available.
The one we are going to use in this recipe is Jedis, developed by Jonathan Leibiusky and
considered the standard Java client for Redis.

Working with Databases in Groovy

248

Jedis can be downloaded directly from the project's GitHub page (https://github.com/
xetorthio/jedis) or referenced as dependency with Grape.

For a complete list of Redis clients, please, refer to the official client page on the Redis
website (http://redis.io/clients).

How to do it...
Let's see how we can access a Redis instance.

1. As usual while dealing with external libraries in Groovy, the first step is to declare the
Jedis dependency via Grape:
@Grab('redis.clients:jedis:2.1.0')
import redis.clients.jedis.*

2. The Jedis API is essentially a mirror of the Redis commands (http://redis.io/
commands). It is exposed by the Jedis class, which can be instantiated by passing
the host of the Redis server:
def jedis = new Jedis('localhost')

Jedis connects to the Redis default port, 6379. Should Redis run on a nonstandard
port, you can pass the port value too:

def jedis = new Jedis('localhost', 9000)

3. When the client is successfully connected, it's possible to issue the commands to
store and retrieve the values:
jedis.set('foo', 'bar')
String value = jedis.get('foo')
assert value == 'bar'

4. To increment a value fire this snippet:
jedis.set('counter', '1')
jedis.incr('counter')
jedis.incr('counter')
assert jedis.get('counter') == '3'

5. To set expiration period for a key you call the expire method passing the key and
the number of seconds for the key to live:
jedis.set('short lived', '10')
jedis.expire('short lived', 3)
Thread.sleep(3000)
assert jedis.exists('short lived') == false

Chapter 7

249

6. One of the appealing features of Redis is the presence of proper data structures
inside the key store, such as lists, sets, hashes, and sorted sets. Lists are used to
store an (ordered) collection of items:
jedis.rpush('myList', 'a', 'b', 'c')
assert 3 == jedis.llen('myList')
assert '1' == jedis.lrange('myList', 0,0)[0]

jedis.lpush('myList', '3', '2', '1')
assert 6 == jedis.llen('myList')

7. Stacks and queues can be very easily modeled with lists, using the rpop method,
which gets and removes the last element of a list:

jedis.del('myQueue')
jedis.lpush('myQueue', 'new york')
jedis.lpush('myQueue', 'dallas')
jedis.lpush('myQueue', 'tulsa')

assert 'new york' == jedis.rpop('myQueue')
assert 'dallas' == jedis.rpop('myQueue')
assert 'tulsa' == jedis.rpop('myQueue')

How it works...
Each method call of the Jedis API is translated into an actual Redis command. For example,
the INCR command, called in the step 4, atomically increments an integer value. It is
important to note that this is a string operation, because Redis does not have a dedicated
integer type. The EXPIRE command, used in step 5, defines the amount of seconds a key is
allowed to "live" before it expires.

Other commands that we demonstrated in the previous examples do the following:

 f The RPUSH command appends values at the start of a list.

 f The LRANGE command returns the specified elements from a list.

 f The LPUSH command appends values at the end of a list.

 f The RPOP command returns and removes the last value from a list.

There's more...
One of the reasons Redis is a very popular caching solution for large web applications is the
presence of hashes. A hash is essentially a map storing string fields and string values: the
perfect data type for storing objects.

Working with Databases in Groovy

250

So, let's start by creating a simple User bean.

class User {
 Long userid
 String username
 String password
}

The User bean is a typical domain object that we want to store in Redis. Groovy has a very
handy method exposed on the Object class, getProperties, which returns a Map of the
object's properties. The key/value structure is exactly what we need to store the domain
object in Redis.

User u = new User()
u.userid = 2001
u.username = 'john'
u.password = '12345'

After creating an instance of the User class, we proceed to store it in Redis by calling the
HMSET command.

jedis.hmset(
 "user:$u.userid",
 u.properties.findAll {
 !['class', 'userid'].contains(it.key)
 }.collectEntries { k,v ->
 [k, v.toString()]
 }
)

The hmset method accepts a String (the key) and a Map, which contains the key/values we
want to store. Logically, the key of the map is the primary key of the User, so we set it as user:
$u.userid.

The getProperties method returns in the Map also the actual class of the object on which
we call the method on (in our case, User). We don't need to store it, so we filter it out along
with the userid key, which would be redundant.

Finally, the collectEntries method, invoked on the filtered Map returns a new Map where
all the keys are Strings, as this is the only data type Redis (and Jedis) accepts.

By calling the HGETALL command:

println jedis.hgetAll("user:$u.userid")

Chapter 7

251

We get the following output:

> [username:john, password:12345]

One more Redis aspect we are going to touch is atomic operations. Redis doesn't support
transactions in the same way as a relational database does (no rollbacks), but it is still
possible to execute a number of commands atomically. Enter the MULTI and EXEC
commands. The MULTI command marks the beginning of a transaction, in which the
following commands are queued and executed atomically.

This is how a MULTI command works when executed in the Redis CLI (Command Line
Interface):

> MULTI

OK

> INCR foo

QUEUED

> INCR bar

QUEUED

> EXEC

Jedis does support the MULTI command, and we can actually implement it in a more
Groovy way.

The following atomic method allows executing a group of commands inside the
MULTI/EXEC transaction.

jedis = new Jedis('localhost')
def atomic(Closure c) {
 def results = null
 try {
 def tx = jedis.multi()
 c.delegate = tx
 c.call()
 results = tx.exec()
 } catch(e) {
 tx.discard()
 }
 results
}

Working with Databases in Groovy

252

The Jedis multi method returns a Transaction object on which the commands have to be
executed. This is an example of the actual Java code:

Transaction t = jedis.multi();
t.set("foo", "bar");
Response<String> result1 = t.get("foo");

Thanks to Groovy closures and the Closure's delegate property we can invoke the atomic
function as follows:

def res = atomic {
 incr ('foo')
 incr ('bar')
}
println jedis.get('foo')
assert '1' == jedis.get('bar')
assert res == [1, 1]

The two INCR commands are executed atomically, and the res variable contains the result of
last command.

See also
 f http://redis.io

 f http://redis.io/topics/quickstart

 f https://github.com/xetorthio/jedis

 f http://www.grails.org/plugin/redis

Using Groovy to access MongoDB
MongoDB (http://www.mongodb.org) is a document-oriented database written in C++
with RDBMS-like features such as indexing and replication. It is developed and supported
by 10gen.

MongoDB is very popular mainly for its simplicity: documents are created as JSON-like records
(key/value pairs with a rich data type model) and the interface is simple enough to be used
directly from JavaScript. It has been designed for scalability in mind. Its document-oriented
data model allows it to automatically split up data across multiple servers, letting developers
focus on application logic instead of scaling up the data store.

Other very useful features of MongoDB are built-in support for Map/Reduce-style aggregation
and geospatial indexes.

This recipe will show you how to execute CRUD-like operations on a MongoDB instance and
how to search for data.

Chapter 7

253

Getting ready
MongoDB installation is quite simple, especially if you are on Linux or OS X, where you can
use a package manager such as Yum or Homebrew. Detailed installation instructions are
available for every operating system on the MongoDB website (http://docs.mongodb.
org/manual/installation).

Before we get into the details of this recipe, we will give a quick crash course on the main
MongoDB's entities.

MongoDB has databases, collections, and documents. MongoDB stores a database in
its own file. A database has specific permissions and can be conceptually mapped to a
relational database.

A collection is a group of documents stored in a database. A collection has no schema,
meaning that each document in a collection is free to have any kind of structure (it is
recommended to keep similar documents in the same collection).

Finally, the document is an ordered set of key/value pairs. Each programming language has
a data structure to represent a key/pair values, such as maps or dictionaries.

This is a Javascript representation of a MongoDB document.

{ "name": "Oscar", "lastName": "Wilde" }

The Java driver (https://github.com/mongodb/mongo-java-driver/downloads)
is the oldest MongoDB driver. It is very stable and a popular choice for enterprise developers.
The driver is enough to get started, but as it often happens with Java libraries, it is very
verbose. The verbosity is quite evident when building documents to be sent to the server.

Fortunately, there is a Groovy wrapper for the MongoDB Java driver, named GMongo,
developed and actively maintained by Paulo Poiati (http://blog.paulopoiati.com/).
The wrapper is maintained at the same pace as the main Java driver, making it an excellent
option for Groovy developers.

How to do it...
Ensure that your MongoDB instance is running; the server usually listens for connections on
port 27017.

1. As usual, it is necessary to import the third-party library that will be used throughout
this recipe, GMongo.
@Grab('com.gmongo:gmongo:1.2')
import com.gmongo.GMongo

Working with Databases in Groovy

254

2. Then, the GMongo class instance is created to access the database groovy-book.
The getDB method does actually create a database, if that does not exist.
def mongo = new GMongo()
def db = mongo.getDB('groovy-book')

3. Now, let's insert some documents into a collection named todos.
db.todos.insert([name: 'buy milk'])
db.todos.insert(name: 'pay rent')
db.todos << [name: 'read document']

The previous snippet inserts three to-do documents into MongoDB. You can notice
that the syntax for inserting data is slightly different in each statement. In the first
two cases we are actually calling the same method; Groovy allows omitting square
brackets ([]) when the method's only parameter is a Map. The last statement is
making use of the leftShift method, which under the hood results in the same
call to the insert method.

4. So, you can now select a document from the collection using for example the
findOne method:

println db.todos.findOne()

The output will be as follows:

> [_id:50b299e81a88da0e521db954, name:buy milk]

How it works...
The findOne method with no arguments returns the first document in the collection.
MongoDB automatically adds an id, named ObjectID, to a new document. The ObjectID is
a 12-byte value consisting of a 4-byte timestamp (seconds since epoch), a 3-byte machine id,
a 2-byte process id, and a 3-byte counter.

findOne can be also used with an argument, very much like an SQL SELECT statement.

println db.todos.findOne(name: 'pay rent')

The output will be as follows:

> [_id:50b29b091a88d361473e6b46, name:pay rent]

The find method allows searching for documents using regular expressions. Groovy
supports regular expressions natively with the help of the ~ operator, which creates a
compiled Pattern object from the given string:

db.todos.find([name: ~/^pay/]).each {
 println it
}

Chapter 7

255

The output will be as follows:

> [_id:50b29b091a88d361473e6b46, name:pay rent]

Updating documents is also as easy as inserting them. A MongoDB collection is schemaless,
so each document can have its own shape.

db.todos.update(
 name: 'pay rent',
 [$set: [name: 'pay December rent']]
)
assert db.todos.count(
 name: 'pay December rent') == 1

The update method changes the value of the name field using the $set operator. This
operator appends the new field or fields to the document or replaces the existing value
of the field(s) in case they are already present in the document.

db.todos.update(name: 'pay December rent', [$set:[priority:1]])

The second update example adds a new attribute to the document, the priority field. Please
note that the value of priority is an Integer and not a String. MongoDB supports several data
types internally through the BSON format, which includes dates and binary.

Another way to update a document is the following:

def todo = db.todos.findOne(name: 'buy milk')
todo.priority = 2
db.todos.save todo
println todo

The output will be as follows:

> [_id:50b2a3aa1a8848c02c604025, name:buy milk, priority:2]

The syntax to remove documents is very similar to the one for updating.

db.todos.insert([name: 'call John', priority: 2])
assert db.todos.count(priority: 2) == 2

db.todos.remove(priority: 2, name: 'call John')
assert db.todos.count(priority: 2) == 1

Working with Databases in Groovy

256

There's more...
Similar to the Using Groovy to access Redis recipe, we are going to show a simple way to store
Groovy objects (POGO) to MongoDB. Let's define a Todo class and instantiate it:

class Todo {
 def name
 def priority
 def context
}

def td = new Todo(name: 'open account',
 priority: 1,
 context: 'finance')

Now, the getProperties method in Groovy returns a Map of the object's properties,
including some properties we don't want to store in MongoDB, such as class or metaClass.

db.todos << td.properties.findAll {
 !['class', 'metaClass'].contains(it.key)
}
println db.todos.findOne(name:'open account')

The output will be as follows:

> [_id:50b2a8b21a8820042e85bc6b, context:finance,

 priority:1, name:open account]

In the previous snippets, the properties method is invoked on the Todo instance and some
properties are filtered out. The resulting Map is simply added to the todos collection.

See also
 f http://www.mongodb.org/

 f https://github.com/poiati/gmongo

 f http://blog.paulopoiati.com/

Using Groovy to access Apache Cassandra
The Apache Cassandra project was started at Facebook in 2007 to offer users a better
experience when searching their inbox. The challenges that Facebook engineers had to
face was mostly related to massive amount of data, very high throughput, and scalability
at a mind-blowing rate.

Chapter 7

257

Cassandra is a distributed column-oriented database designed to manage humongous
amounts of structured data in a decentralized, highly scalable way. The absence of a single
point of failure makes Cassandra highly available and fault tolerant.

While Cassandra resembles a traditional database and shares some design strategies,
it does not support a full relational data model. On the contrary, the Cassandra's data
model is flexible, because each row can contain a variable number of columns.

In this recipe, we will go through different aspects of connecting and querying a
Cassandra database.

Getting ready
For this recipe, we assume that the reader has already some familiarity with the Cassandra
core concepts and data model (columns, super columns, column family, and keyspaces).
Installing Cassandra is straightforward.

The only requirement for running Cassandra is a Java 1.6 JVM. Just download the distribution
from the product website (http://cassandra.apache.org/download/), unzip it, and
run the bin/cassandra or bin/cassandra.bat executable to start a single node.

Before we start, we have to create a couple of entities in Cassandra, a Keyspace and a
Column Family. Fire up the CQLSH console located in the bin folder and type:

create keyspace hr with strategy_class='SimpleStrategy'

and strategy_options:replication_factor=1;

use hr;

create columnfamily employee (empid int primary key);

These commands create a Keyspace named hr and a column family named employee.
The column family has one field only, which is also a primary key (of type int).

How to do it...
There are several client strategies to interact with Cassandra. In this recipe, we are going to
use the open source library Hector, which is a well-established high level Java client.

The Hector APIs are not very fluent, and it takes a lot of boilerplate code to insert or
manipulate data with it.

Working with Databases in Groovy

258

Why not create a simpler, more fluent wrapper on top of the Hector API using Groovy?

@Grab('org.hectorclient:hector-core:1.1-2')
@GrabExclude('org.apache.httpcomponents:httpcore')
import me.prettyprint.hector.api.Cluster
import me.prettyprint.hector.api.factory.HFactory
import me.prettyprint.hector.api.Keyspace
import me.prettyprint.cassandra.serializers.*
import me.prettyprint.hector.api.Serializer
import me.prettyprint.hector.api.mutation.Mutator
import me.prettyprint.hector.api.ddl.*
import me.prettyprint.hector.api.beans.ColumnSlice

class Gassandra {

 def cluster
 def keyspace
 def colFamily
 Serializer serializer
 def stringSerializer = StringSerializer.get()

 private Gassandra (Keyspace keyspace) {
 this.keyspace = keyspace
 }

 Gassandra() {}

 void connect(clusterName, host, port) {
 cluster = HFactory.
 getOrCreateCluster(
 clusterName,
 "$host:$port"
)
 }

 List<KeyspaceDefinition> getKeyspaces() {
 cluster.describeKeyspaces()
 }

 Gassandra withKeyspace(keyspaceName) {
 keyspace = HFactory.
 createKeyspace(
 keyspaceName,
 cluster

Chapter 7

259

)
 new Gassandra(keyspace)
 }

 Gassandra withColumnFamily(columnFamily, Serializer c) {
 colFamily = columnFamily
 serializer = c
 this
 }

 Gassandra insert(key, columnName, value) {
 def mutator = HFactory.
 createMutator(
 keyspace,
 serializer
)
 def column = HFactory.
 createStringColumn(
 columnName,
 value
)
 mutator.insert(key, colFamily, column)
 this
 }

 Gassandra insert(key, Map args) {
 def mutator = HFactory.
 createMutator(
 keyspace,
 serializer
)
 args.each {
 mutator.insert(
 key,
 colFamily,
 HFactory.
 createStringColumn(
 it.key,
 it.value
)
)
 }
 this
 }

Working with Databases in Groovy

260

 ColumnSlice findByKey(key) {
 def sliceQuery = HFactory.
 createSliceQuery(
 keyspace,
 serializer,
 stringSerializer,
 stringSerializer
)
 sliceQuery.
 setColumnFamily(colFamily).
 setKey(key).
 setRange('', '', false, 100).
 execute().
 get()
 }
}

How it works...
The Gassandra class exposes a very simple, fluent interface that leverages the dynamic
nature of Groovy. The class imports the Hector API and allows writing code as follows:

def g = new Gassandra()
g.connect('test', 'localhost', '9160')

def employee = g
 .withKeyspace('hr')
 .withColumnFamily('employee', IntegerSerializer.get())
employee.insert(5005, 'name', 'Zoe')
employee.insert(5005, 'lastName', 'Ross')
employee.insert(5005, 'age', '31')

The withKeySpace and withColumnFamily methods are written in a fluent style, so that
we can pass the relevant information to Hector. Note that the withColumnFamily requires
a Serializer type to specify the type of the primary key.

The insert method accepts a Map as well, so that the previous code can be rewritten as:

employee.insert('5005',
 ['name': 'Zoe',
 'lastName': 'Ross',
 'age': '31'
])

Chapter 7

261

To find a row by primary key, there is a findByKey method that returns a me.prettyprint.
hector.api.beans.ColumnSlice object.

println employee.findByKey(5005)

The previous statement will output:

ColumnSlice([HColumn(age=31),
 HColumn(lastName=Ross),
 HColumn(name=Zoe)])

The Gassandra class lacks many basic methods to update or delete rows and other
advanced query features. We leave them to the reader as an exercise.

See also
 f http://cassandra.apache.org/

 f http://hector-client.github.com/hector/build/html/index.html

8
Working with Web

Services in Groovy

In this chapter, we will cover:

 f Downloading content from the Internet

 f Executing an HTTP GET request

 f Executing an HTTP POST request

 f Constructing and modifying complex URLs

 f Issuing a REST request and parsing a response

 f Issuing a SOAP request and parsing a response

 f Consuming RSS and Atom feeds

 f Using basic authentication for web service security

 f Using OAuth for web service security

Introduction
The recipes collected in this chapter deal with the so called programmable web.

Today's applications consume data from a multitude of external sources. These sources are
often accessed through HTTP and one of the two main methods for exchanging data over the
web, SOAP and REST.

Working with Web Services in Groovy

264

The first recipes describe how to execute simple calls to external web services through HTTP
POST and GET request methods, as well as construct complex URLs. The next recipes of the
chapter delve into SOAP and REST: how to make a request and parse the result using Groovy.
We continue with the RSS and Atom formats and how to consume them. The last recipe
covers the basic authentication mechanism and how to interact with the OAuth protocol - the
dominant open authorization standard.

Downloading content from the Internet
The title of this recipe may not seem related to web services at a first glance, but since most
of the available services are actually based on Hyper Text Transfer Protocol (HTTP) as well as
most of the content on the Internet, it is worth starting with getting a basic understanding of
simple HTTP operations before diving into the more complex world of web services.

How to do it...
For downloading HTTP-based content, we don't need any special libraries or stratagem. All
that is needed are the standard Java classes—File and URL—and their Groovy extensions:

1. We first start with defining our target and source files:
def outputFile = new File('image.png')
def baseUrl = 'http://groovy.codehaus.org'
def imagePath = '/images/groovy-logo-medium.png'
def url = new URL("${baseUrl}${imagePath}")

2. Then, just in case, the outputFile already exists, we need to delete it to avoid
appending content:
outputFile.delete()

3. The last step is to stream the URL's content into the outputFile:

url.withInputStream { inputStream ->
 outputFile << inputStream
}

How it works...
The withInputStream method is a Groovy extension added to the URL class. We already
presented many extension methods that Groovy appends to the standard JDK classes in
previous chapters (for example, the Using Java Classes from Groovy recipe in Chapter 2, Using
Groovy Ecosystem), and we showed the way to write your own extensions in the Adding a
functionality to the existing Java/Groovy classes recipe in Chapter 3, Using Groovy Language
Features. More information on extended functionality, which exists in Groovy for the java.
net.URL class, can be found at http://groovy.codehaus.org/groovy-jdk/java/
net/URL.html.

Chapter 8

265

Basically, the withInputStream method takes care of flushing and closing the stream
automatically, and gives access to the java.io.InputStream instance, which contains
the binary data retrieved from a remote resource over the HTTP protocol. More information on
manipulating files and input streams can be found in Chapter 4, Working with Files in Groovy.

Under the hood, the URL class performs an HTTP GET request for the resource specified by
the URL. A lengthier description on how to construct complex GET requests can be found in
the Executing an HTTP GET request recipe.

With this new knowledge about the basics of executing an HTTP GET request described in this
recipe, you can use many REST-based APIs in a read-only mode as well as download WSDL
and XSD for the SOAP-based web services.

There's more...
If the content to download is textual, we can use a more concise way to fetch it with the help
of the getText method available on the URL class:

def outputFile = new File('groovy.html')
def baseUrl = 'http://groovy.codehaus.org'
def url = new URL(baseUrl)

// Saving textual content.
outputFile.text = url.text

See also
 f http://groovy.codehaus.org/groovy-jdk/java/net/URL.html

 f Executing an HTTP GET request

 f Chapter 4, Working with Files in Groovy

Executing an HTTP GET request
In the previous recipe, Downloading content from the Internet, we described a simple way of
getting binary/textual content from a URL. In this recipe, we will present a method to execute
HTTP GET requests with more control over the returned data.

Working with Web Services in Groovy

266

How to do it...
As a starting point, we will use again the same URL class encountered in the previous recipe.
This time we'll explore the openConnection method of the URL class in order to have more
options for understanding the intricacies of the response returned by the remote server:

1. We can make the code which retrieves the remote content more reliable by checking
the response code as follows:
def url = new URL('http://groovy.codehaus.org/')
def connection = url.openConnection()
connection.requestMethod = 'GET'
if (connection.responseCode == 200) {
 println connection.content.text
 println connection.contentType
 println connection.lastModified
 connection.headerFields.each { println "> ${it}"}
} else {
 println 'An error occurred: ' +
 connection.responseCode + ' ' +
 connection.responseMessage
}

2. The code will print something similar to the following output:

<!DOCTYPE html>

<html>

 ...

</html>

text/html; charset=UTF-8

0

> null=[HTTP/1.1 200 OK]

> Date=[Tue, 03 Sep 2013 13:03:13 GMT]

> Content-Length=[39028]

> Connection=[close]

> Content-Type=[text/html; charset=UTF-8]

> Server=[Resin/3.0.14]

Chapter 8

267

How it works...
The java.net.URLConnection object, returned by the openConnection method,
is convenient for getting hold of the additional response data such as, responseCode,
contentType, or response headers.

As you can notice, we set the requestMethod property on the connection object to GET
value; but, in fact, it's not needed, because it is a default value anyway.

responseCode is the Status Code Definition returned from the web server. For instance,
a 404 status code, informs the client that the requested resource doesn't exist.

The connection object has the getContent method, which is declared to return
java.lang.Object by the JDK API. The mechanism used by JDK to handle specific
content types is out of scope of this recipe. However, the getContent method typically
returns an implementation of the InputStream interface. That's why it is safe to retrieve
the text property, which is made available by Groovy on all classes that implement the
InputStream functionality.

There's more...
An HTTP GET request often requires additional parameters needed by the server or remote
application. These parameters are propagated inside the URL through a query string:

http://groovy.codehaus.org/Project+Information?print=1

The previous URL passes to the server the following key/value information: print=1, which
is used to retrieve the Groovy project information page in printer-friendly format. In Groovy,
the plain procedure to add a query string to a URL is just to use a string object. For example:

println ('http://groovy.codehaus.org/' +
 'Project+Information?print=1').toURL().text

Query strings can be way lengthier than a single key/value entry. A Map is the perfect data
structure for representing the query string data. Let us see how a Map can be converted
into a query string:

def baseUrl =
 'http://docs.codehaus.org/pages/editpage.action?'

def params = [spaceKey: 'GROOVY',
 title: 'Project+Information']

def query = params.collect { k,v ->
 "$k=${URLEncoder.encode(v)}"
}.join('&')

println "${baseUrl}${query}"

Working with Web Services in Groovy

268

The code yields the following output:

> http://docs.codehaus.org/pages/editpage.action?spaceKey=GROOVY&title=Pr
oject+Information

The code snippet that transforms a Map into a query uses the collect method of the Map.
It iterates through the Map entries and executes a simple transformation closure returning a
List. The closure simply encodes each parameter value using the java.net.URLEncoder
class and adds the = sign between a parameter name and its content. Finally, the join
method is applied to the resulting collection to concatenate all entries into a single string
using & symbol.

See also
 f Downloading content from the Internet

 f Constructing and modifying complex URLs

 f Executing an HTTP POST request
 f http://docs.oracle.com/javase/6/docs/api/java/net/

URLConnection.html

 f http://docs.oracle.com/javase/6/docs/api/java/net/URLEncoder.
html

Executing an HTTP POST request
In this recipe, we demonstrate how to POST data to a remote HTTP server using Groovy. The
POST request method is often used to upload a file or submit a web form to a server. This
method sits at the opposite end of the spectrum of the HTTP GET method, used to retrieve
information from the server.

How to do it...
The code required to execute a POST request with Groovy is fairly similar to the one discussed
in the previous recipe, Executing an HTTP GET request, except that it's more convoluted:

1. The sending of a POST request is expressed in the following way:
def baseUrl = new URL('http://api.duckduckgo.com')
def queryString = 'q=groovy&format=json&pretty=1'
def connection = baseUrl.openConnection()
connection.with {
 doOutput = true
 requestMethod = 'POST'

Chapter 8

269

 outputStream.withWriter { writer ->
 writer << queryString
 }
 println content.text
}

2. The printed results will look similar to the following code snippet:

{
 "Definition" :
 "groovy definition: marvelous, wonderful, excellent.",
 "DefinitionSource" : "Merriam-Webster",
 "Heading" : "Groovy",
 "AbstractSource" : "Wikipedia",
 "Image" : "",
 "RelatedTopics" : [
 ...
]
 ...
}

How it works...
The first few lines of the script open a connection to an API provided by the DuckDuckGo
search engine, which is an alternative privacy-oriented search service.

To reduce code verbosity we use Groovy's with method, which basically allows us to suppress
references to the connection variable and call its methods and properties directly within a
closure passed to the Groovy's with method.

Before making a request, we set several connection properties such as requestMethod to
indicate that we actually want to fire a POST request. Finally, the code creates a writer object
to append to the stream containing the data that will be posted to the remote connection.
The response is read by using the text property of the InputStream method returned by
the content property (see the Executing an HTTP GET request recipe).

There's more...
Another way to POST data to a web server is to use the HTTPBuilder third-party library
(http://groovy.codehaus.org/modules/http-builder/doc/index.html).
The project is discussed in more details in the Issuing a REST request and parsing a
response recipe.

Working with Web Services in Groovy

270

As we are working with an external dependency, we use Grape to fetch the
HTTPBuilder library:

@Grab(
 group='org.codehaus.groovy.modules.http-builder',
 module='http-builder',
 version='0.6'
)
import groovyx.net.http.*

def baseUrl = 'http://api.duckduckgo.com'
def queryString = 'q=groovy&format=json&pretty=1'
def http = new HTTPBuilder(baseUrl)
http.request(Method.POST) {
 send ContentType.URLENC, queryString
 response.success = { response, reader ->
 println response.statusLine
 println reader.text
 }
 response.failure = { response ->
 println response.statusLine
 }
}

The result of the posted data is handled in the response.success closure. We also handle
failures (for example, 404 or 500 status codes) in the failure closure. The response variable
holds the response metadata such as the status code and the headers. The reader
object is used to get access to the remote data stream. Since the reader implements a
java.io.Reader interface, we can use the text property provided by Groovy to fully-fetch
response content and print it to the standard output.

See also
 f http://groovy.codehaus.org/modules/http-builder

 f The Simplifying dependency management with Grape recipe in Chapter 2,
Using Groovy Ecosystem

 f Constructing and modifying complex URLs

 f Executing an HTTP GET request

Chapter 8

271

Constructing and modifying complex URLs
At the heart of any HTTP request, there is a Universal Resource Locator (URL) or a more
generic Universal Resource Identifier (URI) which identifies the target of the operation we
need to perform.

We have seen in the previous recipes (for example, the Downloading content from the Internet
recipe) that it's very hard to avoid dealing with URLs when interacting with the HTTP protocol.
In this recipe, we are going to present a more structured approach to constructing and
modifying complex URLs with the help of an additional Groovy library.

How to do it...
If you have worked with Java's URL class before, you know that the only way to construct
instances of that class is to provide a full URL to the constructor, which will return an
immutable (non-changeable) object.

Groovy's core does not add any special support for URL manipulation apart from what Java
already offers, but there is an officially supported HttpBuilder module that is hosted on
Groovy's website (http://groovy.codehaus.org/modules/http-builder) and that
can be used to make more accessible URL creation and modification:

1. First of all, we need to @Grab that module and import the URIBuilder class,
which will help us with our task:
@Grab(
 group='org.codehaus.groovy.modules.http-builder',
 module='http-builder',
 version='0.6'
)
import groovyx.net.http.URIBuilder

2. At this point, we can create a URIBuilder instance and pass baseUri to that:
def baseUri =
 'http://groovy.services.com/service1/operation2'
def uri = new URIBuilder(baseUri)

3. Now, we can modify any URI's component with simple property assignments,
as follows:
uri.with {
 scheme = 'https'
 host = 'localhost'
 port = 8080

Working with Web Services in Groovy

272

 fragment = 'some_anchor'
 path = 'some_folder/some_page.html'
 query = [param1: 2, param2: 'x']
}

4. With the information passed to URIBuilder, we can create URI, URL, or String
instances at any point:
uri.toURI()
uri.toURL()
uri.toString()

How it works...
Internally the URIBuilder class stores all URI components such as, scheme
(http:// and https://), user information (username:password), host, port,
path, and fragment separately. This allows creating new URLs incrementally and
changing existing URLs without a need to write custom string parsing/concatenating logic.

See also
 f http://groovy.codehaus.org/modules/http-builder/doc/uribuilder.

html

 f http://groovy.codehaus.org/modules/http-builder/apidocs/
groovyx/net/http/URIBuilder.html

Other implementations of URI builder functionality can be found in JAX-WS API and Apache's
HttpClient available in the following link:

 f http://hc.apache.org/httpcomponents-client-ga/httpclient/
apidocs/org/apache/http/client/utils/URIBuilder.html

 f http://docs.oracle.com/javaee/6/api/javax/ws/rs/core/
UriBuilder.html

Issuing a REST request and parsing a
response

A proper introduction to REST is out of scope for this recipe. Countless materials
describing the REST architectural style are available both online and offline. Wikipedia's
entry on Representational State Transfer at http://en.wikipedia.org/wiki/
Representational_State_Transfer provides a compact description of REST's main
concepts, its limits, and the guiding principles to design RESTful applications. A more
tongue-in-cheek introduction to REST can be found on Ryan Tomayko's website at
http://tomayko.com/writings/rest-to-my-wife.

Chapter 8

273

There are several ways to execute a REST request using Groovy. In this recipe, we are going
to show how to execute a GET operation against a RESTful resource using RESTClient from
the HTTPBuilder project (http://groovy.codehaus.org/modules/http-builder/
doc/index.html). HTTPBuilder is a wrapper for Apache HttpClient, with some Groovy
syntactical sugar thrown on top.

Getting ready
For this recipe, we will use the RESTful API exposed by the Bing Map Service
(http://www.bing.com/maps/). The API allows performing tasks such as,
creating a static map with pushpins, geocoding an address, retrieving imagery
metadata, or creating a route.

In order to access the service, an authentication key must be obtained through a simple
registration process (see https://www.bingmapsportal.com). The key has to be
passed with each REST request.

How to do it...
The following steps will use the Location API, through which we will find latitude and longitude
coordinates for a specific location:

1. The first step is to create a class. The class has a method, which accepts the
information to query the map service with:
@Grab(
 group='org.codehaus.groovy.modules.http-builder',
 module='http-builder',
 version='0.6'
)
import static groovyx.net.http.ContentType.JSON
import static groovyx.net.http.ContentType.XML
import groovyx.net.http.RESTClient

class LocationFinder {

 static final KEY = '...'
 static final URL = 'http://dev.virtualearth.net'
 static final BASE_PATH = '/REST/v1/Locations/'

 def printCityCoordinates(countryCode, city) {

 def mapClient = new RESTClient(URL)
 def path = "${countryCode}/${city}"
 def response = mapClient.get(

Working with Web Services in Groovy

274

 path: "${BASE_PATH}${path}",
 query: [key: KEY]
)

 assert response.status == 200
 assert response.contentType == JSON.toString()

 println response.
 data.
 resourceSets.
 resources.
 point.
 coordinates

 }
}

2. We can use the class in the following way:
LocationFinder map = new LocationFinder()
map.printCityCoordinates('fr', 'paris')
map.printCityCoordinates('uk', 'london')

3. The code will output the coordinates for Paris and London:

[[[48.856929779052734, 2.3412001132965088]]]

[[[51.506320953369141, -0.12714000046253204]]]

How it works...
The RESTClient class greatly simplifies dealing with REST resources. It leverages the
automatic content type parsing and encoding, which essentially parses the response for us
and converts it into the proper type. The get method accepts a Map of arguments, including
the actual path to the resource, the request content type, query, and headers. For a full list
of arguments, refer to the Javadoc at http://groovy.codehaus.org/modules/http-
builder/apidocs/groovyx/net/http/HTTPBuilder.RequestConfigDelegate.
html#setPropertiesFromMap(java.util.Map).

In the previous example, the response is automatically parsed and transformed into a nested
data structure, which makes dealing with the response values a very simple affair.

Chapter 8

275

By default, all request methods return an HttpResponseDecorator instance, which
provides convenient access to the response headers and the parsed response body. The
response body is parsed based on the content type. HTTPBuilder's default response handlers
function in the same way: the response data is parsed (or buffered in the case of a binary or
text response) and returned from the request method. The response either carries no data,
or it is expected to be parsable and transformed into some object, which is always accessible
through the getData() method.

The actual data returned by the service looks like the following code snippet:

{
 "authenticationResultCode": "ValidCredentials",
 "brandLogoUri": "...",
 "copyright": "...",
 "resourceSets": [
 {
 "estimatedTotal": 1,
 "resources": [
 {
 "name": "Paris, Paris, France",
 "point": {
 "type": "Point",
 "coordinates": [
 48.856929779053,
 2.3412001132965
]
 },
 ...
 }
]
 }
],
 "statusCode": 200,
 "statusDescription": "OK",
 "traceId": "..."
}

See also
 f http://groovy.codehaus.org/modules/http-builder/doc/rest.html

 f http://msdn.microsoft.com/en-us/library/ff701713.aspx

 f https://www.bingmapsportal.com

Working with Web Services in Groovy

276

Issuing a SOAP request and parsing a
response

SOAP stands for a Simple Object Access Protocol. And, indeed, the protocol is very simple
and extensible, since it only defines the container parts of the message being transferred,
such as, body, header, and fault. But it does not strictly define format or validation rules for
the content of the message apart from requesting the message to be XML-compatible.

Also, SOAP has several low-level protocol bindings such as, SOAP-over-HTTP, SOAP-over-SMTP,
and SOAP-over-JMS. HTTP binding is the most popular choice for SOAP-based web services.

Usually, a SOAP web service is associated with a Web Service Definition Language (WSDL)
and probably a set of XML Schema Definition (XSD) that more precisely define the contents
of the service operation requests and responses. But strictly speaking those are not required
by the SOAP standard, even though they definitely help to understand the service input and
output formats.

There is also a family of WS-* (WS-I, WS-Policy, WS-Addressing, WS-Security, and so on)
standards that define different aspects of web service authentication, authorization,
interoperability, notification, validation, and so on, which can enrich a SOAP message
with additional headers, structures, and faults.

There are plenty of libraries available out there to support different WS-* and X-* flavors,
but there is no single answer (at least in the open source world) to all of them.

In essence, any SOAP request is an HTTP POST request containing a SOAP Envelope with
message data and headers.

In this recipe, we will focus on constructing simple SOAP requests at the HTTP protocol level
using the HTTPBuilder library that we just encountered in the previous recipe, Issuing a
REST request and parsing a response.

Getting ready
For testing purposes, we will use SOAP web services hosted at
http://www.holidaywebservice.com. We will try to call the GetMothersDay
operation on the USHolidayDates service. The following XML snippet is the SOAP
request we will send to the service:

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope
 xmlns:soap-env='http://schemas.xmlsoap.org/soap/envelope/'>
 <soap-env:Header/>
 <soap-env:Body>
 <GetMothersDay

Chapter 8

277

 xmlns='http://www.27seconds.com/Holidays/US/Dates/'>
 <year>2013</year>
 </GetMothersDay>
 </soap-env:Body>
</soap-env:Envelope>

As you can guess, it tries to retrieve a date of the Mother's Day for 2013.

How to do it...
Let's perform the following steps to construct our SOAP client for the holiday web service:

1. First of all we need to @Grab and import the required classes as shown in the
following code snippet:
@Grab(
 group='org.codehaus.groovy.modules.http-builder',
 module='http-builder',
 version='0.6'
)
import static groovyx.net.http.Method.*
import static groovyx.net.http.ContentType.*
import groovyx.net.http.HTTPBuilder

2. Then we need to create an instance of HTTPBuilder and point to our web service:
def baseUrl = 'http://www.holidaywebservice.com/' +
 'Holidays/US/Dates/USHolidayDates.asmx'
def client = new HTTPBuilder(baseUrl)

3. Now, we need to define several namespace variables to refer to during the XML
building stage:
def holidayBase = 'http://www.27seconds.com/Holidays'
def holidayNS = "$holidayBase/US/Dates/"
def soapAction = "$holidayBase/US/Dates/GetMothersDay"
def soapNS = 'http://schemas.xmlsoap.org/soap/envelope/'

4. At this point, we are ready to POST a SOAP request to the service:
def response = client.request(POST, XML) {
 headers = [
 'Content-Type': 'text/xml; charset=UTF-8',
 'SOAPAction': soapAction
]
 body = {
 mkp.pi(xml:'version="1.0" encoding="UTF-8"')
 'soap-env:Envelope'('xmlns:soap-env': soapNS) {

Working with Web Services in Groovy

278

 'soap-env:Header'()
 'soap-env:Body' {
 GetMothersDay('xmlns': holidayNS) {
 year(2013)
 }
 }
 }
 }
}

5. Now, we are ready to process the response, for example, by printing the following
code line:

println response

How it works...
As you can guess, HTTPBuilder just makes a POST request. We also give a hint to
HTTPBuilder that we are going to send XML data to the service. When that hint is given,
the body parameter is processed with the help of StreamingMarkupBuilder (see the
Constructing XML content recipe in Chapter 5, Working with XML in Groovy) and encoded.

Since the service, which we are trying to connect to, is based on SOAP 1.1, we need to add
a special SOAPAction header (in SOAP 1.2 that header is no longer needed). Also, the
Content-Type header is mandatory, because otherwise the web service will not recognize
the type of content we are trying to submit.

The response object is of the GPathResult type, which can be navigated, searched, and
printed in the same way as any other XML structure in Groovy with the help of the GPath
expressions. For more information on XML processing, refer to Chapter 5, Working with
XML in Groovy.

There's more...
On the Groovy's website, you can find references to two other SOAP supporting libraries:
GroovySOAP and GroovyWS. Both of them are considered deprecated in favor of the
groovy-wslite library (https://github.com/jwagenleitner/groovy-wslite)
developed by John Wagenleitner. The library has a terrific support for SOAP features and
is a bit less verbose than plain HTTPBuilder.

Chapter 8

279

The following script makes use of groovy-wslite and does exactly the same as the script
described previously:

@Grab('com.github.groovy-wslite:groovy-wslite:0.8.0')
import wslite.soap.*

def baseUrl = 'http://www.holidaywebservice.com/' +
 'Holidays/US/Dates/USHolidayDates.asmx'

def client = new SOAPClient(baseUrl)

def holidayBase = 'http://www.27seconds.com/Holidays'
def holidayNS = "$holidayBase/US/Dates/"
def soapAction = "$holidayBase/US/Dates/GetMothersDay"

def response = client.send(SOAPAction: soapAction) {
 body {
 GetMothersDay('xmlns': holidayNS) {
 year(2013)
 }
 }
}

println response.GetMothersDayResponse

See also
 f http://groovy.codehaus.org/modules/http-builder/

 f https://github.com/jwagenleitner/groovy-wslite

 f http://groovy.codehaus.org/GroovyWS

 f http://groovy.codehaus.org/Groovy+SOAP

Consuming RSS and Atom feeds
RSS feeds and Atom feeds are a standardized way to distribute headlines and updates
from websites and blogs. Both RSS and Atom feeds are XML documents. RSS is older
but widely popular, while Atom is newer and has several advantages over RSS, chiefly
the namespace support.

Working with Web Services in Groovy

280

For the main differences between Atom and RSS, check the Wikipedia entry about RSS:
http://en.wikipedia.org/wiki/RSS. Both formats are largely supported, and
often blogs and sites output headline feeds in RSS and Atom at the same time.

In this recipe, we are going to cover the basics of RSS and Atom feed parsing with Groovy.

Getting ready
As RSS and Atom feeds are XML based, it's easy to parse them using one of the several tools
offered by Groovy (see the Reading XML using XmlParser recipe in Chapter 5, Working with
XML in Groovy).

We will show how to detect if a feed is RSS or Atom and parse it accordingly.

How to do it...
We will create a FeedParser class which will contain the code to open a URL of a feed (RSS
or Atom), parse it, and return a list of the FeedEntry objects populated with the content of
the feed entries:

1. Let's define the classes in a separate script file as follows:
class FeedParser {

 def readFeed(url) {
 def xmlFeed = new XmlParser(false, true).parse(url)
 def feedList = []
 if (isAtom(xmlFeed)) {
 (0..< xmlFeed.entry.size()).each {
 def entry = xmlFeed.entry.get(it)
 feedList << new AtomFeedEntry(
 entry.title.text(),
 entry.author.text(),
 entry.link.text(),
 entry.published.text()
)
 }
 } else {
 (0..< xmlFeed.channel.item.size()).each {
 def item = xmlFeed.channel.item.get(it)
 RSSFeedEntry feed = new RSSFeedEntry(
 item.title.text(),
 item.link.text(),

Chapter 8

281

 item.description.text(),
 item.pubDate.text()
)
 feedList << feed
 }
 }
 feedList
 }

 def isAtom(Node node) {
 def rootElementName = node.name()
 if (rootElementName instanceof groovy.xml.QName) {
 return (rootElementName.localPart == 'feed') &&
 (rootElementName.namespaceURI ==
 'http://www.w3.org/2005/Atom')
 }
 false
 }

}

abstract class FeedEntry {

}

@groovy.transform.Canonical
class RSSFeedEntry extends FeedEntry {
 String title
 String link
 String desc
 String pubDate
}

@groovy.transform.Canonical
class AtomFeedEntry extends FeedEntry {
 String title
 String author
 String link
 String pubDate
}

Working with Web Services in Groovy

282

2. The FeedParser class can be simply called within the same script file; for example,
to print all the titles of the posts from the blog Lambda the Ultimate, which can be
found at http://lambda-the-ultimate.org/:
def parser = new FeedParser()
def feedUrl = 'http://lambda-the-ultimate.org/rss.xml'
def feed = parser.readFeed(feedUrl)

feed.each {
 println "${it.title}"
}

3. After execution, the code should print a list of latest titles as shown in the
following output:

Dynamic Region Inference

Dependently-Typed Metaprogramming (in Agda)

...

It's Alive! Continuous Feedback in UI Programming

Feed size: 15

How it works...
The FeedParser class opens the XML stream (an HTTP URI), and after detecting if the feed is
Atom-based or RSS-based, it processes each entry by creating an instance of the FeedEntry
class, which contains headline data.

There's more...
Another approach to consume feeds using Groovy is using the Rome library. Rome is a
venerable framework, which has been around for quite a long time, and it's the default
library for consuming and producing RSS or Atom feeds in Java.

@Grab('org.rometools:rome-fetcher:1.2')
import org.rometools.fetcher.impl.HttpURLFeedFetcher

def feedFetcher = new HttpURLFeedFetcher()
def feedUrl = 'http://lambda-the-ultimate.org/rss.xml'
def feed = feedFetcher.retrieveFeed(feedUrl.toURL())

feed.entries.each {
 println "${it.title}"
}

println "Feed size: ${feed.entries?.size()}"

Chapter 8

283

The code is way more compact than the custom solution we presented in the beginning. Rome
handles the differences between feed types (it also supports less common formats).

See also
 f http://rometools.org/

 f http://en.wikipedia.org/wiki/RSS

 f The Reading XML using XmlParser recipe in Chapter 5, Working with XML in Groovy

Using basic authentication for web service
security

Basic authentication is one of the simplest and thus the least secure authentication
mechanism. It sends a combined string, which contains username and password encoded
with base64 encoding, inside a special HTTP header. Password and username can be very
easily discovered, if the HTTP request is intercepted by an attacker. On the other hand, if a
request goes through using the HTTPS protocol, then header discovery is less likely to happen.
The combination of HTTPS and basic authentication makes a rather popular choice as a
starting security scheme for web services.

In this recipe, we will demonstrate how to use the HTTPBuilder library, which we already
covered in previous recipes (for example, the Issuing a SOAP request and parsing a response
recipe), to achieve the basic request authentication.

How to do it...
The following steps present how simple it is to inject basic authentication credentials into
your requests:

1. First of all we need to create an instance of HTTPBuilder pointing to our
service URL:
def service = new HTTPBuilder('https://localhost:5000/')

2. Username (groovy) and password (cookbook) values can be set in the following way:
service.auth.basic('groovy', 'cookbook')

3. At this point, you can construct HTTP requests to the secured web service as follows:

def response = service.get(path: 'secret-service')

Working with Web Services in Groovy

284

How it works...
Under the hood, the HTTPBuilder library just encodes username and password into the
required HTTP header. All other HTTPBuilder's methods can be used in the same way they
were used in other recipes.

See also
 f http://groovy.codehaus.org/modules/http-builder/

 f http://groovy.codehaus.org/modules/http-builder/doc/auth.html

Using OAuth for web service security
The OAuth protocol became one of the dominant ways to perform authorization in the
emerging amount of web applications and services. The final draft of v1.0 was released
in 2007. In 2009, v1.0a was published to fix a security flaw known as session fixation.

In October 2012, OAuth 2.0 was released. It is not backward compatible with OAuth 1.0a.
OAuth 2.0 received a lot of negative criticism, even though some of the major providers
(such as Google or Facebook) support OAuth 2.0 already. Furthermore, the new protocol
specification leaves too many open points to the implementer, which makes it somewhat
hard to apply a generic approach to.

In this recipe, we will cover the OAuth 1.0a protocol and how it can be used to authorize your
access to the Twitter API.

Getting ready
The scenario that we will try to achieve is a standalone application that reads tweets on a
user's behalf:

1. First of all, you need to register your application (script) with Twitter through this
page https://dev.twitter.com/apps/new. Obviously, before you can do it,
you should also sign up for a Twitter account. After you registered your application,
you will get a unique consumer key and consumer secret values that you will need
to identify your application.

2. That's only half of the story, because now you need to get an access token and a token
secret from the user, on whose behalf you are going to access Twitter's API. In order to
do that, we will use the oauth-signpost library (http://code.google.com/p/
oauth-signpost/) that offers lightweight support for the OAuth 1.0a protocol.

Chapter 8

285

3. The following script performs the application authorization flow, which involves
interaction with a user who needs to open the authorization URL in his browser,
accept the authorization request, and give a generated PIN code back to the script:
@Grab('oauth.signpost:si parentFilegnpost-core:1.2.1.2')
import oauth.signpost.basic.DefaultOAuthConsumer
import oauth.signpost.basic.DefaultOAuthProvider
import oauth.signpost.OAuth

def consumer = new DefaultOAuthConsumer('...', '...')

def provider = new DefaultOAuthProvider(
 'http://twitter.com/oauth/request_token',
 'http://twitter.com/oauth/access_token',
 'http://twitter.com/oauth/authorize')

String authUrl = provider.
 retrieveRequestToken(
 consumer,
 OAuth.OUT_OF_BAND
)

println "Open this URL in the browser: ${authUrl}"
print 'Authorize application and enter pin code: '

def pinCode = null
System.in.withReader {
 pinCode = it.readLine()
 println()
}

provider.retrieveAccessToken(consumer, pinCode)

println "Access token: ${consumer.token}"
println "Token secret: ${consumer.tokenSecret}"

Working with Web Services in Groovy

286

4. While executing, the script will print the authorization URL, which you should open in
your browser.

5. After you pressed the Authorize app button, you are supplied with a PIN code that
you should submit back to the running script console, which is waiting for user input.

6. Eventually the script will print the access token and token secret that can be used to
call Twitter's API in the script described in the next section.

How to do it...
Now, we are ready to send authorized requests to twitter through our script:

1. First of all we need to import the RESTClient class, which is part of the
HTTPBuilder library:
@Grapes([
 @Grab(
 group='org.codehaus.groovy.modules.http-builder',

Chapter 8

287

 module='http-builder',
 version='0.6'
),
 @Grab('oauth.signpost:signpost-commonshttp4:1.2.1.2'),
 @Grab('oauth.signpost:signpost-core:1.2.1.2')
])
import groovyx.net.http.RESTClient

2. Then we need to define the variables that hold our security keys, tokens, and secrets:
def consumerKey = '...'
def consumerSecret = '...'
def accessToken = '...'
def tokenSecret = '...'

For obvious reasons, you need to add your own values.

3. After that, we can create a RESTClient instance:
def url = 'https://api.twitter.com/1.1/statuses/'
def twitter = new RESTClient(url)

4. Then we need to set OAuth details in the following way:
twitter.auth.oauth(consumerKey,
 consumerSecret,
 accessToken,
 tokenSecret)

5. Now, we are ready to use the Twitter's API and call operations to retrieve JSON data
with tweet information:

println twitter.get(path : 'mentions_timeline.json').data

How it works...
Under the hood, HTTPBuilder uses the oauth-signpost library to sign HTTP requests
with OAuth-specific headers. This gives the ability to access the public APIs on behalf of a
user. It is important to understand that, for each new application (consumer) and for each
different Twitter user you need a separate set of keys, tokens, and secrets. If your script needs
to access different user data on their behalf, then you need to generate a new access token
and a token secret, which requires the active involvement of the user.

See also
 f http://groovy.codehaus.org/modules/http-builder/

 f http://groovy.codehaus.org/modules/http-builder/doc/auth.html

 f http://code.google.com/p/oauth-signpost/

9
Metaprogramming and

DSLs in Groovy

In this chapter, we will cover:

 f Querying methods and properties

 f Dynamically extending classes with new methods

 f Overriding methods dynamically

 f Adding performance logging to methods

 f Adding a caching functionality around methods

 f Adding transparent imports to a script

 f DSL for executing commands over SSH

 f DSL for generating reports from logfiles

Introduction
The recipes presented in this chapter will cover a number of advanced metaprogramming
concepts in Groovy in detail. Metaprogramming is the characteristic of a programming
language to modify the aspect of a class at runtime or compile time, that is, adding and
intercepting methods, implementing new interfaces, and so on.

Groovy, thanks to its dynamic nature, makes metaprogramming extremely easy. This capability
is considered by many to be one of the most helpful features of the language.

Metaprogramming and DSLs in Groovy

290

Taking an advantage of Groovy's metaprogramming capabilities bring great new possibilities
that would be very difficult or just plain impossible to write with Java alone. The first recipes
of this chapter cover several interesting solutions such as dynamically adding methods to
classes, intercepting methods, and exploring Abstract Syntax Tree (AST) capabilities.

Metaprogramming is especially important for the creation of DSLs (Domain Specific
Language), small domain-specific languages dedicated to a particular domain problem.
In this chapter, we will also dedicate two recipes to different aspects of how to write
a DSL with Groovy.

Querying methods and properties
In this first recipe about metaprogramming, we begin by looking at the introspection
capabilities of Groovy. Introspection is a major feature of the Java language and, by extension,
of the Groovy language. Using introspection, we can get the internal information of a class at
runtime, including fields, methods, constructors, and so on.

Getting ready
To test out the introspection feature, let's create a couple of Groovy classes:

package org.groovy.cookbook

class Book {

 String title
 Author author
 Long year
 Long pages

 Long getAmazonSalesPosition() {
 new Random().nextInt(1) + 1
 }

 void attachReview(String review) { }

}

class Author {
 String name
 String lastName
}

Chapter 9

291

How to do it...
The following steps offer an example of the introspection capabilities of the language:

1. To check the type of a class, you can just execute the following code snippet:
assert 'java.lang.String' == String.name
assert 'org.groovy.cookbook.Author' == Author.name

2. To list all the properties of the object:
Author a = new Author(name: 'Ernest',
 lastName: 'Hemingway')
Book book = new Book()
book.with {
 title = 'The Old Man and the Sea'
 year = 1952
 pages = 200
 author = a
}
book.properties.each { println it }

The output of looping on the instance's properties is as follows:

title=The Old Man and the Sea

class=class org.groovy.cookbook.Book

amazonSalesPosition=1

year=1952

pages=200

metaClass=

 org.codehaus.groovy.runtime.HandleMetaClass

 @41ce774e[groovy.lang.MetaClassImpl@41ce774e[

 class org.groovy.cookbook.Book]]

author=org.groovy.cookbook.Author@59fac3a2

3. One of the properties returned from the query is metaClass. Through this property,
we can access quite many interesting methods to figure out what our class can
do. For instance, to check the existence of a property, we can use the following
code snippet:
assert book.metaClass.hasProperty(book, 'pages')

Metaprogramming and DSLs in Groovy

292

4. Or list all the methods and properties:
println '#### METHODS ####'
book.metaClass.methods.each { println it }

println '#### PROPERTIES ####'
book.metaClass.properties.each { println it.name }

Note how the methods' property prints all the methods inherited from Java
(such as equals and hashCode) as well as the local methods of the class:

METHODS

public boolean java.lang.Object.equals(java.lang.Object)

public final native java.lang.Class java.lang.Object.getClass()

public native int java.lang.Object.hashCode()

...

public void Book.attachReview(java.lang.String)

public java.lang.Long Book.getAmazonSalesPosition()

public Author Book.getAuthor()

public groovy.lang.MetaClass Book.getMetaClass()

public java.lang.Long Book.getPages()

...

PROPERTIES

title

class

amazonSalesPosition

year

pages

author

5. Finally, the metaClass gives access to the respondsTo method, to directly
interrogate an instance about the presence of a method:

assert book.metaClass.respondsTo(book,'getAmazonSalesPosition')
assert book.metaClass.respondsTo(book,'attachReview', String)

The respondsTo method can be directly invoked on any object, as it is also exposed
on the Groovy enhanced java.lang.Object class:

assert book.respondsTo('attachReview', String)

Chapter 9

293

How it works...
Every class in the class loader has a reference to an object of type metaClass. This
metaClass maintains the list of all methods and properties of a given class, starting with the
bytecode information and adding the additional methods that Groovy knows about by default
(DefaultGroovyMethods). Normally, all instances of a class share the same metaClass.
However, Groovy allows per instance metaclasses, that is, different instances of a class that
may refer to different metaclasses.

The first example in Step 1 is nothing more than calling getClass().getName() on a Java
class; therefore, piggybacking on the Java reflection capabilities. The remaining examples
are more interesting because they leverage the dynamic properties of the Groovy language
through the metaClass attribute. The respondsTo method, in particular, is useful when
writing a dynamic code; for example, populating an arbitrary object from some data on a file.

See also
 f http://groovy.codehaus.org/api/groovy/lang/MetaClass.html

 f http://groovy.codehaus.org/api/org/codehaus/groovy/runtime/
DefaultGroovyMethods.html

Dynamically extending classes with new
methods

One of the exciting characteristics of Groovy is Meta Object Protocol (MOP). In a nutshell,
the term metaprogramming refers to writing code that can dynamically change its behavior at
runtime. A Meta Object Protocol refers to the capabilities of a dynamic language that enable
metaprogramming. In this recipe, we are going to look at one of the capabilities of the MOP,
which is ExpandoMetaClass.

Groovy's ExpandoMetaClass lets you assign behavior and state to classes at runtime
without editing the original source code; it is essentially a layer above the original class.
In the next section of the recipe, we will show you how to achieve such a result.

Metaprogramming and DSLs in Groovy

294

How to do it...
Adding a new method to a Groovy (or Java) class is straightforward. We are going to perform
the following given steps to add a getInEuros method to the BigDecimal Java class in
order to convert US dollars to euros:

1. In a new Groovy script, type the following code:
import java.text.NumberFormat

BigDecimal.metaClass.getInEuros = { ->
 def exchangeRate = 0.763461
 def nf = NumberFormat.getCurrencyInstance(Locale.US)
 nf.setCurrency(Currency.getInstance('EUR'))
 nf.format(delegate * exchangeRate)
}

2. Now, we are ready to test the conversion rate:

assert 1500.00.inEuros == 'EUR1,145.19'

How it works...
Each Groovy object has an accompanying instance of a class named ExpandoMetaClass
(reachable through the metaClass property) that holds a reference to the methods that can
be called on an object, including:

 f The base methods that the type allows

 f More methods added for that type by Groovy (such as, find on collections)

 f Methods added at runtime, using metaClass

Every time a method on an object is invoked, a dynamic dispatcher mechanism is used to
delegate to the companion ExpandoMetaClass.

The getInEuros closure, which we have added to the BigDecimal class, contains only the
US dollar/euro conversion code. The only aspect worth mentioning is the delegate variable,
which refers to the object on which we call the method.

It is important to note that a method added to a class using ExpandoMetaClass will
effectively modify the class across all the threads of the application; therefore, it is not a
local modification. If you need to modify only a single instance of a class, you can access the
metaClass property on an instance, as in the following code snippet:

class Customer {
 Long id
 String name

Chapter 9

295

 String lastName
}

def c = new Customer()
c.metaClass.fullName { "$name $lastName" }
c.name = 'John'
c.lastName = 'Ross'

assert c.fullName() == 'John Ross'

There's more...
ExpandoMetaClass can also be used to add:

 f Constructors to a class:
// defines a new constructor
Customer.metaClass.constructor << {
 String name -> new Customer(name: name)
}
def c = new Customer('John')
assert 'John' == c.name

In this example, we use the left shift operator to append a new constructor. The <<
operator can be used for chaining constructors or methods, like in this example:
Customer.metaClass.constructor << { String name ->
 new Customer(name: name)
} << { Long id, String fullName ->
 new Customer(
 id: id,
 name: fullName.split(',')[0],
 lastName: fullName.split(',')[1]
)
}

def c0 = new Customer('Mike')
c0.name = 'Mike'
def c1 = new Customer(1000, 'Mike,Whitall')
assert c1.name == 'Mike'
assert c1.lastName == 'Whitall'

Metaprogramming and DSLs in Groovy

296

The Customer class has been enhanced with two concatenated constructors: the
first accepting a string and the second accepting a Long and a string. The second
constructor uses the split function to assign the name and last name of
the customer.

 f Static methods:
Customer.metaClass.'static'.sayHello = { ->
 "hello! I'm your customer"
}
assert "hello! I'm your customer" == Customer.sayHello()

 f Properties:

Customer.metaClass.gsm = null
def c = new Customer()
c.gsm = '123456'
assert '123456' == c.gsm

See also
 f http://groovy.codehaus.org/ExpandoMetaClass

 f http://groovy.codehaus.org/api/groovy/lang/MetaClass.html

 f http://groovy.codehaus.org/api/groovy/lang/ExpandoMetaClass.html

Overriding methods dynamically
In the previous recipe, Dynamically extending classes with new methods, we learned how to
dynamically add a method to a class through one of the metaprogramming features of Groovy,
named ExpandoMetaClass.

In this recipe, we will see how to intercept and replace a call to an existing method of a class.
This technique can be very handy when writing unit tests for classes that have dependencies
to other classes.

Getting ready
Let's introduce three classes for which we want to write a unit test:

 f Customer.groovy:
package org.groovy.cookbook
class Customer {
 String name
}

Chapter 9

297

 f CustomerDao.groovy:
package org.groovy.cookbook
class CustomerDao {
 Customer getCustomerById(Long id) {
 // DO SOME DATABASE RELATED QUERY
 ...
 }
}

 f CustomerService.groovy:

package org.groovy.cookbook
class CustomerService {
 CustomerDao dao
 void setCustomerDao(CustomerDao dao) {
 this.dao = dao
 }
 Customer getCustomer(Long id) {
 dao.getCustomerById(id)
 }
}

The fictional CustomerService class has a dependency towards CustomerDao that is
somehow injected at runtime (dependency injection is a well-known pattern made famous
by the ubiquitous Spring framework). The CustomerDao is a class that would normally
access some kind of data store to retrieve the customer data. We are not interested in
the details of how the DAO accesses the database. What we know is that unit testing the
CustomerService class would be very difficult without satisfying the hard dependency of
the DAO and the database. In other words, the CustomerService class can be only tested
if the database required by the DAO is actually running.

In the context of this recipe, the DAO's method getCustomerById does nothing; but in real
life, it would contain code to query the database.

How to do it...
A unit test is all we need to put this simple mocking technique into practice:

1. Let's write a unit test for CustomerService, as follows:

package org.groovy.cookbook

import static org.junit.Assert.*
import org.junit.*

Metaprogramming and DSLs in Groovy

298

class TestCustomerService {
 @Test
 void testGetCustomer() {
 boolean daoCalled = false
 CustomerDao.metaClass.getCustomerById = { Long id ->
 daoCalled = true
 new Customer(name:'Yoda')
 }
 def cs = new CustomerService()
 def cDao = new CustomerDao()
 cs.setCustomerDao(cDao)
 def customer = cs.getCustomer(100L)
 assertTrue(daoCalled)
 assertEquals(customer.name, 'Yoda')
 }
}

How it works...
The unit test has the usual plumbing code to instantiate the class under test
(CustomerService), and injects the CustomerDao into the service. Before that part,
we override the getCustomerById method by overwriting the method with our own closure.
The intercept and replace mechanism is again based on the ExpandoMetaClass class
and the metaprogramming features of Groovy. When the mocked method is invoked, the
closure is triggered, and the local daoCalled variable gets updated.

A small detail that you should remember is you need to qualify the first argument with the type
if the method has a typed parameter; otherwise Groovy won't override the behavior. These two
examples would not work:

CustomerDao.metaClass.getCustomerById = { ->
 ...
}

CustomerDao.metaClass.getCustomerById = { id ->
 ...
}

Chapter 9

299

Adding performance logging to methods
In this recipe, we will learn how to add the logging of execution time metrics to any method of
a class, without littering the actual method with logging code. Java has used Aspect Oriented
Programming (AOP) for many years now to add aspects (or common features) to functions,
without having the functions to know that the code was there. It is behavior that looks and
smells like it should have a structure, but you can't find a way to express this structure in
code with traditional object-oriented techniques.

Metrics is one common aspect that is often added to the code to figure out where the
bottleneck is that is keeping you awake at night. Let's look at a typical example:

def createCustomer() {
 long start = System.currentTimeMillis()

 ... // Slow operation

 long spentTime = System.currentTimeMillis() - start
 log.debug("Execution time: ${spentTime}ms.")
}

Imagine repeating such code in hundreds or thousands of methods and you will quickly
realize that there should be something better than copy/paste.

It turns out that there is, and it's called invokeMethod. The invokeMethod is one of the
little things that make Groovy the favorite programming language among magicians.

Consider the following Groovy code:

class Test {
 def invokeMethod(String name, args) {
 println "called invokeMethod $name $args"
 }

 def test() {
 println 'in test'
 }
}

def t = new Test()
t.test()
t.bogus('testing!', 1, 2, 3)

Metaprogramming and DSLs in Groovy

300

This code prints out the following text when run in groovyConsole:

in test

called invokeMethod bogus [testing!, 1, 2, 3]

The first call goes to the test method, as expected. The second call, instead of resulting
in a MissingMethodException, as the bogus method is not declared on the class,
gets routed through the invokeMethod method. invokeMethod is a method of the
GroovyObject class.

We will use invokeMethod along with a marker interface to intercept the calls to the
methods of a class and dynamically add logging to each method.

Getting ready
This recipe requires a Gradle build script to compile and execute the code. We have already
met Gradle in the Integrating Groovy into the build process using Gradle recipe in Chapter 2,
Using Groovy Ecosystem. So, hopefully, you should be comfortable with this build tool.

In a new folder, add a file named build.gradle with the following code content:

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 compile localGroovy()
 compile 'ch.qos.logback:logback-classic:1.0.11'
 compile 'org.slf4j:slf4j-api:1.7.4'
}

The build script references the Logback library, a very popular Java logging framework.

To complete the build setup, create the following folder structure in the same folder where the
build file is:

src/main/groovy/org/groovy/cookbook/intercept

src/test/groovy/org/groovy/cookbook/intercept

Chapter 9

301

How to do it...
Let's start by writing a superclass, which hold our logging code:

1. Create a new Groovy class named PerformanceLogger and place it in the src/
main/groovy/org/groovy/cookbook/intercept folder:
package org.groovy.cookbook.intercept

import groovy.util.logging.Slf4j
import org.codehaus.groovy.runtime.InvokerHelper

@Slf4j
class PerformanceLogger implements GroovyInterceptable {
 def invokeMethod(String name, Object args) {

 long start = System.currentTimeMillis()

 def metaClass = InvokerHelper.getMetaClass(this)
 def result = metaClass.invokeMethod(this, name, args)

 long spentTime = System.currentTimeMillis() - start
 log.debug("Execution time for method ${name}: " +
 "${spentTime}ms.")

 result
 }
}

2. Now that our intercepting code is ready, we simply need to extend the
PerformanceLogger class to apply the performance logging to each
method of a class. Create a new SlowClass class having the following code:
package org.groovy.cookbook.intercept

class SlowClass extends PerformanceLogger {

 void test(String a) {
 Thread.sleep(rnd())
 }

 /* return a value between 1000 and 5000 */
 static rnd() {
 Math.abs(new Random().nextInt() % 5000 + 1000)
 }

}

Metaprogramming and DSLs in Groovy

302

3. Create a unit test in the src/test/groovy/org/groovy/cookbook/intercept
folder named TestIntercept:
package org.groovy.cookbook.intercept

import org.junit.*

class TestIntercept {
 @Test
 void methodIsIntercepted() {
 SlowClass sc = new SlowClass()
 (1..3).each {
 sc.test('hello')
 }
 }
}

4. Executing the unit test by typing gradle -i test yields the following output:

...
12:58:22.199 [Test worker]
 DEBUG o.g.c.intercept.PerformanceLogger
 - Execution time for method test: 2130 ms.
12:58:23.995 [Test worker]
 DEBUG o.g.c.intercept.PerformanceLogger
 - Execution time for method test: 1790 ms.
12:58:26.644 [Test worker]
 DEBUG o.g.c.intercept.PerformanceLogger
 - Execution time for method test: 2648 ms.
...

The test method sleeps for a random amount of milliseconds, and the execution time
is clearly visible in the log.

How it works...
In order for the PerformanceLogger class to intercept calls, it has to
implement GroovyInterceptable and override the invokeMethod method.
GroovyInterceptable is an interface that signals to the runtime that all the methods of
a class extending the interface should be intercepted by invokeMethod. The code should
be easy to follow; we simply wrap the actual method call with an unsophisticated calculation
of time spent executing the method. The dynamic invocation takes places in these two
code lines:

def metaClass = InvokerHelper.getMetaClass(this)
def result = metaClass.invokeMethod(this, name, args)

Chapter 9

303

The InvokerHelper class is a static helper resembling a Swiss Army knife for
metaprogramming. It exposes numerous methods for working dynamically with a class.
In this case, we use it to access the metaClass class of the intercepted object and
subsequently call the original method on the wrapped class.

Note how the logging aspect is applied by using the @Slf4j annotation, which essentially
removes a lot of boilerplate code (see the Adding automatic logging to Groovy classes recipe
in Chapter 3, Using Groovy Language Features). The annotation requires some dependencies
that can be added via @Grab, or better by a build script (such as Gradle or Maven).

Using GroovyInterceptable is a very simple way to decorate any method with code
that is executed before and after the actual method execution, but it has some limitations.
If a class already extends another class, we can't have the same class extending our
GroovyInterceptable class. Furthermore, the solution only works on Groovy objects
and not on arbitrary Java objects.

There's more...
A more sophisticated and flexible way to apply an interceptor to any class (Groovy or Java)
is by using the groovy.lang.ProxyMetaClass class. The class name may sound a bit
threatening, but it's not very complicated to use.

Let's start from our original SlowClass and remove the extends PerformanceLogger bit
so that the class is now free from any link to the original interceptor.

Add a new interceptor class:

package org.groovy.cookbook.intercept

import groovy.util.logging.Slf4j

@Slf4j
class PerformanceInterceptor implements Interceptor {

 private Long start = 0

 Object beforeInvoke(Object object,
 String methodName,
 Object[] arguments) {
 start = System.currentTimeMillis()
 null
 }

 boolean doInvoke() { true }

Metaprogramming and DSLs in Groovy

304

 Object afterInvoke(Object object,
 String methodName,
 Object[] arguments,
 Object result) {
 long spentTime = System.currentTimeMillis() - start
 log.debug("Execution time for method ${methodName}: " +
 "${spentTime}ms. ")
 result
 }

}

The new interceptor's code is quite similar to the old one. The difference is that the class now
implements the groovy.lang.Interceptor interface, which adds three methods that
have to be supplied. The interception is now split in two separate methods: beforeInvoke
and afterInvoke. The logic behind the performance logging stays the same.

Finally, we write a unit test that uses the proxy to invoke the class:

@Test
void methodIsInterceptedByUsingProxy() {

 useInterceptor(InterceptedClass,
 PerformanceInterceptor) {
 def ic = new InterceptedClass()
 ic.test('a')
 ic.test('b')
 ic.test('c')
 }

}

def useInterceptor = { Class theClass,
 Class theInterceptor,
 Closure theCode ->

 def proxy = ProxyMetaClass.getInstance(theClass)
 def interceptor = theInterceptor.newInstance()
 proxy.interceptor = interceptor
 proxy.use(theCode)

}

The test method uses a useInterceptor closure that puts together all the pieces.
The closure creates a proxy out of the original intercepted class and assigns the interceptor
to the proxy.

Chapter 9

305

Running the test yields the following output:

...

13:45:18.857 [Test worker]

 DEBUG o.g.c.i.PerformanceInterceptor

 - Execution time for method test: 5521 ms.

13:45:23.265 [Test worker]

 DEBUG o.g.c.i.PerformanceInterceptor

 - Execution time for method test: 4408 ms.

13:45:24.717 [Test worker]

 DEBUG o.g.c.i.PerformanceInterceptor

 - Execution time for method test: 1451 ms.

...

As mentioned before, the proxy-based interceptor can also be applied to the Java classes.

See also
 f The Adding automatic logging to Groovy classes recipe in Chapter 3, Using Groovy

Language Features
 f http://groovy.codehaus.org/api/groovy/lang/GroovyInterceptable.

html

 f http://groovy.codehaus.org/api/groovy/lang/Interceptor.html

 f http://groovy.codehaus.org/gapi/groovy/util/logging/Slf4j.html

 f http://logback.qos.ch/

Adding a caching functionality around
methods

We have already encountered AST transformations in Chapter 3, Using Groovy Language
Features, in the form of out-of-the-box annotations available in Groovy. In this recipe,
we will show how to create a brand-new AST transformation to apply to your code.

But first, we'll see some theory as this is required before you dive into AST transformations.
An AST transformation is a clever mechanism to modify the bytecode generation at compile
time, hence the association with the broader term compile-time metaprogramming.

By modifying the bytecode, we can augment our code with additional features that are added
transparently during compilation time; for example, adding getters and setters to a class.

Metaprogramming and DSLs in Groovy

306

In Java and other languages, it is relatively easy to generate source code, think of domain
entity classes generated out of database tables.

But, compile-time metaprogramming goes to the next level and directly generates bytecode
that is loaded directly into the JVM. Let me tell you that the last sentence is not completely
correct; through AST transformation we don't generate bytecode, but the abstract syntax tree,
which is turned into bytecode by the Groovy compiler.

So, what is AST exactly? AST is a tree-based representation of the code that will be eventually
compiled into bytecode. Each node of the tree contains an instruction from the source
code. The AST is abstract because it doesn't contain all the information of the program
such as spaces, parenthesis, comments, and brackets. The AST transformations essentially
provide a means of extending the Groovy language without requiring language grammar
changes, by introducing a mechanism to manipulate the AST during compilation prior to
bytecode generation.

In some ways, the AST is comparable to the DOM tree model of an XML file.

Here are some examples of ASTs. Each image contains an instruction and the AST
representation of it:

Here's the first example:

a + b

+

a b

Here's the second example:

if (a<b) m =2;

if

<

a b

:=

m 2

In Groovy, there are two types of AST transformations: local and global.

A local transformation uses annotations to generate the code, and it's the easiest to write
and debug.

Chapter 9

307

Global transformations are applied to every compilation unit; so, no annotation is used to
enforce the transformation.

Enough with the theory; let's get our hands dirty with an actual implementation of a local AST
transformation. In this recipe, we will implement a caching annotation.

Getting ready
A cache is often used to store the results of an expensive operation. Typically, a somewhat
simple (and unsafe code) would look like the following code snippet:

def cacheMap = [:]
def expensiveMethod(Long a) {
 def cached = cacheMap.get(a)
 if (!cached) {

 // Very expensive operation
 Long res = service.veryLongCall(a)

 cacheMap.put(a, res)
 cached = res

 }
 cached
}

The code simply checks if the argument of the function is a key of the Map, and it executes
the expensive code if the key is missing. Otherwise, it returns the value associated to the key.

A more elegant and more idiomatic variation of the previous code can be expressed by using
a closure:

def cacheMap = [:]
Long expensiveMethod(Long a) {
 withCache (a) {
 // Very expensive operation
 ...
 }
}

def withCache = { key, Closure operation ->
 if (!cacheMap.containsKey(key)) {
 cacheMap[key] = operation()
 }
 cacheMap.get(key)
}

Metaprogramming and DSLs in Groovy

308

The caching AST transformation will be based on the less elegant code, except that it will
be implemented as an annotation. Furthermore, in this recipe, we show different ways to
manipulate the AST.

Groovy also offers the memoize method to force a closure to
cache the result of the computation. It's a powerful performance
optimization feature that can only be applied to closures for
which a set of inputs will always result in the same output.

Before we begin, we will create a simple Gradle build (see the Integrating Groovy into the
build process using Gradle recipe in Chapter 2, Using Groovy Ecosystem) to hold our code
together and help with the test. In a new folder, touch a build.gradle file and add the
following content:

apply plugin: 'groovy'

repositories { mavenCentral() }

dependencies {
 compile localGroovy()
 testCompile 'junit:junit:4.+'
}

Create the following folder structure in the same folder where the build file resides:

src/main/groovy/org/groovy/cookbook/
src/test/groovy/org/groovy/cookbook/

How to do it...
Groovy local AST transformations are based on Java annotations. The first step is to write the
code for an annotation that we will use on any method for which the return value is cached:

1. Create a new interface in the src/main/groovy/org/groovy/cookbook folder:
package org.groovy.cookbook

import org.codehaus.groovy.
 transform.GroovyASTTransformationClass

import java.lang.annotation.*

@Retention (RetentionPolicy.SOURCE)
@Target ([ElementType.METHOD])
@GroovyASTTransformationClass (
 ['org.groovy.cookbook.CacheableTransformation']
)
@interface Cacheable {

}

Chapter 9

309

2. Next, we create the actual transformation:
package org.groovy.cookbook

import org.codehaus.groovy.ast.*
import org.codehaus.groovy.ast.builder.AstBuilder
import org.codehaus.groovy.ast.expr.ArgumentListExpression
import org.codehaus.groovy.ast.expr.ConstructorCallExpression
import org.codehaus.groovy.ast.stmt.BlockStatement
import org.codehaus.groovy.ast.stmt.Statement
import org.codehaus.groovy.control.CompilePhase
import org.codehaus.groovy.control.SourceUnit
import org.codehaus.groovy.transform.ASTTransformation
import org.codehaus.groovy.transform.GroovyASTTransformation

import java.lang.reflect.Modifier

@GroovyASTTransformation(phase = CompilePhase.SEMANTIC_ANALYSIS)
class CacheableTransformation implements ASTTransformation {

 @Override
 void visit(ASTNode[] astNodes, SourceUnit sourceUnit) {
 if (doTransform(astNodes)) {

 MethodNode annotatedMethod = astNodes[1]
 BlockStatement methodCode = annotatedMethod.code

 def methodStatements =
 annotatedMethod.code.statements
 def parameterName =
 annotatedMethod.parameters[0].name
 def cachedFieldName = annotatedMethod.name
 def declaringClass = annotatedMethod.declaringClass

 FieldNode cachedField =
 new FieldNode(
 "cache_${cachedFieldName}",
 Modifier.PRIVATE,
 new ClassNode(Map),
 new ClassNode(declaringClass.getClass()),
 new ConstructorCallExpression(
 new ClassNode(HashMap),
 new ArgumentListExpression()
)
)

Metaprogramming and DSLs in Groovy

310

 declaringClass.addField(cachedField)

 Statement oldReturnStatement =
 methodCode.statements.last()

 def ex = oldReturnStatement.expression

 def stats = """
 def cached = cache_${cachedFieldName}.
 get(${parameterName})
 if (cached) {
 return cached
 }
 """

 List<ASTNode> checkMap = new AstBuilder().
 buildFromString(
 CompilePhase.SEMANTIC_ANALYSIS,
 true,
 stats
)

 def putInMap = new AstBuilder().buildFromSpec {
 expression {
 declaration {
 variable "localCalculated_${cachedFieldName}"
 token '='
 { -> delegate.expression << ex }()
 }
 }
 expression {
 methodCall {
 variable "cache_$cachedFieldName"
 constant 'put'
 argumentList {
 variable parameterName
 variable "localCalculated_${cachedFieldName}"
 }
 }
 }
 returnStatement {
 variable "localCalculated_${cachedFieldName}"
 }
 }

Chapter 9

311

 methodStatements.remove(oldReturnStatement)
 methodStatements.add(0, checkMap[0])
 methodStatements.add(putInMap[0])
 methodStatements.add(putInMap[1])
 methodStatements.add(putInMap[2])
 }
 }

 boolean doTransform(ASTNode[] astNodes) {
 astNodes && astNodes[0] && astNodes[1] &&
 (astNodes[0] instanceof AnnotationNode) &&
 (astNodes[1] instanceof MethodNode) &&
 (astNodes[1].parameters.length == 1) &&
 (astNodes[1].returnType.name == 'void')
 }

}

3. In order to try the transformation on a method, create a class named MyTestClass
in the usual src/main/groovy/org/groovy/cookbook/ folder:
package org.groovy.cookbook

class MyTestClass {

 def cacheMap1 = [:]

 @Cacheable
 Long veryExpensive(Long a) {
 sleep(rnd())
 a * 20
 }

 static rnd() {
 Math.abs(new Random().nextInt() % 5000 + 1000)
 }
}

This class has only one veryExpensive method that does nothing but sleep for
a random amount of milliseconds. The method is annotated with the @Cacheable
annotation so that the result is cached after the first invocation. Note how the
method always return the same result.

Metaprogramming and DSLs in Groovy

312

4. In the src/test/groovy/org/groovy/cookbook/ folder, create a simple unit
test to verify that our transformation works:
package org.groovy.cookbook

import org.junit.*

class TestAst {

 @Test
 void checkCacheWorks() {
 def myTest = new MyTestClass()

 (1..3).each {
 withTime { println myTest.veryExpensive(10) }
 }

 }

 def withTime = {Closure operation ->
 def start = System.currentTimeMillis()
 operation()
 def timeSpent = System.currentTimeMillis() - start
 println "TIME IS > ${timeSpent}ms"
 }
}

The test doesn't really assert anything; but we can still use it to print out the timing of
the method invocation.

5. From the root of the project, type gradle -i clean test from the command line.
The output should look as follows:

...

Gradle Worker 2 finished executing

 tests.org.groovy.cookbook.TestCacheableAST

 > testInvokeUnitTest STANDARD_OUT

 50

 TIME IS > 3642ms

 50

 TIME IS > 0ms

 50

 TIME IS > 0ms

...

Chapter 9

313

From the output, it is clearly visible how the first method took almost four seconds to
execute, while the second and third invocations executed instantaneously thanks to
the caching annotation.

How it works...
Let's start by taking a look at the annotation declared in step 1. The RetentionPolicy is
set to SOURCE, which means that the compiler will discard the annotation; after all it is not
needed at runtime. This annotation can be only used at the METHOD level because we want
only certain methods to cache the result and not the whole class.

The last annotation's attribute is @GroovyASTTransformationClass. The value is set to
the actual source code of the transformation we wish to implement.

The code for the AST transformation in step 2 is not very easy to follow, and we are going to
analyze it step-by-step. The CacheableTransformation class used in this recipe uses two
different styles of abstract syntax tree modification:

 f The old Groovy 1.6 ASTNode subclasses approach
 f The newer ASTBuilder-based approach, which is easier to read and maintain

An AST transformation class must implement ASTTransformation. The class itself must
also be annotated with the @GroovyASTTransformation.

Following the class declaration, we find some sanity checks, which will exit the transformation
if some conditions are true. This should never happen, but it is better to exercise some
defensive programming style with AST transformations. The expression assigned to a
cacheField variable does create a private Map variable named after the annotated
method. For example, consider the following snippet:

@Cacheable
Long veryExpensive(Long a) { ... }

The cacheField variable will be named cache_veryExpensive, as the annotated method
is named veryExpensive.

As you can notice, the AST API expression, which is required to create a statement as simple as
private Map cache_veryExpensive = [:], is indeed quite complex, and it requires a
deep knowledge of the org.codehaus.groovy.ast package. Imagine what the statement
would look like for something more complex. There is no abstraction over the AST, and the code
to create the AST doesn't remotely resemble the Groovy code we are trying to execute.

In order to facilitate manually writing AST code, we can take a little shortcut in the shape of
groovyConsole. Let's fire up groovyConsole and type into the main window:

class MyClass {
 private final Map m = [:]
}

Metaprogramming and DSLs in Groovy

314

Select the Script menu and click on Inspect AST. A new window should pop-up. Then
select Semantic Analysis phase in the drop-down list and expand the Fields node and
its sub-elements to show the classes required to define the Map variable using AST.

The AST inspector can be used as a guide to instantiate the right classes. Even with the help
of the AST inspector, building AST code by hand is not trivial, and the resulting code is not
easy to maintain.

Let's move on to the next statements:

Statement oldReturnStatement = methodCode.statements.last()
def ex = oldReturnStatement.expression

These two lines are required to extract the return statement in the annotated function.
We are going to need it later.

def stats = """
 def cached = cache_${cachedFieldName}.get(${parameterName})
 if (cached) {
 return cached
 }
"""
List<ASTNode> checkMap = new AstBuilder().
 buildFromString(
 CompilePhase.SEMANTIC_ANALYSIS,
 true,
 stats
)

Chapter 9

315

The second style of AST manipulation uses the org.code.codehaus.groovy.ast.
builder.AstBuilder class, written by Hamlet D'Arcy, to ease the pain of creating an AST.
The class provides three ways of building an AST. The three methodologies allow you to create
Groovy code:

 f From an AST DSL via the buildFromSpec method

 f From a string via the buildFromString method

 f From Groovy code via the buildFromCode method

In the previous code snippet, the buildFromString method is used. With this approach,
you can use any string containing valid Groovy code to build an AST. Alternatively, with
buildFromCode, you can pass the Groovy source code directly, instead of a string. The
buildFromCode method approach has some strengths and weaknesses. The code is
automatically validated by the compiler when it is passed as a closure.

On the other hand, certain operations that are available by using buildFromString are not
possible with buildFromCode; for example, creating a new class or binding data from the
enclosing context. The stats variable contains the first part of the code that we want to add
to an annotated method before the method body is invoked. The buildFromString method
takes three arguments:

 f The first argument from the left indicates the phase in which the AST will be
generated. Local AST transformations can only be applied at semantic analysis or
later phases. For a list of compilation phases and their meaning, please refer to the
Groovy documentation.

 f The second argument, a boolean type named statementsOnly, indicates that
when true, only the script statements are returned. When false, a Script class
is returned.

 f The third argument is obviously a string containing the code to generate.

The second part of our caching transformation uses the buildFromSpec method approach
to finalize the caching behavior. The buildFromSpec method uses a thin DSL on top of the
ASTNode API. The reason we switched from buildFromString to buildFromSpec is the
following code statement:

expression {
 declaration {
 variable "localCalculated_$cachedFieldName"
 token '='
 { -> delegate.expression << ex }()
 }
}

Metaprogramming and DSLs in Groovy

316

This DSL entry assigns the body of the return statement (the ex variable declared earlier) to
a local variable named localCalculated_$cachedFieldName. This would be impossible
to achieve using buildFromString because the ex variable would not be accessible from
within the string.

The last lines of the transformation are used to assign the newly created statements to the
function's body.

The statements in the last part of the visit function are used to:

 f Remove the original return statement

 f Add the AST rendering of the buildFromString method in which we create the call
to the Map used for caching

 f Add the AST rendering of the buildFromSpec method

Let's look at how a function annotated with the @Cacheable annotation gets modified. Here,
is the original function:

@Cacheable
Long veryExpensive(Long a) {
 callVerySlowMethod(a)
}

Here is the modified one:

private Map cache = [:]
Long veryExpensive(Long a) {
 def cached = cache.get(a)
 if (cached) {
 return cached
 }
 localCalculated = callVerySlowMethod(a)
 localCalculated.put(localCalculated)
 localCalculated
}

The caching done by the transformation is not very sophisticated, but for the sake of brevity
and to alleviate an already intricate topic, we have simplified the code a bit.

See also
 f For more information about AST transformations in Groovy, please refer to the official

documentation available at http://groovy.codehaus.org/Compile-
time+Metaprogramming+-+AST+Transformations

Chapter 9

317

Adding transparent imports to a script
In this recipe, we will learn how to transparently add one or more import statements to a
Groovy script.

Why is this feature significant? For a start, it reduces the amount of code required to use a
library. But above all, it may be the first step in building your own DSL as it helps to remove
friction. This is because your DSL users don't have to write any import statements. The
ImportCustomizer class allows the following import variants:

 f Class imports, optionally aliased

 f Star imports

 f Static imports, optionally aliased

 f Static star imports

Getting ready
For the sake of demonstration, we will create a script that requires some classes from the
amazing Google Guava library. Additionally, we will also need to statically import a groovy.
json.JsonOutput utility class, which is indisputably a very fine collection of the utility
methods for JSON printing. A script that wishes to use the classes mentioned previously
would start with the following import statements:

import static groovy.json.JsonOutput.*
import com.google.common.hash.*

In order for the script to run, you will need to download the Google Guava library from
https://code.google.com/p/guava-libraries/ and place it in the lib folder.

How to do it...
Let's see how to put ImportCustomizer to use to avoid importing the classes explicitly:

1. We need to create a configuration script holding the customization code. Let's create
a new file named config.groovy containing the following code:
import org.codehaus.groovy.
 control.customizers.ImportCustomizer

def imports = new ImportCustomizer()
imports.addStarImports('com.google.common.hash')
imports.addStaticStars('groovy.json.JsonOutput')
configuration.addCompilationCustomizers(imports)

Metaprogramming and DSLs in Groovy

318

2. The fictional script (for example, script.groovy) that needs the imported classes
looks like the following code snippet:
// from groovy.json.JsonOutput
def jsonString = toJson([a: 123, b: 'John', c: true])

// from com.google.common.hash
HashFunction hf = Hashing.md5()
HashCode hc = hf.newHasher()
 .putLong(123)
 .putString('John')
 .putBoolean(true)
 .hash()

3. Let's run the script, assuming that the JAR files containing the classes which we need
to import are located in a lib folder.
groovy -cp ./lib/guava-14.0.1.jar script.groovy

The command should fail with an exception:

org.codehaus

 .groovy.control.MultipleCompilationErrorsException: ...

4. Add --configscript flag to the groovy command and pass the name of the
config.groovy location:

groovy -cp ./lib/guava-14.0.1.jar --configscript config.groovy
script.groovy

This time the code gets executed without errors.

How it works...
Step 1 shows a configuration script where a couple of methods of the ImportCustomizer
class are invoked to set the packages to import. The addStarImports('a.b.c')
statement produces the same effect as import a.b.c.*; whereas the
addStaticStars('a.b.c.MyClass') statement adds the static keyword
to the import statement such as import static a.b.c.MyClass.*.

In step 2, the Groovy compiler dutifully complains and throws an unable to resolve class
HashFunction error. The reason is that we are not passing the configuration file to the
compiler. When, in step 3, we pass the --configscript option, the script executes
without errors. This configuration option is only available from Groovy 2.1.

Chapter 9

319

You may have noticed that the configuration variable appearing in the script in step 1 is not
declared anywhere. The variable is passed to the script automatically by the Groovy runtime.
The variable's type is CompilerConfiguration. It's used to hold information including the
encoding or the classpath and configure certain aspects of the compilation stage (such as
applying/removing AST transformations).

There's more...
The ImportCustomizer class has a number of additional methods which are useful
for different types of import. We have already encountered addStarImports and
addStaticStar. Other methods are as follows:

 f addImport: to add a single aliased import statement. For instance:
imports.
 addImport('AInteger',
 'java.util.concurrent.atomic.AtomicInteger')

 f addImports: to add multiple import entries. For instance:
imports.
 addImports('java.util.concurrent.atomic.AtomicInteger',
 'java.util.concurrent.atomic.AtomicLong')

 f addStaticImport: to add a static method from a package. For instance:

imports.addStaticImport('java.lang.Math', 'PI')
imports.addStaticImport('Euler', 'java.lang.Math', 'E')

See also
 f http://groovy.codehaus.org/api/org/codehaus/groovy/control/

customizers/ImportCustomizer.html

 f http://groovy.codehaus.org/api/org/codehaus/groovy/control/
CompilerConfiguration.html

DSL for executing commands over SSH
DSL is quite a popular technique to help a developer to define program or business logic in a
more readable and concise way compared to using the general-purpose language features.
There are two types of DSLs: internal and external. Internal (or embedded) DSLs exploit host
language features to build a fluent library API that makes certain concepts more readable in
the host language itself. External DSLs call for a specifically designed language that is not
bound to host language and usually requires a separately developed DSL parser.

Metaprogramming and DSLs in Groovy

320

With the help of Groovy, you can create both DSL types with ease. In this recipe, we will define
an internal DSL for executing remote SSH commands.

Getting ready
We are going to use the JSch library (http://www.jcraft.com/jsch/), which is used by
many other Java libraries that require SSH connectivity.

The following Gradle script (see the Integrating Groovy into the build process using Gradle recipe
in Chapter 2, Using Groovy Ecosystem) will help us to build the source code of this recipe:

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 compile localGroovy()
 compile 'ch.qos.logback:logback-classic:1.+'
 compile 'org.slf4j:slf4j-api:1.7.4'
 compile 'commons-io:commons-io:1.4'
 compile 'com.jcraft:jsch:0.1.49'
 testCompile 'junit:junit:4.+'
}

For more information on Gradle, you can take a look into the Integrating Groovy into the build
process using Gradle recipe in Chapter 2, Using Groovy Ecosystem.

How to do it...
Let's start by creating Groovy classes needed to define elements of our DSL:

1. First of all, we will define a data structure to hold remote command result details
such as exit codes, standard output data, and if any, exceptions thrown by the
processing code:
class CommandOutput {

 int exitStatus
 String output
 Throwable exception

 CommandOutput(int exitStatus, String output) {
 this.exitStatus = exitStatus
 this.output = output

Chapter 9

321

 }

 CommandOutput(int exitStatus,
 String output,
 Throwable exception) {
 this.exitStatus = exitStatus
 this.output = output
 this.exception = exception
 }
}

2. We define another structure for holding SSH connectivity details:
import java.util.regex.Pattern

class RemoteSessionData {

 static final int DEFAULT_SSH_PORT = 22

 static final Pattern SSH_URL =
 ~/^(([^:\@]+)(:([^\@]+))?\@)?([^:]+)(:(\d+))?$/

 String host = null
 int port = DEFAULT_SSH_PORT
 String username = null
 String password = null

 def setUrl(String url) {
 def matcher = SSH_URL.matcher(url)
 if (matcher.matches()) {
 host = matcher.group(5)
 port = matcher.group(7).toInteger()
 username = matcher.group(2)
 password = matcher.group(4)
 } else {
 throw new RuntimeException("Unknown URL format: $url")
 }
 }
}

3. The next step defines the core of our DSL: a remote SSH session implementation that
will hold our DSL verbs implemented as methods such as connect, disconnect,
reconnect, and exec:
import org.apache.commons.io.output.CloseShieldOutputStream
import org.apache.commons.io.output.TeeOutputStream

Metaprogramming and DSLs in Groovy

322

import com.jcraft.jsch.Channel
import com.jcraft.jsch.ChannelExec
import com.jcraft.jsch.JSch
import com.jcraft.jsch.JSchException
import com.jcraft.jsch.Session

class RemoteSession extends RemoteSessionData {

 private Session session = null
 private final JSch jsch = null

 RemoteSession(JSch jsch) {
 this.jsch = jsch
 }

 def connect() {
 if (session == null || !session.connected) {
 disconnect()
 if (host == null) {
 throw new RuntimeException('Host is required.')
 }
 if (username == null) {
 throw new RuntimeException('Username is required.')
 }
 if (password == null) {
 throw new RuntimeException('Password is required.')
 }
 session = jsch.getSession(username, host, port)
 session.password = password
 println ">>> Connecting to $host"
 session.connect()
 }
 }

 def disconnect() {
 if (session?.connected) {
 try {
 session.disconnect()
 } catch (Exception e) {
 } finally {
 println "<<< Disconnected from $host"
 }
 }
 }

Chapter 9

323

 def reconnect() {
 disconnect()
 connect()
 }

 CommandOutput exec(String cmd) {
 connect()
 catchExceptions {
 awaitTermination(executeCommand(cmd))
 }
 }

 private ChannelData executeCommand(String cmd) {
 println "> $cmd"
 def channel = session.openChannel('exec')
 def savedOutput = new ByteArrayOutputStream()
 def systemOutput =
 new CloseShieldOutputStream(System.out)
 def output =
 new TeeOutputStream(savedOutput, systemOutput)
 channel.command = cmd
 channel.outputStream = output
 channel.extOutputStream = output
 channel.setPty(true)
 channel.connect()
 new ChannelData(channel: channel,
 output: savedOutput)
 }

 class ChannelData {
 ByteArrayOutputStream output
 Channel channel
 }

 private CommandOutput awaitTermination(
 ChannelData channelData) {
 Channel channel = channelData.channel
 try {
 def thread = null
 thread =
 new Thread() {
 void run() {
 while (!channel.isClosed()) {
 if (thread == null) {

Metaprogramming and DSLs in Groovy

324

 return
 }
 try {
 sleep(1000)
 } catch (Exception e) {
 // ignored
 }
 }
 }
 }
 thread.start()
 thread.join(0)
 if (thread.isAlive()) {
 thread = null
 return failWithTimeout()
 } else {
 int ec = channel.exitStatus
 return new CommandOutput(
 ec,
 channelData.output.toString()
)
 }
 } finally {
 channel.disconnect()
 }
 }

 private CommandOutput catchExceptions(Closure cl) {
 try {
 return cl()
 } catch (JSchException e) {
 return failWithException(e)
 }
 }

 private CommandOutput failWithTimeout() {
 println 'Session timeout!'
 new CommandOutput(-1, 'Session timeout!')
 }

 private CommandOutput failWithException(Throwable e) {
 println "Caught exception: ${e.message}"
 new CommandOutput(-1, e.message, e)
 }
}

Chapter 9

325

4. Now, we are ready to create an entry point to our DSL in the form of an engine class:
import com.jcraft.jsch.JSch

class SshDslEngine {

 private final JSch jsch
 private RemoteSession delegate

 SshDslEngine() {
 JSch.setConfig('HashKnownHosts', 'yes')
 JSch.setConfig('StrictHostKeyChecking', 'no')
 this.jsch = new JSch()
 }

 def remoteSession(Closure cl) {
 if (cl != null) {
 delegate = new RemoteSession(jsch)
 cl.delegate = delegate
 cl.resolveStrategy = Closure.DELEGATE_FIRST
 cl()
 if (delegate?.session?.connected) {
 try {
 delegate.session.disconnect()
 } catch (Exception e) {
 }
 }
 }
 }
}

5. Now, it is time to try the DSL out:

new SshDslEngine().remoteSession {

 url = 'root:secret123@localhost:3223'

 exec 'yum --assumeyes install groovy'
 exec 'groovy -e "println \'Hello, Remote!\'"'

}

Metaprogramming and DSLs in Groovy

326

How it works...
In the previous code example, we construct a DSL engine object and call the
remoteSession method to which we pass a closure with our DSL code. The snippet,
after connecting to a remote server, installs Groovy through the Yum package manager
and runs a simple Groovy script through the command line, which just prints the message:
Hello, Remote!.

The principal stratagems employed by Groovy for the definition of a DSL are the closure
delegates. A closure delegate is basically an object that is dynamically queried for methods/
fields from within the closure's code. By default, delegate equals to the object that contains
the closure; for example, enclosing a class or surrounding a closure.

As you can notice in the remoteSession method, the closure input parameter is given
a delegate object (cl.delegate = delegate) that represents the RemoteSession
implementation. Also, the closure's resolveStrategy is set to DELEGATE_FIRST; this
means the closure's code will first call a method from the given RemoteSession instance,
and only after that will it call methods from other available contexts. This is the reason why, in
the DSL usage example, the closure that we pass to the remoteSession method has access
to setUrl and exec methods.

The remote connection is automatically started upon the first command execution; but the
connection logic can be controlled explicitly since it is defined by our DSL. Additionally, normal
Groovy code can be added around methods of the RemoteSession class, like the following
code snippet:

new SshDslEngine().remoteSession {

 url = 'root:secret123@localhost:3223'

 connect()
 if (exec('rpm -qa | grep groovy').exitStatus != 0) {
 exec 'yum --assumeyes install groovy'
 }
 disconnect()

 connect()
 def result = exec 'groovy -e "println \'Hello, Remote!\'"'
 if (!result.contains('Hello')) {
 throw new RuntimeException('Command failed!')
 }
 disconnect()

}

Chapter 9

327

See also
 f A more sophisticated implementation of the previous DSL is put into practice by the

Groovy SSH DSL project available at https://github.com/aestasit/groovy-
ssh-dsl. It supports SCP operations, tunneling, key-based authentication, and many
other useful features.

 f Specifics of the SSH implementation are not covered in this recipe since most
of the functionality is delegated to the JSch library, which can be found at
http://www.jcraft.com/jsch/.

DSL for generating reports from logfiles
In this recipe, we will give another DSL example for constructing a simple configuration
language for the analysis of logfiles, and the generation of reports based on the content of
such logfiles. The technique used in this recipe is similar to the one used in the recipe DSL
for executing commands over SSH.

Getting ready
Let's consider having the following performance log data:

execution of getCustomerName took 244ms
execution of getCustomerName took 144ms
execution of getAccountNumber took 44ms
execution of getCustomerName took 244ms
execution of getCustomerName took 24ms
execution of getAccountNumber took 112ms
execution of getCustomerName took 200ms
execution of getCustomerName took 22ms
...

The goal is to calculate the average and total times spent on each method. Of course,
we could have written a very simple script to reach the same result, but our purpose is to
create a DSL that will allow parsing any arbitrary logfile format and extract both grouped
and aggregated numeric information from it. A reasonable DSL may look like the following
code snippet:

format '^execution of (\\w+) took (\\d+)ms$'
column 1, 'methodName'
column 2, 'duration'

source('PerformanceData2012') {
 localFile 'log1.log'
 localFile 'log2.log'
}

Metaprogramming and DSLs in Groovy

328

report('Duration') {
 avg 'duration'
 sum 'duration'
 groupBy 'methodName'
}

We will try to define the language exactly like this example.

The first expression defines a log line format; then we define a regular expression group
mapping to column names, which are used later to refer to log data inside the report
definition. The report definition contains a list of calculated values (average of duration and
sum of duration) and a column to group report data by. Another important component of the
DSL is the definition of the data source.

How to do it...
To define our internal DSL, we first need to define its building blocks, that is, the data
structures that compose our mini language:

1. The first step is to define the report data structure:
class Report {

 def name

 def sumColumns = [] as Set
 def avgColumns = [] as Set
 def groupByColumns = [] as Set

 Report(String name) {
 this.name = name
 }

 void sum(String columnName) {
 sumColumns << columnName
 }

 void avg(String columnName) {
 avgColumns << columnName
 }

 void groupBy(String columnName) {
 groupByColumns << columnName
 }
}

Chapter 9

329

2. We also define the data source structure:
class Source {

 def name
 def files = [] as Set

 Source(String name) {
 this.name = name
 }

 void localFile(File file) {
 if (file) {
 files << file.absoluteFile.canonicalFile
 }
 }

 void localFile(String file) {
 localFile(new File(file))
 }
}

3. Then we compose a common configuration object, which hold sources, reports,
format, and column mapping data:
class Configuration {

 def format

 private final columnNames = [:]
 private final columnIndexes = [:]
 private final sources = [:]
 private final reports = [:]

 private static int sourceCounter = 0
 private static int reportCounter = 0

 void format(String format) {
 this.format = format
 }

 void column(int group, String name) {
 columnNames[group] = name
 columnIndexes[name] = group
 }

Metaprogramming and DSLs in Groovy

330

 void source(Closure cl) {
 def generatedName = "source${sourceCounter++}"
 source(generatedName, cl)
 }

 void source(String name, Closure cl) {
 Source source = new Source(name)
 cl.delegate = source
 cl.resolveStrategy = Closure.DELEGATE_FIRST
 cl()
 sources[name] = source
 }

 void report(Closure cl) {
 def generatedName = "report${reportCounter++}"
 report(generatedName, cl)
 }

 void report(String name, Closure cl) {
 Report report = new Report(name)
 cl.delegate = report
 cl.resolveStrategy = Closure.DELEGATE_FIRST
 cl()
 reports[name] = report
 }
}

4. The final step is to define the engine class that will glue together the configuration
creation and actual report generation:
class LogReportDslEngine {

 void process(Closure cl) {

 Configuration config = new Configuration()
 cl.delegate = config
 cl.resolveStrategy = Closure.DELEGATE_FIRST
 cl()

 config.sources.values().each { Source source ->
 config.reports.values().each { Report report ->

 // Collect report data.
 def reportData = [:]
 source.files.each { File sourceFile ->

Chapter 9

331

 sourceFile.eachLine { String line ->

 // Match the data line.
 if (line =~ config.format) {
 def fields = (line =~ config.format)[0]

 // Map column names
 def fieldMap = fields.collect {}

 // Generate group key, for which
 // to aggregate the data.
 def group = report.groupByColumns
 .collect {
 fields[config.columnIndexes[it]]
 }.join(', ')

 // Create empty group record
 // if it does not exist.
 reportData[group] =
 reportData[group] ?: emptyRecord

 // Calculate report values for given key.
 def g = reportData[group]
 report.avgColumns.each { String column ->
 def fieldIndex =
 config.columnIndexes[column]
 g['avg'][column] = g['avg'][column] ?: 0
 g['avg'][column] +=
 fields[fieldIndex].toDouble()
 }
 report.sumColumns.each { String column ->
 def fieldIndex =
 config.columnIndexes[column]
 g['sum'][column] = g['sum'][column] ?: 0
 g['sum'][column] +=
 fields[fieldIndex].toDouble()
 }
 g['count'] += 1

 }
 }
 }

Metaprogramming and DSLs in Groovy

332

 // Produce report output.
 def reportName = "${source.name}_${report.name}"
 def reportFile = new File("${reportName}.report")
 reportFile.text = ''
 reportData.each { key, data ->
 reportFile <<
 "Report for $key\n"
 reportFile <<
 " Total records: ${data['count']}\n"
 data['avg'].each { column, value ->
 reportFile <<
 " Average of ${column} is " +
 "${value / data['count']}\n"
 }
 data['sum'].each { column, value ->
 reportFile <<
 " Sum of ${column} is ${value}\n"
 }
 }

 }
 }
 }

 def getEmptyRecord() {
 [count: 0, avg: [:], sum: [:]]
 }
}

5. At this point, you are ready to use the DSL internally from your Groovy code:
def engine = new LogReportDslEngine()

engine.process {

 format '^execution of (\\w+) took (\\d+)ms$'

 column 1, 'methodName'
 column 2, 'duration'

 source('PerformanceData2012') {
 localFile 'log1.log'

Chapter 9

333

 localFile 'log2.log'
 }
 source('PerformanceData2013') {
 localFile 'log3.log'
 localFile 'log4.log'
 }

 report('Duration') {
 avg 'duration'
 sum 'duration'
 groupBy 'methodName'
 }

}

6. The previous script will produce two report files (one for each data source), named
PerformanceData2012_Duration.report and PerformanceData2013_
Duration.report. The report will look approximately like the following example:

Report for getCustomerName

 Total records: 12

 Average of duration is 179.0

 Sum of duration is 2148.0

Report for getAccountNumber

 Total records: 4

 Average of duration is 64.0

 Sum of duration is 256.0

How it works...
The Source and Report classes defined previously are simple structures holding information
needed to build the reports; therefore, we will not spend any time on them.

The Configuration class is a bit more involved because it makes use of closure delegates
(similar to the DSL for executing commands over SSH recipe).

The Configuration object is also constructed through a closure delegate inside the process
method of the LogReportDslEngine class. After the configuration closure is executed, we
get back a fully constructed data structure, which we are ready to use for further processing.

Metaprogramming and DSLs in Groovy

334

The code executed after we have a configuration object does the following:

 f Loops through all data sources, and for each of them

 f Loops through all report definitions, and for each of them

 f Goes through all source files and reads every line

 f For each line, it tries to match it against configured format expression and then fills in
internal report data array

 f When the file processing is done, the collected data is printed into a report file

There's more...
Obviously, this DSL implementation is rather primitive and can be extended with many more
features such as:

 f DSL validation rules (for example, groupBy columns cannot appear in an
aggregated function)

 f More grouping functions (for example, min and max)

 f More data source types (for example, URL, FTP, and JDBC)

 f More column types (for example, date, time, Boolean, and IP address)

10
Concurrent

Programming in Groovy

In this chapter, we will cover:

 f Processing collections concurrently

 f Downloading files concurrently

 f Splitting a large task into smaller parallel jobs

 f Running tasks in parallel and asynchronously

 f Using actors to build message-based concurrency

 f Using STM to atomically update fields

 f Using dataflow variables for lazy evaluation

Introduction
The chapter you are about to read contains several recipes that deal with concurrent
programming. We are going to examine a number of very efficient algorithm and paradigms
to leverage the modern architecture of multi-core CPUs.

Most of the recipes in this chapter will use the awesome GPars (Groovy Parallel System)
framework. GPars, which reached v1.0 at the end of 2012, is now a part of the Groovy
distribution. Its main objective is to abstract away the complexity of parallel programming.
GPars offers a number of parallel and concurrent programming tools that has almost no
paragon in the JVM ecosystem. Most of the recipes will show how to execute tasks in parallel
to save time and use resources at their best.

Concurrent Programming in Groovy

336

Processing collections concurrently
As mentioned in the introduction, this chapter's recipes will recourse to the spectacular
features of the GPars framework.

In this recipe, we take a look at the Parallelizer, which is the common GPars term that
refers to Parallel Collections. These are a number of additional methods added by GPars to
the Groovy collection framework, which enable data parallelism techniques.

Getting ready
We will start with setting up the Gradle build (see the Integrating Groovy into the build process
using Gradle recipe in Chapter 2, Using Groovy Ecosystem) and the folder structure that we
will reuse across the recipes of this chapter. In a new folder aptly called parallel, create a
build.gradle file having the following content:

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.codehaus.groovy:groovy-all:2.1.6'
 compile 'org.codehaus.gpars:gpars:1.0.0'
 compile 'com.google.guava:guava:14.0.1'
 compile group: 'org.codehaus.groovy.modules.http-builder',
 name: 'http-builder', version: '0.6'
 compile('org.multiverse:multiverse-beta:0.7-RC-1') {
 transitive = false
 }
 testCompile 'junit:junit:4.+'
 testCompile 'edu.stanford.nlp:stanford-corenlp:1.3.5'
}

Some dependencies may appear obscure, but they will be revealed and explained in
every recipe. The GPars dependency is visible after the Groovy one (note that the Groovy
distribution is already packaged with GPars 1.0.0, located in the lib folder of the Groovy's
binary distribution).

Before delving into the code, we also need to create a folder structure to hold the classes and
the tests. Create the following structure in the same folder where the build file resides:

src/main/groovy/org/groovy/cookbook

src/test/groovy/org/groovy/cookbook

Chapter 10

337

How to do it...
In the following steps, we are going to fill our sample project structure with code.

1. Let's create a unit test, named ParallelTest.groovy in the new src/test/
groovy/org/groovy/cookbook directory. The unit test class will contain
tests in which we sample the various parallel methods available from the
Parallelizer framework:
package org.groovy.cookbook

import static groovyx.gpars.GParsPool.*

import org.junit.*

import edu.stanford.nlp.process.PTBTokenizer
import edu.stanford.nlp.process.CoreLabelTokenFactory
import edu.stanford.nlp.ling.CoreLabel

class ParallelizerTest {

 static words = []

 ...

}

2. Now we add a couple of test setup methods that generate a large collection of
test data:
@BeforeClass
static void loadDict() {
 def libraryUrl = 'http://www.gutenberg.org/cache/epub/'
 def bookFile = '17405/pg17405.txt'
 def bigText = "${libraryUrl}${bookFile}".toURL()
 words = tokenize(bigText.text)
}

static tokenize(String txt) {
 List<String> words = []
 PTBTokenizer ptbt = new PTBTokenizer(
 new StringReader(txt),
 new CoreLabelTokenFactory(),
 ''
)

Concurrent Programming in Groovy

338

 ptbt.each { entry ->
 words << entry.value()
 }
 words
}

3. And finally, add some tests:

@Test
void testParallelEach() {
 withPool {
 words.eachParallel { token ->
 if (token.length() > 10 &&
 !token.startsWith('http')) {
 println token
 }
 }
 }
}

@Test
void testEveryParallel() {
 withPool {
 assert !(words.everyParallel { token ->
 token.length() > 20
 })
 }
}

@Test
void combinedParallel() {
 withPool {
 println words
 .findAllParallel { it.length() > 10 &&
 !it.startsWith('http') }
 .groupByParallel { it.length() }
 .collectParallel { "WORD LENGTH ${it.key}: " +
 it.value*.toLowerCase().unique() }
 }
}

Chapter 10

339

How it works...
In this test, we sample some of the methods available through the GParsPool class.
This class uses a "fork/join" based pool (see http://en.wikipedia.org/wiki/
Fork%E2%80%93join_queue), to provide parallel variants of the common Groovy iteration
methods such as each, collect, findAll, and others.

The tokenize method, in step 2, is used to split a large text downloaded from the Internet
into a list of "tokens". To perform this operation, we use the excellent NLP (Natural Language
Processing) library from Stanford University. This library allows fast and error-free tokenizing
of any English text. What really counts here is that, we are able to quickly create a large List
of values, on which we can test some parallel methods. The downloaded text comes from
the Gutenberg project website, a large repository of literary works stored in plain text. We
have already used files from the Gutenberg project in the Defining data structures as code in
Groovy recipe in Chapter 3, Using Groovy Language Features and Processing every word in a
text file recipe from Chapter 4, Working with Files in Groovy.

All the tests require the GParsPool class. The withPool method is statically imported
for brevity.

The first test uses eachParallel to traverse the List and print the tokens if a certain
condition is met. On an 8-core processor, this method is between 35 percent and 45 percent
faster than the sequential equivalent.

The third test shows a slightly more complex usage of the Parallelizer API and demonstrates
how to combine several methods to aggregate data. The list is first filtered out by word length,
and then a grouping is executed on the token length itself, and finally, the collectParallel
method is used to create a parallel array out of the supplied collection. The result of the
previous test would print something as follows:

[WORD LENGTH 22: [-LRB-801-RRB- 596-1887],

 WORD LENGTH 20: [trademark\/copyright]

 WORD LENGTH 19: [straightforwardness],

 WORD LENGTH 18: [commander-in-chief,

 business@pglaf.org],...

The original list of tokens is aggregated into a Map, where the key is the word length and the
value is a List of words having that length found in the text.

Concurrent Programming in Groovy

340

There's more...
In this short recipe, we only tried out few of the many "parallel" methods. In the following
recipes, we will see more examples of the Parallelizer in action. For a complete
list of parallel operations, refer to the Javadoc page of GParsUtil: http://gpars.
org/1.0.0/javadoc/groovyx/gpars/GParsPoolUtil.html.

See also
 f Downloading files concurrently

 f http://gpars.codehaus.org/

 f http://www.gpars.org/guide/

 f http://gpars.org/1.0.0/javadoc/groovyx/gpars/GParsPoolUtil.html

 f http://nlp.stanford.edu/nlp

 f http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/
process/PTBTokenizer.html

Downloading files concurrently
This recipe is about downloading files concurrently from the network. As for most recipes in
this chapter, we will use the GPars framework to leverage the concurrent features required
by the parallel downloading.

Getting ready
This recipe reuses the same build infrastructure created in the Processing collections
concurrently recipe.

How to do it...
The download logic is completely encapsulated in a Groovy class.

1. Add a new FileDownloader class to the src/main/groovy/org/groovy/
cookbook folder:
package org.groovy.cookbook

import static groovyx.gpars.GParsPool.*
import static com.google.common.collect.Lists.*

class FileDownloader {

Chapter 10

341

 static final int POOL_SIZE = 25
 static pool

 FileDownloader() {
 pool = createPool(POOL_SIZE)
 }

 private void downloadFile(String remoteUrl,
 String localUrl) {
 new File("$localUrl").withOutputStream { out ->
 new URL(remoteUrl).withInputStream { from ->
 out << from
 }
 }
 }

 private void parallelDownload(Map fromTo) {
 withExistingPool(pool) {
 fromTo.eachParallel { from, to ->
 downloadFile(from, to)
 }
 }
 }

 void download(Map fromTo, int maxConcurrent) {
 if (maxConcurrent > 0) {
 use(MapPartition) {
 List maps = fromTo.partition(maxConcurrent)
 maps.each { downloadMap ->
 parallelDownload(downloadMap)
 }
 }
 } else {
 parallelDownload(fromTo)
 }
 }
}

class MapPartition {
 static List partition(Map delegate, int size) {
 def rslt = delegate.inject([[:]]) { ret, elem ->
 (ret.last() << elem).size() >= size ?
 ret << [:] : ret
 }
 rslt.last() ? rslt : rslt[0..-2]
 }
}

Concurrent Programming in Groovy

342

2. Let's write a unit test, to test our newly created class. Don't forget to place the test in
the src/main/groovy/org/groovy/cookbook folder:
package org.groovy.cookbook

import org.junit.*

class FileDownloaderTest2 {

 static final DOWNLOAD_BASE_DIR = '/tmp'
 static final TEST_SERVICE =
 'https://androidnetworktester.googlecode.com'
 static final TEST_URL =
 "${TEST_SERVICE}/files/1mb.txt?cache="

 def downloader = new FileDownloader()
 Map files

 @Before
 void before() {
 files = [:]
 (1..5).each {
 files.put(
 "${TEST_URL}1.${it}",
 "${DOWNLOAD_BASE_DIR}/${it}MyFile.txt"
)
 }
 }

 @Test
 void testSerialDownload() {
 long start = System.currentTimeMillis()
 files.each{ k,v ->
 new File(v) << k.toURL().text
 }
 long timeSpent = System.currentTimeMillis() - start
 println "TIME NOPAR: ${timeSpent}"
 }\
 @Test
 void testParallelDownload() {
 long start = System.currentTimeMillis()
 downloader.download(files, 0)
 long timeSpent = System.currentTimeMillis() - start

Chapter 10

343

 println "TIMEPAR: ${timeSpent}"
 }

 @Test
 void testParallelDownloadWithMaxConcurrent() {
 long start = System.currentTimeMillis()
 downloader.download(files, 3)
 long timeSpent = System.currentTimeMillis() - start
 println "TIMEPAR MAX 3: ${timeSpent}"
 }

}

3. As usual, execute the test by issuing the following command in your shell:
groovy -i clean test

4. The results are highly dependent on your network latency, but you should see an
output as follows:

TIME NOPAR: 635

TIMEPAR: 391

TIMEPAR MAX 3: 586

How it works...
The FileDownloader class uses the Parallel Arrays implementation offered by GPars.
This implementation provides parallel variants of the common Groovy iteration methods such
as each, collect, and findAll. Every time you come across a collection that is slow to
process, consider using parallel collection methods. Although enabling collections for parallel
processing imposes a certain overhead (mostly because of the cost of initializing a thread
pool), it frequently outweighs the ineffectiveness of processing a collection in a sequential
fashion. GPars gives you two options here:

 f GParsPool, which uses the "fork/join" algorithm, using a "fork/join" based
thread pool;

 f GParsExecutorsPool, which uses the Java 5 executors.

In the majority of cases, the first option is more efficient, but it is always worth trying both
thread pools, to verify which one performs better for a specific case.

The FileDownloader class resorts to GParsPool, which gets initialized in the class
constructor. The pool creation operation is an expensive one and adds the higher overhead
on the parallel framework.

Concurrent Programming in Groovy

344

The class entry point is the download method, which takes a Map and the number of parallel
downloads to run. The actual parallel downloading process is carried out by the private
function parallelDownload that accepts a Map containing the URL from where to download
a file as a key, and the destination file as a value. The method uses the eachParallel
method to concurrently execute the download operation on each entry of Map.

One interesting feature of this class is the use of the MapPartition category. Categories
in Groovy are a very elegant way to add a method to a class not under your control. The
MapPartition category allows us to "split" a Map into smaller maps in order to enable
the "concurrency" feature of the FileDownloader class.

See also
 f http://gpars.org/guide/guide/single.html#dataParallelism_

parallelCollections

 f http://gpars.org/1.0.0/groovydoc/groovyx/gpars/GParsPool.html

Splitting a large task into smaller parallel
jobs

CPUs are not getting any faster, so manufacturers are adding more cores to the processors.
That means that single-threaded applications are not able to leverage the "parallelization"
offered by a multi-core processor. But how to put those cores to work?

The concept of parallelization is based on the assumption that often large problems can be
divided into smaller ones, which are solved "in parallel". The smaller task execution can be
spread through several cores to complete the main task faster.

Concurrent programming is not easy, mostly because of synchronization issues and the
pitfalls of shared data. Historically Java has offered excellent support for multi-threaded
programming, partially shielding the developer from the complexity of writing code that
runs many tasks in parallel.

One of the most useful algorithms to successfully leverage multiple cores is "fork/join". The
"fork/join" algorithms essentially divide a problem into many smaller subproblems and apply
the same algorithm to each of the subproblems recursively. Once the subproblem becomes
small enough it is resolved directly.

Hierarchical problems such as sort algorithms or file system/tree navigation greatly benefit
from "fork/join" (also known as divide and conquer).

This recipe will show how to use the "fork/join" implementation of GPars to calculate the
frequency of words in a large text.

Chapter 10

345

How to do it...
Let's add a class that contains the logic to execute the frequency counting algorithm
using "fork/join".

1. Create a new class in the src/main/groovy/org/groovy/cookbook directory
created in the Processing collections concurrently recipe.
package org.groovy.cookbook

import static groovyx.gpars.GParsPool.runForkJoin
import static groovyx.gpars.GParsPool.withPool
import static com.google.common.collect.Lists.*

class WordAnalyzer {

 static final Integer THRESHOLD = 50000
 static final int MAX_THREAD = 8

 private Map calculateFrequency(List<String> words) {
 def frequencies = [:]
 words.each {
 Integer num = frequencies.get(it)
 frequencies.put(it, num ? num + 1 : 1)
 }
 frequencies
 }

 Map frequency(List<String> tokens) {
 def frequencyMap = [:]
 def maps

 withPool(MAX_THREAD) {
 maps = runForkJoin(tokens) { words ->
 if (words.size() <= THRESHOLD) {
 // No parallelism
 return calculateFrequency(words)
 } else {
 partition(words, THRESHOLD).each { sublist ->
 forkOffChild(sublist)
 }
 // Collect all results.
 return childrenResults
 }
 }

Concurrent Programming in Groovy

346

 }
 maps.each {
 frequencyMap.putAll(it)
 }

 // Reverse sort.
 frequencyMap.sort { a,b -> b.value <=> a.value }

 }
}

2. In order to test the previous code, we can use the following unit test, placed in the
src/main/groovy/org/groovy/cookbook folder:
package org.groovy.cookbook
import org.junit.*
import edu.stanford.nlp.process.PTBTokenizer
import edu.stanford.nlp.process.CoreLabelTokenFactory
import edu.stanford.nlp.ling.CoreLabel

class WordAnalyzerTest {

 @Test
 void testFrequency() {
 def bigText = 'http://norvig.com/big.txt'.toURL()
 def wa = new WordAnalyzer3()
 def tokens = tokenize(bigText.text)
 long start = System.currentTimeMillis()
 def m = wa.frequency(tokens)
 def timeSpent = (System.currentTimeMillis() - start)
 println "Execution time: ${timeSpent}ms"
 println 'For calculating frequency over: '
 println "${tokens.size()} tokens"
 m.sort{ -it.value }.each {
 if (it.value > 50) {
 println it
 }
 }
 }

 def tokenize(String txt) {
 List<String> words = []
 PTBTokenizer ptbt = new PTBTokenizer(
 new StringReader(txt),
 new CoreLabelTokenFactory(),

Chapter 10

347

 ''
)
 ptbt.each { entry ->
 words << entry.value()
 }
 words
 }
}

3. The output of the unit test is as follows:

Execution time: 1007ms

For calculating frequency over:

1297801 tokens

the=1799

,=1720

of=1301

.=967

and=907

to=745

that=505

a=456

in=443

is=436

it=266

not=234

as=231

or=204

...

How it works...
The code in step 1 requires a bit of explanation. The core function is calculateFrequency.
The function creates a Map containing the frequency of the words found in the List passed
as an argument.

Once the Map is constructed from the frequency calculation, it looks as follows:

John | 10

Michael | 8

Jeff | 4

Concurrent Programming in Groovy

348

The first column contains the words found in the analyzed document and the right column
contains the number of times the word is found.

The algorithm is not very sophisticated and can probably be improved, but this is not the focus
of the recipe.

The frequency function contains the call to the "fork/join" API. The code follows a simple
pattern. If the job is small enough, then execute it directly. Otherwise, split the job and apply
the calculateFrequency algorithm to the smaller chunks (in this case, sublists of words).

The smaller jobs are executed by concurrent threads. The number of these threads can be
tuned by modifying the value passed to the withPool method.

Things get interesting in the else branch of the condition that determines if the job has to be
divided into chunks.

The partition function is statically imported from the com.google.common.collect.
Lists class, which belongs to the amazing Guava library. It slices up a list and returns
consecutive sublists of the list, each of the same size (the last sublist may be smaller).

For each sublist, the forkOffChild method is invoked. This method returns immediately
and schedules a task for execution (the task in this case is the calculateFrequency
function).

When all the tasks are eventually executed, we can collect and return them by calling
childrenResults, which contains a list of whatever is returned by runForkJoin. The
runForkJoin factory method will execute the provided recursive code along with the
supplied values and build a hierarchical "fork/join" calculation. The number of values passed
to the runForkJoin method has to match the number of the closure's expected parameters,
as well as the number of arguments passed into the forkOffChild method.

The last segment of the frequency function iterates on the Maps returned by the parallel
computation and adds them to a master Map, which contains the full list of words, ordered
by frequency.

The test executes the following steps:

1. Download a rather large chunk of text (over 1 million tokens).

2. Split it into tokens using the PTBTokenizer from the NLP library (better than using
split(' ')) developed by the Stanford University.

3. Call the frequency method and compute the time it took to run the
frequency operation;

4. Sort the map by frequency and print out the frequency values for words appearing
more than 50 times.

Chapter 10

349

The divide and conquer algorithm is approximately 25 percent to 50 percent faster than the
same single threaded algorithm. It is necessary to fiddle around with the maximum number
of threads and the optimal threshold (the size of each chunk) to achieve the best throughput.
Results may vary depending on the hardware and the size of the token list.

This recipe should serve as a basis for better understanding when this algorithm can be put
into practice.

See also
 f http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

 f http://gpars.codehaus.org/ForkJoin

 f http://gpars.org/guide/guide/dataParallelism.
html#dataParallelism_fork-join

 f https://code.google.com/p/guava-libraries/

Running tasks in parallel and
asynchronously

One of the recurring problems that a developer has to face when working on integrating with
external systems, is how to deal with sluggish response time.

Very often, a slow response time from a system, out of our control, ends up negatively
affecting the user experience of a web application that feeds on the data coming from
the slow system.

The first line of defense against such services is adding a caching layer. A cache helps to
mitigate the effects of unreliable external systems, but it is not always the definitive cure.
Depending on the business domain, a cache may have a large ratio of cache miss (occurs
when a specific data is not found in the cache). Furthermore, on large systems caches can
take time to warm up.

So, the second weapon in a developer arsenal against sleepy services, is using asynchronous
calls. An asynchronous call is a non-blocking call to a method. A separate thread runs the
method and returns the result whenever it is ready. In the meanwhile, the caller of the method
receives a future (see http://en.wikipedia.org/wiki/Futures_and_promises),
from which it will be able to retrieve the results. A future is an object that is returned
immediately after calling an asynchronous method to escape blocking. Once the caller gets
hold of a future, it can continue executing other code until the results from the original call
are available.

Concurrent Programming in Groovy

350

For this recipe, let's imagine that we are building a super-secret international criminal
database. Our system is able to fetch the criminal records of citizens of any country. In order
to do so, it must be able to interface with the criminal database of each and every country it
needs data from.

The system is used by the cops to track international criminals who are active in more than
one nation.

From a design point of view, our system would look as follows:

Fancy! Each country exposes a REST based interface to access the criminal records.
Unfortunately, some countries such as the United States, have a very large amount of criminal
data and each request takes up to 10 seconds to complete. Some other countries didn't
invest much in the system, and they deployed their service on very slow and old hardware,
causing the response times to be erratic and inconstant.

One fundamental functionality of this system is being able to collect data from multiple
countries and present the user with a unified view of the data coming from each nation.
Implementing an asynchronous call pattern allows for retrieving and showing data as
soon as they are ready, without blocking and waiting for the slowest invocation to return.

Getting ready
Before we begin to write the asynchronous call framework, we need to create three REST-
based web services to simulate a latency in the response. A quick way to create the REST
service in Groovy (or Java) is to use the Ratpack framework. Ratpack is a mini framework
inspired by Ruby's Sinatra. It will allow us to quickly start a web service with three endpoints.
Each endpoint will reply with a random response time.

Chapter 10

351

Create a new folder named ratpack and add two Groovy scripts to it. The app.groovy file
will contain the minimal Ratpack application:

@GrabResolver(
 name = 'Sonatype OSS Snapshots',
 root =
 'https://oss.sonatype.org/content/repositories/snapshots',
 m2Compatible = true
)
@Grab('org.ratpack-framework:ratpack-groovy:0.7.0-SNAPSHOT')
import static org.ratpackframework.groovy.Ratpack.ratpack
ratpack {
}

And the ratpack.groovy file will contain configuration for different endpoints we are going
to serve:

get('/') {
 text 'Welcome to the world criminal database'
}

get('/us') {
 Thread.sleep(rnd(10000L))
 render 'us.json'
}

get('/canada') {
 Thread.sleep(rnd(5000L))
 render 'can.json'
}

get('/germany') {
 Thread.sleep(rnd(7000L))
 render 'de.json'
}

static rnd(long maxMilliseconds) {
 def rnd = new Random().nextInt()
 Math.abs(rnd % maxMilliseconds + 1000)
}

Concurrent Programming in Groovy

352

To complete the setup, create an additional folder named templates and add three files
to it:

 f Data for Germany in de.json:
{
 "country": "germany"
}

 f Data for Canada in can.json:
{
 "country": "canada"
}

 f And data for United States in us.json:

{
 "country": "united states"
}

Not very exciting JSON content, but we just need to simulate some request/response here.

Open a command prompt and launch the web service, typing groovy app.groovy.
The Groovy process should reply with:

> groovy app.groovy

May 02, 2013 9:15:04 PM o.r.b.i.NettyRatpackServer startUp

INFO: Ratpack started for http://0:0:0:0:0:0:0:0:5050

In order to test the service, open a browser and navigate to http://localhost:5050/de.
The content of the de.json file should appear on the page after some delay forced by the
sleep function.

How to do it...
Now that our testing infrastructure is in place, we can write the code to invoke the three web
services asynchronously.

1. In a new file, let's create a class named CriminalDataService:
@Grab(
 group='org.codehaus.groovy.modules.http-builder',
 module='http-builder',
 version='0.6'
)
import static groovyx.net.http.Method.*
import static groovyx.net.http.ContentType.*
import groovyx.net.http.HTTPBuilder

Chapter 10

353

import groovyx.gpars.GParsPool

class CriminalDataService {

 // Database logic.
 ...

}

// Client code.
...

2. Add one function and one closure to the class:
List getData(List countries) {
 def response = []
 GParsPool.withPool {
 countries.each { country ->
 response << this.&fetchData.callAsync(country)
 }
 }
 response
}

def fetchData(String country) {
 def http = new HTTPBuilder('http://localhost:5050')
 def jsonData
 def start = System.currentTimeMillis()
 http.request(GET, JSON) {
 uri.path = "/${country}"
 response.success = { resp, json ->
 jsonData = json
 }
 }
 def timeSpent = System.currentTimeMillis() - start
 jsonData.put('fetch-time', timeSpent)
 jsonData
}

3. Finally, following is the "client" code, calling the class:
CriminalDataService cda = new CriminalDataService()

def data = cda.getData(['germany', 'us', 'canada'])
assert 3 == data.size()

Concurrent Programming in Groovy

354

data.each {
 println "data received: ${it.get()}"
}

def timeSpent = System.currentTimeMillis() - start
println "Total execution time: ${timeSpent}ms"

4. The script should show an output similar to the following:

data received: [fetch-time:1750, country:germany]

data received: [fetch-time:8775, country:united states]

data received: [fetch-time:1562, country:canada]

Total execution time: 8878ms

How it works...
The getData method displayed in step 2, accepts a List containing the country monikers
we want to query for criminal records. For each element in the list, we execute a call to the
fetchData closure. However, the call is not a standard one. You may have noticed that
the method name (fetchData) is followed by callAsync. The callAsync method is
automatically added to the closure by the GPars.withPool block. It calls the closure in
a separate thread, immediately returning a java.util.concurrent.Future, which
will be populated with the "real" result when the routine completes.

The fetchData method uses the HTTPBuilder to execute a REST request against the
Ratpack REST endpoint. The entire recipe Issuing a REST request and parsing a response
in Chapter 8, Working with Web Services in Groovy is dedicated to the REST operations.

The client code demonstrated in step 3, loops on the returned array. Each element of the
array is a Future, to extract the actual result, the client calls the get method on the Future.
Note that the get method blocks until the Future returns the result or an exception.

See also
 f http://gpars.codehaus.org/

 f https://github.com/ratpack/ratpack

 f http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
Future.html

Chapter 10

355

Using actors to build message-based
concurrency

The concept of actors as a strategy for running concurrent tasks has recently gained new
popularity (thanks to Scala, Erlang, the Akka Framework, and other programming languages).
Originally proposed by Carl Hewitt in 1973, actors offer a programming model that inherently
guarantees concurrent code when compared with the traditional approach based on shared
memory. Actors are similar to Object-Oriented objects (they follow the rule of encapsulation),
but they can only communicate by sending immutable messages asynchronously to each
other. The internal state of an actor is not exposed and can only be accessed from the outside
by sending a message to the actor and receiving a reply.

Due to the asynchronous nature of the message passing pattern, an actor must be active in
order to receive a message. One way to make an object active, is to allocate a system thread
to it. Unfortunately, threads are a finite resource, and this is not good news for the scalable
systems; actors often need to scale beyond the number of threads available on the system.
To overcome this scarcity of resources, actor implementation resorts to sharing threads
among actors, leading to a system where unused actors do not consume any thread.

Traditionally, programming languages utilize system threads for concurrency. In this model,
the execution of an algorithm is divided into concurrently running tasks. It is as if the
algorithm is being executed multiple times; the difference being that each of these
copies operates on shared memory.

In an actor-based system, each message is processed by one thread and one thread only.
This fundamental assumption makes the code implicitly thread-safe, removing the need for
any other extra (synchronization or locking) effort.

In this recipe, we will demonstrate a simple actor-based implementation for concurrent
calculation of word frequency in a large text.

Concurrent Programming in Groovy

356

How to do it...
As for other recipes in this chapter, we are going to use the GPars framework to implement an
actor-based system. This recipe will reuse the code and the example from the Splitting a large
task into smaller parallel jobs recipe, but instead of using the "fork/join" framework, this time,
we will use actors to spread the tasks.

1. The first step is to create the actual messages that actors will use to communicate
between each other. Create a new file named ActorBasedFrequencyAnalyzer.
groovy and add the following classes:
final class CalculateFrequencyMessage {
 List<String> tokens
}

final class StartFrequency {

}

final class FrequencyMapMessage {
 Map frequencyMap
}

2. Now, we add one of the two actors of this recipe. This actor is responsible for
analyzing chunks of words. It's a "worker" actor.
final class WordFrequencyActor extends DynamicDispatchActor {

 void onMessage(CalculateFrequencyMessage message) {
 reply new FrequencyMapMessage(
 frequencyMap: calculateFrequency(message.tokens)
)
 }

 private Map calculateFrequency(List<String> words) {
 // The code for this function can be found in the
 // recipe Splitting a large task into smaller parallel jobs.
 }

}

Chapter 10

357

3. The second actor is responsible for coordinating the work of the workers.
final class FrequencyMaster extends DynamicDispatchActor {

 static final Integer THRESHOLD = 2000
 Map totalFreqMap = [:]
 List<String> tokensList = []
 int numActors = 1

 private final CountDownLatch startupLatch =
 new CountDownLatch(1)
 private CountDownLatch doneLatch

 private List createWorkers() {
 (1..numActors).collect {
 new WordFrequencyActor().start()
 }
 }

 private void beginFrequency() {
 def slaves = createWorkers()
 int cnt = 0
 def partitioned = partition(tokensList, THRESHOLD)
 partitioned.each { sublist ->
 slaves[cnt % numActors] <<
 new CalculateFrequencyMessage(tokens: sublist)
 cntnt += 1
 }
 doneLatch = new CountDownLatch(partitioned.size())
 }

 Map waitUntilDone() {
 startupLatch.await()
 doneLatch.await()
 totalFreqMap
 }

 void onMessage(FrequencyMapMessage frequenceMapMessage) {
 if (frequenceMapMessage.frequencyMap) {
 println ':::::: got a frequency map. ' +
 'Content is ' +
 frequenceMapMessage.frequencyMap.size()
 }

Concurrent Programming in Groovy

358

 totalFreqMap.putAll(frequenceMapMessage.frequencyMap)
 doneLatch.countDown()
 }

 void onMessage(StartFrequency startFrequency) {
 beginFrequency()
 startupLatch.countDown()
 println ':::::: Start Frequency Operation'
 }

}

4. The last bit of code that we require to run our example is a simple class responsible
for instantiating the FrequencyMaster actor.
class ActorBasedWordAnalyzer {
 Map frequency(List<String> tokens) {
 def master = new FrequencyMaster(
 tokensList: tokens,
 numActors: 5
).start()
 master << new StartFrequency()
 master.waitUntilDone()
 }
}

5. Let's write a simple test case to test the actor infrastructure:

package org.groovy.cookbook

import org.junit.*
import edu.stanford.nlp.process.PTBTokenizer
import edu.stanford.nlp.process.CoreLabelTokenFactory
import edu.stanford.nlp.ling.CoreLabel
class ActorBasedFrequencyTest {

 @Test
 void testFrequency() {
 def bigText = 'http://norvig.com/big.txt'.toURL()
 def analyzer = new ActorBasedWordAnalyzer()
 analyzer.frequency(tokenize(bigText.text))
 res.each {
 println "[${it.key} ${it.value}]"
 }
 }

Chapter 10

359

 def tokenize(String txt) {
 List<String> words = []
 PTBTokenizer ptbt = new PTBTokenizer(
 new StringReader(txt),
 new CoreLabelTokenFactory(),
 ''
)
 ptbt.each { entry ->
 words << entry.value()
 }
 words
 }

}

How it works...
In step 1, three message types are defined. Messages are simple classes; they can even be
String or Integer types. The most important aspect of a message in an actor based system is
immutability. Immutability guarantees that an actor never has to lock to read a state, greatly
simplifying the overall architecture of the message-passing semantic.

In step 2, we introduce the first actor. GPars actors can be divided into two subtypes, stateful
and stateless.

Stateless actors keep no memory of processed messages; they simply handle messages
as they arrive. A stateless actor extends DynamicDispatchActor. Stateful actors, on the
contrary, are more sophisticated, because they need to maintain implicit state between
subsequent message arrivals. Stateful actors extend DefaultActor. Stateless actors are
obviously more efficient and highly performant than stateful ones. In this recipe, we use
stateless actors, as the problem we need to solve doesn't require a complex logic based on
continuations. A continuation is an abstract representation of a state; in the actor model, an
actor processes the request in chunks, separated by idle periods during which it awaits a
new message. Each message may determine a modification of the actor state. Stateful
actors allow for encoding such state transitions directly in the structure of the message
handling flow.

The WordFrequencyActor only handles one type of message, through the onMessage
function. The message is expected to contain a sublist of tokens to analyze. The
calculateFrequency function was already described in the Splitting a large task into
smaller parallel jobs recipe from this chapter. Once the analysis is done, the actor replies with
FrequencyMapMessage containing the frequency results for the batch that was passed to
the worker actor.

Concurrent Programming in Groovy

360

The FrequencyMaster actor has a slightly more complex logic. For a start, it handles two
types of messages, StartFrequency and FrequencyMapMessage. The StartFrequency
message triggers the business logic required to split the list of tokens to analyze into smaller
chunks. Each chunk is passed to one of the worker actors and processed asynchronously. The
onMessage function that handles the FrequencyMapMessage is actually handling the reply
from the worker actor and adding the result to the Map containing the result of the analysis.

Step 4 shows the class that has the responsibility for sending the StartFrequency
message and initiating the process.

def master = new FrequencyMaster(
 tokensList: tokens,
 numActors: 5
).start()
master << new StartFrequency()

Messages can be sent to actors in three ways:

 f Using the send method

 f Using the << operator, as in the example

 f Using the implicit call method, such as master new StartFrequency

The FrequencyMaster actor is initialized with the list of tokens to analyze and the number
of active actors, 5 in this example.

The actors collectively share a big thread pool, but any given actor at any given time has
at most one active thread. In its thread, an actor takes messages from its incoming
queue, processes them, and sends out responses. It never does anything aside from
this message-processing loop.

Finally, the class calls the waitUntilDone method to retrieve the Map containing the
result of the analysis. The function is based on two CountDownLatch classes that are
initialized and used to keep track of the workers' tasks. CountDownLatch is often used to
wait for several threads to complete, and this is how it has been used in the example. The
waitUntilDone method blocks until all the actors have done processing.

See also
 f http://gpars.codehaus.org/Actor

 f http://en.wikipedia.org/wiki/Actor_model

 f http://en.wikipedia.org/wiki/Continuation

 f http://gpars.org/0.12/groovydoc/groovyx/gpars/actor/
DynamicDispatchActor.html

 f http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
CountDownLatch.html

Chapter 10

361

Using STM to atomically update fields
STM (Software Transactional Memory) is a concurrency control mechanism for managing
access to shared memory. In the traditional threaded model of concurrent programming,
when we share data among threads, we keep it consistent using locks. A lock is an object
which signals ownership of some resource, and which has one really important property; it
references at most one process, and when you want to look at it and update it, nothing can
intervene between the read and write. On simple systems, reasoning in terms of threads and
locks is relatively simple. But as soon as the system grows in complexity, it becomes really
complicated to understand and debug hundreds of threads updating several shared variables.
A typical issue is a deadlock; when two threads wait on each other to acquire a resource they
are locking.

There are several methods that try to make it easier to do coordination between multiple
tasks such as enforcing ordering, semaphores, and monitors.

STM tries to resolve the problem of accessing shared memory introducing a well-known
semantic: transactions. In the same way as database engines protect their data, with
STM we can protect data against concurrent access.

STM enforces the organization of code into transactions. A transaction makes the code run
in atomic isolation. The data used by the transactional code remains consistent irrespective
of whether the transaction finishes normally or abruptly. The transactional code modifies the
data while other tasks do not see the modification until the transaction is committed.

Groovy has support for Software Transactional Memory through the GPars library. To enable
the STM API it is necessary to add a dependency to the Multiverse library. Multiverse is a
Java-based Software Transactional Memory implementation for the JVM.

This recipe will show how a number of threads can incorrectly update a global variable
(a simple counter) and how to fix the problem using STM.

Getting ready
In order to use STM with GPars, we need to add a dependency to the Gradle build script
shown in the introduction of this chapter.

compile('org.multiverse:multiverse-beta:0.7-RC-1') {
 transitive = false
}

At the time of writing, the GPars API 1.0 are still using a beta version of Multiverse.

Concurrent Programming in Groovy

362

How to do it...
The following steps will introduce us to the world of STM with the help of GPars and Multiverse.

1. Let's start with a simple class:
package org.groovy.cookbook.stm

import static org.multiverse.api.StmUtils.newIntRef

import groovyx.gpars.actor.*
import groovyx.gpars.stm.GParsStm

import org.multiverse.api.references.IntRef

class StmValueIncreaser {

 int value = 0
 IntRef stmValue = newIntRef(0)

 ...

}

2. Let's throw an actor into the mix. Add the two classes inside the main
StmValueIncreaser class:
// Message
final class Increase {
}

final class ValueAccessActor extends DynamicDispatchActor {
 void onMessage(Increase message) {
 value++ // unsafe increment
 GParsStm.atomic {
 stmValue.increment() // safe increment
 }
 }
}

3. Finally, we add a start method to trigger the logic that will update the counters:
def actors = [:]
Random random = new Random()
int max = 20

Map start() {

Chapter 10

363

 // init actors
 (1..20).each {
 actors.put(it,new ValueAccessActor().start())
 }

 // spawn actors and increase counter
 (1..100).each {
 actors.get(rnd(1,20)) << new Increase()
 }

 (actors.values()*.stop())*.join()
 int stmProtected = 0
 GParsStm.atomic {
 stmProtected = stmValue.get()
 }

 ['withStm': stmProtected, 'noStm': value]

}

4. The class also requires this little randomizing closure:
// return random number from range
def rnd = { from, to ->
 random.nextInt(to - from + 1) + from
}

5. As usual, we complete the recipe with a nifty unit test:

@Test
void testFrequency() {
 def stm = new StmValueIncreaser()
 def results = stm.start()
 assert results.get('withStm') == 100
 assert results.get('noStm') != 100
}

How it works...
So, what is happening in this class? The start method initializes twenty stateless
ValueAccessActor actors and puts them into a Map. The key of the Map is the
number of the actor (1, 2, 3,...20). These actors only accept one type of message,
the very anemic Increase.

Concurrent Programming in Groovy

364

After the actor initialization, the code loops one hundred times, and for each iteration it sends
a Increase message to one of the actors in the actor pool. Note that each message is sent
to a randomly chosen actor:

actors.get(rnd(1,20))

The reason for the random message sending, is that we want to reproduce several threads
accessing the same variable concurrently. Using a single actor would defy the purpose of this
exercise, as actors process messages through a mailbox, sequentially, one after the other.
Accessing the actor in a round-robin fashion would also decrease the chances of a race
condition on the variable.

Upon message reception, the actor does two simple operations; it increases the two variables
by one unit, defined in the body of the class.

The first variable is, well, just a variable which gets hammered by the actors. Each message
increments the variable by one unit. The second variable is an STM variable. The variable can
only be updated atomically, in the context of a globally defined STM transaction.

The actor increase the variables in two different ways:

value++

GParsStm.atomic {
 stmValue.increment()
}

The value variable gets incremented without any lock. Several actors running on different
threads will read and write the variable at the same time.

The GParsStm.atomic static method runs the closure inside a transaction, and the value
of stmValue gets updated atomically.

If you want to alter the default transaction properties (for example, read-only
transactions, locking strategy, isolation level), it is possible to do so using the
createAtomicBlock method of GParsStm.

Each actor sees its "own copy" of the variable and the increase operation is executed and
committed by each actor running on its own thread. This guarantees that, when we finally
access the stmValue after the 100 messages have been fired, the value of the variable
is actually 100. On the contrary, the value variable's value changes at every test run. It
fluctuates between 14 and 35, depending on a number of factors, such as number of
cores and speed of the hardware.

The unit test can be used to verify that the STM "protected" variable is always set to 100 while
the other variable is always smaller than 100.

Chapter 10

365

There's more...
STM is a very powerful tool in the hands of the "concurrent developer". It is important
to understand that this power doesn't come cheap. A simple increment of an Integer
variable does indeed provoke many more CPU cycles than the couples required to update a
variable in Java. If we run javap -c over the Java bytecode produced by the compilation of
the StmValueIncreaser class, we will see a very long Java bytecode list of instructions.
Removing the STM references, the bytecode shrinks dramatically. This shows that the
Multiverse STM implementation used by GPars is not lightweight. Nevertheless it's a very
efficient paradigm to reason about and implement heavily concurrent systems. In this recipe,
we addressed a relatively simple problem that could also have been solved using the JDK's
AtomicInteger. However Multiverse supports many more data types and data structures:
take a look at the documentation and Javadoc for a deeper understanding of what the
framework has to offer.

See also
 f http://multiverse.codehaus.org

 f http://gpars.codehaus.org/STM

 f http://en.wikipedia.org/wiki/Software_transactional_memory

 f http://gpars.org/0.12/javadoc/groovyx/gpars/stm/GParsStm.html

Using dataflow variables for lazy evaluation
Dataflow concurrency is a concurrent programming paradigm that has been around for three
decades now. What is so exciting about it?

The main idea behind Dataflow concurrency is to reduce the number of variable assignments
to one. A variable can only be assigned a value once in its lifetime, while the number of
reads is unlimited. If a variable value is not written by a write operation, all the read
operations are blocked until the variable is actually written (bind). With this straightforward,
single-assignment approach, it is impossible to access an inconsistent value or experience
data race conflicts. The deterministic nature of Dataflow concurrency ensures that it will
always behave the same. You can run the same operation 5 or 10 million times the result will
always be the same. Conversely, if an operation enters into a deadlock the first time, it will
do the same every other time you run it. These qualities make it very easy to reason about
concurrency, but it comes at a price: code must be deterministic. Random, time, exceptions,
and so on are not allowed. The section of code that employs Dataflow concurrency must act
as a pure function, with input and output.

The Groovy's GPars framework exposes this alternative concurrency model, and in this recipe
we are going to explore how to solve the problem of high latency when invoking external
systems, exposed in the Running tasks in parallel and asynchronously recipe.

Concurrent Programming in Groovy

366

Getting ready
For setting up this recipe, please refer to the Getting Ready section of the Running tasks in
parallel and asynchronously recipe.

Start the dummy web service using groovy app.groovy.

How to do it...
The following steps expose how to modify the CriminalService class to leverage Dataflow
concurrency.

1. Create a new Groovy class named CriminalServiceWithDataflow.
package org.groovy.cookbook.dataflow

import static groovyx.gpars.dataflow.Dataflow.task
import groovyx.gpars.dataflow.DataflowVariable

class CriminalServiceWithDataflow {

 def baseUrl

 CriminalServiceWithDataflow(String url) {
 baseUrl = url
 }

}

2. Add a function to retrieve the JSON data for the specified country:
def fetchData(String country) {
 println "fetching data for ${country}"
 def jsonResponse = new DataflowVariable()
 task {

 try {
 "${baseUrl}/${country}".toURL().openConnection().with
 {
 if(responseCode == 200) {
 jsonResponse << inputStream.text
 } else {
 jsonResponse << new RuntimeException(
 'Invalid Response Code from HTTP GET:' +
 responseCode
)

Chapter 10

367

 }
 disconnect()
 }
 } catch(e) { jsonResponse << e }
 }
 jsonResponse
}

3. Add the main function from which data aggregation is done:
List getData(List countries) {
 List aggregatedJson = []
 countries.each {
 aggregatedJson << fetchData(it)
 }
 aggregatedJson*.val
}

4. To test our new class, let's add a simple test case:

@Test
void testDataflow() {

 def serviceUrl = 'http://localhost:5050'
 def criminalService =
 new CriminalServiceWithDataflow(serviceUrl)

 def data = criminalService.
 getData(['germany', 'us', 'canada'])

 assert 3 == data.size()

 data.each {
 try {
 println it
 } catch (e) {
 e.printStackTrace()
 }
 }

}

Concurrent Programming in Groovy

368

How it works...
The fetchData function of the CriminalServiceWithDataflow class is where the power
of Dataflow in action is really visible. The function contains a DataflowVariable named
jsonResponse and a task that has the responsibility to populate the variable. This variable
can be written only once, through the << operator. The task contains the actual code to
access the Criminal Service web service with some simplistic exception handling code. When
the value of a DataFlowVariable is read, it will block until the value is set (using <<). In
this way, the time required to collect the data for three countries will be equal to the longest
response time.

The getData function spans the HTTP requests over 3 threads. Note that the fetchData
method is not blocking. The blocking takes place only in the last line of the getData
method, when the val method is invoked (and therefore the variable read) on each
DataflowVariable containing the HTTP GET response.

It's also worth noting how the exception handling is organized. Let's zoom into the code:

def jsonResponse = new DataflowVariable()
try {
 ...
} catch(e) {
 jsonResponse << e
}

When an exception occurs inside the task, we assign the Exception to the jsonResponse
variable of type DataflowVariable. The DataflowVariable class has two methods to
access the stored value:

 f The val method that simply returns the Exception

 f The get method that will rethrow the Exception, if any

Use val or get depending on your exception handling requirements. You can test how the
exception handling works, by shutting down the Ratpack server or passing invalid countries
that will yield a 404 response code.

Chapter 10

369

There's more...
Dataflow concurrency is a very elegant paradigm, and there are more concepts in this model
than the one expressed in this recipe. The best way to learn them is head to the official GPars
Dataflow documentation located at the following link: http://www.gpars.org/guide/
guide/dataflow.html

See also
 f http://en.wikipedia.org/wiki/Dataflow

 f http://gpars.org/0.12/javadoc/groovyx/gpars/dataflow/
DataflowVariable.html

Index
Symbols
@AutoClone annotation

about 100, 103
using 101

@Canonical annotation 98
@Delegate annotation

using 122, 123
@EqualsAndHashCode annotation 97
@Grab annotation 60, 227
@GrabExclude annotation 62
@GrabResolver annotation 62
@Immutable annotation 96
@Immutable AST transformation

using 95
@InheritConstructors annotation

features 99
working 100

@Mixin annotation 122
==~ operator 90
@ToString annotation 96
@TupleConstructor annotation 98
@TypeChecked annotation 128

working 129

A
Abstract Syntax Tree (AST) 80, 290
actors

used, for building message-based
concurrency 355-360

Ant script targets
clean target 69

Ant tool 136
Apache Ant

about 63

used, for integrating Groovy 63-68
Apache Cassandra

about 256
accessing, Groovy used 256-260
downloading 257
features 257

Apache HttpClient 273
Apache Ivy

URL 63
Apache Maven

about 71
download and installation instructions 71
URL 71
used, for integrating Groovy 71-74

ArrayList class 233
AST transformation

about 305
global transformation 307
local transformation 306
types 306

Atom feeds
consuming 279-283

attribute method 171
AutoCloneStyle.SERIALIZATION style 104
automatic logging

adding, to Groovy classes 132, 133

B
basic authentication

about 283
using, for web service security 283, 284

Bing Map Service
URL 273

BLOB/CLOB
reading, from database 242, 243

372

build.xml script
about 68
properties 68, 69

C
caching functionality

adding, around methods 305-316
calculateFrequency function 359
callAsync method 354
CallGroovyUsingGroovyShell class 53
Checkstyle

URL 83
Clojure 51
cloning functionality

adding, to Groovy Beans 100
code, Groovy

compiling 57-59
defining, as data 104-107
quality, checking with CodeNarc 82

CodeNarc
features 87
URL 83
used, for checking code quality 82-84
violations 86
working 85

CodeNarc rules
URL 87

CodeNarc’s Ant task
URL 87

CodeNarc’s home page
URL 87

collectEntries method 250
collection

about 253
processing concurrently 336-339

collect method 178
collectParallel method 339
command line

Groovy code, executing from 11-13
command-line text file editor

Groovy, using as 14, 15
complex URLs

constructing 271
modifying 271

constructors
inheriting, in Groovy classes 99

content
downloading, from internet 264, 265

Copy Constructor pattern 103
createSchema method 231
CriminalServiceWithDataflow class 368
curry function 107
CustomerDao 297
CustomerService class 297

D
database table

creating 224-227
Data Definition Language (DDL) 224
Dataflow concurrency

about 365
leveraging 366

dataflow variables
using, for lazy evaluation 365-368

DataPopulationStrategy instance
code 116

Datasource object 230
data structures

defining, as code 108-116
deadlock 361
declareNamespace method 174
de facto data 211
delegate method 115
deleteDir method 150
delete method 150
dependencies management

simplifying, Grape used 60-62
depthFirst method 177
directory

deleting 149, 150
directorySize method 23
directory tree

ways, of walking through 151, 152
documentation, Groovy code

generating 78-80
Domain-Specific Language (DSL)
DSL

about 108, 290, 319
defining, for executing remote SSH commands

319-321, 325, 326
defining, for generating reports from log files

327-333

373

features 334
dumpZipContent function 160
dynamic code

type checking rules, defining for 126-128

E
E4X (ECMAScript for XML) 175
eachByte method 139
eachDir method 152
eachDirRecurse method 152
eachFile method 152
eachLine method 139
Eclipse

about 35
Groovy, configuring 35-41

Eclipse plugin, for Groovy
downloading 35

ECommerceTestDataBuilder class 112
equals method 97
Excel file

reading 160-162
executeInsert method 237
execute() method 158
ExpandoMetaClass

about 293
used, for extending classes 293

eXtensible Markup Language. See XML

F
FeedParser class 282
fetchData function 354, 368
fields

updating, STM used 361-364
file attributes

changing, on Windows 157, 158
files

about 136
data, extracting from PDF 162-166
data, reading from ZIP file 159, 160
deleting 149
downloading concurrently 340-343
Excel file, reading 160, 161
reading from 136, 137
searching 154, 155
text file content, filtering 146
text file, reading line by line 138, 139

word-based analysis, of text file 140
writing to 142, 143

filterLine method 147
findAll method 177
FindBugs

URL 83
findByKey method 261
findOne method 254
forkOffChild method 348
frequency function 348
fully qualified name (FQN) 171
functionality

adding, to existing Java/Groovy classes
123-126

G
getContent method 267
getData method 275, 354
getMonthName method 125
getNodeValue method 181
getProperties method 250
getProperty method 185
getText method 137
getVariable method 55
git clone command 19
GitHub

URL 247
global transformation 307
GMaven 73, 74
GMaven home page

URL 75
GMongo 253
GPars (Groovy Parallel System) framework

335
GPath

about 175
URL 175
used, for searching in XML 175-177

Gradle
about 75
URL 75, 77
URL, for Groovy plugin documentation 77
used, for integrating Groovy 75-77
user guide 76

Gradle’s Groovydoc integration
URL 82

374

Gradle’s plugin for CodeNarc
URL 87

Grape
about 60
used, for simplifying dependency

management 60-62
Grape documentation

URL 63
grape install command 62
Groovy

building, from source 18, 19
code, compiling 57-59
code, defining as data 104-107
configuring, in Eclipse 35-39
configuring, in IntelliJ IDEA 42-45
data structures, defining as code 108-117
embedding, into Java 51-55
files, working with 136
installing, on Linux 10
installing, on OS X 10
installing, on Windows 8, 9
integrating, Ant used 63-67
integrating, Gradle used 75-77
integrating, Maven used 71-75
Java classes, using from 48
multiple inheritance, implementing 117-122
multiple installations on Linux, managing

20-22
running, with invokedynamic support 17
used, for accessing Apache Cassandra

257-261
used, for accessing MongoDB 252-255
used, for accessing Redis 246-250
using, as command-line text file editor 14, 15
using, to start server on command line 16
web services, working with 263

Groovy Adaptable (Advanced) Packaging
Engine 60

Groovy Ant task documentation
URL 71

Groovy Beans
cloning functionality, adding 100, 101
JSON message, converting to 214-216
serializing, to XML 192-194
used, for writing Java Beans 92-95

groovyc command
functionalities 57

Groovy classes
automatic logging, adding 132, 133
constructors, inheriting 99
extending, ExpandoMetaClass used 293-296
functionality, adding 124

Groovy code
documentation, generating for 78-82
executing, from command line 11-13
quality, checking with CodeNarc 82-84

groovy command 8
Groovy Compile Ant task documentation

URL 71
GroovyConsole

starting, to execute Groovy snippets 29-34
Groovydoc 81, 82
groovydoc command-line tool

features 78
Groovydoc’s Ant task

URL 82
Groovy Eclipse Compiler plugin

documentation
URL 75

Groovy enVironment Manager. See GVM
Groovy GDK 160
GroovyInterceptable class 303
Groovy language features 89
GroovyScriptEngine class 57
groovysh command 25
GroovyShell class 52
groovysh tool

commands 26
display command 27
help 26, 27
inspect command 28
record command 28
used, for Groovy commands 23-25
working 25, 26

Groovy snippets
executing 29, 30

groovy.sql.Sql class 233
GVM

about 20
using 20-22

375

H
HGETALL command 250
hmset method 250
HSQLDB 225
HTTPBuilder 273
HTTP GET request

executing 265-267
HTTP POST request

executing 268-270
Hyper Text Transfer Protocol (HTTP) 264

I
IMDB

about 175
URL 175

ImportCustomizer class
about 317, 319
addImport method 319
addImports method 319
addStaticImport method 319

InputStream method 269
IntelliJ IDEA

about 42
downloading 42
Groovy, configuring 42-45

Internet Movie Database. See IMDB
invokedynamic support

Groovy, running with 17, 18
invokeMethod method 185, 299
isDataStrategy method

code 116
iText 163

J
Jaskell 51
Java Beans

about 92
writing, Groovy Beans used 92-95

Java classes
using, from Groovy 48-50

Javadoc’s home page
URL 82

javadoc tool
running 78

java.lang.Math class 54
JavaScript Object Notation. See JSON
Jedis

URL 248
JIT (Just-In-Time) compiler 17
JRuby 51
JSON

about 197
features 197
URL 197
used, for configuring scripts 218-220

JsonBuilder
used, for constructing JSON messages

201-203
JSON messages

constructing, JsonBuilder used 201-203
converting, to Groovy Bean 214-216
converting, to XML 211, 212
modifying 204, 205
parsing, JsonSlurper used 198-200
validating 205-207

JSON Schema 208-210
JsonSlurper

about 200
used, for parsing JSON messages 198-200

Jython 51

L
leftShift method 143, 242. 254
Linux

Groovy, installing 10
listFiles method 151, 152
list method 151
local transformation 306
LPUSH command 249
LRANGE command 249

M
Maven Central Repository

URL 51, 62
Maven home page

URL 75
Maven’s plugin for CodeNarc

URL 87

376

message-based concurrency
building, actors used 355-360

MessageReceiver server class 64
MessageSender client class 65
Meta Object Protocol (MOP) 185, 293
methodMissing method

about 111, 115
code 115

methods
caching functionality, adding 305-316
overriding dynamically 296-298
performance logging, adding 299-303
querying 290-293

MongoDB
about 252
accessing, Groovy used 252-254
festures 252
installation 253
URL 252

MongoDB Java driver 253
MULTI command

working 251
multiple inheritance

implementing, in Groovy 117-122
MVEL

URL 51

N
newInputStream method 137
newInstance method 57
newReader method 137
NLP (Natural Language Processing) library

339

O
OAuth protocol

about 284
using, for web service security 284-287

onMessage function 360
openConnection method 266, 267
OS X

Groovy, installing 10

P
parseClass method 56
parseText method 177
partition function 348
PDF file

data, extracting from 162-165
performance logging

adding, to methods 299-304
Plain Old Groovy Objects (POGOs) 175
Plain Old Java Objects (POJOs) 175
PMD (Project Mess Detector)

URL 83
poem.txt file

exploring 136
POM (Project Object Model) 71
populate method 231
println method 49
properties

querying 290-293

R
Ratpack 350
Read - Evaluate - Print loop. See REPL
readLines method 138
Redis

about 246
accessing, Groovy used 247
download page 247
features 247-252
URL 247

regular expressions
about 90
used, for searching strings 90-92

remote SSH commands
executing, DSL used 319

REPL 23
reports

generating from log files, DSL used 327
responseCode 267
REST request

issuing 272-274
parsing 272-274

RPOP command 249

377

RPUSH command 249
RSS feeds

consuming 279-283
runForkJoin method 348

S
scripts

configuring, JSON used 218
transparent imports, adding 317-319

setText method 143
setVariable method 55
Simple Object Access Protocol. See SOAP
simple ORM framework

building 244-246
Sinatra 350
SOAP 276
SOAP-over-HTTP protocol binding 276
SOAP-over-JMS protocol binding 276
SOAP-over-SMTP protocol binding 276
SOAP request

issuing 276-278
parsing 276-278

Software Transactional Memory. See STM
Spring Expression Language (SpEL)

about 51
URL 51

SQL database
BLOB/CLOB, reading 242
connecting to 228-230
data, modifying 235-237
querying 231-233
stored procedure, implementing 239, 240

static type-checking 129
STM

about 361, 365
used, for updating fields 361-365

stored procedure
about 239
implementing 239-241

strategyData variable
code 116

strings
searching, regular expressions used 90-92

T
taskdef declaration 70
tasks

running asynchronously 349-354
running, in parallel 349-354
splitting, into parallel jobs 344-348

text file
content, filtering 146-148
reading, line by line 138, 139
tabs, replacing with spaces 144-146
word-based analysis, making 140, 141

text method 171
TimePrinter class 56
tokenize method 339
toString method 96, 171
transformChar method 146
transformLine method 145
transparent imports

adding, to script 317, 318
traverse method

about 154
options 156

type checking rules
defining, for dynamic mode 126-131

U
Universal Resource Identifier (URI) 271
Universal Resource Locator (URL) 271
UnnecessaryGetter violation 86
UnnecessaryGString violation 86
UnnecessaryPublicModifier violation 86
UnnecessarySemicolon violation 86
upperInteger function 128

W
waitUntilDone method 360
Web Service Definition Language (WSDL) 276
web service security

basic authentication, using 283
OAuth protocol, using 284-287

Windows
file attributes, changing 157, 158

378

Groovy, installing 8, 9
withBatch method 238
withInputStream method 264
withOutputStream method 143
withPool method 339
withReader method 137
withTransaction method 238
withWriterAppend method 143
withWriter method 143
word-based analysis, of text file

creating 140

X
XML

Groovy Beans, serializing to 192-194
JSON message, converting to 211
reading, XmlParser used 170, 171
reading, XmlSlurper used 168, 169
searching, GPath used 175-177
searching, XPath used 178-182

XML content
constructing 184, 185
modifying 187, 188
reading, with namespaces 172-174

XML namespace 172
XmlNodePrinter class 189
XML nodes

sorting 189-191

XmlParser
used, for reading XML 170, 171

XML Schema Definition (XSD) 276
XmlSlurper

about 170
used, for reading XML 168, 169

XPath
about 178
used, for searching in XML 178-181

XStream
about 192
attribute aliasing 195
class aliasing 195
field aliasing 195
URL 192
URL, for documentation 195
working 194

Y
YAML Ain’t Markup Language (YAML) 221

Z
ZIP file

data, reading from 159

Thank you for buying

Groovy 2 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Groovy for Domain-Specific
Languages
ISBN: 978-1-84719-690-3 Paperback: 312 pages

Extend and enhance your Java applications with Domain-
Specific Languages in Groovy

1. Build your own Domain Specific Languages on top
of Groovy Integrate your existing Java applications
using Groovy-based Domain Specific Languages
(DSLs) Develop a Groovy scripting interface to
Twitter A step-by-step guide to building Groovy-
based Domain Specific Languages that run
seamlessly in the Java environment

Java 7 New Features
Cookbook
ISBN: 978-1-84968-562-7 Paperback: 384 pages

Over 100 comprehensive recipes to get your up-to-speed
with all the exciting new features of Java 7

1. Comprehensive coverage of the new features of
Java 7 organized around easy-to-follow recipes

2. Covers exciting features such as the try-with-
resources block, the monitoring of directory
events, asynchronous IO and new GUI
enhancements, and more

3. A learn-by-example based approach that focuses
on key concepts to provide the foundation to solve
real world problems

Please check www.PacktPub.com for information on our titles

Java EE 6 Cookbook for
Securing, Tuning, and
Extending Enterprise
Applications
ISBN: 978-1-84968-316-6 Paperback: 356 pages

Packed with comprehensive recipes to secure, tune, and
extend your Java EE applications

1. Secure your Java applications using Java EE
built-in features as well as the well-known Spring
Security framework

2. Utilize related recipes for testing various Java EE
technologies including JPA, EJB, JSF, and
Web services

3. Explore various ways to extend a Java EE
environment with the use of additional dynamic
languages as well as frameworks

Java 7 Concurrency
Cookbook
ISBN: 978-1-84968-788-1 Paperback: 364 pages

Over 60 simple but incredibly effective recipes for
mastering multithreaded application development
with Java 7

1. Master all that Java 7 has to offer for
concurrent programming Get to grips with
thread management, the Fork/Join framework,
concurrency classes and much more in this book
and e-book A practical Cookbook packed with
recipes for achieving the most important Java
Concurrency tasks

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Groovy
	Introduction
	Installing Groovy on Windows
	Installing Groovy on Linux and OS X
	Executing Groovy code from the command line
	Using Groovy as a command-line text file editor
	Using Groovy to start server on the command line
	Running Groovy with invokedynamic support
	Building Groovy from source
	Managing multiple Groovy installations on Linux
	Using groovysh to try out Groovy commands
	Starting groovyConsole to execute Groovy snippets
	Configuring Groovy in Eclipse
	Configuring Groovy in IntelliJ IDEA

	Chapter 2: Using Groovy Ecosystem
	Introduction
	Using Java classes from Groovy
	Embedding Groovy into Java
	Compiling Groovy code
	Simplifying dependency management with Grape
	Integrating Groovy into build process
using Ant
	Integrating Groovy into build process using Maven
	Integrating Groovy into build process using Gradle
	Generating documentation for Groovy code
	Checking Groovy code quality with CodeNarc

	Chapter 3: Using Groovy Language Features
	Introduction
	Searching strings with regular expressions
	Writing less verbose Java Beans with Groovy Beans
	Inheriting constructors in Groovy classes
	Adding cloning functionality to Groovy Beans
	Defining code as data in Groovy
	Defining data structures as code in Groovy
	Implementing multiple inheritance in Groovy
	Adding functionality to existing Java/Groovy classes
	Defining type-checking rules for dynamic code
	Adding automatic logging to Groovy classes

	Chapter 4: Working with Files in Groovy
	Introduction
	Reading from a file
	Reading a text file line by line
	Processing every word in a text file
	Writing to a file
	Replacing tabs with spaces in a text file
	Filtering a text file content
	Deleting a file or directory
	Walking through a directory recursively
	Searching for files
	Changing file attributes on Windows
	Reading data from a ZIP file
	Reading an Excel file
	Extracting data from a PDF

	Chapter 5: Working with XML in Groovy
	Introduction
	Reading XML using XmlSlurper
	Reading XML using XmlParser
	Reading XML content with namespaces
	Searching in XML with GPath
	Searching in XML with XPath
	Constructing XML content
	Modifying XML content
	Sorting XML nodes
	Serializing Groovy Beans to XML

	Chapter 6: Working with JSON in Groovy
	Introduction
	Parsing JSON messages with JsonSlurper
	Constructing JSON messages with JsonBuilder
	Modifying JSON messages
	Validating JSON messages
	Converting JSON message to XML
	Converting JSON message to Groovy Bean
	Using JSON to configure your scripts

	Chapter 7: Working with Databases in Groovy
	Introduction
	Creating a database table
	Connecting to an SQL database
	Querying a SQL database
	Modifying data in an SQL database
	Calling a stored procedure
	Reading BLOB/CLOB from a database
	Building a simple ORM framework
	Using Groovy to access Redis
	Using Groovy to access MongoDB
	Using Groovy to access Apache Cassandra

	Chapter 8: Working with Web Services in Groovy
	Introduction
	Downloading content from the Internet
	Executing an HTTP GET request
	Executing an HTTP POST request
	Constructing and modifying complex URLs
	Issuing a REST request and parsing a response
	Issuing a SOAP request and parsing a response
	Consuming RSS and Atom feeds
	Using basic authentication for web service security
	Using OAuth for web service security

	Chapter 9: Metaprogramming and DSLs in Groovy
	Introduction
	Querying methods and properties
	Dynamically extending classes with new methods
	Overriding methods dynamically
	Adding performance logging to methods
	Adding caching functionality around methods
	Adding transparent imports to a script
	DSL for executing commands over SSH
	DSL for generating reports from logfiles

	Chapter 10: Concurrent Programming in Groovy
	Introduction
	Processing collections concurrently
	Downloading files concurrently
	Splitting a large task into smaller parallel jobs
	Running tasks in parallel and asynchronously
	Using actors to build message-based concurrency
	Using STM to atomically update fields
	Using dataflow variables for lazy evaluation

	Index

